Expr.cpp revision 3ea9e33ea25e0c2b12db56418ba3f994eb662c04
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the Expr class and subclasses. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/AST/APValue.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Attr.h" 17#include "clang/AST/DeclCXX.h" 18#include "clang/AST/DeclObjC.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/AST/EvaluatedExprVisitor.h" 21#include "clang/AST/Expr.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/Mangle.h" 24#include "clang/AST/RecordLayout.h" 25#include "clang/AST/StmtVisitor.h" 26#include "clang/Basic/Builtins.h" 27#include "clang/Basic/CharInfo.h" 28#include "clang/Basic/SourceManager.h" 29#include "clang/Basic/TargetInfo.h" 30#include "clang/Lex/Lexer.h" 31#include "clang/Lex/LiteralSupport.h" 32#include "clang/Sema/SemaDiagnostic.h" 33#include "llvm/Support/ErrorHandling.h" 34#include "llvm/Support/raw_ostream.h" 35#include <algorithm> 36#include <cstring> 37using namespace clang; 38 39const CXXRecordDecl *Expr::getBestDynamicClassType() const { 40 const Expr *E = ignoreParenBaseCasts(); 41 42 QualType DerivedType = E->getType(); 43 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 44 DerivedType = PTy->getPointeeType(); 45 46 if (DerivedType->isDependentType()) 47 return nullptr; 48 49 const RecordType *Ty = DerivedType->castAs<RecordType>(); 50 Decl *D = Ty->getDecl(); 51 return cast<CXXRecordDecl>(D); 52} 53 54const Expr *Expr::skipRValueSubobjectAdjustments( 55 SmallVectorImpl<const Expr *> &CommaLHSs, 56 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 57 const Expr *E = this; 58 while (true) { 59 E = E->IgnoreParens(); 60 61 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 62 if ((CE->getCastKind() == CK_DerivedToBase || 63 CE->getCastKind() == CK_UncheckedDerivedToBase) && 64 E->getType()->isRecordType()) { 65 E = CE->getSubExpr(); 66 CXXRecordDecl *Derived 67 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 68 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 69 continue; 70 } 71 72 if (CE->getCastKind() == CK_NoOp) { 73 E = CE->getSubExpr(); 74 continue; 75 } 76 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 77 if (!ME->isArrow()) { 78 assert(ME->getBase()->getType()->isRecordType()); 79 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 80 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 81 E = ME->getBase(); 82 Adjustments.push_back(SubobjectAdjustment(Field)); 83 continue; 84 } 85 } 86 } 87 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 88 if (BO->isPtrMemOp()) { 89 assert(BO->getRHS()->isRValue()); 90 E = BO->getLHS(); 91 const MemberPointerType *MPT = 92 BO->getRHS()->getType()->getAs<MemberPointerType>(); 93 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 94 continue; 95 } else if (BO->getOpcode() == BO_Comma) { 96 CommaLHSs.push_back(BO->getLHS()); 97 E = BO->getRHS(); 98 continue; 99 } 100 } 101 102 // Nothing changed. 103 break; 104 } 105 return E; 106} 107 108/// isKnownToHaveBooleanValue - Return true if this is an integer expression 109/// that is known to return 0 or 1. This happens for _Bool/bool expressions 110/// but also int expressions which are produced by things like comparisons in 111/// C. 112bool Expr::isKnownToHaveBooleanValue() const { 113 const Expr *E = IgnoreParens(); 114 115 // If this value has _Bool type, it is obvious 0/1. 116 if (E->getType()->isBooleanType()) return true; 117 // If this is a non-scalar-integer type, we don't care enough to try. 118 if (!E->getType()->isIntegralOrEnumerationType()) return false; 119 120 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 121 switch (UO->getOpcode()) { 122 case UO_Plus: 123 return UO->getSubExpr()->isKnownToHaveBooleanValue(); 124 case UO_LNot: 125 return true; 126 default: 127 return false; 128 } 129 } 130 131 // Only look through implicit casts. If the user writes 132 // '(int) (a && b)' treat it as an arbitrary int. 133 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 134 return CE->getSubExpr()->isKnownToHaveBooleanValue(); 135 136 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 137 switch (BO->getOpcode()) { 138 default: return false; 139 case BO_LT: // Relational operators. 140 case BO_GT: 141 case BO_LE: 142 case BO_GE: 143 case BO_EQ: // Equality operators. 144 case BO_NE: 145 case BO_LAnd: // AND operator. 146 case BO_LOr: // Logical OR operator. 147 return true; 148 149 case BO_And: // Bitwise AND operator. 150 case BO_Xor: // Bitwise XOR operator. 151 case BO_Or: // Bitwise OR operator. 152 // Handle things like (x==2)|(y==12). 153 return BO->getLHS()->isKnownToHaveBooleanValue() && 154 BO->getRHS()->isKnownToHaveBooleanValue(); 155 156 case BO_Comma: 157 case BO_Assign: 158 return BO->getRHS()->isKnownToHaveBooleanValue(); 159 } 160 } 161 162 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 163 return CO->getTrueExpr()->isKnownToHaveBooleanValue() && 164 CO->getFalseExpr()->isKnownToHaveBooleanValue(); 165 166 return false; 167} 168 169// Amusing macro metaprogramming hack: check whether a class provides 170// a more specific implementation of getExprLoc(). 171// 172// See also Stmt.cpp:{getLocStart(),getLocEnd()}. 173namespace { 174 /// This implementation is used when a class provides a custom 175 /// implementation of getExprLoc. 176 template <class E, class T> 177 SourceLocation getExprLocImpl(const Expr *expr, 178 SourceLocation (T::*v)() const) { 179 return static_cast<const E*>(expr)->getExprLoc(); 180 } 181 182 /// This implementation is used when a class doesn't provide 183 /// a custom implementation of getExprLoc. Overload resolution 184 /// should pick it over the implementation above because it's 185 /// more specialized according to function template partial ordering. 186 template <class E> 187 SourceLocation getExprLocImpl(const Expr *expr, 188 SourceLocation (Expr::*v)() const) { 189 return static_cast<const E*>(expr)->getLocStart(); 190 } 191} 192 193SourceLocation Expr::getExprLoc() const { 194 switch (getStmtClass()) { 195 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 196#define ABSTRACT_STMT(type) 197#define STMT(type, base) \ 198 case Stmt::type##Class: break; 199#define EXPR(type, base) \ 200 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 201#include "clang/AST/StmtNodes.inc" 202 } 203 llvm_unreachable("unknown expression kind"); 204} 205 206//===----------------------------------------------------------------------===// 207// Primary Expressions. 208//===----------------------------------------------------------------------===// 209 210/// \brief Compute the type-, value-, and instantiation-dependence of a 211/// declaration reference 212/// based on the declaration being referenced. 213static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, 214 QualType T, bool &TypeDependent, 215 bool &ValueDependent, 216 bool &InstantiationDependent) { 217 TypeDependent = false; 218 ValueDependent = false; 219 InstantiationDependent = false; 220 221 // (TD) C++ [temp.dep.expr]p3: 222 // An id-expression is type-dependent if it contains: 223 // 224 // and 225 // 226 // (VD) C++ [temp.dep.constexpr]p2: 227 // An identifier is value-dependent if it is: 228 229 // (TD) - an identifier that was declared with dependent type 230 // (VD) - a name declared with a dependent type, 231 if (T->isDependentType()) { 232 TypeDependent = true; 233 ValueDependent = true; 234 InstantiationDependent = true; 235 return; 236 } else if (T->isInstantiationDependentType()) { 237 InstantiationDependent = true; 238 } 239 240 // (TD) - a conversion-function-id that specifies a dependent type 241 if (D->getDeclName().getNameKind() 242 == DeclarationName::CXXConversionFunctionName) { 243 QualType T = D->getDeclName().getCXXNameType(); 244 if (T->isDependentType()) { 245 TypeDependent = true; 246 ValueDependent = true; 247 InstantiationDependent = true; 248 return; 249 } 250 251 if (T->isInstantiationDependentType()) 252 InstantiationDependent = true; 253 } 254 255 // (VD) - the name of a non-type template parameter, 256 if (isa<NonTypeTemplateParmDecl>(D)) { 257 ValueDependent = true; 258 InstantiationDependent = true; 259 return; 260 } 261 262 // (VD) - a constant with integral or enumeration type and is 263 // initialized with an expression that is value-dependent. 264 // (VD) - a constant with literal type and is initialized with an 265 // expression that is value-dependent [C++11]. 266 // (VD) - FIXME: Missing from the standard: 267 // - an entity with reference type and is initialized with an 268 // expression that is value-dependent [C++11] 269 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 270 if ((Ctx.getLangOpts().CPlusPlus11 ? 271 Var->getType()->isLiteralType(Ctx) : 272 Var->getType()->isIntegralOrEnumerationType()) && 273 (Var->getType().isConstQualified() || 274 Var->getType()->isReferenceType())) { 275 if (const Expr *Init = Var->getAnyInitializer()) 276 if (Init->isValueDependent()) { 277 ValueDependent = true; 278 InstantiationDependent = true; 279 } 280 } 281 282 // (VD) - FIXME: Missing from the standard: 283 // - a member function or a static data member of the current 284 // instantiation 285 if (Var->isStaticDataMember() && 286 Var->getDeclContext()->isDependentContext()) { 287 ValueDependent = true; 288 InstantiationDependent = true; 289 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo(); 290 if (TInfo->getType()->isIncompleteArrayType()) 291 TypeDependent = true; 292 } 293 294 return; 295 } 296 297 // (VD) - FIXME: Missing from the standard: 298 // - a member function or a static data member of the current 299 // instantiation 300 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { 301 ValueDependent = true; 302 InstantiationDependent = true; 303 } 304} 305 306void DeclRefExpr::computeDependence(const ASTContext &Ctx) { 307 bool TypeDependent = false; 308 bool ValueDependent = false; 309 bool InstantiationDependent = false; 310 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, 311 ValueDependent, InstantiationDependent); 312 313 ExprBits.TypeDependent |= TypeDependent; 314 ExprBits.ValueDependent |= ValueDependent; 315 ExprBits.InstantiationDependent |= InstantiationDependent; 316 317 // Is the declaration a parameter pack? 318 if (getDecl()->isParameterPack()) 319 ExprBits.ContainsUnexpandedParameterPack = true; 320} 321 322DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 323 NestedNameSpecifierLoc QualifierLoc, 324 SourceLocation TemplateKWLoc, 325 ValueDecl *D, bool RefersToEnclosingVariableOrCapture, 326 const DeclarationNameInfo &NameInfo, 327 NamedDecl *FoundD, 328 const TemplateArgumentListInfo *TemplateArgs, 329 QualType T, ExprValueKind VK) 330 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 331 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { 332 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 333 if (QualifierLoc) { 334 getInternalQualifierLoc() = QualifierLoc; 335 auto *NNS = QualifierLoc.getNestedNameSpecifier(); 336 if (NNS->isInstantiationDependent()) 337 ExprBits.InstantiationDependent = true; 338 if (NNS->containsUnexpandedParameterPack()) 339 ExprBits.ContainsUnexpandedParameterPack = true; 340 } 341 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 342 if (FoundD) 343 getInternalFoundDecl() = FoundD; 344 DeclRefExprBits.HasTemplateKWAndArgsInfo 345 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 346 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 347 RefersToEnclosingVariableOrCapture; 348 if (TemplateArgs) { 349 bool Dependent = false; 350 bool InstantiationDependent = false; 351 bool ContainsUnexpandedParameterPack = false; 352 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs, 353 Dependent, 354 InstantiationDependent, 355 ContainsUnexpandedParameterPack); 356 assert(!Dependent && "built a DeclRefExpr with dependent template args"); 357 ExprBits.InstantiationDependent |= InstantiationDependent; 358 ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 359 } else if (TemplateKWLoc.isValid()) { 360 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); 361 } 362 DeclRefExprBits.HadMultipleCandidates = 0; 363 364 computeDependence(Ctx); 365} 366 367DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 368 NestedNameSpecifierLoc QualifierLoc, 369 SourceLocation TemplateKWLoc, 370 ValueDecl *D, 371 bool RefersToEnclosingVariableOrCapture, 372 SourceLocation NameLoc, 373 QualType T, 374 ExprValueKind VK, 375 NamedDecl *FoundD, 376 const TemplateArgumentListInfo *TemplateArgs) { 377 return Create(Context, QualifierLoc, TemplateKWLoc, D, 378 RefersToEnclosingVariableOrCapture, 379 DeclarationNameInfo(D->getDeclName(), NameLoc), 380 T, VK, FoundD, TemplateArgs); 381} 382 383DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 384 NestedNameSpecifierLoc QualifierLoc, 385 SourceLocation TemplateKWLoc, 386 ValueDecl *D, 387 bool RefersToEnclosingVariableOrCapture, 388 const DeclarationNameInfo &NameInfo, 389 QualType T, 390 ExprValueKind VK, 391 NamedDecl *FoundD, 392 const TemplateArgumentListInfo *TemplateArgs) { 393 // Filter out cases where the found Decl is the same as the value refenenced. 394 if (D == FoundD) 395 FoundD = nullptr; 396 397 std::size_t Size = sizeof(DeclRefExpr); 398 if (QualifierLoc) 399 Size += sizeof(NestedNameSpecifierLoc); 400 if (FoundD) 401 Size += sizeof(NamedDecl *); 402 if (TemplateArgs) 403 Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size()); 404 else if (TemplateKWLoc.isValid()) 405 Size += ASTTemplateKWAndArgsInfo::sizeFor(0); 406 407 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 408 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 409 RefersToEnclosingVariableOrCapture, 410 NameInfo, FoundD, TemplateArgs, T, VK); 411} 412 413DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 414 bool HasQualifier, 415 bool HasFoundDecl, 416 bool HasTemplateKWAndArgsInfo, 417 unsigned NumTemplateArgs) { 418 std::size_t Size = sizeof(DeclRefExpr); 419 if (HasQualifier) 420 Size += sizeof(NestedNameSpecifierLoc); 421 if (HasFoundDecl) 422 Size += sizeof(NamedDecl *); 423 if (HasTemplateKWAndArgsInfo) 424 Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs); 425 426 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 427 return new (Mem) DeclRefExpr(EmptyShell()); 428} 429 430SourceLocation DeclRefExpr::getLocStart() const { 431 if (hasQualifier()) 432 return getQualifierLoc().getBeginLoc(); 433 return getNameInfo().getLocStart(); 434} 435SourceLocation DeclRefExpr::getLocEnd() const { 436 if (hasExplicitTemplateArgs()) 437 return getRAngleLoc(); 438 return getNameInfo().getLocEnd(); 439} 440 441PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT, 442 StringLiteral *SL) 443 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary, 444 FNTy->isDependentType(), FNTy->isDependentType(), 445 FNTy->isInstantiationDependentType(), 446 /*ContainsUnexpandedParameterPack=*/false), 447 Loc(L), Type(IT), FnName(SL) {} 448 449StringLiteral *PredefinedExpr::getFunctionName() { 450 return cast_or_null<StringLiteral>(FnName); 451} 452 453StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) { 454 switch (IT) { 455 case Func: 456 return "__func__"; 457 case Function: 458 return "__FUNCTION__"; 459 case FuncDName: 460 return "__FUNCDNAME__"; 461 case LFunction: 462 return "L__FUNCTION__"; 463 case PrettyFunction: 464 return "__PRETTY_FUNCTION__"; 465 case FuncSig: 466 return "__FUNCSIG__"; 467 case PrettyFunctionNoVirtual: 468 break; 469 } 470 llvm_unreachable("Unknown ident type for PredefinedExpr"); 471} 472 473// FIXME: Maybe this should use DeclPrinter with a special "print predefined 474// expr" policy instead. 475std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { 476 ASTContext &Context = CurrentDecl->getASTContext(); 477 478 if (IT == PredefinedExpr::FuncDName) { 479 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 480 std::unique_ptr<MangleContext> MC; 481 MC.reset(Context.createMangleContext()); 482 483 if (MC->shouldMangleDeclName(ND)) { 484 SmallString<256> Buffer; 485 llvm::raw_svector_ostream Out(Buffer); 486 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 487 MC->mangleCXXCtor(CD, Ctor_Base, Out); 488 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 489 MC->mangleCXXDtor(DD, Dtor_Base, Out); 490 else 491 MC->mangleName(ND, Out); 492 493 Out.flush(); 494 if (!Buffer.empty() && Buffer.front() == '\01') 495 return Buffer.substr(1); 496 return Buffer.str(); 497 } else 498 return ND->getIdentifier()->getName(); 499 } 500 return ""; 501 } 502 if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) { 503 std::unique_ptr<MangleContext> MC; 504 MC.reset(Context.createMangleContext()); 505 SmallString<256> Buffer; 506 llvm::raw_svector_ostream Out(Buffer); 507 auto DC = CurrentDecl->getDeclContext(); 508 if (DC->isFileContext()) 509 MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out); 510 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 511 MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out); 512 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 513 MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out); 514 else 515 MC->mangleBlock(DC, BD, Out); 516 return Out.str(); 517 } 518 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 519 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig) 520 return FD->getNameAsString(); 521 522 SmallString<256> Name; 523 llvm::raw_svector_ostream Out(Name); 524 525 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 526 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) 527 Out << "virtual "; 528 if (MD->isStatic()) 529 Out << "static "; 530 } 531 532 PrintingPolicy Policy(Context.getLangOpts()); 533 std::string Proto; 534 llvm::raw_string_ostream POut(Proto); 535 536 const FunctionDecl *Decl = FD; 537 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 538 Decl = Pattern; 539 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 540 const FunctionProtoType *FT = nullptr; 541 if (FD->hasWrittenPrototype()) 542 FT = dyn_cast<FunctionProtoType>(AFT); 543 544 if (IT == FuncSig) { 545 switch (FT->getCallConv()) { 546 case CC_C: POut << "__cdecl "; break; 547 case CC_X86StdCall: POut << "__stdcall "; break; 548 case CC_X86FastCall: POut << "__fastcall "; break; 549 case CC_X86ThisCall: POut << "__thiscall "; break; 550 case CC_X86VectorCall: POut << "__vectorcall "; break; 551 // Only bother printing the conventions that MSVC knows about. 