Expr.cpp revision 663e380d7b2de2bbf20e886e05371195bea9adc4
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30void Expr::ANCHOR() {} // key function for Expr class.
31
32/// isKnownToHaveBooleanValue - Return true if this is an integer expression
33/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
34/// but also int expressions which are produced by things like comparisons in
35/// C.
36bool Expr::isKnownToHaveBooleanValue() const {
37  // If this value has _Bool type, it is obvious 0/1.
38  if (getType()->isBooleanType()) return true;
39  // If this is a non-scalar-integer type, we don't care enough to try.
40  if (!getType()->isIntegralOrEnumerationType()) return false;
41
42  if (const ParenExpr *PE = dyn_cast<ParenExpr>(this))
43    return PE->getSubExpr()->isKnownToHaveBooleanValue();
44
45  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) {
46    switch (UO->getOpcode()) {
47    case UnaryOperator::Plus:
48    case UnaryOperator::Extension:
49      return UO->getSubExpr()->isKnownToHaveBooleanValue();
50    default:
51      return false;
52    }
53  }
54
55  // Only look through implicit casts.  If the user writes
56  // '(int) (a && b)' treat it as an arbitrary int.
57  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(this))
58    return CE->getSubExpr()->isKnownToHaveBooleanValue();
59
60  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) {
61    switch (BO->getOpcode()) {
62    default: return false;
63    case BinaryOperator::LT:   // Relational operators.
64    case BinaryOperator::GT:
65    case BinaryOperator::LE:
66    case BinaryOperator::GE:
67    case BinaryOperator::EQ:   // Equality operators.
68    case BinaryOperator::NE:
69    case BinaryOperator::LAnd: // AND operator.
70    case BinaryOperator::LOr:  // Logical OR operator.
71      return true;
72
73    case BinaryOperator::And:  // Bitwise AND operator.
74    case BinaryOperator::Xor:  // Bitwise XOR operator.
75    case BinaryOperator::Or:   // Bitwise OR operator.
76      // Handle things like (x==2)|(y==12).
77      return BO->getLHS()->isKnownToHaveBooleanValue() &&
78             BO->getRHS()->isKnownToHaveBooleanValue();
79
80    case BinaryOperator::Comma:
81    case BinaryOperator::Assign:
82      return BO->getRHS()->isKnownToHaveBooleanValue();
83    }
84  }
85
86  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this))
87    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
88           CO->getFalseExpr()->isKnownToHaveBooleanValue();
89
90  return false;
91}
92
93//===----------------------------------------------------------------------===//
94// Primary Expressions.
95//===----------------------------------------------------------------------===//
96
97void ExplicitTemplateArgumentList::initializeFrom(
98                                      const TemplateArgumentListInfo &Info) {
99  LAngleLoc = Info.getLAngleLoc();
100  RAngleLoc = Info.getRAngleLoc();
101  NumTemplateArgs = Info.size();
102
103  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
104  for (unsigned i = 0; i != NumTemplateArgs; ++i)
105    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
106}
107
108void ExplicitTemplateArgumentList::copyInto(
109                                      TemplateArgumentListInfo &Info) const {
110  Info.setLAngleLoc(LAngleLoc);
111  Info.setRAngleLoc(RAngleLoc);
112  for (unsigned I = 0; I != NumTemplateArgs; ++I)
113    Info.addArgument(getTemplateArgs()[I]);
114}
115
116std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
117  return sizeof(ExplicitTemplateArgumentList) +
118         sizeof(TemplateArgumentLoc) * NumTemplateArgs;
119}
120
121std::size_t ExplicitTemplateArgumentList::sizeFor(
122                                      const TemplateArgumentListInfo &Info) {
123  return sizeFor(Info.size());
124}
125
126void DeclRefExpr::computeDependence() {
127  TypeDependent = false;
128  ValueDependent = false;
129
130  NamedDecl *D = getDecl();
131
132  // (TD) C++ [temp.dep.expr]p3:
133  //   An id-expression is type-dependent if it contains:
134  //
135  // and
136  //
137  // (VD) C++ [temp.dep.constexpr]p2:
138  //  An identifier is value-dependent if it is:
139
140  //  (TD)  - an identifier that was declared with dependent type
141  //  (VD)  - a name declared with a dependent type,
142  if (getType()->isDependentType()) {
143    TypeDependent = true;
144    ValueDependent = true;
145  }
146  //  (TD)  - a conversion-function-id that specifies a dependent type
147  else if (D->getDeclName().getNameKind()
148                               == DeclarationName::CXXConversionFunctionName &&
149           D->getDeclName().getCXXNameType()->isDependentType()) {
150    TypeDependent = true;
151    ValueDependent = true;
152  }
153  //  (TD)  - a template-id that is dependent,
154  else if (hasExplicitTemplateArgumentList() &&
155           TemplateSpecializationType::anyDependentTemplateArguments(
156                                                       getTemplateArgs(),
157                                                       getNumTemplateArgs())) {
158    TypeDependent = true;
159    ValueDependent = true;
160  }
161  //  (VD)  - the name of a non-type template parameter,
162  else if (isa<NonTypeTemplateParmDecl>(D))
163    ValueDependent = true;
164  //  (VD) - a constant with integral or enumeration type and is
165  //         initialized with an expression that is value-dependent.
166  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
167    if (Var->getType()->isIntegralOrEnumerationType() &&
168        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
169      if (const Expr *Init = Var->getAnyInitializer())
170        if (Init->isValueDependent())
171          ValueDependent = true;
172    }
173    // (VD) - FIXME: Missing from the standard:
174    //      -  a member function or a static data member of the current
175    //         instantiation
176    else if (Var->isStaticDataMember() &&
177             Var->getDeclContext()->isDependentContext())
178      ValueDependent = true;
179  }
180  // (VD) - FIXME: Missing from the standard:
181  //      -  a member function or a static data member of the current
182  //         instantiation
183  else if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext())
184    ValueDependent = true;
185  //  (TD)  - a nested-name-specifier or a qualified-id that names a
186  //          member of an unknown specialization.
187  //        (handled by DependentScopeDeclRefExpr)
188}
189
190DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
191                         SourceRange QualifierRange,
192                         ValueDecl *D, SourceLocation NameLoc,
193                         const TemplateArgumentListInfo *TemplateArgs,
194                         QualType T)
195  : Expr(DeclRefExprClass, T, false, false),
196    DecoratedD(D,
197               (Qualifier? HasQualifierFlag : 0) |
198               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
199    Loc(NameLoc) {
200  if (Qualifier) {
201    NameQualifier *NQ = getNameQualifier();
202    NQ->NNS = Qualifier;
203    NQ->Range = QualifierRange;
204  }
205
206  if (TemplateArgs)
207    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
208
209  computeDependence();
210}
211
212DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
213                                 NestedNameSpecifier *Qualifier,
214                                 SourceRange QualifierRange,
215                                 ValueDecl *D,
216                                 SourceLocation NameLoc,
217                                 QualType T,
218                                 const TemplateArgumentListInfo *TemplateArgs) {
219  std::size_t Size = sizeof(DeclRefExpr);
220  if (Qualifier != 0)
221    Size += sizeof(NameQualifier);
222
223  if (TemplateArgs)
224    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
225
226  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
227  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
228                               TemplateArgs, T);
229}
230
231DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, bool HasQualifier,
232                                      unsigned NumTemplateArgs) {
233  std::size_t Size = sizeof(DeclRefExpr);
234  if (HasQualifier)
235    Size += sizeof(NameQualifier);
236
237  if (NumTemplateArgs)
238    Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
239
240  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
241  return new (Mem) DeclRefExpr(EmptyShell());
242}
243
244SourceRange DeclRefExpr::getSourceRange() const {
245  // FIXME: Does not handle multi-token names well, e.g., operator[].
246  SourceRange R(Loc);
247
248  if (hasQualifier())
249    R.setBegin(getQualifierRange().getBegin());
250  if (hasExplicitTemplateArgumentList())
251    R.setEnd(getRAngleLoc());
252  return R;
253}
254
255// FIXME: Maybe this should use DeclPrinter with a special "print predefined
256// expr" policy instead.
