mark_sweep.cc revision 4c13a3ff475f206c4d0a86ee2595c45392fd942f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap-inl.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/reference_processor.h"
35#include "gc/space/image_space.h"
36#include "gc/space/large_object_space.h"
37#include "gc/space/space-inl.h"
38#include "mark_sweep-inl.h"
39#include "mirror/art_field-inl.h"
40#include "mirror/object-inl.h"
41#include "runtime.h"
42#include "scoped_thread_state_change.h"
43#include "thread-inl.h"
44#include "thread_list.h"
45
46using ::art::mirror::Object;
47
48namespace art {
49namespace gc {
50namespace collector {
51
52// Performance options.
53static constexpr bool kUseRecursiveMark = false;
54static constexpr bool kUseMarkStackPrefetch = true;
55static constexpr size_t kSweepArrayChunkFreeSize = 1024;
56static constexpr bool kPreCleanCards = true;
57
58// Parallelism options.
59static constexpr bool kParallelCardScan = true;
60static constexpr bool kParallelRecursiveMark = true;
61// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
62// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
63// having this can add overhead in ProcessReferences since we may end up doing many calls of
64// ProcessMarkStack with very small mark stacks.
65static constexpr size_t kMinimumParallelMarkStackSize = 128;
66static constexpr bool kParallelProcessMarkStack = true;
67
68// Profiling and information flags.
69static constexpr bool kProfileLargeObjects = false;
70static constexpr bool kMeasureOverhead = false;
71static constexpr bool kCountTasks = false;
72static constexpr bool kCountJavaLangRefs = false;
73static constexpr bool kCountMarkedObjects = false;
74
75// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
76static constexpr bool kCheckLocks = kDebugLocking;
77static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
78
79// If true, revoke the rosalloc thread-local buffers at the
80// checkpoint, as opposed to during the pause.
81static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
82
83void MarkSweep::BindBitmaps() {
84  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
85  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
86  // Mark all of the spaces we never collect as immune.
87  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
88    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
89      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
90    }
91  }
92}
93
94MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
95    : GarbageCollector(heap,
96                       name_prefix +
97                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
98      current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr),
99      gc_barrier_(new Barrier(0)),
100      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
101      is_concurrent_(is_concurrent), live_stack_freeze_size_(0) {
102  std::string error_msg;
103  MemMap* mem_map = MemMap::MapAnonymous(
104      "mark sweep sweep array free buffer", nullptr,
105      RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
106      PROT_READ | PROT_WRITE, false, &error_msg);
107  CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
108  sweep_array_free_buffer_mem_map_.reset(mem_map);
109}
110
111void MarkSweep::InitializePhase() {
112  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
113  mark_stack_ = heap_->GetMarkStack();
114  DCHECK(mark_stack_ != nullptr);
115  immune_region_.Reset();
116  class_count_.StoreRelaxed(0);
117  array_count_.StoreRelaxed(0);
118  other_count_.StoreRelaxed(0);
119  large_object_test_.StoreRelaxed(0);
120  large_object_mark_.StoreRelaxed(0);
121  overhead_time_ .StoreRelaxed(0);
122  work_chunks_created_.StoreRelaxed(0);
123  work_chunks_deleted_.StoreRelaxed(0);
124  reference_count_.StoreRelaxed(0);
125  mark_null_count_.StoreRelaxed(0);
126  mark_immune_count_.StoreRelaxed(0);
127  mark_fastpath_count_.StoreRelaxed(0);
128  mark_slowpath_count_.StoreRelaxed(0);
129  {
130    // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
131    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
132    mark_bitmap_ = heap_->GetMarkBitmap();
133  }
134  if (!GetCurrentIteration()->GetClearSoftReferences()) {
135    // Always clear soft references if a non-sticky collection.
136    GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
137  }
138}
139
140void MarkSweep::RunPhases() {
141  Thread* self = Thread::Current();
142  InitializePhase();
143  Locks::mutator_lock_->AssertNotHeld(self);
144  if (IsConcurrent()) {
145    GetHeap()->PreGcVerification(this);
146    {
147      ReaderMutexLock mu(self, *Locks::mutator_lock_);
148      MarkingPhase();
149    }
150    ScopedPause pause(this);
151    GetHeap()->PrePauseRosAllocVerification(this);
152    PausePhase();
153    RevokeAllThreadLocalBuffers();
154  } else {
155    ScopedPause pause(this);
156    GetHeap()->PreGcVerificationPaused(this);
157    MarkingPhase();
158    GetHeap()->PrePauseRosAllocVerification(this);
159    PausePhase();
160    RevokeAllThreadLocalBuffers();
161  }
162  {
163    // Sweeping always done concurrently, even for non concurrent mark sweep.
