1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/MangleNumberingContext.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/VTableBuilder.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ADT/Triple.h"
39#include "llvm/Support/Capacity.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include <map>
43
44using namespace clang;
45
46unsigned ASTContext::NumImplicitDefaultConstructors;
47unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyConstructors;
49unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50unsigned ASTContext::NumImplicitMoveConstructors;
51unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56unsigned ASTContext::NumImplicitDestructors;
57unsigned ASTContext::NumImplicitDestructorsDeclared;
58
59enum FloatingRank {
60  HalfRank, FloatRank, DoubleRank, LongDoubleRank
61};
62
63RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64  if (!CommentsLoaded && ExternalSource) {
65    ExternalSource->ReadComments();
66
67#ifndef NDEBUG
68    ArrayRef<RawComment *> RawComments = Comments.getComments();
69    assert(std::is_sorted(RawComments.begin(), RawComments.end(),
70                          BeforeThanCompare<RawComment>(SourceMgr)));
71#endif
72
73    CommentsLoaded = true;
74  }
75
76  assert(D);
77
78  // User can not attach documentation to implicit declarations.
79  if (D->isImplicit())
80    return nullptr;
81
82  // User can not attach documentation to implicit instantiations.
83  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return nullptr;
86  }
87
88  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89    if (VD->isStaticDataMember() &&
90        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91      return nullptr;
92  }
93
94  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96      return nullptr;
97  }
98
99  if (const ClassTemplateSpecializationDecl *CTSD =
100          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102    if (TSK == TSK_ImplicitInstantiation ||
103        TSK == TSK_Undeclared)
104      return nullptr;
105  }
106
107  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109      return nullptr;
110  }
111  if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112    // When tag declaration (but not definition!) is part of the
113    // decl-specifier-seq of some other declaration, it doesn't get comment
114    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115      return nullptr;
116  }
117  // TODO: handle comments for function parameters properly.
118  if (isa<ParmVarDecl>(D))
119    return nullptr;
120
121  // TODO: we could look up template parameter documentation in the template
122  // documentation.
123  if (isa<TemplateTypeParmDecl>(D) ||
124      isa<NonTypeTemplateParmDecl>(D) ||
125      isa<TemplateTemplateParmDecl>(D))
126    return nullptr;
127
128  ArrayRef<RawComment *> RawComments = Comments.getComments();
129
130  // If there are no comments anywhere, we won't find anything.
131  if (RawComments.empty())
132    return nullptr;
133
134  // Find declaration location.
135  // For Objective-C declarations we generally don't expect to have multiple
136  // declarators, thus use declaration starting location as the "declaration
137  // location".
138  // For all other declarations multiple declarators are used quite frequently,
139  // so we use the location of the identifier as the "declaration location".
140  SourceLocation DeclLoc;
141  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142      isa<ObjCPropertyDecl>(D) ||
143      isa<RedeclarableTemplateDecl>(D) ||
144      isa<ClassTemplateSpecializationDecl>(D))
145    DeclLoc = D->getLocStart();
146  else {
147    DeclLoc = D->getLocation();
148    if (DeclLoc.isMacroID()) {
149      if (isa<TypedefDecl>(D)) {
150        // If location of the typedef name is in a macro, it is because being
151        // declared via a macro. Try using declaration's starting location as
152        // the "declaration location".
153        DeclLoc = D->getLocStart();
154      } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155        // If location of the tag decl is inside a macro, but the spelling of
156        // the tag name comes from a macro argument, it looks like a special
157        // macro like NS_ENUM is being used to define the tag decl.  In that
158        // case, adjust the source location to the expansion loc so that we can
159        // attach the comment to the tag decl.
160        if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161            TD->isCompleteDefinition())
162          DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163      }
164    }
165  }
166
167  // If the declaration doesn't map directly to a location in a file, we
168  // can't find the comment.
169  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170    return nullptr;
171
172  // Find the comment that occurs just after this declaration.
173  ArrayRef<RawComment *>::iterator Comment;
174  {
175    // When searching for comments during parsing, the comment we are looking
176    // for is usually among the last two comments we parsed -- check them
177    // first.
178    RawComment CommentAtDeclLoc(
179        SourceMgr, SourceRange(DeclLoc), false,
180        LangOpts.CommentOpts.ParseAllComments);
181    BeforeThanCompare<RawComment> Compare(SourceMgr);
182    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184    if (!Found && RawComments.size() >= 2) {
185      MaybeBeforeDecl--;
186      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187    }
188
189    if (Found) {
190      Comment = MaybeBeforeDecl + 1;
191      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
192                                         &CommentAtDeclLoc, Compare));
193    } else {
194      // Slow path.
195      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196                                 &CommentAtDeclLoc, Compare);
197    }
198  }
199
200  // Decompose the location for the declaration and find the beginning of the
201  // file buffer.
202  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203
204  // First check whether we have a trailing comment.
205  if (Comment != RawComments.end() &&
206      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208       isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209    std::pair<FileID, unsigned> CommentBeginDecomp
210      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211    // Check that Doxygen trailing comment comes after the declaration, starts
212    // on the same line and in the same file as the declaration.
213    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216                                     CommentBeginDecomp.second)) {
217      return *Comment;
218    }
219  }
220
221  // The comment just after the declaration was not a trailing comment.
222  // Let's look at the previous comment.
223  if (Comment == RawComments.begin())
224    return nullptr;
225  --Comment;
226
227  // Check that we actually have a non-member Doxygen comment.
228  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229    return nullptr;
230
231  // Decompose the end of the comment.
232  std::pair<FileID, unsigned> CommentEndDecomp
233    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234
235  // If the comment and the declaration aren't in the same file, then they
236  // aren't related.
237  if (DeclLocDecomp.first != CommentEndDecomp.first)
238    return nullptr;
239
240  // Get the corresponding buffer.
241  bool Invalid = false;
242  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243                                               &Invalid).data();
244  if (Invalid)
245    return nullptr;
246
247  // Extract text between the comment and declaration.
248  StringRef Text(Buffer + CommentEndDecomp.second,
249                 DeclLocDecomp.second - CommentEndDecomp.second);
250
251  // There should be no other declarations or preprocessor directives between
252  // comment and declaration.
253  if (Text.find_first_of(";{}#@") != StringRef::npos)
254    return nullptr;
255
256  return *Comment;
257}
258
259namespace {
260/// If we have a 'templated' declaration for a template, adjust 'D' to
261/// refer to the actual template.
262/// If we have an implicit instantiation, adjust 'D' to refer to template.
263const Decl *adjustDeclToTemplate(const Decl *D) {
264  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265    // Is this function declaration part of a function template?
266    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267      return FTD;
268
269    // Nothing to do if function is not an implicit instantiation.
270    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271      return D;
272
273    // Function is an implicit instantiation of a function template?
274    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275      return FTD;
276
277    // Function is instantiated from a member definition of a class template?
278    if (const FunctionDecl *MemberDecl =
279            FD->getInstantiatedFromMemberFunction())
280      return MemberDecl;
281
282    return D;
283  }
284  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285    // Static data member is instantiated from a member definition of a class
286    // template?
287    if (VD->isStaticDataMember())
288      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289        return MemberDecl;
290
291    return D;
292  }
293  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294    // Is this class declaration part of a class template?
295    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296      return CTD;
297
298    // Class is an implicit instantiation of a class template or partial
299    // specialization?
300    if (const ClassTemplateSpecializationDecl *CTSD =
301            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303        return D;
304      llvm::PointerUnion<ClassTemplateDecl *,
305                         ClassTemplatePartialSpecializationDecl *>
306          PU = CTSD->getSpecializedTemplateOrPartial();
307      return PU.is<ClassTemplateDecl*>() ?
308          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309          static_cast<const Decl*>(
310              PU.get<ClassTemplatePartialSpecializationDecl *>());
311    }
312
313    // Class is instantiated from a member definition of a class template?
314    if (const MemberSpecializationInfo *Info =
315                   CRD->getMemberSpecializationInfo())
316      return Info->getInstantiatedFrom();
317
318    return D;
319  }
320  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321    // Enum is instantiated from a member definition of a class template?
322    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323      return MemberDecl;
324
325    return D;
326  }
327  // FIXME: Adjust alias templates?
328  return D;
329}
330} // anonymous namespace
331
332const RawComment *ASTContext::getRawCommentForAnyRedecl(
333                                                const Decl *D,
334                                                const Decl **OriginalDecl) const {
335  D = adjustDeclToTemplate(D);
336
337  // Check whether we have cached a comment for this declaration already.
338  {
339    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340        RedeclComments.find(D);
341    if (Pos != RedeclComments.end()) {
342      const RawCommentAndCacheFlags &Raw = Pos->second;
343      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344        if (OriginalDecl)
345          *OriginalDecl = Raw.getOriginalDecl();
346        return Raw.getRaw();
347      }
348    }
349  }
350
351  // Search for comments attached to declarations in the redeclaration chain.
352  const RawComment *RC = nullptr;
353  const Decl *OriginalDeclForRC = nullptr;
354  for (auto I : D->redecls()) {
355    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356        RedeclComments.find(I);
357    if (Pos != RedeclComments.end()) {
358      const RawCommentAndCacheFlags &Raw = Pos->second;
359      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360        RC = Raw.getRaw();
361        OriginalDeclForRC = Raw.getOriginalDecl();
362        break;
363      }
364    } else {
365      RC = getRawCommentForDeclNoCache(I);
366      OriginalDeclForRC = I;
367      RawCommentAndCacheFlags Raw;
368      if (RC) {
369        // Call order swapped to work around ICE in VS2015 RTM (Release Win32)
370        // https://connect.microsoft.com/VisualStudio/feedback/details/1741530
371        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
372        Raw.setRaw(RC);
373      } else
374        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
375      Raw.setOriginalDecl(I);
376      RedeclComments[I] = Raw;
377      if (RC)
378        break;
379    }
380  }
381
382  // If we found a comment, it should be a documentation comment.
383  assert(!RC || RC->isDocumentation());
384
385  if (OriginalDecl)
386    *OriginalDecl = OriginalDeclForRC;
387
388  // Update cache for every declaration in the redeclaration chain.
389  RawCommentAndCacheFlags Raw;
390  Raw.setRaw(RC);
391  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
392  Raw.setOriginalDecl(OriginalDeclForRC);
393
394  for (auto I : D->redecls()) {
395    RawCommentAndCacheFlags &R = RedeclComments[I];
396    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
397      R = Raw;
398  }
399
400  return RC;
401}
402
403static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
404                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
405  const DeclContext *DC = ObjCMethod->getDeclContext();
406  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
407    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
408    if (!ID)
409      return;
410    // Add redeclared method here.
411    for (const auto *Ext : ID->known_extensions()) {
412      if (ObjCMethodDecl *RedeclaredMethod =
413            Ext->getMethod(ObjCMethod->getSelector(),
414                                  ObjCMethod->isInstanceMethod()))
415        Redeclared.push_back(RedeclaredMethod);
416    }
417  }
418}
419
420comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
421                                                    const Decl *D) const {
422  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
423  ThisDeclInfo->CommentDecl = D;
424  ThisDeclInfo->IsFilled = false;
425  ThisDeclInfo->fill();
426  ThisDeclInfo->CommentDecl = FC->getDecl();
427  if (!ThisDeclInfo->TemplateParameters)
428    ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
429  comments::FullComment *CFC =
430    new (*this) comments::FullComment(FC->getBlocks(),
431                                      ThisDeclInfo);
432  return CFC;
433}
434
435comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
436  const RawComment *RC = getRawCommentForDeclNoCache(D);
437  return RC ? RC->parse(*this, nullptr, D) : nullptr;
438}
439
440comments::FullComment *ASTContext::getCommentForDecl(
441                                              const Decl *D,
442                                              const Preprocessor *PP) const {
443  if (D->isInvalidDecl())
444    return nullptr;
445  D = adjustDeclToTemplate(D);
446
447  const Decl *Canonical = D->getCanonicalDecl();
448  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
449      ParsedComments.find(Canonical);
450
451  if (Pos != ParsedComments.end()) {
452    if (Canonical != D) {
453      comments::FullComment *FC = Pos->second;
454      comments::FullComment *CFC = cloneFullComment(FC, D);
455      return CFC;
456    }
457    return Pos->second;
458  }
459
460  const Decl *OriginalDecl;
461
462  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
463  if (!RC) {
464    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
465      SmallVector<const NamedDecl*, 8> Overridden;
466      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
467      if (OMD && OMD->isPropertyAccessor())
468        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
469          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
470            return cloneFullComment(FC, D);
471      if (OMD)
472        addRedeclaredMethods(OMD, Overridden);
473      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
474      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
475        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
476          return cloneFullComment(FC, D);
477    }
478    else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
479      // Attach any tag type's documentation to its typedef if latter
480      // does not have one of its own.
481      QualType QT = TD->getUnderlyingType();
482      if (const TagType *TT = QT->getAs<TagType>())
483        if (const Decl *TD = TT->getDecl())
484          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
485            return cloneFullComment(FC, D);
486    }
487    else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
488      while (IC->getSuperClass()) {
489        IC = IC->getSuperClass();
490        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
491          return cloneFullComment(FC, D);
492      }
493    }
494    else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
495      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
496        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
497          return cloneFullComment(FC, D);
498    }
499    else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
500      if (!(RD = RD->getDefinition()))
501        return nullptr;
502      // Check non-virtual bases.
503      for (const auto &I : RD->bases()) {
504        if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
505          continue;
506        QualType Ty = I.getType();
507        if (Ty.isNull())
508          continue;
509        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
510          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
511            continue;
512
513          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
514            return cloneFullComment(FC, D);
515        }
516      }
517      // Check virtual bases.
518      for (const auto &I : RD->vbases()) {
519        if (I.getAccessSpecifier() != AS_public)
520          continue;
521        QualType Ty = I.getType();
522        if (Ty.isNull())
523          continue;
524        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
525          if (!(VirtualBase= VirtualBase->getDefinition()))
526            continue;
527          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
528            return cloneFullComment(FC, D);
529        }
530      }
531    }
532    return nullptr;
533  }
534
535  // If the RawComment was attached to other redeclaration of this Decl, we
536  // should parse the comment in context of that other Decl.  This is important
537  // because comments can contain references to parameter names which can be
538  // different across redeclarations.
539  if (D != OriginalDecl)
540    return getCommentForDecl(OriginalDecl, PP);
541
542  comments::FullComment *FC = RC->parse(*this, PP, D);
543  ParsedComments[Canonical] = FC;
544  return FC;
545}
546
547void
548ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
549                                               TemplateTemplateParmDecl *Parm) {
550  ID.AddInteger(Parm->getDepth());
551  ID.AddInteger(Parm->getPosition());
552  ID.AddBoolean(Parm->isParameterPack());
553
554  TemplateParameterList *Params = Parm->getTemplateParameters();
555  ID.AddInteger(Params->size());
556  for (TemplateParameterList::const_iterator P = Params->begin(),
557                                          PEnd = Params->end();
558       P != PEnd; ++P) {
559    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
560      ID.AddInteger(0);
561      ID.AddBoolean(TTP->isParameterPack());
562      continue;
563    }
564
565    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
566      ID.AddInteger(1);
567      ID.AddBoolean(NTTP->isParameterPack());
568      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
569      if (NTTP->isExpandedParameterPack()) {
570        ID.AddBoolean(true);
571        ID.AddInteger(NTTP->getNumExpansionTypes());
572        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
573          QualType T = NTTP->getExpansionType(I);
574          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
575        }
576      } else
577        ID.AddBoolean(false);
578      continue;
579    }
580
581    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
582    ID.AddInteger(2);
583    Profile(ID, TTP);
584  }
585}
586
587TemplateTemplateParmDecl *
588ASTContext::getCanonicalTemplateTemplateParmDecl(
589                                          TemplateTemplateParmDecl *TTP) const {
590  // Check if we already have a canonical template template parameter.
591  llvm::FoldingSetNodeID ID;
592  CanonicalTemplateTemplateParm::Profile(ID, TTP);
593  void *InsertPos = nullptr;
594  CanonicalTemplateTemplateParm *Canonical
595    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
596  if (Canonical)
597    return Canonical->getParam();
598
599  // Build a canonical template parameter list.
600  TemplateParameterList *Params = TTP->getTemplateParameters();
601  SmallVector<NamedDecl *, 4> CanonParams;
602  CanonParams.reserve(Params->size());
603  for (TemplateParameterList::const_iterator P = Params->begin(),
604                                          PEnd = Params->end();
605       P != PEnd; ++P) {
606    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
607      CanonParams.push_back(
608                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
609                                               SourceLocation(),
610                                               SourceLocation(),
611                                               TTP->getDepth(),
612                                               TTP->getIndex(), nullptr, false,
613                                               TTP->isParameterPack()));
614    else if (NonTypeTemplateParmDecl *NTTP
615             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
616      QualType T = getCanonicalType(NTTP->getType());
617      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
618      NonTypeTemplateParmDecl *Param;
619      if (NTTP->isExpandedParameterPack()) {
620        SmallVector<QualType, 2> ExpandedTypes;
621        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
622        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
623          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
624          ExpandedTInfos.push_back(
625                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
626        }
627
628        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
629                                                SourceLocation(),
630                                                SourceLocation(),
631                                                NTTP->getDepth(),
632                                                NTTP->getPosition(), nullptr,
633                                                T,
634                                                TInfo,
635                                                ExpandedTypes.data(),
636                                                ExpandedTypes.size(),
637                                                ExpandedTInfos.data());
638      } else {
639        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
640                                                SourceLocation(),
641                                                SourceLocation(),
642                                                NTTP->getDepth(),
643                                                NTTP->getPosition(), nullptr,
644                                                T,
645                                                NTTP->isParameterPack(),
646                                                TInfo);
647      }
648      CanonParams.push_back(Param);
649
650    } else
651      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
652                                           cast<TemplateTemplateParmDecl>(*P)));
653  }
654
655  TemplateTemplateParmDecl *CanonTTP
656    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
657                                       SourceLocation(), TTP->getDepth(),
658                                       TTP->getPosition(),
659                                       TTP->isParameterPack(),
660                                       nullptr,
661                         TemplateParameterList::Create(*this, SourceLocation(),
662                                                       SourceLocation(),
663                                                       CanonParams.data(),
664                                                       CanonParams.size(),
665                                                       SourceLocation()));
666
667  // Get the new insert position for the node we care about.
668  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
669  assert(!Canonical && "Shouldn't be in the map!");
670  (void)Canonical;
671
672  // Create the canonical template template parameter entry.
673  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
674  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
675  return CanonTTP;
676}
677
678CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
679  if (!LangOpts.CPlusPlus) return nullptr;
680
681  switch (T.getCXXABI().getKind()) {
682  case TargetCXXABI::GenericARM: // Same as Itanium at this level
683  case TargetCXXABI::iOS:
684  case TargetCXXABI::iOS64:
685  case TargetCXXABI::WatchOS:
686  case TargetCXXABI::GenericAArch64:
687  case TargetCXXABI::GenericMIPS:
688  case TargetCXXABI::GenericItanium:
689  case TargetCXXABI::WebAssembly:
690    return CreateItaniumCXXABI(*this);
691  case TargetCXXABI::Microsoft:
692    return CreateMicrosoftCXXABI(*this);
693  }
694  llvm_unreachable("Invalid CXXABI type!");
695}
696
697static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
698                                             const LangOptions &LOpts) {
699  if (LOpts.FakeAddressSpaceMap) {
700    // The fake address space map must have a distinct entry for each
701    // language-specific address space.
702    static const unsigned FakeAddrSpaceMap[] = {
703      1, // opencl_global
704      2, // opencl_local
705      3, // opencl_constant
706      4, // opencl_generic
707      5, // cuda_device
708      6, // cuda_constant
709      7  // cuda_shared
710    };
711    return &FakeAddrSpaceMap;
712  } else {
713    return &T.getAddressSpaceMap();
714  }
715}
716
717static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
718                                          const LangOptions &LangOpts) {
719  switch (LangOpts.getAddressSpaceMapMangling()) {
720  case LangOptions::ASMM_Target:
721    return TI.useAddressSpaceMapMangling();
722  case LangOptions::ASMM_On:
723    return true;
724  case LangOptions::ASMM_Off:
725    return false;
726  }
727  llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
728}
729
730ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
731                       IdentifierTable &idents, SelectorTable &sels,
732                       Builtin::Context &builtins)
733    : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
734      DependentTemplateSpecializationTypes(this_()),
735      SubstTemplateTemplateParmPacks(this_()),
736      GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
737      UInt128Decl(nullptr), Float128StubDecl(nullptr),
738      BuiltinVaListDecl(nullptr), BuiltinMSVaListDecl(nullptr),
739      ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), ObjCClassDecl(nullptr),
740      ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
741      CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
742      FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr),
743      ucontext_tDecl(nullptr), BlockDescriptorType(nullptr),
744      BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr),
745      FirstLocalImport(), LastLocalImport(), ExternCContext(nullptr),
746      MakeIntegerSeqDecl(nullptr), SourceMgr(SM), LangOpts(LOpts),
747      SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
748      AddrSpaceMap(nullptr), Target(nullptr), AuxTarget(nullptr),
749      PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
750      BuiltinInfo(builtins), DeclarationNames(*this), ExternalSource(nullptr),
751      Listener(nullptr), Comments(SM), CommentsLoaded(false),
752      CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
753  TUDecl = TranslationUnitDecl::Create(*this);
754}
755
756ASTContext::~ASTContext() {
757  ReleaseParentMapEntries();
758
759  // Release the DenseMaps associated with DeclContext objects.
760  // FIXME: Is this the ideal solution?
761  ReleaseDeclContextMaps();
762
763  // Call all of the deallocation functions on all of their targets.
764  for (DeallocationMap::const_iterator I = Deallocations.begin(),
765           E = Deallocations.end(); I != E; ++I)
766    for (unsigned J = 0, N = I->second.size(); J != N; ++J)
767      (I->first)((I->second)[J]);
768
769  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
770  // because they can contain DenseMaps.
771  for (llvm::DenseMap<const ObjCContainerDecl*,
772       const ASTRecordLayout*>::iterator
773       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
774    // Increment in loop to prevent using deallocated memory.
775    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
776      R->Destroy(*this);
777
778  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
779       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
780    // Increment in loop to prevent using deallocated memory.
781    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
782      R->Destroy(*this);
783  }
784
785  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
786                                                    AEnd = DeclAttrs.end();
787       A != AEnd; ++A)
788    A->second->~AttrVec();
789
790  for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair :
791       MaterializedTemporaryValues)
792    MTVPair.second->~APValue();
793
794  llvm::DeleteContainerSeconds(MangleNumberingContexts);
795}
796
797void ASTContext::ReleaseParentMapEntries() {
798  if (!PointerParents) return;
799  for (const auto &Entry : *PointerParents) {
800    if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
801      delete Entry.second.get<ast_type_traits::DynTypedNode *>();
802    } else if (Entry.second.is<ParentVector *>()) {
803      delete Entry.second.get<ParentVector *>();
804    }
805  }
806  for (const auto &Entry : *OtherParents) {
807    if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
808      delete Entry.second.get<ast_type_traits::DynTypedNode *>();
809    } else if (Entry.second.is<ParentVector *>()) {
810      delete Entry.second.get<ParentVector *>();
811    }
812  }
813}
814
815void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
816  Deallocations[Callback].push_back(Data);
817}
818
819void
820ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
821  ExternalSource = Source;
822}
823
824void ASTContext::PrintStats() const {
825  llvm::errs() << "\n*** AST Context Stats:\n";
826  llvm::errs() << "  " << Types.size() << " types total.\n";
827
828  unsigned counts[] = {
829#define TYPE(Name, Parent) 0,
830#define ABSTRACT_TYPE(Name, Parent)
831#include "clang/AST/TypeNodes.def"
832    0 // Extra
833  };
834
835  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
836    Type *T = Types[i];
837    counts[(unsigned)T->getTypeClass()]++;
838  }
839
840  unsigned Idx = 0;
841  unsigned TotalBytes = 0;
842#define TYPE(Name, Parent)                                              \
843  if (counts[Idx])                                                      \
844    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
845                 << " types\n";                                         \
846  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
847  ++Idx;
848#define ABSTRACT_TYPE(Name, Parent)
849#include "clang/AST/TypeNodes.def"
850
851  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
852
853  // Implicit special member functions.
854  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
855               << NumImplicitDefaultConstructors
856               << " implicit default constructors created\n";
857  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
858               << NumImplicitCopyConstructors
859               << " implicit copy constructors created\n";
860  if (getLangOpts().CPlusPlus)
861    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
862                 << NumImplicitMoveConstructors
863                 << " implicit move constructors created\n";
864  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
865               << NumImplicitCopyAssignmentOperators
866               << " implicit copy assignment operators created\n";
867  if (getLangOpts().CPlusPlus)
868    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
869                 << NumImplicitMoveAssignmentOperators
870                 << " implicit move assignment operators created\n";
871  llvm::errs() << NumImplicitDestructorsDeclared << "/"
872               << NumImplicitDestructors
873               << " implicit destructors created\n";
874
875  if (ExternalSource) {
876    llvm::errs() << "\n";
877    ExternalSource->PrintStats();
878  }
879
880  BumpAlloc.PrintStats();
881}
882
883void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
884                                           bool NotifyListeners) {
885  if (NotifyListeners)
886    if (auto *Listener = getASTMutationListener())
887      Listener->RedefinedHiddenDefinition(ND, M);
888
889  if (getLangOpts().ModulesLocalVisibility)
890    MergedDefModules[ND].push_back(M);
891  else
892    ND->setHidden(false);
893}
894
895void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
896  auto It = MergedDefModules.find(ND);
897  if (It == MergedDefModules.end())
898    return;
899
900  auto &Merged = It->second;
901  llvm::DenseSet<Module*> Found;
902  for (Module *&M : Merged)
903    if (!Found.insert(M).second)
904      M = nullptr;
905  Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
906}
907
908ExternCContextDecl *ASTContext::getExternCContextDecl() const {
909  if (!ExternCContext)
910    ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
911
912  return ExternCContext;
913}
914
915BuiltinTemplateDecl *
916ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
917                                     const IdentifierInfo *II) const {
918  auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
919  BuiltinTemplate->setImplicit();
920  TUDecl->addDecl(BuiltinTemplate);
921
922  return BuiltinTemplate;
923}
924
925BuiltinTemplateDecl *
926ASTContext::getMakeIntegerSeqDecl() const {
927  if (!MakeIntegerSeqDecl)
928    MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
929                                                  getMakeIntegerSeqName());
930  return MakeIntegerSeqDecl;
931}
932
933RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
934                                            RecordDecl::TagKind TK) const {
935  SourceLocation Loc;
936  RecordDecl *NewDecl;
937  if (getLangOpts().CPlusPlus)
938    NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
939                                    Loc, &Idents.get(Name));
940  else
941    NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
942                                 &Idents.get(Name));
943  NewDecl->setImplicit();
944  NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
945      const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
946  return NewDecl;
947}
948
949TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
950                                              StringRef Name) const {
951  TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
952  TypedefDecl *NewDecl = TypedefDecl::Create(
953      const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
954      SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
955  NewDecl->setImplicit();
956  return NewDecl;
957}
958
959TypedefDecl *ASTContext::getInt128Decl() const {
960  if (!Int128Decl)
961    Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
962  return Int128Decl;
963}
964
965TypedefDecl *ASTContext::getUInt128Decl() const {
966  if (!UInt128Decl)
967    UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
968  return UInt128Decl;
969}
970
971TypeDecl *ASTContext::getFloat128StubType() const {
972  assert(LangOpts.CPlusPlus && "should only be called for c++");
973  if (!Float128StubDecl)
974    Float128StubDecl = buildImplicitRecord("__float128");
975
976  return Float128StubDecl;
977}
978
979void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
980  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
981  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
982  Types.push_back(Ty);
983}
984
985void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
986                                  const TargetInfo *AuxTarget) {
987  assert((!this->Target || this->Target == &Target) &&
988         "Incorrect target reinitialization");
989  assert(VoidTy.isNull() && "Context reinitialized?");
990
991  this->Target = &Target;
992  this->AuxTarget = AuxTarget;
993
994  ABI.reset(createCXXABI(Target));
995  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
996  AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
997
998  // C99 6.2.5p19.
999  InitBuiltinType(VoidTy,              BuiltinType::Void);
1000
1001  // C99 6.2.5p2.
1002  InitBuiltinType(BoolTy,              BuiltinType::Bool);
1003  // C99 6.2.5p3.
1004  if (LangOpts.CharIsSigned)
1005    InitBuiltinType(CharTy,            BuiltinType::Char_S);
1006  else
1007    InitBuiltinType(CharTy,            BuiltinType::Char_U);
1008  // C99 6.2.5p4.
1009  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1010  InitBuiltinType(ShortTy,             BuiltinType::Short);
1011  InitBuiltinType(IntTy,               BuiltinType::Int);
1012  InitBuiltinType(LongTy,              BuiltinType::Long);
1013  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1014
1015  // C99 6.2.5p6.
1016  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1017  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1018  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1019  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1020  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1021
1022  // C99 6.2.5p10.
1023  InitBuiltinType(FloatTy,             BuiltinType::Float);
1024  InitBuiltinType(DoubleTy,            BuiltinType::Double);
1025  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1026
1027  // GNU extension, 128-bit integers.
1028  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1029  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1030
1031  // C++ 3.9.1p5
1032  if (TargetInfo::isTypeSigned(Target.getWCharType()))
1033    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1034  else  // -fshort-wchar makes wchar_t be unsigned.
1035    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1036  if (LangOpts.CPlusPlus && LangOpts.WChar)
1037    WideCharTy = WCharTy;
1038  else {
1039    // C99 (or C++ using -fno-wchar).
1040    WideCharTy = getFromTargetType(Target.getWCharType());
1041  }
1042
1043  WIntTy = getFromTargetType(Target.getWIntType());
1044
1045  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1046    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1047  else // C99
1048    Char16Ty = getFromTargetType(Target.getChar16Type());
1049
1050  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1051    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1052  else // C99
1053    Char32Ty = getFromTargetType(Target.getChar32Type());
1054
1055  // Placeholder type for type-dependent expressions whose type is
1056  // completely unknown. No code should ever check a type against
1057  // DependentTy and users should never see it; however, it is here to
1058  // help diagnose failures to properly check for type-dependent
1059  // expressions.
1060  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1061
1062  // Placeholder type for functions.
1063  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1064
1065  // Placeholder type for bound members.
1066  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1067
1068  // Placeholder type for pseudo-objects.
1069  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1070
1071  // "any" type; useful for debugger-like clients.
1072  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1073
1074  // Placeholder type for unbridged ARC casts.
1075  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1076
1077  // Placeholder type for builtin functions.
1078  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1079
1080  // Placeholder type for OMP array sections.
1081  if (LangOpts.OpenMP)
1082    InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1083
1084  // C99 6.2.5p11.
1085  FloatComplexTy      = getComplexType(FloatTy);
1086  DoubleComplexTy     = getComplexType(DoubleTy);
1087  LongDoubleComplexTy = getComplexType(LongDoubleTy);
1088
1089  // Builtin types for 'id', 'Class', and 'SEL'.
1090  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1091  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1092  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1093
1094  if (LangOpts.OpenCL) {
1095    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
1096    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
1097    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
1098    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
1099    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
1100    InitBuiltinType(OCLImage2dDepthTy, BuiltinType::OCLImage2dDepth);
1101    InitBuiltinType(OCLImage2dArrayDepthTy, BuiltinType::OCLImage2dArrayDepth);
1102    InitBuiltinType(OCLImage2dMSAATy, BuiltinType::OCLImage2dMSAA);
1103    InitBuiltinType(OCLImage2dArrayMSAATy, BuiltinType::OCLImage2dArrayMSAA);
1104    InitBuiltinType(OCLImage2dMSAADepthTy, BuiltinType::OCLImage2dMSAADepth);
1105    InitBuiltinType(OCLImage2dArrayMSAADepthTy,
1106                    BuiltinType::OCLImage2dArrayMSAADepth);
1107    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
1108
1109    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1110    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1111    InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1112    InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1113    InitBuiltinType(OCLNDRangeTy, BuiltinType::OCLNDRange);
1114    InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1115  }
1116
1117  // Builtin type for __objc_yes and __objc_no
1118  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1119                       SignedCharTy : BoolTy);
1120
1121  ObjCConstantStringType = QualType();
1122
1123  ObjCSuperType = QualType();
1124
1125  // void * type
1126  VoidPtrTy = getPointerType(VoidTy);
1127
1128  // nullptr type (C++0x 2.14.7)
1129  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1130
1131  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1132  InitBuiltinType(HalfTy, BuiltinType::Half);
1133
1134  // Builtin type used to help define __builtin_va_list.
1135  VaListTagDecl = nullptr;
1136}
1137
1138DiagnosticsEngine &ASTContext::getDiagnostics() const {
1139  return SourceMgr.getDiagnostics();
1140}
1141
1142AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1143  AttrVec *&Result = DeclAttrs[D];
1144  if (!Result) {
1145    void *Mem = Allocate(sizeof(AttrVec));
1146    Result = new (Mem) AttrVec;
1147  }
1148
1149  return *Result;
1150}
1151
1152/// \brief Erase the attributes corresponding to the given declaration.
1153void ASTContext::eraseDeclAttrs(const Decl *D) {
1154  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1155  if (Pos != DeclAttrs.end()) {
1156    Pos->second->~AttrVec();
1157    DeclAttrs.erase(Pos);
1158  }
1159}
1160
1161// FIXME: Remove ?
