mark_sweep.cc revision cf58d4adf461eb9b8e84baa8019054c88cd8acc6
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "indirect_reference_table.h"
38#include "intern_table.h"
39#include "jni_internal.h"
40#include "monitor.h"
41#include "mark_sweep-inl.h"
42#include "mirror/art_field.h"
43#include "mirror/art_field-inl.h"
44#include "mirror/class-inl.h"
45#include "mirror/class_loader.h"
46#include "mirror/dex_cache.h"
47#include "mirror/object-inl.h"
48#include "mirror/object_array.h"
49#include "mirror/object_array-inl.h"
50#include "runtime.h"
51#include "thread-inl.h"
52#include "thread_list.h"
53#include "verifier/method_verifier.h"
54
55using ::art::mirror::ArtField;
56using ::art::mirror::Class;
57using ::art::mirror::Object;
58using ::art::mirror::ObjectArray;
59
60namespace art {
61namespace gc {
62namespace collector {
63
64// Performance options.
65constexpr bool kUseRecursiveMark = false;
66constexpr bool kUseMarkStackPrefetch = true;
67constexpr size_t kSweepArrayChunkFreeSize = 1024;
68
69// Parallelism options.
70constexpr bool kParallelCardScan = true;
71constexpr bool kParallelRecursiveMark = true;
72// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
73// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
74// having this can add overhead in ProcessReferences since we may end up doing many calls of
75// ProcessMarkStack with very small mark stacks.
76constexpr size_t kMinimumParallelMarkStackSize = 128;
77constexpr bool kParallelProcessMarkStack = true;
78
79// Profiling and information flags.
80constexpr bool kCountClassesMarked = false;
81constexpr bool kProfileLargeObjects = false;
82constexpr bool kMeasureOverhead = false;
83constexpr bool kCountTasks = false;
84constexpr bool kCountJavaLangRefs = false;
85
86// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
87constexpr bool kCheckLocks = kDebugLocking;
88
89void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
90  // Bind live to mark bitmap if necessary.
91  if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
92    BindLiveToMarkBitmap(space);
93  }
94
95  // Add the space to the immune region.
96  // TODO: Use space limits instead of current end_ since the end_ can be changed by dlmalloc
97  // callbacks.
98  if (immune_begin_ == NULL) {
99    DCHECK(immune_end_ == NULL);
100    SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
101                   reinterpret_cast<Object*>(space->End()));
102  } else {
103    const space::ContinuousSpace* prev_space = nullptr;
104    // Find out if the previous space is immune.
105    for (const space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
106      if (cur_space == space) {
107        break;
108      }
109      prev_space = cur_space;
110    }
111    // If previous space was immune, then extend the immune region. Relies on continuous spaces
112    // being sorted by Heap::AddContinuousSpace.
113    if (prev_space != nullptr && IsImmuneSpace(prev_space)) {
114      immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
115      immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
116    }
117  }
118}
119
120bool MarkSweep::IsImmuneSpace(const space::ContinuousSpace* space) const {
121  return
122      immune_begin_ <= reinterpret_cast<Object*>(space->Begin()) &&
123      immune_end_ >= reinterpret_cast<Object*>(space->End());
124}
125
126void MarkSweep::BindBitmaps() {
127  timings_.StartSplit("BindBitmaps");
128  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
129  // Mark all of the spaces we never collect as immune.
130  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
131    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
132      ImmuneSpace(space);
133    }
134  }
135  timings_.EndSplit();
136}
137
138MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
139    : GarbageCollector(heap,
140                       name_prefix +
141                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
142      current_mark_bitmap_(NULL),
143      mark_stack_(NULL),
144      immune_begin_(NULL),
145      immune_end_(NULL),
146      soft_reference_list_(NULL),
147      weak_reference_list_(NULL),
148      finalizer_reference_list_(NULL),
149      phantom_reference_list_(NULL),
150      cleared_reference_list_(NULL),
151      live_stack_freeze_size_(0),
152      gc_barrier_(new Barrier(0)),
153      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
154      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
155      is_concurrent_(is_concurrent) {
156}
157
158void MarkSweep::InitializePhase() {
159  timings_.Reset();
160  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
161  mark_stack_ = heap_->mark_stack_.get();
162  DCHECK(mark_stack_ != nullptr);
163  SetImmuneRange(nullptr, nullptr);
164  soft_reference_list_ = nullptr;
165  weak_reference_list_ = nullptr;
166  finalizer_reference_list_ = nullptr;
167  phantom_reference_list_ = nullptr;
168  cleared_reference_list_ = nullptr;
169  class_count_ = 0;
170  array_count_ = 0;
171  other_count_ = 0;
172  large_object_test_ = 0;
173  large_object_mark_ = 0;
174  classes_marked_ = 0;
175  overhead_time_ = 0;
176  work_chunks_created_ = 0;
177  work_chunks_deleted_ = 0;
178  reference_count_ = 0;
179
180  FindDefaultMarkBitmap();
181
182  // Do any pre GC verification.
183  timings_.NewSplit("PreGcVerification");
184  heap_->PreGcVerification(this);
185}
186
187void MarkSweep::ProcessReferences(Thread* self) {
188  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
189  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
190  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback,
191                               &RecursiveMarkObjectCallback, this);
192}
193
194bool MarkSweep::HandleDirtyObjectsPhase() {
195  TimingLogger::ScopedSplit split("HandleDirtyObjectsPhase", &timings_);
196  Thread* self = Thread::Current();
197  Locks::mutator_lock_->AssertExclusiveHeld(self);
198
199  {
200    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
201
202    // Re-mark root set.
203    ReMarkRoots();
204
205    // Scan dirty objects, this is only required if we are not doing concurrent GC.
206    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
207  }
208
209  ProcessReferences(self);
210
211  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
212  if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_||
213      GetHeap()->verify_post_gc_heap_) {
214    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
215    // This second sweep makes sure that we don't have any objects in the live stack which point to
216    // freed objects. These cause problems since their references may be previously freed objects.
