elf_builder.h revision 316a2186b7fa9e03187d45ac0fa320f4dff1f3df
1/*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_ELF_BUILDER_H_
18#define ART_COMPILER_ELF_BUILDER_H_
19
20#include <vector>
21
22#include "arch/instruction_set.h"
23#include "arch/mips/instruction_set_features_mips.h"
24#include "base/bit_utils.h"
25#include "base/casts.h"
26#include "base/unix_file/fd_file.h"
27#include "elf_utils.h"
28#include "leb128.h"
29#include "linker/error_delaying_output_stream.h"
30#include "utils/array_ref.h"
31
32namespace art {
33
34// Writes ELF file.
35//
36// The basic layout of the elf file:
37//   Elf_Ehdr                    - The ELF header.
38//   Elf_Phdr[]                  - Program headers for the linker.
39//   .rodata                     - DEX files and oat metadata.
40//   .text                       - Compiled code.
41//   .bss                        - Zero-initialized writeable section.
42//   .MIPS.abiflags              - MIPS specific section.
43//   .dynstr                     - Names for .dynsym.
44//   .dynsym                     - A few oat-specific dynamic symbols.
45//   .hash                       - Hash-table for .dynsym.
46//   .dynamic                    - Tags which let the linker locate .dynsym.
47//   .strtab                     - Names for .symtab.
48//   .symtab                     - Debug symbols.
49//   .eh_frame                   - Unwind information (CFI).
50//   .eh_frame_hdr               - Index of .eh_frame.
51//   .debug_frame                - Unwind information (CFI).
52//   .debug_frame.oat_patches    - Addresses for relocation.
53//   .debug_info                 - Debug information.
54//   .debug_info.oat_patches     - Addresses for relocation.
55//   .debug_abbrev               - Decoding information for .debug_info.
56//   .debug_str                  - Strings for .debug_info.
57//   .debug_line                 - Line number tables.
58//   .debug_line.oat_patches     - Addresses for relocation.
59//   .text.oat_patches           - Addresses for relocation.
60//   .shstrtab                   - Names of ELF sections.
61//   Elf_Shdr[]                  - Section headers.
62//
63// Some section are optional (the debug sections in particular).
64//
65// We try write the section data directly into the file without much
66// in-memory buffering.  This means we generally write sections based on the
67// dependency order (e.g. .dynamic points to .dynsym which points to .text).
68//
69// In the cases where we need to buffer, we write the larger section first
70// and buffer the smaller one (e.g. .strtab is bigger than .symtab).
71//
72// The debug sections are written last for easier stripping.
73//
74template <typename ElfTypes>
75class ElfBuilder FINAL {
76 public:
77  static constexpr size_t kMaxProgramHeaders = 16;
78  using Elf_Addr = typename ElfTypes::Addr;
79  using Elf_Off = typename ElfTypes::Off;
80  using Elf_Word = typename ElfTypes::Word;
81  using Elf_Sword = typename ElfTypes::Sword;
82  using Elf_Ehdr = typename ElfTypes::Ehdr;
83  using Elf_Shdr = typename ElfTypes::Shdr;
84  using Elf_Sym = typename ElfTypes::Sym;
85  using Elf_Phdr = typename ElfTypes::Phdr;
86  using Elf_Dyn = typename ElfTypes::Dyn;
87
88  // Base class of all sections.
89  class Section : public OutputStream {
90   public:
91    Section(ElfBuilder<ElfTypes>* owner,
92            const std::string& name,
93            Elf_Word type,
94            Elf_Word flags,
95            const Section* link,
96            Elf_Word info,
97            Elf_Word align,
98            Elf_Word entsize)
99        : OutputStream(name),
100          owner_(owner),
101          header_(),
102          section_index_(0),
103          name_(name),
104          link_(link),
105          started_(false),
106          finished_(false),
107          phdr_flags_(PF_R),
108          phdr_type_(0) {
109      DCHECK_GE(align, 1u);
110      header_.sh_type = type;
111      header_.sh_flags = flags;
112      header_.sh_info = info;
113      header_.sh_addralign = align;
114      header_.sh_entsize = entsize;
115    }
116
117    // Start writing of this section.
118    void Start() {
119      CHECK(!started_);
120      CHECK(!finished_);
121      started_ = true;
122      auto& sections = owner_->sections_;
123      // Check that the previous section is complete.
124      CHECK(sections.empty() || sections.back()->finished_);
125      // The first ELF section index is 1. Index 0 is reserved for NULL.
126      section_index_ = sections.size() + 1;
127      // Page-align if we switch between allocated and non-allocated sections,
128      // or if we change the type of allocation (e.g. executable vs non-executable).
129      if (!sections.empty()) {
130        if (header_.sh_flags != sections.back()->header_.sh_flags) {
131          header_.sh_addralign = kPageSize;
132        }
133      }
134      // Align file position.
135      if (header_.sh_type != SHT_NOBITS) {
136        header_.sh_offset = owner_->AlignFileOffset(header_.sh_addralign);
137      } else {
138        header_.sh_offset = 0;
139      }
140      // Align virtual memory address.