1162MemberSpecializationInfo *
1163ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1164  assert(Var->isStaticDataMember() && "Not a static data member");
1165  return getTemplateOrSpecializationInfo(Var)
1166      .dyn_cast<MemberSpecializationInfo *>();
1167}
1168
1169ASTContext::TemplateOrSpecializationInfo
1170ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1171  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1172      TemplateOrInstantiation.find(Var);
1173  if (Pos == TemplateOrInstantiation.end())
1174    return TemplateOrSpecializationInfo();
1175
1176  return Pos->second;
1177}
1178
1179void
1180ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1181                                                TemplateSpecializationKind TSK,
1182                                          SourceLocation PointOfInstantiation) {
1183  assert(Inst->isStaticDataMember() && "Not a static data member");
1184  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1185  setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1186                                            Tmpl, TSK, PointOfInstantiation));
1187}
1188
1189void
1190ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1191                                            TemplateOrSpecializationInfo TSI) {
1192  assert(!TemplateOrInstantiation[Inst] &&
1193         "Already noted what the variable was instantiated from");
1194  TemplateOrInstantiation[Inst] = TSI;
1195}
1196
1197FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1198                                                     const FunctionDecl *FD){
1199  assert(FD && "Specialization is 0");
1200  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1201    = ClassScopeSpecializationPattern.find(FD);
1202  if (Pos == ClassScopeSpecializationPattern.end())
1203    return nullptr;
1204
1205  return Pos->second;
1206}
1207
1208void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1209                                        FunctionDecl *Pattern) {
1210  assert(FD && "Specialization is 0");
1211  assert(Pattern && "Class scope specialization pattern is 0");
1212  ClassScopeSpecializationPattern[FD] = Pattern;
1213}
1214
1215NamedDecl *
1216ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1217  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1218    = InstantiatedFromUsingDecl.find(UUD);
1219  if (Pos == InstantiatedFromUsingDecl.end())
1220    return nullptr;
1221
1222  return Pos->second;
1223}
1224
1225void
1226ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1227  assert((isa<UsingDecl>(Pattern) ||
1228          isa<UnresolvedUsingValueDecl>(Pattern) ||
1229          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1230         "pattern decl is not a using decl");
1231  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1232  InstantiatedFromUsingDecl[Inst] = Pattern;
1233}
1234
1235UsingShadowDecl *
1236ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1237  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1238    = InstantiatedFromUsingShadowDecl.find(Inst);
1239  if (Pos == InstantiatedFromUsingShadowDecl.end())
1240    return nullptr;
1241
1242  return Pos->second;
1243}
1244
1245void
1246ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1247                                               UsingShadowDecl *Pattern) {
1248  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1249  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1250}
1251
1252FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1253  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1254    = InstantiatedFromUnnamedFieldDecl.find(Field);
1255  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1256    return nullptr;
1257
1258  return Pos->second;
1259}
1260
1261void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1262                                                     FieldDecl *Tmpl) {
1263  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1264  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1265  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1266         "Already noted what unnamed field was instantiated from");
1267
1268  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1269}
1270
1271ASTContext::overridden_cxx_method_iterator
1272ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1273  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1274    = OverriddenMethods.find(Method->getCanonicalDecl());
1275  if (Pos == OverriddenMethods.end())
1276    return nullptr;
1277
1278  return Pos->second.begin();
1279}
1280
1281ASTContext::overridden_cxx_method_iterator
1282ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1283  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1284    = OverriddenMethods.find(Method->getCanonicalDecl());
1285  if (Pos == OverriddenMethods.end())
1286    return nullptr;
1287
1288  return Pos->second.end();
1289}
1290
1291unsigned
1292ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1293  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1294    = OverriddenMethods.find(Method->getCanonicalDecl());
1295  if (Pos == OverriddenMethods.end())
1296    return 0;
1297
1298  return Pos->second.size();
1299}
1300
1301void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1302                                     const CXXMethodDecl *Overridden) {
1303  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1304  OverriddenMethods[Method].push_back(Overridden);
1305}
1306
1307void ASTContext::getOverriddenMethods(
1308                      const NamedDecl *D,
1309                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1310  assert(D);
1311
1312  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1313    Overridden.append(overridden_methods_begin(CXXMethod),
1314                      overridden_methods_end(CXXMethod));
1315    return;
1316  }
1317
1318  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1319  if (!Method)
1320    return;
1321
1322  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1323  Method->getOverriddenMethods(OverDecls);
1324  Overridden.append(OverDecls.begin(), OverDecls.end());
1325}
1326
1327void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1328  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1329  assert(!Import->isFromASTFile() && "Non-local import declaration");
1330  if (!FirstLocalImport) {
1331    FirstLocalImport = Import;
1332    LastLocalImport = Import;
1333    return;
1334  }
1335
1336  LastLocalImport->NextLocalImport = Import;
1337  LastLocalImport = Import;
1338}
1339
1340//===----------------------------------------------------------------------===//
1341//                         Type Sizing and Analysis
1342//===----------------------------------------------------------------------===//
1343
1344/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1345/// scalar floating point type.
1346const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1347  const BuiltinType *BT = T->getAs<BuiltinType>();
1348  assert(BT && "Not a floating point type!");
1349  switch (BT->getKind()) {
1350  default: llvm_unreachable("Not a floating point type!");
1351  case BuiltinType::Half:       return Target->getHalfFormat();
1352  case BuiltinType::Float:      return Target->getFloatFormat();
1353  case BuiltinType::Double:     return Target->getDoubleFormat();
1354  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1355  }
1356}
1357
1358CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1359  unsigned Align = Target->getCharWidth();
1360
1361  bool UseAlignAttrOnly = false;
1362  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1363    Align = AlignFromAttr;
1364
1365    // __attribute__((aligned)) can increase or decrease alignment
1366    // *except* on a struct or struct member, where it only increases
1367    // alignment unless 'packed' is also specified.
1368    //
1369    // It is an error for alignas to decrease alignment, so we can
1370    // ignore that possibility;  Sema should diagnose it.
1371    if (isa<FieldDecl>(D)) {
1372      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1373        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1374    } else {
1375      UseAlignAttrOnly = true;
1376    }
1377  }
1378  else if (isa<FieldDecl>(D))
1379      UseAlignAttrOnly =
1380        D->hasAttr<PackedAttr>() ||
1381        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1382
1383  // If we're using the align attribute only, just ignore everything
1384  // else about the declaration and its type.
1385  if (UseAlignAttrOnly) {
1386    // do nothing
1387
1388  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1389    QualType T = VD->getType();
1390    if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1391      if (ForAlignof)
1392        T = RT->getPointeeType();
1393      else
1394        T = getPointerType(RT->getPointeeType());
1395    }
1396    QualType BaseT = getBaseElementType(T);
1397    if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
1398      // Adjust alignments of declarations with array type by the
1399      // large-array alignment on the target.
1400      if (const ArrayType *arrayType = getAsArrayType(T)) {
1401        unsigned MinWidth = Target->getLargeArrayMinWidth();
1402        if (!ForAlignof && MinWidth) {
1403          if (isa<VariableArrayType>(arrayType))
1404            Align = std::max(Align, Target->getLargeArrayAlign());
1405          else if (isa<ConstantArrayType>(arrayType) &&
1406                   MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1407            Align = std::max(Align, Target->getLargeArrayAlign());
1408        }
1409      }
1410      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1411      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1412        if (VD->hasGlobalStorage() && !ForAlignof)
1413          Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1414      }
1415    }
1416
1417    // Fields can be subject to extra alignment constraints, like if
1418    // the field is packed, the struct is packed, or the struct has a
1419    // a max-field-alignment constraint (#pragma pack).  So calculate
1420    // the actual alignment of the field within the struct, and then
1421    // (as we're expected to) constrain that by the alignment of the type.
1422    if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1423      const RecordDecl *Parent = Field->getParent();
1424      // We can only produce a sensible answer if the record is valid.
1425      if (!Parent->isInvalidDecl()) {
1426        const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1427
1428        // Start with the record's overall alignment.
1429        unsigned FieldAlign = toBits(Layout.getAlignment());
1430
1431        // Use the GCD of that and the offset within the record.
1432        uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1433        if (Offset > 0) {
1434          // Alignment is always a power of 2, so the GCD will be a power of 2,
1435          // which means we get to do this crazy thing instead of Euclid's.
1436          uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1437          if (LowBitOfOffset < FieldAlign)
1438            FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1439        }
1440
1441        Align = std::min(Align, FieldAlign);
1442      }
1443    }
1444  }
1445
1446  return toCharUnitsFromBits(Align);
1447}
1448
1449// getTypeInfoDataSizeInChars - Return the size of a type, in
1450// chars. If the type is a record, its data size is returned.  This is
1451// the size of the memcpy that's performed when assigning this type
1452// using a trivial copy/move assignment operator.
1453std::pair<CharUnits, CharUnits>
1454ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1455  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1456
1457  // In C++, objects can sometimes be allocated into the tail padding
1458  // of a base-class subobject.  We decide whether that's possible
1459  // during class layout, so here we can just trust the layout results.
1460  if (getLangOpts().CPlusPlus) {
1461    if (const RecordType *RT = T->getAs<RecordType>()) {
1462      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1463      sizeAndAlign.first = layout.getDataSize();
1464    }
1465  }
1466
1467  return sizeAndAlign;
1468}
1469
1470/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1471/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1472std::pair<CharUnits, CharUnits>
1473static getConstantArrayInfoInChars(const ASTContext &Context,
1474                                   const ConstantArrayType *CAT) {
1475  std::pair<CharUnits, CharUnits> EltInfo =
1476      Context.getTypeInfoInChars(CAT->getElementType());
1477  uint64_t Size = CAT->getSize().getZExtValue();
1478  assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1479              (uint64_t)(-1)/Size) &&
1480         "Overflow in array type char size evaluation");
1481  uint64_t Width = EltInfo.first.getQuantity() * Size;
1482  unsigned Align = EltInfo.second.getQuantity();
1483  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1484      Context.getTargetInfo().getPointerWidth(0) == 64)
1485    Width = llvm::RoundUpToAlignment(Width, Align);
1486  return std::make_pair(CharUnits::fromQuantity(Width),
1487                        CharUnits::fromQuantity(Align));
1488}
1489
1490std::pair<CharUnits, CharUnits>
1491ASTContext::getTypeInfoInChars(const Type *T) const {
1492  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1493    return getConstantArrayInfoInChars(*this, CAT);
1494  TypeInfo Info = getTypeInfo(T);
1495  return std::make_pair(toCharUnitsFromBits(Info.Width),
1496                        toCharUnitsFromBits(Info.Align));
1497}
1498
1499std::pair<CharUnits, CharUnits>
1500ASTContext::getTypeInfoInChars(QualType T) const {
1501  return getTypeInfoInChars(T.getTypePtr());
1502}
1503
1504bool ASTContext::isAlignmentRequired(const Type *T) const {
1505  return getTypeInfo(T).AlignIsRequired;
1506}
1507
1508bool ASTContext::isAlignmentRequired(QualType T) const {
1509  return isAlignmentRequired(T.getTypePtr());
1510}
1511
1512TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1513  TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1514  if (I != MemoizedTypeInfo.end())
1515    return I->second;
1516
1517  // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1518  TypeInfo TI = getTypeInfoImpl(T);
1519  MemoizedTypeInfo[T] = TI;
1520  return TI;
1521}
1522
1523/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1524/// method does not work on incomplete types.
1525///
1526/// FIXME: Pointers into different addr spaces could have different sizes and
1527/// alignment requirements: getPointerInfo should take an AddrSpace, this
1528/// should take a QualType, &c.
1529TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1530  uint64_t Width = 0;
1531  unsigned Align = 8;
1532  bool AlignIsRequired = false;
1533  switch (T->getTypeClass()) {
1534#define TYPE(Class, Base)
1535#define ABSTRACT_TYPE(Class, Base)
1536#define NON_CANONICAL_TYPE(Class, Base)
1537#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1538#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1539  case Type::Class:                                                            \
1540  assert(!T->isDependentType() && "should not see dependent types here");      \
1541  return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1542#include "clang/AST/TypeNodes.def"
1543    llvm_unreachable("Should not see dependent types");
1544
1545  case Type::FunctionNoProto:
1546  case Type::FunctionProto:
1547    // GCC extension: alignof(function) = 32 bits
1548    Width = 0;
1549    Align = 32;
1550    break;
1551
1552  case Type::IncompleteArray:
1553  case Type::VariableArray:
1554    Width = 0;
1555    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1556    break;
1557
1558  case Type::ConstantArray: {
1559    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1560
1561    TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1562    uint64_t Size = CAT->getSize().getZExtValue();
1563    assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1564           "Overflow in array type bit size evaluation");
1565    Width = EltInfo.Width * Size;
1566    Align = EltInfo.Align;
1567    if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1568        getTargetInfo().getPointerWidth(0) == 64)
1569      Width = llvm::RoundUpToAlignment(Width, Align);
1570    break;
1571  }
1572  case Type::ExtVector:
1573  case Type::Vector: {
1574    const VectorType *VT = cast<VectorType>(T);
1575    TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1576    Width = EltInfo.Width * VT->getNumElements();
1577    Align = Width;
1578    // If the alignment is not a power of 2, round up to the next power of 2.
1579    // This happens for non-power-of-2 length vectors.
1580    if (Align & (Align-1)) {
1581      Align = llvm::NextPowerOf2(Align);
1582      Width = llvm::RoundUpToAlignment(Width, Align);
1583    }
1584    // Adjust the alignment based on the target max.
1585    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1586    if (TargetVectorAlign && TargetVectorAlign < Align)
1587      Align = TargetVectorAlign;
1588    break;
1589  }
1590
1591  case Type::Builtin:
1592    switch (cast<BuiltinType>(T)->getKind()) {
1593    default: llvm_unreachable("Unknown builtin type!");
1594    case BuiltinType::Void:
1595      // GCC extension: alignof(void) = 8 bits.
1596      Width = 0;
1597      Align = 8;
1598      break;
1599
1600    case BuiltinType::Bool:
1601      Width = Target->getBoolWidth();
1602      Align = Target->getBoolAlign();
1603      break;
1604    case BuiltinType::Char_S:
1605    case BuiltinType::Char_U:
1606    case BuiltinType::UChar:
1607    case BuiltinType::SChar:
1608      Width = Target->getCharWidth();
1609      Align = Target->getCharAlign();
1610      break;
1611    case BuiltinType::WChar_S:
1612    case BuiltinType::WChar_U:
1613      Width = Target->getWCharWidth();
1614      Align = Target->getWCharAlign();
1615      break;
1616    case BuiltinType::Char16:
1617      Width = Target->getChar16Width();
1618      Align = Target->getChar16Align();
1619      break;
1620    case BuiltinType::Char32:
1621      Width = Target->getChar32Width();
1622      Align = Target->getChar32Align();
1623      break;
1624    case BuiltinType::UShort:
1625    case BuiltinType::Short:
1626      Width = Target->getShortWidth();
1627      Align = Target->getShortAlign();
1628      break;
1629    case BuiltinType::UInt:
1630    case BuiltinType::Int:
1631      Width = Target->getIntWidth();
1632      Align = Target->getIntAlign();
1633      break;
1634    case BuiltinType::ULong:
1635    case BuiltinType::Long:
1636      Width = Target->getLongWidth();
1637      Align = Target->getLongAlign();
1638      break;
1639    case BuiltinType::ULongLong:
1640    case BuiltinType::LongLong:
1641      Width = Target->getLongLongWidth();
1642      Align = Target->getLongLongAlign();
1643      break;
1644    case BuiltinType::Int128:
1645    case BuiltinType::UInt128:
1646      Width = 128;
1647      Align = 128; // int128_t is 128-bit aligned on all targets.
1648      break;
1649    case BuiltinType::Half:
1650      Width = Target->getHalfWidth();
1651      Align = Target->getHalfAlign();
1652      break;
1653    case BuiltinType::Float:
1654      Width = Target->getFloatWidth();
1655      Align = Target->getFloatAlign();
1656      break;
1657    case BuiltinType::Double:
1658      Width = Target->getDoubleWidth();
1659      Align = Target->getDoubleAlign();
1660      break;
1661    case BuiltinType::LongDouble:
1662      Width = Target->getLongDoubleWidth();
1663      Align = Target->getLongDoubleAlign();
1664      break;
1665    case BuiltinType::NullPtr:
1666      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1667      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1668      break;
1669    case BuiltinType::ObjCId:
1670    case BuiltinType::ObjCClass:
1671    case BuiltinType::ObjCSel:
1672      Width = Target->getPointerWidth(0);
1673      Align = Target->getPointerAlign(0);
1674      break;
1675    case BuiltinType::OCLSampler:
1676      // Samplers are modeled as integers.
1677      Width = Target->getIntWidth();
1678      Align = Target->getIntAlign();
1679      break;
1680    case BuiltinType::OCLEvent:
1681    case BuiltinType::OCLClkEvent:
1682    case BuiltinType::OCLQueue:
1683    case BuiltinType::OCLNDRange:
1684    case BuiltinType::OCLReserveID:
1685    case BuiltinType::OCLImage1d:
1686    case BuiltinType::OCLImage1dArray:
1687    case BuiltinType::OCLImage1dBuffer:
1688    case BuiltinType::OCLImage2d:
1689    case BuiltinType::OCLImage2dArray:
1690    case BuiltinType::OCLImage2dDepth:
1691    case BuiltinType::OCLImage2dArrayDepth:
1692    case BuiltinType::OCLImage2dMSAA:
1693    case BuiltinType::OCLImage2dArrayMSAA:
1694    case BuiltinType::OCLImage2dMSAADepth:
1695    case BuiltinType::OCLImage2dArrayMSAADepth:
1696    case BuiltinType::OCLImage3d:
1697      // Currently these types are pointers to opaque types.
1698      Width = Target->getPointerWidth(0);
1699      Align = Target->getPointerAlign(0);
1700      break;
1701    }
1702    break;
1703  case Type::ObjCObjectPointer:
1704    Width = Target->getPointerWidth(0);
1705    Align = Target->getPointerAlign(0);
1706    break;
1707  case Type::BlockPointer: {
1708    unsigned AS = getTargetAddressSpace(
1709        cast<BlockPointerType>(T)->getPointeeType());
1710    Width = Target->getPointerWidth(AS);
1711    Align = Target->getPointerAlign(AS);
1712    break;
1713  }
1714  case Type::LValueReference:
1715  case Type::RValueReference: {
1716    // alignof and sizeof should never enter this code path here, so we go
1717    // the pointer route.
1718    unsigned AS = getTargetAddressSpace(
1719        cast<ReferenceType>(T)->getPointeeType());
1720    Width = Target->getPointerWidth(AS);
1721    Align = Target->getPointerAlign(AS);
1722    break;
1723  }
1724  case Type::Pointer: {
1725    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1726    Width = Target->getPointerWidth(AS);
1727    Align = Target->getPointerAlign(AS);
1728    break;
1729  }
1730  case Type::MemberPointer: {
1731    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1732    std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1733    break;
1734  }
1735  case Type::Complex: {
1736    // Complex types have the same alignment as their elements, but twice the
1737    // size.
1738    TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1739    Width = EltInfo.Width * 2;
1740    Align = EltInfo.Align;
1741    break;
1742  }
1743  case Type::ObjCObject:
1744    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1745  case Type::Adjusted:
1746  case Type::Decayed:
1747    return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1748  case Type::ObjCInterface: {
1749    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1750    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1751    Width = toBits(Layout.getSize());
1752    Align = toBits(Layout.getAlignment());
1753    break;
1754  }
1755  case Type::Record:
1756  case Type::Enum: {
1757    const TagType *TT = cast<TagType>(T);
1758
1759    if (TT->getDecl()->isInvalidDecl()) {
1760      Width = 8;
1761      Align = 8;
1762      break;
1763    }
1764
1765    if (const EnumType *ET = dyn_cast<EnumType>(TT)) {
1766      const EnumDecl *ED = ET->getDecl();
1767      TypeInfo Info =
1768          getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
1769      if (unsigned AttrAlign = ED->getMaxAlignment()) {
1770        Info.Align = AttrAlign;
1771        Info.AlignIsRequired = true;
1772      }
1773      return Info;
1774    }
1775
1776    const RecordType *RT = cast<RecordType>(TT);
1777    const RecordDecl *RD = RT->getDecl();
1778    const ASTRecordLayout &Layout = getASTRecordLayout(RD);
1779    Width = toBits(Layout.getSize());
1780    Align = toBits(Layout.getAlignment());
1781    AlignIsRequired = RD->hasAttr<AlignedAttr>();
1782    break;
1783  }
1784
1785  case Type::SubstTemplateTypeParm:
1786    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1787                       getReplacementType().getTypePtr());
1788
1789  case Type::Auto: {
1790    const AutoType *A = cast<AutoType>(T);
1791    assert(!A->getDeducedType().isNull() &&
1792           "cannot request the size of an undeduced or dependent auto type");
1793    return getTypeInfo(A->getDeducedType().getTypePtr());
1794  }
1795
1796  case Type::Paren:
1797    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1798
1799  case Type::Typedef: {
1800    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1801    TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1802    // If the typedef has an aligned attribute on it, it overrides any computed
1803    // alignment we have.  This violates the GCC documentation (which says that
1804    // attribute(aligned) can only round up) but matches its implementation.
1805    if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
1806      Align = AttrAlign;
1807      AlignIsRequired = true;
1808    } else {
1809      Align = Info.Align;
1810      AlignIsRequired = Info.AlignIsRequired;
1811    }
1812    Width = Info.Width;
1813    break;
1814  }
1815
1816  case Type::Elaborated:
1817    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1818
1819  case Type::Attributed:
1820    return getTypeInfo(
1821                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1822
1823  case Type::Atomic: {
1824    // Start with the base type information.
1825    TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
1826    Width = Info.Width;
1827    Align = Info.Align;
1828
1829    // If the size of the type doesn't exceed the platform's max
1830    // atomic promotion width, make the size and alignment more
1831    // favorable to atomic operations:
1832    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1833      // Round the size up to a power of 2.
1834      if (!llvm::isPowerOf2_64(Width))
1835        Width = llvm::NextPowerOf2(Width);
1836
1837      // Set the alignment equal to the size.
1838      Align = static_cast<unsigned>(Width);
1839    }
1840  }
1841
1842  }
1843
1844  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1845  return TypeInfo(Width, Align, AlignIsRequired);
1846}
1847
1848unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
1849  unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
1850  // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
1851  if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
1852       getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
1853      getTargetInfo().getABI() == "elfv1-qpx" &&
1854      T->isSpecificBuiltinType(BuiltinType::Double))
1855    SimdAlign = 256;
1856  return SimdAlign;
1857}
1858
1859/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1860CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1861  return CharUnits::fromQuantity(BitSize / getCharWidth());
1862}
1863
1864/// toBits - Convert a size in characters to a size in characters.
1865int64_t ASTContext::toBits(CharUnits CharSize) const {
1866  return CharSize.getQuantity() * getCharWidth();
1867}
1868
1869/// getTypeSizeInChars - Return the size of the specified type, in characters.
1870/// This method does not work on incomplete types.
1871CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1872  return getTypeInfoInChars(T).first;
1873}
1874CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1875  return getTypeInfoInChars(T).first;
1876}
1877
1878/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1879/// characters. This method does not work on incomplete types.
1880CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1881  return toCharUnitsFromBits(getTypeAlign(T));
1882}
1883CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1884  return toCharUnitsFromBits(getTypeAlign(T));
1885}
1886
1887/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1888/// type for the current target in bits.  This can be different than the ABI
1889/// alignment in cases where it is beneficial for performance to overalign
1890/// a data type.
1891unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1892  TypeInfo TI = getTypeInfo(T);
1893  unsigned ABIAlign = TI.Align;
1894
1895  T = T->getBaseElementTypeUnsafe();
1896
1897  // The preferred alignment of member pointers is that of a pointer.
1898  if (T->isMemberPointerType())
1899    return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
1900
1901  if (Target->getTriple().getArch() == llvm::Triple::xcore)
1902    return ABIAlign;  // Never overalign on XCore.
1903
1904  // Double and long long should be naturally aligned if possible.
1905  if (const ComplexType *CT = T->getAs<ComplexType>())
1906    T = CT->getElementType().getTypePtr();
1907  if (const EnumType *ET = T->getAs<EnumType>())
1908    T = ET->getDecl()->getIntegerType().getTypePtr();
1909  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1910      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1911      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1912    // Don't increase the alignment if an alignment attribute was specified on a
1913    // typedef declaration.
1914    if (!TI.AlignIsRequired)
1915      return std::max(ABIAlign, (unsigned)getTypeSize(T));
1916
1917  return ABIAlign;
1918}
1919
1920/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
1921/// for __attribute__((aligned)) on this target, to be used if no alignment
1922/// value is specified.
1923unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
1924  return getTargetInfo().getDefaultAlignForAttributeAligned();
1925}
1926
1927/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1928/// to a global variable of the specified type.
1929unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1930  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1931}
1932
1933/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1934/// should be given to a global variable of the specified type.
1935CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1936  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1937}
1938
1939CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
1940  CharUnits Offset = CharUnits::Zero();
1941  const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
1942  while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
1943    Offset += Layout->getBaseClassOffset(Base);
1944    Layout = &getASTRecordLayout(Base);
1945  }
1946  return Offset;
1947}
1948
1949/// DeepCollectObjCIvars -
1950/// This routine first collects all declared, but not synthesized, ivars in
1951/// super class and then collects all ivars, including those synthesized for
1952/// current class. This routine is used for implementation of current class
1953/// when all ivars, declared and synthesized are known.
1954///
1955void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1956                                      bool leafClass,
1957                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1958  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1959    DeepCollectObjCIvars(SuperClass, false, Ivars);
1960  if (!leafClass) {
1961    for (const auto *I : OI->ivars())
1962      Ivars.push_back(I);
1963  } else {
1964    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1965    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1966         Iv= Iv->getNextIvar())
1967      Ivars.push_back(Iv);
1968  }
1969}
1970
1971/// CollectInheritedProtocols - Collect all protocols in current class and
1972/// those inherited by it.
1973void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1974                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1975  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1976    // We can use protocol_iterator here instead of
1977    // all_referenced_protocol_iterator since we are walking all categories.
1978    for (auto *Proto : OI->all_referenced_protocols()) {
1979      CollectInheritedProtocols(Proto, Protocols);
1980    }
1981
1982    // Categories of this Interface.
1983    for (const auto *Cat : OI->visible_categories())
1984      CollectInheritedProtocols(Cat, Protocols);
1985
1986    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1987      while (SD) {
1988        CollectInheritedProtocols(SD, Protocols);
1989        SD = SD->getSuperClass();
1990      }
1991  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1992    for (auto *Proto : OC->protocols()) {
1993      CollectInheritedProtocols(Proto, Protocols);
1994    }
1995  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1996    // Insert the protocol.
1997    if (!Protocols.insert(
1998          const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
1999      return;
2000
2001    for (auto *Proto : OP->protocols())
2002      CollectInheritedProtocols(Proto, Protocols);
2003  }
2004}
2005
2006unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2007  unsigned count = 0;
2008  // Count ivars declared in class extension.
2009  for (const auto *Ext : OI->known_extensions())
2010    count += Ext->ivar_size();
2011
2012  // Count ivar defined in this class's implementation.  This
2013  // includes synthesized ivars.
2014  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2015    count += ImplDecl->ivar_size();
2016
2017  return count;
2018}
2019
2020bool ASTContext::isSentinelNullExpr(const Expr *E) {
2021  if (!E)
2022    return false;
2023
2024  // nullptr_t is always treated as null.
2025  if (E->getType()->isNullPtrType()) return true;
2026
2027  if (E->getType()->isAnyPointerType() &&
2028      E->IgnoreParenCasts()->isNullPointerConstant(*this,
2029                                                Expr::NPC_ValueDependentIsNull))
2030    return true;
2031
2032  // Unfortunately, __null has type 'int'.
2033  if (isa<GNUNullExpr>(E)) return true;
2034
2035  return false;
2036}
2037
2038/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
2039ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2040  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2041    I = ObjCImpls.find(D);
2042  if (I != ObjCImpls.end())
2043    return cast<ObjCImplementationDecl>(I->second);
2044  return nullptr;
2045}
2046/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
2047ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2048  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2049    I = ObjCImpls.find(D);
2050  if (I != ObjCImpls.end())
2051    return cast<ObjCCategoryImplDecl>(I->second);
2052  return nullptr;
2053}
2054
2055/// \brief Set the implementation of ObjCInterfaceDecl.
2056void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2057                           ObjCImplementationDecl *ImplD) {
2058  assert(IFaceD && ImplD && "Passed null params");
2059  ObjCImpls[IFaceD] = ImplD;
2060}
2061/// \brief Set the implementation of ObjCCategoryDecl.
2062void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2063                           ObjCCategoryImplDecl *ImplD) {
2064  assert(CatD && ImplD && "Passed null params");
2065  ObjCImpls[CatD] = ImplD;
2066}
2067
2068const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2069                                              const NamedDecl *ND) const {
2070  if (const ObjCInterfaceDecl *ID =
2071          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2072    return ID;
2073  if (const ObjCCategoryDecl *CD =
2074          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2075    return CD->getClassInterface();
2076  if (const ObjCImplDecl *IMD =
2077          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2078    return IMD->getClassInterface();
2079
2080  return nullptr;
2081}
2082
2083/// \brief Get the copy initialization expression of VarDecl,or NULL if
2084/// none exists.
2085Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
2086  assert(VD && "Passed null params");
2087  assert(VD->hasAttr<BlocksAttr>() &&
2088         "getBlockVarCopyInits - not __block var");
2089  llvm::DenseMap<const VarDecl*, Expr*>::iterator
2090    I = BlockVarCopyInits.find(VD);
2091  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
2092}
2093
2094/// \brief Set the copy inialization expression of a block var decl.
2095void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
2096  assert(VD && Init && "Passed null params");
2097  assert(VD->hasAttr<BlocksAttr>() &&
2098         "setBlockVarCopyInits - not __block var");
2099  BlockVarCopyInits[VD] = Init;
2100}
2101
2102TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2103                                                 unsigned DataSize) const {
2104  if (!DataSize)
2105    DataSize = TypeLoc::getFullDataSizeForType(T);
2106  else
2107    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2108           "incorrect data size provided to CreateTypeSourceInfo!");
2109
2110  TypeSourceInfo *TInfo =
2111    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2112  new (TInfo) TypeSourceInfo(T);
2113  return TInfo;
2114}
2115
2116TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2117                                                     SourceLocation L) const {
2118  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2119  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2120  return DI;
2121}
2122
2123const ASTRecordLayout &
2124ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2125  return getObjCLayout(D, nullptr);
2126}
2127
2128const ASTRecordLayout &
2129ASTContext::getASTObjCImplementationLayout(
2130                                        const ObjCImplementationDecl *D) const {
2131  return getObjCLayout(D->getClassInterface(), D);
2132}
2133
2134//===----------------------------------------------------------------------===//
2135//                   Type creation/memoization methods
2136//===----------------------------------------------------------------------===//
2137
2138QualType
2139ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2140  unsigned fastQuals = quals.getFastQualifiers();
2141  quals.removeFastQualifiers();
2142
2143  // Check if we've already instantiated this type.
2144  llvm::FoldingSetNodeID ID;
2145  ExtQuals::Profile(ID, baseType, quals);
2146  void *insertPos = nullptr;
2147  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2148    assert(eq->getQualifiers() == quals);
2149    return QualType(eq, fastQuals);
2150  }
2151
2152  // If the base type is not canonical, make the appropriate canonical type.
2153  QualType canon;
2154  if (!baseType->isCanonicalUnqualified()) {
2155    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2156    canonSplit.Quals.addConsistentQualifiers(quals);
2157    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2158
2159    // Re-find the insert position.
2160    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2161  }
2162
2163  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2164  ExtQualNodes.InsertNode(eq, insertPos);
2165  return QualType(eq, fastQuals);
2166}
2167
2168QualType
2169ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2170  QualType CanT = getCanonicalType(T);
2171  if (CanT.getAddressSpace() == AddressSpace)
2172    return T;
2173
2174  // If we are composing extended qualifiers together, merge together
2175  // into one ExtQuals node.
2176  QualifierCollector Quals;
2177  const Type *TypeNode = Quals.strip(T);
2178
2179  // If this type already has an address space specified, it cannot get
2180  // another one.
2181  assert(!Quals.hasAddressSpace() &&
2182         "Type cannot be in multiple addr spaces!");
2183  Quals.addAddressSpace(AddressSpace);
2184
2185  return getExtQualType(TypeNode, Quals);
2186}
2187
2188QualType ASTContext::getObjCGCQualType(QualType T,
2189                                       Qualifiers::GC GCAttr) const {
2190  QualType CanT = getCanonicalType(T);
2191  if (CanT.getObjCGCAttr() == GCAttr)
2192    return T;
2193
2194  if (const PointerType *ptr = T->getAs<PointerType>()) {
2195    QualType Pointee = ptr->getPointeeType();
2196    if (Pointee->isAnyPointerType()) {
2197      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2198      return getPointerType(ResultType);
2199    }
2200  }
2201
2202  // If we are composing extended qualifiers together, merge together
2203  // into one ExtQuals node.
2204  QualifierCollector Quals;
2205  const Type *TypeNode = Quals.strip(T);
2206
2207  // If this type already has an ObjCGC specified, it cannot get
2208  // another one.
2209  assert(!Quals.hasObjCGCAttr() &&
2210         "Type cannot have multiple ObjCGCs!");
2211  Quals.addObjCGCAttr(GCAttr);
2212
2213  return getExtQualType(TypeNode, Quals);
2214}
2215
2216const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2217                                                   FunctionType::ExtInfo Info) {
2218  if (T->getExtInfo() == Info)
2219    return T;
2220
2221  QualType Result;
2222  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2223    Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2224  } else {
2225    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2226    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2227    EPI.ExtInfo = Info;
2228    Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2229  }
2230
2231  return cast<FunctionType>(Result.getTypePtr());
2232}
2233
2234void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2235                                                 QualType ResultType) {
2236  FD = FD->getMostRecentDecl();
2237  while (true) {
2238    const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2239    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2240    FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2241    if (FunctionDecl *Next = FD->getPreviousDecl())
2242      FD = Next;
2243    else
2244      break;
2245  }
2246  if (ASTMutationListener *L = getASTMutationListener())
2247    L->DeducedReturnType(FD, ResultType);
2248}
2249
2250/// Get a function type and produce the equivalent function type with the
2251/// specified exception specification. Type sugar that can be present on a
2252/// declaration of a function with an exception specification is permitted
2253/// and preserved. Other type sugar (for instance, typedefs) is not.
2254static QualType getFunctionTypeWithExceptionSpec(
2255    ASTContext &Context, QualType Orig,
2256    const FunctionProtoType::ExceptionSpecInfo &ESI) {
2257  // Might have some parens.
2258  if (auto *PT = dyn_cast<ParenType>(Orig))
2259    return Context.getParenType(
2260        getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
2261
2262  // Might have a calling-convention attribute.
2263  if (auto *AT = dyn_cast<AttributedType>(Orig))
2264    return Context.getAttributedType(
2265        AT->getAttrKind(),
2266        getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
2267        getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
2268                                         ESI));
2269
2270  // Anything else must be a function type. Rebuild it with the new exception
2271  // specification.
2272  const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
2273  return Context.getFunctionType(
2274      Proto->getReturnType(), Proto->getParamTypes(),
2275      Proto->getExtProtoInfo().withExceptionSpec(ESI));
2276}
2277
2278void ASTContext::adjustExceptionSpec(
2279    FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
2280    bool AsWritten) {
2281  // Update the type.
2282  QualType Updated =
2283      getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
2284  FD->setType(Updated);
2285
2286  if (!AsWritten)
2287    return;
2288
2289  // Update the type in the type source information too.
2290  if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2291    // If the type and the type-as-written differ, we may need to update
2292    // the type-as-written too.
2293    if (TSInfo->getType() != FD->getType())
2294      Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
2295
2296    // FIXME: When we get proper type location information for exceptions,
2297    // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2298    // up the TypeSourceInfo;
2299    assert(TypeLoc::getFullDataSizeForType(Updated) ==
2300               TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
2301           "TypeLoc size mismatch from updating exception specification");
2302    TSInfo->overrideType(Updated);
2303  }
2304}
2305
2306/// getComplexType - Return the uniqued reference to the type for a complex
2307/// number with the specified element type.
2308QualType ASTContext::getComplexType(QualType T) const {
2309  // Unique pointers, to guarantee there is only one pointer of a particular
2310  // structure.
2311  llvm::FoldingSetNodeID ID;
2312  ComplexType::Profile(ID, T);
2313
2314  void *InsertPos = nullptr;
2315  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2316    return QualType(CT, 0);
2317
2318  // If the pointee type isn't canonical, this won't be a canonical type either,
2319  // so fill in the canonical type field.
2320  QualType Canonical;
2321  if (!T.isCanonical()) {
2322    Canonical = getComplexType(getCanonicalType(T));
2323
2324    // Get the new insert position for the node we care about.
2325    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2326    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2327  }
2328  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2329  Types.push_back(New);
2330  ComplexTypes.InsertNode(New, InsertPos);
2331  return QualType(New, 0);
2332}
2333
2334/// getPointerType - Return the uniqued reference to the type for a pointer to
2335/// the specified type.
2336QualType ASTContext::getPointerType(QualType T) const {
2337  // Unique pointers, to guarantee there is only one pointer of a particular
2338  // structure.
