dexdump.cc revision b06e28e5b9fbabe3e69b18f31bf353eaff5d0c1f
1/*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 * Implementation file of the dexdump utility.
17 *
18 * This is a re-implementation of the original dexdump utility that was
19 * based on Dalvik functions in libdex into a new dexdump that is now
20 * based on Art functions in libart instead. The output is identical to
21 * the original for correct DEX files. Error messages may differ, however.
22 * Also, ODEX files are no longer supported.
23 *
24 * The dexdump tool is intended to mimic objdump.  When possible, use
25 * similar command-line arguments.
26 *
27 * Differences between XML output and the "current.xml" file:
28 * - classes in same package are not all grouped together; nothing is sorted
29 * - no "deprecated" on fields and methods
30 * - no "value" on fields
31 * - no parameter names
32 * - no generic signatures on parameters, e.g. type="java.lang.Class<?>"
33 * - class shows declared fields and methods; does not show inherited fields
34 */
35
36#include "dexdump.h"
37
38#include <inttypes.h>
39#include <stdio.h>
40
41#include <iostream>
42#include <memory>
43#include <sstream>
44#include <vector>
45
46#include "dex_file-inl.h"
47#include "dex_instruction-inl.h"
48#include "utils.h"
49
50namespace art {
51
52/*
53 * Options parsed in main driver.
54 */
55struct Options gOptions;
56
57/*
58 * Output file. Defaults to stdout.
59 */
60FILE* gOutFile = stdout;
61
62/*
63 * Data types that match the definitions in the VM specification.
64 */
65typedef uint8_t  u1;
66typedef uint16_t u2;
67typedef uint32_t u4;
68typedef uint64_t u8;
69typedef int32_t  s4;
70typedef int64_t  s8;
71
72/*
73 * Basic information about a field or a method.
74 */
75struct FieldMethodInfo {
76  const char* classDescriptor;
77  const char* name;
78  const char* signature;
79};
80
81/*
82 * Flags for use with createAccessFlagStr().
83 */
84enum AccessFor {
85  kAccessForClass = 0, kAccessForMethod = 1, kAccessForField = 2, kAccessForMAX
86};
87const int kNumFlags = 18;
88
89/*
90 * Gets 2 little-endian bytes.
91 */
92static inline u2 get2LE(unsigned char const* pSrc) {
93  return pSrc[0] | (pSrc[1] << 8);
94}
95
96/*
97 * Converts a single-character primitive type into human-readable form.
98 */
99static const char* primitiveTypeLabel(char typeChar) {
100  switch (typeChar) {
101    case 'B': return "byte";
102    case 'C': return "char";
103    case 'D': return "double";
104    case 'F': return "float";
105    case 'I': return "int";
106    case 'J': return "long";
107    case 'S': return "short";
108    case 'V': return "void";
109    case 'Z': return "boolean";
110    default:  return "UNKNOWN";
111  }  // switch
112}
113
114/*
115 * Converts a type descriptor to human-readable "dotted" form.  For
116 * example, "Ljava/lang/String;" becomes "java.lang.String", and
117 * "[I" becomes "int[]".  Also converts '$' to '.', which means this
118 * form can't be converted back to a descriptor.
119 */
120static char* descriptorToDot(const char* str) {
121  int targetLen = strlen(str);
122  int offset = 0;
123
124  // Strip leading [s; will be added to end.
125  while (targetLen > 1 && str[offset] == '[') {
126    offset++;
127    targetLen--;
128  }  // while
129
130  const int arrayDepth = offset;
131
132  if (targetLen == 1) {
133    // Primitive type.
134    str = primitiveTypeLabel(str[offset]);
135    offset = 0;
136    targetLen = strlen(str);
137  } else {
138    // Account for leading 'L' and trailing ';'.
139    if (targetLen >= 2 && str[offset] == 'L' &&
140        str[offset + targetLen - 1] == ';') {
141      targetLen -= 2;
142      offset++;
143    }
144  }
145
146  // Copy class name over.
147  char* newStr = reinterpret_cast<char*>(
148      malloc(targetLen + arrayDepth * 2 + 1));
149  int i = 0;
150  for (; i < targetLen; i++) {
151    const char ch = str[offset + i];
152    newStr[i] = (ch == '/' || ch == '$') ? '.' : ch;
153  }  // for
154
155  // Add the appropriate number of brackets for arrays.
156  for (int j = 0; j < arrayDepth; j++) {
157    newStr[i++] = '[';
158    newStr[i++] = ']';
159  }  // for
160
161  newStr[i] = '\0';
162  return newStr;
163}
164
165/*
166 * Converts the class name portion of a type descriptor to human-readable
167 * "dotted" form.
168 *
169 * Returns a newly-allocated string.
170 */
171static char* descriptorClassToDot(const char* str) {
172  // Reduce to just the class name, trimming trailing ';'.
173  const char* lastSlash = strrchr(str, '/');
174  if (lastSlash == nullptr) {
175    lastSlash = str + 1;  // start past 'L'
176  } else {
177    lastSlash++;          // start past '/'
178  }
179
180  char* newStr = strdup(lastSlash);
181  newStr[strlen(lastSlash) - 1] = '\0';
182  for (char* cp = newStr; *cp != '\0'; cp++) {
183    if (*cp == '$') {
184      *cp = '.';
185    }
186  }  // for
187  return newStr;
188}
189
190/*
191 * Returns a quoted string representing the boolean value.
192 */
193static const char* quotedBool(bool val) {
194  return val ? "\"true\"" : "\"false\"";
195}
196
197/*
198 * Returns a quoted string representing the access flags.
199 */
200static const char* quotedVisibility(u4 accessFlags) {
201  if (accessFlags & kAccPublic) {
202    return "\"public\"";
203  } else if (accessFlags & kAccProtected) {
204    return "\"protected\"";
205  } else if (accessFlags & kAccPrivate) {
206    return "\"private\"";
207  } else {
208    return "\"package\"";
209  }
210}
211
212/*
213 * Counts the number of '1' bits in a word.
214 */
215static int countOnes(u4 val) {
216  val = val - ((val >> 1) & 0x55555555);
217  val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
218  return (((val + (val >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
219}
220
221/*
222 * Creates a new string with human-readable access flags.
223 *
224 * In the base language the access_flags fields are type u2; in Dalvik
225 * they're u4.