141      if ((header_.sh_flags & SHF_ALLOC) != 0) {
142        header_.sh_addr = owner_->AlignVirtualAddress(header_.sh_addralign);
143      } else {
144        header_.sh_addr = 0;
145      }
146      // Push this section on the list of written sections.
147      sections.push_back(this);
148    }
149
150    // Finish writing of this section.
151    void End() {
152      CHECK(started_);
153      CHECK(!finished_);
154      finished_ = true;
155      if (header_.sh_type == SHT_NOBITS) {
156        CHECK_GT(header_.sh_size, 0u);
157      } else {
158        // Use the current file position to determine section size.
159        off_t file_offset = owner_->stream_.Seek(0, kSeekCurrent);
160        CHECK_GE(file_offset, (off_t)header_.sh_offset);
161        header_.sh_size = file_offset - header_.sh_offset;
162      }
163      if ((header_.sh_flags & SHF_ALLOC) != 0) {
164        owner_->virtual_address_ += header_.sh_size;
165      }
166    }
167
168    // Returns true if the section was written to disk.
169    // (Used to check whether we have .text when writing JIT debug info)
170    bool Exists() const {
171      return finished_;
172    }
173
174    // Get the location of this section in virtual memory.
175    Elf_Addr GetAddress() const {
176      CHECK(started_);
177      return header_.sh_addr;
178    }
179
180    // Returns the size of the content of this section.
181    Elf_Word GetSize() const {
182      if (finished_) {
183        return header_.sh_size;
184      } else {
185        CHECK(started_);
186        CHECK_NE(header_.sh_type, (Elf_Word)SHT_NOBITS);
187        return owner_->stream_.Seek(0, kSeekCurrent) - header_.sh_offset;
188      }
189    }
190
191    // Write this section as "NOBITS" section. (used for the .bss section)
192    // This means that the ELF file does not contain the initial data for this section
193    // and it will be zero-initialized when the ELF file is loaded in the running program.
194    void WriteNoBitsSection(Elf_Word size) {
195      DCHECK_NE(header_.sh_flags & SHF_ALLOC, 0u);
196      header_.sh_type = SHT_NOBITS;
197      Start();
198      header_.sh_size = size;
199      End();
200    }
201
202    // This function always succeeds to simplify code.
203    // Use builder's Good() to check the actual status.
204    bool WriteFully(const void* buffer, size_t byte_count) OVERRIDE {
205      CHECK(started_);
206      CHECK(!finished_);
207      return owner_->stream_.WriteFully(buffer, byte_count);
208    }
209
210    // This function always succeeds to simplify code.
211    // Use builder's Good() to check the actual status.
212    off_t Seek(off_t offset, Whence whence) OVERRIDE {
213      // Forward the seek as-is and trust the caller to use it reasonably.
214      return owner_->stream_.Seek(offset, whence);
215    }
216
217    // This function flushes the output and returns whether it succeeded.
218    // If there was a previous failure, this does nothing and returns false, i.e. failed.
219    bool Flush() OVERRIDE {
220      return owner_->stream_.Flush();
221    }
222
223    Elf_Word GetSectionIndex() const {
224      DCHECK(started_);
225      DCHECK_NE(section_index_, 0u);
226      return section_index_;
227    }
228
229   private:
230    ElfBuilder<ElfTypes>* owner_;
231    Elf_Shdr header_;
232    Elf_Word section_index_;
233    const std::string name_;
234    const Section* const link_;
235    bool started_;
236    bool finished_;
237    Elf_Word phdr_flags_;
238    Elf_Word phdr_type_;
239
240    friend class ElfBuilder;
241
242    DISALLOW_COPY_AND_ASSIGN(Section);
243  };
244
245  class CachedSection : public Section {
246   public:
247    CachedSection(ElfBuilder<ElfTypes>* owner,
248                  const std::string& name,
249                  Elf_Word type,
250                  Elf_Word flags,
251                  const Section* link,
252                  Elf_Word info,
253                  Elf_Word align,
254                  Elf_Word entsize)
255        : Section(owner, name, type, flags, link, info, align, entsize), cache_() { }
256
257    Elf_Word Add(const void* data, size_t length) {
258      Elf_Word offset = cache_.size();
259      const uint8_t* d = reinterpret_cast<const uint8_t*>(data);
260      cache_.insert(cache_.end(), d, d + length);
261      return offset;
262    }
263
264    Elf_Word GetCacheSize() {
265      return cache_.size();
266    }
267
268    void Write() {
269      this->WriteFully(cache_.data(), cache_.size());
270      cache_.clear();
271      cache_.shrink_to_fit();
272    }
273
274    void WriteCachedSection() {
275      this->Start();
276      Write();
277      this->End();
278    }
279
280   private:
281    std::vector<uint8_t> cache_;
282  };
283
284  // Writer of .dynstr section.