217    SweepArray(GetHeap()->allocation_stack_.get(), false);
218  }
219
220  timings_.StartSplit("PreSweepingGcVerification");
221  heap_->PreSweepingGcVerification(this);
222  timings_.EndSplit();
223
224  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
225  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
226  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
227
228  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
229  // weak before we sweep them. Since this new system weak may not be marked, the GC may
230  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
231  // reference to a string that is about to be swept.
232  Runtime::Current()->DisallowNewSystemWeaks();
233  return true;
234}
235
236bool MarkSweep::IsConcurrent() const {
237  return is_concurrent_;
238}
239
240void MarkSweep::MarkingPhase() {
241  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
242  Thread* self = Thread::Current();
243
244  BindBitmaps();
245  FindDefaultMarkBitmap();
246
247  // Process dirty cards and add dirty cards to mod union tables.
248  heap_->ProcessCards(timings_);
249
250  // Need to do this before the checkpoint since we don't want any threads to add references to
251  // the live stack during the recursive mark.
252  timings_.NewSplit("SwapStacks");
253  heap_->SwapStacks();
254
255  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
256  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
257    // If we exclusively hold the mutator lock, all threads must be suspended.
258    MarkRoots();
259  } else {
260    MarkThreadRoots(self);
261    // At this point the live stack should no longer have any mutators which push into it.
262    MarkNonThreadRoots();
263  }
264  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
265  MarkConcurrentRoots();
266  UpdateAndMarkModUnion();
267  MarkReachableObjects();
268}
269
270void MarkSweep::UpdateAndMarkModUnion() {
271  for (const auto& space : heap_->GetContinuousSpaces()) {
272    if (IsImmuneSpace(space)) {
273      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
274          "UpdateAndMarkImageModUnionTable";
275      TimingLogger::ScopedSplit split(name, &timings_);
276      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
277      CHECK(mod_union_table != nullptr);
278      mod_union_table->UpdateAndMarkReferences(MarkRootCallback, this);
279    }
280  }
281}
282
283void MarkSweep::MarkThreadRoots(Thread* self) {
284  MarkRootsCheckpoint(self);
285}
286
287void MarkSweep::MarkReachableObjects() {
288  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
289  // knowing that new allocations won't be marked as live.
290  timings_.StartSplit("MarkStackAsLive");
291  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
292  heap_->MarkAllocStackAsLive(live_stack);
293  live_stack->Reset();
294  timings_.EndSplit();
295  // Recursively mark all the non-image bits set in the mark bitmap.
296  RecursiveMark();
297}
298
299void MarkSweep::ReclaimPhase() {
300  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
301  Thread* self = Thread::Current();
302
303  if (!IsConcurrent()) {
304    ProcessReferences(self);
305  }
306
307  {
308    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
309    SweepSystemWeaks();
310  }
311
312  if (IsConcurrent()) {
313    Runtime::Current()->AllowNewSystemWeaks();
314
315    TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
316    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
317    accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
318    // The allocation stack contains things allocated since the start of the GC. These may have been
319    // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC.
320    // Remove these objects from the mark bitmaps so that they will be eligible for sticky
321    // collection.
322    // There is a race here which is safely handled. Another thread such as the hprof could
323    // have flushed the alloc stack after we resumed the threads. This is safe however, since
324    // reseting the allocation stack zeros it out with madvise. This means that we will either
325    // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
326    // first place.
327    mirror::Object** end = allocation_stack->End();
328    for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
329      const Object* obj = *it;
330      if (obj != NULL) {
331        UnMarkObjectNonNull(obj);
332      }
333    }
334  }
335
336  // Before freeing anything, lets verify the heap.
337  if (kIsDebugBuild) {
338    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
339    VerifyImageRoots();
340  }
341
342  {
343    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
344
345    // Reclaim unmarked objects.
346    Sweep(false);
347
348    // Swap the live and mark bitmaps for each space which we modified space. This is an
349    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
350    // bitmaps.
351    timings_.StartSplit("SwapBitmaps");
352    SwapBitmaps();
353    timings_.EndSplit();
354
355    // Unbind the live and mark bitmaps.
356    UnBindBitmaps();
357  }
358}
359
360void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
361  immune_begin_ = begin;
362  immune_end_ = end;
363}
364
365void MarkSweep::FindDefaultMarkBitmap() {
366  TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
367  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
368    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
369    if (bitmap != nullptr &&
370        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
371      current_mark_bitmap_ = bitmap;
372      CHECK(current_mark_bitmap_ != NULL);
373      return;
374    }
375  }
376  GetHeap()->DumpSpaces();
377  LOG(FATAL) << "Could not find a default mark bitmap";
378}
379
380void MarkSweep::ExpandMarkStack() {
381  ResizeMarkStack(mark_stack_->Capacity() * 2);
382}
383
384void MarkSweep::ResizeMarkStack(size_t new_size) {
385  // Rare case, no need to have Thread::Current be a parameter.
386  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
387    // Someone else acquired the lock and expanded the mark stack before us.
388    return;
389  }
390  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
391  CHECK_LE(mark_stack_->Size(), new_size);
392  mark_stack_->Resize(new_size);
393  for (const auto& obj : temp) {
394    mark_stack_->PushBack(obj);
395  }
396}
397
398inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
399  DCHECK(obj != NULL);
400  if (MarkObjectParallel(obj)) {
401    MutexLock mu(Thread::Current(), mark_stack_lock_);
402    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
403      ExpandMarkStack();
404    }
405    // The object must be pushed on to the mark stack.
406    mark_stack_->PushBack(const_cast<Object*>(obj));
407  }
408}
409
410mirror::Object* MarkSweep::RecursiveMarkObjectCallback(mirror::Object* obj, void* arg) {
411  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
412  mark_sweep->MarkObject(obj);
413  mark_sweep->ProcessMarkStack(true);
414  return obj;
415}
416
417inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
418  DCHECK(!IsImmune(obj));
419  // Try to take advantage of locality of references within a space, failing this find the space
420  // the hard way.
