elf_builder.h revision 5b1c2ca30dad519be285f0a1e839c23cc4e3a51d
1/*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_ELF_BUILDER_H_
18#define ART_COMPILER_ELF_BUILDER_H_
19
20#include <vector>
21
22#include "arch/instruction_set.h"
23#include "base/bit_utils.h"
24#include "base/casts.h"
25#include "base/unix_file/fd_file.h"
26#include "elf_utils.h"
27#include "leb128.h"
28#include "linker/error_delaying_output_stream.h"
29#include "utils/array_ref.h"
30
31namespace art {
32
33// Writes ELF file.
34//
35// The basic layout of the elf file:
36//   Elf_Ehdr                    - The ELF header.
37//   Elf_Phdr[]                  - Program headers for the linker.
38//   .rodata                     - DEX files and oat metadata.
39//   .text                       - Compiled code.
40//   .bss                        - Zero-initialized writeable section.
41//   .dynstr                     - Names for .dynsym.
42//   .dynsym                     - A few oat-specific dynamic symbols.
43//   .hash                       - Hash-table for .dynsym.
44//   .dynamic                    - Tags which let the linker locate .dynsym.
45//   .strtab                     - Names for .symtab.
46//   .symtab                     - Debug symbols.
47//   .eh_frame                   - Unwind information (CFI).
48//   .eh_frame_hdr               - Index of .eh_frame.
49//   .debug_frame                - Unwind information (CFI).
50//   .debug_frame.oat_patches    - Addresses for relocation.
51//   .debug_info                 - Debug information.
52//   .debug_info.oat_patches     - Addresses for relocation.
53//   .debug_abbrev               - Decoding information for .debug_info.
54//   .debug_str                  - Strings for .debug_info.
55//   .debug_line                 - Line number tables.
56//   .debug_line.oat_patches     - Addresses for relocation.
57//   .text.oat_patches           - Addresses for relocation.
58//   .shstrtab                   - Names of ELF sections.
59//   Elf_Shdr[]                  - Section headers.
60//
61// Some section are optional (the debug sections in particular).
62//
63// We try write the section data directly into the file without much
64// in-memory buffering.  This means we generally write sections based on the
65// dependency order (e.g. .dynamic points to .dynsym which points to .text).
66//
67// In the cases where we need to buffer, we write the larger section first
68// and buffer the smaller one (e.g. .strtab is bigger than .symtab).
69//
70// The debug sections are written last for easier stripping.
71//
72template <typename ElfTypes>
73class ElfBuilder FINAL {
74 public:
75  static constexpr size_t kMaxProgramHeaders = 16;
76  using Elf_Addr = typename ElfTypes::Addr;
77  using Elf_Off = typename ElfTypes::Off;
78  using Elf_Word = typename ElfTypes::Word;
79  using Elf_Sword = typename ElfTypes::Sword;
80  using Elf_Ehdr = typename ElfTypes::Ehdr;
81  using Elf_Shdr = typename ElfTypes::Shdr;
82  using Elf_Sym = typename ElfTypes::Sym;
83  using Elf_Phdr = typename ElfTypes::Phdr;
84  using Elf_Dyn = typename ElfTypes::Dyn;
85
86  // Base class of all sections.
87  class Section : public OutputStream {
88   public:
89    Section(ElfBuilder<ElfTypes>* owner, const std::string& name,
90            Elf_Word type, Elf_Word flags, const Section* link,
91            Elf_Word info, Elf_Word align, Elf_Word entsize)
92        : OutputStream(name), owner_(owner), header_(),
93          section_index_(0), name_(name), link_(link),
94          started_(false), finished_(false), phdr_flags_(PF_R), phdr_type_(0) {
95      DCHECK_GE(align, 1u);
96      header_.sh_type = type;
97      header_.sh_flags = flags;
98      header_.sh_info = info;
99      header_.sh_addralign = align;
100      header_.sh_entsize = entsize;
101    }
102
103    // Start writing of this section.
104    void Start() {
105      CHECK(!started_);
106      CHECK(!finished_);
107      started_ = true;
108      auto& sections = owner_->sections_;
109      // Check that the previous section is complete.
110      CHECK(sections.empty() || sections.back()->finished_);
111      // The first ELF section index is 1. Index 0 is reserved for NULL.
