mark_sweep.cc revision 624468cd401cc1ac0dd70c746301e0788a597759
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap-inl.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "mark_sweep-inl.h"
38#include "mirror/art_field-inl.h"
39#include "mirror/object-inl.h"
40#include "runtime.h"
41#include "scoped_thread_state_change.h"
42#include "thread-inl.h"
43#include "thread_list.h"
44
45using ::art::mirror::ArtField;
46using ::art::mirror::Class;
47using ::art::mirror::Object;
48using ::art::mirror::ObjectArray;
49
50namespace art {
51namespace gc {
52namespace collector {
53
54// Performance options.
55static constexpr bool kUseRecursiveMark = false;
56static constexpr bool kUseMarkStackPrefetch = true;
57static constexpr size_t kSweepArrayChunkFreeSize = 1024;
58static constexpr bool kPreCleanCards = true;
59
60// Parallelism options.
61static constexpr bool kParallelCardScan = true;
62static constexpr bool kParallelRecursiveMark = true;
63// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
64// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
65// having this can add overhead in ProcessReferences since we may end up doing many calls of
66// ProcessMarkStack with very small mark stacks.
67static constexpr size_t kMinimumParallelMarkStackSize = 128;
68static constexpr bool kParallelProcessMarkStack = true;
69
70// Profiling and information flags.
71static constexpr bool kProfileLargeObjects = false;
72static constexpr bool kMeasureOverhead = false;
73static constexpr bool kCountTasks = false;
74static constexpr bool kCountJavaLangRefs = false;
75static constexpr bool kCountMarkedObjects = false;
76
77// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
78static constexpr bool kCheckLocks = kDebugLocking;
79static constexpr bool kVerifyRoots = kIsDebugBuild;
80
81// If true, revoke the rosalloc thread-local buffers at the
82// checkpoint, as opposed to during the pause.
83static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
84
85void MarkSweep::BindBitmaps() {
86  timings_.StartSplit("BindBitmaps");
87  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
88  // Mark all of the spaces we never collect as immune.
89  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
90    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
91      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
92    }
93  }
94  timings_.EndSplit();
95}
96
97MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
98    : GarbageCollector(heap,
99                       name_prefix +
100                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
101      gc_barrier_(new Barrier(0)),
102      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
103      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
104      is_concurrent_(is_concurrent) {
105}
106
107void MarkSweep::InitializePhase() {
108  timings_.Reset();
109  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
110  mark_stack_ = heap_->mark_stack_.get();
111  DCHECK(mark_stack_ != nullptr);
112  immune_region_.Reset();
113  class_count_ = 0;
114  array_count_ = 0;
115  other_count_ = 0;
116  large_object_test_ = 0;
117  large_object_mark_ = 0;
118  overhead_time_ = 0;
119  work_chunks_created_ = 0;
120  work_chunks_deleted_ = 0;
121  reference_count_ = 0;
122  mark_null_count_ = 0;
123  mark_immune_count_ = 0;
124  mark_fastpath_count_ = 0;
125  mark_slowpath_count_ = 0;
126  FindDefaultSpaceBitmap();
127  {
128    // TODO: I don't think we should need heap bitmap lock to get the mark bitmap.
129    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
130    mark_bitmap_ = heap_->GetMarkBitmap();
131  }
132
133  // Do any pre GC verification.
134  timings_.NewSplit("PreGcVerification");
135  heap_->PreGcVerification(this);
136}
137
138void MarkSweep::ProcessReferences(Thread* self) {
139  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
140  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
141  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback,
142                               &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
143}
144
145void MarkSweep::PreProcessReferences() {
146  if (IsConcurrent()) {
147    // No reason to do this for non-concurrent GC since pre processing soft references only helps
148    // pauses.
149    timings_.NewSplit("PreProcessReferences");
150    GetHeap()->ProcessSoftReferences(timings_, clear_soft_references_, &IsMarkedCallback,
151                                     &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
152  }
153}
154
155void MarkSweep::PausePhase() {
156  TimingLogger::ScopedSplit split("(Paused)PausePhase", &timings_);
157  Thread* self = Thread::Current();
158  Locks::mutator_lock_->AssertExclusiveHeld(self);
159  if (IsConcurrent()) {
160    // Handle the dirty objects if we are a concurrent GC.
161    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
162    // Re-mark root set.
163    ReMarkRoots();
164    // Scan dirty objects, this is only required if we are not doing concurrent GC.
165    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
166  }
167  ProcessReferences(self);
168  {
169    timings_.NewSplit("SwapStacks");
170    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
171    heap_->SwapStacks(self);
172    live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
173    // Need to revoke all the thread local allocation stacks since we just swapped the allocation
174    // stacks and don't want anybody to allocate into the live stack.
175    RevokeAllThreadLocalAllocationStacks(self);
176  }
177  timings_.StartSplit("PreSweepingGcVerification");
178  heap_->PreSweepingGcVerification(this);
179  timings_.EndSplit();
180  if (IsConcurrent()) {
181    // Disallow new system weaks to prevent a race which occurs when someone adds a new system
182    // weak before we sweep them. Since this new system weak may not be marked, the GC may
183    // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
184    // reference to a string that is about to be swept.
