mark_sweep.cc revision 951ec2c93c79c5539cbcc669566f0808d4460338
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <atomic>
20#include <functional>
21#include <numeric>
22#include <climits>
23#include <vector>
24
25#define ATRACE_TAG ATRACE_TAG_DALVIK
26#include "cutils/trace.h"
27
28#include "base/bounded_fifo.h"
29#include "base/logging.h"
30#include "base/macros.h"
31#include "base/mutex-inl.h"
32#include "base/time_utils.h"
33#include "base/timing_logger.h"
34#include "gc/accounting/card_table-inl.h"
35#include "gc/accounting/heap_bitmap-inl.h"
36#include "gc/accounting/mod_union_table.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/heap.h"
39#include "gc/reference_processor.h"
40#include "gc/space/large_object_space.h"
41#include "gc/space/space-inl.h"
42#include "mark_sweep-inl.h"
43#include "mirror/object-inl.h"
44#include "runtime.h"
45#include "scoped_thread_state_change.h"
46#include "thread-inl.h"
47#include "thread_list.h"
48
49namespace art {
50namespace gc {
51namespace collector {
52
53// Performance options.
54static constexpr bool kUseRecursiveMark = false;
55static constexpr bool kUseMarkStackPrefetch = true;
56static constexpr size_t kSweepArrayChunkFreeSize = 1024;
57static constexpr bool kPreCleanCards = true;
58
59// Parallelism options.
60static constexpr bool kParallelCardScan = true;
61static constexpr bool kParallelRecursiveMark = true;
62// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
63// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
64// having this can add overhead in ProcessReferences since we may end up doing many calls of
65// ProcessMarkStack with very small mark stacks.
66static constexpr size_t kMinimumParallelMarkStackSize = 128;
67static constexpr bool kParallelProcessMarkStack = true;
68
69// Profiling and information flags.
70static constexpr bool kProfileLargeObjects = false;
71static constexpr bool kMeasureOverhead = false;
72static constexpr bool kCountTasks = false;
73static constexpr bool kCountMarkedObjects = false;
74
75// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
76static constexpr bool kCheckLocks = kDebugLocking;
77static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
78
79// If true, revoke the rosalloc thread-local buffers at the
80// checkpoint, as opposed to during the pause.
81static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
82
83void MarkSweep::BindBitmaps() {
84  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
85  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
86  // Mark all of the spaces we never collect as immune.
87  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
88    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
89      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
90    }
91  }
92}
93
94MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
95    : GarbageCollector(heap,
96                       name_prefix +
97                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
98      current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr),
99      gc_barrier_(new Barrier(0)),
100      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
101      is_concurrent_(is_concurrent), live_stack_freeze_size_(0) {
102  std::string error_msg;
103  MemMap* mem_map = MemMap::MapAnonymous(
104      "mark sweep sweep array free buffer", nullptr,
105      RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
106      PROT_READ | PROT_WRITE, false, false, &error_msg);
107  CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
108  sweep_array_free_buffer_mem_map_.reset(mem_map);
109}
110
111void MarkSweep::InitializePhase() {
112  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
113  mark_stack_ = heap_->GetMarkStack();
114  DCHECK(mark_stack_ != nullptr);
115  immune_region_.Reset();
116  no_reference_class_count_.StoreRelaxed(0);
117  normal_count_.StoreRelaxed(0);
118  class_count_.StoreRelaxed(0);
119  object_array_count_.StoreRelaxed(0);
120  other_count_.StoreRelaxed(0);
121  reference_count_.StoreRelaxed(0);
122  large_object_test_.StoreRelaxed(0);
123  large_object_mark_.StoreRelaxed(0);
124  overhead_time_ .StoreRelaxed(0);
125  work_chunks_created_.StoreRelaxed(0);
126  work_chunks_deleted_.StoreRelaxed(0);
127  mark_null_count_.StoreRelaxed(0);
128  mark_immune_count_.StoreRelaxed(0);
129  mark_fastpath_count_.StoreRelaxed(0);
130  mark_slowpath_count_.StoreRelaxed(0);
131  {
132    // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
133    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
134    mark_bitmap_ = heap_->GetMarkBitmap();
135  }
136  if (!GetCurrentIteration()->GetClearSoftReferences()) {
137    // Always clear soft references if a non-sticky collection.
138    GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
139  }
140}
141
142void MarkSweep::RunPhases() {
143  Thread* self = Thread::Current();
144  InitializePhase();
145  Locks::mutator_lock_->AssertNotHeld(self);
146  if (IsConcurrent()) {
147    GetHeap()->PreGcVerification(this);
148    {
149      ReaderMutexLock mu(self, *Locks::mutator_lock_);
150      MarkingPhase();
151    }
152    ScopedPause pause(this);
153    GetHeap()->PrePauseRosAllocVerification(this);
154    PausePhase();
155    RevokeAllThreadLocalBuffers();
156  } else {
157    ScopedPause pause(this);
158    GetHeap()->PreGcVerificationPaused(this);
159    MarkingPhase();
160    GetHeap()->PrePauseRosAllocVerification(this);
161    PausePhase();
162    RevokeAllThreadLocalBuffers();
163  }
164  {
165    // Sweeping always done concurrently, even for non concurrent mark sweep.
166    ReaderMutexLock mu(self, *Locks::mutator_lock_);
167    ReclaimPhase();
168  }
169  GetHeap()->PostGcVerification(this);
170  FinishPhase();
171}
172
173void MarkSweep::ProcessReferences(Thread* self) {
174  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
175  GetHeap()->GetReferenceProcessor()->ProcessReferences(
176      true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
177}
178
179void MarkSweep::PausePhase() {
180  TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
181  Thread* self = Thread::Current();
182  Locks::mutator_lock_->AssertExclusiveHeld(self);
183  if (IsConcurrent()) {
184    // Handle the dirty objects if we are a concurrent GC.
185    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
186    // Re-mark root set.