226 */
227static char* createAccessFlagStr(u4 flags, AccessFor forWhat) {
228  static const char* kAccessStrings[kAccessForMAX][kNumFlags] = {
229    {
230      "PUBLIC",                /* 0x00001 */
231      "PRIVATE",               /* 0x00002 */
232      "PROTECTED",             /* 0x00004 */
233      "STATIC",                /* 0x00008 */
234      "FINAL",                 /* 0x00010 */
235      "?",                     /* 0x00020 */
236      "?",                     /* 0x00040 */
237      "?",                     /* 0x00080 */
238      "?",                     /* 0x00100 */
239      "INTERFACE",             /* 0x00200 */
240      "ABSTRACT",              /* 0x00400 */
241      "?",                     /* 0x00800 */
242      "SYNTHETIC",             /* 0x01000 */
243      "ANNOTATION",            /* 0x02000 */
244      "ENUM",                  /* 0x04000 */
245      "?",                     /* 0x08000 */
246      "VERIFIED",              /* 0x10000 */
247      "OPTIMIZED",             /* 0x20000 */
248    }, {
249      "PUBLIC",                /* 0x00001 */
250      "PRIVATE",               /* 0x00002 */
251      "PROTECTED",             /* 0x00004 */
252      "STATIC",                /* 0x00008 */
253      "FINAL",                 /* 0x00010 */
254      "SYNCHRONIZED",          /* 0x00020 */
255      "BRIDGE",                /* 0x00040 */
256      "VARARGS",               /* 0x00080 */
257      "NATIVE",                /* 0x00100 */
258      "?",                     /* 0x00200 */
259      "ABSTRACT",              /* 0x00400 */
260      "STRICT",                /* 0x00800 */
261      "SYNTHETIC",             /* 0x01000 */
262      "?",                     /* 0x02000 */
263      "?",                     /* 0x04000 */
264      "MIRANDA",               /* 0x08000 */
265      "CONSTRUCTOR",           /* 0x10000 */
266      "DECLARED_SYNCHRONIZED", /* 0x20000 */
267    }, {
268      "PUBLIC",                /* 0x00001 */
269      "PRIVATE",               /* 0x00002 */
270      "PROTECTED",             /* 0x00004 */
271      "STATIC",                /* 0x00008 */
272      "FINAL",                 /* 0x00010 */
273      "?",                     /* 0x00020 */
274      "VOLATILE",              /* 0x00040 */
275      "TRANSIENT",             /* 0x00080 */
276      "?",                     /* 0x00100 */
277      "?",                     /* 0x00200 */
278      "?",                     /* 0x00400 */
279      "?",                     /* 0x00800 */
280      "SYNTHETIC",             /* 0x01000 */
281      "?",                     /* 0x02000 */
282      "ENUM",                  /* 0x04000 */
283      "?",                     /* 0x08000 */
284      "?",                     /* 0x10000 */
285      "?",                     /* 0x20000 */
286    },
287  };
288
289  // Allocate enough storage to hold the expected number of strings,
290  // plus a space between each.  We over-allocate, using the longest
291  // string above as the base metric.
292  const int kLongest = 21;  // The strlen of longest string above.
293  const int count = countOnes(flags);
294  char* str;
295  char* cp;
296  cp = str = reinterpret_cast<char*>(malloc(count * (kLongest + 1) + 1));
297
298  for (int i = 0; i < kNumFlags; i++) {
299    if (flags & 0x01) {
300      const char* accessStr = kAccessStrings[forWhat][i];
301      const int len = strlen(accessStr);
302      if (cp != str) {
303        *cp++ = ' ';
304      }
305      memcpy(cp, accessStr, len);
306      cp += len;
307    }
308    flags >>= 1;
309  }  // for
310
311  *cp = '\0';
312  return str;
313}
314
315/*
316 * Copies character data from "data" to "out", converting non-ASCII values
317 * to fprintf format chars or an ASCII filler ('.' or '?').
318 *
319 * The output buffer must be able to hold (2*len)+1 bytes.  The result is
320 * NULL-terminated.
321 */
322static void asciify(char* out, const unsigned char* data, size_t len) {
323  while (len--) {
324    if (*data < 0x20) {
325      // Could do more here, but we don't need them yet.
326      switch (*data) {
327        case '\0':
328          *out++ = '\\';
329          *out++ = '0';
330          break;
331        case '\n':
332          *out++ = '\\';
333          *out++ = 'n';
334          break;
335        default:
336          *out++ = '.';
337          break;
338      }  // switch
339    } else if (*data >= 0x80) {
340      *out++ = '?';
341    } else {
342      *out++ = *data;
343    }
344    data++;
345  }  // while
346  *out = '\0';
347}
348
349/*
350 * Dumps the file header.
351 *
352 * Note that some of the : are misaligned on purpose to preserve
353 * the exact output of the original Dalvik dexdump.
354 */
355static void dumpFileHeader(const DexFile* pDexFile) {
356  const DexFile::Header& pHeader = pDexFile->GetHeader();
357  char sanitized[sizeof(pHeader.magic_) * 2 + 1];
358  fprintf(gOutFile, "DEX file header:\n");
359  asciify(sanitized, pHeader.magic_, sizeof(pHeader.magic_));
360  fprintf(gOutFile, "magic               : '%s'\n", sanitized);
361  fprintf(gOutFile, "checksum            : %08x\n", pHeader.checksum_);
362  fprintf(gOutFile, "signature           : %02x%02x...%02x%02x\n",
363          pHeader.signature_[0], pHeader.signature_[1],
364          pHeader.signature_[DexFile::kSha1DigestSize - 2],
365          pHeader.signature_[DexFile::kSha1DigestSize - 1]);
366  fprintf(gOutFile, "file_size           : %d\n", pHeader.file_size_);
367  fprintf(gOutFile, "header_size         : %d\n", pHeader.header_size_);
368  fprintf(gOutFile, "link_size           : %d\n", pHeader.link_size_);
369  fprintf(gOutFile, "link_off            : %d (0x%06x)\n",
370          pHeader.link_off_, pHeader.link_off_);
371  fprintf(gOutFile, "string_ids_size     : %d\n", pHeader.string_ids_size_);
372  fprintf(gOutFile, "string_ids_off      : %d (0x%06x)\n",
373          pHeader.string_ids_off_, pHeader.string_ids_off_);
374  fprintf(gOutFile, "type_ids_size       : %d\n", pHeader.type_ids_size_);
375  fprintf(gOutFile, "type_ids_off        : %d (0x%06x)\n",
376          pHeader.type_ids_off_, pHeader.type_ids_off_);
377  fprintf(gOutFile, "proto_ids_size       : %d\n", pHeader.proto_ids_size_);
378  fprintf(gOutFile, "proto_ids_off        : %d (0x%06x)\n",
379          pHeader.proto_ids_off_, pHeader.proto_ids_off_);
380  fprintf(gOutFile, "field_ids_size      : %d\n", pHeader.field_ids_size_);
381  fprintf(gOutFile, "field_ids_off       : %d (0x%06x)\n",
382          pHeader.field_ids_off_, pHeader.field_ids_off_);
383  fprintf(gOutFile, "method_ids_size     : %d\n", pHeader.method_ids_size_);
384  fprintf(gOutFile, "method_ids_off      : %d (0x%06x)\n",
385          pHeader.method_ids_off_, pHeader.method_ids_off_);
386  fprintf(gOutFile, "class_defs_size     : %d\n", pHeader.class_defs_size_);
387  fprintf(gOutFile, "class_defs_off      : %d (0x%06x)\n",
388          pHeader.class_defs_off_, pHeader.class_defs_off_);
389  fprintf(gOutFile, "data_size           : %d\n", pHeader.data_size_);
390  fprintf(gOutFile, "data_off            : %d (0x%06x)\n\n",
391          pHeader.data_off_, pHeader.data_off_);
392}
393
394/*
395 * Dumps a class_def_item.
396 */
397static void dumpClassDef(const DexFile* pDexFile, int idx) {
398  // General class information.
