Expr.cpp revision 6f4a69a3107e7ff1569c747f7c6bdf7cff8cbf55
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/TargetInfo.h"
24#include <algorithm>
25using namespace clang;
26
27//===----------------------------------------------------------------------===//
28// Primary Expressions.
29//===----------------------------------------------------------------------===//
30
31PredefinedExpr* PredefinedExpr::Clone(ASTContext &C) const {
32  return new (C) PredefinedExpr(Loc, getType(), Type);
33}
34
35IntegerLiteral* IntegerLiteral::Clone(ASTContext &C) const {
36  return new (C) IntegerLiteral(Value, getType(), Loc);
37}
38
39CharacterLiteral* CharacterLiteral::Clone(ASTContext &C) const {
40  return new (C) CharacterLiteral(Value, IsWide, getType(), Loc);
41}
42
43FloatingLiteral* FloatingLiteral::Clone(ASTContext &C) const {
44  return new (C) FloatingLiteral(Value, IsExact, getType(), Loc);
45}
46
47ImaginaryLiteral* ImaginaryLiteral::Clone(ASTContext &C) const {
48  // FIXME: Use virtual Clone(), once it is available
49  Expr *ClonedVal = 0;
50  if (const IntegerLiteral *IntLit = dyn_cast<IntegerLiteral>(Val))
51    ClonedVal = IntLit->Clone(C);
52  else
53    ClonedVal = cast<FloatingLiteral>(Val)->Clone(C);
54  return new (C) ImaginaryLiteral(ClonedVal, getType());
55}
56
57GNUNullExpr* GNUNullExpr::Clone(ASTContext &C) const {
58  return new (C) GNUNullExpr(getType(), TokenLoc);
59}
60
61/// getValueAsApproximateDouble - This returns the value as an inaccurate
62/// double.  Note that this may cause loss of precision, but is useful for
63/// debugging dumps, etc.
64double FloatingLiteral::getValueAsApproximateDouble() const {
65  llvm::APFloat V = getValue();
66  bool ignored;
67  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
68            &ignored);
69  return V.convertToDouble();
70}
71
72StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
73                                     unsigned ByteLength, bool Wide,
74                                     QualType Ty,
75                                     const SourceLocation *Loc,
76                                     unsigned NumStrs) {
77  // Allocate enough space for the StringLiteral plus an array of locations for
78  // any concatenated string tokens.
79  void *Mem = C.Allocate(sizeof(StringLiteral)+
80                         sizeof(SourceLocation)*(NumStrs-1),
81                         llvm::alignof<StringLiteral>());
82  StringLiteral *SL = new (Mem) StringLiteral(Ty);
83
84  // OPTIMIZE: could allocate this appended to the StringLiteral.
85  char *AStrData = new (C, 1) char[ByteLength];
86  memcpy(AStrData, StrData, ByteLength);
87  SL->StrData = AStrData;
88  SL->ByteLength = ByteLength;
89  SL->IsWide = Wide;
90  SL->TokLocs[0] = Loc[0];
91  SL->NumConcatenated = NumStrs;
92
93  if (NumStrs != 1)
94    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
95  return SL;
96}
97
98StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
99  void *Mem = C.Allocate(sizeof(StringLiteral)+
100                         sizeof(SourceLocation)*(NumStrs-1),
101                         llvm::alignof<StringLiteral>());
102  StringLiteral *SL = new (Mem) StringLiteral(QualType());
103  SL->StrData = 0;
104  SL->ByteLength = 0;
105  SL->NumConcatenated = NumStrs;
106  return SL;
107}
108
109StringLiteral* StringLiteral::Clone(ASTContext &C) const {
110  return Create(C, StrData, ByteLength, IsWide, getType(),
111                TokLocs, NumConcatenated);
112}
113
114void StringLiteral::Destroy(ASTContext &C) {
115  C.Deallocate(const_cast<char*>(StrData));
116  this->~StringLiteral();
117  C.Deallocate(this);
118}
119
120void StringLiteral::setStrData(ASTContext &C, const char *Str, unsigned Len) {
121  if (StrData)
122    C.Deallocate(const_cast<char*>(StrData));
123
124  char *AStrData = new (C, 1) char[Len];
125  memcpy(AStrData, Str, Len);
126  StrData = AStrData;
127  ByteLength = Len;
128}
129
130/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
131/// corresponds to, e.g. "sizeof" or "[pre]++".
132const char *UnaryOperator::getOpcodeStr(Opcode Op) {
133  switch (Op) {
134  default: assert(0 && "Unknown unary operator");
135  case PostInc: return "++";
136  case PostDec: return "--";
137  case PreInc:  return "++";
138  case PreDec:  return "--";
139  case AddrOf:  return "&";
140  case Deref:   return "*";
141  case Plus:    return "+";
142  case Minus:   return "-";
143  case Not:     return "~";
144  case LNot:    return "!";
145  case Real:    return "__real";
146  case Imag:    return "__imag";
147  case Extension: return "__extension__";
148  case OffsetOf: return "__builtin_offsetof";
149  }
150}
151
152UnaryOperator::Opcode
153UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
154  switch (OO) {
155  default: assert(false && "No unary operator for overloaded function");
156  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
157  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
158  case OO_Amp:        return AddrOf;
159  case OO_Star:       return Deref;
160  case OO_Plus:       return Plus;
161  case OO_Minus:      return Minus;
162  case OO_Tilde:      return Not;
163  case OO_Exclaim:    return LNot;
164  }
165}
166
167OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
168  switch (Opc) {
169  case PostInc: case PreInc: return OO_PlusPlus;
170  case PostDec: case PreDec: return OO_MinusMinus;
171  case AddrOf: return OO_Amp;
172  case Deref: return OO_Star;
173  case Plus: return OO_Plus;
174  case Minus: return OO_Minus;
175  case Not: return OO_Tilde;
176  case LNot: return OO_Exclaim;
177  default: return OO_None;
178  }
179}
180
181
182//===----------------------------------------------------------------------===//
183// Postfix Operators.
184//===----------------------------------------------------------------------===//
185
186CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
187                   unsigned numargs, QualType t, SourceLocation rparenloc)
188  : Expr(SC, t,
189         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
190         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
191    NumArgs(numargs) {
192
193  SubExprs = new (C) Stmt*[numargs+1];
194  SubExprs[FN] = fn;
195  for (unsigned i = 0; i != numargs; ++i)
196    SubExprs[i+ARGS_START] = args[i];
197
198  RParenLoc = rparenloc;
199}
200
201CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
202                   QualType t, SourceLocation rparenloc)
203  : Expr(CallExprClass, t,
204         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
205         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
206    NumArgs(numargs) {
207
208  SubExprs = new (C) Stmt*[numargs+1];
209  SubExprs[FN] = fn;
210  for (unsigned i = 0; i != numargs; ++i)
211    SubExprs[i+ARGS_START] = args[i];
212
213  RParenLoc = rparenloc;
214}
215
216CallExpr::CallExpr(ASTContext &C, EmptyShell Empty)
217  : Expr(CallExprClass, Empty), SubExprs(0), NumArgs(0) {
218  SubExprs = new (C) Stmt*[1];
219}
220
221void CallExpr::Destroy(ASTContext& C) {
222  DestroyChildren(C);
223  if (SubExprs) C.Deallocate(SubExprs);
224  this->~CallExpr();
225  C.Deallocate(this);
226}
227
228/// setNumArgs - This changes the number of arguments present in this call.
229/// Any orphaned expressions are deleted by this, and any new operands are set
230/// to null.
231void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
232  // No change, just return.
233  if (NumArgs == getNumArgs()) return;
234
235  // If shrinking # arguments, just delete the extras and forgot them.
236  if (NumArgs < getNumArgs()) {
237    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
238      getArg(i)->Destroy(C);
239    this->NumArgs = NumArgs;
240    return;
241  }
242
243  // Otherwise, we are growing the # arguments.  New an bigger argument array.
244  Stmt **NewSubExprs = new Stmt*[NumArgs+1];
245  // Copy over args.
246  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
247    NewSubExprs[i] = SubExprs[i];
248  // Null out new args.