164    ReaderMutexLock mu(self, *Locks::mutator_lock_);
165    ReclaimPhase();
166  }
167  GetHeap()->PostGcVerification(this);
168  FinishPhase();
169}
170
171void MarkSweep::ProcessReferences(Thread* self) {
172  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
173  GetHeap()->GetReferenceProcessor()->ProcessReferences(
174      true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
175      &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this);
176}
177
178void MarkSweep::PausePhase() {
179  TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
180  Thread* self = Thread::Current();
181  Locks::mutator_lock_->AssertExclusiveHeld(self);
182  if (IsConcurrent()) {
183    // Handle the dirty objects if we are a concurrent GC.
184    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
185    // Re-mark root set.
186    ReMarkRoots();
187    // Scan dirty objects, this is only required if we are not doing concurrent GC.
188    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
189  }
190  {
191    TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
192    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
193    heap_->SwapStacks(self);
194    live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
195    // Need to revoke all the thread local allocation stacks since we just swapped the allocation
196    // stacks and don't want anybody to allocate into the live stack.
197    RevokeAllThreadLocalAllocationStacks(self);
198  }
199  heap_->PreSweepingGcVerification(this);
200  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
201  // weak before we sweep them. Since this new system weak may not be marked, the GC may
202  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
203  // reference to a string that is about to be swept.
204  Runtime::Current()->DisallowNewSystemWeaks();
205  // Enable the reference processing slow path, needs to be done with mutators paused since there
206  // is no lock in the GetReferent fast path.
207  GetHeap()->GetReferenceProcessor()->EnableSlowPath();
208}
209
210void MarkSweep::PreCleanCards() {
211  // Don't do this for non concurrent GCs since they don't have any dirty cards.
212  if (kPreCleanCards && IsConcurrent()) {
213    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
214    Thread* self = Thread::Current();
215    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
216    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
217    heap_->ProcessCards(GetTimings(), false);
218    // The checkpoint root marking is required to avoid a race condition which occurs if the
219    // following happens during a reference write:
220    // 1. mutator dirties the card (write barrier)
221    // 2. GC ages the card (the above ProcessCards call)
222    // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
223    // 4. mutator writes the value (corresponding to the write barrier in 1.)
224    // This causes the GC to age the card but not necessarily mark the reference which the mutator
225    // wrote into the object stored in the card.
226    // Having the checkpoint fixes this issue since it ensures that the card mark and the
227    // reference write are visible to the GC before the card is scanned (this is due to locks being
228    // acquired / released in the checkpoint code).
229    // The other roots are also marked to help reduce the pause.
230    MarkRootsCheckpoint(self, false);
231    MarkNonThreadRoots();
232    MarkConcurrentRoots(
233        static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
234    // Process the newly aged cards.
235    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
236    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
237    // in the next GC.
238  }
239}
240
241void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
242  if (kUseThreadLocalAllocationStack) {
243    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
244    Locks::mutator_lock_->AssertExclusiveHeld(self);
245    heap_->RevokeAllThreadLocalAllocationStacks(self);
246  }
247}
248
249void MarkSweep::MarkingPhase() {
250  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
251  Thread* self = Thread::Current();
252  BindBitmaps();
253  FindDefaultSpaceBitmap();
254  // Process dirty cards and add dirty cards to mod union tables.
255  heap_->ProcessCards(GetTimings(), false);
256  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
257  MarkRoots(self);
258  MarkReachableObjects();
259  // Pre-clean dirtied cards to reduce pauses.
260  PreCleanCards();
261}
262
263void MarkSweep::UpdateAndMarkModUnion() {
264  for (const auto& space : heap_->GetContinuousSpaces()) {
265    if (immune_region_.ContainsSpace(space)) {
266      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
267          "UpdateAndMarkImageModUnionTable";
268      TimingLogger::ScopedTiming t(name, GetTimings());
269      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
270      CHECK(mod_union_table != nullptr);
271      mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
272    }
273  }
274}
275
276void MarkSweep::MarkReachableObjects() {
277  UpdateAndMarkModUnion();
278  // Recursively mark all the non-image bits set in the mark bitmap.
279  RecursiveMark();
280}
281
282void MarkSweep::ReclaimPhase() {
283  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
284  Thread* self = Thread::Current();
285  // Process the references concurrently.
286  ProcessReferences(self);
287  SweepSystemWeaks(self);
288  Runtime::Current()->AllowNewSystemWeaks();
289  {
290    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
291    // Reclaim unmarked objects.
292    Sweep(false);
293    // Swap the live and mark bitmaps for each space which we modified space. This is an
294    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
295    // bitmaps.
296    SwapBitmaps();
297    // Unbind the live and mark bitmaps.
298    GetHeap()->UnBindBitmaps();
299  }
300}
301
302void MarkSweep::FindDefaultSpaceBitmap() {
303  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
304  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
305    accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
306    // We want to have the main space instead of non moving if possible.
