Expr.cpp revision ce94049b69f75b44c18584fe79cd238978b6b0d5
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the Expr class and subclasses. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/AST/Expr.h" 15#include "clang/AST/ExprCXX.h" 16#include "clang/AST/APValue.h" 17#include "clang/AST/ASTContext.h" 18#include "clang/AST/DeclObjC.h" 19#include "clang/AST/DeclCXX.h" 20#include "clang/AST/DeclTemplate.h" 21#include "clang/AST/RecordLayout.h" 22#include "clang/AST/StmtVisitor.h" 23#include "clang/Basic/Builtins.h" 24#include "clang/Basic/TargetInfo.h" 25#include "llvm/Support/raw_ostream.h" 26#include <algorithm> 27using namespace clang; 28 29//===----------------------------------------------------------------------===// 30// Primary Expressions. 31//===----------------------------------------------------------------------===// 32 33// FIXME: Maybe this should use DeclPrinter with a special "print predefined 34// expr" policy instead. 35std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT, 36 const Decl *CurrentDecl) { 37 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 38 if (IT != PrettyFunction) 39 return FD->getNameAsString(); 40 41 llvm::SmallString<256> Name; 42 llvm::raw_svector_ostream Out(Name); 43 44 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 45 if (MD->isVirtual()) 46 Out << "virtual "; 47 } 48 49 PrintingPolicy Policy(Context.getLangOptions()); 50 Policy.SuppressTagKind = true; 51 52 std::string Proto = FD->getQualifiedNameAsString(Policy); 53 54 const FunctionType *AFT = FD->getType()->getAs<FunctionType>(); 55 const FunctionProtoType *FT = 0; 56 if (FD->hasWrittenPrototype()) 57 FT = dyn_cast<FunctionProtoType>(AFT); 58 59 Proto += "("; 60 if (FT) { 61 llvm::raw_string_ostream POut(Proto); 62 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 63 if (i) POut << ", "; 64 std::string Param; 65 FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy); 66 POut << Param; 67 } 68 69 if (FT->isVariadic()) { 70 if (FD->getNumParams()) POut << ", "; 71 POut << "..."; 72 } 73 } 74 Proto += ")"; 75 76 AFT->getResultType().getAsStringInternal(Proto, Policy); 77 78 Out << Proto; 79 80 Out.flush(); 81 return Name.str().str(); 82 } 83 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 84 llvm::SmallString<256> Name; 85 llvm::raw_svector_ostream Out(Name); 86 Out << (MD->isInstanceMethod() ? '-' : '+'); 87 Out << '['; 88 Out << MD->getClassInterface()->getNameAsString(); 89 if (const ObjCCategoryImplDecl *CID = 90 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) { 91 Out << '('; 92 Out << CID->getNameAsString(); 93 Out << ')'; 94 } 95 Out << ' '; 96 Out << MD->getSelector().getAsString(); 97 Out << ']'; 98 99 Out.flush(); 100 return Name.str().str(); 101 } 102 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { 103 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 104 return "top level"; 105 } 106 return ""; 107} 108 109/// getValueAsApproximateDouble - This returns the value as an inaccurate 110/// double. Note that this may cause loss of precision, but is useful for 111/// debugging dumps, etc. 112double FloatingLiteral::getValueAsApproximateDouble() const { 113 llvm::APFloat V = getValue(); 114 bool ignored; 115 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, 116 &ignored); 117 return V.convertToDouble(); 118} 119 120StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData, 121 unsigned ByteLength, bool Wide, 122 QualType Ty, 123 const SourceLocation *Loc, 124 unsigned NumStrs) { 125 // Allocate enough space for the StringLiteral plus an array of locations for 126 // any concatenated string tokens. 127 void *Mem = C.Allocate(sizeof(StringLiteral)+ 128 sizeof(SourceLocation)*(NumStrs-1), 129 llvm::alignof<StringLiteral>()); 130 StringLiteral *SL = new (Mem) StringLiteral(Ty); 131 132 // OPTIMIZE: could allocate this appended to the StringLiteral. 133 char *AStrData = new (C, 1) char[ByteLength]; 134 memcpy(AStrData, StrData, ByteLength); 135 SL->StrData = AStrData; 136 SL->ByteLength = ByteLength; 137 SL->IsWide = Wide; 138 SL->TokLocs[0] = Loc[0]; 139 SL->NumConcatenated = NumStrs; 140 141 if (NumStrs != 1) 142 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); 143 return SL; 144} 145 146StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) { 147 void *Mem = C.Allocate(sizeof(StringLiteral)+ 148 sizeof(SourceLocation)*(NumStrs-1), 149 llvm::alignof<StringLiteral>()); 150 StringLiteral *SL = new (Mem) StringLiteral(QualType()); 151 SL->StrData = 0; 152 SL->ByteLength = 0; 153 SL->NumConcatenated = NumStrs; 154 return SL; 155} 156 157void StringLiteral::DoDestroy(ASTContext &C) { 158 C.Deallocate(const_cast<char*>(StrData)); 159 Expr::DoDestroy(C); 160} 161 162void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) { 163 if (StrData) 164 C.Deallocate(const_cast<char*>(StrData)); 165 166 char *AStrData = new (C, 1) char[Str.size()]; 167 memcpy(AStrData, Str.data(), Str.size()); 168 StrData = AStrData; 169 ByteLength = Str.size(); 170} 171 172/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 173/// corresponds to, e.g. "sizeof" or "[pre]++". 174const char *UnaryOperator::getOpcodeStr(Opcode Op) { 175 switch (Op) { 176 default: assert(0 && "Unknown unary operator"); 177 case PostInc: return "++"; 178 case PostDec: return "--"; 179 case PreInc: return "++"; 180 case PreDec: return "--"; 181 case AddrOf: return "&"; 182 case Deref: return "*"; 183 case Plus: return "+"; 184 case Minus: return "-"; 185 case Not: return "~"; 186 case LNot: return "!"; 187 case Real: return "__real"; 188 case Imag: return "__imag"; 189 case Extension: return "__extension__"; 190 case OffsetOf: return "__builtin_offsetof"; 191 } 192} 193 194UnaryOperator::Opcode 195UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 196 switch (OO) { 197 default: assert(false && "No unary operator for overloaded function"); 198 case OO_PlusPlus: return Postfix ? PostInc : PreInc; 199 case OO_MinusMinus: return Postfix ? PostDec : PreDec; 200 case OO_Amp: return AddrOf; 201 case OO_Star: return Deref; 202 case OO_Plus: return Plus; 203 case OO_Minus: return Minus; 204 case OO_Tilde: return Not; 205 case OO_Exclaim: return LNot; 206 } 207} 208 209OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 210 switch (Opc) { 211 case PostInc: case PreInc: return OO_PlusPlus; 212 case PostDec: case PreDec: return OO_MinusMinus; 213 case AddrOf: return OO_Amp; 214 case Deref: return OO_Star; 215 case Plus: return OO_Plus; 216 case Minus: return OO_Minus; 217 case Not: return OO_Tilde; 218 case LNot: return OO_Exclaim; 219 default: return OO_None; 220 } 221} 222 223 224//===----------------------------------------------------------------------===// 225// Postfix Operators. 226//===----------------------------------------------------------------------===// 227 228CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, 229 unsigned numargs, QualType t, SourceLocation rparenloc) 230 : Expr(SC, t, 231 fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), 232 fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), 233 NumArgs(numargs) { 234 235 SubExprs = new (C) Stmt*[numargs+1]; 236 SubExprs[FN] = fn; 237 for (unsigned i = 0; i != numargs; ++i) 238 SubExprs[i+ARGS_START] = args[i]; 239 240 RParenLoc = rparenloc; 241} 242 243CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, 244 QualType t, SourceLocation rparenloc) 245 : Expr(CallExprClass, t, 246 fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), 247 fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), 248 NumArgs(numargs) { 249 250 SubExprs = new (C) Stmt*[numargs+1]; 251 SubExprs[FN] = fn; 252 for (unsigned i = 0; i != numargs; ++i) 253 SubExprs[i+ARGS_START] = args[i]; 254 255 RParenLoc = rparenloc; 256} 257 258CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty) 259 : Expr(SC, Empty), SubExprs(0), NumArgs(0) { 260 SubExprs = new (C) Stmt*[1]; 261} 262 263void CallExpr::DoDestroy(ASTContext& C) { 264 DestroyChildren(C); 265 if (SubExprs) C.Deallocate(SubExprs); 266 this->~CallExpr(); 267 C.Deallocate(this); 268} 269 270FunctionDecl *CallExpr::getDirectCallee() { 271 Expr *CEE = getCallee()->IgnoreParenCasts(); 272 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 273 return dyn_cast<FunctionDecl>(DRE->getDecl()); 274 275 return 0; 276} 277 278/// setNumArgs - This changes the number of arguments present in this call. 279/// Any orphaned expressions are deleted by this, and any new operands are set 280/// to null. 281void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { 282 // No change, just return. 283 if (NumArgs == getNumArgs()) return; 284 285 // If shrinking # arguments, just delete the extras and forgot them. 286 if (NumArgs < getNumArgs()) { 287 for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i) 288 getArg(i)->Destroy(C); 289 this->NumArgs = NumArgs; 290 return; 291 } 292 293 // Otherwise, we are growing the # arguments. New an bigger argument array. 294 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1]; 295 // Copy over args. 296 for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i) 297 NewSubExprs[i] = SubExprs[i]; 298 // Null out new args. 299 for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i) 300 NewSubExprs[i] = 0; 301 302 if (SubExprs) C.Deallocate(SubExprs); 303 SubExprs = NewSubExprs; 304 this->NumArgs = NumArgs; 305} 306 307/// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If 308/// not, return 0. 309unsigned CallExpr::isBuiltinCall(ASTContext &Context) const { 310 // All simple function calls (e.g. func()) are implicitly cast to pointer to 311 // function. As a result, we try and obtain the DeclRefExpr from the 312 // ImplicitCastExpr. 