Expr.cpp revision e6b9d802fb7b16d93474c4f1c179ab36202e8a8b
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Lexer.h"
29#include "clang/Lex/LiteralSupport.h"
30#include "clang/Sema/SemaDiagnostic.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include <algorithm>
34#include <cstring>
35using namespace clang;
36
37const CXXRecordDecl *Expr::getBestDynamicClassType() const {
38  const Expr *E = ignoreParenBaseCasts();
39
40  QualType DerivedType = E->getType();
41  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
42    DerivedType = PTy->getPointeeType();
43
44  if (DerivedType->isDependentType())
45    return NULL;
46
47  const RecordType *Ty = DerivedType->castAs<RecordType>();
48  Decl *D = Ty->getDecl();
49  return cast<CXXRecordDecl>(D);
50}
51
52const Expr *
53Expr::skipRValueSubobjectAdjustments(
54                     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const  {
55  const Expr *E = this;
56  while (true) {
57    E = E->IgnoreParens();
58
59    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
60      if ((CE->getCastKind() == CK_DerivedToBase ||
61           CE->getCastKind() == CK_UncheckedDerivedToBase) &&
62          E->getType()->isRecordType()) {
63        E = CE->getSubExpr();
64        CXXRecordDecl *Derived
65          = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
66        Adjustments.push_back(SubobjectAdjustment(CE, Derived));
67        continue;
68      }
69
70      if (CE->getCastKind() == CK_NoOp) {
71        E = CE->getSubExpr();
72        continue;
73      }
74    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
75      if (!ME->isArrow() && ME->getBase()->isRValue()) {
76        assert(ME->getBase()->getType()->isRecordType());
77        if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
78          E = ME->getBase();
79          Adjustments.push_back(SubobjectAdjustment(Field));
80          continue;
81        }
82      }
83    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
84      if (BO->isPtrMemOp()) {
85        assert(BO->getRHS()->isRValue());
86        E = BO->getLHS();
87        const MemberPointerType *MPT =
88          BO->getRHS()->getType()->getAs<MemberPointerType>();
89        Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
90      }
91    }
92
93    // Nothing changed.
94    break;
95  }
96  return E;
97}
98
99const Expr *
100Expr::findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const {
101  const Expr *E = this;
102  // Look through single-element init lists that claim to be lvalues. They're
103  // just syntactic wrappers in this case.
104  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
105    if (ILE->getNumInits() == 1 && ILE->isGLValue())
106      E = ILE->getInit(0);
107  }
108
109  // Look through expressions for materialized temporaries (for now).
110  if (const MaterializeTemporaryExpr *M
111      = dyn_cast<MaterializeTemporaryExpr>(E)) {
112    MTE = M;
113    E = M->GetTemporaryExpr();
114  }
115
116  if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
117    E = DAE->getExpr();
118  return E;
119}
120
121/// isKnownToHaveBooleanValue - Return true if this is an integer expression
122/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
123/// but also int expressions which are produced by things like comparisons in
124/// C.
125bool Expr::isKnownToHaveBooleanValue() const {
126  const Expr *E = IgnoreParens();
127
128  // If this value has _Bool type, it is obvious 0/1.
129  if (E->getType()->isBooleanType()) return true;
130  // If this is a non-scalar-integer type, we don't care enough to try.
131  if (!E->getType()->isIntegralOrEnumerationType()) return false;
132
133  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
134    switch (UO->getOpcode()) {
135    case UO_Plus:
136      return UO->getSubExpr()->isKnownToHaveBooleanValue();
137    default:
138      return false;
139    }
140  }
141
142  // Only look through implicit casts.  If the user writes
143  // '(int) (a && b)' treat it as an arbitrary int.
144  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
145    return CE->getSubExpr()->isKnownToHaveBooleanValue();
146
147  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
148    switch (BO->getOpcode()) {
149    default: return false;
150    case BO_LT:   // Relational operators.
151    case BO_GT:
152    case BO_LE:
153    case BO_GE:
154    case BO_EQ:   // Equality operators.
155    case BO_NE:
156    case BO_LAnd: // AND operator.
157    case BO_LOr:  // Logical OR operator.
158      return true;
159
160    case BO_And:  // Bitwise AND operator.
161    case BO_Xor:  // Bitwise XOR operator.
162    case BO_Or:   // Bitwise OR operator.
163      // Handle things like (x==2)|(y==12).
164      return BO->getLHS()->isKnownToHaveBooleanValue() &&
165             BO->getRHS()->isKnownToHaveBooleanValue();
166
167    case BO_Comma:
168    case BO_Assign:
169      return BO->getRHS()->isKnownToHaveBooleanValue();
170    }
171  }
172
173  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
174    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
175           CO->getFalseExpr()->isKnownToHaveBooleanValue();
176
177  return false;
178}
179
180// Amusing macro metaprogramming hack: check whether a class provides
181// a more specific implementation of getExprLoc().
182//
183// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
184namespace {
185  /// This implementation is used when a class provides a custom
186  /// implementation of getExprLoc.
187  template <class E, class T>
188  SourceLocation getExprLocImpl(const Expr *expr,
189                                SourceLocation (T::*v)() const) {
190    return static_cast<const E*>(expr)->getExprLoc();
191  }
192
193  /// This implementation is used when a class doesn't provide
194  /// a custom implementation of getExprLoc.  Overload resolution
195  /// should pick it over the implementation above because it's
196  /// more specialized according to function template partial ordering.
197  template <class E>
198  SourceLocation getExprLocImpl(const Expr *expr,
199                                SourceLocation (Expr::*v)() const) {
200    return static_cast<const E*>(expr)->getLocStart();
201  }
202}
203
204SourceLocation Expr::getExprLoc() const {
205  switch (getStmtClass()) {
206  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
207#define ABSTRACT_STMT(type)
208#define STMT(type, base) \
209  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
210#define EXPR(type, base) \
211  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
212#include "clang/AST/StmtNodes.inc"
213  }
214  llvm_unreachable("unknown statement kind");
215}
216
217//===----------------------------------------------------------------------===//
218// Primary Expressions.
219//===----------------------------------------------------------------------===//
220
221/// \brief Compute the type-, value-, and instantiation-dependence of a
222/// declaration reference
223/// based on the declaration being referenced.
224static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
225                                     bool &TypeDependent,
226                                     bool &ValueDependent,
227                                     bool &InstantiationDependent) {
228  TypeDependent = false;
229  ValueDependent = false;
230  InstantiationDependent = false;
231
232  // (TD) C++ [temp.dep.expr]p3:
233  //   An id-expression is type-dependent if it contains:
234  //
235  // and
236  //
237  // (VD) C++ [temp.dep.constexpr]p2:
238  //  An identifier is value-dependent if it is:
239
240  //  (TD)  - an identifier that was declared with dependent type
241  //  (VD)  - a name declared with a dependent type,
242  if (T->isDependentType()) {
243    TypeDependent = true;
244    ValueDependent = true;
245    InstantiationDependent = true;
246    return;
247  } else if (T->isInstantiationDependentType()) {
248    InstantiationDependent = true;
249  }
250
251  //  (TD)  - a conversion-function-id that specifies a dependent type
252  if (D->getDeclName().getNameKind()
253                                == DeclarationName::CXXConversionFunctionName) {
254    QualType T = D->getDeclName().getCXXNameType();
255    if (T->isDependentType()) {
256      TypeDependent = true;
257      ValueDependent = true;
258      InstantiationDependent = true;
259      return;
260    }
261
262    if (T->isInstantiationDependentType())
263      InstantiationDependent = true;
264  }
265
266  //  (VD)  - the name of a non-type template parameter,
267  if (isa<NonTypeTemplateParmDecl>(D)) {
268    ValueDependent = true;
269    InstantiationDependent = true;
270    return;
271  }
272
273  //  (VD) - a constant with integral or enumeration type and is
274  //         initialized with an expression that is value-dependent.
275  //  (VD) - a constant with literal type and is initialized with an
276  //         expression that is value-dependent [C++11].
277  //  (VD) - FIXME: Missing from the standard:
278  //       -  an entity with reference type and is initialized with an
279  //          expression that is value-dependent [C++11]
280  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
281    if ((Ctx.getLangOpts().CPlusPlus11 ?
282           Var->getType()->isLiteralType() :
283           Var->getType()->isIntegralOrEnumerationType()) &&
284        (Var->getType().isConstQualified() ||
285         Var->getType()->isReferenceType())) {
286      if (const Expr *Init = Var->getAnyInitializer())
287        if (Init->isValueDependent()) {
288          ValueDependent = true;
289          InstantiationDependent = true;
290        }
291    }
292
293    // (VD) - FIXME: Missing from the standard:
294    //      -  a member function or a static data member of the current
295    //         instantiation
296    if (Var->isStaticDataMember() &&
297        Var->getDeclContext()->isDependentContext()) {
298      ValueDependent = true;
299      InstantiationDependent = true;
300    }
301
302    return;
303  }
304
305  // (VD) - FIXME: Missing from the standard:
306  //      -  a member function or a static data member of the current
307  //         instantiation
308  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
309    ValueDependent = true;
310    InstantiationDependent = true;
311  }
312}
313
314void DeclRefExpr::computeDependence(ASTContext &Ctx) {
315  bool TypeDependent = false;
316  bool ValueDependent = false;
317  bool InstantiationDependent = false;
318  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
319                           ValueDependent, InstantiationDependent);
320
321  // (TD) C++ [temp.dep.expr]p3:
322  //   An id-expression is type-dependent if it contains:
323  //
324  // and
325  //
326  // (VD) C++ [temp.dep.constexpr]p2:
327  //  An identifier is value-dependent if it is:
328  if (!TypeDependent && !ValueDependent &&
329      hasExplicitTemplateArgs() &&
330      TemplateSpecializationType::anyDependentTemplateArguments(
331                                                            getTemplateArgs(),
332                                                       getNumTemplateArgs(),
333                                                      InstantiationDependent)) {
334    TypeDependent = true;
335    ValueDependent = true;
336    InstantiationDependent = true;
337  }
338
339  ExprBits.TypeDependent = TypeDependent;
340  ExprBits.ValueDependent = ValueDependent;
341  ExprBits.InstantiationDependent = InstantiationDependent;
342
343  // Is the declaration a parameter pack?
