Expr.cpp revision b11e52540166a2958439cfe562c25931e4460759
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the Expr class and subclasses. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/AST/Expr.h" 15#include "clang/AST/ExprCXX.h" 16#include "clang/AST/APValue.h" 17#include "clang/AST/ASTContext.h" 18#include "clang/AST/DeclObjC.h" 19#include "clang/AST/DeclCXX.h" 20#include "clang/AST/DeclTemplate.h" 21#include "clang/AST/EvaluatedExprVisitor.h" 22#include "clang/AST/RecordLayout.h" 23#include "clang/AST/StmtVisitor.h" 24#include "clang/Lex/LiteralSupport.h" 25#include "clang/Lex/Lexer.h" 26#include "clang/Sema/SemaDiagnostic.h" 27#include "clang/Basic/Builtins.h" 28#include "clang/Basic/SourceManager.h" 29#include "clang/Basic/TargetInfo.h" 30#include "llvm/Support/ErrorHandling.h" 31#include "llvm/Support/raw_ostream.h" 32#include <algorithm> 33#include <cstring> 34using namespace clang; 35 36/// isKnownToHaveBooleanValue - Return true if this is an integer expression 37/// that is known to return 0 or 1. This happens for _Bool/bool expressions 38/// but also int expressions which are produced by things like comparisons in 39/// C. 40bool Expr::isKnownToHaveBooleanValue() const { 41 const Expr *E = IgnoreParens(); 42 43 // If this value has _Bool type, it is obvious 0/1. 44 if (E->getType()->isBooleanType()) return true; 45 // If this is a non-scalar-integer type, we don't care enough to try. 46 if (!E->getType()->isIntegralOrEnumerationType()) return false; 47 48 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 49 switch (UO->getOpcode()) { 50 case UO_Plus: 51 return UO->getSubExpr()->isKnownToHaveBooleanValue(); 52 default: 53 return false; 54 } 55 } 56 57 // Only look through implicit casts. If the user writes 58 // '(int) (a && b)' treat it as an arbitrary int. 59 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 60 return CE->getSubExpr()->isKnownToHaveBooleanValue(); 61 62 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 63 switch (BO->getOpcode()) { 64 default: return false; 65 case BO_LT: // Relational operators. 66 case BO_GT: 67 case BO_LE: 68 case BO_GE: 69 case BO_EQ: // Equality operators. 70 case BO_NE: 71 case BO_LAnd: // AND operator. 72 case BO_LOr: // Logical OR operator. 73 return true; 74 75 case BO_And: // Bitwise AND operator. 76 case BO_Xor: // Bitwise XOR operator. 77 case BO_Or: // Bitwise OR operator. 78 // Handle things like (x==2)|(y==12). 79 return BO->getLHS()->isKnownToHaveBooleanValue() && 80 BO->getRHS()->isKnownToHaveBooleanValue(); 81 82 case BO_Comma: 83 case BO_Assign: 84 return BO->getRHS()->isKnownToHaveBooleanValue(); 85 } 86 } 87 88 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 89 return CO->getTrueExpr()->isKnownToHaveBooleanValue() && 90 CO->getFalseExpr()->isKnownToHaveBooleanValue(); 91 92 return false; 93} 94 95// Amusing macro metaprogramming hack: check whether a class provides 96// a more specific implementation of getExprLoc(). 97namespace { 98 /// This implementation is used when a class provides a custom 99 /// implementation of getExprLoc. 100 template <class E, class T> 101 SourceLocation getExprLocImpl(const Expr *expr, 102 SourceLocation (T::*v)() const) { 103 return static_cast<const E*>(expr)->getExprLoc(); 104 } 105 106 /// This implementation is used when a class doesn't provide 107 /// a custom implementation of getExprLoc. Overload resolution 108 /// should pick it over the implementation above because it's 109 /// more specialized according to function template partial ordering. 110 template <class E> 111 SourceLocation getExprLocImpl(const Expr *expr, 112 SourceLocation (Expr::*v)() const) { 113 return static_cast<const E*>(expr)->getSourceRange().getBegin(); 114 } 115} 116 117SourceLocation Expr::getExprLoc() const { 118 switch (getStmtClass()) { 119 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 120#define ABSTRACT_STMT(type) 121#define STMT(type, base) \ 122 case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break; 123#define EXPR(type, base) \ 124 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 125#include "clang/AST/StmtNodes.inc" 126 } 127 llvm_unreachable("unknown statement kind"); 128} 129 130//===----------------------------------------------------------------------===// 131// Primary Expressions. 132//===----------------------------------------------------------------------===// 133 134/// \brief Compute the type-, value-, and instantiation-dependence of a 135/// declaration reference 136/// based on the declaration being referenced. 137static void computeDeclRefDependence(NamedDecl *D, QualType T, 138 bool &TypeDependent, 139 bool &ValueDependent, 140 bool &InstantiationDependent) { 141 TypeDependent = false; 142 ValueDependent = false; 143 InstantiationDependent = false; 144 145 // (TD) C++ [temp.dep.expr]p3: 146 // An id-expression is type-dependent if it contains: 147 // 148 // and 149 // 150 // (VD) C++ [temp.dep.constexpr]p2: 151 // An identifier is value-dependent if it is: 152 153 // (TD) - an identifier that was declared with dependent type 154 // (VD) - a name declared with a dependent type, 155 if (T->isDependentType()) { 156 TypeDependent = true; 157 ValueDependent = true; 158 InstantiationDependent = true; 159 return; 160 } else if (T->isInstantiationDependentType()) { 161 InstantiationDependent = true; 162 } 163 164 // (TD) - a conversion-function-id that specifies a dependent type 165 if (D->getDeclName().getNameKind() 166 == DeclarationName::CXXConversionFunctionName) { 167 QualType T = D->getDeclName().getCXXNameType(); 168 if (T->isDependentType()) { 169 TypeDependent = true; 170 ValueDependent = true; 171 InstantiationDependent = true; 172 return; 173 } 174 175 if (T->isInstantiationDependentType()) 176 InstantiationDependent = true; 177 } 178 179 // (VD) - the name of a non-type template parameter, 180 if (isa<NonTypeTemplateParmDecl>(D)) { 181 ValueDependent = true; 182 InstantiationDependent = true; 183 return; 184 } 185 186 // (VD) - a constant with integral or enumeration type and is 187 // initialized with an expression that is value-dependent. 188 // (VD) - a constant with literal type and is initialized with an 189 // expression that is value-dependent [C++11]. 190 // (VD) - FIXME: Missing from the standard: 191 // - an entity with reference type and is initialized with an 192 // expression that is value-dependent [C++11] 193 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 194 if ((D->getASTContext().getLangOptions().CPlusPlus0x ? 195 Var->getType()->isLiteralType() : 196 Var->getType()->isIntegralOrEnumerationType()) && 197 (Var->getType().getCVRQualifiers() == Qualifiers::Const || 198 Var->getType()->isReferenceType())) { 199 if (const Expr *Init = Var->getAnyInitializer()) 200 if (Init->isValueDependent()) { 201 ValueDependent = true; 202 InstantiationDependent = true; 203 } 204 } 205 206 // (VD) - FIXME: Missing from the standard: 207 // - a member function or a static data member of the current 208 // instantiation 209 if (Var->isStaticDataMember() && 210 Var->getDeclContext()->isDependentContext()) { 211 ValueDependent = true; 212 InstantiationDependent = true; 213 } 214 215 return; 216 } 217 218 // (VD) - FIXME: Missing from the standard: 219 // - a member function or a static data member of the current 220 // instantiation 221 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { 222 ValueDependent = true; 223 InstantiationDependent = true; 224 } 225} 226 227void DeclRefExpr::computeDependence() { 228 bool TypeDependent = false; 229 bool ValueDependent = false; 230 bool InstantiationDependent = false; 231 computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent, 232 InstantiationDependent); 233 234 // (TD) C++ [temp.dep.expr]p3: 235 // An id-expression is type-dependent if it contains: 236 // 237 // and 238 // 239 // (VD) C++ [temp.dep.constexpr]p2: 240 // An identifier is value-dependent if it is: 241 if (!TypeDependent && !ValueDependent && 242 hasExplicitTemplateArgs() && 243 TemplateSpecializationType::anyDependentTemplateArguments( 244 getTemplateArgs(), 245 getNumTemplateArgs(), 246 InstantiationDependent)) { 247 TypeDependent = true; 248 ValueDependent = true; 249 InstantiationDependent = true; 250 } 251 252 ExprBits.TypeDependent = TypeDependent; 253 ExprBits.ValueDependent = ValueDependent; 254 ExprBits.InstantiationDependent = InstantiationDependent; 255 256 // Is the declaration a parameter pack? 257 if (getDecl()->isParameterPack()) 258 ExprBits.ContainsUnexpandedParameterPack = true; 259} 260 261DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc, 262 SourceLocation TemplateKWLoc, 263 ValueDecl *D, const DeclarationNameInfo &NameInfo, 264 NamedDecl *FoundD, 265 const TemplateArgumentListInfo *TemplateArgs, 266 QualType T, ExprValueKind VK) 267 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 268 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { 269 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 270 if (QualifierLoc) 271 getInternalQualifierLoc() = QualifierLoc; 272 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 273 if (FoundD) 274 getInternalFoundDecl() = FoundD; 275 DeclRefExprBits.HasTemplateKWAndArgsInfo 276 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 277 if (TemplateArgs) { 278 bool Dependent = false; 279 bool InstantiationDependent = false; 280 bool ContainsUnexpandedParameterPack = false; 281 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs, 282 Dependent, 283 InstantiationDependent, 284 ContainsUnexpandedParameterPack); 285 if (InstantiationDependent) 286 setInstantiationDependent(true); 287 } else if (TemplateKWLoc.isValid()) { 288 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); 289 } 290 DeclRefExprBits.HadMultipleCandidates = 0; 291 292 computeDependence(); 293} 294 295DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, 296 NestedNameSpecifierLoc QualifierLoc, 297 SourceLocation TemplateKWLoc, 298 ValueDecl *D, 299 SourceLocation NameLoc, 300 QualType T, 301 ExprValueKind VK, 302 NamedDecl *FoundD, 303 const TemplateArgumentListInfo *TemplateArgs) { 304 return Create(Context, QualifierLoc, TemplateKWLoc, D, 305 DeclarationNameInfo(D->getDeclName(), NameLoc), 306 T, VK, FoundD, TemplateArgs); 307} 308 309DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, 310 NestedNameSpecifierLoc QualifierLoc, 311 SourceLocation TemplateKWLoc, 312 ValueDecl *D, 313 const DeclarationNameInfo &NameInfo, 314 QualType T, 315 ExprValueKind VK, 316 NamedDecl *FoundD, 317 const TemplateArgumentListInfo *TemplateArgs) { 318 // Filter out cases where the found Decl is the same as the value refenenced. 319 if (D == FoundD) 320 FoundD = 0; 321 322 std::size_t Size = sizeof(DeclRefExpr); 323 if (QualifierLoc != 0) 324 Size += sizeof(NestedNameSpecifierLoc); 325 if (FoundD) 326 Size += sizeof(NamedDecl *); 327 if (TemplateArgs) 328 Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size()); 329 else if (TemplateKWLoc.isValid()) 330 Size += ASTTemplateKWAndArgsInfo::sizeFor(0); 331 332 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 333 return new (Mem) DeclRefExpr(QualifierLoc, TemplateKWLoc, D, NameInfo, 334 FoundD, TemplateArgs, T, VK); 335} 336 337DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, 338 bool HasQualifier, 339 bool HasFoundDecl, 340 bool HasTemplateKWAndArgsInfo, 341 unsigned NumTemplateArgs) { 342 std::size_t Size = sizeof(DeclRefExpr); 343 if (HasQualifier) 344 Size += sizeof(NestedNameSpecifierLoc); 345 if (HasFoundDecl) 346 Size += sizeof(NamedDecl *); 347 if (HasTemplateKWAndArgsInfo) 348 Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs); 349 350 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 351 return new (Mem) DeclRefExpr(EmptyShell()); 352} 353 354SourceRange DeclRefExpr::getSourceRange() const { 355 SourceRange R = getNameInfo().getSourceRange(); 356 if (hasQualifier()) 357 R.setBegin(getQualifierLoc().getBeginLoc()); 358 if (hasExplicitTemplateArgs()) 359 R.setEnd(getRAngleLoc()); 360 return R; 361} 362 363// FIXME: Maybe this should use DeclPrinter with a special "print predefined 364// expr" policy instead. 365std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { 366 ASTContext &Context = CurrentDecl->getASTContext(); 367 368 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 369 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual) 370 return FD->getNameAsString(); 371 372 SmallString<256> Name; 373 llvm::raw_svector_ostream Out(Name); 374 375 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 376 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) 377 Out << "virtual "; 378 if (MD->isStatic()) 379 Out << "static "; 380 } 381 382 PrintingPolicy Policy(Context.getLangOptions()); 383 384 std::string Proto = FD->getQualifiedNameAsString(Policy); 385 386 const FunctionType *AFT = FD->getType()->getAs<FunctionType>(); 387 const FunctionProtoType *FT = 0; 388 if (FD->hasWrittenPrototype()) 389 FT = dyn_cast<FunctionProtoType>(AFT); 390 391 Proto += "("; 392 if (FT) { 393 llvm::raw_string_ostream POut(Proto); 394 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 395 if (i) POut << ", "; 396 std::string Param; 397 FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy); 398 POut << Param; 399 } 400 401 if (FT->isVariadic()) { 402 if (FD->getNumParams()) POut << ", "; 403 POut << "..."; 404 } 405 } 406 Proto += ")"; 407 408 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 409 Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); 410 if (ThisQuals.hasConst()) 411 Proto += " const"; 412 if (ThisQuals.hasVolatile()) 413 Proto += " volatile"; 414 } 415 416 if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 417 AFT->getResultType().getAsStringInternal(Proto, Policy); 418 419 Out << Proto; 420 421 Out.flush(); 422 return Name.str().str(); 423 } 424 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 425 SmallString<256> Name; 426 llvm::raw_svector_ostream Out(Name); 427 Out << (MD->isInstanceMethod() ? '-' : '+'); 428 Out << '['; 429 430 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 431 // a null check to avoid a crash. 