313 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 314 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 315 return 0; 316 317 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 318 if (!DRE) 319 return 0; 320 321 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 322 if (!FDecl) 323 return 0; 324 325 if (!FDecl->getIdentifier()) 326 return 0; 327 328 return FDecl->getBuiltinID(); 329} 330 331QualType CallExpr::getCallReturnType() const { 332 QualType CalleeType = getCallee()->getType(); 333 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) 334 CalleeType = FnTypePtr->getPointeeType(); 335 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) 336 CalleeType = BPT->getPointeeType(); 337 338 const FunctionType *FnType = CalleeType->getAs<FunctionType>(); 339 return FnType->getResultType(); 340} 341 342MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual, 343 SourceRange qualrange, NamedDecl *memberdecl, 344 SourceLocation l, bool has_explicit, 345 SourceLocation langle, 346 const TemplateArgument *targs, unsigned numtargs, 347 SourceLocation rangle, QualType ty) 348 : Expr(MemberExprClass, ty, 349 base->isTypeDependent() || (qual && qual->isDependent()), 350 base->isValueDependent() || (qual && qual->isDependent())), 351 Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow), 352 HasQualifier(qual != 0), HasExplicitTemplateArgumentList(has_explicit) { 353 // Initialize the qualifier, if any. 354 if (HasQualifier) { 355 NameQualifier *NQ = getMemberQualifier(); 356 NQ->NNS = qual; 357 NQ->Range = qualrange; 358 } 359 360 // Initialize the explicit template argument list, if any. 361 if (HasExplicitTemplateArgumentList) { 362 ExplicitTemplateArgumentList *ETemplateArgs 363 = getExplicitTemplateArgumentList(); 364 ETemplateArgs->LAngleLoc = langle; 365 ETemplateArgs->RAngleLoc = rangle; 366 ETemplateArgs->NumTemplateArgs = numtargs; 367 368 TemplateArgument *TemplateArgs = ETemplateArgs->getTemplateArgs(); 369 for (unsigned I = 0; I < numtargs; ++I) 370 new (TemplateArgs + I) TemplateArgument(targs[I]); 371 } 372} 373 374MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow, 375 NestedNameSpecifier *qual, 376 SourceRange qualrange, 377 NamedDecl *memberdecl, 378 SourceLocation l, 379 bool has_explicit, 380 SourceLocation langle, 381 const TemplateArgument *targs, 382 unsigned numtargs, 383 SourceLocation rangle, 384 QualType ty) { 385 std::size_t Size = sizeof(MemberExpr); 386 if (qual != 0) 387 Size += sizeof(NameQualifier); 388 389 if (has_explicit) 390 Size += sizeof(ExplicitTemplateArgumentList) + 391 sizeof(TemplateArgument) * numtargs; 392 393 void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>()); 394 return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l, 395 has_explicit, langle, targs, numtargs, rangle, 396 ty); 397} 398 399const char *CastExpr::getCastKindName() const { 400 switch (getCastKind()) { 401 case CastExpr::CK_Unknown: 402 return "Unknown"; 403 case CastExpr::CK_BitCast: 404 return "BitCast"; 405 case CastExpr::CK_NoOp: 406 return "NoOp"; 407 case CastExpr::CK_DerivedToBase: 408 return "DerivedToBase"; 409 case CastExpr::CK_Dynamic: 410 return "Dynamic"; 411 case CastExpr::CK_ToUnion: 412 return "ToUnion"; 413 case CastExpr::CK_ArrayToPointerDecay: 414 return "ArrayToPointerDecay"; 415 case CastExpr::CK_FunctionToPointerDecay: 416 return "FunctionToPointerDecay"; 417 case CastExpr::CK_NullToMemberPointer: 418 return "NullToMemberPointer"; 419 case CastExpr::CK_BaseToDerivedMemberPointer: 420 return "BaseToDerivedMemberPointer"; 421 case CastExpr::CK_UserDefinedConversion: 422 return "UserDefinedConversion"; 423 case CastExpr::CK_ConstructorConversion: 424 return "ConstructorConversion"; 425 case CastExpr::CK_IntegralToPointer: 426 return "IntegralToPointer"; 427 case CastExpr::CK_PointerToIntegral: 428 return "PointerToIntegral"; 429 } 430 431 assert(0 && "Unhandled cast kind!"); 432 return 0; 433} 434 435/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 436/// corresponds to, e.g. "<<=". 437const char *BinaryOperator::getOpcodeStr(Opcode Op) { 438 switch (Op) { 439 case PtrMemD: return ".*"; 440 case PtrMemI: return "->*"; 441 case Mul: return "*"; 442 case Div: return "/"; 443 case Rem: return "%"; 444 case Add: return "+"; 445 case Sub: return "-"; 446 case Shl: return "<<"; 447 case Shr: return ">>"; 448 case LT: return "<"; 449 case GT: return ">"; 450 case LE: return "<="; 451 case GE: return ">="; 452 case EQ: return "=="; 453 case NE: return "!="; 454 case And: return "&"; 455 case Xor: return "^"; 456 case Or: return "|"; 457 case LAnd: return "&&"; 458 case LOr: return "||"; 459 case Assign: return "="; 460 case MulAssign: return "*="; 461 case DivAssign: return "/="; 462 case RemAssign: return "%="; 463 case AddAssign: return "+="; 464 case SubAssign: return "-="; 465 case ShlAssign: return "<<="; 466 case ShrAssign: return ">>="; 467 case AndAssign: return "&="; 468 case XorAssign: return "^="; 469 case OrAssign: return "|="; 470 case Comma: return ","; 471 } 472 473 return ""; 474} 475 476BinaryOperator::Opcode 477BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 478 switch (OO) { 479 default: assert(false && "Not an overloadable binary operator"); 480 case OO_Plus: return Add; 481 case OO_Minus: return Sub; 482 case OO_Star: return Mul; 483 case OO_Slash: return Div; 484 case OO_Percent: return Rem; 485 case OO_Caret: return Xor; 486 case OO_Amp: return And; 487 case OO_Pipe: return Or; 488 case OO_Equal: return Assign; 489 case OO_Less: return LT; 490 case OO_Greater: return GT; 491 case OO_PlusEqual: return AddAssign; 492 case OO_MinusEqual: return SubAssign; 493 case OO_StarEqual: return MulAssign; 494 case OO_SlashEqual: return DivAssign; 495 case OO_PercentEqual: return RemAssign; 496 case OO_CaretEqual: return XorAssign; 497 case OO_AmpEqual: return AndAssign; 498 case OO_PipeEqual: return OrAssign; 499 case OO_LessLess: return Shl; 500 case OO_GreaterGreater: return Shr; 501 case OO_LessLessEqual: return ShlAssign; 502 case OO_GreaterGreaterEqual: return ShrAssign; 503 case OO_EqualEqual: return EQ; 504 case OO_ExclaimEqual: return NE; 505 case OO_LessEqual: return LE; 506 case OO_GreaterEqual: return GE; 507 case OO_AmpAmp: return LAnd; 508 case OO_PipePipe: return LOr; 509 case OO_Comma: return Comma; 510 case OO_ArrowStar: return PtrMemI; 511 } 512} 513 514OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 515 static const OverloadedOperatorKind OverOps[] = { 516 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 517 OO_Star, OO_Slash, OO_Percent, 518 OO_Plus, OO_Minus, 519 OO_LessLess, OO_GreaterGreater, 520 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 521 OO_EqualEqual, OO_ExclaimEqual, 522 OO_Amp, 523 OO_Caret, 524 OO_Pipe, 525 OO_AmpAmp, 526 OO_PipePipe, 527 OO_Equal, OO_StarEqual, 528 OO_SlashEqual, OO_PercentEqual, 529 OO_PlusEqual, OO_MinusEqual, 530 OO_LessLessEqual, OO_GreaterGreaterEqual, 531 OO_AmpEqual, OO_CaretEqual, 532 OO_PipeEqual, 533 OO_Comma 534 }; 535 return OverOps[Opc]; 536} 537 538InitListExpr::InitListExpr(SourceLocation lbraceloc, 539 Expr **initExprs, unsigned numInits, 540 SourceLocation rbraceloc) 541 : Expr(InitListExprClass, QualType(), 542 hasAnyTypeDependentArguments(initExprs, numInits), 543 hasAnyValueDependentArguments(initExprs, numInits)), 544 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0), 545 UnionFieldInit(0), HadArrayRangeDesignator(false) { 546 547 InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits); 548} 549 550void InitListExpr::reserveInits(unsigned NumInits) { 551 if (NumInits > InitExprs.size()) 552 InitExprs.reserve(NumInits); 553} 554 555void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) { 556 for (unsigned Idx = NumInits, LastIdx = InitExprs.size(); 557 Idx < LastIdx; ++Idx) 558 InitExprs[Idx]->Destroy(Context); 559 InitExprs.resize(NumInits, 0); 560} 561 562Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) { 563 if (Init >= InitExprs.size()) { 564 InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0); 565 InitExprs.back() = expr; 566 return 0; 567 } 568 569 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 570 InitExprs[Init] = expr; 571 return Result; 572} 573 574/// getFunctionType - Return the underlying function type for this block. 575/// 576const FunctionType *BlockExpr::getFunctionType() const { 577 return getType()->getAs<BlockPointerType>()-> 578 getPointeeType()->getAs<FunctionType>(); 579} 580 581SourceLocation BlockExpr::getCaretLocation() const { 582 return TheBlock->getCaretLocation(); 583} 584const Stmt *BlockExpr::getBody() const { 585 return TheBlock->getBody(); 586} 587Stmt *BlockExpr::getBody() { 588 return TheBlock->getBody(); 589} 590 591 592//===----------------------------------------------------------------------===// 593// Generic Expression Routines 594//===----------------------------------------------------------------------===// 595 596/// isUnusedResultAWarning - Return true if this immediate expression should 597/// be warned about if the result is unused. If so, fill in Loc and Ranges 598/// with location to warn on and the source range[s] to report with the 599/// warning. 600bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, 601 SourceRange &R2) const { 602 // Don't warn if the expr is type dependent. The type could end up 603 // instantiating to void. 604 if (isTypeDependent()) 605 return false; 606 607 switch (getStmtClass()) { 608 default: 609 Loc = getExprLoc(); 610 R1 = getSourceRange(); 611 return true; 612 case ParenExprClass: 613 return cast<ParenExpr>(this)->getSubExpr()-> 614 isUnusedResultAWarning(Loc, R1, R2); 615 case UnaryOperatorClass: { 616 const UnaryOperator *UO = cast<UnaryOperator>(this); 617 618 switch (UO->getOpcode()) { 619 default: break; 620 case UnaryOperator::PostInc: 621 case UnaryOperator::PostDec: 622 case UnaryOperator::PreInc: 623 case UnaryOperator::PreDec: // ++/-- 624 return false; // Not a warning. 625 case UnaryOperator::Deref: 626 // Dereferencing a volatile pointer is a side-effect. 627 if (getType().isVolatileQualified()) 628 return false; 629 break; 630 case UnaryOperator::Real: 631 case UnaryOperator::Imag: 632 // accessing a piece of a volatile complex is a side-effect. 