187    ReMarkRoots();
188    // Scan dirty objects, this is only required if we are not doing concurrent GC.
189    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
190  }
191  {
192    TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
193    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
194    heap_->SwapStacks();
195    live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
196    // Need to revoke all the thread local allocation stacks since we just swapped the allocation
197    // stacks and don't want anybody to allocate into the live stack.
198    RevokeAllThreadLocalAllocationStacks(self);
199  }
200  heap_->PreSweepingGcVerification(this);
201  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
202  // weak before we sweep them. Since this new system weak may not be marked, the GC may
203  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
204  // reference to a string that is about to be swept.
205  Runtime::Current()->DisallowNewSystemWeaks();
206  // Enable the reference processing slow path, needs to be done with mutators paused since there
207  // is no lock in the GetReferent fast path.
208  GetHeap()->GetReferenceProcessor()->EnableSlowPath();
209}
210
211void MarkSweep::PreCleanCards() {
212  // Don't do this for non concurrent GCs since they don't have any dirty cards.
213  if (kPreCleanCards && IsConcurrent()) {
214    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
215    Thread* self = Thread::Current();
216    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
217    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
218    heap_->ProcessCards(GetTimings(), false, true, false);
219    // The checkpoint root marking is required to avoid a race condition which occurs if the
220    // following happens during a reference write:
221    // 1. mutator dirties the card (write barrier)
222    // 2. GC ages the card (the above ProcessCards call)
223    // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
224    // 4. mutator writes the value (corresponding to the write barrier in 1.)
225    // This causes the GC to age the card but not necessarily mark the reference which the mutator
226    // wrote into the object stored in the card.
227    // Having the checkpoint fixes this issue since it ensures that the card mark and the
228    // reference write are visible to the GC before the card is scanned (this is due to locks being
229    // acquired / released in the checkpoint code).
230    // The other roots are also marked to help reduce the pause.
231    MarkRootsCheckpoint(self, false);
232    MarkNonThreadRoots();
233    MarkConcurrentRoots(
234        static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
235    // Process the newly aged cards.
236    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
237    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
238    // in the next GC.
239  }
240}
241
242void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
243  if (kUseThreadLocalAllocationStack) {
244    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
245    Locks::mutator_lock_->AssertExclusiveHeld(self);
246    heap_->RevokeAllThreadLocalAllocationStacks(self);
247  }
248}
249
250void MarkSweep::MarkingPhase() {
251  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
252  Thread* self = Thread::Current();
253  BindBitmaps();
254  FindDefaultSpaceBitmap();
255  // Process dirty cards and add dirty cards to mod union tables.
256  // If the GC type is non sticky, then we just clear the cards instead of ageing them.
257  heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky);
258  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
259  MarkRoots(self);
260  MarkReachableObjects();
261  // Pre-clean dirtied cards to reduce pauses.
262  PreCleanCards();
263}
264
265void MarkSweep::UpdateAndMarkModUnion() {
266  for (const auto& space : heap_->GetContinuousSpaces()) {
267    if (immune_region_.ContainsSpace(space)) {
268      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
269          "UpdateAndMarkImageModUnionTable";
270      TimingLogger::ScopedTiming t(name, GetTimings());
271      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
272      CHECK(mod_union_table != nullptr);
273      mod_union_table->UpdateAndMarkReferences(this);
274    }
275  }
276}
277
278void MarkSweep::MarkReachableObjects() {
279  UpdateAndMarkModUnion();
280  // Recursively mark all the non-image bits set in the mark bitmap.
281  RecursiveMark();
282}
283
284void MarkSweep::ReclaimPhase() {
285  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
286  Thread* const self = Thread::Current();
287  // Process the references concurrently.
288  ProcessReferences(self);
289  SweepSystemWeaks(self);
290  Runtime* const runtime = Runtime::Current();
291  runtime->AllowNewSystemWeaks();
292  // Clean up class loaders after system weaks are swept since that is how we know if class
293  // unloading occurred.
294  runtime->GetClassLinker()->CleanupClassLoaders();
295  {
296    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
297    GetHeap()->RecordFreeRevoke();
298    // Reclaim unmarked objects.
299    Sweep(false);
300    // Swap the live and mark bitmaps for each space which we modified space. This is an
301    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
302    // bitmaps.
303    SwapBitmaps();
304    // Unbind the live and mark bitmaps.
305    GetHeap()->UnBindBitmaps();
306  }
307}
308
309void MarkSweep::FindDefaultSpaceBitmap() {
310  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
311  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
312    accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
313    // We want to have the main space instead of non moving if possible.
314    if (bitmap != nullptr &&
315        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
316      current_space_bitmap_ = bitmap;
317      // If we are not the non moving space exit the loop early since this will be good enough.
318      if (space != heap_->GetNonMovingSpace()) {
319        break;
320      }
321    }
322  }
323  CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
324      << heap_->DumpSpaces();
325}
326
327void MarkSweep::ExpandMarkStack() {
328  ResizeMarkStack(mark_stack_->Capacity() * 2);
329}
330
331void MarkSweep::ResizeMarkStack(size_t new_size) {
332  // Rare case, no need to have Thread::Current be a parameter.
333  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
334    // Someone else acquired the lock and expanded the mark stack before us.
335    return;
336  }
337  std::vector<StackReference<mirror::Object>> temp(mark_stack_->Begin(), mark_stack_->End());
338  CHECK_LE(mark_stack_->Size(), new_size);
339  mark_stack_->Resize(new_size);
340  for (auto& obj : temp) {
341    mark_stack_->PushBack(obj.AsMirrorPtr());
342  }
343}
344
345mirror::Object* MarkSweep::MarkObject(mirror::Object* obj) {
346  MarkObject(obj, nullptr, MemberOffset(0));
347  return obj;
348}
349
350inline void MarkSweep::MarkObjectNonNullParallel(mirror::Object* obj) {
351  DCHECK(obj != nullptr);
352  if (MarkObjectParallel(obj)) {
353    MutexLock mu(Thread::Current(), mark_stack_lock_);
354    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
355      ExpandMarkStack();
356    }
357    // The object must be pushed on to the mark stack.