2339  llvm::FoldingSetNodeID ID;
2340  PointerType::Profile(ID, T);
2341
2342  void *InsertPos = nullptr;
2343  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2344    return QualType(PT, 0);
2345
2346  // If the pointee type isn't canonical, this won't be a canonical type either,
2347  // so fill in the canonical type field.
2348  QualType Canonical;
2349  if (!T.isCanonical()) {
2350    Canonical = getPointerType(getCanonicalType(T));
2351
2352    // Get the new insert position for the node we care about.
2353    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2354    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2355  }
2356  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2357  Types.push_back(New);
2358  PointerTypes.InsertNode(New, InsertPos);
2359  return QualType(New, 0);
2360}
2361
2362QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2363  llvm::FoldingSetNodeID ID;
2364  AdjustedType::Profile(ID, Orig, New);
2365  void *InsertPos = nullptr;
2366  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2367  if (AT)
2368    return QualType(AT, 0);
2369
2370  QualType Canonical = getCanonicalType(New);
2371
2372  // Get the new insert position for the node we care about.
2373  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2374  assert(!AT && "Shouldn't be in the map!");
2375
2376  AT = new (*this, TypeAlignment)
2377      AdjustedType(Type::Adjusted, Orig, New, Canonical);
2378  Types.push_back(AT);
2379  AdjustedTypes.InsertNode(AT, InsertPos);
2380  return QualType(AT, 0);
2381}
2382
2383QualType ASTContext::getDecayedType(QualType T) const {
2384  assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2385
2386  QualType Decayed;
2387
2388  // C99 6.7.5.3p7:
2389  //   A declaration of a parameter as "array of type" shall be
2390  //   adjusted to "qualified pointer to type", where the type
2391  //   qualifiers (if any) are those specified within the [ and ] of
2392  //   the array type derivation.
2393  if (T->isArrayType())
2394    Decayed = getArrayDecayedType(T);
2395
2396  // C99 6.7.5.3p8:
2397  //   A declaration of a parameter as "function returning type"
2398  //   shall be adjusted to "pointer to function returning type", as
2399  //   in 6.3.2.1.
2400  if (T->isFunctionType())
2401    Decayed = getPointerType(T);
2402
2403  llvm::FoldingSetNodeID ID;
2404  AdjustedType::Profile(ID, T, Decayed);
2405  void *InsertPos = nullptr;
2406  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2407  if (AT)
2408    return QualType(AT, 0);
2409
2410  QualType Canonical = getCanonicalType(Decayed);
2411
2412  // Get the new insert position for the node we care about.
2413  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2414  assert(!AT && "Shouldn't be in the map!");
2415
2416  AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2417  Types.push_back(AT);
2418  AdjustedTypes.InsertNode(AT, InsertPos);
2419  return QualType(AT, 0);
2420}
2421
2422/// getBlockPointerType - Return the uniqued reference to the type for
2423/// a pointer to the specified block.
2424QualType ASTContext::getBlockPointerType(QualType T) const {
2425  assert(T->isFunctionType() && "block of function types only");
2426  // Unique pointers, to guarantee there is only one block of a particular
2427  // structure.
2428  llvm::FoldingSetNodeID ID;
2429  BlockPointerType::Profile(ID, T);
2430
2431  void *InsertPos = nullptr;
2432  if (BlockPointerType *PT =
2433        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2434    return QualType(PT, 0);
2435
2436  // If the block pointee type isn't canonical, this won't be a canonical
2437  // type either so fill in the canonical type field.
2438  QualType Canonical;
2439  if (!T.isCanonical()) {
2440    Canonical = getBlockPointerType(getCanonicalType(T));
2441
2442    // Get the new insert position for the node we care about.
2443    BlockPointerType *NewIP =
2444      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2445    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2446  }
2447  BlockPointerType *New
2448    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2449  Types.push_back(New);
2450  BlockPointerTypes.InsertNode(New, InsertPos);
2451  return QualType(New, 0);
2452}
2453
2454/// getLValueReferenceType - Return the uniqued reference to the type for an
2455/// lvalue reference to the specified type.
2456QualType
2457ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2458  assert(getCanonicalType(T) != OverloadTy &&
2459         "Unresolved overloaded function type");
2460
2461  // Unique pointers, to guarantee there is only one pointer of a particular
2462  // structure.
2463  llvm::FoldingSetNodeID ID;
2464  ReferenceType::Profile(ID, T, SpelledAsLValue);
2465
2466  void *InsertPos = nullptr;
2467  if (LValueReferenceType *RT =
2468        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2469    return QualType(RT, 0);
2470
2471  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2472
2473  // If the referencee type isn't canonical, this won't be a canonical type
2474  // either, so fill in the canonical type field.
2475  QualType Canonical;
2476  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2477    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2478    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2479
2480    // Get the new insert position for the node we care about.
2481    LValueReferenceType *NewIP =
2482      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2483    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2484  }
2485
2486  LValueReferenceType *New
2487    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2488                                                     SpelledAsLValue);
2489  Types.push_back(New);
2490  LValueReferenceTypes.InsertNode(New, InsertPos);
2491
2492  return QualType(New, 0);
2493}
2494
2495/// getRValueReferenceType - Return the uniqued reference to the type for an
2496/// rvalue reference to the specified type.
2497QualType ASTContext::getRValueReferenceType(QualType T) const {
2498  // Unique pointers, to guarantee there is only one pointer of a particular
2499  // structure.
2500  llvm::FoldingSetNodeID ID;
2501  ReferenceType::Profile(ID, T, false);
2502
2503  void *InsertPos = nullptr;
2504  if (RValueReferenceType *RT =
2505        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2506    return QualType(RT, 0);
2507
2508  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2509
2510  // If the referencee type isn't canonical, this won't be a canonical type
2511  // either, so fill in the canonical type field.
2512  QualType Canonical;
2513  if (InnerRef || !T.isCanonical()) {
2514    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2515    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2516
2517    // Get the new insert position for the node we care about.
2518    RValueReferenceType *NewIP =
2519      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2520    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2521  }
2522
2523  RValueReferenceType *New
2524    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2525  Types.push_back(New);
2526  RValueReferenceTypes.InsertNode(New, InsertPos);
2527  return QualType(New, 0);
2528}
2529
2530/// getMemberPointerType - Return the uniqued reference to the type for a
2531/// member pointer to the specified type, in the specified class.
2532QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2533  // Unique pointers, to guarantee there is only one pointer of a particular
2534  // structure.
2535  llvm::FoldingSetNodeID ID;
2536  MemberPointerType::Profile(ID, T, Cls);
2537
2538  void *InsertPos = nullptr;
2539  if (MemberPointerType *PT =
2540      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2541    return QualType(PT, 0);
2542
2543  // If the pointee or class type isn't canonical, this won't be a canonical
2544  // type either, so fill in the canonical type field.
2545  QualType Canonical;
2546  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2547    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2548
2549    // Get the new insert position for the node we care about.
2550    MemberPointerType *NewIP =
2551      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2552    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2553  }
2554  MemberPointerType *New
2555    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2556  Types.push_back(New);
2557  MemberPointerTypes.InsertNode(New, InsertPos);
2558  return QualType(New, 0);
2559}
2560
2561/// getConstantArrayType - Return the unique reference to the type for an
2562/// array of the specified element type.
2563QualType ASTContext::getConstantArrayType(QualType EltTy,
2564                                          const llvm::APInt &ArySizeIn,
2565                                          ArrayType::ArraySizeModifier ASM,
2566                                          unsigned IndexTypeQuals) const {
2567  assert((EltTy->isDependentType() ||
2568          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2569         "Constant array of VLAs is illegal!");
2570
2571  // Convert the array size into a canonical width matching the pointer size for
2572  // the target.
2573  llvm::APInt ArySize(ArySizeIn);
2574  ArySize =
2575    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2576
2577  llvm::FoldingSetNodeID ID;
2578  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2579
2580  void *InsertPos = nullptr;
2581  if (ConstantArrayType *ATP =
2582      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2583    return QualType(ATP, 0);
2584
2585  // If the element type isn't canonical or has qualifiers, this won't
2586  // be a canonical type either, so fill in the canonical type field.
2587  QualType Canon;
2588  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2589    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2590    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2591                                 ASM, IndexTypeQuals);
2592    Canon = getQualifiedType(Canon, canonSplit.Quals);
2593
2594    // Get the new insert position for the node we care about.
2595    ConstantArrayType *NewIP =
2596      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2597    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2598  }
2599
2600  ConstantArrayType *New = new(*this,TypeAlignment)
2601    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2602  ConstantArrayTypes.InsertNode(New, InsertPos);
2603  Types.push_back(New);
2604  return QualType(New, 0);
2605}
2606
2607/// getVariableArrayDecayedType - Turns the given type, which may be
2608/// variably-modified, into the corresponding type with all the known
2609/// sizes replaced with [*].
2610QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2611  // Vastly most common case.
2612  if (!type->isVariablyModifiedType()) return type;
2613
2614  QualType result;
2615
2616  SplitQualType split = type.getSplitDesugaredType();
2617  const Type *ty = split.Ty;
2618  switch (ty->getTypeClass()) {
2619#define TYPE(Class, Base)
2620#define ABSTRACT_TYPE(Class, Base)
2621#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2622#include "clang/AST/TypeNodes.def"
2623    llvm_unreachable("didn't desugar past all non-canonical types?");
2624
2625  // These types should never be variably-modified.
2626  case Type::Builtin:
2627  case Type::Complex:
2628  case Type::Vector:
2629  case Type::ExtVector:
2630  case Type::DependentSizedExtVector:
2631  case Type::ObjCObject:
2632  case Type::ObjCInterface:
2633  case Type::ObjCObjectPointer:
2634  case Type::Record:
2635  case Type::Enum:
2636  case Type::UnresolvedUsing:
2637  case Type::TypeOfExpr:
2638  case Type::TypeOf:
2639  case Type::Decltype:
2640  case Type::UnaryTransform:
2641  case Type::DependentName:
2642  case Type::InjectedClassName:
2643  case Type::TemplateSpecialization:
2644  case Type::DependentTemplateSpecialization:
2645  case Type::TemplateTypeParm:
2646  case Type::SubstTemplateTypeParmPack:
2647  case Type::Auto:
2648  case Type::PackExpansion:
2649    llvm_unreachable("type should never be variably-modified");
2650
2651  // These types can be variably-modified but should never need to
2652  // further decay.
2653  case Type::FunctionNoProto:
2654  case Type::FunctionProto:
2655  case Type::BlockPointer:
2656  case Type::MemberPointer:
2657    return type;
2658
2659  // These types can be variably-modified.  All these modifications
2660  // preserve structure except as noted by comments.
2661  // TODO: if we ever care about optimizing VLAs, there are no-op
2662  // optimizations available here.
2663  case Type::Pointer:
2664    result = getPointerType(getVariableArrayDecayedType(
2665                              cast<PointerType>(ty)->getPointeeType()));
2666    break;
2667
2668  case Type::LValueReference: {
2669    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2670    result = getLValueReferenceType(
2671                 getVariableArrayDecayedType(lv->getPointeeType()),
2672                                    lv->isSpelledAsLValue());
2673    break;
2674  }
2675
2676  case Type::RValueReference: {
2677    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2678    result = getRValueReferenceType(
2679                 getVariableArrayDecayedType(lv->getPointeeType()));
2680    break;
2681  }
2682
2683  case Type::Atomic: {
2684    const AtomicType *at = cast<AtomicType>(ty);
2685    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2686    break;
2687  }
2688
2689  case Type::ConstantArray: {
2690    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2691    result = getConstantArrayType(
2692                 getVariableArrayDecayedType(cat->getElementType()),
2693                                  cat->getSize(),
2694                                  cat->getSizeModifier(),
2695                                  cat->getIndexTypeCVRQualifiers());
2696    break;
2697  }
2698
2699  case Type::DependentSizedArray: {
2700    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2701    result = getDependentSizedArrayType(
2702                 getVariableArrayDecayedType(dat->getElementType()),
2703                                        dat->getSizeExpr(),
2704                                        dat->getSizeModifier(),
2705                                        dat->getIndexTypeCVRQualifiers(),
2706                                        dat->getBracketsRange());
2707    break;
2708  }
2709
2710  // Turn incomplete types into [*] types.
2711  case Type::IncompleteArray: {
2712    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2713    result = getVariableArrayType(
2714                 getVariableArrayDecayedType(iat->getElementType()),
2715                                  /*size*/ nullptr,
2716                                  ArrayType::Normal,
2717                                  iat->getIndexTypeCVRQualifiers(),
2718                                  SourceRange());
2719    break;
2720  }
2721
2722  // Turn VLA types into [*] types.
2723  case Type::VariableArray: {
2724    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2725    result = getVariableArrayType(
2726                 getVariableArrayDecayedType(vat->getElementType()),
2727                                  /*size*/ nullptr,
2728                                  ArrayType::Star,
2729                                  vat->getIndexTypeCVRQualifiers(),
2730                                  vat->getBracketsRange());
2731    break;
2732  }
2733  }
2734
2735  // Apply the top-level qualifiers from the original.
2736  return getQualifiedType(result, split.Quals);
2737}
2738
2739/// getVariableArrayType - Returns a non-unique reference to the type for a
2740/// variable array of the specified element type.
2741QualType ASTContext::getVariableArrayType(QualType EltTy,
2742                                          Expr *NumElts,
2743                                          ArrayType::ArraySizeModifier ASM,
2744                                          unsigned IndexTypeQuals,
2745                                          SourceRange Brackets) const {
2746  // Since we don't unique expressions, it isn't possible to unique VLA's
2747  // that have an expression provided for their size.
2748  QualType Canon;
2749
2750  // Be sure to pull qualifiers off the element type.
2751  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2752    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2753    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2754                                 IndexTypeQuals, Brackets);
2755    Canon = getQualifiedType(Canon, canonSplit.Quals);
2756  }
2757
2758  VariableArrayType *New = new(*this, TypeAlignment)
2759    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2760
2761  VariableArrayTypes.push_back(New);
2762  Types.push_back(New);
2763  return QualType(New, 0);
2764}
2765
2766/// getDependentSizedArrayType - Returns a non-unique reference to
2767/// the type for a dependently-sized array of the specified element
2768/// type.
2769QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2770                                                Expr *numElements,
2771                                                ArrayType::ArraySizeModifier ASM,
2772                                                unsigned elementTypeQuals,
2773                                                SourceRange brackets) const {
2774  assert((!numElements || numElements->isTypeDependent() ||
2775          numElements->isValueDependent()) &&
2776         "Size must be type- or value-dependent!");
2777
2778  // Dependently-sized array types that do not have a specified number
2779  // of elements will have their sizes deduced from a dependent
2780  // initializer.  We do no canonicalization here at all, which is okay
2781  // because they can't be used in most locations.
2782  if (!numElements) {
2783    DependentSizedArrayType *newType
2784      = new (*this, TypeAlignment)
2785          DependentSizedArrayType(*this, elementType, QualType(),
2786                                  numElements, ASM, elementTypeQuals,
2787                                  brackets);
2788    Types.push_back(newType);
2789    return QualType(newType, 0);
2790  }
2791
2792  // Otherwise, we actually build a new type every time, but we
2793  // also build a canonical type.
2794
2795  SplitQualType canonElementType = getCanonicalType(elementType).split();
2796
2797  void *insertPos = nullptr;
2798  llvm::FoldingSetNodeID ID;
2799  DependentSizedArrayType::Profile(ID, *this,
2800                                   QualType(canonElementType.Ty, 0),
2801                                   ASM, elementTypeQuals, numElements);
2802
2803  // Look for an existing type with these properties.
2804  DependentSizedArrayType *canonTy =
2805    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2806
2807  // If we don't have one, build one.
2808  if (!canonTy) {
2809    canonTy = new (*this, TypeAlignment)
2810      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2811                              QualType(), numElements, ASM, elementTypeQuals,
2812                              brackets);
2813    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2814    Types.push_back(canonTy);
2815  }
2816
2817  // Apply qualifiers from the element type to the array.
2818  QualType canon = getQualifiedType(QualType(canonTy,0),
2819                                    canonElementType.Quals);
2820
2821  // If we didn't need extra canonicalization for the element type or the size
2822  // expression, then just use that as our result.
2823  if (QualType(canonElementType.Ty, 0) == elementType &&
2824      canonTy->getSizeExpr() == numElements)
2825    return canon;
2826
2827  // Otherwise, we need to build a type which follows the spelling
2828  // of the element type.
2829  DependentSizedArrayType *sugaredType
2830    = new (*this, TypeAlignment)
2831        DependentSizedArrayType(*this, elementType, canon, numElements,
2832                                ASM, elementTypeQuals, brackets);
2833  Types.push_back(sugaredType);
2834  return QualType(sugaredType, 0);
2835}
2836
2837QualType ASTContext::getIncompleteArrayType(QualType elementType,
2838                                            ArrayType::ArraySizeModifier ASM,
2839                                            unsigned elementTypeQuals) const {
2840  llvm::FoldingSetNodeID ID;
2841  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2842
2843  void *insertPos = nullptr;
2844  if (IncompleteArrayType *iat =
2845       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2846    return QualType(iat, 0);
2847
2848  // If the element type isn't canonical, this won't be a canonical type
2849  // either, so fill in the canonical type field.  We also have to pull
2850  // qualifiers off the element type.
2851  QualType canon;
2852
2853  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2854    SplitQualType canonSplit = getCanonicalType(elementType).split();
2855    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2856                                   ASM, elementTypeQuals);
2857    canon = getQualifiedType(canon, canonSplit.Quals);
2858
2859    // Get the new insert position for the node we care about.
2860    IncompleteArrayType *existing =
2861      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2862    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2863  }
2864
2865  IncompleteArrayType *newType = new (*this, TypeAlignment)
2866    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2867
2868  IncompleteArrayTypes.InsertNode(newType, insertPos);
2869  Types.push_back(newType);
2870  return QualType(newType, 0);
2871}
2872
2873/// getVectorType - Return the unique reference to a vector type of
2874/// the specified element type and size. VectorType must be a built-in type.
2875QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2876                                   VectorType::VectorKind VecKind) const {
2877  assert(vecType->isBuiltinType());
2878
2879  // Check if we've already instantiated a vector of this type.
2880  llvm::FoldingSetNodeID ID;
2881  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2882
2883  void *InsertPos = nullptr;
2884  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2885    return QualType(VTP, 0);
2886
2887  // If the element type isn't canonical, this won't be a canonical type either,
2888  // so fill in the canonical type field.
2889  QualType Canonical;
2890  if (!vecType.isCanonical()) {
2891    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2892
2893    // Get the new insert position for the node we care about.
2894    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2895    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2896  }
2897  VectorType *New = new (*this, TypeAlignment)
2898    VectorType(vecType, NumElts, Canonical, VecKind);
2899  VectorTypes.InsertNode(New, InsertPos);
2900  Types.push_back(New);
2901  return QualType(New, 0);
2902}
2903
2904/// getExtVectorType - Return the unique reference to an extended vector type of
2905/// the specified element type and size. VectorType must be a built-in type.
2906QualType
2907ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2908  assert(vecType->isBuiltinType() || vecType->isDependentType());
2909
2910  // Check if we've already instantiated a vector of this type.
2911  llvm::FoldingSetNodeID ID;
2912  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2913                      VectorType::GenericVector);
2914  void *InsertPos = nullptr;
2915  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2916    return QualType(VTP, 0);
2917
2918  // If the element type isn't canonical, this won't be a canonical type either,
2919  // so fill in the canonical type field.
2920  QualType Canonical;
2921  if (!vecType.isCanonical()) {
2922    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2923
2924    // Get the new insert position for the node we care about.
2925    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2926    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2927  }
2928  ExtVectorType *New = new (*this, TypeAlignment)
2929    ExtVectorType(vecType, NumElts, Canonical);
2930  VectorTypes.InsertNode(New, InsertPos);
2931  Types.push_back(New);
2932  return QualType(New, 0);
2933}
2934
2935QualType
2936ASTContext::getDependentSizedExtVectorType(QualType vecType,
2937                                           Expr *SizeExpr,
2938                                           SourceLocation AttrLoc) const {
2939  llvm::FoldingSetNodeID ID;
2940  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2941                                       SizeExpr);
2942
2943  void *InsertPos = nullptr;
2944  DependentSizedExtVectorType *Canon
2945    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2946  DependentSizedExtVectorType *New;
2947  if (Canon) {
2948    // We already have a canonical version of this array type; use it as
2949    // the canonical type for a newly-built type.
2950    New = new (*this, TypeAlignment)
2951      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2952                                  SizeExpr, AttrLoc);
2953  } else {
2954    QualType CanonVecTy = getCanonicalType(vecType);
2955    if (CanonVecTy == vecType) {
2956      New = new (*this, TypeAlignment)
2957        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2958                                    AttrLoc);
2959
2960      DependentSizedExtVectorType *CanonCheck
2961        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2962      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2963      (void)CanonCheck;
2964      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2965    } else {
2966      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2967                                                      SourceLocation());
2968      New = new (*this, TypeAlignment)
2969        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2970    }
2971  }
2972
2973  Types.push_back(New);
2974  return QualType(New, 0);
2975}
2976
2977/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2978///
2979QualType
2980ASTContext::getFunctionNoProtoType(QualType ResultTy,
2981                                   const FunctionType::ExtInfo &Info) const {
2982  const CallingConv CallConv = Info.getCC();
2983
2984  // Unique functions, to guarantee there is only one function of a particular
2985  // structure.
2986  llvm::FoldingSetNodeID ID;
2987  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2988
2989  void *InsertPos = nullptr;
2990  if (FunctionNoProtoType *FT =
2991        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2992    return QualType(FT, 0);
2993
2994  QualType Canonical;
2995  if (!ResultTy.isCanonical()) {
2996    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
2997
2998    // Get the new insert position for the node we care about.
2999    FunctionNoProtoType *NewIP =
3000      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3001    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3002  }
3003
3004  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
3005  FunctionNoProtoType *New = new (*this, TypeAlignment)
3006    FunctionNoProtoType(ResultTy, Canonical, newInfo);
3007  Types.push_back(New);
3008  FunctionNoProtoTypes.InsertNode(New, InsertPos);
3009  return QualType(New, 0);
3010}
3011
3012/// \brief Determine whether \p T is canonical as the result type of a function.
3013static bool isCanonicalResultType(QualType T) {
3014  return T.isCanonical() &&
3015         (T.getObjCLifetime() == Qualifiers::OCL_None ||
3016          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
3017}
3018
3019CanQualType
3020ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
3021  CanQualType CanResultType = getCanonicalType(ResultType);
3022
3023  // Canonical result types do not have ARC lifetime qualifiers.
3024  if (CanResultType.getQualifiers().hasObjCLifetime()) {
3025    Qualifiers Qs = CanResultType.getQualifiers();
3026    Qs.removeObjCLifetime();
3027    return CanQualType::CreateUnsafe(
3028             getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
3029  }
3030
3031  return CanResultType;
3032}
3033
3034QualType
3035ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
3036                            const FunctionProtoType::ExtProtoInfo &EPI) const {
3037  size_t NumArgs = ArgArray.size();
3038
3039  // Unique functions, to guarantee there is only one function of a particular
3040  // structure.
3041  llvm::FoldingSetNodeID ID;
3042  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
3043                             *this);
3044
3045  void *InsertPos = nullptr;
3046  if (FunctionProtoType *FTP =
3047        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
3048    return QualType(FTP, 0);
3049
3050  // Determine whether the type being created is already canonical or not.
3051  bool isCanonical =
3052    EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) &&
3053    !EPI.HasTrailingReturn;
3054  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
3055    if (!ArgArray[i].isCanonicalAsParam())
3056      isCanonical = false;
3057
3058  // If this type isn't canonical, get the canonical version of it.
3059  // The exception spec is not part of the canonical type.
3060  QualType Canonical;
3061  if (!isCanonical) {
3062    SmallVector<QualType, 16> CanonicalArgs;
3063    CanonicalArgs.reserve(NumArgs);
3064    for (unsigned i = 0; i != NumArgs; ++i)
3065      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
3066
3067    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
3068    CanonicalEPI.HasTrailingReturn = false;
3069    CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
3070
3071    // Adjust the canonical function result type.
3072    CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
3073    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
3074
3075    // Get the new insert position for the node we care about.
3076    FunctionProtoType *NewIP =
3077      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3078    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3079  }
3080
3081  // FunctionProtoType objects are allocated with extra bytes after
3082  // them for three variable size arrays at the end:
3083  //  - parameter types
3084  //  - exception types
3085  //  - consumed-arguments flags
3086  // Instead of the exception types, there could be a noexcept
3087  // expression, or information used to resolve the exception
3088  // specification.
3089  size_t Size = sizeof(FunctionProtoType) +
3090                NumArgs * sizeof(QualType);
3091  if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3092    Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
3093  } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
3094    Size += sizeof(Expr*);
3095  } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3096    Size += 2 * sizeof(FunctionDecl*);
3097  } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3098    Size += sizeof(FunctionDecl*);
3099  }
3100  if (EPI.ConsumedParameters)
3101    Size += NumArgs * sizeof(bool);
3102
3103  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
3104  FunctionProtoType::ExtProtoInfo newEPI = EPI;
3105  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
3106  Types.push_back(FTP);
3107  FunctionProtoTypes.InsertNode(FTP, InsertPos);
3108  return QualType(FTP, 0);
3109}
3110
3111#ifndef NDEBUG
3112static bool NeedsInjectedClassNameType(const RecordDecl *D) {
3113  if (!isa<CXXRecordDecl>(D)) return false;
3114  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
3115  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
3116    return true;
3117  if (RD->getDescribedClassTemplate() &&
3118      !isa<ClassTemplateSpecializationDecl>(RD))
3119    return true;
3120  return false;
3121}
3122#endif
3123
3124/// getInjectedClassNameType - Return the unique reference to the
3125/// injected class name type for the specified templated declaration.
3126QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
3127                                              QualType TST) const {
3128  assert(NeedsInjectedClassNameType(Decl));
3129  if (Decl->TypeForDecl) {
3130    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3131  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
3132    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
3133    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3134    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3135  } else {
3136    Type *newType =
3137      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
3138    Decl->TypeForDecl = newType;
3139    Types.push_back(newType);
3140  }
3141  return QualType(Decl->TypeForDecl, 0);
3142}
3143
3144/// getTypeDeclType - Return the unique reference to the type for the
3145/// specified type declaration.
3146QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3147  assert(Decl && "Passed null for Decl param");
3148  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
3149
3150  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3151    return getTypedefType(Typedef);
3152
3153  assert(!isa<TemplateTypeParmDecl>(Decl) &&
3154         "Template type parameter types are always available.");
3155
3156  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
3157    assert(Record->isFirstDecl() && "struct/union has previous declaration");
3158    assert(!NeedsInjectedClassNameType(Record));
3159    return getRecordType(Record);
3160  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
3161    assert(Enum->isFirstDecl() && "enum has previous declaration");
3162    return getEnumType(Enum);
3163  } else if (const UnresolvedUsingTypenameDecl *Using =
3164               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3165    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3166    Decl->TypeForDecl = newType;
3167    Types.push_back(newType);
3168  } else
3169    llvm_unreachable("TypeDecl without a type?");
3170
3171  return QualType(Decl->TypeForDecl, 0);
3172}
3173
3174/// getTypedefType - Return the unique reference to the type for the
3175/// specified typedef name decl.
3176QualType
3177ASTContext::getTypedefType(const TypedefNameDecl *Decl,
3178                           QualType Canonical) const {
3179  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3180
3181  if (Canonical.isNull())
3182    Canonical = getCanonicalType(Decl->getUnderlyingType());
3183  TypedefType *newType = new(*this, TypeAlignment)
3184    TypedefType(Type::Typedef, Decl, Canonical);
3185  Decl->TypeForDecl = newType;
3186  Types.push_back(newType);
3187  return QualType(newType, 0);
3188}
3189
3190QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
3191  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3192
3193  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3194    if (PrevDecl->TypeForDecl)
3195      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3196
3197  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
3198  Decl->TypeForDecl = newType;
3199  Types.push_back(newType);
3200  return QualType(newType, 0);
3201}
3202
3203QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3204  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3205
3206  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3207    if (PrevDecl->TypeForDecl)
3208      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3209
3210  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3211  Decl->TypeForDecl = newType;
3212  Types.push_back(newType);
3213  return QualType(newType, 0);
3214}
3215
3216QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3217                                       QualType modifiedType,
3218                                       QualType equivalentType) {
3219  llvm::FoldingSetNodeID id;
3220  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3221
3222  void *insertPos = nullptr;
3223  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3224  if (type) return QualType(type, 0);
3225
3226  QualType canon = getCanonicalType(equivalentType);
3227  type = new (*this, TypeAlignment)
3228           AttributedType(canon, attrKind, modifiedType, equivalentType);
3229
3230  Types.push_back(type);
3231  AttributedTypes.InsertNode(type, insertPos);
3232
3233  return QualType(type, 0);
3234}
3235
3236/// \brief Retrieve a substitution-result type.
3237QualType
3238ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3239                                         QualType Replacement) const {
3240  assert(Replacement.isCanonical()
3241         && "replacement types must always be canonical");
3242
3243  llvm::FoldingSetNodeID ID;
3244  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3245  void *InsertPos = nullptr;
3246  SubstTemplateTypeParmType *SubstParm
3247    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3248
3249  if (!SubstParm) {
3250    SubstParm = new (*this, TypeAlignment)
3251      SubstTemplateTypeParmType(Parm, Replacement);
3252    Types.push_back(SubstParm);
3253    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3254  }
3255
3256  return QualType(SubstParm, 0);
3257}
3258
3259/// \brief Retrieve a
3260QualType ASTContext::getSubstTemplateTypeParmPackType(
3261                                          const TemplateTypeParmType *Parm,
3262                                              const TemplateArgument &ArgPack) {
3263#ifndef NDEBUG
3264  for (const auto &P : ArgPack.pack_elements()) {
3265    assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3266    assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
3267  }
3268#endif
3269
3270  llvm::FoldingSetNodeID ID;
3271  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3272  void *InsertPos = nullptr;
3273  if (SubstTemplateTypeParmPackType *SubstParm
3274        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3275    return QualType(SubstParm, 0);
3276
3277  QualType Canon;
3278  if (!Parm->isCanonicalUnqualified()) {
3279    Canon = getCanonicalType(QualType(Parm, 0));
3280    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3281                                             ArgPack);
3282    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3283  }
3284
3285  SubstTemplateTypeParmPackType *SubstParm
3286    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3287                                                               ArgPack);
3288  Types.push_back(SubstParm);
3289  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3290  return QualType(SubstParm, 0);
3291}
3292
3293/// \brief Retrieve the template type parameter type for a template
3294/// parameter or parameter pack with the given depth, index, and (optionally)
3295/// name.
3296QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3297                                             bool ParameterPack,
3298                                             TemplateTypeParmDecl *TTPDecl) const {
3299  llvm::FoldingSetNodeID ID;
3300  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3301  void *InsertPos = nullptr;
3302  TemplateTypeParmType *TypeParm
3303    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3304
3305  if (TypeParm)
3306    return QualType(TypeParm, 0);
3307
3308  if (TTPDecl) {
3309    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3310    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3311
3312    TemplateTypeParmType *TypeCheck
3313      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3314    assert(!TypeCheck && "Template type parameter canonical type broken");
3315    (void)TypeCheck;
3316  } else
3317    TypeParm = new (*this, TypeAlignment)
3318      TemplateTypeParmType(Depth, Index, ParameterPack);
3319
3320  Types.push_back(TypeParm);
3321  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3322
3323  return QualType(TypeParm, 0);
3324}
3325
3326TypeSourceInfo *
3327ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3328                                              SourceLocation NameLoc,
3329                                        const TemplateArgumentListInfo &Args,
3330                                              QualType Underlying) const {
3331  assert(!Name.getAsDependentTemplateName() &&
3332         "No dependent template names here!");
3333  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3334
3335  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3336  TemplateSpecializationTypeLoc TL =
3337      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3338  TL.setTemplateKeywordLoc(SourceLocation());
3339  TL.setTemplateNameLoc(NameLoc);
3340  TL.setLAngleLoc(Args.getLAngleLoc());
3341  TL.setRAngleLoc(Args.getRAngleLoc());
3342  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3343    TL.setArgLocInfo(i, Args[i].getLocInfo());
3344  return DI;
3345}
3346
3347QualType
3348ASTContext::getTemplateSpecializationType(TemplateName Template,
3349                                          const TemplateArgumentListInfo &Args,
3350                                          QualType Underlying) const {
3351  assert(!Template.getAsDependentTemplateName() &&
3352         "No dependent template names here!");
3353
3354  unsigned NumArgs = Args.size();
3355
3356  SmallVector<TemplateArgument, 4> ArgVec;
3357  ArgVec.reserve(NumArgs);
3358  for (unsigned i = 0; i != NumArgs; ++i)
3359    ArgVec.push_back(Args[i].getArgument());
3360
3361  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3362                                       Underlying);
3363}
3364
3365#ifndef NDEBUG
3366static bool hasAnyPackExpansions(const TemplateArgument *Args,
3367                                 unsigned NumArgs) {
3368  for (unsigned I = 0; I != NumArgs; ++I)
3369    if (Args[I].isPackExpansion())
3370      return true;
3371
3372  return true;
3373}
3374#endif
3375
3376QualType
3377ASTContext::getTemplateSpecializationType(TemplateName Template,
3378                                          const TemplateArgument *Args,
3379                                          unsigned NumArgs,
3380                                          QualType Underlying) const {
3381  assert(!Template.getAsDependentTemplateName() &&
3382         "No dependent template names here!");
3383  // Look through qualified template names.
3384  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3385    Template = TemplateName(QTN->getTemplateDecl());
3386
3387  bool IsTypeAlias =
3388    Template.getAsTemplateDecl() &&
3389    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3390  QualType CanonType;
3391  if (!Underlying.isNull())
3392    CanonType = getCanonicalType(Underlying);
3393  else {
3394    // We can get here with an alias template when the specialization contains
3395    // a pack expansion that does not match up with a parameter pack.
3396    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3397           "Caller must compute aliased type");
3398    IsTypeAlias = false;
3399    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3400                                                       NumArgs);
3401  }
3402
3403  // Allocate the (non-canonical) template specialization type, but don't
3404  // try to unique it: these types typically have location information that
3405  // we don't unique and don't want to lose.
3406  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3407                       sizeof(TemplateArgument) * NumArgs +
3408                       (IsTypeAlias? sizeof(QualType) : 0),
3409                       TypeAlignment);
3410  TemplateSpecializationType *Spec
3411    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3412                                         IsTypeAlias ? Underlying : QualType());
3413
3414  Types.push_back(Spec);
3415  return QualType(Spec, 0);
3416}
3417
3418QualType
3419ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3420                                                   const TemplateArgument *Args,
3421                                                   unsigned NumArgs) const {
3422  assert(!Template.getAsDependentTemplateName() &&
3423         "No dependent template names here!");
3424
3425  // Look through qualified template names.
3426  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3427    Template = TemplateName(QTN->getTemplateDecl());
3428
3429  // Build the canonical template specialization type.
3430  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3431  SmallVector<TemplateArgument, 4> CanonArgs;
3432  CanonArgs.reserve(NumArgs);
3433  for (unsigned I = 0; I != NumArgs; ++I)
3434    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3435
3436  // Determine whether this canonical template specialization type already
3437  // exists.
3438  llvm::FoldingSetNodeID ID;
3439  TemplateSpecializationType::Profile(ID, CanonTemplate,
3440                                      CanonArgs.data(), NumArgs, *this);
3441
3442  void *InsertPos = nullptr;
3443  TemplateSpecializationType *Spec
3444    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3445
3446  if (!Spec) {
3447    // Allocate a new canonical template specialization type.