552 default: break; 553 } 554 } 555 556 FD->printQualifiedName(POut, Policy); 557 558 POut << "("; 559 if (FT) { 560 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 561 if (i) POut << ", "; 562 POut << Decl->getParamDecl(i)->getType().stream(Policy); 563 } 564 565 if (FT->isVariadic()) { 566 if (FD->getNumParams()) POut << ", "; 567 POut << "..."; 568 } 569 } 570 POut << ")"; 571 572 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 573 const FunctionType *FT = MD->getType()->castAs<FunctionType>(); 574 if (FT->isConst()) 575 POut << " const"; 576 if (FT->isVolatile()) 577 POut << " volatile"; 578 RefQualifierKind Ref = MD->getRefQualifier(); 579 if (Ref == RQ_LValue) 580 POut << " &"; 581 else if (Ref == RQ_RValue) 582 POut << " &&"; 583 } 584 585 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 586 SpecsTy Specs; 587 const DeclContext *Ctx = FD->getDeclContext(); 588 while (Ctx && isa<NamedDecl>(Ctx)) { 589 const ClassTemplateSpecializationDecl *Spec 590 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 591 if (Spec && !Spec->isExplicitSpecialization()) 592 Specs.push_back(Spec); 593 Ctx = Ctx->getParent(); 594 } 595 596 std::string TemplateParams; 597 llvm::raw_string_ostream TOut(TemplateParams); 598 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); 599 I != E; ++I) { 600 const TemplateParameterList *Params 601 = (*I)->getSpecializedTemplate()->getTemplateParameters(); 602 const TemplateArgumentList &Args = (*I)->getTemplateArgs(); 603 assert(Params->size() == Args.size()); 604 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 605 StringRef Param = Params->getParam(i)->getName(); 606 if (Param.empty()) continue; 607 TOut << Param << " = "; 608 Args.get(i).print(Policy, TOut); 609 TOut << ", "; 610 } 611 } 612 613 FunctionTemplateSpecializationInfo *FSI 614 = FD->getTemplateSpecializationInfo(); 615 if (FSI && !FSI->isExplicitSpecialization()) { 616 const TemplateParameterList* Params 617 = FSI->getTemplate()->getTemplateParameters(); 618 const TemplateArgumentList* Args = FSI->TemplateArguments; 619 assert(Params->size() == Args->size()); 620 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 621 StringRef Param = Params->getParam(i)->getName(); 622 if (Param.empty()) continue; 623 TOut << Param << " = "; 624 Args->get(i).print(Policy, TOut); 625 TOut << ", "; 626 } 627 } 628 629 TOut.flush(); 630 if (!TemplateParams.empty()) { 631 // remove the trailing comma and space 632 TemplateParams.resize(TemplateParams.size() - 2); 633 POut << " [" << TemplateParams << "]"; 634 } 635 636 POut.flush(); 637 638 // Print "auto" for all deduced return types. This includes C++1y return 639 // type deduction and lambdas. For trailing return types resolve the 640 // decltype expression. Otherwise print the real type when this is 641 // not a constructor or destructor. 642 if (isa<CXXMethodDecl>(FD) && 643 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 644 Proto = "auto " + Proto; 645 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 646 FT->getReturnType() 647 ->getAs<DecltypeType>() 648 ->getUnderlyingType() 649 .getAsStringInternal(Proto, Policy); 650 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 651 AFT->getReturnType().getAsStringInternal(Proto, Policy); 652 653 Out << Proto; 654 655 Out.flush(); 656 return Name.str().str(); 657 } 658 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 659 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 660 // Skip to its enclosing function or method, but not its enclosing 661 // CapturedDecl. 662 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 663 const Decl *D = Decl::castFromDeclContext(DC); 664 return ComputeName(IT, D); 665 } 666 llvm_unreachable("CapturedDecl not inside a function or method"); 667 } 668 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 669 SmallString<256> Name; 670 llvm::raw_svector_ostream Out(Name); 671 Out << (MD->isInstanceMethod() ? '-' : '+'); 672 Out << '['; 673 674 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 675 // a null check to avoid a crash. 676 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 677 Out << *ID; 678 679 if (const ObjCCategoryImplDecl *CID = 680 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 681 Out << '(' << *CID << ')'; 682 683 Out << ' '; 684 MD->getSelector().print(Out); 685 Out << ']'; 686 687 Out.flush(); 688 return Name.str().str(); 689 } 690 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { 691 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 692 return "top level"; 693 } 694 return ""; 695} 696 697void APNumericStorage::setIntValue(const ASTContext &C, 698 const llvm::APInt &Val) { 699 if (hasAllocation()) 700 C.Deallocate(pVal); 701 702 BitWidth = Val.getBitWidth(); 703 unsigned NumWords = Val.getNumWords(); 704 const uint64_t* Words = Val.getRawData(); 705 if (NumWords > 1) { 706 pVal = new (C) uint64_t[NumWords]; 707 std::copy(Words, Words + NumWords, pVal); 708 } else if (NumWords == 1) 709 VAL = Words[0]; 710 else 711 VAL = 0; 712} 713 714IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 715 QualType type, SourceLocation l) 716 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, 717 false, false), 718 Loc(l) { 719 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 720 assert(V.getBitWidth() == C.getIntWidth(type) && 721 "Integer type is not the correct size for constant."); 722 setValue(C, V); 723} 724 725IntegerLiteral * 726IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 727 QualType type, SourceLocation l) { 728 return new (C) IntegerLiteral(C, V, type, l); 729} 730 731IntegerLiteral * 732IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 733 return new (C) IntegerLiteral(Empty); 734} 735 736FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 737 bool isexact, QualType Type, SourceLocation L) 738 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, 739 false, false), Loc(L) { 740 setSemantics(V.getSemantics()); 741 FloatingLiteralBits.IsExact = isexact; 742 setValue(C, V); 743} 744 745FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 746 : Expr(FloatingLiteralClass, Empty) { 747 setRawSemantics(IEEEhalf); 748 FloatingLiteralBits.IsExact = false; 749} 750 751FloatingLiteral * 752FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 753 bool isexact, QualType Type, SourceLocation L) { 754 return new (C) FloatingLiteral(C, V, isexact, Type, L); 755} 756 757FloatingLiteral * 758FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 759 return new (C) FloatingLiteral(C, Empty); 760} 761 762const llvm::fltSemantics &FloatingLiteral::getSemantics() const { 763 switch(FloatingLiteralBits.Semantics) { 764 case IEEEhalf: 765 return llvm::APFloat::IEEEhalf; 766 case IEEEsingle: 767 return llvm::APFloat::IEEEsingle; 768 case IEEEdouble: 769 return llvm::APFloat::IEEEdouble; 770 case x87DoubleExtended: 771 return llvm::APFloat::x87DoubleExtended; 772 case IEEEquad: 773 return llvm::APFloat::IEEEquad; 774 case PPCDoubleDouble: 775 return llvm::APFloat::PPCDoubleDouble; 776 } 777 llvm_unreachable("Unrecognised floating semantics"); 778} 779 780void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) { 781 if (&Sem == &llvm::APFloat::IEEEhalf) 782 FloatingLiteralBits.Semantics = IEEEhalf; 783 else if (&Sem == &llvm::APFloat::IEEEsingle) 784 FloatingLiteralBits.Semantics = IEEEsingle; 785 else if (&Sem == &llvm::APFloat::IEEEdouble) 786 FloatingLiteralBits.Semantics = IEEEdouble; 787 else if (&Sem == &llvm::APFloat::x87DoubleExtended) 788 FloatingLiteralBits.Semantics = x87DoubleExtended; 789 else if (&Sem == &llvm::APFloat::IEEEquad) 790 FloatingLiteralBits.Semantics = IEEEquad; 791 else if (&Sem == &llvm::APFloat::PPCDoubleDouble) 792 FloatingLiteralBits.Semantics = PPCDoubleDouble; 793 else 794 llvm_unreachable("Unknown floating semantics"); 795} 796 797/// getValueAsApproximateDouble - This returns the value as an inaccurate 798/// double. Note that this may cause loss of precision, but is useful for 799/// debugging dumps, etc. 800double FloatingLiteral::getValueAsApproximateDouble() const { 801 llvm::APFloat V = getValue(); 802 bool ignored; 803 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, 804 &ignored); 805 return V.convertToDouble(); 806} 807 808int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { 809 int CharByteWidth = 0; 810 switch(k) { 811 case Ascii: 812 case UTF8: 813 CharByteWidth = target.getCharWidth(); 814 break; 815 case Wide: 816 CharByteWidth = target.getWCharWidth(); 817 break; 818 case UTF16: 819 CharByteWidth = target.getChar16Width(); 820 break; 821 case UTF32: 822 CharByteWidth = target.getChar32Width(); 823 break; 824 } 825 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 826 CharByteWidth /= 8; 827 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) 828 && "character byte widths supported are 1, 2, and 4 only"); 829 return CharByteWidth; 830} 831 832StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str, 833 StringKind Kind, bool Pascal, QualType Ty, 834 const SourceLocation *Loc, 835 unsigned NumStrs) { 836 assert(C.getAsConstantArrayType(Ty) && 837 "StringLiteral must be of constant array type!"); 838 839 // Allocate enough space for the StringLiteral plus an array of locations for 840 // any concatenated string tokens. 841 void *Mem = C.Allocate(sizeof(StringLiteral)+ 842 sizeof(SourceLocation)*(NumStrs-1), 843 llvm::alignOf<StringLiteral>()); 844 StringLiteral *SL = new (Mem) StringLiteral(Ty); 845 846 // OPTIMIZE: could allocate this appended to the StringLiteral. 847 SL->setString(C,Str,Kind,Pascal); 848 849 SL->TokLocs[0] = Loc[0]; 850 SL->NumConcatenated = NumStrs; 851 852 if (NumStrs != 1) 853 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); 854 return SL; 855} 856 857StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C, 858 unsigned NumStrs) { 859 void *Mem = C.Allocate(sizeof(StringLiteral)+ 860 sizeof(SourceLocation)*(NumStrs-1), 861 llvm::alignOf<StringLiteral>()); 862 StringLiteral *SL = new (Mem) StringLiteral(QualType()); 863 SL->CharByteWidth = 0; 864 SL->Length = 0; 865 SL->NumConcatenated = NumStrs; 866 return SL; 867} 868 869void StringLiteral::outputString(raw_ostream &OS) const { 870 switch (getKind()) { 871 case Ascii: break; // no prefix. 872 case Wide: OS << 'L'; break; 873 case UTF8: OS << "u8"; break; 874 case UTF16: OS << 'u'; break; 875 case UTF32: OS << 'U'; break; 876 } 877 OS << '"'; 878 static const char Hex[] = "0123456789ABCDEF"; 879 880 unsigned LastSlashX = getLength(); 881 for (unsigned I = 0, N = getLength(); I != N; ++I) { 882 switch (uint32_t Char = getCodeUnit(I)) { 883 default: 884 // FIXME: Convert UTF-8 back to codepoints before rendering. 885 886 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 887 // Leave invalid surrogates alone; we'll use \x for those. 888 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 889 Char <= 0xdbff) { 890 uint32_t Trail = getCodeUnit(I + 1); 891 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 892 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 893 ++I; 894 } 895 } 896 897 if (Char > 0xff) { 898 // If this is a wide string, output characters over 0xff using \x 899 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 900 // codepoint: use \x escapes for invalid codepoints. 901 if (getKind() == Wide || 902 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 903 // FIXME: Is this the best way to print wchar_t? 904 OS << "\\x"; 905 int Shift = 28; 906 while ((Char >> Shift) == 0) 907 Shift -= 4; 908 for (/**/; Shift >= 0; Shift -= 4) 909 OS << Hex[(Char >> Shift) & 15]; 910 LastSlashX = I; 911 break; 912 } 913 914 if (Char > 0xffff) 915 OS << "\\U00" 916 << Hex[(Char >> 20) & 15] 917 << Hex[(Char >> 16) & 15]; 918 else 919 OS << "\\u"; 920 OS << Hex[(Char >> 12) & 15] 921 << Hex[(Char >> 8) & 15] 922 << Hex[(Char >> 4) & 15] 923 << Hex[(Char >> 0) & 15]; 924 break; 925 } 926 927 // If we used \x... for the previous character, and this character is a 928 // hexadecimal digit, prevent it being slurped as part of the \x. 929 if (LastSlashX + 1 == I) { 930 switch (Char) { 931 case '0': case '1': case '2': case '3': case '4': 932 case '5': case '6': case '7': case '8': case '9': 933 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 934 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 935 OS << "\"\""; 936 } 937 } 938 939 assert(Char <= 0xff && 940 "Characters above 0xff should already have been handled."); 941 942 if (isPrintable(Char)) 943 OS << (char)Char; 944 else // Output anything hard as an octal escape. 945 OS << '\\' 946 << (char)('0' + ((Char >> 6) & 7)) 947 << (char)('0' + ((Char >> 3) & 7)) 948 << (char)('0' + ((Char >> 0) & 7)); 949 break; 950 // Handle some common non-printable cases to make dumps prettier. 951 case '\\': OS << "\\\\"; break; 952 case '"': OS << "\\\""; break; 953 case '\n': OS << "\\n"; break; 954 case '\t': OS << "\\t"; break; 955 case '\a': OS << "\\a"; break; 956 case '\b': OS << "\\b"; break; 957 } 958 } 959 OS << '"'; 960} 961 962void StringLiteral::setString(const ASTContext &C, StringRef Str, 963 StringKind Kind, bool IsPascal) { 964 //FIXME: we assume that the string data comes from a target that uses the same 965 // code unit size and endianess for the type of string. 966 this->Kind = Kind; 967 this->IsPascal = IsPascal; 968 969 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); 970 assert((Str.size()%CharByteWidth == 0) 971 && "size of data must be multiple of CharByteWidth"); 972 Length = Str.size()/CharByteWidth; 973 974 switch(CharByteWidth) { 975 case 1: { 976 char *AStrData = new (C) char[Length]; 977 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 978 StrData.asChar = AStrData; 979 break; 980 } 981 case 2: { 982 uint16_t *AStrData = new (C) uint16_t[Length]; 983 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 984 StrData.asUInt16 = AStrData; 985 break; 986 } 987 case 4: { 988 uint32_t *AStrData = new (C) uint32_t[Length]; 989 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 990 StrData.asUInt32 = AStrData; 991 break; 992 } 993 default: 994 assert(false && "unsupported CharByteWidth"); 995 } 996} 997 998/// getLocationOfByte - Return a source location that points to the specified 999/// byte of this string literal. 1000/// 1001/// Strings are amazingly complex. They can be formed from multiple tokens and 1002/// can have escape sequences in them in addition to the usual trigraph and 1003/// escaped newline business. This routine handles this complexity. 1004/// 1005SourceLocation StringLiteral:: 1006getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1007 const LangOptions &Features, const TargetInfo &Target) const { 1008 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) && 1009 "Only narrow string literals are currently supported"); 1010 1011 // Loop over all of the tokens in this string until we find the one that 1012 // contains the byte we're looking for. 1013 unsigned TokNo = 0; 1014 while (1) { 1015 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1016 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1017 1018 // Get the spelling of the string so that we can get the data that makes up 1019 // the string literal, not the identifier for the macro it is potentially 1020 // expanded through. 1021 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1022 1023 // Re-lex the token to get its length and original spelling. 1024 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc); 1025 bool Invalid = false; 1026 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1027 if (Invalid) 1028 return StrTokSpellingLoc; 1029 1030 const char *StrData = Buffer.data()+LocInfo.second; 1031 1032 // Create a lexer starting at the beginning of this token. 1033 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1034 Buffer.begin(), StrData, Buffer.end()); 1035 Token TheTok; 1036 TheLexer.LexFromRawLexer(TheTok); 1037 1038 // Use the StringLiteralParser to compute the length of the string in bytes. 1039 StringLiteralParser SLP(TheTok, SM, Features, Target); 1040 unsigned TokNumBytes = SLP.GetStringLength(); 1041 1042 // If the byte is in this token, return the location of the byte. 1043 if (ByteNo < TokNumBytes || 1044 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1045 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1046 1047 // Now that we know the offset of the token in the spelling, use the 1048 // preprocessor to get the offset in the original source. 1049 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1050 } 1051 1052 // Move to the next string token. 1053 ++TokNo; 1054 ByteNo -= TokNumBytes; 1055 } 1056} 1057 1058 1059 1060/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1061/// corresponds to, e.g. "sizeof" or "[pre]++". 1062StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1063 switch (Op) { 1064 case UO_PostInc: return "++"; 1065 case UO_PostDec: return "--"; 1066 case UO_PreInc: return "++"; 1067 case UO_PreDec: return "--"; 1068 case UO_AddrOf: return "&"; 1069 case UO_Deref: return "*"; 1070 case UO_Plus: return "+"; 1071 case UO_Minus: return "-"; 1072 case UO_Not: return "~"; 1073 case UO_LNot: return "!"; 1074 case UO_Real: return "__real"; 1075 case UO_Imag: return "__imag"; 1076 case UO_Extension: return "__extension__"; 1077 } 1078 llvm_unreachable("Unknown unary operator"); 1079} 1080 1081UnaryOperatorKind 1082UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1083 switch (OO) { 1084 default: llvm_unreachable("No unary operator for overloaded function"); 1085 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1086 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1087 case OO_Amp: return UO_AddrOf; 1088 case OO_Star: return UO_Deref; 1089 case OO_Plus: return UO_Plus; 1090 case OO_Minus: return UO_Minus; 1091 case OO_Tilde: return UO_Not; 1092 case OO_Exclaim: return UO_LNot; 1093 } 1094} 1095 1096OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1097 switch (Opc) { 1098 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1099 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1100 case UO_AddrOf: return OO_Amp; 1101 case UO_Deref: return OO_Star; 1102 case UO_Plus: return OO_Plus; 1103 case UO_Minus: return OO_Minus; 1104 case UO_Not: return OO_Tilde; 1105 case UO_LNot: return OO_Exclaim; 1106 default: return OO_None; 1107 } 1108} 1109 1110 1111//===----------------------------------------------------------------------===// 1112// Postfix Operators. 