Expr.cpp revision 2fc46bf1a9bc31d50f82de37c70ea257d3cded27
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the Expr class and subclasses. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/AST/Expr.h" 15#include "clang/AST/ExprCXX.h" 16#include "clang/AST/APValue.h" 17#include "clang/AST/ASTContext.h" 18#include "clang/AST/DeclObjC.h" 19#include "clang/AST/DeclCXX.h" 20#include "clang/AST/DeclTemplate.h" 21#include "clang/AST/RecordLayout.h" 22#include "clang/AST/StmtVisitor.h" 23#include "clang/Basic/Builtins.h" 24#include "clang/Basic/TargetInfo.h" 25#include "llvm/Support/ErrorHandling.h" 26#include "llvm/Support/raw_ostream.h" 27#include <algorithm> 28using namespace clang; 29 30/// isKnownToHaveBooleanValue - Return true if this is an integer expression 31/// that is known to return 0 or 1. This happens for _Bool/bool expressions 32/// but also int expressions which are produced by things like comparisons in 33/// C. 34bool Expr::isKnownToHaveBooleanValue() const { 35 // If this value has _Bool type, it is obvious 0/1. 36 if (getType()->isBooleanType()) return true; 37 // If this is a non-scalar-integer type, we don't care enough to try. 38 if (!getType()->isIntegralType()) return false; 39 40 if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) 41 return PE->getSubExpr()->isKnownToHaveBooleanValue(); 42 43 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) { 44 switch (UO->getOpcode()) { 45 case UnaryOperator::Plus: 46 case UnaryOperator::Extension: 47 return UO->getSubExpr()->isKnownToHaveBooleanValue(); 48 default: 49 return false; 50 } 51 } 52 53 if (const CastExpr *CE = dyn_cast<CastExpr>(this)) 54 return CE->getSubExpr()->isKnownToHaveBooleanValue(); 55 56 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) { 57 switch (BO->getOpcode()) { 58 default: return false; 59 case BinaryOperator::LT: // Relational operators. 60 case BinaryOperator::GT: 61 case BinaryOperator::LE: 62 case BinaryOperator::GE: 63 case BinaryOperator::EQ: // Equality operators. 64 case BinaryOperator::NE: 65 case BinaryOperator::LAnd: // AND operator. 66 case BinaryOperator::LOr: // Logical OR operator. 67 return true; 68 69 case BinaryOperator::And: // Bitwise AND operator. 70 case BinaryOperator::Xor: // Bitwise XOR operator. 71 case BinaryOperator::Or: // Bitwise OR operator. 72 // Handle things like (x==2)|(y==12). 73 return BO->getLHS()->isKnownToHaveBooleanValue() && 74 BO->getRHS()->isKnownToHaveBooleanValue(); 75 76 case BinaryOperator::Comma: 77 case BinaryOperator::Assign: 78 return BO->getRHS()->isKnownToHaveBooleanValue(); 79 } 80 } 81 82 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this)) 83 return CO->getTrueExpr()->isKnownToHaveBooleanValue() && 84 CO->getFalseExpr()->isKnownToHaveBooleanValue(); 85 86 return false; 87} 88 89//===----------------------------------------------------------------------===// 90// Primary Expressions. 91//===----------------------------------------------------------------------===// 92 93void ExplicitTemplateArgumentList::initializeFrom( 94 const TemplateArgumentListInfo &Info) { 95 LAngleLoc = Info.getLAngleLoc(); 96 RAngleLoc = Info.getRAngleLoc(); 97 NumTemplateArgs = Info.size(); 98 99 TemplateArgumentLoc *ArgBuffer = getTemplateArgs(); 100 for (unsigned i = 0; i != NumTemplateArgs; ++i) 101 new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]); 102} 103 104void ExplicitTemplateArgumentList::copyInto( 105 TemplateArgumentListInfo &Info) const { 106 Info.setLAngleLoc(LAngleLoc); 107 Info.setRAngleLoc(RAngleLoc); 108 for (unsigned I = 0; I != NumTemplateArgs; ++I) 109 Info.addArgument(getTemplateArgs()[I]); 110} 111 112std::size_t ExplicitTemplateArgumentList::sizeFor( 113 const TemplateArgumentListInfo &Info) { 114 return sizeof(ExplicitTemplateArgumentList) + 115 sizeof(TemplateArgumentLoc) * Info.size(); 116} 117 118void DeclRefExpr::computeDependence() { 119 TypeDependent = false; 120 ValueDependent = false; 121 122 NamedDecl *D = getDecl(); 123 124 // (TD) C++ [temp.dep.expr]p3: 125 // An id-expression is type-dependent if it contains: 126 // 127 // and 128 // 129 // (VD) C++ [temp.dep.constexpr]p2: 130 // An identifier is value-dependent if it is: 131 132 // (TD) - an identifier that was declared with dependent type 133 // (VD) - a name declared with a dependent type, 134 if (getType()->isDependentType()) { 135 TypeDependent = true; 136 ValueDependent = true; 137 } 138 // (TD) - a conversion-function-id that specifies a dependent type 139 else if (D->getDeclName().getNameKind() 140 == DeclarationName::CXXConversionFunctionName && 141 D->getDeclName().getCXXNameType()->isDependentType()) { 142 TypeDependent = true; 143 ValueDependent = true; 144 } 145 // (TD) - a template-id that is dependent, 146 else if (hasExplicitTemplateArgumentList() && 147 TemplateSpecializationType::anyDependentTemplateArguments( 148 getTemplateArgs(), 149 getNumTemplateArgs())) { 150 TypeDependent = true; 151 ValueDependent = true; 152 } 153 // (VD) - the name of a non-type template parameter, 154 else if (isa<NonTypeTemplateParmDecl>(D)) 155 ValueDependent = true; 156 // (VD) - a constant with integral or enumeration type and is 157 // initialized with an expression that is value-dependent. 158 else if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 159 if (Var->getType()->isIntegralType() && 160 Var->getType().getCVRQualifiers() == Qualifiers::Const) { 161 if (const Expr *Init = Var->getAnyInitializer()) 162 if (Init->isValueDependent()) 163 ValueDependent = true; 164 } 165 } 166 // (TD) - a nested-name-specifier or a qualified-id that names a 167 // member of an unknown specialization. 168 // (handled by DependentScopeDeclRefExpr) 169} 170 171DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier, 172 SourceRange QualifierRange, 173 ValueDecl *D, SourceLocation NameLoc, 174 const TemplateArgumentListInfo *TemplateArgs, 175 QualType T) 176 : Expr(DeclRefExprClass, T, false, false), 177 DecoratedD(D, 178 (Qualifier? HasQualifierFlag : 0) | 179 (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)), 180 Loc(NameLoc) { 181 if (Qualifier) { 182 NameQualifier *NQ = getNameQualifier(); 183 NQ->NNS = Qualifier; 184 NQ->Range = QualifierRange; 185 } 186 187 if (TemplateArgs) 188 getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs); 189 190 computeDependence(); 191} 192 193DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, 194 NestedNameSpecifier *Qualifier, 195 SourceRange QualifierRange, 196 ValueDecl *D, 197 SourceLocation NameLoc, 198 QualType T, 199 const TemplateArgumentListInfo *TemplateArgs) { 200 std::size_t Size = sizeof(DeclRefExpr); 201 if (Qualifier != 0) 202 Size += sizeof(NameQualifier); 203 204 if (TemplateArgs) 205 Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs); 206 207 void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>()); 208 return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc, 209 TemplateArgs, T); 210} 211 212SourceRange DeclRefExpr::getSourceRange() const { 213 // FIXME: Does not handle multi-token names well, e.g., operator[]. 214 SourceRange R(Loc); 215 216 if (hasQualifier()) 217 R.setBegin(getQualifierRange().getBegin()); 218 if (hasExplicitTemplateArgumentList()) 219 R.setEnd(getRAngleLoc()); 220 return R; 221} 222 223// FIXME: Maybe this should use DeclPrinter with a special "print predefined 224// expr" policy instead. 225std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { 226 ASTContext &Context = CurrentDecl->getASTContext(); 227 228 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 229 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual) 230 return FD->getNameAsString(); 231 232 llvm::SmallString<256> Name; 233 llvm::raw_svector_ostream Out(Name); 234 235 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 236 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) 237 Out << "virtual "; 238 if (MD->isStatic()) 239 Out << "static "; 240 } 241 242 PrintingPolicy Policy(Context.getLangOptions()); 243 244 std::string Proto = FD->getQualifiedNameAsString(Policy); 245 246 const FunctionType *AFT = FD->getType()->getAs<FunctionType>(); 247 const FunctionProtoType *FT = 0; 248 if (FD->hasWrittenPrototype()) 249 FT = dyn_cast<FunctionProtoType>(AFT); 250 251 Proto += "("; 252 if (FT) { 253 llvm::raw_string_ostream POut(Proto); 254 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 255 if (i) POut << ", "; 256 std::string Param; 257 FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy); 258 POut << Param; 259 } 260 261 if (FT->isVariadic()) { 262 if (FD->getNumParams()) POut << ", "; 263 POut << "..."; 264 } 265 } 266 Proto += ")"; 267 268 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 269 Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); 270 if (ThisQuals.hasConst()) 271 Proto += " const"; 272 if (ThisQuals.hasVolatile()) 273 Proto += " volatile"; 274 } 275 276 if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 277 AFT->getResultType().getAsStringInternal(Proto, Policy); 278 279 Out << Proto; 280 281 Out.flush(); 282 return Name.str().str(); 283 } 284 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 285 llvm::SmallString<256> Name; 286 llvm::raw_svector_ostream Out(Name); 287 Out << (MD->isInstanceMethod() ? '-' : '+'); 288 Out << '['; 289 290 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 291 // a null check to avoid a crash. 292 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 293 Out << ID; 294 295 if (const ObjCCategoryImplDecl *CID = 296 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 297 Out << '(' << CID << ')'; 298 299 Out << ' '; 300 Out << MD->getSelector().getAsString(); 301 Out << ']'; 302 303 Out.flush(); 304 return Name.str().str(); 305 } 306 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { 307 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 308 return "top level"; 309 } 310 return ""; 311} 312 313/// getValueAsApproximateDouble - This returns the value as an inaccurate 314/// double. Note that this may cause loss of precision, but is useful for 315/// debugging dumps, etc. 316double FloatingLiteral::getValueAsApproximateDouble() const { 317 llvm::APFloat V = getValue(); 318 bool ignored; 319 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, 320 &ignored); 321 return V.convertToDouble(); 322} 323 324StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData, 325 unsigned ByteLength, bool Wide, 326 QualType Ty, 327 const SourceLocation *Loc, 328 unsigned NumStrs) { 329 // Allocate enough space for the StringLiteral plus an array of locations for 330 // any concatenated string tokens. 331 void *Mem = C.Allocate(sizeof(StringLiteral)+ 332 sizeof(SourceLocation)*(NumStrs-1), 333 llvm::alignof<StringLiteral>()); 334 StringLiteral *SL = new (Mem) StringLiteral(Ty); 335 336 // OPTIMIZE: could allocate this appended to the StringLiteral. 337 char *AStrData = new (C, 1) char[ByteLength]; 338 memcpy(AStrData, StrData, ByteLength); 339 SL->StrData = AStrData; 340 SL->ByteLength = ByteLength; 341 SL->IsWide = Wide; 342 SL->TokLocs[0] = Loc[0]; 343 SL->NumConcatenated = NumStrs; 344 345 if (NumStrs != 1) 346 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); 347 return SL; 348} 349 350StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) { 351 void *Mem = C.Allocate(sizeof(StringLiteral)+ 352 sizeof(SourceLocation)*(NumStrs-1), 353 llvm::alignof<StringLiteral>()); 354 StringLiteral *SL = new (Mem) StringLiteral(QualType()); 355 SL->StrData = 0; 356 SL->ByteLength = 0; 357 SL->NumConcatenated = NumStrs; 358 return SL; 359} 360 361void StringLiteral::DoDestroy(ASTContext &C) { 362 C.Deallocate(const_cast<char*>(StrData)); 363 Expr::DoDestroy(C); 364} 365 366void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) { 367 if (StrData) 368 C.Deallocate(const_cast<char*>(StrData)); 369 370 char *AStrData = new (C, 1) char[Str.size()]; 371 memcpy(AStrData, Str.data(), Str.size()); 372 StrData = AStrData; 373 ByteLength = Str.size(); 374} 375 376/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 377/// corresponds to, e.g. "sizeof" or "[pre]++". 