utils.h revision 5567c11b9157eec110c0631aa2bff5836631e868
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_UTILS_H_
18#define ART_RUNTIME_UTILS_H_
19
20#include <pthread.h>
21
22#include <limits>
23#include <memory>
24#include <string>
25#include <vector>
26
27#include "arch/instruction_set.h"
28#include "base/logging.h"
29#include "base/mutex.h"
30#include "globals.h"
31#include "primitive.h"
32
33namespace art {
34
35class DexFile;
36
37namespace mirror {
38class ArtField;
39class ArtMethod;
40class Class;
41class Object;
42class String;
43}  // namespace mirror
44
45enum TimeUnit {
46  kTimeUnitNanosecond,
47  kTimeUnitMicrosecond,
48  kTimeUnitMillisecond,
49  kTimeUnitSecond,
50};
51
52template <typename T>
53bool ParseUint(const char *in, T* out) {
54  char* end;
55  unsigned long long int result = strtoull(in, &end, 0);  // NOLINT(runtime/int)
56  if (in == end || *end != '\0') {
57    return false;
58  }
59  if (std::numeric_limits<T>::max() < result) {
60    return false;
61  }
62  *out = static_cast<T>(result);
63  return true;
64}
65
66template <typename T>
67bool ParseInt(const char* in, T* out) {
68  char* end;
69  long long int result = strtoll(in, &end, 0);  // NOLINT(runtime/int)
70  if (in == end || *end != '\0') {
71    return false;
72  }
73  if (result < std::numeric_limits<T>::min() || std::numeric_limits<T>::max() < result) {
74    return false;
75  }
76  *out = static_cast<T>(result);
77  return true;
78}
79
80template<typename T>
81static constexpr bool IsPowerOfTwo(T x) {
82  return (x & (x - 1)) == 0;
83}
84
85template<int n, typename T>
86static inline bool IsAligned(T x) {
87  static_assert((n & (n - 1)) == 0, "n is not a power of two");
88  return (x & (n - 1)) == 0;
89}
90
91template<int n, typename T>
92static inline bool IsAligned(T* x) {
93  return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
94}
95
96template<typename T>
97static inline bool IsAlignedParam(T x, int n) {
98  return (x & (n - 1)) == 0;
99}
100
101#define CHECK_ALIGNED(value, alignment) \
102  CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
103
104#define DCHECK_ALIGNED(value, alignment) \
105  DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
106
107#define DCHECK_ALIGNED_PARAM(value, alignment) \
108  DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
109
110// Check whether an N-bit two's-complement representation can hold value.
111static inline bool IsInt(int N, intptr_t value) {
112  CHECK_LT(0, N);
113  CHECK_LT(N, kBitsPerIntPtrT);
114  intptr_t limit = static_cast<intptr_t>(1) << (N - 1);
115  return (-limit <= value) && (value < limit);
116}
117
118static inline bool IsInt32(int N, int32_t value) {
119  CHECK_LT(0, N);
120  CHECK_LT(static_cast<size_t>(N), 8 * sizeof(int32_t));
121  int32_t limit = static_cast<int32_t>(1) << (N - 1);
122  return (-limit <= value) && (value < limit);
123}
124
125static inline bool IsInt64(int N, int64_t value) {
126  CHECK_LT(0, N);
127  CHECK_LT(static_cast<size_t>(N), 8 * sizeof(int64_t));
128  int64_t limit = static_cast<int64_t>(1) << (N - 1);
129  return (-limit <= value) && (value < limit);
130}
131
132static inline bool IsUint(int N, intptr_t value) {
133  CHECK_LT(0, N);
134  CHECK_LT(N, kBitsPerIntPtrT);
135  intptr_t limit = static_cast<intptr_t>(1) << N;
136  return (0 <= value) && (value < limit);
137}
138
139static inline bool IsAbsoluteUint(int N, intptr_t value) {
140  CHECK_LT(0, N);
141  CHECK_LT(N, kBitsPerIntPtrT);
142  if (value < 0) value = -value;
143  return IsUint(N, value);
144}
145
146static inline uint16_t Low16Bits(uint32_t value) {
147  return static_cast<uint16_t>(value);
148}
149
150static inline uint16_t High16Bits(uint32_t value) {
151  return static_cast<uint16_t>(value >> 16);
152}
153
154static inline uint32_t Low32Bits(uint64_t value) {
155  return static_cast<uint32_t>(value);
156}
157
158static inline uint32_t High32Bits(uint64_t value) {
159  return static_cast<uint32_t>(value >> 32);
160}
161
162// Type identity.
163template <typename T>
164struct TypeIdentity {
165  typedef T type;
166};
167
168// Like sizeof, but count how many bits a type takes. Pass type explicitly.