249  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
250    NewSubExprs[i] = 0;
251
252  if (SubExprs) C.Deallocate(SubExprs);
253  SubExprs = NewSubExprs;
254  this->NumArgs = NumArgs;
255}
256
257/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
258/// not, return 0.
259unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
260  // All simple function calls (e.g. func()) are implicitly cast to pointer to
261  // function. As a result, we try and obtain the DeclRefExpr from the
262  // ImplicitCastExpr.
263  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
264  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
265    return 0;
266
267  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
268  if (!DRE)
269    return 0;
270
271  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
272  if (!FDecl)
273    return 0;
274
275  if (!FDecl->getIdentifier())
276    return 0;
277
278  return FDecl->getBuiltinID(Context);
279}
280
281QualType CallExpr::getCallReturnType() const {
282  QualType CalleeType = getCallee()->getType();
283  if (const PointerType *FnTypePtr = CalleeType->getAsPointerType())
284    CalleeType = FnTypePtr->getPointeeType();
285  else if (const BlockPointerType *BPT = CalleeType->getAsBlockPointerType())
286    CalleeType = BPT->getPointeeType();
287
288  const FunctionType *FnType = CalleeType->getAsFunctionType();
289  return FnType->getResultType();
290}
291
292/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
293/// corresponds to, e.g. "<<=".
294const char *BinaryOperator::getOpcodeStr(Opcode Op) {
295  switch (Op) {
296  case PtrMemD:   return ".*";
297  case PtrMemI:   return "->*";
298  case Mul:       return "*";
299  case Div:       return "/";
300  case Rem:       return "%";
301  case Add:       return "+";
302  case Sub:       return "-";
303  case Shl:       return "<<";
304  case Shr:       return ">>";
305  case LT:        return "<";
306  case GT:        return ">";
307  case LE:        return "<=";
308  case GE:        return ">=";
309  case EQ:        return "==";
310  case NE:        return "!=";
311  case And:       return "&";
312  case Xor:       return "^";
313  case Or:        return "|";
314  case LAnd:      return "&&";
315  case LOr:       return "||";
316  case Assign:    return "=";
317  case MulAssign: return "*=";
318  case DivAssign: return "/=";
319  case RemAssign: return "%=";
320  case AddAssign: return "+=";
321  case SubAssign: return "-=";
322  case ShlAssign: return "<<=";
323  case ShrAssign: return ">>=";
324  case AndAssign: return "&=";
325  case XorAssign: return "^=";
326  case OrAssign:  return "|=";
327  case Comma:     return ",";
328  }
329
330  return "";
331}
332
333BinaryOperator::Opcode
334BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
335  switch (OO) {
336  default: assert(false && "Not an overloadable binary operator");
337  case OO_Plus: return Add;
338  case OO_Minus: return Sub;
339  case OO_Star: return Mul;
340  case OO_Slash: return Div;
341  case OO_Percent: return Rem;
342  case OO_Caret: return Xor;
343  case OO_Amp: return And;
344  case OO_Pipe: return Or;
345  case OO_Equal: return Assign;
346  case OO_Less: return LT;
347  case OO_Greater: return GT;
348  case OO_PlusEqual: return AddAssign;
349  case OO_MinusEqual: return SubAssign;
350  case OO_StarEqual: return MulAssign;
351  case OO_SlashEqual: return DivAssign;
352  case OO_PercentEqual: return RemAssign;
353  case OO_CaretEqual: return XorAssign;
354  case OO_AmpEqual: return AndAssign;
355  case OO_PipeEqual: return OrAssign;
356  case OO_LessLess: return Shl;
357  case OO_GreaterGreater: return Shr;
358  case OO_LessLessEqual: return ShlAssign;
359  case OO_GreaterGreaterEqual: return ShrAssign;
360  case OO_EqualEqual: return EQ;
361  case OO_ExclaimEqual: return NE;
362  case OO_LessEqual: return LE;
363  case OO_GreaterEqual: return GE;
364  case OO_AmpAmp: return LAnd;
365  case OO_PipePipe: return LOr;
366  case OO_Comma: return Comma;
367  case OO_ArrowStar: return PtrMemI;
368  }
369}
370
371OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
372  static const OverloadedOperatorKind OverOps[] = {
373    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
374    OO_Star, OO_Slash, OO_Percent,
375    OO_Plus, OO_Minus,
376    OO_LessLess, OO_GreaterGreater,
377    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
378    OO_EqualEqual, OO_ExclaimEqual,
379    OO_Amp,
380    OO_Caret,
381    OO_Pipe,
382    OO_AmpAmp,
383    OO_PipePipe,
384    OO_Equal, OO_StarEqual,
385    OO_SlashEqual, OO_PercentEqual,
386    OO_PlusEqual, OO_MinusEqual,
387    OO_LessLessEqual, OO_GreaterGreaterEqual,
388    OO_AmpEqual, OO_CaretEqual,
389    OO_PipeEqual,
390    OO_Comma
391  };
392  return OverOps[Opc];
393}
394
395InitListExpr::InitListExpr(SourceLocation lbraceloc,
396                           Expr **initExprs, unsigned numInits,
397                           SourceLocation rbraceloc)
398  : Expr(InitListExprClass, QualType(),
399         hasAnyTypeDependentArguments(initExprs, numInits),
400         hasAnyValueDependentArguments(initExprs, numInits)),
401    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
402    UnionFieldInit(0), HadArrayRangeDesignator(false) {
403
404  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
405}
406
407void InitListExpr::reserveInits(unsigned NumInits) {
408  if (NumInits > InitExprs.size())
409    InitExprs.reserve(NumInits);
410}
411
412void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
413  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
414       Idx < LastIdx; ++Idx)
415    InitExprs[Idx]->Destroy(Context);
416  InitExprs.resize(NumInits, 0);
417}
418
419Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
420  if (Init >= InitExprs.size()) {
421    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
422    InitExprs.back() = expr;
423    return 0;
424  }
425
426  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
427  InitExprs[Init] = expr;
428  return Result;
429}
430
431/// getFunctionType - Return the underlying function type for this block.
432///
433const FunctionType *BlockExpr::getFunctionType() const {
434  return getType()->getAsBlockPointerType()->
435                    getPointeeType()->getAsFunctionType();
436}
437
438SourceLocation BlockExpr::getCaretLocation() const {
439  return TheBlock->getCaretLocation();
440}
441const Stmt *BlockExpr::getBody() const {
442  return TheBlock->getBody();
443}
444Stmt *BlockExpr::getBody() {
445  return TheBlock->getBody();
446}
447
448
449//===----------------------------------------------------------------------===//
450// Generic Expression Routines
451//===----------------------------------------------------------------------===//
452
453/// isUnusedResultAWarning - Return true if this immediate expression should
454/// be warned about if the result is unused.  If so, fill in Loc and Ranges
455/// with location to warn on and the source range[s] to report with the
456/// warning.
457bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
458                                  SourceRange &R2) const {
459  // Don't warn if the expr is type dependent. The type could end up
460  // instantiating to void.
461  if (isTypeDependent())
462    return false;
463
464  switch (getStmtClass()) {
465  default:
466    Loc = getExprLoc();
467    R1 = getSourceRange();
468    return true;
469  case ParenExprClass:
470    return cast<ParenExpr>(this)->getSubExpr()->
471      isUnusedResultAWarning(Loc, R1, R2);
472  case UnaryOperatorClass: {
473    const UnaryOperator *UO = cast<UnaryOperator>(this);
474
475    switch (UO->getOpcode()) {
476    default: break;
477    case UnaryOperator::PostInc:
478    case UnaryOperator::PostDec:
479    case UnaryOperator::PreInc:
480    case UnaryOperator::PreDec:                 // ++/--
481      return false;  // Not a warning.
482    case UnaryOperator::Deref:
483      // Dereferencing a volatile pointer is a side-effect.
484      if (getType().isVolatileQualified())
485        return false;
486      break;
487    case UnaryOperator::Real:
488    case UnaryOperator::Imag:
489      // accessing a piece of a volatile complex is a side-effect.
490      if (UO->getSubExpr()->getType().isVolatileQualified())
491        return false;
492      break;
493    case UnaryOperator::Extension:
494      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
495    }
496    Loc = UO->getOperatorLoc();
497    R1 = UO->getSubExpr()->getSourceRange();
498    return true;
499  }
500  case BinaryOperatorClass: {
501    const BinaryOperator *BO = cast<BinaryOperator>(this);
502    // Consider comma to have side effects if the LHS or RHS does.