307    if (bitmap != nullptr &&
308        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
309      current_space_bitmap_ = bitmap;
310      // If we are not the non moving space exit the loop early since this will be good enough.
311      if (space != heap_->GetNonMovingSpace()) {
312        break;
313      }
314    }
315  }
316  CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
317      << heap_->DumpSpaces();
318}
319
320void MarkSweep::ExpandMarkStack() {
321  ResizeMarkStack(mark_stack_->Capacity() * 2);
322}
323
324void MarkSweep::ResizeMarkStack(size_t new_size) {
325  // Rare case, no need to have Thread::Current be a parameter.
326  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
327    // Someone else acquired the lock and expanded the mark stack before us.
328    return;
329  }
330  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
331  CHECK_LE(mark_stack_->Size(), new_size);
332  mark_stack_->Resize(new_size);
333  for (const auto& obj : temp) {
334    mark_stack_->PushBack(obj);
335  }
336}
337
338inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
339  DCHECK(obj != nullptr);
340  if (MarkObjectParallel(obj)) {
341    MutexLock mu(Thread::Current(), mark_stack_lock_);
342    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
343      ExpandMarkStack();
344    }
345    // The object must be pushed on to the mark stack.
346    mark_stack_->PushBack(obj);
347  }
348}
349
350mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
351  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
352  mark_sweep->MarkObject(obj);
353  return obj;
354}
355
356void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
357  reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr());
358}
359
360bool MarkSweep::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
361  return reinterpret_cast<MarkSweep*>(arg)->IsMarked(ref->AsMirrorPtr());
362}
363
364class MarkSweepMarkObjectSlowPath {
365 public:
366  explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {
367  }
368
369  void operator()(const Object* obj) const ALWAYS_INLINE {
370    if (kProfileLargeObjects) {
371      // TODO: Differentiate between marking and testing somehow.
372      ++mark_sweep_->large_object_test_;
373      ++mark_sweep_->large_object_mark_;
374    }
375    space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
376    if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
377                 (kIsDebugBuild && !large_object_space->Contains(obj)))) {
378      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
379      LOG(ERROR) << "Attempting see if it's a bad root";
380      mark_sweep_->VerifyRoots();
381      LOG(FATAL) << "Can't mark invalid object";
382    }
383  }
384
385 private:
386  MarkSweep* const mark_sweep_;
387};
388
389inline void MarkSweep::MarkObjectNonNull(Object* obj) {
390  DCHECK(obj != nullptr);
391  if (kUseBakerOrBrooksReadBarrier) {
392    // Verify all the objects have the correct pointer installed.
393    obj->AssertReadBarrierPointer();
394  }
395  if (immune_region_.ContainsObject(obj)) {
396    if (kCountMarkedObjects) {
397      ++mark_immune_count_;
398    }
399    DCHECK(mark_bitmap_->Test(obj));
400  } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
401    if (kCountMarkedObjects) {
402      ++mark_fastpath_count_;
403    }
404    if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
405      PushOnMarkStack(obj);  // This object was not previously marked.
406    }
407  } else {
408    if (kCountMarkedObjects) {
409      ++mark_slowpath_count_;
410    }
411    MarkSweepMarkObjectSlowPath visitor(this);
412    // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
413    // will check again.
414    if (!mark_bitmap_->Set(obj, visitor)) {
415      PushOnMarkStack(obj);  // Was not already marked, push.
416    }
417  }
418}
419
420inline void MarkSweep::PushOnMarkStack(Object* obj) {
421  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
422    // Lock is not needed but is here anyways to please annotalysis.
423    MutexLock mu(Thread::Current(), mark_stack_lock_);
424    ExpandMarkStack();
425  }
426  // The object must be pushed on to the mark stack.
427  mark_stack_->PushBack(obj);
428}
429
430inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
431  DCHECK(obj != nullptr);
432  if (kUseBakerOrBrooksReadBarrier) {
433    // Verify all the objects have the correct pointer installed.
434    obj->AssertReadBarrierPointer();
435  }
436  if (immune_region_.ContainsObject(obj)) {
437    DCHECK(IsMarked(obj));
438    return false;
439  }
440  // Try to take advantage of locality of references within a space, failing this find the space
441  // the hard way.
442  accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
443  if (LIKELY(object_bitmap->HasAddress(obj))) {
444    return !object_bitmap->AtomicTestAndSet(obj);
445  }
446  MarkSweepMarkObjectSlowPath visitor(this);
447  return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
448}
449
450// Used to mark objects when processing the mark stack. If an object is null, it is not marked.
451inline void MarkSweep::MarkObject(Object* obj) {
452  if (obj != nullptr) {
453    MarkObjectNonNull(obj);
454  } else if (kCountMarkedObjects) {
455    ++mark_null_count_;
456  }
457}
458
459void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/,
460                                         RootType /*root_type*/) {
461  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
462}
463
464void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/,
465                                 RootType /*root_type*/) {
466  CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
467}
468
469void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
470                                 RootType /*root_type*/) {
471  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
472}
473
474void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
475                                   const StackVisitor* visitor, RootType root_type) {
476  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor, root_type);
477}
478
479void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor,
480                           RootType root_type) {
481  // See if the root is on any space bitmap.