112      section_index_ = sections.size() + 1;
113      // Push this section on the list of written sections.
114      sections.push_back(this);
115      // Align file position.
116      if (header_.sh_type != SHT_NOBITS) {
117        header_.sh_offset = RoundUp(owner_->stream_.Seek(0, kSeekCurrent), header_.sh_addralign);
118        owner_->stream_.Seek(header_.sh_offset, kSeekSet);
119      }
120      // Align virtual memory address.
121      if ((header_.sh_flags & SHF_ALLOC) != 0) {
122        header_.sh_addr = RoundUp(owner_->virtual_address_, header_.sh_addralign);
123        owner_->virtual_address_ = header_.sh_addr;
124      }
125    }
126
127    // Finish writing of this section.
128    void End() {
129      CHECK(started_);
130      CHECK(!finished_);
131      finished_ = true;
132      if (header_.sh_type == SHT_NOBITS) {
133        CHECK_GT(header_.sh_size, 0u);
134      } else {
135        // Use the current file position to determine section size.
136        off_t file_offset = owner_->stream_.Seek(0, kSeekCurrent);
137        CHECK_GE(file_offset, (off_t)header_.sh_offset);
138        header_.sh_size = file_offset - header_.sh_offset;
139      }
140      if ((header_.sh_flags & SHF_ALLOC) != 0) {
141        owner_->virtual_address_ += header_.sh_size;
142      }
143    }
144
145    // Returns true if the section was written to disk.
146    // (Used to check whether we have .text when writing JIT debug info)
147    bool Exists() const {
148      return finished_;
149    }
150
151    // Get the location of this section in virtual memory.
152    Elf_Addr GetAddress() const {
153      CHECK(started_);
154      return header_.sh_addr;
155    }
156
157    // Returns the size of the content of this section.
158    Elf_Word GetSize() const {
159      if (finished_) {
160        return header_.sh_size;
161      } else {
162        CHECK(started_);
163        CHECK_NE(header_.sh_type, (Elf_Word)SHT_NOBITS);
164        return owner_->stream_.Seek(0, kSeekCurrent) - header_.sh_offset;
165      }
166    }
167
168    // Write this section as "NOBITS" section. (used for the .bss section)
169    // This means that the ELF file does not contain the initial data for this section
170    // and it will be zero-initialized when the ELF file is loaded in the running program.
171    void WriteNoBitsSection(Elf_Word size) {
172      DCHECK_NE(header_.sh_flags & SHF_ALLOC, 0u);
173      Start();
174      header_.sh_type = SHT_NOBITS;
175      header_.sh_size = size;
176      End();
177    }
178
179    // This function always succeeds to simplify code.
180    // Use builder's Good() to check the actual status.
181    bool WriteFully(const void* buffer, size_t byte_count) OVERRIDE {
182      CHECK(started_);
183      CHECK(!finished_);
184      return owner_->stream_.WriteFully(buffer, byte_count);
185    }
186
187    // This function always succeeds to simplify code.
188    // Use builder's Good() to check the actual status.
189    off_t Seek(off_t offset, Whence whence) OVERRIDE {
190      // Forward the seek as-is and trust the caller to use it reasonably.
191      return owner_->stream_.Seek(offset, whence);
192    }
193
194    // This function flushes the output and returns whether it succeeded.
195    // If there was a previous failure, this does nothing and returns false, i.e. failed.
196    bool Flush() OVERRIDE {
197      return owner_->stream_.Flush();
198    }
199
200    Elf_Word GetSectionIndex() const {
201      DCHECK(started_);
202      DCHECK_NE(section_index_, 0u);
203      return section_index_;
204    }
205
206   private:
207    ElfBuilder<ElfTypes>* owner_;
208    Elf_Shdr header_;
209    Elf_Word section_index_;
210    const std::string name_;
211    const Section* const link_;
212    bool started_;
213    bool finished_;
214    Elf_Word phdr_flags_;
215    Elf_Word phdr_type_;
216
217    friend class ElfBuilder;
218
219    DISALLOW_COPY_AND_ASSIGN(Section);
220  };
221
222  // Writer of .dynstr .strtab and .shstrtab sections.