1113//===----------------------------------------------------------------------===// 1114 1115CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, 1116 unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t, 1117 ExprValueKind VK, SourceLocation rparenloc) 1118 : Expr(SC, t, VK, OK_Ordinary, 1119 fn->isTypeDependent(), 1120 fn->isValueDependent(), 1121 fn->isInstantiationDependent(), 1122 fn->containsUnexpandedParameterPack()), 1123 NumArgs(args.size()) { 1124 1125 SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs]; 1126 SubExprs[FN] = fn; 1127 for (unsigned i = 0; i != args.size(); ++i) { 1128 if (args[i]->isTypeDependent()) 1129 ExprBits.TypeDependent = true; 1130 if (args[i]->isValueDependent()) 1131 ExprBits.ValueDependent = true; 1132 if (args[i]->isInstantiationDependent()) 1133 ExprBits.InstantiationDependent = true; 1134 if (args[i]->containsUnexpandedParameterPack()) 1135 ExprBits.ContainsUnexpandedParameterPack = true; 1136 1137 SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; 1138 } 1139 1140 CallExprBits.NumPreArgs = NumPreArgs; 1141 RParenLoc = rparenloc; 1142} 1143 1144CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args, 1145 QualType t, ExprValueKind VK, SourceLocation rparenloc) 1146 : CallExpr(C, CallExprClass, fn, /*NumPreArgs=*/0, args, t, VK, rparenloc) { 1147} 1148 1149CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty) 1150 : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {} 1151 1152CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs, 1153 EmptyShell Empty) 1154 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) { 1155 // FIXME: Why do we allocate this? 1156 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]; 1157 CallExprBits.NumPreArgs = NumPreArgs; 1158} 1159 1160Decl *CallExpr::getCalleeDecl() { 1161 Expr *CEE = getCallee()->IgnoreParenImpCasts(); 1162 1163 while (SubstNonTypeTemplateParmExpr *NTTP 1164 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1165 CEE = NTTP->getReplacement()->IgnoreParenCasts(); 1166 } 1167 1168 // If we're calling a dereference, look at the pointer instead. 1169 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1170 if (BO->isPtrMemOp()) 1171 CEE = BO->getRHS()->IgnoreParenCasts(); 1172 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1173 if (UO->getOpcode() == UO_Deref) 1174 CEE = UO->getSubExpr()->IgnoreParenCasts(); 1175 } 1176 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1177 return DRE->getDecl(); 1178 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1179 return ME->getMemberDecl(); 1180 1181 return nullptr; 1182} 1183 1184FunctionDecl *CallExpr::getDirectCallee() { 1185 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); 1186} 1187 1188/// setNumArgs - This changes the number of arguments present in this call. 1189/// Any orphaned expressions are deleted by this, and any new operands are set 1190/// to null. 1191void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) { 1192 // No change, just return. 1193 if (NumArgs == getNumArgs()) return; 1194 1195 // If shrinking # arguments, just delete the extras and forgot them. 1196 if (NumArgs < getNumArgs()) { 1197 this->NumArgs = NumArgs; 1198 return; 1199 } 1200 1201 // Otherwise, we are growing the # arguments. New an bigger argument array. 1202 unsigned NumPreArgs = getNumPreArgs(); 1203 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; 1204 // Copy over args. 1205 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) 1206 NewSubExprs[i] = SubExprs[i]; 1207 // Null out new args. 1208 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; 1209 i != NumArgs+PREARGS_START+NumPreArgs; ++i) 1210 NewSubExprs[i] = nullptr; 1211 1212 if (SubExprs) C.Deallocate(SubExprs); 1213 SubExprs = NewSubExprs; 1214 this->NumArgs = NumArgs; 1215} 1216 1217/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If 1218/// not, return 0. 1219unsigned CallExpr::getBuiltinCallee() const { 1220 // All simple function calls (e.g. func()) are implicitly cast to pointer to 1221 // function. As a result, we try and obtain the DeclRefExpr from the 1222 // ImplicitCastExpr. 1223 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 1224 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 1225 return 0; 1226 1227 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 1228 if (!DRE) 1229 return 0; 1230 1231 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 1232 if (!FDecl) 1233 return 0; 1234 1235 if (!FDecl->getIdentifier()) 1236 return 0; 1237 1238 return FDecl->getBuiltinID(); 1239} 1240 1241bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const { 1242 if (unsigned BI = getBuiltinCallee()) 1243 return Ctx.BuiltinInfo.isUnevaluated(BI); 1244 return false; 1245} 1246 1247QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1248 const Expr *Callee = getCallee(); 1249 QualType CalleeType = Callee->getType(); 1250 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1251 CalleeType = FnTypePtr->getPointeeType(); 1252 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1253 CalleeType = BPT->getPointeeType(); 1254 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1255 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1256 return Ctx.VoidTy; 1257 1258 // This should never be overloaded and so should never return null. 1259 CalleeType = Expr::findBoundMemberType(Callee); 1260 } 1261 1262 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1263 return FnType->getReturnType(); 1264} 1265 1266SourceLocation CallExpr::getLocStart() const { 1267 if (isa<CXXOperatorCallExpr>(this)) 1268 return cast<CXXOperatorCallExpr>(this)->getLocStart(); 1269 1270 SourceLocation begin = getCallee()->getLocStart(); 1271 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1272 begin = getArg(0)->getLocStart(); 1273 return begin; 1274} 1275SourceLocation CallExpr::getLocEnd() const { 1276 if (isa<CXXOperatorCallExpr>(this)) 1277 return cast<CXXOperatorCallExpr>(this)->getLocEnd(); 1278 1279 SourceLocation end = getRParenLoc(); 1280 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1281 end = getArg(getNumArgs() - 1)->getLocEnd(); 1282 return end; 1283} 1284 1285OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1286 SourceLocation OperatorLoc, 1287 TypeSourceInfo *tsi, 1288 ArrayRef<OffsetOfNode> comps, 1289 ArrayRef<Expr*> exprs, 1290 SourceLocation RParenLoc) { 1291 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 1292 sizeof(OffsetOfNode) * comps.size() + 1293 sizeof(Expr*) * exprs.size()); 1294 1295 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1296 RParenLoc); 1297} 1298 1299OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1300 unsigned numComps, unsigned numExprs) { 1301 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 1302 sizeof(OffsetOfNode) * numComps + 1303 sizeof(Expr*) * numExprs); 1304 return new (Mem) OffsetOfExpr(numComps, numExprs); 1305} 1306 1307OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1308 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1309 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs, 1310 SourceLocation RParenLoc) 1311 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, 1312 /*TypeDependent=*/false, 1313 /*ValueDependent=*/tsi->getType()->isDependentType(), 1314 tsi->getType()->isInstantiationDependentType(), 1315 tsi->getType()->containsUnexpandedParameterPack()), 1316 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1317 NumComps(comps.size()), NumExprs(exprs.size()) 1318{ 1319 for (unsigned i = 0; i != comps.size(); ++i) { 1320 setComponent(i, comps[i]); 1321 } 1322 1323 for (unsigned i = 0; i != exprs.size(); ++i) { 1324 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent()) 1325 ExprBits.ValueDependent = true; 1326 if (exprs[i]->containsUnexpandedParameterPack()) 1327 ExprBits.ContainsUnexpandedParameterPack = true; 1328 1329 setIndexExpr(i, exprs[i]); 1330 } 1331} 1332 1333IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const { 1334 assert(getKind() == Field || getKind() == Identifier); 1335 if (getKind() == Field) 1336 return getField()->getIdentifier(); 1337 1338 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1339} 1340 1341UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1342 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1343 SourceLocation op, SourceLocation rp) 1344 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary, 1345 false, // Never type-dependent (C++ [temp.dep.expr]p3). 1346 // Value-dependent if the argument is type-dependent. 1347 E->isTypeDependent(), E->isInstantiationDependent(), 1348 E->containsUnexpandedParameterPack()), 1349 OpLoc(op), RParenLoc(rp) { 1350 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1351 UnaryExprOrTypeTraitExprBits.IsType = false; 1352 Argument.Ex = E; 1353 1354 // Check to see if we are in the situation where alignof(decl) should be 1355 // dependent because decl's alignment is dependent. 1356 if (ExprKind == UETT_AlignOf) { 1357 if (!isValueDependent() || !isInstantiationDependent()) { 1358 E = E->IgnoreParens(); 1359 1360 const ValueDecl *D = nullptr; 1361 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 1362 D = DRE->getDecl(); 1363 else if (const auto *ME = dyn_cast<MemberExpr>(E)) 1364 D = ME->getMemberDecl(); 1365 1366 if (D) { 1367 for (const auto *I : D->specific_attrs<AlignedAttr>()) { 1368 if (I->isAlignmentDependent()) { 1369 setValueDependent(true); 1370 setInstantiationDependent(true); 1371 break; 1372 } 1373 } 1374 } 1375 } 1376 } 1377} 1378 1379MemberExpr *MemberExpr::Create( 1380 const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc, 1381 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1382 ValueDecl *memberdecl, DeclAccessPair founddecl, 1383 DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs, 1384 QualType ty, ExprValueKind vk, ExprObjectKind ok) { 1385 std::size_t Size = sizeof(MemberExpr); 1386 1387 bool hasQualOrFound = (QualifierLoc || 1388 founddecl.getDecl() != memberdecl || 1389 founddecl.getAccess() != memberdecl->getAccess()); 1390 if (hasQualOrFound) 1391 Size += sizeof(MemberNameQualifier); 1392 1393 if (targs) 1394 Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size()); 1395 else if (TemplateKWLoc.isValid()) 1396 Size += ASTTemplateKWAndArgsInfo::sizeFor(0); 1397 1398 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); 1399 MemberExpr *E = new (Mem) 1400 MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok); 1401 1402 if (hasQualOrFound) { 1403 // FIXME: Wrong. We should be looking at the member declaration we found. 1404 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { 1405 E->setValueDependent(true); 1406 E->setTypeDependent(true); 1407 E->setInstantiationDependent(true); 1408 } 1409 else if (QualifierLoc && 1410 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1411 E->setInstantiationDependent(true); 1412 1413 E->HasQualifierOrFoundDecl = true; 1414 1415 MemberNameQualifier *NQ = E->getMemberQualifier(); 1416 NQ->QualifierLoc = QualifierLoc; 1417 NQ->FoundDecl = founddecl; 1418 } 1419 1420 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid()); 1421 1422 if (targs) { 1423 bool Dependent = false; 1424 bool InstantiationDependent = false; 1425 bool ContainsUnexpandedParameterPack = false; 1426 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs, 1427 Dependent, 1428 InstantiationDependent, 1429 ContainsUnexpandedParameterPack); 1430 if (InstantiationDependent) 1431 E->setInstantiationDependent(true); 1432 } else if (TemplateKWLoc.isValid()) { 1433 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); 1434 } 1435 1436 return E; 1437} 1438 1439SourceLocation MemberExpr::getLocStart() const { 1440 if (isImplicitAccess()) { 1441 if (hasQualifier()) 1442 return getQualifierLoc().getBeginLoc(); 1443 return MemberLoc; 1444 } 1445 1446 // FIXME: We don't want this to happen. Rather, we should be able to 1447 // detect all kinds of implicit accesses more cleanly. 1448 SourceLocation BaseStartLoc = getBase()->getLocStart(); 1449 if (BaseStartLoc.isValid()) 1450 return BaseStartLoc; 1451 return MemberLoc; 1452} 1453SourceLocation MemberExpr::getLocEnd() const { 1454 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1455 if (hasExplicitTemplateArgs()) 1456 EndLoc = getRAngleLoc(); 1457 else if (EndLoc.isInvalid()) 1458 EndLoc = getBase()->getLocEnd(); 1459 return EndLoc; 1460} 1461 1462bool CastExpr::CastConsistency() const { 1463 switch (getCastKind()) { 1464 case CK_DerivedToBase: 1465 case CK_UncheckedDerivedToBase: 1466 case CK_DerivedToBaseMemberPointer: 1467 case CK_BaseToDerived: 1468 case CK_BaseToDerivedMemberPointer: 1469 assert(!path_empty() && "Cast kind should have a base path!"); 1470 break; 1471 1472 case CK_CPointerToObjCPointerCast: 1473 assert(getType()->isObjCObjectPointerType()); 1474 assert(getSubExpr()->getType()->isPointerType()); 1475 goto CheckNoBasePath; 1476 1477 case CK_BlockPointerToObjCPointerCast: 1478 assert(getType()->isObjCObjectPointerType()); 1479 assert(getSubExpr()->getType()->isBlockPointerType()); 1480 goto CheckNoBasePath; 1481 1482 case CK_ReinterpretMemberPointer: 1483 assert(getType()->isMemberPointerType()); 1484 assert(getSubExpr()->getType()->isMemberPointerType()); 1485 goto CheckNoBasePath; 1486 1487 case CK_BitCast: 1488 // Arbitrary casts to C pointer types count as bitcasts. 1489 // Otherwise, we should only have block and ObjC pointer casts 1490 // here if they stay within the type kind. 1491 if (!getType()->isPointerType()) { 1492 assert(getType()->isObjCObjectPointerType() == 1493 getSubExpr()->getType()->isObjCObjectPointerType()); 1494 assert(getType()->isBlockPointerType() == 1495 getSubExpr()->getType()->isBlockPointerType()); 1496 } 1497 goto CheckNoBasePath; 1498 1499 case CK_AnyPointerToBlockPointerCast: 1500 assert(getType()->isBlockPointerType()); 1501 assert(getSubExpr()->getType()->isAnyPointerType() && 1502 !getSubExpr()->getType()->isBlockPointerType()); 1503 goto CheckNoBasePath; 1504 1505 case CK_CopyAndAutoreleaseBlockObject: 1506 assert(getType()->isBlockPointerType()); 1507 assert(getSubExpr()->getType()->isBlockPointerType()); 1508 goto CheckNoBasePath; 1509 1510 case CK_FunctionToPointerDecay: 1511 assert(getType()->isPointerType()); 1512 assert(getSubExpr()->getType()->isFunctionType()); 1513 goto CheckNoBasePath; 1514 1515 case CK_AddressSpaceConversion: 1516 assert(getType()->isPointerType()); 1517 assert(getSubExpr()->getType()->isPointerType()); 1518 assert(getType()->getPointeeType().getAddressSpace() != 1519 getSubExpr()->getType()->getPointeeType().getAddressSpace()); 1520 // These should not have an inheritance path. 1521 case CK_Dynamic: 1522 case CK_ToUnion: 1523 case CK_ArrayToPointerDecay: 1524 case CK_NullToMemberPointer: 1525 case CK_NullToPointer: 1526 case CK_ConstructorConversion: 1527 case CK_IntegralToPointer: 1528 case CK_PointerToIntegral: 1529 case CK_ToVoid: 1530 case CK_VectorSplat: 1531 case CK_IntegralCast: 1532 case CK_IntegralToFloating: 1533 case CK_FloatingToIntegral: 1534 case CK_FloatingCast: 1535 case CK_ObjCObjectLValueCast: 1536 case CK_FloatingRealToComplex: 1537 case CK_FloatingComplexToReal: 1538 case CK_FloatingComplexCast: 1539 case CK_FloatingComplexToIntegralComplex: 1540 case CK_IntegralRealToComplex: 1541 case CK_IntegralComplexToReal: 1542 case CK_IntegralComplexCast: 1543 case CK_IntegralComplexToFloatingComplex: 1544 case CK_ARCProduceObject: 1545 case CK_ARCConsumeObject: 1546 case CK_ARCReclaimReturnedObject: 1547 case CK_ARCExtendBlockObject: 1548 case CK_ZeroToOCLEvent: 1549 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1550 goto CheckNoBasePath; 1551 1552 case CK_Dependent: 1553 case CK_LValueToRValue: 1554 case CK_NoOp: 1555 case CK_AtomicToNonAtomic: 1556 case CK_NonAtomicToAtomic: 1557 case CK_PointerToBoolean: 1558 case CK_IntegralToBoolean: 1559 case CK_FloatingToBoolean: 1560 case CK_MemberPointerToBoolean: 1561 case CK_FloatingComplexToBoolean: 1562 case CK_IntegralComplexToBoolean: 1563 case CK_LValueBitCast: // -> bool& 1564 case CK_UserDefinedConversion: // operator bool() 1565 case CK_BuiltinFnToFnPtr: 1566 CheckNoBasePath: 1567 assert(path_empty() && "Cast kind should not have a base path!"); 1568 break; 1569 } 1570 return true; 1571} 1572 1573const char *CastExpr::getCastKindName() const { 1574 switch (getCastKind()) { 1575 case CK_Dependent: 1576 return "Dependent"; 1577 case CK_BitCast: 1578 return "BitCast"; 1579 case CK_LValueBitCast: 1580 return "LValueBitCast"; 1581 case CK_LValueToRValue: 1582 return "LValueToRValue"; 1583 case CK_NoOp: 1584 return "NoOp"; 1585 case CK_BaseToDerived: 1586 return "BaseToDerived"; 1587 case CK_DerivedToBase: 1588 return "DerivedToBase"; 1589 case CK_UncheckedDerivedToBase: 1590 return "UncheckedDerivedToBase"; 1591 case CK_Dynamic: 1592 return "Dynamic"; 1593 case CK_ToUnion: 1594 return "ToUnion"; 1595 case CK_ArrayToPointerDecay: 1596 return "ArrayToPointerDecay"; 1597 case CK_FunctionToPointerDecay: 1598 return "FunctionToPointerDecay"; 1599 case CK_NullToMemberPointer: 1600 return "NullToMemberPointer"; 1601 case CK_NullToPointer: 1602 return "NullToPointer"; 1603 case CK_BaseToDerivedMemberPointer: 1604 return "BaseToDerivedMemberPointer"; 1605 case CK_DerivedToBaseMemberPointer: 1606 return "DerivedToBaseMemberPointer"; 1607 case CK_ReinterpretMemberPointer: 1608 return "ReinterpretMemberPointer"; 1609 case CK_UserDefinedConversion: 1610 return "UserDefinedConversion"; 1611 case CK_ConstructorConversion: 