482  if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
483    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
484    if (!large_object_space->Contains(root)) {
485      LOG(ERROR) << "Found invalid root: " << root << " with type " << root_type;
486      if (visitor != NULL) {
487        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
488      }
489    }
490  }
491}
492
493void MarkSweep::VerifyRoots() {
494  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
495}
496
497void MarkSweep::MarkRoots(Thread* self) {
498  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
499  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
500    // If we exclusively hold the mutator lock, all threads must be suspended.
501    Runtime::Current()->VisitRoots(MarkRootCallback, this);
502    RevokeAllThreadLocalAllocationStacks(self);
503  } else {
504    MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
505    // At this point the live stack should no longer have any mutators which push into it.
506    MarkNonThreadRoots();
507    MarkConcurrentRoots(
508        static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
509  }
510}
511
512void MarkSweep::MarkNonThreadRoots() {
513  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
514  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
515}
516
517void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
518  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
519  // Visit all runtime roots and clear dirty flags.
520  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
521}
522
523class ScanObjectVisitor {
524 public:
525  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
526      : mark_sweep_(mark_sweep) {}
527
528  void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
529      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
530    if (kCheckLocks) {
531      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
532      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
533    }
534    mark_sweep_->ScanObject(obj);
535  }
536
537 private:
538  MarkSweep* const mark_sweep_;
539};
540
541class DelayReferenceReferentVisitor {
542 public:
543  explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
544  }
545
546  void operator()(mirror::Class* klass, mirror::Reference* ref) const
547      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
548      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
549    collector_->DelayReferenceReferent(klass, ref);
550  }
551
552 private:
553  MarkSweep* const collector_;
554};
555
556template <bool kUseFinger = false>
557class MarkStackTask : public Task {
558 public:
559  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
560                Object** mark_stack)
561      : mark_sweep_(mark_sweep),
562        thread_pool_(thread_pool),
563        mark_stack_pos_(mark_stack_size) {
564    // We may have to copy part of an existing mark stack when another mark stack overflows.
565    if (mark_stack_size != 0) {
566      DCHECK(mark_stack != NULL);
567      // TODO: Check performance?
568      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
569    }
570    if (kCountTasks) {
571      ++mark_sweep_->work_chunks_created_;
572    }
573  }
574
575  static const size_t kMaxSize = 1 * KB;
576
577 protected:
578  class MarkObjectParallelVisitor {
579   public:
580    explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
581                                       MarkSweep* mark_sweep) ALWAYS_INLINE
582            : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
583
584    void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
585        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
586      mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
587      if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
588        if (kUseFinger) {
589          android_memory_barrier();
590          if (reinterpret_cast<uintptr_t>(ref) >=
591              static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
592            return;
593          }
594        }
595        chunk_task_->MarkStackPush(ref);
596      }
597    }
598
599   private:
600    MarkStackTask<kUseFinger>* const chunk_task_;
601    MarkSweep* const mark_sweep_;
602  };
603
604  class ScanObjectParallelVisitor {
605   public:
606    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
607        : chunk_task_(chunk_task) {}
608
609    // No thread safety analysis since multiple threads will use this visitor.
610    void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
611        EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
612      MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
613      MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
614      DelayReferenceReferentVisitor ref_visitor(mark_sweep);
615      mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
616    }
617
618   private:
619    MarkStackTask<kUseFinger>* const chunk_task_;
620  };
621
622  virtual ~MarkStackTask() {
623    // Make sure that we have cleared our mark stack.
624    DCHECK_EQ(mark_stack_pos_, 0U);
625    if (kCountTasks) {
626      ++mark_sweep_->work_chunks_deleted_;
627    }
628  }
629
630  MarkSweep* const mark_sweep_;
631  ThreadPool* const thread_pool_;
632  // Thread local mark stack for this task.
633  Object* mark_stack_[kMaxSize];
634  // Mark stack position.
635  size_t mark_stack_pos_;
636
637  void MarkStackPush(Object* obj) ALWAYS_INLINE {
638    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
639      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
640      mark_stack_pos_ /= 2;
641      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
642                                     mark_stack_ + mark_stack_pos_);
643      thread_pool_->AddTask(Thread::Current(), task);
644    }
645    DCHECK(obj != nullptr);
646    DCHECK_LT(mark_stack_pos_, kMaxSize);
647    mark_stack_[mark_stack_pos_++] = obj;
648  }
649
650  virtual void Finalize() {
651    delete this;
652  }
653
654  // Scans all of the objects
655  virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
656      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
657    ScanObjectParallelVisitor visitor(this);
658    // TODO: Tune this.