432 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 433 Out << *ID; 434 435 if (const ObjCCategoryImplDecl *CID = 436 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 437 Out << '(' << *CID << ')'; 438 439 Out << ' '; 440 Out << MD->getSelector().getAsString(); 441 Out << ']'; 442 443 Out.flush(); 444 return Name.str().str(); 445 } 446 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { 447 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 448 return "top level"; 449 } 450 return ""; 451} 452 453void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) { 454 if (hasAllocation()) 455 C.Deallocate(pVal); 456 457 BitWidth = Val.getBitWidth(); 458 unsigned NumWords = Val.getNumWords(); 459 const uint64_t* Words = Val.getRawData(); 460 if (NumWords > 1) { 461 pVal = new (C) uint64_t[NumWords]; 462 std::copy(Words, Words + NumWords, pVal); 463 } else if (NumWords == 1) 464 VAL = Words[0]; 465 else 466 VAL = 0; 467} 468 469IntegerLiteral * 470IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V, 471 QualType type, SourceLocation l) { 472 return new (C) IntegerLiteral(C, V, type, l); 473} 474 475IntegerLiteral * 476IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) { 477 return new (C) IntegerLiteral(Empty); 478} 479 480FloatingLiteral * 481FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V, 482 bool isexact, QualType Type, SourceLocation L) { 483 return new (C) FloatingLiteral(C, V, isexact, Type, L); 484} 485 486FloatingLiteral * 487FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) { 488 return new (C) FloatingLiteral(C, Empty); 489} 490 491/// getValueAsApproximateDouble - This returns the value as an inaccurate 492/// double. Note that this may cause loss of precision, but is useful for 493/// debugging dumps, etc. 494double FloatingLiteral::getValueAsApproximateDouble() const { 495 llvm::APFloat V = getValue(); 496 bool ignored; 497 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, 498 &ignored); 499 return V.convertToDouble(); 500} 501 502int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { 503 int CharByteWidth; 504 switch(k) { 505 case Ascii: 506 case UTF8: 507 CharByteWidth = target.getCharWidth(); 508 break; 509 case Wide: 510 CharByteWidth = target.getWCharWidth(); 511 break; 512 case UTF16: 513 CharByteWidth = target.getChar16Width(); 514 break; 515 case UTF32: 516 CharByteWidth = target.getChar32Width(); 517 } 518 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 519 CharByteWidth /= 8; 520 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) 521 && "character byte widths supported are 1, 2, and 4 only"); 522 return CharByteWidth; 523} 524 525StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str, 526 StringKind Kind, bool Pascal, QualType Ty, 527 const SourceLocation *Loc, 528 unsigned NumStrs) { 529 // Allocate enough space for the StringLiteral plus an array of locations for 530 // any concatenated string tokens. 531 void *Mem = C.Allocate(sizeof(StringLiteral)+ 532 sizeof(SourceLocation)*(NumStrs-1), 533 llvm::alignOf<StringLiteral>()); 534 StringLiteral *SL = new (Mem) StringLiteral(Ty); 535 536 // OPTIMIZE: could allocate this appended to the StringLiteral. 537 SL->setString(C,Str,Kind,Pascal); 538 539 SL->TokLocs[0] = Loc[0]; 540 SL->NumConcatenated = NumStrs; 541 542 if (NumStrs != 1) 543 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); 544 return SL; 545} 546 547StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) { 548 void *Mem = C.Allocate(sizeof(StringLiteral)+ 549 sizeof(SourceLocation)*(NumStrs-1), 550 llvm::alignOf<StringLiteral>()); 551 StringLiteral *SL = new (Mem) StringLiteral(QualType()); 552 SL->CharByteWidth = 0; 553 SL->Length = 0; 554 SL->NumConcatenated = NumStrs; 555 return SL; 556} 557 558void StringLiteral::setString(ASTContext &C, StringRef Str, 559 StringKind Kind, bool IsPascal) { 560 //FIXME: we assume that the string data comes from a target that uses the same 561 // code unit size and endianess for the type of string. 562 this->Kind = Kind; 563 this->IsPascal = IsPascal; 564 565 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); 566 assert((Str.size()%CharByteWidth == 0) 567 && "size of data must be multiple of CharByteWidth"); 568 Length = Str.size()/CharByteWidth; 569 570 switch(CharByteWidth) { 571 case 1: { 572 char *AStrData = new (C) char[Length]; 573 std::memcpy(AStrData,Str.data(),Str.size()); 574 StrData.asChar = AStrData; 575 break; 576 } 577 case 2: { 578 uint16_t *AStrData = new (C) uint16_t[Length]; 579 std::memcpy(AStrData,Str.data(),Str.size()); 580 StrData.asUInt16 = AStrData; 581 break; 582 } 583 case 4: { 584 uint32_t *AStrData = new (C) uint32_t[Length]; 585 std::memcpy(AStrData,Str.data(),Str.size()); 586 StrData.asUInt32 = AStrData; 587 break; 588 } 589 default: 590 assert(false && "unsupported CharByteWidth"); 591 } 592} 593 594/// getLocationOfByte - Return a source location that points to the specified 595/// byte of this string literal. 596/// 597/// Strings are amazingly complex. They can be formed from multiple tokens and 598/// can have escape sequences in them in addition to the usual trigraph and 599/// escaped newline business. This routine handles this complexity. 600/// 601SourceLocation StringLiteral:: 602getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 603 const LangOptions &Features, const TargetInfo &Target) const { 604 assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings"); 605 606 // Loop over all of the tokens in this string until we find the one that 607 // contains the byte we're looking for. 608 unsigned TokNo = 0; 609 while (1) { 610 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 611 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 612 613 // Get the spelling of the string so that we can get the data that makes up 614 // the string literal, not the identifier for the macro it is potentially 615 // expanded through. 616 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 617 618 // Re-lex the token to get its length and original spelling. 619 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc); 620 bool Invalid = false; 621 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 622 if (Invalid) 623 return StrTokSpellingLoc; 624 625 const char *StrData = Buffer.data()+LocInfo.second; 626 627 // Create a langops struct and enable trigraphs. This is sufficient for 628 // relexing tokens. 629 LangOptions LangOpts; 630 LangOpts.Trigraphs = true; 631 632 // Create a lexer starting at the beginning of this token. 633 Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData, 634 Buffer.end()); 635 Token TheTok; 636 TheLexer.LexFromRawLexer(TheTok); 637 638 // Use the StringLiteralParser to compute the length of the string in bytes. 639 StringLiteralParser SLP(&TheTok, 1, SM, Features, Target); 640 unsigned TokNumBytes = SLP.GetStringLength(); 641 642 // If the byte is in this token, return the location of the byte. 643 if (ByteNo < TokNumBytes || 644 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 645 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 646 647 // Now that we know the offset of the token in the spelling, use the 648 // preprocessor to get the offset in the original source. 649 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 650 } 651 652 // Move to the next string token. 653 ++TokNo; 654 ByteNo -= TokNumBytes; 655 } 656} 657 658 659 660/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 661/// corresponds to, e.g. "sizeof" or "[pre]++". 662const char *UnaryOperator::getOpcodeStr(Opcode Op) { 663 switch (Op) { 664 case UO_PostInc: return "++"; 665 case UO_PostDec: return "--"; 666 case UO_PreInc: return "++"; 667 case UO_PreDec: return "--"; 668 case UO_AddrOf: return "&"; 669 case UO_Deref: return "*"; 670 case UO_Plus: return "+"; 671 case UO_Minus: return "-"; 672 case UO_Not: return "~"; 673 case UO_LNot: return "!"; 674 case UO_Real: return "__real"; 675 case UO_Imag: return "__imag"; 676 case UO_Extension: return "__extension__"; 677 } 678 llvm_unreachable("Unknown unary operator"); 679} 680 681UnaryOperatorKind 682UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 683 switch (OO) { 684 default: llvm_unreachable("No unary operator for overloaded function"); 685 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 686 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 687 case OO_Amp: return UO_AddrOf; 688 case OO_Star: return UO_Deref; 689 case OO_Plus: return UO_Plus; 690 case OO_Minus: return UO_Minus; 691 case OO_Tilde: return UO_Not; 692 case OO_Exclaim: return UO_LNot; 693 } 694} 695 696OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 697 switch (Opc) { 698 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 699 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 700 case UO_AddrOf: return OO_Amp; 701 case UO_Deref: return OO_Star; 702 case UO_Plus: return OO_Plus; 703 case UO_Minus: return OO_Minus; 704 case UO_Not: return OO_Tilde; 705 case UO_LNot: return OO_Exclaim; 706 default: return OO_None; 707 } 708} 709 710 711//===----------------------------------------------------------------------===// 712// Postfix Operators. 713//===----------------------------------------------------------------------===// 714 715CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs, 716 Expr **args, unsigned numargs, QualType t, ExprValueKind VK, 717 SourceLocation rparenloc) 718 : Expr(SC, t, VK, OK_Ordinary, 719 fn->isTypeDependent(), 720 fn->isValueDependent(), 721 fn->isInstantiationDependent(), 722 fn->containsUnexpandedParameterPack()), 723 NumArgs(numargs) { 724 725 SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs]; 726 SubExprs[FN] = fn; 727 for (unsigned i = 0; i != numargs; ++i) { 728 if (args[i]->isTypeDependent()) 729 ExprBits.TypeDependent = true; 730 if (args[i]->isValueDependent()) 731 ExprBits.ValueDependent = true; 732 if (args[i]->isInstantiationDependent()) 733 ExprBits.InstantiationDependent = true; 734 if (args[i]->containsUnexpandedParameterPack()) 735 ExprBits.ContainsUnexpandedParameterPack = true; 736 737 SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; 738 } 739 740 CallExprBits.NumPreArgs = NumPreArgs; 741 RParenLoc = rparenloc; 742} 743 744CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, 745 QualType t, ExprValueKind VK, SourceLocation rparenloc) 746 : Expr(CallExprClass, t, VK, OK_Ordinary, 747 fn->isTypeDependent(), 748 fn->isValueDependent(), 749 fn->isInstantiationDependent(), 750 fn->containsUnexpandedParameterPack()), 751 NumArgs(numargs) { 752 753 SubExprs = new (C) Stmt*[numargs+PREARGS_START]; 754 SubExprs[FN] = fn; 755 for (unsigned i = 0; i != numargs; ++i) { 756 if (args[i]->isTypeDependent()) 757 ExprBits.TypeDependent = true; 758 if (args[i]->isValueDependent()) 759 ExprBits.ValueDependent = true; 760 if (args[i]->isInstantiationDependent()) 761 ExprBits.InstantiationDependent = true; 762 if (args[i]->containsUnexpandedParameterPack()) 763 ExprBits.ContainsUnexpandedParameterPack = true; 764 765 SubExprs[i+PREARGS_START] = args[i]; 766 } 767 768 CallExprBits.NumPreArgs = 0; 769 RParenLoc = rparenloc; 770} 771 772CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty) 773 : Expr(SC, Empty), SubExprs(0), NumArgs(0) { 774 // FIXME: Why do we allocate this? 775 SubExprs = new (C) Stmt*[PREARGS_START]; 776 CallExprBits.NumPreArgs = 0; 777} 778 779CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, 780 EmptyShell Empty) 781 : Expr(SC, Empty), SubExprs(0), NumArgs(0) { 782 // FIXME: Why do we allocate this? 783 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]; 784 CallExprBits.NumPreArgs = NumPreArgs; 785} 786 787Decl *CallExpr::getCalleeDecl() { 788 Expr *CEE = getCallee()->IgnoreParenImpCasts(); 789 790 while (SubstNonTypeTemplateParmExpr *NTTP 791 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 792 CEE = NTTP->getReplacement()->IgnoreParenCasts(); 793 } 794 795 // If we're calling a dereference, look at the pointer instead. 796 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 797 if (BO->isPtrMemOp()) 798 CEE = BO->getRHS()->IgnoreParenCasts(); 799 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 800 if (UO->getOpcode() == UO_Deref) 801 CEE = UO->getSubExpr()->IgnoreParenCasts(); 802 } 803 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 804 return DRE->getDecl(); 805 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 806 return ME->getMemberDecl(); 807 808 return 0; 809} 810 811FunctionDecl *CallExpr::getDirectCallee() { 812 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); 813} 814 815/// setNumArgs - This changes the number of arguments present in this call. 816/// Any orphaned expressions are deleted by this, and any new operands are set 817/// to null. 818void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { 819 // No change, just return. 820 if (NumArgs == getNumArgs()) return; 821 822 // If shrinking # arguments, just delete the extras and forgot them. 823 if (NumArgs < getNumArgs()) { 824 this->NumArgs = NumArgs; 825 return; 826 } 827 828 // Otherwise, we are growing the # arguments. New an bigger argument array. 829 unsigned NumPreArgs = getNumPreArgs(); 830 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; 831 // Copy over args. 832 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) 833 NewSubExprs[i] = SubExprs[i]; 834 // Null out new args. 835 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; 836 i != NumArgs+PREARGS_START+NumPreArgs; ++i) 837 NewSubExprs[i] = 0; 838 839 if (SubExprs) C.Deallocate(SubExprs); 840 SubExprs = NewSubExprs; 841 this->NumArgs = NumArgs; 842} 843 844/// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If 845/// not, return 0. 846unsigned CallExpr::isBuiltinCall() const { 847 // All simple function calls (e.g. func()) are implicitly cast to pointer to 848 // function. As a result, we try and obtain the DeclRefExpr from the 849 // ImplicitCastExpr. 850 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 851 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 852 return 0; 853 854 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 855 if (!DRE) 856 return 0; 857 858 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 859 if (!FDecl) 860 return 0; 861 862 if (!FDecl->getIdentifier()) 863 return 0; 864 865 return FDecl->getBuiltinID(); 866} 867 868QualType CallExpr::getCallReturnType() const { 869 QualType CalleeType = getCallee()->getType(); 870 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) 871 CalleeType = FnTypePtr->getPointeeType(); 872 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) 873 CalleeType = BPT->getPointeeType(); 874 else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) 875 // This should never be overloaded and so should never return null. 876 CalleeType = Expr::findBoundMemberType(getCallee()); 877 878 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 879 return FnType->getResultType(); 880} 881 882SourceRange CallExpr::getSourceRange() const { 883 if (isa<CXXOperatorCallExpr>(this)) 884 return cast<CXXOperatorCallExpr>(this)->getSourceRange(); 885 886 SourceLocation begin = getCallee()->getLocStart(); 887 if (begin.isInvalid() && getNumArgs() > 0) 888 begin = getArg(0)->getLocStart(); 889 SourceLocation end = getRParenLoc(); 890 if (end.isInvalid() && getNumArgs() > 0) 891 end = getArg(getNumArgs() - 1)->getLocEnd(); 892 return SourceRange(begin, end); 893} 894 895OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type, 896 SourceLocation OperatorLoc, 897 TypeSourceInfo *tsi, 898 OffsetOfNode* compsPtr, unsigned numComps, 899 Expr** exprsPtr, unsigned numExprs, 900 SourceLocation RParenLoc) { 901 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 902 sizeof(OffsetOfNode) * numComps + 903 sizeof(Expr*) * numExprs); 904 905 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps, 906 exprsPtr, numExprs, RParenLoc); 907} 908 909OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C, 910 unsigned numComps, unsigned numExprs) { 911 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 912 sizeof(OffsetOfNode) * numComps + 913 sizeof(Expr*) * numExprs); 914 return new (Mem) OffsetOfExpr(numComps, numExprs); 915} 916 917OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type, 918 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 919 OffsetOfNode* compsPtr, unsigned numComps, 920 Expr** exprsPtr, unsigned numExprs, 921 SourceLocation RParenLoc) 922 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, 923 /*TypeDependent=*/false, 924 /*ValueDependent=*/tsi->getType()->isDependentType(), 925 tsi->getType()->isInstantiationDependentType(), 926 tsi->getType()->containsUnexpandedParameterPack()), 927 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 928 NumComps(numComps), NumExprs(numExprs) 929{ 930 for(unsigned i = 0; i < numComps; ++i) { 931 setComponent(i, compsPtr[i]); 932 } 933 934 for(unsigned i = 0; i < numExprs; ++i) { 935 if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent()) 936 ExprBits.ValueDependent = true; 937 if (exprsPtr[i]->containsUnexpandedParameterPack()) 938 ExprBits.ContainsUnexpandedParameterPack = true; 939 940 setIndexExpr(i, exprsPtr[i]); 941 } 942} 943 944IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const { 945 assert(getKind() == Field || getKind() == Identifier); 946 if (getKind() == Field) 947 return getField()->getIdentifier(); 948 949 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 950} 951 952MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow, 953 NestedNameSpecifierLoc QualifierLoc, 954 SourceLocation TemplateKWLoc, 955 ValueDecl *memberdecl, 956 DeclAccessPair founddecl, 957 DeclarationNameInfo nameinfo, 958 const TemplateArgumentListInfo *targs, 959 QualType ty, 960 ExprValueKind vk, 961 ExprObjectKind ok) { 962 std::size_t Size = sizeof(MemberExpr); 963 964 bool hasQualOrFound = (QualifierLoc || 965 founddecl.getDecl() != memberdecl || 966 founddecl.getAccess() != memberdecl->getAccess()); 967 if (hasQualOrFound) 968 Size += sizeof(MemberNameQualifier); 969 970 if (targs) 971 Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size()); 972 else if (TemplateKWLoc.isValid()) 973 Size += ASTTemplateKWAndArgsInfo::sizeFor(0); 974 975 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); 976 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo, 977 ty, vk, ok); 978 979 if (hasQualOrFound) { 980 // FIXME: Wrong. We should be looking at the member declaration we found. 