185    Runtime::Current()->DisallowNewSystemWeaks();
186  }
187}
188
189void MarkSweep::PreCleanCards() {
190  // Don't do this for non concurrent GCs since they don't have any dirty cards.
191  if (kPreCleanCards && IsConcurrent()) {
192    Thread* self = Thread::Current();
193    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
194    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
195    heap_->ProcessCards(timings_, false);
196    // The checkpoint root marking is required to avoid a race condition which occurs if the
197    // following happens during a reference write:
198    // 1. mutator dirties the card (write barrier)
199    // 2. GC ages the card (the above ProcessCards call)
200    // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
201    // 4. mutator writes the value (corresponding to the write barrier in 1.)
202    // This causes the GC to age the card but not necessarily mark the reference which the mutator
203    // wrote into the object stored in the card.
204    // Having the checkpoint fixes this issue since it ensures that the card mark and the
205    // reference write are visible to the GC before the card is scanned (this is due to locks being
206    // acquired / released in the checkpoint code).
207    // The other roots are also marked to help reduce the pause.
208    MarkRootsCheckpoint(self, false);
209    MarkNonThreadRoots();
210    MarkConcurrentRoots(
211        static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
212    // Process the newly aged cards.
213    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
214    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
215    // in the next GC.
216  }
217}
218
219void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
220  if (kUseThreadLocalAllocationStack) {
221    timings_.NewSplit("RevokeAllThreadLocalAllocationStacks");
222    Locks::mutator_lock_->AssertExclusiveHeld(self);
223    heap_->RevokeAllThreadLocalAllocationStacks(self);
224  }
225}
226
227void MarkSweep::MarkingPhase() {
228  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
229  Thread* self = Thread::Current();
230
231  BindBitmaps();
232  FindDefaultSpaceBitmap();
233
234  // Process dirty cards and add dirty cards to mod union tables.
235  heap_->ProcessCards(timings_, false);
236
237  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
238  MarkRoots(self);
239  MarkReachableObjects();
240  // Pre-clean dirtied cards to reduce pauses.
241  PreCleanCards();
242  PreProcessReferences();
243}
244
245void MarkSweep::UpdateAndMarkModUnion() {
246  for (const auto& space : heap_->GetContinuousSpaces()) {
247    if (immune_region_.ContainsSpace(space)) {
248      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
249          "UpdateAndMarkImageModUnionTable";
250      TimingLogger::ScopedSplit split(name, &timings_);
251      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
252      CHECK(mod_union_table != nullptr);
253      mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
254    }
255  }
256}
257
258void MarkSweep::MarkReachableObjects() {
259  UpdateAndMarkModUnion();
260  // Recursively mark all the non-image bits set in the mark bitmap.
261  RecursiveMark();
262}
263
264void MarkSweep::ReclaimPhase() {
265  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
266  Thread* self = Thread::Current();
267  SweepSystemWeaks(self);
268  if (IsConcurrent()) {
269    Runtime::Current()->AllowNewSystemWeaks();
270  }
271  {
272    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
273
274    // Reclaim unmarked objects.
275    Sweep(false);
276
277    // Swap the live and mark bitmaps for each space which we modified space. This is an
278    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
279    // bitmaps.
280    timings_.StartSplit("SwapBitmaps");
281    SwapBitmaps();
282    timings_.EndSplit();
283
284    // Unbind the live and mark bitmaps.
285    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
286    GetHeap()->UnBindBitmaps();
287  }
288}
289
290void MarkSweep::FindDefaultSpaceBitmap() {
291  TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
292  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
293    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
294    if (bitmap != nullptr &&
295        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
296      current_space_bitmap_ = bitmap;
297      return;
298    }
299  }
300  GetHeap()->DumpSpaces();
301  LOG(FATAL) << "Could not find a default mark bitmap";
302}
303
304void MarkSweep::ExpandMarkStack() {
305  ResizeMarkStack(mark_stack_->Capacity() * 2);
306}
307
308void MarkSweep::ResizeMarkStack(size_t new_size) {
309  // Rare case, no need to have Thread::Current be a parameter.
310  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
311    // Someone else acquired the lock and expanded the mark stack before us.
312    return;
313  }
314  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
315  CHECK_LE(mark_stack_->Size(), new_size);
316  mark_stack_->Resize(new_size);
317  for (const auto& obj : temp) {
318    mark_stack_->PushBack(obj);
319  }
320}
321
322inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
323  DCHECK(obj != NULL);
324  if (MarkObjectParallel(obj)) {
325    MutexLock mu(Thread::Current(), mark_stack_lock_);
326    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
327      ExpandMarkStack();
328    }
329    // The object must be pushed on to the mark stack.
330    mark_stack_->PushBack(obj);
331  }
332}
333
334mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
335  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
336  mark_sweep->MarkObject(obj);
337  return obj;
338}
339
340void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
341  reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr());
342}
343
344inline void MarkSweep::MarkObjectNonNull(Object* obj) {
345  DCHECK(obj != nullptr);
346  if (kUseBakerOrBrooksReadBarrier) {
347    // Verify all the objects have the correct pointer installed.