421  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
422  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
423    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
424    if (LIKELY(new_bitmap != NULL)) {
425      object_bitmap = new_bitmap;
426    } else {
427      MarkLargeObject(obj, false);
428      return;
429    }
430  }
431
432  DCHECK(object_bitmap->HasAddress(obj));
433  object_bitmap->Clear(obj);
434}
435
436inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
437  DCHECK(obj != NULL);
438
439  if (IsImmune(obj)) {
440    DCHECK(IsMarked(obj));
441    return;
442  }
443
444  // Try to take advantage of locality of references within a space, failing this find the space
445  // the hard way.
446  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
447  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
448    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
449    if (LIKELY(new_bitmap != NULL)) {
450      object_bitmap = new_bitmap;
451    } else {
452      MarkLargeObject(obj, true);
453      return;
454    }
455  }
456
457  // This object was not previously marked.
458  if (!object_bitmap->Test(obj)) {
459    object_bitmap->Set(obj);
460    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
461      // Lock is not needed but is here anyways to please annotalysis.
462      MutexLock mu(Thread::Current(), mark_stack_lock_);
463      ExpandMarkStack();
464    }
465    // The object must be pushed on to the mark stack.
466    mark_stack_->PushBack(const_cast<Object*>(obj));
467  }
468}
469
470// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
471bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
472  // TODO: support >1 discontinuous space.
473  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
474  accounting::SpaceSetMap* large_objects = large_object_space->GetMarkObjects();
475  if (kProfileLargeObjects) {
476    ++large_object_test_;
477  }
478  if (UNLIKELY(!large_objects->Test(obj))) {
479    if (!large_object_space->Contains(obj)) {
480      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
481      LOG(ERROR) << "Attempting see if it's a bad root";
482      VerifyRoots();
483      LOG(FATAL) << "Can't mark bad root";
484    }
485    if (kProfileLargeObjects) {
486      ++large_object_mark_;
487    }
488    if (set) {
489      large_objects->Set(obj);
490    } else {
491      large_objects->Clear(obj);
492    }
493    return true;
494  }
495  return false;
496}
497
498inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
499  DCHECK(obj != NULL);
500
501  if (IsImmune(obj)) {
502    DCHECK(IsMarked(obj));
503    return false;
504  }
505
506  // Try to take advantage of locality of references within a space, failing this find the space
507  // the hard way.
508  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
509  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
510    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
511    if (new_bitmap != NULL) {
512      object_bitmap = new_bitmap;
513    } else {
514      // TODO: Remove the Thread::Current here?
515      // TODO: Convert this to some kind of atomic marking?
516      MutexLock mu(Thread::Current(), large_object_lock_);
517      return MarkLargeObject(obj, true);
518    }
519  }
520
521  // Return true if the object was not previously marked.
522  return !object_bitmap->AtomicTestAndSet(obj);
523}
524
525// Used to mark objects when recursing.  Recursion is done by moving
526// the finger across the bitmaps in address order and marking child
527// objects.  Any newly-marked objects whose addresses are lower than
528// the finger won't be visited by the bitmap scan, so those objects
529// need to be added to the mark stack.
530inline void MarkSweep::MarkObject(const Object* obj) {
531  if (obj != NULL) {
532    MarkObjectNonNull(obj);
533  }
534}
535
536void MarkSweep::MarkRoot(const Object* obj) {
537  if (obj != NULL) {
538    MarkObjectNonNull(obj);
539  }
540}
541
542Object* MarkSweep::MarkRootParallelCallback(Object* root, void* arg) {
543  DCHECK(root != NULL);
544  DCHECK(arg != NULL);
545  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(root);
546  return root;
547}
548
549Object* MarkSweep::MarkRootCallback(Object* root, void* arg) {
550  DCHECK(root != nullptr);
551  DCHECK(arg != nullptr);
552  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(root);
553  return root;
554}
555
556void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
557                                   const StackVisitor* visitor) {
558  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
559}
560
561void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
562  // See if the root is on any space bitmap.
563  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
564    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
565    if (!large_object_space->Contains(root)) {
566      LOG(ERROR) << "Found invalid root: " << root;
567      if (visitor != NULL) {
568        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
569      }
570    }
571  }
572}
573
574void MarkSweep::VerifyRoots() {
575  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
576}
577
578// Marks all objects in the root set.
579void MarkSweep::MarkRoots() {
580  timings_.StartSplit("MarkRoots");
581  Runtime::Current()->VisitNonConcurrentRoots(MarkRootCallback, this);
582  timings_.EndSplit();
583}
584
585void MarkSweep::MarkNonThreadRoots() {
586  timings_.StartSplit("MarkNonThreadRoots");
587  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
588  timings_.EndSplit();
589}
590
591void MarkSweep::MarkConcurrentRoots() {
592  timings_.StartSplit("MarkConcurrentRoots");
593  // Visit all runtime roots and clear dirty flags.
594  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, false, true);
595  timings_.EndSplit();
596}
597
598void MarkSweep::CheckObject(const Object* obj) {
599  DCHECK(obj != NULL);
600  VisitObjectReferences(const_cast<Object*>(obj), [this](const Object* obj, const Object* ref,
601      MemberOffset offset, bool is_static) NO_THREAD_SAFETY_ANALYSIS {
602    Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
603    CheckReference(obj, ref, offset, is_static);
604  }, true);
605}
606
607void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) {
608  DCHECK(root != NULL);
609  DCHECK(arg != NULL);
610  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
611  DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root));
612  mark_sweep->CheckObject(root);
613}
614
615void MarkSweep::BindLiveToMarkBitmap(space::ContinuousSpace* space) {
616  CHECK(space->IsMallocSpace());
617  space::MallocSpace* alloc_space = space->AsMallocSpace();
618  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
619  accounting::SpaceBitmap* mark_bitmap = alloc_space->BindLiveToMarkBitmap();
620  GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap);
621}
622
623class ScanObjectVisitor {
624 public:
625  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
626      : mark_sweep_(mark_sweep) {}
627
628  // TODO: Fixme when anotatalysis works with visitors.