358    mark_stack_->PushBack(obj);
359  }
360}
361
362bool MarkSweep::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* ref) {
363  return IsMarked(ref->AsMirrorPtr());
364}
365
366class MarkSweepMarkObjectSlowPath {
367 public:
368  explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep, mirror::Object* holder = nullptr,
369                                       MemberOffset offset = MemberOffset(0))
370      : mark_sweep_(mark_sweep), holder_(holder), offset_(offset) {
371  }
372
373  void operator()(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
374    if (kProfileLargeObjects) {
375      // TODO: Differentiate between marking and testing somehow.
376      ++mark_sweep_->large_object_test_;
377      ++mark_sweep_->large_object_mark_;
378    }
379    space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
380    if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
381                 (kIsDebugBuild && large_object_space != nullptr &&
382                     !large_object_space->Contains(obj)))) {
383      LOG(INTERNAL_FATAL) << "Tried to mark " << obj << " not contained by any spaces";
384      if (holder_ != nullptr) {
385        size_t holder_size = holder_->SizeOf();
386        ArtField* field = holder_->FindFieldByOffset(offset_);
387        LOG(INTERNAL_FATAL) << "Field info: "
388                            << " holder=" << holder_
389                            << " holder is "
390                            << (mark_sweep_->GetHeap()->IsLiveObjectLocked(holder_)
391                                ? "alive" : "dead")
392                            << " holder_size=" << holder_size
393                            << " holder_type=" << PrettyTypeOf(holder_)
394                            << " offset=" << offset_.Uint32Value()
395                            << " field=" << (field != nullptr ? field->GetName() : "nullptr")
396                            << " field_type="
397                            << (field != nullptr ? field->GetTypeDescriptor() : "")
398                            << " first_ref_field_offset="
399                            << (holder_->IsClass()
400                                ? holder_->AsClass()->GetFirstReferenceStaticFieldOffset(
401                                    sizeof(void*))
402                                : holder_->GetClass()->GetFirstReferenceInstanceFieldOffset())
403                            << " num_of_ref_fields="
404                            << (holder_->IsClass()
405                                ? holder_->AsClass()->NumReferenceStaticFields()
406                                : holder_->GetClass()->NumReferenceInstanceFields())
407                            << "\n";
408        // Print the memory content of the holder.
409        for (size_t i = 0; i < holder_size / sizeof(uint32_t); ++i) {
410          uint32_t* p = reinterpret_cast<uint32_t*>(holder_);
411          LOG(INTERNAL_FATAL) << &p[i] << ": " << "holder+" << (i * sizeof(uint32_t)) << " = "
412                              << std::hex << p[i];
413        }
414      }
415      PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
416      MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
417      {
418        LOG(INTERNAL_FATAL) << "Attempting see if it's a bad root";
419        Thread* self = Thread::Current();
420        if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
421          mark_sweep_->VerifyRoots();
422        } else {
423          const bool heap_bitmap_exclusive_locked =
424              Locks::heap_bitmap_lock_->IsExclusiveHeld(self);
425          if (heap_bitmap_exclusive_locked) {
426            Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
427          }
428          {
429            ScopedThreadSuspension(self, kSuspended);
430            ScopedSuspendAll ssa(__FUNCTION__);
431            mark_sweep_->VerifyRoots();
432          }
433          if (heap_bitmap_exclusive_locked) {
434            Locks::heap_bitmap_lock_->ExclusiveLock(self);
435          }
436        }
437      }
438      LOG(FATAL) << "Can't mark invalid object";
439    }
440  }
441
442 private:
443  MarkSweep* const mark_sweep_;
444  mirror::Object* const holder_;
445  MemberOffset offset_;
446};
447
448inline void MarkSweep::MarkObjectNonNull(mirror::Object* obj, mirror::Object* holder,
449                                         MemberOffset offset) {
450  DCHECK(obj != nullptr);
451  if (kUseBakerOrBrooksReadBarrier) {
452    // Verify all the objects have the correct pointer installed.
453    obj->AssertReadBarrierPointer();
454  }
455  if (immune_region_.ContainsObject(obj)) {
456    if (kCountMarkedObjects) {
457      ++mark_immune_count_;
458    }
459    DCHECK(mark_bitmap_->Test(obj));
460  } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
461    if (kCountMarkedObjects) {
462      ++mark_fastpath_count_;
463    }
464    if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
465      PushOnMarkStack(obj);  // This object was not previously marked.
466    }
467  } else {
468    if (kCountMarkedObjects) {
469      ++mark_slowpath_count_;
470    }
471    MarkSweepMarkObjectSlowPath visitor(this, holder, offset);
472    // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
473    // will check again.
474    if (!mark_bitmap_->Set(obj, visitor)) {
475      PushOnMarkStack(obj);  // Was not already marked, push.
476    }
477  }
478}
479
480inline void MarkSweep::PushOnMarkStack(mirror::Object* obj) {
481  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
482    // Lock is not needed but is here anyways to please annotalysis.
483    MutexLock mu(Thread::Current(), mark_stack_lock_);
484    ExpandMarkStack();
485  }
486  // The object must be pushed on to the mark stack.
487  mark_stack_->PushBack(obj);
488}
489
490inline bool MarkSweep::MarkObjectParallel(mirror::Object* obj) {
491  DCHECK(obj != nullptr);
492  if (kUseBakerOrBrooksReadBarrier) {
493    // Verify all the objects have the correct pointer installed.
494    obj->AssertReadBarrierPointer();
495  }
496  if (immune_region_.ContainsObject(obj)) {
497    DCHECK(IsMarked(obj) != nullptr);
498    return false;
499  }
500  // Try to take advantage of locality of references within a space, failing this find the space
501  // the hard way.
