mark_sweep.cc revision 407f702da4f867c074fc3c8c688b8f8c32279eff
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "indirect_reference_table.h"
38#include "intern_table.h"
39#include "jni_internal.h"
40#include "monitor.h"
41#include "mark_sweep-inl.h"
42#include "mirror/art_field.h"
43#include "mirror/art_field-inl.h"
44#include "mirror/class-inl.h"
45#include "mirror/class_loader.h"
46#include "mirror/dex_cache.h"
47#include "mirror/reference-inl.h"
48#include "mirror/object-inl.h"
49#include "mirror/object_array.h"
50#include "mirror/object_array-inl.h"
51#include "runtime.h"
52#include "thread-inl.h"
53#include "thread_list.h"
54#include "verifier/method_verifier.h"
55
56using ::art::mirror::ArtField;
57using ::art::mirror::Class;
58using ::art::mirror::Object;
59using ::art::mirror::ObjectArray;
60
61namespace art {
62namespace gc {
63namespace collector {
64
65// Performance options.
66static constexpr bool kUseRecursiveMark = false;
67static constexpr bool kUseMarkStackPrefetch = true;
68static constexpr size_t kSweepArrayChunkFreeSize = 1024;
69static constexpr bool kPreCleanCards = true;
70
71// Parallelism options.
72static constexpr bool kParallelCardScan = true;
73static constexpr bool kParallelRecursiveMark = true;
74// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
75// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
76// having this can add overhead in ProcessReferences since we may end up doing many calls of
77// ProcessMarkStack with very small mark stacks.
78static constexpr size_t kMinimumParallelMarkStackSize = 128;
79static constexpr bool kParallelProcessMarkStack = true;
80
81// Profiling and information flags.
82static constexpr bool kProfileLargeObjects = false;
83static constexpr bool kMeasureOverhead = false;
84static constexpr bool kCountTasks = false;
85static constexpr bool kCountJavaLangRefs = false;
86static constexpr bool kCountMarkedObjects = false;
87
88// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
89static constexpr bool kCheckLocks = kDebugLocking;
90static constexpr bool kVerifyRoots = kIsDebugBuild;
91
92// If true, revoke the rosalloc thread-local buffers at the
93// checkpoint, as opposed to during the pause.
94static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
95
96void MarkSweep::BindBitmaps() {
97  timings_.StartSplit("BindBitmaps");
98  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
99  // Mark all of the spaces we never collect as immune.
100  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
101    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
102      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
103    }
104  }
105  timings_.EndSplit();
106}
107
108MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
109    : GarbageCollector(heap,
110                       name_prefix +
111                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
112      gc_barrier_(new Barrier(0)),
113      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
114      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
115      is_concurrent_(is_concurrent) {
116}
117
118void MarkSweep::InitializePhase() {
119  timings_.Reset();
120  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
121  mark_stack_ = heap_->mark_stack_.get();
122  DCHECK(mark_stack_ != nullptr);
123  immune_region_.Reset();
124  class_count_ = 0;
125  array_count_ = 0;
126  other_count_ = 0;
127  large_object_test_ = 0;
128  large_object_mark_ = 0;
129  overhead_time_ = 0;
130  work_chunks_created_ = 0;
131  work_chunks_deleted_ = 0;
132  reference_count_ = 0;
133  mark_null_count_ = 0;
134  mark_immune_count_ = 0;
135  mark_fastpath_count_ = 0;
136  mark_slowpath_count_ = 0;
137  FindDefaultSpaceBitmap();
138  {
139    // TODO: I don't think we should need heap bitmap lock to get the mark bitmap.
140    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
141    mark_bitmap_ = heap_->GetMarkBitmap();
142  }
143
144  // Do any pre GC verification.
145  timings_.NewSplit("PreGcVerification");
146  heap_->PreGcVerification(this);
147}
148
149void MarkSweep::ProcessReferences(Thread* self) {
150  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
151  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
152  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback,
153                               &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
154}
155
156void MarkSweep::PreProcessReferences() {
157  if (IsConcurrent()) {
158    // No reason to do this for non-concurrent GC since pre processing soft references only helps
159    // pauses.
160    timings_.NewSplit("PreProcessReferences");
161    GetHeap()->ProcessSoftReferences(timings_, clear_soft_references_, &IsMarkedCallback,
162                                     &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
163  }
164}
165
166void MarkSweep::HandleDirtyObjectsPhase() {
167  TimingLogger::ScopedSplit split("(Paused)HandleDirtyObjectsPhase", &timings_);
168  Thread* self = Thread::Current();
169  Locks::mutator_lock_->AssertExclusiveHeld(self);
170
171  {
172    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
173
174    // Re-mark root set.
175    ReMarkRoots();
176
177    // Scan dirty objects, this is only required if we are not doing concurrent GC.
178    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
179  }
180
181  ProcessReferences(self);
182
183  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
184  if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_||
185      GetHeap()->verify_post_gc_heap_) {
186    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
187    // This second sweep makes sure that we don't have any objects in the live stack which point to
188    // freed objects. These cause problems since their references may be previously freed objects.
189    SweepArray(GetHeap()->allocation_stack_.get(), false);
190    // Since SweepArray() above resets the (active) allocation
191    // stack. Need to revoke the thread-local allocation stacks that
192    // point into it.