257std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
258  ASTContext &Context = CurrentDecl->getASTContext();
259
260  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
261    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
262      return FD->getNameAsString();
263
264    llvm::SmallString<256> Name;
265    llvm::raw_svector_ostream Out(Name);
266
267    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
268      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
269        Out << "virtual ";
270      if (MD->isStatic())
271        Out << "static ";
272    }
273
274    PrintingPolicy Policy(Context.getLangOptions());
275
276    std::string Proto = FD->getQualifiedNameAsString(Policy);
277
278    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
279    const FunctionProtoType *FT = 0;
280    if (FD->hasWrittenPrototype())
281      FT = dyn_cast<FunctionProtoType>(AFT);
282
283    Proto += "(";
284    if (FT) {
285      llvm::raw_string_ostream POut(Proto);
286      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
287        if (i) POut << ", ";
288        std::string Param;
289        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
290        POut << Param;
291      }
292
293      if (FT->isVariadic()) {
294        if (FD->getNumParams()) POut << ", ";
295        POut << "...";
296      }
297    }
298    Proto += ")";
299
300    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
301      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
302      if (ThisQuals.hasConst())
303        Proto += " const";
304      if (ThisQuals.hasVolatile())
305        Proto += " volatile";
306    }
307
308    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
309      AFT->getResultType().getAsStringInternal(Proto, Policy);
310
311    Out << Proto;
312
313    Out.flush();
314    return Name.str().str();
315  }
316  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
317    llvm::SmallString<256> Name;
318    llvm::raw_svector_ostream Out(Name);
319    Out << (MD->isInstanceMethod() ? '-' : '+');
320    Out << '[';
321
322    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
323    // a null check to avoid a crash.
324    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
325      Out << ID;
326
327    if (const ObjCCategoryImplDecl *CID =
328        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
329      Out << '(' << CID << ')';
330
331    Out <<  ' ';
332    Out << MD->getSelector().getAsString();
333    Out <<  ']';
334
335    Out.flush();
336    return Name.str().str();
337  }
338  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
339    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
340    return "top level";
341  }
342  return "";
343}
344
345/// getValueAsApproximateDouble - This returns the value as an inaccurate
346/// double.  Note that this may cause loss of precision, but is useful for
347/// debugging dumps, etc.
348double FloatingLiteral::getValueAsApproximateDouble() const {
349  llvm::APFloat V = getValue();
350  bool ignored;
351  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
352            &ignored);
353  return V.convertToDouble();
354}
355
356StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
357                                     unsigned ByteLength, bool Wide,
358                                     QualType Ty,
359                                     const SourceLocation *Loc,
360                                     unsigned NumStrs) {
361  // Allocate enough space for the StringLiteral plus an array of locations for
362  // any concatenated string tokens.
363  void *Mem = C.Allocate(sizeof(StringLiteral)+
364                         sizeof(SourceLocation)*(NumStrs-1),
365                         llvm::alignof<StringLiteral>());
366  StringLiteral *SL = new (Mem) StringLiteral(Ty);
367
368  // OPTIMIZE: could allocate this appended to the StringLiteral.
369  char *AStrData = new (C, 1) char[ByteLength];
370  memcpy(AStrData, StrData, ByteLength);
371  SL->StrData = AStrData;
372  SL->ByteLength = ByteLength;
373  SL->IsWide = Wide;
374  SL->TokLocs[0] = Loc[0];
375  SL->NumConcatenated = NumStrs;
376
377  if (NumStrs != 1)
378    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
379  return SL;
380}
381
382StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
383  void *Mem = C.Allocate(sizeof(StringLiteral)+
384                         sizeof(SourceLocation)*(NumStrs-1),
385                         llvm::alignof<StringLiteral>());
386  StringLiteral *SL = new (Mem) StringLiteral(QualType());
387  SL->StrData = 0;
388  SL->ByteLength = 0;
389  SL->NumConcatenated = NumStrs;
390  return SL;
391}
392
393void StringLiteral::DoDestroy(ASTContext &C) {
394  C.Deallocate(const_cast<char*>(StrData));
395  Expr::DoDestroy(C);
396}
397
398void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
399  if (StrData)
400    C.Deallocate(const_cast<char*>(StrData));
401
402  char *AStrData = new (C, 1) char[Str.size()];
403  memcpy(AStrData, Str.data(), Str.size());
404  StrData = AStrData;
405  ByteLength = Str.size();
406}
407
408/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
409/// corresponds to, e.g. "sizeof" or "[pre]++".
410const char *UnaryOperator::getOpcodeStr(Opcode Op) {
411  switch (Op) {
412  default: assert(0 && "Unknown unary operator");
413  case PostInc: return "++";
414  case PostDec: return "--";
415  case PreInc:  return "++";
416  case PreDec:  return "--";
417  case AddrOf:  return "&";
418  case Deref:   return "*";
419  case Plus:    return "+";
420  case Minus:   return "-";
421  case Not:     return "~";
422  case LNot:    return "!";
423  case Real:    return "__real";
424  case Imag:    return "__imag";
425  case Extension: return "__extension__";
426  case OffsetOf: return "__builtin_offsetof";
427  }
428}
429
430UnaryOperator::Opcode
431UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
432  switch (OO) {
433  default: assert(false && "No unary operator for overloaded function");
434  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
435  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
436  case OO_Amp:        return AddrOf;
437  case OO_Star:       return Deref;
438  case OO_Plus:       return Plus;
439  case OO_Minus:      return Minus;
440  case OO_Tilde:      return Not;
441  case OO_Exclaim:    return LNot;
442  }
443}
444
445OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
446  switch (Opc) {
447  case PostInc: case PreInc: return OO_PlusPlus;
448  case PostDec: case PreDec: return OO_MinusMinus;
449  case AddrOf: return OO_Amp;
450  case Deref: return OO_Star;
451  case Plus: return OO_Plus;
452  case Minus: return OO_Minus;
453  case Not: return OO_Tilde;
454  case LNot: return OO_Exclaim;
455  default: return OO_None;
456  }
457}
458
459
460//===----------------------------------------------------------------------===//
461// Postfix Operators.
462//===----------------------------------------------------------------------===//
463
464CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
465                   unsigned numargs, QualType t, SourceLocation rparenloc)
466  : Expr(SC, t,
467         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
468         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
469    NumArgs(numargs) {
470
471  SubExprs = new (C) Stmt*[numargs+1];
472  SubExprs[FN] = fn;
473  for (unsigned i = 0; i != numargs; ++i)
474    SubExprs[i+ARGS_START] = args[i];
475
476  RParenLoc = rparenloc;
477}
478
479CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
480                   QualType t, SourceLocation rparenloc)
481  : Expr(CallExprClass, t,
482         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
483         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
484    NumArgs(numargs) {
485
486  SubExprs = new (C) Stmt*[numargs+1];
487  SubExprs[FN] = fn;
488  for (unsigned i = 0; i != numargs; ++i)
489    SubExprs[i+ARGS_START] = args[i];
490
491  RParenLoc = rparenloc;
492}
493
494CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
495  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
496  SubExprs = new (C) Stmt*[1];
497}
498
499void CallExpr::DoDestroy(ASTContext& C) {
500  DestroyChildren(C);
501  if (SubExprs) C.Deallocate(SubExprs);
502  this->~CallExpr();
503  C.Deallocate(this);
504}
505
506Decl *CallExpr::getCalleeDecl() {
507  Expr *CEE = getCallee()->IgnoreParenCasts();
508  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
509    return DRE->getDecl();
510  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
511    return ME->getMemberDecl();
512
513  return 0;
514}
515
516FunctionDecl *CallExpr::getDirectCallee() {
517  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
518}
519
520/// setNumArgs - This changes the number of arguments present in this call.
521/// Any orphaned expressions are deleted by this, and any new operands are set
522/// to null.
523void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
524  // No change, just return.
525  if (NumArgs == getNumArgs()) return;
526
527  // If shrinking # arguments, just delete the extras and forgot them.
528  if (NumArgs < getNumArgs()) {
529    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
530      getArg(i)->Destroy(C);
531    this->NumArgs = NumArgs;
532    return;
533  }
534
535  // Otherwise, we are growing the # arguments.  New an bigger argument array.
536  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
537  // Copy over args.
538  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
539    NewSubExprs[i] = SubExprs[i];
540  // Null out new args.
541  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
542    NewSubExprs[i] = 0;
543
544  if (SubExprs) C.Deallocate(SubExprs);
545  SubExprs = NewSubExprs;
546  this->NumArgs = NumArgs;
547}
548
549/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
550/// not, return 0.
551unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
552  // All simple function calls (e.g. func()) are implicitly cast to pointer to
553  // function. As a result, we try and obtain the DeclRefExpr from the
554  // ImplicitCastExpr.