633 if (UO->getSubExpr()->getType().isVolatileQualified()) 634 return false; 635 break; 636 case UnaryOperator::Extension: 637 return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2); 638 } 639 Loc = UO->getOperatorLoc(); 640 R1 = UO->getSubExpr()->getSourceRange(); 641 return true; 642 } 643 case BinaryOperatorClass: { 644 const BinaryOperator *BO = cast<BinaryOperator>(this); 645 // Consider comma to have side effects if the LHS or RHS does. 646 if (BO->getOpcode() == BinaryOperator::Comma) 647 return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2) || 648 BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2); 649 650 if (BO->isAssignmentOp()) 651 return false; 652 Loc = BO->getOperatorLoc(); 653 R1 = BO->getLHS()->getSourceRange(); 654 R2 = BO->getRHS()->getSourceRange(); 655 return true; 656 } 657 case CompoundAssignOperatorClass: 658 return false; 659 660 case ConditionalOperatorClass: { 661 // The condition must be evaluated, but if either the LHS or RHS is a 662 // warning, warn about them. 663 const ConditionalOperator *Exp = cast<ConditionalOperator>(this); 664 if (Exp->getLHS() && 665 Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2)) 666 return true; 667 return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2); 668 } 669 670 case MemberExprClass: 671 // If the base pointer or element is to a volatile pointer/field, accessing 672 // it is a side effect. 673 if (getType().isVolatileQualified()) 674 return false; 675 Loc = cast<MemberExpr>(this)->getMemberLoc(); 676 R1 = SourceRange(Loc, Loc); 677 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 678 return true; 679 680 case ArraySubscriptExprClass: 681 // If the base pointer or element is to a volatile pointer/field, accessing 682 // it is a side effect. 683 if (getType().isVolatileQualified()) 684 return false; 685 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 686 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 687 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 688 return true; 689 690 case CallExprClass: 691 case CXXOperatorCallExprClass: 692 case CXXMemberCallExprClass: { 693 // If this is a direct call, get the callee. 694 const CallExpr *CE = cast<CallExpr>(this); 695 const Expr *CalleeExpr = CE->getCallee()->IgnoreParenCasts(); 696 if (const DeclRefExpr *CalleeDRE = dyn_cast<DeclRefExpr>(CalleeExpr)) { 697 // If the callee has attribute pure, const, or warn_unused_result, warn 698 // about it. void foo() { strlen("bar"); } should warn. 699 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeDRE->getDecl())) 700 if (FD->getAttr<WarnUnusedResultAttr>() || 701 FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { 702 Loc = CE->getCallee()->getLocStart(); 703 R1 = CE->getCallee()->getSourceRange(); 704 705 if (unsigned NumArgs = CE->getNumArgs()) 706 R2 = SourceRange(CE->getArg(0)->getLocStart(), 707 CE->getArg(NumArgs-1)->getLocEnd()); 708 return true; 709 } 710 } 711 return false; 712 } 713 case ObjCMessageExprClass: 714 return false; 715 716 case ObjCImplicitSetterGetterRefExprClass: { // Dot syntax for message send. 717#if 0 718 const ObjCImplicitSetterGetterRefExpr *Ref = 719 cast<ObjCImplicitSetterGetterRefExpr>(this); 720 // FIXME: We really want the location of the '.' here. 721 Loc = Ref->getLocation(); 722 R1 = SourceRange(Ref->getLocation(), Ref->getLocation()); 723 if (Ref->getBase()) 724 R2 = Ref->getBase()->getSourceRange(); 725#else 726 Loc = getExprLoc(); 727 R1 = getSourceRange(); 728#endif 729 return true; 730 } 731 case StmtExprClass: { 732 // Statement exprs don't logically have side effects themselves, but are 733 // sometimes used in macros in ways that give them a type that is unused. 734 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 735 // however, if the result of the stmt expr is dead, we don't want to emit a 736 // warning. 737 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 738 if (!CS->body_empty()) 739 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 740 return E->isUnusedResultAWarning(Loc, R1, R2); 741 742 Loc = cast<StmtExpr>(this)->getLParenLoc(); 743 R1 = getSourceRange(); 744 return true; 745 } 746 case CStyleCastExprClass: 747 // If this is an explicit cast to void, allow it. People do this when they 748 // think they know what they're doing :). 749 if (getType()->isVoidType()) 750 return false; 751 Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); 752 R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); 753 return true; 754 case CXXFunctionalCastExprClass: 755 // If this is a cast to void, check the operand. Otherwise, the result of 756 // the cast is unused. 757 if (getType()->isVoidType()) 758 return cast<CastExpr>(this)->getSubExpr() 759 ->isUnusedResultAWarning(Loc, R1, R2); 760 Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); 761 R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); 762 return true; 763 764 case ImplicitCastExprClass: 765 // Check the operand, since implicit casts are inserted by Sema 766 return cast<ImplicitCastExpr>(this) 767 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2); 768 769 case CXXDefaultArgExprClass: 770 return cast<CXXDefaultArgExpr>(this) 771 ->getExpr()->isUnusedResultAWarning(Loc, R1, R2); 772 773 case CXXNewExprClass: 774 // FIXME: In theory, there might be new expressions that don't have side 775 // effects (e.g. a placement new with an uninitialized POD). 776 case CXXDeleteExprClass: 777 return false; 778 case CXXBindTemporaryExprClass: 779 return cast<CXXBindTemporaryExpr>(this) 780 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2); 781 case CXXExprWithTemporariesClass: 782 return cast<CXXExprWithTemporaries>(this) 783 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2); 784 } 785} 786 787/// DeclCanBeLvalue - Determine whether the given declaration can be 788/// an lvalue. This is a helper routine for isLvalue. 789static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) { 790 // C++ [temp.param]p6: 791 // A non-type non-reference template-parameter is not an lvalue. 792 if (const NonTypeTemplateParmDecl *NTTParm 793 = dyn_cast<NonTypeTemplateParmDecl>(Decl)) 794 return NTTParm->getType()->isReferenceType(); 795 796 return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) || 797 // C++ 3.10p2: An lvalue refers to an object or function. 798 (Ctx.getLangOptions().CPlusPlus && 799 (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl) || 800 isa<FunctionTemplateDecl>(Decl))); 801} 802 803/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an 804/// incomplete type other than void. Nonarray expressions that can be lvalues: 805/// - name, where name must be a variable 806/// - e[i] 807/// - (e), where e must be an lvalue 808/// - e.name, where e must be an lvalue 809/// - e->name 810/// - *e, the type of e cannot be a function type 811/// - string-constant 812/// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension] 813/// - reference type [C++ [expr]] 814/// 815Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const { 816 assert(!TR->isReferenceType() && "Expressions can't have reference type."); 817 818 isLvalueResult Res = isLvalueInternal(Ctx); 819 if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus) 820 return Res; 821 822 // first, check the type (C99 6.3.2.1). Expressions with function 823 // type in C are not lvalues, but they can be lvalues in C++. 824 if (TR->isFunctionType() || TR == Ctx.OverloadTy) 825 return LV_NotObjectType; 826 827 // Allow qualified void which is an incomplete type other than void (yuck). 828 if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers()) 829 return LV_IncompleteVoidType; 830 831 return LV_Valid; 832} 833 834// Check whether the expression can be sanely treated like an l-value 835Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const { 836 switch (getStmtClass()) { 837 case StringLiteralClass: // C99 6.5.1p4 838 case ObjCEncodeExprClass: // @encode behaves like its string in every way. 839 return LV_Valid; 840 case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2)))) 841 // For vectors, make sure base is an lvalue (i.e. not a function call). 842 if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType()) 843 return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx); 844 return LV_Valid; 845 case DeclRefExprClass: 846 case QualifiedDeclRefExprClass: { // C99 6.5.1p2 847 const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl(); 848 if (DeclCanBeLvalue(RefdDecl, Ctx)) 849 return LV_Valid; 850 break; 851 } 852 case BlockDeclRefExprClass: { 853 const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this); 854 if (isa<VarDecl>(BDR->getDecl())) 855 return LV_Valid; 856 break; 857 } 858 case MemberExprClass: { 859 const MemberExpr *m = cast<MemberExpr>(this); 860 if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4: 861 NamedDecl *Member = m->getMemberDecl(); 862 // C++ [expr.ref]p4: 863 // If E2 is declared to have type "reference to T", then E1.E2 864 // is an lvalue. 865 if (ValueDecl *Value = dyn_cast<ValueDecl>(Member)) 866 if (Value->getType()->isReferenceType()) 867 return LV_Valid; 868 869 // -- If E2 is a static data member [...] then E1.E2 is an lvalue. 870 if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord()) 871 return LV_Valid; 872 873 // -- If E2 is a non-static data member [...]. If E1 is an 874 // lvalue, then E1.E2 is an lvalue. 875 if (isa<FieldDecl>(Member)) 876 return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx); 877 878 // -- If it refers to a static member function [...], then 879 // E1.E2 is an lvalue. 880 // -- Otherwise, if E1.E2 refers to a non-static member 881 // function [...], then E1.E2 is not an lvalue. 882 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) 883 return Method->isStatic()? LV_Valid : LV_MemberFunction; 884 885 // -- If E2 is a member enumerator [...], the expression E1.E2 886 // is not an lvalue. 887 if (isa<EnumConstantDecl>(Member)) 888 return LV_InvalidExpression; 889 890 // Not an lvalue. 