981 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { 982 E->setValueDependent(true); 983 E->setTypeDependent(true); 984 E->setInstantiationDependent(true); 985 } 986 else if (QualifierLoc && 987 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 988 E->setInstantiationDependent(true); 989 990 E->HasQualifierOrFoundDecl = true; 991 992 MemberNameQualifier *NQ = E->getMemberQualifier(); 993 NQ->QualifierLoc = QualifierLoc; 994 NQ->FoundDecl = founddecl; 995 } 996 997 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid()); 998 999 if (targs) { 1000 bool Dependent = false; 1001 bool InstantiationDependent = false; 1002 bool ContainsUnexpandedParameterPack = false; 1003 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs, 1004 Dependent, 1005 InstantiationDependent, 1006 ContainsUnexpandedParameterPack); 1007 if (InstantiationDependent) 1008 E->setInstantiationDependent(true); 1009 } else if (TemplateKWLoc.isValid()) { 1010 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); 1011 } 1012 1013 return E; 1014} 1015 1016SourceRange MemberExpr::getSourceRange() const { 1017 SourceLocation StartLoc; 1018 if (isImplicitAccess()) { 1019 if (hasQualifier()) 1020 StartLoc = getQualifierLoc().getBeginLoc(); 1021 else 1022 StartLoc = MemberLoc; 1023 } else { 1024 // FIXME: We don't want this to happen. Rather, we should be able to 1025 // detect all kinds of implicit accesses more cleanly. 1026 StartLoc = getBase()->getLocStart(); 1027 if (StartLoc.isInvalid()) 1028 StartLoc = MemberLoc; 1029 } 1030 1031 SourceLocation EndLoc = hasExplicitTemplateArgs() 1032 ? getRAngleLoc() : getMemberNameInfo().getEndLoc(); 1033 1034 return SourceRange(StartLoc, EndLoc); 1035} 1036 1037void CastExpr::CheckCastConsistency() const { 1038 switch (getCastKind()) { 1039 case CK_DerivedToBase: 1040 case CK_UncheckedDerivedToBase: 1041 case CK_DerivedToBaseMemberPointer: 1042 case CK_BaseToDerived: 1043 case CK_BaseToDerivedMemberPointer: 1044 assert(!path_empty() && "Cast kind should have a base path!"); 1045 break; 1046 1047 case CK_CPointerToObjCPointerCast: 1048 assert(getType()->isObjCObjectPointerType()); 1049 assert(getSubExpr()->getType()->isPointerType()); 1050 goto CheckNoBasePath; 1051 1052 case CK_BlockPointerToObjCPointerCast: 1053 assert(getType()->isObjCObjectPointerType()); 1054 assert(getSubExpr()->getType()->isBlockPointerType()); 1055 goto CheckNoBasePath; 1056 1057 case CK_ReinterpretMemberPointer: 1058 assert(getType()->isMemberPointerType()); 1059 assert(getSubExpr()->getType()->isMemberPointerType()); 1060 goto CheckNoBasePath; 1061 1062 case CK_BitCast: 1063 // Arbitrary casts to C pointer types count as bitcasts. 1064 // Otherwise, we should only have block and ObjC pointer casts 1065 // here if they stay within the type kind. 1066 if (!getType()->isPointerType()) { 1067 assert(getType()->isObjCObjectPointerType() == 1068 getSubExpr()->getType()->isObjCObjectPointerType()); 1069 assert(getType()->isBlockPointerType() == 1070 getSubExpr()->getType()->isBlockPointerType()); 1071 } 1072 goto CheckNoBasePath; 1073 1074 case CK_AnyPointerToBlockPointerCast: 1075 assert(getType()->isBlockPointerType()); 1076 assert(getSubExpr()->getType()->isAnyPointerType() && 1077 !getSubExpr()->getType()->isBlockPointerType()); 1078 goto CheckNoBasePath; 1079 1080 case CK_CopyAndAutoreleaseBlockObject: 1081 assert(getType()->isBlockPointerType()); 1082 assert(getSubExpr()->getType()->isBlockPointerType()); 1083 goto CheckNoBasePath; 1084 1085 // These should not have an inheritance path. 1086 case CK_Dynamic: 1087 case CK_ToUnion: 1088 case CK_ArrayToPointerDecay: 1089 case CK_FunctionToPointerDecay: 1090 case CK_NullToMemberPointer: 1091 case CK_NullToPointer: 1092 case CK_ConstructorConversion: 1093 case CK_IntegralToPointer: 1094 case CK_PointerToIntegral: 1095 case CK_ToVoid: 1096 case CK_VectorSplat: 1097 case CK_IntegralCast: 1098 case CK_IntegralToFloating: 1099 case CK_FloatingToIntegral: 1100 case CK_FloatingCast: 1101 case CK_ObjCObjectLValueCast: 1102 case CK_FloatingRealToComplex: 1103 case CK_FloatingComplexToReal: 1104 case CK_FloatingComplexCast: 1105 case CK_FloatingComplexToIntegralComplex: 1106 case CK_IntegralRealToComplex: 1107 case CK_IntegralComplexToReal: 1108 case CK_IntegralComplexCast: 1109 case CK_IntegralComplexToFloatingComplex: 1110 case CK_ARCProduceObject: 1111 case CK_ARCConsumeObject: 1112 case CK_ARCReclaimReturnedObject: 1113 case CK_ARCExtendBlockObject: 1114 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1115 goto CheckNoBasePath; 1116 1117 case CK_Dependent: 1118 case CK_LValueToRValue: 1119 case CK_NoOp: 1120 case CK_AtomicToNonAtomic: 1121 case CK_NonAtomicToAtomic: 1122 case CK_PointerToBoolean: 1123 case CK_IntegralToBoolean: 1124 case CK_FloatingToBoolean: 1125 case CK_MemberPointerToBoolean: 1126 case CK_FloatingComplexToBoolean: 1127 case CK_IntegralComplexToBoolean: 1128 case CK_LValueBitCast: // -> bool& 1129 case CK_UserDefinedConversion: // operator bool() 1130 CheckNoBasePath: 1131 assert(path_empty() && "Cast kind should not have a base path!"); 1132 break; 1133 } 1134} 1135 1136const char *CastExpr::getCastKindName() const { 1137 switch (getCastKind()) { 1138 case CK_Dependent: 1139 return "Dependent"; 1140 case CK_BitCast: 1141 return "BitCast"; 1142 case CK_LValueBitCast: 1143 return "LValueBitCast"; 1144 case CK_LValueToRValue: 1145 return "LValueToRValue"; 1146 case CK_NoOp: 1147 return "NoOp"; 1148 case CK_BaseToDerived: 1149 return "BaseToDerived"; 1150 case CK_DerivedToBase: 1151 return "DerivedToBase"; 1152 case CK_UncheckedDerivedToBase: 1153 return "UncheckedDerivedToBase"; 1154 case CK_Dynamic: 1155 return "Dynamic"; 1156 case CK_ToUnion: 1157 return "ToUnion"; 1158 case CK_ArrayToPointerDecay: 1159 return "ArrayToPointerDecay"; 1160 case CK_FunctionToPointerDecay: 1161 return "FunctionToPointerDecay"; 1162 case CK_NullToMemberPointer: 1163 return "NullToMemberPointer"; 1164 case CK_NullToPointer: 1165 return "NullToPointer"; 1166 case CK_BaseToDerivedMemberPointer: 1167 return "BaseToDerivedMemberPointer"; 1168 case CK_DerivedToBaseMemberPointer: 1169 return "DerivedToBaseMemberPointer"; 1170 case CK_ReinterpretMemberPointer: 1171 return "ReinterpretMemberPointer"; 1172 case CK_UserDefinedConversion: 1173 return "UserDefinedConversion"; 1174 case CK_ConstructorConversion: 1175 return "ConstructorConversion"; 1176 case CK_IntegralToPointer: 1177 return "IntegralToPointer"; 1178 case CK_PointerToIntegral: 1179 return "PointerToIntegral"; 1180 case CK_PointerToBoolean: 1181 return "PointerToBoolean"; 1182 case CK_ToVoid: 1183 return "ToVoid"; 1184 case CK_VectorSplat: 1185 return "VectorSplat"; 1186 case CK_IntegralCast: 1187 return "IntegralCast"; 1188 case CK_IntegralToBoolean: 1189 return "IntegralToBoolean"; 1190 case CK_IntegralToFloating: 1191 return "IntegralToFloating"; 1192 case CK_FloatingToIntegral: 1193 return "FloatingToIntegral"; 1194 case CK_FloatingCast: 1195 return "FloatingCast"; 1196 case CK_FloatingToBoolean: 1197 return "FloatingToBoolean"; 1198 case CK_MemberPointerToBoolean: 1199 return "MemberPointerToBoolean"; 1200 case CK_CPointerToObjCPointerCast: 1201 return "CPointerToObjCPointerCast"; 1202 case CK_BlockPointerToObjCPointerCast: 1203 return "BlockPointerToObjCPointerCast"; 1204 case CK_AnyPointerToBlockPointerCast: 1205 return "AnyPointerToBlockPointerCast"; 1206 case CK_ObjCObjectLValueCast: 1207 return "ObjCObjectLValueCast"; 1208 case CK_FloatingRealToComplex: 1209 return "FloatingRealToComplex"; 1210 case CK_FloatingComplexToReal: 1211 return "FloatingComplexToReal"; 1212 case CK_FloatingComplexToBoolean: 1213 return "FloatingComplexToBoolean"; 1214 case CK_FloatingComplexCast: 1215 return "FloatingComplexCast"; 1216 case CK_FloatingComplexToIntegralComplex: 1217 return "FloatingComplexToIntegralComplex"; 1218 case CK_IntegralRealToComplex: 1219 return "IntegralRealToComplex"; 1220 case CK_IntegralComplexToReal: 1221 return "IntegralComplexToReal"; 1222 case CK_IntegralComplexToBoolean: 1223 return "IntegralComplexToBoolean"; 1224 case CK_IntegralComplexCast: 1225 return "IntegralComplexCast"; 1226 case CK_IntegralComplexToFloatingComplex: 1227 return "IntegralComplexToFloatingComplex"; 1228 case CK_ARCConsumeObject: 1229 return "ARCConsumeObject"; 1230 case CK_ARCProduceObject: 1231 return "ARCProduceObject"; 1232 case CK_ARCReclaimReturnedObject: 1233 return "ARCReclaimReturnedObject"; 1234 case CK_ARCExtendBlockObject: 1235 return "ARCCExtendBlockObject"; 1236 case CK_AtomicToNonAtomic: 1237 return "AtomicToNonAtomic"; 1238 case CK_NonAtomicToAtomic: 1239 return "NonAtomicToAtomic"; 1240 case CK_CopyAndAutoreleaseBlockObject: 1241 return "CopyAndAutoreleaseBlockObject"; 1242 } 1243 1244 llvm_unreachable("Unhandled cast kind!"); 1245} 1246 1247Expr *CastExpr::getSubExprAsWritten() { 1248 Expr *SubExpr = 0; 1249 CastExpr *E = this; 1250 do { 1251 SubExpr = E->getSubExpr(); 1252 1253 // Skip through reference binding to temporary. 1254 if (MaterializeTemporaryExpr *Materialize 1255 = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) 1256 SubExpr = Materialize->GetTemporaryExpr(); 1257 1258 // Skip any temporary bindings; they're implicit. 1259 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 1260 SubExpr = Binder->getSubExpr(); 1261 1262 // Conversions by constructor and conversion functions have a 1263 // subexpression describing the call; strip it off. 1264 if (E->getCastKind() == CK_ConstructorConversion) 1265 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); 1266 else if (E->getCastKind() == CK_UserDefinedConversion) 1267 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); 1268 1269 // If the subexpression we're left with is an implicit cast, look 1270 // through that, too. 1271 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1272 1273 return SubExpr; 1274} 1275 1276CXXBaseSpecifier **CastExpr::path_buffer() { 1277 switch (getStmtClass()) { 1278#define ABSTRACT_STMT(x) 1279#define CASTEXPR(Type, Base) \ 1280 case Stmt::Type##Class: \ 1281 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1); 1282#define STMT(Type, Base) 1283#include "clang/AST/StmtNodes.inc" 1284 default: 1285 llvm_unreachable("non-cast expressions not possible here"); 1286 } 1287} 1288 1289void CastExpr::setCastPath(const CXXCastPath &Path) { 1290 assert(Path.size() == path_size()); 1291 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*)); 1292} 1293 1294ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T, 1295 CastKind Kind, Expr *Operand, 1296 const CXXCastPath *BasePath, 1297 ExprValueKind VK) { 1298 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1299 void *Buffer = 1300 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1301 ImplicitCastExpr *E = 1302 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 1303 if (PathSize) E->setCastPath(*BasePath); 1304 return E; 1305} 1306 1307ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C, 1308 unsigned PathSize) { 1309 void *Buffer = 1310 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1311 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 1312} 1313 1314 1315CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T, 1316 ExprValueKind VK, CastKind K, Expr *Op, 1317 const CXXCastPath *BasePath, 1318 TypeSourceInfo *WrittenTy, 1319 SourceLocation L, SourceLocation R) { 1320 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1321 void *Buffer = 1322 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1323 CStyleCastExpr *E = 1324 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 1325 if (PathSize) E->setCastPath(*BasePath); 1326 return E; 1327} 1328 1329CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) { 1330 void *Buffer = 1331 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1332 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 1333} 1334 1335/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1336/// corresponds to, e.g. "<<=". 1337const char *BinaryOperator::getOpcodeStr(Opcode Op) { 1338 switch (Op) { 1339 case BO_PtrMemD: return ".*"; 1340 case BO_PtrMemI: return "->*"; 1341 case BO_Mul: return "*"; 1342 case BO_Div: return "/"; 1343 case BO_Rem: return "%"; 1344 case BO_Add: return "+"; 1345 case BO_Sub: return "-"; 1346 case BO_Shl: return "<<"; 1347 case BO_Shr: return ">>"; 1348 case BO_LT: return "<"; 1349 case BO_GT: return ">"; 1350 case BO_LE: return "<="; 1351 case BO_GE: return ">="; 1352 case BO_EQ: return "=="; 1353 case BO_NE: return "!