3448    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3449                          sizeof(TemplateArgument) * NumArgs),
3450                         TypeAlignment);
3451    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3452                                                CanonArgs.data(), NumArgs,
3453                                                QualType(), QualType());
3454    Types.push_back(Spec);
3455    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3456  }
3457
3458  assert(Spec->isDependentType() &&
3459         "Non-dependent template-id type must have a canonical type");
3460  return QualType(Spec, 0);
3461}
3462
3463QualType
3464ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3465                              NestedNameSpecifier *NNS,
3466                              QualType NamedType) const {
3467  llvm::FoldingSetNodeID ID;
3468  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3469
3470  void *InsertPos = nullptr;
3471  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3472  if (T)
3473    return QualType(T, 0);
3474
3475  QualType Canon = NamedType;
3476  if (!Canon.isCanonical()) {
3477    Canon = getCanonicalType(NamedType);
3478    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3479    assert(!CheckT && "Elaborated canonical type broken");
3480    (void)CheckT;
3481  }
3482
3483  T = new (*this, TypeAlignment) ElaboratedType(Keyword, NNS, NamedType, Canon);
3484  Types.push_back(T);
3485  ElaboratedTypes.InsertNode(T, InsertPos);
3486  return QualType(T, 0);
3487}
3488
3489QualType
3490ASTContext::getParenType(QualType InnerType) const {
3491  llvm::FoldingSetNodeID ID;
3492  ParenType::Profile(ID, InnerType);
3493
3494  void *InsertPos = nullptr;
3495  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3496  if (T)
3497    return QualType(T, 0);
3498
3499  QualType Canon = InnerType;
3500  if (!Canon.isCanonical()) {
3501    Canon = getCanonicalType(InnerType);
3502    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3503    assert(!CheckT && "Paren canonical type broken");
3504    (void)CheckT;
3505  }
3506
3507  T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
3508  Types.push_back(T);
3509  ParenTypes.InsertNode(T, InsertPos);
3510  return QualType(T, 0);
3511}
3512
3513QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3514                                          NestedNameSpecifier *NNS,
3515                                          const IdentifierInfo *Name,
3516                                          QualType Canon) const {
3517  if (Canon.isNull()) {
3518    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3519    ElaboratedTypeKeyword CanonKeyword = Keyword;
3520    if (Keyword == ETK_None)
3521      CanonKeyword = ETK_Typename;
3522
3523    if (CanonNNS != NNS || CanonKeyword != Keyword)
3524      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3525  }
3526
3527  llvm::FoldingSetNodeID ID;
3528  DependentNameType::Profile(ID, Keyword, NNS, Name);
3529
3530  void *InsertPos = nullptr;
3531  DependentNameType *T
3532    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3533  if (T)
3534    return QualType(T, 0);
3535
3536  T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
3537  Types.push_back(T);
3538  DependentNameTypes.InsertNode(T, InsertPos);
3539  return QualType(T, 0);
3540}
3541
3542QualType
3543ASTContext::getDependentTemplateSpecializationType(
3544                                 ElaboratedTypeKeyword Keyword,
3545                                 NestedNameSpecifier *NNS,
3546                                 const IdentifierInfo *Name,
3547                                 const TemplateArgumentListInfo &Args) const {
3548  // TODO: avoid this copy
3549  SmallVector<TemplateArgument, 16> ArgCopy;
3550  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3551    ArgCopy.push_back(Args[I].getArgument());
3552  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3553                                                ArgCopy.size(),
3554                                                ArgCopy.data());
3555}
3556
3557QualType
3558ASTContext::getDependentTemplateSpecializationType(
3559                                 ElaboratedTypeKeyword Keyword,
3560                                 NestedNameSpecifier *NNS,
3561                                 const IdentifierInfo *Name,
3562                                 unsigned NumArgs,
3563                                 const TemplateArgument *Args) const {
3564  assert((!NNS || NNS->isDependent()) &&
3565         "nested-name-specifier must be dependent");
3566
3567  llvm::FoldingSetNodeID ID;
3568  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3569                                               Name, NumArgs, Args);
3570
3571  void *InsertPos = nullptr;
3572  DependentTemplateSpecializationType *T
3573    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3574  if (T)
3575    return QualType(T, 0);
3576
3577  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3578
3579  ElaboratedTypeKeyword CanonKeyword = Keyword;
3580  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3581
3582  bool AnyNonCanonArgs = false;
3583  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3584  for (unsigned I = 0; I != NumArgs; ++I) {
3585    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3586    if (!CanonArgs[I].structurallyEquals(Args[I]))
3587      AnyNonCanonArgs = true;
3588  }
3589
3590  QualType Canon;
3591  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3592    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3593                                                   Name, NumArgs,
3594                                                   CanonArgs.data());
3595
3596    // Find the insert position again.
3597    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3598  }
3599
3600  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3601                        sizeof(TemplateArgument) * NumArgs),
3602                       TypeAlignment);
3603  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3604                                                    Name, NumArgs, Args, Canon);
3605  Types.push_back(T);
3606  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3607  return QualType(T, 0);
3608}
3609
3610QualType ASTContext::getPackExpansionType(QualType Pattern,
3611                                          Optional<unsigned> NumExpansions) {
3612  llvm::FoldingSetNodeID ID;
3613  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3614
3615  assert(Pattern->containsUnexpandedParameterPack() &&
3616         "Pack expansions must expand one or more parameter packs");
3617  void *InsertPos = nullptr;
3618  PackExpansionType *T
3619    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3620  if (T)
3621    return QualType(T, 0);
3622
3623  QualType Canon;
3624  if (!Pattern.isCanonical()) {
3625    Canon = getCanonicalType(Pattern);
3626    // The canonical type might not contain an unexpanded parameter pack, if it
3627    // contains an alias template specialization which ignores one of its
3628    // parameters.
3629    if (Canon->containsUnexpandedParameterPack()) {
3630      Canon = getPackExpansionType(Canon, NumExpansions);
3631
3632      // Find the insert position again, in case we inserted an element into
3633      // PackExpansionTypes and invalidated our insert position.
3634      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3635    }
3636  }
3637
3638  T = new (*this, TypeAlignment)
3639      PackExpansionType(Pattern, Canon, NumExpansions);
3640  Types.push_back(T);
3641  PackExpansionTypes.InsertNode(T, InsertPos);
3642  return QualType(T, 0);
3643}
3644
3645/// CmpProtocolNames - Comparison predicate for sorting protocols
3646/// alphabetically.
3647static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
3648                            ObjCProtocolDecl *const *RHS) {
3649  return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
3650}
3651
3652static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3653                                unsigned NumProtocols) {
3654  if (NumProtocols == 0) return true;
3655
3656  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3657    return false;
3658
3659  for (unsigned i = 1; i != NumProtocols; ++i)
3660    if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
3661        Protocols[i]->getCanonicalDecl() != Protocols[i])
3662      return false;
3663  return true;
3664}
3665
3666static void
3667SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
3668  // Sort protocols, keyed by name.
3669  llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
3670
3671  // Canonicalize.
3672  for (ObjCProtocolDecl *&P : Protocols)
3673    P = P->getCanonicalDecl();
3674
3675  // Remove duplicates.
3676  auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
3677  Protocols.erase(ProtocolsEnd, Protocols.end());
3678}
3679
3680QualType ASTContext::getObjCObjectType(QualType BaseType,
3681                                       ObjCProtocolDecl * const *Protocols,
3682                                       unsigned NumProtocols) const {
3683  return getObjCObjectType(BaseType, { },
3684                           llvm::makeArrayRef(Protocols, NumProtocols),
3685                           /*isKindOf=*/false);
3686}
3687
3688QualType ASTContext::getObjCObjectType(
3689           QualType baseType,
3690           ArrayRef<QualType> typeArgs,
3691           ArrayRef<ObjCProtocolDecl *> protocols,
3692           bool isKindOf) const {
3693  // If the base type is an interface and there aren't any protocols or
3694  // type arguments to add, then the interface type will do just fine.
3695  if (typeArgs.empty() && protocols.empty() && !isKindOf &&
3696      isa<ObjCInterfaceType>(baseType))
3697    return baseType;
3698
3699  // Look in the folding set for an existing type.
3700  llvm::FoldingSetNodeID ID;
3701  ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
3702  void *InsertPos = nullptr;
3703  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3704    return QualType(QT, 0);
3705
3706  // Determine the type arguments to be used for canonicalization,
3707  // which may be explicitly specified here or written on the base
3708  // type.
3709  ArrayRef<QualType> effectiveTypeArgs = typeArgs;
3710  if (effectiveTypeArgs.empty()) {
3711    if (auto baseObject = baseType->getAs<ObjCObjectType>())
3712      effectiveTypeArgs = baseObject->getTypeArgs();
3713  }
3714
3715  // Build the canonical type, which has the canonical base type and a
3716  // sorted-and-uniqued list of protocols and the type arguments
3717  // canonicalized.
3718  QualType canonical;
3719  bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
3720                                          effectiveTypeArgs.end(),
3721                                          [&](QualType type) {
3722                                            return type.isCanonical();
3723                                          });
3724  bool protocolsSorted = areSortedAndUniqued(protocols.data(),
3725                                             protocols.size());
3726  if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
3727    // Determine the canonical type arguments.
3728    ArrayRef<QualType> canonTypeArgs;
3729    SmallVector<QualType, 4> canonTypeArgsVec;
3730    if (!typeArgsAreCanonical) {
3731      canonTypeArgsVec.reserve(effectiveTypeArgs.size());
3732      for (auto typeArg : effectiveTypeArgs)
3733        canonTypeArgsVec.push_back(getCanonicalType(typeArg));
3734      canonTypeArgs = canonTypeArgsVec;
3735    } else {
3736      canonTypeArgs = effectiveTypeArgs;
3737    }
3738
3739    ArrayRef<ObjCProtocolDecl *> canonProtocols;
3740    SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
3741    if (!protocolsSorted) {
3742      canonProtocolsVec.append(protocols.begin(), protocols.end());
3743      SortAndUniqueProtocols(canonProtocolsVec);
3744      canonProtocols = canonProtocolsVec;
3745    } else {
3746      canonProtocols = protocols;
3747    }
3748
3749    canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
3750                                  canonProtocols, isKindOf);
3751
3752    // Regenerate InsertPos.
3753    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3754  }
3755
3756  unsigned size = sizeof(ObjCObjectTypeImpl);
3757  size += typeArgs.size() * sizeof(QualType);
3758  size += protocols.size() * sizeof(ObjCProtocolDecl *);
3759  void *mem = Allocate(size, TypeAlignment);
3760  ObjCObjectTypeImpl *T =
3761    new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
3762                                 isKindOf);
3763
3764  Types.push_back(T);
3765  ObjCObjectTypes.InsertNode(T, InsertPos);
3766  return QualType(T, 0);
3767}
3768
3769/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
3770/// protocol list adopt all protocols in QT's qualified-id protocol
3771/// list.
3772bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
3773                                                ObjCInterfaceDecl *IC) {
3774  if (!QT->isObjCQualifiedIdType())
3775    return false;
3776
3777  if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
3778    // If both the right and left sides have qualifiers.
3779    for (auto *Proto : OPT->quals()) {
3780      if (!IC->ClassImplementsProtocol(Proto, false))
3781        return false;
3782    }
3783    return true;
3784  }
3785  return false;
3786}
3787
3788/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
3789/// QT's qualified-id protocol list adopt all protocols in IDecl's list
3790/// of protocols.
3791bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
3792                                                ObjCInterfaceDecl *IDecl) {
3793  if (!QT->isObjCQualifiedIdType())
3794    return false;
3795  const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
3796  if (!OPT)
3797    return false;
3798  if (!IDecl->hasDefinition())
3799    return false;
3800  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
3801  CollectInheritedProtocols(IDecl, InheritedProtocols);
3802  if (InheritedProtocols.empty())
3803    return false;
3804  // Check that if every protocol in list of id<plist> conforms to a protcol
3805  // of IDecl's, then bridge casting is ok.
3806  bool Conforms = false;
3807  for (auto *Proto : OPT->quals()) {
3808    Conforms = false;
3809    for (auto *PI : InheritedProtocols) {
3810      if (ProtocolCompatibleWithProtocol(Proto, PI)) {
3811        Conforms = true;
3812        break;
3813      }
3814    }
3815    if (!Conforms)
3816      break;
3817  }
3818  if (Conforms)
3819    return true;
3820
3821  for (auto *PI : InheritedProtocols) {
3822    // If both the right and left sides have qualifiers.
3823    bool Adopts = false;
3824    for (auto *Proto : OPT->quals()) {
3825      // return 'true' if 'PI' is in the inheritance hierarchy of Proto
3826      if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
3827        break;
3828    }
3829    if (!Adopts)
3830      return false;
3831  }
3832  return true;
3833}
3834
3835/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3836/// the given object type.
3837QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3838  llvm::FoldingSetNodeID ID;
3839  ObjCObjectPointerType::Profile(ID, ObjectT);
3840
3841  void *InsertPos = nullptr;
3842  if (ObjCObjectPointerType *QT =
3843              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3844    return QualType(QT, 0);
3845
3846  // Find the canonical object type.
3847  QualType Canonical;
3848  if (!ObjectT.isCanonical()) {
3849    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3850
3851    // Regenerate InsertPos.
3852    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3853  }
3854
3855  // No match.
3856  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3857  ObjCObjectPointerType *QType =
3858    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3859
3860  Types.push_back(QType);
3861  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3862  return QualType(QType, 0);
3863}
3864
3865/// getObjCInterfaceType - Return the unique reference to the type for the
3866/// specified ObjC interface decl. The list of protocols is optional.
3867QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3868                                          ObjCInterfaceDecl *PrevDecl) const {
3869  if (Decl->TypeForDecl)
3870    return QualType(Decl->TypeForDecl, 0);
3871
3872  if (PrevDecl) {
3873    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3874    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3875    return QualType(PrevDecl->TypeForDecl, 0);
3876  }
3877
3878  // Prefer the definition, if there is one.
3879  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3880    Decl = Def;
3881
3882  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3883  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3884  Decl->TypeForDecl = T;
3885  Types.push_back(T);
3886  return QualType(T, 0);
3887}
3888
3889/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3890/// TypeOfExprType AST's (since expression's are never shared). For example,
3891/// multiple declarations that refer to "typeof(x)" all contain different
3892/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3893/// on canonical type's (which are always unique).
3894QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3895  TypeOfExprType *toe;
3896  if (tofExpr->isTypeDependent()) {
3897    llvm::FoldingSetNodeID ID;
3898    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3899
3900    void *InsertPos = nullptr;
3901    DependentTypeOfExprType *Canon
3902      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3903    if (Canon) {
3904      // We already have a "canonical" version of an identical, dependent
3905      // typeof(expr) type. Use that as our canonical type.
3906      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3907                                          QualType((TypeOfExprType*)Canon, 0));
3908    } else {
3909      // Build a new, canonical typeof(expr) type.
3910      Canon
3911        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3912      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3913      toe = Canon;
3914    }
3915  } else {
3916    QualType Canonical = getCanonicalType(tofExpr->getType());
3917    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3918  }
3919  Types.push_back(toe);
3920  return QualType(toe, 0);
3921}
3922
3923/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3924/// TypeOfType nodes. The only motivation to unique these nodes would be
3925/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3926/// an issue. This doesn't affect the type checker, since it operates
3927/// on canonical types (which are always unique).
3928QualType ASTContext::getTypeOfType(QualType tofType) const {
3929  QualType Canonical = getCanonicalType(tofType);
3930  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3931  Types.push_back(tot);
3932  return QualType(tot, 0);
3933}
3934
3935/// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
3936/// nodes. This would never be helpful, since each such type has its own
3937/// expression, and would not give a significant memory saving, since there
3938/// is an Expr tree under each such type.
3939QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3940  DecltypeType *dt;
3941
3942  // C++11 [temp.type]p2:
3943  //   If an expression e involves a template parameter, decltype(e) denotes a
3944  //   unique dependent type. Two such decltype-specifiers refer to the same
3945  //   type only if their expressions are equivalent (14.5.6.1).
3946  if (e->isInstantiationDependent()) {
3947    llvm::FoldingSetNodeID ID;
3948    DependentDecltypeType::Profile(ID, *this, e);
3949
3950    void *InsertPos = nullptr;
3951    DependentDecltypeType *Canon
3952      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3953    if (!Canon) {
3954      // Build a new, canonical typeof(expr) type.
3955      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3956      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3957    }
3958    dt = new (*this, TypeAlignment)
3959        DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
3960  } else {
3961    dt = new (*this, TypeAlignment)
3962        DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
3963  }
3964  Types.push_back(dt);
3965  return QualType(dt, 0);
3966}
3967
3968/// getUnaryTransformationType - We don't unique these, since the memory
3969/// savings are minimal and these are rare.
3970QualType ASTContext::getUnaryTransformType(QualType BaseType,
3971                                           QualType UnderlyingType,
3972                                           UnaryTransformType::UTTKind Kind)
3973    const {
3974  UnaryTransformType *Ty =
3975    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3976                                                   Kind,
3977                                 UnderlyingType->isDependentType() ?
3978                                 QualType() : getCanonicalType(UnderlyingType));
3979  Types.push_back(Ty);
3980  return QualType(Ty, 0);
3981}
3982
3983/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3984/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3985/// canonical deduced-but-dependent 'auto' type.
3986QualType ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
3987                                 bool IsDependent) const {
3988  if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent)
3989    return getAutoDeductType();
3990
3991  // Look in the folding set for an existing type.
3992  void *InsertPos = nullptr;
3993  llvm::FoldingSetNodeID ID;
3994  AutoType::Profile(ID, DeducedType, Keyword, IsDependent);
3995  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3996    return QualType(AT, 0);
3997
3998  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3999                                                     Keyword,
4000                                                     IsDependent);
4001  Types.push_back(AT);
4002  if (InsertPos)
4003    AutoTypes.InsertNode(AT, InsertPos);
4004  return QualType(AT, 0);
4005}
4006
4007/// getAtomicType - Return the uniqued reference to the atomic type for
4008/// the given value type.
4009QualType ASTContext::getAtomicType(QualType T) const {
4010  // Unique pointers, to guarantee there is only one pointer of a particular
4011  // structure.
4012  llvm::FoldingSetNodeID ID;
4013  AtomicType::Profile(ID, T);
4014
4015  void *InsertPos = nullptr;
4016  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
4017    return QualType(AT, 0);
4018
4019  // If the atomic value type isn't canonical, this won't be a canonical type
4020  // either, so fill in the canonical type field.
4021  QualType Canonical;
4022  if (!T.isCanonical()) {
4023    Canonical = getAtomicType(getCanonicalType(T));
4024
4025    // Get the new insert position for the node we care about.
4026    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
4027    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4028  }
4029  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
4030  Types.push_back(New);
4031  AtomicTypes.InsertNode(New, InsertPos);
4032  return QualType(New, 0);
4033}
4034
4035/// getAutoDeductType - Get type pattern for deducing against 'auto'.
4036QualType ASTContext::getAutoDeductType() const {
4037  if (AutoDeductTy.isNull())
4038    AutoDeductTy = QualType(
4039      new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto,
4040                                          /*dependent*/false),
4041      0);
4042  return AutoDeductTy;
4043}
4044
4045/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
4046QualType ASTContext::getAutoRRefDeductType() const {
4047  if (AutoRRefDeductTy.isNull())
4048    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
4049  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
4050  return AutoRRefDeductTy;
4051}
4052
4053/// getTagDeclType - Return the unique reference to the type for the
4054/// specified TagDecl (struct/union/class/enum) decl.
4055QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
4056  assert (Decl);
4057  // FIXME: What is the design on getTagDeclType when it requires casting
4058  // away const?  mutable?
4059  return getTypeDeclType(const_cast<TagDecl*>(Decl));
4060}
4061
4062/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
4063/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
4064/// needs to agree with the definition in <stddef.h>.
4065CanQualType ASTContext::getSizeType() const {
4066  return getFromTargetType(Target->getSizeType());
4067}
4068
4069/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
4070CanQualType ASTContext::getIntMaxType() const {
4071  return getFromTargetType(Target->getIntMaxType());
4072}
4073
4074/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
4075CanQualType ASTContext::getUIntMaxType() const {
4076  return getFromTargetType(Target->getUIntMaxType());
4077}
4078
4079/// getSignedWCharType - Return the type of "signed wchar_t".
4080/// Used when in C++, as a GCC extension.
4081QualType ASTContext::getSignedWCharType() const {
4082  // FIXME: derive from "Target" ?
4083  return WCharTy;
4084}
4085
4086/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
4087/// Used when in C++, as a GCC extension.
4088QualType ASTContext::getUnsignedWCharType() const {
4089  // FIXME: derive from "Target" ?
4090  return UnsignedIntTy;
4091}
4092
4093QualType ASTContext::getIntPtrType() const {
4094  return getFromTargetType(Target->getIntPtrType());
4095}
4096
4097QualType ASTContext::getUIntPtrType() const {
4098  return getCorrespondingUnsignedType(getIntPtrType());
4099}
4100
4101/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
4102/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
4103QualType ASTContext::getPointerDiffType() const {
4104  return getFromTargetType(Target->getPtrDiffType(0));
4105}
4106
4107/// \brief Return the unique type for "pid_t" defined in
4108/// <sys/types.h>. We need this to compute the correct type for vfork().
4109QualType ASTContext::getProcessIDType() const {
4110  return getFromTargetType(Target->getProcessIDType());
4111}
4112
4113//===----------------------------------------------------------------------===//
4114//                              Type Operators
4115//===----------------------------------------------------------------------===//
4116
4117CanQualType ASTContext::getCanonicalParamType(QualType T) const {
4118  // Push qualifiers into arrays, and then discard any remaining
4119  // qualifiers.
4120  T = getCanonicalType(T);
4121  T = getVariableArrayDecayedType(T);
4122  const Type *Ty = T.getTypePtr();
4123  QualType Result;
4124  if (isa<ArrayType>(Ty)) {
4125    Result = getArrayDecayedType(QualType(Ty,0));
4126  } else if (isa<FunctionType>(Ty)) {
4127    Result = getPointerType(QualType(Ty, 0));
4128  } else {
4129    Result = QualType(Ty, 0);
4130  }
4131
4132  return CanQualType::CreateUnsafe(Result);
4133}
4134
4135QualType ASTContext::getUnqualifiedArrayType(QualType type,
4136                                             Qualifiers &quals) {
4137  SplitQualType splitType = type.getSplitUnqualifiedType();
4138
4139  // FIXME: getSplitUnqualifiedType() actually walks all the way to
4140  // the unqualified desugared type and then drops it on the floor.
4141  // We then have to strip that sugar back off with
4142  // getUnqualifiedDesugaredType(), which is silly.
4143  const ArrayType *AT =
4144    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
4145
4146  // If we don't have an array, just use the results in splitType.
4147  if (!AT) {
4148    quals = splitType.Quals;
4149    return QualType(splitType.Ty, 0);
4150  }
4151
4152  // Otherwise, recurse on the array's element type.
4153  QualType elementType = AT->getElementType();
4154  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
4155
4156  // If that didn't change the element type, AT has no qualifiers, so we
4157  // can just use the results in splitType.
4158  if (elementType == unqualElementType) {
4159    assert(quals.empty()); // from the recursive call
4160    quals = splitType.Quals;
4161    return QualType(splitType.Ty, 0);
4162  }
4163
4164  // Otherwise, add in the qualifiers from the outermost type, then
4165  // build the type back up.
4166  quals.addConsistentQualifiers(splitType.Quals);
4167
4168  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4169    return getConstantArrayType(unqualElementType, CAT->getSize(),
4170                                CAT->getSizeModifier(), 0);
4171  }
4172
4173  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
4174    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
4175  }
4176
4177  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
4178    return getVariableArrayType(unqualElementType,
4179                                VAT->getSizeExpr(),
4180                                VAT->getSizeModifier(),
4181                                VAT->getIndexTypeCVRQualifiers(),
4182                                VAT->getBracketsRange());
4183  }
4184
4185  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
4186  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
4187                                    DSAT->getSizeModifier(), 0,
4188                                    SourceRange());
4189}
4190
4191/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
4192/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
4193/// they point to and return true. If T1 and T2 aren't pointer types
4194/// or pointer-to-member types, or if they are not similar at this
4195/// level, returns false and leaves T1 and T2 unchanged. Top-level
4196/// qualifiers on T1 and T2 are ignored. This function will typically
4197/// be called in a loop that successively "unwraps" pointer and
4198/// pointer-to-member types to compare them at each level.
4199bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
4200  const PointerType *T1PtrType = T1->getAs<PointerType>(),
4201                    *T2PtrType = T2->getAs<PointerType>();
4202  if (T1PtrType && T2PtrType) {
4203    T1 = T1PtrType->getPointeeType();
4204    T2 = T2PtrType->getPointeeType();
4205    return true;
4206  }
4207
4208  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
4209                          *T2MPType = T2->getAs<MemberPointerType>();
4210  if (T1MPType && T2MPType &&
4211      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
4212                             QualType(T2MPType->getClass(), 0))) {
4213    T1 = T1MPType->getPointeeType();
4214    T2 = T2MPType->getPointeeType();
4215    return true;
4216  }
4217
4218  if (getLangOpts().ObjC1) {
4219    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
4220                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
4221    if (T1OPType && T2OPType) {
4222      T1 = T1OPType->getPointeeType();
4223      T2 = T2OPType->getPointeeType();
4224      return true;
4225    }
4226  }
4227
4228  // FIXME: Block pointers, too?
4229
4230  return false;
4231}
4232
4233DeclarationNameInfo
4234ASTContext::getNameForTemplate(TemplateName Name,
4235                               SourceLocation NameLoc) const {
4236  switch (Name.getKind()) {
4237  case TemplateName::QualifiedTemplate:
4238  case TemplateName::Template:
4239    // DNInfo work in progress: CHECKME: what about DNLoc?
4240    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4241                               NameLoc);
4242
4243  case TemplateName::OverloadedTemplate: {
4244    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4245    // DNInfo work in progress: CHECKME: what about DNLoc?
4246    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4247  }
4248
4249  case TemplateName::DependentTemplate: {
4250    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4251    DeclarationName DName;
4252    if (DTN->isIdentifier()) {
4253      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4254      return DeclarationNameInfo(DName, NameLoc);
4255    } else {
4256      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4257      // DNInfo work in progress: FIXME: source locations?
4258      DeclarationNameLoc DNLoc;
4259      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4260      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4261      return DeclarationNameInfo(DName, NameLoc, DNLoc);
4262    }
4263  }
4264
4265  case TemplateName::SubstTemplateTemplateParm: {
4266    SubstTemplateTemplateParmStorage *subst
4267      = Name.getAsSubstTemplateTemplateParm();
4268    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4269                               NameLoc);
4270  }
4271
4272  case TemplateName::SubstTemplateTemplateParmPack: {
4273    SubstTemplateTemplateParmPackStorage *subst
4274      = Name.getAsSubstTemplateTemplateParmPack();
4275    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4276                               NameLoc);
4277  }
4278  }
4279
4280  llvm_unreachable("bad template name kind!");
4281}
4282
4283TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4284  switch (Name.getKind()) {
4285  case TemplateName::QualifiedTemplate:
4286  case TemplateName::Template: {
4287    TemplateDecl *Template = Name.getAsTemplateDecl();
4288    if (TemplateTemplateParmDecl *TTP
4289          = dyn_cast<TemplateTemplateParmDecl>(Template))
4290      Template = getCanonicalTemplateTemplateParmDecl(TTP);
4291
4292    // The canonical template name is the canonical template declaration.
4293    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4294  }
4295
4296  case TemplateName::OverloadedTemplate:
4297    llvm_unreachable("cannot canonicalize overloaded template");
4298
4299  case TemplateName::DependentTemplate: {
4300    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4301    assert(DTN && "Non-dependent template names must refer to template decls.");
4302    return DTN->CanonicalTemplateName;
4303  }
4304
4305  case TemplateName::SubstTemplateTemplateParm: {
4306    SubstTemplateTemplateParmStorage *subst
4307      = Name.getAsSubstTemplateTemplateParm();
4308    return getCanonicalTemplateName(subst->getReplacement());
4309  }
4310
4311  case TemplateName::SubstTemplateTemplateParmPack: {
4312    SubstTemplateTemplateParmPackStorage *subst
4313                                  = Name.getAsSubstTemplateTemplateParmPack();
4314    TemplateTemplateParmDecl *canonParameter
4315      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4316    TemplateArgument canonArgPack
4317      = getCanonicalTemplateArgument(subst->getArgumentPack());
4318    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4319  }
4320  }
4321
4322  llvm_unreachable("bad template name!");
4323}
4324
4325bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4326  X = getCanonicalTemplateName(X);
4327  Y = getCanonicalTemplateName(Y);
4328  return X.getAsVoidPointer() == Y.getAsVoidPointer();
4329}
4330
4331TemplateArgument
4332ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4333  switch (Arg.getKind()) {
4334    case TemplateArgument::Null:
4335      return Arg;
4336
4337    case TemplateArgument::Expression:
4338      return Arg;
4339
4340    case TemplateArgument::Declaration: {
4341      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4342      return TemplateArgument(D, Arg.getParamTypeForDecl());
4343    }
4344
4345    case TemplateArgument::NullPtr:
4346      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4347                              /*isNullPtr*/true);
4348
4349    case TemplateArgument::Template:
4350      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4351
4352    case TemplateArgument::TemplateExpansion:
4353      return TemplateArgument(getCanonicalTemplateName(
4354                                         Arg.getAsTemplateOrTemplatePattern()),
4355                              Arg.getNumTemplateExpansions());
4356
4357    case TemplateArgument::Integral:
4358      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4359
4360    case TemplateArgument::Type:
4361      return TemplateArgument(getCanonicalType(Arg.getAsType()));
4362
4363    case TemplateArgument::Pack: {
4364      if (Arg.pack_size() == 0)
4365        return Arg;
4366
4367      TemplateArgument *CanonArgs
4368        = new (*this) TemplateArgument[Arg.pack_size()];
4369      unsigned Idx = 0;
4370      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4371                                        AEnd = Arg.pack_end();
4372           A != AEnd; (void)++A, ++Idx)
4373        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4374
4375      return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
4376    }
4377  }
4378
4379  // Silence GCC warning
4380  llvm_unreachable("Unhandled template argument kind");
4381}
4382
4383NestedNameSpecifier *
4384ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4385  if (!NNS)
4386    return nullptr;
4387
4388  switch (NNS->getKind()) {
4389  case NestedNameSpecifier::Identifier:
4390    // Canonicalize the prefix but keep the identifier the same.
4391    return NestedNameSpecifier::Create(*this,
4392                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4393                                       NNS->getAsIdentifier());
4394
4395  case NestedNameSpecifier::Namespace:
4396    // A namespace is canonical; build a nested-name-specifier with
4397    // this namespace and no prefix.
4398    return NestedNameSpecifier::Create(*this, nullptr,
4399                                 NNS->getAsNamespace()->getOriginalNamespace());
4400
4401  case NestedNameSpecifier::NamespaceAlias:
4402    // A namespace is canonical; build a nested-name-specifier with
4403    // this namespace and no prefix.
4404    return NestedNameSpecifier::Create(*this, nullptr,
4405                                    NNS->getAsNamespaceAlias()->getNamespace()
4406                                                      ->getOriginalNamespace());
4407
4408  case NestedNameSpecifier::TypeSpec:
4409  case NestedNameSpecifier::TypeSpecWithTemplate: {
4410    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4411
4412    // If we have some kind of dependent-named type (e.g., "typename T::type"),
4413    // break it apart into its prefix and identifier, then reconsititute those
4414    // as the canonical nested-name-specifier. This is required to canonicalize
4415    // a dependent nested-name-specifier involving typedefs of dependent-name
4416    // types, e.g.,
4417    //   typedef typename T::type T1;
4418    //   typedef typename T1::type T2;
4419    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4420      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4421                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4422
4423    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4424    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4425    // first place?
4426    return NestedNameSpecifier::Create(*this, nullptr, false,
4427                                       const_cast<Type *>(T.getTypePtr()));
4428  }
4429
4430  case NestedNameSpecifier::Global:
4431  case NestedNameSpecifier::Super:
4432    // The global specifier and __super specifer are canonical and unique.
4433    return NNS;
4434  }
4435
4436  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4437}
4438
4439const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4440  // Handle the non-qualified case efficiently.
4441  if (!T.hasLocalQualifiers()) {
4442    // Handle the common positive case fast.
4443    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4444      return AT;
4445  }
4446
4447  // Handle the common negative case fast.
4448  if (!isa<ArrayType>(T.getCanonicalType()))
4449    return nullptr;
4450
4451  // Apply any qualifiers from the array type to the element type.  This
4452  // implements C99 6.7.3p8: "If the specification of an array type includes
4453  // any type qualifiers, the element type is so qualified, not the array type."
4454
4455  // If we get here, we either have type qualifiers on the type, or we have
4456  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4457  // we must propagate them down into the element type.
4458
4459  SplitQualType split = T.getSplitDesugaredType();
4460  Qualifiers qs = split.Quals;
4461
4462  // If we have a simple case, just return now.
4463  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4464  if (!ATy || qs.empty())
4465    return ATy;
4466
4467  // Otherwise, we have an array and we have qualifiers on it.  Push the
4468  // qualifiers into the array element type and return a new array type.
4469  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4470
4471  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4472    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4473                                                CAT->getSizeModifier(),
4474                                           CAT->getIndexTypeCVRQualifiers()));
4475  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4476    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4477                                                  IAT->getSizeModifier(),
4478                                           IAT->getIndexTypeCVRQualifiers()));
4479
4480  if (const DependentSizedArrayType *DSAT
4481        = dyn_cast<DependentSizedArrayType>(ATy))
4482    return cast<ArrayType>(
4483                     getDependentSizedArrayType(NewEltTy,
4484                                                DSAT->getSizeExpr(),
4485                                                DSAT->getSizeModifier(),
4486                                              DSAT->getIndexTypeCVRQualifiers(),
4487                                                DSAT->getBracketsRange()));
4488
4489  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4490  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4491                                              VAT->getSizeExpr(),
4492                                              VAT->getSizeModifier(),
4493                                              VAT->getIndexTypeCVRQualifiers(),
4494                                              VAT->getBracketsRange()));
4495}
4496
4497QualType ASTContext::getAdjustedParameterType(QualType T) const {
4498  if (T->isArrayType() || T->isFunctionType())
4499    return getDecayedType(T);
4500  return T;
4501}
4502
4503QualType ASTContext::getSignatureParameterType(QualType T) const {
4504  T = getVariableArrayDecayedType(T);
4505  T = getAdjustedParameterType(T);
4506  return T.getUnqualifiedType();
4507}
4508
4509QualType ASTContext::getExceptionObjectType(QualType T) const {
4510  // C++ [except.throw]p3:
4511  //   A throw-expression initializes a temporary object, called the exception
4512  //   object, the type of which is determined by removing any top-level
4513  //   cv-qualifiers from the static type of the operand of throw and adjusting
4514  //   the type from "array of T" or "function returning T" to "pointer to T"
4515  //   or "pointer to function returning T", [...]