285  class CachedStringSection FINAL : public CachedSection {
286   public:
287    CachedStringSection(ElfBuilder<ElfTypes>* owner,
288                        const std::string& name,
289                        Elf_Word flags,
290                        Elf_Word align)
291        : CachedSection(owner,
292                        name,
293                        SHT_STRTAB,
294                        flags,
295                        /* link */ nullptr,
296                        /* info */ 0,
297                        align,
298                        /* entsize */ 0) { }
299
300    Elf_Word Add(const std::string& name) {
301      if (CachedSection::GetCacheSize() == 0u) {
302        DCHECK(name.empty());
303      }
304      return CachedSection::Add(name.c_str(), name.length() + 1);
305    }
306  };
307
308  // Writer of .strtab and .shstrtab sections.
309  class StringSection FINAL : public Section {
310   public:
311    StringSection(ElfBuilder<ElfTypes>* owner,
312                  const std::string& name,
313                  Elf_Word flags,
314                  Elf_Word align)
315        : Section(owner,
316                  name,
317                  SHT_STRTAB,
318                  flags,
319                  /* link */ nullptr,
320                  /* info */ 0,
321                  align,
322                  /* entsize */ 0),
323          current_offset_(0) {
324    }
325
326    Elf_Word Write(const std::string& name) {
327      if (current_offset_ == 0) {
328        DCHECK(name.empty());
329      }
330      Elf_Word offset = current_offset_;
331      this->WriteFully(name.c_str(), name.length() + 1);
332      current_offset_ += name.length() + 1;
333      return offset;
334    }
335
336   private:
337    Elf_Word current_offset_;
338  };
339
340  // Writer of .dynsym and .symtab sections.
341  class SymbolSection FINAL : public CachedSection {
342   public:
343    SymbolSection(ElfBuilder<ElfTypes>* owner,
344                  const std::string& name,
345                  Elf_Word type,
346                  Elf_Word flags,
347                  Section* strtab)
348        : CachedSection(owner,
349                        name,
350                        type,
351                        flags,
352                        strtab,
353                        /* info */ 0,
354                        sizeof(Elf_Off),
355                        sizeof(Elf_Sym)) {
356      // The symbol table always has to start with NULL symbol.
357      Elf_Sym null_symbol = Elf_Sym();
358      CachedSection::Add(&null_symbol, sizeof(null_symbol));
359    }
360
361    // Buffer symbol for this section.  It will be written later.
362    // If the symbol's section is null, it will be considered absolute (SHN_ABS).
363    // (we use this in JIT to reference code which is stored outside the debug ELF file)
364    void Add(Elf_Word name,
365             const Section* section,
366             Elf_Addr addr,
367             bool is_relative,
368             Elf_Word size,
369             uint8_t binding,
370             uint8_t type,
371             uint8_t other = 0) {
372      DCHECK(section != nullptr || !is_relative);
373      Elf_Addr abs_addr = addr + (is_relative ? section->GetAddress() : 0);
374      Elf_Word section_index =
375          (section != nullptr) ? section->GetSectionIndex() : static_cast<Elf_Word>(SHN_ABS);
376      Add(name, section_index, abs_addr, size, binding, type, other);
377    }
378
379    void Add(Elf_Word name,
380             Elf_Word section_index,
381             Elf_Addr addr,
382             Elf_Word size,
383             uint8_t binding,
384             uint8_t type,
385             uint8_t other = 0) {
386      Elf_Sym sym = Elf_Sym();
387      sym.st_name = name;
388      sym.st_value = addr;
389      sym.st_size = size;
390      sym.st_other = other;
391      sym.st_shndx = section_index;
392      sym.st_info = (binding << 4) + (type & 0xf);
393      CachedSection::Add(&sym, sizeof(sym));
394    }
395  };
396
397  class AbiflagsSection FINAL : public Section {
398   public:
399    // Section with Mips abiflag info.
400    static constexpr uint8_t MIPS_AFL_REG_NONE =         0;  // no registers
401    static constexpr uint8_t MIPS_AFL_REG_32 =           1;  // 32-bit registers
402    static constexpr uint8_t MIPS_AFL_REG_64 =           2;  // 64-bit registers
403    static constexpr uint32_t MIPS_AFL_FLAGS1_ODDSPREG = 1;  // Uses odd single-prec fp regs
404    static constexpr uint8_t MIPS_ABI_FP_DOUBLE =        1;  // -mdouble-float
405    static constexpr uint8_t MIPS_ABI_FP_XX =            5;  // -mfpxx
406    static constexpr uint8_t MIPS_ABI_FP_64A =           7;  // -mips32r* -mfp64 -mno-odd-spreg
407
408    AbiflagsSection(ElfBuilder<ElfTypes>* owner,
409                    const std::string& name,
410                    Elf_Word type,
411                    Elf_Word flags,
412                    const Section* link,
413                    Elf_Word info,
414                    Elf_Word align,
415                    Elf_Word entsize,
416                    InstructionSet isa,
417                    const InstructionSetFeatures* features)
418        : Section(owner, name, type, flags, link, info, align, entsize) {
419      if (isa == kMips || isa == kMips64) {
420        bool fpu32 = false;    // assume mips64 values
421        uint8_t isa_rev = 6;   // assume mips64 values
422        if (isa == kMips) {
423          // adjust for mips32 values
424          fpu32 = features->AsMipsInstructionSetFeatures()->Is32BitFloatingPoint();
425          isa_rev = features->AsMipsInstructionSetFeatures()->IsR6()
426              ? 6
427              : features->AsMipsInstructionSetFeatures()->IsMipsIsaRevGreaterThanEqual2()
428                  ? (fpu32 ? 2 : 5)
429                  : 1;
430        }
431        abiflags_.version = 0;  // version of flags structure
432        abiflags_.isa_level = (isa == kMips) ? 32 : 64;
433        abiflags_.isa_rev = isa_rev;
434        abiflags_.gpr_size = (isa == kMips) ? MIPS_AFL_REG_32 : MIPS_AFL_REG_64;
435        abiflags_.cpr1_size = fpu32 ? MIPS_AFL_REG_32 : MIPS_AFL_REG_64;
436        abiflags_.cpr2_size = MIPS_AFL_REG_NONE;
437        // Set the fp_abi to MIPS_ABI_FP_64A for mips32 with 64-bit FPUs (ie: mips32 R5 and R6).