223  class StringSection FINAL : public Section {
224   public:
225    StringSection(ElfBuilder<ElfTypes>* owner, const std::string& name,
226                  Elf_Word flags, Elf_Word align)
227        : Section(owner, name, SHT_STRTAB, flags, nullptr, 0, align, 0),
228          current_offset_(0) {
229    }
230
231    Elf_Word Write(const std::string& name) {
232      if (current_offset_ == 0) {
233        DCHECK(name.empty());
234      }
235      Elf_Word offset = current_offset_;
236      this->WriteFully(name.c_str(), name.length() + 1);
237      current_offset_ += name.length() + 1;
238      return offset;
239    }
240
241   private:
242    Elf_Word current_offset_;
243  };
244
245  // Writer of .dynsym and .symtab sections.
246  class SymbolSection FINAL : public Section {
247   public:
248    SymbolSection(ElfBuilder<ElfTypes>* owner, const std::string& name,
249                  Elf_Word type, Elf_Word flags, StringSection* strtab)
250        : Section(owner, name, type, flags, strtab, 0,
251                  sizeof(Elf_Off), sizeof(Elf_Sym)) {
252    }
253
254    // Buffer symbol for this section.  It will be written later.
255    // If the symbol's section is null, it will be considered absolute (SHN_ABS).
256    // (we use this in JIT to reference code which is stored outside the debug ELF file)
257    void Add(Elf_Word name, const Section* section,
258             Elf_Addr addr, bool is_relative, Elf_Word size,
259             uint8_t binding, uint8_t type, uint8_t other = 0) {
260      Elf_Sym sym = Elf_Sym();
261      sym.st_name = name;
262      sym.st_value = addr + (is_relative ? section->GetAddress() : 0);
263      sym.st_size = size;
264      sym.st_other = other;
265      sym.st_shndx = (section != nullptr ? section->GetSectionIndex()
266                                         : static_cast<Elf_Word>(SHN_ABS));
267      sym.st_info = (binding << 4) + (type & 0xf);
268      symbols_.push_back(sym);
269    }
270
271    void Write() {
272      // The symbol table always has to start with NULL symbol.
273      Elf_Sym null_symbol = Elf_Sym();
274      this->WriteFully(&null_symbol, sizeof(null_symbol));
275      this->WriteFully(symbols_.data(), symbols_.size() * sizeof(symbols_[0]));
276      symbols_.clear();
277      symbols_.shrink_to_fit();
278    }
279
280   private:
281    std::vector<Elf_Sym> symbols_;
282  };
283
284  ElfBuilder(InstructionSet isa, OutputStream* output)
285      : isa_(isa),
286        stream_(output),
287        rodata_(this, ".rodata", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0),
288        text_(this, ".text", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, nullptr, 0, kPageSize, 0),
289        bss_(this, ".bss", SHT_NOBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0),
290        dynstr_(this, ".dynstr", SHF_ALLOC, kPageSize),
291        dynsym_(this, ".dynsym", SHT_DYNSYM, SHF_ALLOC, &dynstr_),
292        hash_(this, ".hash", SHT_HASH, SHF_ALLOC, &dynsym_, 0, sizeof(Elf_Word), sizeof(Elf_Word)),
293        dynamic_(this, ".dynamic", SHT_DYNAMIC, SHF_ALLOC, &dynstr_, 0, kPageSize, sizeof(Elf_Dyn)),
294        eh_frame_(this, ".eh_frame", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0),
295        eh_frame_hdr_(this, ".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, 4, 0),
296        strtab_(this, ".strtab", 0, kPageSize),
297        symtab_(this, ".symtab", SHT_SYMTAB, 0, &strtab_),
298        debug_frame_(this, ".debug_frame", SHT_PROGBITS, 0, nullptr, 0, sizeof(Elf_Addr), 0),
299        debug_info_(this, ".debug_info", SHT_PROGBITS, 0, nullptr, 0, 1, 0),
300        debug_line_(this, ".debug_line", SHT_PROGBITS, 0, nullptr, 0, 1, 0),
301        shstrtab_(this, ".shstrtab", 0, 1),
302        virtual_address_(0) {
303    text_.phdr_flags_ = PF_R | PF_X;
304    bss_.phdr_flags_ = PF_R | PF_W;
305    dynamic_.phdr_flags_ = PF_R | PF_W;
306    dynamic_.phdr_type_ = PT_DYNAMIC;
307    eh_frame_hdr_.phdr_type_ = PT_GNU_EH_FRAME;
308  }
309  ~ElfBuilder() {}
310
311  InstructionSet GetIsa() { return isa_; }
312  Section* GetRoData() { return &rodata_; }
313  Section* GetText() { return &text_; }
314  Section* GetBss() { return &bss_; }
315  StringSection* GetStrTab() { return &strtab_; }
316  SymbolSection* GetSymTab() { return &symtab_; }
317  Section* GetEhFrame() { return &eh_frame_; }
318  Section* GetEhFrameHdr() { return &eh_frame_hdr_; }
319  Section* GetDebugFrame() { return &debug_frame_; }
320  Section* GetDebugInfo() { return &debug_info_; }
321  Section* GetDebugLine() { return &debug_line_; }
322
323  // Encode patch locations as LEB128 list of deltas between consecutive addresses.