502  accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
503  if (LIKELY(object_bitmap->HasAddress(obj))) {
504    return !object_bitmap->AtomicTestAndSet(obj);
505  }
506  MarkSweepMarkObjectSlowPath visitor(this);
507  return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
508}
509
510void MarkSweep::MarkHeapReference(mirror::HeapReference<mirror::Object>* ref) {
511  MarkObject(ref->AsMirrorPtr(), nullptr, MemberOffset(0));
512}
513
514// Used to mark objects when processing the mark stack. If an object is null, it is not marked.
515inline void MarkSweep::MarkObject(mirror::Object* obj, mirror::Object* holder,
516                                  MemberOffset offset) {
517  if (obj != nullptr) {
518    MarkObjectNonNull(obj, holder, offset);
519  } else if (kCountMarkedObjects) {
520    ++mark_null_count_;
521  }
522}
523
524class VerifyRootMarkedVisitor : public SingleRootVisitor {
525 public:
526  explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { }
527
528  void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
529      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
530    CHECK(collector_->IsMarked(root) != nullptr) << info.ToString();
531  }
532
533 private:
534  MarkSweep* const collector_;
535};
536
537void MarkSweep::VisitRoots(mirror::Object*** roots, size_t count,
538                           const RootInfo& info ATTRIBUTE_UNUSED) {
539  for (size_t i = 0; i < count; ++i) {
540    MarkObjectNonNull(*roots[i]);
541  }
542}
543
544void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
545                           const RootInfo& info ATTRIBUTE_UNUSED) {
546  for (size_t i = 0; i < count; ++i) {
547    MarkObjectNonNull(roots[i]->AsMirrorPtr());
548  }
549}
550
551class VerifyRootVisitor : public SingleRootVisitor {
552 public:
553  void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
554      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
555    // See if the root is on any space bitmap.
556    auto* heap = Runtime::Current()->GetHeap();
557    if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
558      space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace();
559      if (large_object_space != nullptr && !large_object_space->Contains(root)) {
560        LOG(INTERNAL_FATAL) << "Found invalid root: " << root << " " << info;
561      }
562    }
563  }
564};
565
566void MarkSweep::VerifyRoots() {
567  VerifyRootVisitor visitor;
568  Runtime::Current()->GetThreadList()->VisitRoots(&visitor);
569}
570
571void MarkSweep::MarkRoots(Thread* self) {
572  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
573  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
574    // If we exclusively hold the mutator lock, all threads must be suspended.
575    Runtime::Current()->VisitRoots(this);
576    RevokeAllThreadLocalAllocationStacks(self);
577  } else {
578    MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
579    // At this point the live stack should no longer have any mutators which push into it.
580    MarkNonThreadRoots();
581    MarkConcurrentRoots(
582        static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
583  }
584}
585
586void MarkSweep::MarkNonThreadRoots() {
587  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
588  Runtime::Current()->VisitNonThreadRoots(this);
589}
590
591void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
592  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
593  // Visit all runtime roots and clear dirty flags.
594  Runtime::Current()->VisitConcurrentRoots(
595      this, static_cast<VisitRootFlags>(flags | kVisitRootFlagNonMoving));
596}
597
598class ScanObjectVisitor {
599 public:
600  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
601      : mark_sweep_(mark_sweep) {}
602
603  void operator()(mirror::Object* obj) const ALWAYS_INLINE
604      SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
605    if (kCheckLocks) {
606      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
607      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
608    }
609    mark_sweep_->ScanObject(obj);
610  }
611
612 private:
613  MarkSweep* const mark_sweep_;
614};
615
616class DelayReferenceReferentVisitor {
617 public:
618  explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
619  }
620
621  void operator()(mirror::Class* klass, mirror::Reference* ref) const
622      SHARED_REQUIRES(Locks::mutator_lock_)
623      REQUIRES(Locks::heap_bitmap_lock_) {
624    collector_->DelayReferenceReferent(klass, ref);
625  }
626
627 private:
628  MarkSweep* const collector_;
629};
630
631template <bool kUseFinger = false>
632class MarkStackTask : public Task {
633 public:
634  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
635                StackReference<mirror::Object>* mark_stack)
636      : mark_sweep_(mark_sweep),
637        thread_pool_(thread_pool),
638        mark_stack_pos_(mark_stack_size) {
639    // We may have to copy part of an existing mark stack when another mark stack overflows.
640    if (mark_stack_size != 0) {
641      DCHECK(mark_stack != nullptr);
642      // TODO: Check performance?
643      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
644    }
645    if (kCountTasks) {
646      ++mark_sweep_->work_chunks_created_;
647    }
648  }
649
650  static const size_t kMaxSize = 1 * KB;
651
652 protected:
653  class MarkObjectParallelVisitor {
654   public:
655    ALWAYS_INLINE MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
656                                            MarkSweep* mark_sweep)
657        : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
658
659    void operator()(mirror::Object* obj, MemberOffset offset, bool /* static */) const
660        ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_) {
661      Mark(obj->GetFieldObject<mirror::Object>(offset));
662    }
663
664    void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
665        SHARED_REQUIRES(Locks::mutator_lock_) {
666      if (!root->IsNull()) {
667        VisitRoot(root);
668      }
669    }
670
671    void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
672        SHARED_REQUIRES(Locks::mutator_lock_) {
673      if (kCheckLocks) {
674        Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
675        Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
676      }
677      Mark(root->AsMirrorPtr());
678    }
679
680   private:
681    void Mark(mirror::Object* ref) const ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_) {
682      if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
683        if (kUseFinger) {
684          std::atomic_thread_fence(std::memory_order_seq_cst);
685          if (reinterpret_cast<uintptr_t>(ref) >=
686              static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
687            return;
688          }
689        }
690        chunk_task_->MarkStackPush(ref);
691      }
692    }
693
694    MarkStackTask<kUseFinger>* const chunk_task_;
695    MarkSweep* const mark_sweep_;
696  };
697
698  class ScanObjectParallelVisitor {
699   public:
700    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
701        : chunk_task_(chunk_task) {}
702
703    // No thread safety analysis since multiple threads will use this visitor.