378const char *UnaryOperator::getOpcodeStr(Opcode Op) { 379 switch (Op) { 380 default: assert(0 && "Unknown unary operator"); 381 case PostInc: return "++"; 382 case PostDec: return "--"; 383 case PreInc: return "++"; 384 case PreDec: return "--"; 385 case AddrOf: return "&"; 386 case Deref: return "*"; 387 case Plus: return "+"; 388 case Minus: return "-"; 389 case Not: return "~"; 390 case LNot: return "!"; 391 case Real: return "__real"; 392 case Imag: return "__imag"; 393 case Extension: return "__extension__"; 394 case OffsetOf: return "__builtin_offsetof"; 395 } 396} 397 398UnaryOperator::Opcode 399UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 400 switch (OO) { 401 default: assert(false && "No unary operator for overloaded function"); 402 case OO_PlusPlus: return Postfix ? PostInc : PreInc; 403 case OO_MinusMinus: return Postfix ? PostDec : PreDec; 404 case OO_Amp: return AddrOf; 405 case OO_Star: return Deref; 406 case OO_Plus: return Plus; 407 case OO_Minus: return Minus; 408 case OO_Tilde: return Not; 409 case OO_Exclaim: return LNot; 410 } 411} 412 413OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 414 switch (Opc) { 415 case PostInc: case PreInc: return OO_PlusPlus; 416 case PostDec: case PreDec: return OO_MinusMinus; 417 case AddrOf: return OO_Amp; 418 case Deref: return OO_Star; 419 case Plus: return OO_Plus; 420 case Minus: return OO_Minus; 421 case Not: return OO_Tilde; 422 case LNot: return OO_Exclaim; 423 default: return OO_None; 424 } 425} 426 427 428//===----------------------------------------------------------------------===// 429// Postfix Operators. 430//===----------------------------------------------------------------------===// 431 432CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, 433 unsigned numargs, QualType t, SourceLocation rparenloc) 434 : Expr(SC, t, 435 fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), 436 fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), 437 NumArgs(numargs) { 438 439 SubExprs = new (C) Stmt*[numargs+1]; 440 SubExprs[FN] = fn; 441 for (unsigned i = 0; i != numargs; ++i) 442 SubExprs[i+ARGS_START] = args[i]; 443 444 RParenLoc = rparenloc; 445} 446 447CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, 448 QualType t, SourceLocation rparenloc) 449 : Expr(CallExprClass, t, 450 fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), 451 fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), 452 NumArgs(numargs) { 453 454 SubExprs = new (C) Stmt*[numargs+1]; 455 SubExprs[FN] = fn; 456 for (unsigned i = 0; i != numargs; ++i) 457 SubExprs[i+ARGS_START] = args[i]; 458 459 RParenLoc = rparenloc; 460} 461 462CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty) 463 : Expr(SC, Empty), SubExprs(0), NumArgs(0) { 464 SubExprs = new (C) Stmt*[1]; 465} 466 467void CallExpr::DoDestroy(ASTContext& C) { 468 DestroyChildren(C); 469 if (SubExprs) C.Deallocate(SubExprs); 470 this->~CallExpr(); 471 C.Deallocate(this); 472} 473 474Decl *CallExpr::getCalleeDecl() { 475 Expr *CEE = getCallee()->IgnoreParenCasts(); 476 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 477 return DRE->getDecl(); 478 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 479 return ME->getMemberDecl(); 480 481 return 0; 482} 483 484FunctionDecl *CallExpr::getDirectCallee() { 485 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); 486} 487 488/// setNumArgs - This changes the number of arguments present in this call. 489/// Any orphaned expressions are deleted by this, and any new operands are set 490/// to null. 491void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { 492 // No change, just return. 493 if (NumArgs == getNumArgs()) return; 494 495 // If shrinking # arguments, just delete the extras and forgot them. 496 if (NumArgs < getNumArgs()) { 497 for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i) 498 getArg(i)->Destroy(C); 499 this->NumArgs = NumArgs; 500 return; 501 } 502 503 // Otherwise, we are growing the # arguments. New an bigger argument array. 504 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1]; 505 // Copy over args. 506 for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i) 507 NewSubExprs[i] = SubExprs[i]; 508 // Null out new args. 509 for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i) 510 NewSubExprs[i] = 0; 511 512 if (SubExprs) C.Deallocate(SubExprs); 513 SubExprs = NewSubExprs; 514 this->NumArgs = NumArgs; 515} 516 517/// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If 518/// not, return 0. 519unsigned CallExpr::isBuiltinCall(ASTContext &Context) const { 520 // All simple function calls (e.g. func()) are implicitly cast to pointer to 521 // function. As a result, we try and obtain the DeclRefExpr from the 522 // ImplicitCastExpr. 523 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 524 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 525 return 0; 526 527 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 528 if (!DRE) 529 return 0; 530 531 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 532 if (!FDecl) 533 return 0; 534 535 if (!FDecl->getIdentifier()) 536 return 0; 537 538 return FDecl->getBuiltinID(); 539} 540 541QualType CallExpr::getCallReturnType() const { 542 QualType CalleeType = getCallee()->getType(); 543 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) 544 CalleeType = FnTypePtr->getPointeeType(); 545 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) 546 CalleeType = BPT->getPointeeType(); 547 548 const FunctionType *FnType = CalleeType->getAs<FunctionType>(); 549 return FnType->getResultType(); 550} 551 552OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type, 553 SourceLocation OperatorLoc, 554 TypeSourceInfo *tsi, 555 OffsetOfNode* compsPtr, unsigned numComps, 556 Expr** exprsPtr, unsigned numExprs, 557 SourceLocation RParenLoc) { 558 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 559 sizeof(OffsetOfNode) * numComps + 560 sizeof(Expr*) * numExprs); 561 562 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps, 563 exprsPtr, numExprs, RParenLoc); 564} 565 566OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C, 567 unsigned numComps, unsigned numExprs) { 568 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 569 sizeof(OffsetOfNode) * numComps + 570 sizeof(Expr*) * numExprs); 571 return new (Mem) OffsetOfExpr(numComps, numExprs); 572} 573 574OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type, 575 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 576 OffsetOfNode* compsPtr, unsigned numComps, 577 Expr** exprsPtr, unsigned numExprs, 578 SourceLocation RParenLoc) 579 : Expr(OffsetOfExprClass, type, /*TypeDependent=*/false, 580 /*ValueDependent=*/tsi->getType()->isDependentType() || 581 hasAnyTypeDependentArguments(exprsPtr, numExprs) || 582 hasAnyValueDependentArguments(exprsPtr, numExprs)), 583 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 584 NumComps(numComps), NumExprs(numExprs) 585{ 586 for(unsigned i = 0; i < numComps; ++i) { 587 setComponent(i, compsPtr[i]); 588 } 589 590 for(unsigned i = 0; i < numExprs; ++i) { 591 setIndexExpr(i, exprsPtr[i]); 592 } 593} 594 595IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const { 596 assert(getKind() == Field || getKind() == Identifier); 597 if (getKind() == Field) 598 return getField()->getIdentifier(); 599 600 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 601} 602 603MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow, 604 NestedNameSpecifier *qual, 605 SourceRange qualrange, 606 ValueDecl *memberdecl, 607 DeclAccessPair founddecl, 608 SourceLocation l, 609 const TemplateArgumentListInfo *targs, 610 QualType ty) { 611 std::size_t Size = sizeof(MemberExpr); 612 613 bool hasQualOrFound = (qual != 0 || 614 founddecl.getDecl() != memberdecl || 615 founddecl.getAccess() != memberdecl->getAccess()); 616 if (hasQualOrFound) 617 Size += sizeof(MemberNameQualifier); 618 619 if (targs) 620 Size += ExplicitTemplateArgumentList::sizeFor(*targs); 621 622 void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>()); 623 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, l, ty); 624 625 if (hasQualOrFound) { 626 if (qual && qual->isDependent()) { 627 E->setValueDependent(true); 628 E->setTypeDependent(true); 629 } 630 E->HasQualifierOrFoundDecl = true; 631 632 MemberNameQualifier *NQ = E->getMemberQualifier(); 633 NQ->NNS = qual; 634 NQ->Range = qualrange; 635 NQ->FoundDecl = founddecl; 636 } 637 638 if (targs) { 639 E->HasExplicitTemplateArgumentList = true; 640 E->getExplicitTemplateArgumentList()->initializeFrom(*targs); 641 } 642 643 return E; 644} 645 646const char *CastExpr::getCastKindName() const { 647 switch (getCastKind()) { 648 case CastExpr::CK_Unknown: 649 return "Unknown"; 650 case CastExpr::CK_BitCast: 651 return "BitCast"; 652 case CastExpr::CK_NoOp: 653 return "NoOp"; 654 case CastExpr::CK_BaseToDerived: 655 return "BaseToDerived"; 656 case CastExpr::CK_DerivedToBase: 657 return "DerivedToBase"; 658 case CastExpr::CK_UncheckedDerivedToBase: 659 return "UncheckedDerivedToBase"; 660 case CastExpr::CK_Dynamic: 661 return "Dynamic"; 662 case CastExpr::CK_ToUnion: 663 return "ToUnion"; 664 case CastExpr::CK_ArrayToPointerDecay: 665 return "ArrayToPointerDecay"; 666 case CastExpr::CK_FunctionToPointerDecay: 667 return "FunctionToPointerDecay"; 668 case CastExpr::CK_NullToMemberPointer: 669 return "NullToMemberPointer"; 670 case CastExpr::CK_BaseToDerivedMemberPointer: 671 return "BaseToDerivedMemberPointer"; 672 case CastExpr::CK_DerivedToBaseMemberPointer: 673 return "DerivedToBaseMemberPointer"; 674 case CastExpr::CK_UserDefinedConversion: 675 return "UserDefinedConversion"; 676 case CastExpr::CK_ConstructorConversion: 677 return "ConstructorConversion"; 678 case CastExpr::CK_IntegralToPointer: 679 return "IntegralToPointer"; 680 case CastExpr::CK_PointerToIntegral: 681 return "PointerToIntegral"; 682 case CastExpr::CK_ToVoid: 683 return "ToVoid"; 684 case CastExpr::CK_VectorSplat: 685 return "VectorSplat"; 686 case CastExpr::CK_IntegralCast: 687 return "IntegralCast"; 688 case CastExpr::CK_IntegralToFloating: 689 return "IntegralToFloating"; 690 case CastExpr::CK_FloatingToIntegral: 691 return "FloatingToIntegral"; 692 case CastExpr::CK_FloatingCast: 693 return "FloatingCast"; 694 case CastExpr::CK_MemberPointerToBoolean: 695 return "MemberPointerToBoolean"; 696 case CastExpr::CK_AnyPointerToObjCPointerCast: 697 return "AnyPointerToObjCPointerCast"; 698 case CastExpr::CK_AnyPointerToBlockPointerCast: 699 return "AnyPointerToBlockPointerCast"; 700 } 701 702 assert(0 && "Unhandled cast kind!"); 703 return 0; 704} 705 706void CastExpr::DoDestroy(ASTContext &C) 707{ 708 BasePath.Destroy(); 709 Expr::DoDestroy(C); 710} 711 712Expr *CastExpr::getSubExprAsWritten() { 713 Expr *SubExpr = 0; 714 CastExpr *E = this; 715 do { 716 SubExpr = E->getSubExpr(); 717 718 // Skip any temporary bindings; they're implicit. 719 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 720 SubExpr = Binder->getSubExpr(); 721 722 // Conversions by constructor and conversion functions have a 723 // subexpression describing the call; strip it off. 724 if (E->getCastKind() == CastExpr::CK_ConstructorConversion) 725 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); 726 else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion) 727 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); 728 729 // If the subexpression we're left with is an implicit cast, look 730 // through that, too. 731 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 732 733 return SubExpr; 734} 735 736/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 737/// corresponds to, e.g. "<<=". 738const char *BinaryOperator::getOpcodeStr(Opcode Op) { 739 switch (Op) { 740 case PtrMemD: return ".*"; 741 case PtrMemI: return "->*"; 742 case Mul: return "*"; 743 case Div: return "/"; 744 case Rem: return "%"; 745 case Add: return "+"; 746 case Sub: return "-"; 747 case Shl: return "<<"; 748 case Shr: return ">>"; 749 case LT: return "<"; 750 case GT: return ">"; 751 case LE: return "<="; 752 case GE: return ">="; 753 case EQ: return "=="; 754 case NE: return "!