503    if (BO->getOpcode() == BinaryOperator::Comma)
504      return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2) ||
505             BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2);
506
507    if (BO->isAssignmentOp())
508      return false;
509    Loc = BO->getOperatorLoc();
510    R1 = BO->getLHS()->getSourceRange();
511    R2 = BO->getRHS()->getSourceRange();
512    return true;
513  }
514  case CompoundAssignOperatorClass:
515    return false;
516
517  case ConditionalOperatorClass: {
518    // The condition must be evaluated, but if either the LHS or RHS is a
519    // warning, warn about them.
520    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
521    if (Exp->getLHS() &&
522        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2))
523      return true;
524    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2);
525  }
526
527  case MemberExprClass:
528    // If the base pointer or element is to a volatile pointer/field, accessing
529    // it is a side effect.
530    if (getType().isVolatileQualified())
531      return false;
532    Loc = cast<MemberExpr>(this)->getMemberLoc();
533    R1 = SourceRange(Loc, Loc);
534    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
535    return true;
536
537  case ArraySubscriptExprClass:
538    // If the base pointer or element is to a volatile pointer/field, accessing
539    // it is a side effect.
540    if (getType().isVolatileQualified())
541      return false;
542    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
543    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
544    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
545    return true;
546
547  case CallExprClass:
548  case CXXOperatorCallExprClass:
549  case CXXMemberCallExprClass: {
550    // If this is a direct call, get the callee.
551    const CallExpr *CE = cast<CallExpr>(this);
552    const Expr *CalleeExpr = CE->getCallee()->IgnoreParenCasts();
553    if (const DeclRefExpr *CalleeDRE = dyn_cast<DeclRefExpr>(CalleeExpr)) {
554      // If the callee has attribute pure, const, or warn_unused_result, warn
555      // about it. void foo() { strlen("bar"); } should warn.
556      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeDRE->getDecl()))
557        if (FD->getAttr<WarnUnusedResultAttr>() ||
558            FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
559          Loc = CE->getCallee()->getLocStart();
560          R1 = CE->getCallee()->getSourceRange();
561
562          if (unsigned NumArgs = CE->getNumArgs())
563            R2 = SourceRange(CE->getArg(0)->getLocStart(),
564                             CE->getArg(NumArgs-1)->getLocEnd());
565          return true;
566        }
567    }
568    return false;
569  }
570  case ObjCMessageExprClass:
571    return false;
572  case StmtExprClass: {
573    // Statement exprs don't logically have side effects themselves, but are
574    // sometimes used in macros in ways that give them a type that is unused.
575    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
576    // however, if the result of the stmt expr is dead, we don't want to emit a
577    // warning.
578    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
579    if (!CS->body_empty())
580      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
581        return E->isUnusedResultAWarning(Loc, R1, R2);
582
583    Loc = cast<StmtExpr>(this)->getLParenLoc();
584    R1 = getSourceRange();
585    return true;
586  }
587  case CStyleCastExprClass:
588    // If this is a cast to void, check the operand.  Otherwise, the result of
589    // the cast is unused.
590    if (getType()->isVoidType())
591      return cast<CastExpr>(this)->getSubExpr()
592               ->isUnusedResultAWarning(Loc, R1, R2);
593    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
594    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
595    return true;
596  case CXXFunctionalCastExprClass:
597    // If this is a cast to void, check the operand.  Otherwise, the result of
598    // the cast is unused.
599    if (getType()->isVoidType())
600      return cast<CastExpr>(this)->getSubExpr()
601               ->isUnusedResultAWarning(Loc, R1, R2);
602    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
603    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
604    return true;
605
606  case ImplicitCastExprClass:
607    // Check the operand, since implicit casts are inserted by Sema
608    return cast<ImplicitCastExpr>(this)
609      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
610
611  case CXXDefaultArgExprClass:
612    return cast<CXXDefaultArgExpr>(this)
613      ->getExpr()->isUnusedResultAWarning(Loc, R1, R2);
614
615  case CXXNewExprClass:
616    // FIXME: In theory, there might be new expressions that don't have side
617    // effects (e.g. a placement new with an uninitialized POD).
618  case CXXDeleteExprClass:
619    return false;
620  case CXXExprWithTemporariesClass:
621    return cast<CXXExprWithTemporaries>(this)
622      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
623  }
624}
625
626/// DeclCanBeLvalue - Determine whether the given declaration can be
627/// an lvalue. This is a helper routine for isLvalue.
628static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
629  // C++ [temp.param]p6:
630  //   A non-type non-reference template-parameter is not an lvalue.
631  if (const NonTypeTemplateParmDecl *NTTParm
632        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
633    return NTTParm->getType()->isReferenceType();
634
635  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
636    // C++ 3.10p2: An lvalue refers to an object or function.
637    (Ctx.getLangOptions().CPlusPlus &&
638     (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl)));
639}
640
641/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
642/// incomplete type other than void. Nonarray expressions that can be lvalues:
643///  - name, where name must be a variable
644///  - e[i]
645///  - (e), where e must be an lvalue
646///  - e.name, where e must be an lvalue
647///  - e->name
648///  - *e, the type of e cannot be a function type
649///  - string-constant
650///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
651///  - reference type [C++ [expr]]
652///
653Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
654  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
655
656  isLvalueResult Res = isLvalueInternal(Ctx);
657  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
658    return Res;
659
660  // first, check the type (C99 6.3.2.1). Expressions with function
661  // type in C are not lvalues, but they can be lvalues in C++.
662  if (TR->isFunctionType())
663    return LV_NotObjectType;
664
665  // Allow qualified void which is an incomplete type other than void (yuck).
666  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
667    return LV_IncompleteVoidType;
668
669  return LV_Valid;
670}
671
672// Check whether the expression can be sanely treated like an l-value
673Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
674  switch (getStmtClass()) {
675  case StringLiteralClass:  // C99 6.5.1p4
676  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
677    return LV_Valid;
678  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
679    // For vectors, make sure base is an lvalue (i.e. not a function call).
680    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
681      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
682    return LV_Valid;
683  case DeclRefExprClass:
684  case QualifiedDeclRefExprClass: { // C99 6.5.1p2
685    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
686    if (DeclCanBeLvalue(RefdDecl, Ctx))
687      return LV_Valid;
688    break;
689  }
690  case BlockDeclRefExprClass: {
691    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
692    if (isa<VarDecl>(BDR->getDecl()))
693      return LV_Valid;
694    break;
695  }
696  case MemberExprClass: {
697    const MemberExpr *m = cast<MemberExpr>(this);
698    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
699      NamedDecl *Member = m->getMemberDecl();
700      // C++ [expr.ref]p4:
701      //   If E2 is declared to have type "reference to T", then E1.E2
702      //   is an lvalue.
703      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
704        if (Value->getType()->isReferenceType())
705          return LV_Valid;
706
707      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
708      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
709        return LV_Valid;
710
711      //   -- If E2 is a non-static data member [...]. If E1 is an
712      //      lvalue, then E1.E2 is an lvalue.
713      if (isa<FieldDecl>(Member))
714        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
715
716      //   -- If it refers to a static member function [...], then
717      //      E1.E2 is an lvalue.
718      //   -- Otherwise, if E1.E2 refers to a non-static member
719      //      function [...], then E1.E2 is not an lvalue.
720      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
721        return Method->isStatic()? LV_Valid : LV_MemberFunction;
722
723      //   -- If E2 is a member enumerator [...], the expression E1.E2
724      //      is not an lvalue.
725      if (isa<EnumConstantDecl>(Member))
726        return LV_InvalidExpression;
727
728        // Not an lvalue.