348    obj->AssertReadBarrierPointer();
349  }
350  if (immune_region_.ContainsObject(obj)) {
351    if (kCountMarkedObjects) {
352      ++mark_immune_count_;
353    }
354    DCHECK(IsMarked(obj));
355    return;
356  }
357  // Try to take advantage of locality of references within a space, failing this find the space
358  // the hard way.
359  accounting::SpaceBitmap* object_bitmap = current_space_bitmap_;
360  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
361    object_bitmap = mark_bitmap_->GetContinuousSpaceBitmap(obj);
362    if (kCountMarkedObjects) {
363      ++mark_slowpath_count_;
364    }
365    if (UNLIKELY(object_bitmap == nullptr)) {
366      MarkLargeObject(obj, true);
367      return;
368    }
369  } else if (kCountMarkedObjects) {
370    ++mark_fastpath_count_;
371  }
372  // This object was not previously marked.
373  if (!object_bitmap->Set(obj)) {
374    PushOnMarkStack(obj);
375  }
376}
377
378inline void MarkSweep::PushOnMarkStack(Object* obj) {
379  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
380    // Lock is not needed but is here anyways to please annotalysis.
381    MutexLock mu(Thread::Current(), mark_stack_lock_);
382    ExpandMarkStack();
383  }
384  // The object must be pushed on to the mark stack.
385  mark_stack_->PushBack(obj);
386}
387
388// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
389bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
390  // TODO: support >1 discontinuous space.
391  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
392  accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
393  if (kProfileLargeObjects) {
394    ++large_object_test_;
395  }
396  if (UNLIKELY(!large_objects->Test(obj))) {
397    if (!large_object_space->Contains(obj)) {
398      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
399      LOG(ERROR) << "Attempting see if it's a bad root";
400      VerifyRoots();
401      LOG(FATAL) << "Can't mark bad root";
402    }
403    if (kProfileLargeObjects) {
404      ++large_object_mark_;
405    }
406    if (set) {
407      large_objects->Set(obj);
408    } else {
409      large_objects->Clear(obj);
410    }
411    return true;
412  }
413  return false;
414}
415
416inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
417  DCHECK(obj != nullptr);
418  if (kUseBakerOrBrooksReadBarrier) {
419    // Verify all the objects have the correct pointer installed.
420    obj->AssertReadBarrierPointer();
421  }
422  if (immune_region_.ContainsObject(obj)) {
423    DCHECK(IsMarked(obj));
424    return false;
425  }
426  // Try to take advantage of locality of references within a space, failing this find the space
427  // the hard way.
428  accounting::SpaceBitmap* object_bitmap = current_space_bitmap_;
429  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
430    accounting::SpaceBitmap* new_bitmap = mark_bitmap_->GetContinuousSpaceBitmap(obj);
431    if (new_bitmap != NULL) {
432      object_bitmap = new_bitmap;
433    } else {
434      // TODO: Remove the Thread::Current here?
435      // TODO: Convert this to some kind of atomic marking?
436      MutexLock mu(Thread::Current(), large_object_lock_);
437      return MarkLargeObject(obj, true);
438    }
439  }
440  // Return true if the object was not previously marked.
441  return !object_bitmap->AtomicTestAndSet(obj);
442}
443
444// Used to mark objects when processing the mark stack. If an object is null, it is not marked.
445inline void MarkSweep::MarkObject(Object* obj) {
446  if (obj != nullptr) {
447    MarkObjectNonNull(obj);
448  } else if (kCountMarkedObjects) {
449    ++mark_null_count_;
450  }
451}
452
453void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/,
454                                         RootType /*root_type*/) {
455  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
456}
457
458void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/,
459                                 RootType /*root_type*/) {
460  CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
461}
462
463void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
464                                 RootType /*root_type*/) {
465  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
466}
467
468void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
469                                   const StackVisitor* visitor) {
470  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
471}
472
473void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
474  // See if the root is on any space bitmap.
475  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
476    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
477    if (!large_object_space->Contains(root)) {
478      LOG(ERROR) << "Found invalid root: " << root;
479      if (visitor != NULL) {
480        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
481      }
482    }
483  }
484}
485
486void MarkSweep::VerifyRoots() {
487  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
488}
489
490void MarkSweep::MarkRoots(Thread* self) {
491  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
492    // If we exclusively hold the mutator lock, all threads must be suspended.
493    timings_.StartSplit("MarkRoots");
494    Runtime::Current()->VisitRoots(MarkRootCallback, this);
495    timings_.EndSplit();
496    RevokeAllThreadLocalAllocationStacks(self);
497  } else {
498    MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
499    // At this point the live stack should no longer have any mutators which push into it.