324  // (exposed publicly for tests)
325  static void EncodeOatPatches(const ArrayRef<const uintptr_t>& locations,
326                               std::vector<uint8_t>* buffer) {
327    buffer->reserve(buffer->size() + locations.size() * 2);  // guess 2 bytes per ULEB128.
328    uintptr_t address = 0;  // relative to start of section.
329    for (uintptr_t location : locations) {
330      DCHECK_GE(location, address) << "Patch locations are not in sorted order";
331      EncodeUnsignedLeb128(buffer, dchecked_integral_cast<uint32_t>(location - address));
332      address = location;
333    }
334  }
335
336  void WritePatches(const char* name, const ArrayRef<const uintptr_t>& patch_locations) {
337    std::vector<uint8_t> buffer;
338    EncodeOatPatches(patch_locations, &buffer);
339    std::unique_ptr<Section> s(new Section(this, name, SHT_OAT_PATCH, 0, nullptr, 0, 1, 0));
340    s->Start();
341    s->WriteFully(buffer.data(), buffer.size());
342    s->End();
343    other_sections_.push_back(std::move(s));
344  }
345
346  void WriteSection(const char* name, const std::vector<uint8_t>* buffer) {
347    std::unique_ptr<Section> s(new Section(this, name, SHT_PROGBITS, 0, nullptr, 0, 1, 0));
348    s->Start();
349    s->WriteFully(buffer->data(), buffer->size());
350    s->End();
351    other_sections_.push_back(std::move(s));
352  }
353
354  // Set where the next section will be allocated in the virtual address space.
355  void SetVirtualAddress(Elf_Addr address) {
356    DCHECK_GE(address, virtual_address_);
357    virtual_address_ = address;
358  }
359
360  void Start() {
361    // Reserve space for ELF header and program headers.
362    // We do not know the number of headers until later, so
363    // it is easiest to just reserve a fixed amount of space.
364    int size = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * kMaxProgramHeaders;
365    stream_.Seek(size, kSeekSet);
366    virtual_address_ += size;
367  }
368
369  void End() {
370    // Write section names and finish the section headers.
371    shstrtab_.Start();
372    shstrtab_.Write("");
373    for (auto* section : sections_) {
374      section->header_.sh_name = shstrtab_.Write(section->name_);
375      if (section->link_ != nullptr) {
376        section->header_.sh_link = section->link_->GetSectionIndex();
377      }
378    }
379    shstrtab_.End();
380
381    // Write section headers at the end of the ELF file.
382    std::vector<Elf_Shdr> shdrs;
383    shdrs.reserve(1u + sections_.size());
384    shdrs.push_back(Elf_Shdr());  // NULL at index 0.
385    for (auto* section : sections_) {
386      shdrs.push_back(section->header_);
387    }
388    Elf_Off section_headers_offset;
389    section_headers_offset = RoundUp(stream_.Seek(0, kSeekCurrent), sizeof(Elf_Off));
390    stream_.Seek(section_headers_offset, kSeekSet);
391    stream_.WriteFully(shdrs.data(), shdrs.size() * sizeof(shdrs[0]));
392
393    // Flush everything else before writing the program headers. This should prevent
394    // the OS from reordering writes, so that we don't end up with valid headers
395    // and partially written data if we suddenly lose power, for example.
396    stream_.Flush();
397
398    // Write the initial file headers.