438        // Otherwise set to MIPS_ABI_FP_DOUBLE.
439        abiflags_.fp_abi = (isa == kMips && !fpu32) ? MIPS_ABI_FP_64A : MIPS_ABI_FP_DOUBLE;
440        abiflags_.isa_ext = 0;
441        abiflags_.ases = 0;
442        // To keep the code simple, we are not using odd FP reg for single floats for both
443        // mips32 and mips64 ART. Therefore we are not setting the MIPS_AFL_FLAGS1_ODDSPREG bit.
444        abiflags_.flags1 = 0;
445        abiflags_.flags2 = 0;
446      }
447    }
448
449    Elf_Word GetSize() const {
450      return sizeof(abiflags_);
451    }
452
453    void Write() {
454      this->WriteFully(&abiflags_, sizeof(abiflags_));
455    }
456
457   private:
458    struct {
459      uint16_t version;  // version of this structure
460      uint8_t  isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size;
461      uint8_t  fp_abi;
462      uint32_t isa_ext, ases, flags1, flags2;
463    } abiflags_;
464  };
465
466  ElfBuilder(InstructionSet isa, const InstructionSetFeatures* features, OutputStream* output)
467      : isa_(isa),
468        features_(features),
469        stream_(output),
470        rodata_(this, ".rodata", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0),
471        text_(this, ".text", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, nullptr, 0, kPageSize, 0),
472        bss_(this, ".bss", SHT_NOBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0),
473        dynstr_(this, ".dynstr", SHF_ALLOC, kPageSize),
474        dynsym_(this, ".dynsym", SHT_DYNSYM, SHF_ALLOC, &dynstr_),
475        hash_(this, ".hash", SHT_HASH, SHF_ALLOC, &dynsym_, 0, sizeof(Elf_Word), sizeof(Elf_Word)),
476        dynamic_(this, ".dynamic", SHT_DYNAMIC, SHF_ALLOC, &dynstr_, 0, kPageSize, sizeof(Elf_Dyn)),
477        eh_frame_(this, ".eh_frame", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0),
478        eh_frame_hdr_(this, ".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, 4, 0),
479        strtab_(this, ".strtab", 0, 1),
480        symtab_(this, ".symtab", SHT_SYMTAB, 0, &strtab_),
481        debug_frame_(this, ".debug_frame", SHT_PROGBITS, 0, nullptr, 0, sizeof(Elf_Addr), 0),
482        debug_info_(this, ".debug_info", SHT_PROGBITS, 0, nullptr, 0, 1, 0),
483        debug_line_(this, ".debug_line", SHT_PROGBITS, 0, nullptr, 0, 1, 0),
484        shstrtab_(this, ".shstrtab", 0, 1),
485        abiflags_(this, ".MIPS.abiflags", SHT_MIPS_ABIFLAGS, SHF_ALLOC, nullptr, 0, kPageSize, 0,
486                  isa, features),
487        started_(false),
488        write_program_headers_(false),
489        loaded_size_(0u),
490        virtual_address_(0) {
491    text_.phdr_flags_ = PF_R | PF_X;
492    bss_.phdr_flags_ = PF_R | PF_W;
493    dynamic_.phdr_flags_ = PF_R | PF_W;
494    dynamic_.phdr_type_ = PT_DYNAMIC;
495    eh_frame_hdr_.phdr_type_ = PT_GNU_EH_FRAME;
496    abiflags_.phdr_type_ = PT_MIPS_ABIFLAGS;
497  }
498  ~ElfBuilder() {}
499
500  InstructionSet GetIsa() { return isa_; }
501  Section* GetRoData() { return &rodata_; }
502  Section* GetText() { return &text_; }
503  Section* GetBss() { return &bss_; }
504  StringSection* GetStrTab() { return &strtab_; }
505  SymbolSection* GetSymTab() { return &symtab_; }
506  Section* GetEhFrame() { return &eh_frame_; }
507  Section* GetEhFrameHdr() { return &eh_frame_hdr_; }
508  Section* GetDebugFrame() { return &debug_frame_; }
509  Section* GetDebugInfo() { return &debug_info_; }
510  Section* GetDebugLine() { return &debug_line_; }
511
512  // Encode patch locations as LEB128 list of deltas between consecutive addresses.