500    MarkNonThreadRoots();
501    MarkConcurrentRoots(
502        static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
503  }
504}
505
506void MarkSweep::MarkNonThreadRoots() {
507  timings_.StartSplit("MarkNonThreadRoots");
508  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
509  timings_.EndSplit();
510}
511
512void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
513  timings_.StartSplit("MarkConcurrentRoots");
514  // Visit all runtime roots and clear dirty flags.
515  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
516  timings_.EndSplit();
517}
518
519class ScanObjectVisitor {
520 public:
521  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
522      : mark_sweep_(mark_sweep) {}
523
524  void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
525      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
526    if (kCheckLocks) {
527      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
528      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
529    }
530    mark_sweep_->ScanObject(obj);
531  }
532
533 private:
534  MarkSweep* const mark_sweep_;
535};
536
537class DelayReferenceReferentVisitor {
538 public:
539  explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
540  }
541
542  void operator()(mirror::Class* klass, mirror::Reference* ref) const
543      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
544      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
545    collector_->DelayReferenceReferent(klass, ref);
546  }
547
548 private:
549  MarkSweep* const collector_;
550};
551
552template <bool kUseFinger = false>
553class MarkStackTask : public Task {
554 public:
555  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
556                Object** mark_stack)
557      : mark_sweep_(mark_sweep),
558        thread_pool_(thread_pool),
559        mark_stack_pos_(mark_stack_size) {
560    // We may have to copy part of an existing mark stack when another mark stack overflows.
561    if (mark_stack_size != 0) {
562      DCHECK(mark_stack != NULL);
563      // TODO: Check performance?
564      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
565    }
566    if (kCountTasks) {
567      ++mark_sweep_->work_chunks_created_;
568    }
569  }
570
571  static const size_t kMaxSize = 1 * KB;
572
573 protected:
574  class MarkObjectParallelVisitor {
575   public:
576    explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
577                                       MarkSweep* mark_sweep) ALWAYS_INLINE
578            : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
579
580    void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
581        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
582      mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset, false);
583      if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
584        if (kUseFinger) {
585          android_memory_barrier();
586          if (reinterpret_cast<uintptr_t>(ref) >=
587              static_cast<uintptr_t>(mark_sweep_->atomic_finger_)) {
588            return;
589          }
590        }
591        chunk_task_->MarkStackPush(ref);
592      }
593    }
594
595   private:
596    MarkStackTask<kUseFinger>* const chunk_task_;
597    MarkSweep* const mark_sweep_;
598  };
599
600  class ScanObjectParallelVisitor {
601   public:
602    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
603        : chunk_task_(chunk_task) {}
604
605    // No thread safety analysis since multiple threads will use this visitor.
606    void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
607        EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
608      MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
609      MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
610      DelayReferenceReferentVisitor ref_visitor(mark_sweep);
611      mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
612    }
613
614   private:
615    MarkStackTask<kUseFinger>* const chunk_task_;
616  };
617
618  virtual ~MarkStackTask() {
619    // Make sure that we have cleared our mark stack.
620    DCHECK_EQ(mark_stack_pos_, 0U);
621    if (kCountTasks) {
622      ++mark_sweep_->work_chunks_deleted_;
623    }
624  }
625
626  MarkSweep* const mark_sweep_;
627  ThreadPool* const thread_pool_;
628  // Thread local mark stack for this task.
629  Object* mark_stack_[kMaxSize];
630  // Mark stack position.
631  size_t mark_stack_pos_;
632
633  void MarkStackPush(Object* obj) ALWAYS_INLINE {
634    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
635      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
636      mark_stack_pos_ /= 2;
637      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
638                                     mark_stack_ + mark_stack_pos_);
639      thread_pool_->AddTask(Thread::Current(), task);
640    }
641    DCHECK(obj != nullptr);
642    DCHECK_LT(mark_stack_pos_, kMaxSize);
643    mark_stack_[mark_stack_pos_++] = obj;
644  }
645
646  virtual void Finalize() {
647    delete this;
648  }
649
650  // Scans all of the objects
651  virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
652      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
653    ScanObjectParallelVisitor visitor(this);
654    // TODO: Tune this.
655    static const size_t kFifoSize = 4;
656    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
657    for (;;) {
658      Object* obj = nullptr;
659      if (kUseMarkStackPrefetch) {
660        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
661          Object* obj = mark_stack_[--mark_stack_pos_];
662          DCHECK(obj != nullptr);
663          __builtin_prefetch(obj);
664          prefetch_fifo.push_back(obj);
665        }
666        if (UNLIKELY(prefetch_fifo.empty())) {
667          break;
668        }
669        obj = prefetch_fifo.front();
670        prefetch_fifo.pop_front();
671      } else {
672        if (UNLIKELY(mark_stack_pos_ == 0)) {
673          break;
674        }
675        obj = mark_stack_[--mark_stack_pos_];
676      }
677      DCHECK(obj != nullptr);
678      visitor(obj);
679    }
680  }
681};
682
683class CardScanTask : public MarkStackTask<false> {
684 public:
685  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
686               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
687               Object** mark_stack_obj)
688      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
689        bitmap_(bitmap),
690        begin_(begin),
691        end_(end),
692        minimum_age_(minimum_age) {
693  }
694
695 protected:
696  accounting::SpaceBitmap* const bitmap_;
697  byte* const begin_;
698  byte* const end_;
699  const byte minimum_age_;
700
701  virtual void Finalize() {
702    delete this;
703  }
704
705  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
706    ScanObjectParallelVisitor visitor(this);
707    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
708    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
709    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
710        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
711    // Finish by emptying our local mark stack.