344  if (getDecl()->isParameterPack())
345    ExprBits.ContainsUnexpandedParameterPack = true;
346}
347
348DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
349                         NestedNameSpecifierLoc QualifierLoc,
350                         SourceLocation TemplateKWLoc,
351                         ValueDecl *D, bool RefersToEnclosingLocal,
352                         const DeclarationNameInfo &NameInfo,
353                         NamedDecl *FoundD,
354                         const TemplateArgumentListInfo *TemplateArgs,
355                         QualType T, ExprValueKind VK)
356  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
357    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
358  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
359  if (QualifierLoc)
360    getInternalQualifierLoc() = QualifierLoc;
361  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
362  if (FoundD)
363    getInternalFoundDecl() = FoundD;
364  DeclRefExprBits.HasTemplateKWAndArgsInfo
365    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
366  DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
367  if (TemplateArgs) {
368    bool Dependent = false;
369    bool InstantiationDependent = false;
370    bool ContainsUnexpandedParameterPack = false;
371    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
372                                               Dependent,
373                                               InstantiationDependent,
374                                               ContainsUnexpandedParameterPack);
375    if (InstantiationDependent)
376      setInstantiationDependent(true);
377  } else if (TemplateKWLoc.isValid()) {
378    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
379  }
380  DeclRefExprBits.HadMultipleCandidates = 0;
381
382  computeDependence(Ctx);
383}
384
385DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
386                                 NestedNameSpecifierLoc QualifierLoc,
387                                 SourceLocation TemplateKWLoc,
388                                 ValueDecl *D,
389                                 bool RefersToEnclosingLocal,
390                                 SourceLocation NameLoc,
391                                 QualType T,
392                                 ExprValueKind VK,
393                                 NamedDecl *FoundD,
394                                 const TemplateArgumentListInfo *TemplateArgs) {
395  return Create(Context, QualifierLoc, TemplateKWLoc, D,
396                RefersToEnclosingLocal,
397                DeclarationNameInfo(D->getDeclName(), NameLoc),
398                T, VK, FoundD, TemplateArgs);
399}
400
401DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
402                                 NestedNameSpecifierLoc QualifierLoc,
403                                 SourceLocation TemplateKWLoc,
404                                 ValueDecl *D,
405                                 bool RefersToEnclosingLocal,
406                                 const DeclarationNameInfo &NameInfo,
407                                 QualType T,
408                                 ExprValueKind VK,
409                                 NamedDecl *FoundD,
410                                 const TemplateArgumentListInfo *TemplateArgs) {
411  // Filter out cases where the found Decl is the same as the value refenenced.
412  if (D == FoundD)
413    FoundD = 0;
414
415  std::size_t Size = sizeof(DeclRefExpr);
416  if (QualifierLoc != 0)
417    Size += sizeof(NestedNameSpecifierLoc);
418  if (FoundD)
419    Size += sizeof(NamedDecl *);
420  if (TemplateArgs)
421    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
422  else if (TemplateKWLoc.isValid())
423    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
424
425  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
426  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
427                               RefersToEnclosingLocal,
428                               NameInfo, FoundD, TemplateArgs, T, VK);
429}
430
431DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
432                                      bool HasQualifier,
433                                      bool HasFoundDecl,
434                                      bool HasTemplateKWAndArgsInfo,
435                                      unsigned NumTemplateArgs) {
436  std::size_t Size = sizeof(DeclRefExpr);
437  if (HasQualifier)
438    Size += sizeof(NestedNameSpecifierLoc);
439  if (HasFoundDecl)
440    Size += sizeof(NamedDecl *);
441  if (HasTemplateKWAndArgsInfo)
442    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
443
444  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
445  return new (Mem) DeclRefExpr(EmptyShell());
446}
447
448SourceLocation DeclRefExpr::getLocStart() const {
449  if (hasQualifier())
450    return getQualifierLoc().getBeginLoc();
451  return getNameInfo().getLocStart();
452}
453SourceLocation DeclRefExpr::getLocEnd() const {
454  if (hasExplicitTemplateArgs())
455    return getRAngleLoc();
456  return getNameInfo().getLocEnd();
457}
458
459// FIXME: Maybe this should use DeclPrinter with a special "print predefined
460// expr" policy instead.
461std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
462  ASTContext &Context = CurrentDecl->getASTContext();
463
464  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
465    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
466      return FD->getNameAsString();
467
468    SmallString<256> Name;
469    llvm::raw_svector_ostream Out(Name);
470
471    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
472      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
473        Out << "virtual ";
474      if (MD->isStatic())
475        Out << "static ";
476    }
477
478    PrintingPolicy Policy(Context.getLangOpts());
479    std::string Proto = FD->getQualifiedNameAsString(Policy);
480    llvm::raw_string_ostream POut(Proto);
481
482    const FunctionDecl *Decl = FD;
483    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
484      Decl = Pattern;
485    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
486    const FunctionProtoType *FT = 0;
487    if (FD->hasWrittenPrototype())
488      FT = dyn_cast<FunctionProtoType>(AFT);
489
490    POut << "(";
491    if (FT) {
492      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
493        if (i) POut << ", ";
494        POut << Decl->getParamDecl(i)->getType().stream(Policy);
495      }
496
497      if (FT->isVariadic()) {
498        if (FD->getNumParams()) POut << ", ";
499        POut << "...";
500      }
501    }
502    POut << ")";
503
504    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
505      const FunctionType *FT = MD->getType()->castAs<FunctionType>();
506      if (FT->isConst())
507        POut << " const";
508      if (FT->isVolatile())
509        POut << " volatile";
510      RefQualifierKind Ref = MD->getRefQualifier();
511      if (Ref == RQ_LValue)
512        POut << " &";
513      else if (Ref == RQ_RValue)
514        POut << " &&";
515    }
516
517    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
518    SpecsTy Specs;
519    const DeclContext *Ctx = FD->getDeclContext();
520    while (Ctx && isa<NamedDecl>(Ctx)) {
521      const ClassTemplateSpecializationDecl *Spec
522                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
523      if (Spec && !Spec->isExplicitSpecialization())
524        Specs.push_back(Spec);
525      Ctx = Ctx->getParent();
526    }
527
528    std::string TemplateParams;
529    llvm::raw_string_ostream TOut(TemplateParams);
530    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
531         I != E; ++I) {
532      const TemplateParameterList *Params
533                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
534      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
535      assert(Params->size() == Args.size());
536      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
537        StringRef Param = Params->getParam(i)->getName();
538        if (Param.empty()) continue;
539        TOut << Param << " = ";
540        Args.get(i).print(Policy, TOut);
541        TOut << ", ";
542      }
543    }
544
545    FunctionTemplateSpecializationInfo *FSI
546                                          = FD->getTemplateSpecializationInfo();
547    if (FSI && !FSI->isExplicitSpecialization()) {
548      const TemplateParameterList* Params
549                                  = FSI->getTemplate()->getTemplateParameters();
550      const TemplateArgumentList* Args = FSI->TemplateArguments;
551      assert(Params->size() == Args->size());
552      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
553        StringRef Param = Params->getParam(i)->getName();
554        if (Param.empty()) continue;
555        TOut << Param << " = ";
556        Args->get(i).print(Policy, TOut);
557        TOut << ", ";
558      }
559    }
560
561    TOut.flush();
562    if (!TemplateParams.empty()) {
563      // remove the trailing comma and space
564      TemplateParams.resize(TemplateParams.size() - 2);
565      POut << " [" << TemplateParams << "]";
566    }
567
568    POut.flush();
569
570    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
571      AFT->getResultType().getAsStringInternal(Proto, Policy);
572
573    Out << Proto;
574
575    Out.flush();
576    return Name.str().str();
577  }
578  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
579    SmallString<256> Name;
580    llvm::raw_svector_ostream Out(Name);
581    Out << (MD->isInstanceMethod() ? '-' : '+');
582    Out << '[';
583
584    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
585    // a null check to avoid a crash.
586    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
587      Out << *ID;
588
589    if (const ObjCCategoryImplDecl *CID =
590        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
591      Out << '(' << *CID << ')';
592
593    Out <<  ' ';
594    Out << MD->getSelector().getAsString();
595    Out <<  ']';
596
597    Out.flush();
598    return Name.str().str();
599  }
600  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
601    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
602    return "top level";
603  }
604  return "";
605}
606
607void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
608  if (hasAllocation())
609    C.Deallocate(pVal);
610
611  BitWidth = Val.getBitWidth();
612  unsigned NumWords = Val.getNumWords();
613  const uint64_t* Words = Val.getRawData();
614  if (NumWords > 1) {
615    pVal = new (C) uint64_t[NumWords];
616    std::copy(Words, Words + NumWords, pVal);
617  } else if (NumWords == 1)
618    VAL = Words[0];
619  else
620    VAL = 0;
621}
622
623IntegerLiteral::IntegerLiteral(ASTContext &C, const llvm::APInt &V,
624                               QualType type, SourceLocation l)
625  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
626         false, false),
627    Loc(l) {
628  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
629  assert(V.getBitWidth() == C.getIntWidth(type) &&
630         "Integer type is not the correct size for constant.");
631  setValue(C, V);
632}
633
634IntegerLiteral *
635IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
636                       QualType type, SourceLocation l) {
637  return new (C) IntegerLiteral(C, V, type, l);
638}
639
640IntegerLiteral *
641IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
642  return new (C) IntegerLiteral(Empty);
643}
644
645FloatingLiteral::FloatingLiteral(ASTContext &C, const llvm::APFloat &V,
646                                 bool isexact, QualType Type, SourceLocation L)
647  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
648         false, false), Loc(L) {
649  FloatingLiteralBits.IsIEEE =
650    &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
651  FloatingLiteralBits.IsExact = isexact;
652  setValue(C, V);
653}
654
655FloatingLiteral::FloatingLiteral(ASTContext &C, EmptyShell Empty)
656  : Expr(FloatingLiteralClass, Empty) {
657  FloatingLiteralBits.IsIEEE =
658    &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
659  FloatingLiteralBits.IsExact = false;
660}
661
662FloatingLiteral *
663FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
664                        bool isexact, QualType Type, SourceLocation L) {
665  return new (C) FloatingLiteral(C, V, isexact, Type, L);
666}
667
668FloatingLiteral *
669FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
670  return new (C) FloatingLiteral(C, Empty);
671}
672
673/// getValueAsApproximateDouble - This returns the value as an inaccurate
674/// double.  Note that this may cause loss of precision, but is useful for
675/// debugging dumps, etc.
676double FloatingLiteral::getValueAsApproximateDouble() const {
677  llvm::APFloat V = getValue();
678  bool ignored;
679  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
680            &ignored);
681  return V.convertToDouble();
682}
683
684int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
685  int CharByteWidth = 0;
686  switch(k) {
687    case Ascii:
688    case UTF8:
689      CharByteWidth = target.getCharWidth();
690      break;
691    case Wide:
692      CharByteWidth = target.getWCharWidth();
693      break;
694    case UTF16:
695      CharByteWidth = target.getChar16Width();
696      break;
697    case UTF32:
698      CharByteWidth = target.getChar32Width();
699      break;
700  }
701  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
702  CharByteWidth /= 8;
703  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
704         && "character byte widths supported are 1, 2, and 4 only");
705  return CharByteWidth;
706}
707
708StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
709                                     StringKind Kind, bool Pascal, QualType Ty,
710                                     const SourceLocation *Loc,
711                                     unsigned NumStrs) {
712  // Allocate enough space for the StringLiteral plus an array of locations for
713  // any concatenated string tokens.