="; 1354 case BO_And: return "&"; 1355 case BO_Xor: return "^"; 1356 case BO_Or: return "|"; 1357 case BO_LAnd: return "&&"; 1358 case BO_LOr: return "||"; 1359 case BO_Assign: return "="; 1360 case BO_MulAssign: return "*="; 1361 case BO_DivAssign: return "/="; 1362 case BO_RemAssign: return "%="; 1363 case BO_AddAssign: return "+="; 1364 case BO_SubAssign: return "-="; 1365 case BO_ShlAssign: return "<<="; 1366 case BO_ShrAssign: return ">>="; 1367 case BO_AndAssign: return "&="; 1368 case BO_XorAssign: return "^="; 1369 case BO_OrAssign: return "|="; 1370 case BO_Comma: return ","; 1371 } 1372 1373 llvm_unreachable("Invalid OpCode!"); 1374} 1375 1376BinaryOperatorKind 1377BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 1378 switch (OO) { 1379 default: llvm_unreachable("Not an overloadable binary operator"); 1380 case OO_Plus: return BO_Add; 1381 case OO_Minus: return BO_Sub; 1382 case OO_Star: return BO_Mul; 1383 case OO_Slash: return BO_Div; 1384 case OO_Percent: return BO_Rem; 1385 case OO_Caret: return BO_Xor; 1386 case OO_Amp: return BO_And; 1387 case OO_Pipe: return BO_Or; 1388 case OO_Equal: return BO_Assign; 1389 case OO_Less: return BO_LT; 1390 case OO_Greater: return BO_GT; 1391 case OO_PlusEqual: return BO_AddAssign; 1392 case OO_MinusEqual: return BO_SubAssign; 1393 case OO_StarEqual: return BO_MulAssign; 1394 case OO_SlashEqual: return BO_DivAssign; 1395 case OO_PercentEqual: return BO_RemAssign; 1396 case OO_CaretEqual: return BO_XorAssign; 1397 case OO_AmpEqual: return BO_AndAssign; 1398 case OO_PipeEqual: return BO_OrAssign; 1399 case OO_LessLess: return BO_Shl; 1400 case OO_GreaterGreater: return BO_Shr; 1401 case OO_LessLessEqual: return BO_ShlAssign; 1402 case OO_GreaterGreaterEqual: return BO_ShrAssign; 1403 case OO_EqualEqual: return BO_EQ; 1404 case OO_ExclaimEqual: return BO_NE; 1405 case OO_LessEqual: return BO_LE; 1406 case OO_GreaterEqual: return BO_GE; 1407 case OO_AmpAmp: return BO_LAnd; 1408 case OO_PipePipe: return BO_LOr; 1409 case OO_Comma: return BO_Comma; 1410 case OO_ArrowStar: return BO_PtrMemI; 1411 } 1412} 1413 1414OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 1415 static const OverloadedOperatorKind OverOps[] = { 1416 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 1417 OO_Star, OO_Slash, OO_Percent, 1418 OO_Plus, OO_Minus, 1419 OO_LessLess, OO_GreaterGreater, 1420 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 1421 OO_EqualEqual, OO_ExclaimEqual, 1422 OO_Amp, 1423 OO_Caret, 1424 OO_Pipe, 1425 OO_AmpAmp, 1426 OO_PipePipe, 1427 OO_Equal, OO_StarEqual, 1428 OO_SlashEqual, OO_PercentEqual, 1429 OO_PlusEqual, OO_MinusEqual, 1430 OO_LessLessEqual, OO_GreaterGreaterEqual, 1431 OO_AmpEqual, OO_CaretEqual, 1432 OO_PipeEqual, 1433 OO_Comma 1434 }; 1435 return OverOps[Opc]; 1436} 1437 1438InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc, 1439 Expr **initExprs, unsigned numInits, 1440 SourceLocation rbraceloc) 1441 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 1442 false, false), 1443 InitExprs(C, numInits), 1444 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0) 1445{ 1446 sawArrayRangeDesignator(false); 1447 setInitializesStdInitializerList(false); 1448 for (unsigned I = 0; I != numInits; ++I) { 1449 if (initExprs[I]->isTypeDependent()) 1450 ExprBits.TypeDependent = true; 1451 if (initExprs[I]->isValueDependent()) 1452 ExprBits.ValueDependent = true; 1453 if (initExprs[I]->isInstantiationDependent()) 1454 ExprBits.InstantiationDependent = true; 1455 if (initExprs[I]->containsUnexpandedParameterPack()) 1456 ExprBits.ContainsUnexpandedParameterPack = true; 1457 } 1458 1459 InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits); 1460} 1461 1462void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) { 1463 if (NumInits > InitExprs.size()) 1464 InitExprs.reserve(C, NumInits); 1465} 1466 1467void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) { 1468 InitExprs.resize(C, NumInits, 0); 1469} 1470 1471Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) { 1472 if (Init >= InitExprs.size()) { 1473 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0); 1474 InitExprs.back() = expr; 1475 return 0; 1476 } 1477 1478 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 1479 InitExprs[Init] = expr; 1480 return Result; 1481} 1482 1483void InitListExpr::setArrayFiller(Expr *filler) { 1484 assert(!hasArrayFiller() && "Filler already set!"); 1485 ArrayFillerOrUnionFieldInit = filler; 1486 // Fill out any "holes" in the array due to designated initializers. 1487 Expr **inits = getInits(); 1488 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 1489 if (inits[i] == 0) 1490 inits[i] = filler; 1491} 1492 1493SourceRange InitListExpr::getSourceRange() const { 1494 if (SyntacticForm) 1495 return SyntacticForm->getSourceRange(); 1496 SourceLocation Beg = LBraceLoc, End = RBraceLoc; 1497 if (Beg.isInvalid()) { 1498 // Find the first non-null initializer. 1499 for (InitExprsTy::const_iterator I = InitExprs.begin(), 1500 E = InitExprs.end(); 1501 I != E; ++I) { 1502 if (Stmt *S = *I) { 1503 Beg = S->getLocStart(); 1504 break; 1505 } 1506 } 1507 } 1508 if (End.isInvalid()) { 1509 // Find the first non-null initializer from the end. 1510 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 1511 E = InitExprs.rend(); 1512 I != E; ++I) { 1513 if (Stmt *S = *I) { 1514 End = S->getSourceRange().getEnd(); 1515 break; 1516 } 1517 } 1518 } 1519 return SourceRange(Beg, End); 1520} 1521 1522/// getFunctionType - Return the underlying function type for this block. 1523/// 1524const FunctionProtoType *BlockExpr::getFunctionType() const { 1525 // The block pointer is never sugared, but the function type might be. 1526 return cast<BlockPointerType>(getType()) 1527 ->getPointeeType()->castAs<FunctionProtoType>(); 1528} 1529 1530SourceLocation BlockExpr::getCaretLocation() const { 1531 return TheBlock->getCaretLocation(); 1532} 1533const Stmt *BlockExpr::getBody() const { 1534 return TheBlock->getBody(); 1535} 1536Stmt *BlockExpr::getBody() { 1537 return TheBlock->getBody(); 1538} 1539 1540 1541//===----------------------------------------------------------------------===// 1542// Generic Expression Routines 1543//===----------------------------------------------------------------------===// 1544 1545/// isUnusedResultAWarning - Return true if this immediate expression should 1546/// be warned about if the result is unused. If so, fill in Loc and Ranges 1547/// with location to warn on and the source range[s] to report with the 1548/// warning. 1549bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, 1550 SourceRange &R2, ASTContext &Ctx) const { 1551 // Don't warn if the expr is type dependent. The type could end up 1552 // instantiating to void. 1553 if (isTypeDependent()) 1554 return false; 1555 1556 switch (getStmtClass()) { 1557 default: 1558 if (getType()->isVoidType()) 1559 return false; 1560 Loc = getExprLoc(); 1561 R1 = getSourceRange(); 1562 return true; 1563 case ParenExprClass: 1564 return cast<ParenExpr>(this)->getSubExpr()-> 1565 isUnusedResultAWarning(Loc, R1, R2, Ctx); 1566 case GenericSelectionExprClass: 1567 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 1568 isUnusedResultAWarning(Loc, R1, R2, Ctx); 1569 case UnaryOperatorClass: { 1570 const UnaryOperator *UO = cast<UnaryOperator>(this); 1571 1572 switch (UO->getOpcode()) { 1573 default: break; 1574 case UO_PostInc: 1575 case UO_PostDec: 1576 case UO_PreInc: 1577 case UO_PreDec: // ++/-- 1578 return false; // Not a warning. 1579 case UO_Deref: 1580 // Dereferencing a volatile pointer is a side-effect. 1581 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 1582 return false; 1583 break; 1584 case UO_Real: 1585 case UO_Imag: 1586 // accessing a piece of a volatile complex is a side-effect. 1587 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 1588 .isVolatileQualified()) 1589 return false; 1590 break; 1591 case UO_Extension: 1592 return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1593 } 1594 Loc = UO->getOperatorLoc(); 1595 R1 = UO->getSubExpr()->getSourceRange(); 1596 return true; 1597 } 1598 case BinaryOperatorClass: { 1599 const BinaryOperator *BO = cast<BinaryOperator>(this); 1600 switch (BO->getOpcode()) { 1601 default: 1602 break; 1603 // Consider the RHS of comma for side effects. LHS was checked by 1604 // Sema::CheckCommaOperands. 1605 case BO_Comma: 1606 // ((foo = <blah>), 0) is an idiom for hiding the result (and 1607 // lvalue-ness) of an assignment written in a macro. 1608 if (IntegerLiteral *IE = 1609 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 1610 if (IE->getValue() == 0) 1611 return false; 1612 return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1613 // Consider '||', '&&' to have side effects if the LHS or RHS does. 1614 case BO_LAnd: 1615 case BO_LOr: 1616 if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) || 1617 !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) 1618 return false; 1619 break; 1620 } 1621 if (BO->isAssignmentOp()) 1622 return false; 1623 Loc = BO->getOperatorLoc(); 1624 R1 = BO->getLHS()->getSourceRange(); 1625 R2 = BO->getRHS()->getSourceRange(); 1626 return true; 1627 } 1628 case CompoundAssignOperatorClass: 1629 case VAArgExprClass: 1630 case AtomicExprClass: 1631 return false; 1632 1633 case ConditionalOperatorClass: { 1634 // If only one of the LHS or RHS is a warning, the operator might 1635 // be being used for control flow. Only warn if both the LHS and 1636 // RHS are warnings. 1637 const ConditionalOperator *Exp = cast<ConditionalOperator>(this); 1638 if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) 1639 return false; 1640 if (!Exp->getLHS()) 1641 return true; 1642 return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1643 } 1644 1645 case MemberExprClass: 1646 // If the base pointer or element is to a volatile pointer/field, accessing 1647 // it is a side effect. 1648 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 1649 return false; 1650 Loc = cast<MemberExpr>(this)->getMemberLoc(); 1651 R1 = SourceRange(Loc, Loc); 1652 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 1653 return true; 1654 1655 case ArraySubscriptExprClass: 1656 // If the base pointer or element is to a volatile pointer/field, accessing 1657 // it is a side effect. 1658 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 1659 return false; 1660 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 1661 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 1662 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 1663 return true; 1664 1665 case CXXOperatorCallExprClass: { 1666 // We warn about operator== and operator!= even when user-defined operator 1667 // overloads as there is no reasonable way to define these such that they 1668 // have non-trivial, desirable side-effects. See the -Wunused-comparison 1669 // warning: these operators are commonly typo'ed, and so warning on them 1670 // provides additional value as well. If this list is updated, 1671 // DiagnoseUnusedComparison should be as well. 1672 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 1673 if (Op->getOperator() == OO_EqualEqual || 1674 Op->getOperator() == OO_ExclaimEqual) { 1675 Loc = Op->getOperatorLoc(); 1676 R1 = Op->getSourceRange(); 1677 return true; 1678 } 1679 1680 // Fallthrough for generic call handling. 1681 } 1682 case CallExprClass: 1683 case CXXMemberCallExprClass: { 1684 // If this is a direct call, get the callee. 1685 const CallExpr *CE = cast<CallExpr>(this); 1686 if (const Decl *FD = CE->getCalleeDecl()) { 1687 // If the callee has attribute pure, const, or warn_unused_result, warn 1688 // about it. void foo() { strlen("bar"); } should warn. 1689 // 1690 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 1691 // updated to match for QoI. 1692 if (FD->getAttr<WarnUnusedResultAttr>() || 1693 FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { 1694 Loc = CE->getCallee()->getLocStart(); 1695 R1 = CE->getCallee()->getSourceRange(); 1696 1697 if (unsigned NumArgs = CE->getNumArgs()) 1698 R2 = SourceRange(CE->getArg(0)->getLocStart(), 1699 CE->getArg(NumArgs-1)->getLocEnd()); 1700 return true; 1701 } 1702 } 1703 return false; 1704 } 1705 1706 case CXXTemporaryObjectExprClass: 1707 case CXXConstructExprClass: 1708 return false; 1709 1710 case ObjCMessageExprClass: { 1711 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 1712 if (Ctx.getLangOptions().ObjCAutoRefCount && 1713 ME->isInstanceMessage() && 1714 !ME->getType()->isVoidType() && 1715 ME->getSelector().getIdentifierInfoForSlot(0) && 1716 ME->getSelector().getIdentifierInfoForSlot(0) 1717 ->getName().startswith("init")) { 1718 Loc = getExprLoc(); 1719 R1 = ME->getSourceRange(); 1720 return true; 1721 } 1722 1723 const ObjCMethodDecl *MD = ME->getMethodDecl(); 1724 if (MD && MD->getAttr<WarnUnusedResultAttr>()) { 1725 Loc = getExprLoc(); 1726 return true; 1727 } 1728 return false; 1729 } 1730 1731 case ObjCPropertyRefExprClass: 1732 Loc = getExprLoc(); 1733 R1 = getSourceRange(); 1734 return true; 1735 1736 case PseudoObjectExprClass: { 1737 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 1738 1739 // Only complain about things that have the form of a getter. 1740 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 1741 isa<BinaryOperator>(PO->getSyntacticForm())) 1742 return false; 1743 1744 Loc = getExprLoc(); 1745 R1 = getSourceRange(); 1746 return true; 1747 } 1748 1749 case StmtExprClass: { 1750 // Statement exprs don't logically have side effects themselves, but are 1751 // sometimes used in macros in ways that give them a type that is unused. 1752 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 1753 // however, if the result of the stmt expr is dead, we don't want to emit a 1754 // warning. 1755 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 1756 if (!CS->body_empty()) { 1757 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 1758 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1759 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 1760 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 1761 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1762 } 1763 1764 if (getType()->isVoidType()) 1765 return false; 1766 Loc = cast<StmtExpr>(this)->getLParenLoc(); 1767 R1 = getSourceRange(); 1768 return true; 1769 } 1770 case CStyleCastExprClass: 1771 // If this is an explicit cast to void, allow it. People do this when they 1772 // think they know what they're doing :). 1773 if (getType()->isVoidType()) 1774 return false; 1775 Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); 1776 R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); 1777 return true; 1778 case CXXFunctionalCastExprClass: { 1779 if (getType()->isVoidType()) 1780 return false; 1781 const CastExpr *CE = cast<CastExpr>(this); 1782 1783 // If this is a cast to void or a constructor conversion, check the operand. 1784 // Otherwise, the result of the cast is unused. 1785 if (CE->getCastKind() == CK_ToVoid || 1786 CE->getCastKind() == CK_ConstructorConversion) 1787 return (cast<CastExpr>(this)->getSubExpr() 1788 ->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1789 Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); 1790 R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); 1791 return true; 1792 } 1793 1794 case ImplicitCastExprClass: 1795 // Check the operand, since implicit casts are inserted by Sema 1796 return (cast<ImplicitCastExpr>(this) 1797 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1798 1799 case CXXDefaultArgExprClass: 1800 return (cast<CXXDefaultArgExpr>(this) 1801 ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1802 1803 case CXXNewExprClass: 1804 // FIXME: In theory, there might be new expressions that don't have side 1805 // effects (e.g. a placement new with an uninitialized POD). 1806 case CXXDeleteExprClass: 1807 return false; 1808 case CXXBindTemporaryExprClass: 1809 return (cast<CXXBindTemporaryExpr>(this) 1810 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1811 case ExprWithCleanupsClass: 1812 return (cast<ExprWithCleanups>(this) 1813 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1814 } 1815} 1816 1817/// isOBJCGCCandidate - Check if an expression is objc gc'able. 1818/// returns true, if it is; false otherwise. 