1612 return "ConstructorConversion"; 1613 case CK_IntegralToPointer: 1614 return "IntegralToPointer"; 1615 case CK_PointerToIntegral: 1616 return "PointerToIntegral"; 1617 case CK_PointerToBoolean: 1618 return "PointerToBoolean"; 1619 case CK_ToVoid: 1620 return "ToVoid"; 1621 case CK_VectorSplat: 1622 return "VectorSplat"; 1623 case CK_IntegralCast: 1624 return "IntegralCast"; 1625 case CK_IntegralToBoolean: 1626 return "IntegralToBoolean"; 1627 case CK_IntegralToFloating: 1628 return "IntegralToFloating"; 1629 case CK_FloatingToIntegral: 1630 return "FloatingToIntegral"; 1631 case CK_FloatingCast: 1632 return "FloatingCast"; 1633 case CK_FloatingToBoolean: 1634 return "FloatingToBoolean"; 1635 case CK_MemberPointerToBoolean: 1636 return "MemberPointerToBoolean"; 1637 case CK_CPointerToObjCPointerCast: 1638 return "CPointerToObjCPointerCast"; 1639 case CK_BlockPointerToObjCPointerCast: 1640 return "BlockPointerToObjCPointerCast"; 1641 case CK_AnyPointerToBlockPointerCast: 1642 return "AnyPointerToBlockPointerCast"; 1643 case CK_ObjCObjectLValueCast: 1644 return "ObjCObjectLValueCast"; 1645 case CK_FloatingRealToComplex: 1646 return "FloatingRealToComplex"; 1647 case CK_FloatingComplexToReal: 1648 return "FloatingComplexToReal"; 1649 case CK_FloatingComplexToBoolean: 1650 return "FloatingComplexToBoolean"; 1651 case CK_FloatingComplexCast: 1652 return "FloatingComplexCast"; 1653 case CK_FloatingComplexToIntegralComplex: 1654 return "FloatingComplexToIntegralComplex"; 1655 case CK_IntegralRealToComplex: 1656 return "IntegralRealToComplex"; 1657 case CK_IntegralComplexToReal: 1658 return "IntegralComplexToReal"; 1659 case CK_IntegralComplexToBoolean: 1660 return "IntegralComplexToBoolean"; 1661 case CK_IntegralComplexCast: 1662 return "IntegralComplexCast"; 1663 case CK_IntegralComplexToFloatingComplex: 1664 return "IntegralComplexToFloatingComplex"; 1665 case CK_ARCConsumeObject: 1666 return "ARCConsumeObject"; 1667 case CK_ARCProduceObject: 1668 return "ARCProduceObject"; 1669 case CK_ARCReclaimReturnedObject: 1670 return "ARCReclaimReturnedObject"; 1671 case CK_ARCExtendBlockObject: 1672 return "ARCExtendBlockObject"; 1673 case CK_AtomicToNonAtomic: 1674 return "AtomicToNonAtomic"; 1675 case CK_NonAtomicToAtomic: 1676 return "NonAtomicToAtomic"; 1677 case CK_CopyAndAutoreleaseBlockObject: 1678 return "CopyAndAutoreleaseBlockObject"; 1679 case CK_BuiltinFnToFnPtr: 1680 return "BuiltinFnToFnPtr"; 1681 case CK_ZeroToOCLEvent: 1682 return "ZeroToOCLEvent"; 1683 case CK_AddressSpaceConversion: 1684 return "AddressSpaceConversion"; 1685 } 1686 1687 llvm_unreachable("Unhandled cast kind!"); 1688} 1689 1690Expr *CastExpr::getSubExprAsWritten() { 1691 Expr *SubExpr = nullptr; 1692 CastExpr *E = this; 1693 do { 1694 SubExpr = E->getSubExpr(); 1695 1696 // Skip through reference binding to temporary. 1697 if (MaterializeTemporaryExpr *Materialize 1698 = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) 1699 SubExpr = Materialize->GetTemporaryExpr(); 1700 1701 // Skip any temporary bindings; they're implicit. 1702 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 1703 SubExpr = Binder->getSubExpr(); 1704 1705 // Conversions by constructor and conversion functions have a 1706 // subexpression describing the call; strip it off. 1707 if (E->getCastKind() == CK_ConstructorConversion) 1708 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); 1709 else if (E->getCastKind() == CK_UserDefinedConversion) 1710 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); 1711 1712 // If the subexpression we're left with is an implicit cast, look 1713 // through that, too. 1714 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1715 1716 return SubExpr; 1717} 1718 1719CXXBaseSpecifier **CastExpr::path_buffer() { 1720 switch (getStmtClass()) { 1721#define ABSTRACT_STMT(x) 1722#define CASTEXPR(Type, Base) \ 1723 case Stmt::Type##Class: \ 1724 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1); 1725#define STMT(Type, Base) 1726#include "clang/AST/StmtNodes.inc" 1727 default: 1728 llvm_unreachable("non-cast expressions not possible here"); 1729 } 1730} 1731 1732void CastExpr::setCastPath(const CXXCastPath &Path) { 1733 assert(Path.size() == path_size()); 1734 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*)); 1735} 1736 1737ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1738 CastKind Kind, Expr *Operand, 1739 const CXXCastPath *BasePath, 1740 ExprValueKind VK) { 1741 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1742 void *Buffer = 1743 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1744 ImplicitCastExpr *E = 1745 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 1746 if (PathSize) E->setCastPath(*BasePath); 1747 return E; 1748} 1749 1750ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 1751 unsigned PathSize) { 1752 void *Buffer = 1753 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1754 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 1755} 1756 1757 1758CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 1759 ExprValueKind VK, CastKind K, Expr *Op, 1760 const CXXCastPath *BasePath, 1761 TypeSourceInfo *WrittenTy, 1762 SourceLocation L, SourceLocation R) { 1763 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1764 void *Buffer = 1765 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1766 CStyleCastExpr *E = 1767 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 1768 if (PathSize) E->setCastPath(*BasePath); 1769 return E; 1770} 1771 1772CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 1773 unsigned PathSize) { 1774 void *Buffer = 1775 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1776 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 1777} 1778 1779/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1780/// corresponds to, e.g. "<<=". 1781StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 1782 switch (Op) { 1783 case BO_PtrMemD: return ".*"; 1784 case BO_PtrMemI: return "->*"; 1785 case BO_Mul: return "*"; 1786 case BO_Div: return "/"; 1787 case BO_Rem: return "%"; 1788 case BO_Add: return "+"; 1789 case BO_Sub: return "-"; 1790 case BO_Shl: return "<<"; 1791 case BO_Shr: return ">>"; 1792 case BO_LT: return "<"; 1793 case BO_GT: return ">"; 1794 case BO_LE: return "<="; 1795 case BO_GE: return ">="; 1796 case BO_EQ: return "=="; 1797 case BO_NE: return "!="; 1798 case BO_And: return "&"; 1799 case BO_Xor: return "^"; 1800 case BO_Or: return "|"; 1801 case BO_LAnd: return "&&"; 1802 case BO_LOr: return "||"; 1803 case BO_Assign: return "="; 1804 case BO_MulAssign: return "*="; 1805 case BO_DivAssign: return "/="; 1806 case BO_RemAssign: return "%="; 1807 case BO_AddAssign: return "+="; 1808 case BO_SubAssign: return "-="; 1809 case BO_ShlAssign: return "<<="; 1810 case BO_ShrAssign: return ">>="; 1811 case BO_AndAssign: return "&="; 1812 case BO_XorAssign: return "^="; 1813 case BO_OrAssign: return "|="; 1814 case BO_Comma: return ","; 1815 } 1816 1817 llvm_unreachable("Invalid OpCode!"); 1818} 1819 1820BinaryOperatorKind 1821BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 1822 switch (OO) { 1823 default: llvm_unreachable("Not an overloadable binary operator"); 1824 case OO_Plus: return BO_Add; 1825 case OO_Minus: return BO_Sub; 1826 case OO_Star: return BO_Mul; 1827 case OO_Slash: return BO_Div; 1828 case OO_Percent: return BO_Rem; 1829 case OO_Caret: return BO_Xor; 1830 case OO_Amp: return BO_And; 1831 case OO_Pipe: return BO_Or; 1832 case OO_Equal: return BO_Assign; 1833 case OO_Less: return BO_LT; 1834 case OO_Greater: return BO_GT; 1835 case OO_PlusEqual: return BO_AddAssign; 1836 case OO_MinusEqual: return BO_SubAssign; 1837 case OO_StarEqual: return BO_MulAssign; 1838 case OO_SlashEqual: return BO_DivAssign; 1839 case OO_PercentEqual: return BO_RemAssign; 1840 case OO_CaretEqual: return BO_XorAssign; 1841 case OO_AmpEqual: return BO_AndAssign; 1842 case OO_PipeEqual: return BO_OrAssign; 1843 case OO_LessLess: return BO_Shl; 1844 case OO_GreaterGreater: return BO_Shr; 1845 case OO_LessLessEqual: return BO_ShlAssign; 1846 case OO_GreaterGreaterEqual: return BO_ShrAssign; 1847 case OO_EqualEqual: return BO_EQ; 1848 case OO_ExclaimEqual: return BO_NE; 1849 case OO_LessEqual: return BO_LE; 1850 case OO_GreaterEqual: return BO_GE; 1851 case OO_AmpAmp: return BO_LAnd; 1852 case OO_PipePipe: return BO_LOr; 1853 case OO_Comma: return BO_Comma; 1854 case OO_ArrowStar: return BO_PtrMemI; 1855 } 1856} 1857 1858OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 1859 static const OverloadedOperatorKind OverOps[] = { 1860 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 1861 OO_Star, OO_Slash, OO_Percent, 1862 OO_Plus, OO_Minus, 1863 OO_LessLess, OO_GreaterGreater, 1864 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 1865 OO_EqualEqual, OO_ExclaimEqual, 1866 OO_Amp, 1867 OO_Caret, 1868 OO_Pipe, 1869 OO_AmpAmp, 1870 OO_PipePipe, 1871 OO_Equal, OO_StarEqual, 1872 OO_SlashEqual, OO_PercentEqual, 1873 OO_PlusEqual, OO_MinusEqual, 1874 OO_LessLessEqual, OO_GreaterGreaterEqual, 1875 OO_AmpEqual, OO_CaretEqual, 1876 OO_PipeEqual, 1877 OO_Comma 1878 }; 1879 return OverOps[Opc]; 1880} 1881 1882InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 1883 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc) 1884 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 1885 false, false), 1886 InitExprs(C, initExprs.size()), 1887 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) 1888{ 1889 sawArrayRangeDesignator(false); 1890 for (unsigned I = 0; I != initExprs.size(); ++I) { 1891 if (initExprs[I]->isTypeDependent()) 1892 ExprBits.TypeDependent = true; 1893 if (initExprs[I]->isValueDependent()) 1894 ExprBits.ValueDependent = true; 1895 if (initExprs[I]->isInstantiationDependent()) 1896 ExprBits.InstantiationDependent = true; 1897 if (initExprs[I]->containsUnexpandedParameterPack()) 1898 ExprBits.ContainsUnexpandedParameterPack = true; 1899 } 1900 1901 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 1902} 1903 1904void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 1905 if (NumInits > InitExprs.size()) 1906 InitExprs.reserve(C, NumInits); 1907} 1908 1909void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 1910 InitExprs.resize(C, NumInits, nullptr); 1911} 1912 1913Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 1914 if (Init >= InitExprs.size()) { 1915 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 1916 setInit(Init, expr); 1917 return nullptr; 1918 } 1919 1920 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 1921 setInit(Init, expr); 1922 return Result; 1923} 1924 1925void InitListExpr::setArrayFiller(Expr *filler) { 1926 assert(!hasArrayFiller() && "Filler already set!"); 1927 ArrayFillerOrUnionFieldInit = filler; 1928 // Fill out any "holes" in the array due to designated initializers. 1929 Expr **inits = getInits(); 1930 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 1931 if (inits[i] == nullptr) 1932 inits[i] = filler; 1933} 1934 1935bool InitListExpr::isStringLiteralInit() const { 1936 if (getNumInits() != 1) 1937 return false; 1938 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 1939 if (!AT || !AT->getElementType()->isIntegerType()) 1940 return false; 1941 // It is possible for getInit() to return null. 1942 const Expr *Init = getInit(0); 1943 if (!Init) 1944 return false; 1945 Init = Init->IgnoreParens(); 1946 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 1947} 1948 1949SourceLocation InitListExpr::getLocStart() const { 1950 if (InitListExpr *SyntacticForm = getSyntacticForm()) 1951 return SyntacticForm->getLocStart(); 1952 SourceLocation Beg = LBraceLoc; 1953 if (Beg.isInvalid()) { 1954 // Find the first non-null initializer. 1955 for (InitExprsTy::const_iterator I = InitExprs.begin(), 1956 E = InitExprs.end(); 1957 I != E; ++I) { 1958 if (Stmt *S = *I) { 1959 Beg = S->getLocStart(); 1960 break; 1961 } 1962 } 1963 } 1964 return Beg; 1965} 1966 1967SourceLocation InitListExpr::getLocEnd() const { 1968 if (InitListExpr *SyntacticForm = getSyntacticForm()) 1969 return SyntacticForm->getLocEnd(); 1970 SourceLocation End = RBraceLoc; 1971 if (End.isInvalid()) { 1972 // Find the first non-null initializer from the end. 1973 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 1974 E = InitExprs.rend(); 1975 I != E; ++I) { 1976 if (Stmt *S = *I) { 1977 End = S->getLocEnd(); 1978 break; 1979 } 1980 } 1981 } 1982 return End; 1983} 1984 1985/// getFunctionType - Return the underlying function type for this block. 1986/// 1987const FunctionProtoType *BlockExpr::getFunctionType() const { 1988 // The block pointer is never sugared, but the function type might be. 1989 return cast<BlockPointerType>(getType()) 1990 ->getPointeeType()->castAs<FunctionProtoType>(); 1991} 1992 1993SourceLocation BlockExpr::getCaretLocation() const { 1994 return TheBlock->getCaretLocation(); 1995} 1996const Stmt *BlockExpr::getBody() const { 1997 return TheBlock->getBody(); 1998} 1999Stmt *BlockExpr::getBody() { 2000 return TheBlock->getBody(); 2001} 2002 2003 2004//===----------------------------------------------------------------------===// 2005// Generic Expression Routines 2006//===----------------------------------------------------------------------===// 2007 2008/// isUnusedResultAWarning - Return true if this immediate expression should 2009/// be warned about if the result is unused. If so, fill in Loc and Ranges 2010/// with location to warn on and the source range[s] to report with the 2011/// warning. 2012bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2013 SourceRange &R1, SourceRange &R2, 2014 ASTContext &Ctx) const { 2015 // Don't warn if the expr is type dependent. The type could end up 2016 // instantiating to void. 2017 if (isTypeDependent()) 2018 return false; 2019 2020 switch (getStmtClass()) { 2021 default: 2022 if (getType()->isVoidType()) 2023 return false; 2024 WarnE = this; 2025 Loc = getExprLoc(); 2026 R1 = getSourceRange(); 2027 return true; 2028 case ParenExprClass: 2029 return cast<ParenExpr>(this)->getSubExpr()-> 2030 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2031 case GenericSelectionExprClass: 2032 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2033 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2034 case ChooseExprClass: 2035 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2036 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2037 case UnaryOperatorClass: { 2038 const UnaryOperator *UO = cast<UnaryOperator>(this); 2039 2040 switch (UO->getOpcode()) { 2041 case UO_Plus: 2042 case UO_Minus: 2043 case UO_AddrOf: 2044 case UO_Not: 2045 case UO_LNot: 2046 case UO_Deref: 2047 break; 2048 case UO_PostInc: 2049 case UO_PostDec: 2050 case UO_PreInc: 2051 case UO_PreDec: // ++/-- 2052 return false; // Not a warning. 2053 case UO_Real: 2054 case UO_Imag: 2055 // accessing a piece of a volatile complex is a side-effect. 2056 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2057 .isVolatileQualified()) 2058 return false; 2059 break; 2060 case UO_Extension: 2061 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2062 } 2063 WarnE = this; 2064 Loc = UO->getOperatorLoc(); 2065 R1 = UO->getSubExpr()->getSourceRange(); 2066 return true; 2067 } 2068 case BinaryOperatorClass: { 2069 const BinaryOperator *BO = cast<BinaryOperator>(this); 2070 switch (BO->getOpcode()) { 2071 default: 2072 break; 2073 // Consider the RHS of comma for side effects. LHS was checked by 2074 // Sema::CheckCommaOperands. 2075 case BO_Comma: 2076 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2077 // lvalue-ness) of an assignment written in a macro. 2078 if (IntegerLiteral *IE = 2079 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2080 if (IE->getValue() == 0) 2081 return false; 2082 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2083 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2084 case BO_LAnd: 2085 case BO_LOr: 2086 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2087 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2088 return false; 2089 break; 2090 } 2091 if (BO->isAssignmentOp()) 2092 return false; 2093 WarnE = this; 2094 Loc = BO->getOperatorLoc(); 2095 R1 = BO->getLHS()->getSourceRange(); 2096 R2 = BO->getRHS()->getSourceRange(); 2097 return true; 2098 } 2099 case CompoundAssignOperatorClass: 2100 case VAArgExprClass: 2101 case AtomicExprClass: 2102 return false; 2103 2104 case ConditionalOperatorClass: { 2105 // If only one of the LHS or RHS is a warning, the operator might 2106 // be being used for control flow. Only warn if both the LHS and 2107 // RHS are warnings. 2108 const ConditionalOperator *Exp = cast<ConditionalOperator>(this); 2109 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2110 return false; 2111 if (!Exp->getLHS()) 2112 return true; 2113 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2114 } 2115 2116 case MemberExprClass: 2117 WarnE = this; 2118 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2119 R1 = SourceRange(Loc, Loc); 2120 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2121 return true; 2122 2123 case ArraySubscriptExprClass: 2124 WarnE = this; 2125 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2126 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2127 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2128 return true; 2129 2130 case CXXOperatorCallExprClass: { 2131 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2132 // overloads as there is no reasonable way to define these such that they 2133 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2134 // warning: operators == and != are commonly typo'ed, and so warning on them 2135 // provides additional value as well. If this list is updated, 2136 // DiagnoseUnusedComparison should be as well. 2137 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2138 switch (Op->getOperator()) { 2139 default: 2140 break; 2141 case OO_EqualEqual: 2142 case OO_ExclaimEqual: 2143 case OO_Less: 2144 case OO_Greater: 2145 case OO_GreaterEqual: 2146 case OO_LessEqual: 2147 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2148 Op->getCallReturnType(Ctx)->isVoidType()) 2149 break; 2150 WarnE = this; 2151 Loc = Op->getOperatorLoc(); 2152 R1 = Op->getSourceRange(); 2153 return true; 2154 } 2155 2156 // Fallthrough for generic call handling. 