="; 755 case And: return "&"; 756 case Xor: return "^"; 757 case Or: return "|"; 758 case LAnd: return "&&"; 759 case LOr: return "||"; 760 case Assign: return "="; 761 case MulAssign: return "*="; 762 case DivAssign: return "/="; 763 case RemAssign: return "%="; 764 case AddAssign: return "+="; 765 case SubAssign: return "-="; 766 case ShlAssign: return "<<="; 767 case ShrAssign: return ">>="; 768 case AndAssign: return "&="; 769 case XorAssign: return "^="; 770 case OrAssign: return "|="; 771 case Comma: return ","; 772 } 773 774 return ""; 775} 776 777BinaryOperator::Opcode 778BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 779 switch (OO) { 780 default: assert(false && "Not an overloadable binary operator"); 781 case OO_Plus: return Add; 782 case OO_Minus: return Sub; 783 case OO_Star: return Mul; 784 case OO_Slash: return Div; 785 case OO_Percent: return Rem; 786 case OO_Caret: return Xor; 787 case OO_Amp: return And; 788 case OO_Pipe: return Or; 789 case OO_Equal: return Assign; 790 case OO_Less: return LT; 791 case OO_Greater: return GT; 792 case OO_PlusEqual: return AddAssign; 793 case OO_MinusEqual: return SubAssign; 794 case OO_StarEqual: return MulAssign; 795 case OO_SlashEqual: return DivAssign; 796 case OO_PercentEqual: return RemAssign; 797 case OO_CaretEqual: return XorAssign; 798 case OO_AmpEqual: return AndAssign; 799 case OO_PipeEqual: return OrAssign; 800 case OO_LessLess: return Shl; 801 case OO_GreaterGreater: return Shr; 802 case OO_LessLessEqual: return ShlAssign; 803 case OO_GreaterGreaterEqual: return ShrAssign; 804 case OO_EqualEqual: return EQ; 805 case OO_ExclaimEqual: return NE; 806 case OO_LessEqual: return LE; 807 case OO_GreaterEqual: return GE; 808 case OO_AmpAmp: return LAnd; 809 case OO_PipePipe: return LOr; 810 case OO_Comma: return Comma; 811 case OO_ArrowStar: return PtrMemI; 812 } 813} 814 815OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 816 static const OverloadedOperatorKind OverOps[] = { 817 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 818 OO_Star, OO_Slash, OO_Percent, 819 OO_Plus, OO_Minus, 820 OO_LessLess, OO_GreaterGreater, 821 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 822 OO_EqualEqual, OO_ExclaimEqual, 823 OO_Amp, 824 OO_Caret, 825 OO_Pipe, 826 OO_AmpAmp, 827 OO_PipePipe, 828 OO_Equal, OO_StarEqual, 829 OO_SlashEqual, OO_PercentEqual, 830 OO_PlusEqual, OO_MinusEqual, 831 OO_LessLessEqual, OO_GreaterGreaterEqual, 832 OO_AmpEqual, OO_CaretEqual, 833 OO_PipeEqual, 834 OO_Comma 835 }; 836 return OverOps[Opc]; 837} 838 839InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc, 840 Expr **initExprs, unsigned numInits, 841 SourceLocation rbraceloc) 842 : Expr(InitListExprClass, QualType(), false, false), 843 InitExprs(C, numInits), 844 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0), 845 UnionFieldInit(0), HadArrayRangeDesignator(false) 846{ 847 for (unsigned I = 0; I != numInits; ++I) { 848 if (initExprs[I]->isTypeDependent()) 849 TypeDependent = true; 850 if (initExprs[I]->isValueDependent()) 851 ValueDependent = true; 852 } 853 854 InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits); 855} 856 857void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) { 858 if (NumInits > InitExprs.size()) 859 InitExprs.reserve(C, NumInits); 860} 861 862void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) { 863 for (unsigned Idx = NumInits, LastIdx = InitExprs.size(); 864 Idx < LastIdx; ++Idx) 865 InitExprs[Idx]->Destroy(C); 866 InitExprs.resize(C, NumInits, 0); 867} 868 869Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) { 870 if (Init >= InitExprs.size()) { 871 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0); 872 InitExprs.back() = expr; 873 return 0; 874 } 875 876 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 877 InitExprs[Init] = expr; 878 return Result; 879} 880 881/// getFunctionType - Return the underlying function type for this block. 882/// 883const FunctionType *BlockExpr::getFunctionType() const { 884 return getType()->getAs<BlockPointerType>()-> 885 getPointeeType()->getAs<FunctionType>(); 886} 887 888SourceLocation BlockExpr::getCaretLocation() const { 889 return TheBlock->getCaretLocation(); 890} 891const Stmt *BlockExpr::getBody() const { 892 return TheBlock->getBody(); 893} 894Stmt *BlockExpr::getBody() { 895 return TheBlock->getBody(); 896} 897 898 899//===----------------------------------------------------------------------===// 900// Generic Expression Routines 901//===----------------------------------------------------------------------===// 902 903/// isUnusedResultAWarning - Return true if this immediate expression should 904/// be warned about if the result is unused. If so, fill in Loc and Ranges 905/// with location to warn on and the source range[s] to report with the 906/// warning. 907bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, 908 SourceRange &R2, ASTContext &Ctx) const { 909 // Don't warn if the expr is type dependent. The type could end up 910 // instantiating to void. 911 if (isTypeDependent()) 912 return false; 913 914 switch (getStmtClass()) { 915 default: 916 if (getType()->isVoidType()) 917 return false; 918 Loc = getExprLoc(); 919 R1 = getSourceRange(); 920 return true; 921 case ParenExprClass: 922 return cast<ParenExpr>(this)->getSubExpr()-> 923 isUnusedResultAWarning(Loc, R1, R2, Ctx); 924 case UnaryOperatorClass: { 925 const UnaryOperator *UO = cast<UnaryOperator>(this); 926 927 switch (UO->getOpcode()) { 928 default: break; 929 case UnaryOperator::PostInc: 930 case UnaryOperator::PostDec: 931 case UnaryOperator::PreInc: 932 case UnaryOperator::PreDec: // ++/-- 933 return false; // Not a warning. 934 case UnaryOperator::Deref: 935 // Dereferencing a volatile pointer is a side-effect. 936 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 937 return false; 938 break; 939 case UnaryOperator::Real: 940 case UnaryOperator::Imag: 941 // accessing a piece of a volatile complex is a side-effect. 942 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 943 .isVolatileQualified()) 944 return false; 945 break; 946 case UnaryOperator::Extension: 947 return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx); 948 } 949 Loc = UO->getOperatorLoc(); 950 R1 = UO->getSubExpr()->getSourceRange(); 951 return true; 952 } 953 case BinaryOperatorClass: { 954 const BinaryOperator *BO = cast<BinaryOperator>(this); 955 switch (BO->getOpcode()) { 956 default: 957 break; 958 // Consider ',', '||', '&&' to have side effects if the LHS or RHS does. 959 case BinaryOperator::Comma: 960 // ((foo = <blah>), 0) is an idiom for hiding the result (and 961 // lvalue-ness) of an assignment written in a macro. 962 if (IntegerLiteral *IE = 963 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 964 if (IE->getValue() == 0) 965 return false; 966 case BinaryOperator::LAnd: 967 case BinaryOperator::LOr: 968 return (BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) || 969 BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 970 } 971 if (BO->isAssignmentOp()) 972 return false; 973 Loc = BO->getOperatorLoc(); 974 R1 = BO->getLHS()->getSourceRange(); 975 R2 = BO->getRHS()->getSourceRange(); 976 return true; 977 } 978 case CompoundAssignOperatorClass: 979 return false; 980 981 case ConditionalOperatorClass: { 982 // The condition must be evaluated, but if either the LHS or RHS is a 983 // warning, warn about them. 984 const ConditionalOperator *Exp = cast<ConditionalOperator>(this); 985 if (Exp->getLHS() && 986 Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) 987 return true; 988 return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); 989 } 990 991 case MemberExprClass: 992 // If the base pointer or element is to a volatile pointer/field, accessing 993 // it is a side effect. 994 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 995 return false; 996 Loc = cast<MemberExpr>(this)->getMemberLoc(); 997 R1 = SourceRange(Loc, Loc); 998 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 999 return true; 1000 1001 case ArraySubscriptExprClass: 1002 // If the base pointer or element is to a volatile pointer/field, accessing 1003 // it is a side effect. 1004 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 1005 return false; 1006 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 1007 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 1008 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 1009 return true; 1010 1011 case CallExprClass: 1012 case CXXOperatorCallExprClass: 1013 case CXXMemberCallExprClass: { 1014 // If this is a direct call, get the callee. 1015 const CallExpr *CE = cast<CallExpr>(this); 1016 if (const Decl *FD = CE->getCalleeDecl()) { 1017 // If the callee has attribute pure, const, or warn_unused_result, warn 1018 // about it. void foo() { strlen("bar"); } should warn. 1019 // 1020 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 1021 // updated to match for QoI. 1022 if (FD->getAttr<WarnUnusedResultAttr>() || 1023 FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { 1024 Loc = CE->getCallee()->getLocStart(); 1025 R1 = CE->getCallee()->getSourceRange(); 1026 1027 if (unsigned NumArgs = CE->getNumArgs()) 1028 R2 = SourceRange(CE->getArg(0)->getLocStart(), 1029 CE->getArg(NumArgs-1)->getLocEnd()); 1030 return true; 1031 } 1032 } 1033 return false; 1034 } 1035 1036 case CXXTemporaryObjectExprClass: 1037 case CXXConstructExprClass: 1038 return false; 1039 1040 case ObjCMessageExprClass: { 1041 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 1042 const ObjCMethodDecl *MD = ME->getMethodDecl(); 1043 if (MD && MD->getAttr<WarnUnusedResultAttr>()) { 1044 Loc = getExprLoc(); 1045 return true; 1046 } 1047 return false; 1048 } 1049 1050 case ObjCImplicitSetterGetterRefExprClass: { // Dot syntax for message send. 1051#if 0 1052 const ObjCImplicitSetterGetterRefExpr *Ref = 1053 cast<ObjCImplicitSetterGetterRefExpr>(this); 1054 // FIXME: We really want the location of the '.' here. 1055 Loc = Ref->getLocation(); 1056 R1 = SourceRange(Ref->getLocation(), Ref->getLocation()); 1057 if (Ref->getBase()) 1058 R2 = Ref->getBase()->getSourceRange(); 1059#else 1060 Loc = getExprLoc(); 1061 R1 = getSourceRange(); 1062#endif 1063 return true; 1064 } 1065 case StmtExprClass: { 1066 // Statement exprs don't logically have side effects themselves, but are 1067 // sometimes used in macros in ways that give them a type that is unused. 1068 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 1069 // however, if the result of the stmt expr is dead, we don't want to emit a 1070 // warning. 1071 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 1072 if (!CS->body_empty()) 1073 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 1074 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1075 1076 if (getType()->isVoidType()) 1077 return false; 1078 Loc = cast<StmtExpr>(this)->getLParenLoc(); 1079 R1 = getSourceRange(); 1080 return true; 1081 } 1082 case CStyleCastExprClass: 1083 // If this is an explicit cast to void, allow it. People do this when they 1084 // think they know what they're doing :). 1085 if (getType()->isVoidType()) 1086 return false; 1087 Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); 1088 R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); 1089 return true; 1090 case CXXFunctionalCastExprClass: { 1091 if (getType()->isVoidType()) 1092 return false; 1093 const CastExpr *CE = cast<CastExpr>(this); 1094 1095 // If this is a cast to void or a constructor conversion, check the operand. 1096 // Otherwise, the result of the cast is unused. 1097 if (CE->getCastKind() == CastExpr::CK_ToVoid || 1098 CE->getCastKind() == CastExpr::CK_ConstructorConversion) 1099 return (cast<CastExpr>(this)->getSubExpr() 1100 ->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1101 Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); 1102 R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); 1103 return true; 1104 } 1105 1106 case ImplicitCastExprClass: 1107 // Check the operand, since implicit casts are inserted by Sema 1108 return (cast<ImplicitCastExpr>(this) 1109 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1110 1111 case CXXDefaultArgExprClass: 1112 return (cast<CXXDefaultArgExpr>(this) 1113 ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1114 1115 case CXXNewExprClass: 1116 // FIXME: In theory, there might be new expressions that don't have side 1117 // effects (e.g. a placement new with an uninitialized POD). 1118 case CXXDeleteExprClass: 1119 return false; 1120 case CXXBindTemporaryExprClass: 1121 return (cast<CXXBindTemporaryExpr>(this) 1122 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1123 case CXXExprWithTemporariesClass: 1124 return (cast<CXXExprWithTemporaries>(this) 1125 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1126 } 1127} 1128 1129/// DeclCanBeLvalue - Determine whether the given declaration can be 1130/// an lvalue. This is a helper routine for isLvalue. 1131static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) { 1132 // C++ [temp.param]p6: 1133 // A non-type non-reference template-parameter is not an lvalue. 1134 if (const NonTypeTemplateParmDecl *NTTParm 1135 = dyn_cast<NonTypeTemplateParmDecl>(Decl)) 1136 return NTTParm->getType()->isReferenceType(); 1137 1138 return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) || 1139 // C++ 3.10p2: An lvalue refers to an object or function. 1140 (Ctx.getLangOptions().CPlusPlus && 1141 (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl))); 1142} 1143 1144/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an 1145/// incomplete type other than void. Nonarray expressions that can be lvalues: 1146/// - name, where name must be a variable 1147/// - e[i] 1148/// - (e), where e must be an lvalue 1149/// - e.name, where e must be an lvalue 1150/// - e->name 1151/// - *e, the type of e cannot be a function type 1152/// - string-constant 1153/// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension] 1154/// - reference type [C++ [expr]] 1155/// 1156Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const { 1157 assert(!TR->isReferenceType() && "Expressions can't have reference type."); 1158 1159 isLvalueResult Res = isLvalueInternal(Ctx); 1160 if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus) 1161 return Res; 1162 1163 // first, check the type (C99 6.3.2.1). Expressions with function 1164 // type in C are not lvalues, but they can be lvalues in C++. 