mark_sweep.cc revision 0e54cd0d8fc635d3dc8bf88a465fdade151a098f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "indirect_reference_table.h"
38#include "intern_table.h"
39#include "jni_internal.h"
40#include "monitor.h"
41#include "mark_sweep-inl.h"
42#include "mirror/art_field.h"
43#include "mirror/art_field-inl.h"
44#include "mirror/class-inl.h"
45#include "mirror/class_loader.h"
46#include "mirror/dex_cache.h"
47#include "mirror/reference-inl.h"
48#include "mirror/object-inl.h"
49#include "mirror/object_array.h"
50#include "mirror/object_array-inl.h"
51#include "runtime.h"
52#include "thread-inl.h"
53#include "thread_list.h"
54#include "verifier/method_verifier.h"
55
56using ::art::mirror::ArtField;
57using ::art::mirror::Class;
58using ::art::mirror::Object;
59using ::art::mirror::ObjectArray;
60
61namespace art {
62namespace gc {
63namespace collector {
64
65// Performance options.
66static constexpr bool kUseRecursiveMark = false;
67static constexpr bool kUseMarkStackPrefetch = true;
68static constexpr size_t kSweepArrayChunkFreeSize = 1024;
69static constexpr bool kPreCleanCards = true;
70
71// Parallelism options.
72static constexpr bool kParallelCardScan = true;
73static constexpr bool kParallelRecursiveMark = true;
74// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
75// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
76// having this can add overhead in ProcessReferences since we may end up doing many calls of
77// ProcessMarkStack with very small mark stacks.
78static constexpr size_t kMinimumParallelMarkStackSize = 128;
79static constexpr bool kParallelProcessMarkStack = true;
80
81// Profiling and information flags.
82static constexpr bool kProfileLargeObjects = false;
83static constexpr bool kMeasureOverhead = false;
84static constexpr bool kCountTasks = false;
85static constexpr bool kCountJavaLangRefs = false;
86static constexpr bool kCountMarkedObjects = false;
87
88// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
89static constexpr bool kCheckLocks = kDebugLocking;
90static constexpr bool kVerifyRoots = kIsDebugBuild;
91
92// If true, revoke the rosalloc thread-local buffers at the
93// checkpoint, as opposed to during the pause.
94static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
95
96void MarkSweep::BindBitmaps() {
97  timings_.StartSplit("BindBitmaps");
98  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
99  // Mark all of the spaces we never collect as immune.
100  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
101    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
102      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
103    }
104  }
105  timings_.EndSplit();
106}
107
108MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
109    : GarbageCollector(heap,
110                       name_prefix +
111                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
112      gc_barrier_(new Barrier(0)),
113      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
114      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
115      is_concurrent_(is_concurrent) {
116}
117
118void MarkSweep::InitializePhase() {
119  timings_.Reset();
120  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
121  mark_stack_ = heap_->mark_stack_.get();
122  DCHECK(mark_stack_ != nullptr);
123  immune_region_.Reset();
124  class_count_ = 0;
125  array_count_ = 0;
126  other_count_ = 0;
127  large_object_test_ = 0;
128  large_object_mark_ = 0;
129  overhead_time_ = 0;
130  work_chunks_created_ = 0;
131  work_chunks_deleted_ = 0;
132  reference_count_ = 0;
133  mark_null_count_ = 0;
134  mark_immune_count_ = 0;
135  mark_fastpath_count_ = 0;
136  mark_slowpath_count_ = 0;
137  FindDefaultSpaceBitmap();
138  {
139    // TODO: I don't think we should need heap bitmap lock to get the mark bitmap.
140    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
141    mark_bitmap_ = heap_->GetMarkBitmap();
142  }
143
144  // Do any pre GC verification.
145  timings_.NewSplit("PreGcVerification");
146  heap_->PreGcVerification(this);
147}
148
149void MarkSweep::ProcessReferences(Thread* self) {
150  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
151  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
152  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback,
153                               &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
154}
155
156void MarkSweep::PreProcessReferences() {
157  if (IsConcurrent()) {
158    // No reason to do this for non-concurrent GC since pre processing soft references only helps
159    // pauses.
160    timings_.NewSplit("PreProcessReferences");
161    GetHeap()->ProcessSoftReferences(timings_, clear_soft_references_, &IsMarkedCallback,
162                                     &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
163  }
164}
165
166void MarkSweep::HandleDirtyObjectsPhase() {
167  TimingLogger::ScopedSplit split("(Paused)HandleDirtyObjectsPhase", &timings_);
168  Thread* self = Thread::Current();
169  Locks::mutator_lock_->AssertExclusiveHeld(self);
170
171  {
172    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
173
174    // Re-mark root set.
175    ReMarkRoots();
176
177    // Scan dirty objects, this is only required if we are not doing concurrent GC.
178    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
179  }
180
181  ProcessReferences(self);
182
183  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
184  if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_||
185      GetHeap()->verify_post_gc_heap_) {
186    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
187    // This second sweep makes sure that we don't have any objects in the live stack which point to
188    // freed objects. These cause problems since their references may be previously freed objects.
189    SweepArray(GetHeap()->allocation_stack_.get(), false);
190    // Since SweepArray() above resets the (active) allocation
191    // stack. Need to revoke the thread-local allocation stacks that
192    // point into it.