2157 } 2158 case CallExprClass: 2159 case CXXMemberCallExprClass: 2160 case UserDefinedLiteralClass: { 2161 // If this is a direct call, get the callee. 2162 const CallExpr *CE = cast<CallExpr>(this); 2163 if (const Decl *FD = CE->getCalleeDecl()) { 2164 // If the callee has attribute pure, const, or warn_unused_result, warn 2165 // about it. void foo() { strlen("bar"); } should warn. 2166 // 2167 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2168 // updated to match for QoI. 2169 if (FD->hasAttr<WarnUnusedResultAttr>() || 2170 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2171 WarnE = this; 2172 Loc = CE->getCallee()->getLocStart(); 2173 R1 = CE->getCallee()->getSourceRange(); 2174 2175 if (unsigned NumArgs = CE->getNumArgs()) 2176 R2 = SourceRange(CE->getArg(0)->getLocStart(), 2177 CE->getArg(NumArgs-1)->getLocEnd()); 2178 return true; 2179 } 2180 } 2181 return false; 2182 } 2183 2184 // If we don't know precisely what we're looking at, let's not warn. 2185 case UnresolvedLookupExprClass: 2186 case CXXUnresolvedConstructExprClass: 2187 return false; 2188 2189 case CXXTemporaryObjectExprClass: 2190 case CXXConstructExprClass: { 2191 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2192 if (Type->hasAttr<WarnUnusedAttr>()) { 2193 WarnE = this; 2194 Loc = getLocStart(); 2195 R1 = getSourceRange(); 2196 return true; 2197 } 2198 } 2199 return false; 2200 } 2201 2202 case ObjCMessageExprClass: { 2203 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2204 if (Ctx.getLangOpts().ObjCAutoRefCount && 2205 ME->isInstanceMessage() && 2206 !ME->getType()->isVoidType() && 2207 ME->getMethodFamily() == OMF_init) { 2208 WarnE = this; 2209 Loc = getExprLoc(); 2210 R1 = ME->getSourceRange(); 2211 return true; 2212 } 2213 2214 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2215 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2216 WarnE = this; 2217 Loc = getExprLoc(); 2218 return true; 2219 } 2220 2221 return false; 2222 } 2223 2224 case ObjCPropertyRefExprClass: 2225 WarnE = this; 2226 Loc = getExprLoc(); 2227 R1 = getSourceRange(); 2228 return true; 2229 2230 case PseudoObjectExprClass: { 2231 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 2232 2233 // Only complain about things that have the form of a getter. 2234 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 2235 isa<BinaryOperator>(PO->getSyntacticForm())) 2236 return false; 2237 2238 WarnE = this; 2239 Loc = getExprLoc(); 2240 R1 = getSourceRange(); 2241 return true; 2242 } 2243 2244 case StmtExprClass: { 2245 // Statement exprs don't logically have side effects themselves, but are 2246 // sometimes used in macros in ways that give them a type that is unused. 2247 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2248 // however, if the result of the stmt expr is dead, we don't want to emit a 2249 // warning. 2250 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2251 if (!CS->body_empty()) { 2252 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2253 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2254 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2255 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2256 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2257 } 2258 2259 if (getType()->isVoidType()) 2260 return false; 2261 WarnE = this; 2262 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2263 R1 = getSourceRange(); 2264 return true; 2265 } 2266 case CXXFunctionalCastExprClass: 2267 case CStyleCastExprClass: { 2268 // Ignore an explicit cast to void unless the operand is a non-trivial 2269 // volatile lvalue. 2270 const CastExpr *CE = cast<CastExpr>(this); 2271 if (CE->getCastKind() == CK_ToVoid) { 2272 if (CE->getSubExpr()->isGLValue() && 2273 CE->getSubExpr()->getType().isVolatileQualified()) { 2274 const DeclRefExpr *DRE = 2275 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens()); 2276 if (!(DRE && isa<VarDecl>(DRE->getDecl()) && 2277 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) { 2278 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, 2279 R1, R2, Ctx); 2280 } 2281 } 2282 return false; 2283 } 2284 2285 // If this is a cast to a constructor conversion, check the operand. 2286 // Otherwise, the result of the cast is unused. 2287 if (CE->getCastKind() == CK_ConstructorConversion) 2288 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2289 2290 WarnE = this; 2291 if (const CXXFunctionalCastExpr *CXXCE = 2292 dyn_cast<CXXFunctionalCastExpr>(this)) { 2293 Loc = CXXCE->getLocStart(); 2294 R1 = CXXCE->getSubExpr()->getSourceRange(); 2295 } else { 2296 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2297 Loc = CStyleCE->getLParenLoc(); 2298 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2299 } 2300 return true; 2301 } 2302 case ImplicitCastExprClass: { 2303 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2304 2305 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2306 if (ICE->getCastKind() == CK_LValueToRValue && 2307 ICE->getSubExpr()->getType().isVolatileQualified()) 2308 return false; 2309 2310 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2311 } 2312 case CXXDefaultArgExprClass: 2313 return (cast<CXXDefaultArgExpr>(this) 2314 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2315 case CXXDefaultInitExprClass: 2316 return (cast<CXXDefaultInitExpr>(this) 2317 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2318 2319 case CXXNewExprClass: 2320 // FIXME: In theory, there might be new expressions that don't have side 2321 // effects (e.g. a placement new with an uninitialized POD). 2322 case CXXDeleteExprClass: 2323 return false; 2324 case CXXBindTemporaryExprClass: 2325 return (cast<CXXBindTemporaryExpr>(this) 2326 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2327 case ExprWithCleanupsClass: 2328 return (cast<ExprWithCleanups>(this) 2329 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2330 } 2331} 2332 2333/// isOBJCGCCandidate - Check if an expression is objc gc'able. 2334/// returns true, if it is; false otherwise. 2335bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2336 const Expr *E = IgnoreParens(); 2337 switch (E->getStmtClass()) { 2338 default: 2339 return false; 2340 case ObjCIvarRefExprClass: 2341 return true; 2342 case Expr::UnaryOperatorClass: 2343 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2344 case ImplicitCastExprClass: 2345 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2346 case MaterializeTemporaryExprClass: 2347 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() 2348 ->isOBJCGCCandidate(Ctx); 2349 case CStyleCastExprClass: 2350 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2351 case DeclRefExprClass: { 2352 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2353 2354 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2355 if (VD->hasGlobalStorage()) 2356 return true; 2357 QualType T = VD->getType(); 2358 // dereferencing to a pointer is always a gc'able candidate, 2359 // unless it is __weak. 2360 return T->isPointerType() && 2361 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2362 } 2363 return false; 2364 } 2365 case MemberExprClass: { 2366 const MemberExpr *M = cast<MemberExpr>(E); 2367 return M->getBase()->isOBJCGCCandidate(Ctx); 2368 } 2369 case ArraySubscriptExprClass: 2370 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2371 } 2372} 2373 2374bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2375 if (isTypeDependent()) 2376 return false; 2377 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2378} 2379 2380QualType Expr::findBoundMemberType(const Expr *expr) { 2381 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2382 2383 // Bound member expressions are always one of these possibilities: 2384 // x->m x.m x->*y x.*y 2385 // (possibly parenthesized) 2386 2387 expr = expr->IgnoreParens(); 2388 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2389 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2390 return mem->getMemberDecl()->getType(); 2391 } 2392 2393 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2394 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2395 ->getPointeeType(); 2396 assert(type->isFunctionType()); 2397 return type; 2398 } 2399 2400 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2401 return QualType(); 2402} 2403 2404Expr* Expr::IgnoreParens() { 2405 Expr* E = this; 2406 while (true) { 2407 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 2408 E = P->getSubExpr(); 2409 continue; 2410 } 2411 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2412 if (P->getOpcode() == UO_Extension) { 2413 E = P->getSubExpr(); 2414 continue; 2415 } 2416 } 2417 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2418 if (!P->isResultDependent()) { 2419 E = P->getResultExpr(); 2420 continue; 2421 } 2422 } 2423 if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) { 2424 if (!P->isConditionDependent()) { 2425 E = P->getChosenSubExpr(); 2426 continue; 2427 } 2428 } 2429 return E; 2430 } 2431} 2432 2433/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr 2434/// or CastExprs or ImplicitCastExprs, returning their operand. 2435Expr *Expr::IgnoreParenCasts() { 2436 Expr *E = this; 2437 while (true) { 2438 E = E->IgnoreParens(); 2439 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2440 E = P->getSubExpr(); 2441 continue; 2442 } 2443 if (MaterializeTemporaryExpr *Materialize 2444 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2445 E = Materialize->GetTemporaryExpr(); 2446 continue; 2447 } 2448 if (SubstNonTypeTemplateParmExpr *NTTP 2449 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2450 E = NTTP->getReplacement(); 2451 continue; 2452 } 2453 return E; 2454 } 2455} 2456 2457Expr *Expr::IgnoreCasts() { 2458 Expr *E = this; 2459 while (true) { 2460 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2461 E = P->getSubExpr(); 2462 continue; 2463 } 2464 if (MaterializeTemporaryExpr *Materialize 2465 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2466 E = Materialize->GetTemporaryExpr(); 2467 continue; 2468 } 2469 if (SubstNonTypeTemplateParmExpr *NTTP 2470 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2471 E = NTTP->getReplacement(); 2472 continue; 2473 } 2474 return E; 2475 } 2476} 2477 2478/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue 2479/// casts. This is intended purely as a temporary workaround for code 2480/// that hasn't yet been rewritten to do the right thing about those 2481/// casts, and may disappear along with the last internal use. 2482Expr *Expr::IgnoreParenLValueCasts() { 2483 Expr *E = this; 2484 while (true) { 2485 E = E->IgnoreParens(); 2486 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2487 if (P->getCastKind() == CK_LValueToRValue) { 2488 E = P->getSubExpr(); 2489 continue; 2490 } 2491 } else if (MaterializeTemporaryExpr *Materialize 2492 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2493 E = Materialize->GetTemporaryExpr(); 2494 continue; 2495 } else if (SubstNonTypeTemplateParmExpr *NTTP 2496 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2497 E = NTTP->getReplacement(); 2498 continue; 2499 } 2500 break; 2501 } 2502 return E; 2503} 2504 2505Expr *Expr::ignoreParenBaseCasts() { 2506 Expr *E = this; 2507 while (true) { 2508 E = E->IgnoreParens(); 2509 if (CastExpr *CE = dyn_cast<CastExpr>(E)) { 2510 if (CE->getCastKind() == CK_DerivedToBase || 2511 CE->getCastKind() == CK_UncheckedDerivedToBase || 2512 CE->getCastKind() == CK_NoOp) { 2513 E = CE->getSubExpr(); 2514 continue; 2515 } 2516 } 2517 2518 return E; 2519 } 2520} 2521 2522Expr *Expr::IgnoreParenImpCasts() { 2523 Expr *E = this; 2524 while (true) { 2525 E = E->IgnoreParens(); 2526 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { 2527 E = P->getSubExpr(); 2528 continue; 2529 } 2530 if (MaterializeTemporaryExpr *Materialize 2531 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2532 E = Materialize->GetTemporaryExpr(); 2533 continue; 2534 } 2535 if (SubstNonTypeTemplateParmExpr *NTTP 2536 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2537 E = NTTP->getReplacement(); 2538 continue; 2539 } 2540 return E; 2541 } 2542} 2543 2544Expr *Expr::IgnoreConversionOperator() { 2545 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2546 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2547 return MCE->getImplicitObjectArgument(); 2548 } 2549 return this; 2550} 2551 2552/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the 2553/// value (including ptr->int casts of the same size). Strip off any 2554/// ParenExpr or CastExprs, returning their operand. 2555Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { 2556 Expr *E = this; 2557 while (true) { 2558 E = E->IgnoreParens(); 2559 2560 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2561 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2562 // ptr<->int casts of the same width. We also ignore all identity casts. 2563 Expr *SE = P->getSubExpr(); 2564 2565 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { 2566 E = SE; 2567 continue; 2568 } 2569 2570 if ((E->getType()->isPointerType() || 2571 E->getType()->isIntegralType(Ctx)) && 2572 (SE->getType()->isPointerType() || 2573 SE->getType()->isIntegralType(Ctx)) && 2574 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { 2575 E = SE; 2576 continue; 2577 } 2578 } 2579 2580 if (SubstNonTypeTemplateParmExpr *NTTP 2581 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2582 E = NTTP->getReplacement(); 2583 continue; 2584 } 2585 2586 return E; 2587 } 2588} 2589 2590bool Expr::isDefaultArgument() const { 2591 const Expr *E = this; 2592 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2593 E = M->GetTemporaryExpr(); 2594 2595 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 2596 E = ICE->getSubExprAsWritten(); 2597 2598 return isa<CXXDefaultArgExpr>(E); 2599} 2600 2601/// \brief Skip over any no-op casts and any temporary-binding 2602/// expressions. 2603static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 2604 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2605 E = M->GetTemporaryExpr(); 2606 2607 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2608 if (ICE->getCastKind() == CK_NoOp) 2609 E = ICE->getSubExpr(); 2610 else 2611 break; 2612 } 2613 2614 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 2615 E = BE->getSubExpr(); 2616 2617 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2618 if (ICE->getCastKind() == CK_NoOp) 2619 E = ICE->getSubExpr(); 2620 else 2621 break; 2622 } 2623 2624 return E->IgnoreParens(); 2625} 2626 2627/// isTemporaryObject - Determines if this expression produces a 2628/// temporary of the given class type. 2629bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 2630 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 2631 return false; 2632 2633 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 2634 2635 // Temporaries are by definition pr-values of class type. 2636 if (!E->Classify(C).isPRValue()) { 2637 // In this context, property reference is a message call and is pr-value. 2638 if (!isa<ObjCPropertyRefExpr>(E)) 2639 return false; 2640 } 2641 2642 // Black-list a few cases which yield pr-values of class type that don't 2643 // refer to temporaries of that type: 2644 2645 // - implicit derived-to-base conversions 2646 if (isa<ImplicitCastExpr>(E)) { 2647 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 2648 case CK_DerivedToBase: 2649 case CK_UncheckedDerivedToBase: 2650 return false; 2651 default: 2652 break; 2653 } 2654 } 2655 2656 // - member expressions (all) 2657 if (isa<MemberExpr>(E)) 2658 return false; 2659 2660 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 2661 if (BO->isPtrMemOp()) 2662 return false; 2663 2664 // - opaque values (all) 2665 if (isa<OpaqueValueExpr>(E)) 2666 return false; 2667 2668 return true; 2669} 2670 2671bool Expr::isImplicitCXXThis() const { 2672 const Expr *E = this; 2673 2674 // Strip away parentheses and casts we don't care about. 2675 while (true) { 2676 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 2677 E = Paren->getSubExpr(); 2678 continue; 2679 } 2680 2681 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2682 if (ICE->getCastKind() == CK_NoOp || 2683 ICE->getCastKind() == CK_LValueToRValue || 2684 ICE->getCastKind() == CK_DerivedToBase || 2685 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 2686 E = ICE->getSubExpr(); 2687 continue; 2688 } 2689 } 2690 2691 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 2692 if (UnOp->getOpcode() == UO_Extension) { 2693 E = UnOp->getSubExpr(); 2694 continue; 2695 } 2696 } 2697 2698 if (const MaterializeTemporaryExpr *M 2699 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2700 E = M->GetTemporaryExpr(); 2701 continue; 2702 } 2703 2704 break; 2705 } 2706 2707 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 2708 return This->isImplicit(); 2709 2710 return false; 2711} 2712 2713/// hasAnyTypeDependentArguments - Determines if any of the expressions 2714/// in Exprs is type-dependent. 2715bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 2716 for (unsigned I = 0; I < Exprs.size(); ++I) 2717 if (Exprs[I]->isTypeDependent()) 2718 return true; 2719 2720 return false; 2721} 2722 2723bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 2724 const Expr **Culprit) const { 2725 // This function is attempting whether an expression is an initializer 2726 // which can be evaluated at compile-time. It very closely parallels 2727 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 2728 // will lead to unexpected results. Like ConstExprEmitter, it falls back 2729 // to isEvaluatable most of the time. 2730 // 2731 // If we ever capture reference-binding directly in the AST, we can 2732 // kill the second parameter. 