193    RevokeAllThreadLocalAllocationStacks(self);
194  }
195
196  timings_.StartSplit("PreSweepingGcVerification");
197  heap_->PreSweepingGcVerification(this);
198  timings_.EndSplit();
199
200  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
201  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
202  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
203
204  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
205  // weak before we sweep them. Since this new system weak may not be marked, the GC may
206  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
207  // reference to a string that is about to be swept.
208  Runtime::Current()->DisallowNewSystemWeaks();
209}
210
211void MarkSweep::PreCleanCards() {
212  // Don't do this for non concurrent GCs since they don't have any dirty cards.
213  if (kPreCleanCards && IsConcurrent()) {
214    Thread* self = Thread::Current();
215    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
216    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
217    heap_->ProcessCards(timings_, false);
218    // The checkpoint root marking is required to avoid a race condition which occurs if the
219    // following happens during a reference write:
220    // 1. mutator dirties the card (write barrier)
221    // 2. GC ages the card (the above ProcessCards call)
222    // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
223    // 4. mutator writes the value (corresponding to the write barrier in 1.)
224    // This causes the GC to age the card but not necessarily mark the reference which the mutator
225    // wrote into the object stored in the card.
226    // Having the checkpoint fixes this issue since it ensures that the card mark and the
227    // reference write are visible to the GC before the card is scanned (this is due to locks being
228    // acquired / released in the checkpoint code).
229    // The other roots are also marked to help reduce the pause.
230    MarkThreadRoots(self);
231    // TODO: Only mark the dirty roots.
232    MarkNonThreadRoots();
233    MarkConcurrentRoots(
234        static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
235    // Process the newly aged cards.
236    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
237    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
238    // in the next GC.
239  }
240}
241
242void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
243  if (kUseThreadLocalAllocationStack) {
244    Locks::mutator_lock_->AssertExclusiveHeld(self);
245    heap_->RevokeAllThreadLocalAllocationStacks(self);
246  }
247}
248
249void MarkSweep::MarkingPhase() {
250  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
251  Thread* self = Thread::Current();
252
253  BindBitmaps();
254  FindDefaultSpaceBitmap();
255
256  // Process dirty cards and add dirty cards to mod union tables.
257  heap_->ProcessCards(timings_, false);
258
259  // Need to do this before the checkpoint since we don't want any threads to add references to
260  // the live stack during the recursive mark.
261  timings_.NewSplit("SwapStacks");
262  heap_->SwapStacks(self);
263
264  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
265  MarkRoots(self);
266  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
267  UpdateAndMarkModUnion();
268  MarkReachableObjects();
269  // Pre-clean dirtied cards to reduce pauses.
270  PreCleanCards();
271  PreProcessReferences();
272}
273
274void MarkSweep::UpdateAndMarkModUnion() {
275  for (const auto& space : heap_->GetContinuousSpaces()) {
276    if (immune_region_.ContainsSpace(space)) {
277      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
278          "UpdateAndMarkImageModUnionTable";
279      TimingLogger::ScopedSplit split(name, &timings_);
280      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
281      CHECK(mod_union_table != nullptr);
282      mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
283    }
284  }
285}
286
287void MarkSweep::MarkThreadRoots(Thread* self) {
288  MarkRootsCheckpoint(self);
289}
290
291void MarkSweep::MarkReachableObjects() {
292  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
293  // knowing that new allocations won't be marked as live.
294  timings_.StartSplit("MarkStackAsLive");
295  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
296  heap_->MarkAllocStackAsLive(live_stack);
297  live_stack->Reset();
298  timings_.EndSplit();
299  // Recursively mark all the non-image bits set in the mark bitmap.
300  RecursiveMark();
301}
302
303void MarkSweep::ReclaimPhase() {
304  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
305  Thread* self = Thread::Current();
306
307  if (!IsConcurrent()) {
308    ProcessReferences(self);
309  }
310
311  {
312    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
313    SweepSystemWeaks();
314  }
315
316  if (IsConcurrent()) {
317    Runtime::Current()->AllowNewSystemWeaks();
318
319    TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
320    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
321    accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
322    if (!kPreCleanCards) {
323      // The allocation stack contains things allocated since the start of the GC. These may have
324      // been marked during this GC meaning they won't be eligible for reclaiming in the next
325      // sticky GC. Unmark these objects so that they are eligible for reclaiming in the next
326      // sticky GC.
327      // There is a race here which is safely handled. Another thread such as the hprof could
328      // have flushed the alloc stack after we resumed the threads. This is safe however, since
329      // reseting the allocation stack zeros it out with madvise. This means that we will either
330      // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
331      // first place.
332      // We can't do this if we pre-clean cards since we will unmark objects which are no longer on
333      // a dirty card since we aged cards during the pre-cleaning process.
334      mirror::Object** end = allocation_stack->End();
335      for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
336        const Object* obj = *it;
337        if (obj != nullptr) {
338          UnMarkObjectNonNull(obj);
339        }
340      }
341    }
342  }
343
344  {
345    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
346
347    // Reclaim unmarked objects.
348    Sweep(false);
349
350    // Swap the live and mark bitmaps for each space which we modified space. This is an
351    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
352    // bitmaps.
353    timings_.StartSplit("SwapBitmaps");
354    SwapBitmaps();
355    timings_.EndSplit();
356
357    // Unbind the live and mark bitmaps.
