mark_sweep.cc revision 3bb57c7b41bf5419fe895e7aa664d8d430205ba8
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "indirect_reference_table.h"
38#include "intern_table.h"
39#include "jni_internal.h"
40#include "monitor.h"
41#include "mark_sweep-inl.h"
42#include "mirror/art_field.h"
43#include "mirror/art_field-inl.h"
44#include "mirror/class-inl.h"
45#include "mirror/class_loader.h"
46#include "mirror/dex_cache.h"
47#include "mirror/object-inl.h"
48#include "mirror/object_array.h"
49#include "mirror/object_array-inl.h"
50#include "runtime.h"
51#include "thread-inl.h"
52#include "thread_list.h"
53#include "verifier/method_verifier.h"
54
55using ::art::mirror::ArtField;
56using ::art::mirror::Class;
57using ::art::mirror::Object;
58using ::art::mirror::ObjectArray;
59
60namespace art {
61namespace gc {
62namespace collector {
63
64// Performance options.
65constexpr bool kUseRecursiveMark = false;
66constexpr bool kUseMarkStackPrefetch = true;
67constexpr size_t kSweepArrayChunkFreeSize = 1024;
68
69// Parallelism options.
70constexpr bool kParallelCardScan = true;
71constexpr bool kParallelRecursiveMark = true;
72// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
73// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
74// having this can add overhead in ProcessReferences since we may end up doing many calls of
75// ProcessMarkStack with very small mark stacks.
76constexpr size_t kMinimumParallelMarkStackSize = 128;
77constexpr bool kParallelProcessMarkStack = true;
78
79// Profiling and information flags.
80constexpr bool kCountClassesMarked = false;
81constexpr bool kProfileLargeObjects = false;
82constexpr bool kMeasureOverhead = false;
83constexpr bool kCountTasks = false;
84constexpr bool kCountJavaLangRefs = false;
85
86// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
87constexpr bool kCheckLocks = kDebugLocking;
88
89void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
90  // Bind live to mark bitmap if necessary.
91  if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
92    CHECK(space->IsContinuousMemMapAllocSpace());
93    space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
94  }
95
96  // Add the space to the immune region.
97  // TODO: Use space limits instead of current end_ since the end_ can be changed by dlmalloc
98  // callbacks.
99  if (immune_begin_ == NULL) {
100    DCHECK(immune_end_ == NULL);
101    SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
102                   reinterpret_cast<Object*>(space->End()));
103  } else {
104    const space::ContinuousSpace* prev_space = nullptr;
105    // Find out if the previous space is immune.
106    for (const space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
107      if (cur_space == space) {
108        break;
109      }
110      prev_space = cur_space;
111    }
112    // If previous space was immune, then extend the immune region. Relies on continuous spaces
113    // being sorted by Heap::AddContinuousSpace.
114    if (prev_space != nullptr && IsImmuneSpace(prev_space)) {
115      immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
116      immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
117    }
118  }
119}
120
121bool MarkSweep::IsImmuneSpace(const space::ContinuousSpace* space) const {
122  return
123      immune_begin_ <= reinterpret_cast<Object*>(space->Begin()) &&
124      immune_end_ >= reinterpret_cast<Object*>(space->End());
125}
126
127void MarkSweep::BindBitmaps() {
128  timings_.StartSplit("BindBitmaps");
129  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
130  // Mark all of the spaces we never collect as immune.
131  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
132    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
133      ImmuneSpace(space);
134    }
135  }
136  timings_.EndSplit();
137}
138
139MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
140    : GarbageCollector(heap,
141                       name_prefix +
142                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
143      current_mark_bitmap_(NULL),
144      mark_stack_(NULL),
145      immune_begin_(NULL),
146      immune_end_(NULL),
147      live_stack_freeze_size_(0),
148      gc_barrier_(new Barrier(0)),
149      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
150      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
151      is_concurrent_(is_concurrent) {
152}
153
154void MarkSweep::InitializePhase() {
155  timings_.Reset();
156  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
157  mark_stack_ = heap_->mark_stack_.get();
158  DCHECK(mark_stack_ != nullptr);
159  SetImmuneRange(nullptr, nullptr);
160  class_count_ = 0;
161  array_count_ = 0;
162  other_count_ = 0;
163  large_object_test_ = 0;
164  large_object_mark_ = 0;
165  classes_marked_ = 0;
166  overhead_time_ = 0;
167  work_chunks_created_ = 0;
168  work_chunks_deleted_ = 0;
169  reference_count_ = 0;
170
171  FindDefaultMarkBitmap();
172
173  // Do any pre GC verification.
174  timings_.NewSplit("PreGcVerification");
175  heap_->PreGcVerification(this);
176}
177
178void MarkSweep::ProcessReferences(Thread* self) {
179  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
180  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
181  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback,
182                               &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
183}
184
185bool MarkSweep::HandleDirtyObjectsPhase() {
186  TimingLogger::ScopedSplit split("(Paused)HandleDirtyObjectsPhase", &timings_);
187  Thread* self = Thread::Current();
188  Locks::mutator_lock_->AssertExclusiveHeld(self);
189
190  {
191    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
192
193    // Re-mark root set.