4516  T = getVariableArrayDecayedType(T);
4517  if (T->isArrayType() || T->isFunctionType())
4518    T = getDecayedType(T);
4519  return T.getUnqualifiedType();
4520}
4521
4522/// getArrayDecayedType - Return the properly qualified result of decaying the
4523/// specified array type to a pointer.  This operation is non-trivial when
4524/// handling typedefs etc.  The canonical type of "T" must be an array type,
4525/// this returns a pointer to a properly qualified element of the array.
4526///
4527/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4528QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4529  // Get the element type with 'getAsArrayType' so that we don't lose any
4530  // typedefs in the element type of the array.  This also handles propagation
4531  // of type qualifiers from the array type into the element type if present
4532  // (C99 6.7.3p8).
4533  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4534  assert(PrettyArrayType && "Not an array type!");
4535
4536  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4537
4538  // int x[restrict 4] ->  int *restrict
4539  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4540}
4541
4542QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4543  return getBaseElementType(array->getElementType());
4544}
4545
4546QualType ASTContext::getBaseElementType(QualType type) const {
4547  Qualifiers qs;
4548  while (true) {
4549    SplitQualType split = type.getSplitDesugaredType();
4550    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4551    if (!array) break;
4552
4553    type = array->getElementType();
4554    qs.addConsistentQualifiers(split.Quals);
4555  }
4556
4557  return getQualifiedType(type, qs);
4558}
4559
4560/// getConstantArrayElementCount - Returns number of constant array elements.
4561uint64_t
4562ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4563  uint64_t ElementCount = 1;
4564  do {
4565    ElementCount *= CA->getSize().getZExtValue();
4566    CA = dyn_cast_or_null<ConstantArrayType>(
4567      CA->getElementType()->getAsArrayTypeUnsafe());
4568  } while (CA);
4569  return ElementCount;
4570}
4571
4572/// getFloatingRank - Return a relative rank for floating point types.
4573/// This routine will assert if passed a built-in type that isn't a float.
4574static FloatingRank getFloatingRank(QualType T) {
4575  if (const ComplexType *CT = T->getAs<ComplexType>())
4576    return getFloatingRank(CT->getElementType());
4577
4578  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4579  switch (T->getAs<BuiltinType>()->getKind()) {
4580  default: llvm_unreachable("getFloatingRank(): not a floating type");
4581  case BuiltinType::Half:       return HalfRank;
4582  case BuiltinType::Float:      return FloatRank;
4583  case BuiltinType::Double:     return DoubleRank;
4584  case BuiltinType::LongDouble: return LongDoubleRank;
4585  }
4586}
4587
4588/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4589/// point or a complex type (based on typeDomain/typeSize).
4590/// 'typeDomain' is a real floating point or complex type.
4591/// 'typeSize' is a real floating point or complex type.
4592QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4593                                                       QualType Domain) const {
4594  FloatingRank EltRank = getFloatingRank(Size);
4595  if (Domain->isComplexType()) {
4596    switch (EltRank) {
4597    case HalfRank: llvm_unreachable("Complex half is not supported");
4598    case FloatRank:      return FloatComplexTy;
4599    case DoubleRank:     return DoubleComplexTy;
4600    case LongDoubleRank: return LongDoubleComplexTy;
4601    }
4602  }
4603
4604  assert(Domain->isRealFloatingType() && "Unknown domain!");
4605  switch (EltRank) {
4606  case HalfRank:       return HalfTy;
4607  case FloatRank:      return FloatTy;
4608  case DoubleRank:     return DoubleTy;
4609  case LongDoubleRank: return LongDoubleTy;
4610  }
4611  llvm_unreachable("getFloatingRank(): illegal value for rank");
4612}
4613
4614/// getFloatingTypeOrder - Compare the rank of the two specified floating
4615/// point types, ignoring the domain of the type (i.e. 'double' ==
4616/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4617/// LHS < RHS, return -1.
4618int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4619  FloatingRank LHSR = getFloatingRank(LHS);
4620  FloatingRank RHSR = getFloatingRank(RHS);
4621
4622  if (LHSR == RHSR)
4623    return 0;
4624  if (LHSR > RHSR)
4625    return 1;
4626  return -1;
4627}
4628
4629/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4630/// routine will assert if passed a built-in type that isn't an integer or enum,
4631/// or if it is not canonicalized.
4632unsigned ASTContext::getIntegerRank(const Type *T) const {
4633  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4634
4635  switch (cast<BuiltinType>(T)->getKind()) {
4636  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4637  case BuiltinType::Bool:
4638    return 1 + (getIntWidth(BoolTy) << 3);
4639  case BuiltinType::Char_S:
4640  case BuiltinType::Char_U:
4641  case BuiltinType::SChar:
4642  case BuiltinType::UChar:
4643    return 2 + (getIntWidth(CharTy) << 3);
4644  case BuiltinType::Short:
4645  case BuiltinType::UShort:
4646    return 3 + (getIntWidth(ShortTy) << 3);
4647  case BuiltinType::Int:
4648  case BuiltinType::UInt:
4649    return 4 + (getIntWidth(IntTy) << 3);
4650  case BuiltinType::Long:
4651  case BuiltinType::ULong:
4652    return 5 + (getIntWidth(LongTy) << 3);
4653  case BuiltinType::LongLong:
4654  case BuiltinType::ULongLong:
4655    return 6 + (getIntWidth(LongLongTy) << 3);
4656  case BuiltinType::Int128:
4657  case BuiltinType::UInt128:
4658    return 7 + (getIntWidth(Int128Ty) << 3);
4659  }
4660}
4661
4662/// \brief Whether this is a promotable bitfield reference according
4663/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4664///
4665/// \returns the type this bit-field will promote to, or NULL if no
4666/// promotion occurs.
4667QualType ASTContext::isPromotableBitField(Expr *E) const {
4668  if (E->isTypeDependent() || E->isValueDependent())
4669    return QualType();
4670
4671  // FIXME: We should not do this unless E->refersToBitField() is true. This
4672  // matters in C where getSourceBitField() will find bit-fields for various
4673  // cases where the source expression is not a bit-field designator.
4674
4675  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4676  if (!Field)
4677    return QualType();
4678
4679  QualType FT = Field->getType();
4680
4681  uint64_t BitWidth = Field->getBitWidthValue(*this);
4682  uint64_t IntSize = getTypeSize(IntTy);
4683  // C++ [conv.prom]p5:
4684  //   A prvalue for an integral bit-field can be converted to a prvalue of type
4685  //   int if int can represent all the values of the bit-field; otherwise, it
4686  //   can be converted to unsigned int if unsigned int can represent all the
4687  //   values of the bit-field. If the bit-field is larger yet, no integral
4688  //   promotion applies to it.
4689  // C11 6.3.1.1/2:
4690  //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
4691  //   If an int can represent all values of the original type (as restricted by
4692  //   the width, for a bit-field), the value is converted to an int; otherwise,
4693  //   it is converted to an unsigned int.
4694  //
4695  // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
4696  //        We perform that promotion here to match GCC and C++.
4697  if (BitWidth < IntSize)
4698    return IntTy;
4699
4700  if (BitWidth == IntSize)
4701    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4702
4703  // Types bigger than int are not subject to promotions, and therefore act
4704  // like the base type. GCC has some weird bugs in this area that we
4705  // deliberately do not follow (GCC follows a pre-standard resolution to
4706  // C's DR315 which treats bit-width as being part of the type, and this leaks
4707  // into their semantics in some cases).
4708  return QualType();
4709}
4710
4711/// getPromotedIntegerType - Returns the type that Promotable will
4712/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4713/// integer type.
4714QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4715  assert(!Promotable.isNull());
4716  assert(Promotable->isPromotableIntegerType());
4717  if (const EnumType *ET = Promotable->getAs<EnumType>())
4718    return ET->getDecl()->getPromotionType();
4719
4720  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4721    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4722    // (3.9.1) can be converted to a prvalue of the first of the following
4723    // types that can represent all the values of its underlying type:
4724    // int, unsigned int, long int, unsigned long int, long long int, or
4725    // unsigned long long int [...]
4726    // FIXME: Is there some better way to compute this?
4727    if (BT->getKind() == BuiltinType::WChar_S ||
4728        BT->getKind() == BuiltinType::WChar_U ||
4729        BT->getKind() == BuiltinType::Char16 ||
4730        BT->getKind() == BuiltinType::Char32) {
4731      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4732      uint64_t FromSize = getTypeSize(BT);
4733      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4734                                  LongLongTy, UnsignedLongLongTy };
4735      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4736        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4737        if (FromSize < ToSize ||
4738            (FromSize == ToSize &&
4739             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4740          return PromoteTypes[Idx];
4741      }
4742      llvm_unreachable("char type should fit into long long");
4743    }
4744  }
4745
4746  // At this point, we should have a signed or unsigned integer type.
4747  if (Promotable->isSignedIntegerType())
4748    return IntTy;
4749  uint64_t PromotableSize = getIntWidth(Promotable);
4750  uint64_t IntSize = getIntWidth(IntTy);
4751  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4752  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4753}
4754
4755/// \brief Recurses in pointer/array types until it finds an objc retainable
4756/// type and returns its ownership.
4757Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4758  while (!T.isNull()) {
4759    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4760      return T.getObjCLifetime();
4761    if (T->isArrayType())
4762      T = getBaseElementType(T);
4763    else if (const PointerType *PT = T->getAs<PointerType>())
4764      T = PT->getPointeeType();
4765    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4766      T = RT->getPointeeType();
4767    else
4768      break;
4769  }
4770
4771  return Qualifiers::OCL_None;
4772}
4773
4774static const Type *getIntegerTypeForEnum(const EnumType *ET) {
4775  // Incomplete enum types are not treated as integer types.
4776  // FIXME: In C++, enum types are never integer types.
4777  if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
4778    return ET->getDecl()->getIntegerType().getTypePtr();
4779  return nullptr;
4780}
4781
4782/// getIntegerTypeOrder - Returns the highest ranked integer type:
4783/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4784/// LHS < RHS, return -1.
4785int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4786  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4787  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4788
4789  // Unwrap enums to their underlying type.
4790  if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
4791    LHSC = getIntegerTypeForEnum(ET);
4792  if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
4793    RHSC = getIntegerTypeForEnum(ET);
4794
4795  if (LHSC == RHSC) return 0;
4796
4797  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4798  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4799
4800  unsigned LHSRank = getIntegerRank(LHSC);
4801  unsigned RHSRank = getIntegerRank(RHSC);
4802
4803  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4804    if (LHSRank == RHSRank) return 0;
4805    return LHSRank > RHSRank ? 1 : -1;
4806  }
4807
4808  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4809  if (LHSUnsigned) {
4810    // If the unsigned [LHS] type is larger, return it.
4811    if (LHSRank >= RHSRank)
4812      return 1;
4813
4814    // If the signed type can represent all values of the unsigned type, it
4815    // wins.  Because we are dealing with 2's complement and types that are
4816    // powers of two larger than each other, this is always safe.
4817    return -1;
4818  }
4819
4820  // If the unsigned [RHS] type is larger, return it.
4821  if (RHSRank >= LHSRank)
4822    return -1;
4823
4824  // If the signed type can represent all values of the unsigned type, it
4825  // wins.  Because we are dealing with 2's complement and types that are
4826  // powers of two larger than each other, this is always safe.
4827  return 1;
4828}
4829
4830// getCFConstantStringType - Return the type used for constant CFStrings.
4831QualType ASTContext::getCFConstantStringType() const {
4832  if (!CFConstantStringTypeDecl) {
4833    CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
4834    CFConstantStringTypeDecl->startDefinition();
4835
4836    QualType FieldTypes[4];
4837
4838    // const int *isa;
4839    FieldTypes[0] = getPointerType(IntTy.withConst());
4840    // int flags;
4841    FieldTypes[1] = IntTy;
4842    // const char *str;
4843    FieldTypes[2] = getPointerType(CharTy.withConst());
4844    // long length;
4845    FieldTypes[3] = LongTy;
4846
4847    // Create fields
4848    for (unsigned i = 0; i < 4; ++i) {
4849      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4850                                           SourceLocation(),
4851                                           SourceLocation(), nullptr,
4852                                           FieldTypes[i], /*TInfo=*/nullptr,
4853                                           /*BitWidth=*/nullptr,
4854                                           /*Mutable=*/false,
4855                                           ICIS_NoInit);
4856      Field->setAccess(AS_public);
4857      CFConstantStringTypeDecl->addDecl(Field);
4858    }
4859
4860    CFConstantStringTypeDecl->completeDefinition();
4861  }
4862
4863  return getTagDeclType(CFConstantStringTypeDecl);
4864}
4865
4866QualType ASTContext::getObjCSuperType() const {
4867  if (ObjCSuperType.isNull()) {
4868    RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
4869    TUDecl->addDecl(ObjCSuperTypeDecl);
4870    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4871  }
4872  return ObjCSuperType;
4873}
4874
4875void ASTContext::setCFConstantStringType(QualType T) {
4876  const RecordType *Rec = T->getAs<RecordType>();
4877  assert(Rec && "Invalid CFConstantStringType");
4878  CFConstantStringTypeDecl = Rec->getDecl();
4879}
4880
4881QualType ASTContext::getBlockDescriptorType() const {
4882  if (BlockDescriptorType)
4883    return getTagDeclType(BlockDescriptorType);
4884
4885  RecordDecl *RD;
4886  // FIXME: Needs the FlagAppleBlock bit.
4887  RD = buildImplicitRecord("__block_descriptor");
4888  RD->startDefinition();
4889
4890  QualType FieldTypes[] = {
4891    UnsignedLongTy,
4892    UnsignedLongTy,
4893  };
4894
4895  static const char *const FieldNames[] = {
4896    "reserved",
4897    "Size"
4898  };
4899
4900  for (size_t i = 0; i < 2; ++i) {
4901    FieldDecl *Field = FieldDecl::Create(
4902        *this, RD, SourceLocation(), SourceLocation(),
4903        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4904        /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
4905    Field->setAccess(AS_public);
4906    RD->addDecl(Field);
4907  }
4908
4909  RD->completeDefinition();
4910
4911  BlockDescriptorType = RD;
4912
4913  return getTagDeclType(BlockDescriptorType);
4914}
4915
4916QualType ASTContext::getBlockDescriptorExtendedType() const {
4917  if (BlockDescriptorExtendedType)
4918    return getTagDeclType(BlockDescriptorExtendedType);
4919
4920  RecordDecl *RD;
4921  // FIXME: Needs the FlagAppleBlock bit.
4922  RD = buildImplicitRecord("__block_descriptor_withcopydispose");
4923  RD->startDefinition();
4924
4925  QualType FieldTypes[] = {
4926    UnsignedLongTy,
4927    UnsignedLongTy,
4928    getPointerType(VoidPtrTy),
4929    getPointerType(VoidPtrTy)
4930  };
4931
4932  static const char *const FieldNames[] = {
4933    "reserved",
4934    "Size",
4935    "CopyFuncPtr",
4936    "DestroyFuncPtr"
4937  };
4938
4939  for (size_t i = 0; i < 4; ++i) {
4940    FieldDecl *Field = FieldDecl::Create(
4941        *this, RD, SourceLocation(), SourceLocation(),
4942        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4943        /*BitWidth=*/nullptr,
4944        /*Mutable=*/false, ICIS_NoInit);
4945    Field->setAccess(AS_public);
4946    RD->addDecl(Field);
4947  }
4948
4949  RD->completeDefinition();
4950
4951  BlockDescriptorExtendedType = RD;
4952  return getTagDeclType(BlockDescriptorExtendedType);
4953}
4954
4955/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4956/// requires copy/dispose. Note that this must match the logic
4957/// in buildByrefHelpers.
4958bool ASTContext::BlockRequiresCopying(QualType Ty,
4959                                      const VarDecl *D) {
4960  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4961    const Expr *copyExpr = getBlockVarCopyInits(D);
4962    if (!copyExpr && record->hasTrivialDestructor()) return false;
4963
4964    return true;
4965  }
4966
4967  if (!Ty->isObjCRetainableType()) return false;
4968
4969  Qualifiers qs = Ty.getQualifiers();
4970
4971  // If we have lifetime, that dominates.
4972  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4973    switch (lifetime) {
4974      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4975
4976      // These are just bits as far as the runtime is concerned.
4977      case Qualifiers::OCL_ExplicitNone:
4978      case Qualifiers::OCL_Autoreleasing:
4979        return false;
4980
4981      // Tell the runtime that this is ARC __weak, called by the
4982      // byref routines.
4983      case Qualifiers::OCL_Weak:
4984      // ARC __strong __block variables need to be retained.
4985      case Qualifiers::OCL_Strong:
4986        return true;
4987    }
4988    llvm_unreachable("fell out of lifetime switch!");
4989  }
4990  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4991          Ty->isObjCObjectPointerType());
4992}
4993
4994bool ASTContext::getByrefLifetime(QualType Ty,
4995                              Qualifiers::ObjCLifetime &LifeTime,
4996                              bool &HasByrefExtendedLayout) const {
4997
4998  if (!getLangOpts().ObjC1 ||
4999      getLangOpts().getGC() != LangOptions::NonGC)
5000    return false;
5001
5002  HasByrefExtendedLayout = false;
5003  if (Ty->isRecordType()) {
5004    HasByrefExtendedLayout = true;
5005    LifeTime = Qualifiers::OCL_None;
5006  } else if ((LifeTime = Ty.getObjCLifetime())) {
5007    // Honor the ARC qualifiers.
5008  } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
5009    // The MRR rule.
5010    LifeTime = Qualifiers::OCL_ExplicitNone;
5011  } else {
5012    LifeTime = Qualifiers::OCL_None;
5013  }
5014  return true;
5015}
5016
5017TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
5018  if (!ObjCInstanceTypeDecl)
5019    ObjCInstanceTypeDecl =
5020        buildImplicitTypedef(getObjCIdType(), "instancetype");
5021  return ObjCInstanceTypeDecl;
5022}
5023
5024// This returns true if a type has been typedefed to BOOL:
5025// typedef <type> BOOL;
5026static bool isTypeTypedefedAsBOOL(QualType T) {
5027  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
5028    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
5029      return II->isStr("BOOL");
5030
5031  return false;
5032}
5033
5034/// getObjCEncodingTypeSize returns size of type for objective-c encoding
5035/// purpose.
5036CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
5037  if (!type->isIncompleteArrayType() && type->isIncompleteType())
5038    return CharUnits::Zero();
5039
5040  CharUnits sz = getTypeSizeInChars(type);
5041
5042  // Make all integer and enum types at least as large as an int
5043  if (sz.isPositive() && type->isIntegralOrEnumerationType())
5044    sz = std::max(sz, getTypeSizeInChars(IntTy));
5045  // Treat arrays as pointers, since that's how they're passed in.
5046  else if (type->isArrayType())
5047    sz = getTypeSizeInChars(VoidPtrTy);
5048  return sz;
5049}
5050
5051bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
5052  return getTargetInfo().getCXXABI().isMicrosoft() &&
5053         VD->isStaticDataMember() &&
5054         VD->getType()->isIntegralOrEnumerationType() &&
5055         !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
5056}
5057
5058static inline
5059std::string charUnitsToString(const CharUnits &CU) {
5060  return llvm::itostr(CU.getQuantity());
5061}
5062
5063/// getObjCEncodingForBlock - Return the encoded type for this block
5064/// declaration.
5065std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
5066  std::string S;
5067
5068  const BlockDecl *Decl = Expr->getBlockDecl();
5069  QualType BlockTy =
5070      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
5071  // Encode result type.
5072  if (getLangOpts().EncodeExtendedBlockSig)
5073    getObjCEncodingForMethodParameter(
5074        Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
5075        true /*Extended*/);
5076  else
5077    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
5078  // Compute size of all parameters.
5079  // Start with computing size of a pointer in number of bytes.
5080  // FIXME: There might(should) be a better way of doing this computation!
5081  SourceLocation Loc;
5082  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
5083  CharUnits ParmOffset = PtrSize;
5084  for (auto PI : Decl->params()) {
5085    QualType PType = PI->getType();
5086    CharUnits sz = getObjCEncodingTypeSize(PType);
5087    if (sz.isZero())
5088      continue;
5089    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
5090    ParmOffset += sz;
5091  }
5092  // Size of the argument frame
5093  S += charUnitsToString(ParmOffset);
5094  // Block pointer and offset.
5095  S += "@?0";
5096
5097  // Argument types.
5098  ParmOffset = PtrSize;
5099  for (auto PVDecl : Decl->params()) {
5100    QualType PType = PVDecl->getOriginalType();
5101    if (const ArrayType *AT =
5102          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5103      // Use array's original type only if it has known number of
5104      // elements.
5105      if (!isa<ConstantArrayType>(AT))
5106        PType = PVDecl->getType();
5107    } else if (PType->isFunctionType())
5108      PType = PVDecl->getType();
5109    if (getLangOpts().EncodeExtendedBlockSig)
5110      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
5111                                      S, true /*Extended*/);
5112    else
5113      getObjCEncodingForType(PType, S);
5114    S += charUnitsToString(ParmOffset);
5115    ParmOffset += getObjCEncodingTypeSize(PType);
5116  }
5117
5118  return S;
5119}
5120
5121bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
5122                                                std::string& S) {
5123  // Encode result type.
5124  getObjCEncodingForType(Decl->getReturnType(), S);
5125  CharUnits ParmOffset;
5126  // Compute size of all parameters.
5127  for (auto PI : Decl->params()) {
5128    QualType PType = PI->getType();
5129    CharUnits sz = getObjCEncodingTypeSize(PType);
5130    if (sz.isZero())
5131      continue;
5132
5133    assert (sz.isPositive() &&
5134        "getObjCEncodingForFunctionDecl - Incomplete param type");
5135    ParmOffset += sz;
5136  }
5137  S += charUnitsToString(ParmOffset);
5138  ParmOffset = CharUnits::Zero();
5139
5140  // Argument types.
5141  for (auto PVDecl : Decl->params()) {
5142    QualType PType = PVDecl->getOriginalType();
5143    if (const ArrayType *AT =
5144          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5145      // Use array's original type only if it has known number of
5146      // elements.
5147      if (!isa<ConstantArrayType>(AT))
5148        PType = PVDecl->getType();
5149    } else if (PType->isFunctionType())
5150      PType = PVDecl->getType();
5151    getObjCEncodingForType(PType, S);
5152    S += charUnitsToString(ParmOffset);
5153    ParmOffset += getObjCEncodingTypeSize(PType);
5154  }
5155
5156  return false;
5157}
5158
5159/// getObjCEncodingForMethodParameter - Return the encoded type for a single
5160/// method parameter or return type. If Extended, include class names and
5161/// block object types.
5162void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
5163                                                   QualType T, std::string& S,
5164                                                   bool Extended) const {
5165  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
5166  getObjCEncodingForTypeQualifier(QT, S);
5167  // Encode parameter type.
5168  getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5169                             true     /*OutermostType*/,
5170                             false    /*EncodingProperty*/,
5171                             false    /*StructField*/,
5172                             Extended /*EncodeBlockParameters*/,
5173                             Extended /*EncodeClassNames*/);
5174}
5175
5176/// getObjCEncodingForMethodDecl - Return the encoded type for this method
5177/// declaration.
5178bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
5179                                              std::string& S,
5180                                              bool Extended) const {
5181  // FIXME: This is not very efficient.
5182  // Encode return type.
5183  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
5184                                    Decl->getReturnType(), S, Extended);
5185  // Compute size of all parameters.
5186  // Start with computing size of a pointer in number of bytes.
5187  // FIXME: There might(should) be a better way of doing this computation!
5188  SourceLocation Loc;
5189  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
5190  // The first two arguments (self and _cmd) are pointers; account for
5191  // their size.
5192  CharUnits ParmOffset = 2 * PtrSize;
5193  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5194       E = Decl->sel_param_end(); PI != E; ++PI) {
5195    QualType PType = (*PI)->getType();
5196    CharUnits sz = getObjCEncodingTypeSize(PType);
5197    if (sz.isZero())
5198      continue;
5199
5200    assert (sz.isPositive() &&
5201        "getObjCEncodingForMethodDecl - Incomplete param type");
5202    ParmOffset += sz;
5203  }
5204  S += charUnitsToString(ParmOffset);
5205  S += "@0:";
5206  S += charUnitsToString(PtrSize);
5207
5208  // Argument types.
5209  ParmOffset = 2 * PtrSize;
5210  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5211       E = Decl->sel_param_end(); PI != E; ++PI) {
5212    const ParmVarDecl *PVDecl = *PI;
5213    QualType PType = PVDecl->getOriginalType();
5214    if (const ArrayType *AT =
5215          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5216      // Use array's original type only if it has known number of
5217      // elements.
5218      if (!isa<ConstantArrayType>(AT))
5219        PType = PVDecl->getType();
5220    } else if (PType->isFunctionType())
5221      PType = PVDecl->getType();
5222    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
5223                                      PType, S, Extended);
5224    S += charUnitsToString(ParmOffset);
5225    ParmOffset += getObjCEncodingTypeSize(PType);
5226  }
5227
5228  return false;
5229}
5230
5231ObjCPropertyImplDecl *
5232ASTContext::getObjCPropertyImplDeclForPropertyDecl(
5233                                      const ObjCPropertyDecl *PD,
5234                                      const Decl *Container) const {
5235  if (!Container)
5236    return nullptr;
5237  if (const ObjCCategoryImplDecl *CID =
5238      dyn_cast<ObjCCategoryImplDecl>(Container)) {
5239    for (auto *PID : CID->property_impls())
5240      if (PID->getPropertyDecl() == PD)
5241        return PID;
5242  } else {
5243    const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
5244    for (auto *PID : OID->property_impls())
5245      if (PID->getPropertyDecl() == PD)
5246        return PID;
5247  }
5248  return nullptr;
5249}
5250
5251/// getObjCEncodingForPropertyDecl - Return the encoded type for this
5252/// property declaration. If non-NULL, Container must be either an
5253/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
5254/// NULL when getting encodings for protocol properties.
5255/// Property attributes are stored as a comma-delimited C string. The simple
5256/// attributes readonly and bycopy are encoded as single characters. The
5257/// parametrized attributes, getter=name, setter=name, and ivar=name, are
5258/// encoded as single characters, followed by an identifier. Property types
5259/// are also encoded as a parametrized attribute. The characters used to encode
5260/// these attributes are defined by the following enumeration:
5261/// @code
5262/// enum PropertyAttributes {
5263/// kPropertyReadOnly = 'R',   // property is read-only.
5264/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
5265/// kPropertyByref = '&',  // property is a reference to the value last assigned
5266/// kPropertyDynamic = 'D',    // property is dynamic
5267/// kPropertyGetter = 'G',     // followed by getter selector name
5268/// kPropertySetter = 'S',     // followed by setter selector name
5269/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
5270/// kPropertyType = 'T'              // followed by old-style type encoding.
5271/// kPropertyWeak = 'W'              // 'weak' property
5272/// kPropertyStrong = 'P'            // property GC'able
5273/// kPropertyNonAtomic = 'N'         // property non-atomic
5274/// };
5275/// @endcode
5276void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5277                                                const Decl *Container,
5278                                                std::string& S) const {
5279  // Collect information from the property implementation decl(s).
5280  bool Dynamic = false;
5281  ObjCPropertyImplDecl *SynthesizePID = nullptr;
5282
5283  if (ObjCPropertyImplDecl *PropertyImpDecl =
5284      getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5285    if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5286      Dynamic = true;
5287    else
5288      SynthesizePID = PropertyImpDecl;
5289  }
5290
5291  // FIXME: This is not very efficient.
5292  S = "T";
5293
5294  // Encode result type.
5295  // GCC has some special rules regarding encoding of properties which
5296  // closely resembles encoding of ivars.
5297  getObjCEncodingForPropertyType(PD->getType(), S);
5298
5299  if (PD->isReadOnly()) {
5300    S += ",R";
5301    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5302      S += ",C";
5303    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5304      S += ",&";
5305    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5306      S += ",W";
5307  } else {
5308    switch (PD->getSetterKind()) {
5309    case ObjCPropertyDecl::Assign: break;
5310    case ObjCPropertyDecl::Copy:   S += ",C"; break;
5311    case ObjCPropertyDecl::Retain: S += ",&"; break;
5312    case ObjCPropertyDecl::Weak:   S += ",W"; break;
5313    }
5314  }
5315
5316  // It really isn't clear at all what this means, since properties
5317  // are "dynamic by default".
5318  if (Dynamic)
5319    S += ",D";
5320
5321  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5322    S += ",N";
5323
5324  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5325    S += ",G";
5326    S += PD->getGetterName().getAsString();
5327  }
5328
5329  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5330    S += ",S";
5331    S += PD->getSetterName().getAsString();
5332  }
5333
5334  if (SynthesizePID) {
5335    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5336    S += ",V";
5337    S += OID->getNameAsString();
5338  }
5339
5340  // FIXME: OBJCGC: weak & strong
5341}
5342
5343/// getLegacyIntegralTypeEncoding -
5344/// Another legacy compatibility encoding: 32-bit longs are encoded as
5345/// 'l' or 'L' , but not always.  For typedefs, we need to use
5346/// 'i' or 'I' instead if encoding a struct field, or a pointer!
5347///
5348void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5349  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5350    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5351      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5352        PointeeTy = UnsignedIntTy;
5353      else
5354        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5355          PointeeTy = IntTy;
5356    }
5357  }
5358}
5359
5360void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5361                                        const FieldDecl *Field,
5362                                        QualType *NotEncodedT) const {
5363  // We follow the behavior of gcc, expanding structures which are
5364  // directly pointed to, and expanding embedded structures. Note that
5365  // these rules are sufficient to prevent recursive encoding of the
5366  // same type.
5367  getObjCEncodingForTypeImpl(T, S, true, true, Field,
5368                             true /* outermost type */, false, false,
5369                             false, false, false, NotEncodedT);
5370}
5371
5372void ASTContext::getObjCEncodingForPropertyType(QualType T,
5373                                                std::string& S) const {
5374  // Encode result type.
5375  // GCC has some special rules regarding encoding of properties which
5376  // closely resembles encoding of ivars.
5377  getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5378                             true /* outermost type */,
5379                             true /* encoding property */);
5380}
5381
5382static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5383                                            BuiltinType::Kind kind) {
5384    switch (kind) {
5385    case BuiltinType::Void:       return 'v';
5386    case BuiltinType::Bool:       return 'B';
5387    case BuiltinType::Char_U:
5388    case BuiltinType::UChar:      return 'C';
5389    case BuiltinType::Char16:
5390    case BuiltinType::UShort:     return 'S';
5391    case BuiltinType::Char32:
5392    case BuiltinType::UInt:       return 'I';
5393    case BuiltinType::ULong:
5394        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5395    case BuiltinType::UInt128:    return 'T';
5396    case BuiltinType::ULongLong:  return 'Q';
5397    case BuiltinType::Char_S:
5398    case BuiltinType::SChar:      return 'c';
5399    case BuiltinType::Short:      return 's';
5400    case BuiltinType::WChar_S:
5401    case BuiltinType::WChar_U:
5402    case BuiltinType::Int:        return 'i';
5403    case BuiltinType::Long:
5404      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5405    case BuiltinType::LongLong:   return 'q';
5406    case BuiltinType::Int128:     return 't';
5407    case BuiltinType::Float:      return 'f';
5408    case BuiltinType::Double:     return 'd';
5409    case BuiltinType::LongDouble: return 'D';
5410    case BuiltinType::NullPtr:    return '*'; // like char*
5411
5412    case BuiltinType::Half:
5413      // FIXME: potentially need @encodes for these!
5414      return ' ';
5415
5416    case BuiltinType::ObjCId:
5417    case BuiltinType::ObjCClass:
5418    case BuiltinType::ObjCSel:
5419      llvm_unreachable("@encoding ObjC primitive type");
5420
5421    // OpenCL and placeholder types don't need @encodings.
5422    case BuiltinType::OCLImage1d:
5423    case BuiltinType::OCLImage1dArray:
5424    case BuiltinType::OCLImage1dBuffer:
5425    case BuiltinType::OCLImage2d:
5426    case BuiltinType::OCLImage2dArray:
5427    case BuiltinType::OCLImage2dDepth:
5428    case BuiltinType::OCLImage2dArrayDepth:
5429    case BuiltinType::OCLImage2dMSAA:
5430    case BuiltinType::OCLImage2dArrayMSAA:
5431    case BuiltinType::OCLImage2dMSAADepth:
5432    case BuiltinType::OCLImage2dArrayMSAADepth:
5433    case BuiltinType::OCLImage3d:
5434    case BuiltinType::OCLEvent:
5435    case BuiltinType::OCLClkEvent:
5436    case BuiltinType::OCLQueue:
5437    case BuiltinType::OCLNDRange:
5438    case BuiltinType::OCLReserveID:
5439    case BuiltinType::OCLSampler:
5440    case BuiltinType::Dependent:
5441#define BUILTIN_TYPE(KIND, ID)
5442#define PLACEHOLDER_TYPE(KIND, ID) \
5443    case BuiltinType::KIND:
5444#include "clang/AST/BuiltinTypes.def"
5445      llvm_unreachable("invalid builtin type for @encode");
5446    }
5447    llvm_unreachable("invalid BuiltinType::Kind value");
5448}
5449
5450static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5451  EnumDecl *Enum = ET->getDecl();
5452
5453  // The encoding of an non-fixed enum type is always 'i', regardless of size.
5454  if (!Enum->isFixed())
5455    return 'i';
5456
5457  // The encoding of a fixed enum type matches its fixed underlying type.
5458  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5459  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5460}
5461
5462static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5463                           QualType T, const FieldDecl *FD) {
5464  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5465  S += 'b';
5466  // The NeXT runtime encodes bit fields as b followed by the number of bits.
5467  // The GNU runtime requires more information; bitfields are encoded as b,
5468  // then the offset (in bits) of the first element, then the type of the
5469  // bitfield, then the size in bits.  For example, in this structure:
5470  //
5471  // struct
5472  // {
5473  //    int integer;
5474  //    int flags:2;
5475  // };
5476  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5477  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5478  // information is not especially sensible, but we're stuck with it for
5479  // compatibility with GCC, although providing it breaks anything that
5480  // actually uses runtime introspection and wants to work on both runtimes...
5481  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5482    const RecordDecl *RD = FD->getParent();
5483    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5484    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5485    if (const EnumType *ET = T->getAs<EnumType>())
5486      S += ObjCEncodingForEnumType(Ctx, ET);
5487    else {
5488      const BuiltinType *BT = T->castAs<BuiltinType>();
5489      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5490    }
5491  }
5492  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5493}
5494
5495// FIXME: Use SmallString for accumulating string.
5496void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5497                                            bool ExpandPointedToStructures,
5498                                            bool ExpandStructures,
5499                                            const FieldDecl *FD,
5500                                            bool OutermostType,
5501                                            bool EncodingProperty,
5502                                            bool StructField,
5503                                            bool EncodeBlockParameters,
5504                                            bool EncodeClassNames,
5505                                            bool EncodePointerToObjCTypedef,
5506                                            QualType *NotEncodedT) const {
5507  CanQualType CT = getCanonicalType(T);
5508  switch (CT->getTypeClass()) {
5509  case Type::Builtin:
5510  case Type::Enum:
5511    if (FD && FD->isBitField())
5512      return EncodeBitField(this, S, T, FD);
5513    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5514      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5515    else
5516      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5517    return;
5518
5519  case Type::Complex: {
5520    const ComplexType *CT = T->castAs<ComplexType>();
5521    S += 'j';
5522    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
5523    return;
5524  }
5525
5526  case Type::Atomic: {
5527    const AtomicType *AT = T->castAs<AtomicType>();
5528    S += 'A';
5529    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
5530    return;
5531  }
5532
5533  // encoding for pointer or reference types.