659    static const size_t kFifoSize = 4;
660    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
661    for (;;) {
662      Object* obj = nullptr;
663      if (kUseMarkStackPrefetch) {
664        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
665          Object* obj = mark_stack_[--mark_stack_pos_];
666          DCHECK(obj != nullptr);
667          __builtin_prefetch(obj);
668          prefetch_fifo.push_back(obj);
669        }
670        if (UNLIKELY(prefetch_fifo.empty())) {
671          break;
672        }
673        obj = prefetch_fifo.front();
674        prefetch_fifo.pop_front();
675      } else {
676        if (UNLIKELY(mark_stack_pos_ == 0)) {
677          break;
678        }
679        obj = mark_stack_[--mark_stack_pos_];
680      }
681      DCHECK(obj != nullptr);
682      visitor(obj);
683    }
684  }
685};
686
687class CardScanTask : public MarkStackTask<false> {
688 public:
689  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
690               accounting::ContinuousSpaceBitmap* bitmap,
691               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
692               Object** mark_stack_obj)
693      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
694        bitmap_(bitmap),
695        begin_(begin),
696        end_(end),
697        minimum_age_(minimum_age) {
698  }
699
700 protected:
701  accounting::ContinuousSpaceBitmap* const bitmap_;
702  byte* const begin_;
703  byte* const end_;
704  const byte minimum_age_;
705
706  virtual void Finalize() {
707    delete this;
708  }
709
710  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
711    ScanObjectParallelVisitor visitor(this);
712    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
713    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
714    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
715        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
716    // Finish by emptying our local mark stack.
717    MarkStackTask::Run(self);
718  }
719};
720
721size_t MarkSweep::GetThreadCount(bool paused) const {
722  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
723    return 1;
724  }
725  if (paused) {
726    return heap_->GetParallelGCThreadCount() + 1;
727  } else {
728    return heap_->GetConcGCThreadCount() + 1;
729  }
730}
731
732void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
733  accounting::CardTable* card_table = GetHeap()->GetCardTable();
734  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
735  size_t thread_count = GetThreadCount(paused);
736  // The parallel version with only one thread is faster for card scanning, TODO: fix.
737  if (kParallelCardScan && thread_count > 1) {
738    Thread* self = Thread::Current();
739    // Can't have a different split for each space since multiple spaces can have their cards being
740    // scanned at the same time.
741    TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
742        GetTimings());
743    // Try to take some of the mark stack since we can pass this off to the worker tasks.
744    Object** mark_stack_begin = mark_stack_->Begin();
745    Object** mark_stack_end = mark_stack_->End();
746    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
747    // Estimated number of work tasks we will create.
748    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
749    DCHECK_NE(mark_stack_tasks, 0U);
750    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
751                                             mark_stack_size / mark_stack_tasks + 1);
752    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
753      if (space->GetMarkBitmap() == nullptr) {
754        continue;
755      }
756      byte* card_begin = space->Begin();
757      byte* card_end = space->End();
758      // Align up the end address. For example, the image space's end
759      // may not be card-size-aligned.
760      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
761      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
762      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
763      // Calculate how many bytes of heap we will scan,
764      const size_t address_range = card_end - card_begin;
765      // Calculate how much address range each task gets.
766      const size_t card_delta = RoundUp(address_range / thread_count + 1,
767                                        accounting::CardTable::kCardSize);
768      // Create the worker tasks for this space.
769      while (card_begin != card_end) {
770        // Add a range of cards.
771        size_t addr_remaining = card_end - card_begin;
772        size_t card_increment = std::min(card_delta, addr_remaining);
773        // Take from the back of the mark stack.
774        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
775        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
776        mark_stack_end -= mark_stack_increment;
777        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
778        DCHECK_EQ(mark_stack_end, mark_stack_->End());
779        // Add the new task to the thread pool.
780        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
781                                      card_begin + card_increment, minimum_age,
782                                      mark_stack_increment, mark_stack_end);
783        thread_pool->AddTask(self, task);
784        card_begin += card_increment;
785      }
786    }
787
788    // Note: the card scan below may dirty new cards (and scan them)
789    // as a side effect when a Reference object is encountered and
790    // queued during the marking. See b/11465268.
791    thread_pool->SetMaxActiveWorkers(thread_count - 1);
792    thread_pool->StartWorkers(self);
793    thread_pool->Wait(self, true, true);
794    thread_pool->StopWorkers(self);
795  } else {
796    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
797      if (space->GetMarkBitmap() != nullptr) {
798        // Image spaces are handled properly since live == marked for them.