714  void *Mem = C.Allocate(sizeof(StringLiteral)+
715                         sizeof(SourceLocation)*(NumStrs-1),
716                         llvm::alignOf<StringLiteral>());
717  StringLiteral *SL = new (Mem) StringLiteral(Ty);
718
719  // OPTIMIZE: could allocate this appended to the StringLiteral.
720  SL->setString(C,Str,Kind,Pascal);
721
722  SL->TokLocs[0] = Loc[0];
723  SL->NumConcatenated = NumStrs;
724
725  if (NumStrs != 1)
726    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
727  return SL;
728}
729
730StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
731  void *Mem = C.Allocate(sizeof(StringLiteral)+
732                         sizeof(SourceLocation)*(NumStrs-1),
733                         llvm::alignOf<StringLiteral>());
734  StringLiteral *SL = new (Mem) StringLiteral(QualType());
735  SL->CharByteWidth = 0;
736  SL->Length = 0;
737  SL->NumConcatenated = NumStrs;
738  return SL;
739}
740
741void StringLiteral::outputString(raw_ostream &OS) {
742  switch (getKind()) {
743  case Ascii: break; // no prefix.
744  case Wide:  OS << 'L'; break;
745  case UTF8:  OS << "u8"; break;
746  case UTF16: OS << 'u'; break;
747  case UTF32: OS << 'U'; break;
748  }
749  OS << '"';
750  static const char Hex[] = "0123456789ABCDEF";
751
752  unsigned LastSlashX = getLength();
753  for (unsigned I = 0, N = getLength(); I != N; ++I) {
754    switch (uint32_t Char = getCodeUnit(I)) {
755    default:
756      // FIXME: Convert UTF-8 back to codepoints before rendering.
757
758      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
759      // Leave invalid surrogates alone; we'll use \x for those.
760      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
761          Char <= 0xdbff) {
762        uint32_t Trail = getCodeUnit(I + 1);
763        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
764          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
765          ++I;
766        }
767      }
768
769      if (Char > 0xff) {
770        // If this is a wide string, output characters over 0xff using \x
771        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
772        // codepoint: use \x escapes for invalid codepoints.
773        if (getKind() == Wide ||
774            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
775          // FIXME: Is this the best way to print wchar_t?
776          OS << "\\x";
777          int Shift = 28;
778          while ((Char >> Shift) == 0)
779            Shift -= 4;
780          for (/**/; Shift >= 0; Shift -= 4)
781            OS << Hex[(Char >> Shift) & 15];
782          LastSlashX = I;
783          break;
784        }
785
786        if (Char > 0xffff)
787          OS << "\\U00"
788             << Hex[(Char >> 20) & 15]
789             << Hex[(Char >> 16) & 15];
790        else
791          OS << "\\u";
792        OS << Hex[(Char >> 12) & 15]
793           << Hex[(Char >>  8) & 15]
794           << Hex[(Char >>  4) & 15]
795           << Hex[(Char >>  0) & 15];
796        break;
797      }
798
799      // If we used \x... for the previous character, and this character is a
800      // hexadecimal digit, prevent it being slurped as part of the \x.
801      if (LastSlashX + 1 == I) {
802        switch (Char) {
803          case '0': case '1': case '2': case '3': case '4':
804          case '5': case '6': case '7': case '8': case '9':
805          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
806          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
807            OS << "\"\"";
808        }
809      }
810
811      assert(Char <= 0xff &&
812             "Characters above 0xff should already have been handled.");
813
814      if (isprint(Char))
815        OS << (char)Char;
816      else  // Output anything hard as an octal escape.
817        OS << '\\'
818           << (char)('0' + ((Char >> 6) & 7))
819           << (char)('0' + ((Char >> 3) & 7))
820           << (char)('0' + ((Char >> 0) & 7));
821      break;
822    // Handle some common non-printable cases to make dumps prettier.
823    case '\\': OS << "\\\\"; break;
824    case '"': OS << "\\\""; break;
825    case '\n': OS << "\\n"; break;
826    case '\t': OS << "\\t"; break;
827    case '\a': OS << "\\a"; break;
828    case '\b': OS << "\\b"; break;
829    }
830  }
831  OS << '"';
832}
833
834void StringLiteral::setString(ASTContext &C, StringRef Str,
835                              StringKind Kind, bool IsPascal) {
836  //FIXME: we assume that the string data comes from a target that uses the same
837  // code unit size and endianess for the type of string.
838  this->Kind = Kind;
839  this->IsPascal = IsPascal;
840
841  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
842  assert((Str.size()%CharByteWidth == 0)
843         && "size of data must be multiple of CharByteWidth");
844  Length = Str.size()/CharByteWidth;
845
846  switch(CharByteWidth) {
847    case 1: {
848      char *AStrData = new (C) char[Length];
849      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
850      StrData.asChar = AStrData;
851      break;
852    }
853    case 2: {
854      uint16_t *AStrData = new (C) uint16_t[Length];
855      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
856      StrData.asUInt16 = AStrData;
857      break;
858    }
859    case 4: {
860      uint32_t *AStrData = new (C) uint32_t[Length];
861      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
862      StrData.asUInt32 = AStrData;
863      break;
864    }
865    default:
866      assert(false && "unsupported CharByteWidth");
867  }
868}
869
870/// getLocationOfByte - Return a source location that points to the specified
871/// byte of this string literal.
872///
873/// Strings are amazingly complex.  They can be formed from multiple tokens and
874/// can have escape sequences in them in addition to the usual trigraph and
875/// escaped newline business.  This routine handles this complexity.
876///
877SourceLocation StringLiteral::
878getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
879                  const LangOptions &Features, const TargetInfo &Target) const {
880  assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
881         "Only narrow string literals are currently supported");
882
883  // Loop over all of the tokens in this string until we find the one that
884  // contains the byte we're looking for.
885  unsigned TokNo = 0;
886  while (1) {
887    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
888    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
889
890    // Get the spelling of the string so that we can get the data that makes up
891    // the string literal, not the identifier for the macro it is potentially
892    // expanded through.
893    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
894
895    // Re-lex the token to get its length and original spelling.
896    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
897    bool Invalid = false;
898    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
899    if (Invalid)
900      return StrTokSpellingLoc;
901
902    const char *StrData = Buffer.data()+LocInfo.second;
903
904    // Create a lexer starting at the beginning of this token.
905    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
906                   Buffer.begin(), StrData, Buffer.end());
907    Token TheTok;
908    TheLexer.LexFromRawLexer(TheTok);
909
910    // Use the StringLiteralParser to compute the length of the string in bytes.
911    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
912    unsigned TokNumBytes = SLP.GetStringLength();
913
914    // If the byte is in this token, return the location of the byte.
915    if (ByteNo < TokNumBytes ||
916        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
917      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
918
919      // Now that we know the offset of the token in the spelling, use the
920      // preprocessor to get the offset in the original source.
921      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
922    }
923
924    // Move to the next string token.
925    ++TokNo;
926    ByteNo -= TokNumBytes;
927  }
928}
929
930
931
932/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
933/// corresponds to, e.g. "sizeof" or "[pre]++".
934StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
935  switch (Op) {
936  case UO_PostInc: return "++";
937  case UO_PostDec: return "--";
938  case UO_PreInc:  return "++";
939  case UO_PreDec:  return "--";
940  case UO_AddrOf:  return "&";
941  case UO_Deref:   return "*";
942  case UO_Plus:    return "+";
943  case UO_Minus:   return "-";
944  case UO_Not:     return "~";
945  case UO_LNot:    return "!";
946  case UO_Real:    return "__real";
947  case UO_Imag:    return "__imag";
948  case UO_Extension: return "__extension__";
949  }
950  llvm_unreachable("Unknown unary operator");
951}
952
953UnaryOperatorKind
954UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
955  switch (OO) {
956  default: llvm_unreachable("No unary operator for overloaded function");
957  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
958  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
959  case OO_Amp:        return UO_AddrOf;
960  case OO_Star:       return UO_Deref;
961  case OO_Plus:       return UO_Plus;
962  case OO_Minus:      return UO_Minus;
963  case OO_Tilde:      return UO_Not;
964  case OO_Exclaim:    return UO_LNot;
965  }
966}
967
968OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
969  switch (Opc) {
970  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
971  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
972  case UO_AddrOf: return OO_Amp;
973  case UO_Deref: return OO_Star;
974  case UO_Plus: return OO_Plus;
975  case UO_Minus: return OO_Minus;
976  case UO_Not: return OO_Tilde;
977  case UO_LNot: return OO_Exclaim;
978  default: return OO_None;
979  }
980}
981
982
983//===----------------------------------------------------------------------===//
984// Postfix Operators.
985//===----------------------------------------------------------------------===//
986
987CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
988                   ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
989                   SourceLocation rparenloc)
990  : Expr(SC, t, VK, OK_Ordinary,
991         fn->isTypeDependent(),
992         fn->isValueDependent(),
993         fn->isInstantiationDependent(),
994         fn->containsUnexpandedParameterPack()),
995    NumArgs(args.size()) {
996
997  SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
998  SubExprs[FN] = fn;
999  for (unsigned i = 0; i != args.size(); ++i) {
1000    if (args[i]->isTypeDependent())
1001      ExprBits.TypeDependent = true;
1002    if (args[i]->isValueDependent())
1003      ExprBits.ValueDependent = true;
1004    if (args[i]->isInstantiationDependent())
1005      ExprBits.InstantiationDependent = true;
1006    if (args[i]->containsUnexpandedParameterPack())
1007      ExprBits.ContainsUnexpandedParameterPack = true;
1008
1009    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1010  }
1011
1012  CallExprBits.NumPreArgs = NumPreArgs;
1013  RParenLoc = rparenloc;
1014}
1015
1016CallExpr::CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1017                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
1018  : Expr(CallExprClass, t, VK, OK_Ordinary,
1019         fn->isTypeDependent(),
1020         fn->isValueDependent(),
1021         fn->isInstantiationDependent(),
1022         fn->containsUnexpandedParameterPack()),
1023    NumArgs(args.size()) {
1024
1025  SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1026  SubExprs[FN] = fn;
1027  for (unsigned i = 0; i != args.size(); ++i) {
1028    if (args[i]->isTypeDependent())
1029      ExprBits.TypeDependent = true;
1030    if (args[i]->isValueDependent())
1031      ExprBits.ValueDependent = true;
1032    if (args[i]->isInstantiationDependent())
1033      ExprBits.InstantiationDependent = true;
1034    if (args[i]->containsUnexpandedParameterPack())
1035      ExprBits.ContainsUnexpandedParameterPack = true;
1036
1037    SubExprs[i+PREARGS_START] = args[i];
1038  }
1039
1040  CallExprBits.NumPreArgs = 0;
1041  RParenLoc = rparenloc;
1042}
1043
1044CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
1045  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1046  // FIXME: Why do we allocate this?