629  void operator()(Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
630    if (kCheckLocks) {
631      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
632      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
633    }
634    mark_sweep_->ScanObject(obj);
635  }
636
637 private:
638  MarkSweep* const mark_sweep_;
639};
640
641template <bool kUseFinger = false>
642class MarkStackTask : public Task {
643 public:
644  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
645                const Object** mark_stack)
646      : mark_sweep_(mark_sweep),
647        thread_pool_(thread_pool),
648        mark_stack_pos_(mark_stack_size) {
649    // We may have to copy part of an existing mark stack when another mark stack overflows.
650    if (mark_stack_size != 0) {
651      DCHECK(mark_stack != NULL);
652      // TODO: Check performance?
653      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
654    }
655    if (kCountTasks) {
656      ++mark_sweep_->work_chunks_created_;
657    }
658  }
659
660  static const size_t kMaxSize = 1 * KB;
661
662 protected:
663  class ScanObjectParallelVisitor {
664   public:
665    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
666        : chunk_task_(chunk_task) {}
667
668    void operator()(Object* obj) const {
669      MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
670      mark_sweep->ScanObjectVisit(obj,
671          [mark_sweep, this](Object* /* obj */, Object* ref, const MemberOffset& /* offset */,
672              bool /* is_static */) ALWAYS_INLINE {
673        if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
674          if (kUseFinger) {
675            android_memory_barrier();
676            if (reinterpret_cast<uintptr_t>(ref) >=
677                static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
678              return;
679            }
680          }
681          chunk_task_->MarkStackPush(ref);
682        }
683      });
684    }
685
686   private:
687    MarkStackTask<kUseFinger>* const chunk_task_;
688  };
689
690  virtual ~MarkStackTask() {
691    // Make sure that we have cleared our mark stack.
692    DCHECK_EQ(mark_stack_pos_, 0U);
693    if (kCountTasks) {
694      ++mark_sweep_->work_chunks_deleted_;
695    }
696  }
697
698  MarkSweep* const mark_sweep_;
699  ThreadPool* const thread_pool_;
700  // Thread local mark stack for this task.
701  const Object* mark_stack_[kMaxSize];
702  // Mark stack position.
703  size_t mark_stack_pos_;
704
705  void MarkStackPush(const Object* obj) ALWAYS_INLINE {
706    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
707      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
708      mark_stack_pos_ /= 2;
709      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
710                                     mark_stack_ + mark_stack_pos_);
711      thread_pool_->AddTask(Thread::Current(), task);
712    }
713    DCHECK(obj != nullptr);
714    DCHECK(mark_stack_pos_ < kMaxSize);
715    mark_stack_[mark_stack_pos_++] = obj;
716  }
717
718  virtual void Finalize() {
719    delete this;
720  }
721
722  // Scans all of the objects
723  virtual void Run(Thread* self) {
724    ScanObjectParallelVisitor visitor(this);
725    // TODO: Tune this.
726    static const size_t kFifoSize = 4;
727    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
728    for (;;) {
729      const Object* obj = nullptr;
730      if (kUseMarkStackPrefetch) {
731        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
732          const Object* obj = mark_stack_[--mark_stack_pos_];
733          DCHECK(obj != nullptr);
734          __builtin_prefetch(obj);
735          prefetch_fifo.push_back(obj);
736        }
737        if (UNLIKELY(prefetch_fifo.empty())) {
738          break;
739        }
740        obj = prefetch_fifo.front();
741        prefetch_fifo.pop_front();
742      } else {
743        if (UNLIKELY(mark_stack_pos_ == 0)) {
744          break;
745        }
746        obj = mark_stack_[--mark_stack_pos_];
747      }
748      DCHECK(obj != nullptr);
749      visitor(const_cast<mirror::Object*>(obj));
750    }
751  }
752};
753
754class CardScanTask : public MarkStackTask<false> {
755 public:
756  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
757               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
758               const Object** mark_stack_obj)
759      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
760        bitmap_(bitmap),
761        begin_(begin),
762        end_(end),
763        minimum_age_(minimum_age) {
764  }
765
766 protected:
767  accounting::SpaceBitmap* const bitmap_;
768  byte* const begin_;
769  byte* const end_;
770  const byte minimum_age_;
771
772  virtual void Finalize() {
773    delete this;
774  }
775
776  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
777    ScanObjectParallelVisitor visitor(this);
778    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
779    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
780    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
781        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
782    // Finish by emptying our local mark stack.
783    MarkStackTask::Run(self);
784  }
785};
786
787size_t MarkSweep::GetThreadCount(bool paused) const {
788  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
789    return 0;
790  }
791  if (paused) {
792    return heap_->GetParallelGCThreadCount() + 1;
793  } else {
794    return heap_->GetConcGCThreadCount() + 1;
795  }
796}
797
798void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
799  accounting::CardTable* card_table = GetHeap()->GetCardTable();
800  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
801  size_t thread_count = GetThreadCount(paused);
802  // The parallel version with only one thread is faster for card scanning, TODO: fix.
803  if (kParallelCardScan && thread_count > 0) {
804    Thread* self = Thread::Current();
805    // Can't have a different split for each space since multiple spaces can have their cards being
806    // scanned at the same time.
807    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
808    // Try to take some of the mark stack since we can pass this off to the worker tasks.
809    const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
810    const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
811    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
812    // Estimated number of work tasks we will create.
813    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
814    DCHECK_NE(mark_stack_tasks, 0U);
815    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
816                                             mark_stack_size / mark_stack_tasks + 1);
817    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
818      if (space->GetMarkBitmap() == nullptr) {
819        continue;
820      }
821      byte* card_begin = space->Begin();
822      byte* card_end = space->End();
823      // Align up the end address. For example, the image space's end
824      // may not be card-size-aligned.