358    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
359    GetHeap()->UnBindBitmaps();
360  }
361}
362
363void MarkSweep::FindDefaultSpaceBitmap() {
364  TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
365  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
366    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
367    if (bitmap != nullptr &&
368        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
369      current_space_bitmap_ = bitmap;
370      return;
371    }
372  }
373  GetHeap()->DumpSpaces();
374  LOG(FATAL) << "Could not find a default mark bitmap";
375}
376
377void MarkSweep::ExpandMarkStack() {
378  ResizeMarkStack(mark_stack_->Capacity() * 2);
379}
380
381void MarkSweep::ResizeMarkStack(size_t new_size) {
382  // Rare case, no need to have Thread::Current be a parameter.
383  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
384    // Someone else acquired the lock and expanded the mark stack before us.
385    return;
386  }
387  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
388  CHECK_LE(mark_stack_->Size(), new_size);
389  mark_stack_->Resize(new_size);
390  for (const auto& obj : temp) {
391    mark_stack_->PushBack(obj);
392  }
393}
394
395inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
396  DCHECK(obj != NULL);
397  if (MarkObjectParallel(obj)) {
398    MutexLock mu(Thread::Current(), mark_stack_lock_);
399    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
400      ExpandMarkStack();
401    }
402    // The object must be pushed on to the mark stack.
403    mark_stack_->PushBack(obj);
404  }
405}
406
407mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
408  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
409  mark_sweep->MarkObject(obj);
410  return obj;
411}
412
413void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
414  reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr());
415}
416
417inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
418  DCHECK(!immune_region_.ContainsObject(obj));
419  if (kUseBrooksPointer) {
420    // Verify all the objects have the correct Brooks pointer installed.
421    obj->AssertSelfBrooksPointer();
422  }
423  // Try to take advantage of locality of references within a space, failing this find the space
424  // the hard way.
425  accounting::SpaceBitmap* object_bitmap = current_space_bitmap_;
426  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
427    accounting::SpaceBitmap* new_bitmap = mark_bitmap_->GetContinuousSpaceBitmap(obj);
428    if (LIKELY(new_bitmap != NULL)) {
429      object_bitmap = new_bitmap;
430    } else {
431      MarkLargeObject(obj, false);
432      return;
433    }
434  }
435  DCHECK(object_bitmap->HasAddress(obj));
436  object_bitmap->Clear(obj);
437}
438
439inline void MarkSweep::MarkObjectNonNull(Object* obj) {
440  DCHECK(obj != nullptr);
441  if (kUseBrooksPointer) {
442    // Verify all the objects have the correct Brooks pointer installed.
443    obj->AssertSelfBrooksPointer();
444  }
445  if (immune_region_.ContainsObject(obj)) {
446    if (kCountMarkedObjects) {
447      ++mark_immune_count_;
448    }
449    DCHECK(IsMarked(obj));
450    return;
451  }
452  // Try to take advantage of locality of references within a space, failing this find the space
453  // the hard way.
454  accounting::SpaceBitmap* object_bitmap = current_space_bitmap_;
455  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
456    object_bitmap = mark_bitmap_->GetContinuousSpaceBitmap(obj);
457    if (kCountMarkedObjects) {
458      ++mark_slowpath_count_;
459    }
460    if (UNLIKELY(object_bitmap == nullptr)) {
461      MarkLargeObject(obj, true);
462      return;
463    }
464  } else if (kCountMarkedObjects) {
465    ++mark_fastpath_count_;
466  }
467  // This object was not previously marked.
468  if (!object_bitmap->Set(obj)) {
469    PushOnMarkStack(obj);
470  }
471}
472
473inline void MarkSweep::PushOnMarkStack(Object* obj) {
474  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
475    // Lock is not needed but is here anyways to please annotalysis.
476    MutexLock mu(Thread::Current(), mark_stack_lock_);
477    ExpandMarkStack();
478  }
479  // The object must be pushed on to the mark stack.
480  mark_stack_->PushBack(obj);
481}
482
483// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
484bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
485  // TODO: support >1 discontinuous space.
486  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
487  accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
488  if (kProfileLargeObjects) {
489    ++large_object_test_;
490  }
491  if (UNLIKELY(!large_objects->Test(obj))) {
492    if (!large_object_space->Contains(obj)) {
493      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
494      LOG(ERROR) << "Attempting see if it's a bad root";
495      VerifyRoots();
496      LOG(FATAL) << "Can't mark bad root";
497    }
498    if (kProfileLargeObjects) {
499      ++large_object_mark_;
500    }
501    if (set) {
502      large_objects->Set(obj);
503    } else {
504      large_objects->Clear(obj);
505    }
506    return true;
507  }
508  return false;
509}
510
511inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
512  DCHECK(obj != nullptr);
513  if (kUseBrooksPointer) {
514    // Verify all the objects have the correct Brooks pointer installed.
515    obj->AssertSelfBrooksPointer();
516  }
517  if (immune_region_.ContainsObject(obj)) {
518    DCHECK(IsMarked(obj));
519    return false;
520  }
521  // Try to take advantage of locality of references within a space, failing this find the space
522  // the hard way.
523  accounting::SpaceBitmap* object_bitmap = current_space_bitmap_;
524  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
525    accounting::SpaceBitmap* new_bitmap = mark_bitmap_->GetContinuousSpaceBitmap(obj);
526    if (new_bitmap != NULL) {
527      object_bitmap = new_bitmap;
528    } else {
529      // TODO: Remove the Thread::Current here?
530      // TODO: Convert this to some kind of atomic marking?
531      MutexLock mu(Thread::Current(), large_object_lock_);
532      return MarkLargeObject(obj, true);
533    }
534  }
535  // Return true if the object was not previously marked.