1047  SubExprs = new (C) Stmt*[PREARGS_START];
1048  CallExprBits.NumPreArgs = 0;
1049}
1050
1051CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1052                   EmptyShell Empty)
1053  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1054  // FIXME: Why do we allocate this?
1055  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1056  CallExprBits.NumPreArgs = NumPreArgs;
1057}
1058
1059Decl *CallExpr::getCalleeDecl() {
1060  Expr *CEE = getCallee()->IgnoreParenImpCasts();
1061
1062  while (SubstNonTypeTemplateParmExpr *NTTP
1063                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1064    CEE = NTTP->getReplacement()->IgnoreParenCasts();
1065  }
1066
1067  // If we're calling a dereference, look at the pointer instead.
1068  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1069    if (BO->isPtrMemOp())
1070      CEE = BO->getRHS()->IgnoreParenCasts();
1071  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1072    if (UO->getOpcode() == UO_Deref)
1073      CEE = UO->getSubExpr()->IgnoreParenCasts();
1074  }
1075  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1076    return DRE->getDecl();
1077  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1078    return ME->getMemberDecl();
1079
1080  return 0;
1081}
1082
1083FunctionDecl *CallExpr::getDirectCallee() {
1084  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1085}
1086
1087/// setNumArgs - This changes the number of arguments present in this call.
1088/// Any orphaned expressions are deleted by this, and any new operands are set
1089/// to null.
1090void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
1091  // No change, just return.
1092  if (NumArgs == getNumArgs()) return;
1093
1094  // If shrinking # arguments, just delete the extras and forgot them.
1095  if (NumArgs < getNumArgs()) {
1096    this->NumArgs = NumArgs;
1097    return;
1098  }
1099
1100  // Otherwise, we are growing the # arguments.  New an bigger argument array.
1101  unsigned NumPreArgs = getNumPreArgs();
1102  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1103  // Copy over args.
1104  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1105    NewSubExprs[i] = SubExprs[i];
1106  // Null out new args.
1107  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1108       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1109    NewSubExprs[i] = 0;
1110
1111  if (SubExprs) C.Deallocate(SubExprs);
1112  SubExprs = NewSubExprs;
1113  this->NumArgs = NumArgs;
1114}
1115
1116/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1117/// not, return 0.
1118unsigned CallExpr::isBuiltinCall() const {
1119  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1120  // function. As a result, we try and obtain the DeclRefExpr from the
1121  // ImplicitCastExpr.
1122  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1123  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1124    return 0;
1125
1126  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1127  if (!DRE)
1128    return 0;
1129
1130  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1131  if (!FDecl)
1132    return 0;
1133
1134  if (!FDecl->getIdentifier())
1135    return 0;
1136
1137  return FDecl->getBuiltinID();
1138}
1139
1140bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
1141  if (unsigned BI = isBuiltinCall())
1142    return Ctx.BuiltinInfo.isUnevaluated(BI);
1143  return false;
1144}
1145
1146QualType CallExpr::getCallReturnType() const {
1147  QualType CalleeType = getCallee()->getType();
1148  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1149    CalleeType = FnTypePtr->getPointeeType();
1150  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1151    CalleeType = BPT->getPointeeType();
1152  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1153    // This should never be overloaded and so should never return null.
1154    CalleeType = Expr::findBoundMemberType(getCallee());
1155
1156  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1157  return FnType->getResultType();
1158}
1159
1160SourceLocation CallExpr::getLocStart() const {
1161  if (isa<CXXOperatorCallExpr>(this))
1162    return cast<CXXOperatorCallExpr>(this)->getLocStart();
1163
1164  SourceLocation begin = getCallee()->getLocStart();
1165  if (begin.isInvalid() && getNumArgs() > 0)
1166    begin = getArg(0)->getLocStart();
1167  return begin;
1168}
1169SourceLocation CallExpr::getLocEnd() const {
1170  if (isa<CXXOperatorCallExpr>(this))
1171    return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1172
1173  SourceLocation end = getRParenLoc();
1174  if (end.isInvalid() && getNumArgs() > 0)
1175    end = getArg(getNumArgs() - 1)->getLocEnd();
1176  return end;
1177}
1178
1179OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
1180                                   SourceLocation OperatorLoc,
1181                                   TypeSourceInfo *tsi,
1182                                   ArrayRef<OffsetOfNode> comps,
1183                                   ArrayRef<Expr*> exprs,
1184                                   SourceLocation RParenLoc) {
1185  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1186                         sizeof(OffsetOfNode) * comps.size() +
1187                         sizeof(Expr*) * exprs.size());
1188
1189  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1190                                RParenLoc);
1191}
1192
1193OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1194                                        unsigned numComps, unsigned numExprs) {
1195  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1196                         sizeof(OffsetOfNode) * numComps +
1197                         sizeof(Expr*) * numExprs);
1198  return new (Mem) OffsetOfExpr(numComps, numExprs);
1199}
1200
1201OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1202                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1203                           ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1204                           SourceLocation RParenLoc)
1205  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1206         /*TypeDependent=*/false,
1207         /*ValueDependent=*/tsi->getType()->isDependentType(),
1208         tsi->getType()->isInstantiationDependentType(),
1209         tsi->getType()->containsUnexpandedParameterPack()),
1210    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1211    NumComps(comps.size()), NumExprs(exprs.size())
1212{
1213  for (unsigned i = 0; i != comps.size(); ++i) {
1214    setComponent(i, comps[i]);
1215  }
1216
1217  for (unsigned i = 0; i != exprs.size(); ++i) {
1218    if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1219      ExprBits.ValueDependent = true;
1220    if (exprs[i]->containsUnexpandedParameterPack())
1221      ExprBits.ContainsUnexpandedParameterPack = true;
1222
1223    setIndexExpr(i, exprs[i]);
1224  }
1225}
1226
1227IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1228  assert(getKind() == Field || getKind() == Identifier);
1229  if (getKind() == Field)
1230    return getField()->getIdentifier();
1231
1232  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1233}
1234
1235MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1236                               NestedNameSpecifierLoc QualifierLoc,
1237                               SourceLocation TemplateKWLoc,
1238                               ValueDecl *memberdecl,
1239                               DeclAccessPair founddecl,
1240                               DeclarationNameInfo nameinfo,
1241                               const TemplateArgumentListInfo *targs,
1242                               QualType ty,
1243                               ExprValueKind vk,
1244                               ExprObjectKind ok) {
1245  std::size_t Size = sizeof(MemberExpr);
1246
1247  bool hasQualOrFound = (QualifierLoc ||
1248                         founddecl.getDecl() != memberdecl ||
1249                         founddecl.getAccess() != memberdecl->getAccess());
1250  if (hasQualOrFound)
1251    Size += sizeof(MemberNameQualifier);
1252
1253  if (targs)
1254    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1255  else if (TemplateKWLoc.isValid())
1256    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1257
1258  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1259  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1260                                       ty, vk, ok);
1261
1262  if (hasQualOrFound) {
1263    // FIXME: Wrong. We should be looking at the member declaration we found.
1264    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1265      E->setValueDependent(true);
1266      E->setTypeDependent(true);
1267      E->setInstantiationDependent(true);
1268    }
1269    else if (QualifierLoc &&
1270             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1271      E->setInstantiationDependent(true);
1272
1273    E->HasQualifierOrFoundDecl = true;
1274
1275    MemberNameQualifier *NQ = E->getMemberQualifier();
1276    NQ->QualifierLoc = QualifierLoc;
1277    NQ->FoundDecl = founddecl;
1278  }
1279
1280  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1281
1282  if (targs) {
1283    bool Dependent = false;
1284    bool InstantiationDependent = false;
1285    bool ContainsUnexpandedParameterPack = false;
1286    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1287                                                  Dependent,
1288                                                  InstantiationDependent,
1289                                             ContainsUnexpandedParameterPack);
1290    if (InstantiationDependent)
1291      E->setInstantiationDependent(true);
1292  } else if (TemplateKWLoc.isValid()) {
1293    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1294  }
1295
1296  return E;
1297}
1298
1299SourceLocation MemberExpr::getLocStart() const {
1300  if (isImplicitAccess()) {
1301    if (hasQualifier())
1302      return getQualifierLoc().getBeginLoc();
1303    return MemberLoc;
1304  }
1305
1306  // FIXME: We don't want this to happen. Rather, we should be able to
1307  // detect all kinds of implicit accesses more cleanly.
1308  SourceLocation BaseStartLoc = getBase()->getLocStart();
1309  if (BaseStartLoc.isValid())
1310    return BaseStartLoc;
1311  return MemberLoc;
1312}
1313SourceLocation MemberExpr::getLocEnd() const {
1314  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1315  if (hasExplicitTemplateArgs())
1316    EndLoc = getRAngleLoc();
1317  else if (EndLoc.isInvalid())
1318    EndLoc = getBase()->getLocEnd();
1319  return EndLoc;
1320}
1321
1322void CastExpr::CheckCastConsistency() const {
1323  switch (getCastKind()) {
1324  case CK_DerivedToBase:
1325  case CK_UncheckedDerivedToBase:
1326  case CK_DerivedToBaseMemberPointer:
1327  case CK_BaseToDerived:
1328  case CK_BaseToDerivedMemberPointer:
1329    assert(!path_empty() && "Cast kind should have a base path!");
1330    break;
1331
1332  case CK_CPointerToObjCPointerCast:
1333    assert(getType()->isObjCObjectPointerType());
1334    assert(getSubExpr()->getType()->isPointerType());
1335    goto CheckNoBasePath;
1336
1337  case CK_BlockPointerToObjCPointerCast:
1338    assert(getType()->isObjCObjectPointerType());
1339    assert(getSubExpr()->getType()->isBlockPointerType());
1340    goto CheckNoBasePath;
1341
1342  case CK_ReinterpretMemberPointer:
1343    assert(getType()->isMemberPointerType());
1344    assert(getSubExpr()->getType()->isMemberPointerType());
1345    goto CheckNoBasePath;
1346
1347  case CK_BitCast:
1348    // Arbitrary casts to C pointer types count as bitcasts.
1349    // Otherwise, we should only have block and ObjC pointer casts
1350    // here if they stay within the type kind.