194    ReMarkRoots();
195
196    // Scan dirty objects, this is only required if we are not doing concurrent GC.
197    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
198  }
199
200  ProcessReferences(self);
201
202  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
203  if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_||
204      GetHeap()->verify_post_gc_heap_) {
205    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
206    // This second sweep makes sure that we don't have any objects in the live stack which point to
207    // freed objects. These cause problems since their references may be previously freed objects.
208    SweepArray(GetHeap()->allocation_stack_.get(), false);
209    // Since SweepArray() above resets the (active) allocation
210    // stack. Need to revoke the thread-local allocation stacks that
211    // point into it.
212    GetHeap()->RevokeAllThreadLocalAllocationStacks(self);
213  }
214
215  timings_.StartSplit("PreSweepingGcVerification");
216  heap_->PreSweepingGcVerification(this);
217  timings_.EndSplit();
218
219  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
220  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
221  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
222
223  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
224  // weak before we sweep them. Since this new system weak may not be marked, the GC may
225  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
226  // reference to a string that is about to be swept.
227  Runtime::Current()->DisallowNewSystemWeaks();
228  return true;
229}
230
231bool MarkSweep::IsConcurrent() const {
232  return is_concurrent_;
233}
234
235void MarkSweep::MarkingPhase() {
236  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
237  Thread* self = Thread::Current();
238
239  BindBitmaps();
240  FindDefaultMarkBitmap();
241
242  // Process dirty cards and add dirty cards to mod union tables.
243  heap_->ProcessCards(timings_);
244
245  // Need to do this before the checkpoint since we don't want any threads to add references to
246  // the live stack during the recursive mark.
247  timings_.NewSplit("SwapStacks");
248  heap_->SwapStacks(self);
249
250  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
251  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
252    // If we exclusively hold the mutator lock, all threads must be suspended.
253    MarkRoots();
254    if (kUseThreadLocalAllocationStack) {
255      heap_->RevokeAllThreadLocalAllocationStacks(self);
256    }
257  } else {
258    MarkThreadRoots(self);
259    // At this point the live stack should no longer have any mutators which push into it.
260    MarkNonThreadRoots();
261  }
262  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
263  MarkConcurrentRoots();
264  UpdateAndMarkModUnion();
265  MarkReachableObjects();
266}
267
268void MarkSweep::UpdateAndMarkModUnion() {
269  for (const auto& space : heap_->GetContinuousSpaces()) {
270    if (IsImmuneSpace(space)) {
271      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
272          "UpdateAndMarkImageModUnionTable";
273      TimingLogger::ScopedSplit split(name, &timings_);
274      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
275      CHECK(mod_union_table != nullptr);
276      mod_union_table->UpdateAndMarkReferences(MarkObjectCallback, this);
277    }
278  }
279}
280
281void MarkSweep::MarkThreadRoots(Thread* self) {
282  MarkRootsCheckpoint(self);
283}
284
285void MarkSweep::MarkReachableObjects() {
286  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
287  // knowing that new allocations won't be marked as live.
288  timings_.StartSplit("MarkStackAsLive");
289  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
290  heap_->MarkAllocStackAsLive(live_stack);
291  live_stack->Reset();
292  timings_.EndSplit();
293  // Recursively mark all the non-image bits set in the mark bitmap.
294  RecursiveMark();
295}
296
297void MarkSweep::ReclaimPhase() {
298  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
299  Thread* self = Thread::Current();
300
301  if (!IsConcurrent()) {
302    ProcessReferences(self);
303  }
304
305  {
306    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
307    SweepSystemWeaks();
308  }
309
310  if (IsConcurrent()) {
311    Runtime::Current()->AllowNewSystemWeaks();
312
313    TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
314    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
315    accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
316    // The allocation stack contains things allocated since the start of the GC. These may have been
317    // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC.
318    // Remove these objects from the mark bitmaps so that they will be eligible for sticky
319    // collection.
320    // There is a race here which is safely handled. Another thread such as the hprof could
321    // have flushed the alloc stack after we resumed the threads. This is safe however, since
322    // reseting the allocation stack zeros it out with madvise. This means that we will either
323    // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
324    // first place.
325    mirror::Object** end = allocation_stack->End();
326    for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
327      const Object* obj = *it;
328      if (obj != NULL) {
329        UnMarkObjectNonNull(obj);
330      }
331    }
332  }
333
334  {
335    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
336
337    // Reclaim unmarked objects.
338    Sweep(false);
339
340    // Swap the live and mark bitmaps for each space which we modified space. This is an
341    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
342    // bitmaps.
343    timings_.StartSplit("SwapBitmaps");
344    SwapBitmaps();
345    timings_.EndSplit();
346
347    // Unbind the live and mark bitmaps.