704    void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
705        REQUIRES(Locks::heap_bitmap_lock_) {
706      MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
707      MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
708      DelayReferenceReferentVisitor ref_visitor(mark_sweep);
709      mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
710    }
711
712   private:
713    MarkStackTask<kUseFinger>* const chunk_task_;
714  };
715
716  virtual ~MarkStackTask() {
717    // Make sure that we have cleared our mark stack.
718    DCHECK_EQ(mark_stack_pos_, 0U);
719    if (kCountTasks) {
720      ++mark_sweep_->work_chunks_deleted_;
721    }
722  }
723
724  MarkSweep* const mark_sweep_;
725  ThreadPool* const thread_pool_;
726  // Thread local mark stack for this task.
727  StackReference<mirror::Object> mark_stack_[kMaxSize];
728  // Mark stack position.
729  size_t mark_stack_pos_;
730
731  ALWAYS_INLINE void MarkStackPush(mirror::Object* obj)
732      SHARED_REQUIRES(Locks::mutator_lock_) {
733    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
734      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
735      mark_stack_pos_ /= 2;
736      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
737                                     mark_stack_ + mark_stack_pos_);
738      thread_pool_->AddTask(Thread::Current(), task);
739    }
740    DCHECK(obj != nullptr);
741    DCHECK_LT(mark_stack_pos_, kMaxSize);
742    mark_stack_[mark_stack_pos_++].Assign(obj);
743  }
744
745  virtual void Finalize() {
746    delete this;
747  }
748
749  // Scans all of the objects
750  virtual void Run(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_)
751      REQUIRES(Locks::heap_bitmap_lock_) {
752    UNUSED(self);
753    ScanObjectParallelVisitor visitor(this);
754    // TODO: Tune this.
755    static const size_t kFifoSize = 4;
756    BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
757    for (;;) {
758      mirror::Object* obj = nullptr;
759      if (kUseMarkStackPrefetch) {
760        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
761          mirror::Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
762          DCHECK(mark_stack_obj != nullptr);
763          __builtin_prefetch(mark_stack_obj);
764          prefetch_fifo.push_back(mark_stack_obj);
765        }
766        if (UNLIKELY(prefetch_fifo.empty())) {
767          break;
768        }
769        obj = prefetch_fifo.front();
770        prefetch_fifo.pop_front();
771      } else {
772        if (UNLIKELY(mark_stack_pos_ == 0)) {
773          break;
774        }
775        obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
776      }
777      DCHECK(obj != nullptr);
778      visitor(obj);
779    }
780  }
781};
782
783class CardScanTask : public MarkStackTask<false> {
784 public:
785  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
786               accounting::ContinuousSpaceBitmap* bitmap,
787               uint8_t* begin, uint8_t* end, uint8_t minimum_age, size_t mark_stack_size,
788               StackReference<mirror::Object>* mark_stack_obj, bool clear_card)
789      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
790        bitmap_(bitmap),
791        begin_(begin),
792        end_(end),
793        minimum_age_(minimum_age), clear_card_(clear_card) {
794  }
795
796 protected:
797  accounting::ContinuousSpaceBitmap* const bitmap_;
798  uint8_t* const begin_;
799  uint8_t* const end_;
800  const uint8_t minimum_age_;
801  const bool clear_card_;
802
803  virtual void Finalize() {
804    delete this;
805  }
806
807  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
808    ScanObjectParallelVisitor visitor(this);
809    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
810    size_t cards_scanned = clear_card_ ?
811                           card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_) :
812                           card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_);
813    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
814        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
815    // Finish by emptying our local mark stack.
816    MarkStackTask::Run(self);
817  }
818};
819
820size_t MarkSweep::GetThreadCount(bool paused) const {
821  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
822    return 1;
823  }
824  return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1;
825}
826
827void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) {
828  accounting::CardTable* card_table = GetHeap()->GetCardTable();
829  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
830  size_t thread_count = GetThreadCount(paused);
831  // The parallel version with only one thread is faster for card scanning, TODO: fix.
832  if (kParallelCardScan && thread_count > 1) {
833    Thread* self = Thread::Current();
834    // Can't have a different split for each space since multiple spaces can have their cards being
835    // scanned at the same time.
836    TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
837        GetTimings());
838    // Try to take some of the mark stack since we can pass this off to the worker tasks.
839    StackReference<mirror::Object>* mark_stack_begin = mark_stack_->Begin();
840    StackReference<mirror::Object>* mark_stack_end = mark_stack_->End();
841    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
842    // Estimated number of work tasks we will create.
843    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
844    DCHECK_NE(mark_stack_tasks, 0U);
845    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
846                                             mark_stack_size / mark_stack_tasks + 1);
847    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
848      if (space->GetMarkBitmap() == nullptr) {
849        continue;
850      }
851      uint8_t* card_begin = space->Begin();
852      uint8_t* card_end = space->End();
853      // Align up the end address. For example, the image space's end
854      // may not be card-size-aligned.
855      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
856      DCHECK_ALIGNED(card_begin, accounting::CardTable::kCardSize);
857      DCHECK_ALIGNED(card_end, accounting::CardTable::kCardSize);
858      // Calculate how many bytes of heap we will scan,
859      const size_t address_range = card_end - card_begin;
860      // Calculate how much address range each task gets.
861      const size_t card_delta = RoundUp(address_range / thread_count + 1,
862                                        accounting::CardTable::kCardSize);
863      // If paused and the space is neither zygote nor image space, we could clear the dirty
864      // cards to avoid accumulating them to increase card scanning load in the following GC
865      // cycles. We need to keep dirty cards of image space and zygote space in order to track
866      // references to the other spaces.
867      bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
868      // Create the worker tasks for this space.
869      while (card_begin != card_end) {
870        // Add a range of cards.