1819bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 1820 const Expr *E = IgnoreParens(); 1821 switch (E->getStmtClass()) { 1822 default: 1823 return false; 1824 case ObjCIvarRefExprClass: 1825 return true; 1826 case Expr::UnaryOperatorClass: 1827 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 1828 case ImplicitCastExprClass: 1829 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 1830 case MaterializeTemporaryExprClass: 1831 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() 1832 ->isOBJCGCCandidate(Ctx); 1833 case CStyleCastExprClass: 1834 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 1835 case BlockDeclRefExprClass: 1836 case DeclRefExprClass: { 1837 1838 const Decl *D; 1839 if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) 1840 D = BDRE->getDecl(); 1841 else 1842 D = cast<DeclRefExpr>(E)->getDecl(); 1843 1844 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1845 if (VD->hasGlobalStorage()) 1846 return true; 1847 QualType T = VD->getType(); 1848 // dereferencing to a pointer is always a gc'able candidate, 1849 // unless it is __weak. 1850 return T->isPointerType() && 1851 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 1852 } 1853 return false; 1854 } 1855 case MemberExprClass: { 1856 const MemberExpr *M = cast<MemberExpr>(E); 1857 return M->getBase()->isOBJCGCCandidate(Ctx); 1858 } 1859 case ArraySubscriptExprClass: 1860 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 1861 } 1862} 1863 1864bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 1865 if (isTypeDependent()) 1866 return false; 1867 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 1868} 1869 1870QualType Expr::findBoundMemberType(const Expr *expr) { 1871 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 1872 1873 // Bound member expressions are always one of these possibilities: 1874 // x->m x.m x->*y x.*y 1875 // (possibly parenthesized) 1876 1877 expr = expr->IgnoreParens(); 1878 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 1879 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 1880 return mem->getMemberDecl()->getType(); 1881 } 1882 1883 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 1884 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 1885 ->getPointeeType(); 1886 assert(type->isFunctionType()); 1887 return type; 1888 } 1889 1890 assert(isa<UnresolvedMemberExpr>(expr)); 1891 return QualType(); 1892} 1893 1894static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1, 1895 Expr::CanThrowResult CT2) { 1896 // CanThrowResult constants are ordered so that the maximum is the correct 1897 // merge result. 1898 return CT1 > CT2 ? CT1 : CT2; 1899} 1900 1901static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) { 1902 Expr *E = const_cast<Expr*>(CE); 1903 Expr::CanThrowResult R = Expr::CT_Cannot; 1904 for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) { 1905 R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C)); 1906 } 1907 return R; 1908} 1909 1910static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E, 1911 const Decl *D, 1912 bool NullThrows = true) { 1913 if (!D) 1914 return NullThrows ? Expr::CT_Can : Expr::CT_Cannot; 1915 1916 // See if we can get a function type from the decl somehow. 1917 const ValueDecl *VD = dyn_cast<ValueDecl>(D); 1918 if (!VD) // If we have no clue what we're calling, assume the worst. 1919 return Expr::CT_Can; 1920 1921 // As an extension, we assume that __attribute__((nothrow)) functions don't 1922 // throw. 1923 if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) 1924 return Expr::CT_Cannot; 1925 1926 QualType T = VD->getType(); 1927 const FunctionProtoType *FT; 1928 if ((FT = T->getAs<FunctionProtoType>())) { 1929 } else if (const PointerType *PT = T->getAs<PointerType>()) 1930 FT = PT->getPointeeType()->getAs<FunctionProtoType>(); 1931 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 1932 FT = RT->getPointeeType()->getAs<FunctionProtoType>(); 1933 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) 1934 FT = MT->getPointeeType()->getAs<FunctionProtoType>(); 1935 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) 1936 FT = BT->getPointeeType()->getAs<FunctionProtoType>(); 1937 1938 if (!FT) 1939 return Expr::CT_Can; 1940 1941 if (FT->getExceptionSpecType() == EST_Delayed) { 1942 assert(isa<CXXConstructorDecl>(D) && 1943 "only constructor exception specs can be unknown"); 1944 Ctx.getDiagnostics().Report(E->getLocStart(), 1945 diag::err_exception_spec_unknown) 1946 << E->getSourceRange(); 1947 return Expr::CT_Can; 1948 } 1949 1950 return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can; 1951} 1952 1953static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) { 1954 if (DC->isTypeDependent()) 1955 return Expr::CT_Dependent; 1956 1957 if (!DC->getTypeAsWritten()->isReferenceType()) 1958 return Expr::CT_Cannot; 1959 1960 if (DC->getSubExpr()->isTypeDependent()) 1961 return Expr::CT_Dependent; 1962 1963 return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot; 1964} 1965 1966static Expr::CanThrowResult CanTypeidThrow(ASTContext &C, 1967 const CXXTypeidExpr *DC) { 1968 if (DC->isTypeOperand()) 1969 return Expr::CT_Cannot; 1970 1971 Expr *Op = DC->getExprOperand(); 1972 if (Op->isTypeDependent()) 1973 return Expr::CT_Dependent; 1974 1975 const RecordType *RT = Op->getType()->getAs<RecordType>(); 1976 if (!RT) 1977 return Expr::CT_Cannot; 1978 1979 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) 1980 return Expr::CT_Cannot; 1981 1982 if (Op->Classify(C).isPRValue()) 1983 return Expr::CT_Cannot; 1984 1985 return Expr::CT_Can; 1986} 1987 1988Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const { 1989 // C++ [expr.unary.noexcept]p3: 1990 // [Can throw] if in a potentially-evaluated context the expression would 1991 // contain: 1992 switch (getStmtClass()) { 1993 case CXXThrowExprClass: 1994 // - a potentially evaluated throw-expression 1995 return CT_Can; 1996 1997 case CXXDynamicCastExprClass: { 1998 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), 1999 // where T is a reference type, that requires a run-time check 2000 CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this)); 2001 if (CT == CT_Can) 2002 return CT; 2003 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 2004 } 2005 2006 case CXXTypeidExprClass: 2007 // - a potentially evaluated typeid expression applied to a glvalue 2008 // expression whose type is a polymorphic class type 2009 return CanTypeidThrow(C, cast<CXXTypeidExpr>(this)); 2010 2011 // - a potentially evaluated call to a function, member function, function 2012 // pointer, or member function pointer that does not have a non-throwing 2013 // exception-specification 2014 case CallExprClass: 2015 case CXXMemberCallExprClass: 2016 case CXXOperatorCallExprClass: { 2017 const CallExpr *CE = cast<CallExpr>(this); 2018 CanThrowResult CT; 2019 if (isTypeDependent()) 2020 CT = CT_Dependent; 2021 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) 2022 CT = CT_Cannot; 2023 else 2024 CT = CanCalleeThrow(C, this, CE->getCalleeDecl()); 2025 if (CT == CT_Can) 2026 return CT; 2027 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 2028 } 2029 2030 case CXXConstructExprClass: 2031 case CXXTemporaryObjectExprClass: { 2032 CanThrowResult CT = CanCalleeThrow(C, this, 2033 cast<CXXConstructExpr>(this)->getConstructor()); 2034 if (CT == CT_Can) 2035 return CT; 2036 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 2037 } 2038 2039 case LambdaExprClass: { 2040 const LambdaExpr *Lambda = cast<LambdaExpr>(this); 2041 CanThrowResult CT = Expr::CT_Cannot; 2042 for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(), 2043 CapEnd = Lambda->capture_init_end(); 2044 Cap != CapEnd; ++Cap) 2045 CT = MergeCanThrow(CT, (*Cap)->CanThrow(C)); 2046 return CT; 2047 } 2048 2049 case CXXNewExprClass: { 2050 CanThrowResult CT; 2051 if (isTypeDependent()) 2052 CT = CT_Dependent; 2053 else 2054 CT = CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew()); 2055 if (CT == CT_Can) 2056 return CT; 2057 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 2058 } 2059 2060 case CXXDeleteExprClass: { 2061 CanThrowResult CT; 2062 QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType(); 2063 if (DTy.isNull() || DTy->isDependentType()) { 2064 CT = CT_Dependent; 2065 } else { 2066 CT = CanCalleeThrow(C, this, 2067 cast<CXXDeleteExpr>(this)->getOperatorDelete()); 2068 if (const RecordType *RT = DTy->getAs<RecordType>()) { 2069 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 2070 CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor())); 2071 } 2072 if (CT == CT_Can) 2073 return CT; 2074 } 2075 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 2076 } 2077 2078 case CXXBindTemporaryExprClass: { 2079 // The bound temporary has to be destroyed again, which might throw. 2080 CanThrowResult CT = CanCalleeThrow(C, this, 2081 cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor()); 2082 if (CT == CT_Can) 2083 return CT; 2084 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 2085 } 2086 2087 // ObjC message sends are like function calls, but never have exception 2088 // specs. 2089 case ObjCMessageExprClass: 2090 case ObjCPropertyRefExprClass: 2091 return CT_Can; 2092 2093 // Many other things have subexpressions, so we have to test those. 2094 // Some are simple: 2095 case ConditionalOperatorClass: 2096 case CompoundLiteralExprClass: 2097 case CXXConstCastExprClass: 2098 case CXXDefaultArgExprClass: 2099 case CXXReinterpretCastExprClass: 2100 case DesignatedInitExprClass: 2101 case ExprWithCleanupsClass: 2102 case ExtVectorElementExprClass: 2103 case InitListExprClass: 2104 case MemberExprClass: 2105 case ObjCIsaExprClass: 2106 case ObjCIvarRefExprClass: 2107 case ParenExprClass: 2108 case ParenListExprClass: 2109 case ShuffleVectorExprClass: 2110 case VAArgExprClass: 2111 return CanSubExprsThrow(C, this); 2112 2113 // Some might be dependent for other reasons. 2114 case ArraySubscriptExprClass: 2115 case BinaryOperatorClass: 2116 case CompoundAssignOperatorClass: 2117 case CStyleCastExprClass: 2118 case CXXStaticCastExprClass: 2119 case CXXFunctionalCastExprClass: 2120 case ImplicitCastExprClass: 2121 case MaterializeTemporaryExprClass: 2122 case UnaryOperatorClass: { 2123 CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot; 2124 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 2125 } 2126 2127 // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms. 2128 case StmtExprClass: 2129 return CT_Can; 2130 2131 case ChooseExprClass: 2132 if (isTypeDependent() || isValueDependent()) 2133 return CT_Dependent; 2134 return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C); 2135 2136 case GenericSelectionExprClass: 2137 if (cast<GenericSelectionExpr>(this)->isResultDependent()) 2138 return CT_Dependent; 2139 return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C); 2140 2141 // Some expressions are always dependent. 2142 case CXXDependentScopeMemberExprClass: 2143 case CXXUnresolvedConstructExprClass: 2144 case DependentScopeDeclRefExprClass: 2145 return CT_Dependent; 2146 2147 case AtomicExprClass: 2148 case AsTypeExprClass: 2149 case BinaryConditionalOperatorClass: 2150 case BlockExprClass: 2151 case BlockDeclRefExprClass: 2152 case CUDAKernelCallExprClass: 2153 case DeclRefExprClass: 2154 case ObjCBridgedCastExprClass: 2155 case ObjCIndirectCopyRestoreExprClass: 2156 case ObjCProtocolExprClass: 2157 case ObjCSelectorExprClass: 2158 case OffsetOfExprClass: 2159 case PackExpansionExprClass: 2160 case PseudoObjectExprClass: 2161 case SubstNonTypeTemplateParmExprClass: 2162 case SubstNonTypeTemplateParmPackExprClass: 2163 case UnaryExprOrTypeTraitExprClass: 2164 case UnresolvedLookupExprClass: 2165 case UnresolvedMemberExprClass: 2166 // FIXME: Can any of the above throw? If so, when? 2167 return CT_Cannot; 2168 2169 case AddrLabelExprClass: 2170 case ArrayTypeTraitExprClass: 2171 case BinaryTypeTraitExprClass: 2172 case CXXBoolLiteralExprClass: 2173 case CXXNoexceptExprClass: 2174 case CXXNullPtrLiteralExprClass: 2175 case CXXPseudoDestructorExprClass: 2176 case CXXScalarValueInitExprClass: 2177 case CXXThisExprClass: 2178 case CXXUuidofExprClass: 2179 case CharacterLiteralClass: 2180 case ExpressionTraitExprClass: 2181 case FloatingLiteralClass: 2182 case GNUNullExprClass: 2183 case ImaginaryLiteralClass: 2184 case ImplicitValueInitExprClass: 2185 case IntegerLiteralClass: 2186 case ObjCEncodeExprClass: 2187 case ObjCStringLiteralClass: 2188 case OpaqueValueExprClass: 2189 case PredefinedExprClass: 2190 case SizeOfPackExprClass: 2191 case StringLiteralClass: 2192 case UnaryTypeTraitExprClass: 2193 // These expressions can never throw. 2194 return CT_Cannot; 2195 2196#define STMT(CLASS, PARENT) case CLASS##Class: 2197#define STMT_RANGE(Base, First, Last) 2198#define LAST_STMT_RANGE(BASE, FIRST, LAST) 2199#define EXPR(CLASS, PARENT) 2200#define ABSTRACT_STMT(STMT) 2201#include "clang/AST/StmtNodes.inc" 2202 case NoStmtClass: 2203 llvm_unreachable("Invalid class for expression"); 2204 } 2205 llvm_unreachable("Bogus StmtClass"); 2206} 2207 2208Expr* Expr::IgnoreParens() { 2209 Expr* E = this; 2210 while (true) { 2211 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 2212 E = P->getSubExpr(); 2213 continue; 2214 } 2215 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2216 if (P->getOpcode() == UO_Extension) { 2217 E = P->getSubExpr(); 2218 continue; 2219 } 2220 } 2221 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2222 if (!P->isResultDependent()) { 2223 E = P->getResultExpr(); 2224 continue; 2225 } 2226 } 2227 return E; 2228 } 2229} 2230 2231/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr 2232/// or CastExprs or ImplicitCastExprs, returning their operand. 2233Expr *Expr::IgnoreParenCasts() { 2234 Expr *E = this; 2235 while (true) { 2236 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 2237 E = P->getSubExpr(); 2238 continue; 2239 } 2240 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2241 E = P->getSubExpr(); 2242 continue; 2243 } 2244 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2245 if (P->getOpcode() == UO_Extension) { 2246 E = P->getSubExpr(); 2247 continue; 2248 } 2249 } 2250 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2251 if (!P->isResultDependent()) { 2252 E = P->getResultExpr(); 2253 continue; 2254 } 2255 } 2256 if (MaterializeTemporaryExpr *Materialize 2257 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2258 E = Materialize->GetTemporaryExpr(); 2259 continue; 2260 } 2261 if (SubstNonTypeTemplateParmExpr *NTTP 2262 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2263 E = NTTP->getReplacement(); 2264 continue; 2265 } 2266 return E; 2267 } 2268} 2269 2270/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue 2271/// casts. This is intended purely as a temporary workaround for code 2272/// that hasn't yet been rewritten to do the right thing about those 2273/// casts, and may disappear along with the last internal use. 2274Expr *Expr::IgnoreParenLValueCasts() { 2275 Expr *E = this; 2276 while (true) { 2277 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { 2278 E = P->getSubExpr(); 2279 continue; 2280 } else if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2281 if (P->getCastKind() == CK_LValueToRValue) { 2282 E = P->getSubExpr(); 2283 continue; 2284 } 2285 } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2286 if (P->getOpcode() == UO_Extension) { 2287 E = P->getSubExpr(); 2288 continue; 2289 } 2290 } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2291 if (!P->isResultDependent()) { 2292 E = P->getResultExpr(); 2293 continue; 2294 } 2295 } else if (MaterializeTemporaryExpr *Materialize 2296 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2297 E = Materialize->GetTemporaryExpr(); 2298 continue; 2299 } else if (SubstNonTypeTemplateParmExpr *NTTP 2300 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2301 E = NTTP->getReplacement(); 2302 continue; 2303 } 2304 break; 2305 } 2306 return E; 2307} 2308 2309Expr *Expr::IgnoreParenImpCasts() { 2310 Expr *E = this; 2311 while (true) { 2312 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { 2313 E = P->getSubExpr(); 2314 continue; 2315 } 2316 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { 2317 E = P->getSubExpr(); 2318 continue; 2319 } 2320 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2321 if (P->getOpcode() == UO_Extension) { 2322 E = P->getSubExpr(); 2323 continue; 2324 } 2325 } 2326 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2327 if (!P->isResultDependent()) { 2328 E = P->getResultExpr(); 2329 continue; 2330 } 2331 } 2332 if (MaterializeTemporaryExpr *Materialize 2333 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2334 E = Materialize->GetTemporaryExpr(); 2335 continue; 2336 } 2337 if (SubstNonTypeTemplateParmExpr *NTTP 2338 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2339 E = NTTP->getReplacement(); 2340 continue; 2341 } 2342 return E; 2343 } 2344} 2345 2346Expr *Expr::IgnoreConversionOperator() { 2347 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2348 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2349 return MCE->getImplicitObjectArgument(); 2350 } 2351 return this; 2352} 2353 2354/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the 2355/// value (including ptr->int casts of the same size). Strip off any 2356/// ParenExpr or CastExprs, returning their operand. 