536  return !object_bitmap->AtomicTestAndSet(obj);
537}
538
539// Used to mark objects when processing the mark stack. If an object is null, it is not marked.
540inline void MarkSweep::MarkObject(Object* obj) {
541  if (obj != nullptr) {
542    MarkObjectNonNull(obj);
543  } else if (kCountMarkedObjects) {
544    ++mark_null_count_;
545  }
546}
547
548void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/,
549                                         RootType /*root_type*/) {
550  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
551}
552
553void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/,
554                                 RootType /*root_type*/) {
555  CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
556}
557
558void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
559                                 RootType /*root_type*/) {
560  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
561}
562
563void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
564                                   const StackVisitor* visitor) {
565  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
566}
567
568void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
569  // See if the root is on any space bitmap.
570  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
571    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
572    if (!large_object_space->Contains(root)) {
573      LOG(ERROR) << "Found invalid root: " << root;
574      if (visitor != NULL) {
575        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
576      }
577    }
578  }
579}
580
581void MarkSweep::VerifyRoots() {
582  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
583}
584
585void MarkSweep::MarkRoots(Thread* self) {
586  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
587    // If we exclusively hold the mutator lock, all threads must be suspended.
588    timings_.StartSplit("MarkRoots");
589    Runtime::Current()->VisitRoots(MarkRootCallback, this);
590    timings_.EndSplit();
591    RevokeAllThreadLocalAllocationStacks(self);
592  } else {
593    MarkThreadRoots(self);
594    // At this point the live stack should no longer have any mutators which push into it.
595    MarkNonThreadRoots();
596    MarkConcurrentRoots(
597        static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
598  }
599}
600
601void MarkSweep::MarkNonThreadRoots() {
602  timings_.StartSplit("MarkNonThreadRoots");
603  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
604  timings_.EndSplit();
605}
606
607void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
608  timings_.StartSplit("MarkConcurrentRoots");
609  // Visit all runtime roots and clear dirty flags.
610  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
611  timings_.EndSplit();
612}
613
614class ScanObjectVisitor {
615 public:
616  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
617      : mark_sweep_(mark_sweep) {}
618
619  void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
620      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
621    if (kCheckLocks) {
622      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
623      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
624    }
625    mark_sweep_->ScanObject(obj);
626  }
627
628 private:
629  MarkSweep* const mark_sweep_;
630};
631
632class DelayReferenceReferentVisitor {
633 public:
634  explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
635  }
636
637  void operator()(mirror::Class* klass, mirror::Reference* ref) const
638      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
639      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
640    collector_->DelayReferenceReferent(klass, ref);
641  }
642
643 private:
644  MarkSweep* const collector_;
645};
646
647template <bool kUseFinger = false>
648class MarkStackTask : public Task {
649 public:
650  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
651                Object** mark_stack)
652      : mark_sweep_(mark_sweep),
653        thread_pool_(thread_pool),
654        mark_stack_pos_(mark_stack_size) {
655    // We may have to copy part of an existing mark stack when another mark stack overflows.
656    if (mark_stack_size != 0) {
657      DCHECK(mark_stack != NULL);
658      // TODO: Check performance?
659      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
660    }
661    if (kCountTasks) {
662      ++mark_sweep_->work_chunks_created_;
663    }
664  }
665
666  static const size_t kMaxSize = 1 * KB;
667
668 protected:
669  class MarkObjectParallelVisitor {
670   public:
671    explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
672                                       MarkSweep* mark_sweep) ALWAYS_INLINE
673            : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
674
675    void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
676        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
677      mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset, false);
678      if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
679        if (kUseFinger) {
680          android_memory_barrier();
681          if (reinterpret_cast<uintptr_t>(ref) >=
682              static_cast<uintptr_t>(mark_sweep_->atomic_finger_)) {
683            return;
684          }
685        }
686        chunk_task_->MarkStackPush(ref);
687      }
688    }
689
690   private:
691    MarkStackTask<kUseFinger>* const chunk_task_;
692    MarkSweep* const mark_sweep_;
693  };
694
695  class ScanObjectParallelVisitor {
696   public:
697    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
698        : chunk_task_(chunk_task) {}
699
700    // No thread safety analysis since multiple threads will use this visitor.
701    void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
702        EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
703      MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
704      MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
705      DelayReferenceReferentVisitor ref_visitor(mark_sweep);
706      mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
707    }
708
709   private:
710    MarkStackTask<kUseFinger>* const chunk_task_;
711  };
712
713  virtual ~MarkStackTask() {
714    // Make sure that we have cleared our mark stack.
715    DCHECK_EQ(mark_stack_pos_, 0U);
716    if (kCountTasks) {
717      ++mark_sweep_->work_chunks_deleted_;
718    }
719  }
720
721  MarkSweep* const mark_sweep_;
722  ThreadPool* const thread_pool_;
723  // Thread local mark stack for this task.
724  Object* mark_stack_[kMaxSize];
725  // Mark stack position.
726  size_t mark_stack_pos_;
727
728  void MarkStackPush(Object* obj) ALWAYS_INLINE {
729    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
730      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
731      mark_stack_pos_ /= 2;
732      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
733                                     mark_stack_ + mark_stack_pos_);
734      thread_pool_->AddTask(Thread::Current(), task);
735    }
736    DCHECK(obj != nullptr);
737    DCHECK_LT(mark_stack_pos_, kMaxSize);
738    mark_stack_[mark_stack_pos_++] = obj;
739  }
740
741  virtual void Finalize() {
742    delete this;
743  }
744
745  // Scans all of the objects
746  virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
747      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
748    ScanObjectParallelVisitor visitor(this);
749    // TODO: Tune this.