891 return LV_InvalidExpression; 892 } 893 894 // C99 6.5.2.3p4 895 return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx); 896 } 897 case UnaryOperatorClass: 898 if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref) 899 return LV_Valid; // C99 6.5.3p4 900 901 if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real || 902 cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag || 903 cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension) 904 return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx); // GNU. 905 906 if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1 907 (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc || 908 cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec)) 909 return LV_Valid; 910 break; 911 case ImplicitCastExprClass: 912 return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid 913 : LV_InvalidExpression; 914 case ParenExprClass: // C99 6.5.1p5 915 return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx); 916 case BinaryOperatorClass: 917 case CompoundAssignOperatorClass: { 918 const BinaryOperator *BinOp = cast<BinaryOperator>(this); 919 920 if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1 921 BinOp->getOpcode() == BinaryOperator::Comma) 922 return BinOp->getRHS()->isLvalue(Ctx); 923 924 // C++ [expr.mptr.oper]p6 925 if ((BinOp->getOpcode() == BinaryOperator::PtrMemD || 926 BinOp->getOpcode() == BinaryOperator::PtrMemI) && 927 !BinOp->getType()->isFunctionType()) 928 return BinOp->getLHS()->isLvalue(Ctx); 929 930 if (!BinOp->isAssignmentOp()) 931 return LV_InvalidExpression; 932 933 if (Ctx.getLangOptions().CPlusPlus) 934 // C++ [expr.ass]p1: 935 // The result of an assignment operation [...] is an lvalue. 936 return LV_Valid; 937 938 939 // C99 6.5.16: 940 // An assignment expression [...] is not an lvalue. 941 return LV_InvalidExpression; 942 } 943 case CallExprClass: 944 case CXXOperatorCallExprClass: 945 case CXXMemberCallExprClass: { 946 // C++0x [expr.call]p10 947 // A function call is an lvalue if and only if the result type 948 // is an lvalue reference. 949 QualType ReturnType = cast<CallExpr>(this)->getCallReturnType(); 950 if (ReturnType->isLValueReferenceType()) 951 return LV_Valid; 952 953 break; 954 } 955 case CompoundLiteralExprClass: // C99 6.5.2.5p5 956 return LV_Valid; 957 case ChooseExprClass: 958 // __builtin_choose_expr is an lvalue if the selected operand is. 959 return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx); 960 case ExtVectorElementExprClass: 961 if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements()) 962 return LV_DuplicateVectorComponents; 963 return LV_Valid; 964 case ObjCIvarRefExprClass: // ObjC instance variables are lvalues. 965 return LV_Valid; 966 case ObjCPropertyRefExprClass: // FIXME: check if read-only property. 967 return LV_Valid; 968 case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property. 969 return LV_Valid; 970 case PredefinedExprClass: 971 return LV_Valid; 972 case CXXDefaultArgExprClass: 973 return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx); 974 case CXXConditionDeclExprClass: 975 return LV_Valid; 976 case CStyleCastExprClass: 977 case CXXFunctionalCastExprClass: 978 case CXXStaticCastExprClass: 979 case CXXDynamicCastExprClass: 980 case CXXReinterpretCastExprClass: 981 case CXXConstCastExprClass: 982 // The result of an explicit cast is an lvalue if the type we are 983 // casting to is an lvalue reference type. See C++ [expr.cast]p1, 984 // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2, 985 // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1. 986 if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()-> 987 isLValueReferenceType()) 988 return LV_Valid; 989 break; 990 case CXXTypeidExprClass: 991 // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ... 992 return LV_Valid; 993 case CXXBindTemporaryExprClass: 994 return cast<CXXBindTemporaryExpr>(this)->getSubExpr()-> 995 isLvalueInternal(Ctx); 996 case ConditionalOperatorClass: { 997 // Complicated handling is only for C++. 998 if (!Ctx.getLangOptions().CPlusPlus) 999 return LV_InvalidExpression; 1000 1001 // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is 1002 // everywhere there's an object converted to an rvalue. Also, any other 1003 // casts should be wrapped by ImplicitCastExprs. There's just the special 1004 // case involving throws to work out. 1005 const ConditionalOperator *Cond = cast<ConditionalOperator>(this); 1006 Expr *True = Cond->getTrueExpr(); 1007 Expr *False = Cond->getFalseExpr(); 1008 // C++0x 5.16p2 1009 // If either the second or the third operand has type (cv) void, [...] 1010 // the result [...] is an rvalue. 1011 if (True->getType()->isVoidType() || False->getType()->isVoidType()) 1012 return LV_InvalidExpression; 1013 1014 // Both sides must be lvalues for the result to be an lvalue. 1015 if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid) 1016 return LV_InvalidExpression; 1017 1018 // That's it. 1019 return LV_Valid; 1020 } 1021 1022 default: 1023 break; 1024 } 1025 return LV_InvalidExpression; 1026} 1027 1028/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, 1029/// does not have an incomplete type, does not have a const-qualified type, and 1030/// if it is a structure or union, does not have any member (including, 1031/// recursively, any member or element of all contained aggregates or unions) 1032/// with a const-qualified type. 1033Expr::isModifiableLvalueResult 1034Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const { 1035 isLvalueResult lvalResult = isLvalue(Ctx); 1036 1037 switch (lvalResult) { 1038 case LV_Valid: 1039 // C++ 3.10p11: Functions cannot be modified, but pointers to 1040 // functions can be modifiable. 1041 if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType()) 1042 return MLV_NotObjectType; 1043 break; 1044 1045 case LV_NotObjectType: return MLV_NotObjectType; 1046 case LV_IncompleteVoidType: return MLV_IncompleteVoidType; 1047 case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; 1048 case LV_InvalidExpression: 1049 // If the top level is a C-style cast, and the subexpression is a valid 1050 // lvalue, then this is probably a use of the old-school "cast as lvalue" 1051 // GCC extension. We don't support it, but we want to produce good 1052 // diagnostics when it happens so that the user knows why. 1053 if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) { 1054 if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) { 1055 if (Loc) 1056 *Loc = CE->getLParenLoc(); 1057 return MLV_LValueCast; 1058 } 1059 } 1060 return MLV_InvalidExpression; 1061 case LV_MemberFunction: return MLV_MemberFunction; 1062 } 1063 1064 // The following is illegal: 1065 // void takeclosure(void (^C)(void)); 1066 // void func() { int x = 1; takeclosure(^{ x = 7; }); } 1067 // 1068 if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) { 1069 if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl())) 1070 return MLV_NotBlockQualified; 1071 } 1072 1073 // Assigning to an 'implicit' property? 1074 if (const ObjCImplicitSetterGetterRefExpr* Expr = 1075 dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) { 1076 if (Expr->getSetterMethod() == 0) 1077 return MLV_NoSetterProperty; 1078 } 1079 1080 QualType CT = Ctx.getCanonicalType(getType()); 1081 1082 if (CT.isConstQualified()) 1083 return MLV_ConstQualified; 1084 if (CT->isArrayType()) 1085 return MLV_ArrayType; 1086 if (CT->isIncompleteType()) 1087 return MLV_IncompleteType; 1088 1089 if (const RecordType *r = CT->getAs<RecordType>()) { 1090 if (r->hasConstFields()) 1091 return MLV_ConstQualified; 1092 } 1093 1094 return MLV_Valid; 1095} 1096 1097/// isOBJCGCCandidate - Check if an expression is objc gc'able. 1098/// returns true, if it is; false otherwise. 1099bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 1100 switch (getStmtClass()) { 1101 default: 1102 return false; 1103 case ObjCIvarRefExprClass: 1104 return true; 1105 case Expr::UnaryOperatorClass: 1106 return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); 1107 case ParenExprClass: 1108 return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); 1109 case ImplicitCastExprClass: 1110 return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); 1111 case CStyleCastExprClass: 1112 return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); 1113 case DeclRefExprClass: 1114 case QualifiedDeclRefExprClass: { 1115 const Decl *D = cast<DeclRefExpr>(this)->getDecl(); 1116 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1117 if (VD->hasGlobalStorage()) 1118 return true; 1119 QualType T = VD->getType(); 1120 // dereferencing to a pointer is always a gc'able candidate, 1121 // unless it is __weak. 1122 return T->isPointerType() && 1123 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 1124 } 1125 return false; 1126 } 1127 case MemberExprClass: { 1128 const MemberExpr *M = cast<MemberExpr>(this); 1129 return M->getBase()->isOBJCGCCandidate(Ctx); 1130 } 1131 case ArraySubscriptExprClass: 1132 return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx); 1133 } 1134} 1135Expr* Expr::IgnoreParens() { 1136 Expr* E = this; 1137 while (ParenExpr* P = dyn_cast<ParenExpr>(E)) 1138 E = P->getSubExpr(); 1139 1140 return E; 1141} 1142 1143/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr 1144/// or CastExprs or ImplicitCastExprs, returning their operand. 1145Expr *Expr::IgnoreParenCasts() { 1146 Expr *E = this; 1147 while (true) { 1148 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) 1149 E = P->getSubExpr(); 1150 else if (CastExpr *P = dyn_cast<CastExpr>(E)) 1151 E = P->getSubExpr(); 1152 else 1153 return E; 1154 } 1155} 1156 1157/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the 1158/// value (including ptr->int casts of the same size). Strip off any 1159/// ParenExpr or CastExprs, returning their operand. 1160Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { 1161 Expr *E = this; 1162 while (true) { 1163 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { 1164 E = P->getSubExpr(); 1165 continue; 1166 } 1167 1168 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 1169 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 1170 // ptr<->int casts of the same width. We also ignore all identify casts. 1171 Expr *SE = P->getSubExpr(); 1172 1173 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { 1174 E = SE; 1175 continue; 1176 } 1177 1178 if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) && 1179 (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) && 1180 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { 1181 E = SE; 1182 continue; 1183 } 1184 } 1185 1186 return E; 1187 } 1188} 1189 1190 1191/// hasAnyTypeDependentArguments - Determines if any of the expressions 1192/// in Exprs is type-dependent. 