2357Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { 2358 Expr *E = this; 2359 while (true) { 2360 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { 2361 E = P->getSubExpr(); 2362 continue; 2363 } 2364 2365 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2366 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2367 // ptr<->int casts of the same width. We also ignore all identity casts. 2368 Expr *SE = P->getSubExpr(); 2369 2370 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { 2371 E = SE; 2372 continue; 2373 } 2374 2375 if ((E->getType()->isPointerType() || 2376 E->getType()->isIntegralType(Ctx)) && 2377 (SE->getType()->isPointerType() || 2378 SE->getType()->isIntegralType(Ctx)) && 2379 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { 2380 E = SE; 2381 continue; 2382 } 2383 } 2384 2385 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2386 if (P->getOpcode() == UO_Extension) { 2387 E = P->getSubExpr(); 2388 continue; 2389 } 2390 } 2391 2392 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2393 if (!P->isResultDependent()) { 2394 E = P->getResultExpr(); 2395 continue; 2396 } 2397 } 2398 2399 if (SubstNonTypeTemplateParmExpr *NTTP 2400 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2401 E = NTTP->getReplacement(); 2402 continue; 2403 } 2404 2405 return E; 2406 } 2407} 2408 2409bool Expr::isDefaultArgument() const { 2410 const Expr *E = this; 2411 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2412 E = M->GetTemporaryExpr(); 2413 2414 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 2415 E = ICE->getSubExprAsWritten(); 2416 2417 return isa<CXXDefaultArgExpr>(E); 2418} 2419 2420/// \brief Skip over any no-op casts and any temporary-binding 2421/// expressions. 2422static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 2423 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2424 E = M->GetTemporaryExpr(); 2425 2426 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2427 if (ICE->getCastKind() == CK_NoOp) 2428 E = ICE->getSubExpr(); 2429 else 2430 break; 2431 } 2432 2433 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 2434 E = BE->getSubExpr(); 2435 2436 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2437 if (ICE->getCastKind() == CK_NoOp) 2438 E = ICE->getSubExpr(); 2439 else 2440 break; 2441 } 2442 2443 return E->IgnoreParens(); 2444} 2445 2446/// isTemporaryObject - Determines if this expression produces a 2447/// temporary of the given class type. 2448bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 2449 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 2450 return false; 2451 2452 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 2453 2454 // Temporaries are by definition pr-values of class type. 2455 if (!E->Classify(C).isPRValue()) { 2456 // In this context, property reference is a message call and is pr-value. 2457 if (!isa<ObjCPropertyRefExpr>(E)) 2458 return false; 2459 } 2460 2461 // Black-list a few cases which yield pr-values of class type that don't 2462 // refer to temporaries of that type: 2463 2464 // - implicit derived-to-base conversions 2465 if (isa<ImplicitCastExpr>(E)) { 2466 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 2467 case CK_DerivedToBase: 2468 case CK_UncheckedDerivedToBase: 2469 return false; 2470 default: 2471 break; 2472 } 2473 } 2474 2475 // - member expressions (all) 2476 if (isa<MemberExpr>(E)) 2477 return false; 2478 2479 // - opaque values (all) 2480 if (isa<OpaqueValueExpr>(E)) 2481 return false; 2482 2483 return true; 2484} 2485 2486bool Expr::isImplicitCXXThis() const { 2487 const Expr *E = this; 2488 2489 // Strip away parentheses and casts we don't care about. 2490 while (true) { 2491 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 2492 E = Paren->getSubExpr(); 2493 continue; 2494 } 2495 2496 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2497 if (ICE->getCastKind() == CK_NoOp || 2498 ICE->getCastKind() == CK_LValueToRValue || 2499 ICE->getCastKind() == CK_DerivedToBase || 2500 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 2501 E = ICE->getSubExpr(); 2502 continue; 2503 } 2504 } 2505 2506 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 2507 if (UnOp->getOpcode() == UO_Extension) { 2508 E = UnOp->getSubExpr(); 2509 continue; 2510 } 2511 } 2512 2513 if (const MaterializeTemporaryExpr *M 2514 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2515 E = M->GetTemporaryExpr(); 2516 continue; 2517 } 2518 2519 break; 2520 } 2521 2522 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 2523 return This->isImplicit(); 2524 2525 return false; 2526} 2527 2528/// hasAnyTypeDependentArguments - Determines if any of the expressions 2529/// in Exprs is type-dependent. 2530bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) { 2531 for (unsigned I = 0; I < NumExprs; ++I) 2532 if (Exprs[I]->isTypeDependent()) 2533 return true; 2534 2535 return false; 2536} 2537 2538/// hasAnyValueDependentArguments - Determines if any of the expressions 2539/// in Exprs is value-dependent. 2540bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) { 2541 for (unsigned I = 0; I < NumExprs; ++I) 2542 if (Exprs[I]->isValueDependent()) 2543 return true; 2544 2545 return false; 2546} 2547 2548bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const { 2549 // This function is attempting whether an expression is an initializer 2550 // which can be evaluated at compile-time. isEvaluatable handles most 2551 // of the cases, but it can't deal with some initializer-specific 2552 // expressions, and it can't deal with aggregates; we deal with those here, 2553 // and fall back to isEvaluatable for the other cases. 2554 2555 // If we ever capture reference-binding directly in the AST, we can 2556 // kill the second parameter. 2557 2558 if (IsForRef) { 2559 EvalResult Result; 2560 return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects; 2561 } 2562 2563 switch (getStmtClass()) { 2564 default: break; 2565 case IntegerLiteralClass: 2566 case FloatingLiteralClass: 2567 case StringLiteralClass: 2568 case ObjCStringLiteralClass: 2569 case ObjCEncodeExprClass: 2570 return true; 2571 case CXXTemporaryObjectExprClass: 2572 case CXXConstructExprClass: { 2573 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 2574 2575 // Only if it's 2576 if (CE->getConstructor()->isTrivial()) { 2577 // 1) an application of the trivial default constructor or 2578 if (!CE->getNumArgs()) return true; 2579 2580 // 2) an elidable trivial copy construction of an operand which is 2581 // itself a constant initializer. Note that we consider the 2582 // operand on its own, *not* as a reference binding. 2583 if (CE->isElidable() && 2584 CE->getArg(0)->isConstantInitializer(Ctx, false)) 2585 return true; 2586 } 2587 2588 // 3) a foldable constexpr constructor. 2589 break; 2590 } 2591 case CompoundLiteralExprClass: { 2592 // This handles gcc's extension that allows global initializers like 2593 // "struct x {int x;} x = (struct x) {};". 2594 // FIXME: This accepts other cases it shouldn't! 2595 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 2596 return Exp->isConstantInitializer(Ctx, false); 2597 } 2598 case InitListExprClass: { 2599 // FIXME: This doesn't deal with fields with reference types correctly. 2600 // FIXME: This incorrectly allows pointers cast to integers to be assigned 2601 // to bitfields. 2602 const InitListExpr *Exp = cast<InitListExpr>(this); 2603 unsigned numInits = Exp->getNumInits(); 2604 for (unsigned i = 0; i < numInits; i++) { 2605 if (!Exp->getInit(i)->isConstantInitializer(Ctx, false)) 2606 return false; 2607 } 2608 return true; 2609 } 2610 case ImplicitValueInitExprClass: 2611 return true; 2612 case ParenExprClass: 2613 return cast<ParenExpr>(this)->getSubExpr() 2614 ->isConstantInitializer(Ctx, IsForRef); 2615 case GenericSelectionExprClass: 2616 if (cast<GenericSelectionExpr>(this)->isResultDependent()) 2617 return false; 2618 return cast<GenericSelectionExpr>(this)->getResultExpr() 2619 ->isConstantInitializer(Ctx, IsForRef); 2620 case ChooseExprClass: 2621 return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx) 2622 ->isConstantInitializer(Ctx, IsForRef); 2623 case UnaryOperatorClass: { 2624 const UnaryOperator* Exp = cast<UnaryOperator>(this); 2625 if (Exp->getOpcode() == UO_Extension) 2626 return Exp->getSubExpr()->isConstantInitializer(Ctx, false); 2627 break; 2628 } 2629 case CXXFunctionalCastExprClass: 2630 case CXXStaticCastExprClass: 2631 case ImplicitCastExprClass: 2632 case CStyleCastExprClass: { 2633 const CastExpr *CE = cast<CastExpr>(this); 2634 2635 // If we're promoting an integer to an _Atomic type then this is constant 2636 // if the integer is constant. We also need to check the converse in case 2637 // someone does something like: 2638 // 2639 // int a = (_Atomic(int))42; 2640 // 2641 // I doubt anyone would write code like this directly, but it's quite 2642 // possible as the result of macro expansions. 2643 if (CE->getCastKind() == CK_NonAtomicToAtomic || 2644 CE->getCastKind() == CK_AtomicToNonAtomic) 2645 return CE->getSubExpr()->isConstantInitializer(Ctx, false); 2646 2647 // Handle bitcasts of vector constants. 2648 if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast) 2649 return CE->getSubExpr()->isConstantInitializer(Ctx, false); 2650 2651 // Handle misc casts we want to ignore. 2652 // FIXME: Is it really safe to ignore all these? 2653 if (CE->getCastKind() == CK_NoOp || 2654 CE->getCastKind() == CK_LValueToRValue || 2655 CE->getCastKind() == CK_ToUnion || 2656 CE->getCastKind() == CK_ConstructorConversion) 2657 return CE->getSubExpr()->isConstantInitializer(Ctx, false); 2658 2659 break; 2660 } 2661 case MaterializeTemporaryExprClass: 2662 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() 2663 ->isConstantInitializer(Ctx, false); 2664 } 2665 return isEvaluatable(Ctx); 2666} 2667 2668namespace { 2669 /// \brief Look for a call to a non-trivial function within an expression. 2670 class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder> 2671 { 2672 typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 2673 2674 bool NonTrivial; 2675 2676 public: 2677 explicit NonTrivialCallFinder(ASTContext &Context) 2678 : Inherited(Context), NonTrivial(false) { } 2679 2680 bool hasNonTrivialCall() const { return NonTrivial; } 2681 2682 void VisitCallExpr(CallExpr *E) { 2683 if (CXXMethodDecl *Method 2684 = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) { 2685 if (Method->isTrivial()) { 2686 // Recurse to children of the call. 2687 Inherited::VisitStmt(E); 2688 return; 2689 } 2690 } 2691 2692 NonTrivial = true; 2693 } 2694 2695 void VisitCXXConstructExpr(CXXConstructExpr *E) { 2696 if (E->getConstructor()->isTrivial()) { 2697 // Recurse to children of the call. 2698 Inherited::VisitStmt(E); 2699 return; 2700 } 2701 2702 NonTrivial = true; 2703 } 2704 2705 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2706 if (E->getTemporary()->getDestructor()->isTrivial()) { 2707 Inherited::VisitStmt(E); 2708 return; 2709 } 2710 2711 NonTrivial = true; 2712 } 2713 }; 2714} 2715 2716bool Expr::hasNonTrivialCall(ASTContext &Ctx) { 2717 NonTrivialCallFinder Finder(Ctx); 2718 Finder.Visit(this); 2719 return Finder.hasNonTrivialCall(); 2720} 2721 2722/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 2723/// pointer constant or not, as well as the specific kind of constant detected. 2724/// Null pointer constants can be integer constant expressions with the 2725/// value zero, casts of zero to void*, nullptr (C++0X), or __null 2726/// (a GNU extension). 2727Expr::NullPointerConstantKind 2728Expr::isNullPointerConstant(ASTContext &Ctx, 2729 NullPointerConstantValueDependence NPC) const { 2730 if (isValueDependent()) { 2731 switch (NPC) { 2732 case NPC_NeverValueDependent: 2733 llvm_unreachable("Unexpected value dependent expression!"); 2734 case NPC_ValueDependentIsNull: 2735 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 2736 return NPCK_ZeroInteger; 2737 else 2738 return NPCK_NotNull; 2739 2740 case NPC_ValueDependentIsNotNull: 2741 return NPCK_NotNull; 2742 } 2743 } 2744 2745 // Strip off a cast to void*, if it exists. Except in C++. 2746 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 2747 if (!Ctx.getLangOptions().CPlusPlus) { 2748 // Check that it is a cast to void*. 2749 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 2750 QualType Pointee = PT->getPointeeType(); 2751 if (!Pointee.hasQualifiers() && 2752 Pointee->isVoidType() && // to void* 2753 CE->getSubExpr()->getType()->isIntegerType()) // from int. 2754 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2755 } 2756 } 2757 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 2758 // Ignore the ImplicitCastExpr type entirely. 2759 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2760 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 2761 // Accept ((void*)0) as a null pointer constant, as many other 2762 // implementations do. 2763 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2764 } else if (const GenericSelectionExpr *GE = 2765 dyn_cast<GenericSelectionExpr>(this)) { 2766 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 2767 } else if (const CXXDefaultArgExpr *DefaultArg 2768 = dyn_cast<CXXDefaultArgExpr>(this)) { 2769 // See through default argument expressions 2770 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 2771 } else if (isa<GNUNullExpr>(this)) { 2772 // The GNU __null extension is always a null pointer constant. 2773 return NPCK_GNUNull; 2774 } else if (const MaterializeTemporaryExpr *M 2775 = dyn_cast<MaterializeTemporaryExpr>(this)) { 2776 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); 2777 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 2778 if (const Expr *Source = OVE->getSourceExpr()) 2779 return Source->isNullPointerConstant(Ctx, NPC); 2780 } 2781 2782 // C++0x nullptr_t is always a null pointer constant. 