799        const char* name = nullptr;
800        switch (space->GetGcRetentionPolicy()) {
801        case space::kGcRetentionPolicyNeverCollect:
802          name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
803          break;
804        case space::kGcRetentionPolicyFullCollect:
805          name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
806          break;
807        case space::kGcRetentionPolicyAlwaysCollect:
808          name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
809          break;
810        default:
811          LOG(FATAL) << "Unreachable";
812        }
813        TimingLogger::ScopedTiming t(name, GetTimings());
814        ScanObjectVisitor visitor(this);
815        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
816                         minimum_age);
817      }
818    }
819  }
820}
821
822class RecursiveMarkTask : public MarkStackTask<false> {
823 public:
824  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
825                    accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
826      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL), bitmap_(bitmap), begin_(begin),
827        end_(end) {
828  }
829
830 protected:
831  accounting::ContinuousSpaceBitmap* const bitmap_;
832  const uintptr_t begin_;
833  const uintptr_t end_;
834
835  virtual void Finalize() {
836    delete this;
837  }
838
839  // Scans all of the objects
840  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
841    ScanObjectParallelVisitor visitor(this);
842    bitmap_->VisitMarkedRange(begin_, end_, visitor);
843    // Finish by emptying our local mark stack.
844    MarkStackTask::Run(self);
845  }
846};
847
848// Populates the mark stack based on the set of marked objects and
849// recursively marks until the mark stack is emptied.
850void MarkSweep::RecursiveMark() {
851  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
852  // RecursiveMark will build the lists of known instances of the Reference classes. See
853  // DelayReferenceReferent for details.
854  if (kUseRecursiveMark) {
855    const bool partial = GetGcType() == kGcTypePartial;
856    ScanObjectVisitor scan_visitor(this);
857    auto* self = Thread::Current();
858    ThreadPool* thread_pool = heap_->GetThreadPool();
859    size_t thread_count = GetThreadCount(false);
860    const bool parallel = kParallelRecursiveMark && thread_count > 1;
861    mark_stack_->Reset();
862    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
863      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
864          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
865        current_space_bitmap_ = space->GetMarkBitmap();
866        if (current_space_bitmap_ == nullptr) {
867          continue;
868        }
869        if (parallel) {
870          // We will use the mark stack the future.
871          // CHECK(mark_stack_->IsEmpty());
872          // This function does not handle heap end increasing, so we must use the space end.
873          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
874          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
875          atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
876
877          // Create a few worker tasks.
878          const size_t n = thread_count * 2;
879          while (begin != end) {
880            uintptr_t start = begin;
881            uintptr_t delta = (end - begin) / n;
882            delta = RoundUp(delta, KB);
883            if (delta < 16 * KB) delta = end - begin;
884            begin += delta;
885            auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
886                                               begin);
887            thread_pool->AddTask(self, task);
888          }
889          thread_pool->SetMaxActiveWorkers(thread_count - 1);
890          thread_pool->StartWorkers(self);
891          thread_pool->Wait(self, true, true);
892          thread_pool->StopWorkers(self);
893        } else {
894          // This function does not handle heap end increasing, so we must use the space end.
895          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
896          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
897          current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
898        }
899      }
900    }
901  }
902  ProcessMarkStack(false);
903}
904
905mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
906  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
907    return object;
908  }
909  return nullptr;
910}
911
912void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
913  ScanGrayObjects(paused, minimum_age);
914  ProcessMarkStack(paused);
915}
916
917void MarkSweep::ReMarkRoots() {
918  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
919  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
920  Runtime::Current()->VisitRoots(
921      MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
922                                                          kVisitRootFlagStopLoggingNewRoots |
923                                                          kVisitRootFlagClearRootLog));
924  if (kVerifyRootsMarked) {
925    TimingLogger::ScopedTiming t("(Paused)VerifyRoots", GetTimings());
926    Runtime::Current()->VisitRoots(VerifyRootMarked, this);
927  }
928}
929
930void MarkSweep::SweepSystemWeaks(Thread* self) {
931  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
932  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
933  Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
934}
935
936mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
937  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
938  // We don't actually want to sweep the object, so lets return "marked"
939  return obj;
940}
941
942void MarkSweep::VerifyIsLive(const Object* obj) {
943  if (!heap_->GetLiveBitmap()->Test(obj)) {
944    accounting::ObjectStack* allocation_stack = heap_->allocation_stack_.get();
945    CHECK(std::find(allocation_stack->Begin(), allocation_stack->End(), obj) !=
946        allocation_stack->End()) << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
947  }
948}
949
950void MarkSweep::VerifySystemWeaks() {
951  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
952  // Verify system weaks, uses a special object visitor which returns the input object.
953  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
954}
955
956class CheckpointMarkThreadRoots : public Closure {
957 public:
958  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
959                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
960      : mark_sweep_(mark_sweep),
961        revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
962            revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
963  }
964
965  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
966    ATRACE_BEGIN("Marking thread roots");
967    // Note: self is not necessarily equal to thread since thread may be suspended.