712    MarkStackTask::Run(self);
713  }
714};
715
716size_t MarkSweep::GetThreadCount(bool paused) const {
717  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
718    return 0;
719  }
720  if (paused) {
721    return heap_->GetParallelGCThreadCount() + 1;
722  } else {
723    return heap_->GetConcGCThreadCount() + 1;
724  }
725}
726
727void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
728  accounting::CardTable* card_table = GetHeap()->GetCardTable();
729  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
730  size_t thread_count = GetThreadCount(paused);
731  // The parallel version with only one thread is faster for card scanning, TODO: fix.
732  if (kParallelCardScan && thread_count > 0) {
733    Thread* self = Thread::Current();
734    // Can't have a different split for each space since multiple spaces can have their cards being
735    // scanned at the same time.
736    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
737    // Try to take some of the mark stack since we can pass this off to the worker tasks.
738    Object** mark_stack_begin = mark_stack_->Begin();
739    Object** mark_stack_end = mark_stack_->End();
740    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
741    // Estimated number of work tasks we will create.
742    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
743    DCHECK_NE(mark_stack_tasks, 0U);
744    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
745                                             mark_stack_size / mark_stack_tasks + 1);
746    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
747      if (space->GetMarkBitmap() == nullptr) {
748        continue;
749      }
750      byte* card_begin = space->Begin();
751      byte* card_end = space->End();
752      // Align up the end address. For example, the image space's end
753      // may not be card-size-aligned.
754      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
755      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
756      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
757      // Calculate how many bytes of heap we will scan,
758      const size_t address_range = card_end - card_begin;
759      // Calculate how much address range each task gets.
760      const size_t card_delta = RoundUp(address_range / thread_count + 1,
761                                        accounting::CardTable::kCardSize);
762      // Create the worker tasks for this space.
763      while (card_begin != card_end) {
764        // Add a range of cards.
765        size_t addr_remaining = card_end - card_begin;
766        size_t card_increment = std::min(card_delta, addr_remaining);
767        // Take from the back of the mark stack.
768        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
769        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
770        mark_stack_end -= mark_stack_increment;
771        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
772        DCHECK_EQ(mark_stack_end, mark_stack_->End());
773        // Add the new task to the thread pool.
774        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
775                                      card_begin + card_increment, minimum_age,
776                                      mark_stack_increment, mark_stack_end);
777        thread_pool->AddTask(self, task);
778        card_begin += card_increment;
779      }
780    }
781
782    // Note: the card scan below may dirty new cards (and scan them)
783    // as a side effect when a Reference object is encountered and
784    // queued during the marking. See b/11465268.
785    thread_pool->SetMaxActiveWorkers(thread_count - 1);
786    thread_pool->StartWorkers(self);
787    thread_pool->Wait(self, true, true);
788    thread_pool->StopWorkers(self);
789    timings_.EndSplit();
790  } else {
791    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
792      if (space->GetMarkBitmap() != nullptr) {
793        // Image spaces are handled properly since live == marked for them.
794        switch (space->GetGcRetentionPolicy()) {
795          case space::kGcRetentionPolicyNeverCollect:
796            timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
797                "ScanGrayImageSpaceObjects");
798            break;
799          case space::kGcRetentionPolicyFullCollect:
800            timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
801                "ScanGrayZygoteSpaceObjects");
802            break;
803          case space::kGcRetentionPolicyAlwaysCollect:
804            timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
805                "ScanGrayAllocSpaceObjects");
806            break;
807          }
808        ScanObjectVisitor visitor(this);
809        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
810        timings_.EndSplit();
811      }
812    }
813  }
814}
815
816class RecursiveMarkTask : public MarkStackTask<false> {
817 public:
818  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
819                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
820      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
821        bitmap_(bitmap),
822        begin_(begin),
823        end_(end) {
824  }
825
826 protected:
827  accounting::SpaceBitmap* const bitmap_;
828  const uintptr_t begin_;
829  const uintptr_t end_;
830
831  virtual void Finalize() {
832    delete this;
833  }
834
835  // Scans all of the objects
836  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
837    ScanObjectParallelVisitor visitor(this);
838    bitmap_->VisitMarkedRange(begin_, end_, visitor);
839    // Finish by emptying our local mark stack.
840    MarkStackTask::Run(self);
841  }
842};
843
844// Populates the mark stack based on the set of marked objects and
845// recursively marks until the mark stack is emptied.
846void MarkSweep::RecursiveMark() {
847  TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
848  // RecursiveMark will build the lists of known instances of the Reference classes. See
849  // DelayReferenceReferent for details.