871        size_t addr_remaining = card_end - card_begin;
872        size_t card_increment = std::min(card_delta, addr_remaining);
873        // Take from the back of the mark stack.
874        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
875        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
876        mark_stack_end -= mark_stack_increment;
877        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
878        DCHECK_EQ(mark_stack_end, mark_stack_->End());
879        // Add the new task to the thread pool.
880        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
881                                      card_begin + card_increment, minimum_age,
882                                      mark_stack_increment, mark_stack_end, clear_card);
883        thread_pool->AddTask(self, task);
884        card_begin += card_increment;
885      }
886    }
887
888    // Note: the card scan below may dirty new cards (and scan them)
889    // as a side effect when a Reference object is encountered and
890    // queued during the marking. See b/11465268.
891    thread_pool->SetMaxActiveWorkers(thread_count - 1);
892    thread_pool->StartWorkers(self);
893    thread_pool->Wait(self, true, true);
894    thread_pool->StopWorkers(self);
895  } else {
896    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
897      if (space->GetMarkBitmap() != nullptr) {
898        // Image spaces are handled properly since live == marked for them.
899        const char* name = nullptr;
900        switch (space->GetGcRetentionPolicy()) {
901        case space::kGcRetentionPolicyNeverCollect:
902          name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
903          break;
904        case space::kGcRetentionPolicyFullCollect:
905          name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
906          break;
907        case space::kGcRetentionPolicyAlwaysCollect:
908          name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
909          break;
910        default:
911          LOG(FATAL) << "Unreachable";
912          UNREACHABLE();
913        }
914        TimingLogger::ScopedTiming t(name, GetTimings());
915        ScanObjectVisitor visitor(this);
916        bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
917        if (clear_card) {
918          card_table->Scan<true>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
919                                 minimum_age);
920        } else {
921          card_table->Scan<false>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
922                                  minimum_age);
923        }
924      }
925    }
926  }
927}
928
929class RecursiveMarkTask : public MarkStackTask<false> {
930 public:
931  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
932                    accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
933      : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr), bitmap_(bitmap), begin_(begin),
934        end_(end) {
935  }
936
937 protected:
938  accounting::ContinuousSpaceBitmap* const bitmap_;
939  const uintptr_t begin_;
940  const uintptr_t end_;
941
942  virtual void Finalize() {
943    delete this;
944  }
945
946  // Scans all of the objects
947  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
948    ScanObjectParallelVisitor visitor(this);
949    bitmap_->VisitMarkedRange(begin_, end_, visitor);
950    // Finish by emptying our local mark stack.
951    MarkStackTask::Run(self);
952  }
953};
954
955// Populates the mark stack based on the set of marked objects and
956// recursively marks until the mark stack is emptied.
957void MarkSweep::RecursiveMark() {
958  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
959  // RecursiveMark will build the lists of known instances of the Reference classes. See
960  // DelayReferenceReferent for details.
961  if (kUseRecursiveMark) {
962    const bool partial = GetGcType() == kGcTypePartial;
963    ScanObjectVisitor scan_visitor(this);
964    auto* self = Thread::Current();
965    ThreadPool* thread_pool = heap_->GetThreadPool();
966    size_t thread_count = GetThreadCount(false);
967    const bool parallel = kParallelRecursiveMark && thread_count > 1;
968    mark_stack_->Reset();
969    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
970      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
971          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
972        current_space_bitmap_ = space->GetMarkBitmap();
973        if (current_space_bitmap_ == nullptr) {
974          continue;
975        }
976        if (parallel) {
977          // We will use the mark stack the future.
978          // CHECK(mark_stack_->IsEmpty());
979          // This function does not handle heap end increasing, so we must use the space end.
980          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
981          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
982          atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
983
984          // Create a few worker tasks.
985          const size_t n = thread_count * 2;
986          while (begin != end) {
987            uintptr_t start = begin;
988            uintptr_t delta = (end - begin) / n;
989            delta = RoundUp(delta, KB);
990            if (delta < 16 * KB) delta = end - begin;
991            begin += delta;
992            auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
993                                               begin);
994            thread_pool->AddTask(self, task);
995          }
996          thread_pool->SetMaxActiveWorkers(thread_count - 1);
997          thread_pool->StartWorkers(self);
998          thread_pool->Wait(self, true, true);
999          thread_pool->StopWorkers(self);
1000        } else {
1001          // This function does not handle heap end increasing, so we must use the space end.
1002          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1003          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1004          current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
1005        }
1006      }
1007    }
1008  }
1009  ProcessMarkStack(false);
1010}
1011
1012void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) {
1013  ScanGrayObjects(paused, minimum_age);
1014  ProcessMarkStack(paused);
1015}
1016
1017void MarkSweep::ReMarkRoots() {
1018  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1019  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1020  Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>(
1021      kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog));
1022  if (kVerifyRootsMarked) {
1023    TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings());
1024    VerifyRootMarkedVisitor visitor(this);
1025    Runtime::Current()->VisitRoots(&visitor);
1026  }
1027}
1028
1029void MarkSweep::SweepSystemWeaks(Thread* self) {
1030  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1031  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1032  Runtime::Current()->SweepSystemWeaks(this);
1033}
1034
1035class VerifySystemWeakVisitor : public IsMarkedVisitor {
1036 public:
1037  explicit VerifySystemWeakVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1038
1039  virtual mirror::Object* IsMarked(mirror::Object* obj) OVERRIDE
1040      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1041    mark_sweep_->VerifyIsLive(obj);
1042    return obj;
1043  }
1044
1045  MarkSweep* const mark_sweep_;
1046};
1047
1048void MarkSweep::VerifyIsLive(const mirror::Object* obj) {
1049  if (!heap_->GetLiveBitmap()->Test(obj)) {
1050    // TODO: Consider live stack? Has this code bitrotted?
1051    CHECK(!heap_->allocation_stack_->Contains(obj))
1052        << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
1053  }
1054}
1055
1056void MarkSweep::VerifySystemWeaks() {
1057  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1058  // Verify system weaks, uses a special object visitor which returns the input object.