1165 if (TR->isFunctionType() || TR == Ctx.OverloadTy) 1166 return LV_NotObjectType; 1167 1168 // Allow qualified void which is an incomplete type other than void (yuck). 1169 if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers()) 1170 return LV_IncompleteVoidType; 1171 1172 return LV_Valid; 1173} 1174 1175// Check whether the expression can be sanely treated like an l-value 1176Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const { 1177 switch (getStmtClass()) { 1178 case ObjCIsaExprClass: 1179 case StringLiteralClass: // C99 6.5.1p4 1180 case ObjCEncodeExprClass: // @encode behaves like its string in every way. 1181 return LV_Valid; 1182 case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2)))) 1183 // For vectors, make sure base is an lvalue (i.e. not a function call). 1184 if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType()) 1185 return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx); 1186 return LV_Valid; 1187 case DeclRefExprClass: { // C99 6.5.1p2 1188 const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl(); 1189 if (DeclCanBeLvalue(RefdDecl, Ctx)) 1190 return LV_Valid; 1191 break; 1192 } 1193 case BlockDeclRefExprClass: { 1194 const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this); 1195 if (isa<VarDecl>(BDR->getDecl())) 1196 return LV_Valid; 1197 break; 1198 } 1199 case MemberExprClass: { 1200 const MemberExpr *m = cast<MemberExpr>(this); 1201 if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4: 1202 NamedDecl *Member = m->getMemberDecl(); 1203 // C++ [expr.ref]p4: 1204 // If E2 is declared to have type "reference to T", then E1.E2 1205 // is an lvalue. 1206 if (ValueDecl *Value = dyn_cast<ValueDecl>(Member)) 1207 if (Value->getType()->isReferenceType()) 1208 return LV_Valid; 1209 1210 // -- If E2 is a static data member [...] then E1.E2 is an lvalue. 1211 if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord()) 1212 return LV_Valid; 1213 1214 // -- If E2 is a non-static data member [...]. If E1 is an 1215 // lvalue, then E1.E2 is an lvalue. 1216 if (isa<FieldDecl>(Member)) { 1217 if (m->isArrow()) 1218 return LV_Valid; 1219 return m->getBase()->isLvalue(Ctx); 1220 } 1221 1222 // -- If it refers to a static member function [...], then 1223 // E1.E2 is an lvalue. 1224 // -- Otherwise, if E1.E2 refers to a non-static member 1225 // function [...], then E1.E2 is not an lvalue. 1226 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) 1227 return Method->isStatic()? LV_Valid : LV_MemberFunction; 1228 1229 // -- If E2 is a member enumerator [...], the expression E1.E2 1230 // is not an lvalue. 1231 if (isa<EnumConstantDecl>(Member)) 1232 return LV_InvalidExpression; 1233 1234 // Not an lvalue. 1235 return LV_InvalidExpression; 1236 } 1237 1238 // C99 6.5.2.3p4 1239 if (m->isArrow()) 1240 return LV_Valid; 1241 Expr *BaseExp = m->getBase(); 1242 if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass || 1243 BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass) 1244 return LV_SubObjCPropertySetting; 1245 return 1246 BaseExp->isLvalue(Ctx); 1247 } 1248 case UnaryOperatorClass: 1249 if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref) 1250 return LV_Valid; // C99 6.5.3p4 1251 1252 if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real || 1253 cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag || 1254 cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension) 1255 return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx); // GNU. 1256 1257 if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1 1258 (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc || 1259 cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec)) 1260 return LV_Valid; 1261 break; 1262 case ImplicitCastExprClass: 1263 if (cast<ImplicitCastExpr>(this)->isLvalueCast()) 1264 return LV_Valid; 1265 1266 // If this is a conversion to a class temporary, make a note of 1267 // that. 1268 if (Ctx.getLangOptions().CPlusPlus && getType()->isRecordType()) 1269 return LV_ClassTemporary; 1270 1271 break; 1272 case ParenExprClass: // C99 6.5.1p5 1273 return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx); 1274 case BinaryOperatorClass: 1275 case CompoundAssignOperatorClass: { 1276 const BinaryOperator *BinOp = cast<BinaryOperator>(this); 1277 1278 if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1 1279 BinOp->getOpcode() == BinaryOperator::Comma) 1280 return BinOp->getRHS()->isLvalue(Ctx); 1281 1282 // C++ [expr.mptr.oper]p6 1283 // The result of a .* expression is an lvalue only if its first operand is 1284 // an lvalue and its second operand is a pointer to data member. 1285 if (BinOp->getOpcode() == BinaryOperator::PtrMemD && 1286 !BinOp->getType()->isFunctionType()) 1287 return BinOp->getLHS()->isLvalue(Ctx); 1288 1289 // The result of an ->* expression is an lvalue only if its second operand 1290 // is a pointer to data member. 1291 if (BinOp->getOpcode() == BinaryOperator::PtrMemI && 1292 !BinOp->getType()->isFunctionType()) { 1293 QualType Ty = BinOp->getRHS()->getType(); 1294 if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType()) 1295 return LV_Valid; 1296 } 1297 1298 if (!BinOp->isAssignmentOp()) 1299 return LV_InvalidExpression; 1300 1301 if (Ctx.getLangOptions().CPlusPlus) 1302 // C++ [expr.ass]p1: 1303 // The result of an assignment operation [...] is an lvalue. 1304 return LV_Valid; 1305 1306 1307 // C99 6.5.16: 1308 // An assignment expression [...] is not an lvalue. 1309 return LV_InvalidExpression; 1310 } 1311 case CallExprClass: 1312 case CXXOperatorCallExprClass: 1313 case CXXMemberCallExprClass: { 1314 // C++0x [expr.call]p10 1315 // A function call is an lvalue if and only if the result type 1316 // is an lvalue reference. 1317 QualType ReturnType = cast<CallExpr>(this)->getCallReturnType(); 1318 if (ReturnType->isLValueReferenceType()) 1319 return LV_Valid; 1320 1321 // If the function is returning a class temporary, make a note of 1322 // that. 1323 if (Ctx.getLangOptions().CPlusPlus && ReturnType->isRecordType()) 1324 return LV_ClassTemporary; 1325 1326 break; 1327 } 1328 case CompoundLiteralExprClass: // C99 6.5.2.5p5 1329 // FIXME: Is this what we want in C++? 1330 return LV_Valid; 1331 case ChooseExprClass: 1332 // __builtin_choose_expr is an lvalue if the selected operand is. 1333 return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx); 1334 case ExtVectorElementExprClass: 1335 if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements()) 1336 return LV_DuplicateVectorComponents; 1337 return LV_Valid; 1338 case ObjCIvarRefExprClass: // ObjC instance variables are lvalues. 1339 return LV_Valid; 1340 case ObjCPropertyRefExprClass: // FIXME: check if read-only property. 1341 return LV_Valid; 1342 case ObjCImplicitSetterGetterRefExprClass: 1343 // FIXME: check if read-only property. 1344 return LV_Valid; 1345 case PredefinedExprClass: 1346 return LV_Valid; 1347 case UnresolvedLookupExprClass: 1348 case UnresolvedMemberExprClass: 1349 return LV_Valid; 1350 case CXXDefaultArgExprClass: 1351 return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx); 1352 case CStyleCastExprClass: 1353 case CXXFunctionalCastExprClass: 1354 case CXXStaticCastExprClass: 1355 case CXXDynamicCastExprClass: 1356 case CXXReinterpretCastExprClass: 1357 case CXXConstCastExprClass: 1358 // The result of an explicit cast is an lvalue if the type we are 1359 // casting to is an lvalue reference type. See C++ [expr.cast]p1, 1360 // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2, 1361 // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1. 1362 if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()-> 1363 isLValueReferenceType()) 1364 return LV_Valid; 1365 1366 // If this is a conversion to a class temporary, make a note of 1367 // that. 1368 if (Ctx.getLangOptions().CPlusPlus && 1369 cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isRecordType()) 1370 return LV_ClassTemporary; 1371 1372 break; 1373 case CXXTypeidExprClass: 1374 // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ... 1375 return LV_Valid; 1376 case CXXBindTemporaryExprClass: 1377 return cast<CXXBindTemporaryExpr>(this)->getSubExpr()-> 1378 isLvalueInternal(Ctx); 1379 case CXXBindReferenceExprClass: 1380 // Something that's bound to a reference is always an lvalue. 1381 return LV_Valid; 1382 case ConditionalOperatorClass: { 1383 // Complicated handling is only for C++. 1384 if (!Ctx.getLangOptions().CPlusPlus) 1385 return LV_InvalidExpression; 1386 1387 // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is 1388 // everywhere there's an object converted to an rvalue. Also, any other 1389 // casts should be wrapped by ImplicitCastExprs. There's just the special 1390 // case involving throws to work out. 1391 const ConditionalOperator *Cond = cast<ConditionalOperator>(this); 1392 Expr *True = Cond->getTrueExpr(); 1393 Expr *False = Cond->getFalseExpr(); 1394 // C++0x 5.16p2 1395 // If either the second or the third operand has type (cv) void, [...] 1396 // the result [...] is an rvalue. 1397 if (True->getType()->isVoidType() || False->getType()->isVoidType()) 1398 return LV_InvalidExpression; 1399 1400 // Both sides must be lvalues for the result to be an lvalue. 1401 if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid) 1402 return LV_InvalidExpression; 1403 1404 // That's it. 1405 return LV_Valid; 1406 } 1407 1408 case Expr::CXXExprWithTemporariesClass: 1409 return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx); 1410 1411 case Expr::ObjCMessageExprClass: 1412 if (const ObjCMethodDecl *Method 1413 = cast<ObjCMessageExpr>(this)->getMethodDecl()) 1414 if (Method->getResultType()->isLValueReferenceType()) 1415 return LV_Valid; 1416 break; 1417 1418 case Expr::CXXConstructExprClass: 1419 case Expr::CXXTemporaryObjectExprClass: 1420 case Expr::CXXZeroInitValueExprClass: 1421 return LV_ClassTemporary; 1422 1423 default: 1424 break; 1425 } 1426 return LV_InvalidExpression; 1427} 1428 1429/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, 1430/// does not have an incomplete type, does not have a const-qualified type, and 1431/// if it is a structure or union, does not have any member (including, 1432/// recursively, any member or element of all contained aggregates or unions) 1433/// with a const-qualified type. 1434Expr::isModifiableLvalueResult 1435Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const { 1436 isLvalueResult lvalResult = isLvalue(Ctx); 1437 1438 switch (lvalResult) { 1439 case LV_Valid: 1440 // C++ 3.10p11: Functions cannot be modified, but pointers to 1441 // functions can be modifiable. 1442 if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType()) 1443 return MLV_NotObjectType; 1444 break; 1445 1446 case LV_NotObjectType: return MLV_NotObjectType; 1447 case LV_IncompleteVoidType: return MLV_IncompleteVoidType; 1448 case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; 1449 case LV_InvalidExpression: 1450 // If the top level is a C-style cast, and the subexpression is a valid 1451 // lvalue, then this is probably a use of the old-school "cast as lvalue" 1452 // GCC extension. We don't support it, but we want to produce good 1453 // diagnostics when it happens so that the user knows why. 1454 if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) { 1455 if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) { 1456 if (Loc) 1457 *Loc = CE->getLParenLoc(); 1458 return MLV_LValueCast; 1459 } 1460 } 1461 return MLV_InvalidExpression; 1462 case LV_MemberFunction: return MLV_MemberFunction; 1463 case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting; 1464 case LV_ClassTemporary: 1465 return MLV_ClassTemporary; 1466 } 1467 1468 // The following is illegal: 1469 // void takeclosure(void (^C)(void)); 1470 // void func() { int x = 1; takeclosure(^{ x = 7; }); } 1471 // 1472 if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) { 1473 if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl())) 1474 return MLV_NotBlockQualified; 1475 } 1476 1477 // Assigning to an 'implicit' property? 1478 if (const ObjCImplicitSetterGetterRefExpr* Expr = 1479 dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) { 1480 if (Expr->getSetterMethod() == 0) 1481 return MLV_NoSetterProperty; 1482 } 1483 1484 QualType CT = Ctx.getCanonicalType(getType()); 1485 1486 if (CT.isConstQualified()) 1487 return MLV_ConstQualified; 1488 if (CT->isArrayType()) 1489 return MLV_ArrayType; 1490 if (CT->isIncompleteType()) 1491 return MLV_IncompleteType; 1492 1493 if (const RecordType *r = CT->getAs<RecordType>()) { 1494 if (r->hasConstFields()) 1495 return MLV_ConstQualified; 1496 } 1497 1498 return MLV_Valid; 1499} 1500 1501/// isOBJCGCCandidate - Check if an expression is objc gc'able. 1502/// returns true, if it is; false otherwise. 