750    static const size_t kFifoSize = 4;
751    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
752    for (;;) {
753      Object* obj = nullptr;
754      if (kUseMarkStackPrefetch) {
755        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
756          Object* obj = mark_stack_[--mark_stack_pos_];
757          DCHECK(obj != nullptr);
758          __builtin_prefetch(obj);
759          prefetch_fifo.push_back(obj);
760        }
761        if (UNLIKELY(prefetch_fifo.empty())) {
762          break;
763        }
764        obj = prefetch_fifo.front();
765        prefetch_fifo.pop_front();
766      } else {
767        if (UNLIKELY(mark_stack_pos_ == 0)) {
768          break;
769        }
770        obj = mark_stack_[--mark_stack_pos_];
771      }
772      DCHECK(obj != nullptr);
773      visitor(obj);
774    }
775  }
776};
777
778class CardScanTask : public MarkStackTask<false> {
779 public:
780  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
781               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
782               Object** mark_stack_obj)
783      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
784        bitmap_(bitmap),
785        begin_(begin),
786        end_(end),
787        minimum_age_(minimum_age) {
788  }
789
790 protected:
791  accounting::SpaceBitmap* const bitmap_;
792  byte* const begin_;
793  byte* const end_;
794  const byte minimum_age_;
795
796  virtual void Finalize() {
797    delete this;
798  }
799
800  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
801    ScanObjectParallelVisitor visitor(this);
802    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
803    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
804    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
805        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
806    // Finish by emptying our local mark stack.
807    MarkStackTask::Run(self);
808  }
809};
810
811size_t MarkSweep::GetThreadCount(bool paused) const {
812  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
813    return 0;
814  }
815  if (paused) {
816    return heap_->GetParallelGCThreadCount() + 1;
817  } else {
818    return heap_->GetConcGCThreadCount() + 1;
819  }
820}
821
822void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
823  accounting::CardTable* card_table = GetHeap()->GetCardTable();
824  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
825  size_t thread_count = GetThreadCount(paused);
826  // The parallel version with only one thread is faster for card scanning, TODO: fix.
827  if (kParallelCardScan && thread_count > 0) {
828    Thread* self = Thread::Current();
829    // Can't have a different split for each space since multiple spaces can have their cards being
830    // scanned at the same time.
831    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
832    // Try to take some of the mark stack since we can pass this off to the worker tasks.
833    Object** mark_stack_begin = mark_stack_->Begin();
834    Object** mark_stack_end = mark_stack_->End();
835    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
836    // Estimated number of work tasks we will create.
837    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
838    DCHECK_NE(mark_stack_tasks, 0U);
839    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
840                                             mark_stack_size / mark_stack_tasks + 1);
841    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
842      if (space->GetMarkBitmap() == nullptr) {
843        continue;
844      }
845      byte* card_begin = space->Begin();
846      byte* card_end = space->End();
847      // Align up the end address. For example, the image space's end
848      // may not be card-size-aligned.
849      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
850      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
851      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
852      // Calculate how many bytes of heap we will scan,
853      const size_t address_range = card_end - card_begin;
854      // Calculate how much address range each task gets.
855      const size_t card_delta = RoundUp(address_range / thread_count + 1,
856                                        accounting::CardTable::kCardSize);
857      // Create the worker tasks for this space.
858      while (card_begin != card_end) {
859        // Add a range of cards.
860        size_t addr_remaining = card_end - card_begin;
861        size_t card_increment = std::min(card_delta, addr_remaining);
862        // Take from the back of the mark stack.
863        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
864        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
865        mark_stack_end -= mark_stack_increment;
866        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
867        DCHECK_EQ(mark_stack_end, mark_stack_->End());
868        // Add the new task to the thread pool.
869        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
870                                      card_begin + card_increment, minimum_age,
871                                      mark_stack_increment, mark_stack_end);
872        thread_pool->AddTask(self, task);
873        card_begin += card_increment;
874      }
875    }
876
877    // Note: the card scan below may dirty new cards (and scan them)
878    // as a side effect when a Reference object is encountered and
879    // queued during the marking. See b/11465268.
880    thread_pool->SetMaxActiveWorkers(thread_count - 1);
881    thread_pool->StartWorkers(self);
882    thread_pool->Wait(self, true, true);
883    thread_pool->StopWorkers(self);
884    timings_.EndSplit();
885  } else {
886    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
887      if (space->GetMarkBitmap() != nullptr) {
888        // Image spaces are handled properly since live == marked for them.
889        switch (space->GetGcRetentionPolicy()) {
890          case space::kGcRetentionPolicyNeverCollect:
891            timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
892                "ScanGrayImageSpaceObjects");
893            break;
894          case space::kGcRetentionPolicyFullCollect:
895            timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
896                "ScanGrayZygoteSpaceObjects");
897            break;
898          case space::kGcRetentionPolicyAlwaysCollect:
899            timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
900                "ScanGrayAllocSpaceObjects");
901            break;
902          }
903        ScanObjectVisitor visitor(this);
904        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
905        timings_.EndSplit();
906      }
907    }
908  }
909}
910
911class RecursiveMarkTask : public MarkStackTask<false> {
912 public:
913  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
914                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
915      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
916        bitmap_(bitmap),
917        begin_(begin),
918        end_(end) {
919  }
920
921 protected:
922  accounting::SpaceBitmap* const bitmap_;
923  const uintptr_t begin_;
924  const uintptr_t end_;
925
926  virtual void Finalize() {
927    delete this;
928  }
929
930  // Scans all of the objects
931  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
932    ScanObjectParallelVisitor visitor(this);
933    bitmap_->VisitMarkedRange(begin_, end_, visitor);
934    // Finish by emptying our local mark stack.