193    RevokeAllThreadLocalAllocationStacks(self);
194  }
195
196  timings_.StartSplit("PreSweepingGcVerification");
197  heap_->PreSweepingGcVerification(this);
198  timings_.EndSplit();
199
200  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
201  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
202  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
203
204  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
205  // weak before we sweep them. Since this new system weak may not be marked, the GC may
206  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
207  // reference to a string that is about to be swept.
208  Runtime::Current()->DisallowNewSystemWeaks();
209}
210
211void MarkSweep::PreCleanCards() {
212  // Don't do this for non concurrent GCs since they don't have any dirty cards.
213  if (kPreCleanCards && IsConcurrent()) {
214    Thread* self = Thread::Current();
215    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
216    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
217    heap_->ProcessCards(timings_, false);
218    // The checkpoint root marking is required to avoid a race condition which occurs if the
219    // following happens during a reference write:
220    // 1. mutator dirties the card (write barrier)
221    // 2. GC ages the card (the above ProcessCards call)
222    // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
223    // 4. mutator writes the value (corresponding to the write barrier in 1.)
224    // This causes the GC to age the card but not necessarily mark the reference which the mutator
225    // wrote into the object stored in the card.
226    // Having the checkpoint fixes this issue since it ensures that the card mark and the
227    // reference write are visible to the GC before the card is scanned (this is due to locks being
228    // acquired / released in the checkpoint code).
229    // The other roots are also marked to help reduce the pause.
230    MarkThreadRoots(self);
231    // TODO: Only mark the dirty roots.
232    MarkNonThreadRoots();
233    MarkConcurrentRoots(
234        static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
235    // Process the newly aged cards.
236    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
237    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
238    // in the next GC.
239  }
240}
241
242void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
243  if (kUseThreadLocalAllocationStack) {
244    Locks::mutator_lock_->AssertExclusiveHeld(self);
245    heap_->RevokeAllThreadLocalAllocationStacks(self);
246  }
247}
248
249void MarkSweep::MarkingPhase() {
250  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
251  Thread* self = Thread::Current();
252
253  BindBitmaps();
254  FindDefaultSpaceBitmap();
255
256  // Process dirty cards and add dirty cards to mod union tables.
257  heap_->ProcessCards(timings_, false);
258
259  // Need to do this before the checkpoint since we don't want any threads to add references to
260  // the live stack during the recursive mark.
261  timings_.NewSplit("SwapStacks");
262  heap_->SwapStacks(self);
263
264  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
265  MarkRoots(self);
266  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
267  UpdateAndMarkModUnion();
268  MarkReachableObjects();
269  // Pre-clean dirtied cards to reduce pauses.
270  PreCleanCards();
271  PreProcessReferences();
272}
273
274void MarkSweep::UpdateAndMarkModUnion() {
275  for (const auto& space : heap_->GetContinuousSpaces()) {
276    if (immune_region_.ContainsSpace(space)) {
277      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
278          "UpdateAndMarkImageModUnionTable";
279      TimingLogger::ScopedSplit split(name, &timings_);
280      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
281      CHECK(mod_union_table != nullptr);
282      mod_union_table->UpdateAndMarkReferences(MarkObjectCallback, this);
283    }
284  }
285}
286
287void MarkSweep::MarkThreadRoots(Thread* self) {
288  MarkRootsCheckpoint(self);
289}
290
291void MarkSweep::MarkReachableObjects() {
292  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
293  // knowing that new allocations won't be marked as live.
294  timings_.StartSplit("MarkStackAsLive");
295  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
296  heap_->MarkAllocStackAsLive(live_stack);
297  live_stack->Reset();
298  timings_.EndSplit();
299  // Recursively mark all the non-image bits set in the mark bitmap.
300  RecursiveMark();
301}
302
303void MarkSweep::ReclaimPhase() {
304  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
305  Thread* self = Thread::Current();
306
307  if (!IsConcurrent()) {
308    ProcessReferences(self);
309  }
310
311  {
312    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
313    SweepSystemWeaks();
314  }
315
316  if (IsConcurrent()) {
317    Runtime::Current()->AllowNewSystemWeaks();
318
319    TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
320    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
321    accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
322    if (!kPreCleanCards) {
323      // The allocation stack contains things allocated since the start of the GC. These may have
324      // been marked during this GC meaning they won't be eligible for reclaiming in the next
325      // sticky GC. Unmark these objects so that they are eligible for reclaiming in the next
326      // sticky GC.
327      // There is a race here which is safely handled. Another thread such as the hprof could
328      // have flushed the alloc stack after we resumed the threads. This is safe however, since
329      // reseting the allocation stack zeros it out with madvise. This means that we will either
330      // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
331      // first place.
332      // We can't do this if we pre-clean cards since we will unmark objects which are no longer on
333      // a dirty card since we aged cards during the pre-cleaning process.
334      mirror::Object** end = allocation_stack->End();
335      for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
336        const Object* obj = *it;
337        if (obj != nullptr) {
338          UnMarkObjectNonNull(obj);
339        }
340      }
341    }
342  }
343
344  {
345    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
346
347    // Reclaim unmarked objects.
348    Sweep(false);
349
350    // Swap the live and mark bitmaps for each space which we modified space. This is an
351    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
352    // bitmaps.
353    timings_.StartSplit("SwapBitmaps");
354    SwapBitmaps();
355    timings_.EndSplit();
356
357    // Unbind the live and mark bitmaps.