555  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
556  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
557    return 0;
558
559  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
560  if (!DRE)
561    return 0;
562
563  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
564  if (!FDecl)
565    return 0;
566
567  if (!FDecl->getIdentifier())
568    return 0;
569
570  return FDecl->getBuiltinID();
571}
572
573QualType CallExpr::getCallReturnType() const {
574  QualType CalleeType = getCallee()->getType();
575  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
576    CalleeType = FnTypePtr->getPointeeType();
577  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
578    CalleeType = BPT->getPointeeType();
579
580  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
581  return FnType->getResultType();
582}
583
584OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
585                                   SourceLocation OperatorLoc,
586                                   TypeSourceInfo *tsi,
587                                   OffsetOfNode* compsPtr, unsigned numComps,
588                                   Expr** exprsPtr, unsigned numExprs,
589                                   SourceLocation RParenLoc) {
590  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
591                         sizeof(OffsetOfNode) * numComps +
592                         sizeof(Expr*) * numExprs);
593
594  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
595                                exprsPtr, numExprs, RParenLoc);
596}
597
598OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
599                                        unsigned numComps, unsigned numExprs) {
600  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
601                         sizeof(OffsetOfNode) * numComps +
602                         sizeof(Expr*) * numExprs);
603  return new (Mem) OffsetOfExpr(numComps, numExprs);
604}
605
606OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
607                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
608                           OffsetOfNode* compsPtr, unsigned numComps,
609                           Expr** exprsPtr, unsigned numExprs,
610                           SourceLocation RParenLoc)
611  : Expr(OffsetOfExprClass, type, /*TypeDependent=*/false,
612         /*ValueDependent=*/tsi->getType()->isDependentType() ||
613         hasAnyTypeDependentArguments(exprsPtr, numExprs) ||
614         hasAnyValueDependentArguments(exprsPtr, numExprs)),
615    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
616    NumComps(numComps), NumExprs(numExprs)
617{
618  for(unsigned i = 0; i < numComps; ++i) {
619    setComponent(i, compsPtr[i]);
620  }
621
622  for(unsigned i = 0; i < numExprs; ++i) {
623    setIndexExpr(i, exprsPtr[i]);
624  }
625}
626
627IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
628  assert(getKind() == Field || getKind() == Identifier);
629  if (getKind() == Field)
630    return getField()->getIdentifier();
631
632  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
633}
634
635MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
636                               NestedNameSpecifier *qual,
637                               SourceRange qualrange,
638                               ValueDecl *memberdecl,
639                               DeclAccessPair founddecl,
640                               SourceLocation l,
641                               const TemplateArgumentListInfo *targs,
642                               QualType ty) {
643  std::size_t Size = sizeof(MemberExpr);
644
645  bool hasQualOrFound = (qual != 0 ||
646                         founddecl.getDecl() != memberdecl ||
647                         founddecl.getAccess() != memberdecl->getAccess());
648  if (hasQualOrFound)
649    Size += sizeof(MemberNameQualifier);
650
651  if (targs)
652    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
653
654  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
655  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, l, ty);
656
657  if (hasQualOrFound) {
658    if (qual && qual->isDependent()) {
659      E->setValueDependent(true);
660      E->setTypeDependent(true);
661    }
662    E->HasQualifierOrFoundDecl = true;
663
664    MemberNameQualifier *NQ = E->getMemberQualifier();
665    NQ->NNS = qual;
666    NQ->Range = qualrange;
667    NQ->FoundDecl = founddecl;
668  }
669
670  if (targs) {
671    E->HasExplicitTemplateArgumentList = true;
672    E->getExplicitTemplateArgumentList()->initializeFrom(*targs);
673  }
674
675  return E;
676}
677
678const char *CastExpr::getCastKindName() const {
679  switch (getCastKind()) {
680  case CastExpr::CK_Unknown:
681    return "Unknown";
682  case CastExpr::CK_BitCast:
683    return "BitCast";
684  case CastExpr::CK_NoOp:
685    return "NoOp";
686  case CastExpr::CK_BaseToDerived:
687    return "BaseToDerived";
688  case CastExpr::CK_DerivedToBase:
689    return "DerivedToBase";
690  case CastExpr::CK_UncheckedDerivedToBase:
691    return "UncheckedDerivedToBase";
692  case CastExpr::CK_Dynamic:
693    return "Dynamic";
694  case CastExpr::CK_ToUnion:
695    return "ToUnion";
696  case CastExpr::CK_ArrayToPointerDecay:
697    return "ArrayToPointerDecay";
698  case CastExpr::CK_FunctionToPointerDecay:
699    return "FunctionToPointerDecay";
700  case CastExpr::CK_NullToMemberPointer:
701    return "NullToMemberPointer";
702  case CastExpr::CK_BaseToDerivedMemberPointer:
703    return "BaseToDerivedMemberPointer";
704  case CastExpr::CK_DerivedToBaseMemberPointer:
705    return "DerivedToBaseMemberPointer";
706  case CastExpr::CK_UserDefinedConversion:
707    return "UserDefinedConversion";
708  case CastExpr::CK_ConstructorConversion:
709    return "ConstructorConversion";
710  case CastExpr::CK_IntegralToPointer:
711    return "IntegralToPointer";
712  case CastExpr::CK_PointerToIntegral:
713    return "PointerToIntegral";
714  case CastExpr::CK_ToVoid:
715    return "ToVoid";
716  case CastExpr::CK_VectorSplat:
717    return "VectorSplat";
718  case CastExpr::CK_IntegralCast:
719    return "IntegralCast";
720  case CastExpr::CK_IntegralToFloating:
721    return "IntegralToFloating";
722  case CastExpr::CK_FloatingToIntegral:
723    return "FloatingToIntegral";
724  case CastExpr::CK_FloatingCast:
725    return "FloatingCast";
726  case CastExpr::CK_MemberPointerToBoolean:
727    return "MemberPointerToBoolean";
728  case CastExpr::CK_AnyPointerToObjCPointerCast:
729    return "AnyPointerToObjCPointerCast";
730  case CastExpr::CK_AnyPointerToBlockPointerCast:
731    return "AnyPointerToBlockPointerCast";
732  }
733
734  assert(0 && "Unhandled cast kind!");
735  return 0;
736}
737
738void CastExpr::DoDestroy(ASTContext &C)
739{
740  BasePath.Destroy();
741  Expr::DoDestroy(C);
742}
743
744Expr *CastExpr::getSubExprAsWritten() {
745  Expr *SubExpr = 0;
746  CastExpr *E = this;
747  do {
748    SubExpr = E->getSubExpr();
749
750    // Skip any temporary bindings; they're implicit.
751    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
752      SubExpr = Binder->getSubExpr();
753
754    // Conversions by constructor and conversion functions have a
755    // subexpression describing the call; strip it off.
756    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
757      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
758    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
759      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
760
761    // If the subexpression we're left with is an implicit cast, look
762    // through that, too.
763  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
764
765  return SubExpr;
766}
767
768/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
769/// corresponds to, e.g. "<<=".