935    MarkStackTask::Run(self);
936  }
937};
938
939// Populates the mark stack based on the set of marked objects and
940// recursively marks until the mark stack is emptied.
941void MarkSweep::RecursiveMark() {
942  TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
943  // RecursiveMark will build the lists of known instances of the Reference classes. See
944  // DelayReferenceReferent for details.
945  if (kUseRecursiveMark) {
946    const bool partial = GetGcType() == kGcTypePartial;
947    ScanObjectVisitor scan_visitor(this);
948    auto* self = Thread::Current();
949    ThreadPool* thread_pool = heap_->GetThreadPool();
950    size_t thread_count = GetThreadCount(false);
951    const bool parallel = kParallelRecursiveMark && thread_count > 1;
952    mark_stack_->Reset();
953    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
954      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
955          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
956        current_space_bitmap_ = space->GetMarkBitmap();
957        if (current_space_bitmap_ == nullptr) {
958          continue;
959        }
960        if (parallel) {
961          // We will use the mark stack the future.
962          // CHECK(mark_stack_->IsEmpty());
963          // This function does not handle heap end increasing, so we must use the space end.
964          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
965          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
966          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
967
968          // Create a few worker tasks.
969          const size_t n = thread_count * 2;
970          while (begin != end) {
971            uintptr_t start = begin;
972            uintptr_t delta = (end - begin) / n;
973            delta = RoundUp(delta, KB);
974            if (delta < 16 * KB) delta = end - begin;
975            begin += delta;
976            auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
977                                               begin);
978            thread_pool->AddTask(self, task);
979          }
980          thread_pool->SetMaxActiveWorkers(thread_count - 1);
981          thread_pool->StartWorkers(self);
982          thread_pool->Wait(self, true, true);
983          thread_pool->StopWorkers(self);
984        } else {
985          // This function does not handle heap end increasing, so we must use the space end.
986          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
987          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
988          current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
989        }
990      }
991    }
992  }
993  ProcessMarkStack(false);
994}
995
996mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
997  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
998    return object;
999  }
1000  return nullptr;
1001}
1002
1003void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
1004  ScanGrayObjects(paused, minimum_age);
1005  ProcessMarkStack(paused);
1006}
1007
1008void MarkSweep::ReMarkRoots() {
1009  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1010  timings_.StartSplit("(Paused)ReMarkRoots");
1011  Runtime::Current()->VisitRoots(
1012      MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
1013                                                          kVisitRootFlagStopLoggingNewRoots |
1014                                                          kVisitRootFlagClearRootLog));
1015  timings_.EndSplit();
1016  if (kVerifyRoots) {
1017    timings_.StartSplit("(Paused)VerifyRoots");
1018    Runtime::Current()->VisitRoots(VerifyRootMarked, this);
1019    timings_.EndSplit();
1020  }
1021}
1022
1023void MarkSweep::SweepSystemWeaks() {
1024  Runtime* runtime = Runtime::Current();
1025  timings_.StartSplit("SweepSystemWeaks");
1026  runtime->SweepSystemWeaks(IsMarkedCallback, this);
1027  timings_.EndSplit();
1028}
1029
1030mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
1031  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
1032  // We don't actually want to sweep the object, so lets return "marked"
1033  return obj;
1034}
1035
1036void MarkSweep::VerifyIsLive(const Object* obj) {
1037  Heap* heap = GetHeap();
1038  if (!heap->GetLiveBitmap()->Test(obj)) {
1039    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1040    if (!large_object_space->GetLiveObjects()->Test(obj)) {
1041      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
1042          heap->allocation_stack_->End()) {
1043        // Object not found!
1044        heap->DumpSpaces();
1045        LOG(FATAL) << "Found dead object " << obj;
1046      }
1047    }
1048  }
1049}
1050
1051void MarkSweep::VerifySystemWeaks() {
1052  // Verify system weaks, uses a special object visitor which returns the input object.
1053  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
1054}
1055
1056class CheckpointMarkThreadRoots : public Closure {
1057 public:
1058  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1059
1060  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1061    ATRACE_BEGIN("Marking thread roots");
1062    // Note: self is not necessarily equal to thread since thread may be suspended.
1063    Thread* self = Thread::Current();
1064    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1065        << thread->GetState() << " thread " << thread << " self " << self;
1066    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
1067    ATRACE_END();
1068    if (kUseThreadLocalAllocationStack) {
1069      thread->RevokeThreadLocalAllocationStack();
1070    }
1071    if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint) {
1072      mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
1073    }
1074    mark_sweep_->GetBarrier().Pass(self);
1075  }
1076
1077 private:
1078  MarkSweep* mark_sweep_;
1079};
1080
1081void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1082  CheckpointMarkThreadRoots check_point(this);
1083  timings_.StartSplit("MarkRootsCheckpoint");
1084  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1085  // Request the check point is run on all threads returning a count of the threads that must
1086  // run through the barrier including self.
1087  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1088  // Release locks then wait for all mutator threads to pass the barrier.
1089  // TODO: optimize to not release locks when there are no threads to wait for.