358    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
359    GetHeap()->UnBindBitmaps();
360  }
361}
362
363void MarkSweep::FindDefaultSpaceBitmap() {
364  TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
365  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
366    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
367    if (bitmap != nullptr &&
368        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
369      current_space_bitmap_ = bitmap;
370      return;
371    }
372  }
373  GetHeap()->DumpSpaces();
374  LOG(FATAL) << "Could not find a default mark bitmap";
375}
376
377void MarkSweep::ExpandMarkStack() {
378  ResizeMarkStack(mark_stack_->Capacity() * 2);
379}
380
381void MarkSweep::ResizeMarkStack(size_t new_size) {
382  // Rare case, no need to have Thread::Current be a parameter.
383  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
384    // Someone else acquired the lock and expanded the mark stack before us.
385    return;
386  }
387  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
388  CHECK_LE(mark_stack_->Size(), new_size);
389  mark_stack_->Resize(new_size);
390  for (const auto& obj : temp) {
391    mark_stack_->PushBack(obj);
392  }
393}
394
395inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
396  DCHECK(obj != NULL);
397  if (MarkObjectParallel(obj)) {
398    MutexLock mu(Thread::Current(), mark_stack_lock_);
399    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
400      ExpandMarkStack();
401    }
402    // The object must be pushed on to the mark stack.
403    mark_stack_->PushBack(obj);
404  }
405}
406
407mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
408  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
409  mark_sweep->MarkObject(obj);
410  return obj;
411}
412
413inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
414  DCHECK(!immune_region_.ContainsObject(obj));
415  if (kUseBrooksPointer) {
416    // Verify all the objects have the correct Brooks pointer installed.
417    obj->AssertSelfBrooksPointer();
418  }
419  // Try to take advantage of locality of references within a space, failing this find the space
420  // the hard way.
421  accounting::SpaceBitmap* object_bitmap = current_space_bitmap_;
422  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
423    accounting::SpaceBitmap* new_bitmap = mark_bitmap_->GetContinuousSpaceBitmap(obj);
424    if (LIKELY(new_bitmap != NULL)) {
425      object_bitmap = new_bitmap;
426    } else {
427      MarkLargeObject(obj, false);
428      return;
429    }
430  }
431  DCHECK(object_bitmap->HasAddress(obj));
432  object_bitmap->Clear(obj);
433}
434
435inline void MarkSweep::MarkObjectNonNull(Object* obj) {
436  DCHECK(obj != nullptr);
437  if (kUseBrooksPointer) {
438    // Verify all the objects have the correct Brooks pointer installed.
439    obj->AssertSelfBrooksPointer();
440  }
441  if (immune_region_.ContainsObject(obj)) {
442    if (kCountMarkedObjects) {
443      ++mark_immune_count_;
444    }
445    DCHECK(IsMarked(obj));
446    return;
447  }
448  // Try to take advantage of locality of references within a space, failing this find the space
449  // the hard way.
450  accounting::SpaceBitmap* object_bitmap = current_space_bitmap_;
451  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
452    object_bitmap = mark_bitmap_->GetContinuousSpaceBitmap(obj);
453    if (kCountMarkedObjects) {
454      ++mark_slowpath_count_;
455    }
456    if (UNLIKELY(object_bitmap == nullptr)) {
457      MarkLargeObject(obj, true);
458      return;
459    }
460  } else if (kCountMarkedObjects) {
461    ++mark_fastpath_count_;
462  }
463  // This object was not previously marked.
464  if (!object_bitmap->Set(obj)) {
465    PushOnMarkStack(obj);
466  }
467}
468
469inline void MarkSweep::PushOnMarkStack(Object* obj) {
470  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
471    // Lock is not needed but is here anyways to please annotalysis.
472    MutexLock mu(Thread::Current(), mark_stack_lock_);
473    ExpandMarkStack();
474  }
475  // The object must be pushed on to the mark stack.
476  mark_stack_->PushBack(obj);
477}
478
479// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
480bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
481  // TODO: support >1 discontinuous space.
482  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
483  accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
484  if (kProfileLargeObjects) {
485    ++large_object_test_;
486  }
487  if (UNLIKELY(!large_objects->Test(obj))) {
488    if (!large_object_space->Contains(obj)) {
489      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
490      LOG(ERROR) << "Attempting see if it's a bad root";
491      VerifyRoots();
492      LOG(FATAL) << "Can't mark bad root";
493    }
494    if (kProfileLargeObjects) {
495      ++large_object_mark_;
496    }
497    if (set) {
498      large_objects->Set(obj);
499    } else {
500      large_objects->Clear(obj);
501    }
502    return true;
503  }
504  return false;
505}
506
507inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
508  DCHECK(obj != nullptr);
509  if (kUseBrooksPointer) {
510    // Verify all the objects have the correct Brooks pointer installed.
511    obj->AssertSelfBrooksPointer();
512  }
513  if (immune_region_.ContainsObject(obj)) {
514    DCHECK(IsMarked(obj));
515    return false;
516  }
517  // Try to take advantage of locality of references within a space, failing this find the space
518  // the hard way.
519  accounting::SpaceBitmap* object_bitmap = current_space_bitmap_;
520  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
521    accounting::SpaceBitmap* new_bitmap = mark_bitmap_->GetContinuousSpaceBitmap(obj);
522    if (new_bitmap != NULL) {
523      object_bitmap = new_bitmap;
524    } else {
525      // TODO: Remove the Thread::Current here?
526      // TODO: Convert this to some kind of atomic marking?