825      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
826      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
827      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
828      // Calculate how many bytes of heap we will scan,
829      const size_t address_range = card_end - card_begin;
830      // Calculate how much address range each task gets.
831      const size_t card_delta = RoundUp(address_range / thread_count + 1,
832                                        accounting::CardTable::kCardSize);
833      // Create the worker tasks for this space.
834      while (card_begin != card_end) {
835        // Add a range of cards.
836        size_t addr_remaining = card_end - card_begin;
837        size_t card_increment = std::min(card_delta, addr_remaining);
838        // Take from the back of the mark stack.
839        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
840        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
841        mark_stack_end -= mark_stack_increment;
842        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
843        DCHECK_EQ(mark_stack_end, mark_stack_->End());
844        // Add the new task to the thread pool.
845        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
846                                      card_begin + card_increment, minimum_age,
847                                      mark_stack_increment, mark_stack_end);
848        thread_pool->AddTask(self, task);
849        card_begin += card_increment;
850      }
851    }
852
853    // Note: the card scan below may dirty new cards (and scan them)
854    // as a side effect when a Reference object is encountered and
855    // queued during the marking. See b/11465268.
856    thread_pool->SetMaxActiveWorkers(thread_count - 1);
857    thread_pool->StartWorkers(self);
858    thread_pool->Wait(self, true, true);
859    thread_pool->StopWorkers(self);
860    timings_.EndSplit();
861  } else {
862    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
863      if (space->GetMarkBitmap() != nullptr) {
864        // Image spaces are handled properly since live == marked for them.
865        switch (space->GetGcRetentionPolicy()) {
866          case space::kGcRetentionPolicyNeverCollect:
867            timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
868                "ScanGrayImageSpaceObjects");
869            break;
870          case space::kGcRetentionPolicyFullCollect:
871            timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
872                "ScanGrayZygoteSpaceObjects");
873            break;
874          case space::kGcRetentionPolicyAlwaysCollect:
875            timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
876                "ScanGrayAllocSpaceObjects");
877            break;
878          }
879        ScanObjectVisitor visitor(this);
880        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
881        timings_.EndSplit();
882      }
883    }
884  }
885}
886
887void MarkSweep::VerifyImageRoots() {
888  // Verify roots ensures that all the references inside the image space point
889  // objects which are either in the image space or marked objects in the alloc
890  // space
891  timings_.StartSplit("VerifyImageRoots");
892  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
893    if (space->IsImageSpace()) {
894      space::ImageSpace* image_space = space->AsImageSpace();
895      uintptr_t begin = reinterpret_cast<uintptr_t>(image_space->Begin());
896      uintptr_t end = reinterpret_cast<uintptr_t>(image_space->End());
897      accounting::SpaceBitmap* live_bitmap = image_space->GetLiveBitmap();
898      DCHECK(live_bitmap != NULL);
899      live_bitmap->VisitMarkedRange(begin, end, [this](const Object* obj) {
900        if (kCheckLocks) {
901          Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
902        }
903        DCHECK(obj != NULL);
904        CheckObject(obj);
905      });
906    }
907  }
908  timings_.EndSplit();
909}
910
911class RecursiveMarkTask : public MarkStackTask<false> {
912 public:
913  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
914                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
915      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
916        bitmap_(bitmap),
917        begin_(begin),
918        end_(end) {
919  }
920
921 protected:
922  accounting::SpaceBitmap* const bitmap_;
923  const uintptr_t begin_;
924  const uintptr_t end_;
925
926  virtual void Finalize() {
927    delete this;
928  }
929
930  // Scans all of the objects
931  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
932    ScanObjectParallelVisitor visitor(this);
933    bitmap_->VisitMarkedRange(begin_, end_, visitor);
934    // Finish by emptying our local mark stack.
935    MarkStackTask::Run(self);
936  }
937};
938
939// Populates the mark stack based on the set of marked objects and
940// recursively marks until the mark stack is emptied.
941void MarkSweep::RecursiveMark() {
942  TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
943  // RecursiveMark will build the lists of known instances of the Reference classes.
944  // See DelayReferenceReferent for details.
945  CHECK(soft_reference_list_ == NULL);
946  CHECK(weak_reference_list_ == NULL);
947  CHECK(finalizer_reference_list_ == NULL);
948  CHECK(phantom_reference_list_ == NULL);
949  CHECK(cleared_reference_list_ == NULL);
950
951  if (kUseRecursiveMark) {
952    const bool partial = GetGcType() == kGcTypePartial;
953    ScanObjectVisitor scan_visitor(this);
954    auto* self = Thread::Current();
955    ThreadPool* thread_pool = heap_->GetThreadPool();
956    size_t thread_count = GetThreadCount(false);
957    const bool parallel = kParallelRecursiveMark && thread_count > 1;
958    mark_stack_->Reset();
959    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
960      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
961          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
962        current_mark_bitmap_ = space->GetMarkBitmap();
963        if (current_mark_bitmap_ == nullptr) {
964          continue;
965        }
966        if (parallel) {
967          // We will use the mark stack the future.
968          // CHECK(mark_stack_->IsEmpty());
969          // This function does not handle heap end increasing, so we must use the space end.
970          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
971          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
972          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
973
974          // Create a few worker tasks.
975          const size_t n = thread_count * 2;
976          while (begin != end) {
977            uintptr_t start = begin;
978            uintptr_t delta = (end - begin) / n;
979            delta = RoundUp(delta, KB);
980            if (delta < 16 * KB) delta = end - begin;
981            begin += delta;
982            auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
983                                               begin);
984            thread_pool->AddTask(self, task);
985          }
986          thread_pool->SetMaxActiveWorkers(thread_count - 1);
987          thread_pool->StartWorkers(self);
988          thread_pool->Wait(self, true, true);
989          thread_pool->StopWorkers(self);
990        } else {
991          // This function does not handle heap end increasing, so we must use the space end.