2733 2734 if (IsForRef) { 2735 EvalResult Result; 2736 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 2737 return true; 2738 if (Culprit) 2739 *Culprit = this; 2740 return false; 2741 } 2742 2743 switch (getStmtClass()) { 2744 default: break; 2745 case StringLiteralClass: 2746 case ObjCEncodeExprClass: 2747 return true; 2748 case CXXTemporaryObjectExprClass: 2749 case CXXConstructExprClass: { 2750 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 2751 2752 if (CE->getConstructor()->isTrivial() && 2753 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 2754 // Trivial default constructor 2755 if (!CE->getNumArgs()) return true; 2756 2757 // Trivial copy constructor 2758 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 2759 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 2760 } 2761 2762 break; 2763 } 2764 case CompoundLiteralExprClass: { 2765 // This handles gcc's extension that allows global initializers like 2766 // "struct x {int x;} x = (struct x) {};". 2767 // FIXME: This accepts other cases it shouldn't! 2768 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 2769 return Exp->isConstantInitializer(Ctx, false, Culprit); 2770 } 2771 case InitListExprClass: { 2772 const InitListExpr *ILE = cast<InitListExpr>(this); 2773 if (ILE->getType()->isArrayType()) { 2774 unsigned numInits = ILE->getNumInits(); 2775 for (unsigned i = 0; i < numInits; i++) { 2776 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 2777 return false; 2778 } 2779 return true; 2780 } 2781 2782 if (ILE->getType()->isRecordType()) { 2783 unsigned ElementNo = 0; 2784 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 2785 for (const auto *Field : RD->fields()) { 2786 // If this is a union, skip all the fields that aren't being initialized. 2787 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 2788 continue; 2789 2790 // Don't emit anonymous bitfields, they just affect layout. 2791 if (Field->isUnnamedBitfield()) 2792 continue; 2793 2794 if (ElementNo < ILE->getNumInits()) { 2795 const Expr *Elt = ILE->getInit(ElementNo++); 2796 if (Field->isBitField()) { 2797 // Bitfields have to evaluate to an integer. 2798 llvm::APSInt ResultTmp; 2799 if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) { 2800 if (Culprit) 2801 *Culprit = Elt; 2802 return false; 2803 } 2804 } else { 2805 bool RefType = Field->getType()->isReferenceType(); 2806 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 2807 return false; 2808 } 2809 } 2810 } 2811 return true; 2812 } 2813 2814 break; 2815 } 2816 case ImplicitValueInitExprClass: 2817 return true; 2818 case ParenExprClass: 2819 return cast<ParenExpr>(this)->getSubExpr() 2820 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2821 case GenericSelectionExprClass: 2822 return cast<GenericSelectionExpr>(this)->getResultExpr() 2823 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2824 case ChooseExprClass: 2825 if (cast<ChooseExpr>(this)->isConditionDependent()) { 2826 if (Culprit) 2827 *Culprit = this; 2828 return false; 2829 } 2830 return cast<ChooseExpr>(this)->getChosenSubExpr() 2831 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2832 case UnaryOperatorClass: { 2833 const UnaryOperator* Exp = cast<UnaryOperator>(this); 2834 if (Exp->getOpcode() == UO_Extension) 2835 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 2836 break; 2837 } 2838 case CXXFunctionalCastExprClass: 2839 case CXXStaticCastExprClass: 2840 case ImplicitCastExprClass: 2841 case CStyleCastExprClass: 2842 case ObjCBridgedCastExprClass: 2843 case CXXDynamicCastExprClass: 2844 case CXXReinterpretCastExprClass: 2845 case CXXConstCastExprClass: { 2846 const CastExpr *CE = cast<CastExpr>(this); 2847 2848 // Handle misc casts we want to ignore. 2849 if (CE->getCastKind() == CK_NoOp || 2850 CE->getCastKind() == CK_LValueToRValue || 2851 CE->getCastKind() == CK_ToUnion || 2852 CE->getCastKind() == CK_ConstructorConversion || 2853 CE->getCastKind() == CK_NonAtomicToAtomic || 2854 CE->getCastKind() == CK_AtomicToNonAtomic) 2855 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 2856 2857 break; 2858 } 2859 case MaterializeTemporaryExprClass: 2860 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() 2861 ->isConstantInitializer(Ctx, false, Culprit); 2862 2863 case SubstNonTypeTemplateParmExprClass: 2864 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 2865 ->isConstantInitializer(Ctx, false, Culprit); 2866 case CXXDefaultArgExprClass: 2867 return cast<CXXDefaultArgExpr>(this)->getExpr() 2868 ->isConstantInitializer(Ctx, false, Culprit); 2869 case CXXDefaultInitExprClass: 2870 return cast<CXXDefaultInitExpr>(this)->getExpr() 2871 ->isConstantInitializer(Ctx, false, Culprit); 2872 } 2873 if (isEvaluatable(Ctx)) 2874 return true; 2875 if (Culprit) 2876 *Culprit = this; 2877 return false; 2878} 2879 2880bool Expr::HasSideEffects(const ASTContext &Ctx, 2881 bool IncludePossibleEffects) const { 2882 // In circumstances where we care about definite side effects instead of 2883 // potential side effects, we want to ignore expressions that are part of a 2884 // macro expansion as a potential side effect. 2885 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 2886 return false; 2887 2888 if (isInstantiationDependent()) 2889 return IncludePossibleEffects; 2890 2891 switch (getStmtClass()) { 2892 case NoStmtClass: 2893 #define ABSTRACT_STMT(Type) 2894 #define STMT(Type, Base) case Type##Class: 2895 #define EXPR(Type, Base) 2896 #include "clang/AST/StmtNodes.inc" 2897 llvm_unreachable("unexpected Expr kind"); 2898 2899 case DependentScopeDeclRefExprClass: 2900 case CXXUnresolvedConstructExprClass: 2901 case CXXDependentScopeMemberExprClass: 2902 case UnresolvedLookupExprClass: 2903 case UnresolvedMemberExprClass: 2904 case PackExpansionExprClass: 2905 case SubstNonTypeTemplateParmPackExprClass: 2906 case FunctionParmPackExprClass: 2907 case TypoExprClass: 2908 case CXXFoldExprClass: 2909 llvm_unreachable("shouldn't see dependent / unresolved nodes here"); 2910 2911 case DeclRefExprClass: 2912 case ObjCIvarRefExprClass: 2913 case PredefinedExprClass: 2914 case IntegerLiteralClass: 2915 case FloatingLiteralClass: 2916 case ImaginaryLiteralClass: 2917 case StringLiteralClass: 2918 case CharacterLiteralClass: 2919 case OffsetOfExprClass: 2920 case ImplicitValueInitExprClass: 2921 case UnaryExprOrTypeTraitExprClass: 2922 case AddrLabelExprClass: 2923 case GNUNullExprClass: 2924 case CXXBoolLiteralExprClass: 2925 case CXXNullPtrLiteralExprClass: 2926 case CXXThisExprClass: 2927 case CXXScalarValueInitExprClass: 2928 case TypeTraitExprClass: 2929 case ArrayTypeTraitExprClass: 2930 case ExpressionTraitExprClass: 2931 case CXXNoexceptExprClass: 2932 case SizeOfPackExprClass: 2933 case ObjCStringLiteralClass: 2934 case ObjCEncodeExprClass: 2935 case ObjCBoolLiteralExprClass: 2936 case CXXUuidofExprClass: 2937 case OpaqueValueExprClass: 2938 // These never have a side-effect. 2939 return false; 2940 2941 case CallExprClass: 2942 case CXXOperatorCallExprClass: 2943 case CXXMemberCallExprClass: 2944 case CUDAKernelCallExprClass: 2945 case BlockExprClass: 2946 case CXXBindTemporaryExprClass: 2947 case UserDefinedLiteralClass: 2948 // We don't know a call definitely has side effects, but we can check the 2949 // call's operands. 2950 if (!IncludePossibleEffects) 2951 break; 2952 return true; 2953 2954 case MSPropertyRefExprClass: 2955 case CompoundAssignOperatorClass: 2956 case VAArgExprClass: 2957 case AtomicExprClass: 2958 case StmtExprClass: 2959 case CXXThrowExprClass: 2960 case CXXNewExprClass: 2961 case CXXDeleteExprClass: 2962 case ExprWithCleanupsClass: 2963 // These always have a side-effect. 2964 return true; 2965 2966 case ParenExprClass: 2967 case ArraySubscriptExprClass: 2968 case MemberExprClass: 2969 case ConditionalOperatorClass: 2970 case BinaryConditionalOperatorClass: 2971 case CompoundLiteralExprClass: 2972 case ExtVectorElementExprClass: 2973 case DesignatedInitExprClass: 2974 case ParenListExprClass: 2975 case CXXPseudoDestructorExprClass: 2976 case CXXStdInitializerListExprClass: 2977 case SubstNonTypeTemplateParmExprClass: 2978 case MaterializeTemporaryExprClass: 2979 case ShuffleVectorExprClass: 2980 case ConvertVectorExprClass: 2981 case AsTypeExprClass: 2982 // These have a side-effect if any subexpression does. 2983 break; 2984 2985 case UnaryOperatorClass: 2986 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 2987 return true; 2988 break; 2989 2990 case BinaryOperatorClass: 2991 if (cast<BinaryOperator>(this)->isAssignmentOp()) 2992 return true; 2993 break; 2994 2995 case InitListExprClass: 2996 // FIXME: The children for an InitListExpr doesn't include the array filler. 2997 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 2998 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 2999 return true; 3000 break; 3001 3002 case GenericSelectionExprClass: 3003 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 3004 HasSideEffects(Ctx, IncludePossibleEffects); 3005 3006 case ChooseExprClass: 3007 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 3008 Ctx, IncludePossibleEffects); 3009 3010 case CXXDefaultArgExprClass: 3011 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3012 Ctx, IncludePossibleEffects); 3013 3014 case CXXDefaultInitExprClass: { 3015 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3016 if (const Expr *E = FD->getInClassInitializer()) 3017 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3018 // If we've not yet parsed the initializer, assume it has side-effects. 3019 return true; 3020 } 3021 3022 case CXXDynamicCastExprClass: { 3023 // A dynamic_cast expression has side-effects if it can throw. 3024 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3025 if (DCE->getTypeAsWritten()->isReferenceType() && 3026 DCE->getCastKind() == CK_Dynamic) 3027 return true; 3028 } // Fall through. 3029 case ImplicitCastExprClass: 3030 case CStyleCastExprClass: 3031 case CXXStaticCastExprClass: 3032 case CXXReinterpretCastExprClass: 3033 case CXXConstCastExprClass: 3034 case CXXFunctionalCastExprClass: { 3035 // While volatile reads are side-effecting in both C and C++, we treat them 3036 // as having possible (not definite) side-effects. This allows idiomatic 3037 // code to behave without warning, such as sizeof(*v) for a volatile- 3038 // qualified pointer. 3039 if (!IncludePossibleEffects) 3040 break; 3041 3042 const CastExpr *CE = cast<CastExpr>(this); 3043 if (CE->getCastKind() == CK_LValueToRValue && 3044 CE->getSubExpr()->getType().isVolatileQualified()) 3045 return true; 3046 break; 3047 } 3048 3049 case CXXTypeidExprClass: 3050 // typeid might throw if its subexpression is potentially-evaluated, so has 3051 // side-effects in that case whether or not its subexpression does. 3052 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3053 3054 case CXXConstructExprClass: 3055 case CXXTemporaryObjectExprClass: { 3056 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3057 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3058 return true; 3059 // A trivial constructor does not add any side-effects of its own. Just look 3060 // at its arguments. 3061 break; 3062 } 3063 3064 case LambdaExprClass: { 3065 const LambdaExpr *LE = cast<LambdaExpr>(this); 3066 for (LambdaExpr::capture_iterator I = LE->capture_begin(), 3067 E = LE->capture_end(); I != E; ++I) 3068 if (I->getCaptureKind() == LCK_ByCopy) 3069 // FIXME: Only has a side-effect if the variable is volatile or if 3070 // the copy would invoke a non-trivial copy constructor. 3071 return true; 3072 return false; 3073 } 3074 3075 case PseudoObjectExprClass: { 3076 // Only look for side-effects in the semantic form, and look past 3077 // OpaqueValueExpr bindings in that form. 3078 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3079 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3080 E = PO->semantics_end(); 3081 I != E; ++I) { 3082 const Expr *Subexpr = *I; 3083 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3084 Subexpr = OVE->getSourceExpr(); 3085 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3086 return true; 3087 } 3088 return false; 3089 } 3090 3091 case ObjCBoxedExprClass: 3092 case ObjCArrayLiteralClass: 3093 case ObjCDictionaryLiteralClass: 3094 case ObjCSelectorExprClass: 3095 case ObjCProtocolExprClass: 3096 case ObjCIsaExprClass: 3097 case ObjCIndirectCopyRestoreExprClass: 3098 case ObjCSubscriptRefExprClass: 3099 case ObjCBridgedCastExprClass: 3100 case ObjCMessageExprClass: 3101 case ObjCPropertyRefExprClass: 3102 // FIXME: Classify these cases better. 3103 if (IncludePossibleEffects) 3104 return true; 3105 break; 3106 } 3107 3108 // Recurse to children. 3109 for (const_child_range SubStmts = children(); SubStmts; ++SubStmts) 3110 if (const Stmt *S = *SubStmts) 3111 if (cast<Expr>(S)->HasSideEffects(Ctx, IncludePossibleEffects)) 3112 return true; 3113 3114 return false; 3115} 3116 3117namespace { 3118 /// \brief Look for a call to a non-trivial function within an expression. 3119 class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder> 3120 { 3121 typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3122 3123 bool NonTrivial; 3124 3125 public: 3126 explicit NonTrivialCallFinder(ASTContext &Context) 3127 : Inherited(Context), NonTrivial(false) { } 3128 3129 bool hasNonTrivialCall() const { return NonTrivial; } 3130 3131 void VisitCallExpr(CallExpr *E) { 3132 if (CXXMethodDecl *Method 3133 = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) { 3134 if (Method->isTrivial()) { 3135 // Recurse to children of the call. 3136 Inherited::VisitStmt(E); 3137 return; 3138 } 3139 } 3140 3141 NonTrivial = true; 3142 } 3143 3144 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3145 if (E->getConstructor()->isTrivial()) { 3146 // Recurse to children of the call. 3147 Inherited::VisitStmt(E); 3148 return; 3149 } 3150 3151 NonTrivial = true; 3152 } 3153 3154 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3155 if (E->getTemporary()->getDestructor()->isTrivial()) { 3156 Inherited::VisitStmt(E); 3157 return; 3158 } 3159 3160 NonTrivial = true; 3161 } 3162 }; 3163} 3164 3165bool Expr::hasNonTrivialCall(ASTContext &Ctx) { 3166 NonTrivialCallFinder Finder(Ctx); 3167 Finder.Visit(this); 3168 return Finder.hasNonTrivialCall(); 3169} 3170 3171/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3172/// pointer constant or not, as well as the specific kind of constant detected. 3173/// Null pointer constants can be integer constant expressions with the 3174/// value zero, casts of zero to void*, nullptr (C++0X), or __null 3175/// (a GNU extension). 3176Expr::NullPointerConstantKind 3177Expr::isNullPointerConstant(ASTContext &Ctx, 3178 NullPointerConstantValueDependence NPC) const { 3179 if (isValueDependent() && 3180 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3181 switch (NPC) { 3182 case NPC_NeverValueDependent: 3183 llvm_unreachable("Unexpected value dependent expression!"); 3184 case NPC_ValueDependentIsNull: 3185 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3186 return NPCK_ZeroExpression; 3187 else 3188 return NPCK_NotNull; 3189 3190 case NPC_ValueDependentIsNotNull: 3191 return NPCK_NotNull; 3192 } 3193 } 3194 3195 // Strip off a cast to void*, if it exists. Except in C++. 3196 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3197 if (!Ctx.getLangOpts().CPlusPlus) { 3198 // Check that it is a cast to void*. 3199 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3200 QualType Pointee = PT->getPointeeType(); 3201 if (!Pointee.hasQualifiers() && 3202 Pointee->isVoidType() && // to void* 3203 CE->getSubExpr()->getType()->isIntegerType()) // from int. 3204 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3205 } 3206 } 3207 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3208 // Ignore the ImplicitCastExpr type entirely. 3209 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3210 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3211 // Accept ((void*)0) as a null pointer constant, as many other 3212 // implementations do. 3213 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3214 } else if (const GenericSelectionExpr *GE = 3215 dyn_cast<GenericSelectionExpr>(this)) { 3216 if (GE->isResultDependent()) 3217 return NPCK_NotNull; 3218 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3219 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3220 if (CE->isConditionDependent()) 3221 return NPCK_NotNull; 3222 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3223 } else if (const CXXDefaultArgExpr *DefaultArg 3224 = dyn_cast<CXXDefaultArgExpr>(this)) { 3225 // See through default argument expressions. 3226 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3227 } else if (const CXXDefaultInitExpr *DefaultInit 3228 = dyn_cast<CXXDefaultInitExpr>(this)) { 3229 // See through default initializer expressions. 3230 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3231 } else if (isa<GNUNullExpr>(this)) { 3232 // The GNU __null extension is always a null pointer constant. 3233 return NPCK_GNUNull; 3234 } else if (const MaterializeTemporaryExpr *M 3235 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3236 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); 3237 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3238 if (const Expr *Source = OVE->getSourceExpr()) 3239 return Source->isNullPointerConstant(Ctx, NPC); 3240 } 3241 3242 // C++11 nullptr_t is always a null pointer constant. 3243 if (getType()->isNullPtrType()) 3244 return NPCK_CXX11_nullptr; 3245 3246 if (const RecordType *UT = getType()->getAsUnionType()) 3247 if (!Ctx.getLangOpts().CPlusPlus11 && 3248 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3249 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3250 const Expr *InitExpr = CLE->getInitializer(); 3251 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3252 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3253 } 3254 // This expression must be an integer type. 3255 if (!getType()->isIntegerType() || 3256 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3257 return NPCK_NotNull; 3258 3259 if (Ctx.getLangOpts().CPlusPlus11) { 3260 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3261 // value zero or a prvalue of type std::nullptr_t. 3262 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3263 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3264 if (Lit && !Lit->getValue()) 3265 return NPCK_ZeroLiteral; 3266 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3267 return NPCK_NotNull; 3268 } else { 3269 // If we have an integer constant expression, we need to *evaluate* it and 3270 // test for the value 0. 