527      MutexLock mu(Thread::Current(), large_object_lock_);
528      return MarkLargeObject(obj, true);
529    }
530  }
531  // Return true if the object was not previously marked.
532  return !object_bitmap->AtomicTestAndSet(obj);
533}
534
535// Used to mark objects when processing the mark stack. If an object is null, it is not marked.
536inline void MarkSweep::MarkObject(Object* obj) {
537  if (obj != nullptr) {
538    MarkObjectNonNull(obj);
539  } else if (kCountMarkedObjects) {
540    ++mark_null_count_;
541  }
542}
543
544void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/,
545                                         RootType /*root_type*/) {
546  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
547}
548
549void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/,
550                                 RootType /*root_type*/) {
551  CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
552}
553
554void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
555                                 RootType /*root_type*/) {
556  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
557}
558
559void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
560                                   const StackVisitor* visitor) {
561  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
562}
563
564void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
565  // See if the root is on any space bitmap.
566  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
567    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
568    if (!large_object_space->Contains(root)) {
569      LOG(ERROR) << "Found invalid root: " << root;
570      if (visitor != NULL) {
571        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
572      }
573    }
574  }
575}
576
577void MarkSweep::VerifyRoots() {
578  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
579}
580
581void MarkSweep::MarkRoots(Thread* self) {
582  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
583    // If we exclusively hold the mutator lock, all threads must be suspended.
584    timings_.StartSplit("MarkRoots");
585    Runtime::Current()->VisitRoots(MarkRootCallback, this);
586    timings_.EndSplit();
587    RevokeAllThreadLocalAllocationStacks(self);
588  } else {
589    MarkThreadRoots(self);
590    // At this point the live stack should no longer have any mutators which push into it.
591    MarkNonThreadRoots();
592    MarkConcurrentRoots(
593        static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
594  }
595}
596
597void MarkSweep::MarkNonThreadRoots() {
598  timings_.StartSplit("MarkNonThreadRoots");
599  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
600  timings_.EndSplit();
601}
602
603void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
604  timings_.StartSplit("MarkConcurrentRoots");
605  // Visit all runtime roots and clear dirty flags.
606  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
607  timings_.EndSplit();
608}
609
610class ScanObjectVisitor {
611 public:
612  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
613      : mark_sweep_(mark_sweep) {}
614
615  // TODO: Fixme when anotatalysis works with visitors.
616  void operator()(Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
617    if (kCheckLocks) {
618      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
619      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
620    }
621    mark_sweep_->ScanObject(obj);
622  }
623
624 private:
625  MarkSweep* const mark_sweep_;
626};
627
628template <bool kUseFinger = false>
629class MarkStackTask : public Task {
630 public:
631  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
632                Object** mark_stack)
633      : mark_sweep_(mark_sweep),
634        thread_pool_(thread_pool),
635        mark_stack_pos_(mark_stack_size) {
636    // We may have to copy part of an existing mark stack when another mark stack overflows.
637    if (mark_stack_size != 0) {
638      DCHECK(mark_stack != NULL);
639      // TODO: Check performance?
640      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
641    }
642    if (kCountTasks) {
643      ++mark_sweep_->work_chunks_created_;
644    }
645  }
646
647  static const size_t kMaxSize = 1 * KB;
648
649 protected:
650  class ScanObjectParallelVisitor {
651   public:
652    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
653        : chunk_task_(chunk_task) {}
654
655    void operator()(Object* obj) const {
656      MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
657      mark_sweep->ScanObjectVisit(obj,
658          [mark_sweep, this](Object* /* obj */, Object* ref, const MemberOffset& /* offset */,
659              bool /* is_static */) ALWAYS_INLINE_LAMBDA {
660        if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
661          if (kUseFinger) {
662            android_memory_barrier();
663            if (reinterpret_cast<uintptr_t>(ref) >=
664                static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
665              return;
666            }
667          }
668          chunk_task_->MarkStackPush(ref);
669        }
670      });
671    }
672
673   private:
674    MarkStackTask<kUseFinger>* const chunk_task_;
675  };
676
677  virtual ~MarkStackTask() {
678    // Make sure that we have cleared our mark stack.
679    DCHECK_EQ(mark_stack_pos_, 0U);
680    if (kCountTasks) {
681      ++mark_sweep_->work_chunks_deleted_;
682    }
683  }
684
685  MarkSweep* const mark_sweep_;
686  ThreadPool* const thread_pool_;
687  // Thread local mark stack for this task.
688  Object* mark_stack_[kMaxSize];
689  // Mark stack position.
690  size_t mark_stack_pos_;
691
692  void MarkStackPush(Object* obj) ALWAYS_INLINE {
693    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
694      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
695      mark_stack_pos_ /= 2;
696      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
697                                     mark_stack_ + mark_stack_pos_);
698      thread_pool_->AddTask(Thread::Current(), task);
699    }
700    DCHECK(obj != nullptr);
701    DCHECK_LT(mark_stack_pos_, kMaxSize);
702    mark_stack_[mark_stack_pos_++] = obj;
703  }
704
705  virtual void Finalize() {
706    delete this;
707  }
708
709  // Scans all of the objects
710  virtual void Run(Thread* self) {
711    ScanObjectParallelVisitor visitor(this);
712    // TODO: Tune this.