770const char *BinaryOperator::getOpcodeStr(Opcode Op) {
771  switch (Op) {
772  case PtrMemD:   return ".*";
773  case PtrMemI:   return "->*";
774  case Mul:       return "*";
775  case Div:       return "/";
776  case Rem:       return "%";
777  case Add:       return "+";
778  case Sub:       return "-";
779  case Shl:       return "<<";
780  case Shr:       return ">>";
781  case LT:        return "<";
782  case GT:        return ">";
783  case LE:        return "<=";
784  case GE:        return ">=";
785  case EQ:        return "==";
786  case NE:        return "!=";
787  case And:       return "&";
788  case Xor:       return "^";
789  case Or:        return "|";
790  case LAnd:      return "&&";
791  case LOr:       return "||";
792  case Assign:    return "=";
793  case MulAssign: return "*=";
794  case DivAssign: return "/=";
795  case RemAssign: return "%=";
796  case AddAssign: return "+=";
797  case SubAssign: return "-=";
798  case ShlAssign: return "<<=";
799  case ShrAssign: return ">>=";
800  case AndAssign: return "&=";
801  case XorAssign: return "^=";
802  case OrAssign:  return "|=";
803  case Comma:     return ",";
804  }
805
806  return "";
807}
808
809BinaryOperator::Opcode
810BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
811  switch (OO) {
812  default: assert(false && "Not an overloadable binary operator");
813  case OO_Plus: return Add;
814  case OO_Minus: return Sub;
815  case OO_Star: return Mul;
816  case OO_Slash: return Div;
817  case OO_Percent: return Rem;
818  case OO_Caret: return Xor;
819  case OO_Amp: return And;
820  case OO_Pipe: return Or;
821  case OO_Equal: return Assign;
822  case OO_Less: return LT;
823  case OO_Greater: return GT;
824  case OO_PlusEqual: return AddAssign;
825  case OO_MinusEqual: return SubAssign;
826  case OO_StarEqual: return MulAssign;
827  case OO_SlashEqual: return DivAssign;
828  case OO_PercentEqual: return RemAssign;
829  case OO_CaretEqual: return XorAssign;
830  case OO_AmpEqual: return AndAssign;
831  case OO_PipeEqual: return OrAssign;
832  case OO_LessLess: return Shl;
833  case OO_GreaterGreater: return Shr;
834  case OO_LessLessEqual: return ShlAssign;
835  case OO_GreaterGreaterEqual: return ShrAssign;
836  case OO_EqualEqual: return EQ;
837  case OO_ExclaimEqual: return NE;
838  case OO_LessEqual: return LE;
839  case OO_GreaterEqual: return GE;
840  case OO_AmpAmp: return LAnd;
841  case OO_PipePipe: return LOr;
842  case OO_Comma: return Comma;
843  case OO_ArrowStar: return PtrMemI;
844  }
845}
846
847OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
848  static const OverloadedOperatorKind OverOps[] = {
849    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
850    OO_Star, OO_Slash, OO_Percent,
851    OO_Plus, OO_Minus,
852    OO_LessLess, OO_GreaterGreater,
853    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
854    OO_EqualEqual, OO_ExclaimEqual,
855    OO_Amp,
856    OO_Caret,
857    OO_Pipe,
858    OO_AmpAmp,
859    OO_PipePipe,
860    OO_Equal, OO_StarEqual,
861    OO_SlashEqual, OO_PercentEqual,
862    OO_PlusEqual, OO_MinusEqual,
863    OO_LessLessEqual, OO_GreaterGreaterEqual,
864    OO_AmpEqual, OO_CaretEqual,
865    OO_PipeEqual,
866    OO_Comma
867  };
868  return OverOps[Opc];
869}
870
871InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
872                           Expr **initExprs, unsigned numInits,
873                           SourceLocation rbraceloc)
874  : Expr(InitListExprClass, QualType(), false, false),
875    InitExprs(C, numInits),
876    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
877    UnionFieldInit(0), HadArrayRangeDesignator(false)
878{
879  for (unsigned I = 0; I != numInits; ++I) {
880    if (initExprs[I]->isTypeDependent())
881      TypeDependent = true;
882    if (initExprs[I]->isValueDependent())
883      ValueDependent = true;
884  }
885
886  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
887}
888
889void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
890  if (NumInits > InitExprs.size())
891    InitExprs.reserve(C, NumInits);
892}
893
894void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
895  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
896       Idx < LastIdx; ++Idx)
897    InitExprs[Idx]->Destroy(C);
898  InitExprs.resize(C, NumInits, 0);
899}
900
901Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
902  if (Init >= InitExprs.size()) {
903    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
904    InitExprs.back() = expr;
905    return 0;
906  }
907
908  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
909  InitExprs[Init] = expr;
910  return Result;
911}
912
913/// getFunctionType - Return the underlying function type for this block.
914///
915const FunctionType *BlockExpr::getFunctionType() const {
916  return getType()->getAs<BlockPointerType>()->
917                    getPointeeType()->getAs<FunctionType>();
918}
919
920SourceLocation BlockExpr::getCaretLocation() const {
921  return TheBlock->getCaretLocation();
922}
923const Stmt *BlockExpr::getBody() const {
924  return TheBlock->getBody();
925}
926Stmt *BlockExpr::getBody() {
927  return TheBlock->getBody();
928}
929
930
931//===----------------------------------------------------------------------===//
932// Generic Expression Routines
933//===----------------------------------------------------------------------===//
934
935/// isUnusedResultAWarning - Return true if this immediate expression should
936/// be warned about if the result is unused.  If so, fill in Loc and Ranges
937/// with location to warn on and the source range[s] to report with the
938/// warning.
939bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
940                                  SourceRange &R2, ASTContext &Ctx) const {
941  // Don't warn if the expr is type dependent. The type could end up
942  // instantiating to void.
943  if (isTypeDependent())
944    return false;
945
946  switch (getStmtClass()) {
947  default:
948    if (getType()->isVoidType())
949      return false;
950    Loc = getExprLoc();
951    R1 = getSourceRange();
952    return true;
953  case ParenExprClass:
954    return cast<ParenExpr>(this)->getSubExpr()->
955      isUnusedResultAWarning(Loc, R1, R2, Ctx);
956  case UnaryOperatorClass: {
957    const UnaryOperator *UO = cast<UnaryOperator>(this);
958
959    switch (UO->getOpcode()) {
960    default: break;
961    case UnaryOperator::PostInc:
962    case UnaryOperator::PostDec:
963    case UnaryOperator::PreInc:
964    case UnaryOperator::PreDec:                 // ++/--
965      return false;  // Not a warning.
966    case UnaryOperator::Deref:
967      // Dereferencing a volatile pointer is a side-effect.
968      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
969        return false;
970      break;
971    case UnaryOperator::Real:
972    case UnaryOperator::Imag:
973      // accessing a piece of a volatile complex is a side-effect.
974      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
975          .isVolatileQualified())
976        return false;
977      break;
978    case UnaryOperator::Extension:
979      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
980    }
981    Loc = UO->getOperatorLoc();
982    R1 = UO->getSubExpr()->getSourceRange();
983    return true;
984  }
985  case BinaryOperatorClass: {
986    const BinaryOperator *BO = cast<BinaryOperator>(this);
987    switch (BO->getOpcode()) {
988      default:
989        break;
990      // Consider the RHS of comma for side effects. LHS was checked by
991      // Sema::CheckCommaOperands.
992      case BinaryOperator::Comma:
993        // ((foo = <blah>), 0) is an idiom for hiding the result (and
994        // lvalue-ness) of an assignment written in a macro.
995        if (IntegerLiteral *IE =
996              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
997          if (IE->getValue() == 0)
998            return false;
999        return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1000      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1001      case BinaryOperator::LAnd:
1002      case BinaryOperator::LOr:
1003        if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1004            !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1005          return false;
1006        break;
1007    }
1008    if (BO->isAssignmentOp())
1009      return false;
1010    Loc = BO->getOperatorLoc();
1011    R1 = BO->getLHS()->getSourceRange();
1012    R2 = BO->getRHS()->getSourceRange();
1013    return true;
1014  }
1015  case CompoundAssignOperatorClass:
1016  case VAArgExprClass:
1017    return false;
1018
1019  case ConditionalOperatorClass: {
1020    // The condition must be evaluated, but if either the LHS or RHS is a
1021    // warning, warn about them.
1022    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1023    if (Exp->getLHS() &&
1024        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1025      return true;
1026    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1027  }
1028
1029  case MemberExprClass:
1030    // If the base pointer or element is to a volatile pointer/field, accessing
1031    // it is a side effect.
1032    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1033      return false;
1034    Loc = cast<MemberExpr>(this)->getMemberLoc();
1035    R1 = SourceRange(Loc, Loc);
1036    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1037    return true;
1038
1039  case ArraySubscriptExprClass:
1040    // If the base pointer or element is to a volatile pointer/field, accessing
1041    // it is a side effect.
1042    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1043      return false;
1044    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1045    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1046    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1047    return true;
1048
1049  case CallExprClass:
1050  case CXXOperatorCallExprClass:
1051  case CXXMemberCallExprClass: {
1052    // If this is a direct call, get the callee.
1053    const CallExpr *CE = cast<CallExpr>(this);
1054    if (const Decl *FD = CE->getCalleeDecl()) {
1055      // If the callee has attribute pure, const, or warn_unused_result, warn
1056      // about it. void foo() { strlen("bar"); } should warn.
1057      //
1058      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1059      // updated to match for QoI.
1060      if (FD->getAttr<WarnUnusedResultAttr>() ||
1061          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1062        Loc = CE->getCallee()->getLocStart();
1063        R1 = CE->getCallee()->getSourceRange();
1064
1065        if (unsigned NumArgs = CE->getNumArgs())
1066          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1067                           CE->getArg(NumArgs-1)->getLocEnd());
1068        return true;
1069      }
1070    }
1071    return false;
1072  }
1073
1074  case CXXTemporaryObjectExprClass:
1075  case CXXConstructExprClass:
1076    return false;
1077
1078  case ObjCMessageExprClass: {
1079    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1080    const ObjCMethodDecl *MD = ME->getMethodDecl();
1081    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1082      Loc = getExprLoc();
1083      return true;
1084    }
1085    return false;
1086  }
1087
1088  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
1089#if 0
1090    const ObjCImplicitSetterGetterRefExpr *Ref =
1091      cast<ObjCImplicitSetterGetterRefExpr>(this);
1092    // FIXME: We really want the location of the '.' here.