348    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
349    GetHeap()->UnBindBitmaps();
350  }
351}
352
353void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
354  immune_begin_ = begin;
355  immune_end_ = end;
356}
357
358void MarkSweep::FindDefaultMarkBitmap() {
359  TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
360  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
361    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
362    if (bitmap != nullptr &&
363        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
364      current_mark_bitmap_ = bitmap;
365      CHECK(current_mark_bitmap_ != NULL);
366      return;
367    }
368  }
369  GetHeap()->DumpSpaces();
370  LOG(FATAL) << "Could not find a default mark bitmap";
371}
372
373void MarkSweep::ExpandMarkStack() {
374  ResizeMarkStack(mark_stack_->Capacity() * 2);
375}
376
377void MarkSweep::ResizeMarkStack(size_t new_size) {
378  // Rare case, no need to have Thread::Current be a parameter.
379  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
380    // Someone else acquired the lock and expanded the mark stack before us.
381    return;
382  }
383  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
384  CHECK_LE(mark_stack_->Size(), new_size);
385  mark_stack_->Resize(new_size);
386  for (const auto& obj : temp) {
387    mark_stack_->PushBack(obj);
388  }
389}
390
391inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
392  DCHECK(obj != NULL);
393  if (MarkObjectParallel(obj)) {
394    MutexLock mu(Thread::Current(), mark_stack_lock_);
395    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
396      ExpandMarkStack();
397    }
398    // The object must be pushed on to the mark stack.
399    mark_stack_->PushBack(const_cast<Object*>(obj));
400  }
401}
402
403mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
404  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
405  mark_sweep->MarkObject(obj);
406  return obj;
407}
408
409inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
410  DCHECK(!IsImmune(obj));
411  // Try to take advantage of locality of references within a space, failing this find the space
412  // the hard way.
413  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
414  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
415    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
416    if (LIKELY(new_bitmap != NULL)) {
417      object_bitmap = new_bitmap;
418    } else {
419      MarkLargeObject(obj, false);
420      return;
421    }
422  }
423
424  DCHECK(object_bitmap->HasAddress(obj));
425  object_bitmap->Clear(obj);
426}
427
428inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
429  DCHECK(obj != NULL);
430
431  if (IsImmune(obj)) {
432    DCHECK(IsMarked(obj));
433    return;
434  }
435
436  // Try to take advantage of locality of references within a space, failing this find the space
437  // the hard way.
438  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
439  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
440    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
441    if (LIKELY(new_bitmap != NULL)) {
442      object_bitmap = new_bitmap;
443    } else {
444      MarkLargeObject(obj, true);
445      return;
446    }
447  }
448
449  // This object was not previously marked.
450  if (!object_bitmap->Test(obj)) {
451    object_bitmap->Set(obj);
452    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
453      // Lock is not needed but is here anyways to please annotalysis.
454      MutexLock mu(Thread::Current(), mark_stack_lock_);
455      ExpandMarkStack();
456    }
457    // The object must be pushed on to the mark stack.
458    mark_stack_->PushBack(const_cast<Object*>(obj));
459  }
460}
461
462// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
463bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
464  // TODO: support >1 discontinuous space.
465  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
466  accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
467  if (kProfileLargeObjects) {
468    ++large_object_test_;
469  }
470  if (UNLIKELY(!large_objects->Test(obj))) {
471    if (!large_object_space->Contains(obj)) {
472      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
473      LOG(ERROR) << "Attempting see if it's a bad root";
474      VerifyRoots();
475      LOG(FATAL) << "Can't mark bad root";
476    }
477    if (kProfileLargeObjects) {
478      ++large_object_mark_;
479    }
480    if (set) {
481      large_objects->Set(obj);
482    } else {
483      large_objects->Clear(obj);
484    }
485    return true;
486  }
487  return false;
488}
489
490inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
491  DCHECK(obj != NULL);
492
493  if (IsImmune(obj)) {
494    DCHECK(IsMarked(obj));
495    return false;
496  }
497
498  // Try to take advantage of locality of references within a space, failing this find the space
499  // the hard way.
500  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
501  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
502    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
503    if (new_bitmap != NULL) {
504      object_bitmap = new_bitmap;
505    } else {
506      // TODO: Remove the Thread::Current here?
507      // TODO: Convert this to some kind of atomic marking?
508      MutexLock mu(Thread::Current(), large_object_lock_);
509      return MarkLargeObject(obj, true);
510    }
511  }
512
513  // Return true if the object was not previously marked.
514  return !object_bitmap->AtomicTestAndSet(obj);
515}
516
517// Used to mark objects when recursing.  Recursion is done by moving
518// the finger across the bitmaps in address order and marking child
519// objects.  Any newly-marked objects whose addresses are lower than
520// the finger won't be visited by the bitmap scan, so those objects
521// need to be added to the mark stack.
522inline void MarkSweep::MarkObject(const Object* obj) {
523  if (obj != NULL) {
524    MarkObjectNonNull(obj);
525  }
526}
527
528void MarkSweep::MarkRoot(const Object* obj) {
529  if (obj != NULL) {
530    MarkObjectNonNull(obj);
531  }
532}
533
534void MarkSweep::MarkRootParallelCallback(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
535                                         RootType /*root_type*/) {
536  DCHECK(root != NULL);
537  DCHECK(arg != NULL);
538  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
539}
540
541void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
542                                 RootType /*root_type*/) {
543  DCHECK(root != nullptr);
544  DCHECK(arg != nullptr);
545  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
546}
547
548void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
549                                   const StackVisitor* visitor) {
550  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
551}
552
553void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
554  // See if the root is on any space bitmap.