5534  case Type::Pointer:
5535  case Type::LValueReference:
5536  case Type::RValueReference: {
5537    QualType PointeeTy;
5538    if (isa<PointerType>(CT)) {
5539      const PointerType *PT = T->castAs<PointerType>();
5540      if (PT->isObjCSelType()) {
5541        S += ':';
5542        return;
5543      }
5544      PointeeTy = PT->getPointeeType();
5545    } else {
5546      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5547    }
5548
5549    bool isReadOnly = false;
5550    // For historical/compatibility reasons, the read-only qualifier of the
5551    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5552    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5553    // Also, do not emit the 'r' for anything but the outermost type!
5554    if (isa<TypedefType>(T.getTypePtr())) {
5555      if (OutermostType && T.isConstQualified()) {
5556        isReadOnly = true;
5557        S += 'r';
5558      }
5559    } else if (OutermostType) {
5560      QualType P = PointeeTy;
5561      while (P->getAs<PointerType>())
5562        P = P->getAs<PointerType>()->getPointeeType();
5563      if (P.isConstQualified()) {
5564        isReadOnly = true;
5565        S += 'r';
5566      }
5567    }
5568    if (isReadOnly) {
5569      // Another legacy compatibility encoding. Some ObjC qualifier and type
5570      // combinations need to be rearranged.
5571      // Rewrite "in const" from "nr" to "rn"
5572      if (StringRef(S).endswith("nr"))
5573        S.replace(S.end()-2, S.end(), "rn");
5574    }
5575
5576    if (PointeeTy->isCharType()) {
5577      // char pointer types should be encoded as '*' unless it is a
5578      // type that has been typedef'd to 'BOOL'.
5579      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5580        S += '*';
5581        return;
5582      }
5583    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5584      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5585      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5586        S += '#';
5587        return;
5588      }
5589      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5590      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5591        S += '@';
5592        return;
5593      }
5594      // fall through...
5595    }
5596    S += '^';
5597    getLegacyIntegralTypeEncoding(PointeeTy);
5598
5599    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5600                               nullptr, false, false, false, false, false, false,
5601                               NotEncodedT);
5602    return;
5603  }
5604
5605  case Type::ConstantArray:
5606  case Type::IncompleteArray:
5607  case Type::VariableArray: {
5608    const ArrayType *AT = cast<ArrayType>(CT);
5609
5610    if (isa<IncompleteArrayType>(AT) && !StructField) {
5611      // Incomplete arrays are encoded as a pointer to the array element.
5612      S += '^';
5613
5614      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5615                                 false, ExpandStructures, FD);
5616    } else {
5617      S += '[';
5618
5619      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5620        S += llvm::utostr(CAT->getSize().getZExtValue());
5621      else {
5622        //Variable length arrays are encoded as a regular array with 0 elements.
5623        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5624               "Unknown array type!");
5625        S += '0';
5626      }
5627
5628      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5629                                 false, ExpandStructures, FD,
5630                                 false, false, false, false, false, false,
5631                                 NotEncodedT);
5632      S += ']';
5633    }
5634    return;
5635  }
5636
5637  case Type::FunctionNoProto:
5638  case Type::FunctionProto:
5639    S += '?';
5640    return;
5641
5642  case Type::Record: {
5643    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5644    S += RDecl->isUnion() ? '(' : '{';
5645    // Anonymous structures print as '?'
5646    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5647      S += II->getName();
5648      if (ClassTemplateSpecializationDecl *Spec
5649          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5650        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5651        llvm::raw_string_ostream OS(S);
5652        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5653                                            TemplateArgs.data(),
5654                                            TemplateArgs.size(),
5655                                            (*this).getPrintingPolicy());
5656      }
5657    } else {
5658      S += '?';
5659    }
5660    if (ExpandStructures) {
5661      S += '=';
5662      if (!RDecl->isUnion()) {
5663        getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
5664      } else {
5665        for (const auto *Field : RDecl->fields()) {
5666          if (FD) {
5667            S += '"';
5668            S += Field->getNameAsString();
5669            S += '"';
5670          }
5671
5672          // Special case bit-fields.
5673          if (Field->isBitField()) {
5674            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5675                                       Field);
5676          } else {
5677            QualType qt = Field->getType();
5678            getLegacyIntegralTypeEncoding(qt);
5679            getObjCEncodingForTypeImpl(qt, S, false, true,
5680                                       FD, /*OutermostType*/false,
5681                                       /*EncodingProperty*/false,
5682                                       /*StructField*/true,
5683                                       false, false, false, NotEncodedT);
5684          }
5685        }
5686      }
5687    }
5688    S += RDecl->isUnion() ? ')' : '}';
5689    return;
5690  }
5691
5692  case Type::BlockPointer: {
5693    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5694    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5695    if (EncodeBlockParameters) {
5696      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5697
5698      S += '<';
5699      // Block return type
5700      getObjCEncodingForTypeImpl(
5701          FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
5702          FD, false /* OutermostType */, EncodingProperty,
5703          false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
5704                                 NotEncodedT);
5705      // Block self
5706      S += "@?";
5707      // Block parameters
5708      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5709        for (const auto &I : FPT->param_types())
5710          getObjCEncodingForTypeImpl(
5711              I, S, ExpandPointedToStructures, ExpandStructures, FD,
5712              false /* OutermostType */, EncodingProperty,
5713              false /* StructField */, EncodeBlockParameters, EncodeClassNames,
5714                                     false, NotEncodedT);
5715      }
5716      S += '>';
5717    }
5718    return;
5719  }
5720
5721  case Type::ObjCObject: {
5722    // hack to match legacy encoding of *id and *Class
5723    QualType Ty = getObjCObjectPointerType(CT);
5724    if (Ty->isObjCIdType()) {
5725      S += "{objc_object=}";
5726      return;
5727    }
5728    else if (Ty->isObjCClassType()) {
5729      S += "{objc_class=}";
5730      return;
5731    }
5732  }
5733
5734  case Type::ObjCInterface: {
5735    // Ignore protocol qualifiers when mangling at this level.
5736    // @encode(class_name)
5737    ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
5738    S += '{';
5739    S += OI->getObjCRuntimeNameAsString();
5740    S += '=';
5741    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5742    DeepCollectObjCIvars(OI, true, Ivars);
5743    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5744      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5745      if (Field->isBitField())
5746        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5747      else
5748        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5749                                   false, false, false, false, false,
5750                                   EncodePointerToObjCTypedef,
5751                                   NotEncodedT);
5752    }
5753    S += '}';
5754    return;
5755  }
5756
5757  case Type::ObjCObjectPointer: {
5758    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5759    if (OPT->isObjCIdType()) {
5760      S += '@';
5761      return;
5762    }
5763
5764    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5765      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5766      // Since this is a binary compatibility issue, need to consult with runtime
5767      // folks. Fortunately, this is a *very* obsure construct.
5768      S += '#';
5769      return;
5770    }
5771
5772    if (OPT->isObjCQualifiedIdType()) {
5773      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5774                                 ExpandPointedToStructures,
5775                                 ExpandStructures, FD);
5776      if (FD || EncodingProperty || EncodeClassNames) {
5777        // Note that we do extended encoding of protocol qualifer list
5778        // Only when doing ivar or property encoding.
5779        S += '"';
5780        for (const auto *I : OPT->quals()) {
5781          S += '<';
5782          S += I->getObjCRuntimeNameAsString();
5783          S += '>';
5784        }
5785        S += '"';
5786      }
5787      return;
5788    }
5789
5790    QualType PointeeTy = OPT->getPointeeType();
5791    if (!EncodingProperty &&
5792        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5793        !EncodePointerToObjCTypedef) {
5794      // Another historical/compatibility reason.
5795      // We encode the underlying type which comes out as
5796      // {...};
5797      S += '^';
5798      if (FD && OPT->getInterfaceDecl()) {
5799        // Prevent recursive encoding of fields in some rare cases.
5800        ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5801        SmallVector<const ObjCIvarDecl*, 32> Ivars;
5802        DeepCollectObjCIvars(OI, true, Ivars);
5803        for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5804          if (cast<FieldDecl>(Ivars[i]) == FD) {
5805            S += '{';
5806            S += OI->getObjCRuntimeNameAsString();
5807            S += '}';
5808            return;
5809          }
5810        }
5811      }
5812      getObjCEncodingForTypeImpl(PointeeTy, S,
5813                                 false, ExpandPointedToStructures,
5814                                 nullptr,
5815                                 false, false, false, false, false,
5816                                 /*EncodePointerToObjCTypedef*/true);
5817      return;
5818    }
5819
5820    S += '@';
5821    if (OPT->getInterfaceDecl() &&
5822        (FD || EncodingProperty || EncodeClassNames)) {
5823      S += '"';
5824      S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
5825      for (const auto *I : OPT->quals()) {
5826        S += '<';
5827        S += I->getObjCRuntimeNameAsString();
5828        S += '>';
5829      }
5830      S += '"';
5831    }
5832    return;
5833  }
5834
5835  // gcc just blithely ignores member pointers.
5836  // FIXME: we shoul do better than that.  'M' is available.
5837  case Type::MemberPointer:
5838  // This matches gcc's encoding, even though technically it is insufficient.
5839  //FIXME. We should do a better job than gcc.
5840  case Type::Vector:
5841  case Type::ExtVector:
5842  // Until we have a coherent encoding of these three types, issue warning.
5843    { if (NotEncodedT)
5844        *NotEncodedT = T;
5845      return;
5846    }
5847
5848  // We could see an undeduced auto type here during error recovery.
5849  // Just ignore it.
5850  case Type::Auto:
5851    return;
5852
5853#define ABSTRACT_TYPE(KIND, BASE)
5854#define TYPE(KIND, BASE)
5855#define DEPENDENT_TYPE(KIND, BASE) \
5856  case Type::KIND:
5857#define NON_CANONICAL_TYPE(KIND, BASE) \
5858  case Type::KIND:
5859#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5860  case Type::KIND:
5861#include "clang/AST/TypeNodes.def"
5862    llvm_unreachable("@encode for dependent type!");
5863  }
5864  llvm_unreachable("bad type kind!");
5865}
5866
5867void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5868                                                 std::string &S,
5869                                                 const FieldDecl *FD,
5870                                                 bool includeVBases,
5871                                                 QualType *NotEncodedT) const {
5872  assert(RDecl && "Expected non-null RecordDecl");
5873  assert(!RDecl->isUnion() && "Should not be called for unions");
5874  if (!RDecl->getDefinition())
5875    return;
5876
5877  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5878  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5879  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5880
5881  if (CXXRec) {
5882    for (const auto &BI : CXXRec->bases()) {
5883      if (!BI.isVirtual()) {
5884        CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5885        if (base->isEmpty())
5886          continue;
5887        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5888        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5889                                  std::make_pair(offs, base));
5890      }
5891    }
5892  }
5893
5894  unsigned i = 0;
5895  for (auto *Field : RDecl->fields()) {
5896    uint64_t offs = layout.getFieldOffset(i);
5897    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5898                              std::make_pair(offs, Field));
5899    ++i;
5900  }
5901
5902  if (CXXRec && includeVBases) {
5903    for (const auto &BI : CXXRec->vbases()) {
5904      CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5905      if (base->isEmpty())
5906        continue;
5907      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5908      if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
5909          FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5910        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5911                                  std::make_pair(offs, base));
5912    }
5913  }
5914
5915  CharUnits size;
5916  if (CXXRec) {
5917    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5918  } else {
5919    size = layout.getSize();
5920  }
5921
5922#ifndef NDEBUG
5923  uint64_t CurOffs = 0;
5924#endif
5925  std::multimap<uint64_t, NamedDecl *>::iterator
5926    CurLayObj = FieldOrBaseOffsets.begin();
5927
5928  if (CXXRec && CXXRec->isDynamicClass() &&
5929      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5930    if (FD) {
5931      S += "\"_vptr$";
5932      std::string recname = CXXRec->getNameAsString();
5933      if (recname.empty()) recname = "?";
5934      S += recname;
5935      S += '"';
5936    }
5937    S += "^^?";
5938#ifndef NDEBUG
5939    CurOffs += getTypeSize(VoidPtrTy);
5940#endif
5941  }
5942
5943  if (!RDecl->hasFlexibleArrayMember()) {
5944    // Mark the end of the structure.
5945    uint64_t offs = toBits(size);
5946    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5947                              std::make_pair(offs, nullptr));
5948  }
5949
5950  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5951#ifndef NDEBUG
5952    assert(CurOffs <= CurLayObj->first);
5953    if (CurOffs < CurLayObj->first) {
5954      uint64_t padding = CurLayObj->first - CurOffs;
5955      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5956      // packing/alignment of members is different that normal, in which case
5957      // the encoding will be out-of-sync with the real layout.
5958      // If the runtime switches to just consider the size of types without
5959      // taking into account alignment, we could make padding explicit in the
5960      // encoding (e.g. using arrays of chars). The encoding strings would be
5961      // longer then though.
5962      CurOffs += padding;
5963    }
5964#endif
5965
5966    NamedDecl *dcl = CurLayObj->second;
5967    if (!dcl)
5968      break; // reached end of structure.
5969
5970    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5971      // We expand the bases without their virtual bases since those are going
5972      // in the initial structure. Note that this differs from gcc which
5973      // expands virtual bases each time one is encountered in the hierarchy,
5974      // making the encoding type bigger than it really is.
5975      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
5976                                      NotEncodedT);
5977      assert(!base->isEmpty());
5978#ifndef NDEBUG
5979      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5980#endif
5981    } else {
5982      FieldDecl *field = cast<FieldDecl>(dcl);
5983      if (FD) {
5984        S += '"';
5985        S += field->getNameAsString();
5986        S += '"';
5987      }
5988
5989      if (field->isBitField()) {
5990        EncodeBitField(this, S, field->getType(), field);
5991#ifndef NDEBUG
5992        CurOffs += field->getBitWidthValue(*this);
5993#endif
5994      } else {
5995        QualType qt = field->getType();
5996        getLegacyIntegralTypeEncoding(qt);
5997        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5998                                   /*OutermostType*/false,
5999                                   /*EncodingProperty*/false,
6000                                   /*StructField*/true,
6001                                   false, false, false, NotEncodedT);
6002#ifndef NDEBUG
6003        CurOffs += getTypeSize(field->getType());
6004#endif
6005      }
6006    }
6007  }
6008}
6009
6010void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
6011                                                 std::string& S) const {
6012  if (QT & Decl::OBJC_TQ_In)
6013    S += 'n';
6014  if (QT & Decl::OBJC_TQ_Inout)
6015    S += 'N';
6016  if (QT & Decl::OBJC_TQ_Out)
6017    S += 'o';
6018  if (QT & Decl::OBJC_TQ_Bycopy)
6019    S += 'O';
6020  if (QT & Decl::OBJC_TQ_Byref)
6021    S += 'R';
6022  if (QT & Decl::OBJC_TQ_Oneway)
6023    S += 'V';
6024}
6025
6026TypedefDecl *ASTContext::getObjCIdDecl() const {
6027  if (!ObjCIdDecl) {
6028    QualType T = getObjCObjectType(ObjCBuiltinIdTy, { }, { });
6029    T = getObjCObjectPointerType(T);
6030    ObjCIdDecl = buildImplicitTypedef(T, "id");
6031  }
6032  return ObjCIdDecl;
6033}
6034
6035TypedefDecl *ASTContext::getObjCSelDecl() const {
6036  if (!ObjCSelDecl) {
6037    QualType T = getPointerType(ObjCBuiltinSelTy);
6038    ObjCSelDecl = buildImplicitTypedef(T, "SEL");
6039  }
6040  return ObjCSelDecl;
6041}
6042
6043TypedefDecl *ASTContext::getObjCClassDecl() const {
6044  if (!ObjCClassDecl) {
6045    QualType T = getObjCObjectType(ObjCBuiltinClassTy, { }, { });
6046    T = getObjCObjectPointerType(T);
6047    ObjCClassDecl = buildImplicitTypedef(T, "Class");
6048  }
6049  return ObjCClassDecl;
6050}
6051
6052ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
6053  if (!ObjCProtocolClassDecl) {
6054    ObjCProtocolClassDecl
6055      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
6056                                  SourceLocation(),
6057                                  &Idents.get("Protocol"),
6058                                  /*typeParamList=*/nullptr,
6059                                  /*PrevDecl=*/nullptr,
6060                                  SourceLocation(), true);
6061  }
6062
6063  return ObjCProtocolClassDecl;
6064}
6065
6066//===----------------------------------------------------------------------===//
6067// __builtin_va_list Construction Functions
6068//===----------------------------------------------------------------------===//
6069
6070static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
6071                                                 StringRef Name) {
6072  // typedef char* __builtin[_ms]_va_list;
6073  QualType T = Context->getPointerType(Context->CharTy);
6074  return Context->buildImplicitTypedef(T, Name);
6075}
6076
6077static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
6078  return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
6079}
6080
6081static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
6082  return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
6083}
6084
6085static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
6086  // typedef void* __builtin_va_list;
6087  QualType T = Context->getPointerType(Context->VoidTy);
6088  return Context->buildImplicitTypedef(T, "__builtin_va_list");
6089}
6090
6091static TypedefDecl *
6092CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
6093  // struct __va_list
6094  RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
6095  if (Context->getLangOpts().CPlusPlus) {
6096    // namespace std { struct __va_list {
6097    NamespaceDecl *NS;
6098    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6099                               Context->getTranslationUnitDecl(),
6100                               /*Inline*/ false, SourceLocation(),
6101                               SourceLocation(), &Context->Idents.get("std"),
6102                               /*PrevDecl*/ nullptr);
6103    NS->setImplicit();
6104    VaListTagDecl->setDeclContext(NS);
6105  }
6106
6107  VaListTagDecl->startDefinition();
6108
6109  const size_t NumFields = 5;
6110  QualType FieldTypes[NumFields];
6111  const char *FieldNames[NumFields];
6112
6113  // void *__stack;
6114  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
6115  FieldNames[0] = "__stack";
6116
6117  // void *__gr_top;
6118  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
6119  FieldNames[1] = "__gr_top";
6120
6121  // void *__vr_top;
6122  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6123  FieldNames[2] = "__vr_top";
6124
6125  // int __gr_offs;
6126  FieldTypes[3] = Context->IntTy;
6127  FieldNames[3] = "__gr_offs";
6128
6129  // int __vr_offs;
6130  FieldTypes[4] = Context->IntTy;
6131  FieldNames[4] = "__vr_offs";
6132
6133  // Create fields
6134  for (unsigned i = 0; i < NumFields; ++i) {
6135    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6136                                         VaListTagDecl,
6137                                         SourceLocation(),
6138                                         SourceLocation(),
6139                                         &Context->Idents.get(FieldNames[i]),
6140                                         FieldTypes[i], /*TInfo=*/nullptr,
6141                                         /*BitWidth=*/nullptr,
6142                                         /*Mutable=*/false,
6143                                         ICIS_NoInit);
6144    Field->setAccess(AS_public);
6145    VaListTagDecl->addDecl(Field);
6146  }
6147  VaListTagDecl->completeDefinition();
6148  Context->VaListTagDecl = VaListTagDecl;
6149  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6150
6151  // } __builtin_va_list;
6152  return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
6153}
6154
6155static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
6156  // typedef struct __va_list_tag {
6157  RecordDecl *VaListTagDecl;
6158
6159  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6160  VaListTagDecl->startDefinition();
6161
6162  const size_t NumFields = 5;
6163  QualType FieldTypes[NumFields];
6164  const char *FieldNames[NumFields];
6165
6166  //   unsigned char gpr;
6167  FieldTypes[0] = Context->UnsignedCharTy;
6168  FieldNames[0] = "gpr";
6169
6170  //   unsigned char fpr;
6171  FieldTypes[1] = Context->UnsignedCharTy;
6172  FieldNames[1] = "fpr";
6173
6174  //   unsigned short reserved;
6175  FieldTypes[2] = Context->UnsignedShortTy;
6176  FieldNames[2] = "reserved";
6177
6178  //   void* overflow_arg_area;
6179  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6180  FieldNames[3] = "overflow_arg_area";
6181
6182  //   void* reg_save_area;
6183  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
6184  FieldNames[4] = "reg_save_area";
6185
6186  // Create fields
6187  for (unsigned i = 0; i < NumFields; ++i) {
6188    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
6189                                         SourceLocation(),
6190                                         SourceLocation(),
6191                                         &Context->Idents.get(FieldNames[i]),
6192                                         FieldTypes[i], /*TInfo=*/nullptr,
6193                                         /*BitWidth=*/nullptr,
6194                                         /*Mutable=*/false,
6195                                         ICIS_NoInit);
6196    Field->setAccess(AS_public);
6197    VaListTagDecl->addDecl(Field);
6198  }
6199  VaListTagDecl->completeDefinition();
6200  Context->VaListTagDecl = VaListTagDecl;
6201  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6202
6203  // } __va_list_tag;
6204  TypedefDecl *VaListTagTypedefDecl =
6205      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6206
6207  QualType VaListTagTypedefType =
6208    Context->getTypedefType(VaListTagTypedefDecl);
6209
6210  // typedef __va_list_tag __builtin_va_list[1];
6211  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6212  QualType VaListTagArrayType
6213    = Context->getConstantArrayType(VaListTagTypedefType,
6214                                    Size, ArrayType::Normal, 0);
6215  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6216}
6217
6218static TypedefDecl *
6219CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
6220  // struct __va_list_tag {
6221  RecordDecl *VaListTagDecl;
6222  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6223  VaListTagDecl->startDefinition();
6224
6225  const size_t NumFields = 4;
6226  QualType FieldTypes[NumFields];
6227  const char *FieldNames[NumFields];
6228
6229  //   unsigned gp_offset;
6230  FieldTypes[0] = Context->UnsignedIntTy;
6231  FieldNames[0] = "gp_offset";
6232
6233  //   unsigned fp_offset;
6234  FieldTypes[1] = Context->UnsignedIntTy;
6235  FieldNames[1] = "fp_offset";
6236
6237  //   void* overflow_arg_area;
6238  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6239  FieldNames[2] = "overflow_arg_area";
6240
6241  //   void* reg_save_area;
6242  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6243  FieldNames[3] = "reg_save_area";
6244
6245  // Create fields
6246  for (unsigned i = 0; i < NumFields; ++i) {
6247    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6248                                         VaListTagDecl,
6249                                         SourceLocation(),
6250                                         SourceLocation(),
6251                                         &Context->Idents.get(FieldNames[i]),
6252                                         FieldTypes[i], /*TInfo=*/nullptr,
6253                                         /*BitWidth=*/nullptr,
6254                                         /*Mutable=*/false,
6255                                         ICIS_NoInit);
6256    Field->setAccess(AS_public);
6257    VaListTagDecl->addDecl(Field);
6258  }
6259  VaListTagDecl->completeDefinition();
6260  Context->VaListTagDecl = VaListTagDecl;
6261  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6262
6263  // };
6264
6265  // typedef struct __va_list_tag __builtin_va_list[1];
6266  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6267  QualType VaListTagArrayType =
6268      Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
6269  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6270}
6271
6272static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
6273  // typedef int __builtin_va_list[4];
6274  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
6275  QualType IntArrayType
6276    = Context->getConstantArrayType(Context->IntTy,
6277				    Size, ArrayType::Normal, 0);
6278  return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
6279}
6280
6281static TypedefDecl *
6282CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
6283  // struct __va_list
6284  RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
6285  if (Context->getLangOpts().CPlusPlus) {
6286    // namespace std { struct __va_list {
6287    NamespaceDecl *NS;
6288    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6289                               Context->getTranslationUnitDecl(),
6290                               /*Inline*/false, SourceLocation(),
6291                               SourceLocation(), &Context->Idents.get("std"),
6292                               /*PrevDecl*/ nullptr);
6293    NS->setImplicit();
6294    VaListDecl->setDeclContext(NS);
6295  }
6296
6297  VaListDecl->startDefinition();
6298
6299  // void * __ap;
6300  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6301                                       VaListDecl,
6302                                       SourceLocation(),
6303                                       SourceLocation(),
6304                                       &Context->Idents.get("__ap"),
6305                                       Context->getPointerType(Context->VoidTy),
6306                                       /*TInfo=*/nullptr,
6307                                       /*BitWidth=*/nullptr,
6308                                       /*Mutable=*/false,
6309                                       ICIS_NoInit);
6310  Field->setAccess(AS_public);
6311  VaListDecl->addDecl(Field);
6312
6313  // };
6314  VaListDecl->completeDefinition();
6315
6316  // typedef struct __va_list __builtin_va_list;
6317  QualType T = Context->getRecordType(VaListDecl);
6318  return Context->buildImplicitTypedef(T, "__builtin_va_list");
6319}
6320
6321static TypedefDecl *
6322CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6323  // struct __va_list_tag {
6324  RecordDecl *VaListTagDecl;
6325  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6326  VaListTagDecl->startDefinition();
6327
6328  const size_t NumFields = 4;
6329  QualType FieldTypes[NumFields];
6330  const char *FieldNames[NumFields];
6331
6332  //   long __gpr;
6333  FieldTypes[0] = Context->LongTy;
6334  FieldNames[0] = "__gpr";
6335
6336  //   long __fpr;
6337  FieldTypes[1] = Context->LongTy;
6338  FieldNames[1] = "__fpr";
6339
6340  //   void *__overflow_arg_area;
6341  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6342  FieldNames[2] = "__overflow_arg_area";
6343
6344  //   void *__reg_save_area;
6345  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6346  FieldNames[3] = "__reg_save_area";
6347
6348  // Create fields
6349  for (unsigned i = 0; i < NumFields; ++i) {
6350    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6351                                         VaListTagDecl,
6352                                         SourceLocation(),
6353                                         SourceLocation(),
6354                                         &Context->Idents.get(FieldNames[i]),
6355                                         FieldTypes[i], /*TInfo=*/nullptr,
6356                                         /*BitWidth=*/nullptr,
6357                                         /*Mutable=*/false,
6358                                         ICIS_NoInit);
6359    Field->setAccess(AS_public);
6360    VaListTagDecl->addDecl(Field);
6361  }
6362  VaListTagDecl->completeDefinition();
6363  Context->VaListTagDecl = VaListTagDecl;
6364  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6365
6366  // };
6367
6368  // typedef __va_list_tag __builtin_va_list[1];
6369  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6370  QualType VaListTagArrayType =
6371      Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
6372
6373  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6374}
6375
6376static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6377                                     TargetInfo::BuiltinVaListKind Kind) {
6378  switch (Kind) {
6379  case TargetInfo::CharPtrBuiltinVaList:
6380    return CreateCharPtrBuiltinVaListDecl(Context);
6381  case TargetInfo::VoidPtrBuiltinVaList:
6382    return CreateVoidPtrBuiltinVaListDecl(Context);
6383  case TargetInfo::AArch64ABIBuiltinVaList:
6384    return CreateAArch64ABIBuiltinVaListDecl(Context);
6385  case TargetInfo::PowerABIBuiltinVaList:
6386    return CreatePowerABIBuiltinVaListDecl(Context);
6387  case TargetInfo::X86_64ABIBuiltinVaList:
6388    return CreateX86_64ABIBuiltinVaListDecl(Context);
6389  case TargetInfo::PNaClABIBuiltinVaList:
6390    return CreatePNaClABIBuiltinVaListDecl(Context);
6391  case TargetInfo::AAPCSABIBuiltinVaList:
6392    return CreateAAPCSABIBuiltinVaListDecl(Context);
6393  case TargetInfo::SystemZBuiltinVaList:
6394    return CreateSystemZBuiltinVaListDecl(Context);
6395  }
6396
6397  llvm_unreachable("Unhandled __builtin_va_list type kind");
6398}
6399
6400TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6401  if (!BuiltinVaListDecl) {
6402    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6403    assert(BuiltinVaListDecl->isImplicit());
6404  }
6405
6406  return BuiltinVaListDecl;
6407}
6408
6409Decl *ASTContext::getVaListTagDecl() const {
6410  // Force the creation of VaListTagDecl by building the __builtin_va_list
6411  // declaration.
6412  if (!VaListTagDecl)
6413    (void)getBuiltinVaListDecl();
6414
6415  return VaListTagDecl;
6416}
6417
6418TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
6419  if (!BuiltinMSVaListDecl)
6420    BuiltinMSVaListDecl = CreateMSVaListDecl(this);
6421
6422  return BuiltinMSVaListDecl;
6423}
6424
6425void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6426  assert(ObjCConstantStringType.isNull() &&
6427         "'NSConstantString' type already set!");
6428
6429  ObjCConstantStringType = getObjCInterfaceType(Decl);
6430}
6431
6432/// \brief Retrieve the template name that corresponds to a non-empty
6433/// lookup.
6434TemplateName
6435ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6436                                      UnresolvedSetIterator End) const {
6437  unsigned size = End - Begin;
6438  assert(size > 1 && "set is not overloaded!");
6439
6440  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6441                          size * sizeof(FunctionTemplateDecl*));
6442  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6443
6444  NamedDecl **Storage = OT->getStorage();
6445  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6446    NamedDecl *D = *I;
6447    assert(isa<FunctionTemplateDecl>(D) ||
6448           (isa<UsingShadowDecl>(D) &&
6449            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6450    *Storage++ = D;
6451  }
6452
6453  return TemplateName(OT);
6454}
6455
6456/// \brief Retrieve the template name that represents a qualified
6457/// template name such as \c std::vector.
6458TemplateName
6459ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6460                                     bool TemplateKeyword,
6461                                     TemplateDecl *Template) const {
6462  assert(NNS && "Missing nested-name-specifier in qualified template name");
6463
6464  // FIXME: Canonicalization?
6465  llvm::FoldingSetNodeID ID;
6466  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6467
6468  void *InsertPos = nullptr;
6469  QualifiedTemplateName *QTN =
6470    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6471  if (!QTN) {
6472    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6473        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6474    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6475  }
6476
6477  return TemplateName(QTN);
6478}
6479
6480/// \brief Retrieve the template name that represents a dependent
6481/// template name such as \c MetaFun::template apply.
6482TemplateName
6483ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6484                                     const IdentifierInfo *Name) const {
6485  assert((!NNS || NNS->isDependent()) &&
6486         "Nested name specifier must be dependent");
6487
6488  llvm::FoldingSetNodeID ID;
6489  DependentTemplateName::Profile(ID, NNS, Name);
6490
6491  void *InsertPos = nullptr;
6492  DependentTemplateName *QTN =
6493    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6494
6495  if (QTN)
6496    return TemplateName(QTN);
6497
6498  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6499  if (CanonNNS == NNS) {
6500    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6501        DependentTemplateName(NNS, Name);
6502  } else {
6503    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6504    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6505        DependentTemplateName(NNS, Name, Canon);
6506    DependentTemplateName *CheckQTN =
6507      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6508    assert(!CheckQTN && "Dependent type name canonicalization broken");
6509    (void)CheckQTN;
6510  }
6511
6512  DependentTemplateNames.InsertNode(QTN, InsertPos);
6513  return TemplateName(QTN);
6514}
6515
6516/// \brief Retrieve the template name that represents a dependent
6517/// template name such as \c MetaFun::template operator+.
6518TemplateName
6519ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6520                                     OverloadedOperatorKind Operator) const {
6521  assert((!NNS || NNS->isDependent()) &&
6522         "Nested name specifier must be dependent");
6523
6524  llvm::FoldingSetNodeID ID;
6525  DependentTemplateName::Profile(ID, NNS, Operator);
6526
6527  void *InsertPos = nullptr;
6528  DependentTemplateName *QTN
6529    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6530
6531  if (QTN)
6532    return TemplateName(QTN);
6533
6534  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6535  if (CanonNNS == NNS) {
6536    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6537        DependentTemplateName(NNS, Operator);
6538  } else {
6539    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6540    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6541        DependentTemplateName(NNS, Operator, Canon);
6542
6543    DependentTemplateName *CheckQTN
6544      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6545    assert(!CheckQTN && "Dependent template name canonicalization broken");
6546    (void)CheckQTN;
6547  }
6548
6549  DependentTemplateNames.InsertNode(QTN, InsertPos);
6550  return TemplateName(QTN);
6551}
6552
6553TemplateName
6554ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6555                                         TemplateName replacement) const {
6556  llvm::FoldingSetNodeID ID;
6557  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6558
6559  void *insertPos = nullptr;
6560  SubstTemplateTemplateParmStorage *subst
6561    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6562
6563  if (!subst) {
6564    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6565    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6566  }
6567
6568  return TemplateName(subst);
6569}
6570
6571TemplateName
6572ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6573                                       const TemplateArgument &ArgPack) const {
6574  ASTContext &Self = const_cast<ASTContext &>(*this);
6575  llvm::FoldingSetNodeID ID;
6576  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6577
6578  void *InsertPos = nullptr;
6579  SubstTemplateTemplateParmPackStorage *Subst
6580    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6581
6582  if (!Subst) {
6583    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6584                                                           ArgPack.pack_size(),
6585                                                         ArgPack.pack_begin());
6586    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6587  }
6588
6589  return TemplateName(Subst);
6590}
6591
6592/// getFromTargetType - Given one of the integer types provided by
6593/// TargetInfo, produce the corresponding type. The unsigned @p Type
6594/// is actually a value of type @c TargetInfo::IntType.
6595CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6596  switch (Type) {
6597  case TargetInfo::NoInt: return CanQualType();
6598  case TargetInfo::SignedChar: return SignedCharTy;
6599  case TargetInfo::UnsignedChar: return UnsignedCharTy;
6600  case TargetInfo::SignedShort: return ShortTy;
6601  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6602  case TargetInfo::SignedInt: return IntTy;
6603  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6604  case TargetInfo::SignedLong: return LongTy;
6605  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6606  case TargetInfo::SignedLongLong: return LongLongTy;
6607  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6608  }
6609
6610  llvm_unreachable("Unhandled TargetInfo::IntType value");
6611}
6612
6613//===----------------------------------------------------------------------===//
6614//                        Type Predicates.
6615//===----------------------------------------------------------------------===//
6616
6617/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6618/// garbage collection attribute.
6619///
6620Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6621  if (getLangOpts().getGC() == LangOptions::NonGC)
6622    return Qualifiers::GCNone;
6623
6624  assert(getLangOpts().ObjC1);
6625  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6626
6627  // Default behaviour under objective-C's gc is for ObjC pointers
6628  // (or pointers to them) be treated as though they were declared
6629  // as __strong.
6630  if (GCAttrs == Qualifiers::GCNone) {
6631    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6632      return Qualifiers::Strong;
6633    else if (Ty->isPointerType())
6634      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6635  } else {
6636    // It's not valid to set GC attributes on anything that isn't a
6637    // pointer.
6638#ifndef NDEBUG
6639    QualType CT = Ty->getCanonicalTypeInternal();
6640    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6641      CT = AT->getElementType();
6642    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6643#endif
6644  }
6645  return GCAttrs;
6646}
6647
6648//===----------------------------------------------------------------------===//
6649//                        Type Compatibility Testing
6650//===----------------------------------------------------------------------===//
6651
6652/// areCompatVectorTypes - Return true if the two specified vector types are
6653/// compatible.
6654static bool areCompatVectorTypes(const VectorType *LHS,
6655                                 const VectorType *RHS) {
6656  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6657  return LHS->getElementType() == RHS->getElementType() &&
6658         LHS->getNumElements() == RHS->getNumElements();
6659}
6660
6661bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6662                                          QualType SecondVec) {
6663  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6664  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6665
6666  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6667    return true;
6668
6669  // Treat Neon vector types and most AltiVec vector types as if they are the
6670  // equivalent GCC vector types.