1193bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) { 1194 for (unsigned I = 0; I < NumExprs; ++I) 1195 if (Exprs[I]->isTypeDependent()) 1196 return true; 1197 1198 return false; 1199} 1200 1201/// hasAnyValueDependentArguments - Determines if any of the expressions 1202/// in Exprs is value-dependent. 1203bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) { 1204 for (unsigned I = 0; I < NumExprs; ++I) 1205 if (Exprs[I]->isValueDependent()) 1206 return true; 1207 1208 return false; 1209} 1210 1211bool Expr::isConstantInitializer(ASTContext &Ctx) const { 1212 // This function is attempting whether an expression is an initializer 1213 // which can be evaluated at compile-time. isEvaluatable handles most 1214 // of the cases, but it can't deal with some initializer-specific 1215 // expressions, and it can't deal with aggregates; we deal with those here, 1216 // and fall back to isEvaluatable for the other cases. 1217 1218 // FIXME: This function assumes the variable being assigned to 1219 // isn't a reference type! 1220 1221 switch (getStmtClass()) { 1222 default: break; 1223 case StringLiteralClass: 1224 case ObjCStringLiteralClass: 1225 case ObjCEncodeExprClass: 1226 return true; 1227 case CompoundLiteralExprClass: { 1228 // This handles gcc's extension that allows global initializers like 1229 // "struct x {int x;} x = (struct x) {};". 1230 // FIXME: This accepts other cases it shouldn't! 1231 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 1232 return Exp->isConstantInitializer(Ctx); 1233 } 1234 case InitListExprClass: { 1235 // FIXME: This doesn't deal with fields with reference types correctly. 1236 // FIXME: This incorrectly allows pointers cast to integers to be assigned 1237 // to bitfields. 1238 const InitListExpr *Exp = cast<InitListExpr>(this); 1239 unsigned numInits = Exp->getNumInits(); 1240 for (unsigned i = 0; i < numInits; i++) { 1241 if (!Exp->getInit(i)->isConstantInitializer(Ctx)) 1242 return false; 1243 } 1244 return true; 1245 } 1246 case ImplicitValueInitExprClass: 1247 return true; 1248 case ParenExprClass: { 1249 return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); 1250 } 1251 case UnaryOperatorClass: { 1252 const UnaryOperator* Exp = cast<UnaryOperator>(this); 1253 if (Exp->getOpcode() == UnaryOperator::Extension) 1254 return Exp->getSubExpr()->isConstantInitializer(Ctx); 1255 break; 1256 } 1257 case ImplicitCastExprClass: 1258 case CStyleCastExprClass: 1259 // Handle casts with a destination that's a struct or union; this 1260 // deals with both the gcc no-op struct cast extension and the 1261 // cast-to-union extension. 1262 if (getType()->isRecordType()) 1263 return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); 1264 break; 1265 } 1266 return isEvaluatable(Ctx); 1267} 1268 1269/// isIntegerConstantExpr - this recursive routine will test if an expression is 1270/// an integer constant expression. 1271 1272/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, 1273/// comma, etc 1274/// 1275/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof 1276/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer 1277/// cast+dereference. 1278 1279// CheckICE - This function does the fundamental ICE checking: the returned 1280// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation. 1281// Note that to reduce code duplication, this helper does no evaluation 1282// itself; the caller checks whether the expression is evaluatable, and 1283// in the rare cases where CheckICE actually cares about the evaluated 1284// value, it calls into Evalute. 1285// 1286// Meanings of Val: 1287// 0: This expression is an ICE if it can be evaluated by Evaluate. 1288// 1: This expression is not an ICE, but if it isn't evaluated, it's 1289// a legal subexpression for an ICE. This return value is used to handle 1290// the comma operator in C99 mode. 1291// 2: This expression is not an ICE, and is not a legal subexpression for one. 1292 1293struct ICEDiag { 1294 unsigned Val; 1295 SourceLocation Loc; 1296 1297 public: 1298 ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {} 1299 ICEDiag() : Val(0) {} 1300}; 1301 1302ICEDiag NoDiag() { return ICEDiag(); } 1303 1304static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) { 1305 Expr::EvalResult EVResult; 1306 if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || 1307 !EVResult.Val.isInt()) { 1308 return ICEDiag(2, E->getLocStart()); 1309 } 1310 return NoDiag(); 1311} 1312 1313static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) { 1314 assert(!E->isValueDependent() && "Should not see value dependent exprs!"); 1315 if (!E->getType()->isIntegralType()) { 1316 return ICEDiag(2, E->getLocStart()); 1317 } 1318 1319 switch (E->getStmtClass()) { 1320#define STMT(Node, Base) case Expr::Node##Class: 1321#define EXPR(Node, Base) 1322#include "clang/AST/StmtNodes.def" 1323 case Expr::PredefinedExprClass: 1324 case Expr::FloatingLiteralClass: 1325 case Expr::ImaginaryLiteralClass: 1326 case Expr::StringLiteralClass: 1327 case Expr::ArraySubscriptExprClass: 1328 case Expr::MemberExprClass: 1329 case Expr::CompoundAssignOperatorClass: 1330 case Expr::CompoundLiteralExprClass: 1331 case Expr::ExtVectorElementExprClass: 1332 case Expr::InitListExprClass: 1333 case Expr::DesignatedInitExprClass: 1334 case Expr::ImplicitValueInitExprClass: 1335 case Expr::ParenListExprClass: 1336 case Expr::VAArgExprClass: 1337 case Expr::AddrLabelExprClass: 1338 case Expr::StmtExprClass: 1339 case Expr::CXXMemberCallExprClass: 1340 case Expr::CXXDynamicCastExprClass: 1341 case Expr::CXXTypeidExprClass: 1342 case Expr::CXXNullPtrLiteralExprClass: 1343 case Expr::CXXThisExprClass: 1344 case Expr::CXXThrowExprClass: 1345 case Expr::CXXConditionDeclExprClass: // FIXME: is this correct? 1346 case Expr::CXXNewExprClass: 1347 case Expr::CXXDeleteExprClass: 1348 case Expr::CXXPseudoDestructorExprClass: 1349 case Expr::UnresolvedFunctionNameExprClass: 1350 case Expr::UnresolvedDeclRefExprClass: 1351 case Expr::TemplateIdRefExprClass: 1352 case Expr::CXXConstructExprClass: 1353 case Expr::CXXBindTemporaryExprClass: 1354 case Expr::CXXExprWithTemporariesClass: 1355 case Expr::CXXTemporaryObjectExprClass: 1356 case Expr::CXXUnresolvedConstructExprClass: 1357 case Expr::CXXUnresolvedMemberExprClass: 1358 case Expr::ObjCStringLiteralClass: 1359 case Expr::ObjCEncodeExprClass: 1360 case Expr::ObjCMessageExprClass: 1361 case Expr::ObjCSelectorExprClass: 1362 case Expr::ObjCProtocolExprClass: 1363 case Expr::ObjCIvarRefExprClass: 1364 case Expr::ObjCPropertyRefExprClass: 1365 case Expr::ObjCImplicitSetterGetterRefExprClass: 1366 case Expr::ObjCSuperExprClass: 1367 case Expr::ObjCIsaExprClass: 1368 case Expr::ShuffleVectorExprClass: 1369 case Expr::BlockExprClass: 1370 case Expr::BlockDeclRefExprClass: 1371 case Expr::NoStmtClass: 1372 case Expr::ExprClass: 1373 return ICEDiag(2, E->getLocStart()); 1374 1375 case Expr::GNUNullExprClass: 1376 // GCC considers the GNU __null value to be an integral constant expression. 1377 return NoDiag(); 1378 1379 case Expr::ParenExprClass: 1380 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); 1381 case Expr::IntegerLiteralClass: 1382 case Expr::CharacterLiteralClass: 1383 case Expr::CXXBoolLiteralExprClass: 1384 case Expr::CXXZeroInitValueExprClass: 1385 case Expr::TypesCompatibleExprClass: 1386 case Expr::UnaryTypeTraitExprClass: 1387 return NoDiag(); 1388 case Expr::CallExprClass: 1389 case Expr::CXXOperatorCallExprClass: { 1390 const CallExpr *CE = cast<CallExpr>(E); 1391 if (CE->isBuiltinCall(Ctx)) 1392 return CheckEvalInICE(E, Ctx); 1393 return ICEDiag(2, E->getLocStart()); 1394 } 1395 case Expr::DeclRefExprClass: 1396 case Expr::QualifiedDeclRefExprClass: 1397 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) 1398 return NoDiag(); 1399 if (Ctx.getLangOptions().CPlusPlus && 1400 E->getType().getCVRQualifiers() == Qualifiers::Const) { 1401 // C++ 7.1.5.1p2 1402 // A variable of non-volatile const-qualified integral or enumeration 1403 // type initialized by an ICE can be used in ICEs. 1404 if (const VarDecl *Dcl = 1405 dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { 1406 if (Dcl->isInitKnownICE()) { 1407 // We have already checked whether this subexpression is an 1408 // integral constant expression. 1409 if (Dcl->isInitICE()) 1410 return NoDiag(); 1411 else 1412 return ICEDiag(2, E->getLocStart()); 1413 } 1414 1415 if (const Expr *Init = Dcl->getInit()) { 1416 ICEDiag Result = CheckICE(Init, Ctx); 1417 // Cache the result of the ICE test. 1418 Dcl->setInitKnownICE(Ctx, Result.Val == 0); 1419 return Result; 1420 } 1421 } 1422 } 1423 return ICEDiag(2, E->getLocStart()); 1424 case Expr::UnaryOperatorClass: { 1425 const UnaryOperator *Exp = cast<UnaryOperator>(E); 1426 switch (Exp->getOpcode()) { 1427 case UnaryOperator::PostInc: 1428 case UnaryOperator::PostDec: 1429 case UnaryOperator::PreInc: 1430 case UnaryOperator::PreDec: 1431 case UnaryOperator::AddrOf: 1432 case UnaryOperator::Deref: 1433 return ICEDiag(2, E->getLocStart()); 1434 1435 case UnaryOperator::Extension: 1436 case UnaryOperator::LNot: 1437 case UnaryOperator::Plus: 1438 case UnaryOperator::Minus: 1439 case UnaryOperator::Not: 1440 case UnaryOperator::Real: 1441 case UnaryOperator::Imag: 1442 return CheckICE(Exp->getSubExpr(), Ctx); 1443 case UnaryOperator::OffsetOf: 1444 // Note that per C99, offsetof must be an ICE. And AFAIK, using 1445 // Evaluate matches the proposed gcc behavior for cases like 1446 // "offsetof(struct s{int x[4];}, x[!.0])". This doesn't affect 1447 // compliance: we should warn earlier for offsetof expressions with 1448 // array subscripts that aren't ICEs, and if the array subscripts 1449 // are ICEs, the value of the offsetof must be an integer constant. 