399  const DexFile::ClassDef& pClassDef = pDexFile->GetClassDef(idx);
400  fprintf(gOutFile, "Class #%d header:\n", idx);
401  fprintf(gOutFile, "class_idx           : %d\n", pClassDef.class_idx_);
402  fprintf(gOutFile, "access_flags        : %d (0x%04x)\n",
403          pClassDef.access_flags_, pClassDef.access_flags_);
404  fprintf(gOutFile, "superclass_idx      : %d\n", pClassDef.superclass_idx_);
405  fprintf(gOutFile, "interfaces_off      : %d (0x%06x)\n",
406          pClassDef.interfaces_off_, pClassDef.interfaces_off_);
407  fprintf(gOutFile, "source_file_idx     : %d\n", pClassDef.source_file_idx_);
408  fprintf(gOutFile, "annotations_off     : %d (0x%06x)\n",
409          pClassDef.annotations_off_, pClassDef.annotations_off_);
410  fprintf(gOutFile, "class_data_off      : %d (0x%06x)\n",
411          pClassDef.class_data_off_, pClassDef.class_data_off_);
412
413  // Fields and methods.
414  const u1* pEncodedData = pDexFile->GetClassData(pClassDef);
415  if (pEncodedData != nullptr) {
416    ClassDataItemIterator pClassData(*pDexFile, pEncodedData);
417    fprintf(gOutFile, "static_fields_size  : %d\n", pClassData.NumStaticFields());
418    fprintf(gOutFile, "instance_fields_size: %d\n", pClassData.NumInstanceFields());
419    fprintf(gOutFile, "direct_methods_size : %d\n", pClassData.NumDirectMethods());
420    fprintf(gOutFile, "virtual_methods_size: %d\n", pClassData.NumVirtualMethods());
421  } else {
422    fprintf(gOutFile, "static_fields_size  : 0\n");
423    fprintf(gOutFile, "instance_fields_size: 0\n");
424    fprintf(gOutFile, "direct_methods_size : 0\n");
425    fprintf(gOutFile, "virtual_methods_size: 0\n");
426  }
427  fprintf(gOutFile, "\n");
428}
429
430/*
431 * Dumps an interface that a class declares to implement.
432 */
433static void dumpInterface(const DexFile* pDexFile, const DexFile::TypeItem& pTypeItem, int i) {
434  const char* interfaceName = pDexFile->StringByTypeIdx(pTypeItem.type_idx_);
435  if (gOptions.outputFormat == OUTPUT_PLAIN) {
436    fprintf(gOutFile, "    #%d              : '%s'\n", i, interfaceName);
437  } else {
438    char* dotted = descriptorToDot(interfaceName);
439    fprintf(gOutFile, "<implements name=\"%s\">\n</implements>\n", dotted);
440    free(dotted);
441  }
442}
443
444/*
445 * Dumps the catches table associated with the code.
446 */
447static void dumpCatches(const DexFile* pDexFile, const DexFile::CodeItem* pCode) {
448  const u4 triesSize = pCode->tries_size_;
449
450  // No catch table.
451  if (triesSize == 0) {
452    fprintf(gOutFile, "      catches       : (none)\n");
453    return;
454  }
455
456  // Dump all table entries.
457  fprintf(gOutFile, "      catches       : %d\n", triesSize);
458  for (u4 i = 0; i < triesSize; i++) {
459    const DexFile::TryItem* pTry = pDexFile->GetTryItems(*pCode, i);
460    const u4 start = pTry->start_addr_;
461    const u4 end = start + pTry->insn_count_;
462    fprintf(gOutFile, "        0x%04x - 0x%04x\n", start, end);
463    for (CatchHandlerIterator it(*pCode, *pTry); it.HasNext(); it.Next()) {
464      const u2 tidx = it.GetHandlerTypeIndex();
465      const char* descriptor =
466          (tidx == DexFile::kDexNoIndex16) ? "<any>" : pDexFile->StringByTypeIdx(tidx);
467      fprintf(gOutFile, "          %s -> 0x%04x\n", descriptor, it.GetHandlerAddress());
468    }  // for
469  }  // for
470}
471
472/*
473 * Callback for dumping each positions table entry.
474 */
475static bool dumpPositionsCb(void* /*context*/, const DexFile::PositionInfo& entry) {
476  fprintf(gOutFile, "        0x%04x line=%d\n", entry.address_, entry.line_);
477  return false;
478}
479
480/*
481 * Callback for dumping locals table entry.
482 */
483static void dumpLocalsCb(void* /*context*/, const DexFile::LocalInfo& entry) {
484  const char* signature = entry.signature_ != nullptr ? entry.signature_ : "";
485  fprintf(gOutFile, "        0x%04x - 0x%04x reg=%d %s %s %s\n",
486          entry.start_address_, entry.end_address_, entry.reg_,
487          entry.name_, entry.descriptor_, signature);
488}
489
490/*
491 * Helper for dumpInstruction(), which builds the string
492 * representation for the index in the given instruction. This will
493 * first try to use the given buffer, but if the result won't fit,
494 * then this will allocate a new buffer to hold the result. A pointer
495 * to the buffer which holds the full result is always returned, and
496 * this can be compared with the one passed in, to see if the result
497 * needs to be free()d.
498 */
499static char* indexString(const DexFile* pDexFile,
500                         const Instruction* pDecInsn, char* buf, size_t bufSize) {
501  // Determine index and width of the string.
502  u4 index = 0;
503  u4 width = 4;
504  switch (Instruction::FormatOf(pDecInsn->Opcode())) {
505    // SOME NOT SUPPORTED:
506    // case Instruction::k20bc:
507    case Instruction::k21c:
508    case Instruction::k35c:
509    // case Instruction::k35ms:
510    case Instruction::k3rc:
511    // case Instruction::k3rms:
512    // case Instruction::k35mi:
513    // case Instruction::k3rmi:
514      index = pDecInsn->VRegB();
515      width = 4;
516      break;
517    case Instruction::k31c:
518      index = pDecInsn->VRegB();
519      width = 8;
520      break;
521    case Instruction::k22c:
522    // case Instruction::k22cs:
523      index = pDecInsn->VRegC();
524      width = 4;
525      break;
526    default:
527      break;
528  }  // switch
529
530  // Determine index type.
531  size_t outSize = 0;
532  switch (Instruction::IndexTypeOf(pDecInsn->Opcode())) {
533    case Instruction::kIndexUnknown:
534      // This function should never get called for this type, but do
535      // something sensible here, just to help with debugging.
536      outSize = snprintf(buf, bufSize, "<unknown-index>");
537      break;
538    case Instruction::kIndexNone:
539      // This function should never get called for this type, but do
540      // something sensible here, just to help with debugging.