513  // (exposed publicly for tests)
514  static void EncodeOatPatches(const ArrayRef<const uintptr_t>& locations,
515                               std::vector<uint8_t>* buffer) {
516    buffer->reserve(buffer->size() + locations.size() * 2);  // guess 2 bytes per ULEB128.
517    uintptr_t address = 0;  // relative to start of section.
518    for (uintptr_t location : locations) {
519      DCHECK_GE(location, address) << "Patch locations are not in sorted order";
520      EncodeUnsignedLeb128(buffer, dchecked_integral_cast<uint32_t>(location - address));
521      address = location;
522    }
523  }
524
525  void WritePatches(const char* name, const ArrayRef<const uintptr_t>& patch_locations) {
526    std::vector<uint8_t> buffer;
527    EncodeOatPatches(patch_locations, &buffer);
528    std::unique_ptr<Section> s(new Section(this, name, SHT_OAT_PATCH, 0, nullptr, 0, 1, 0));
529    s->Start();
530    s->WriteFully(buffer.data(), buffer.size());
531    s->End();
532    other_sections_.push_back(std::move(s));
533  }
534
535  void WriteSection(const char* name, const std::vector<uint8_t>* buffer) {
536    std::unique_ptr<Section> s(new Section(this, name, SHT_PROGBITS, 0, nullptr, 0, 1, 0));
537    s->Start();
538    s->WriteFully(buffer->data(), buffer->size());
539    s->End();
540    other_sections_.push_back(std::move(s));
541  }
542
543  // Reserve space for ELF header and program headers.
544  // We do not know the number of headers until later, so
545  // it is easiest to just reserve a fixed amount of space.
546  // Program headers are required for loading by the linker.
547  // It is possible to omit them for ELF files used for debugging.
548  void Start(bool write_program_headers = true) {
549    int size = sizeof(Elf_Ehdr);
550    if (write_program_headers) {
551      size += sizeof(Elf_Phdr) * kMaxProgramHeaders;
552    }
553    stream_.Seek(size, kSeekSet);
554    started_ = true;
555    virtual_address_ += size;
556    write_program_headers_ = write_program_headers;
557  }
558
559  void End() {
560    DCHECK(started_);
561
562    // Note: loaded_size_ == 0 for tests that don't write .rodata, .text, .bss,
563    // .dynstr, dynsym, .hash and .dynamic. These tests should not read loaded_size_.
564    // TODO: Either refactor the .eh_frame creation so that it counts towards loaded_size_,
565    // or remove all support for .eh_frame. (The currently unused .eh_frame counts towards
566    // the virtual_address_ but we don't consider it for loaded_size_.)
567    CHECK(loaded_size_ == 0 || loaded_size_ == RoundUp(virtual_address_, kPageSize))
568        << loaded_size_ << " " << virtual_address_;
569
570    // Write section names and finish the section headers.
571    shstrtab_.Start();
572    shstrtab_.Write("");
573    for (auto* section : sections_) {
574      section->header_.sh_name = shstrtab_.Write(section->name_);
575      if (section->link_ != nullptr) {
576        section->header_.sh_link = section->link_->GetSectionIndex();
577      }
578    }
579    shstrtab_.End();
580
581    // Write section headers at the end of the ELF file.
582    std::vector<Elf_Shdr> shdrs;
583    shdrs.reserve(1u + sections_.size());
584    shdrs.push_back(Elf_Shdr());  // NULL at index 0.
585    for (auto* section : sections_) {
586      shdrs.push_back(section->header_);
587    }
588    Elf_Off section_headers_offset;
589    section_headers_offset = AlignFileOffset(sizeof(Elf_Off));
590    stream_.WriteFully(shdrs.data(), shdrs.size() * sizeof(shdrs[0]));
591
592    // Flush everything else before writing the program headers. This should prevent
593    // the OS from reordering writes, so that we don't end up with valid headers
594    // and partially written data if we suddenly lose power, for example.
595    stream_.Flush();
596
597    // The main ELF header.
598    Elf_Ehdr elf_header = MakeElfHeader(isa_, features_);
599    elf_header.e_shoff = section_headers_offset;
600    elf_header.e_shnum = shdrs.size();
601    elf_header.e_shstrndx = shstrtab_.GetSectionIndex();
602
603    // Program headers (i.e. mmap instructions).
604    std::vector<Elf_Phdr> phdrs;
605    if (write_program_headers_) {
606      phdrs = MakeProgramHeaders();
607      CHECK_LE(phdrs.size(), kMaxProgramHeaders);
608      elf_header.e_phoff = sizeof(Elf_Ehdr);
609      elf_header.e_phnum = phdrs.size();
610    }
611
612    stream_.Seek(0, kSeekSet);
613    stream_.WriteFully(&elf_header, sizeof(elf_header));
614    stream_.WriteFully(phdrs.data(), phdrs.size() * sizeof(phdrs[0]));
615    stream_.Flush();
616  }
617
618  // The running program does not have access to section headers
619  // and the loader is not supposed to use them either.
620  // The dynamic sections therefore replicates some of the layout
621  // information like the address and size of .rodata and .text.
622  // It also contains other metadata like the SONAME.