713    static const size_t kFifoSize = 4;
714    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
715    for (;;) {
716      Object* obj = nullptr;
717      if (kUseMarkStackPrefetch) {
718        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
719          Object* obj = mark_stack_[--mark_stack_pos_];
720          DCHECK(obj != nullptr);
721          __builtin_prefetch(obj);
722          prefetch_fifo.push_back(obj);
723        }
724        if (UNLIKELY(prefetch_fifo.empty())) {
725          break;
726        }
727        obj = prefetch_fifo.front();
728        prefetch_fifo.pop_front();
729      } else {
730        if (UNLIKELY(mark_stack_pos_ == 0)) {
731          break;
732        }
733        obj = mark_stack_[--mark_stack_pos_];
734      }
735      DCHECK(obj != nullptr);
736      visitor(obj);
737    }
738  }
739};
740
741class CardScanTask : public MarkStackTask<false> {
742 public:
743  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
744               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
745               Object** mark_stack_obj)
746      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
747        bitmap_(bitmap),
748        begin_(begin),
749        end_(end),
750        minimum_age_(minimum_age) {
751  }
752
753 protected:
754  accounting::SpaceBitmap* const bitmap_;
755  byte* const begin_;
756  byte* const end_;
757  const byte minimum_age_;
758
759  virtual void Finalize() {
760    delete this;
761  }
762
763  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
764    ScanObjectParallelVisitor visitor(this);
765    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
766    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
767    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
768        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
769    // Finish by emptying our local mark stack.
770    MarkStackTask::Run(self);
771  }
772};
773
774size_t MarkSweep::GetThreadCount(bool paused) const {
775  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
776    return 0;
777  }
778  if (paused) {
779    return heap_->GetParallelGCThreadCount() + 1;
780  } else {
781    return heap_->GetConcGCThreadCount() + 1;
782  }
783}
784
785void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
786  accounting::CardTable* card_table = GetHeap()->GetCardTable();
787  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
788  size_t thread_count = GetThreadCount(paused);
789  // The parallel version with only one thread is faster for card scanning, TODO: fix.
790  if (kParallelCardScan && thread_count > 0) {
791    Thread* self = Thread::Current();
792    // Can't have a different split for each space since multiple spaces can have their cards being
793    // scanned at the same time.
794    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
795    // Try to take some of the mark stack since we can pass this off to the worker tasks.
796    Object** mark_stack_begin = mark_stack_->Begin();
797    Object** mark_stack_end = mark_stack_->End();
798    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
799    // Estimated number of work tasks we will create.
800    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
801    DCHECK_NE(mark_stack_tasks, 0U);
802    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
803                                             mark_stack_size / mark_stack_tasks + 1);
804    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
805      if (space->GetMarkBitmap() == nullptr) {
806        continue;
807      }
808      byte* card_begin = space->Begin();
809      byte* card_end = space->End();
810      // Align up the end address. For example, the image space's end
811      // may not be card-size-aligned.
812      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
813      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
814      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
815      // Calculate how many bytes of heap we will scan,
816      const size_t address_range = card_end - card_begin;
817      // Calculate how much address range each task gets.
818      const size_t card_delta = RoundUp(address_range / thread_count + 1,
819                                        accounting::CardTable::kCardSize);
820      // Create the worker tasks for this space.
821      while (card_begin != card_end) {
822        // Add a range of cards.
823        size_t addr_remaining = card_end - card_begin;
824        size_t card_increment = std::min(card_delta, addr_remaining);
825        // Take from the back of the mark stack.
826        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
827        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
828        mark_stack_end -= mark_stack_increment;
829        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
830        DCHECK_EQ(mark_stack_end, mark_stack_->End());
831        // Add the new task to the thread pool.
832        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
833                                      card_begin + card_increment, minimum_age,
834                                      mark_stack_increment, mark_stack_end);
835        thread_pool->AddTask(self, task);
836        card_begin += card_increment;
837      }
838    }
839
840    // Note: the card scan below may dirty new cards (and scan them)
841    // as a side effect when a Reference object is encountered and
842    // queued during the marking. See b/11465268.
843    thread_pool->SetMaxActiveWorkers(thread_count - 1);
844    thread_pool->StartWorkers(self);
845    thread_pool->Wait(self, true, true);
846    thread_pool->StopWorkers(self);
847    timings_.EndSplit();
848  } else {
849    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
850      if (space->GetMarkBitmap() != nullptr) {
851        // Image spaces are handled properly since live == marked for them.
852        switch (space->GetGcRetentionPolicy()) {
853          case space::kGcRetentionPolicyNeverCollect:
854            timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
855                "ScanGrayImageSpaceObjects");
856            break;
857          case space::kGcRetentionPolicyFullCollect:
858            timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
859                "ScanGrayZygoteSpaceObjects");
860            break;
861          case space::kGcRetentionPolicyAlwaysCollect:
862            timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
863                "ScanGrayAllocSpaceObjects");
864            break;
865          }
866        ScanObjectVisitor visitor(this);
867        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
868        timings_.EndSplit();
869      }
870    }
871  }
872}
873
874class RecursiveMarkTask : public MarkStackTask<false> {
875 public:
876  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
877                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
878      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
879        bitmap_(bitmap),
880        begin_(begin),
881        end_(end) {
882  }
883
884 protected:
885  accounting::SpaceBitmap* const bitmap_;
886  const uintptr_t begin_;
887  const uintptr_t end_;
888
889  virtual void Finalize() {
890    delete this;
891  }
892
893  // Scans all of the objects
894  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
895    ScanObjectParallelVisitor visitor(this);
896    bitmap_->VisitMarkedRange(begin_, end_, visitor);
897    // Finish by emptying our local mark stack.