1093    Loc = Ref->getLocation();
1094    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
1095    if (Ref->getBase())
1096      R2 = Ref->getBase()->getSourceRange();
1097#else
1098    Loc = getExprLoc();
1099    R1 = getSourceRange();
1100#endif
1101    return true;
1102  }
1103  case StmtExprClass: {
1104    // Statement exprs don't logically have side effects themselves, but are
1105    // sometimes used in macros in ways that give them a type that is unused.
1106    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1107    // however, if the result of the stmt expr is dead, we don't want to emit a
1108    // warning.
1109    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1110    if (!CS->body_empty())
1111      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1112        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1113
1114    if (getType()->isVoidType())
1115      return false;
1116    Loc = cast<StmtExpr>(this)->getLParenLoc();
1117    R1 = getSourceRange();
1118    return true;
1119  }
1120  case CStyleCastExprClass:
1121    // If this is an explicit cast to void, allow it.  People do this when they
1122    // think they know what they're doing :).
1123    if (getType()->isVoidType())
1124      return false;
1125    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1126    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1127    return true;
1128  case CXXFunctionalCastExprClass: {
1129    if (getType()->isVoidType())
1130      return false;
1131    const CastExpr *CE = cast<CastExpr>(this);
1132
1133    // If this is a cast to void or a constructor conversion, check the operand.
1134    // Otherwise, the result of the cast is unused.
1135    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
1136        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
1137      return (cast<CastExpr>(this)->getSubExpr()
1138              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1139    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1140    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1141    return true;
1142  }
1143
1144  case ImplicitCastExprClass:
1145    // Check the operand, since implicit casts are inserted by Sema
1146    return (cast<ImplicitCastExpr>(this)
1147            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1148
1149  case CXXDefaultArgExprClass:
1150    return (cast<CXXDefaultArgExpr>(this)
1151            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1152
1153  case CXXNewExprClass:
1154    // FIXME: In theory, there might be new expressions that don't have side
1155    // effects (e.g. a placement new with an uninitialized POD).
1156  case CXXDeleteExprClass:
1157    return false;
1158  case CXXBindTemporaryExprClass:
1159    return (cast<CXXBindTemporaryExpr>(this)
1160            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1161  case CXXExprWithTemporariesClass:
1162    return (cast<CXXExprWithTemporaries>(this)
1163            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1164  }
1165}
1166
1167/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1168/// returns true, if it is; false otherwise.
1169bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1170  switch (getStmtClass()) {
1171  default:
1172    return false;
1173  case ObjCIvarRefExprClass:
1174    return true;
1175  case Expr::UnaryOperatorClass:
1176    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1177  case ParenExprClass:
1178    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1179  case ImplicitCastExprClass:
1180    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1181  case CStyleCastExprClass:
1182    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1183  case DeclRefExprClass: {
1184    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1185    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1186      if (VD->hasGlobalStorage())
1187        return true;
1188      QualType T = VD->getType();
1189      // dereferencing to a  pointer is always a gc'able candidate,
1190      // unless it is __weak.
1191      return T->isPointerType() &&
1192             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1193    }
1194    return false;
1195  }
1196  case MemberExprClass: {
1197    const MemberExpr *M = cast<MemberExpr>(this);
1198    return M->getBase()->isOBJCGCCandidate(Ctx);
1199  }
1200  case ArraySubscriptExprClass:
1201    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1202  }
1203}
1204Expr* Expr::IgnoreParens() {
1205  Expr* E = this;
1206  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1207    E = P->getSubExpr();
1208
1209  return E;
1210}
1211
1212/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1213/// or CastExprs or ImplicitCastExprs, returning their operand.
1214Expr *Expr::IgnoreParenCasts() {
1215  Expr *E = this;
1216  while (true) {
1217    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1218      E = P->getSubExpr();
1219    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1220      E = P->getSubExpr();
1221    else
1222      return E;
1223  }
1224}
1225
1226Expr *Expr::IgnoreParenImpCasts() {
1227  Expr *E = this;
1228  while (true) {
1229    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1230      E = P->getSubExpr();
1231    else if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E))
1232      E = P->getSubExpr();
1233    else
1234      return E;
1235  }
1236}
1237
1238/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1239/// value (including ptr->int casts of the same size).  Strip off any
1240/// ParenExpr or CastExprs, returning their operand.
1241Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1242  Expr *E = this;
1243  while (true) {
1244    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1245      E = P->getSubExpr();
1246      continue;
1247    }
1248
1249    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1250      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1251      // ptr<->int casts of the same width.  We also ignore all identity casts.
1252      Expr *SE = P->getSubExpr();
1253
1254      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1255        E = SE;
1256        continue;
1257      }
1258
1259      if ((E->getType()->isPointerType() ||
1260           E->getType()->isIntegralType(Ctx)) &&
1261          (SE->getType()->isPointerType() ||
1262           SE->getType()->isIntegralType(Ctx)) &&
1263          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1264        E = SE;
1265        continue;
1266      }
1267    }
1268
1269    return E;
1270  }
1271}
1272
1273bool Expr::isDefaultArgument() const {
1274  const Expr *E = this;
1275  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1276    E = ICE->getSubExprAsWritten();
1277
1278  return isa<CXXDefaultArgExpr>(E);
1279}
1280
1281/// \brief Skip over any no-op casts and any temporary-binding
1282/// expressions.
1283static const Expr *skipTemporaryBindingsAndNoOpCasts(const Expr *E) {
1284  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1285    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1286      E = ICE->getSubExpr();
1287    else
1288      break;
1289  }
1290
1291  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1292    E = BE->getSubExpr();
1293
1294  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1295    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1296      E = ICE->getSubExpr();
1297    else
1298      break;
1299  }
1300
1301  return E;
1302}
1303
1304const Expr *Expr::getTemporaryObject() const {
1305  const Expr *E = skipTemporaryBindingsAndNoOpCasts(this);
1306
1307  // A cast can produce a temporary object. The object's construction
1308  // is represented as a CXXConstructExpr.
1309  if (const CastExpr *Cast = dyn_cast<CastExpr>(E)) {
1310    // Only user-defined and constructor conversions can produce
1311    // temporary objects.
1312    if (Cast->getCastKind() != CastExpr::CK_ConstructorConversion &&
1313        Cast->getCastKind() != CastExpr::CK_UserDefinedConversion)
1314      return 0;
1315
1316    // Strip off temporary bindings and no-op casts.
1317    const Expr *Sub = skipTemporaryBindingsAndNoOpCasts(Cast->getSubExpr());
1318
1319    // If this is a constructor conversion, see if we have an object
1320    // construction.
1321    if (Cast->getCastKind() == CastExpr::CK_ConstructorConversion)
1322      return dyn_cast<CXXConstructExpr>(Sub);
1323
1324    // If this is a user-defined conversion, see if we have a call to
1325    // a function that itself returns a temporary object.
1326    if (Cast->getCastKind() == CastExpr::CK_UserDefinedConversion)
1327      if (const CallExpr *CE = dyn_cast<CallExpr>(Sub))
1328        if (CE->getCallReturnType()->isRecordType())
1329          return CE;
1330
1331    return 0;
1332  }
1333
1334  // A call returning a class type returns a temporary.
1335  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1336    if (CE->getCallReturnType()->isRecordType())
1337      return CE;
1338
1339    return 0;
1340  }
1341
1342  // Explicit temporary object constructors create temporaries.
1343  return dyn_cast<CXXTemporaryObjectExpr>(E);
1344}
1345
1346/// hasAnyTypeDependentArguments - Determines if any of the expressions
1347/// in Exprs is type-dependent.
1348bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1349  for (unsigned I = 0; I < NumExprs; ++I)
1350    if (Exprs[I]->isTypeDependent())
1351      return true;
1352
1353  return false;
1354}
1355
1356/// hasAnyValueDependentArguments - Determines if any of the expressions
1357/// in Exprs is value-dependent.
1358bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1359  for (unsigned I = 0; I < NumExprs; ++I)
1360    if (Exprs[I]->isValueDependent())
1361      return true;
1362
1363  return false;
1364}
1365
1366bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1367  // This function is attempting whether an expression is an initializer
1368  // which can be evaluated at compile-time.  isEvaluatable handles most
1369  // of the cases, but it can't deal with some initializer-specific
1370  // expressions, and it can't deal with aggregates; we deal with those here,
1371  // and fall back to isEvaluatable for the other cases.
1372
1373  // FIXME: This function assumes the variable being assigned to
1374  // isn't a reference type!
1375
1376  switch (getStmtClass()) {
1377  default: break;
1378  case StringLiteralClass:
1379  case ObjCStringLiteralClass:
1380  case ObjCEncodeExprClass:
1381    return true;
1382  case CompoundLiteralExprClass: {
1383    // This handles gcc's extension that allows global initializers like
1384    // "struct x {int x;} x = (struct x) {};".