623  // The .dynamic section is found using the PT_DYNAMIC program header.
624  void PrepareDynamicSection(const std::string& elf_file_path,
625                             Elf_Word rodata_size,
626                             Elf_Word text_size,
627                             Elf_Word bss_size) {
628    std::string soname(elf_file_path);
629    size_t directory_separator_pos = soname.rfind('/');
630    if (directory_separator_pos != std::string::npos) {
631      soname = soname.substr(directory_separator_pos + 1);
632    }
633
634    // Calculate addresses of .text, .bss and .dynstr.
635    DCHECK_EQ(rodata_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize));
636    DCHECK_EQ(text_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize));
637    DCHECK_EQ(bss_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize));
638    DCHECK_EQ(dynstr_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize));
639    Elf_Word rodata_address = rodata_.GetAddress();
640    Elf_Word text_address = RoundUp(rodata_address + rodata_size, kPageSize);
641    Elf_Word bss_address = RoundUp(text_address + text_size, kPageSize);
642    Elf_Word abiflags_address = RoundUp(bss_address + bss_size, kPageSize);
643    Elf_Word abiflags_size = 0;
644    if (isa_ == kMips || isa_ == kMips64) {
645      abiflags_size = abiflags_.GetSize();
646    }
647    Elf_Word dynstr_address = RoundUp(abiflags_address + abiflags_size, kPageSize);
648
649    // Cache .dynstr, .dynsym and .hash data.
650    dynstr_.Add("");  // dynstr should start with empty string.
651    Elf_Word rodata_index = rodata_.GetSectionIndex();
652    Elf_Word oatdata = dynstr_.Add("oatdata");
653    dynsym_.Add(oatdata, rodata_index, rodata_address, rodata_size, STB_GLOBAL, STT_OBJECT);
654    if (text_size != 0u) {
655      Elf_Word text_index = rodata_index + 1u;
656      Elf_Word oatexec = dynstr_.Add("oatexec");
657      dynsym_.Add(oatexec, text_index, text_address, text_size, STB_GLOBAL, STT_OBJECT);
658      Elf_Word oatlastword = dynstr_.Add("oatlastword");
659      Elf_Word oatlastword_address = text_address + text_size - 4;
660      dynsym_.Add(oatlastword, text_index, oatlastword_address, 4, STB_GLOBAL, STT_OBJECT);
661    } else if (rodata_size != 0) {
662      // rodata_ can be size 0 for dwarf_test.
663      Elf_Word oatlastword = dynstr_.Add("oatlastword");
664      Elf_Word oatlastword_address = rodata_address + rodata_size - 4;
665      dynsym_.Add(oatlastword, rodata_index, oatlastword_address, 4, STB_GLOBAL, STT_OBJECT);
666    }
667    if (bss_size != 0u) {
668      Elf_Word bss_index = rodata_index + 1u + (text_size != 0 ? 1u : 0u);
669      Elf_Word oatbss = dynstr_.Add("oatbss");
670      dynsym_.Add(oatbss, bss_index, bss_address, bss_size, STB_GLOBAL, STT_OBJECT);
671      Elf_Word oatbsslastword = dynstr_.Add("oatbsslastword");
672      Elf_Word bsslastword_address = bss_address + bss_size - 4;
673      dynsym_.Add(oatbsslastword, bss_index, bsslastword_address, 4, STB_GLOBAL, STT_OBJECT);
674    }
675    Elf_Word soname_offset = dynstr_.Add(soname);
676
677    // We do not really need a hash-table since there is so few entries.
678    // However, the hash-table is the only way the linker can actually
679    // determine the number of symbols in .dynsym so it is required.
680    int count = dynsym_.GetCacheSize() / sizeof(Elf_Sym);  // Includes NULL.
681    std::vector<Elf_Word> hash;
682    hash.push_back(1);  // Number of buckets.
683    hash.push_back(count);  // Number of chains.
684    // Buckets.  Having just one makes it linear search.
685    hash.push_back(1);  // Point to first non-NULL symbol.
686    // Chains.  This creates linked list of symbols.
687    hash.push_back(0);  // Dummy entry for the NULL symbol.
688    for (int i = 1; i < count - 1; i++) {
689      hash.push_back(i + 1);  // Each symbol points to the next one.
690    }
691    hash.push_back(0);  // Last symbol terminates the chain.
692    hash_.Add(hash.data(), hash.size() * sizeof(hash[0]));
693
694    // Calculate addresses of .dynsym, .hash and .dynamic.