968    Thread* self = Thread::Current();
969    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
970        << thread->GetState() << " thread " << thread << " self " << self;
971    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
972    ATRACE_END();
973    if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
974      ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
975      mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
976      ATRACE_END();
977    }
978    mark_sweep_->GetBarrier().Pass(self);
979  }
980
981 private:
982  MarkSweep* const mark_sweep_;
983  const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
984};
985
986void MarkSweep::MarkRootsCheckpoint(Thread* self,
987                                    bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
988  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
989  CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
990  ThreadList* thread_list = Runtime::Current()->GetThreadList();
991  // Request the check point is run on all threads returning a count of the threads that must
992  // run through the barrier including self.
993  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
994  // Release locks then wait for all mutator threads to pass the barrier.
995  // TODO: optimize to not release locks when there are no threads to wait for.
996  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
997  Locks::mutator_lock_->SharedUnlock(self);
998  {
999    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1000    gc_barrier_->Increment(self, barrier_count);
1001  }
1002  Locks::mutator_lock_->SharedLock(self);
1003  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1004}
1005
1006void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1007  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1008  Thread* self = Thread::Current();
1009  mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
1010      sweep_array_free_buffer_mem_map_->BaseBegin());
1011  size_t chunk_free_pos = 0;
1012  ObjectBytePair freed;
1013  ObjectBytePair freed_los;
1014  // How many objects are left in the array, modified after each space is swept.
1015  Object** objects = allocations->Begin();
1016  size_t count = allocations->Size();
1017  // Change the order to ensure that the non-moving space last swept as an optimization.
1018  std::vector<space::ContinuousSpace*> sweep_spaces;
1019  space::ContinuousSpace* non_moving_space = nullptr;
1020  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1021    if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1022        space->GetLiveBitmap() != nullptr) {
1023      if (space == heap_->GetNonMovingSpace()) {
1024        non_moving_space = space;
1025      } else {
1026        sweep_spaces.push_back(space);
1027      }
1028    }
1029  }
1030  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1031  // the other alloc spaces as an optimization.
1032  if (non_moving_space != nullptr) {
1033    sweep_spaces.push_back(non_moving_space);
1034  }
1035  // Start by sweeping the continuous spaces.
1036  for (space::ContinuousSpace* space : sweep_spaces) {
1037    space::AllocSpace* alloc_space = space->AsAllocSpace();
1038    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1039    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1040    if (swap_bitmaps) {
1041      std::swap(live_bitmap, mark_bitmap);
1042    }
1043    Object** out = objects;
1044    for (size_t i = 0; i < count; ++i) {
1045      Object* obj = objects[i];
1046      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1047        continue;
1048      }
1049      if (space->HasAddress(obj)) {
1050        // This object is in the space, remove it from the array and add it to the sweep buffer
1051        // if needed.
1052        if (!mark_bitmap->Test(obj)) {
1053          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1054            TimingLogger::ScopedTiming t("FreeList", GetTimings());
1055            freed.objects += chunk_free_pos;
1056            freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1057            chunk_free_pos = 0;
1058          }
1059          chunk_free_buffer[chunk_free_pos++] = obj;
1060        }
1061      } else {
1062        *(out++) = obj;
1063      }
1064    }
1065    if (chunk_free_pos > 0) {
1066      TimingLogger::ScopedTiming t("FreeList", GetTimings());
1067      freed.objects += chunk_free_pos;
1068      freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1069      chunk_free_pos = 0;
1070    }
1071    // All of the references which space contained are no longer in the allocation stack, update
1072    // the count.
1073    count = out - objects;
1074  }
1075  // Handle the large object space.
1076  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1077  accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1078  accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1079  if (swap_bitmaps) {
1080    std::swap(large_live_objects, large_mark_objects);
1081  }
1082  for (size_t i = 0; i < count; ++i) {
1083    Object* obj = objects[i];
1084    // Handle large objects.
1085    if (kUseThreadLocalAllocationStack && obj == nullptr) {
1086      continue;
1087    }
1088    if (!large_mark_objects->Test(obj)) {
1089      ++freed_los.objects;
1090      freed_los.bytes += large_object_space->Free(self, obj);
1091    }
1092  }
1093  {
1094    TimingLogger::ScopedTiming t("RecordFree", GetTimings());
1095    RecordFree(freed);
1096    RecordFreeLOS(freed_los);
1097    t.NewTiming("ResetStack");
1098    allocations->Reset();
1099  }
1100  sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
1101}
1102
1103void MarkSweep::Sweep(bool swap_bitmaps) {
1104  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1105  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1106  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1107  {
1108    TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
1109    // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1110    // knowing that new allocations won't be marked as live.