1450 return CheckEvalInICE(E, Ctx); 1451 } 1452 } 1453 case Expr::SizeOfAlignOfExprClass: { 1454 const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E); 1455 if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType()) 1456 return ICEDiag(2, E->getLocStart()); 1457 return NoDiag(); 1458 } 1459 case Expr::BinaryOperatorClass: { 1460 const BinaryOperator *Exp = cast<BinaryOperator>(E); 1461 switch (Exp->getOpcode()) { 1462 case BinaryOperator::PtrMemD: 1463 case BinaryOperator::PtrMemI: 1464 case BinaryOperator::Assign: 1465 case BinaryOperator::MulAssign: 1466 case BinaryOperator::DivAssign: 1467 case BinaryOperator::RemAssign: 1468 case BinaryOperator::AddAssign: 1469 case BinaryOperator::SubAssign: 1470 case BinaryOperator::ShlAssign: 1471 case BinaryOperator::ShrAssign: 1472 case BinaryOperator::AndAssign: 1473 case BinaryOperator::XorAssign: 1474 case BinaryOperator::OrAssign: 1475 return ICEDiag(2, E->getLocStart()); 1476 1477 case BinaryOperator::Mul: 1478 case BinaryOperator::Div: 1479 case BinaryOperator::Rem: 1480 case BinaryOperator::Add: 1481 case BinaryOperator::Sub: 1482 case BinaryOperator::Shl: 1483 case BinaryOperator::Shr: 1484 case BinaryOperator::LT: 1485 case BinaryOperator::GT: 1486 case BinaryOperator::LE: 1487 case BinaryOperator::GE: 1488 case BinaryOperator::EQ: 1489 case BinaryOperator::NE: 1490 case BinaryOperator::And: 1491 case BinaryOperator::Xor: 1492 case BinaryOperator::Or: 1493 case BinaryOperator::Comma: { 1494 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 1495 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 1496 if (Exp->getOpcode() == BinaryOperator::Div || 1497 Exp->getOpcode() == BinaryOperator::Rem) { 1498 // Evaluate gives an error for undefined Div/Rem, so make sure 1499 // we don't evaluate one. 1500 if (LHSResult.Val != 2 && RHSResult.Val != 2) { 1501 llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx); 1502 if (REval == 0) 1503 return ICEDiag(1, E->getLocStart()); 1504 if (REval.isSigned() && REval.isAllOnesValue()) { 1505 llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx); 1506 if (LEval.isMinSignedValue()) 1507 return ICEDiag(1, E->getLocStart()); 1508 } 1509 } 1510 } 1511 if (Exp->getOpcode() == BinaryOperator::Comma) { 1512 if (Ctx.getLangOptions().C99) { 1513 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE 1514 // if it isn't evaluated. 1515 if (LHSResult.Val == 0 && RHSResult.Val == 0) 1516 return ICEDiag(1, E->getLocStart()); 1517 } else { 1518 // In both C89 and C++, commas in ICEs are illegal. 1519 return ICEDiag(2, E->getLocStart()); 1520 } 1521 } 1522 if (LHSResult.Val >= RHSResult.Val) 1523 return LHSResult; 1524 return RHSResult; 1525 } 1526 case BinaryOperator::LAnd: 1527 case BinaryOperator::LOr: { 1528 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 1529 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 1530 if (LHSResult.Val == 0 && RHSResult.Val == 1) { 1531 // Rare case where the RHS has a comma "side-effect"; we need 1532 // to actually check the condition to see whether the side 1533 // with the comma is evaluated. 1534 if ((Exp->getOpcode() == BinaryOperator::LAnd) != 1535 (Exp->getLHS()->EvaluateAsInt(Ctx) == 0)) 1536 return RHSResult; 1537 return NoDiag(); 1538 } 1539 1540 if (LHSResult.Val >= RHSResult.Val) 1541 return LHSResult; 1542 return RHSResult; 1543 } 1544 } 1545 } 1546 case Expr::CastExprClass: 1547 case Expr::ImplicitCastExprClass: 1548 case Expr::ExplicitCastExprClass: 1549 case Expr::CStyleCastExprClass: 1550 case Expr::CXXFunctionalCastExprClass: 1551 case Expr::CXXNamedCastExprClass: 1552 case Expr::CXXStaticCastExprClass: 1553 case Expr::CXXReinterpretCastExprClass: 1554 case Expr::CXXConstCastExprClass: { 1555 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); 1556 if (SubExpr->getType()->isIntegralType()) 1557 return CheckICE(SubExpr, Ctx); 1558 if (isa<FloatingLiteral>(SubExpr->IgnoreParens())) 1559 return NoDiag(); 1560 return ICEDiag(2, E->getLocStart()); 1561 } 1562 case Expr::ConditionalOperatorClass: { 1563 const ConditionalOperator *Exp = cast<ConditionalOperator>(E); 1564 // If the condition (ignoring parens) is a __builtin_constant_p call, 1565 // then only the true side is actually considered in an integer constant 1566 // expression, and it is fully evaluated. This is an important GNU 1567 // extension. See GCC PR38377 for discussion. 1568 if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) 1569 if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) { 1570 Expr::EvalResult EVResult; 1571 if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || 1572 !EVResult.Val.isInt()) { 1573 return ICEDiag(2, E->getLocStart()); 1574 } 1575 return NoDiag(); 1576 } 1577 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); 1578 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); 1579 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 1580 if (CondResult.Val == 2) 1581 return CondResult; 1582 if (TrueResult.Val == 2) 1583 return TrueResult; 1584 if (FalseResult.Val == 2) 1585 return FalseResult; 1586 if (CondResult.Val == 1) 1587 return CondResult; 1588 if (TrueResult.Val == 0 && FalseResult.Val == 0) 1589 return NoDiag(); 1590 // Rare case where the diagnostics depend on which side is evaluated 1591 // Note that if we get here, CondResult is 0, and at least one of 1592 // TrueResult and FalseResult is non-zero. 1593 if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) { 1594 return FalseResult; 1595 } 1596 return TrueResult; 1597 } 1598 case Expr::CXXDefaultArgExprClass: 1599 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); 1600 case Expr::ChooseExprClass: { 1601 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx); 1602 } 1603 } 1604 1605 // Silence a GCC warning 1606 return ICEDiag(2, E->getLocStart()); 1607} 1608 1609bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, 1610 SourceLocation *Loc, bool isEvaluated) const { 1611 ICEDiag d = CheckICE(this, Ctx); 1612 if (d.Val != 0) { 1613 if (Loc) *Loc = d.Loc; 1614 return false; 1615 } 1616 EvalResult EvalResult; 1617 if (!Evaluate(EvalResult, Ctx)) 1618 assert(0 && "ICE cannot be evaluated!"); 1619 assert(!EvalResult.HasSideEffects && "ICE with side effects!"); 1620 assert(EvalResult.Val.isInt() && "ICE that isn't integer!"); 1621 Result = EvalResult.Val.getInt(); 1622 return true; 1623} 1624 1625/// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an 1626/// integer constant expression with the value zero, or if this is one that is 1627/// cast to void*. 1628bool Expr::isNullPointerConstant(ASTContext &Ctx, 1629 NullPointerConstantValueDependence NPC) const { 1630 if (isValueDependent()) { 1631 switch (NPC) { 1632 case NPC_NeverValueDependent: 1633 assert(false && "Unexpected value dependent expression!"); 1634 // If the unthinkable happens, fall through to the safest alternative. 1635 1636 case NPC_ValueDependentIsNull: 1637 return isTypeDependent() || getType()->isIntegralType(); 1638 1639 case NPC_ValueDependentIsNotNull: 1640 return false; 1641 } 1642 } 1643 1644 // Strip off a cast to void*, if it exists. Except in C++. 1645 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 1646 if (!Ctx.getLangOptions().CPlusPlus) { 1647 // Check that it is a cast to void*. 1648 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 1649 QualType Pointee = PT->getPointeeType(); 1650 if (!Pointee.hasQualifiers() && 1651 Pointee->isVoidType() && // to void* 1652 CE->getSubExpr()->getType()->isIntegerType()) // from int. 1653 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 1654 } 1655 } 1656 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 1657 // Ignore the ImplicitCastExpr type entirely. 1658 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 1659 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 1660 // Accept ((void*)0) as a null pointer constant, as many other 1661 // implementations do. 1662 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 1663 } else if (const CXXDefaultArgExpr *DefaultArg 1664 = dyn_cast<CXXDefaultArgExpr>(this)) { 1665 // See through default argument expressions 1666 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 1667 } else if (isa<GNUNullExpr>(this)) { 1668 // The GNU __null extension is always a null pointer constant. 1669 return true; 1670 } 1671 1672 // C++0x nullptr_t is always a null pointer constant. 1673 if (getType()->isNullPtrType()) 1674 return true; 1675 1676 // This expression must be an integer type. 1677 if (!getType()->isIntegerType()) 1678 return false; 1679 1680 // If we have an integer constant expression, we need to *evaluate* it and 1681 // test for the value 0. 1682 llvm::APSInt Result; 1683 return isIntegerConstantExpr(Result, Ctx) && Result == 0; 1684} 1685 1686FieldDecl *Expr::getBitField() { 1687 Expr *E = this->IgnoreParens(); 1688 1689 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 1690 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 1691 if (Field->isBitField()) 1692 return Field; 1693 1694 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) 1695 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 1696 return BinOp->getLHS()->getBitField(); 1697 1698 return 0; 1699} 1700 1701/// isArrow - Return true if the base expression is a pointer to vector, 1702/// return false if the base expression is a vector. 1703bool ExtVectorElementExpr::isArrow() const { 1704 return getBase()->getType()->isPointerType(); 1705} 1706 1707unsigned ExtVectorElementExpr::getNumElements() const { 1708 if (const VectorType *VT = getType()->getAs<VectorType>()) 1709 return VT->getNumElements(); 1710 return 1; 1711} 1712 1713/// containsDuplicateElements - Return true if any element access is repeated. 1714bool ExtVectorElementExpr::containsDuplicateElements() const { 1715 const char *compStr = Accessor->getName(); 1716 unsigned length = Accessor->getLength(); 1717 1718 // Halving swizzles do not contain duplicate elements. 1719 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || 1720 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) 1721 return false; 1722 1723 // Advance past s-char prefix on hex swizzles. 