695    DCHECK_EQ(dynstr_.header_.sh_flags, dynsym_.header_.sh_flags);
696    DCHECK_EQ(dynsym_.header_.sh_flags, hash_.header_.sh_flags);
697    Elf_Word dynsym_address =
698        RoundUp(dynstr_address + dynstr_.GetCacheSize(), dynsym_.header_.sh_addralign);
699    Elf_Word hash_address =
700        RoundUp(dynsym_address + dynsym_.GetCacheSize(), hash_.header_.sh_addralign);
701    DCHECK_EQ(dynamic_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize));
702    Elf_Word dynamic_address = RoundUp(hash_address + dynsym_.GetCacheSize(), kPageSize);
703
704    Elf_Dyn dyns[] = {
705      { DT_HASH, { hash_address } },
706      { DT_STRTAB, { dynstr_address } },
707      { DT_SYMTAB, { dynsym_address } },
708      { DT_SYMENT, { sizeof(Elf_Sym) } },
709      { DT_STRSZ, { dynstr_.GetCacheSize() } },
710      { DT_SONAME, { soname_offset } },
711      { DT_NULL, { 0 } },
712    };
713    dynamic_.Add(&dyns, sizeof(dyns));
714
715    loaded_size_ = RoundUp(dynamic_address + dynamic_.GetCacheSize(), kPageSize);
716  }
717
718  void WriteDynamicSection() {
719    dynstr_.WriteCachedSection();
720    dynsym_.WriteCachedSection();
721    hash_.WriteCachedSection();
722    dynamic_.WriteCachedSection();
723
724    CHECK_EQ(loaded_size_, RoundUp(dynamic_.GetAddress() + dynamic_.GetSize(), kPageSize));
725  }
726
727  Elf_Word GetLoadedSize() {
728    CHECK_NE(loaded_size_, 0u);
729    return loaded_size_;
730  }
731
732  void WriteMIPSabiflagsSection() {
733    abiflags_.Start();
734    abiflags_.Write();
735    abiflags_.End();
736  }
737
738  // Returns true if all writes and seeks on the output stream succeeded.
739  bool Good() {
740    return stream_.Good();
741  }
742
743  // Returns the builder's internal stream.
744  OutputStream* GetStream() {
745    return &stream_;
746  }
747
748  off_t AlignFileOffset(size_t alignment) {
749     return stream_.Seek(RoundUp(stream_.Seek(0, kSeekCurrent), alignment), kSeekSet);
750  }
751
752  Elf_Addr AlignVirtualAddress(size_t alignment) {
753     return virtual_address_ = RoundUp(virtual_address_, alignment);
754  }
755
756 private:
757  static Elf_Ehdr MakeElfHeader(InstructionSet isa, const InstructionSetFeatures* features) {
758    Elf_Ehdr elf_header = Elf_Ehdr();
759    switch (isa) {
760      case kArm:
761        // Fall through.
762      case kThumb2: {
763        elf_header.e_machine = EM_ARM;
764        elf_header.e_flags = EF_ARM_EABI_VER5;
765        break;
766      }
767      case kArm64: {
768        elf_header.e_machine = EM_AARCH64;
769        elf_header.e_flags = 0;
770        break;
771      }
772      case kX86: {
773        elf_header.e_machine = EM_386;
774        elf_header.e_flags = 0;
775        break;
776      }
777      case kX86_64: {
778        elf_header.e_machine = EM_X86_64;
779        elf_header.e_flags = 0;
780        break;
781      }
782      case kMips: {
783        elf_header.e_machine = EM_MIPS;
784        elf_header.e_flags = (EF_MIPS_NOREORDER |
785                              EF_MIPS_PIC       |
786                              EF_MIPS_CPIC      |
787                              EF_MIPS_ABI_O32   |
788                              features->AsMipsInstructionSetFeatures()->IsR6()
789                                  ? EF_MIPS_ARCH_32R6
790                                  : EF_MIPS_ARCH_32R2);
791        break;
792      }
793      case kMips64: {
794        elf_header.e_machine = EM_MIPS;
795        elf_header.e_flags = (EF_MIPS_NOREORDER |
796                              EF_MIPS_PIC       |
797                              EF_MIPS_CPIC      |
798                              EF_MIPS_ARCH_64R6);
799        break;
800      }
801      case kNone: {
802        LOG(FATAL) << "No instruction set";
803        break;
804      }
805      default: {
806        LOG(FATAL) << "Unknown instruction set " << isa;
807      }
808    }
809
810    elf_header.e_ident[EI_MAG0]       = ELFMAG0;
811    elf_header.e_ident[EI_MAG1]       = ELFMAG1;
812    elf_header.e_ident[EI_MAG2]       = ELFMAG2;
813    elf_header.e_ident[EI_MAG3]       = ELFMAG3;
814    elf_header.e_ident[EI_CLASS]      = (sizeof(Elf_Addr) == sizeof(Elf32_Addr))
815                                         ? ELFCLASS32 : ELFCLASS64;;
816    elf_header.e_ident[EI_DATA]       = ELFDATA2LSB;
817    elf_header.e_ident[EI_VERSION]    = EV_CURRENT;
818    elf_header.e_ident[EI_OSABI]      = ELFOSABI_LINUX;
819    elf_header.e_ident[EI_ABIVERSION] = 0;
820    elf_header.e_type = ET_DYN;
821    elf_header.e_version = 1;
822    elf_header.e_entry = 0;
823    elf_header.e_ehsize = sizeof(Elf_Ehdr);
824    elf_header.e_phentsize = sizeof(Elf_Phdr);
825    elf_header.e_shentsize = sizeof(Elf_Shdr);
826    elf_header.e_phoff = sizeof(Elf_Ehdr);
827    return elf_header;
828  }
829
830  // Create program headers based on written sections.