1090  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1091  Locks::mutator_lock_->SharedUnlock(self);
1092  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1093  CHECK_EQ(old_state, kWaitingPerformingGc);
1094  gc_barrier_->Increment(self, barrier_count);
1095  self->SetState(kWaitingPerformingGc);
1096  Locks::mutator_lock_->SharedLock(self);
1097  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1098  timings_.EndSplit();
1099}
1100
1101void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1102  timings_.StartSplit("SweepArray");
1103  Thread* self = Thread::Current();
1104  mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize];
1105  size_t chunk_free_pos = 0;
1106  size_t freed_bytes = 0;
1107  size_t freed_large_object_bytes = 0;
1108  size_t freed_objects = 0;
1109  size_t freed_large_objects = 0;
1110  // How many objects are left in the array, modified after each space is swept.
1111  Object** objects = const_cast<Object**>(allocations->Begin());
1112  size_t count = allocations->Size();
1113  // Change the order to ensure that the non-moving space last swept as an optimization.
1114  std::vector<space::ContinuousSpace*> sweep_spaces;
1115  space::ContinuousSpace* non_moving_space = nullptr;
1116  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1117    if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1118        space->GetLiveBitmap() != nullptr) {
1119      if (space == heap_->GetNonMovingSpace()) {
1120        non_moving_space = space;
1121      } else {
1122        sweep_spaces.push_back(space);
1123      }
1124    }
1125  }
1126  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1127  // the other alloc spaces as an optimization.
1128  if (non_moving_space != nullptr) {
1129    sweep_spaces.push_back(non_moving_space);
1130  }
1131  // Start by sweeping the continuous spaces.
1132  for (space::ContinuousSpace* space : sweep_spaces) {
1133    space::AllocSpace* alloc_space = space->AsAllocSpace();
1134    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1135    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1136    if (swap_bitmaps) {
1137      std::swap(live_bitmap, mark_bitmap);
1138    }
1139    Object** out = objects;
1140    for (size_t i = 0; i < count; ++i) {
1141      Object* obj = objects[i];
1142      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1143        continue;
1144      }
1145      if (space->HasAddress(obj)) {
1146        // This object is in the space, remove it from the array and add it to the sweep buffer
1147        // if needed.
1148        if (!mark_bitmap->Test(obj)) {
1149          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1150            timings_.StartSplit("FreeList");
1151            freed_objects += chunk_free_pos;
1152            freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1153            timings_.EndSplit();
1154            chunk_free_pos = 0;
1155          }
1156          chunk_free_buffer[chunk_free_pos++] = obj;
1157        }
1158      } else {
1159        *(out++) = obj;
1160      }
1161    }
1162    if (chunk_free_pos > 0) {
1163      timings_.StartSplit("FreeList");
1164      freed_objects += chunk_free_pos;
1165      freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1166      timings_.EndSplit();
1167      chunk_free_pos = 0;
1168    }
1169    // All of the references which space contained are no longer in the allocation stack, update
1170    // the count.
1171    count = out - objects;
1172  }
1173  // Handle the large object space.
1174  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1175  accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
1176  accounting::ObjectSet* large_mark_objects = large_object_space->GetMarkObjects();
1177  if (swap_bitmaps) {
1178    std::swap(large_live_objects, large_mark_objects);
1179  }
1180  for (size_t i = 0; i < count; ++i) {
1181    Object* obj = objects[i];
1182    // Handle large objects.
1183    if (kUseThreadLocalAllocationStack && obj == nullptr) {
1184      continue;
1185    }
1186    if (!large_mark_objects->Test(obj)) {
1187      ++freed_large_objects;
1188      freed_large_object_bytes += large_object_space->Free(self, obj);
1189    }
1190  }
1191  timings_.EndSplit();
1192
1193  timings_.StartSplit("RecordFree");
1194  VLOG(heap) << "Freed " << freed_objects << "/" << count
1195             << " objects with size " << PrettySize(freed_bytes);
1196  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1197  freed_objects_.FetchAndAdd(freed_objects);
1198  freed_large_objects_.FetchAndAdd(freed_large_objects);
1199  freed_bytes_.FetchAndAdd(freed_bytes);
1200  freed_large_object_bytes_.FetchAndAdd(freed_large_object_bytes);
1201  timings_.EndSplit();
1202
1203  timings_.StartSplit("ResetStack");
1204  allocations->Reset();
1205  timings_.EndSplit();
1206}
1207
1208void MarkSweep::Sweep(bool swap_bitmaps) {
1209  DCHECK(mark_stack_->IsEmpty());
1210  TimingLogger::ScopedSplit("Sweep", &timings_);
1211  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1212    if (space->IsContinuousMemMapAllocSpace()) {
1213      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1214      TimingLogger::ScopedSplit split(
1215          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_);
1216      size_t freed_objects = 0;
1217      size_t freed_bytes = 0;
1218      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1219      heap_->RecordFree(freed_objects, freed_bytes);
1220      freed_objects_.FetchAndAdd(freed_objects);
1221      freed_bytes_.FetchAndAdd(freed_bytes);
1222    }
1223  }
1224  SweepLargeObjects(swap_bitmaps);
1225}
1226
1227void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1228  TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1229  size_t freed_objects = 0;
1230  size_t freed_bytes = 0;
1231  GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1232  freed_large_objects_.FetchAndAdd(freed_objects);
1233  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
1234  GetHeap()->RecordFree(freed_objects, freed_bytes);
1235}
1236
1237// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
1238// marked, put it on the appropriate list in the heap for later processing.