1351    if (!getType()->isPointerType()) {
1352      assert(getType()->isObjCObjectPointerType() ==
1353             getSubExpr()->getType()->isObjCObjectPointerType());
1354      assert(getType()->isBlockPointerType() ==
1355             getSubExpr()->getType()->isBlockPointerType());
1356    }
1357    goto CheckNoBasePath;
1358
1359  case CK_AnyPointerToBlockPointerCast:
1360    assert(getType()->isBlockPointerType());
1361    assert(getSubExpr()->getType()->isAnyPointerType() &&
1362           !getSubExpr()->getType()->isBlockPointerType());
1363    goto CheckNoBasePath;
1364
1365  case CK_CopyAndAutoreleaseBlockObject:
1366    assert(getType()->isBlockPointerType());
1367    assert(getSubExpr()->getType()->isBlockPointerType());
1368    goto CheckNoBasePath;
1369
1370  case CK_FunctionToPointerDecay:
1371    assert(getType()->isPointerType());
1372    assert(getSubExpr()->getType()->isFunctionType());
1373    goto CheckNoBasePath;
1374
1375  // These should not have an inheritance path.
1376  case CK_Dynamic:
1377  case CK_ToUnion:
1378  case CK_ArrayToPointerDecay:
1379  case CK_NullToMemberPointer:
1380  case CK_NullToPointer:
1381  case CK_ConstructorConversion:
1382  case CK_IntegralToPointer:
1383  case CK_PointerToIntegral:
1384  case CK_ToVoid:
1385  case CK_VectorSplat:
1386  case CK_IntegralCast:
1387  case CK_IntegralToFloating:
1388  case CK_FloatingToIntegral:
1389  case CK_FloatingCast:
1390  case CK_ObjCObjectLValueCast:
1391  case CK_FloatingRealToComplex:
1392  case CK_FloatingComplexToReal:
1393  case CK_FloatingComplexCast:
1394  case CK_FloatingComplexToIntegralComplex:
1395  case CK_IntegralRealToComplex:
1396  case CK_IntegralComplexToReal:
1397  case CK_IntegralComplexCast:
1398  case CK_IntegralComplexToFloatingComplex:
1399  case CK_ARCProduceObject:
1400  case CK_ARCConsumeObject:
1401  case CK_ARCReclaimReturnedObject:
1402  case CK_ARCExtendBlockObject:
1403  case CK_ZeroToOCLEvent:
1404    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1405    goto CheckNoBasePath;
1406
1407  case CK_Dependent:
1408  case CK_LValueToRValue:
1409  case CK_NoOp:
1410  case CK_AtomicToNonAtomic:
1411  case CK_NonAtomicToAtomic:
1412  case CK_PointerToBoolean:
1413  case CK_IntegralToBoolean:
1414  case CK_FloatingToBoolean:
1415  case CK_MemberPointerToBoolean:
1416  case CK_FloatingComplexToBoolean:
1417  case CK_IntegralComplexToBoolean:
1418  case CK_LValueBitCast:            // -> bool&
1419  case CK_UserDefinedConversion:    // operator bool()
1420  case CK_BuiltinFnToFnPtr:
1421  CheckNoBasePath:
1422    assert(path_empty() && "Cast kind should not have a base path!");
1423    break;
1424  }
1425}
1426
1427const char *CastExpr::getCastKindName() const {
1428  switch (getCastKind()) {
1429  case CK_Dependent:
1430    return "Dependent";
1431  case CK_BitCast:
1432    return "BitCast";
1433  case CK_LValueBitCast:
1434    return "LValueBitCast";
1435  case CK_LValueToRValue:
1436    return "LValueToRValue";
1437  case CK_NoOp:
1438    return "NoOp";
1439  case CK_BaseToDerived:
1440    return "BaseToDerived";
1441  case CK_DerivedToBase:
1442    return "DerivedToBase";
1443  case CK_UncheckedDerivedToBase:
1444    return "UncheckedDerivedToBase";
1445  case CK_Dynamic:
1446    return "Dynamic";
1447  case CK_ToUnion:
1448    return "ToUnion";
1449  case CK_ArrayToPointerDecay:
1450    return "ArrayToPointerDecay";
1451  case CK_FunctionToPointerDecay:
1452    return "FunctionToPointerDecay";
1453  case CK_NullToMemberPointer:
1454    return "NullToMemberPointer";
1455  case CK_NullToPointer:
1456    return "NullToPointer";
1457  case CK_BaseToDerivedMemberPointer:
1458    return "BaseToDerivedMemberPointer";
1459  case CK_DerivedToBaseMemberPointer:
1460    return "DerivedToBaseMemberPointer";
1461  case CK_ReinterpretMemberPointer:
1462    return "ReinterpretMemberPointer";
1463  case CK_UserDefinedConversion:
1464    return "UserDefinedConversion";
1465  case CK_ConstructorConversion:
1466    return "ConstructorConversion";
1467  case CK_IntegralToPointer:
1468    return "IntegralToPointer";
1469  case CK_PointerToIntegral:
1470    return "PointerToIntegral";
1471  case CK_PointerToBoolean:
1472    return "PointerToBoolean";
1473  case CK_ToVoid:
1474    return "ToVoid";
1475  case CK_VectorSplat:
1476    return "VectorSplat";
1477  case CK_IntegralCast:
1478    return "IntegralCast";
1479  case CK_IntegralToBoolean:
1480    return "IntegralToBoolean";
1481  case CK_IntegralToFloating:
1482    return "IntegralToFloating";
1483  case CK_FloatingToIntegral:
1484    return "FloatingToIntegral";
1485  case CK_FloatingCast:
1486    return "FloatingCast";
1487  case CK_FloatingToBoolean:
1488    return "FloatingToBoolean";
1489  case CK_MemberPointerToBoolean:
1490    return "MemberPointerToBoolean";
1491  case CK_CPointerToObjCPointerCast:
1492    return "CPointerToObjCPointerCast";
1493  case CK_BlockPointerToObjCPointerCast:
1494    return "BlockPointerToObjCPointerCast";
1495  case CK_AnyPointerToBlockPointerCast:
1496    return "AnyPointerToBlockPointerCast";
1497  case CK_ObjCObjectLValueCast:
1498    return "ObjCObjectLValueCast";
1499  case CK_FloatingRealToComplex:
1500    return "FloatingRealToComplex";
1501  case CK_FloatingComplexToReal:
1502    return "FloatingComplexToReal";
1503  case CK_FloatingComplexToBoolean:
1504    return "FloatingComplexToBoolean";
1505  case CK_FloatingComplexCast:
1506    return "FloatingComplexCast";
1507  case CK_FloatingComplexToIntegralComplex:
1508    return "FloatingComplexToIntegralComplex";
1509  case CK_IntegralRealToComplex:
1510    return "IntegralRealToComplex";
1511  case CK_IntegralComplexToReal:
1512    return "IntegralComplexToReal";
1513  case CK_IntegralComplexToBoolean:
1514    return "IntegralComplexToBoolean";
1515  case CK_IntegralComplexCast:
1516    return "IntegralComplexCast";
1517  case CK_IntegralComplexToFloatingComplex:
1518    return "IntegralComplexToFloatingComplex";
1519  case CK_ARCConsumeObject:
1520    return "ARCConsumeObject";
1521  case CK_ARCProduceObject:
1522    return "ARCProduceObject";
1523  case CK_ARCReclaimReturnedObject:
1524    return "ARCReclaimReturnedObject";
1525  case CK_ARCExtendBlockObject:
1526    return "ARCCExtendBlockObject";
1527  case CK_AtomicToNonAtomic:
1528    return "AtomicToNonAtomic";
1529  case CK_NonAtomicToAtomic:
1530    return "NonAtomicToAtomic";
1531  case CK_CopyAndAutoreleaseBlockObject:
1532    return "CopyAndAutoreleaseBlockObject";
1533  case CK_BuiltinFnToFnPtr:
1534    return "BuiltinFnToFnPtr";
1535  case CK_ZeroToOCLEvent:
1536    return "ZeroToOCLEvent";
1537  }
1538
1539  llvm_unreachable("Unhandled cast kind!");
1540}
1541
1542Expr *CastExpr::getSubExprAsWritten() {
1543  Expr *SubExpr = 0;
1544  CastExpr *E = this;
1545  do {
1546    SubExpr = E->getSubExpr();
1547
1548    // Skip through reference binding to temporary.
1549    if (MaterializeTemporaryExpr *Materialize
1550                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1551      SubExpr = Materialize->GetTemporaryExpr();
1552
1553    // Skip any temporary bindings; they're implicit.
1554    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1555      SubExpr = Binder->getSubExpr();
1556
1557    // Conversions by constructor and conversion functions have a
1558    // subexpression describing the call; strip it off.
1559    if (E->getCastKind() == CK_ConstructorConversion)
1560      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1561    else if (E->getCastKind() == CK_UserDefinedConversion)
1562      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1563
1564    // If the subexpression we're left with is an implicit cast, look
1565    // through that, too.
1566  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1567
1568  return SubExpr;
1569}
1570
1571CXXBaseSpecifier **CastExpr::path_buffer() {
1572  switch (getStmtClass()) {
1573#define ABSTRACT_STMT(x)
1574#define CASTEXPR(Type, Base) \
1575  case Stmt::Type##Class: \
1576    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1577#define STMT(Type, Base)
1578#include "clang/AST/StmtNodes.inc"
1579  default:
1580    llvm_unreachable("non-cast expressions not possible here");
1581  }
1582}
1583
1584void CastExpr::setCastPath(const CXXCastPath &Path) {
1585  assert(Path.size() == path_size());
1586  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1587}
1588
1589ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1590                                           CastKind Kind, Expr *Operand,
1591                                           const CXXCastPath *BasePath,
1592                                           ExprValueKind VK) {
1593  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1594  void *Buffer =
1595    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1596  ImplicitCastExpr *E =
1597    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1598  if (PathSize) E->setCastPath(*BasePath);
1599  return E;
1600}
1601
1602ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1603                                                unsigned PathSize) {
1604  void *Buffer =
1605    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1606  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1607}
1608
1609
1610CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1611                                       ExprValueKind VK, CastKind K, Expr *Op,
1612                                       const CXXCastPath *BasePath,
1613                                       TypeSourceInfo *WrittenTy,
1614                                       SourceLocation L, SourceLocation R) {
1615  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1616  void *Buffer =
1617    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1618  CStyleCastExpr *E =
1619    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1620  if (PathSize) E->setCastPath(*BasePath);
1621  return E;
1622}
1623
1624CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1625  void *Buffer =
1626    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1627  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1628}
1629
1630/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1631/// corresponds to, e.g. "<<=".