541      outSize = snprintf(buf, bufSize, "<no-index>");
542      break;
543    case Instruction::kIndexTypeRef:
544      if (index < pDexFile->GetHeader().type_ids_size_) {
545        const char* tp = pDexFile->StringByTypeIdx(index);
546        outSize = snprintf(buf, bufSize, "%s // type@%0*x", tp, width, index);
547      } else {
548        outSize = snprintf(buf, bufSize, "<type?> // type@%0*x", width, index);
549      }
550      break;
551    case Instruction::kIndexStringRef:
552      if (index < pDexFile->GetHeader().string_ids_size_) {
553        const char* st = pDexFile->StringDataByIdx(index);
554        outSize = snprintf(buf, bufSize, "\"%s\" // string@%0*x", st, width, index);
555      } else {
556        outSize = snprintf(buf, bufSize, "<string?> // string@%0*x", width, index);
557      }
558      break;
559    case Instruction::kIndexMethodRef:
560      if (index < pDexFile->GetHeader().method_ids_size_) {
561        const DexFile::MethodId& pMethodId = pDexFile->GetMethodId(index);
562        const char* name = pDexFile->StringDataByIdx(pMethodId.name_idx_);
563        const Signature signature = pDexFile->GetMethodSignature(pMethodId);
564        const char* backDescriptor = pDexFile->StringByTypeIdx(pMethodId.class_idx_);
565        outSize = snprintf(buf, bufSize, "%s.%s:%s // method@%0*x",
566                           backDescriptor, name, signature.ToString().c_str(), width, index);
567      } else {
568        outSize = snprintf(buf, bufSize, "<method?> // method@%0*x", width, index);
569      }
570      break;
571    case Instruction::kIndexFieldRef:
572      if (index < pDexFile->GetHeader().field_ids_size_) {
573        const DexFile::FieldId& pFieldId = pDexFile->GetFieldId(index);
574        const char* name = pDexFile->StringDataByIdx(pFieldId.name_idx_);
575        const char* typeDescriptor = pDexFile->StringByTypeIdx(pFieldId.type_idx_);
576        const char* backDescriptor = pDexFile->StringByTypeIdx(pFieldId.class_idx_);
577        outSize = snprintf(buf, bufSize, "%s.%s:%s // field@%0*x",
578                           backDescriptor, name, typeDescriptor, width, index);
579      } else {
580        outSize = snprintf(buf, bufSize, "<field?> // field@%0*x", width, index);
581      }
582      break;
583    case Instruction::kIndexVtableOffset:
584      outSize = snprintf(buf, bufSize, "[%0*x] // vtable #%0*x",
585                         width, index, width, index);
586      break;
587    case Instruction::kIndexFieldOffset:
588      outSize = snprintf(buf, bufSize, "[obj+%0*x]", width, index);
589      break;
590    // SOME NOT SUPPORTED:
591    // case Instruction::kIndexVaries:
592    // case Instruction::kIndexInlineMethod:
593    default:
594      outSize = snprintf(buf, bufSize, "<?>");
595      break;
596  }  // switch
597
598  // Determine success of string construction.
599  if (outSize >= bufSize) {
600    // The buffer wasn't big enough; allocate and retry. Note:
601    // snprintf() doesn't count the '\0' as part of its returned
602    // size, so we add explicit space for it here.
603    outSize++;
604    buf = reinterpret_cast<char*>(malloc(outSize));
605    if (buf == nullptr) {
606      return nullptr;
607    }
608    return indexString(pDexFile, pDecInsn, buf, outSize);
609  }
610  return buf;
611}
612
613/*
614 * Dumps a single instruction.
615 */
616static void dumpInstruction(const DexFile* pDexFile,
617                            const DexFile::CodeItem* pCode,
618                            u4 codeOffset, u4 insnIdx, u4 insnWidth,
619                            const Instruction* pDecInsn) {
620  // Address of instruction (expressed as byte offset).
621  fprintf(gOutFile, "%06x:", codeOffset + 0x10 + insnIdx * 2);
622
623  // Dump (part of) raw bytes.
624  const u2* insns = pCode->insns_;
625  for (u4 i = 0; i < 8; i++) {
626    if (i < insnWidth) {
627      if (i == 7) {
628        fprintf(gOutFile, " ... ");
629      } else {
630        // Print 16-bit value in little-endian order.
631        const u1* bytePtr = (const u1*) &insns[insnIdx + i];
632        fprintf(gOutFile, " %02x%02x", bytePtr[0], bytePtr[1]);
633      }
634    } else {
635      fputs("     ", gOutFile);
636    }
637  }  // for
638
639  // Dump pseudo-instruction or opcode.
640  if (pDecInsn->Opcode() == Instruction::NOP) {
641    const u2 instr = get2LE((const u1*) &insns[insnIdx]);
642    if (instr == Instruction::kPackedSwitchSignature) {
643      fprintf(gOutFile, "|%04x: packed-switch-data (%d units)", insnIdx, insnWidth);
644    } else if (instr == Instruction::kSparseSwitchSignature) {
645      fprintf(gOutFile, "|%04x: sparse-switch-data (%d units)", insnIdx, insnWidth);
646    } else if (instr == Instruction::kArrayDataSignature) {
647      fprintf(gOutFile, "|%04x: array-data (%d units)", insnIdx, insnWidth);
648    } else {
649      fprintf(gOutFile, "|%04x: nop // spacer", insnIdx);
650    }
651  } else {
652    fprintf(gOutFile, "|%04x: %s", insnIdx, pDecInsn->Name());
653  }
654
655  // Set up additional argument.
656  char indexBufChars[200];
657  char *indexBuf = indexBufChars;
658  if (Instruction::IndexTypeOf(pDecInsn->Opcode()) != Instruction::kIndexNone) {
659    indexBuf = indexString(pDexFile, pDecInsn,
660                           indexBufChars, sizeof(indexBufChars));
661  }
662
663  // Dump the instruction.
664  //
665  // NOTE: pDecInsn->DumpString(pDexFile) differs too much from original.
666  //
667  switch (Instruction::FormatOf(pDecInsn->Opcode())) {
668    case Instruction::k10x:        // op
669      break;
670    case Instruction::k12x:        // op vA, vB
671      fprintf(gOutFile, " v%d, v%d", pDecInsn->VRegA(), pDecInsn->VRegB());
672      break;
673    case Instruction::k11n:        // op vA, #+B
674      fprintf(gOutFile, " v%d, #int %d // #%x",
675              pDecInsn->VRegA(), (s4) pDecInsn->VRegB(), (u1)pDecInsn->VRegB());
676      break;
677    case Instruction::k11x:        // op vAA
678      fprintf(gOutFile, " v%d", pDecInsn->VRegA());
679      break;
680    case Instruction::k10t:        // op +AA
681    case Instruction::k20t:        // op +AAAA
682      {
683        const s4 targ = (s4) pDecInsn->VRegA();
684        fprintf(gOutFile, " %04x // %c%04x",
685                insnIdx + targ,
686                (targ < 0) ? '-' : '+',
687                (targ < 0) ? -targ : targ);
688      }
689      break;
690    case Instruction::k22x:        // op vAA, vBBBB
691      fprintf(gOutFile, " v%d, v%d", pDecInsn->VRegA(), pDecInsn->VRegB());
692      break;
693    case Instruction::k21t:        // op vAA, +BBBB
694      {
695        const s4 targ = (s4) pDecInsn->VRegB();
696        fprintf(gOutFile, " v%d, %04x // %c%04x", pDecInsn->VRegA(),
697                insnIdx + targ,
698                (targ < 0) ? '-' : '+',
699                (targ < 0) ? -targ : targ);
700      }
701      break;
702    case Instruction::k21s:        // op vAA, #+BBBB
703      fprintf(gOutFile, " v%d, #int %d // #%x",
704              pDecInsn->VRegA(), (s4) pDecInsn->VRegB(), (u2)pDecInsn->VRegB());
705      break;
706    case Instruction::k21h:        // op vAA, #+BBBB0000[00000000]
707      // The printed format varies a bit based on the actual opcode.