3271 if (!isIntegerConstantExpr(Ctx)) 3272 return NPCK_NotNull; 3273 } 3274 3275 if (EvaluateKnownConstInt(Ctx) != 0) 3276 return NPCK_NotNull; 3277 3278 if (isa<IntegerLiteral>(this)) 3279 return NPCK_ZeroLiteral; 3280 return NPCK_ZeroExpression; 3281} 3282 3283/// \brief If this expression is an l-value for an Objective C 3284/// property, find the underlying property reference expression. 3285const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3286 const Expr *E = this; 3287 while (true) { 3288 assert((E->getValueKind() == VK_LValue && 3289 E->getObjectKind() == OK_ObjCProperty) && 3290 "expression is not a property reference"); 3291 E = E->IgnoreParenCasts(); 3292 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3293 if (BO->getOpcode() == BO_Comma) { 3294 E = BO->getRHS(); 3295 continue; 3296 } 3297 } 3298 3299 break; 3300 } 3301 3302 return cast<ObjCPropertyRefExpr>(E); 3303} 3304 3305bool Expr::isObjCSelfExpr() const { 3306 const Expr *E = IgnoreParenImpCasts(); 3307 3308 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3309 if (!DRE) 3310 return false; 3311 3312 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3313 if (!Param) 3314 return false; 3315 3316 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3317 if (!M) 3318 return false; 3319 3320 return M->getSelfDecl() == Param; 3321} 3322 3323FieldDecl *Expr::getSourceBitField() { 3324 Expr *E = this->IgnoreParens(); 3325 3326 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3327 if (ICE->getCastKind() == CK_LValueToRValue || 3328 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 3329 E = ICE->getSubExpr()->IgnoreParens(); 3330 else 3331 break; 3332 } 3333 3334 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3335 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3336 if (Field->isBitField()) 3337 return Field; 3338 3339 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) 3340 if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl())) 3341 if (Ivar->isBitField()) 3342 return Ivar; 3343 3344 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) 3345 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3346 if (Field->isBitField()) 3347 return Field; 3348 3349 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3350 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3351 return BinOp->getLHS()->getSourceBitField(); 3352 3353 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3354 return BinOp->getRHS()->getSourceBitField(); 3355 } 3356 3357 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3358 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3359 return UnOp->getSubExpr()->getSourceBitField(); 3360 3361 return nullptr; 3362} 3363 3364bool Expr::refersToVectorElement() const { 3365 const Expr *E = this->IgnoreParens(); 3366 3367 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3368 if (ICE->getValueKind() != VK_RValue && 3369 ICE->getCastKind() == CK_NoOp) 3370 E = ICE->getSubExpr()->IgnoreParens(); 3371 else 3372 break; 3373 } 3374 3375 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3376 return ASE->getBase()->getType()->isVectorType(); 3377 3378 if (isa<ExtVectorElementExpr>(E)) 3379 return true; 3380 3381 return false; 3382} 3383 3384/// isArrow - Return true if the base expression is a pointer to vector, 3385/// return false if the base expression is a vector. 3386bool ExtVectorElementExpr::isArrow() const { 3387 return getBase()->getType()->isPointerType(); 3388} 3389 3390unsigned ExtVectorElementExpr::getNumElements() const { 3391 if (const VectorType *VT = getType()->getAs<VectorType>()) 3392 return VT->getNumElements(); 3393 return 1; 3394} 3395 3396/// containsDuplicateElements - Return true if any element access is repeated. 3397bool ExtVectorElementExpr::containsDuplicateElements() const { 3398 // FIXME: Refactor this code to an accessor on the AST node which returns the 3399 // "type" of component access, and share with code below and in Sema. 3400 StringRef Comp = Accessor->getName(); 3401 3402 // Halving swizzles do not contain duplicate elements. 3403 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 3404 return false; 3405 3406 // Advance past s-char prefix on hex swizzles. 3407 if (Comp[0] == 's' || Comp[0] == 'S') 3408 Comp = Comp.substr(1); 3409 3410 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 3411 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 3412 return true; 3413 3414 return false; 3415} 3416 3417/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 3418void ExtVectorElementExpr::getEncodedElementAccess( 3419 SmallVectorImpl<unsigned> &Elts) const { 3420 StringRef Comp = Accessor->getName(); 3421 if (Comp[0] == 's' || Comp[0] == 'S') 3422 Comp = Comp.substr(1); 3423 3424 bool isHi = Comp == "hi"; 3425 bool isLo = Comp == "lo"; 3426 bool isEven = Comp == "even"; 3427 bool isOdd = Comp == "odd"; 3428 3429 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 3430 uint64_t Index; 3431 3432 if (isHi) 3433 Index = e + i; 3434 else if (isLo) 3435 Index = i; 3436 else if (isEven) 3437 Index = 2 * i; 3438 else if (isOdd) 3439 Index = 2 * i + 1; 3440 else 3441 Index = ExtVectorType::getAccessorIdx(Comp[i]); 3442 3443 Elts.push_back(Index); 3444 } 3445} 3446 3447ObjCMessageExpr::ObjCMessageExpr(QualType T, 3448 ExprValueKind VK, 3449 SourceLocation LBracLoc, 3450 SourceLocation SuperLoc, 3451 bool IsInstanceSuper, 3452 QualType SuperType, 3453 Selector Sel, 3454 ArrayRef<SourceLocation> SelLocs, 3455 SelectorLocationsKind SelLocsK, 3456 ObjCMethodDecl *Method, 3457 ArrayRef<Expr *> Args, 3458 SourceLocation RBracLoc, 3459 bool isImplicit) 3460 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, 3461 /*TypeDependent=*/false, /*ValueDependent=*/false, 3462 /*InstantiationDependent=*/false, 3463 /*ContainsUnexpandedParameterPack=*/false), 3464 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 3465 : Sel.getAsOpaquePtr())), 3466 Kind(IsInstanceSuper? SuperInstance : SuperClass), 3467 HasMethod(Method != nullptr), IsDelegateInitCall(false), 3468 IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc), 3469 RBracLoc(RBracLoc) 3470{ 3471 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 3472 setReceiverPointer(SuperType.getAsOpaquePtr()); 3473} 3474 3475ObjCMessageExpr::ObjCMessageExpr(QualType T, 3476 ExprValueKind VK, 3477 SourceLocation LBracLoc, 3478 TypeSourceInfo *Receiver, 3479 Selector Sel, 3480 ArrayRef<SourceLocation> SelLocs, 3481 SelectorLocationsKind SelLocsK, 3482 ObjCMethodDecl *Method, 3483 ArrayRef<Expr *> Args, 3484 SourceLocation RBracLoc, 3485 bool isImplicit) 3486 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(), 3487 T->isDependentType(), T->isInstantiationDependentType(), 3488 T->containsUnexpandedParameterPack()), 3489 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 3490 : Sel.getAsOpaquePtr())), 3491 Kind(Class), 3492 HasMethod(Method != nullptr), IsDelegateInitCall(false), 3493 IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 3494{ 3495 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 3496 setReceiverPointer(Receiver); 3497} 3498 3499ObjCMessageExpr::ObjCMessageExpr(QualType T, 3500 ExprValueKind VK, 3501 SourceLocation LBracLoc, 3502 Expr *Receiver, 3503 Selector Sel, 3504 ArrayRef<SourceLocation> SelLocs, 3505 SelectorLocationsKind SelLocsK, 3506 ObjCMethodDecl *Method, 3507 ArrayRef<Expr *> Args, 3508 SourceLocation RBracLoc, 3509 bool isImplicit) 3510 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(), 3511 Receiver->isTypeDependent(), 3512 Receiver->isInstantiationDependent(), 3513 Receiver->containsUnexpandedParameterPack()), 3514 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 3515 : Sel.getAsOpaquePtr())), 3516 Kind(Instance), 3517 HasMethod(Method != nullptr), IsDelegateInitCall(false), 3518 IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 3519{ 3520 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 3521 setReceiverPointer(Receiver); 3522} 3523 3524void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args, 3525 ArrayRef<SourceLocation> SelLocs, 3526 SelectorLocationsKind SelLocsK) { 3527 setNumArgs(Args.size()); 3528 Expr **MyArgs = getArgs(); 3529 for (unsigned I = 0; I != Args.size(); ++I) { 3530 if (Args[I]->isTypeDependent()) 3531 ExprBits.TypeDependent = true; 3532 if (Args[I]->isValueDependent()) 3533 ExprBits.ValueDependent = true; 3534 if (Args[I]->isInstantiationDependent()) 3535 ExprBits.InstantiationDependent = true; 3536 if (Args[I]->containsUnexpandedParameterPack()) 3537 ExprBits.ContainsUnexpandedParameterPack = true; 3538 3539 MyArgs[I] = Args[I]; 3540 } 3541 3542 SelLocsKind = SelLocsK; 3543 if (!isImplicit()) { 3544 if (SelLocsK == SelLoc_NonStandard) 3545 std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs()); 3546 } 3547} 3548 3549ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T, 3550 ExprValueKind VK, 3551 SourceLocation LBracLoc, 3552 SourceLocation SuperLoc, 3553 bool IsInstanceSuper, 3554 QualType SuperType, 3555 Selector Sel, 3556 ArrayRef<SourceLocation> SelLocs, 3557 ObjCMethodDecl *Method, 3558 ArrayRef<Expr *> Args, 3559 SourceLocation RBracLoc, 3560 bool isImplicit) { 3561 assert((!SelLocs.empty() || isImplicit) && 3562 "No selector locs for non-implicit message"); 3563 ObjCMessageExpr *Mem; 3564 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 3565 if (isImplicit) 3566 Mem = alloc(Context, Args.size(), 0); 3567 else 3568 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 3569 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper, 3570 SuperType, Sel, SelLocs, SelLocsK, 3571 Method, Args, RBracLoc, isImplicit); 3572} 3573 3574ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T, 3575 ExprValueKind VK, 3576 SourceLocation LBracLoc, 3577 TypeSourceInfo *Receiver, 3578 Selector Sel, 3579 ArrayRef<SourceLocation> SelLocs, 3580 ObjCMethodDecl *Method, 3581 ArrayRef<Expr *> Args, 3582 SourceLocation RBracLoc, 3583 bool isImplicit) { 3584 assert((!SelLocs.empty() || isImplicit) && 3585 "No selector locs for non-implicit message"); 3586 ObjCMessageExpr *Mem; 3587 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 3588 if (isImplicit) 3589 Mem = alloc(Context, Args.size(), 0); 3590 else 3591 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 3592 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, 3593 SelLocs, SelLocsK, Method, Args, RBracLoc, 3594 isImplicit); 3595} 3596 3597ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T, 3598 ExprValueKind VK, 3599 SourceLocation LBracLoc, 3600 Expr *Receiver, 3601 Selector Sel, 3602 ArrayRef<SourceLocation> SelLocs, 3603 ObjCMethodDecl *Method, 3604 ArrayRef<Expr *> Args, 3605 SourceLocation RBracLoc, 3606 bool isImplicit) { 3607 assert((!SelLocs.empty() || isImplicit) && 3608 "No selector locs for non-implicit message"); 3609 ObjCMessageExpr *Mem; 3610 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 3611 if (isImplicit) 3612 Mem = alloc(Context, Args.size(), 0); 3613 else 3614 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 3615 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, 3616 SelLocs, SelLocsK, Method, Args, RBracLoc, 3617 isImplicit); 3618} 3619 3620ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context, 3621 unsigned NumArgs, 3622 unsigned NumStoredSelLocs) { 3623 ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs); 3624 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs); 3625} 3626 3627ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C, 3628 ArrayRef<Expr *> Args, 3629 SourceLocation RBraceLoc, 3630 ArrayRef<SourceLocation> SelLocs, 3631 Selector Sel, 3632 SelectorLocationsKind &SelLocsK) { 3633 SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc); 3634 unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size() 3635 : 0; 3636 return alloc(C, Args.size(), NumStoredSelLocs); 3637} 3638 3639ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C, 3640 unsigned NumArgs, 3641 unsigned NumStoredSelLocs) { 3642 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 3643 NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation); 3644 return (ObjCMessageExpr *)C.Allocate(Size, 3645 llvm::AlignOf<ObjCMessageExpr>::Alignment); 3646} 3647 3648void ObjCMessageExpr::getSelectorLocs( 3649 SmallVectorImpl<SourceLocation> &SelLocs) const { 3650 for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i) 3651 SelLocs.push_back(getSelectorLoc(i)); 3652} 3653 3654SourceRange ObjCMessageExpr::getReceiverRange() const { 3655 switch (getReceiverKind()) { 3656 case Instance: 3657 return getInstanceReceiver()->getSourceRange(); 3658 3659 case Class: 3660 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange(); 3661 3662 case SuperInstance: 3663 case SuperClass: 3664 return getSuperLoc(); 3665 } 3666 3667 llvm_unreachable("Invalid ReceiverKind!"); 3668} 3669 3670Selector ObjCMessageExpr::getSelector() const { 3671 if (HasMethod) 3672 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod) 3673 ->getSelector(); 3674 return Selector(SelectorOrMethod); 3675} 3676 3677QualType ObjCMessageExpr::getReceiverType() const { 3678 switch (getReceiverKind()) { 3679 case Instance: 3680 return getInstanceReceiver()->getType(); 3681 case Class: 3682 return getClassReceiver(); 3683 case SuperInstance: 3684 case SuperClass: 3685 return getSuperType(); 3686 } 3687 3688 llvm_unreachable("unexpected receiver kind"); 3689} 3690 3691ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const { 3692 QualType T = getReceiverType(); 3693 3694 if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>()) 3695 return Ptr->getInterfaceDecl(); 3696 3697 if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>()) 3698 return Ty->getInterface(); 3699 3700 return nullptr; 3701} 3702 3703StringRef ObjCBridgedCastExpr::getBridgeKindName() const { 3704 switch (getBridgeKind()) { 3705 case OBC_Bridge: 3706 return "__bridge"; 3707 case OBC_BridgeTransfer: 3708 return "__bridge_transfer"; 3709 case OBC_BridgeRetained: 3710 return "__bridge_retained"; 3711 } 3712 3713 llvm_unreachable("Invalid BridgeKind!"); 3714} 3715 3716ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, 3717 QualType Type, SourceLocation BLoc, 3718 SourceLocation RP) 3719 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, 3720 Type->isDependentType(), Type->isDependentType(), 3721 Type->isInstantiationDependentType(), 3722 Type->containsUnexpandedParameterPack()), 3723 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) 3724{ 3725 SubExprs = new (C) Stmt*[args.size()]; 3726 for (unsigned i = 0; i != args.size(); i++) { 3727 if (args[i]->isTypeDependent()) 3728 ExprBits.TypeDependent = true; 3729 if (args[i]->isValueDependent()) 3730 ExprBits.ValueDependent = true; 3731 if (args[i]->isInstantiationDependent()) 3732 ExprBits.InstantiationDependent = true; 3733 if (args[i]->containsUnexpandedParameterPack()) 3734 ExprBits.ContainsUnexpandedParameterPack = true; 3735 3736 SubExprs[i] = args[i]; 3737 } 3738} 3739 3740void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 3741 if (SubExprs) C.Deallocate(SubExprs); 3742 3743 this->NumExprs = Exprs.size(); 3744 SubExprs = new (C) Stmt*[NumExprs]; 3745 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 3746} 3747 3748GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 3749 SourceLocation GenericLoc, Expr *ControllingExpr, 3750 ArrayRef<TypeSourceInfo*> AssocTypes, 3751 ArrayRef<Expr*> AssocExprs, 3752 SourceLocation DefaultLoc, 3753 SourceLocation RParenLoc, 3754 bool ContainsUnexpandedParameterPack, 3755 unsigned ResultIndex) 3756 : Expr(GenericSelectionExprClass, 3757 AssocExprs[ResultIndex]->getType(), 3758 AssocExprs[ResultIndex]->getValueKind(), 3759 AssocExprs[ResultIndex]->getObjectKind(), 3760 AssocExprs[ResultIndex]->isTypeDependent(), 3761 AssocExprs[ResultIndex]->isValueDependent(), 3762 AssocExprs[ResultIndex]->isInstantiationDependent(), 3763 ContainsUnexpandedParameterPack), 3764 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 3765 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 3766 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 3767 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 3768 SubExprs[CONTROLLING] = ControllingExpr; 3769 assert(AssocTypes.size() == AssocExprs.size()); 3770 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 3771 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 3772} 3773 3774GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 3775 SourceLocation GenericLoc, Expr *ControllingExpr, 3776 ArrayRef<TypeSourceInfo*> AssocTypes, 3777 ArrayRef<Expr*> AssocExprs, 3778 SourceLocation DefaultLoc, 3779 SourceLocation RParenLoc, 3780 bool ContainsUnexpandedParameterPack) 3781 : Expr(GenericSelectionExprClass, 3782 Context.DependentTy, 3783 VK_RValue, 3784 OK_Ordinary, 3785 /*isTypeDependent=*/true, 3786 /*isValueDependent=*/true, 3787 /*isInstantiationDependent=*/true, 3788 ContainsUnexpandedParameterPack), 3789 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 3790 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 3791 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc), 3792 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 3793 SubExprs[CONTROLLING] = ControllingExpr; 3794 assert(AssocTypes.size() == AssocExprs.size()); 3795 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 3796 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 3797} 3798 3799//===----------------------------------------------------------------------===// 3800// DesignatedInitExpr 3801//===----------------------------------------------------------------------===// 3802 3803IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 3804 assert(Kind == FieldDesignator && "Only valid on a field designator"); 3805 if (Field.NameOrField & 0x01) 3806 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 3807 else 3808 return getField()->getIdentifier(); 3809} 3810 3811DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 3812 unsigned NumDesignators, 3813 const Designator *Designators, 3814 SourceLocation EqualOrColonLoc, 3815 bool GNUSyntax, 3816 ArrayRef<Expr*> IndexExprs, 3817 Expr *Init) 3818 : Expr(DesignatedInitExprClass, Ty, 3819 Init->getValueKind(), Init->getObjectKind(), 3820 Init->isTypeDependent(), Init->isValueDependent(), 3821 Init->isInstantiationDependent(), 3822 Init->containsUnexpandedParameterPack()), 3823 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 3824 NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) { 3825 this->Designators = new (C) Designator[NumDesignators]; 3826 3827 // Record the initializer itself. 