992          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
993          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
994          current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
995        }
996      }
997    }
998  }
999  ProcessMarkStack(false);
1000}
1001
1002mirror::Object* MarkSweep::IsMarkedCallback(Object* object, void* arg) {
1003  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
1004    return object;
1005  }
1006  return nullptr;
1007}
1008
1009void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
1010  ScanGrayObjects(paused, minimum_age);
1011  ProcessMarkStack(paused);
1012}
1013
1014void MarkSweep::ReMarkRoots() {
1015  timings_.StartSplit("ReMarkRoots");
1016  Runtime::Current()->VisitRoots(MarkRootCallback, this, true, true);
1017  timings_.EndSplit();
1018}
1019
1020void MarkSweep::SweepSystemWeaks() {
1021  Runtime* runtime = Runtime::Current();
1022  timings_.StartSplit("SweepSystemWeaks");
1023  runtime->SweepSystemWeaks(IsMarkedCallback, this);
1024  timings_.EndSplit();
1025}
1026
1027mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
1028  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
1029  // We don't actually want to sweep the object, so lets return "marked"
1030  return obj;
1031}
1032
1033void MarkSweep::VerifyIsLive(const Object* obj) {
1034  Heap* heap = GetHeap();
1035  if (!heap->GetLiveBitmap()->Test(obj)) {
1036    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1037    if (!large_object_space->GetLiveObjects()->Test(obj)) {
1038      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
1039          heap->allocation_stack_->End()) {
1040        // Object not found!
1041        heap->DumpSpaces();
1042        LOG(FATAL) << "Found dead object " << obj;
1043      }
1044    }
1045  }
1046}
1047
1048void MarkSweep::VerifySystemWeaks() {
1049  // Verify system weaks, uses a special object visitor which returns the input object.
1050  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
1051}
1052
1053struct SweepCallbackContext {
1054  MarkSweep* mark_sweep;
1055  space::AllocSpace* space;
1056  Thread* self;
1057};
1058
1059class CheckpointMarkThreadRoots : public Closure {
1060 public:
1061  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1062
1063  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1064    ATRACE_BEGIN("Marking thread roots");
1065    // Note: self is not necessarily equal to thread since thread may be suspended.
1066    Thread* self = Thread::Current();
1067    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1068        << thread->GetState() << " thread " << thread << " self " << self;
1069    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
1070    ATRACE_END();
1071    mark_sweep_->GetBarrier().Pass(self);
1072  }
1073
1074 private:
1075  MarkSweep* mark_sweep_;
1076};
1077
1078void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1079  CheckpointMarkThreadRoots check_point(this);
1080  timings_.StartSplit("MarkRootsCheckpoint");
1081  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1082  // Request the check point is run on all threads returning a count of the threads that must
1083  // run through the barrier including self.
1084  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1085  // Release locks then wait for all mutator threads to pass the barrier.
1086  // TODO: optimize to not release locks when there are no threads to wait for.
1087  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1088  Locks::mutator_lock_->SharedUnlock(self);
1089  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1090  CHECK_EQ(old_state, kWaitingPerformingGc);
1091  gc_barrier_->Increment(self, barrier_count);
1092  self->SetState(kWaitingPerformingGc);
1093  Locks::mutator_lock_->SharedLock(self);
1094  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1095  timings_.EndSplit();
1096}
1097
1098void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1099  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1100  MarkSweep* mark_sweep = context->mark_sweep;
1101  Heap* heap = mark_sweep->GetHeap();
1102  space::AllocSpace* space = context->space;
1103  Thread* self = context->self;
1104  Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
1105  // Use a bulk free, that merges consecutive objects before freeing or free per object?
1106  // Documentation suggests better free performance with merging, but this may be at the expensive
1107  // of allocation.
1108  size_t freed_objects = num_ptrs;
1109  // AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit
1110  size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs);
1111  heap->RecordFree(freed_objects, freed_bytes);
1112  mark_sweep->freed_objects_.fetch_add(freed_objects);
1113  mark_sweep->freed_bytes_.fetch_add(freed_bytes);
1114}
1115
1116void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1117  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1118  Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self);
1119  Heap* heap = context->mark_sweep->GetHeap();
1120  // We don't free any actual memory to avoid dirtying the shared zygote pages.
1121  for (size_t i = 0; i < num_ptrs; ++i) {
1122    Object* obj = static_cast<Object*>(ptrs[i]);
1123    heap->GetLiveBitmap()->Clear(obj);
1124    heap->GetCardTable()->MarkCard(obj);
1125  }
1126}
1127
1128void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1129  space::MallocSpace* space = heap_->GetNonMovingSpace();
1130  timings_.StartSplit("SweepArray");
1131  // Newly allocated objects MUST be in the alloc space and those are the only objects which we are
1132  // going to free.
1133  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1134  accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1135  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1136  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1137  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1138  if (swap_bitmaps) {
1139    std::swap(live_bitmap, mark_bitmap);
1140    std::swap(large_live_objects, large_mark_objects);
1141  }
1142
1143  size_t freed_bytes = 0;
1144  size_t freed_large_object_bytes = 0;
1145  size_t freed_objects = 0;
1146  size_t freed_large_objects = 0;
1147  size_t count = allocations->Size();
1148  Object** objects = const_cast<Object**>(allocations->Begin());
1149  Object** out = objects;
1150  Object** objects_to_chunk_free = out;
1151
1152  // Empty the allocation stack.
1153  Thread* self = Thread::Current();
1154  for (size_t i = 0; i < count; ++i) {
1155    Object* obj = objects[i];
1156    // There should only be objects in the AllocSpace/LargeObjectSpace in the allocation stack.
1157    if (LIKELY(mark_bitmap->HasAddress(obj))) {
1158      if (!mark_bitmap->Test(obj)) {
1159        // Don't bother un-marking since we clear the mark bitmap anyways.
1160        *(out++) = obj;
1161        // Free objects in chunks.