1503bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 1504 switch (getStmtClass()) { 1505 default: 1506 return false; 1507 case ObjCIvarRefExprClass: 1508 return true; 1509 case Expr::UnaryOperatorClass: 1510 return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); 1511 case ParenExprClass: 1512 return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); 1513 case ImplicitCastExprClass: 1514 return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); 1515 case CStyleCastExprClass: 1516 return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); 1517 case DeclRefExprClass: { 1518 const Decl *D = cast<DeclRefExpr>(this)->getDecl(); 1519 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1520 if (VD->hasGlobalStorage()) 1521 return true; 1522 QualType T = VD->getType(); 1523 // dereferencing to a pointer is always a gc'able candidate, 1524 // unless it is __weak. 1525 return T->isPointerType() && 1526 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 1527 } 1528 return false; 1529 } 1530 case MemberExprClass: { 1531 const MemberExpr *M = cast<MemberExpr>(this); 1532 return M->getBase()->isOBJCGCCandidate(Ctx); 1533 } 1534 case ArraySubscriptExprClass: 1535 return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx); 1536 } 1537} 1538Expr* Expr::IgnoreParens() { 1539 Expr* E = this; 1540 while (ParenExpr* P = dyn_cast<ParenExpr>(E)) 1541 E = P->getSubExpr(); 1542 1543 return E; 1544} 1545 1546/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr 1547/// or CastExprs or ImplicitCastExprs, returning their operand. 1548Expr *Expr::IgnoreParenCasts() { 1549 Expr *E = this; 1550 while (true) { 1551 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) 1552 E = P->getSubExpr(); 1553 else if (CastExpr *P = dyn_cast<CastExpr>(E)) 1554 E = P->getSubExpr(); 1555 else 1556 return E; 1557 } 1558} 1559 1560Expr *Expr::IgnoreParenImpCasts() { 1561 Expr *E = this; 1562 while (true) { 1563 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) 1564 E = P->getSubExpr(); 1565 else if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) 1566 E = P->getSubExpr(); 1567 else 1568 return E; 1569 } 1570} 1571 1572/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the 1573/// value (including ptr->int casts of the same size). Strip off any 1574/// ParenExpr or CastExprs, returning their operand. 1575Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { 1576 Expr *E = this; 1577 while (true) { 1578 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { 1579 E = P->getSubExpr(); 1580 continue; 1581 } 1582 1583 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 1584 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 1585 // ptr<->int casts of the same width. We also ignore all identify casts. 1586 Expr *SE = P->getSubExpr(); 1587 1588 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { 1589 E = SE; 1590 continue; 1591 } 1592 1593 if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) && 1594 (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) && 1595 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { 1596 E = SE; 1597 continue; 1598 } 1599 } 1600 1601 return E; 1602 } 1603} 1604 1605bool Expr::isDefaultArgument() const { 1606 const Expr *E = this; 1607 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 1608 E = ICE->getSubExprAsWritten(); 1609 1610 return isa<CXXDefaultArgExpr>(E); 1611} 1612 1613/// \brief Skip over any no-op casts and any temporary-binding 1614/// expressions. 1615static const Expr *skipTemporaryBindingsAndNoOpCasts(const Expr *E) { 1616 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 1617 if (ICE->getCastKind() == CastExpr::CK_NoOp) 1618 E = ICE->getSubExpr(); 1619 else 1620 break; 1621 } 1622 1623 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 1624 E = BE->getSubExpr(); 1625 1626 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 1627 if (ICE->getCastKind() == CastExpr::CK_NoOp) 1628 E = ICE->getSubExpr(); 1629 else 1630 break; 1631 } 1632 1633 return E; 1634} 1635 1636const Expr *Expr::getTemporaryObject() const { 1637 const Expr *E = skipTemporaryBindingsAndNoOpCasts(this); 1638 1639 // A cast can produce a temporary object. The object's construction 1640 // is represented as a CXXConstructExpr. 1641 if (const CastExpr *Cast = dyn_cast<CastExpr>(E)) { 1642 // Only user-defined and constructor conversions can produce 1643 // temporary objects. 1644 if (Cast->getCastKind() != CastExpr::CK_ConstructorConversion && 1645 Cast->getCastKind() != CastExpr::CK_UserDefinedConversion) 1646 return 0; 1647 1648 // Strip off temporary bindings and no-op casts. 1649 const Expr *Sub = skipTemporaryBindingsAndNoOpCasts(Cast->getSubExpr()); 1650 1651 // If this is a constructor conversion, see if we have an object 1652 // construction. 1653 if (Cast->getCastKind() == CastExpr::CK_ConstructorConversion) 1654 return dyn_cast<CXXConstructExpr>(Sub); 1655 1656 // If this is a user-defined conversion, see if we have a call to 1657 // a function that itself returns a temporary object. 1658 if (Cast->getCastKind() == CastExpr::CK_UserDefinedConversion) 1659 if (const CallExpr *CE = dyn_cast<CallExpr>(Sub)) 1660 if (CE->getCallReturnType()->isRecordType()) 1661 return CE; 1662 1663 return 0; 1664 } 1665 1666 // A call returning a class type returns a temporary. 1667 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1668 if (CE->getCallReturnType()->isRecordType()) 1669 return CE; 1670 1671 return 0; 1672 } 1673 1674 // Explicit temporary object constructors create temporaries. 1675 return dyn_cast<CXXTemporaryObjectExpr>(E); 1676} 1677 1678/// hasAnyTypeDependentArguments - Determines if any of the expressions 1679/// in Exprs is type-dependent. 1680bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) { 1681 for (unsigned I = 0; I < NumExprs; ++I) 1682 if (Exprs[I]->isTypeDependent()) 1683 return true; 1684 1685 return false; 1686} 1687 1688/// hasAnyValueDependentArguments - Determines if any of the expressions 1689/// in Exprs is value-dependent. 1690bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) { 1691 for (unsigned I = 0; I < NumExprs; ++I) 1692 if (Exprs[I]->isValueDependent()) 1693 return true; 1694 1695 return false; 1696} 1697 1698bool Expr::isConstantInitializer(ASTContext &Ctx) const { 1699 // This function is attempting whether an expression is an initializer 1700 // which can be evaluated at compile-time. isEvaluatable handles most 1701 // of the cases, but it can't deal with some initializer-specific 1702 // expressions, and it can't deal with aggregates; we deal with those here, 1703 // and fall back to isEvaluatable for the other cases. 1704 1705 // FIXME: This function assumes the variable being assigned to 1706 // isn't a reference type! 1707 1708 switch (getStmtClass()) { 1709 default: break; 1710 case StringLiteralClass: 1711 case ObjCStringLiteralClass: 1712 case ObjCEncodeExprClass: 1713 return true; 1714 case CompoundLiteralExprClass: { 1715 // This handles gcc's extension that allows global initializers like 1716 // "struct x {int x;} x = (struct x) {};". 1717 // FIXME: This accepts other cases it shouldn't! 1718 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 1719 return Exp->isConstantInitializer(Ctx); 1720 } 1721 case InitListExprClass: { 1722 // FIXME: This doesn't deal with fields with reference types correctly. 1723 // FIXME: This incorrectly allows pointers cast to integers to be assigned 1724 // to bitfields. 1725 const InitListExpr *Exp = cast<InitListExpr>(this); 1726 unsigned numInits = Exp->getNumInits(); 1727 for (unsigned i = 0; i < numInits; i++) { 1728 if (!Exp->getInit(i)->isConstantInitializer(Ctx)) 1729 return false; 1730 } 1731 return true; 1732 } 1733 case ImplicitValueInitExprClass: 1734 return true; 1735 case ParenExprClass: 1736 return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); 1737 case UnaryOperatorClass: { 1738 const UnaryOperator* Exp = cast<UnaryOperator>(this); 1739 if (Exp->getOpcode() == UnaryOperator::Extension) 1740 return Exp->getSubExpr()->isConstantInitializer(Ctx); 1741 break; 1742 } 1743 case BinaryOperatorClass: { 1744 // Special case &&foo - &&bar. It would be nice to generalize this somehow 1745 // but this handles the common case. 1746 const BinaryOperator *Exp = cast<BinaryOperator>(this); 1747 if (Exp->getOpcode() == BinaryOperator::Sub && 1748 isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) && 1749 isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx))) 1750 return true; 1751 break; 1752 } 1753 case ImplicitCastExprClass: 1754 case CStyleCastExprClass: 1755 // Handle casts with a destination that's a struct or union; this 1756 // deals with both the gcc no-op struct cast extension and the 1757 // cast-to-union extension. 1758 if (getType()->isRecordType()) 1759 return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); 1760 1761 // Integer->integer casts can be handled here, which is important for 1762 // things like (int)(&&x-&&y). Scary but true. 1763 if (getType()->isIntegerType() && 1764 cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType()) 1765 return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); 1766 1767 break; 1768 } 1769 return isEvaluatable(Ctx); 1770} 1771 1772/// isIntegerConstantExpr - this recursive routine will test if an expression is 1773/// an integer constant expression. 1774 1775/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, 1776/// comma, etc 1777/// 1778/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof 1779/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer 1780/// cast+dereference. 1781 1782// CheckICE - This function does the fundamental ICE checking: the returned 1783// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation. 1784// Note that to reduce code duplication, this helper does no evaluation 1785// itself; the caller checks whether the expression is evaluatable, and 1786// in the rare cases where CheckICE actually cares about the evaluated 1787// value, it calls into Evalute. 1788// 1789// Meanings of Val: 1790// 0: This expression is an ICE if it can be evaluated by Evaluate. 1791// 1: This expression is not an ICE, but if it isn't evaluated, it's 1792// a legal subexpression for an ICE. This return value is used to handle 1793// the comma operator in C99 mode. 1794// 2: This expression is not an ICE, and is not a legal subexpression for one. 1795 1796struct ICEDiag { 1797 unsigned Val; 1798 SourceLocation Loc; 1799 1800 public: 1801 ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {} 1802 ICEDiag() : Val(0) {} 1803}; 1804 1805ICEDiag NoDiag() { return ICEDiag(); } 1806 1807static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) { 1808 Expr::EvalResult EVResult; 1809 if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || 1810 !EVResult.Val.isInt()) { 1811 return ICEDiag(2, E->getLocStart()); 1812 } 1813 return NoDiag(); 1814} 1815 1816static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) { 1817 assert(!E->isValueDependent() && "Should not see value dependent exprs!"); 1818 if (!E->getType()->isIntegralType()) { 1819 return ICEDiag(2, E->getLocStart()); 1820 } 1821 1822 switch (E->getStmtClass()) { 1823#define STMT(Node, Base) case Expr::Node##Class: 1824#define EXPR(Node, Base) 1825#include "clang/AST/StmtNodes.inc" 1826 case Expr::PredefinedExprClass: 1827 case Expr::FloatingLiteralClass: 1828 case Expr::ImaginaryLiteralClass: 1829 case Expr::StringLiteralClass: 1830 case Expr::ArraySubscriptExprClass: 1831 case Expr::MemberExprClass: 1832 case Expr::CompoundAssignOperatorClass: 1833 case Expr::CompoundLiteralExprClass: 1834 case Expr::ExtVectorElementExprClass: 1835 case Expr::InitListExprClass: 1836 case Expr::DesignatedInitExprClass: 1837 case Expr::ImplicitValueInitExprClass: 1838 case Expr::ParenListExprClass: 1839 case Expr::VAArgExprClass: 1840 case Expr::AddrLabelExprClass: 1841 case Expr::StmtExprClass: 1842 case Expr::CXXMemberCallExprClass: 1843 case Expr::CXXDynamicCastExprClass: 1844 case Expr::CXXTypeidExprClass: 1845 case Expr::CXXNullPtrLiteralExprClass: 1846 case Expr::CXXThisExprClass: 1847 case Expr::CXXThrowExprClass: 1848 case Expr::CXXNewExprClass: 1849 case Expr::CXXDeleteExprClass: 1850 case Expr::CXXPseudoDestructorExprClass: 1851 case Expr::UnresolvedLookupExprClass: 1852 case Expr::DependentScopeDeclRefExprClass: 1853 case Expr::CXXConstructExprClass: 1854 case Expr::CXXBindTemporaryExprClass: 1855 case Expr::CXXBindReferenceExprClass: 1856 case Expr::CXXExprWithTemporariesClass: 1857 case Expr::CXXTemporaryObjectExprClass: 1858 case Expr::CXXUnresolvedConstructExprClass: 1859 case Expr::CXXDependentScopeMemberExprClass: 1860 case Expr::UnresolvedMemberExprClass: 1861 case Expr::ObjCStringLiteralClass: 1862 case Expr::ObjCEncodeExprClass: 1863 case Expr::ObjCMessageExprClass: 1864 case Expr::ObjCSelectorExprClass: 1865 case Expr::ObjCProtocolExprClass: 1866 case Expr::ObjCIvarRefExprClass: 1867 case Expr::ObjCPropertyRefExprClass: 1868 case Expr::ObjCImplicitSetterGetterRefExprClass: 1869 case Expr::ObjCSuperExprClass: 1870 case Expr::ObjCIsaExprClass: 1871 case Expr::ShuffleVectorExprClass: 1872 case Expr::BlockExprClass: 1873 case Expr::BlockDeclRefExprClass: 1874 case Expr::NoStmtClass: 1875 return ICEDiag(2, E->getLocStart()); 1876 1877 case Expr::GNUNullExprClass: 1878 // GCC considers the GNU __null value to be an integral constant expression. 