555  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
556    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
557    if (!large_object_space->Contains(root)) {
558      LOG(ERROR) << "Found invalid root: " << root;
559      if (visitor != NULL) {
560        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
561      }
562    }
563  }
564}
565
566void MarkSweep::VerifyRoots() {
567  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
568}
569
570// Marks all objects in the root set.
571void MarkSweep::MarkRoots() {
572  timings_.StartSplit("MarkRoots");
573  Runtime::Current()->VisitNonConcurrentRoots(MarkRootCallback, this);
574  timings_.EndSplit();
575}
576
577void MarkSweep::MarkNonThreadRoots() {
578  timings_.StartSplit("MarkNonThreadRoots");
579  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
580  timings_.EndSplit();
581}
582
583void MarkSweep::MarkConcurrentRoots() {
584  timings_.StartSplit("MarkConcurrentRoots");
585  // Visit all runtime roots and clear dirty flags.
586  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, false, true);
587  timings_.EndSplit();
588}
589
590class ScanObjectVisitor {
591 public:
592  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
593      : mark_sweep_(mark_sweep) {}
594
595  // TODO: Fixme when anotatalysis works with visitors.
596  void operator()(Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
597    if (kCheckLocks) {
598      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
599      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
600    }
601    mark_sweep_->ScanObject(obj);
602  }
603
604 private:
605  MarkSweep* const mark_sweep_;
606};
607
608template <bool kUseFinger = false>
609class MarkStackTask : public Task {
610 public:
611  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
612                const Object** mark_stack)
613      : mark_sweep_(mark_sweep),
614        thread_pool_(thread_pool),
615        mark_stack_pos_(mark_stack_size) {
616    // We may have to copy part of an existing mark stack when another mark stack overflows.
617    if (mark_stack_size != 0) {
618      DCHECK(mark_stack != NULL);
619      // TODO: Check performance?
620      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
621    }
622    if (kCountTasks) {
623      ++mark_sweep_->work_chunks_created_;
624    }
625  }
626
627  static const size_t kMaxSize = 1 * KB;
628
629 protected:
630  class ScanObjectParallelVisitor {
631   public:
632    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
633        : chunk_task_(chunk_task) {}
634
635    void operator()(Object* obj) const {
636      MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
637      mark_sweep->ScanObjectVisit(obj,
638          [mark_sweep, this](Object* /* obj */, Object* ref, const MemberOffset& /* offset */,
639              bool /* is_static */) ALWAYS_INLINE_LAMBDA {
640        if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
641          if (kUseFinger) {
642            android_memory_barrier();
643            if (reinterpret_cast<uintptr_t>(ref) >=
644                static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
645              return;
646            }
647          }
648          chunk_task_->MarkStackPush(ref);
649        }
650      });
651    }
652
653   private:
654    MarkStackTask<kUseFinger>* const chunk_task_;
655  };
656
657  virtual ~MarkStackTask() {
658    // Make sure that we have cleared our mark stack.
659    DCHECK_EQ(mark_stack_pos_, 0U);
660    if (kCountTasks) {
661      ++mark_sweep_->work_chunks_deleted_;
662    }
663  }
664
665  MarkSweep* const mark_sweep_;
666  ThreadPool* const thread_pool_;
667  // Thread local mark stack for this task.
668  const Object* mark_stack_[kMaxSize];
669  // Mark stack position.
670  size_t mark_stack_pos_;
671
672  void MarkStackPush(const Object* obj) ALWAYS_INLINE {
673    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
674      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
675      mark_stack_pos_ /= 2;
676      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
677                                     mark_stack_ + mark_stack_pos_);
678      thread_pool_->AddTask(Thread::Current(), task);
679    }
680    DCHECK(obj != nullptr);
681    DCHECK(mark_stack_pos_ < kMaxSize);
682    mark_stack_[mark_stack_pos_++] = obj;
683  }
684
685  virtual void Finalize() {
686    delete this;
687  }
688
689  // Scans all of the objects
690  virtual void Run(Thread* self) {
691    ScanObjectParallelVisitor visitor(this);
692    // TODO: Tune this.
693    static const size_t kFifoSize = 4;
694    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
695    for (;;) {
696      const Object* obj = nullptr;
697      if (kUseMarkStackPrefetch) {
698        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
699          const Object* obj = mark_stack_[--mark_stack_pos_];
700          DCHECK(obj != nullptr);
701          __builtin_prefetch(obj);
702          prefetch_fifo.push_back(obj);
703        }
704        if (UNLIKELY(prefetch_fifo.empty())) {
705          break;
706        }
707        obj = prefetch_fifo.front();
708        prefetch_fifo.pop_front();
709      } else {
710        if (UNLIKELY(mark_stack_pos_ == 0)) {
711          break;
712        }
713        obj = mark_stack_[--mark_stack_pos_];
714      }
715      DCHECK(obj != nullptr);
716      visitor(const_cast<mirror::Object*>(obj));
717    }
718  }
719};
720
721class CardScanTask : public MarkStackTask<false> {
722 public:
723  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
724               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
725               const Object** mark_stack_obj)
726      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
727        bitmap_(bitmap),
728        begin_(begin),
729        end_(end),
730        minimum_age_(minimum_age) {
731  }
732
733 protected:
734  accounting::SpaceBitmap* const bitmap_;
735  byte* const begin_;
736  byte* const end_;
737  const byte minimum_age_;
738
739  virtual void Finalize() {
740    delete this;
741  }
742
743  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
744    ScanObjectParallelVisitor visitor(this);
745    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
746    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
747    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
748        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
749    // Finish by emptying our local mark stack.