898    MarkStackTask::Run(self);
899  }
900};
901
902// Populates the mark stack based on the set of marked objects and
903// recursively marks until the mark stack is emptied.
904void MarkSweep::RecursiveMark() {
905  TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
906  // RecursiveMark will build the lists of known instances of the Reference classes. See
907  // DelayReferenceReferent for details.
908  if (kUseRecursiveMark) {
909    const bool partial = GetGcType() == kGcTypePartial;
910    ScanObjectVisitor scan_visitor(this);
911    auto* self = Thread::Current();
912    ThreadPool* thread_pool = heap_->GetThreadPool();
913    size_t thread_count = GetThreadCount(false);
914    const bool parallel = kParallelRecursiveMark && thread_count > 1;
915    mark_stack_->Reset();
916    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
917      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
918          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
919        current_space_bitmap_ = space->GetMarkBitmap();
920        if (current_space_bitmap_ == nullptr) {
921          continue;
922        }
923        if (parallel) {
924          // We will use the mark stack the future.
925          // CHECK(mark_stack_->IsEmpty());
926          // This function does not handle heap end increasing, so we must use the space end.
927          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
928          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
929          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
930
931          // Create a few worker tasks.
932          const size_t n = thread_count * 2;
933          while (begin != end) {
934            uintptr_t start = begin;
935            uintptr_t delta = (end - begin) / n;
936            delta = RoundUp(delta, KB);
937            if (delta < 16 * KB) delta = end - begin;
938            begin += delta;
939            auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
940                                               begin);
941            thread_pool->AddTask(self, task);
942          }
943          thread_pool->SetMaxActiveWorkers(thread_count - 1);
944          thread_pool->StartWorkers(self);
945          thread_pool->Wait(self, true, true);
946          thread_pool->StopWorkers(self);
947        } else {
948          // This function does not handle heap end increasing, so we must use the space end.
949          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
950          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
951          current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
952        }
953      }
954    }
955  }
956  ProcessMarkStack(false);
957}
958
959mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
960  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
961    return object;
962  }
963  return nullptr;
964}
965
966void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
967  ScanGrayObjects(paused, minimum_age);
968  ProcessMarkStack(paused);
969}
970
971void MarkSweep::ReMarkRoots() {
972  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
973  timings_.StartSplit("(Paused)ReMarkRoots");
974  Runtime::Current()->VisitRoots(
975      MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
976                                                          kVisitRootFlagStopLoggingNewRoots |
977                                                          kVisitRootFlagClearRootLog));
978  timings_.EndSplit();
979  if (kVerifyRoots) {
980    timings_.StartSplit("(Paused)VerifyRoots");
981    Runtime::Current()->VisitRoots(VerifyRootMarked, this);
982    timings_.EndSplit();
983  }
984}
985
986void MarkSweep::SweepSystemWeaks() {
987  Runtime* runtime = Runtime::Current();
988  timings_.StartSplit("SweepSystemWeaks");
989  runtime->SweepSystemWeaks(IsMarkedCallback, this);
990  timings_.EndSplit();
991}
992
993mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
994  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
995  // We don't actually want to sweep the object, so lets return "marked"
996  return obj;
997}
998
999void MarkSweep::VerifyIsLive(const Object* obj) {
1000  Heap* heap = GetHeap();
1001  if (!heap->GetLiveBitmap()->Test(obj)) {
1002    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1003    if (!large_object_space->GetLiveObjects()->Test(obj)) {
1004      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
1005          heap->allocation_stack_->End()) {
1006        // Object not found!
1007        heap->DumpSpaces();
1008        LOG(FATAL) << "Found dead object " << obj;
1009      }
1010    }
1011  }
1012}
1013
1014void MarkSweep::VerifySystemWeaks() {
1015  // Verify system weaks, uses a special object visitor which returns the input object.
1016  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
1017}
1018
1019class CheckpointMarkThreadRoots : public Closure {
1020 public:
1021  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1022
1023  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1024    ATRACE_BEGIN("Marking thread roots");
1025    // Note: self is not necessarily equal to thread since thread may be suspended.
1026    Thread* self = Thread::Current();
1027    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1028        << thread->GetState() << " thread " << thread << " self " << self;
1029    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
1030    ATRACE_END();
1031    if (kUseThreadLocalAllocationStack) {
1032      thread->RevokeThreadLocalAllocationStack();
1033    }
1034    if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint) {
1035      mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
1036    }
1037    mark_sweep_->GetBarrier().Pass(self);
1038  }
1039
1040 private:
1041  MarkSweep* mark_sweep_;
1042};
1043
1044void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1045  CheckpointMarkThreadRoots check_point(this);
1046  timings_.StartSplit("MarkRootsCheckpoint");
1047  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1048  // Request the check point is run on all threads returning a count of the threads that must
1049  // run through the barrier including self.
1050  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1051  // Release locks then wait for all mutator threads to pass the barrier.
1052  // TODO: optimize to not release locks when there are no threads to wait for.
1053  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1054  Locks::mutator_lock_->SharedUnlock(self);
1055  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1056  CHECK_EQ(old_state, kWaitingPerformingGc);
1057  gc_barrier_->Increment(self, barrier_count);
1058  self->SetState(kWaitingPerformingGc);
1059  Locks::mutator_lock_->SharedLock(self);
1060  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1061  timings_.EndSplit();
1062}
1063
1064void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1065  timings_.StartSplit("SweepArray");
1066  Thread* self = Thread::Current();
1067  mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize];
1068  size_t chunk_free_pos = 0;
1069  size_t freed_bytes = 0;
1070  size_t freed_large_object_bytes = 0;
1071  size_t freed_objects = 0;
1072  size_t freed_large_objects = 0;
1073  // How many objects are left in the array, modified after each space is swept.