169template <typename T>
170static constexpr size_t BitSizeOf() {
171  return sizeof(T) * CHAR_BIT;
172}
173
174// Like sizeof, but count how many bits a type takes. Infers type from parameter.
175template <typename T>
176static constexpr size_t BitSizeOf(T /*x*/) {
177  return sizeof(T) * CHAR_BIT;
178}
179
180// For rounding integers.
181template<typename T>
182static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
183
184template<typename T>
185static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) {
186  return
187      DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0))
188      (x & -n);
189}
190
191template<typename T>
192static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
193
194template<typename T>
195static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) {
196  return RoundDown(x + n - 1, n);
197}
198
199// For aligning pointers.
200template<typename T>
201static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
202
203template<typename T>
204static inline T* AlignDown(T* x, uintptr_t n) {
205  return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
206}
207
208template<typename T>
209static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
210
211template<typename T>
212static inline T* AlignUp(T* x, uintptr_t n) {
213  return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
214}
215
216namespace utils {
217namespace detail {  // Private, implementation-specific namespace. Do not poke outside of this file.
218template <typename T>
219static constexpr inline T RoundUpToPowerOfTwoRecursive(T x, size_t bit) {
220  return bit == (BitSizeOf<T>()) ? x: RoundUpToPowerOfTwoRecursive(x | x >> bit, bit << 1);
221}
222}  // namespace detail
223}  // namespace utils
224
225// Recursive implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
226// figure 3-3, page 48, where the function is called clp2.
227template <typename T>
228static constexpr inline T RoundUpToPowerOfTwo(T x) {
229  return art::utils::detail::RoundUpToPowerOfTwoRecursive(x - 1, 1) + 1;
230}
231
232// Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
233template <typename T>
234static constexpr ssize_t MostSignificantBit(T value) {
235  return (value == 0) ? -1 : (MostSignificantBit(value >> 1) + 1);
236}
237
238// How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
239template <typename T>
240static constexpr size_t MinimumBitsToStore(T value) {
241  return static_cast<size_t>(MostSignificantBit(value) + 1);
242}
243
244template<typename T>
245static constexpr int CLZ(T x) {
246  static_assert(sizeof(T) <= sizeof(long long), "T too large, must be smaller than long long");  // NOLINT [runtime/int] [4]
247  return (sizeof(T) == sizeof(uint32_t))
248      ? __builtin_clz(x)  // TODO: __builtin_clz[ll] has undefined behavior for x=0
249      : __builtin_clzll(x);
250}
251
252template<typename T>
253static constexpr int CTZ(T x) {
254  return (sizeof(T) == sizeof(uint32_t))
255      ? __builtin_ctz(x)
256      : __builtin_ctzll(x);
257}
258
259template<typename T>
260static constexpr int POPCOUNT(T x) {
261  return (sizeof(T) == sizeof(uint32_t))
262      ? __builtin_popcount(x)
263      : __builtin_popcountll(x);
264}
265
266static inline uint32_t PointerToLowMemUInt32(const void* p) {
267  uintptr_t intp = reinterpret_cast<uintptr_t>(p);
268  DCHECK_LE(intp, 0xFFFFFFFFU);
269  return intp & 0xFFFFFFFFU;
270}
271
272static inline bool NeedsEscaping(uint16_t ch) {
273  return (ch < ' ' || ch > '~');
274}
275
276// Interpret the bit pattern of input (type U) as type V. Requires the size
277// of V >= size of U (compile-time checked).
278template<typename U, typename V>
279static inline V bit_cast(U in) {
280  static_assert(sizeof(U) <= sizeof(V), "Size of U not <= size of V");
281  union {
282    U u;
283    V v;
284  } tmp;
285  tmp.u = in;
286  return tmp.v;
287}
288
289std::string PrintableChar(uint16_t ch);
290
291// Returns an ASCII string corresponding to the given UTF-8 string.
292// Java escapes are used for non-ASCII characters.
293std::string PrintableString(const char* utf8);
294
295// Tests whether 's' starts with 'prefix'.
296bool StartsWith(const std::string& s, const char* prefix);
297
298// Tests whether 's' starts with 'suffix'.
299bool EndsWith(const std::string& s, const char* suffix);
300
301// Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf,
302// one of which is probably more useful to you.
303// Returns a human-readable equivalent of 'descriptor'. So "I" would be "int",
304// "[[I" would be "int[][]", "[Ljava/lang/String;" would be
305// "java.lang.String[]", and so forth.
306std::string PrettyDescriptor(mirror::String* descriptor)
307    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
308std::string PrettyDescriptor(const char* descriptor);
309std::string PrettyDescriptor(mirror::Class* klass)
310    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
311std::string PrettyDescriptor(Primitive::Type type);
312
313// Returns a human-readable signature for 'f'. Something like "a.b.C.f" or
314// "int a.b.C.f" (depending on the value of 'with_type').