708      if (pDecInsn->Opcode() == Instruction::CONST_HIGH16) {
709        const s4 value = pDecInsn->VRegB() << 16;
710        fprintf(gOutFile, " v%d, #int %d // #%x",
711                pDecInsn->VRegA(), value, (u2) pDecInsn->VRegB());
712      } else {
713        const s8 value = ((s8) pDecInsn->VRegB()) << 48;
714        fprintf(gOutFile, " v%d, #long %" PRId64 " // #%x",
715                pDecInsn->VRegA(), value, (u2) pDecInsn->VRegB());
716      }
717      break;
718    case Instruction::k21c:        // op vAA, thing@BBBB
719    case Instruction::k31c:        // op vAA, thing@BBBBBBBB
720      fprintf(gOutFile, " v%d, %s", pDecInsn->VRegA(), indexBuf);
721      break;
722    case Instruction::k23x:        // op vAA, vBB, vCC
723      fprintf(gOutFile, " v%d, v%d, v%d",
724              pDecInsn->VRegA(), pDecInsn->VRegB(), pDecInsn->VRegC());
725      break;
726    case Instruction::k22b:        // op vAA, vBB, #+CC
727      fprintf(gOutFile, " v%d, v%d, #int %d // #%02x",
728              pDecInsn->VRegA(), pDecInsn->VRegB(),
729              (s4) pDecInsn->VRegC(), (u1) pDecInsn->VRegC());
730      break;
731    case Instruction::k22t:        // op vA, vB, +CCCC
732      {
733        const s4 targ = (s4) pDecInsn->VRegC();
734        fprintf(gOutFile, " v%d, v%d, %04x // %c%04x",
735                pDecInsn->VRegA(), pDecInsn->VRegB(),
736                insnIdx + targ,
737                (targ < 0) ? '-' : '+',
738                (targ < 0) ? -targ : targ);
739      }
740      break;
741    case Instruction::k22s:        // op vA, vB, #+CCCC
742      fprintf(gOutFile, " v%d, v%d, #int %d // #%04x",
743              pDecInsn->VRegA(), pDecInsn->VRegB(),
744              (s4) pDecInsn->VRegC(), (u2) pDecInsn->VRegC());
745      break;
746    case Instruction::k22c:        // op vA, vB, thing@CCCC
747    // NOT SUPPORTED:
748    // case Instruction::k22cs:    // [opt] op vA, vB, field offset CCCC
749      fprintf(gOutFile, " v%d, v%d, %s",
750              pDecInsn->VRegA(), pDecInsn->VRegB(), indexBuf);
751      break;
752    case Instruction::k30t:
753      fprintf(gOutFile, " #%08x", pDecInsn->VRegA());
754      break;
755    case Instruction::k31i:        // op vAA, #+BBBBBBBB
756      {
757        // This is often, but not always, a float.
758        union {
759          float f;
760          u4 i;
761        } conv;
762        conv.i = pDecInsn->VRegB();
763        fprintf(gOutFile, " v%d, #float %f // #%08x",
764                pDecInsn->VRegA(), conv.f, pDecInsn->VRegB());
765      }
766      break;
767    case Instruction::k31t:       // op vAA, offset +BBBBBBBB
768      fprintf(gOutFile, " v%d, %08x // +%08x",
769              pDecInsn->VRegA(), insnIdx + pDecInsn->VRegB(), pDecInsn->VRegB());
770      break;
771    case Instruction::k32x:        // op vAAAA, vBBBB
772      fprintf(gOutFile, " v%d, v%d", pDecInsn->VRegA(), pDecInsn->VRegB());
773      break;
774    case Instruction::k35c:        // op {vC, vD, vE, vF, vG}, thing@BBBB
775    // NOT SUPPORTED:
776    // case Instruction::k35ms:       // [opt] invoke-virtual+super
777    // case Instruction::k35mi:       // [opt] inline invoke
778      {
779        u4 arg[Instruction::kMaxVarArgRegs];
780        pDecInsn->GetVarArgs(arg);
781        fputs(" {", gOutFile);
782        for (int i = 0, n = pDecInsn->VRegA(); i < n; i++) {
783          if (i == 0) {
784            fprintf(gOutFile, "v%d", arg[i]);
785          } else {
786            fprintf(gOutFile, ", v%d", arg[i]);
787          }
788        }  // for
789        fprintf(gOutFile, "}, %s", indexBuf);
790      }
791      break;
792    case Instruction::k25x:        // op vC, {vD, vE, vF, vG} (B: count)
793      {
794        u4 arg[Instruction::kMaxVarArgRegs25x];
795        pDecInsn->GetAllArgs25x(arg);
796        fprintf(gOutFile, " v%d, {", arg[0]);
797        for (int i = 0, n = pDecInsn->VRegB(); i < n; i++) {
798          if (i == 0) {
799            fprintf(gOutFile, "v%d", arg[Instruction::kLambdaVirtualRegisterWidth + i]);
800          } else {
801            fprintf(gOutFile, ", v%d", arg[Instruction::kLambdaVirtualRegisterWidth + i]);
802          }
803        }  // for
804        fputc('}', gOutFile);
805      }
806      break;
807    case Instruction::k3rc:        // op {vCCCC .. v(CCCC+AA-1)}, thing@BBBB
808    // NOT SUPPORTED:
809    // case Instruction::k3rms:       // [opt] invoke-virtual+super/range
810    // case Instruction::k3rmi:       // [opt] execute-inline/range
811      {
812        // This doesn't match the "dx" output when some of the args are
813        // 64-bit values -- dx only shows the first register.
814        fputs(" {", gOutFile);
815        for (int i = 0, n = pDecInsn->VRegA(); i < n; i++) {
816          if (i == 0) {
817            fprintf(gOutFile, "v%d", pDecInsn->VRegC() + i);
818          } else {
819            fprintf(gOutFile, ", v%d", pDecInsn->VRegC() + i);
820          }
821        }  // for
822        fprintf(gOutFile, "}, %s", indexBuf);
823      }
824      break;
825    case Instruction::k51l:        // op vAA, #+BBBBBBBBBBBBBBBB
826      {
827        // This is often, but not always, a double.
828        union {
829          double d;
830          u8 j;
831        } conv;
832        conv.j = pDecInsn->WideVRegB();
833        fprintf(gOutFile, " v%d, #double %f // #%016" PRIx64,
834                pDecInsn->VRegA(), conv.d, pDecInsn->WideVRegB());
835      }
836      break;
837    // NOT SUPPORTED:
838    // case Instruction::k00x:        // unknown op or breakpoint
839    //    break;
840    default:
841      fprintf(gOutFile, " ???");
842      break;
843  }  // switch
844
845  fputc('\n', gOutFile);
846
847  if (indexBuf != indexBufChars) {
848    free(indexBuf);
849  }
850}
851
852/*
853 * Dumps a bytecode disassembly.
854 */
855static void dumpBytecodes(const DexFile* pDexFile, u4 idx,
856                          const DexFile::CodeItem* pCode, u4 codeOffset) {
857  const DexFile::MethodId& pMethodId = pDexFile->GetMethodId(idx);
858  const char* name = pDexFile->StringDataByIdx(pMethodId.name_idx_);
859  const Signature signature = pDexFile->GetMethodSignature(pMethodId);
860  const char* backDescriptor = pDexFile->StringByTypeIdx(pMethodId.class_idx_);
861
862  // Generate header.
863  char* tmp = descriptorToDot(backDescriptor);
864  fprintf(gOutFile, "%06x:                                        "
865          "|[%06x] %s.%s:%s\n",
866          codeOffset, codeOffset, tmp, name, signature.ToString().c_str());
867  free(tmp);
868
869  // Iterate over all instructions.