3828 child_range Child = children(); 3829 *Child++ = Init; 3830 3831 // Copy the designators and their subexpressions, computing 3832 // value-dependence along the way. 3833 unsigned IndexIdx = 0; 3834 for (unsigned I = 0; I != NumDesignators; ++I) { 3835 this->Designators[I] = Designators[I]; 3836 3837 if (this->Designators[I].isArrayDesignator()) { 3838 // Compute type- and value-dependence. 3839 Expr *Index = IndexExprs[IndexIdx]; 3840 if (Index->isTypeDependent() || Index->isValueDependent()) 3841 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 3842 if (Index->isInstantiationDependent()) 3843 ExprBits.InstantiationDependent = true; 3844 // Propagate unexpanded parameter packs. 3845 if (Index->containsUnexpandedParameterPack()) 3846 ExprBits.ContainsUnexpandedParameterPack = true; 3847 3848 // Copy the index expressions into permanent storage. 3849 *Child++ = IndexExprs[IndexIdx++]; 3850 } else if (this->Designators[I].isArrayRangeDesignator()) { 3851 // Compute type- and value-dependence. 3852 Expr *Start = IndexExprs[IndexIdx]; 3853 Expr *End = IndexExprs[IndexIdx + 1]; 3854 if (Start->isTypeDependent() || Start->isValueDependent() || 3855 End->isTypeDependent() || End->isValueDependent()) { 3856 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 3857 ExprBits.InstantiationDependent = true; 3858 } else if (Start->isInstantiationDependent() || 3859 End->isInstantiationDependent()) { 3860 ExprBits.InstantiationDependent = true; 3861 } 3862 3863 // Propagate unexpanded parameter packs. 3864 if (Start->containsUnexpandedParameterPack() || 3865 End->containsUnexpandedParameterPack()) 3866 ExprBits.ContainsUnexpandedParameterPack = true; 3867 3868 // Copy the start/end expressions into permanent storage. 3869 *Child++ = IndexExprs[IndexIdx++]; 3870 *Child++ = IndexExprs[IndexIdx++]; 3871 } 3872 } 3873 3874 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 3875} 3876 3877DesignatedInitExpr * 3878DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators, 3879 unsigned NumDesignators, 3880 ArrayRef<Expr*> IndexExprs, 3881 SourceLocation ColonOrEqualLoc, 3882 bool UsesColonSyntax, Expr *Init) { 3883 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3884 sizeof(Stmt *) * (IndexExprs.size() + 1), 8); 3885 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, 3886 ColonOrEqualLoc, UsesColonSyntax, 3887 IndexExprs, Init); 3888} 3889 3890DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 3891 unsigned NumIndexExprs) { 3892 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3893 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 3894 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 3895} 3896 3897void DesignatedInitExpr::setDesignators(const ASTContext &C, 3898 const Designator *Desigs, 3899 unsigned NumDesigs) { 3900 Designators = new (C) Designator[NumDesigs]; 3901 NumDesignators = NumDesigs; 3902 for (unsigned I = 0; I != NumDesigs; ++I) 3903 Designators[I] = Desigs[I]; 3904} 3905 3906SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 3907 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 3908 if (size() == 1) 3909 return DIE->getDesignator(0)->getSourceRange(); 3910 return SourceRange(DIE->getDesignator(0)->getLocStart(), 3911 DIE->getDesignator(size()-1)->getLocEnd()); 3912} 3913 3914SourceLocation DesignatedInitExpr::getLocStart() const { 3915 SourceLocation StartLoc; 3916 Designator &First = 3917 *const_cast<DesignatedInitExpr*>(this)->designators_begin(); 3918 if (First.isFieldDesignator()) { 3919 if (GNUSyntax) 3920 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 3921 else 3922 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 3923 } else 3924 StartLoc = 3925 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 3926 return StartLoc; 3927} 3928 3929SourceLocation DesignatedInitExpr::getLocEnd() const { 3930 return getInit()->getLocEnd(); 3931} 3932 3933Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 3934 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 3935 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 3936 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3937} 3938 3939Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 3940 assert(D.Kind == Designator::ArrayRangeDesignator && 3941 "Requires array range designator"); 3942 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 3943 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3944} 3945 3946Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 3947 assert(D.Kind == Designator::ArrayRangeDesignator && 3948 "Requires array range designator"); 3949 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 3950 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); 3951} 3952 3953/// \brief Replaces the designator at index @p Idx with the series 3954/// of designators in [First, Last). 3955void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 3956 const Designator *First, 3957 const Designator *Last) { 3958 unsigned NumNewDesignators = Last - First; 3959 if (NumNewDesignators == 0) { 3960 std::copy_backward(Designators + Idx + 1, 3961 Designators + NumDesignators, 3962 Designators + Idx); 3963 --NumNewDesignators; 3964 return; 3965 } else if (NumNewDesignators == 1) { 3966 Designators[Idx] = *First; 3967 return; 3968 } 3969 3970 Designator *NewDesignators 3971 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 3972 std::copy(Designators, Designators + Idx, NewDesignators); 3973 std::copy(First, Last, NewDesignators + Idx); 3974 std::copy(Designators + Idx + 1, Designators + NumDesignators, 3975 NewDesignators + Idx + NumNewDesignators); 3976 Designators = NewDesignators; 3977 NumDesignators = NumDesignators - 1 + NumNewDesignators; 3978} 3979 3980ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc, 3981 ArrayRef<Expr*> exprs, 3982 SourceLocation rparenloc) 3983 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, 3984 false, false, false, false), 3985 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) { 3986 Exprs = new (C) Stmt*[exprs.size()]; 3987 for (unsigned i = 0; i != exprs.size(); ++i) { 3988 if (exprs[i]->isTypeDependent()) 3989 ExprBits.TypeDependent = true; 3990 if (exprs[i]->isValueDependent()) 3991 ExprBits.ValueDependent = true; 3992 if (exprs[i]->isInstantiationDependent()) 3993 ExprBits.InstantiationDependent = true; 3994 if (exprs[i]->containsUnexpandedParameterPack()) 3995 ExprBits.ContainsUnexpandedParameterPack = true; 3996 3997 Exprs[i] = exprs[i]; 3998 } 3999} 4000 4001const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 4002 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 4003 e = ewc->getSubExpr(); 4004 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 4005 e = m->GetTemporaryExpr(); 4006 e = cast<CXXConstructExpr>(e)->getArg(0); 4007 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4008 e = ice->getSubExpr(); 4009 return cast<OpaqueValueExpr>(e); 4010} 4011 4012PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4013 EmptyShell sh, 4014 unsigned numSemanticExprs) { 4015 void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) + 4016 (1 + numSemanticExprs) * sizeof(Expr*), 4017 llvm::alignOf<PseudoObjectExpr>()); 4018 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4019} 4020 4021PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4022 : Expr(PseudoObjectExprClass, shell) { 4023 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4024} 4025 4026PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4027 ArrayRef<Expr*> semantics, 4028 unsigned resultIndex) { 4029 assert(syntax && "no syntactic expression!"); 4030 assert(semantics.size() && "no semantic expressions!"); 4031 4032 QualType type; 4033 ExprValueKind VK; 4034 if (resultIndex == NoResult) { 4035 type = C.VoidTy; 4036 VK = VK_RValue; 4037 } else { 4038 assert(resultIndex < semantics.size()); 4039 type = semantics[resultIndex]->getType(); 4040 VK = semantics[resultIndex]->getValueKind(); 4041 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4042 } 4043 4044 void *buffer = C.Allocate(sizeof(PseudoObjectExpr) + 4045 (1 + semantics.size()) * sizeof(Expr*), 4046 llvm::alignOf<PseudoObjectExpr>()); 4047 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4048 resultIndex); 4049} 4050 4051PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4052 Expr *syntax, ArrayRef<Expr*> semantics, 4053 unsigned resultIndex) 4054 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, 4055 /*filled in at end of ctor*/ false, false, false, false) { 4056 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4057 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4058 4059 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4060 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4061 getSubExprsBuffer()[i] = E; 4062 4063 if (E->isTypeDependent()) 4064 ExprBits.TypeDependent = true; 4065 if (E->isValueDependent()) 4066 ExprBits.ValueDependent = true; 4067 if (E->isInstantiationDependent()) 4068 ExprBits.InstantiationDependent = true; 4069 if (E->containsUnexpandedParameterPack()) 4070 ExprBits.ContainsUnexpandedParameterPack = true; 4071 4072 if (isa<OpaqueValueExpr>(E)) 4073 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4074 "opaque-value semantic expressions for pseudo-object " 4075 "operations must have sources"); 4076 } 4077} 4078 4079//===----------------------------------------------------------------------===// 4080// ExprIterator. 4081//===----------------------------------------------------------------------===// 4082 4083Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } 4084Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } 4085Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } 4086const Expr* ConstExprIterator::operator[](size_t idx) const { 4087 return cast<Expr>(I[idx]); 4088} 4089const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } 4090const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } 4091 4092//===----------------------------------------------------------------------===// 4093// Child Iterators for iterating over subexpressions/substatements 4094//===----------------------------------------------------------------------===// 4095 4096// UnaryExprOrTypeTraitExpr 4097Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4098 // If this is of a type and the type is a VLA type (and not a typedef), the 4099 // size expression of the VLA needs to be treated as an executable expression. 4100 // Why isn't this weirdness documented better in StmtIterator? 4101 if (isArgumentType()) { 4102 if (const VariableArrayType* T = dyn_cast<VariableArrayType>( 4103 getArgumentType().getTypePtr())) 4104 return child_range(child_iterator(T), child_iterator()); 4105 return child_range(); 4106 } 4107 return child_range(&Argument.Ex, &Argument.Ex + 1); 4108} 4109 4110// ObjCMessageExpr 4111Stmt::child_range ObjCMessageExpr::children() { 4112 Stmt **begin; 4113 if (getReceiverKind() == Instance) 4114 begin = reinterpret_cast<Stmt **>(this + 1); 4115 else 4116 begin = reinterpret_cast<Stmt **>(getArgs()); 4117 return child_range(begin, 4118 reinterpret_cast<Stmt **>(getArgs() + getNumArgs())); 4119} 4120 4121ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements, 4122 QualType T, ObjCMethodDecl *Method, 4123 SourceRange SR) 4124 : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary, 4125 false, false, false, false), 4126 NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method) 4127{ 4128 Expr **SaveElements = getElements(); 4129 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 4130 if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent()) 4131 ExprBits.ValueDependent = true; 4132 if (Elements[I]->isInstantiationDependent()) 4133 ExprBits.InstantiationDependent = true; 4134 if (Elements[I]->containsUnexpandedParameterPack()) 4135 ExprBits.ContainsUnexpandedParameterPack = true; 4136 4137 SaveElements[I] = Elements[I]; 4138 } 4139} 4140 4141ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C, 4142 ArrayRef<Expr *> Elements, 4143 QualType T, ObjCMethodDecl * Method, 4144 SourceRange SR) { 4145 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 4146 + Elements.size() * sizeof(Expr *)); 4147 return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR); 4148} 4149 4150ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C, 4151 unsigned NumElements) { 4152 4153 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 4154 + NumElements * sizeof(Expr *)); 4155 return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements); 4156} 4157 4158ObjCDictionaryLiteral::ObjCDictionaryLiteral( 4159 ArrayRef<ObjCDictionaryElement> VK, 4160 bool HasPackExpansions, 4161 QualType T, ObjCMethodDecl *method, 4162 SourceRange SR) 4163 : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false, 4164 false, false), 4165 NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR), 4166 DictWithObjectsMethod(method) 4167{ 4168 KeyValuePair *KeyValues = getKeyValues(); 4169 ExpansionData *Expansions = getExpansionData(); 4170 for (unsigned I = 0; I < NumElements; I++) { 4171 if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() || 4172 VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent()) 4173 ExprBits.ValueDependent = true; 4174 if (VK[I].Key->isInstantiationDependent() || 4175 VK[I].Value->isInstantiationDependent()) 4176 ExprBits.InstantiationDependent = true; 4177 if (VK[I].EllipsisLoc.isInvalid() && 4178 (VK[I].Key->containsUnexpandedParameterPack() || 4179 VK[I].Value->containsUnexpandedParameterPack())) 4180 ExprBits.ContainsUnexpandedParameterPack = true; 4181 4182 KeyValues[I].Key = VK[I].Key; 4183 KeyValues[I].Value = VK[I].Value; 4184 if (Expansions) { 4185 Expansions[I].EllipsisLoc = VK[I].EllipsisLoc; 4186 if (VK[I].NumExpansions) 4187 Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1; 4188 else 4189 Expansions[I].NumExpansionsPlusOne = 0; 4190 } 4191 } 4192} 4193 4194ObjCDictionaryLiteral * 4195ObjCDictionaryLiteral::Create(const ASTContext &C, 4196 ArrayRef<ObjCDictionaryElement> VK, 4197 bool HasPackExpansions, 4198 QualType T, ObjCMethodDecl *method, 4199 SourceRange SR) { 4200 unsigned ExpansionsSize = 0; 4201 if (HasPackExpansions) 4202 ExpansionsSize = sizeof(ExpansionData) * VK.size(); 4203 4204 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 4205 sizeof(KeyValuePair) * VK.size() + ExpansionsSize); 4206 return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR); 4207} 4208 4209ObjCDictionaryLiteral * 4210ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements, 4211 bool HasPackExpansions) { 4212 unsigned ExpansionsSize = 0; 4213 if (HasPackExpansions) 4214 ExpansionsSize = sizeof(ExpansionData) * NumElements; 4215 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 4216 sizeof(KeyValuePair) * NumElements + ExpansionsSize); 4217 return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements, 4218 HasPackExpansions); 4219} 4220 4221ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C, 4222 Expr *base, 4223 Expr *key, QualType T, 4224 ObjCMethodDecl *getMethod, 4225 ObjCMethodDecl *setMethod, 4226 SourceLocation RB) { 4227 void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr)); 4228 return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue, 4229 OK_ObjCSubscript, 4230 getMethod, setMethod, RB); 4231} 4232 4233AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, 4234 QualType t, AtomicOp op, SourceLocation RP) 4235 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, 4236 false, false, false, false), 4237 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) 4238{ 4239 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4240 for (unsigned i = 0; i != args.size(); i++) { 4241 if (args[i]->isTypeDependent()) 4242 ExprBits.TypeDependent = true; 4243 if (args[i]->isValueDependent()) 4244 ExprBits.ValueDependent = true; 4245 if (args[i]->isInstantiationDependent()) 4246 ExprBits.InstantiationDependent = true; 4247 if (args[i]->containsUnexpandedParameterPack()) 4248 ExprBits.ContainsUnexpandedParameterPack = true; 4249 4250 SubExprs[i] = args[i]; 4251 } 4252} 4253 4254unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4255 switch (Op) { 4256 case AO__c11_atomic_init: 4257 case AO__c11_atomic_load: 4258 case AO__atomic_load_n: 4259 return 2; 4260 4261 case AO__c11_atomic_store: 4262 case AO__c11_atomic_exchange: 4263 case AO__atomic_load: 4264 case AO__atomic_store: 4265 case AO__atomic_store_n: 4266 case AO__atomic_exchange_n: 4267 case AO__c11_atomic_fetch_add: 4268 case AO__c11_atomic_fetch_sub: 4269 case AO__c11_atomic_fetch_and: 4270 case AO__c11_atomic_fetch_or: 4271 case AO__c11_atomic_fetch_xor: 4272 case AO__atomic_fetch_add: 4273 case AO__atomic_fetch_sub: 4274 case AO__atomic_fetch_and: 4275 case AO__atomic_fetch_or: 4276 case AO__atomic_fetch_xor: 4277 case AO__atomic_fetch_nand: 4278 case AO__atomic_add_fetch: 4279 case AO__atomic_sub_fetch: 4280 case AO__atomic_and_fetch: 4281 case AO__atomic_or_fetch: 4282 case AO__atomic_xor_fetch: 4283 case AO__atomic_nand_fetch: 4284 return 3; 4285 4286 case AO__atomic_exchange: 4287 return 4; 4288 4289 case AO__c11_atomic_compare_exchange_strong: 4290 case AO__c11_atomic_compare_exchange_weak: 4291 return 5; 4292 4293 case AO__atomic_compare_exchange: 4294 case AO__atomic_compare_exchange_n: 4295 return 6; 4296 } 4297 llvm_unreachable("unknown atomic op"); 4298} 4299