399    std::vector<Elf_Phdr> phdrs = MakeProgramHeaders();
400    Elf_Ehdr elf_header = MakeElfHeader(isa_);
401    elf_header.e_phoff = sizeof(Elf_Ehdr);
402    elf_header.e_shoff = section_headers_offset;
403    elf_header.e_phnum = phdrs.size();
404    elf_header.e_shnum = shdrs.size();
405    elf_header.e_shstrndx = shstrtab_.GetSectionIndex();
406    stream_.Seek(0, kSeekSet);
407    stream_.WriteFully(&elf_header, sizeof(elf_header));
408    stream_.WriteFully(phdrs.data(), phdrs.size() * sizeof(phdrs[0]));
409    stream_.Flush();
410  }
411
412  // The running program does not have access to section headers
413  // and the loader is not supposed to use them either.
414  // The dynamic sections therefore replicates some of the layout
415  // information like the address and size of .rodata and .text.
416  // It also contains other metadata like the SONAME.
417  // The .dynamic section is found using the PT_DYNAMIC program header.
418  void WriteDynamicSection(const std::string& elf_file_path) {
419    std::string soname(elf_file_path);
420    size_t directory_separator_pos = soname.rfind('/');
421    if (directory_separator_pos != std::string::npos) {
422      soname = soname.substr(directory_separator_pos + 1);
423    }
424
425    dynstr_.Start();
426    dynstr_.Write("");  // dynstr should start with empty string.
427    dynsym_.Add(dynstr_.Write("oatdata"), &rodata_, 0, true,
428                rodata_.GetSize(), STB_GLOBAL, STT_OBJECT);
429    if (text_.GetSize() != 0u) {
430      dynsym_.Add(dynstr_.Write("oatexec"), &text_, 0, true,
431                  text_.GetSize(), STB_GLOBAL, STT_OBJECT);
432      dynsym_.Add(dynstr_.Write("oatlastword"), &text_, text_.GetSize() - 4,
433                  true, 4, STB_GLOBAL, STT_OBJECT);
434    } else if (rodata_.GetSize() != 0) {
435      // rodata_ can be size 0 for dwarf_test.
436      dynsym_.Add(dynstr_.Write("oatlastword"), &rodata_, rodata_.GetSize() - 4,
437                  true, 4, STB_GLOBAL, STT_OBJECT);
438    }
439    if (bss_.finished_) {
440      dynsym_.Add(dynstr_.Write("oatbss"), &bss_,
441                  0, true, bss_.GetSize(), STB_GLOBAL, STT_OBJECT);
442      dynsym_.Add(dynstr_.Write("oatbsslastword"), &bss_,
443                  bss_.GetSize() - 4, true, 4, STB_GLOBAL, STT_OBJECT);
444    }
445    Elf_Word soname_offset = dynstr_.Write(soname);
446    dynstr_.End();
447
448    dynsym_.Start();
449    dynsym_.Write();
450    dynsym_.End();
451
452    // We do not really need a hash-table since there is so few entries.
453    // However, the hash-table is the only way the linker can actually
454    // determine the number of symbols in .dynsym so it is required.
455    hash_.Start();
456    int count = dynsym_.GetSize() / sizeof(Elf_Sym);  // Includes NULL.
457    std::vector<Elf_Word> hash;
458    hash.push_back(1);  // Number of buckets.
459    hash.push_back(count);  // Number of chains.
460    // Buckets.  Having just one makes it linear search.
461    hash.push_back(1);  // Point to first non-NULL symbol.
462    // Chains.  This creates linked list of symbols.
463    hash.push_back(0);  // Dummy entry for the NULL symbol.
464    for (int i = 1; i < count - 1; i++) {
465      hash.push_back(i + 1);  // Each symbol points to the next one.
466    }
467    hash.push_back(0);  // Last symbol terminates the chain.