1879 return NoDiag(); 1880 1881 case Expr::ParenExprClass: 1882 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); 1883 case Expr::IntegerLiteralClass: 1884 case Expr::CharacterLiteralClass: 1885 case Expr::CXXBoolLiteralExprClass: 1886 case Expr::CXXZeroInitValueExprClass: 1887 case Expr::TypesCompatibleExprClass: 1888 case Expr::UnaryTypeTraitExprClass: 1889 return NoDiag(); 1890 case Expr::CallExprClass: 1891 case Expr::CXXOperatorCallExprClass: { 1892 const CallExpr *CE = cast<CallExpr>(E); 1893 if (CE->isBuiltinCall(Ctx)) 1894 return CheckEvalInICE(E, Ctx); 1895 return ICEDiag(2, E->getLocStart()); 1896 } 1897 case Expr::DeclRefExprClass: 1898 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) 1899 return NoDiag(); 1900 if (Ctx.getLangOptions().CPlusPlus && 1901 E->getType().getCVRQualifiers() == Qualifiers::Const) { 1902 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); 1903 1904 // Parameter variables are never constants. Without this check, 1905 // getAnyInitializer() can find a default argument, which leads 1906 // to chaos. 1907 if (isa<ParmVarDecl>(D)) 1908 return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); 1909 1910 // C++ 7.1.5.1p2 1911 // A variable of non-volatile const-qualified integral or enumeration 1912 // type initialized by an ICE can be used in ICEs. 1913 if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) { 1914 Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers(); 1915 if (Quals.hasVolatile() || !Quals.hasConst()) 1916 return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); 1917 1918 // Look for a declaration of this variable that has an initializer. 1919 const VarDecl *ID = 0; 1920 const Expr *Init = Dcl->getAnyInitializer(ID); 1921 if (Init) { 1922 if (ID->isInitKnownICE()) { 1923 // We have already checked whether this subexpression is an 1924 // integral constant expression. 1925 if (ID->isInitICE()) 1926 return NoDiag(); 1927 else 1928 return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); 1929 } 1930 1931 // It's an ICE whether or not the definition we found is 1932 // out-of-line. See DR 721 and the discussion in Clang PR 1933 // 6206 for details. 1934 1935 if (Dcl->isCheckingICE()) { 1936 return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); 1937 } 1938 1939 Dcl->setCheckingICE(); 1940 ICEDiag Result = CheckICE(Init, Ctx); 1941 // Cache the result of the ICE test. 1942 Dcl->setInitKnownICE(Result.Val == 0); 1943 return Result; 1944 } 1945 } 1946 } 1947 return ICEDiag(2, E->getLocStart()); 1948 case Expr::UnaryOperatorClass: { 1949 const UnaryOperator *Exp = cast<UnaryOperator>(E); 1950 switch (Exp->getOpcode()) { 1951 case UnaryOperator::PostInc: 1952 case UnaryOperator::PostDec: 1953 case UnaryOperator::PreInc: 1954 case UnaryOperator::PreDec: 1955 case UnaryOperator::AddrOf: 1956 case UnaryOperator::Deref: 1957 return ICEDiag(2, E->getLocStart()); 1958 case UnaryOperator::Extension: 1959 case UnaryOperator::LNot: 1960 case UnaryOperator::Plus: 1961 case UnaryOperator::Minus: 1962 case UnaryOperator::Not: 1963 case UnaryOperator::Real: 1964 case UnaryOperator::Imag: 1965 return CheckICE(Exp->getSubExpr(), Ctx); 1966 case UnaryOperator::OffsetOf: 1967 break; 1968 } 1969 1970 // OffsetOf falls through here. 1971 } 1972 case Expr::OffsetOfExprClass: { 1973 // Note that per C99, offsetof must be an ICE. And AFAIK, using 1974 // Evaluate matches the proposed gcc behavior for cases like 1975 // "offsetof(struct s{int x[4];}, x[!.0])". This doesn't affect 1976 // compliance: we should warn earlier for offsetof expressions with 1977 // array subscripts that aren't ICEs, and if the array subscripts 1978 // are ICEs, the value of the offsetof must be an integer constant. 1979 return CheckEvalInICE(E, Ctx); 1980 } 1981 case Expr::SizeOfAlignOfExprClass: { 1982 const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E); 1983 if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType()) 1984 return ICEDiag(2, E->getLocStart()); 1985 return NoDiag(); 1986 } 1987 case Expr::BinaryOperatorClass: { 1988 const BinaryOperator *Exp = cast<BinaryOperator>(E); 1989 switch (Exp->getOpcode()) { 1990 case BinaryOperator::PtrMemD: 1991 case BinaryOperator::PtrMemI: 1992 case BinaryOperator::Assign: 1993 case BinaryOperator::MulAssign: 1994 case BinaryOperator::DivAssign: 1995 case BinaryOperator::RemAssign: 1996 case BinaryOperator::AddAssign: 1997 case BinaryOperator::SubAssign: 1998 case BinaryOperator::ShlAssign: 1999 case BinaryOperator::ShrAssign: 2000 case BinaryOperator::AndAssign: 2001 case BinaryOperator::XorAssign: 2002 case BinaryOperator::OrAssign: 2003 return ICEDiag(2, E->getLocStart()); 2004 2005 case BinaryOperator::Mul: 2006 case BinaryOperator::Div: 2007 case BinaryOperator::Rem: 2008 case BinaryOperator::Add: 2009 case BinaryOperator::Sub: 2010 case BinaryOperator::Shl: 2011 case BinaryOperator::Shr: 2012 case BinaryOperator::LT: 2013 case BinaryOperator::GT: 2014 case BinaryOperator::LE: 2015 case BinaryOperator::GE: 2016 case BinaryOperator::EQ: 2017 case BinaryOperator::NE: 2018 case BinaryOperator::And: 2019 case BinaryOperator::Xor: 2020 case BinaryOperator::Or: 2021 case BinaryOperator::Comma: { 2022 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 2023 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 2024 if (Exp->getOpcode() == BinaryOperator::Div || 2025 Exp->getOpcode() == BinaryOperator::Rem) { 2026 // Evaluate gives an error for undefined Div/Rem, so make sure 2027 // we don't evaluate one. 2028 if (LHSResult.Val != 2 && RHSResult.Val != 2) { 2029 llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx); 2030 if (REval == 0) 2031 return ICEDiag(1, E->getLocStart()); 2032 if (REval.isSigned() && REval.isAllOnesValue()) { 2033 llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx); 2034 if (LEval.isMinSignedValue()) 2035 return ICEDiag(1, E->getLocStart()); 2036 } 2037 } 2038 } 2039 if (Exp->getOpcode() == BinaryOperator::Comma) { 2040 if (Ctx.getLangOptions().C99) { 2041 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE 2042 // if it isn't evaluated. 2043 if (LHSResult.Val == 0 && RHSResult.Val == 0) 2044 return ICEDiag(1, E->getLocStart()); 2045 } else { 2046 // In both C89 and C++, commas in ICEs are illegal. 2047 return ICEDiag(2, E->getLocStart()); 2048 } 2049 } 2050 if (LHSResult.Val >= RHSResult.Val) 2051 return LHSResult; 2052 return RHSResult; 2053 } 2054 case BinaryOperator::LAnd: 2055 case BinaryOperator::LOr: { 2056 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 2057 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 2058 if (LHSResult.Val == 0 && RHSResult.Val == 1) { 2059 // Rare case where the RHS has a comma "side-effect"; we need 2060 // to actually check the condition to see whether the side 2061 // with the comma is evaluated. 2062 if ((Exp->getOpcode() == BinaryOperator::LAnd) != 2063 (Exp->getLHS()->EvaluateAsInt(Ctx) == 0)) 2064 return RHSResult; 2065 return NoDiag(); 2066 } 2067 2068 if (LHSResult.Val >= RHSResult.Val) 2069 return LHSResult; 2070 return RHSResult; 2071 } 2072 } 2073 } 2074 case Expr::ImplicitCastExprClass: 2075 case Expr::CStyleCastExprClass: 2076 case Expr::CXXFunctionalCastExprClass: 2077 case Expr::CXXStaticCastExprClass: 2078 case Expr::CXXReinterpretCastExprClass: 2079 case Expr::CXXConstCastExprClass: { 2080 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); 2081 if (SubExpr->getType()->isIntegralType()) 2082 return CheckICE(SubExpr, Ctx); 2083 if (isa<FloatingLiteral>(SubExpr->IgnoreParens())) 2084 return NoDiag(); 2085 return ICEDiag(2, E->getLocStart()); 2086 } 2087 case Expr::ConditionalOperatorClass: { 2088 const ConditionalOperator *Exp = cast<ConditionalOperator>(E); 2089 // If the condition (ignoring parens) is a __builtin_constant_p call, 2090 // then only the true side is actually considered in an integer constant 2091 // expression, and it is fully evaluated. This is an important GNU 2092 // extension. See GCC PR38377 for discussion. 2093 if (const CallExpr *CallCE 2094 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) 2095 if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) { 2096 Expr::EvalResult EVResult; 2097 if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || 2098 !EVResult.Val.isInt()) { 2099 return ICEDiag(2, E->getLocStart()); 2100 } 2101 return NoDiag(); 2102 } 2103 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); 2104 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); 2105 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 2106 if (CondResult.Val == 2) 2107 return CondResult; 2108 if (TrueResult.Val == 2) 2109 return TrueResult; 2110 if (FalseResult.Val == 2) 2111 return FalseResult; 2112 if (CondResult.Val == 1) 2113 return CondResult; 2114 if (TrueResult.Val == 0 && FalseResult.Val == 0) 2115 return NoDiag(); 2116 // Rare case where the diagnostics depend on which side is evaluated 2117 // Note that if we get here, CondResult is 0, and at least one of 2118 // TrueResult and FalseResult is non-zero. 2119 if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) { 2120 return FalseResult; 2121 } 2122 return TrueResult; 2123 } 2124 case Expr::CXXDefaultArgExprClass: 2125 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); 2126 case Expr::ChooseExprClass: { 2127 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx); 2128 } 2129 } 2130 2131 // Silence a GCC warning 2132 return ICEDiag(2, E->getLocStart()); 2133} 2134 2135bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, 2136 SourceLocation *Loc, bool isEvaluated) const { 2137 ICEDiag d = CheckICE(this, Ctx); 2138 if (d.Val != 0) { 2139 if (Loc) *Loc = d.Loc; 2140 return false; 2141 } 2142 EvalResult EvalResult; 2143 if (!Evaluate(EvalResult, Ctx)) 2144 llvm_unreachable("ICE cannot be evaluated!"); 2145 assert(!EvalResult.HasSideEffects && "ICE with side effects!"); 2146 assert(EvalResult.Val.isInt() && "ICE that isn't integer!"); 2147 Result = EvalResult.Val.getInt(); 2148 return true; 2149} 2150 2151/// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an 2152/// integer constant expression with the value zero, or if this is one that is 2153/// cast to void*. 2154bool Expr::isNullPointerConstant(ASTContext &Ctx, 2155 NullPointerConstantValueDependence NPC) const { 2156 if (isValueDependent()) { 2157 switch (NPC) { 2158 case NPC_NeverValueDependent: 2159 assert(false && "Unexpected value dependent expression!"); 2160 // If the unthinkable happens, fall through to the safest alternative. 2161 2162 case NPC_ValueDependentIsNull: 2163 return isTypeDependent() || getType()->isIntegralType(); 2164 2165 case NPC_ValueDependentIsNotNull: 2166 return false; 2167 } 2168 } 2169 2170 // Strip off a cast to void*, if it exists. Except in C++. 2171 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 2172 if (!Ctx.getLangOptions().CPlusPlus) { 2173 // Check that it is a cast to void*. 2174 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 2175 QualType Pointee = PT->getPointeeType(); 2176 if (!Pointee.hasQualifiers() && 2177 Pointee->isVoidType() && // to void* 2178 CE->getSubExpr()->getType()->isIntegerType()) // from int. 2179 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2180 } 2181 } 2182 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 2183 // Ignore the ImplicitCastExpr type entirely. 2184 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2185 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 2186 // Accept ((void*)0) as a null pointer constant, as many other 2187 // implementations do. 2188 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2189 } else if (const CXXDefaultArgExpr *DefaultArg 2190 = dyn_cast<CXXDefaultArgExpr>(this)) { 2191 // See through default argument expressions 2192 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 2193 } else if (isa<GNUNullExpr>(this)) { 2194 // The GNU __null extension is always a null pointer constant. 2195 return true; 2196 } 2197 2198 // C++0x nullptr_t is always a null pointer constant. 2199 if (getType()->isNullPtrType()) 2200 return true; 2201 2202 // This expression must be an integer type. 2203 if (!getType()->isIntegerType() || 2204 (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType())) 2205 return false; 2206 2207 // If we have an integer constant expression, we need to *evaluate* it and 2208 // test for the value 0. 