1632StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1633  switch (Op) {
1634  case BO_PtrMemD:   return ".*";
1635  case BO_PtrMemI:   return "->*";
1636  case BO_Mul:       return "*";
1637  case BO_Div:       return "/";
1638  case BO_Rem:       return "%";
1639  case BO_Add:       return "+";
1640  case BO_Sub:       return "-";
1641  case BO_Shl:       return "<<";
1642  case BO_Shr:       return ">>";
1643  case BO_LT:        return "<";
1644  case BO_GT:        return ">";
1645  case BO_LE:        return "<=";
1646  case BO_GE:        return ">=";
1647  case BO_EQ:        return "==";
1648  case BO_NE:        return "!=";
1649  case BO_And:       return "&";
1650  case BO_Xor:       return "^";
1651  case BO_Or:        return "|";
1652  case BO_LAnd:      return "&&";
1653  case BO_LOr:       return "||";
1654  case BO_Assign:    return "=";
1655  case BO_MulAssign: return "*=";
1656  case BO_DivAssign: return "/=";
1657  case BO_RemAssign: return "%=";
1658  case BO_AddAssign: return "+=";
1659  case BO_SubAssign: return "-=";
1660  case BO_ShlAssign: return "<<=";
1661  case BO_ShrAssign: return ">>=";
1662  case BO_AndAssign: return "&=";
1663  case BO_XorAssign: return "^=";
1664  case BO_OrAssign:  return "|=";
1665  case BO_Comma:     return ",";
1666  }
1667
1668  llvm_unreachable("Invalid OpCode!");
1669}
1670
1671BinaryOperatorKind
1672BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1673  switch (OO) {
1674  default: llvm_unreachable("Not an overloadable binary operator");
1675  case OO_Plus: return BO_Add;
1676  case OO_Minus: return BO_Sub;
1677  case OO_Star: return BO_Mul;
1678  case OO_Slash: return BO_Div;
1679  case OO_Percent: return BO_Rem;
1680  case OO_Caret: return BO_Xor;
1681  case OO_Amp: return BO_And;
1682  case OO_Pipe: return BO_Or;
1683  case OO_Equal: return BO_Assign;
1684  case OO_Less: return BO_LT;
1685  case OO_Greater: return BO_GT;
1686  case OO_PlusEqual: return BO_AddAssign;
1687  case OO_MinusEqual: return BO_SubAssign;
1688  case OO_StarEqual: return BO_MulAssign;
1689  case OO_SlashEqual: return BO_DivAssign;
1690  case OO_PercentEqual: return BO_RemAssign;
1691  case OO_CaretEqual: return BO_XorAssign;
1692  case OO_AmpEqual: return BO_AndAssign;
1693  case OO_PipeEqual: return BO_OrAssign;
1694  case OO_LessLess: return BO_Shl;
1695  case OO_GreaterGreater: return BO_Shr;
1696  case OO_LessLessEqual: return BO_ShlAssign;
1697  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1698  case OO_EqualEqual: return BO_EQ;
1699  case OO_ExclaimEqual: return BO_NE;
1700  case OO_LessEqual: return BO_LE;
1701  case OO_GreaterEqual: return BO_GE;
1702  case OO_AmpAmp: return BO_LAnd;
1703  case OO_PipePipe: return BO_LOr;
1704  case OO_Comma: return BO_Comma;
1705  case OO_ArrowStar: return BO_PtrMemI;
1706  }
1707}
1708
1709OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1710  static const OverloadedOperatorKind OverOps[] = {
1711    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1712    OO_Star, OO_Slash, OO_Percent,
1713    OO_Plus, OO_Minus,
1714    OO_LessLess, OO_GreaterGreater,
1715    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1716    OO_EqualEqual, OO_ExclaimEqual,
1717    OO_Amp,
1718    OO_Caret,
1719    OO_Pipe,
1720    OO_AmpAmp,
1721    OO_PipePipe,
1722    OO_Equal, OO_StarEqual,
1723    OO_SlashEqual, OO_PercentEqual,
1724    OO_PlusEqual, OO_MinusEqual,
1725    OO_LessLessEqual, OO_GreaterGreaterEqual,
1726    OO_AmpEqual, OO_CaretEqual,
1727    OO_PipeEqual,
1728    OO_Comma
1729  };
1730  return OverOps[Opc];
1731}
1732
1733InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1734                           ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1735  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1736         false, false),
1737    InitExprs(C, initExprs.size()),
1738    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(0, true)
1739{
1740  sawArrayRangeDesignator(false);
1741  setInitializesStdInitializerList(false);
1742  for (unsigned I = 0; I != initExprs.size(); ++I) {
1743    if (initExprs[I]->isTypeDependent())
1744      ExprBits.TypeDependent = true;
1745    if (initExprs[I]->isValueDependent())
1746      ExprBits.ValueDependent = true;
1747    if (initExprs[I]->isInstantiationDependent())
1748      ExprBits.InstantiationDependent = true;
1749    if (initExprs[I]->containsUnexpandedParameterPack())
1750      ExprBits.ContainsUnexpandedParameterPack = true;
1751  }
1752
1753  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1754}
1755
1756void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1757  if (NumInits > InitExprs.size())
1758    InitExprs.reserve(C, NumInits);
1759}
1760
1761void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1762  InitExprs.resize(C, NumInits, 0);
1763}
1764
1765Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1766  if (Init >= InitExprs.size()) {
1767    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1768    InitExprs.back() = expr;
1769    return 0;
1770  }
1771
1772  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1773  InitExprs[Init] = expr;
1774  return Result;
1775}
1776
1777void InitListExpr::setArrayFiller(Expr *filler) {
1778  assert(!hasArrayFiller() && "Filler already set!");
1779  ArrayFillerOrUnionFieldInit = filler;
1780  // Fill out any "holes" in the array due to designated initializers.
1781  Expr **inits = getInits();
1782  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1783    if (inits[i] == 0)
1784      inits[i] = filler;
1785}
1786
1787bool InitListExpr::isStringLiteralInit() const {
1788  if (getNumInits() != 1)
1789    return false;
1790  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1791  if (!AT || !AT->getElementType()->isIntegerType())
1792    return false;
1793  const Expr *Init = getInit(0)->IgnoreParens();
1794  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1795}
1796
1797SourceLocation InitListExpr::getLocStart() const {
1798  if (InitListExpr *SyntacticForm = getSyntacticForm())
1799    return SyntacticForm->getLocStart();
1800  SourceLocation Beg = LBraceLoc;
1801  if (Beg.isInvalid()) {
1802    // Find the first non-null initializer.
1803    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1804                                     E = InitExprs.end();
1805      I != E; ++I) {
1806      if (Stmt *S = *I) {
1807        Beg = S->getLocStart();
1808        break;
1809      }
1810    }
1811  }
1812  return Beg;
1813}
1814
1815SourceLocation InitListExpr::getLocEnd() const {
1816  if (InitListExpr *SyntacticForm = getSyntacticForm())
1817    return SyntacticForm->getLocEnd();
1818  SourceLocation End = RBraceLoc;
1819  if (End.isInvalid()) {
1820    // Find the first non-null initializer from the end.
1821    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1822         E = InitExprs.rend();
1823         I != E; ++I) {
1824      if (Stmt *S = *I) {
1825        End = S->getLocEnd();
1826        break;
1827      }
1828    }
1829  }
1830  return End;
1831}
1832
1833/// getFunctionType - Return the underlying function type for this block.
1834///
1835const FunctionProtoType *BlockExpr::getFunctionType() const {
1836  // The block pointer is never sugared, but the function type might be.
1837  return cast<BlockPointerType>(getType())
1838           ->getPointeeType()->castAs<FunctionProtoType>();
1839}
1840
1841SourceLocation BlockExpr::getCaretLocation() const {
1842  return TheBlock->getCaretLocation();
1843}
1844const Stmt *BlockExpr::getBody() const {
1845  return TheBlock->getBody();
1846}
1847Stmt *BlockExpr::getBody() {
1848  return TheBlock->getBody();
1849}
1850
1851
1852//===----------------------------------------------------------------------===//
1853// Generic Expression Routines
1854//===----------------------------------------------------------------------===//
1855
1856/// isUnusedResultAWarning - Return true if this immediate expression should
1857/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1858/// with location to warn on and the source range[s] to report with the
1859/// warning.
1860bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1861                                  SourceRange &R1, SourceRange &R2,
1862                                  ASTContext &Ctx) const {
1863  // Don't warn if the expr is type dependent. The type could end up
1864  // instantiating to void.
1865  if (isTypeDependent())
1866    return false;
1867
1868  switch (getStmtClass()) {
1869  default:
1870    if (getType()->isVoidType())
1871      return false;
1872    WarnE = this;
1873    Loc = getExprLoc();
1874    R1 = getSourceRange();
1875    return true;
1876  case ParenExprClass:
1877    return cast<ParenExpr>(this)->getSubExpr()->
1878      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1879  case GenericSelectionExprClass:
1880    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1881      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1882  case UnaryOperatorClass: {
1883    const UnaryOperator *UO = cast<UnaryOperator>(this);
1884
1885    switch (UO->getOpcode()) {
1886    case UO_Plus:
1887    case UO_Minus:
1888    case UO_AddrOf:
1889    case UO_Not:
1890    case UO_LNot:
1891    case UO_Deref:
1892      break;
1893    case UO_PostInc:
1894    case UO_PostDec:
1895    case UO_PreInc:
1896    case UO_PreDec:                 // ++/--
1897      return false;  // Not a warning.
1898    case UO_Real:
1899    case UO_Imag:
1900      // accessing a piece of a volatile complex is a side-effect.
1901      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1902          .isVolatileQualified())
1903        return false;
1904      break;
1905    case UO_Extension:
1906      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1907    }
1908    WarnE = this;
1909    Loc = UO->getOperatorLoc();
1910    R1 = UO->getSubExpr()->getSourceRange();
1911    return true;
1912  }
1913  case BinaryOperatorClass: {
1914    const BinaryOperator *BO = cast<BinaryOperator>(this);
1915    switch (BO->getOpcode()) {
1916      default:
1917        break;
1918      // Consider the RHS of comma for side effects. LHS was checked by
1919      // Sema::CheckCommaOperands.
1920      case BO_Comma:
1921        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1922        // lvalue-ness) of an assignment written in a macro.
1923        if (IntegerLiteral *IE =
1924              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1925          if (IE->getValue() == 0)
1926            return false;
1927        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1928      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1929      case BO_LAnd:
1930      case BO_LOr:
1931        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1932            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1933          return false;
1934        break;
1935    }
1936    if (BO->isAssignmentOp())
1937      return false;
1938    WarnE = this;
1939    Loc = BO->getOperatorLoc();
1940    R1 = BO->getLHS()->getSourceRange();
1941    R2 = BO->getRHS()->getSourceRange();
1942    return true;
1943  }
1944  case CompoundAssignOperatorClass:
1945  case VAArgExprClass:
1946  case AtomicExprClass:
1947    return false;
1948
1949  case ConditionalOperatorClass: {
1950    // If only one of the LHS or RHS is a warning, the operator might
1951    // be being used for control flow. Only warn if both the LHS and
1952    // RHS are warnings.