729      return LV_InvalidExpression;
730    }
731
732    // C99 6.5.2.3p4
733    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
734  }
735  case UnaryOperatorClass:
736    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
737      return LV_Valid; // C99 6.5.3p4
738
739    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
740        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
741        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
742      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
743
744    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
745        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
746         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
747      return LV_Valid;
748    break;
749  case ImplicitCastExprClass:
750    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
751                                                       : LV_InvalidExpression;
752  case ParenExprClass: // C99 6.5.1p5
753    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
754  case BinaryOperatorClass:
755  case CompoundAssignOperatorClass: {
756    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
757
758    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
759        BinOp->getOpcode() == BinaryOperator::Comma)
760      return BinOp->getRHS()->isLvalue(Ctx);
761
762    // C++ [expr.mptr.oper]p6
763    if ((BinOp->getOpcode() == BinaryOperator::PtrMemD ||
764         BinOp->getOpcode() == BinaryOperator::PtrMemI) &&
765        !BinOp->getType()->isFunctionType())
766      return BinOp->getLHS()->isLvalue(Ctx);
767
768    if (!BinOp->isAssignmentOp())
769      return LV_InvalidExpression;
770
771    if (Ctx.getLangOptions().CPlusPlus)
772      // C++ [expr.ass]p1:
773      //   The result of an assignment operation [...] is an lvalue.
774      return LV_Valid;
775
776
777    // C99 6.5.16:
778    //   An assignment expression [...] is not an lvalue.
779    return LV_InvalidExpression;
780  }
781  case CallExprClass:
782  case CXXOperatorCallExprClass:
783  case CXXMemberCallExprClass: {
784    // C++0x [expr.call]p10
785    //   A function call is an lvalue if and only if the result type
786    //   is an lvalue reference.
787    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
788    if (ReturnType->isLValueReferenceType())
789      return LV_Valid;
790
791    break;
792  }
793  case CompoundLiteralExprClass: // C99 6.5.2.5p5
794    return LV_Valid;
795  case ChooseExprClass:
796    // __builtin_choose_expr is an lvalue if the selected operand is.
797    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
798  case ExtVectorElementExprClass:
799    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
800      return LV_DuplicateVectorComponents;
801    return LV_Valid;
802  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
803    return LV_Valid;
804  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
805    return LV_Valid;
806  case ObjCKVCRefExprClass: // FIXME: check if read-only property.
807    return LV_Valid;
808  case PredefinedExprClass:
809    return LV_Valid;
810  case CXXDefaultArgExprClass:
811    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
812  case CXXConditionDeclExprClass:
813    return LV_Valid;
814  case CStyleCastExprClass:
815  case CXXFunctionalCastExprClass:
816  case CXXStaticCastExprClass:
817  case CXXDynamicCastExprClass:
818  case CXXReinterpretCastExprClass:
819  case CXXConstCastExprClass:
820    // The result of an explicit cast is an lvalue if the type we are
821    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
822    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
823    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
824    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
825          isLValueReferenceType())
826      return LV_Valid;
827    break;
828  case CXXTypeidExprClass:
829    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
830    return LV_Valid;
831  case ConditionalOperatorClass: {
832    // Complicated handling is only for C++.
833    if (!Ctx.getLangOptions().CPlusPlus)
834      return LV_InvalidExpression;
835
836    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
837    // everywhere there's an object converted to an rvalue. Also, any other
838    // casts should be wrapped by ImplicitCastExprs. There's just the special
839    // case involving throws to work out.
840    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
841    Expr *True = Cond->getTrueExpr();
842    Expr *False = Cond->getFalseExpr();
843    // C++0x 5.16p2
844    //   If either the second or the third operand has type (cv) void, [...]
845    //   the result [...] is an rvalue.
846    if (True->getType()->isVoidType() || False->getType()->isVoidType())
847      return LV_InvalidExpression;
848
849    // Both sides must be lvalues for the result to be an lvalue.
850    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
851      return LV_InvalidExpression;
852
853    // That's it.
854    return LV_Valid;
855  }
856
857  default:
858    break;
859  }
860  return LV_InvalidExpression;
861}
862
863/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
864/// does not have an incomplete type, does not have a const-qualified type, and
865/// if it is a structure or union, does not have any member (including,
866/// recursively, any member or element of all contained aggregates or unions)
867/// with a const-qualified type.
868Expr::isModifiableLvalueResult
869Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
870  isLvalueResult lvalResult = isLvalue(Ctx);
871
872  switch (lvalResult) {
873  case LV_Valid:
874    // C++ 3.10p11: Functions cannot be modified, but pointers to
875    // functions can be modifiable.
876    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
877      return MLV_NotObjectType;
878    break;
879
880  case LV_NotObjectType: return MLV_NotObjectType;
881  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
882  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
883  case LV_InvalidExpression:
884    // If the top level is a C-style cast, and the subexpression is a valid
885    // lvalue, then this is probably a use of the old-school "cast as lvalue"
886    // GCC extension.  We don't support it, but we want to produce good
887    // diagnostics when it happens so that the user knows why.
888    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
889      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
890        if (Loc)
891          *Loc = CE->getLParenLoc();
892        return MLV_LValueCast;
893      }
894    }
895    return MLV_InvalidExpression;
896  case LV_MemberFunction: return MLV_MemberFunction;
897  }
898
899  // The following is illegal:
900  //   void takeclosure(void (^C)(void));
901  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
902  //
903  if (isa<BlockDeclRefExpr>(this)) {
904    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
905    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
906      return MLV_NotBlockQualified;
907  }
908
909  QualType CT = Ctx.getCanonicalType(getType());
910
911  if (CT.isConstQualified())
912    return MLV_ConstQualified;
913  if (CT->isArrayType())
914    return MLV_ArrayType;
915  if (CT->isIncompleteType())
916    return MLV_IncompleteType;
917
918  if (const RecordType *r = CT->getAsRecordType()) {
919    if (r->hasConstFields())
920      return MLV_ConstQualified;
921  }
922
923  // Assigning to an 'implicit' property?
924  else if (isa<ObjCKVCRefExpr>(this)) {
925    const ObjCKVCRefExpr* KVCExpr = cast<ObjCKVCRefExpr>(this);
926    if (KVCExpr->getSetterMethod() == 0)
927      return MLV_NoSetterProperty;
928  }
929  return MLV_Valid;
930}
931
932/// hasGlobalStorage - Return true if this expression has static storage
933/// duration.  This means that the address of this expression is a link-time
934/// constant.
935bool Expr::hasGlobalStorage() const {
936  switch (getStmtClass()) {
937  default:
938    return false;
939  case BlockExprClass:
940    return true;
941  case ParenExprClass:
942    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
943  case ImplicitCastExprClass:
944    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
945  case CompoundLiteralExprClass:
946    return cast<CompoundLiteralExpr>(this)->isFileScope();
947  case DeclRefExprClass:
948  case QualifiedDeclRefExprClass: {
949    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
950    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
951      return VD->hasGlobalStorage();
952    if (isa<FunctionDecl>(D))
953      return true;
954    return false;
955  }
956  case MemberExprClass: {
957    const MemberExpr *M = cast<MemberExpr>(this);
958    return !M->isArrow() && M->getBase()->hasGlobalStorage();
959  }
960  case ArraySubscriptExprClass:
961    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
962  case PredefinedExprClass:
963    return true;
964  case CXXDefaultArgExprClass:
965    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
966  }
967}
968
969/// isOBJCGCCandidate - Check if an expression is objc gc'able.
970///
971bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
972  switch (getStmtClass()) {
973  default:
974    return false;
975  case ObjCIvarRefExprClass:
976    return true;
977  case Expr::UnaryOperatorClass:
978    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
979  case ParenExprClass:
980    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
981  case ImplicitCastExprClass:
982    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
983  case CStyleCastExprClass:
984    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
985  case DeclRefExprClass:
986  case QualifiedDeclRefExprClass: {
987    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
988    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
989      if (VD->hasGlobalStorage())
990        return true;
991      QualType T = VD->getType();
992      // dereferencing to an object pointer is always a gc'able candidate
993      if (T->isPointerType() &&
994          Ctx.isObjCObjectPointerType(T->getAsPointerType()->getPointeeType()))
995        return true;
996
997    }
998    return false;
999  }
1000  case MemberExprClass: {
1001    const MemberExpr *M = cast<MemberExpr>(this);
1002    return M->getBase()->isOBJCGCCandidate(Ctx);
1003  }
1004  case ArraySubscriptExprClass:
1005    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1006  }
1007}
1008Expr* Expr::IgnoreParens() {
1009  Expr* E = this;
1010  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1011    E = P->getSubExpr();
1012
1013  return E;
1014}
1015
1016/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1017/// or CastExprs or ImplicitCastExprs, returning their operand.