750    MarkStackTask::Run(self);
751  }
752};
753
754size_t MarkSweep::GetThreadCount(bool paused) const {
755  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
756    return 0;
757  }
758  if (paused) {
759    return heap_->GetParallelGCThreadCount() + 1;
760  } else {
761    return heap_->GetConcGCThreadCount() + 1;
762  }
763}
764
765void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
766  accounting::CardTable* card_table = GetHeap()->GetCardTable();
767  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
768  size_t thread_count = GetThreadCount(paused);
769  // The parallel version with only one thread is faster for card scanning, TODO: fix.
770  if (kParallelCardScan && thread_count > 0) {
771    Thread* self = Thread::Current();
772    // Can't have a different split for each space since multiple spaces can have their cards being
773    // scanned at the same time.
774    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
775    // Try to take some of the mark stack since we can pass this off to the worker tasks.
776    const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
777    const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
778    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
779    // Estimated number of work tasks we will create.
780    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
781    DCHECK_NE(mark_stack_tasks, 0U);
782    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
783                                             mark_stack_size / mark_stack_tasks + 1);
784    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
785      if (space->GetMarkBitmap() == nullptr) {
786        continue;
787      }
788      byte* card_begin = space->Begin();
789      byte* card_end = space->End();
790      // Align up the end address. For example, the image space's end
791      // may not be card-size-aligned.
792      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
793      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
794      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
795      // Calculate how many bytes of heap we will scan,
796      const size_t address_range = card_end - card_begin;
797      // Calculate how much address range each task gets.
798      const size_t card_delta = RoundUp(address_range / thread_count + 1,
799                                        accounting::CardTable::kCardSize);
800      // Create the worker tasks for this space.
801      while (card_begin != card_end) {
802        // Add a range of cards.
803        size_t addr_remaining = card_end - card_begin;
804        size_t card_increment = std::min(card_delta, addr_remaining);
805        // Take from the back of the mark stack.
806        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
807        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
808        mark_stack_end -= mark_stack_increment;
809        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
810        DCHECK_EQ(mark_stack_end, mark_stack_->End());
811        // Add the new task to the thread pool.
812        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
813                                      card_begin + card_increment, minimum_age,
814                                      mark_stack_increment, mark_stack_end);
815        thread_pool->AddTask(self, task);
816        card_begin += card_increment;
817      }
818    }
819
820    // Note: the card scan below may dirty new cards (and scan them)
821    // as a side effect when a Reference object is encountered and
822    // queued during the marking. See b/11465268.
823    thread_pool->SetMaxActiveWorkers(thread_count - 1);
824    thread_pool->StartWorkers(self);
825    thread_pool->Wait(self, true, true);
826    thread_pool->StopWorkers(self);
827    timings_.EndSplit();
828  } else {
829    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
830      if (space->GetMarkBitmap() != nullptr) {
831        // Image spaces are handled properly since live == marked for them.
832        switch (space->GetGcRetentionPolicy()) {
833          case space::kGcRetentionPolicyNeverCollect:
834            timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
835                "ScanGrayImageSpaceObjects");
836            break;
837          case space::kGcRetentionPolicyFullCollect:
838            timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
839                "ScanGrayZygoteSpaceObjects");
840            break;
841          case space::kGcRetentionPolicyAlwaysCollect:
842            timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
843                "ScanGrayAllocSpaceObjects");
844            break;
845          }
846        ScanObjectVisitor visitor(this);
847        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
848        timings_.EndSplit();
849      }
850    }
851  }
852}
853
854class RecursiveMarkTask : public MarkStackTask<false> {
855 public:
856  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
857                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
858      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
859        bitmap_(bitmap),
860        begin_(begin),
861        end_(end) {
862  }
863
864 protected:
865  accounting::SpaceBitmap* const bitmap_;
866  const uintptr_t begin_;
867  const uintptr_t end_;
868
869  virtual void Finalize() {
870    delete this;
871  }
872
873  // Scans all of the objects
874  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
875    ScanObjectParallelVisitor visitor(this);
876    bitmap_->VisitMarkedRange(begin_, end_, visitor);
877    // Finish by emptying our local mark stack.
878    MarkStackTask::Run(self);
879  }
880};
881
882// Populates the mark stack based on the set of marked objects and
883// recursively marks until the mark stack is emptied.