850  if (kUseRecursiveMark) {
851    const bool partial = GetGcType() == kGcTypePartial;
852    ScanObjectVisitor scan_visitor(this);
853    auto* self = Thread::Current();
854    ThreadPool* thread_pool = heap_->GetThreadPool();
855    size_t thread_count = GetThreadCount(false);
856    const bool parallel = kParallelRecursiveMark && thread_count > 1;
857    mark_stack_->Reset();
858    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
859      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
860          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
861        current_space_bitmap_ = space->GetMarkBitmap();
862        if (current_space_bitmap_ == nullptr) {
863          continue;
864        }
865        if (parallel) {
866          // We will use the mark stack the future.
867          // CHECK(mark_stack_->IsEmpty());
868          // This function does not handle heap end increasing, so we must use the space end.
869          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
870          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
871          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
872
873          // Create a few worker tasks.
874          const size_t n = thread_count * 2;
875          while (begin != end) {
876            uintptr_t start = begin;
877            uintptr_t delta = (end - begin) / n;
878            delta = RoundUp(delta, KB);
879            if (delta < 16 * KB) delta = end - begin;
880            begin += delta;
881            auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
882                                               begin);
883            thread_pool->AddTask(self, task);
884          }
885          thread_pool->SetMaxActiveWorkers(thread_count - 1);
886          thread_pool->StartWorkers(self);
887          thread_pool->Wait(self, true, true);
888          thread_pool->StopWorkers(self);
889        } else {
890          // This function does not handle heap end increasing, so we must use the space end.
891          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
892          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
893          current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
894        }
895      }
896    }
897  }
898  ProcessMarkStack(false);
899}
900
901mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
902  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
903    return object;
904  }
905  return nullptr;
906}
907
908void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
909  ScanGrayObjects(paused, minimum_age);
910  ProcessMarkStack(paused);
911}
912
913void MarkSweep::ReMarkRoots() {
914  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
915  timings_.StartSplit("(Paused)ReMarkRoots");
916  Runtime::Current()->VisitRoots(
917      MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
918                                                          kVisitRootFlagStopLoggingNewRoots |
919                                                          kVisitRootFlagClearRootLog));
920  timings_.EndSplit();
921  if (kVerifyRoots) {
922    timings_.StartSplit("(Paused)VerifyRoots");
923    Runtime::Current()->VisitRoots(VerifyRootMarked, this);
924    timings_.EndSplit();
925  }
926}
927
928void MarkSweep::SweepSystemWeaks(Thread* self) {
929  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
930  timings_.StartSplit("SweepSystemWeaks");
931  Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
932  timings_.EndSplit();
933}
934
935mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
936  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
937  // We don't actually want to sweep the object, so lets return "marked"
938  return obj;
939}
940
941void MarkSweep::VerifyIsLive(const Object* obj) {
942  if (!heap_->GetLiveBitmap()->Test(obj)) {
943    space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
944    if (!large_object_space->GetLiveObjects()->Test(obj)) {
945      if (std::find(heap_->allocation_stack_->Begin(), heap_->allocation_stack_->End(), obj) ==
946          heap_->allocation_stack_->End()) {
947        // Object not found!
948        heap_->DumpSpaces();
949        LOG(FATAL) << "Found dead object " << obj;
950      }
951    }
952  }
953}
954
955void MarkSweep::VerifySystemWeaks() {
956  // Verify system weaks, uses a special object visitor which returns the input object.
957  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
958}
959
960class CheckpointMarkThreadRoots : public Closure {
961 public:
962  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
963                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
964      : mark_sweep_(mark_sweep),
965        revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
966            revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
967  }
968
969  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
970    ATRACE_BEGIN("Marking thread roots");
971    // Note: self is not necessarily equal to thread since thread may be suspended.
972    Thread* self = Thread::Current();
973    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
974        << thread->GetState() << " thread " << thread << " self " << self;
975    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
976    ATRACE_END();
977    if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
978      ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
979      mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
980      ATRACE_END();
981    }
982    mark_sweep_->GetBarrier().Pass(self);
983  }
984
985 private:
986  MarkSweep* const mark_sweep_;
987  const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
988};
989
990void MarkSweep::MarkRootsCheckpoint(Thread* self,
991                                    bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
992  CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
993  timings_.StartSplit("MarkRootsCheckpoint");
994  ThreadList* thread_list = Runtime::Current()->GetThreadList();
995  // Request the check point is run on all threads returning a count of the threads that must
996  // run through the barrier including self.
997  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
998  // Release locks then wait for all mutator threads to pass the barrier.
999  // TODO: optimize to not release locks when there are no threads to wait for.
1000  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1001  Locks::mutator_lock_->SharedUnlock(self);
1002  {
1003    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1004    gc_barrier_->Increment(self, barrier_count);
1005  }
1006  Locks::mutator_lock_->SharedLock(self);
1007  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1008  timings_.EndSplit();
1009}
1010
1011void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1012  timings_.StartSplit("SweepArray");
1013  Thread* self = Thread::Current();
1014  mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize];
1015  size_t chunk_free_pos = 0;
1016  size_t freed_bytes = 0;
1017  size_t freed_large_object_bytes = 0;
1018  size_t freed_objects = 0;
1019  size_t freed_large_objects = 0;
1020  // How many objects are left in the array, modified after each space is swept.