1018Expr *Expr::IgnoreParenCasts() {
1019  Expr *E = this;
1020  while (true) {
1021    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1022      E = P->getSubExpr();
1023    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1024      E = P->getSubExpr();
1025    else
1026      return E;
1027  }
1028}
1029
1030/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1031/// value (including ptr->int casts of the same size).  Strip off any
1032/// ParenExpr or CastExprs, returning their operand.
1033Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1034  Expr *E = this;
1035  while (true) {
1036    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1037      E = P->getSubExpr();
1038      continue;
1039    }
1040
1041    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1042      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1043      // ptr<->int casts of the same width.  We also ignore all identify casts.
1044      Expr *SE = P->getSubExpr();
1045
1046      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1047        E = SE;
1048        continue;
1049      }
1050
1051      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1052          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1053          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1054        E = SE;
1055        continue;
1056      }
1057    }
1058
1059    return E;
1060  }
1061}
1062
1063
1064/// hasAnyTypeDependentArguments - Determines if any of the expressions
1065/// in Exprs is type-dependent.
1066bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1067  for (unsigned I = 0; I < NumExprs; ++I)
1068    if (Exprs[I]->isTypeDependent())
1069      return true;
1070
1071  return false;
1072}
1073
1074/// hasAnyValueDependentArguments - Determines if any of the expressions
1075/// in Exprs is value-dependent.
1076bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1077  for (unsigned I = 0; I < NumExprs; ++I)
1078    if (Exprs[I]->isValueDependent())
1079      return true;
1080
1081  return false;
1082}
1083
1084bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1085  // This function is attempting whether an expression is an initializer
1086  // which can be evaluated at compile-time.  isEvaluatable handles most
1087  // of the cases, but it can't deal with some initializer-specific
1088  // expressions, and it can't deal with aggregates; we deal with those here,
1089  // and fall back to isEvaluatable for the other cases.
1090
1091  // FIXME: This function assumes the variable being assigned to
1092  // isn't a reference type!
1093
1094  switch (getStmtClass()) {
1095  default: break;
1096  case StringLiteralClass:
1097  case ObjCEncodeExprClass:
1098    return true;
1099  case CompoundLiteralExprClass: {
1100    // This handles gcc's extension that allows global initializers like
1101    // "struct x {int x;} x = (struct x) {};".
1102    // FIXME: This accepts other cases it shouldn't!
1103    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1104    return Exp->isConstantInitializer(Ctx);
1105  }
1106  case InitListExprClass: {
1107    // FIXME: This doesn't deal with fields with reference types correctly.
1108    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1109    // to bitfields.
1110    const InitListExpr *Exp = cast<InitListExpr>(this);
1111    unsigned numInits = Exp->getNumInits();
1112    for (unsigned i = 0; i < numInits; i++) {
1113      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1114        return false;
1115    }
1116    return true;
1117  }
1118  case ImplicitValueInitExprClass:
1119    return true;
1120  case ParenExprClass: {
1121    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1122  }
1123  case UnaryOperatorClass: {
1124    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1125    if (Exp->getOpcode() == UnaryOperator::Extension)
1126      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1127    break;
1128  }
1129  case ImplicitCastExprClass:
1130  case CStyleCastExprClass:
1131    // Handle casts with a destination that's a struct or union; this
1132    // deals with both the gcc no-op struct cast extension and the
1133    // cast-to-union extension.
1134    if (getType()->isRecordType())
1135      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1136    break;
1137  }
1138
1139  return isEvaluatable(Ctx);
1140}
1141
1142/// isIntegerConstantExpr - this recursive routine will test if an expression is
1143/// an integer constant expression.
1144
1145/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1146/// comma, etc
1147///
1148/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1149/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1150/// cast+dereference.
1151
1152// CheckICE - This function does the fundamental ICE checking: the returned
1153// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1154// Note that to reduce code duplication, this helper does no evaluation
1155// itself; the caller checks whether the expression is evaluatable, and
1156// in the rare cases where CheckICE actually cares about the evaluated
1157// value, it calls into Evalute.
1158//
1159// Meanings of Val:
1160// 0: This expression is an ICE if it can be evaluated by Evaluate.
1161// 1: This expression is not an ICE, but if it isn't evaluated, it's
1162//    a legal subexpression for an ICE. This return value is used to handle
1163//    the comma operator in C99 mode.
1164// 2: This expression is not an ICE, and is not a legal subexpression for one.
1165
1166struct ICEDiag {
1167  unsigned Val;
1168  SourceLocation Loc;
1169
1170  public:
1171  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1172  ICEDiag() : Val(0) {}
1173};
1174
1175ICEDiag NoDiag() { return ICEDiag(); }
1176
1177static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1178  Expr::EvalResult EVResult;
1179  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1180      !EVResult.Val.isInt()) {
1181    return ICEDiag(2, E->getLocStart());
1182  }
1183  return NoDiag();
1184}
1185
1186static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1187  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1188  if (!E->getType()->isIntegralType()) {
1189    return ICEDiag(2, E->getLocStart());
1190  }
1191
1192  switch (E->getStmtClass()) {
1193  default:
1194    return ICEDiag(2, E->getLocStart());
1195  case Expr::ParenExprClass:
1196    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1197  case Expr::IntegerLiteralClass:
1198  case Expr::CharacterLiteralClass:
1199  case Expr::CXXBoolLiteralExprClass:
1200  case Expr::CXXZeroInitValueExprClass:
1201  case Expr::TypesCompatibleExprClass:
1202  case Expr::UnaryTypeTraitExprClass:
1203    return NoDiag();
1204  case Expr::CallExprClass:
1205  case Expr::CXXOperatorCallExprClass: {
1206    const CallExpr *CE = cast<CallExpr>(E);
1207    if (CE->isBuiltinCall(Ctx))
1208      return CheckEvalInICE(E, Ctx);
1209    return ICEDiag(2, E->getLocStart());
1210  }
1211  case Expr::DeclRefExprClass:
1212  case Expr::QualifiedDeclRefExprClass:
1213    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1214      return NoDiag();
1215    if (Ctx.getLangOptions().CPlusPlus &&
1216        E->getType().getCVRQualifiers() == QualType::Const) {
1217      // C++ 7.1.5.1p2
1218      //   A variable of non-volatile const-qualified integral or enumeration
1219      //   type initialized by an ICE can be used in ICEs.
1220      if (const VarDecl *Dcl =
1221              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1222        if (Dcl->isInitKnownICE()) {
1223          // We have already checked whether this subexpression is an
1224          // integral constant expression.
1225          if (Dcl->isInitICE())
1226            return NoDiag();
1227          else
1228            return ICEDiag(2, E->getLocStart());
1229        }
1230
1231        if (const Expr *Init = Dcl->getInit()) {
1232          ICEDiag Result = CheckICE(Init, Ctx);
1233          // Cache the result of the ICE test.
1234          Dcl->setInitKnownICE(Ctx, Result.Val == 0);
1235          return Result;
1236        }
1237      }
1238    }
1239    return ICEDiag(2, E->getLocStart());
1240  case Expr::UnaryOperatorClass: {
1241    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1242    switch (Exp->getOpcode()) {
1243    default:
1244      return ICEDiag(2, E->getLocStart());
1245    case UnaryOperator::Extension:
1246    case UnaryOperator::LNot:
1247    case UnaryOperator::Plus:
1248    case UnaryOperator::Minus:
1249    case UnaryOperator::Not:
1250    case UnaryOperator::Real:
1251    case UnaryOperator::Imag:
1252      return CheckICE(Exp->getSubExpr(), Ctx);
1253    case UnaryOperator::OffsetOf:
1254      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1255      // Evaluate matches the proposed gcc behavior for cases like
1256      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1257      // compliance: we should warn earlier for offsetof expressions with
1258      // array subscripts that aren't ICEs, and if the array subscripts
1259      // are ICEs, the value of the offsetof must be an integer constant.