1074  Object** objects = const_cast<Object**>(allocations->Begin());
1075  size_t count = allocations->Size();
1076  // Change the order to ensure that the non-moving space last swept as an optimization.
1077  std::vector<space::ContinuousSpace*> sweep_spaces;
1078  space::ContinuousSpace* non_moving_space = nullptr;
1079  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1080    if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1081        space->GetLiveBitmap() != nullptr) {
1082      if (space == heap_->GetNonMovingSpace()) {
1083        non_moving_space = space;
1084      } else {
1085        sweep_spaces.push_back(space);
1086      }
1087    }
1088  }
1089  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1090  // the other alloc spaces as an optimization.
1091  if (non_moving_space != nullptr) {
1092    sweep_spaces.push_back(non_moving_space);
1093  }
1094  // Start by sweeping the continuous spaces.
1095  for (space::ContinuousSpace* space : sweep_spaces) {
1096    space::AllocSpace* alloc_space = space->AsAllocSpace();
1097    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1098    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1099    if (swap_bitmaps) {
1100      std::swap(live_bitmap, mark_bitmap);
1101    }
1102    Object** out = objects;
1103    for (size_t i = 0; i < count; ++i) {
1104      Object* obj = objects[i];
1105      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1106        continue;
1107      }
1108      if (space->HasAddress(obj)) {
1109        // This object is in the space, remove it from the array and add it to the sweep buffer
1110        // if needed.
1111        if (!mark_bitmap->Test(obj)) {
1112          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1113            timings_.StartSplit("FreeList");
1114            freed_objects += chunk_free_pos;
1115            freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1116            timings_.EndSplit();
1117            chunk_free_pos = 0;
1118          }
1119          chunk_free_buffer[chunk_free_pos++] = obj;
1120        }
1121      } else {
1122        *(out++) = obj;
1123      }
1124    }
1125    if (chunk_free_pos > 0) {
1126      timings_.StartSplit("FreeList");
1127      freed_objects += chunk_free_pos;
1128      freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1129      timings_.EndSplit();
1130      chunk_free_pos = 0;
1131    }
1132    // All of the references which space contained are no longer in the allocation stack, update
1133    // the count.
1134    count = out - objects;
1135  }
1136  // Handle the large object space.
1137  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1138  accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
1139  accounting::ObjectSet* large_mark_objects = large_object_space->GetMarkObjects();
1140  if (swap_bitmaps) {
1141    std::swap(large_live_objects, large_mark_objects);
1142  }
1143  for (size_t i = 0; i < count; ++i) {
1144    Object* obj = objects[i];
1145    // Handle large objects.
1146    if (kUseThreadLocalAllocationStack && obj == nullptr) {
1147      continue;
1148    }
1149    if (!large_mark_objects->Test(obj)) {
1150      ++freed_large_objects;
1151      freed_large_object_bytes += large_object_space->Free(self, obj);
1152    }
1153  }
1154  timings_.EndSplit();
1155
1156  timings_.StartSplit("RecordFree");
1157  VLOG(heap) << "Freed " << freed_objects << "/" << count
1158             << " objects with size " << PrettySize(freed_bytes);
1159  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1160  freed_objects_.FetchAndAdd(freed_objects);
1161  freed_large_objects_.FetchAndAdd(freed_large_objects);
1162  freed_bytes_.FetchAndAdd(freed_bytes);
1163  freed_large_object_bytes_.FetchAndAdd(freed_large_object_bytes);
1164  timings_.EndSplit();
1165
1166  timings_.StartSplit("ResetStack");
1167  allocations->Reset();
1168  timings_.EndSplit();
1169}
1170
1171void MarkSweep::Sweep(bool swap_bitmaps) {
1172  DCHECK(mark_stack_->IsEmpty());
1173  TimingLogger::ScopedSplit("Sweep", &timings_);
1174  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1175    if (space->IsContinuousMemMapAllocSpace()) {
1176      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1177      TimingLogger::ScopedSplit split(
1178          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_);
1179      size_t freed_objects = 0;
1180      size_t freed_bytes = 0;
1181      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1182      heap_->RecordFree(freed_objects, freed_bytes);
1183      freed_objects_.FetchAndAdd(freed_objects);
1184      freed_bytes_.FetchAndAdd(freed_bytes);
1185    }
1186  }
1187  SweepLargeObjects(swap_bitmaps);
1188}
1189
1190void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1191  TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1192  size_t freed_objects = 0;
1193  size_t freed_bytes = 0;
1194  GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1195  freed_large_objects_.FetchAndAdd(freed_objects);
1196  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
1197  GetHeap()->RecordFree(freed_objects, freed_bytes);
1198}
1199
1200// Process the "referent" field in a java.lang.ref.Reference.  If the
1201// referent has not yet been marked, put it on the appropriate list in
1202// the heap for later processing.
1203void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
1204  DCHECK(klass != nullptr);
1205  if (kCountJavaLangRefs) {
1206    ++reference_count_;
1207  }
1208  heap_->DelayReferenceReferent(klass, obj->AsReference(), IsMarkedCallback, this);
1209}
1210
1211class MarkObjectVisitor {
1212 public:
1213  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
1214
1215  // TODO: Fixme when anotatalysis works with visitors.