884void MarkSweep::RecursiveMark() {
885  TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
886  // RecursiveMark will build the lists of known instances of the Reference classes. See
887  // DelayReferenceReferent for details.
888  if (kUseRecursiveMark) {
889    const bool partial = GetGcType() == kGcTypePartial;
890    ScanObjectVisitor scan_visitor(this);
891    auto* self = Thread::Current();
892    ThreadPool* thread_pool = heap_->GetThreadPool();
893    size_t thread_count = GetThreadCount(false);
894    const bool parallel = kParallelRecursiveMark && thread_count > 1;
895    mark_stack_->Reset();
896    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
897      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
898          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
899        current_mark_bitmap_ = space->GetMarkBitmap();
900        if (current_mark_bitmap_ == nullptr) {
901          continue;
902        }
903        if (parallel) {
904          // We will use the mark stack the future.
905          // CHECK(mark_stack_->IsEmpty());
906          // This function does not handle heap end increasing, so we must use the space end.
907          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
908          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
909          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
910
911          // Create a few worker tasks.
912          const size_t n = thread_count * 2;
913          while (begin != end) {
914            uintptr_t start = begin;
915            uintptr_t delta = (end - begin) / n;
916            delta = RoundUp(delta, KB);
917            if (delta < 16 * KB) delta = end - begin;
918            begin += delta;
919            auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
920                                               begin);
921            thread_pool->AddTask(self, task);
922          }
923          thread_pool->SetMaxActiveWorkers(thread_count - 1);
924          thread_pool->StartWorkers(self);
925          thread_pool->Wait(self, true, true);
926          thread_pool->StopWorkers(self);
927        } else {
928          // This function does not handle heap end increasing, so we must use the space end.
929          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
930          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
931          current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
932        }
933      }
934    }
935  }
936  ProcessMarkStack(false);
937}
938
939mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
940  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
941    return object;
942  }
943  return nullptr;
944}
945
946void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
947  ScanGrayObjects(paused, minimum_age);
948  ProcessMarkStack(paused);
949}
950
951void MarkSweep::ReMarkRoots() {
952  timings_.StartSplit("(Paused)ReMarkRoots");
953  Runtime::Current()->VisitRoots(MarkRootCallback, this, true, true);
954  timings_.EndSplit();
955}
956
957void MarkSweep::SweepSystemWeaks() {
958  Runtime* runtime = Runtime::Current();
959  timings_.StartSplit("SweepSystemWeaks");
960  runtime->SweepSystemWeaks(IsMarkedCallback, this);
961  timings_.EndSplit();
962}
963
964mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
965  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
966  // We don't actually want to sweep the object, so lets return "marked"
967  return obj;
968}
969
970void MarkSweep::VerifyIsLive(const Object* obj) {
971  Heap* heap = GetHeap();
972  if (!heap->GetLiveBitmap()->Test(obj)) {
973    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
974    if (!large_object_space->GetLiveObjects()->Test(obj)) {
975      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
976          heap->allocation_stack_->End()) {
977        // Object not found!
978        heap->DumpSpaces();
979        LOG(FATAL) << "Found dead object " << obj;
980      }
981    }
982  }
983}
984
985void MarkSweep::VerifySystemWeaks() {
986  // Verify system weaks, uses a special object visitor which returns the input object.
987  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
988}
989
990class CheckpointMarkThreadRoots : public Closure {
991 public:
992  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
993
994  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
995    ATRACE_BEGIN("Marking thread roots");
996    // Note: self is not necessarily equal to thread since thread may be suspended.
997    Thread* self = Thread::Current();
998    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
999        << thread->GetState() << " thread " << thread << " self " << self;
1000    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
1001    ATRACE_END();
1002    if (kUseThreadLocalAllocationStack) {
1003      thread->RevokeThreadLocalAllocationStack();
1004    }
1005    mark_sweep_->GetBarrier().Pass(self);
1006  }
1007
1008 private:
1009  MarkSweep* mark_sweep_;
1010};
1011
1012void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1013  CheckpointMarkThreadRoots check_point(this);
1014  timings_.StartSplit("MarkRootsCheckpoint");
1015  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1016  // Request the check point is run on all threads returning a count of the threads that must
1017  // run through the barrier including self.
1018  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1019  // Release locks then wait for all mutator threads to pass the barrier.
1020  // TODO: optimize to not release locks when there are no threads to wait for.
1021  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1022  Locks::mutator_lock_->SharedUnlock(self);
1023  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1024  CHECK_EQ(old_state, kWaitingPerformingGc);
1025  gc_barrier_->Increment(self, barrier_count);
1026  self->SetState(kWaitingPerformingGc);
1027  Locks::mutator_lock_->SharedLock(self);
1028  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1029  timings_.EndSplit();
1030}
1031
1032void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1033  timings_.StartSplit("SweepArray");
1034  Thread* self = Thread::Current();
1035  mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize];
1036  size_t chunk_free_pos = 0;
1037  size_t freed_bytes = 0;
1038  size_t freed_large_object_bytes = 0;
1039  size_t freed_objects = 0;
1040  size_t freed_large_objects = 0;
1041  // How many objects are left in the array, modified after each space is swept.