1162        DCHECK_GE(out, objects_to_chunk_free);
1163        DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1164        if (static_cast<size_t>(out - objects_to_chunk_free) == kSweepArrayChunkFreeSize) {
1165          timings_.StartSplit("FreeList");
1166          size_t chunk_freed_objects = out - objects_to_chunk_free;
1167          freed_objects += chunk_freed_objects;
1168          freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1169          objects_to_chunk_free = out;
1170          timings_.EndSplit();
1171        }
1172      }
1173    } else if (!large_mark_objects->Test(obj)) {
1174      ++freed_large_objects;
1175      freed_large_object_bytes += large_object_space->Free(self, obj);
1176    }
1177  }
1178  // Free the remaining objects in chunks.
1179  DCHECK_GE(out, objects_to_chunk_free);
1180  DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1181  if (out - objects_to_chunk_free > 0) {
1182    timings_.StartSplit("FreeList");
1183    size_t chunk_freed_objects = out - objects_to_chunk_free;
1184    freed_objects += chunk_freed_objects;
1185    freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1186    timings_.EndSplit();
1187  }
1188  CHECK_EQ(count, allocations->Size());
1189  timings_.EndSplit();
1190
1191  timings_.StartSplit("RecordFree");
1192  VLOG(heap) << "Freed " << freed_objects << "/" << count
1193             << " objects with size " << PrettySize(freed_bytes);
1194  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1195  freed_objects_.fetch_add(freed_objects);
1196  freed_large_objects_.fetch_add(freed_large_objects);
1197  freed_bytes_.fetch_add(freed_bytes);
1198  freed_large_object_bytes_.fetch_add(freed_large_object_bytes);
1199  timings_.EndSplit();
1200
1201  timings_.StartSplit("ResetStack");
1202  allocations->Reset();
1203  timings_.EndSplit();
1204}
1205
1206void MarkSweep::Sweep(bool swap_bitmaps) {
1207  DCHECK(mark_stack_->IsEmpty());
1208  TimingLogger::ScopedSplit("Sweep", &timings_);
1209
1210  const bool partial = (GetGcType() == kGcTypePartial);
1211  SweepCallbackContext scc;
1212  scc.mark_sweep = this;
1213  scc.self = Thread::Current();
1214  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1215    if (!space->IsMallocSpace()) {
1216      continue;
1217    }
1218    // We always sweep always collect spaces.
1219    bool sweep_space = space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect;
1220    if (!partial && !sweep_space) {
1221      // We sweep full collect spaces when the GC isn't a partial GC (ie its full).
1222      sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect);
1223    }
1224    if (sweep_space) {
1225      uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1226      uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1227      scc.space = space->AsMallocSpace();
1228      accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1229      accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1230      if (swap_bitmaps) {
1231        std::swap(live_bitmap, mark_bitmap);
1232      }
1233      if (!space->IsZygoteSpace()) {
1234        TimingLogger::ScopedSplit split("SweepAllocSpace", &timings_);
1235        // Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked.
1236        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1237                                           &SweepCallback, reinterpret_cast<void*>(&scc));
1238      } else {
1239        TimingLogger::ScopedSplit split("SweepZygote", &timings_);
1240        // Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual
1241        // memory.
1242        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1243                                           &ZygoteSweepCallback, reinterpret_cast<void*>(&scc));
1244      }
1245    }
1246  }
1247
1248  SweepLargeObjects(swap_bitmaps);
1249}
1250
1251void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1252  TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1253  // Sweep large objects
1254  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1255  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1256  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1257  if (swap_bitmaps) {
1258    std::swap(large_live_objects, large_mark_objects);
1259  }
1260  // O(n*log(n)) but hopefully there are not too many large objects.
1261  size_t freed_objects = 0;
1262  size_t freed_bytes = 0;
1263  Thread* self = Thread::Current();
1264  for (const Object* obj : large_live_objects->GetObjects()) {
1265    if (!large_mark_objects->Test(obj)) {
1266      freed_bytes += large_object_space->Free(self, const_cast<Object*>(obj));
1267      ++freed_objects;
1268    }
1269  }
1270  freed_large_objects_.fetch_add(freed_objects);
1271  freed_large_object_bytes_.fetch_add(freed_bytes);
1272  GetHeap()->RecordFree(freed_objects, freed_bytes);
1273}
1274
1275void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) {
1276  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1277    if (space->IsMallocSpace() && space->Contains(ref)) {
1278      DCHECK(IsMarked(obj));
1279
1280      bool is_marked = IsMarked(ref);
1281      if (!is_marked) {
1282        LOG(INFO) << *space;
1283        LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref)
1284                     << "' (" << reinterpret_cast<const void*>(ref) << ") in '" << PrettyTypeOf(obj)
1285                     << "' (" << reinterpret_cast<const void*>(obj) << ") at offset "
1286                     << reinterpret_cast<void*>(offset.Int32Value()) << " wasn't marked";
1287
1288        const Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1289        DCHECK(klass != NULL);
1290        const ObjectArray<ArtField>* fields = is_static ? klass->GetSFields() : klass->GetIFields();
1291        DCHECK(fields != NULL);
1292        bool found = false;
1293        for (int32_t i = 0; i < fields->GetLength(); ++i) {
1294          const ArtField* cur = fields->Get(i);
1295          if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1296            LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur);
1297            found = true;
1298            break;
1299          }
1300        }
1301        if (!found) {
1302          LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value();
1303        }
1304
1305        bool obj_marked = heap_->GetCardTable()->IsDirty(obj);
1306        if (!obj_marked) {
1307          LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' "
1308                       << "(" << reinterpret_cast<const void*>(obj) << ") contains references to "
1309                       << "the alloc space, but wasn't card marked";
1310        }
1311      }
1312    }
1313    break;
1314  }
1315}
1316
1317// Process the "referent" field in a java.lang.ref.Reference.  If the
1318// referent has not yet been marked, put it on the appropriate list in
1319// the heap for later processing.