1059  VerifySystemWeakVisitor visitor(this);
1060  Runtime::Current()->SweepSystemWeaks(&visitor);
1061}
1062
1063class CheckpointMarkThreadRoots : public Closure, public RootVisitor {
1064 public:
1065  CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
1066                            bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
1067      : mark_sweep_(mark_sweep),
1068        revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
1069            revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1070  }
1071
1072  void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1073      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
1074      REQUIRES(Locks::heap_bitmap_lock_) {
1075    for (size_t i = 0; i < count; ++i) {
1076      mark_sweep_->MarkObjectNonNullParallel(*roots[i]);
1077    }
1078  }
1079
1080  void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
1081                  const RootInfo& info ATTRIBUTE_UNUSED)
1082      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
1083      REQUIRES(Locks::heap_bitmap_lock_) {
1084    for (size_t i = 0; i < count; ++i) {
1085      mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr());
1086    }
1087  }
1088
1089  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1090    ATRACE_BEGIN("Marking thread roots");
1091    // Note: self is not necessarily equal to thread since thread may be suspended.
1092    Thread* const self = Thread::Current();
1093    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1094        << thread->GetState() << " thread " << thread << " self " << self;
1095    thread->VisitRoots(this);
1096    ATRACE_END();
1097    if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
1098      ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
1099      mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
1100      ATRACE_END();
1101    }
1102    // If thread is a running mutator, then act on behalf of the garbage collector.
1103    // See the code in ThreadList::RunCheckpoint.
1104    if (thread->GetState() == kRunnable) {
1105      mark_sweep_->GetBarrier().Pass(self);
1106    }
1107  }
1108
1109 private:
1110  MarkSweep* const mark_sweep_;
1111  const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
1112};
1113
1114void MarkSweep::MarkRootsCheckpoint(Thread* self,
1115                                    bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1116  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1117  CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
1118  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1119  // Request the check point is run on all threads returning a count of the threads that must
1120  // run through the barrier including self.
1121  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1122  // Release locks then wait for all mutator threads to pass the barrier.
1123  // If there are no threads to wait which implys that all the checkpoint functions are finished,
1124  // then no need to release locks.
1125  if (barrier_count == 0) {
1126    return;
1127  }
1128  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1129  Locks::mutator_lock_->SharedUnlock(self);
1130  {
1131    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1132    gc_barrier_->Increment(self, barrier_count);
1133  }
1134  Locks::mutator_lock_->SharedLock(self);
1135  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1136}
1137
1138void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1139  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1140  Thread* self = Thread::Current();
1141  mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
1142      sweep_array_free_buffer_mem_map_->BaseBegin());
1143  size_t chunk_free_pos = 0;
1144  ObjectBytePair freed;
1145  ObjectBytePair freed_los;
1146  // How many objects are left in the array, modified after each space is swept.
1147  StackReference<mirror::Object>* objects = allocations->Begin();
1148  size_t count = allocations->Size();
1149  // Change the order to ensure that the non-moving space last swept as an optimization.
1150  std::vector<space::ContinuousSpace*> sweep_spaces;
1151  space::ContinuousSpace* non_moving_space = nullptr;
1152  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1153    if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1154        space->GetLiveBitmap() != nullptr) {
1155      if (space == heap_->GetNonMovingSpace()) {
1156        non_moving_space = space;
1157      } else {
1158        sweep_spaces.push_back(space);
1159      }
1160    }
1161  }
1162  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1163  // the other alloc spaces as an optimization.
1164  if (non_moving_space != nullptr) {
1165    sweep_spaces.push_back(non_moving_space);
1166  }
1167  // Start by sweeping the continuous spaces.
1168  for (space::ContinuousSpace* space : sweep_spaces) {
1169    space::AllocSpace* alloc_space = space->AsAllocSpace();
1170    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1171    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1172    if (swap_bitmaps) {
1173      std::swap(live_bitmap, mark_bitmap);
1174    }
1175    StackReference<mirror::Object>* out = objects;
1176    for (size_t i = 0; i < count; ++i) {
1177      mirror::Object* const obj = objects[i].AsMirrorPtr();
1178      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1179        continue;
1180      }
1181      if (space->HasAddress(obj)) {
1182        // This object is in the space, remove it from the array and add it to the sweep buffer
1183        // if needed.
1184        if (!mark_bitmap->Test(obj)) {
1185          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1186            TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1187            freed.objects += chunk_free_pos;
1188            freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1189            chunk_free_pos = 0;
1190          }
1191          chunk_free_buffer[chunk_free_pos++] = obj;
1192        }
1193      } else {
1194        (out++)->Assign(obj);
1195      }
1196    }
1197    if (chunk_free_pos > 0) {
1198      TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1199      freed.objects += chunk_free_pos;
1200      freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1201      chunk_free_pos = 0;
1202    }
1203    // All of the references which space contained are no longer in the allocation stack, update
1204    // the count.
1205    count = out - objects;
1206  }
1207  // Handle the large object space.
1208  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1209  if (large_object_space != nullptr) {
1210    accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1211    accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1212    if (swap_bitmaps) {
1213      std::swap(large_live_objects, large_mark_objects);
1214    }
1215    for (size_t i = 0; i < count; ++i) {
1216      mirror::Object* const obj = objects[i].AsMirrorPtr();
1217      // Handle large objects.
1218      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1219        continue;
1220      }
1221      if (!large_mark_objects->Test(obj)) {
1222        ++freed_los.objects;
1223        freed_los.bytes += large_object_space->Free(self, obj);
1224      }
1225    }
1226  }
1227  {
1228    TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
1229    RecordFree(freed);
1230    RecordFreeLOS(freed_los);
1231    t2.NewTiming("ResetStack");
1232    allocations->Reset();
1233  }
1234  sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
1235}
1236
1237void MarkSweep::Sweep(bool swap_bitmaps) {
1238  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1239  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1240  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1241  {
1242    TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
1243    // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1244    // knowing that new allocations won't be marked as live.