1724 if (*compStr == 's' || *compStr == 'S') { 1725 compStr++; 1726 length--; 1727 } 1728 1729 for (unsigned i = 0; i != length-1; i++) { 1730 const char *s = compStr+i; 1731 for (const char c = *s++; *s; s++) 1732 if (c == *s) 1733 return true; 1734 } 1735 return false; 1736} 1737 1738/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 1739void ExtVectorElementExpr::getEncodedElementAccess( 1740 llvm::SmallVectorImpl<unsigned> &Elts) const { 1741 const char *compStr = Accessor->getName(); 1742 if (*compStr == 's' || *compStr == 'S') 1743 compStr++; 1744 1745 bool isHi = !strcmp(compStr, "hi"); 1746 bool isLo = !strcmp(compStr, "lo"); 1747 bool isEven = !strcmp(compStr, "even"); 1748 bool isOdd = !strcmp(compStr, "odd"); 1749 1750 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 1751 uint64_t Index; 1752 1753 if (isHi) 1754 Index = e + i; 1755 else if (isLo) 1756 Index = i; 1757 else if (isEven) 1758 Index = 2 * i; 1759 else if (isOdd) 1760 Index = 2 * i + 1; 1761 else 1762 Index = ExtVectorType::getAccessorIdx(compStr[i]); 1763 1764 Elts.push_back(Index); 1765 } 1766} 1767 1768// constructor for instance messages. 1769ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo, 1770 QualType retType, ObjCMethodDecl *mproto, 1771 SourceLocation LBrac, SourceLocation RBrac, 1772 Expr **ArgExprs, unsigned nargs) 1773 : Expr(ObjCMessageExprClass, retType), SelName(selInfo), 1774 MethodProto(mproto) { 1775 NumArgs = nargs; 1776 SubExprs = new Stmt*[NumArgs+1]; 1777 SubExprs[RECEIVER] = receiver; 1778 if (NumArgs) { 1779 for (unsigned i = 0; i != NumArgs; ++i) 1780 SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); 1781 } 1782 LBracloc = LBrac; 1783 RBracloc = RBrac; 1784} 1785 1786// constructor for class messages. 1787// FIXME: clsName should be typed to ObjCInterfaceType 1788ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo, 1789 QualType retType, ObjCMethodDecl *mproto, 1790 SourceLocation LBrac, SourceLocation RBrac, 1791 Expr **ArgExprs, unsigned nargs) 1792 : Expr(ObjCMessageExprClass, retType), SelName(selInfo), 1793 MethodProto(mproto) { 1794 NumArgs = nargs; 1795 SubExprs = new Stmt*[NumArgs+1]; 1796 SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown); 1797 if (NumArgs) { 1798 for (unsigned i = 0; i != NumArgs; ++i) 1799 SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); 1800 } 1801 LBracloc = LBrac; 1802 RBracloc = RBrac; 1803} 1804 1805// constructor for class messages. 1806ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo, 1807 QualType retType, ObjCMethodDecl *mproto, 1808 SourceLocation LBrac, SourceLocation RBrac, 1809 Expr **ArgExprs, unsigned nargs) 1810: Expr(ObjCMessageExprClass, retType), SelName(selInfo), 1811MethodProto(mproto) { 1812 NumArgs = nargs; 1813 SubExprs = new Stmt*[NumArgs+1]; 1814 SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown); 1815 if (NumArgs) { 1816 for (unsigned i = 0; i != NumArgs; ++i) 1817 SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); 1818 } 1819 LBracloc = LBrac; 1820 RBracloc = RBrac; 1821} 1822 1823ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const { 1824 uintptr_t x = (uintptr_t) SubExprs[RECEIVER]; 1825 switch (x & Flags) { 1826 default: 1827 assert(false && "Invalid ObjCMessageExpr."); 1828 case IsInstMeth: 1829 return ClassInfo(0, 0); 1830 case IsClsMethDeclUnknown: 1831 return ClassInfo(0, (IdentifierInfo*) (x & ~Flags)); 1832 case IsClsMethDeclKnown: { 1833 ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags); 1834 return ClassInfo(D, D->getIdentifier()); 1835 } 1836 } 1837} 1838 1839void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) { 1840 if (CI.first == 0 && CI.second == 0) 1841 SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth); 1842 else if (CI.first == 0) 1843 SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown); 1844 else 1845 SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown); 1846} 1847 1848 1849bool ChooseExpr::isConditionTrue(ASTContext &C) const { 1850 return getCond()->EvaluateAsInt(C) != 0; 1851} 1852 1853void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs, 1854 unsigned NumExprs) { 1855 if (SubExprs) C.Deallocate(SubExprs); 1856 1857 SubExprs = new (C) Stmt* [NumExprs]; 1858 this->NumExprs = NumExprs; 1859 memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs); 1860} 1861 1862void ShuffleVectorExpr::DoDestroy(ASTContext& C) { 1863 DestroyChildren(C); 1864 if (SubExprs) C.Deallocate(SubExprs); 1865 this->~ShuffleVectorExpr(); 1866 C.Deallocate(this); 1867} 1868 1869void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) { 1870 // Override default behavior of traversing children. If this has a type 1871 // operand and the type is a variable-length array, the child iteration 1872 // will iterate over the size expression. However, this expression belongs 1873 // to the type, not to this, so we don't want to delete it. 1874 // We still want to delete this expression. 1875 if (isArgumentType()) { 1876 this->~SizeOfAlignOfExpr(); 1877 C.Deallocate(this); 1878 } 1879 else 1880 Expr::DoDestroy(C); 1881} 1882 1883//===----------------------------------------------------------------------===// 1884// DesignatedInitExpr 1885//===----------------------------------------------------------------------===// 1886 1887IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() { 1888 assert(Kind == FieldDesignator && "Only valid on a field designator"); 1889 if (Field.NameOrField & 0x01) 1890 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 1891 else 1892 return getField()->getIdentifier(); 1893} 1894 1895DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators, 1896 const Designator *Designators, 1897 SourceLocation EqualOrColonLoc, 1898 bool GNUSyntax, 1899 Expr **IndexExprs, 1900 unsigned NumIndexExprs, 1901 Expr *Init) 1902 : Expr(DesignatedInitExprClass, Ty, 1903 Init->isTypeDependent(), Init->isValueDependent()), 1904 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 1905 NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) { 1906 this->Designators = new Designator[NumDesignators]; 1907 1908 // Record the initializer itself. 1909 child_iterator Child = child_begin(); 1910 *Child++ = Init; 1911 1912 // Copy the designators and their subexpressions, computing 1913 // value-dependence along the way. 1914 unsigned IndexIdx = 0; 1915 for (unsigned I = 0; I != NumDesignators; ++I) { 1916 this->Designators[I] = Designators[I]; 1917 1918 if (this->Designators[I].isArrayDesignator()) { 1919 // Compute type- and value-dependence. 1920 Expr *Index = IndexExprs[IndexIdx]; 1921 ValueDependent = ValueDependent || 1922 Index->isTypeDependent() || Index->isValueDependent(); 1923 1924 // Copy the index expressions into permanent storage. 1925 *Child++ = IndexExprs[IndexIdx++]; 1926 } else if (this->Designators[I].isArrayRangeDesignator()) { 1927 // Compute type- and value-dependence. 1928 Expr *Start = IndexExprs[IndexIdx]; 1929 Expr *End = IndexExprs[IndexIdx + 1]; 1930 ValueDependent = ValueDependent || 1931 Start->isTypeDependent() || Start->isValueDependent() || 1932 End->isTypeDependent() || End->isValueDependent(); 1933 1934 // Copy the start/end expressions into permanent storage. 1935 *Child++ = IndexExprs[IndexIdx++]; 1936 *Child++ = IndexExprs[IndexIdx++]; 1937 } 1938 } 1939 1940 assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions"); 1941} 1942 1943DesignatedInitExpr * 1944DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, 1945 unsigned NumDesignators, 1946 Expr **IndexExprs, unsigned NumIndexExprs, 1947 SourceLocation ColonOrEqualLoc, 1948 bool UsesColonSyntax, Expr *Init) { 1949 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 1950 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 1951 return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators, 1952 ColonOrEqualLoc, UsesColonSyntax, 1953 IndexExprs, NumIndexExprs, Init); 1954} 1955 1956DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, 1957 unsigned NumIndexExprs) { 1958 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 1959 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 1960 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 1961} 1962 1963void DesignatedInitExpr::setDesignators(const Designator *Desigs, 1964 unsigned NumDesigs) { 1965 if (Designators) 1966 delete [] Designators; 1967 1968 Designators = new Designator[NumDesigs]; 1969 NumDesignators = NumDesigs; 1970 for (unsigned I = 0; I != NumDesigs; ++I) 1971 Designators[I] = Desigs[I]; 1972} 1973 1974SourceRange DesignatedInitExpr::getSourceRange() const { 1975 SourceLocation StartLoc; 1976 Designator &First = 1977 *const_cast<DesignatedInitExpr*>(this)->designators_begin(); 1978 if (First.isFieldDesignator()) { 1979 if (GNUSyntax) 1980 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 1981 else 1982 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 1983 } else 1984 StartLoc = 1985 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 1986 return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); 1987} 1988 1989Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { 1990 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 1991 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 1992 Ptr += sizeof(DesignatedInitExpr); 1993 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 1994 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 1995} 1996 1997Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { 1998 assert(D.Kind == Designator::ArrayRangeDesignator && 1999 "Requires array range designator"); 2000 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 2001 Ptr += sizeof(DesignatedInitExpr); 2002 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 2003 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 2004} 2005 2006Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { 2007 assert(D.Kind == Designator::ArrayRangeDesignator && 2008 "Requires array range designator"); 2009 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 2010 Ptr += sizeof(DesignatedInitExpr); 2011 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 2012 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); 2013} 2014 2015/// \brief Replaces the designator at index @p Idx with the series 2016/// of designators in [First, Last). 