1021  Object** objects = allocations->Begin();
1022  size_t count = allocations->Size();
1023  // Change the order to ensure that the non-moving space last swept as an optimization.
1024  std::vector<space::ContinuousSpace*> sweep_spaces;
1025  space::ContinuousSpace* non_moving_space = nullptr;
1026  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1027    if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1028        space->GetLiveBitmap() != nullptr) {
1029      if (space == heap_->GetNonMovingSpace()) {
1030        non_moving_space = space;
1031      } else {
1032        sweep_spaces.push_back(space);
1033      }
1034    }
1035  }
1036  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1037  // the other alloc spaces as an optimization.
1038  if (non_moving_space != nullptr) {
1039    sweep_spaces.push_back(non_moving_space);
1040  }
1041  // Start by sweeping the continuous spaces.
1042  for (space::ContinuousSpace* space : sweep_spaces) {
1043    space::AllocSpace* alloc_space = space->AsAllocSpace();
1044    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1045    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1046    if (swap_bitmaps) {
1047      std::swap(live_bitmap, mark_bitmap);
1048    }
1049    Object** out = objects;
1050    for (size_t i = 0; i < count; ++i) {
1051      Object* obj = objects[i];
1052      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1053        continue;
1054      }
1055      if (space->HasAddress(obj)) {
1056        // This object is in the space, remove it from the array and add it to the sweep buffer
1057        // if needed.
1058        if (!mark_bitmap->Test(obj)) {
1059          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1060            timings_.StartSplit("FreeList");
1061            freed_objects += chunk_free_pos;
1062            freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1063            timings_.EndSplit();
1064            chunk_free_pos = 0;
1065          }
1066          chunk_free_buffer[chunk_free_pos++] = obj;
1067        }
1068      } else {
1069        *(out++) = obj;
1070      }
1071    }
1072    if (chunk_free_pos > 0) {
1073      timings_.StartSplit("FreeList");
1074      freed_objects += chunk_free_pos;
1075      freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1076      timings_.EndSplit();
1077      chunk_free_pos = 0;
1078    }
1079    // All of the references which space contained are no longer in the allocation stack, update
1080    // the count.
1081    count = out - objects;
1082  }
1083  // Handle the large object space.
1084  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1085  accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
1086  accounting::ObjectSet* large_mark_objects = large_object_space->GetMarkObjects();
1087  if (swap_bitmaps) {
1088    std::swap(large_live_objects, large_mark_objects);
1089  }
1090  for (size_t i = 0; i < count; ++i) {
1091    Object* obj = objects[i];
1092    // Handle large objects.
1093    if (kUseThreadLocalAllocationStack && obj == nullptr) {
1094      continue;
1095    }
1096    if (!large_mark_objects->Test(obj)) {
1097      ++freed_large_objects;
1098      freed_large_object_bytes += large_object_space->Free(self, obj);
1099    }
1100  }
1101  timings_.EndSplit();
1102
1103  timings_.StartSplit("RecordFree");
1104  VLOG(heap) << "Freed " << freed_objects << "/" << count
1105             << " objects with size " << PrettySize(freed_bytes);
1106  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1107  freed_objects_.FetchAndAdd(freed_objects);
1108  freed_large_objects_.FetchAndAdd(freed_large_objects);
1109  freed_bytes_.FetchAndAdd(freed_bytes);
1110  freed_large_object_bytes_.FetchAndAdd(freed_large_object_bytes);
1111  timings_.EndSplit();
1112
1113  timings_.StartSplit("ResetStack");
1114  allocations->Reset();
1115  timings_.EndSplit();
1116}
1117
1118void MarkSweep::Sweep(bool swap_bitmaps) {
1119  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1120  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1121  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1122  // knowing that new allocations won't be marked as live.
1123  timings_.StartSplit("MarkStackAsLive");
1124  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1125  heap_->MarkAllocStackAsLive(live_stack);
1126  live_stack->Reset();
1127  timings_.EndSplit();
1128
1129  DCHECK(mark_stack_->IsEmpty());
1130  TimingLogger::ScopedSplit("Sweep", &timings_);
1131  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1132    if (space->IsContinuousMemMapAllocSpace()) {
1133      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1134      TimingLogger::ScopedSplit split(
1135          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_);
1136      size_t freed_objects = 0;
1137      size_t freed_bytes = 0;
1138      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1139      heap_->RecordFree(freed_objects, freed_bytes);
1140      freed_objects_.FetchAndAdd(freed_objects);
1141      freed_bytes_.FetchAndAdd(freed_bytes);
1142    }
1143  }
1144  SweepLargeObjects(swap_bitmaps);
1145}
1146
1147void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1148  TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1149  size_t freed_objects = 0;
1150  size_t freed_bytes = 0;
1151  GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1152  freed_large_objects_.FetchAndAdd(freed_objects);
1153  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
1154  GetHeap()->RecordFree(freed_objects, freed_bytes);
1155}
1156
1157// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
1158// marked, put it on the appropriate list in the heap for later processing.