1320void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
1321  DCHECK(klass != nullptr);
1322  DCHECK(klass->IsReferenceClass());
1323  DCHECK(obj != NULL);
1324  heap_->DelayReferenceReferent(klass, obj, IsMarkedCallback, this);
1325}
1326
1327class MarkObjectVisitor {
1328 public:
1329  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
1330
1331  // TODO: Fixme when anotatalysis works with visitors.
1332  void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
1333                  bool /* is_static */) const ALWAYS_INLINE
1334      NO_THREAD_SAFETY_ANALYSIS {
1335    if (kCheckLocks) {
1336      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1337      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1338    }
1339    mark_sweep_->MarkObject(ref);
1340  }
1341
1342 private:
1343  MarkSweep* const mark_sweep_;
1344};
1345
1346// Scans an object reference.  Determines the type of the reference
1347// and dispatches to a specialized scanning routine.
1348void MarkSweep::ScanObject(Object* obj) {
1349  MarkObjectVisitor visitor(this);
1350  ScanObjectVisit(obj, visitor);
1351}
1352
1353void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1354  Thread* self = Thread::Current();
1355  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1356  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1357                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1358  CHECK_GT(chunk_size, 0U);
1359  // Split the current mark stack up into work tasks.
1360  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1361    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1362    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
1363                                                        const_cast<const mirror::Object**>(it)));
1364    it += delta;
1365  }
1366  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1367  thread_pool->StartWorkers(self);
1368  thread_pool->Wait(self, true, true);
1369  thread_pool->StopWorkers(self);
1370  mark_stack_->Reset();
1371  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1372}
1373
1374// Scan anything that's on the mark stack.
1375void MarkSweep::ProcessMarkStack(bool paused) {
1376  timings_.StartSplit("ProcessMarkStack");
1377  size_t thread_count = GetThreadCount(paused);
1378  if (kParallelProcessMarkStack && thread_count > 1 &&
1379      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1380    ProcessMarkStackParallel(thread_count);
1381  } else {
1382    // TODO: Tune this.
1383    static const size_t kFifoSize = 4;
1384    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1385    for (;;) {
1386      Object* obj = NULL;
1387      if (kUseMarkStackPrefetch) {
1388        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1389          Object* obj = mark_stack_->PopBack();
1390          DCHECK(obj != NULL);
1391          __builtin_prefetch(obj);
1392          prefetch_fifo.push_back(obj);
1393        }
1394        if (prefetch_fifo.empty()) {
1395          break;
1396        }
1397        obj = prefetch_fifo.front();
1398        prefetch_fifo.pop_front();
1399      } else {
1400        if (mark_stack_->IsEmpty()) {
1401          break;
1402        }
1403        obj = mark_stack_->PopBack();
1404      }
1405      DCHECK(obj != NULL);
1406      ScanObject(obj);
1407    }
1408  }
1409  timings_.EndSplit();
1410}
1411
1412inline bool MarkSweep::IsMarked(const Object* object) const
1413    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1414  if (IsImmune(object)) {
1415    return true;
1416  }
1417  DCHECK(current_mark_bitmap_ != NULL);
1418  if (current_mark_bitmap_->HasAddress(object)) {
1419    return current_mark_bitmap_->Test(object);
1420  }
1421  return heap_->GetMarkBitmap()->Test(object);
1422}
1423
1424void MarkSweep::UnBindBitmaps() {
1425  TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
1426  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1427    if (space->IsMallocSpace()) {
1428      space::MallocSpace* alloc_space = space->AsMallocSpace();
1429      if (alloc_space->temp_bitmap_.get() != NULL) {
1430        // At this point, the temp_bitmap holds our old mark bitmap.
1431        accounting::SpaceBitmap* new_bitmap = alloc_space->temp_bitmap_.release();
1432        GetHeap()->GetMarkBitmap()->ReplaceBitmap(alloc_space->mark_bitmap_.get(), new_bitmap);
1433        CHECK_EQ(alloc_space->mark_bitmap_.release(), alloc_space->live_bitmap_.get());
1434        alloc_space->mark_bitmap_.reset(new_bitmap);
1435        DCHECK(alloc_space->temp_bitmap_.get() == NULL);
1436      }
1437    }
1438  }
1439}
1440
1441void MarkSweep::FinishPhase() {
1442  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1443  // Can't enqueue references if we hold the mutator lock.
1444  Heap* heap = GetHeap();
1445  timings_.NewSplit("PostGcVerification");
1446  heap->PostGcVerification(this);
1447
1448  timings_.NewSplit("RequestHeapTrim");
1449  heap->RequestHeapTrim();
1450
1451  // Update the cumulative statistics
1452  total_time_ns_ += GetDurationNs();
1453  total_paused_time_ns_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0,
1454                                           std::plus<uint64_t>());
1455  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
1456  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
1457
1458  // Ensure that the mark stack is empty.
1459  CHECK(mark_stack_->IsEmpty());
1460
1461  if (kCountScannedTypes) {
1462    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1463             << " other=" << other_count_;
1464  }
1465
1466  if (kCountTasks) {
1467    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1468  }
1469
1470  if (kMeasureOverhead) {
1471    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1472  }
1473
1474  if (kProfileLargeObjects) {
1475    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1476  }
1477
1478  if (kCountClassesMarked) {
1479    VLOG(gc) << "Classes marked " << classes_marked_;
1480  }
1481
1482  if (kCountJavaLangRefs) {
1483    VLOG(gc) << "References scanned " << reference_count_;
1484  }
1485
1486  // Update the cumulative loggers.
1487  cumulative_timings_.Start();
1488  cumulative_timings_.AddLogger(timings_);
1489  cumulative_timings_.End();
1490
1491  // Clear all of the spaces' mark bitmaps.
1492  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1493    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
1494    if (bitmap != nullptr &&
1495        space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1496      bitmap->Clear();
1497    }
1498  }
1499  mark_stack_->Reset();
1500
1501  // Reset the marked large objects.
1502  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1503  large_objects->GetMarkObjects()->Clear();
1504}
1505
1506}  // namespace collector
1507}  // namespace gc
1508}  // namespace art
1509