870  const u2* insns = pCode->insns_;
871  for (u4 insnIdx = 0; insnIdx < pCode->insns_size_in_code_units_;) {
872    const Instruction* instruction = Instruction::At(&insns[insnIdx]);
873    const u4 insnWidth = instruction->SizeInCodeUnits();
874    if (insnWidth == 0) {
875      fprintf(stderr, "GLITCH: zero-width instruction at idx=0x%04x\n", insnIdx);
876      break;
877    }
878    dumpInstruction(pDexFile, pCode, codeOffset, insnIdx, insnWidth, instruction);
879    insnIdx += insnWidth;
880  }  // for
881}
882
883/*
884 * Dumps code of a method.
885 */
886static void dumpCode(const DexFile* pDexFile, u4 idx, u4 flags,
887                     const DexFile::CodeItem* pCode, u4 codeOffset) {
888  fprintf(gOutFile, "      registers     : %d\n", pCode->registers_size_);
889  fprintf(gOutFile, "      ins           : %d\n", pCode->ins_size_);
890  fprintf(gOutFile, "      outs          : %d\n", pCode->outs_size_);
891  fprintf(gOutFile, "      insns size    : %d 16-bit code units\n",
892          pCode->insns_size_in_code_units_);
893
894  // Bytecode disassembly, if requested.
895  if (gOptions.disassemble) {
896    dumpBytecodes(pDexFile, idx, pCode, codeOffset);
897  }
898
899  // Try-catch blocks.
900  dumpCatches(pDexFile, pCode);
901
902  // Positions and locals table in the debug info.
903  bool is_static = (flags & kAccStatic) != 0;
904  fprintf(gOutFile, "      positions     : \n");
905  pDexFile->DecodeDebugPositionInfo(pCode, dumpPositionsCb, nullptr);
906  fprintf(gOutFile, "      locals        : \n");
907  pDexFile->DecodeDebugLocalInfo(pCode, is_static, idx, dumpLocalsCb, nullptr);
908}
909
910/*
911 * Dumps a method.
912 */
913static void dumpMethod(const DexFile* pDexFile, u4 idx, u4 flags,
914                       const DexFile::CodeItem* pCode, u4 codeOffset, int i) {
915  // Bail for anything private if export only requested.
916  if (gOptions.exportsOnly && (flags & (kAccPublic | kAccProtected)) == 0) {
917    return;
918  }
919
920  const DexFile::MethodId& pMethodId = pDexFile->GetMethodId(idx);
921  const char* name = pDexFile->StringDataByIdx(pMethodId.name_idx_);
922  const Signature signature = pDexFile->GetMethodSignature(pMethodId);
923  char* typeDescriptor = strdup(signature.ToString().c_str());
924  const char* backDescriptor = pDexFile->StringByTypeIdx(pMethodId.class_idx_);
925  char* accessStr = createAccessFlagStr(flags, kAccessForMethod);
926
927  if (gOptions.outputFormat == OUTPUT_PLAIN) {
928    fprintf(gOutFile, "    #%d              : (in %s)\n", i, backDescriptor);
929    fprintf(gOutFile, "      name          : '%s'\n", name);
930    fprintf(gOutFile, "      type          : '%s'\n", typeDescriptor);
931    fprintf(gOutFile, "      access        : 0x%04x (%s)\n", flags, accessStr);
932    if (pCode == nullptr) {
933      fprintf(gOutFile, "      code          : (none)\n");
934    } else {
935      fprintf(gOutFile, "      code          -\n");
936      dumpCode(pDexFile, idx, flags, pCode, codeOffset);
937    }
938    if (gOptions.disassemble) {
939      fputc('\n', gOutFile);
940    }
941  } else if (gOptions.outputFormat == OUTPUT_XML) {
942    const bool constructor = (name[0] == '<');
943
944    // Method name and prototype.
945    if (constructor) {
946      char* tmp = descriptorClassToDot(backDescriptor);
947      fprintf(gOutFile, "<constructor name=\"%s\"\n", tmp);
948      free(tmp);
949      tmp = descriptorToDot(backDescriptor);
950      fprintf(gOutFile, " type=\"%s\"\n", tmp);
951      free(tmp);
952    } else {
953      fprintf(gOutFile, "<method name=\"%s\"\n", name);
954      const char* returnType = strrchr(typeDescriptor, ')');
955      if (returnType == nullptr) {
956        fprintf(stderr, "bad method type descriptor '%s'\n", typeDescriptor);
957        goto bail;
958      }
959      char* tmp = descriptorToDot(returnType+1);
960      fprintf(gOutFile, " return=\"%s\"\n", tmp);
961      free(tmp);
962      fprintf(gOutFile, " abstract=%s\n", quotedBool((flags & kAccAbstract) != 0));
963      fprintf(gOutFile, " native=%s\n", quotedBool((flags & kAccNative) != 0));
964      fprintf(gOutFile, " synchronized=%s\n", quotedBool(
965          (flags & (kAccSynchronized | kAccDeclaredSynchronized)) != 0));
966    }
967
968    // Additional method flags.
969    fprintf(gOutFile, " static=%s\n", quotedBool((flags & kAccStatic) != 0));
970    fprintf(gOutFile, " final=%s\n", quotedBool((flags & kAccFinal) != 0));
971    // The "deprecated=" not knowable w/o parsing annotations.
972    fprintf(gOutFile, " visibility=%s\n>\n", quotedVisibility(flags));
973
974    // Parameters.
975    if (typeDescriptor[0] != '(') {
976      fprintf(stderr, "ERROR: bad descriptor '%s'\n", typeDescriptor);
977      goto bail;
978    }
979    char* tmpBuf = reinterpret_cast<char*>(malloc(strlen(typeDescriptor) + 1));
980    const char* base = typeDescriptor + 1;
981    int argNum = 0;
982    while (*base != ')') {
983      char* cp = tmpBuf;
984      while (*base == '[') {
985        *cp++ = *base++;
986      }
987      if (*base == 'L') {
988        // Copy through ';'.
989        do {
990          *cp = *base++;
991        } while (*cp++ != ';');
992      } else {
993        // Primitive char, copy it.
994        if (strchr("ZBCSIFJD", *base) == NULL) {
995          fprintf(stderr, "ERROR: bad method signature '%s'\n", base);
996          goto bail;
997        }
998        *cp++ = *base++;
999      }
1000      // Null terminate and display.
1001      *cp++ = '\0';
1002      char* tmp = descriptorToDot(tmpBuf);
1003      fprintf(gOutFile, "<parameter name=\"arg%d\" type=\"%s\">\n"
1004                        "</parameter>\n", argNum++, tmp);
1005      free(tmp);
1006    }  // while
1007    free(tmpBuf);
1008    if (constructor) {
1009      fprintf(gOutFile, "</constructor>\n");
1010    } else {
1011      fprintf(gOutFile, "</method>\n");
1012    }
1013  }
1014
1015 bail:
1016  free(typeDescriptor);
1017  free(accessStr);
1018}
1019
1020/*
1021 * Dumps a static (class) field.
1022 */
1023static void dumpSField(const DexFile* pDexFile, u4 idx, u4 flags, int i) {
1024  // Bail for anything private if export only requested.