315std::string PrettyField(mirror::ArtField* f, bool with_type = true)
316    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
317std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true);
318
319// Returns a human-readable signature for 'm'. Something like "a.b.C.m" or
320// "a.b.C.m(II)V" (depending on the value of 'with_signature').
321std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature = true)
322    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
323std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true);
324
325// Returns a human-readable form of the name of the *class* of the given object.
326// So given an instance of java.lang.String, the output would
327// be "java.lang.String". Given an array of int, the output would be "int[]".
328// Given String.class, the output would be "java.lang.Class<java.lang.String>".
329std::string PrettyTypeOf(mirror::Object* obj)
330    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
331
332// Returns a human-readable form of the type at an index in the specified dex file.
333// Example outputs: char[], java.lang.String.
334std::string PrettyType(uint32_t type_idx, const DexFile& dex_file);
335
336// Returns a human-readable form of the name of the given class.
337// Given String.class, the output would be "java.lang.Class<java.lang.String>".
338std::string PrettyClass(mirror::Class* c)
339    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
340
341// Returns a human-readable form of the name of the given class with its class loader.
342std::string PrettyClassAndClassLoader(mirror::Class* c)
343    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
344
345// Returns a human-readable version of the Java part of the access flags, e.g., "private static "
346// (note the trailing whitespace).
347std::string PrettyJavaAccessFlags(uint32_t access_flags);
348
349// Returns a human-readable size string such as "1MB".
350std::string PrettySize(int64_t size_in_bytes);
351
352// Returns a human-readable time string which prints every nanosecond while trying to limit the
353// number of trailing zeros. Prints using the largest human readable unit up to a second.
354// e.g. "1ms", "1.000000001s", "1.001us"
355std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits = 3);
356
357// Format a nanosecond time to specified units.
358std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
359                           size_t max_fraction_digits);
360
361// Get the appropriate unit for a nanosecond duration.
362TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration);
363
364// Get the divisor to convert from a nanoseconds to a time unit.
365uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit);
366
367// Performs JNI name mangling as described in section 11.3 "Linking Native Methods"
368// of the JNI spec.
369std::string MangleForJni(const std::string& s);
370
371// Turn "java.lang.String" into "Ljava/lang/String;".
372std::string DotToDescriptor(const char* class_name);
373
374// Turn "Ljava/lang/String;" into "java.lang.String" using the conventions of
375// java.lang.Class.getName().
376std::string DescriptorToDot(const char* descriptor);
377
378// Turn "Ljava/lang/String;" into "java/lang/String" using the opposite conventions of
379// java.lang.Class.getName().
380std::string DescriptorToName(const char* descriptor);
381
382// Tests for whether 's' is a valid class name in the three common forms:
383bool IsValidBinaryClassName(const char* s);  // "java.lang.String"
384bool IsValidJniClassName(const char* s);     // "java/lang/String"
385bool IsValidDescriptor(const char* s);       // "Ljava/lang/String;"
386
387// Returns whether the given string is a valid field or method name,
388// additionally allowing names that begin with '<' and end with '>'.
389bool IsValidMemberName(const char* s);
390
391// Returns the JNI native function name for the non-overloaded method 'm'.
392std::string JniShortName(mirror::ArtMethod* m)
393    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
394// Returns the JNI native function name for the overloaded method 'm'.
395std::string JniLongName(mirror::ArtMethod* m)
396    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
397
398bool ReadFileToString(const std::string& file_name, std::string* result);
399
400// Returns the current date in ISO yyyy-mm-dd hh:mm:ss format.
401std::string GetIsoDate();
402
403// Returns the monotonic time since some unspecified starting point in milliseconds.
404uint64_t MilliTime();
405
406// Returns the monotonic time since some unspecified starting point in microseconds.
407uint64_t MicroTime();
408
409// Returns the monotonic time since some unspecified starting point in nanoseconds.
410uint64_t NanoTime();
411
412// Returns the thread-specific CPU-time clock in nanoseconds or -1 if unavailable.
413uint64_t ThreadCpuNanoTime();
414
415// Converts the given number of nanoseconds to milliseconds.
416static constexpr inline uint64_t NsToMs(uint64_t ns) {
417  return ns / 1000 / 1000;
418}
419
420// Converts the given number of milliseconds to nanoseconds
421static constexpr inline uint64_t MsToNs(uint64_t ns) {
422  return ns * 1000 * 1000;
423}
424
425#if defined(__APPLE__)
426// No clocks to specify on OS/X, fake value to pass to routines that require a clock.
427#define CLOCK_REALTIME 0xebadf00d
428#endif
429
430// Sleep for the given number of nanoseconds, a bad way to handle contention.