1042  Object** objects = const_cast<Object**>(allocations->Begin());
1043  size_t count = allocations->Size();
1044  // Change the order to ensure that the non-moving space last swept as an optimization.
1045  std::vector<space::ContinuousSpace*> sweep_spaces;
1046  space::ContinuousSpace* non_moving_space = nullptr;
1047  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1048    if (space->IsAllocSpace() && !IsImmuneSpace(space) && space->GetLiveBitmap() != nullptr) {
1049      if (space == heap_->GetNonMovingSpace()) {
1050        non_moving_space = space;
1051      } else {
1052        sweep_spaces.push_back(space);
1053      }
1054    }
1055  }
1056  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1057  // the other alloc spaces as an optimization.
1058  if (non_moving_space != nullptr) {
1059    sweep_spaces.push_back(non_moving_space);
1060  }
1061  // Start by sweeping the continuous spaces.
1062  for (space::ContinuousSpace* space : sweep_spaces) {
1063    space::AllocSpace* alloc_space = space->AsAllocSpace();
1064    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1065    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1066    if (swap_bitmaps) {
1067      std::swap(live_bitmap, mark_bitmap);
1068    }
1069    Object** out = objects;
1070    for (size_t i = 0; i < count; ++i) {
1071      Object* obj = objects[i];
1072      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1073        continue;
1074      }
1075      if (space->HasAddress(obj)) {
1076        // This object is in the space, remove it from the array and add it to the sweep buffer
1077        // if needed.
1078        if (!mark_bitmap->Test(obj)) {
1079          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1080            timings_.StartSplit("FreeList");
1081            freed_objects += chunk_free_pos;
1082            freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1083            timings_.EndSplit();
1084            chunk_free_pos = 0;
1085          }
1086          chunk_free_buffer[chunk_free_pos++] = obj;
1087        }
1088      } else {
1089        *(out++) = obj;
1090      }
1091    }
1092    if (chunk_free_pos > 0) {
1093      timings_.StartSplit("FreeList");
1094      freed_objects += chunk_free_pos;
1095      freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1096      timings_.EndSplit();
1097      chunk_free_pos = 0;
1098    }
1099    // All of the references which space contained are no longer in the allocation stack, update
1100    // the count.
1101    count = out - objects;
1102  }
1103  // Handle the large object space.
1104  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1105  accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
1106  accounting::ObjectSet* large_mark_objects = large_object_space->GetMarkObjects();
1107  if (swap_bitmaps) {
1108    std::swap(large_live_objects, large_mark_objects);
1109  }
1110  for (size_t i = 0; i < count; ++i) {
1111    Object* obj = objects[i];
1112    // Handle large objects.
1113    if (kUseThreadLocalAllocationStack && obj == nullptr) {
1114      continue;
1115    }
1116    if (!large_mark_objects->Test(obj)) {
1117      ++freed_large_objects;
1118      freed_large_object_bytes += large_object_space->Free(self, obj);
1119    }
1120  }
1121  timings_.EndSplit();
1122
1123  timings_.StartSplit("RecordFree");
1124  VLOG(heap) << "Freed " << freed_objects << "/" << count
1125             << " objects with size " << PrettySize(freed_bytes);
1126  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1127  freed_objects_.FetchAndAdd(freed_objects);
1128  freed_large_objects_.FetchAndAdd(freed_large_objects);
1129  freed_bytes_.FetchAndAdd(freed_bytes);
1130  freed_large_object_bytes_.FetchAndAdd(freed_large_object_bytes);
1131  timings_.EndSplit();
1132
1133  timings_.StartSplit("ResetStack");
1134  allocations->Reset();
1135  timings_.EndSplit();
1136}
1137
1138void MarkSweep::Sweep(bool swap_bitmaps) {
1139  DCHECK(mark_stack_->IsEmpty());
1140  TimingLogger::ScopedSplit("Sweep", &timings_);
1141  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1142    if (space->IsContinuousMemMapAllocSpace()) {
1143      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1144      TimingLogger::ScopedSplit split(
1145          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_);
1146      size_t freed_objects = 0;
1147      size_t freed_bytes = 0;
1148      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1149      heap_->RecordFree(freed_objects, freed_bytes);
1150      freed_objects_.FetchAndAdd(freed_objects);
1151      freed_bytes_.FetchAndAdd(freed_bytes);
1152    }
1153  }
1154  SweepLargeObjects(swap_bitmaps);
1155}
1156
1157void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1158  TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1159  size_t freed_objects = 0;
1160  size_t freed_bytes = 0;
1161  GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1162  freed_large_objects_.FetchAndAdd(freed_objects);
1163  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
1164  GetHeap()->RecordFree(freed_objects, freed_bytes);
1165}
1166
1167// Process the "referent" field in a java.lang.ref.Reference.  If the
1168// referent has not yet been marked, put it on the appropriate list in
1169// the heap for later processing.
1170void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
1171  DCHECK(klass != nullptr);
1172  DCHECK(klass->IsReferenceClass());
1173  DCHECK(obj != NULL);
1174  heap_->DelayReferenceReferent(klass, obj, IsMarkedCallback, this);
1175}
1176
1177class MarkObjectVisitor {
1178 public:
1179  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
1180
1181  // TODO: Fixme when anotatalysis works with visitors.