6671  const VectorType *First = FirstVec->getAs<VectorType>();
6672  const VectorType *Second = SecondVec->getAs<VectorType>();
6673  if (First->getNumElements() == Second->getNumElements() &&
6674      hasSameType(First->getElementType(), Second->getElementType()) &&
6675      First->getVectorKind() != VectorType::AltiVecPixel &&
6676      First->getVectorKind() != VectorType::AltiVecBool &&
6677      Second->getVectorKind() != VectorType::AltiVecPixel &&
6678      Second->getVectorKind() != VectorType::AltiVecBool)
6679    return true;
6680
6681  return false;
6682}
6683
6684//===----------------------------------------------------------------------===//
6685// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6686//===----------------------------------------------------------------------===//
6687
6688/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6689/// inheritance hierarchy of 'rProto'.
6690bool
6691ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6692                                           ObjCProtocolDecl *rProto) const {
6693  if (declaresSameEntity(lProto, rProto))
6694    return true;
6695  for (auto *PI : rProto->protocols())
6696    if (ProtocolCompatibleWithProtocol(lProto, PI))
6697      return true;
6698  return false;
6699}
6700
6701/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6702/// Class<pr1, ...>.
6703bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6704                                                      QualType rhs) {
6705  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6706  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6707  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6708
6709  for (auto *lhsProto : lhsQID->quals()) {
6710    bool match = false;
6711    for (auto *rhsProto : rhsOPT->quals()) {
6712      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6713        match = true;
6714        break;
6715      }
6716    }
6717    if (!match)
6718      return false;
6719  }
6720  return true;
6721}
6722
6723/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6724/// ObjCQualifiedIDType.
6725bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6726                                                   bool compare) {
6727  // Allow id<P..> and an 'id' or void* type in all cases.
6728  if (lhs->isVoidPointerType() ||
6729      lhs->isObjCIdType() || lhs->isObjCClassType())
6730    return true;
6731  else if (rhs->isVoidPointerType() ||
6732           rhs->isObjCIdType() || rhs->isObjCClassType())
6733    return true;
6734
6735  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6736    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6737
6738    if (!rhsOPT) return false;
6739
6740    if (rhsOPT->qual_empty()) {
6741      // If the RHS is a unqualified interface pointer "NSString*",
6742      // make sure we check the class hierarchy.
6743      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6744        for (auto *I : lhsQID->quals()) {
6745          // when comparing an id<P> on lhs with a static type on rhs,
6746          // see if static class implements all of id's protocols, directly or
6747          // through its super class and categories.
6748          if (!rhsID->ClassImplementsProtocol(I, true))
6749            return false;
6750        }
6751      }
6752      // If there are no qualifiers and no interface, we have an 'id'.
6753      return true;
6754    }
6755    // Both the right and left sides have qualifiers.
6756    for (auto *lhsProto : lhsQID->quals()) {
6757      bool match = false;
6758
6759      // when comparing an id<P> on lhs with a static type on rhs,
6760      // see if static class implements all of id's protocols, directly or
6761      // through its super class and categories.
6762      for (auto *rhsProto : rhsOPT->quals()) {
6763        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6764            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6765          match = true;
6766          break;
6767        }
6768      }
6769      // If the RHS is a qualified interface pointer "NSString<P>*",
6770      // make sure we check the class hierarchy.
6771      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6772        for (auto *I : lhsQID->quals()) {
6773          // when comparing an id<P> on lhs with a static type on rhs,
6774          // see if static class implements all of id's protocols, directly or
6775          // through its super class and categories.
6776          if (rhsID->ClassImplementsProtocol(I, true)) {
6777            match = true;
6778            break;
6779          }
6780        }
6781      }
6782      if (!match)
6783        return false;
6784    }
6785
6786    return true;
6787  }
6788
6789  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6790  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6791
6792  if (const ObjCObjectPointerType *lhsOPT =
6793        lhs->getAsObjCInterfacePointerType()) {
6794    // If both the right and left sides have qualifiers.
6795    for (auto *lhsProto : lhsOPT->quals()) {
6796      bool match = false;
6797
6798      // when comparing an id<P> on rhs with a static type on lhs,
6799      // see if static class implements all of id's protocols, directly or
6800      // through its super class and categories.
6801      // First, lhs protocols in the qualifier list must be found, direct
6802      // or indirect in rhs's qualifier list or it is a mismatch.
6803      for (auto *rhsProto : rhsQID->quals()) {
6804        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6805            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6806          match = true;
6807          break;
6808        }
6809      }
6810      if (!match)
6811        return false;
6812    }
6813
6814    // Static class's protocols, or its super class or category protocols
6815    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6816    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6817      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6818      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6819      // This is rather dubious but matches gcc's behavior. If lhs has
6820      // no type qualifier and its class has no static protocol(s)
6821      // assume that it is mismatch.
6822      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6823        return false;
6824      for (auto *lhsProto : LHSInheritedProtocols) {
6825        bool match = false;
6826        for (auto *rhsProto : rhsQID->quals()) {
6827          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6828              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6829            match = true;
6830            break;
6831          }
6832        }
6833        if (!match)
6834          return false;
6835      }
6836    }
6837    return true;
6838  }
6839  return false;
6840}
6841
6842/// canAssignObjCInterfaces - Return true if the two interface types are
6843/// compatible for assignment from RHS to LHS.  This handles validation of any
6844/// protocol qualifiers on the LHS or RHS.
6845///
6846bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6847                                         const ObjCObjectPointerType *RHSOPT) {
6848  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6849  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6850
6851  // If either type represents the built-in 'id' or 'Class' types, return true.
6852  if (LHS->isObjCUnqualifiedIdOrClass() ||
6853      RHS->isObjCUnqualifiedIdOrClass())
6854    return true;
6855
6856  // Function object that propagates a successful result or handles
6857  // __kindof types.
6858  auto finish = [&](bool succeeded) -> bool {
6859    if (succeeded)
6860      return true;
6861
6862    if (!RHS->isKindOfType())
6863      return false;
6864
6865    // Strip off __kindof and protocol qualifiers, then check whether
6866    // we can assign the other way.
6867    return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
6868                                   LHSOPT->stripObjCKindOfTypeAndQuals(*this));
6869  };
6870
6871  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
6872    return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6873                                                    QualType(RHSOPT,0),
6874                                                    false));
6875  }
6876
6877  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
6878    return finish(ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6879                                                       QualType(RHSOPT,0)));
6880  }
6881
6882  // If we have 2 user-defined types, fall into that path.
6883  if (LHS->getInterface() && RHS->getInterface()) {
6884    return finish(canAssignObjCInterfaces(LHS, RHS));
6885  }
6886
6887  return false;
6888}
6889
6890/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6891/// for providing type-safety for objective-c pointers used to pass/return
6892/// arguments in block literals. When passed as arguments, passing 'A*' where
6893/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6894/// not OK. For the return type, the opposite is not OK.
6895bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6896                                         const ObjCObjectPointerType *LHSOPT,
6897                                         const ObjCObjectPointerType *RHSOPT,
6898                                         bool BlockReturnType) {
6899
6900  // Function object that propagates a successful result or handles
6901  // __kindof types.
6902  auto finish = [&](bool succeeded) -> bool {
6903    if (succeeded)
6904      return true;
6905
6906    const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
6907    if (!Expected->isKindOfType())
6908      return false;
6909
6910    // Strip off __kindof and protocol qualifiers, then check whether
6911    // we can assign the other way.
6912    return canAssignObjCInterfacesInBlockPointer(
6913             RHSOPT->stripObjCKindOfTypeAndQuals(*this),
6914             LHSOPT->stripObjCKindOfTypeAndQuals(*this),
6915             BlockReturnType);
6916  };
6917
6918  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6919    return true;
6920
6921  if (LHSOPT->isObjCBuiltinType()) {
6922    return finish(RHSOPT->isObjCBuiltinType() ||
6923                  RHSOPT->isObjCQualifiedIdType());
6924  }
6925
6926  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6927    return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6928                                                    QualType(RHSOPT,0),
6929                                                    false));
6930
6931  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6932  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6933  if (LHS && RHS)  { // We have 2 user-defined types.
6934    if (LHS != RHS) {
6935      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6936        return finish(BlockReturnType);
6937      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6938        return finish(!BlockReturnType);
6939    }
6940    else
6941      return true;
6942  }
6943  return false;
6944}
6945
6946/// Comparison routine for Objective-C protocols to be used with
6947/// llvm::array_pod_sort.
6948static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
6949                                      ObjCProtocolDecl * const *rhs) {
6950  return (*lhs)->getName().compare((*rhs)->getName());
6951
6952}
6953
6954/// getIntersectionOfProtocols - This routine finds the intersection of set
6955/// of protocols inherited from two distinct objective-c pointer objects with
6956/// the given common base.
6957/// It is used to build composite qualifier list of the composite type of
6958/// the conditional expression involving two objective-c pointer objects.
6959static
6960void getIntersectionOfProtocols(ASTContext &Context,
6961                                const ObjCInterfaceDecl *CommonBase,
6962                                const ObjCObjectPointerType *LHSOPT,
6963                                const ObjCObjectPointerType *RHSOPT,
6964      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
6965
6966  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6967  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6968  assert(LHS->getInterface() && "LHS must have an interface base");
6969  assert(RHS->getInterface() && "RHS must have an interface base");
6970
6971  // Add all of the protocols for the LHS.
6972  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
6973
6974  // Start with the protocol qualifiers.
6975  for (auto proto : LHS->quals()) {
6976    Context.CollectInheritedProtocols(proto, LHSProtocolSet);
6977  }
6978
6979  // Also add the protocols associated with the LHS interface.
6980  Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
6981
6982  // Add all of the protocls for the RHS.
6983  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
6984
6985  // Start with the protocol qualifiers.
6986  for (auto proto : RHS->quals()) {
6987    Context.CollectInheritedProtocols(proto, RHSProtocolSet);
6988  }
6989
6990  // Also add the protocols associated with the RHS interface.
6991  Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
6992
6993  // Compute the intersection of the collected protocol sets.
6994  for (auto proto : LHSProtocolSet) {
6995    if (RHSProtocolSet.count(proto))
6996      IntersectionSet.push_back(proto);
6997  }
6998
6999  // Compute the set of protocols that is implied by either the common type or
7000  // the protocols within the intersection.
7001  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
7002  Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
7003
7004  // Remove any implied protocols from the list of inherited protocols.
7005  if (!ImpliedProtocols.empty()) {
7006    IntersectionSet.erase(
7007      std::remove_if(IntersectionSet.begin(),
7008                     IntersectionSet.end(),
7009                     [&](ObjCProtocolDecl *proto) -> bool {
7010                       return ImpliedProtocols.count(proto) > 0;
7011                     }),
7012      IntersectionSet.end());
7013  }
7014
7015  // Sort the remaining protocols by name.
7016  llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
7017                       compareObjCProtocolsByName);
7018}
7019
7020/// Determine whether the first type is a subtype of the second.
7021static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
7022                                     QualType rhs) {
7023  // Common case: two object pointers.
7024  const ObjCObjectPointerType *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
7025  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
7026  if (lhsOPT && rhsOPT)
7027    return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
7028
7029  // Two block pointers.
7030  const BlockPointerType *lhsBlock = lhs->getAs<BlockPointerType>();
7031  const BlockPointerType *rhsBlock = rhs->getAs<BlockPointerType>();
7032  if (lhsBlock && rhsBlock)
7033    return ctx.typesAreBlockPointerCompatible(lhs, rhs);
7034
7035  // If either is an unqualified 'id' and the other is a block, it's
7036  // acceptable.
7037  if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
7038      (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
7039    return true;
7040
7041  return false;
7042}
7043
7044// Check that the given Objective-C type argument lists are equivalent.
7045static bool sameObjCTypeArgs(ASTContext &ctx,
7046                             const ObjCInterfaceDecl *iface,
7047                             ArrayRef<QualType> lhsArgs,
7048                             ArrayRef<QualType> rhsArgs,
7049                             bool stripKindOf) {
7050  if (lhsArgs.size() != rhsArgs.size())
7051    return false;
7052
7053  ObjCTypeParamList *typeParams = iface->getTypeParamList();
7054  for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
7055    if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
7056      continue;
7057
7058    switch (typeParams->begin()[i]->getVariance()) {
7059    case ObjCTypeParamVariance::Invariant:
7060      if (!stripKindOf ||
7061          !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
7062                           rhsArgs[i].stripObjCKindOfType(ctx))) {
7063        return false;
7064      }
7065      break;
7066
7067    case ObjCTypeParamVariance::Covariant:
7068      if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
7069        return false;
7070      break;
7071
7072    case ObjCTypeParamVariance::Contravariant:
7073      if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
7074        return false;
7075      break;
7076    }
7077  }
7078
7079  return true;
7080}
7081
7082QualType ASTContext::areCommonBaseCompatible(
7083           const ObjCObjectPointerType *Lptr,
7084           const ObjCObjectPointerType *Rptr) {
7085  const ObjCObjectType *LHS = Lptr->getObjectType();
7086  const ObjCObjectType *RHS = Rptr->getObjectType();
7087  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
7088  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
7089
7090  if (!LDecl || !RDecl)
7091    return QualType();
7092
7093  // Follow the left-hand side up the class hierarchy until we either hit a
7094  // root or find the RHS. Record the ancestors in case we don't find it.
7095  llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
7096    LHSAncestors;
7097  while (true) {
7098    // Record this ancestor. We'll need this if the common type isn't in the
7099    // path from the LHS to the root.
7100    LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
7101
7102    if (declaresSameEntity(LHS->getInterface(), RDecl)) {
7103      // Get the type arguments.
7104      ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
7105      bool anyChanges = false;
7106      if (LHS->isSpecialized() && RHS->isSpecialized()) {
7107        // Both have type arguments, compare them.
7108        if (!sameObjCTypeArgs(*this, LHS->getInterface(),
7109                              LHS->getTypeArgs(), RHS->getTypeArgs(),
7110                              /*stripKindOf=*/true))
7111          return QualType();
7112      } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
7113        // If only one has type arguments, the result will not have type
7114        // arguments.
7115        LHSTypeArgs = { };
7116        anyChanges = true;
7117      }
7118
7119      // Compute the intersection of protocols.
7120      SmallVector<ObjCProtocolDecl *, 8> Protocols;
7121      getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
7122                                 Protocols);
7123      if (!Protocols.empty())
7124        anyChanges = true;
7125
7126      // If anything in the LHS will have changed, build a new result type.
7127      if (anyChanges) {
7128        QualType Result = getObjCInterfaceType(LHS->getInterface());
7129        Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
7130                                   LHS->isKindOfType());
7131        return getObjCObjectPointerType(Result);
7132      }
7133
7134      return getObjCObjectPointerType(QualType(LHS, 0));
7135    }
7136
7137    // Find the superclass.
7138    QualType LHSSuperType = LHS->getSuperClassType();
7139    if (LHSSuperType.isNull())
7140      break;
7141
7142    LHS = LHSSuperType->castAs<ObjCObjectType>();
7143  }
7144
7145  // We didn't find anything by following the LHS to its root; now check
7146  // the RHS against the cached set of ancestors.
7147  while (true) {
7148    auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
7149    if (KnownLHS != LHSAncestors.end()) {
7150      LHS = KnownLHS->second;
7151
7152      // Get the type arguments.
7153      ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
7154      bool anyChanges = false;
7155      if (LHS->isSpecialized() && RHS->isSpecialized()) {
7156        // Both have type arguments, compare them.
7157        if (!sameObjCTypeArgs(*this, LHS->getInterface(),
7158                              LHS->getTypeArgs(), RHS->getTypeArgs(),
7159                              /*stripKindOf=*/true))
7160          return QualType();
7161      } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
7162        // If only one has type arguments, the result will not have type
7163        // arguments.
7164        RHSTypeArgs = { };
7165        anyChanges = true;
7166      }
7167
7168      // Compute the intersection of protocols.
7169      SmallVector<ObjCProtocolDecl *, 8> Protocols;
7170      getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
7171                                 Protocols);
7172      if (!Protocols.empty())
7173        anyChanges = true;
7174
7175      if (anyChanges) {
7176        QualType Result = getObjCInterfaceType(RHS->getInterface());
7177        Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
7178                                   RHS->isKindOfType());
7179        return getObjCObjectPointerType(Result);
7180      }
7181
7182      return getObjCObjectPointerType(QualType(RHS, 0));
7183    }
7184
7185    // Find the superclass of the RHS.
7186    QualType RHSSuperType = RHS->getSuperClassType();
7187    if (RHSSuperType.isNull())
7188      break;
7189
7190    RHS = RHSSuperType->castAs<ObjCObjectType>();
7191  }
7192
7193  return QualType();
7194}
7195
7196bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
7197                                         const ObjCObjectType *RHS) {
7198  assert(LHS->getInterface() && "LHS is not an interface type");
7199  assert(RHS->getInterface() && "RHS is not an interface type");
7200
7201  // Verify that the base decls are compatible: the RHS must be a subclass of
7202  // the LHS.
7203  ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
7204  bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
7205  if (!IsSuperClass)
7206    return false;
7207
7208  // If the LHS has protocol qualifiers, determine whether all of them are
7209  // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
7210  // LHS).
7211  if (LHS->getNumProtocols() > 0) {
7212    // OK if conversion of LHS to SuperClass results in narrowing of types
7213    // ; i.e., SuperClass may implement at least one of the protocols
7214    // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
7215    // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
7216    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
7217    CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
7218    // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
7219    // qualifiers.
7220    for (auto *RHSPI : RHS->quals())
7221      CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
7222    // If there is no protocols associated with RHS, it is not a match.
7223    if (SuperClassInheritedProtocols.empty())
7224      return false;
7225
7226    for (const auto *LHSProto : LHS->quals()) {
7227      bool SuperImplementsProtocol = false;
7228      for (auto *SuperClassProto : SuperClassInheritedProtocols)
7229        if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
7230          SuperImplementsProtocol = true;
7231          break;
7232        }
7233      if (!SuperImplementsProtocol)
7234        return false;
7235    }
7236  }
7237
7238  // If the LHS is specialized, we may need to check type arguments.
7239  if (LHS->isSpecialized()) {
7240    // Follow the superclass chain until we've matched the LHS class in the
7241    // hierarchy. This substitutes type arguments through.
7242    const ObjCObjectType *RHSSuper = RHS;
7243    while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
7244      RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
7245
7246    // If the RHS is specializd, compare type arguments.
7247    if (RHSSuper->isSpecialized() &&
7248        !sameObjCTypeArgs(*this, LHS->getInterface(),
7249                          LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
7250                          /*stripKindOf=*/true)) {
7251      return false;
7252    }
7253  }
7254
7255  return true;
7256}
7257
7258bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
7259  // get the "pointed to" types
7260  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
7261  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
7262
7263  if (!LHSOPT || !RHSOPT)
7264    return false;
7265
7266  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
7267         canAssignObjCInterfaces(RHSOPT, LHSOPT);
7268}
7269
7270bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
7271  return canAssignObjCInterfaces(
7272                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
7273                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
7274}
7275
7276/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
7277/// both shall have the identically qualified version of a compatible type.
7278/// C99 6.2.7p1: Two types have compatible types if their types are the
7279/// same. See 6.7.[2,3,5] for additional rules.
7280bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
7281                                    bool CompareUnqualified) {
7282  if (getLangOpts().CPlusPlus)
7283    return hasSameType(LHS, RHS);
7284
7285  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
7286}
7287
7288bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
7289  return typesAreCompatible(LHS, RHS);
7290}
7291
7292bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
7293  return !mergeTypes(LHS, RHS, true).isNull();
7294}
7295
7296/// mergeTransparentUnionType - if T is a transparent union type and a member
7297/// of T is compatible with SubType, return the merged type, else return
7298/// QualType()
7299QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
7300                                               bool OfBlockPointer,
7301                                               bool Unqualified) {
7302  if (const RecordType *UT = T->getAsUnionType()) {
7303    RecordDecl *UD = UT->getDecl();
7304    if (UD->hasAttr<TransparentUnionAttr>()) {
7305      for (const auto *I : UD->fields()) {
7306        QualType ET = I->getType().getUnqualifiedType();
7307        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
7308        if (!MT.isNull())
7309          return MT;
7310      }
7311    }
7312  }
7313
7314  return QualType();
7315}
7316
7317/// mergeFunctionParameterTypes - merge two types which appear as function
7318/// parameter types
7319QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
7320                                                 bool OfBlockPointer,
7321                                                 bool Unqualified) {
7322  // GNU extension: two types are compatible if they appear as a function
7323  // argument, one of the types is a transparent union type and the other
7324  // type is compatible with a union member
7325  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
7326                                              Unqualified);
7327  if (!lmerge.isNull())
7328    return lmerge;
7329
7330  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
7331                                              Unqualified);
7332  if (!rmerge.isNull())
7333    return rmerge;
7334
7335  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
7336}
7337
7338QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
7339                                        bool OfBlockPointer,
7340                                        bool Unqualified) {
7341  const FunctionType *lbase = lhs->getAs<FunctionType>();
7342  const FunctionType *rbase = rhs->getAs<FunctionType>();
7343  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
7344  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
7345  bool allLTypes = true;
7346  bool allRTypes = true;
7347
7348  // Check return type
7349  QualType retType;
7350  if (OfBlockPointer) {
7351    QualType RHS = rbase->getReturnType();
7352    QualType LHS = lbase->getReturnType();
7353    bool UnqualifiedResult = Unqualified;
7354    if (!UnqualifiedResult)
7355      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
7356    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
7357  }
7358  else
7359    retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
7360                         Unqualified);
7361  if (retType.isNull()) return QualType();
7362
7363  if (Unqualified)
7364    retType = retType.getUnqualifiedType();
7365
7366  CanQualType LRetType = getCanonicalType(lbase->getReturnType());
7367  CanQualType RRetType = getCanonicalType(rbase->getReturnType());
7368  if (Unqualified) {
7369    LRetType = LRetType.getUnqualifiedType();
7370    RRetType = RRetType.getUnqualifiedType();
7371  }
7372
7373  if (getCanonicalType(retType) != LRetType)
7374    allLTypes = false;
7375  if (getCanonicalType(retType) != RRetType)
7376    allRTypes = false;
7377
7378  // FIXME: double check this
7379  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
7380  //                           rbase->getRegParmAttr() != 0 &&
7381  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
7382  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
7383  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
7384
7385  // Compatible functions must have compatible calling conventions
7386  if (lbaseInfo.getCC() != rbaseInfo.getCC())
7387    return QualType();
7388
7389  // Regparm is part of the calling convention.
7390  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
7391    return QualType();
7392  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
7393    return QualType();
7394
7395  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
7396    return QualType();
7397
7398  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
7399  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
7400
7401  if (lbaseInfo.getNoReturn() != NoReturn)
7402    allLTypes = false;
7403  if (rbaseInfo.getNoReturn() != NoReturn)
7404    allRTypes = false;
7405
7406  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
7407
7408  if (lproto && rproto) { // two C99 style function prototypes
7409    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
7410           "C++ shouldn't be here");
7411    // Compatible functions must have the same number of parameters
7412    if (lproto->getNumParams() != rproto->getNumParams())
7413      return QualType();
7414
7415    // Variadic and non-variadic functions aren't compatible
7416    if (lproto->isVariadic() != rproto->isVariadic())
7417      return QualType();
7418
7419    if (lproto->getTypeQuals() != rproto->getTypeQuals())
7420      return QualType();
7421
7422    if (LangOpts.ObjCAutoRefCount &&
7423        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
7424      return QualType();
7425
7426    // Check parameter type compatibility
7427    SmallVector<QualType, 10> types;
7428    for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
7429      QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
7430      QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
7431      QualType paramType = mergeFunctionParameterTypes(
7432          lParamType, rParamType, OfBlockPointer, Unqualified);
7433      if (paramType.isNull())
7434        return QualType();
7435
7436      if (Unqualified)
7437        paramType = paramType.getUnqualifiedType();
7438
7439      types.push_back(paramType);
7440      if (Unqualified) {
7441        lParamType = lParamType.getUnqualifiedType();
7442        rParamType = rParamType.getUnqualifiedType();
7443      }
7444
7445      if (getCanonicalType(paramType) != getCanonicalType(lParamType))
7446        allLTypes = false;
7447      if (getCanonicalType(paramType) != getCanonicalType(rParamType))
7448        allRTypes = false;
7449    }
7450
7451    if (allLTypes) return lhs;
7452    if (allRTypes) return rhs;
7453
7454    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7455    EPI.ExtInfo = einfo;
7456    return getFunctionType(retType, types, EPI);
7457  }
7458
7459  if (lproto) allRTypes = false;
7460  if (rproto) allLTypes = false;
7461
7462  const FunctionProtoType *proto = lproto ? lproto : rproto;
7463  if (proto) {
7464    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7465    if (proto->isVariadic()) return QualType();
7466    // Check that the types are compatible with the types that
7467    // would result from default argument promotions (C99 6.7.5.3p15).
7468    // The only types actually affected are promotable integer
7469    // types and floats, which would be passed as a different
7470    // type depending on whether the prototype is visible.
7471    for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
7472      QualType paramTy = proto->getParamType(i);
7473
7474      // Look at the converted type of enum types, since that is the type used
7475      // to pass enum values.
7476      if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
7477        paramTy = Enum->getDecl()->getIntegerType();
7478        if (paramTy.isNull())
7479          return QualType();
7480      }
7481
7482      if (paramTy->isPromotableIntegerType() ||
7483          getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
7484        return QualType();
7485    }
7486
7487    if (allLTypes) return lhs;
7488    if (allRTypes) return rhs;
7489
7490    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7491    EPI.ExtInfo = einfo;
7492    return getFunctionType(retType, proto->getParamTypes(), EPI);
7493  }
7494
7495  if (allLTypes) return lhs;
7496  if (allRTypes) return rhs;
7497  return getFunctionNoProtoType(retType, einfo);
7498}
7499
7500/// Given that we have an enum type and a non-enum type, try to merge them.
7501static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7502                                     QualType other, bool isBlockReturnType) {
7503  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7504  // a signed integer type, or an unsigned integer type.
7505  // Compatibility is based on the underlying type, not the promotion
7506  // type.
7507  QualType underlyingType = ET->getDecl()->getIntegerType();
7508  if (underlyingType.isNull()) return QualType();
7509  if (Context.hasSameType(underlyingType, other))
7510    return other;
7511
7512  // In block return types, we're more permissive and accept any
7513  // integral type of the same size.
7514  if (isBlockReturnType && other->isIntegerType() &&
7515      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7516    return other;
7517
7518  return QualType();
7519}
7520
7521QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7522                                bool OfBlockPointer,
7523                                bool Unqualified, bool BlockReturnType) {
7524  // C++ [expr]: If an expression initially has the type "reference to T", the
7525  // type is adjusted to "T" prior to any further analysis, the expression
7526  // designates the object or function denoted by the reference, and the
7527  // expression is an lvalue unless the reference is an rvalue reference and
7528  // the expression is a function call (possibly inside parentheses).
7529  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7530  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7531
7532  if (Unqualified) {
7533    LHS = LHS.getUnqualifiedType();
7534    RHS = RHS.getUnqualifiedType();
7535  }
7536
7537  QualType LHSCan = getCanonicalType(LHS),
7538           RHSCan = getCanonicalType(RHS);
7539
7540  // If two types are identical, they are compatible.
7541  if (LHSCan == RHSCan)
7542    return LHS;
7543
7544  // If the qualifiers are different, the types aren't compatible... mostly.
7545  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7546  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7547  if (LQuals != RQuals) {
7548    // If any of these qualifiers are different, we have a type
7549    // mismatch.
7550    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7551        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7552        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7553      return QualType();
7554
7555    // Exactly one GC qualifier difference is allowed: __strong is
7556    // okay if the other type has no GC qualifier but is an Objective
7557    // C object pointer (i.e. implicitly strong by default).  We fix
7558    // this by pretending that the unqualified type was actually
7559    // qualified __strong.
7560    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7561    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7562    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7563
7564    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7565      return QualType();
7566
7567    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7568      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7569    }
7570    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7571      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7572    }
7573    return QualType();
7574  }
7575
7576  // Okay, qualifiers are equal.
7577
7578  Type::TypeClass LHSClass = LHSCan->getTypeClass();
7579  Type::TypeClass RHSClass = RHSCan->getTypeClass();
7580
7581  // We want to consider the two function types to be the same for these
7582  // comparisons, just force one to the other.
7583  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7584  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7585
7586  // Same as above for arrays
7587  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7588    LHSClass = Type::ConstantArray;
7589  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7590    RHSClass = Type::ConstantArray;
7591
7592  // ObjCInterfaces are just specialized ObjCObjects.
7593  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7594  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7595
7596  // Canonicalize ExtVector -> Vector.
7597  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7598  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7599
7600  // If the canonical type classes don't match.
7601  if (LHSClass != RHSClass) {
7602    // Note that we only have special rules for turning block enum
7603    // returns into block int returns, not vice-versa.
7604    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7605      return mergeEnumWithInteger(*this, ETy, RHS, false);
7606    }
7607    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7608      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7609    }
7610    // allow block pointer type to match an 'id' type.
7611    if (OfBlockPointer && !BlockReturnType) {
7612       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7613         return LHS;
7614      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7615        return RHS;
7616    }
7617
7618    return QualType();
7619  }
7620
7621  // The canonical type classes match.
7622  switch (LHSClass) {
7623#define TYPE(Class, Base)
7624#define ABSTRACT_TYPE(Class, Base)
7625#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7626#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7627#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7628#include "clang/AST/TypeNodes.def"
7629    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7630
7631  case Type::Auto:
7632  case Type::LValueReference:
7633  case Type::RValueReference:
7634  case Type::MemberPointer:
7635    llvm_unreachable("C++ should never be in mergeTypes");
7636
7637  case Type::ObjCInterface:
7638  case Type::IncompleteArray:
7639  case Type::VariableArray:
7640  case Type::FunctionProto:
7641  case Type::ExtVector:
7642    llvm_unreachable("Types are eliminated above");
7643
7644  case Type::Pointer:
7645  {
7646    // Merge two pointer types, while trying to preserve typedef info
7647    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7648    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7649    if (Unqualified) {
7650      LHSPointee = LHSPointee.getUnqualifiedType();
7651      RHSPointee = RHSPointee.getUnqualifiedType();
7652    }
7653    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7654                                     Unqualified);
7655    if (ResultType.isNull()) return QualType();
7656    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7657      return LHS;
7658    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7659      return RHS;
7660    return getPointerType(ResultType);
7661  }
7662  case Type::BlockPointer:
7663  {
7664    // Merge two block pointer types, while trying to preserve typedef info
7665    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7666    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7667    if (Unqualified) {
7668      LHSPointee = LHSPointee.getUnqualifiedType();
7669      RHSPointee = RHSPointee.getUnqualifiedType();
7670    }
7671    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7672                                     Unqualified);
7673    if (ResultType.isNull()) return QualType();
7674    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7675      return LHS;
7676    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7677      return RHS;
7678    return getBlockPointerType(ResultType);
7679  }
7680  case Type::Atomic:
7681  {
7682    // Merge two pointer types, while trying to preserve typedef info
7683    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7684    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7685    if (Unqualified) {
7686      LHSValue = LHSValue.getUnqualifiedType();
7687      RHSValue = RHSValue.getUnqualifiedType();
7688    }
7689    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7690                                     Unqualified);
7691    if (ResultType.isNull()) return QualType();
7692    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7693      return LHS;
7694    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7695      return RHS;
7696    return getAtomicType(ResultType);
7697  }
7698  case Type::ConstantArray:
7699  {
7700    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7701    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7702    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7703      return QualType();
7704
7705    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7706    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7707    if (Unqualified) {
7708      LHSElem = LHSElem.getUnqualifiedType();
7709      RHSElem = RHSElem.getUnqualifiedType();
7710    }
7711
7712    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7713    if (ResultType.isNull()) return QualType();
7714    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7715      return LHS;
7716    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7717      return RHS;
7718    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7719                                          ArrayType::ArraySizeModifier(), 0);
7720    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7721                                          ArrayType::ArraySizeModifier(), 0);
7722    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7723    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7724    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7725      return LHS;
7726    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7727      return RHS;
7728    if (LVAT) {
7729      // FIXME: This isn't correct! But tricky to implement because
7730      // the array's size has to be the size of LHS, but the type
7731      // has to be different.
7732      return LHS;
7733    }
7734    if (RVAT) {
7735      // FIXME: This isn't correct! But tricky to implement because
7736      // the array's size has to be the size of RHS, but the type
7737      // has to be different.
7738      return RHS;
7739    }
7740    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7741    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7742    return getIncompleteArrayType(ResultType,
7743                                  ArrayType::ArraySizeModifier(), 0);
7744  }
7745  case Type::FunctionNoProto:
7746    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7747  case Type::Record:
7748  case Type::Enum:
7749    return QualType();
7750  case Type::Builtin:
7751    // Only exactly equal builtin types are compatible, which is tested above.
7752    return QualType();
7753  case Type::Complex:
7754    // Distinct complex types are incompatible.
7755    return QualType();
7756  case Type::Vector:
7757    // FIXME: The merged type should be an ExtVector!
7758    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7759                             RHSCan->getAs<VectorType>()))
7760      return LHS;
7761    return QualType();
7762  case Type::ObjCObject: {
7763    // Check if the types are assignment compatible.
7764    // FIXME: This should be type compatibility, e.g. whether
7765    // "LHS x; RHS x;" at global scope is legal.
7766    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7767    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7768    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7769      return LHS;
7770
7771    return QualType();
7772  }
7773  case Type::ObjCObjectPointer: {
7774    if (OfBlockPointer) {
7775      if (canAssignObjCInterfacesInBlockPointer(
7776                                          LHS->getAs<ObjCObjectPointerType>(),
7777                                          RHS->getAs<ObjCObjectPointerType>(),
7778                                          BlockReturnType))
7779        return LHS;
7780      return QualType();
7781    }
7782    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7783                                RHS->getAs<ObjCObjectPointerType>()))
7784      return LHS;
7785
7786    return QualType();
7787  }
7788  }
7789
7790  llvm_unreachable("Invalid Type::Class!");
7791}
7792
7793bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7794                   const FunctionProtoType *FromFunctionType,
7795                   const FunctionProtoType *ToFunctionType) {
7796  if (FromFunctionType->hasAnyConsumedParams() !=
7797      ToFunctionType->hasAnyConsumedParams())
7798    return false;
7799  FunctionProtoType::ExtProtoInfo FromEPI =
7800    FromFunctionType->getExtProtoInfo();
7801  FunctionProtoType::ExtProtoInfo ToEPI =
7802    ToFunctionType->getExtProtoInfo();
7803  if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
7804    for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
7805      if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
7806        return false;
7807    }
7808  return true;
7809}
7810
7811/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7812/// 'RHS' attributes and returns the merged version; including for function
7813/// return types.
7814QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7815  QualType LHSCan = getCanonicalType(LHS),
7816  RHSCan = getCanonicalType(RHS);
7817  // If two types are identical, they are compatible.
7818  if (LHSCan == RHSCan)
7819    return LHS;
7820  if (RHSCan->isFunctionType()) {
7821    if (!LHSCan->isFunctionType())
7822      return QualType();
7823    QualType OldReturnType =
7824        cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
7825    QualType NewReturnType =
7826        cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
7827    QualType ResReturnType =
7828      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7829    if (ResReturnType.isNull())
7830      return QualType();
7831    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7832      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7833      // In either case, use OldReturnType to build the new function type.