1385    // FIXME: This accepts other cases it shouldn't!
1386    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1387    return Exp->isConstantInitializer(Ctx);
1388  }
1389  case InitListExprClass: {
1390    // FIXME: This doesn't deal with fields with reference types correctly.
1391    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1392    // to bitfields.
1393    const InitListExpr *Exp = cast<InitListExpr>(this);
1394    unsigned numInits = Exp->getNumInits();
1395    for (unsigned i = 0; i < numInits; i++) {
1396      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1397        return false;
1398    }
1399    return true;
1400  }
1401  case ImplicitValueInitExprClass:
1402    return true;
1403  case ParenExprClass:
1404    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1405  case UnaryOperatorClass: {
1406    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1407    if (Exp->getOpcode() == UnaryOperator::Extension)
1408      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1409    break;
1410  }
1411  case BinaryOperatorClass: {
1412    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1413    // but this handles the common case.
1414    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1415    if (Exp->getOpcode() == BinaryOperator::Sub &&
1416        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1417        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1418      return true;
1419    break;
1420  }
1421  case ImplicitCastExprClass:
1422  case CStyleCastExprClass:
1423    // Handle casts with a destination that's a struct or union; this
1424    // deals with both the gcc no-op struct cast extension and the
1425    // cast-to-union extension.
1426    if (getType()->isRecordType())
1427      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1428
1429    // Integer->integer casts can be handled here, which is important for
1430    // things like (int)(&&x-&&y).  Scary but true.
1431    if (getType()->isIntegerType() &&
1432        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1433      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1434
1435    break;
1436  }
1437  return isEvaluatable(Ctx);
1438}
1439
1440/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1441/// integer constant expression with the value zero, or if this is one that is
1442/// cast to void*.
1443bool Expr::isNullPointerConstant(ASTContext &Ctx,
1444                                 NullPointerConstantValueDependence NPC) const {
1445  if (isValueDependent()) {
1446    switch (NPC) {
1447    case NPC_NeverValueDependent:
1448      assert(false && "Unexpected value dependent expression!");
1449      // If the unthinkable happens, fall through to the safest alternative.
1450
1451    case NPC_ValueDependentIsNull:
1452      return isTypeDependent() || getType()->isIntegralType(Ctx);
1453
1454    case NPC_ValueDependentIsNotNull:
1455      return false;
1456    }
1457  }
1458
1459  // Strip off a cast to void*, if it exists. Except in C++.
1460  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1461    if (!Ctx.getLangOptions().CPlusPlus) {
1462      // Check that it is a cast to void*.
1463      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1464        QualType Pointee = PT->getPointeeType();
1465        if (!Pointee.hasQualifiers() &&
1466            Pointee->isVoidType() &&                              // to void*
1467            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1468          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1469      }
1470    }
1471  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1472    // Ignore the ImplicitCastExpr type entirely.
1473    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1474  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1475    // Accept ((void*)0) as a null pointer constant, as many other
1476    // implementations do.
1477    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1478  } else if (const CXXDefaultArgExpr *DefaultArg
1479               = dyn_cast<CXXDefaultArgExpr>(this)) {
1480    // See through default argument expressions
1481    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1482  } else if (isa<GNUNullExpr>(this)) {
1483    // The GNU __null extension is always a null pointer constant.
1484    return true;
1485  }
1486
1487  // C++0x nullptr_t is always a null pointer constant.
1488  if (getType()->isNullPtrType())
1489    return true;
1490
1491  // This expression must be an integer type.
1492  if (!getType()->isIntegerType() ||
1493      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1494    return false;
1495
1496  // If we have an integer constant expression, we need to *evaluate* it and
1497  // test for the value 0.
1498  llvm::APSInt Result;
1499  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1500}
1501
1502FieldDecl *Expr::getBitField() {
1503  Expr *E = this->IgnoreParens();
1504
1505  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1506    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
1507      E = ICE->getSubExpr()->IgnoreParens();
1508    else
1509      break;
1510  }
1511
1512  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1513    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1514      if (Field->isBitField())
1515        return Field;
1516
1517  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1518    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1519      return BinOp->getLHS()->getBitField();
1520
1521  return 0;
1522}
1523
1524bool Expr::refersToVectorElement() const {
1525  const Expr *E = this->IgnoreParens();
1526
1527  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1528    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
1529      E = ICE->getSubExpr()->IgnoreParens();
1530    else
1531      break;
1532  }
1533
1534  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
1535    return ASE->getBase()->getType()->isVectorType();
1536
1537  if (isa<ExtVectorElementExpr>(E))
1538    return true;
1539
1540  return false;
1541}
1542
1543/// isArrow - Return true if the base expression is a pointer to vector,
1544/// return false if the base expression is a vector.
1545bool ExtVectorElementExpr::isArrow() const {
1546  return getBase()->getType()->isPointerType();
1547}
1548
1549unsigned ExtVectorElementExpr::getNumElements() const {
1550  if (const VectorType *VT = getType()->getAs<VectorType>())
1551    return VT->getNumElements();
1552  return 1;
1553}
1554
1555/// containsDuplicateElements - Return true if any element access is repeated.
1556bool ExtVectorElementExpr::containsDuplicateElements() const {
1557  // FIXME: Refactor this code to an accessor on the AST node which returns the
1558  // "type" of component access, and share with code below and in Sema.
1559  llvm::StringRef Comp = Accessor->getName();
1560
1561  // Halving swizzles do not contain duplicate elements.
1562  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
1563    return false;
1564
1565  // Advance past s-char prefix on hex swizzles.
1566  if (Comp[0] == 's' || Comp[0] == 'S')
1567    Comp = Comp.substr(1);
1568
1569  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
1570    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
1571        return true;
1572
1573  return false;
1574}
1575
1576/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1577void ExtVectorElementExpr::getEncodedElementAccess(
1578                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1579  llvm::StringRef Comp = Accessor->getName();
1580  if (Comp[0] == 's' || Comp[0] == 'S')
1581    Comp = Comp.substr(1);
1582
1583  bool isHi =   Comp == "hi";
1584  bool isLo =   Comp == "lo";
1585  bool isEven = Comp == "even";
1586  bool isOdd  = Comp == "odd";
1587
1588  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1589    uint64_t Index;
1590
1591    if (isHi)
1592      Index = e + i;
1593    else if (isLo)
1594      Index = i;
1595    else if (isEven)
1596      Index = 2 * i;
1597    else if (isOdd)
1598      Index = 2 * i + 1;
1599    else
1600      Index = ExtVectorType::getAccessorIdx(Comp[i]);
1601
1602    Elts.push_back(Index);
1603  }
1604}
1605
1606ObjCMessageExpr::ObjCMessageExpr(QualType T,
1607                                 SourceLocation LBracLoc,
1608                                 SourceLocation SuperLoc,
1609                                 bool IsInstanceSuper,
1610                                 QualType SuperType,
1611                                 Selector Sel,
1612                                 ObjCMethodDecl *Method,
1613                                 Expr **Args, unsigned NumArgs,
1614                                 SourceLocation RBracLoc)
1615  : Expr(ObjCMessageExprClass, T, /*TypeDependent=*/false,
1616         /*ValueDependent=*/false),
1617    NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
1618    HasMethod(Method != 0), SuperLoc(SuperLoc),
1619    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
1620                                                       : Sel.getAsOpaquePtr())),
1621    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
1622{
1623  setReceiverPointer(SuperType.getAsOpaquePtr());
1624  if (NumArgs)
1625    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
1626}
1627
1628ObjCMessageExpr::ObjCMessageExpr(QualType T,
1629                                 SourceLocation LBracLoc,
1630                                 TypeSourceInfo *Receiver,
1631                                 Selector Sel,
1632                                 ObjCMethodDecl *Method,
1633                                 Expr **Args, unsigned NumArgs,
1634                                 SourceLocation RBracLoc)
1635  : Expr(ObjCMessageExprClass, T, T->isDependentType(),
1636         (T->isDependentType() ||
1637          hasAnyValueDependentArguments(Args, NumArgs))),
1638    NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
1639    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
1640                                                       : Sel.getAsOpaquePtr())),
1641    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
1642{
1643  setReceiverPointer(Receiver);
1644  if (NumArgs)
1645    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
1646}
1647
1648ObjCMessageExpr::ObjCMessageExpr(QualType T,
1649                                 SourceLocation LBracLoc,
1650                                 Expr *Receiver,
1651                                 Selector Sel,
1652                                 ObjCMethodDecl *Method,
1653                                 Expr **Args, unsigned NumArgs,
1654                                 SourceLocation RBracLoc)
1655  : Expr(ObjCMessageExprClass, T, Receiver->isTypeDependent(),
1656         (Receiver->isTypeDependent() ||
1657          hasAnyValueDependentArguments(Args, NumArgs))),
1658    NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
1659    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
1660                                                       : Sel.getAsOpaquePtr())),
1661    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
1662{
1663  setReceiverPointer(Receiver);
1664  if (NumArgs)