1239void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1240  DCHECK(klass != nullptr);
1241  if (kCountJavaLangRefs) {
1242    ++reference_count_;
1243  }
1244  heap_->DelayReferenceReferent(klass, ref, IsMarkedCallback, this);
1245}
1246
1247class MarkObjectVisitor {
1248 public:
1249  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1250  }
1251
1252  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
1253      ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1254      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1255    if (kCheckLocks) {
1256      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1257      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1258    }
1259    mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset, false));
1260  }
1261
1262 private:
1263  MarkSweep* const mark_sweep_;
1264};
1265
1266// Scans an object reference.  Determines the type of the reference
1267// and dispatches to a specialized scanning routine.
1268void MarkSweep::ScanObject(Object* obj) {
1269  MarkObjectVisitor mark_visitor(this);
1270  DelayReferenceReferentVisitor ref_visitor(this);
1271  ScanObjectVisit(obj, mark_visitor, ref_visitor);
1272}
1273
1274void MarkSweep::ProcessMarkStackPausedCallback(void* arg) {
1275  reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(true);
1276}
1277
1278void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1279  Thread* self = Thread::Current();
1280  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1281  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1282                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1283  CHECK_GT(chunk_size, 0U);
1284  // Split the current mark stack up into work tasks.
1285  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1286    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1287    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1288    it += delta;
1289  }
1290  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1291  thread_pool->StartWorkers(self);
1292  thread_pool->Wait(self, true, true);
1293  thread_pool->StopWorkers(self);
1294  mark_stack_->Reset();
1295  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1296}
1297
1298// Scan anything that's on the mark stack.
1299void MarkSweep::ProcessMarkStack(bool paused) {
1300  timings_.StartSplit(paused ? "(Paused)ProcessMarkStack" : "ProcessMarkStack");
1301  size_t thread_count = GetThreadCount(paused);
1302  if (kParallelProcessMarkStack && thread_count > 1 &&
1303      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1304    ProcessMarkStackParallel(thread_count);
1305  } else {
1306    // TODO: Tune this.
1307    static const size_t kFifoSize = 4;
1308    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1309    for (;;) {
1310      Object* obj = NULL;
1311      if (kUseMarkStackPrefetch) {
1312        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1313          Object* obj = mark_stack_->PopBack();
1314          DCHECK(obj != NULL);
1315          __builtin_prefetch(obj);
1316          prefetch_fifo.push_back(obj);
1317        }
1318        if (prefetch_fifo.empty()) {
1319          break;
1320        }
1321        obj = prefetch_fifo.front();
1322        prefetch_fifo.pop_front();
1323      } else {
1324        if (mark_stack_->IsEmpty()) {
1325          break;
1326        }
1327        obj = mark_stack_->PopBack();
1328      }
1329      DCHECK(obj != NULL);
1330      ScanObject(obj);
1331    }
1332  }
1333  timings_.EndSplit();
1334}
1335
1336inline bool MarkSweep::IsMarked(const Object* object) const
1337    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1338  if (immune_region_.ContainsObject(object)) {
1339    return true;
1340  }
1341  if (current_space_bitmap_->HasAddress(object)) {
1342    return current_space_bitmap_->Test(object);
1343  }
1344  return mark_bitmap_->Test(object);
1345}
1346
1347void MarkSweep::FinishPhase() {
1348  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1349  // Can't enqueue references if we hold the mutator lock.
1350  Heap* heap = GetHeap();
1351  timings_.NewSplit("PostGcVerification");
1352  heap->PostGcVerification(this);
1353  // Update the cumulative statistics.
1354  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
1355  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
1356  // Ensure that the mark stack is empty.
1357  CHECK(mark_stack_->IsEmpty());
1358  if (kCountScannedTypes) {
1359    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1360             << " other=" << other_count_;
1361  }
1362  if (kCountTasks) {
1363    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1364  }
1365  if (kMeasureOverhead) {
1366    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1367  }
1368  if (kProfileLargeObjects) {
1369    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1370  }
1371  if (kCountJavaLangRefs) {
1372    VLOG(gc) << "References scanned " << reference_count_;
1373  }
1374  if (kCountMarkedObjects) {
1375    VLOG(gc) << "Marked: null=" << mark_null_count_ << " immune=" <<  mark_immune_count_
1376        << " fastpath=" << mark_fastpath_count_ << " slowpath=" << mark_slowpath_count_;
1377  }
1378  // Update the cumulative loggers.
1379  cumulative_timings_.Start();
1380  cumulative_timings_.AddLogger(timings_);
1381  cumulative_timings_.End();
1382  // Clear all of the spaces' mark bitmaps.
1383  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1384    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
1385    if (bitmap != nullptr &&
1386        space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1387      bitmap->Clear();
1388    }
1389  }
1390  mark_stack_->Reset();
1391  // Reset the marked large objects.
1392  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1393  large_objects->GetMarkObjects()->Clear();
1394}
1395
1396void MarkSweep::RevokeAllThreadLocalBuffers() {
1397  if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1398    // If concurrent, rosalloc thread-local buffers are revoked at the
1399    // thread checkpoint. Bump pointer space thread-local buffers must
1400    // not be in use.
1401    GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1402  } else {
1403    timings_.StartSplit("(Paused)RevokeAllThreadLocalBuffers");
1404    GetHeap()->RevokeAllThreadLocalBuffers();
1405    timings_.EndSplit();
1406  }
1407}
1408
1409}  // namespace collector
1410}  // namespace gc
1411}  // namespace art
1412