1260      return CheckEvalInICE(E, Ctx);
1261    }
1262  }
1263  case Expr::SizeOfAlignOfExprClass: {
1264    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1265    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1266      return ICEDiag(2, E->getLocStart());
1267    return NoDiag();
1268  }
1269  case Expr::BinaryOperatorClass: {
1270    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1271    switch (Exp->getOpcode()) {
1272    default:
1273      return ICEDiag(2, E->getLocStart());
1274    case BinaryOperator::Mul:
1275    case BinaryOperator::Div:
1276    case BinaryOperator::Rem:
1277    case BinaryOperator::Add:
1278    case BinaryOperator::Sub:
1279    case BinaryOperator::Shl:
1280    case BinaryOperator::Shr:
1281    case BinaryOperator::LT:
1282    case BinaryOperator::GT:
1283    case BinaryOperator::LE:
1284    case BinaryOperator::GE:
1285    case BinaryOperator::EQ:
1286    case BinaryOperator::NE:
1287    case BinaryOperator::And:
1288    case BinaryOperator::Xor:
1289    case BinaryOperator::Or:
1290    case BinaryOperator::Comma: {
1291      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1292      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1293      if (Exp->getOpcode() == BinaryOperator::Div ||
1294          Exp->getOpcode() == BinaryOperator::Rem) {
1295        // Evaluate gives an error for undefined Div/Rem, so make sure
1296        // we don't evaluate one.
1297        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1298          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1299          if (REval == 0)
1300            return ICEDiag(1, E->getLocStart());
1301          if (REval.isSigned() && REval.isAllOnesValue()) {
1302            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1303            if (LEval.isMinSignedValue())
1304              return ICEDiag(1, E->getLocStart());
1305          }
1306        }
1307      }
1308      if (Exp->getOpcode() == BinaryOperator::Comma) {
1309        if (Ctx.getLangOptions().C99) {
1310          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1311          // if it isn't evaluated.
1312          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1313            return ICEDiag(1, E->getLocStart());
1314        } else {
1315          // In both C89 and C++, commas in ICEs are illegal.
1316          return ICEDiag(2, E->getLocStart());
1317        }
1318      }
1319      if (LHSResult.Val >= RHSResult.Val)
1320        return LHSResult;
1321      return RHSResult;
1322    }
1323    case BinaryOperator::LAnd:
1324    case BinaryOperator::LOr: {
1325      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1326      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1327      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1328        // Rare case where the RHS has a comma "side-effect"; we need
1329        // to actually check the condition to see whether the side
1330        // with the comma is evaluated.
1331        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1332            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1333          return RHSResult;
1334        return NoDiag();
1335      }
1336
1337      if (LHSResult.Val >= RHSResult.Val)
1338        return LHSResult;
1339      return RHSResult;
1340    }
1341    }
1342  }
1343  case Expr::ImplicitCastExprClass:
1344  case Expr::CStyleCastExprClass:
1345  case Expr::CXXFunctionalCastExprClass: {
1346    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1347    if (SubExpr->getType()->isIntegralType())
1348      return CheckICE(SubExpr, Ctx);
1349    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1350      return NoDiag();
1351    return ICEDiag(2, E->getLocStart());
1352  }
1353  case Expr::ConditionalOperatorClass: {
1354    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1355    // If the condition (ignoring parens) is a __builtin_constant_p call,
1356    // then only the true side is actually considered in an integer constant
1357    // expression, and it is fully evaluated.  This is an important GNU
1358    // extension.  See GCC PR38377 for discussion.
1359    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1360      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1361        Expr::EvalResult EVResult;
1362        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1363            !EVResult.Val.isInt()) {
1364          return ICEDiag(2, E->getLocStart());
1365        }
1366        return NoDiag();
1367      }
1368    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1369    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1370    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1371    if (CondResult.Val == 2)
1372      return CondResult;
1373    if (TrueResult.Val == 2)
1374      return TrueResult;
1375    if (FalseResult.Val == 2)
1376      return FalseResult;
1377    if (CondResult.Val == 1)
1378      return CondResult;
1379    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1380      return NoDiag();
1381    // Rare case where the diagnostics depend on which side is evaluated
1382    // Note that if we get here, CondResult is 0, and at least one of
1383    // TrueResult and FalseResult is non-zero.
1384    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1385      return FalseResult;
1386    }
1387    return TrueResult;
1388  }
1389  case Expr::CXXDefaultArgExprClass:
1390    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1391  case Expr::ChooseExprClass: {
1392    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1393  }
1394  }
1395}
1396
1397bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1398                                 SourceLocation *Loc, bool isEvaluated) const {
1399  ICEDiag d = CheckICE(this, Ctx);
1400  if (d.Val != 0) {
1401    if (Loc) *Loc = d.Loc;
1402    return false;
1403  }
1404  EvalResult EvalResult;
1405  if (!Evaluate(EvalResult, Ctx))
1406    assert(0 && "ICE cannot be evaluated!");
1407  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1408  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1409  Result = EvalResult.Val.getInt();
1410  return true;
1411}
1412
1413/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1414/// integer constant expression with the value zero, or if this is one that is
1415/// cast to void*.
1416bool Expr::isNullPointerConstant(ASTContext &Ctx) const
1417{
1418  // Strip off a cast to void*, if it exists. Except in C++.
1419  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1420    if (!Ctx.getLangOptions().CPlusPlus) {
1421      // Check that it is a cast to void*.
1422      if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1423        QualType Pointee = PT->getPointeeType();
1424        if (Pointee.getCVRQualifiers() == 0 &&
1425            Pointee->isVoidType() &&                              // to void*
1426            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1427          return CE->getSubExpr()->isNullPointerConstant(Ctx);
1428      }
1429    }
1430  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1431    // Ignore the ImplicitCastExpr type entirely.
1432    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1433  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1434    // Accept ((void*)0) as a null pointer constant, as many other
1435    // implementations do.
1436    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1437  } else if (const CXXDefaultArgExpr *DefaultArg
1438               = dyn_cast<CXXDefaultArgExpr>(this)) {
1439    // See through default argument expressions
1440    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1441  } else if (isa<GNUNullExpr>(this)) {
1442    // The GNU __null extension is always a null pointer constant.
1443    return true;
1444  }
1445
1446  // C++0x nullptr_t is always a null pointer constant.
1447  if (getType()->isNullPtrType())
1448    return true;
1449
1450  // This expression must be an integer type.
1451  if (!getType()->isIntegerType())
1452    return false;
1453
1454  // If we have an integer constant expression, we need to *evaluate* it and
1455  // test for the value 0.
1456  llvm::APSInt Result;
1457  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1458}
1459
1460FieldDecl *Expr::getBitField() {
1461  Expr *E = this->IgnoreParens();
1462
1463  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1464    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1465      if (Field->isBitField())
1466        return Field;
1467
1468  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1469    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1470      return BinOp->getLHS()->getBitField();
1471
1472  return 0;
1473}
1474
1475/// isArrow - Return true if the base expression is a pointer to vector,
1476/// return false if the base expression is a vector.
1477bool ExtVectorElementExpr::isArrow() const {
1478  return getBase()->getType()->isPointerType();
1479}
1480
1481unsigned ExtVectorElementExpr::getNumElements() const {
1482  if (const VectorType *VT = getType()->getAsVectorType())
1483    return VT->getNumElements();
1484  return 1;
1485}
1486
1487/// containsDuplicateElements - Return true if any element access is repeated.
1488bool ExtVectorElementExpr::containsDuplicateElements() const {
1489  const char *compStr = Accessor->getName();
1490  unsigned length = Accessor->getLength();
1491
1492  // Halving swizzles do not contain duplicate elements.
1493  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1494      !strcmp(compStr, "even") || !strcmp(compStr, "odd"))
1495    return false;
1496
1497  // Advance past s-char prefix on hex swizzles.