1665    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
1666}
1667
1668ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
1669                                         SourceLocation LBracLoc,
1670                                         SourceLocation SuperLoc,
1671                                         bool IsInstanceSuper,
1672                                         QualType SuperType,
1673                                         Selector Sel,
1674                                         ObjCMethodDecl *Method,
1675                                         Expr **Args, unsigned NumArgs,
1676                                         SourceLocation RBracLoc) {
1677  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
1678    NumArgs * sizeof(Expr *);
1679  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
1680  return new (Mem) ObjCMessageExpr(T, LBracLoc, SuperLoc, IsInstanceSuper,
1681                                   SuperType, Sel, Method, Args, NumArgs,
1682                                   RBracLoc);
1683}
1684
1685ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
1686                                         SourceLocation LBracLoc,
1687                                         TypeSourceInfo *Receiver,
1688                                         Selector Sel,
1689                                         ObjCMethodDecl *Method,
1690                                         Expr **Args, unsigned NumArgs,
1691                                         SourceLocation RBracLoc) {
1692  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
1693    NumArgs * sizeof(Expr *);
1694  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
1695  return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,
1696                                   NumArgs, RBracLoc);
1697}
1698
1699ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
1700                                         SourceLocation LBracLoc,
1701                                         Expr *Receiver,
1702                                         Selector Sel,
1703                                         ObjCMethodDecl *Method,
1704                                         Expr **Args, unsigned NumArgs,
1705                                         SourceLocation RBracLoc) {
1706  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
1707    NumArgs * sizeof(Expr *);
1708  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
1709  return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,
1710                                   NumArgs, RBracLoc);
1711}
1712
1713ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
1714                                              unsigned NumArgs) {
1715  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
1716    NumArgs * sizeof(Expr *);
1717  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
1718  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
1719}
1720
1721Selector ObjCMessageExpr::getSelector() const {
1722  if (HasMethod)
1723    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
1724                                                               ->getSelector();
1725  return Selector(SelectorOrMethod);
1726}
1727
1728ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
1729  switch (getReceiverKind()) {
1730  case Instance:
1731    if (const ObjCObjectPointerType *Ptr
1732          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
1733      return Ptr->getInterfaceDecl();
1734    break;
1735
1736  case Class:
1737    if (const ObjCObjectType *Ty
1738          = getClassReceiver()->getAs<ObjCObjectType>())
1739      return Ty->getInterface();
1740    break;
1741
1742  case SuperInstance:
1743    if (const ObjCObjectPointerType *Ptr
1744          = getSuperType()->getAs<ObjCObjectPointerType>())
1745      return Ptr->getInterfaceDecl();
1746    break;
1747
1748  case SuperClass:
1749    if (const ObjCObjectPointerType *Iface
1750                       = getSuperType()->getAs<ObjCObjectPointerType>())
1751      return Iface->getInterfaceDecl();
1752    break;
1753  }
1754
1755  return 0;
1756}
1757
1758bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1759  return getCond()->EvaluateAsInt(C) != 0;
1760}
1761
1762void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
1763                                 unsigned NumExprs) {
1764  if (SubExprs) C.Deallocate(SubExprs);
1765
1766  SubExprs = new (C) Stmt* [NumExprs];
1767  this->NumExprs = NumExprs;
1768  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
1769}
1770
1771void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
1772  DestroyChildren(C);
1773  if (SubExprs) C.Deallocate(SubExprs);
1774  this->~ShuffleVectorExpr();
1775  C.Deallocate(this);
1776}
1777
1778void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
1779  // Override default behavior of traversing children. If this has a type
1780  // operand and the type is a variable-length array, the child iteration
1781  // will iterate over the size expression. However, this expression belongs
1782  // to the type, not to this, so we don't want to delete it.
1783  // We still want to delete this expression.
1784  if (isArgumentType()) {
1785    this->~SizeOfAlignOfExpr();
1786    C.Deallocate(this);
1787  }
1788  else
1789    Expr::DoDestroy(C);
1790}
1791
1792//===----------------------------------------------------------------------===//
1793//  DesignatedInitExpr
1794//===----------------------------------------------------------------------===//
1795
1796IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
1797  assert(Kind == FieldDesignator && "Only valid on a field designator");
1798  if (Field.NameOrField & 0x01)
1799    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
1800  else
1801    return getField()->getIdentifier();
1802}
1803
1804DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
1805                                       unsigned NumDesignators,
1806                                       const Designator *Designators,
1807                                       SourceLocation EqualOrColonLoc,
1808                                       bool GNUSyntax,
1809                                       Expr **IndexExprs,
1810                                       unsigned NumIndexExprs,
1811                                       Expr *Init)
1812  : Expr(DesignatedInitExprClass, Ty,
1813         Init->isTypeDependent(), Init->isValueDependent()),
1814    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
1815    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
1816  this->Designators = new (C) Designator[NumDesignators];
1817
1818  // Record the initializer itself.
1819  child_iterator Child = child_begin();
1820  *Child++ = Init;
1821
1822  // Copy the designators and their subexpressions, computing
1823  // value-dependence along the way.
1824  unsigned IndexIdx = 0;
1825  for (unsigned I = 0; I != NumDesignators; ++I) {
1826    this->Designators[I] = Designators[I];
1827
1828    if (this->Designators[I].isArrayDesignator()) {
1829      // Compute type- and value-dependence.
1830      Expr *Index = IndexExprs[IndexIdx];
1831      ValueDependent = ValueDependent ||
1832        Index->isTypeDependent() || Index->isValueDependent();
1833
1834      // Copy the index expressions into permanent storage.
1835      *Child++ = IndexExprs[IndexIdx++];
1836    } else if (this->Designators[I].isArrayRangeDesignator()) {
1837      // Compute type- and value-dependence.
1838      Expr *Start = IndexExprs[IndexIdx];
1839      Expr *End = IndexExprs[IndexIdx + 1];
1840      ValueDependent = ValueDependent ||
1841        Start->isTypeDependent() || Start->isValueDependent() ||
1842        End->isTypeDependent() || End->isValueDependent();
1843
1844      // Copy the start/end expressions into permanent storage.
1845      *Child++ = IndexExprs[IndexIdx++];
1846      *Child++ = IndexExprs[IndexIdx++];
1847    }
1848  }
1849
1850  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
1851}
1852
1853DesignatedInitExpr *
1854DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
1855                           unsigned NumDesignators,
1856                           Expr **IndexExprs, unsigned NumIndexExprs,
1857                           SourceLocation ColonOrEqualLoc,
1858                           bool UsesColonSyntax, Expr *Init) {
1859  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
1860                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
1861  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
1862                                      ColonOrEqualLoc, UsesColonSyntax,
1863                                      IndexExprs, NumIndexExprs, Init);
1864}
1865
1866DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
1867                                                    unsigned NumIndexExprs) {
1868  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
1869                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
1870  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
1871}
1872
1873void DesignatedInitExpr::setDesignators(ASTContext &C,
1874                                        const Designator *Desigs,
1875                                        unsigned NumDesigs) {
1876  DestroyDesignators(C);
1877
1878  Designators = new (C) Designator[NumDesigs];
1879  NumDesignators = NumDesigs;
1880  for (unsigned I = 0; I != NumDesigs; ++I)
1881    Designators[I] = Desigs[I];
1882}
1883
1884SourceRange DesignatedInitExpr::getSourceRange() const {
1885  SourceLocation StartLoc;
1886  Designator &First =
1887    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
1888  if (First.isFieldDesignator()) {
1889    if (GNUSyntax)
1890      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
1891    else
1892      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
1893  } else
1894    StartLoc =
1895      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
1896  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
1897}
1898
1899Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
1900  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
1901  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1902  Ptr += sizeof(DesignatedInitExpr);
1903  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1904  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1905}
1906
1907Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
1908  assert(D.Kind == Designator::ArrayRangeDesignator &&
1909         "Requires array range designator");
1910  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1911  Ptr += sizeof(DesignatedInitExpr);
1912  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1913  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1914}
1915
1916Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
1917  assert(D.Kind == Designator::ArrayRangeDesignator &&
1918         "Requires array range designator");
1919  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1920  Ptr += sizeof(DesignatedInitExpr);
1921  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1922  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
1923}
1924
1925/// \brief Replaces the designator at index @p Idx with the series
1926/// of designators in [First, Last).