431void NanoSleep(uint64_t ns);
432
433// Initialize a timespec to either a relative time (ms,ns), or to the absolute
434// time corresponding to the indicated clock value plus the supplied offset.
435void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts);
436
437// Splits a string using the given separator character into a vector of
438// strings. Empty strings will be omitted.
439void Split(const std::string& s, char separator, std::vector<std::string>* result);
440
441// Trims whitespace off both ends of the given string.
442std::string Trim(const std::string& s);
443
444// Joins a vector of strings into a single string, using the given separator.
445template <typename StringT> std::string Join(const std::vector<StringT>& strings, char separator);
446
447// Returns the calling thread's tid. (The C libraries don't expose this.)
448pid_t GetTid();
449
450// Returns the given thread's name.
451std::string GetThreadName(pid_t tid);
452
453// Returns details of the given thread's stack.
454void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size);
455
456// Reads data from "/proc/self/task/${tid}/stat".
457void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu);
458
459// Returns the name of the scheduler group for the given thread the current process, or the empty string.
460std::string GetSchedulerGroupName(pid_t tid);
461
462// Sets the name of the current thread. The name may be truncated to an
463// implementation-defined limit.
464void SetThreadName(const char* thread_name);
465
466// Dumps the native stack for thread 'tid' to 'os'.
467void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "",
468    mirror::ArtMethod* current_method = nullptr)
469    NO_THREAD_SAFETY_ANALYSIS;
470
471// Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86.
472void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true);
473
474// Find $ANDROID_ROOT, /system, or abort.
475const char* GetAndroidRoot();
476
477// Find $ANDROID_DATA, /data, or abort.
478const char* GetAndroidData();
479// Find $ANDROID_DATA, /data, or return nullptr.
480const char* GetAndroidDataSafe(std::string* error_msg);
481
482// Returns the dalvik-cache location, or dies trying. subdir will be
483// appended to the cache location.
484std::string GetDalvikCacheOrDie(const char* subdir, bool create_if_absent = true);
485// Return true if we found the dalvik cache and stored it in the dalvik_cache argument.
486// have_android_data will be set to true if we have an ANDROID_DATA that exists,
487// dalvik_cache_exists will be true if there is a dalvik-cache directory that is present.
488// The flag is_global_cache tells whether this cache is /data/dalvik-cache.
489void GetDalvikCache(const char* subdir, bool create_if_absent, std::string* dalvik_cache,
490                    bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache);
491
492// Returns the absolute dalvik-cache path for a DexFile or OatFile. The path returned will be
493// rooted at cache_location.
494bool GetDalvikCacheFilename(const char* file_location, const char* cache_location,
495                            std::string* filename, std::string* error_msg);
496// Returns the absolute dalvik-cache path for a DexFile or OatFile, or
497// dies trying. The path returned will be rooted at cache_location.
498std::string GetDalvikCacheFilenameOrDie(const char* file_location,
499                                        const char* cache_location);
500
501// Returns the system location for an image
502std::string GetSystemImageFilename(const char* location, InstructionSet isa);
503
504// Returns an .odex file name next adjacent to the dex location.
505// For example, for "/foo/bar/baz.jar", return "/foo/bar/<isa>/baz.odex".
506// Note: does not support multidex location strings.
507std::string DexFilenameToOdexFilename(const std::string& location, InstructionSet isa);
508
509// Check whether the given magic matches a known file type.
510bool IsZipMagic(uint32_t magic);
511bool IsDexMagic(uint32_t magic);
512bool IsOatMagic(uint32_t magic);
513
514// Wrapper on fork/execv to run a command in a subprocess.
515bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg);
516
517class VoidFunctor {
518 public:
519  template <typename A>
520  inline void operator() (A a) const {
521    UNUSED(a);
522  }
523
524  template <typename A, typename B>
525  inline void operator() (A a, B b) const {
526    UNUSED(a, b);
527  }
528
529  template <typename A, typename B, typename C>
530  inline void operator() (A a, B b, C c) const {
531    UNUSED(a, b, c);
532  }
533};
534
535void PushWord(std::vector<uint8_t>* buf, int32_t data);
536
537void EncodeUnsignedLeb128(uint32_t data, std::vector<uint8_t>* buf);
538void EncodeSignedLeb128(int32_t data, std::vector<uint8_t>* buf);
539
540// Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below.
541struct FreeDelete {
542  // NOTE: Deleting a const object is valid but free() takes a non-const pointer.
543  void operator()(const void* ptr) const {
544    free(const_cast<void*>(ptr));
545  }
546};
547
548// Alias for std::unique_ptr<> that uses the C function free() to delete objects.
549template <typename T>
550using UniqueCPtr = std::unique_ptr<T, FreeDelete>;
551
552}  // namespace art
553
554#endif  // ART_RUNTIME_UTILS_H_
555