1498  if (*compStr == 's' || *compStr == 'S') {
1499    compStr++;
1500    length--;
1501  }
1502
1503  for (unsigned i = 0; i != length-1; i++) {
1504    const char *s = compStr+i;
1505    for (const char c = *s++; *s; s++)
1506      if (c == *s)
1507        return true;
1508  }
1509  return false;
1510}
1511
1512/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1513void ExtVectorElementExpr::getEncodedElementAccess(
1514                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1515  const char *compStr = Accessor->getName();
1516  if (*compStr == 's' || *compStr == 'S')
1517    compStr++;
1518
1519  bool isHi =   !strcmp(compStr, "hi");
1520  bool isLo =   !strcmp(compStr, "lo");
1521  bool isEven = !strcmp(compStr, "even");
1522  bool isOdd  = !strcmp(compStr, "odd");
1523
1524  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1525    uint64_t Index;
1526
1527    if (isHi)
1528      Index = e + i;
1529    else if (isLo)
1530      Index = i;
1531    else if (isEven)
1532      Index = 2 * i;
1533    else if (isOdd)
1534      Index = 2 * i + 1;
1535    else
1536      Index = ExtVectorType::getAccessorIdx(compStr[i]);
1537
1538    Elts.push_back(Index);
1539  }
1540}
1541
1542// constructor for instance messages.
1543ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1544                QualType retType, ObjCMethodDecl *mproto,
1545                SourceLocation LBrac, SourceLocation RBrac,
1546                Expr **ArgExprs, unsigned nargs)
1547  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1548    MethodProto(mproto) {
1549  NumArgs = nargs;
1550  SubExprs = new Stmt*[NumArgs+1];
1551  SubExprs[RECEIVER] = receiver;
1552  if (NumArgs) {
1553    for (unsigned i = 0; i != NumArgs; ++i)
1554      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1555  }
1556  LBracloc = LBrac;
1557  RBracloc = RBrac;
1558}
1559
1560ObjCStringLiteral* ObjCStringLiteral::Clone(ASTContext &C) const {
1561  // Clone the string literal.
1562  StringLiteral *NewString =
1563    String ? cast<StringLiteral>(String)->Clone(C) : 0;
1564
1565  return new (C) ObjCStringLiteral(NewString, getType(), AtLoc);
1566}
1567
1568ObjCSelectorExpr *ObjCSelectorExpr::Clone(ASTContext &C) const {
1569  return new (C) ObjCSelectorExpr(getType(), SelName, AtLoc, RParenLoc);
1570}
1571
1572ObjCProtocolExpr *ObjCProtocolExpr::Clone(ASTContext &C) const {
1573  return new (C) ObjCProtocolExpr(getType(), TheProtocol, AtLoc, RParenLoc);
1574}
1575
1576// constructor for class messages.
1577// FIXME: clsName should be typed to ObjCInterfaceType
1578ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1579                QualType retType, ObjCMethodDecl *mproto,
1580                SourceLocation LBrac, SourceLocation RBrac,
1581                Expr **ArgExprs, unsigned nargs)
1582  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1583    MethodProto(mproto) {
1584  NumArgs = nargs;
1585  SubExprs = new Stmt*[NumArgs+1];
1586  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1587  if (NumArgs) {
1588    for (unsigned i = 0; i != NumArgs; ++i)
1589      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1590  }
1591  LBracloc = LBrac;
1592  RBracloc = RBrac;
1593}
1594
1595// constructor for class messages.
1596ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1597                                 QualType retType, ObjCMethodDecl *mproto,
1598                                 SourceLocation LBrac, SourceLocation RBrac,
1599                                 Expr **ArgExprs, unsigned nargs)
1600: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1601MethodProto(mproto) {
1602  NumArgs = nargs;
1603  SubExprs = new Stmt*[NumArgs+1];
1604  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1605  if (NumArgs) {
1606    for (unsigned i = 0; i != NumArgs; ++i)
1607      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1608  }
1609  LBracloc = LBrac;
1610  RBracloc = RBrac;
1611}
1612
1613ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1614  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1615  switch (x & Flags) {
1616    default:
1617      assert(false && "Invalid ObjCMessageExpr.");
1618    case IsInstMeth:
1619      return ClassInfo(0, 0);
1620    case IsClsMethDeclUnknown:
1621      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1622    case IsClsMethDeclKnown: {
1623      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1624      return ClassInfo(D, D->getIdentifier());
1625    }
1626  }
1627}
1628
1629void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
1630  if (CI.first == 0 && CI.second == 0)
1631    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
1632  else if (CI.first == 0)
1633    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
1634  else
1635    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
1636}
1637
1638
1639bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1640  return getCond()->EvaluateAsInt(C) != 0;
1641}
1642
1643void ShuffleVectorExpr::setExprs(Expr ** Exprs, unsigned NumExprs) {
1644  if (NumExprs)
1645    delete [] SubExprs;
1646
1647  SubExprs = new Stmt* [NumExprs];
1648  this->NumExprs = NumExprs;
1649  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
1650}
1651
1652void SizeOfAlignOfExpr::Destroy(ASTContext& C) {
1653  // Override default behavior of traversing children. If this has a type
1654  // operand and the type is a variable-length array, the child iteration
1655  // will iterate over the size expression. However, this expression belongs
1656  // to the type, not to this, so we don't want to delete it.
1657  // We still want to delete this expression.
1658  if (isArgumentType()) {
1659    this->~SizeOfAlignOfExpr();
1660    C.Deallocate(this);
1661  }
1662  else
1663    Expr::Destroy(C);
1664}
1665
1666//===----------------------------------------------------------------------===//
1667//  DesignatedInitExpr
1668//===----------------------------------------------------------------------===//
1669
1670IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
1671  assert(Kind == FieldDesignator && "Only valid on a field designator");
1672  if (Field.NameOrField & 0x01)
1673    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
1674  else
1675    return getField()->getIdentifier();
1676}
1677
1678DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1679                                       const Designator *Designators,
1680                                       SourceLocation EqualOrColonLoc,
1681                                       bool GNUSyntax,
1682                                       Expr **IndexExprs,
1683                                       unsigned NumIndexExprs,
1684                                       Expr *Init)
1685  : Expr(DesignatedInitExprClass, Ty,
1686         Init->isTypeDependent(), Init->isValueDependent()),
1687    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
1688    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
1689  this->Designators = new Designator[NumDesignators];
1690
1691  // Record the initializer itself.
1692  child_iterator Child = child_begin();
1693  *Child++ = Init;
1694
1695  // Copy the designators and their subexpressions, computing
1696  // value-dependence along the way.
1697  unsigned IndexIdx = 0;
1698  for (unsigned I = 0; I != NumDesignators; ++I) {
1699    this->Designators[I] = Designators[I];
1700
1701    if (this->Designators[I].isArrayDesignator()) {
1702      // Compute type- and value-dependence.
1703      Expr *Index = IndexExprs[IndexIdx];
1704      ValueDependent = ValueDependent ||
1705        Index->isTypeDependent() || Index->isValueDependent();
1706
1707      // Copy the index expressions into permanent storage.
1708      *Child++ = IndexExprs[IndexIdx++];
1709    } else if (this->Designators[I].isArrayRangeDesignator()) {
1710      // Compute type- and value-dependence.
1711      Expr *Start = IndexExprs[IndexIdx];
1712      Expr *End = IndexExprs[IndexIdx + 1];
1713      ValueDependent = ValueDependent ||
1714        Start->isTypeDependent() || Start->isValueDependent() ||
1715        End->isTypeDependent() || End->isValueDependent();
1716
1717      // Copy the start/end expressions into permanent storage.
1718      *Child++ = IndexExprs[IndexIdx++];
1719      *Child++ = IndexExprs[IndexIdx++];
1720    }
1721  }
1722
1723  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
1724}
1725
1726DesignatedInitExpr *
1727DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
1728                           unsigned NumDesignators,
1729                           Expr **IndexExprs, unsigned NumIndexExprs,
1730                           SourceLocation ColonOrEqualLoc,
1731                           bool UsesColonSyntax, Expr *Init) {
1732  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
1733                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
1734  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
1735                                      ColonOrEqualLoc, UsesColonSyntax,
1736                                      IndexExprs, NumIndexExprs, Init);
1737}
1738
1739DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
1740                                                    unsigned NumIndexExprs) {
1741  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
1742                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
1743  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
1744}
1745
1746void DesignatedInitExpr::setDesignators(const Designator *Desigs,
1747                                        unsigned NumDesigs) {
1748  if (Designators)
1749    delete [] Designators;
1750
1751  Designators = new Designator[NumDesigs];
1752  NumDesignators = NumDesigs;
1753  for (unsigned I = 0; I != NumDesigs; ++I)
1754    Designators[I] = Desigs[I];
1755}
1756
1757SourceRange DesignatedInitExpr::getSourceRange() const {
1758  SourceLocation StartLoc;
1759  Designator &First =
1760    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
1761  if (First.isFieldDesignator()) {
1762    if (GNUSyntax)
1763      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
1764    else
1765      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
1766  } else
1767    StartLoc =
1768      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
1769  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
1770}
1771
1772Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
1773  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
1774  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1775  Ptr += sizeof(DesignatedInitExpr);
1776  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1777  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1778}
1779
1780Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
1781  assert(D.Kind == Designator::ArrayRangeDesignator &&
1782         "Requires array range designator");
1783  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1784  Ptr += sizeof(DesignatedInitExpr);
1785  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1786  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1787}
1788
1789Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
1790  assert(D.Kind == Designator::ArrayRangeDesignator &&
1791         "Requires array range designator");
1792  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1793  Ptr += sizeof(DesignatedInitExpr);
1794  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1795  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
1796}
1797
1798/// \brief Replaces the designator at index @p Idx with the series
1799/// of designators in [First, Last).