1927void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
1928                                          const Designator *First,
1929                                          const Designator *Last) {
1930  unsigned NumNewDesignators = Last - First;
1931  if (NumNewDesignators == 0) {
1932    std::copy_backward(Designators + Idx + 1,
1933                       Designators + NumDesignators,
1934                       Designators + Idx);
1935    --NumNewDesignators;
1936    return;
1937  } else if (NumNewDesignators == 1) {
1938    Designators[Idx] = *First;
1939    return;
1940  }
1941
1942  Designator *NewDesignators
1943    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
1944  std::copy(Designators, Designators + Idx, NewDesignators);
1945  std::copy(First, Last, NewDesignators + Idx);
1946  std::copy(Designators + Idx + 1, Designators + NumDesignators,
1947            NewDesignators + Idx + NumNewDesignators);
1948  DestroyDesignators(C);
1949  Designators = NewDesignators;
1950  NumDesignators = NumDesignators - 1 + NumNewDesignators;
1951}
1952
1953void DesignatedInitExpr::DoDestroy(ASTContext &C) {
1954  DestroyDesignators(C);
1955  Expr::DoDestroy(C);
1956}
1957
1958void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
1959  for (unsigned I = 0; I != NumDesignators; ++I)
1960    Designators[I].~Designator();
1961  C.Deallocate(Designators);
1962  Designators = 0;
1963}
1964
1965ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
1966                             Expr **exprs, unsigned nexprs,
1967                             SourceLocation rparenloc)
1968: Expr(ParenListExprClass, QualType(),
1969       hasAnyTypeDependentArguments(exprs, nexprs),
1970       hasAnyValueDependentArguments(exprs, nexprs)),
1971  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
1972
1973  Exprs = new (C) Stmt*[nexprs];
1974  for (unsigned i = 0; i != nexprs; ++i)
1975    Exprs[i] = exprs[i];
1976}
1977
1978void ParenListExpr::DoDestroy(ASTContext& C) {
1979  DestroyChildren(C);
1980  if (Exprs) C.Deallocate(Exprs);
1981  this->~ParenListExpr();
1982  C.Deallocate(this);
1983}
1984
1985//===----------------------------------------------------------------------===//
1986//  ExprIterator.
1987//===----------------------------------------------------------------------===//
1988
1989Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
1990Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
1991Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
1992const Expr* ConstExprIterator::operator[](size_t idx) const {
1993  return cast<Expr>(I[idx]);
1994}
1995const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
1996const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
1997
1998//===----------------------------------------------------------------------===//
1999//  Child Iterators for iterating over subexpressions/substatements
2000//===----------------------------------------------------------------------===//
2001
2002// DeclRefExpr
2003Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2004Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2005
2006// ObjCIvarRefExpr
2007Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2008Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2009
2010// ObjCPropertyRefExpr
2011Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2012Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2013
2014// ObjCImplicitSetterGetterRefExpr
2015Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2016  // If this is accessing a class member, skip that entry.
2017  if (Base) return &Base;
2018  return &Base+1;
2019}
2020Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2021  return &Base+1;
2022}
2023
2024// ObjCSuperExpr
2025Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2026Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2027
2028// ObjCIsaExpr
2029Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2030Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2031
2032// PredefinedExpr
2033Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2034Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2035
2036// IntegerLiteral
2037Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2038Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2039
2040// CharacterLiteral
2041Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2042Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2043
2044// FloatingLiteral
2045Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2046Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2047
2048// ImaginaryLiteral
2049Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2050Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2051
2052// StringLiteral
2053Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2054Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2055
2056// ParenExpr
2057Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2058Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2059
2060// UnaryOperator
2061Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2062Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2063
2064// OffsetOfExpr
2065Stmt::child_iterator OffsetOfExpr::child_begin() {
2066  return reinterpret_cast<Stmt **> (reinterpret_cast<OffsetOfNode *> (this + 1)
2067                                      + NumComps);
2068}
2069Stmt::child_iterator OffsetOfExpr::child_end() {
2070  return child_iterator(&*child_begin() + NumExprs);
2071}
2072
2073// SizeOfAlignOfExpr
2074Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2075  // If this is of a type and the type is a VLA type (and not a typedef), the
2076  // size expression of the VLA needs to be treated as an executable expression.
2077  // Why isn't this weirdness documented better in StmtIterator?
2078  if (isArgumentType()) {
2079    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2080                                   getArgumentType().getTypePtr()))
2081      return child_iterator(T);
2082    return child_iterator();
2083  }
2084  return child_iterator(&Argument.Ex);
2085}
2086Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2087  if (isArgumentType())
2088    return child_iterator();
2089  return child_iterator(&Argument.Ex + 1);
2090}
2091
2092// ArraySubscriptExpr
2093Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2094  return &SubExprs[0];
2095}
2096Stmt::child_iterator ArraySubscriptExpr::child_end() {
2097  return &SubExprs[0]+END_EXPR;
2098}
2099
2100// CallExpr
2101Stmt::child_iterator CallExpr::child_begin() {
2102  return &SubExprs[0];
2103}
2104Stmt::child_iterator CallExpr::child_end() {
2105  return &SubExprs[0]+NumArgs+ARGS_START;
2106}
2107
2108// MemberExpr
2109Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2110Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2111
2112// ExtVectorElementExpr
2113Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2114Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2115
2116// CompoundLiteralExpr
2117Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2118Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2119
2120// CastExpr
2121Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2122Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2123
2124// BinaryOperator
2125Stmt::child_iterator BinaryOperator::child_begin() {
2126  return &SubExprs[0];
2127}
2128Stmt::child_iterator BinaryOperator::child_end() {
2129  return &SubExprs[0]+END_EXPR;
2130}
2131
2132// ConditionalOperator
2133Stmt::child_iterator ConditionalOperator::child_begin() {
2134  return &SubExprs[0];
2135}
2136Stmt::child_iterator ConditionalOperator::child_end() {
2137  return &SubExprs[0]+END_EXPR;
2138}
2139
2140// AddrLabelExpr
2141Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2142Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2143
2144// StmtExpr
2145Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2146Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2147
2148// TypesCompatibleExpr
2149Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2150  return child_iterator();
2151}
2152
2153Stmt::child_iterator TypesCompatibleExpr::child_end() {
2154  return child_iterator();
2155}
2156
2157// ChooseExpr
2158Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2159Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2160
2161// GNUNullExpr
2162Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2163Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2164
2165// ShuffleVectorExpr
2166Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2167  return &SubExprs[0];
2168}
2169Stmt::child_iterator ShuffleVectorExpr::child_end() {
2170  return &SubExprs[0]+NumExprs;
2171}
2172
2173// VAArgExpr
2174Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2175Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2176
2177// InitListExpr
2178Stmt::child_iterator InitListExpr::child_begin() {
2179  return InitExprs.size() ? &InitExprs[0] : 0;
2180}
2181Stmt::child_iterator InitListExpr::child_end() {
2182  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2183}
2184
2185// DesignatedInitExpr
2186Stmt::child_iterator DesignatedInitExpr::child_begin() {
2187  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2188  Ptr += sizeof(DesignatedInitExpr);
2189  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2190}
2191Stmt::child_iterator DesignatedInitExpr::child_end() {
2192  return child_iterator(&*child_begin() + NumSubExprs);
2193}
2194
2195// ImplicitValueInitExpr
2196Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2197  return child_iterator();
2198}
2199
2200Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2201  return child_iterator();
2202}
2203
2204// ParenListExpr
2205Stmt::child_iterator ParenListExpr::child_begin() {
2206  return &Exprs[0];
2207}
2208Stmt::child_iterator ParenListExpr::child_end() {
2209  return &Exprs[0]+NumExprs;
2210}
2211
2212// ObjCStringLiteral
2213Stmt::child_iterator ObjCStringLiteral::child_begin() {
2214  return &String;
2215}
2216Stmt::child_iterator ObjCStringLiteral::child_end() {
2217  return &String+1;
2218}
2219
2220// ObjCEncodeExpr
2221Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2222Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2223
2224// ObjCSelectorExpr
2225Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2226  return child_iterator();
2227}
2228Stmt::child_iterator ObjCSelectorExpr::child_end() {
2229  return child_iterator();
2230}
2231
2232// ObjCProtocolExpr
2233Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2234  return child_iterator();
2235}
2236Stmt::child_iterator ObjCProtocolExpr::child_end() {
2237  return child_iterator();
2238}
2239
2240// ObjCMessageExpr
2241Stmt::child_iterator ObjCMessageExpr::child_begin() {
2242  if (getReceiverKind() == Instance)
2243    return reinterpret_cast<Stmt **>(this + 1);
2244  return getArgs();
2245}
2246Stmt::child_iterator ObjCMessageExpr::child_end() {
2247  return getArgs() + getNumArgs();
2248}
2249
2250// Blocks
2251Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2252Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2253
2254Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2255Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2256