1025  if (gOptions.exportsOnly && (flags & (kAccPublic | kAccProtected)) == 0) {
1026    return;
1027  }
1028
1029  const DexFile::FieldId& pFieldId = pDexFile->GetFieldId(idx);
1030  const char* name = pDexFile->StringDataByIdx(pFieldId.name_idx_);
1031  const char* typeDescriptor = pDexFile->StringByTypeIdx(pFieldId.type_idx_);
1032  const char* backDescriptor = pDexFile->StringByTypeIdx(pFieldId.class_idx_);
1033  char* accessStr = createAccessFlagStr(flags, kAccessForField);
1034
1035  if (gOptions.outputFormat == OUTPUT_PLAIN) {
1036    fprintf(gOutFile, "    #%d              : (in %s)\n", i, backDescriptor);
1037    fprintf(gOutFile, "      name          : '%s'\n", name);
1038    fprintf(gOutFile, "      type          : '%s'\n", typeDescriptor);
1039    fprintf(gOutFile, "      access        : 0x%04x (%s)\n", flags, accessStr);
1040  } else if (gOptions.outputFormat == OUTPUT_XML) {
1041    fprintf(gOutFile, "<field name=\"%s\"\n", name);
1042    char *tmp = descriptorToDot(typeDescriptor);
1043    fprintf(gOutFile, " type=\"%s\"\n", tmp);
1044    free(tmp);
1045    fprintf(gOutFile, " transient=%s\n", quotedBool((flags & kAccTransient) != 0));
1046    fprintf(gOutFile, " volatile=%s\n", quotedBool((flags & kAccVolatile) != 0));
1047    // The "value=" is not knowable w/o parsing annotations.
1048    fprintf(gOutFile, " static=%s\n", quotedBool((flags & kAccStatic) != 0));
1049    fprintf(gOutFile, " final=%s\n", quotedBool((flags & kAccFinal) != 0));
1050    // The "deprecated=" is not knowable w/o parsing annotations.
1051    fprintf(gOutFile, " visibility=%s\n", quotedVisibility(flags));
1052    fprintf(gOutFile, ">\n</field>\n");
1053  }
1054
1055  free(accessStr);
1056}
1057
1058/*
1059 * Dumps an instance field.
1060 */
1061static void dumpIField(const DexFile* pDexFile, u4 idx, u4 flags, int i) {
1062  dumpSField(pDexFile, idx, flags, i);
1063}
1064
1065/*
1066 * Dumping a CFG. Note that this will do duplicate work. utils.h doesn't expose the code-item
1067 * version, so the DumpMethodCFG code will have to iterate again to find it. But dexdump is a
1068 * tool, so this is not performance-critical.
1069 */
1070
1071static void dumpCfg(const DexFile* dex_file,
1072                    uint32_t dex_method_idx,
1073                    const DexFile::CodeItem* code_item) {
1074  if (code_item != nullptr) {
1075    std::ostringstream oss;
1076    DumpMethodCFG(dex_file, dex_method_idx, oss);
1077    fprintf(gOutFile, "%s", oss.str().c_str());
1078  }
1079}
1080
1081static void dumpCfg(const DexFile* dex_file, int idx) {
1082  const DexFile::ClassDef& class_def = dex_file->GetClassDef(idx);
1083  const uint8_t* class_data = dex_file->GetClassData(class_def);
1084  if (class_data == nullptr) {  // empty class such as a marker interface?
1085    return;
1086  }
1087  ClassDataItemIterator it(*dex_file, class_data);
1088  while (it.HasNextStaticField()) {
1089    it.Next();
1090  }
1091  while (it.HasNextInstanceField()) {
1092    it.Next();
1093  }
1094  while (it.HasNextDirectMethod()) {
1095    dumpCfg(dex_file,
1096            it.GetMemberIndex(),
1097            it.GetMethodCodeItem());
1098    it.Next();
1099  }
1100  while (it.HasNextVirtualMethod()) {
1101    dumpCfg(dex_file,
1102                it.GetMemberIndex(),
1103                it.GetMethodCodeItem());
1104    it.Next();
1105  }
1106}
1107
1108/*
1109 * Dumps the class.
1110 *
1111 * Note "idx" is a DexClassDef index, not a DexTypeId index.
1112 *
1113 * If "*pLastPackage" is nullptr or does not match the current class' package,
1114 * the value will be replaced with a newly-allocated string.
1115 */
1116static void dumpClass(const DexFile* pDexFile, int idx, char** pLastPackage) {
1117  const DexFile::ClassDef& pClassDef = pDexFile->GetClassDef(idx);
1118
1119  // Omitting non-public class.
1120  if (gOptions.exportsOnly && (pClassDef.access_flags_ & kAccPublic) == 0) {
1121    return;
1122  }
1123
1124  if (gOptions.cfg) {
1125    dumpCfg(pDexFile, idx);
1126    return;
1127  }
1128
1129  // For the XML output, show the package name.  Ideally we'd gather
1130  // up the classes, sort them, and dump them alphabetically so the
1131  // package name wouldn't jump around, but that's not a great plan
1132  // for something that needs to run on the device.
1133  const char* classDescriptor = pDexFile->StringByTypeIdx(pClassDef.class_idx_);
1134  if (!(classDescriptor[0] == 'L' &&
1135        classDescriptor[strlen(classDescriptor)-1] == ';')) {
1136    // Arrays and primitives should not be defined explicitly. Keep going?
1137    fprintf(stderr, "Malformed class name '%s'\n", classDescriptor);
1138  } else if (gOptions.outputFormat == OUTPUT_XML) {
1139    char* mangle = strdup(classDescriptor + 1);
1140    mangle[strlen(mangle)-1] = '\0';
1141
1142    // Reduce to just the package name.
1143    char* lastSlash = strrchr(mangle, '/');
1144    if (lastSlash != nullptr) {
1145      *lastSlash = '\0';
1146    } else {
1147      *mangle = '\0';
1148    }
1149
1150    for (char* cp = mangle; *cp != '\0'; cp++) {
1151      if (*cp == '/') {
1152        *cp = '.';
1153      }
1154    }  // for
1155
1156    if (*pLastPackage == nullptr || strcmp(mangle, *pLastPackage) != 0) {
1157      // Start of a new package.
1158      if (*pLastPackage != nullptr) {
1159        fprintf(gOutFile, "</package>\n");
1160      }
1161      fprintf(gOutFile, "<package name=\"%s\"\n>\n", mangle);
1162      free(*pLastPackage);
1163      *pLastPackage = mangle;
1164    } else {
1165      free(mangle);
1166    }
1167  }
1168
1169  // General class information.
1170  char* accessStr = createAccessFlagStr(pClassDef.access_flags_, kAccessForClass);
1171  const char* superclassDescriptor;
1172  if (pClassDef.superclass_idx_ == DexFile::kDexNoIndex16) {
1173    superclassDescriptor = nullptr;
1174  } else {
1175    superclassDescriptor = pDexFile->StringByTypeIdx(pClassDef.superclass_idx_);
1176  }
1177  if (gOptions.outputFormat == OUTPUT_PLAIN) {
1178    fprintf(gOutFile, "Class #%d            -\n", idx);
1179    fprintf(gOutFile, "  Class descriptor  : '%s'\n", classDescriptor);
1180    fprintf(gOutFile, "  Access flags      : 0x%04x (%s)\n", pClassDef.access_flags_, accessStr);
1181    if (superclassDescriptor != nullptr) {
1182      fprintf(gOutFile, "  Superclass        : '%s'\n", superclassDescriptor);
1183    }
1184    fprintf(gOutFile, "  Interfaces        -\n");
1185  } else {
1186    char* tmp = descriptorClassToDot(classDescriptor);
1187    fprintf(gOutFile, "<class name=\"%s\"\n", tmp);
1188    free(tmp);
1189    if (superclassDescriptor != nullptr) {
1190      tmp = descriptorToDot(superclassDescriptor);
1191      fprintf(gOutFile, " extends=\"%s\"\n", tmp);
1192      free(tmp);
1193    }
1194    fprintf(gOutFile, " abstract=%s\n", quotedBool((pClassDef.access_flags_ & kAccAbstract) != 0));
1195    fprintf(gOutFile, " static=%s\n", quotedBool((pClassDef.access_flags_ & kAccStatic) != 0));
1196    fprintf(gOutFile, " final=%s\n", quotedBool((pClassDef.access_flags_ & kAccFinal) != 0));
1197    // The "deprecated=" not knowable w/o parsing annotations.