1159void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1160  DCHECK(klass != nullptr);
1161  if (kCountJavaLangRefs) {
1162    ++reference_count_;
1163  }
1164  heap_->DelayReferenceReferent(klass, ref, IsMarkedCallback, this);
1165}
1166
1167class MarkObjectVisitor {
1168 public:
1169  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1170  }
1171
1172  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
1173      ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1174      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1175    if (kCheckLocks) {
1176      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1177      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1178    }
1179    mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset, false));
1180  }
1181
1182 private:
1183  MarkSweep* const mark_sweep_;
1184};
1185
1186// Scans an object reference.  Determines the type of the reference
1187// and dispatches to a specialized scanning routine.
1188void MarkSweep::ScanObject(Object* obj) {
1189  MarkObjectVisitor mark_visitor(this);
1190  DelayReferenceReferentVisitor ref_visitor(this);
1191  ScanObjectVisit(obj, mark_visitor, ref_visitor);
1192}
1193
1194void MarkSweep::ProcessMarkStackPausedCallback(void* arg) {
1195  reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(true);
1196}
1197
1198void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1199  Thread* self = Thread::Current();
1200  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1201  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1202                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1203  CHECK_GT(chunk_size, 0U);
1204  // Split the current mark stack up into work tasks.
1205  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1206    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1207    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1208    it += delta;
1209  }
1210  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1211  thread_pool->StartWorkers(self);
1212  thread_pool->Wait(self, true, true);
1213  thread_pool->StopWorkers(self);
1214  mark_stack_->Reset();
1215  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1216}
1217
1218// Scan anything that's on the mark stack.
1219void MarkSweep::ProcessMarkStack(bool paused) {
1220  timings_.StartSplit(paused ? "(Paused)ProcessMarkStack" : "ProcessMarkStack");
1221  size_t thread_count = GetThreadCount(paused);
1222  if (kParallelProcessMarkStack && thread_count > 1 &&
1223      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1224    ProcessMarkStackParallel(thread_count);
1225  } else {
1226    // TODO: Tune this.
1227    static const size_t kFifoSize = 4;
1228    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1229    for (;;) {
1230      Object* obj = NULL;
1231      if (kUseMarkStackPrefetch) {
1232        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1233          Object* obj = mark_stack_->PopBack();
1234          DCHECK(obj != NULL);
1235          __builtin_prefetch(obj);
1236          prefetch_fifo.push_back(obj);
1237        }
1238        if (prefetch_fifo.empty()) {
1239          break;
1240        }
1241        obj = prefetch_fifo.front();
1242        prefetch_fifo.pop_front();
1243      } else {
1244        if (mark_stack_->IsEmpty()) {
1245          break;
1246        }
1247        obj = mark_stack_->PopBack();
1248      }
1249      DCHECK(obj != nullptr);
1250      ScanObject(obj);
1251    }
1252  }
1253  timings_.EndSplit();
1254}
1255
1256inline bool MarkSweep::IsMarked(const Object* object) const
1257    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1258  if (immune_region_.ContainsObject(object)) {
1259    return true;
1260  }
1261  if (current_space_bitmap_->HasAddress(object)) {
1262    return current_space_bitmap_->Test(object);
1263  }
1264  return mark_bitmap_->Test(object);
1265}
1266
1267void MarkSweep::FinishPhase() {
1268  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1269  // Can't enqueue references if we hold the mutator lock.
1270  timings_.NewSplit("PostGcVerification");
1271  heap_->PostGcVerification(this);
1272  if (kCountScannedTypes) {
1273    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1274             << " other=" << other_count_;
1275  }
1276  if (kCountTasks) {
1277    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1278  }
1279  if (kMeasureOverhead) {
1280    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1281  }
1282  if (kProfileLargeObjects) {
1283    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1284  }
1285  if (kCountJavaLangRefs) {
1286    VLOG(gc) << "References scanned " << reference_count_;
1287  }
1288  if (kCountMarkedObjects) {
1289    VLOG(gc) << "Marked: null=" << mark_null_count_ << " immune=" <<  mark_immune_count_
1290        << " fastpath=" << mark_fastpath_count_ << " slowpath=" << mark_slowpath_count_;
1291  }
1292  CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
1293  mark_stack_->Reset();
1294  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1295  heap_->ClearMarkedObjects();
1296}
1297
1298void MarkSweep::RevokeAllThreadLocalBuffers() {
1299  if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1300    // If concurrent, rosalloc thread-local buffers are revoked at the
1301    // thread checkpoint. Bump pointer space thread-local buffers must
1302    // not be in use.
1303    GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1304  } else {
1305    timings_.StartSplit("(Paused)RevokeAllThreadLocalBuffers");
1306    GetHeap()->RevokeAllThreadLocalBuffers();
1307    timings_.EndSplit();
1308  }
1309}
1310
1311}  // namespace collector
1312}  // namespace gc
1313}  // namespace art
1314