1953    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1954    if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1955      return false;
1956    if (!Exp->getLHS())
1957      return true;
1958    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1959  }
1960
1961  case MemberExprClass:
1962    WarnE = this;
1963    Loc = cast<MemberExpr>(this)->getMemberLoc();
1964    R1 = SourceRange(Loc, Loc);
1965    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1966    return true;
1967
1968  case ArraySubscriptExprClass:
1969    WarnE = this;
1970    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1971    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1972    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1973    return true;
1974
1975  case CXXOperatorCallExprClass: {
1976    // We warn about operator== and operator!= even when user-defined operator
1977    // overloads as there is no reasonable way to define these such that they
1978    // have non-trivial, desirable side-effects. See the -Wunused-comparison
1979    // warning: these operators are commonly typo'ed, and so warning on them
1980    // provides additional value as well. If this list is updated,
1981    // DiagnoseUnusedComparison should be as well.
1982    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1983    if (Op->getOperator() == OO_EqualEqual ||
1984        Op->getOperator() == OO_ExclaimEqual) {
1985      WarnE = this;
1986      Loc = Op->getOperatorLoc();
1987      R1 = Op->getSourceRange();
1988      return true;
1989    }
1990
1991    // Fallthrough for generic call handling.
1992  }
1993  case CallExprClass:
1994  case CXXMemberCallExprClass:
1995  case UserDefinedLiteralClass: {
1996    // If this is a direct call, get the callee.
1997    const CallExpr *CE = cast<CallExpr>(this);
1998    if (const Decl *FD = CE->getCalleeDecl()) {
1999      // If the callee has attribute pure, const, or warn_unused_result, warn
2000      // about it. void foo() { strlen("bar"); } should warn.
2001      //
2002      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2003      // updated to match for QoI.
2004      if (FD->getAttr<WarnUnusedResultAttr>() ||
2005          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
2006        WarnE = this;
2007        Loc = CE->getCallee()->getLocStart();
2008        R1 = CE->getCallee()->getSourceRange();
2009
2010        if (unsigned NumArgs = CE->getNumArgs())
2011          R2 = SourceRange(CE->getArg(0)->getLocStart(),
2012                           CE->getArg(NumArgs-1)->getLocEnd());
2013        return true;
2014      }
2015    }
2016    return false;
2017  }
2018
2019  // If we don't know precisely what we're looking at, let's not warn.
2020  case UnresolvedLookupExprClass:
2021  case CXXUnresolvedConstructExprClass:
2022    return false;
2023
2024  case CXXTemporaryObjectExprClass:
2025  case CXXConstructExprClass:
2026    return false;
2027
2028  case ObjCMessageExprClass: {
2029    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2030    if (Ctx.getLangOpts().ObjCAutoRefCount &&
2031        ME->isInstanceMessage() &&
2032        !ME->getType()->isVoidType() &&
2033        ME->getSelector().getIdentifierInfoForSlot(0) &&
2034        ME->getSelector().getIdentifierInfoForSlot(0)
2035                                               ->getName().startswith("init")) {
2036      WarnE = this;
2037      Loc = getExprLoc();
2038      R1 = ME->getSourceRange();
2039      return true;
2040    }
2041
2042    const ObjCMethodDecl *MD = ME->getMethodDecl();
2043    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
2044      WarnE = this;
2045      Loc = getExprLoc();
2046      return true;
2047    }
2048    return false;
2049  }
2050
2051  case ObjCPropertyRefExprClass:
2052    WarnE = this;
2053    Loc = getExprLoc();
2054    R1 = getSourceRange();
2055    return true;
2056
2057  case PseudoObjectExprClass: {
2058    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2059
2060    // Only complain about things that have the form of a getter.
2061    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2062        isa<BinaryOperator>(PO->getSyntacticForm()))
2063      return false;
2064
2065    WarnE = this;
2066    Loc = getExprLoc();
2067    R1 = getSourceRange();
2068    return true;
2069  }
2070
2071  case StmtExprClass: {
2072    // Statement exprs don't logically have side effects themselves, but are
2073    // sometimes used in macros in ways that give them a type that is unused.
2074    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2075    // however, if the result of the stmt expr is dead, we don't want to emit a
2076    // warning.
2077    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2078    if (!CS->body_empty()) {
2079      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2080        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2081      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2082        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2083          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2084    }
2085
2086    if (getType()->isVoidType())
2087      return false;
2088    WarnE = this;
2089    Loc = cast<StmtExpr>(this)->getLParenLoc();
2090    R1 = getSourceRange();
2091    return true;
2092  }
2093  case CXXFunctionalCastExprClass:
2094  case CStyleCastExprClass: {
2095    // Ignore an explicit cast to void unless the operand is a non-trivial
2096    // volatile lvalue.
2097    const CastExpr *CE = cast<CastExpr>(this);
2098    if (CE->getCastKind() == CK_ToVoid) {
2099      if (CE->getSubExpr()->isGLValue() &&
2100          CE->getSubExpr()->getType().isVolatileQualified()) {
2101        const DeclRefExpr *DRE =
2102            dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2103        if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2104              cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2105          return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2106                                                          R1, R2, Ctx);
2107        }
2108      }
2109      return false;
2110    }
2111
2112    // If this is a cast to a constructor conversion, check the operand.
2113    // Otherwise, the result of the cast is unused.
2114    if (CE->getCastKind() == CK_ConstructorConversion)
2115      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2116
2117    WarnE = this;
2118    if (const CXXFunctionalCastExpr *CXXCE =
2119            dyn_cast<CXXFunctionalCastExpr>(this)) {
2120      Loc = CXXCE->getTypeBeginLoc();
2121      R1 = CXXCE->getSubExpr()->getSourceRange();
2122    } else {
2123      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2124      Loc = CStyleCE->getLParenLoc();
2125      R1 = CStyleCE->getSubExpr()->getSourceRange();
2126    }
2127    return true;
2128  }
2129  case ImplicitCastExprClass: {
2130    const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2131
2132    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2133    if (ICE->getCastKind() == CK_LValueToRValue &&
2134        ICE->getSubExpr()->getType().isVolatileQualified())
2135      return false;
2136
2137    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2138  }
2139  case CXXDefaultArgExprClass:
2140    return (cast<CXXDefaultArgExpr>(this)
2141            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2142
2143  case CXXNewExprClass:
2144    // FIXME: In theory, there might be new expressions that don't have side
2145    // effects (e.g. a placement new with an uninitialized POD).
2146  case CXXDeleteExprClass:
2147    return false;
2148  case CXXBindTemporaryExprClass:
2149    return (cast<CXXBindTemporaryExpr>(this)
2150            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2151  case ExprWithCleanupsClass:
2152    return (cast<ExprWithCleanups>(this)
2153            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2154  }
2155}
2156
2157/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2158/// returns true, if it is; false otherwise.
2159bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2160  const Expr *E = IgnoreParens();
2161  switch (E->getStmtClass()) {
2162  default:
2163    return false;
2164  case ObjCIvarRefExprClass:
2165    return true;
2166  case Expr::UnaryOperatorClass:
2167    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2168  case ImplicitCastExprClass:
2169    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2170  case MaterializeTemporaryExprClass:
2171    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2172                                                      ->isOBJCGCCandidate(Ctx);
2173  case CStyleCastExprClass:
2174    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2175  case DeclRefExprClass: {
2176    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2177
2178    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2179      if (VD->hasGlobalStorage())
2180        return true;
2181      QualType T = VD->getType();
2182      // dereferencing to a  pointer is always a gc'able candidate,
2183      // unless it is __weak.
2184      return T->isPointerType() &&
2185             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2186    }
2187    return false;
2188  }
2189  case MemberExprClass: {
2190    const MemberExpr *M = cast<MemberExpr>(E);
2191    return M->getBase()->isOBJCGCCandidate(Ctx);
2192  }
2193  case ArraySubscriptExprClass:
2194    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2195  }
2196}
2197
2198bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2199  if (isTypeDependent())
2200    return false;
2201  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2202}
2203
2204QualType Expr::findBoundMemberType(const Expr *expr) {
2205  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2206
2207  // Bound member expressions are always one of these possibilities:
2208  //   x->m      x.m      x->*y      x.*y
2209  // (possibly parenthesized)
2210
2211  expr = expr->IgnoreParens();
2212  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2213    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2214    return mem->getMemberDecl()->getType();
2215  }
2216
2217  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2218    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2219                      ->getPointeeType();
2220    assert(type->isFunctionType());
2221    return type;
2222  }
2223
2224  assert(isa<UnresolvedMemberExpr>(expr));
2225  return QualType();
2226}
2227
2228Expr* Expr::IgnoreParens() {
2229  Expr* E = this;
2230  while (true) {
2231    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2232      E = P->getSubExpr();
2233      continue;
2234    }
2235    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2236      if (P->getOpcode() == UO_Extension) {
2237        E = P->getSubExpr();
2238        continue;
2239      }
2240    }
2241    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2242      if (!P->isResultDependent()) {
2243        E = P->getResultExpr();
2244        continue;
2245      }
2246    }
2247    return E;
2248  }
2249}
2250
2251/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2252/// or CastExprs or ImplicitCastExprs, returning their operand.
2253Expr *Expr::IgnoreParenCasts() {
2254  Expr *E = this;
2255  while (true) {
2256    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2257      E = P->getSubExpr();
2258      continue;
2259    }
2260    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2261      E = P->getSubExpr();
2262      continue;
2263    }
2264    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2265      if (P->getOpcode() == UO_Extension) {
2266        E = P->getSubExpr();
2267        continue;
2268      }
2269    }
2270    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2271      if (!P->isResultDependent()) {
2272        E = P->getResultExpr();
2273        continue;
2274      }
2275    }
2276    if (MaterializeTemporaryExpr *Materialize
2277                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2278      E = Materialize->GetTemporaryExpr();
2279      continue;
2280    }
2281    if (SubstNonTypeTemplateParmExpr *NTTP
2282                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2283      E = NTTP->getReplacement();
2284      continue;
2285    }
2286    return E;
2287  }
2288}
2289
2290/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2291/// casts.  This is intended purely as a temporary workaround for code
2292/// that hasn't yet been rewritten to do the right thing about those
2293/// casts, and may disappear along with the last internal use.