1800void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
1801                                          const Designator *First,
1802                                          const Designator *Last) {
1803  unsigned NumNewDesignators = Last - First;
1804  if (NumNewDesignators == 0) {
1805    std::copy_backward(Designators + Idx + 1,
1806                       Designators + NumDesignators,
1807                       Designators + Idx);
1808    --NumNewDesignators;
1809    return;
1810  } else if (NumNewDesignators == 1) {
1811    Designators[Idx] = *First;
1812    return;
1813  }
1814
1815  Designator *NewDesignators
1816    = new Designator[NumDesignators - 1 + NumNewDesignators];
1817  std::copy(Designators, Designators + Idx, NewDesignators);
1818  std::copy(First, Last, NewDesignators + Idx);
1819  std::copy(Designators + Idx + 1, Designators + NumDesignators,
1820            NewDesignators + Idx + NumNewDesignators);
1821  delete [] Designators;
1822  Designators = NewDesignators;
1823  NumDesignators = NumDesignators - 1 + NumNewDesignators;
1824}
1825
1826void DesignatedInitExpr::Destroy(ASTContext &C) {
1827  delete [] Designators;
1828  Expr::Destroy(C);
1829}
1830
1831ImplicitValueInitExpr *ImplicitValueInitExpr::Clone(ASTContext &C) const {
1832  return new (C) ImplicitValueInitExpr(getType());
1833}
1834
1835//===----------------------------------------------------------------------===//
1836//  ExprIterator.
1837//===----------------------------------------------------------------------===//
1838
1839Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
1840Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
1841Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
1842const Expr* ConstExprIterator::operator[](size_t idx) const {
1843  return cast<Expr>(I[idx]);
1844}
1845const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
1846const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
1847
1848//===----------------------------------------------------------------------===//
1849//  Child Iterators for iterating over subexpressions/substatements
1850//===----------------------------------------------------------------------===//
1851
1852// DeclRefExpr
1853Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1854Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1855
1856// ObjCIvarRefExpr
1857Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1858Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1859
1860// ObjCPropertyRefExpr
1861Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1862Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1863
1864// ObjCKVCRefExpr
1865Stmt::child_iterator ObjCKVCRefExpr::child_begin() { return &Base; }
1866Stmt::child_iterator ObjCKVCRefExpr::child_end() { return &Base+1; }
1867
1868// ObjCSuperExpr
1869Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
1870Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
1871
1872// PredefinedExpr
1873Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
1874Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
1875
1876// IntegerLiteral
1877Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1878Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1879
1880// CharacterLiteral
1881Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
1882Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1883
1884// FloatingLiteral
1885Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1886Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1887
1888// ImaginaryLiteral
1889Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1890Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1891
1892// StringLiteral
1893Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1894Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1895
1896// ParenExpr
1897Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1898Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1899
1900// UnaryOperator
1901Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1902Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1903
1904// SizeOfAlignOfExpr
1905Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
1906  // If this is of a type and the type is a VLA type (and not a typedef), the
1907  // size expression of the VLA needs to be treated as an executable expression.
1908  // Why isn't this weirdness documented better in StmtIterator?
1909  if (isArgumentType()) {
1910    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
1911                                   getArgumentType().getTypePtr()))
1912      return child_iterator(T);
1913    return child_iterator();
1914  }
1915  return child_iterator(&Argument.Ex);
1916}
1917Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
1918  if (isArgumentType())
1919    return child_iterator();
1920  return child_iterator(&Argument.Ex + 1);
1921}
1922
1923// ArraySubscriptExpr
1924Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1925  return &SubExprs[0];
1926}
1927Stmt::child_iterator ArraySubscriptExpr::child_end() {
1928  return &SubExprs[0]+END_EXPR;
1929}
1930
1931// CallExpr
1932Stmt::child_iterator CallExpr::child_begin() {
1933  return &SubExprs[0];
1934}
1935Stmt::child_iterator CallExpr::child_end() {
1936  return &SubExprs[0]+NumArgs+ARGS_START;
1937}
1938
1939// MemberExpr
1940Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1941Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1942
1943// ExtVectorElementExpr
1944Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1945Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1946
1947// CompoundLiteralExpr
1948Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1949Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1950
1951// CastExpr
1952Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1953Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1954
1955// BinaryOperator
1956Stmt::child_iterator BinaryOperator::child_begin() {
1957  return &SubExprs[0];
1958}
1959Stmt::child_iterator BinaryOperator::child_end() {
1960  return &SubExprs[0]+END_EXPR;
1961}
1962
1963// ConditionalOperator
1964Stmt::child_iterator ConditionalOperator::child_begin() {
1965  return &SubExprs[0];
1966}
1967Stmt::child_iterator ConditionalOperator::child_end() {
1968  return &SubExprs[0]+END_EXPR;
1969}
1970
1971// AddrLabelExpr
1972Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1973Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1974
1975// StmtExpr
1976Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1977Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1978
1979// TypesCompatibleExpr
1980Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1981  return child_iterator();
1982}
1983
1984Stmt::child_iterator TypesCompatibleExpr::child_end() {
1985  return child_iterator();
1986}
1987
1988// ChooseExpr
1989Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
1990Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
1991
1992// GNUNullExpr
1993Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
1994Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
1995
1996// ShuffleVectorExpr
1997Stmt::child_iterator ShuffleVectorExpr::child_begin() {
1998  return &SubExprs[0];
1999}
2000Stmt::child_iterator ShuffleVectorExpr::child_end() {
2001  return &SubExprs[0]+NumExprs;
2002}
2003
2004// VAArgExpr
2005Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2006Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2007
2008// InitListExpr
2009Stmt::child_iterator InitListExpr::child_begin() {
2010  return InitExprs.size() ? &InitExprs[0] : 0;
2011}
2012Stmt::child_iterator InitListExpr::child_end() {
2013  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2014}
2015
2016// DesignatedInitExpr
2017Stmt::child_iterator DesignatedInitExpr::child_begin() {
2018  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2019  Ptr += sizeof(DesignatedInitExpr);
2020  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2021}
2022Stmt::child_iterator DesignatedInitExpr::child_end() {
2023  return child_iterator(&*child_begin() + NumSubExprs);
2024}
2025
2026// ImplicitValueInitExpr
2027Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2028  return child_iterator();
2029}
2030
2031Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2032  return child_iterator();
2033}
2034
2035// ObjCStringLiteral
2036Stmt::child_iterator ObjCStringLiteral::child_begin() {
2037  return &String;
2038}
2039Stmt::child_iterator ObjCStringLiteral::child_end() {
2040  return &String+1;
2041}
2042
2043// ObjCEncodeExpr
2044Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2045Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2046
2047// ObjCSelectorExpr
2048Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2049  return child_iterator();
2050}
2051Stmt::child_iterator ObjCSelectorExpr::child_end() {
2052  return child_iterator();
2053}
2054
2055// ObjCProtocolExpr
2056Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2057  return child_iterator();
2058}
2059Stmt::child_iterator ObjCProtocolExpr::child_end() {
2060  return child_iterator();
2061}
2062
2063// ObjCMessageExpr
2064Stmt::child_iterator ObjCMessageExpr::child_begin() {
2065  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2066}
2067Stmt::child_iterator ObjCMessageExpr::child_end() {
2068  return &SubExprs[0]+ARGS_START+getNumArgs();
2069}
2070
2071// Blocks
2072Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2073Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2074
2075Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2076Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2077