1182  void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
1183                  bool /* is_static */) const ALWAYS_INLINE
1184      NO_THREAD_SAFETY_ANALYSIS {
1185    if (kCheckLocks) {
1186      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1187      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1188    }
1189    mark_sweep_->MarkObject(ref);
1190  }
1191
1192 private:
1193  MarkSweep* const mark_sweep_;
1194};
1195
1196// Scans an object reference.  Determines the type of the reference
1197// and dispatches to a specialized scanning routine.
1198void MarkSweep::ScanObject(Object* obj) {
1199  MarkObjectVisitor visitor(this);
1200  ScanObjectVisit(obj, visitor);
1201}
1202
1203void MarkSweep::ProcessMarkStackPausedCallback(void* arg) {
1204  DCHECK(arg != nullptr);
1205  reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(true);
1206}
1207
1208void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1209  Thread* self = Thread::Current();
1210  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1211  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1212                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1213  CHECK_GT(chunk_size, 0U);
1214  // Split the current mark stack up into work tasks.
1215  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1216    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1217    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
1218                                                        const_cast<const mirror::Object**>(it)));
1219    it += delta;
1220  }
1221  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1222  thread_pool->StartWorkers(self);
1223  thread_pool->Wait(self, true, true);
1224  thread_pool->StopWorkers(self);
1225  mark_stack_->Reset();
1226  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1227}
1228
1229// Scan anything that's on the mark stack.
1230void MarkSweep::ProcessMarkStack(bool paused) {
1231  timings_.StartSplit(paused ? "(Paused)ProcessMarkStack" : "ProcessMarkStack");
1232  size_t thread_count = GetThreadCount(paused);
1233  if (kParallelProcessMarkStack && thread_count > 1 &&
1234      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1235    ProcessMarkStackParallel(thread_count);
1236  } else {
1237    // TODO: Tune this.
1238    static const size_t kFifoSize = 4;
1239    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1240    for (;;) {
1241      Object* obj = NULL;
1242      if (kUseMarkStackPrefetch) {
1243        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1244          Object* obj = mark_stack_->PopBack();
1245          DCHECK(obj != NULL);
1246          __builtin_prefetch(obj);
1247          prefetch_fifo.push_back(obj);
1248        }
1249        if (prefetch_fifo.empty()) {
1250          break;
1251        }
1252        obj = prefetch_fifo.front();
1253        prefetch_fifo.pop_front();
1254      } else {
1255        if (mark_stack_->IsEmpty()) {
1256          break;
1257        }
1258        obj = mark_stack_->PopBack();
1259      }
1260      DCHECK(obj != NULL);
1261      ScanObject(obj);
1262    }
1263  }
1264  timings_.EndSplit();
1265}
1266
1267inline bool MarkSweep::IsMarked(const Object* object) const
1268    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1269  if (IsImmune(object)) {
1270    return true;
1271  }
1272  DCHECK(current_mark_bitmap_ != NULL);
1273  if (current_mark_bitmap_->HasAddress(object)) {
1274    return current_mark_bitmap_->Test(object);
1275  }
1276  return heap_->GetMarkBitmap()->Test(object);
1277}
1278
1279void MarkSweep::FinishPhase() {
1280  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1281  // Can't enqueue references if we hold the mutator lock.
1282  Heap* heap = GetHeap();
1283  timings_.NewSplit("PostGcVerification");
1284  heap->PostGcVerification(this);
1285
1286  timings_.NewSplit("RequestHeapTrim");
1287  heap->RequestHeapTrim();
1288
1289  // Update the cumulative statistics
1290  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
1291  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
1292
1293  // Ensure that the mark stack is empty.
1294  CHECK(mark_stack_->IsEmpty());
1295
1296  if (kCountScannedTypes) {
1297    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1298             << " other=" << other_count_;
1299  }
1300
1301  if (kCountTasks) {
1302    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1303  }
1304
1305  if (kMeasureOverhead) {
1306    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1307  }
1308
1309  if (kProfileLargeObjects) {
1310    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1311  }
1312
1313  if (kCountClassesMarked) {
1314    VLOG(gc) << "Classes marked " << classes_marked_;
1315  }
1316
1317  if (kCountJavaLangRefs) {
1318    VLOG(gc) << "References scanned " << reference_count_;
1319  }
1320
1321  // Update the cumulative loggers.
1322  cumulative_timings_.Start();
1323  cumulative_timings_.AddLogger(timings_);
1324  cumulative_timings_.End();
1325
1326  // Clear all of the spaces' mark bitmaps.
1327  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1328    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
1329    if (bitmap != nullptr &&
1330        space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1331      bitmap->Clear();
1332    }
1333  }
1334  mark_stack_->Reset();
1335
1336  // Reset the marked large objects.
1337  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1338  large_objects->GetMarkObjects()->Clear();
1339}
1340
1341}  // namespace collector
1342}  // namespace gc
1343}  // namespace art
1344