468    hash_.WriteFully(hash.data(), hash.size() * sizeof(hash[0]));
469    hash_.End();
470
471    dynamic_.Start();
472    Elf_Dyn dyns[] = {
473      { DT_HASH, { hash_.GetAddress() } },
474      { DT_STRTAB, { dynstr_.GetAddress() } },
475      { DT_SYMTAB, { dynsym_.GetAddress() } },
476      { DT_SYMENT, { sizeof(Elf_Sym) } },
477      { DT_STRSZ, { dynstr_.GetSize() } },
478      { DT_SONAME, { soname_offset } },
479      { DT_NULL, { 0 } },
480    };
481    dynamic_.WriteFully(&dyns, sizeof(dyns));
482    dynamic_.End();
483  }
484
485  // Returns true if all writes and seeks on the output stream succeeded.
486  bool Good() {
487    return stream_.Good();
488  }
489
490  // Returns the builder's internal stream.
491  OutputStream* GetStream() {
492    return &stream_;
493  }
494
495 private:
496  static Elf_Ehdr MakeElfHeader(InstructionSet isa) {
497    Elf_Ehdr elf_header = Elf_Ehdr();
498    switch (isa) {
499      case kArm:
500        // Fall through.
501      case kThumb2: {
502        elf_header.e_machine = EM_ARM;
503        elf_header.e_flags = EF_ARM_EABI_VER5;
504        break;
505      }
506      case kArm64: {
507        elf_header.e_machine = EM_AARCH64;
508        elf_header.e_flags = 0;
509        break;
510      }
511      case kX86: {
512        elf_header.e_machine = EM_386;
513        elf_header.e_flags = 0;
514        break;
515      }
516      case kX86_64: {
517        elf_header.e_machine = EM_X86_64;
518        elf_header.e_flags = 0;
519        break;
520      }
521      case kMips: {
522        elf_header.e_machine = EM_MIPS;
523        elf_header.e_flags = (EF_MIPS_NOREORDER |
524                               EF_MIPS_PIC       |
525                               EF_MIPS_CPIC      |
526                               EF_MIPS_ABI_O32   |
527                               EF_MIPS_ARCH_32R2);
528        break;
529      }
530      case kMips64: {
531        elf_header.e_machine = EM_MIPS;
532        elf_header.e_flags = (EF_MIPS_NOREORDER |
533                               EF_MIPS_PIC       |
534                               EF_MIPS_CPIC      |
535                               EF_MIPS_ARCH_64R6);
536        break;
537      }
538      case kNone: {
539        LOG(FATAL) << "No instruction set";
540        break;
541      }
542      default: {
543        LOG(FATAL) << "Unknown instruction set " << isa;
544      }
545    }
546
547    elf_header.e_ident[EI_MAG0]       = ELFMAG0;
548    elf_header.e_ident[EI_MAG1]       = ELFMAG1;
549    elf_header.e_ident[EI_MAG2]       = ELFMAG2;
550    elf_header.e_ident[EI_MAG3]       = ELFMAG3;
551    elf_header.e_ident[EI_CLASS]      = (sizeof(Elf_Addr) == sizeof(Elf32_Addr))
552                                         ? ELFCLASS32 : ELFCLASS64;;
553    elf_header.e_ident[EI_DATA]       = ELFDATA2LSB;
554    elf_header.e_ident[EI_VERSION]    = EV_CURRENT;
555    elf_header.e_ident[EI_OSABI]      = ELFOSABI_LINUX;
556    elf_header.e_ident[EI_ABIVERSION] = 0;
557    elf_header.e_type = ET_DYN;
558    elf_header.e_version = 1;
559    elf_header.e_entry = 0;
560    elf_header.e_ehsize = sizeof(Elf_Ehdr);
561    elf_header.e_phentsize = sizeof(Elf_Phdr);
562    elf_header.e_shentsize = sizeof(Elf_Shdr);
563    elf_header.e_phoff = sizeof(Elf_Ehdr);
564    return elf_header;
565  }
566
567  // Create program headers based on written sections.
568  std::vector<Elf_Phdr> MakeProgramHeaders() {
569    CHECK(!sections_.empty());
570    std::vector<Elf_Phdr> phdrs;
571    {
572      // The program headers must start with PT_PHDR which is used in
573      // loaded process to determine the number of program headers.
574      Elf_Phdr phdr = Elf_Phdr();
575      phdr.p_type    = PT_PHDR;
576      phdr.p_flags   = PF_R;
577      phdr.p_offset  = phdr.p_vaddr = phdr.p_paddr = sizeof(Elf_Ehdr);
578      phdr.p_filesz  = phdr.p_memsz = 0;  // We need to fill this later.