7834      const FunctionType *F = LHS->getAs<FunctionType>();
7835      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7836        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7837        EPI.ExtInfo = getFunctionExtInfo(LHS);
7838        QualType ResultType =
7839            getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
7840        return ResultType;
7841      }
7842    }
7843    return QualType();
7844  }
7845
7846  // If the qualifiers are different, the types can still be merged.
7847  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7848  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7849  if (LQuals != RQuals) {
7850    // If any of these qualifiers are different, we have a type mismatch.
7851    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7852        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7853      return QualType();
7854
7855    // Exactly one GC qualifier difference is allowed: __strong is
7856    // okay if the other type has no GC qualifier but is an Objective
7857    // C object pointer (i.e. implicitly strong by default).  We fix
7858    // this by pretending that the unqualified type was actually
7859    // qualified __strong.
7860    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7861    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7862    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7863
7864    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7865      return QualType();
7866
7867    if (GC_L == Qualifiers::Strong)
7868      return LHS;
7869    if (GC_R == Qualifiers::Strong)
7870      return RHS;
7871    return QualType();
7872  }
7873
7874  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7875    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7876    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7877    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7878    if (ResQT == LHSBaseQT)
7879      return LHS;
7880    if (ResQT == RHSBaseQT)
7881      return RHS;
7882  }
7883  return QualType();
7884}
7885
7886//===----------------------------------------------------------------------===//
7887//                         Integer Predicates
7888//===----------------------------------------------------------------------===//
7889
7890unsigned ASTContext::getIntWidth(QualType T) const {
7891  if (const EnumType *ET = T->getAs<EnumType>())
7892    T = ET->getDecl()->getIntegerType();
7893  if (T->isBooleanType())
7894    return 1;
7895  // For builtin types, just use the standard type sizing method
7896  return (unsigned)getTypeSize(T);
7897}
7898
7899QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7900  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7901
7902  // Turn <4 x signed int> -> <4 x unsigned int>
7903  if (const VectorType *VTy = T->getAs<VectorType>())
7904    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7905                         VTy->getNumElements(), VTy->getVectorKind());
7906
7907  // For enums, we return the unsigned version of the base type.
7908  if (const EnumType *ETy = T->getAs<EnumType>())
7909    T = ETy->getDecl()->getIntegerType();
7910
7911  const BuiltinType *BTy = T->getAs<BuiltinType>();
7912  assert(BTy && "Unexpected signed integer type");
7913  switch (BTy->getKind()) {
7914  case BuiltinType::Char_S:
7915  case BuiltinType::SChar:
7916    return UnsignedCharTy;
7917  case BuiltinType::Short:
7918    return UnsignedShortTy;
7919  case BuiltinType::Int:
7920    return UnsignedIntTy;
7921  case BuiltinType::Long:
7922    return UnsignedLongTy;
7923  case BuiltinType::LongLong:
7924    return UnsignedLongLongTy;
7925  case BuiltinType::Int128:
7926    return UnsignedInt128Ty;
7927  default:
7928    llvm_unreachable("Unexpected signed integer type");
7929  }
7930}
7931
7932ASTMutationListener::~ASTMutationListener() { }
7933
7934void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7935                                            QualType ReturnType) {}
7936
7937//===----------------------------------------------------------------------===//
7938//                          Builtin Type Computation
7939//===----------------------------------------------------------------------===//
7940
7941/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7942/// pointer over the consumed characters.  This returns the resultant type.  If
7943/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7944/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7945/// a vector of "i*".
7946///
7947/// RequiresICE is filled in on return to indicate whether the value is required
7948/// to be an Integer Constant Expression.
7949static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7950                                  ASTContext::GetBuiltinTypeError &Error,
7951                                  bool &RequiresICE,
7952                                  bool AllowTypeModifiers) {
7953  // Modifiers.
7954  int HowLong = 0;
7955  bool Signed = false, Unsigned = false;
7956  RequiresICE = false;
7957
7958  // Read the prefixed modifiers first.
7959  bool Done = false;
7960  while (!Done) {
7961    switch (*Str++) {
7962    default: Done = true; --Str; break;
7963    case 'I':
7964      RequiresICE = true;
7965      break;
7966    case 'S':
7967      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7968      assert(!Signed && "Can't use 'S' modifier multiple times!");
7969      Signed = true;
7970      break;
7971    case 'U':
7972      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7973      assert(!Unsigned && "Can't use 'U' modifier multiple times!");
7974      Unsigned = true;
7975      break;
7976    case 'L':
7977      assert(HowLong <= 2 && "Can't have LLLL modifier");
7978      ++HowLong;
7979      break;
7980    case 'W':
7981      // This modifier represents int64 type.
7982      assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
7983      switch (Context.getTargetInfo().getInt64Type()) {
7984      default:
7985        llvm_unreachable("Unexpected integer type");
7986      case TargetInfo::SignedLong:
7987        HowLong = 1;
7988        break;
7989      case TargetInfo::SignedLongLong:
7990        HowLong = 2;
7991        break;
7992      }
7993    }
7994  }
7995
7996  QualType Type;
7997
7998  // Read the base type.
7999  switch (*Str++) {
8000  default: llvm_unreachable("Unknown builtin type letter!");
8001  case 'v':
8002    assert(HowLong == 0 && !Signed && !Unsigned &&
8003           "Bad modifiers used with 'v'!");
8004    Type = Context.VoidTy;
8005    break;
8006  case 'h':
8007    assert(HowLong == 0 && !Signed && !Unsigned &&
8008           "Bad modifiers used with 'h'!");
8009    Type = Context.HalfTy;
8010    break;
8011  case 'f':
8012    assert(HowLong == 0 && !Signed && !Unsigned &&
8013           "Bad modifiers used with 'f'!");
8014    Type = Context.FloatTy;
8015    break;
8016  case 'd':
8017    assert(HowLong < 2 && !Signed && !Unsigned &&
8018           "Bad modifiers used with 'd'!");
8019    if (HowLong)
8020      Type = Context.LongDoubleTy;
8021    else
8022      Type = Context.DoubleTy;
8023    break;
8024  case 's':
8025    assert(HowLong == 0 && "Bad modifiers used with 's'!");
8026    if (Unsigned)
8027      Type = Context.UnsignedShortTy;
8028    else
8029      Type = Context.ShortTy;
8030    break;
8031  case 'i':
8032    if (HowLong == 3)
8033      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
8034    else if (HowLong == 2)
8035      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
8036    else if (HowLong == 1)
8037      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
8038    else
8039      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
8040    break;
8041  case 'c':
8042    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
8043    if (Signed)
8044      Type = Context.SignedCharTy;
8045    else if (Unsigned)
8046      Type = Context.UnsignedCharTy;
8047    else
8048      Type = Context.CharTy;
8049    break;
8050  case 'b': // boolean
8051    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
8052    Type = Context.BoolTy;
8053    break;
8054  case 'z':  // size_t.
8055    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
8056    Type = Context.getSizeType();
8057    break;
8058  case 'F':
8059    Type = Context.getCFConstantStringType();
8060    break;
8061  case 'G':
8062    Type = Context.getObjCIdType();
8063    break;
8064  case 'H':
8065    Type = Context.getObjCSelType();
8066    break;
8067  case 'M':
8068    Type = Context.getObjCSuperType();
8069    break;
8070  case 'a':
8071    Type = Context.getBuiltinVaListType();
8072    assert(!Type.isNull() && "builtin va list type not initialized!");
8073    break;
8074  case 'A':
8075    // This is a "reference" to a va_list; however, what exactly
8076    // this means depends on how va_list is defined. There are two
8077    // different kinds of va_list: ones passed by value, and ones
8078    // passed by reference.  An example of a by-value va_list is
8079    // x86, where va_list is a char*. An example of by-ref va_list
8080    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
8081    // we want this argument to be a char*&; for x86-64, we want
8082    // it to be a __va_list_tag*.
8083    Type = Context.getBuiltinVaListType();
8084    assert(!Type.isNull() && "builtin va list type not initialized!");
8085    if (Type->isArrayType())
8086      Type = Context.getArrayDecayedType(Type);
8087    else
8088      Type = Context.getLValueReferenceType(Type);
8089    break;
8090  case 'V': {
8091    char *End;
8092    unsigned NumElements = strtoul(Str, &End, 10);
8093    assert(End != Str && "Missing vector size");
8094    Str = End;
8095
8096    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
8097                                             RequiresICE, false);
8098    assert(!RequiresICE && "Can't require vector ICE");
8099
8100    // TODO: No way to make AltiVec vectors in builtins yet.
8101    Type = Context.getVectorType(ElementType, NumElements,
8102                                 VectorType::GenericVector);
8103    break;
8104  }
8105  case 'E': {
8106    char *End;
8107
8108    unsigned NumElements = strtoul(Str, &End, 10);
8109    assert(End != Str && "Missing vector size");
8110
8111    Str = End;
8112
8113    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
8114                                             false);
8115    Type = Context.getExtVectorType(ElementType, NumElements);
8116    break;
8117  }
8118  case 'X': {
8119    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
8120                                             false);
8121    assert(!RequiresICE && "Can't require complex ICE");
8122    Type = Context.getComplexType(ElementType);
8123    break;
8124  }
8125  case 'Y' : {
8126    Type = Context.getPointerDiffType();
8127    break;
8128  }
8129  case 'P':
8130    Type = Context.getFILEType();
8131    if (Type.isNull()) {
8132      Error = ASTContext::GE_Missing_stdio;
8133      return QualType();
8134    }
8135    break;
8136  case 'J':
8137    if (Signed)
8138      Type = Context.getsigjmp_bufType();
8139    else
8140      Type = Context.getjmp_bufType();
8141
8142    if (Type.isNull()) {
8143      Error = ASTContext::GE_Missing_setjmp;
8144      return QualType();
8145    }
8146    break;
8147  case 'K':
8148    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
8149    Type = Context.getucontext_tType();
8150
8151    if (Type.isNull()) {
8152      Error = ASTContext::GE_Missing_ucontext;
8153      return QualType();
8154    }
8155    break;
8156  case 'p':
8157    Type = Context.getProcessIDType();
8158    break;
8159  }
8160
8161  // If there are modifiers and if we're allowed to parse them, go for it.
8162  Done = !AllowTypeModifiers;
8163  while (!Done) {
8164    switch (char c = *Str++) {
8165    default: Done = true; --Str; break;
8166    case '*':
8167    case '&': {
8168      // Both pointers and references can have their pointee types
8169      // qualified with an address space.
8170      char *End;
8171      unsigned AddrSpace = strtoul(Str, &End, 10);
8172      if (End != Str && AddrSpace != 0) {
8173        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
8174        Str = End;
8175      }
8176      if (c == '*')
8177        Type = Context.getPointerType(Type);
8178      else
8179        Type = Context.getLValueReferenceType(Type);
8180      break;
8181    }
8182    // FIXME: There's no way to have a built-in with an rvalue ref arg.
8183    case 'C':
8184      Type = Type.withConst();
8185      break;
8186    case 'D':
8187      Type = Context.getVolatileType(Type);
8188      break;
8189    case 'R':
8190      Type = Type.withRestrict();
8191      break;
8192    }
8193  }
8194
8195  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
8196         "Integer constant 'I' type must be an integer");
8197
8198  return Type;
8199}
8200
8201/// GetBuiltinType - Return the type for the specified builtin.
8202QualType ASTContext::GetBuiltinType(unsigned Id,
8203                                    GetBuiltinTypeError &Error,
8204                                    unsigned *IntegerConstantArgs) const {
8205  const char *TypeStr = BuiltinInfo.getTypeString(Id);
8206
8207  SmallVector<QualType, 8> ArgTypes;
8208
8209  bool RequiresICE = false;
8210  Error = GE_None;
8211  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
8212                                       RequiresICE, true);
8213  if (Error != GE_None)
8214    return QualType();
8215
8216  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
8217
8218  while (TypeStr[0] && TypeStr[0] != '.') {
8219    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
8220    if (Error != GE_None)
8221      return QualType();
8222
8223    // If this argument is required to be an IntegerConstantExpression and the
8224    // caller cares, fill in the bitmask we return.
8225    if (RequiresICE && IntegerConstantArgs)
8226      *IntegerConstantArgs |= 1 << ArgTypes.size();
8227
8228    // Do array -> pointer decay.  The builtin should use the decayed type.
8229    if (Ty->isArrayType())
8230      Ty = getArrayDecayedType(Ty);
8231
8232    ArgTypes.push_back(Ty);
8233  }
8234
8235  if (Id == Builtin::BI__GetExceptionInfo)
8236    return QualType();
8237
8238  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
8239         "'.' should only occur at end of builtin type list!");
8240
8241  FunctionType::ExtInfo EI(CC_C);
8242  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
8243
8244  bool Variadic = (TypeStr[0] == '.');
8245
8246  // We really shouldn't be making a no-proto type here, especially in C++.
8247  if (ArgTypes.empty() && Variadic)
8248    return getFunctionNoProtoType(ResType, EI);
8249
8250  FunctionProtoType::ExtProtoInfo EPI;
8251  EPI.ExtInfo = EI;
8252  EPI.Variadic = Variadic;
8253
8254  return getFunctionType(ResType, ArgTypes, EPI);
8255}
8256
8257static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
8258                                             const FunctionDecl *FD) {
8259  if (!FD->isExternallyVisible())
8260    return GVA_Internal;
8261
8262  GVALinkage External = GVA_StrongExternal;
8263  switch (FD->getTemplateSpecializationKind()) {
8264  case TSK_Undeclared:
8265  case TSK_ExplicitSpecialization:
8266    External = GVA_StrongExternal;
8267    break;
8268
8269  case TSK_ExplicitInstantiationDefinition:
8270    return GVA_StrongODR;
8271
8272  // C++11 [temp.explicit]p10:
8273  //   [ Note: The intent is that an inline function that is the subject of
8274  //   an explicit instantiation declaration will still be implicitly
8275  //   instantiated when used so that the body can be considered for
8276  //   inlining, but that no out-of-line copy of the inline function would be
8277  //   generated in the translation unit. -- end note ]
8278  case TSK_ExplicitInstantiationDeclaration:
8279    return GVA_AvailableExternally;
8280
8281  case TSK_ImplicitInstantiation:
8282    External = GVA_DiscardableODR;
8283    break;
8284  }
8285
8286  if (!FD->isInlined())
8287    return External;
8288
8289  if ((!Context.getLangOpts().CPlusPlus &&
8290       !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
8291       !FD->hasAttr<DLLExportAttr>()) ||
8292      FD->hasAttr<GNUInlineAttr>()) {
8293    // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
8294
8295    // GNU or C99 inline semantics. Determine whether this symbol should be
8296    // externally visible.
8297    if (FD->isInlineDefinitionExternallyVisible())
8298      return External;
8299
8300    // C99 inline semantics, where the symbol is not externally visible.
8301    return GVA_AvailableExternally;
8302  }
8303
8304  // Functions specified with extern and inline in -fms-compatibility mode
8305  // forcibly get emitted.  While the body of the function cannot be later
8306  // replaced, the function definition cannot be discarded.
8307  if (FD->isMSExternInline())
8308    return GVA_StrongODR;
8309
8310  return GVA_DiscardableODR;
8311}
8312
8313static GVALinkage adjustGVALinkageForAttributes(GVALinkage L, const Decl *D) {
8314  // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
8315  // dllexport/dllimport on inline functions.
8316  if (D->hasAttr<DLLImportAttr>()) {
8317    if (L == GVA_DiscardableODR || L == GVA_StrongODR)
8318      return GVA_AvailableExternally;
8319  } else if (D->hasAttr<DLLExportAttr>() || D->hasAttr<CUDAGlobalAttr>()) {
8320    if (L == GVA_DiscardableODR)
8321      return GVA_StrongODR;
8322  }
8323  return L;
8324}
8325
8326GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
8327  return adjustGVALinkageForAttributes(basicGVALinkageForFunction(*this, FD),
8328                                       FD);
8329}
8330
8331static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
8332                                             const VarDecl *VD) {
8333  if (!VD->isExternallyVisible())
8334    return GVA_Internal;
8335
8336  if (VD->isStaticLocal()) {
8337    GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
8338    const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
8339    while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
8340      LexicalContext = LexicalContext->getLexicalParent();
8341
8342    // Let the static local variable inherit its linkage from the nearest
8343    // enclosing function.
8344    if (LexicalContext)
8345      StaticLocalLinkage =
8346          Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
8347
8348    // GVA_StrongODR function linkage is stronger than what we need,
8349    // downgrade to GVA_DiscardableODR.
8350    // This allows us to discard the variable if we never end up needing it.
8351    return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
8352                                               : StaticLocalLinkage;
8353  }
8354
8355  // MSVC treats in-class initialized static data members as definitions.
8356  // By giving them non-strong linkage, out-of-line definitions won't
8357  // cause link errors.
8358  if (Context.isMSStaticDataMemberInlineDefinition(VD))
8359    return GVA_DiscardableODR;
8360
8361  switch (VD->getTemplateSpecializationKind()) {
8362  case TSK_Undeclared:
8363    return GVA_StrongExternal;
8364
8365  case TSK_ExplicitSpecialization:
8366    return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
8367                   VD->isStaticDataMember()
8368               ? GVA_StrongODR
8369               : GVA_StrongExternal;
8370
8371  case TSK_ExplicitInstantiationDefinition:
8372    return GVA_StrongODR;
8373
8374  case TSK_ExplicitInstantiationDeclaration:
8375    return GVA_AvailableExternally;
8376
8377  case TSK_ImplicitInstantiation:
8378    return GVA_DiscardableODR;
8379  }
8380
8381  llvm_unreachable("Invalid Linkage!");
8382}
8383
8384GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
8385  return adjustGVALinkageForAttributes(basicGVALinkageForVariable(*this, VD),
8386                                       VD);
8387}
8388
8389bool ASTContext::DeclMustBeEmitted(const Decl *D) {
8390  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
8391    if (!VD->isFileVarDecl())
8392      return false;
8393    // Global named register variables (GNU extension) are never emitted.
8394    if (VD->getStorageClass() == SC_Register)
8395      return false;
8396    if (VD->getDescribedVarTemplate() ||
8397        isa<VarTemplatePartialSpecializationDecl>(VD))
8398      return false;
8399  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8400    // We never need to emit an uninstantiated function template.
8401    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
8402      return false;
8403  } else if (isa<OMPThreadPrivateDecl>(D))
8404    return true;
8405  else
8406    return false;
8407
8408  // If this is a member of a class template, we do not need to emit it.
8409  if (D->getDeclContext()->isDependentContext())
8410    return false;
8411
8412  // Weak references don't produce any output by themselves.
8413  if (D->hasAttr<WeakRefAttr>())
8414    return false;
8415
8416  // Aliases and used decls are required.
8417  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
8418    return true;
8419
8420  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8421    // Forward declarations aren't required.
8422    if (!FD->doesThisDeclarationHaveABody())
8423      return FD->doesDeclarationForceExternallyVisibleDefinition();
8424
8425    // Constructors and destructors are required.
8426    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
8427      return true;
8428
8429    // The key function for a class is required.  This rule only comes
8430    // into play when inline functions can be key functions, though.
8431    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
8432      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8433        const CXXRecordDecl *RD = MD->getParent();
8434        if (MD->isOutOfLine() && RD->isDynamicClass()) {
8435          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
8436          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
8437            return true;
8438        }
8439      }
8440    }
8441
8442    GVALinkage Linkage = GetGVALinkageForFunction(FD);
8443
8444    // static, static inline, always_inline, and extern inline functions can
8445    // always be deferred.  Normal inline functions can be deferred in C99/C++.
8446    // Implicit template instantiations can also be deferred in C++.
8447    if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
8448        Linkage == GVA_DiscardableODR)
8449      return false;
8450    return true;
8451  }
8452
8453  const VarDecl *VD = cast<VarDecl>(D);
8454  assert(VD->isFileVarDecl() && "Expected file scoped var");
8455
8456  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
8457      !isMSStaticDataMemberInlineDefinition(VD))
8458    return false;
8459
8460  // Variables that can be needed in other TUs are required.
8461  GVALinkage L = GetGVALinkageForVariable(VD);
8462  if (L != GVA_Internal && L != GVA_AvailableExternally &&
8463      L != GVA_DiscardableODR)
8464    return true;
8465
8466  // Variables that have destruction with side-effects are required.
8467  if (VD->getType().isDestructedType())
8468    return true;
8469
8470  // Variables that have initialization with side-effects are required.
8471  if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
8472      !VD->evaluateValue())
8473    return true;
8474
8475  return false;
8476}
8477
8478CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
8479                                                    bool IsCXXMethod) const {
8480  // Pass through to the C++ ABI object
8481  if (IsCXXMethod)
8482    return ABI->getDefaultMethodCallConv(IsVariadic);
8483
8484  if (LangOpts.MRTD && !IsVariadic) return CC_X86StdCall;
8485
8486  return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown);
8487}
8488
8489bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
8490  // Pass through to the C++ ABI object
8491  return ABI->isNearlyEmpty(RD);
8492}
8493
8494VTableContextBase *ASTContext::getVTableContext() {
8495  if (!VTContext.get()) {
8496    if (Target->getCXXABI().isMicrosoft())
8497      VTContext.reset(new MicrosoftVTableContext(*this));
8498    else
8499      VTContext.reset(new ItaniumVTableContext(*this));
8500  }
8501  return VTContext.get();
8502}
8503
8504MangleContext *ASTContext::createMangleContext() {
8505  switch (Target->getCXXABI().getKind()) {
8506  case TargetCXXABI::GenericAArch64:
8507  case TargetCXXABI::GenericItanium:
8508  case TargetCXXABI::GenericARM:
8509  case TargetCXXABI::GenericMIPS:
8510  case TargetCXXABI::iOS:
8511  case TargetCXXABI::iOS64:
8512  case TargetCXXABI::WebAssembly:
8513  case TargetCXXABI::WatchOS:
8514    return ItaniumMangleContext::create(*this, getDiagnostics());
8515  case TargetCXXABI::Microsoft:
8516    return MicrosoftMangleContext::create(*this, getDiagnostics());
8517  }
8518  llvm_unreachable("Unsupported ABI");
8519}
8520
8521CXXABI::~CXXABI() {}
8522
8523size_t ASTContext::getSideTableAllocatedMemory() const {
8524  return ASTRecordLayouts.getMemorySize() +
8525         llvm::capacity_in_bytes(ObjCLayouts) +
8526         llvm::capacity_in_bytes(KeyFunctions) +
8527         llvm::capacity_in_bytes(ObjCImpls) +
8528         llvm::capacity_in_bytes(BlockVarCopyInits) +
8529         llvm::capacity_in_bytes(DeclAttrs) +
8530         llvm::capacity_in_bytes(TemplateOrInstantiation) +
8531         llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
8532         llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8533         llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8534         llvm::capacity_in_bytes(OverriddenMethods) +
8535         llvm::capacity_in_bytes(Types) +
8536         llvm::capacity_in_bytes(VariableArrayTypes) +
8537         llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8538}
8539
8540/// getIntTypeForBitwidth -
8541/// sets integer QualTy according to specified details:
8542/// bitwidth, signed/unsigned.
8543/// Returns empty type if there is no appropriate target types.
8544QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
8545                                           unsigned Signed) const {
8546  TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
8547  CanQualType QualTy = getFromTargetType(Ty);
8548  if (!QualTy && DestWidth == 128)
8549    return Signed ? Int128Ty : UnsignedInt128Ty;
8550  return QualTy;
8551}
8552
8553/// getRealTypeForBitwidth -
8554/// sets floating point QualTy according to specified bitwidth.
8555/// Returns empty type if there is no appropriate target types.
8556QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
8557  TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
8558  switch (Ty) {
8559  case TargetInfo::Float:
8560    return FloatTy;
8561  case TargetInfo::Double:
8562    return DoubleTy;
8563  case TargetInfo::LongDouble:
8564    return LongDoubleTy;
8565  case TargetInfo::NoFloat:
8566    return QualType();
8567  }
8568
8569  llvm_unreachable("Unhandled TargetInfo::RealType value");
8570}
8571
8572void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8573  if (Number > 1)
8574    MangleNumbers[ND] = Number;
8575}
8576
8577unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8578  llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8579    MangleNumbers.find(ND);
8580  return I != MangleNumbers.end() ? I->second : 1;
8581}
8582
8583void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
8584  if (Number > 1)
8585    StaticLocalNumbers[VD] = Number;
8586}
8587
8588unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
8589  llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
8590      StaticLocalNumbers.find(VD);
8591  return I != StaticLocalNumbers.end() ? I->second : 1;
8592}
8593
8594MangleNumberingContext &
8595ASTContext::getManglingNumberContext(const DeclContext *DC) {
8596  assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
8597  MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
8598  if (!MCtx)
8599    MCtx = createMangleNumberingContext();
8600  return *MCtx;
8601}
8602
8603MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
8604  return ABI->createMangleNumberingContext();
8605}
8606
8607const CXXConstructorDecl *
8608ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
8609  return ABI->getCopyConstructorForExceptionObject(
8610      cast<CXXRecordDecl>(RD->getFirstDecl()));
8611}
8612
8613void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
8614                                                      CXXConstructorDecl *CD) {
8615  return ABI->addCopyConstructorForExceptionObject(
8616      cast<CXXRecordDecl>(RD->getFirstDecl()),
8617      cast<CXXConstructorDecl>(CD->getFirstDecl()));
8618}
8619
8620void ASTContext::addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
8621                                                 unsigned ParmIdx, Expr *DAE) {
8622  ABI->addDefaultArgExprForConstructor(
8623      cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx, DAE);
8624}
8625
8626Expr *ASTContext::getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
8627                                                  unsigned ParmIdx) {
8628  return ABI->getDefaultArgExprForConstructor(
8629      cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx);
8630}
8631
8632void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
8633                                                 TypedefNameDecl *DD) {
8634  return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
8635}
8636
8637TypedefNameDecl *
8638ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
8639  return ABI->getTypedefNameForUnnamedTagDecl(TD);
8640}
8641
8642void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
8643                                                DeclaratorDecl *DD) {
8644  return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
8645}
8646
8647DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
8648  return ABI->getDeclaratorForUnnamedTagDecl(TD);
8649}
8650
8651void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8652  ParamIndices[D] = index;
8653}
8654
8655unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8656  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8657  assert(I != ParamIndices.end() &&
8658         "ParmIndices lacks entry set by ParmVarDecl");
8659  return I->second;
8660}
8661
8662APValue *
8663ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8664                                          bool MayCreate) {
8665  assert(E && E->getStorageDuration() == SD_Static &&
8666         "don't need to cache the computed value for this temporary");
8667  if (MayCreate) {
8668    APValue *&MTVI = MaterializedTemporaryValues[E];
8669    if (!MTVI)
8670      MTVI = new (*this) APValue;
8671    return MTVI;
8672  }
8673
8674  return MaterializedTemporaryValues.lookup(E);
8675}
8676
8677bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8678  const llvm::Triple &T = getTargetInfo().getTriple();
8679  if (!T.isOSDarwin())
8680    return false;
8681
8682  if (!(T.isiOS() && T.isOSVersionLT(7)) &&
8683      !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
8684    return false;
8685
8686  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8687  CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8688  uint64_t Size = sizeChars.getQuantity();
8689  CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8690  unsigned Align = alignChars.getQuantity();
8691  unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8692  return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8693}
8694
8695namespace {
8696
8697ast_type_traits::DynTypedNode getSingleDynTypedNodeFromParentMap(
8698    ASTContext::ParentMapPointers::mapped_type U) {
8699  if (const auto *D = U.dyn_cast<const Decl *>())
8700    return ast_type_traits::DynTypedNode::create(*D);
8701  if (const auto *S = U.dyn_cast<const Stmt *>())
8702    return ast_type_traits::DynTypedNode::create(*S);
8703  return *U.get<ast_type_traits::DynTypedNode *>();
8704}
8705
8706/// Template specializations to abstract away from pointers and TypeLocs.
8707/// @{
8708template <typename T>
8709ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) {
8710  return ast_type_traits::DynTypedNode::create(*Node);
8711}
8712template <>
8713ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) {
8714  return ast_type_traits::DynTypedNode::create(Node);
8715}
8716template <>
8717ast_type_traits::DynTypedNode
8718createDynTypedNode(const NestedNameSpecifierLoc &Node) {
8719  return ast_type_traits::DynTypedNode::create(Node);
8720}
8721/// @}
8722
8723  /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8724  /// parents as defined by the \c RecursiveASTVisitor.
8725  ///
8726  /// Note that the relationship described here is purely in terms of AST
8727  /// traversal - there are other relationships (for example declaration context)
8728  /// in the AST that are better modeled by special matchers.
8729  ///
8730  /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8731  class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8732  public:
8733    /// \brief Builds and returns the translation unit's parent map.
8734    ///
8735    ///  The caller takes ownership of the returned \c ParentMap.
8736    static std::pair<ASTContext::ParentMapPointers *,
8737                     ASTContext::ParentMapOtherNodes *>
8738    buildMap(TranslationUnitDecl &TU) {
8739      ParentMapASTVisitor Visitor(new ASTContext::ParentMapPointers,
8740                                  new ASTContext::ParentMapOtherNodes);
8741      Visitor.TraverseDecl(&TU);
8742      return std::make_pair(Visitor.Parents, Visitor.OtherParents);
8743    }
8744
8745  private:
8746    typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8747
8748    ParentMapASTVisitor(ASTContext::ParentMapPointers *Parents,
8749                        ASTContext::ParentMapOtherNodes *OtherParents)
8750        : Parents(Parents), OtherParents(OtherParents) {}
8751
8752    bool shouldVisitTemplateInstantiations() const {
8753      return true;
8754    }
8755    bool shouldVisitImplicitCode() const {
8756      return true;
8757    }
8758
8759    template <typename T, typename MapNodeTy, typename BaseTraverseFn,
8760              typename MapTy>
8761    bool TraverseNode(T Node, MapNodeTy MapNode,
8762                      BaseTraverseFn BaseTraverse, MapTy *Parents) {
8763      if (!Node)
8764        return true;
8765      if (ParentStack.size() > 0) {
8766        // FIXME: Currently we add the same parent multiple times, but only
8767        // when no memoization data is available for the type.
8768        // For example when we visit all subexpressions of template
8769        // instantiations; this is suboptimal, but benign: the only way to
8770        // visit those is with hasAncestor / hasParent, and those do not create
8771        // new matches.
8772        // The plan is to enable DynTypedNode to be storable in a map or hash
8773        // map. The main problem there is to implement hash functions /
8774        // comparison operators for all types that DynTypedNode supports that
8775        // do not have pointer identity.
8776        auto &NodeOrVector = (*Parents)[MapNode];
8777        if (NodeOrVector.isNull()) {
8778          if (const auto *D = ParentStack.back().get<Decl>())
8779            NodeOrVector = D;
8780          else if (const auto *S = ParentStack.back().get<Stmt>())
8781            NodeOrVector = S;
8782          else
8783            NodeOrVector =
8784                new ast_type_traits::DynTypedNode(ParentStack.back());
8785        } else {
8786          if (!NodeOrVector.template is<ASTContext::ParentVector *>()) {
8787            auto *Vector = new ASTContext::ParentVector(
8788                1, getSingleDynTypedNodeFromParentMap(NodeOrVector));
8789            if (auto *Node =
8790                    NodeOrVector
8791                        .template dyn_cast<ast_type_traits::DynTypedNode *>())
8792              delete Node;
8793            NodeOrVector = Vector;
8794          }
8795
8796          auto *Vector =
8797              NodeOrVector.template get<ASTContext::ParentVector *>();
8798          // Skip duplicates for types that have memoization data.
8799          // We must check that the type has memoization data before calling
8800          // std::find() because DynTypedNode::operator== can't compare all
8801          // types.
8802          bool Found = ParentStack.back().getMemoizationData() &&
8803                       std::find(Vector->begin(), Vector->end(),
8804                                 ParentStack.back()) != Vector->end();
8805          if (!Found)
8806            Vector->push_back(ParentStack.back());
8807        }
8808      }
8809      ParentStack.push_back(createDynTypedNode(Node));
8810      bool Result = BaseTraverse();
8811      ParentStack.pop_back();
8812      return Result;
8813    }
8814
8815    bool TraverseDecl(Decl *DeclNode) {
8816      return TraverseNode(DeclNode, DeclNode,
8817                          [&] { return VisitorBase::TraverseDecl(DeclNode); },
8818                          Parents);
8819    }
8820
8821    bool TraverseStmt(Stmt *StmtNode) {
8822      return TraverseNode(StmtNode, StmtNode,
8823                          [&] { return VisitorBase::TraverseStmt(StmtNode); },
8824                          Parents);
8825    }
8826
8827    bool TraverseTypeLoc(TypeLoc TypeLocNode) {
8828      return TraverseNode(
8829          TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode),
8830          [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); },
8831          OtherParents);
8832    }
8833
8834    bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) {
8835      return TraverseNode(
8836          NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode),
8837          [&] {
8838            return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode);
8839          },
8840          OtherParents);
8841    }
8842
8843    ASTContext::ParentMapPointers *Parents;
8844    ASTContext::ParentMapOtherNodes *OtherParents;
8845    llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8846
8847    friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8848  };
8849
8850} // anonymous namespace
8851
8852template <typename NodeTy, typename MapTy>
8853static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node,
8854                                                      const MapTy &Map) {
8855  auto I = Map.find(Node);
8856  if (I == Map.end()) {
8857    return llvm::ArrayRef<ast_type_traits::DynTypedNode>();
8858  }
8859  if (auto *V = I->second.template dyn_cast<ASTContext::ParentVector *>()) {
8860    return llvm::makeArrayRef(*V);
8861  }
8862  return getSingleDynTypedNodeFromParentMap(I->second);
8863}
8864
8865ASTContext::DynTypedNodeList
8866ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8867  if (!PointerParents) {
8868    // We always need to run over the whole translation unit, as
8869    // hasAncestor can escape any subtree.
8870    auto Maps = ParentMapASTVisitor::buildMap(*getTranslationUnitDecl());
8871    PointerParents.reset(Maps.first);
8872    OtherParents.reset(Maps.second);
8873  }
8874  if (Node.getNodeKind().hasPointerIdentity())
8875    return getDynNodeFromMap(Node.getMemoizationData(), *PointerParents);
8876  return getDynNodeFromMap(Node, *OtherParents);
8877}
8878
8879bool
8880ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8881                                const ObjCMethodDecl *MethodImpl) {
8882  // No point trying to match an unavailable/deprecated mothod.
8883  if (MethodDecl->hasAttr<UnavailableAttr>()
8884      || MethodDecl->hasAttr<DeprecatedAttr>())
8885    return false;
8886  if (MethodDecl->getObjCDeclQualifier() !=
8887      MethodImpl->getObjCDeclQualifier())
8888    return false;
8889  if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
8890    return false;
8891
8892  if (MethodDecl->param_size() != MethodImpl->param_size())
8893    return false;
8894
8895  for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8896       IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8897       EF = MethodDecl->param_end();
8898       IM != EM && IF != EF; ++IM, ++IF) {
8899    const ParmVarDecl *DeclVar = (*IF);
8900    const ParmVarDecl *ImplVar = (*IM);
8901    if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8902      return false;
8903    if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8904      return false;
8905  }
8906  return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8907
8908}
8909
8910// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
8911// doesn't include ASTContext.h
8912template
8913clang::LazyGenerationalUpdatePtr<
8914    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
8915clang::LazyGenerationalUpdatePtr<
8916    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
8917        const clang::ASTContext &Ctx, Decl *Value);
8918