831  std::vector<Elf_Phdr> MakeProgramHeaders() {
832    CHECK(!sections_.empty());
833    std::vector<Elf_Phdr> phdrs;
834    {
835      // The program headers must start with PT_PHDR which is used in
836      // loaded process to determine the number of program headers.
837      Elf_Phdr phdr = Elf_Phdr();
838      phdr.p_type    = PT_PHDR;
839      phdr.p_flags   = PF_R;
840      phdr.p_offset  = phdr.p_vaddr = phdr.p_paddr = sizeof(Elf_Ehdr);
841      phdr.p_filesz  = phdr.p_memsz = 0;  // We need to fill this later.
842      phdr.p_align   = sizeof(Elf_Off);
843      phdrs.push_back(phdr);
844      // Tell the linker to mmap the start of file to memory.
845      Elf_Phdr load = Elf_Phdr();
846      load.p_type    = PT_LOAD;
847      load.p_flags   = PF_R;
848      load.p_offset  = load.p_vaddr = load.p_paddr = 0;
849      load.p_filesz  = load.p_memsz = sections_[0]->header_.sh_offset;
850      load.p_align   = kPageSize;
851      phdrs.push_back(load);
852    }
853    // Create program headers for sections.
854    for (auto* section : sections_) {
855      const Elf_Shdr& shdr = section->header_;
856      if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) {
857        // PT_LOAD tells the linker to mmap part of the file.
858        // The linker can only mmap page-aligned sections.
859        // Single PT_LOAD may contain several ELF sections.
860        Elf_Phdr& prev = phdrs.back();
861        Elf_Phdr load = Elf_Phdr();
862        load.p_type   = PT_LOAD;
863        load.p_flags  = section->phdr_flags_;
864        load.p_offset = shdr.sh_offset;
865        load.p_vaddr  = load.p_paddr = shdr.sh_addr;
866        load.p_filesz = (shdr.sh_type != SHT_NOBITS ? shdr.sh_size : 0u);
867        load.p_memsz  = shdr.sh_size;
868        load.p_align  = shdr.sh_addralign;
869        if (prev.p_type == load.p_type &&
870            prev.p_flags == load.p_flags &&
871            prev.p_filesz == prev.p_memsz &&  // Do not merge .bss
872            load.p_filesz == load.p_memsz) {  // Do not merge .bss
873          // Merge this PT_LOAD with the previous one.
874          Elf_Word size = shdr.sh_offset + shdr.sh_size - prev.p_offset;
875          prev.p_filesz = size;
876          prev.p_memsz  = size;
877        } else {
878          // If we are adding new load, it must be aligned.
879          CHECK_EQ(shdr.sh_addralign, (Elf_Word)kPageSize);
880          phdrs.push_back(load);
881        }
882      }
883    }
884    for (auto* section : sections_) {
885      const Elf_Shdr& shdr = section->header_;
886      if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) {
887        // Other PT_* types allow the program to locate interesting
888        // parts of memory at runtime. They must overlap with PT_LOAD.
889        if (section->phdr_type_ != 0) {
890          Elf_Phdr phdr = Elf_Phdr();
891          phdr.p_type   = section->phdr_type_;
892          phdr.p_flags  = section->phdr_flags_;
893          phdr.p_offset = shdr.sh_offset;
894          phdr.p_vaddr  = phdr.p_paddr = shdr.sh_addr;
895          phdr.p_filesz = phdr.p_memsz = shdr.sh_size;
896          phdr.p_align  = shdr.sh_addralign;
897          phdrs.push_back(phdr);
898        }
899      }
900    }
901    // Set the size of the initial PT_PHDR.
902    CHECK_EQ(phdrs[0].p_type, (Elf_Word)PT_PHDR);
903    phdrs[0].p_filesz = phdrs[0].p_memsz = phdrs.size() * sizeof(Elf_Phdr);
904
905    return phdrs;
906  }
907
908  InstructionSet isa_;
909  const InstructionSetFeatures* features_;
910
911  ErrorDelayingOutputStream stream_;
912
913  Section rodata_;
914  Section text_;
915  Section bss_;
916  CachedStringSection dynstr_;
917  SymbolSection dynsym_;
918  CachedSection hash_;
919  CachedSection dynamic_;
920  Section eh_frame_;
921  Section eh_frame_hdr_;
922  StringSection strtab_;
923  SymbolSection symtab_;
924  Section debug_frame_;
925  Section debug_info_;
926  Section debug_line_;
927  StringSection shstrtab_;
928  AbiflagsSection abiflags_;
929  std::vector<std::unique_ptr<Section>> other_sections_;
930
931  // List of used section in the order in which they were written.
932  std::vector<Section*> sections_;
933
934  bool started_;
935  bool write_program_headers_;
936
937  // The size of the memory taken by the ELF file when loaded.
938  size_t loaded_size_;
939
940  // Used for allocation of virtual address space.
941  Elf_Addr virtual_address_;
942
943  DISALLOW_COPY_AND_ASSIGN(ElfBuilder);
944};
945
946}  // namespace art
947
948#endif  // ART_COMPILER_ELF_BUILDER_H_
949