1216  void operator()(Object* /* obj */, Object* ref, const MemberOffset& /* offset */,
1217                  bool /* is_static */) const ALWAYS_INLINE
1218      NO_THREAD_SAFETY_ANALYSIS {
1219    if (kCheckLocks) {
1220      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1221      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1222    }
1223    mark_sweep_->MarkObject(ref);
1224  }
1225
1226 private:
1227  MarkSweep* const mark_sweep_;
1228};
1229
1230// Scans an object reference.  Determines the type of the reference
1231// and dispatches to a specialized scanning routine.
1232void MarkSweep::ScanObject(Object* obj) {
1233  MarkObjectVisitor visitor(this);
1234  ScanObjectVisit(obj, visitor);
1235}
1236
1237void MarkSweep::ProcessMarkStackPausedCallback(void* arg) {
1238  reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(true);
1239}
1240
1241void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1242  Thread* self = Thread::Current();
1243  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1244  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1245                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1246  CHECK_GT(chunk_size, 0U);
1247  // Split the current mark stack up into work tasks.
1248  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1249    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1250    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1251    it += delta;
1252  }
1253  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1254  thread_pool->StartWorkers(self);
1255  thread_pool->Wait(self, true, true);
1256  thread_pool->StopWorkers(self);
1257  mark_stack_->Reset();
1258  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1259}
1260
1261// Scan anything that's on the mark stack.
1262void MarkSweep::ProcessMarkStack(bool paused) {
1263  timings_.StartSplit(paused ? "(Paused)ProcessMarkStack" : "ProcessMarkStack");
1264  size_t thread_count = GetThreadCount(paused);
1265  if (kParallelProcessMarkStack && thread_count > 1 &&
1266      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1267    ProcessMarkStackParallel(thread_count);
1268  } else {
1269    // TODO: Tune this.
1270    static const size_t kFifoSize = 4;
1271    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1272    for (;;) {
1273      Object* obj = NULL;
1274      if (kUseMarkStackPrefetch) {
1275        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1276          Object* obj = mark_stack_->PopBack();
1277          DCHECK(obj != NULL);
1278          __builtin_prefetch(obj);
1279          prefetch_fifo.push_back(obj);
1280        }
1281        if (prefetch_fifo.empty()) {
1282          break;
1283        }
1284        obj = prefetch_fifo.front();
1285        prefetch_fifo.pop_front();
1286      } else {
1287        if (mark_stack_->IsEmpty()) {
1288          break;
1289        }
1290        obj = mark_stack_->PopBack();
1291      }
1292      DCHECK(obj != NULL);
1293      ScanObject(obj);
1294    }
1295  }
1296  timings_.EndSplit();
1297}
1298
1299inline bool MarkSweep::IsMarked(const Object* object) const
1300    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1301  if (immune_region_.ContainsObject(object)) {
1302    return true;
1303  }
1304  if (current_space_bitmap_->HasAddress(object)) {
1305    return current_space_bitmap_->Test(object);
1306  }
1307  return mark_bitmap_->Test(object);
1308}
1309
1310void MarkSweep::FinishPhase() {
1311  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1312  // Can't enqueue references if we hold the mutator lock.
1313  Heap* heap = GetHeap();
1314  timings_.NewSplit("PostGcVerification");
1315  heap->PostGcVerification(this);
1316  // Update the cumulative statistics.
1317  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
1318  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
1319  // Ensure that the mark stack is empty.
1320  CHECK(mark_stack_->IsEmpty());
1321  if (kCountScannedTypes) {
1322    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1323             << " other=" << other_count_;
1324  }
1325  if (kCountTasks) {
1326    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1327  }
1328  if (kMeasureOverhead) {
1329    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1330  }
1331  if (kProfileLargeObjects) {
1332    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1333  }
1334  if (kCountJavaLangRefs) {
1335    VLOG(gc) << "References scanned " << reference_count_;
1336  }
1337  if (kCountMarkedObjects) {
1338    VLOG(gc) << "Marked: null=" << mark_null_count_ << " immune=" <<  mark_immune_count_
1339        << " fastpath=" << mark_fastpath_count_ << " slowpath=" << mark_slowpath_count_;
1340  }
1341  // Update the cumulative loggers.
1342  cumulative_timings_.Start();
1343  cumulative_timings_.AddLogger(timings_);
1344  cumulative_timings_.End();
1345  // Clear all of the spaces' mark bitmaps.
1346  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1347    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
1348    if (bitmap != nullptr &&
1349        space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1350      bitmap->Clear();
1351    }
1352  }
1353  mark_stack_->Reset();
1354  // Reset the marked large objects.
1355  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1356  large_objects->GetMarkObjects()->Clear();
1357}
1358
1359void MarkSweep::RevokeAllThreadLocalBuffers() {
1360  if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1361    // If concurrent, rosalloc thread-local buffers are revoked at the
1362    // thread checkpoint. Bump pointer space thread-local buffers must
1363    // not be in use.
1364    GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1365  } else {
1366    timings_.StartSplit("(Paused)RevokeAllThreadLocalBuffers");
1367    GetHeap()->RevokeAllThreadLocalBuffers();
1368    timings_.EndSplit();
1369  }
1370}
1371
1372}  // namespace collector
1373}  // namespace gc
1374}  // namespace art
1375