579      phdr.p_align   = sizeof(Elf_Off);
580      phdrs.push_back(phdr);
581      // Tell the linker to mmap the start of file to memory.
582      Elf_Phdr load = Elf_Phdr();
583      load.p_type    = PT_LOAD;
584      load.p_flags   = PF_R;
585      load.p_offset  = load.p_vaddr = load.p_paddr = 0;
586      load.p_filesz  = load.p_memsz = sections_[0]->header_.sh_offset;
587      load.p_align   = kPageSize;
588      phdrs.push_back(load);
589    }
590    // Create program headers for sections.
591    for (auto* section : sections_) {
592      const Elf_Shdr& shdr = section->header_;
593      if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) {
594        // PT_LOAD tells the linker to mmap part of the file.
595        // The linker can only mmap page-aligned sections.
596        // Single PT_LOAD may contain several ELF sections.
597        Elf_Phdr& prev = phdrs.back();
598        Elf_Phdr load = Elf_Phdr();
599        load.p_type   = PT_LOAD;
600        load.p_flags  = section->phdr_flags_;
601        load.p_offset = shdr.sh_offset;
602        load.p_vaddr  = load.p_paddr = shdr.sh_addr;
603        load.p_filesz = (shdr.sh_type != SHT_NOBITS ? shdr.sh_size : 0u);
604        load.p_memsz  = shdr.sh_size;
605        load.p_align  = shdr.sh_addralign;
606        if (prev.p_type == load.p_type &&
607            prev.p_flags == load.p_flags &&
608            prev.p_filesz == prev.p_memsz &&  // Do not merge .bss
609            load.p_filesz == load.p_memsz) {  // Do not merge .bss
610          // Merge this PT_LOAD with the previous one.
611          Elf_Word size = shdr.sh_offset + shdr.sh_size - prev.p_offset;
612          prev.p_filesz = size;
613          prev.p_memsz  = size;
614        } else {
615          // If we are adding new load, it must be aligned.
616          CHECK_EQ(shdr.sh_addralign, (Elf_Word)kPageSize);
617          phdrs.push_back(load);
618        }
619      }
620    }
621    for (auto* section : sections_) {
622      const Elf_Shdr& shdr = section->header_;
623      if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) {
624        // Other PT_* types allow the program to locate interesting
625        // parts of memory at runtime. They must overlap with PT_LOAD.
626        if (section->phdr_type_ != 0) {
627          Elf_Phdr phdr = Elf_Phdr();
628          phdr.p_type   = section->phdr_type_;
629          phdr.p_flags  = section->phdr_flags_;
630          phdr.p_offset = shdr.sh_offset;
631          phdr.p_vaddr  = phdr.p_paddr = shdr.sh_addr;
632          phdr.p_filesz = phdr.p_memsz = shdr.sh_size;
633          phdr.p_align  = shdr.sh_addralign;
634          phdrs.push_back(phdr);
635        }
636      }
637    }
638    // Set the size of the initial PT_PHDR.
639    CHECK_EQ(phdrs[0].p_type, (Elf_Word)PT_PHDR);
640    phdrs[0].p_filesz = phdrs[0].p_memsz = phdrs.size() * sizeof(Elf_Phdr);
641
642    return phdrs;
643  }
644
645  InstructionSet isa_;
646
647  ErrorDelayingOutputStream stream_;
648
649  Section rodata_;
650  Section text_;
651  Section bss_;
652  StringSection dynstr_;
653  SymbolSection dynsym_;
654  Section hash_;
655  Section dynamic_;
656  Section eh_frame_;
657  Section eh_frame_hdr_;
658  StringSection strtab_;
659  SymbolSection symtab_;
660  Section debug_frame_;
661  Section debug_info_;
662  Section debug_line_;
663  StringSection shstrtab_;
664  std::vector<std::unique_ptr<Section>> other_sections_;
665
666  // List of used section in the order in which they were written.
667  std::vector<Section*> sections_;
668
669  // Used for allocation of virtual address space.
670  Elf_Addr virtual_address_;
671
672  DISALLOW_COPY_AND_ASSIGN(ElfBuilder);
673};
674
675}  // namespace art
676
677#endif  // ART_COMPILER_ELF_BUILDER_H_
678