1111    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1112    heap_->MarkAllocStackAsLive(live_stack);
1113    live_stack->Reset();
1114    DCHECK(mark_stack_->IsEmpty());
1115  }
1116  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1117    if (space->IsContinuousMemMapAllocSpace()) {
1118      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1119      TimingLogger::ScopedTiming split(
1120          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings());
1121      RecordFree(alloc_space->Sweep(swap_bitmaps));
1122    }
1123  }
1124  SweepLargeObjects(swap_bitmaps);
1125}
1126
1127void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1128  TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1129  RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1130}
1131
1132// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
1133// marked, put it on the appropriate list in the heap for later processing.
1134void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1135  if (kCountJavaLangRefs) {
1136    ++reference_count_;
1137  }
1138  heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, &HeapReferenceMarkedCallback,
1139                                                         this);
1140}
1141
1142class MarkObjectVisitor {
1143 public:
1144  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1145  }
1146
1147  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
1148      ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1149      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1150    if (kCheckLocks) {
1151      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1152      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1153    }
1154    mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset));
1155  }
1156
1157 private:
1158  MarkSweep* const mark_sweep_;
1159};
1160
1161// Scans an object reference.  Determines the type of the reference
1162// and dispatches to a specialized scanning routine.
1163void MarkSweep::ScanObject(Object* obj) {
1164  MarkObjectVisitor mark_visitor(this);
1165  DelayReferenceReferentVisitor ref_visitor(this);
1166  ScanObjectVisit(obj, mark_visitor, ref_visitor);
1167}
1168
1169void MarkSweep::ProcessMarkStackCallback(void* arg) {
1170  reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false);
1171}
1172
1173void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1174  Thread* self = Thread::Current();
1175  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1176  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1177                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1178  CHECK_GT(chunk_size, 0U);
1179  // Split the current mark stack up into work tasks.
1180  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1181    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1182    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1183    it += delta;
1184  }
1185  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1186  thread_pool->StartWorkers(self);
1187  thread_pool->Wait(self, true, true);
1188  thread_pool->StopWorkers(self);
1189  mark_stack_->Reset();
1190  CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
1191           work_chunks_deleted_.LoadSequentiallyConsistent())
1192      << " some of the work chunks were leaked";
1193}
1194
1195// Scan anything that's on the mark stack.
1196void MarkSweep::ProcessMarkStack(bool paused) {
1197  TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
1198  size_t thread_count = GetThreadCount(paused);
1199  if (kParallelProcessMarkStack && thread_count > 1 &&
1200      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1201    ProcessMarkStackParallel(thread_count);
1202  } else {
1203    // TODO: Tune this.
1204    static const size_t kFifoSize = 4;
1205    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1206    for (;;) {
1207      Object* obj = NULL;
1208      if (kUseMarkStackPrefetch) {
1209        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1210          Object* obj = mark_stack_->PopBack();
1211          DCHECK(obj != NULL);
1212          __builtin_prefetch(obj);
1213          prefetch_fifo.push_back(obj);
1214        }
1215        if (prefetch_fifo.empty()) {
1216          break;
1217        }
1218        obj = prefetch_fifo.front();
1219        prefetch_fifo.pop_front();
1220      } else {
1221        if (mark_stack_->IsEmpty()) {
1222          break;
1223        }
1224        obj = mark_stack_->PopBack();
1225      }
1226      DCHECK(obj != nullptr);
1227      ScanObject(obj);
1228    }
1229  }
1230}
1231
1232inline bool MarkSweep::IsMarked(const Object* object) const {
1233  if (immune_region_.ContainsObject(object)) {
1234    return true;
1235  }
1236  if (current_space_bitmap_->HasAddress(object)) {
1237    return current_space_bitmap_->Test(object);
1238  }
1239  return mark_bitmap_->Test(object);
1240}
1241
1242void MarkSweep::FinishPhase() {
1243  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1244  if (kCountScannedTypes) {
1245    VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed()
1246        << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed();
1247  }
1248  if (kCountTasks) {
1249    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
1250  }
1251  if (kMeasureOverhead) {
1252    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
1253  }
1254  if (kProfileLargeObjects) {
1255    VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
1256        << " marked " << large_object_mark_.LoadRelaxed();
1257  }
1258  if (kCountJavaLangRefs) {
1259    VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed();
1260  }
1261  if (kCountMarkedObjects) {
1262    VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
1263        << " immune=" <<  mark_immune_count_.LoadRelaxed()
1264        << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
1265        << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
1266  }
1267  CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
1268  mark_stack_->Reset();
1269  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1270  heap_->ClearMarkedObjects();
1271}
1272
1273void MarkSweep::RevokeAllThreadLocalBuffers() {
1274  if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1275    // If concurrent, rosalloc thread-local buffers are revoked at the
1276    // thread checkpoint. Bump pointer space thread-local buffers must
1277    // not be in use.
1278    GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1279  } else {
1280    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1281    GetHeap()->RevokeAllThreadLocalBuffers();
1282  }
1283}
1284
1285}  // namespace collector
1286}  // namespace gc
1287}  // namespace art
1288