2783 if (getType()->isNullPtrType()) 2784 return NPCK_CXX0X_nullptr; 2785 2786 if (const RecordType *UT = getType()->getAsUnionType()) 2787 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 2788 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 2789 const Expr *InitExpr = CLE->getInitializer(); 2790 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 2791 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 2792 } 2793 // This expression must be an integer type. 2794 if (!getType()->isIntegerType() || 2795 (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType())) 2796 return NPCK_NotNull; 2797 2798 // If we have an integer constant expression, we need to *evaluate* it and 2799 // test for the value 0. Don't use the C++11 constant expression semantics 2800 // for this, for now; once the dust settles on core issue 903, we might only 2801 // allow a literal 0 here in C++11 mode. 2802 if (Ctx.getLangOptions().CPlusPlus0x) { 2803 if (!isCXX98IntegralConstantExpr(Ctx)) 2804 return NPCK_NotNull; 2805 } else { 2806 if (!isIntegerConstantExpr(Ctx)) 2807 return NPCK_NotNull; 2808 } 2809 2810 return (EvaluateKnownConstInt(Ctx) == 0) ? NPCK_ZeroInteger : NPCK_NotNull; 2811} 2812 2813/// \brief If this expression is an l-value for an Objective C 2814/// property, find the underlying property reference expression. 2815const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 2816 const Expr *E = this; 2817 while (true) { 2818 assert((E->getValueKind() == VK_LValue && 2819 E->getObjectKind() == OK_ObjCProperty) && 2820 "expression is not a property reference"); 2821 E = E->IgnoreParenCasts(); 2822 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 2823 if (BO->getOpcode() == BO_Comma) { 2824 E = BO->getRHS(); 2825 continue; 2826 } 2827 } 2828 2829 break; 2830 } 2831 2832 return cast<ObjCPropertyRefExpr>(E); 2833} 2834 2835FieldDecl *Expr::getBitField() { 2836 Expr *E = this->IgnoreParens(); 2837 2838 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2839 if (ICE->getCastKind() == CK_LValueToRValue || 2840 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 2841 E = ICE->getSubExpr()->IgnoreParens(); 2842 else 2843 break; 2844 } 2845 2846 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 2847 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 2848 if (Field->isBitField()) 2849 return Field; 2850 2851 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) 2852 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 2853 if (Field->isBitField()) 2854 return Field; 2855 2856 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 2857 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 2858 return BinOp->getLHS()->getBitField(); 2859 2860 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 2861 return BinOp->getRHS()->getBitField(); 2862 } 2863 2864 return 0; 2865} 2866 2867bool Expr::refersToVectorElement() const { 2868 const Expr *E = this->IgnoreParens(); 2869 2870 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2871 if (ICE->getValueKind() != VK_RValue && 2872 ICE->getCastKind() == CK_NoOp) 2873 E = ICE->getSubExpr()->IgnoreParens(); 2874 else 2875 break; 2876 } 2877 2878 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 2879 return ASE->getBase()->getType()->isVectorType(); 2880 2881 if (isa<ExtVectorElementExpr>(E)) 2882 return true; 2883 2884 return false; 2885} 2886 2887/// isArrow - Return true if the base expression is a pointer to vector, 2888/// return false if the base expression is a vector. 2889bool ExtVectorElementExpr::isArrow() const { 2890 return getBase()->getType()->isPointerType(); 2891} 2892 2893unsigned ExtVectorElementExpr::getNumElements() const { 2894 if (const VectorType *VT = getType()->getAs<VectorType>()) 2895 return VT->getNumElements(); 2896 return 1; 2897} 2898 2899/// containsDuplicateElements - Return true if any element access is repeated. 2900bool ExtVectorElementExpr::containsDuplicateElements() const { 2901 // FIXME: Refactor this code to an accessor on the AST node which returns the 2902 // "type" of component access, and share with code below and in Sema. 2903 StringRef Comp = Accessor->getName(); 2904 2905 // Halving swizzles do not contain duplicate elements. 2906 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 2907 return false; 2908 2909 // Advance past s-char prefix on hex swizzles. 2910 if (Comp[0] == 's' || Comp[0] == 'S') 2911 Comp = Comp.substr(1); 2912 2913 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 2914 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 2915 return true; 2916 2917 return false; 2918} 2919 2920/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 2921void ExtVectorElementExpr::getEncodedElementAccess( 2922 SmallVectorImpl<unsigned> &Elts) const { 2923 StringRef Comp = Accessor->getName(); 2924 if (Comp[0] == 's' || Comp[0] == 'S') 2925 Comp = Comp.substr(1); 2926 2927 bool isHi = Comp == "hi"; 2928 bool isLo = Comp == "lo"; 2929 bool isEven = Comp == "even"; 2930 bool isOdd = Comp == "odd"; 2931 2932 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 2933 uint64_t Index; 2934 2935 if (isHi) 2936 Index = e + i; 2937 else if (isLo) 2938 Index = i; 2939 else if (isEven) 2940 Index = 2 * i; 2941 else if (isOdd) 2942 Index = 2 * i + 1; 2943 else 2944 Index = ExtVectorType::getAccessorIdx(Comp[i]); 2945 2946 Elts.push_back(Index); 2947 } 2948} 2949 2950ObjCMessageExpr::ObjCMessageExpr(QualType T, 2951 ExprValueKind VK, 2952 SourceLocation LBracLoc, 2953 SourceLocation SuperLoc, 2954 bool IsInstanceSuper, 2955 QualType SuperType, 2956 Selector Sel, 2957 ArrayRef<SourceLocation> SelLocs, 2958 SelectorLocationsKind SelLocsK, 2959 ObjCMethodDecl *Method, 2960 ArrayRef<Expr *> Args, 2961 SourceLocation RBracLoc, 2962 bool isImplicit) 2963 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, 2964 /*TypeDependent=*/false, /*ValueDependent=*/false, 2965 /*InstantiationDependent=*/false, 2966 /*ContainsUnexpandedParameterPack=*/false), 2967 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 2968 : Sel.getAsOpaquePtr())), 2969 Kind(IsInstanceSuper? SuperInstance : SuperClass), 2970 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit), 2971 SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 2972{ 2973 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 2974 setReceiverPointer(SuperType.getAsOpaquePtr()); 2975} 2976 2977ObjCMessageExpr::ObjCMessageExpr(QualType T, 2978 ExprValueKind VK, 2979 SourceLocation LBracLoc, 2980 TypeSourceInfo *Receiver, 2981 Selector Sel, 2982 ArrayRef<SourceLocation> SelLocs, 2983 SelectorLocationsKind SelLocsK, 2984 ObjCMethodDecl *Method, 2985 ArrayRef<Expr *> Args, 2986 SourceLocation RBracLoc, 2987 bool isImplicit) 2988 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(), 2989 T->isDependentType(), T->isInstantiationDependentType(), 2990 T->containsUnexpandedParameterPack()), 2991 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 2992 : Sel.getAsOpaquePtr())), 2993 Kind(Class), 2994 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit), 2995 LBracLoc(LBracLoc), RBracLoc(RBracLoc) 2996{ 2997 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 2998 setReceiverPointer(Receiver); 2999} 3000 3001ObjCMessageExpr::ObjCMessageExpr(QualType T, 3002 ExprValueKind VK, 3003 SourceLocation LBracLoc, 3004 Expr *Receiver, 3005 Selector Sel, 3006 ArrayRef<SourceLocation> SelLocs, 3007 SelectorLocationsKind SelLocsK, 3008 ObjCMethodDecl *Method, 3009 ArrayRef<Expr *> Args, 3010 SourceLocation RBracLoc, 3011 bool isImplicit) 3012 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(), 3013 Receiver->isTypeDependent(), 3014 Receiver->isInstantiationDependent(), 3015 Receiver->containsUnexpandedParameterPack()), 3016 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 3017 : Sel.getAsOpaquePtr())), 3018 Kind(Instance), 3019 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit), 3020 LBracLoc(LBracLoc), RBracLoc(RBracLoc) 3021{ 3022 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 3023 setReceiverPointer(Receiver); 3024} 3025 3026void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args, 3027 ArrayRef<SourceLocation> SelLocs, 3028 SelectorLocationsKind SelLocsK) { 3029 setNumArgs(Args.size()); 3030 Expr **MyArgs = getArgs(); 3031 for (unsigned I = 0; I != Args.size(); ++I) { 3032 if (Args[I]->isTypeDependent()) 3033 ExprBits.TypeDependent = true; 3034 if (Args[I]->isValueDependent()) 3035 ExprBits.ValueDependent = true; 3036 if (Args[I]->isInstantiationDependent()) 3037 ExprBits.InstantiationDependent = true; 3038 if (Args[I]->containsUnexpandedParameterPack()) 3039 ExprBits.ContainsUnexpandedParameterPack = true; 3040 3041 MyArgs[I] = Args[I]; 3042 } 3043 3044 SelLocsKind = SelLocsK; 3045 if (!isImplicit()) { 3046 if (SelLocsK == SelLoc_NonStandard) 3047 std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs()); 3048 } 3049} 3050 3051ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 3052 ExprValueKind VK, 3053 SourceLocation LBracLoc, 3054 SourceLocation SuperLoc, 3055 bool IsInstanceSuper, 3056 QualType SuperType, 3057 Selector Sel, 3058 ArrayRef<SourceLocation> SelLocs, 3059 ObjCMethodDecl *Method, 3060 ArrayRef<Expr *> Args, 3061 SourceLocation RBracLoc, 3062 bool isImplicit) { 3063 assert((!SelLocs.empty() || isImplicit) && 3064 "No selector locs for non-implicit message"); 3065 ObjCMessageExpr *Mem; 3066 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 3067 if (isImplicit) 3068 Mem = alloc(Context, Args.size(), 0); 3069 else 3070 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 3071 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper, 3072 SuperType, Sel, SelLocs, SelLocsK, 3073 Method, Args, RBracLoc, isImplicit); 3074} 3075 3076ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 3077 ExprValueKind VK, 3078 SourceLocation LBracLoc, 3079 TypeSourceInfo *Receiver, 3080 Selector Sel, 3081 ArrayRef<SourceLocation> SelLocs, 3082 ObjCMethodDecl *Method, 3083 ArrayRef<Expr *> Args, 3084 SourceLocation RBracLoc, 3085 bool isImplicit) { 3086 assert((!SelLocs.empty() || isImplicit) && 3087 "No selector locs for non-implicit message"); 3088 ObjCMessageExpr *Mem; 3089 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 3090 if (isImplicit) 3091 Mem = alloc(Context, Args.size(), 0); 3092 else 3093 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 3094 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, 3095 SelLocs, SelLocsK, Method, Args, RBracLoc, 3096 isImplicit); 3097} 3098 3099ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 3100 ExprValueKind VK, 3101 SourceLocation LBracLoc, 3102 Expr *Receiver, 3103 Selector Sel, 3104 ArrayRef<SourceLocation> SelLocs, 3105 ObjCMethodDecl *Method, 3106 ArrayRef<Expr *> Args, 3107 SourceLocation RBracLoc, 3108 bool isImplicit) { 3109 assert((!SelLocs.empty() || isImplicit) && 3110 "No selector locs for non-implicit message"); 3111 ObjCMessageExpr *Mem; 3112 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 3113 if (isImplicit) 3114 Mem = alloc(Context, Args.size(), 0); 3115 else 3116 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 3117 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, 3118 SelLocs, SelLocsK, Method, Args, RBracLoc, 3119 isImplicit); 3120} 3121 3122ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context, 3123 unsigned NumArgs, 3124 unsigned NumStoredSelLocs) { 3125 ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs); 3126 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs); 3127} 3128 3129ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C, 3130 ArrayRef<Expr *> Args, 3131 SourceLocation RBraceLoc, 3132 ArrayRef<SourceLocation> SelLocs, 3133 Selector Sel, 3134 SelectorLocationsKind &SelLocsK) { 3135 SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc); 3136 unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size() 3137 : 0; 3138 return alloc(C, Args.size(), NumStoredSelLocs); 3139} 3140 3141ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C, 3142 unsigned NumArgs, 3143 unsigned NumStoredSelLocs) { 3144 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 3145 NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation); 3146 return (ObjCMessageExpr *)C.Allocate(Size, 3147 llvm::AlignOf<ObjCMessageExpr>::Alignment); 3148} 3149 3150void ObjCMessageExpr::getSelectorLocs( 3151 SmallVectorImpl<SourceLocation> &SelLocs) const { 3152 for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i) 3153 SelLocs.push_back(getSelectorLoc(i)); 3154} 3155 3156SourceRange ObjCMessageExpr::getReceiverRange() const { 3157 switch (getReceiverKind()) { 3158 case Instance: 3159 return getInstanceReceiver()->getSourceRange(); 3160 3161 case Class: 3162 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange(); 3163 3164 case SuperInstance: 3165 case SuperClass: 3166 return getSuperLoc(); 3167 } 3168 3169 llvm_unreachable("Invalid ReceiverKind!"); 3170} 3171 3172Selector ObjCMessageExpr::getSelector() const { 3173 if (HasMethod) 3174 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod) 3175 ->getSelector(); 3176 return Selector(SelectorOrMethod); 3177} 3178 3179ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const { 3180 switch (getReceiverKind()) { 3181 case Instance: 3182 if (const ObjCObjectPointerType *Ptr 3183 = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>()) 3184 return Ptr->getInterfaceDecl(); 3185 break; 3186 3187 case Class: 3188 if (const ObjCObjectType *Ty 3189 = getClassReceiver()->getAs<ObjCObjectType>()) 3190 return Ty->getInterface(); 3191 break; 3192 3193 case SuperInstance: 3194 if (const ObjCObjectPointerType *Ptr 3195 = getSuperType()->getAs<ObjCObjectPointerType>()) 3196 return Ptr->getInterfaceDecl(); 3197 break; 3198 3199 case SuperClass: 3200 if (const ObjCObjectType *Iface 3201 = getSuperType()->getAs<ObjCObjectType>()) 3202 return Iface->getInterface(); 3203 break; 3204 } 3205 3206 return 0; 3207} 3208 3209StringRef ObjCBridgedCastExpr::getBridgeKindName() const { 3210 switch (getBridgeKind()) { 3211 case OBC_Bridge: 3212 return "__bridge"; 3213 case OBC_BridgeTransfer: 3214 return "__bridge_transfer"; 3215 case OBC_BridgeRetained: 3216 return "__bridge_retained"; 3217 } 3218 3219 llvm_unreachable("Invalid BridgeKind!"); 3220} 3221 3222bool ChooseExpr::isConditionTrue(const ASTContext &C) const { 3223 return getCond()->EvaluateKnownConstInt(C) != 0; 3224} 3225 3226ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr, 3227 QualType Type, SourceLocation BLoc, 3228 SourceLocation RP) 3229 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, 3230 Type->isDependentType(), Type->isDependentType(), 3231 Type->isInstantiationDependentType(), 3232 Type->containsUnexpandedParameterPack()), 3233 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) 3234{ 3235 SubExprs = new (C) Stmt*[nexpr]; 3236 for (unsigned i = 0; i < nexpr; i++) { 3237 if (args[i]->isTypeDependent()) 3238 ExprBits.TypeDependent = true; 3239 if (args[i]->isValueDependent()) 3240 ExprBits.ValueDependent = true; 3241 if (args[i]->isInstantiationDependent()) 3242 ExprBits.InstantiationDependent = true; 3243 if (args[i]->containsUnexpandedParameterPack()) 3244 ExprBits.ContainsUnexpandedParameterPack = true; 3245 3246 SubExprs[i] = args[i]; 3247 } 3248} 3249 3250void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs, 3251 unsigned NumExprs) { 3252 if (SubExprs) C.Deallocate(SubExprs); 3253 3254 SubExprs = new (C) Stmt* [NumExprs]; 3255 this->NumExprs = NumExprs; 3256 memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs); 3257} 3258 3259GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, 3260 SourceLocation GenericLoc, Expr *ControllingExpr, 3261 TypeSourceInfo **AssocTypes, Expr **AssocExprs, 3262 unsigned NumAssocs, SourceLocation DefaultLoc, 3263 SourceLocation RParenLoc, 3264 bool ContainsUnexpandedParameterPack, 3265 unsigned ResultIndex) 3266 : Expr(GenericSelectionExprClass, 3267 AssocExprs[ResultIndex]->getType(), 3268 AssocExprs[ResultIndex]->getValueKind(), 