2017void DesignatedInitExpr::ExpandDesignator(unsigned Idx, 2018 const Designator *First, 2019 const Designator *Last) { 2020 unsigned NumNewDesignators = Last - First; 2021 if (NumNewDesignators == 0) { 2022 std::copy_backward(Designators + Idx + 1, 2023 Designators + NumDesignators, 2024 Designators + Idx); 2025 --NumNewDesignators; 2026 return; 2027 } else if (NumNewDesignators == 1) { 2028 Designators[Idx] = *First; 2029 return; 2030 } 2031 2032 Designator *NewDesignators 2033 = new Designator[NumDesignators - 1 + NumNewDesignators]; 2034 std::copy(Designators, Designators + Idx, NewDesignators); 2035 std::copy(First, Last, NewDesignators + Idx); 2036 std::copy(Designators + Idx + 1, Designators + NumDesignators, 2037 NewDesignators + Idx + NumNewDesignators); 2038 delete [] Designators; 2039 Designators = NewDesignators; 2040 NumDesignators = NumDesignators - 1 + NumNewDesignators; 2041} 2042 2043void DesignatedInitExpr::DoDestroy(ASTContext &C) { 2044 delete [] Designators; 2045 Expr::DoDestroy(C); 2046} 2047 2048ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc, 2049 Expr **exprs, unsigned nexprs, 2050 SourceLocation rparenloc) 2051: Expr(ParenListExprClass, QualType(), 2052 hasAnyTypeDependentArguments(exprs, nexprs), 2053 hasAnyValueDependentArguments(exprs, nexprs)), 2054 NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) { 2055 2056 Exprs = new (C) Stmt*[nexprs]; 2057 for (unsigned i = 0; i != nexprs; ++i) 2058 Exprs[i] = exprs[i]; 2059} 2060 2061void ParenListExpr::DoDestroy(ASTContext& C) { 2062 DestroyChildren(C); 2063 if (Exprs) C.Deallocate(Exprs); 2064 this->~ParenListExpr(); 2065 C.Deallocate(this); 2066} 2067 2068//===----------------------------------------------------------------------===// 2069// ExprIterator. 2070//===----------------------------------------------------------------------===// 2071 2072Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } 2073Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } 2074Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } 2075const Expr* ConstExprIterator::operator[](size_t idx) const { 2076 return cast<Expr>(I[idx]); 2077} 2078const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } 2079const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } 2080 2081//===----------------------------------------------------------------------===// 2082// Child Iterators for iterating over subexpressions/substatements 2083//===----------------------------------------------------------------------===// 2084 2085// DeclRefExpr 2086Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); } 2087Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); } 2088 2089// ObjCIvarRefExpr 2090Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; } 2091Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; } 2092 2093// ObjCPropertyRefExpr 2094Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; } 2095Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; } 2096 2097// ObjCImplicitSetterGetterRefExpr 2098Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() { 2099 return &Base; 2100} 2101Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() { 2102 return &Base+1; 2103} 2104 2105// ObjCSuperExpr 2106Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); } 2107Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); } 2108 2109// ObjCIsaExpr 2110Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; } 2111Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; } 2112 2113// PredefinedExpr 2114Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); } 2115Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); } 2116 2117// IntegerLiteral 2118Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); } 2119Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); } 2120 2121// CharacterLiteral 2122Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();} 2123Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); } 2124 2125// FloatingLiteral 2126Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); } 2127Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); } 2128 2129// ImaginaryLiteral 2130Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; } 2131Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; } 2132 2133// StringLiteral 2134Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); } 2135Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); } 2136 2137// ParenExpr 2138Stmt::child_iterator ParenExpr::child_begin() { return &Val; } 2139Stmt::child_iterator ParenExpr::child_end() { return &Val+1; } 2140 2141// UnaryOperator 2142Stmt::child_iterator UnaryOperator::child_begin() { return &Val; } 2143Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; } 2144 2145// SizeOfAlignOfExpr 2146Stmt::child_iterator SizeOfAlignOfExpr::child_begin() { 2147 // If this is of a type and the type is a VLA type (and not a typedef), the 2148 // size expression of the VLA needs to be treated as an executable expression. 2149 // Why isn't this weirdness documented better in StmtIterator? 2150 if (isArgumentType()) { 2151 if (VariableArrayType* T = dyn_cast<VariableArrayType>( 2152 getArgumentType().getTypePtr())) 2153 return child_iterator(T); 2154 return child_iterator(); 2155 } 2156 return child_iterator(&Argument.Ex); 2157} 2158Stmt::child_iterator SizeOfAlignOfExpr::child_end() { 2159 if (isArgumentType()) 2160 return child_iterator(); 2161 return child_iterator(&Argument.Ex + 1); 2162} 2163 2164// ArraySubscriptExpr 2165Stmt::child_iterator ArraySubscriptExpr::child_begin() { 2166 return &SubExprs[0]; 2167} 2168Stmt::child_iterator ArraySubscriptExpr::child_end() { 2169 return &SubExprs[0]+END_EXPR; 2170} 2171 2172// CallExpr 2173Stmt::child_iterator CallExpr::child_begin() { 2174 return &SubExprs[0]; 2175} 2176Stmt::child_iterator CallExpr::child_end() { 2177 return &SubExprs[0]+NumArgs+ARGS_START; 2178} 2179 2180// MemberExpr 2181Stmt::child_iterator MemberExpr::child_begin() { return &Base; } 2182Stmt::child_iterator MemberExpr::child_end() { return &Base+1; } 2183 2184// ExtVectorElementExpr 2185Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; } 2186Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; } 2187 2188// CompoundLiteralExpr 2189Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; } 2190Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; } 2191 2192// CastExpr 2193Stmt::child_iterator CastExpr::child_begin() { return &Op; } 2194Stmt::child_iterator CastExpr::child_end() { return &Op+1; } 2195 2196// BinaryOperator 2197Stmt::child_iterator BinaryOperator::child_begin() { 2198 return &SubExprs[0]; 2199} 2200Stmt::child_iterator BinaryOperator::child_end() { 2201 return &SubExprs[0]+END_EXPR; 2202} 2203 2204// ConditionalOperator 2205Stmt::child_iterator ConditionalOperator::child_begin() { 2206 return &SubExprs[0]; 2207} 2208Stmt::child_iterator ConditionalOperator::child_end() { 2209 return &SubExprs[0]+END_EXPR; 2210} 2211 2212// AddrLabelExpr 2213Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); } 2214Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); } 2215 2216// StmtExpr 2217Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; } 2218Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; } 2219 2220// TypesCompatibleExpr 2221Stmt::child_iterator TypesCompatibleExpr::child_begin() { 2222 return child_iterator(); 2223} 2224 2225Stmt::child_iterator TypesCompatibleExpr::child_end() { 2226 return child_iterator(); 2227} 2228 2229// ChooseExpr 2230Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; } 2231Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; } 2232 2233// GNUNullExpr 2234Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); } 2235Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); } 2236 2237// ShuffleVectorExpr 2238Stmt::child_iterator ShuffleVectorExpr::child_begin() { 2239 return &SubExprs[0]; 2240} 2241Stmt::child_iterator ShuffleVectorExpr::child_end() { 2242 return &SubExprs[0]+NumExprs; 2243} 2244 2245// VAArgExpr 2246Stmt::child_iterator VAArgExpr::child_begin() { return &Val; } 2247Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; } 2248 2249// InitListExpr 2250Stmt::child_iterator InitListExpr::child_begin() { 2251 return InitExprs.size() ? &InitExprs[0] : 0; 2252} 2253Stmt::child_iterator InitListExpr::child_end() { 2254 return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0; 2255} 2256 2257// DesignatedInitExpr 2258Stmt::child_iterator DesignatedInitExpr::child_begin() { 2259 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 2260 Ptr += sizeof(DesignatedInitExpr); 2261 return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 2262} 2263Stmt::child_iterator DesignatedInitExpr::child_end() { 2264 return child_iterator(&*child_begin() + NumSubExprs); 2265} 2266 2267// ImplicitValueInitExpr 2268Stmt::child_iterator ImplicitValueInitExpr::child_begin() { 2269 return child_iterator(); 2270} 2271 2272Stmt::child_iterator ImplicitValueInitExpr::child_end() { 2273 return child_iterator(); 2274} 2275 2276// ParenListExpr 2277Stmt::child_iterator ParenListExpr::child_begin() { 2278 return &Exprs[0]; 2279} 2280Stmt::child_iterator ParenListExpr::child_end() { 2281 return &Exprs[0]+NumExprs; 2282} 2283 2284// ObjCStringLiteral 2285Stmt::child_iterator ObjCStringLiteral::child_begin() { 2286 return &String; 2287} 2288Stmt::child_iterator ObjCStringLiteral::child_end() { 2289 return &String+1; 2290} 2291 2292// ObjCEncodeExpr 2293Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); } 2294Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); } 2295 2296// ObjCSelectorExpr 2297Stmt::child_iterator ObjCSelectorExpr::child_begin() { 2298 return child_iterator(); 2299} 2300Stmt::child_iterator ObjCSelectorExpr::child_end() { 2301 return child_iterator(); 2302} 2303 2304// ObjCProtocolExpr 2305Stmt::child_iterator ObjCProtocolExpr::child_begin() { 2306 return child_iterator(); 2307} 2308Stmt::child_iterator ObjCProtocolExpr::child_end() { 2309 return child_iterator(); 2310} 2311 2312// ObjCMessageExpr 2313Stmt::child_iterator ObjCMessageExpr::child_begin() { 2314 return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START; 2315} 2316Stmt::child_iterator ObjCMessageExpr::child_end() { 2317 return &SubExprs[0]+ARGS_START+getNumArgs(); 2318} 2319 2320// Blocks 2321Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); } 2322Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); } 2323 2324Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();} 2325Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); } 2326