2209 llvm::APSInt Result; 2210 return isIntegerConstantExpr(Result, Ctx) && Result == 0; 2211} 2212 2213FieldDecl *Expr::getBitField() { 2214 Expr *E = this->IgnoreParens(); 2215 2216 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2217 if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp) 2218 E = ICE->getSubExpr()->IgnoreParens(); 2219 else 2220 break; 2221 } 2222 2223 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 2224 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 2225 if (Field->isBitField()) 2226 return Field; 2227 2228 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) 2229 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 2230 return BinOp->getLHS()->getBitField(); 2231 2232 return 0; 2233} 2234 2235bool Expr::refersToVectorElement() const { 2236 const Expr *E = this->IgnoreParens(); 2237 2238 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2239 if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp) 2240 E = ICE->getSubExpr()->IgnoreParens(); 2241 else 2242 break; 2243 } 2244 2245 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 2246 return ASE->getBase()->getType()->isVectorType(); 2247 2248 if (isa<ExtVectorElementExpr>(E)) 2249 return true; 2250 2251 return false; 2252} 2253 2254/// isArrow - Return true if the base expression is a pointer to vector, 2255/// return false if the base expression is a vector. 2256bool ExtVectorElementExpr::isArrow() const { 2257 return getBase()->getType()->isPointerType(); 2258} 2259 2260unsigned ExtVectorElementExpr::getNumElements() const { 2261 if (const VectorType *VT = getType()->getAs<VectorType>()) 2262 return VT->getNumElements(); 2263 return 1; 2264} 2265 2266/// containsDuplicateElements - Return true if any element access is repeated. 2267bool ExtVectorElementExpr::containsDuplicateElements() const { 2268 // FIXME: Refactor this code to an accessor on the AST node which returns the 2269 // "type" of component access, and share with code below and in Sema. 2270 llvm::StringRef Comp = Accessor->getName(); 2271 2272 // Halving swizzles do not contain duplicate elements. 2273 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 2274 return false; 2275 2276 // Advance past s-char prefix on hex swizzles. 2277 if (Comp[0] == 's' || Comp[0] == 'S') 2278 Comp = Comp.substr(1); 2279 2280 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 2281 if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos) 2282 return true; 2283 2284 return false; 2285} 2286 2287/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 2288void ExtVectorElementExpr::getEncodedElementAccess( 2289 llvm::SmallVectorImpl<unsigned> &Elts) const { 2290 llvm::StringRef Comp = Accessor->getName(); 2291 if (Comp[0] == 's' || Comp[0] == 'S') 2292 Comp = Comp.substr(1); 2293 2294 bool isHi = Comp == "hi"; 2295 bool isLo = Comp == "lo"; 2296 bool isEven = Comp == "even"; 2297 bool isOdd = Comp == "odd"; 2298 2299 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 2300 uint64_t Index; 2301 2302 if (isHi) 2303 Index = e + i; 2304 else if (isLo) 2305 Index = i; 2306 else if (isEven) 2307 Index = 2 * i; 2308 else if (isOdd) 2309 Index = 2 * i + 1; 2310 else 2311 Index = ExtVectorType::getAccessorIdx(Comp[i]); 2312 2313 Elts.push_back(Index); 2314 } 2315} 2316 2317ObjCMessageExpr::ObjCMessageExpr(QualType T, 2318 SourceLocation LBracLoc, 2319 SourceLocation SuperLoc, 2320 bool IsInstanceSuper, 2321 QualType SuperType, 2322 Selector Sel, 2323 ObjCMethodDecl *Method, 2324 Expr **Args, unsigned NumArgs, 2325 SourceLocation RBracLoc) 2326 : Expr(ObjCMessageExprClass, T, /*TypeDependent=*/false, 2327 /*ValueDependent=*/false), 2328 NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass), 2329 HasMethod(Method != 0), SuperLoc(SuperLoc), 2330 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 2331 : Sel.getAsOpaquePtr())), 2332 LBracLoc(LBracLoc), RBracLoc(RBracLoc) 2333{ 2334 setReceiverPointer(SuperType.getAsOpaquePtr()); 2335 if (NumArgs) 2336 memcpy(getArgs(), Args, NumArgs * sizeof(Expr *)); 2337} 2338 2339ObjCMessageExpr::ObjCMessageExpr(QualType T, 2340 SourceLocation LBracLoc, 2341 TypeSourceInfo *Receiver, 2342 Selector Sel, 2343 ObjCMethodDecl *Method, 2344 Expr **Args, unsigned NumArgs, 2345 SourceLocation RBracLoc) 2346 : Expr(ObjCMessageExprClass, T, T->isDependentType(), 2347 (T->isDependentType() || 2348 hasAnyValueDependentArguments(Args, NumArgs))), 2349 NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0), 2350 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 2351 : Sel.getAsOpaquePtr())), 2352 LBracLoc(LBracLoc), RBracLoc(RBracLoc) 2353{ 2354 setReceiverPointer(Receiver); 2355 if (NumArgs) 2356 memcpy(getArgs(), Args, NumArgs * sizeof(Expr *)); 2357} 2358 2359ObjCMessageExpr::ObjCMessageExpr(QualType T, 2360 SourceLocation LBracLoc, 2361 Expr *Receiver, 2362 Selector Sel, 2363 ObjCMethodDecl *Method, 2364 Expr **Args, unsigned NumArgs, 2365 SourceLocation RBracLoc) 2366 : Expr(ObjCMessageExprClass, T, Receiver->isTypeDependent(), 2367 (Receiver->isTypeDependent() || 2368 hasAnyValueDependentArguments(Args, NumArgs))), 2369 NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0), 2370 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 2371 : Sel.getAsOpaquePtr())), 2372 LBracLoc(LBracLoc), RBracLoc(RBracLoc) 2373{ 2374 setReceiverPointer(Receiver); 2375 if (NumArgs) 2376 memcpy(getArgs(), Args, NumArgs * sizeof(Expr *)); 2377} 2378 2379ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 2380 SourceLocation LBracLoc, 2381 SourceLocation SuperLoc, 2382 bool IsInstanceSuper, 2383 QualType SuperType, 2384 Selector Sel, 2385 ObjCMethodDecl *Method, 2386 Expr **Args, unsigned NumArgs, 2387 SourceLocation RBracLoc) { 2388 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 2389 NumArgs * sizeof(Expr *); 2390 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); 2391 return new (Mem) ObjCMessageExpr(T, LBracLoc, SuperLoc, IsInstanceSuper, 2392 SuperType, Sel, Method, Args, NumArgs, 2393 RBracLoc); 2394} 2395 2396ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 2397 SourceLocation LBracLoc, 2398 TypeSourceInfo *Receiver, 2399 Selector Sel, 2400 ObjCMethodDecl *Method, 2401 Expr **Args, unsigned NumArgs, 2402 SourceLocation RBracLoc) { 2403 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 2404 NumArgs * sizeof(Expr *); 2405 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); 2406 return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args, 2407 NumArgs, RBracLoc); 2408} 2409 2410ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 2411 SourceLocation LBracLoc, 2412 Expr *Receiver, 2413 Selector Sel, 2414 ObjCMethodDecl *Method, 2415 Expr **Args, unsigned NumArgs, 2416 SourceLocation RBracLoc) { 2417 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 2418 NumArgs * sizeof(Expr *); 2419 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); 2420 return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args, 2421 NumArgs, RBracLoc); 2422} 2423 2424ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context, 2425 unsigned NumArgs) { 2426 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 2427 NumArgs * sizeof(Expr *); 2428 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); 2429 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs); 2430} 2431 2432Selector ObjCMessageExpr::getSelector() const { 2433 if (HasMethod) 2434 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod) 2435 ->getSelector(); 2436 return Selector(SelectorOrMethod); 2437} 2438 2439ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const { 2440 switch (getReceiverKind()) { 2441 case Instance: 2442 if (const ObjCObjectPointerType *Ptr 2443 = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>()) 2444 return Ptr->getInterfaceDecl(); 2445 break; 2446 2447 case Class: 2448 if (const ObjCInterfaceType *Iface 2449 = getClassReceiver()->getAs<ObjCInterfaceType>()) 2450 return Iface->getDecl(); 2451 break; 2452 2453 case SuperInstance: 2454 if (const ObjCObjectPointerType *Ptr 2455 = getSuperType()->getAs<ObjCObjectPointerType>()) 2456 return Ptr->getInterfaceDecl(); 2457 break; 2458 2459 case SuperClass: 2460 if (const ObjCObjectPointerType *Iface 2461 = getSuperType()->getAs<ObjCObjectPointerType>()) 2462 return Iface->getInterfaceDecl(); 2463 break; 2464 } 2465 2466 return 0; 2467} 2468 2469bool ChooseExpr::isConditionTrue(ASTContext &C) const { 2470 return getCond()->EvaluateAsInt(C) != 0; 2471} 2472 2473void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs, 2474 unsigned NumExprs) { 2475 if (SubExprs) C.Deallocate(SubExprs); 2476 2477 SubExprs = new (C) Stmt* [NumExprs]; 2478 this->NumExprs = NumExprs; 2479 memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs); 2480} 2481 2482void ShuffleVectorExpr::DoDestroy(ASTContext& C) { 2483 DestroyChildren(C); 2484 if (SubExprs) C.Deallocate(SubExprs); 2485 this->~ShuffleVectorExpr(); 2486 C.Deallocate(this); 2487} 2488 2489void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) { 2490 // Override default behavior of traversing children. If this has a type 2491 // operand and the type is a variable-length array, the child iteration 2492 // will iterate over the size expression. However, this expression belongs 2493 // to the type, not to this, so we don't want to delete it. 2494 // We still want to delete this expression. 2495 if (isArgumentType()) { 2496 this->~SizeOfAlignOfExpr(); 2497 C.Deallocate(this); 2498 } 2499 else 2500 Expr::DoDestroy(C); 2501} 2502 2503//===----------------------------------------------------------------------===// 2504// DesignatedInitExpr 2505//===----------------------------------------------------------------------===// 2506 2507IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() { 2508 assert(Kind == FieldDesignator && "Only valid on a field designator"); 2509 if (Field.NameOrField & 0x01) 2510 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 2511 else 2512 return getField()->getIdentifier(); 2513} 2514 2515DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty, 2516 unsigned NumDesignators, 2517 const Designator *Designators, 2518 SourceLocation EqualOrColonLoc, 2519 bool GNUSyntax, 2520 Expr **IndexExprs, 2521 unsigned NumIndexExprs, 2522 Expr *Init) 2523 : Expr(DesignatedInitExprClass, Ty, 2524 Init->isTypeDependent(), Init->isValueDependent()), 2525 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 2526 NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) { 2527 this->Designators = new (C) Designator[NumDesignators]; 2528 2529 // Record the initializer itself. 2530 child_iterator Child = child_begin(); 2531 *Child++ = Init; 2532 2533 // Copy the designators and their subexpressions, computing 2534 // value-dependence along the way. 2535 unsigned IndexIdx = 0; 2536 for (unsigned I = 0; I != NumDesignators; ++I) { 2537 this->Designators[I] = Designators[I]; 2538 2539 if (this->Designators[I].isArrayDesignator()) { 2540 // Compute type- and value-dependence. 2541 Expr *Index = IndexExprs[IndexIdx]; 2542 ValueDependent = ValueDependent || 2543 Index->isTypeDependent() || Index->isValueDependent(); 2544 2545 // Copy the index expressions into permanent storage. 2546 *Child++ = IndexExprs[IndexIdx++]; 2547 } else if (this->Designators[I].isArrayRangeDesignator()) { 2548 // Compute type- and value-dependence. 2549 Expr *Start = IndexExprs[IndexIdx]; 2550 Expr *End = IndexExprs[IndexIdx + 1]; 2551 ValueDependent = ValueDependent || 2552 Start->isTypeDependent() || Start->isValueDependent() || 2553 End->isTypeDependent() || End->isValueDependent(); 2554 2555 // Copy the start/end expressions into permanent storage. 