1245    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1246    heap_->MarkAllocStackAsLive(live_stack);
1247    live_stack->Reset();
1248    DCHECK(mark_stack_->IsEmpty());
1249  }
1250  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1251    if (space->IsContinuousMemMapAllocSpace()) {
1252      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1253      TimingLogger::ScopedTiming split(
1254          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings());
1255      RecordFree(alloc_space->Sweep(swap_bitmaps));
1256    }
1257  }
1258  SweepLargeObjects(swap_bitmaps);
1259}
1260
1261void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1262  space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
1263  if (los != nullptr) {
1264    TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1265    RecordFreeLOS(los->Sweep(swap_bitmaps));
1266  }
1267}
1268
1269// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
1270// marked, put it on the appropriate list in the heap for later processing.
1271void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1272  heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this);
1273}
1274
1275class MarkVisitor {
1276 public:
1277  explicit MarkVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1278  }
1279
1280  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1281      ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_)
1282      REQUIRES(Locks::heap_bitmap_lock_) {
1283    if (kCheckLocks) {
1284      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1285      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1286    }
1287    mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset);
1288  }
1289
1290  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1291      SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1292    if (!root->IsNull()) {
1293      VisitRoot(root);
1294    }
1295  }
1296
1297  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1298      SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1299    if (kCheckLocks) {
1300      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1301      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1302    }
1303    mark_sweep_->MarkObject(root->AsMirrorPtr());
1304  }
1305
1306 private:
1307  MarkSweep* const mark_sweep_;
1308};
1309
1310// Scans an object reference.  Determines the type of the reference
1311// and dispatches to a specialized scanning routine.
1312void MarkSweep::ScanObject(mirror::Object* obj) {
1313  MarkVisitor mark_visitor(this);
1314  DelayReferenceReferentVisitor ref_visitor(this);
1315  ScanObjectVisit(obj, mark_visitor, ref_visitor);
1316}
1317
1318void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1319  Thread* self = Thread::Current();
1320  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1321  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1322                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1323  CHECK_GT(chunk_size, 0U);
1324  // Split the current mark stack up into work tasks.
1325  for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) {
1326    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1327    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1328    it += delta;
1329  }
1330  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1331  thread_pool->StartWorkers(self);
1332  thread_pool->Wait(self, true, true);
1333  thread_pool->StopWorkers(self);
1334  mark_stack_->Reset();
1335  CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
1336           work_chunks_deleted_.LoadSequentiallyConsistent())
1337      << " some of the work chunks were leaked";
1338}
1339
1340// Scan anything that's on the mark stack.
1341void MarkSweep::ProcessMarkStack(bool paused) {
1342  TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
1343  size_t thread_count = GetThreadCount(paused);
1344  if (kParallelProcessMarkStack && thread_count > 1 &&
1345      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1346    ProcessMarkStackParallel(thread_count);
1347  } else {
1348    // TODO: Tune this.
1349    static const size_t kFifoSize = 4;
1350    BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
1351    for (;;) {
1352      mirror::Object* obj = nullptr;
1353      if (kUseMarkStackPrefetch) {
1354        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1355          mirror::Object* mark_stack_obj = mark_stack_->PopBack();
1356          DCHECK(mark_stack_obj != nullptr);
1357          __builtin_prefetch(mark_stack_obj);
1358          prefetch_fifo.push_back(mark_stack_obj);
1359        }
1360        if (prefetch_fifo.empty()) {
1361          break;
1362        }
1363        obj = prefetch_fifo.front();
1364        prefetch_fifo.pop_front();
1365      } else {
1366        if (mark_stack_->IsEmpty()) {
1367          break;
1368        }
1369        obj = mark_stack_->PopBack();
1370      }
1371      DCHECK(obj != nullptr);
1372      ScanObject(obj);
1373    }
1374  }
1375}
1376
1377inline mirror::Object* MarkSweep::IsMarked(mirror::Object* object) {
1378  if (immune_region_.ContainsObject(object)) {
1379    return object;
1380  }
1381  if (current_space_bitmap_->HasAddress(object)) {
1382    return current_space_bitmap_->Test(object) ? object : nullptr;
1383  }
1384  return mark_bitmap_->Test(object) ? object : nullptr;
1385}
1386
1387void MarkSweep::FinishPhase() {
1388  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1389  if (kCountScannedTypes) {
1390    VLOG(gc)
1391        << "MarkSweep scanned"
1392        << " no reference objects=" << no_reference_class_count_.LoadRelaxed()
1393        << " normal objects=" << normal_count_.LoadRelaxed()
1394        << " classes=" << class_count_.LoadRelaxed()
1395        << " object arrays=" << object_array_count_.LoadRelaxed()
1396        << " references=" << reference_count_.LoadRelaxed()
1397        << " other=" << other_count_.LoadRelaxed();
1398  }
1399  if (kCountTasks) {
1400    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
1401  }
1402  if (kMeasureOverhead) {
1403    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
1404  }
1405  if (kProfileLargeObjects) {
1406    VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
1407        << " marked " << large_object_mark_.LoadRelaxed();
1408  }
1409  if (kCountMarkedObjects) {
1410    VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
1411        << " immune=" <<  mark_immune_count_.LoadRelaxed()
1412        << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
1413        << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
1414  }
1415  CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
1416  mark_stack_->Reset();
1417  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1418  heap_->ClearMarkedObjects();
1419}
1420
1421void MarkSweep::RevokeAllThreadLocalBuffers() {
1422  if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1423    // If concurrent, rosalloc thread-local buffers are revoked at the
1424    // thread checkpoint. Bump pointer space thread-local buffers must
1425    // not be in use.
1426    GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1427  } else {
1428    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1429    GetHeap()->RevokeAllThreadLocalBuffers();
1430  }
1431}
1432
1433}  // namespace collector
1434}  // namespace gc
1435}  // namespace art
1436