3269 AssocExprs[ResultIndex]->getObjectKind(), 3270 AssocExprs[ResultIndex]->isTypeDependent(), 3271 AssocExprs[ResultIndex]->isValueDependent(), 3272 AssocExprs[ResultIndex]->isInstantiationDependent(), 3273 ContainsUnexpandedParameterPack), 3274 AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), 3275 SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), 3276 ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), 3277 RParenLoc(RParenLoc) { 3278 SubExprs[CONTROLLING] = ControllingExpr; 3279 std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); 3280 std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); 3281} 3282 3283GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, 3284 SourceLocation GenericLoc, Expr *ControllingExpr, 3285 TypeSourceInfo **AssocTypes, Expr **AssocExprs, 3286 unsigned NumAssocs, SourceLocation DefaultLoc, 3287 SourceLocation RParenLoc, 3288 bool ContainsUnexpandedParameterPack) 3289 : Expr(GenericSelectionExprClass, 3290 Context.DependentTy, 3291 VK_RValue, 3292 OK_Ordinary, 3293 /*isTypeDependent=*/true, 3294 /*isValueDependent=*/true, 3295 /*isInstantiationDependent=*/true, 3296 ContainsUnexpandedParameterPack), 3297 AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), 3298 SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), 3299 ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), 3300 RParenLoc(RParenLoc) { 3301 SubExprs[CONTROLLING] = ControllingExpr; 3302 std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); 3303 std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); 3304} 3305 3306//===----------------------------------------------------------------------===// 3307// DesignatedInitExpr 3308//===----------------------------------------------------------------------===// 3309 3310IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 3311 assert(Kind == FieldDesignator && "Only valid on a field designator"); 3312 if (Field.NameOrField & 0x01) 3313 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 3314 else 3315 return getField()->getIdentifier(); 3316} 3317 3318DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty, 3319 unsigned NumDesignators, 3320 const Designator *Designators, 3321 SourceLocation EqualOrColonLoc, 3322 bool GNUSyntax, 3323 Expr **IndexExprs, 3324 unsigned NumIndexExprs, 3325 Expr *Init) 3326 : Expr(DesignatedInitExprClass, Ty, 3327 Init->getValueKind(), Init->getObjectKind(), 3328 Init->isTypeDependent(), Init->isValueDependent(), 3329 Init->isInstantiationDependent(), 3330 Init->containsUnexpandedParameterPack()), 3331 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 3332 NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) { 3333 this->Designators = new (C) Designator[NumDesignators]; 3334 3335 // Record the initializer itself. 3336 child_range Child = children(); 3337 *Child++ = Init; 3338 3339 // Copy the designators and their subexpressions, computing 3340 // value-dependence along the way. 3341 unsigned IndexIdx = 0; 3342 for (unsigned I = 0; I != NumDesignators; ++I) { 3343 this->Designators[I] = Designators[I]; 3344 3345 if (this->Designators[I].isArrayDesignator()) { 3346 // Compute type- and value-dependence. 3347 Expr *Index = IndexExprs[IndexIdx]; 3348 if (Index->isTypeDependent() || Index->isValueDependent()) 3349 ExprBits.ValueDependent = true; 3350 if (Index->isInstantiationDependent()) 3351 ExprBits.InstantiationDependent = true; 3352 // Propagate unexpanded parameter packs. 3353 if (Index->containsUnexpandedParameterPack()) 3354 ExprBits.ContainsUnexpandedParameterPack = true; 3355 3356 // Copy the index expressions into permanent storage. 3357 *Child++ = IndexExprs[IndexIdx++]; 3358 } else if (this->Designators[I].isArrayRangeDesignator()) { 3359 // Compute type- and value-dependence. 3360 Expr *Start = IndexExprs[IndexIdx]; 3361 Expr *End = IndexExprs[IndexIdx + 1]; 3362 if (Start->isTypeDependent() || Start->isValueDependent() || 3363 End->isTypeDependent() || End->isValueDependent()) { 3364 ExprBits.ValueDependent = true; 3365 ExprBits.InstantiationDependent = true; 3366 } else if (Start->isInstantiationDependent() || 3367 End->isInstantiationDependent()) { 3368 ExprBits.InstantiationDependent = true; 3369 } 3370 3371 // Propagate unexpanded parameter packs. 3372 if (Start->containsUnexpandedParameterPack() || 3373 End->containsUnexpandedParameterPack()) 3374 ExprBits.ContainsUnexpandedParameterPack = true; 3375 3376 // Copy the start/end expressions into permanent storage. 3377 *Child++ = IndexExprs[IndexIdx++]; 3378 *Child++ = IndexExprs[IndexIdx++]; 3379 } 3380 } 3381 3382 assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions"); 3383} 3384 3385DesignatedInitExpr * 3386DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, 3387 unsigned NumDesignators, 3388 Expr **IndexExprs, unsigned NumIndexExprs, 3389 SourceLocation ColonOrEqualLoc, 3390 bool UsesColonSyntax, Expr *Init) { 3391 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3392 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 3393 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, 3394 ColonOrEqualLoc, UsesColonSyntax, 3395 IndexExprs, NumIndexExprs, Init); 3396} 3397 3398DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, 3399 unsigned NumIndexExprs) { 3400 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3401 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 3402 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 3403} 3404 3405void DesignatedInitExpr::setDesignators(ASTContext &C, 3406 const Designator *Desigs, 3407 unsigned NumDesigs) { 3408 Designators = new (C) Designator[NumDesigs]; 3409 NumDesignators = NumDesigs; 3410 for (unsigned I = 0; I != NumDesigs; ++I) 3411 Designators[I] = Desigs[I]; 3412} 3413 3414SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 3415 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 3416 if (size() == 1) 3417 return DIE->getDesignator(0)->getSourceRange(); 3418 return SourceRange(DIE->getDesignator(0)->getStartLocation(), 3419 DIE->getDesignator(size()-1)->getEndLocation()); 3420} 3421 3422SourceRange DesignatedInitExpr::getSourceRange() const { 3423 SourceLocation StartLoc; 3424 Designator &First = 3425 *const_cast<DesignatedInitExpr*>(this)->designators_begin(); 3426 if (First.isFieldDesignator()) { 3427 if (GNUSyntax) 3428 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 3429 else 3430 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 3431 } else 3432 StartLoc = 3433 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 3434 return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); 3435} 3436 3437Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { 3438 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 3439 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 3440 Ptr += sizeof(DesignatedInitExpr); 3441 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 3442 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3443} 3444 3445Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { 3446 assert(D.Kind == Designator::ArrayRangeDesignator && 3447 "Requires array range designator"); 3448 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 3449 Ptr += sizeof(DesignatedInitExpr); 3450 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 3451 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3452} 3453 3454Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { 3455 assert(D.Kind == Designator::ArrayRangeDesignator && 3456 "Requires array range designator"); 3457 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 3458 Ptr += sizeof(DesignatedInitExpr); 3459 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 3460 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); 3461} 3462 3463/// \brief Replaces the designator at index @p Idx with the series 3464/// of designators in [First, Last). 3465void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx, 3466 const Designator *First, 3467 const Designator *Last) { 3468 unsigned NumNewDesignators = Last - First; 3469 if (NumNewDesignators == 0) { 3470 std::copy_backward(Designators + Idx + 1, 3471 Designators + NumDesignators, 3472 Designators + Idx); 3473 --NumNewDesignators; 3474 return; 3475 } else if (NumNewDesignators == 1) { 3476 Designators[Idx] = *First; 3477 return; 3478 } 3479 3480 Designator *NewDesignators 3481 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 3482 std::copy(Designators, Designators + Idx, NewDesignators); 3483 std::copy(First, Last, NewDesignators + Idx); 3484 std::copy(Designators + Idx + 1, Designators + NumDesignators, 3485 NewDesignators + Idx + NumNewDesignators); 3486 Designators = NewDesignators; 3487 NumDesignators = NumDesignators - 1 + NumNewDesignators; 3488} 3489 3490ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc, 3491 Expr **exprs, unsigned nexprs, 3492 SourceLocation rparenloc) 3493 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, 3494 false, false, false, false), 3495 NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) { 3496 Exprs = new (C) Stmt*[nexprs]; 3497 for (unsigned i = 0; i != nexprs; ++i) { 3498 if (exprs[i]->isTypeDependent()) 3499 ExprBits.TypeDependent = true; 3500 if (exprs[i]->isValueDependent()) 3501 ExprBits.ValueDependent = true; 3502 if (exprs[i]->isInstantiationDependent()) 3503 ExprBits.InstantiationDependent = true; 3504 if (exprs[i]->containsUnexpandedParameterPack()) 3505 ExprBits.ContainsUnexpandedParameterPack = true; 3506 3507 Exprs[i] = exprs[i]; 3508 } 3509} 3510 3511const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 3512 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 3513 e = ewc->getSubExpr(); 3514 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 3515 e = m->GetTemporaryExpr(); 3516 e = cast<CXXConstructExpr>(e)->getArg(0); 3517 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 3518 e = ice->getSubExpr(); 3519 return cast<OpaqueValueExpr>(e); 3520} 3521 3522PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh, 3523 unsigned numSemanticExprs) { 3524 void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) + 3525 (1 + numSemanticExprs) * sizeof(Expr*), 3526 llvm::alignOf<PseudoObjectExpr>()); 3527 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 3528} 3529 3530PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 3531 : Expr(PseudoObjectExprClass, shell) { 3532 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 3533} 3534 3535PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax, 3536 ArrayRef<Expr*> semantics, 3537 unsigned resultIndex) { 3538 assert(syntax && "no syntactic expression!"); 3539 assert(semantics.size() && "no semantic expressions!"); 3540 3541 QualType type; 3542 ExprValueKind VK; 3543 if (resultIndex == NoResult) { 3544 type = C.VoidTy; 3545 VK = VK_RValue; 3546 } else { 3547 assert(resultIndex < semantics.size()); 3548 type = semantics[resultIndex]->getType(); 3549 VK = semantics[resultIndex]->getValueKind(); 3550 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 3551 } 3552 3553 void *buffer = C.Allocate(sizeof(PseudoObjectExpr) + 3554 (1 + semantics.size()) * sizeof(Expr*), 3555 llvm::alignOf<PseudoObjectExpr>()); 3556 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 3557 resultIndex); 3558} 3559 3560PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 3561 Expr *syntax, ArrayRef<Expr*> semantics, 3562 unsigned resultIndex) 3563 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, 3564 /*filled in at end of ctor*/ false, false, false, false) { 3565 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 3566 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 3567 3568 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 3569 Expr *E = (i == 0 ? syntax : semantics[i-1]); 3570 getSubExprsBuffer()[i] = E; 3571 3572 if (E->isTypeDependent()) 3573 ExprBits.TypeDependent = true; 3574 if (E->isValueDependent()) 3575 ExprBits.ValueDependent = true; 3576 if (E->isInstantiationDependent()) 3577 ExprBits.InstantiationDependent = true; 3578 if (E->containsUnexpandedParameterPack()) 3579 ExprBits.ContainsUnexpandedParameterPack = true; 3580 3581 if (isa<OpaqueValueExpr>(E)) 3582 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 && 3583 "opaque-value semantic expressions for pseudo-object " 3584 "operations must have sources"); 3585 } 3586} 3587 3588//===----------------------------------------------------------------------===// 3589// ExprIterator. 3590//===----------------------------------------------------------------------===// 3591 3592Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } 3593Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } 3594Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } 3595const Expr* ConstExprIterator::operator[](size_t idx) const { 3596 return cast<Expr>(I[idx]); 3597} 3598const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } 3599const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } 3600 3601//===----------------------------------------------------------------------===// 3602// Child Iterators for iterating over subexpressions/substatements 3603//===----------------------------------------------------------------------===// 3604 3605// UnaryExprOrTypeTraitExpr 3606Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 3607 // If this is of a type and the type is a VLA type (and not a typedef), the 3608 // size expression of the VLA needs to be treated as an executable expression. 3609 // Why isn't this weirdness documented better in StmtIterator? 3610 if (isArgumentType()) { 3611 if (const VariableArrayType* T = dyn_cast<VariableArrayType>( 3612 getArgumentType().getTypePtr())) 3613 return child_range(child_iterator(T), child_iterator()); 3614 return child_range(); 3615 } 3616 return child_range(&Argument.Ex, &Argument.Ex + 1); 3617} 3618 3619// ObjCMessageExpr 3620Stmt::child_range ObjCMessageExpr::children() { 3621 Stmt **begin; 3622 if (getReceiverKind() == Instance) 3623 begin = reinterpret_cast<Stmt **>(this + 1); 3624 else 3625 begin = reinterpret_cast<Stmt **>(getArgs()); 3626 return child_range(begin, 3627 reinterpret_cast<Stmt **>(getArgs() + getNumArgs())); 3628} 3629 3630// Blocks 3631BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK, 3632 SourceLocation l, bool ByRef, 3633 bool constAdded) 3634 : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false, false, 3635 d->isParameterPack()), 3636 D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded) 3637{ 3638 bool TypeDependent = false; 3639 bool ValueDependent = false; 3640 bool InstantiationDependent = false; 3641 computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent, 3642 InstantiationDependent); 3643 ExprBits.TypeDependent = TypeDependent; 3644 ExprBits.ValueDependent = ValueDependent; 3645 ExprBits.InstantiationDependent = InstantiationDependent; 3646} 3647 3648 3649AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, 3650 QualType t, AtomicOp op, SourceLocation RP) 3651 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, 3652 false, false, false, false), 3653 NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) 3654{ 3655 for (unsigned i = 0; i < nexpr; i++) { 3656 if (args[i]->isTypeDependent()) 3657 ExprBits.TypeDependent = true; 3658 if (args[i]->isValueDependent()) 3659 ExprBits.ValueDependent = true; 3660 if (args[i]->isInstantiationDependent()) 3661 ExprBits.InstantiationDependent = true; 3662 if (args[i]->containsUnexpandedParameterPack()) 3663 ExprBits.ContainsUnexpandedParameterPack = true; 3664 3665 SubExprs[i] = args[i]; 3666 } 3667} 3668