2556 *Child++ = IndexExprs[IndexIdx++]; 2557 *Child++ = IndexExprs[IndexIdx++]; 2558 } 2559 } 2560 2561 assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions"); 2562} 2563 2564DesignatedInitExpr * 2565DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, 2566 unsigned NumDesignators, 2567 Expr **IndexExprs, unsigned NumIndexExprs, 2568 SourceLocation ColonOrEqualLoc, 2569 bool UsesColonSyntax, Expr *Init) { 2570 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 2571 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 2572 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, 2573 ColonOrEqualLoc, UsesColonSyntax, 2574 IndexExprs, NumIndexExprs, Init); 2575} 2576 2577DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, 2578 unsigned NumIndexExprs) { 2579 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 2580 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 2581 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 2582} 2583 2584void DesignatedInitExpr::setDesignators(ASTContext &C, 2585 const Designator *Desigs, 2586 unsigned NumDesigs) { 2587 DestroyDesignators(C); 2588 2589 Designators = new (C) Designator[NumDesigs]; 2590 NumDesignators = NumDesigs; 2591 for (unsigned I = 0; I != NumDesigs; ++I) 2592 Designators[I] = Desigs[I]; 2593} 2594 2595SourceRange DesignatedInitExpr::getSourceRange() const { 2596 SourceLocation StartLoc; 2597 Designator &First = 2598 *const_cast<DesignatedInitExpr*>(this)->designators_begin(); 2599 if (First.isFieldDesignator()) { 2600 if (GNUSyntax) 2601 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 2602 else 2603 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 2604 } else 2605 StartLoc = 2606 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 2607 return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); 2608} 2609 2610Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { 2611 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 2612 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 2613 Ptr += sizeof(DesignatedInitExpr); 2614 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 2615 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 2616} 2617 2618Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { 2619 assert(D.Kind == Designator::ArrayRangeDesignator && 2620 "Requires array range designator"); 2621 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 2622 Ptr += sizeof(DesignatedInitExpr); 2623 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 2624 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 2625} 2626 2627Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { 2628 assert(D.Kind == Designator::ArrayRangeDesignator && 2629 "Requires array range designator"); 2630 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 2631 Ptr += sizeof(DesignatedInitExpr); 2632 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 2633 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); 2634} 2635 2636/// \brief Replaces the designator at index @p Idx with the series 2637/// of designators in [First, Last). 2638void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx, 2639 const Designator *First, 2640 const Designator *Last) { 2641 unsigned NumNewDesignators = Last - First; 2642 if (NumNewDesignators == 0) { 2643 std::copy_backward(Designators + Idx + 1, 2644 Designators + NumDesignators, 2645 Designators + Idx); 2646 --NumNewDesignators; 2647 return; 2648 } else if (NumNewDesignators == 1) { 2649 Designators[Idx] = *First; 2650 return; 2651 } 2652 2653 Designator *NewDesignators 2654 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 2655 std::copy(Designators, Designators + Idx, NewDesignators); 2656 std::copy(First, Last, NewDesignators + Idx); 2657 std::copy(Designators + Idx + 1, Designators + NumDesignators, 2658 NewDesignators + Idx + NumNewDesignators); 2659 DestroyDesignators(C); 2660 Designators = NewDesignators; 2661 NumDesignators = NumDesignators - 1 + NumNewDesignators; 2662} 2663 2664void DesignatedInitExpr::DoDestroy(ASTContext &C) { 2665 DestroyDesignators(C); 2666 Expr::DoDestroy(C); 2667} 2668 2669void DesignatedInitExpr::DestroyDesignators(ASTContext &C) { 2670 for (unsigned I = 0; I != NumDesignators; ++I) 2671 Designators[I].~Designator(); 2672 C.Deallocate(Designators); 2673 Designators = 0; 2674} 2675 2676ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc, 2677 Expr **exprs, unsigned nexprs, 2678 SourceLocation rparenloc) 2679: Expr(ParenListExprClass, QualType(), 2680 hasAnyTypeDependentArguments(exprs, nexprs), 2681 hasAnyValueDependentArguments(exprs, nexprs)), 2682 NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) { 2683 2684 Exprs = new (C) Stmt*[nexprs]; 2685 for (unsigned i = 0; i != nexprs; ++i) 2686 Exprs[i] = exprs[i]; 2687} 2688 2689void ParenListExpr::DoDestroy(ASTContext& C) { 2690 DestroyChildren(C); 2691 if (Exprs) C.Deallocate(Exprs); 2692 this->~ParenListExpr(); 2693 C.Deallocate(this); 2694} 2695 2696//===----------------------------------------------------------------------===// 2697// ExprIterator. 2698//===----------------------------------------------------------------------===// 2699 2700Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } 2701Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } 2702Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } 2703const Expr* ConstExprIterator::operator[](size_t idx) const { 2704 return cast<Expr>(I[idx]); 2705} 2706const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } 2707const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } 2708 2709//===----------------------------------------------------------------------===// 2710// Child Iterators for iterating over subexpressions/substatements 2711//===----------------------------------------------------------------------===// 2712 2713// DeclRefExpr 2714Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); } 2715Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); } 2716 2717// ObjCIvarRefExpr 2718Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; } 2719Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; } 2720 2721// ObjCPropertyRefExpr 2722Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; } 2723Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; } 2724 2725// ObjCImplicitSetterGetterRefExpr 2726Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() { 2727 // If this is accessing a class member, skip that entry. 2728 if (Base) return &Base; 2729 return &Base+1; 2730} 2731Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() { 2732 return &Base+1; 2733} 2734 2735// ObjCSuperExpr 2736Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); } 2737Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); } 2738 2739// ObjCIsaExpr 2740Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; } 2741Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; } 2742 2743// PredefinedExpr 2744Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); } 2745Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); } 2746 2747// IntegerLiteral 2748Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); } 2749Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); } 2750 2751// CharacterLiteral 2752Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();} 2753Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); } 2754 2755// FloatingLiteral 2756Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); } 2757Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); } 2758 2759// ImaginaryLiteral 2760Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; } 2761Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; } 2762 2763// StringLiteral 2764Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); } 2765Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); } 2766 2767// ParenExpr 2768Stmt::child_iterator ParenExpr::child_begin() { return &Val; } 2769Stmt::child_iterator ParenExpr::child_end() { return &Val+1; } 2770 2771// UnaryOperator 2772Stmt::child_iterator UnaryOperator::child_begin() { return &Val; } 2773Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; } 2774 2775// OffsetOfExpr 2776Stmt::child_iterator OffsetOfExpr::child_begin() { 2777 return reinterpret_cast<Stmt **> (reinterpret_cast<OffsetOfNode *> (this + 1) 2778 + NumComps); 2779} 2780Stmt::child_iterator OffsetOfExpr::child_end() { 2781 return child_iterator(&*child_begin() + NumExprs); 2782} 2783 2784// SizeOfAlignOfExpr 2785Stmt::child_iterator SizeOfAlignOfExpr::child_begin() { 2786 // If this is of a type and the type is a VLA type (and not a typedef), the 2787 // size expression of the VLA needs to be treated as an executable expression. 2788 // Why isn't this weirdness documented better in StmtIterator? 2789 if (isArgumentType()) { 2790 if (VariableArrayType* T = dyn_cast<VariableArrayType>( 2791 getArgumentType().getTypePtr())) 2792 return child_iterator(T); 2793 return child_iterator(); 2794 } 2795 return child_iterator(&Argument.Ex); 2796} 2797Stmt::child_iterator SizeOfAlignOfExpr::child_end() { 2798 if (isArgumentType()) 2799 return child_iterator(); 2800 return child_iterator(&Argument.Ex + 1); 2801} 2802 2803// ArraySubscriptExpr 2804Stmt::child_iterator ArraySubscriptExpr::child_begin() { 2805 return &SubExprs[0]; 2806} 2807Stmt::child_iterator ArraySubscriptExpr::child_end() { 2808 return &SubExprs[0]+END_EXPR; 2809} 2810 2811// CallExpr 2812Stmt::child_iterator CallExpr::child_begin() { 2813 return &SubExprs[0]; 2814} 2815Stmt::child_iterator CallExpr::child_end() { 2816 return &SubExprs[0]+NumArgs+ARGS_START; 2817} 2818 2819// MemberExpr 2820Stmt::child_iterator MemberExpr::child_begin() { return &Base; } 2821Stmt::child_iterator MemberExpr::child_end() { return &Base+1; } 2822 2823// ExtVectorElementExpr 2824Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; } 2825Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; } 2826 2827// CompoundLiteralExpr 2828Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; } 2829Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; } 2830 2831// CastExpr 2832Stmt::child_iterator CastExpr::child_begin() { return &Op; } 2833Stmt::child_iterator CastExpr::child_end() { return &Op+1; } 2834 2835// BinaryOperator 2836Stmt::child_iterator BinaryOperator::child_begin() { 2837 return &SubExprs[0]; 2838} 2839Stmt::child_iterator BinaryOperator::child_end() { 2840 return &SubExprs[0]+END_EXPR; 2841} 2842 2843// ConditionalOperator 2844Stmt::child_iterator ConditionalOperator::child_begin() { 2845 return &SubExprs[0]; 2846} 2847Stmt::child_iterator ConditionalOperator::child_end() { 2848 return &SubExprs[0]+END_EXPR; 2849} 2850 2851// AddrLabelExpr 2852Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); } 2853Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); } 2854 2855// StmtExpr 2856Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; } 2857Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; } 2858 2859// TypesCompatibleExpr 2860Stmt::child_iterator TypesCompatibleExpr::child_begin() { 2861 return child_iterator(); 2862} 2863 2864Stmt::child_iterator TypesCompatibleExpr::child_end() { 2865 return child_iterator(); 2866} 2867 2868// ChooseExpr 2869Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; } 2870Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; } 2871 2872// GNUNullExpr 2873Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); } 2874Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); } 2875 2876// ShuffleVectorExpr 2877Stmt::child_iterator ShuffleVectorExpr::child_begin() { 2878 return &SubExprs[0]; 2879} 2880Stmt::child_iterator ShuffleVectorExpr::child_end() { 2881 return &SubExprs[0]+NumExprs; 2882} 2883 2884// VAArgExpr 2885Stmt::child_iterator VAArgExpr::child_begin() { return &Val; } 2886Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; } 2887 2888// InitListExpr 2889Stmt::child_iterator InitListExpr::child_begin() { 2890 return InitExprs.size() ? &InitExprs[0] : 0; 2891} 2892Stmt::child_iterator InitListExpr::child_end() { 2893 return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0; 2894} 2895 2896// DesignatedInitExpr 2897Stmt::child_iterator DesignatedInitExpr::child_begin() { 2898 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 2899 Ptr += sizeof(DesignatedInitExpr); 2900 return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 2901} 2902Stmt::child_iterator DesignatedInitExpr::child_end() { 2903 return child_iterator(&*child_begin() + NumSubExprs); 2904} 2905 2906// ImplicitValueInitExpr 2907Stmt::child_iterator ImplicitValueInitExpr::child_begin() { 2908 return child_iterator(); 2909} 2910 2911Stmt::child_iterator ImplicitValueInitExpr::child_end() { 2912 return child_iterator(); 2913} 2914 2915// ParenListExpr 2916Stmt::child_iterator ParenListExpr::child_begin() { 2917 return &Exprs[0]; 2918} 2919Stmt::child_iterator ParenListExpr::child_end() { 2920 return &Exprs[0]+NumExprs; 2921} 2922 2923// ObjCStringLiteral 2924Stmt::child_iterator ObjCStringLiteral::child_begin() { 2925 return &String; 2926} 2927Stmt::child_iterator ObjCStringLiteral::child_end() { 2928 return &String+1; 2929} 2930 2931// ObjCEncodeExpr 2932Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); } 2933Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); } 2934 2935// ObjCSelectorExpr 2936Stmt::child_iterator ObjCSelectorExpr::child_begin() { 2937 return child_iterator(); 2938} 2939Stmt::child_iterator ObjCSelectorExpr::child_end() { 2940 return child_iterator(); 2941} 2942 2943// ObjCProtocolExpr 2944Stmt::child_iterator ObjCProtocolExpr::child_begin() { 2945 return child_iterator(); 2946} 2947Stmt::child_iterator ObjCProtocolExpr::child_end() { 2948 return child_iterator(); 2949} 2950 2951// ObjCMessageExpr 2952Stmt::child_iterator ObjCMessageExpr::child_begin() { 2953 if (getReceiverKind() == Instance) 2954 return reinterpret_cast<Stmt **>(this + 1); 2955 return getArgs(); 2956} 2957Stmt::child_iterator ObjCMessageExpr::child_end() { 2958 return getArgs() + getNumArgs(); 2959} 2960 2961// Blocks 2962Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); } 2963Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); } 2964 2965Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();} 2966Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); } 2967