1198    fprintf(gOutFile, " visibility=%s\n", quotedVisibility(pClassDef.access_flags_));
1199    fprintf(gOutFile, ">\n");
1200  }
1201
1202  // Interfaces.
1203  const DexFile::TypeList* pInterfaces = pDexFile->GetInterfacesList(pClassDef);
1204  if (pInterfaces != nullptr) {
1205    for (u4 i = 0; i < pInterfaces->Size(); i++) {
1206      dumpInterface(pDexFile, pInterfaces->GetTypeItem(i), i);
1207    }  // for
1208  }
1209
1210  // Fields and methods.
1211  const u1* pEncodedData = pDexFile->GetClassData(pClassDef);
1212  if (pEncodedData == nullptr) {
1213    if (gOptions.outputFormat == OUTPUT_PLAIN) {
1214      fprintf(gOutFile, "  Static fields     -\n");
1215      fprintf(gOutFile, "  Instance fields   -\n");
1216      fprintf(gOutFile, "  Direct methods    -\n");
1217      fprintf(gOutFile, "  Virtual methods   -\n");
1218    }
1219  } else {
1220    ClassDataItemIterator pClassData(*pDexFile, pEncodedData);
1221    if (gOptions.outputFormat == OUTPUT_PLAIN) {
1222      fprintf(gOutFile, "  Static fields     -\n");
1223    }
1224    for (int i = 0; pClassData.HasNextStaticField(); i++, pClassData.Next()) {
1225      dumpSField(pDexFile, pClassData.GetMemberIndex(),
1226                           pClassData.GetRawMemberAccessFlags(), i);
1227    }  // for
1228    if (gOptions.outputFormat == OUTPUT_PLAIN) {
1229      fprintf(gOutFile, "  Instance fields   -\n");
1230    }
1231    for (int i = 0; pClassData.HasNextInstanceField(); i++, pClassData.Next()) {
1232      dumpIField(pDexFile, pClassData.GetMemberIndex(),
1233                          pClassData.GetRawMemberAccessFlags(), i);
1234    }  // for
1235    if (gOptions.outputFormat == OUTPUT_PLAIN) {
1236      fprintf(gOutFile, "  Direct methods    -\n");
1237    }
1238    for (int i = 0; pClassData.HasNextDirectMethod(); i++, pClassData.Next()) {
1239      dumpMethod(pDexFile, pClassData.GetMemberIndex(),
1240                           pClassData.GetRawMemberAccessFlags(),
1241                           pClassData.GetMethodCodeItem(),
1242                           pClassData.GetMethodCodeItemOffset(), i);
1243    }  // for
1244    if (gOptions.outputFormat == OUTPUT_PLAIN) {
1245      fprintf(gOutFile, "  Virtual methods   -\n");
1246    }
1247    for (int i = 0; pClassData.HasNextVirtualMethod(); i++, pClassData.Next()) {
1248      dumpMethod(pDexFile, pClassData.GetMemberIndex(),
1249                           pClassData.GetRawMemberAccessFlags(),
1250                           pClassData.GetMethodCodeItem(),
1251                           pClassData.GetMethodCodeItemOffset(), i);
1252    }  // for
1253  }
1254
1255  // End of class.
1256  if (gOptions.outputFormat == OUTPUT_PLAIN) {
1257    const char* fileName;
1258    if (pClassDef.source_file_idx_ != DexFile::kDexNoIndex) {
1259      fileName = pDexFile->StringDataByIdx(pClassDef.source_file_idx_);
1260    } else {
1261      fileName = "unknown";
1262    }
1263    fprintf(gOutFile, "  source_file_idx   : %d (%s)\n\n",
1264            pClassDef.source_file_idx_, fileName);
1265  } else if (gOptions.outputFormat == OUTPUT_XML) {
1266    fprintf(gOutFile, "</class>\n");
1267  }
1268
1269  free(accessStr);
1270}
1271
1272/*
1273 * Dumps the requested sections of the file.
1274 */
1275static void processDexFile(const char* fileName, const DexFile* pDexFile) {
1276  if (gOptions.verbose) {
1277    fprintf(gOutFile, "Opened '%s', DEX version '%.3s'\n",
1278            fileName, pDexFile->GetHeader().magic_ + 4);
1279  }
1280
1281  // Headers.
1282  if (gOptions.showFileHeaders) {
1283    dumpFileHeader(pDexFile);
1284  }
1285
1286  // Open XML context.
1287  if (gOptions.outputFormat == OUTPUT_XML) {
1288    fprintf(gOutFile, "<api>\n");
1289  }
1290
1291  // Iterate over all classes.
1292  char* package = nullptr;
1293  const u4 classDefsSize = pDexFile->GetHeader().class_defs_size_;
1294  for (u4 i = 0; i < classDefsSize; i++) {
1295    if (gOptions.showSectionHeaders) {
1296      dumpClassDef(pDexFile, i);
1297    }
1298    dumpClass(pDexFile, i, &package);
1299  }  // for
1300
1301  // Free the last package allocated.
1302  if (package != nullptr) {
1303    fprintf(gOutFile, "</package>\n");
1304    free(package);
1305  }
1306
1307  // Close XML context.
1308  if (gOptions.outputFormat == OUTPUT_XML) {
1309    fprintf(gOutFile, "</api>\n");
1310  }
1311}
1312
1313/*
1314 * Processes a single file (either direct .dex or indirect .zip/.jar/.apk).
1315 */
1316int processFile(const char* fileName) {
1317  if (gOptions.verbose) {
1318    fprintf(gOutFile, "Processing '%s'...\n", fileName);
1319  }
1320
1321  // If the file is not a .dex file, the function tries .zip/.jar/.apk files,
1322  // all of which are Zip archives with "classes.dex" inside. The compressed
1323  // data needs to be extracted to a temp file, the location of which varies.
1324  //
1325  // TODO(ajcbik): fix following issues
1326  //
1327  // (1) gOptions.tempFileName is not accounted for
1328  // (2) gOptions.ignoreBadChecksum is not accounted for
1329  //
1330  std::string error_msg;
1331  std::vector<std::unique_ptr<const DexFile>> dex_files;
1332  if (!DexFile::Open(fileName, fileName, &error_msg, &dex_files)) {
1333    // Display returned error message to user. Note that this error behavior
1334    // differs from the error messages shown by the original Dalvik dexdump.
1335    fputs(error_msg.c_str(), stderr);
1336    fputc('\n', stderr);
1337    return -1;
1338  }
1339
1340  // Success. Either report checksum verification or process
1341  // all dex files found in given file.
1342  if (gOptions.checksumOnly) {
1343    fprintf(gOutFile, "Checksum verified\n");
1344  } else {
1345    for (size_t i = 0; i < dex_files.size(); i++) {
1346      processDexFile(fileName, dex_files[i].get());
1347    }
1348  }
1349  return 0;
1350}
1351
1352}  // namespace art
1353