2294Expr *Expr::IgnoreParenLValueCasts() {
2295  Expr *E = this;
2296  while (true) {
2297    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2298      E = P->getSubExpr();
2299      continue;
2300    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2301      if (P->getCastKind() == CK_LValueToRValue) {
2302        E = P->getSubExpr();
2303        continue;
2304      }
2305    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2306      if (P->getOpcode() == UO_Extension) {
2307        E = P->getSubExpr();
2308        continue;
2309      }
2310    } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2311      if (!P->isResultDependent()) {
2312        E = P->getResultExpr();
2313        continue;
2314      }
2315    } else if (MaterializeTemporaryExpr *Materialize
2316                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2317      E = Materialize->GetTemporaryExpr();
2318      continue;
2319    } else if (SubstNonTypeTemplateParmExpr *NTTP
2320                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2321      E = NTTP->getReplacement();
2322      continue;
2323    }
2324    break;
2325  }
2326  return E;
2327}
2328
2329Expr *Expr::ignoreParenBaseCasts() {
2330  Expr *E = this;
2331  while (true) {
2332    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2333      E = P->getSubExpr();
2334      continue;
2335    }
2336    if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2337      if (CE->getCastKind() == CK_DerivedToBase ||
2338          CE->getCastKind() == CK_UncheckedDerivedToBase ||
2339          CE->getCastKind() == CK_NoOp) {
2340        E = CE->getSubExpr();
2341        continue;
2342      }
2343    }
2344
2345    return E;
2346  }
2347}
2348
2349Expr *Expr::IgnoreParenImpCasts() {
2350  Expr *E = this;
2351  while (true) {
2352    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2353      E = P->getSubExpr();
2354      continue;
2355    }
2356    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2357      E = P->getSubExpr();
2358      continue;
2359    }
2360    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2361      if (P->getOpcode() == UO_Extension) {
2362        E = P->getSubExpr();
2363        continue;
2364      }
2365    }
2366    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2367      if (!P->isResultDependent()) {
2368        E = P->getResultExpr();
2369        continue;
2370      }
2371    }
2372    if (MaterializeTemporaryExpr *Materialize
2373                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2374      E = Materialize->GetTemporaryExpr();
2375      continue;
2376    }
2377    if (SubstNonTypeTemplateParmExpr *NTTP
2378                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2379      E = NTTP->getReplacement();
2380      continue;
2381    }
2382    return E;
2383  }
2384}
2385
2386Expr *Expr::IgnoreConversionOperator() {
2387  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2388    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2389      return MCE->getImplicitObjectArgument();
2390  }
2391  return this;
2392}
2393
2394/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2395/// value (including ptr->int casts of the same size).  Strip off any
2396/// ParenExpr or CastExprs, returning their operand.
2397Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2398  Expr *E = this;
2399  while (true) {
2400    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2401      E = P->getSubExpr();
2402      continue;
2403    }
2404
2405    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2406      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2407      // ptr<->int casts of the same width.  We also ignore all identity casts.
2408      Expr *SE = P->getSubExpr();
2409
2410      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2411        E = SE;
2412        continue;
2413      }
2414
2415      if ((E->getType()->isPointerType() ||
2416           E->getType()->isIntegralType(Ctx)) &&
2417          (SE->getType()->isPointerType() ||
2418           SE->getType()->isIntegralType(Ctx)) &&
2419          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2420        E = SE;
2421        continue;
2422      }
2423    }
2424
2425    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2426      if (P->getOpcode() == UO_Extension) {
2427        E = P->getSubExpr();
2428        continue;
2429      }
2430    }
2431
2432    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2433      if (!P->isResultDependent()) {
2434        E = P->getResultExpr();
2435        continue;
2436      }
2437    }
2438
2439    if (SubstNonTypeTemplateParmExpr *NTTP
2440                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2441      E = NTTP->getReplacement();
2442      continue;
2443    }
2444
2445    return E;
2446  }
2447}
2448
2449bool Expr::isDefaultArgument() const {
2450  const Expr *E = this;
2451  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2452    E = M->GetTemporaryExpr();
2453
2454  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2455    E = ICE->getSubExprAsWritten();
2456
2457  return isa<CXXDefaultArgExpr>(E);
2458}
2459
2460/// \brief Skip over any no-op casts and any temporary-binding
2461/// expressions.
2462static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2463  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2464    E = M->GetTemporaryExpr();
2465
2466  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2467    if (ICE->getCastKind() == CK_NoOp)
2468      E = ICE->getSubExpr();
2469    else
2470      break;
2471  }
2472
2473  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2474    E = BE->getSubExpr();
2475
2476  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2477    if (ICE->getCastKind() == CK_NoOp)
2478      E = ICE->getSubExpr();
2479    else
2480      break;
2481  }
2482
2483  return E->IgnoreParens();
2484}
2485
2486/// isTemporaryObject - Determines if this expression produces a
2487/// temporary of the given class type.
2488bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2489  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2490    return false;
2491
2492  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2493
2494  // Temporaries are by definition pr-values of class type.
2495  if (!E->Classify(C).isPRValue()) {
2496    // In this context, property reference is a message call and is pr-value.
2497    if (!isa<ObjCPropertyRefExpr>(E))
2498      return false;
2499  }
2500
2501  // Black-list a few cases which yield pr-values of class type that don't
2502  // refer to temporaries of that type:
2503
2504  // - implicit derived-to-base conversions
2505  if (isa<ImplicitCastExpr>(E)) {
2506    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2507    case CK_DerivedToBase:
2508    case CK_UncheckedDerivedToBase:
2509      return false;
2510    default:
2511      break;
2512    }
2513  }
2514
2515  // - member expressions (all)
2516  if (isa<MemberExpr>(E))
2517    return false;
2518
2519  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2520    if (BO->isPtrMemOp())
2521      return false;
2522
2523  // - opaque values (all)
2524  if (isa<OpaqueValueExpr>(E))
2525    return false;
2526
2527  return true;
2528}
2529
2530bool Expr::isImplicitCXXThis() const {
2531  const Expr *E = this;
2532
2533  // Strip away parentheses and casts we don't care about.
2534  while (true) {
2535    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2536      E = Paren->getSubExpr();
2537      continue;
2538    }
2539
2540    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2541      if (ICE->getCastKind() == CK_NoOp ||
2542          ICE->getCastKind() == CK_LValueToRValue ||
2543          ICE->getCastKind() == CK_DerivedToBase ||
2544          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2545        E = ICE->getSubExpr();
2546        continue;
2547      }
2548    }
2549
2550    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2551      if (UnOp->getOpcode() == UO_Extension) {
2552        E = UnOp->getSubExpr();
2553        continue;
2554      }
2555    }
2556
2557    if (const MaterializeTemporaryExpr *M
2558                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2559      E = M->GetTemporaryExpr();
2560      continue;
2561    }
2562
2563    break;
2564  }
2565
2566  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2567    return This->isImplicit();
2568
2569  return false;
2570}
2571
2572/// hasAnyTypeDependentArguments - Determines if any of the expressions
2573/// in Exprs is type-dependent.
2574bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2575  for (unsigned I = 0; I < Exprs.size(); ++I)
2576    if (Exprs[I]->isTypeDependent())
2577      return true;
2578
2579  return false;
2580}
2581
2582bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2583  // This function is attempting whether an expression is an initializer
2584  // which can be evaluated at compile-time.  isEvaluatable handles most
2585  // of the cases, but it can't deal with some initializer-specific
2586  // expressions, and it can't deal with aggregates; we deal with those here,
2587  // and fall back to isEvaluatable for the other cases.
2588
2589  // If we ever capture reference-binding directly in the AST, we can
2590  // kill the second parameter.
2591
2592  if (IsForRef) {
2593    EvalResult Result;
2594    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2595  }
2596
2597  switch (getStmtClass()) {
2598  default: break;
2599  case IntegerLiteralClass:
2600  case FloatingLiteralClass:
2601  case StringLiteralClass:
2602  case ObjCStringLiteralClass:
2603  case ObjCEncodeExprClass:
2604    return true;
2605  case CXXTemporaryObjectExprClass:
2606  case CXXConstructExprClass: {
2607    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2608
2609    // Only if it's
2610    if (CE->getConstructor()->isTrivial()) {
2611      // 1) an application of the trivial default constructor or
2612      if (!CE->getNumArgs()) return true;
2613
2614      // 2) an elidable trivial copy construction of an operand which is
2615      //    itself a constant initializer.  Note that we consider the
2616      //    operand on its own, *not* as a reference binding.
2617      if (CE->isElidable() &&
2618          CE->getArg(0)->isConstantInitializer(Ctx, false))
2619        return true;
2620    }
2621
2622    // 3) a foldable constexpr constructor.
2623    break;
2624  }
2625  case CompoundLiteralExprClass: {
2626    // This handles gcc's extension that allows global initializers like
2627    // "struct x {int x;} x = (struct x) {};".
2628    // FIXME: This accepts other cases it shouldn't!
2629    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2630    return Exp->isConstantInitializer(Ctx, false);
2631  }
2632  case InitListExprClass: {
2633    // FIXME: This doesn't deal with fields with reference types correctly.
2634    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2635    // to bitfields.
2636    const InitListExpr *Exp = cast<InitListExpr>(this);
2637    unsigned numInits = Exp->getNumInits();
2638    for (unsigned i = 0; i < numInits; i++) {
2639      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2640        return false;
2641    }
2642    return true;
2643  }
2644  case ImplicitValueInitExprClass:
2645    return true;
2646  case ParenExprClass:
2647    return cast<ParenExpr>(this)->getSubExpr()
2648      ->isConstantInitializer(Ctx, IsForRef);
2649  case GenericSelectionExprClass:
2650    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2651      return false;
2652    return cast<GenericSelectionExpr>(this)->getResultExpr()
2653      ->isConstantInitializer(Ctx, IsForRef);
2654  case ChooseExprClass:
2655    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2656      ->isConstantInitializer(Ctx, IsForRef);
2657  case UnaryOperatorClass: {
2658    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2659    if (Exp->getOpcode() == UO_Extension)
2660      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2661    break;
2662  }
2663  case CXXFunctionalCastExprClass:
2664  case CXXStaticCastExprClass:
2665  case ImplicitCastExprClass:
2666  case CStyleCastExprClass: {
2667    const CastExpr *CE = cast<CastExpr>(this);
2668
2669    // If we're promoting an integer to an _Atomic type then this is constant
2670    // if the integer is constant.  We also need to check the converse in case
2671    // someone does something like:
2672    //
2673    // int a = (_Atomic(int))42;
2674    //
2675    // I doubt anyone would write code like this directly, but it's quite
2676    // possible as the result of macro expansions.
2677    if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2678        CE->getCastKind() == CK_AtomicToNonAtomic)
2679      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2680
2681    // Handle bitcasts of vector constants.
2682    if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2683      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2684
2685    // Handle misc casts we want to ignore.
2686    // FIXME: Is it really safe to ignore all these?
2687    if (CE->getCastKind() == CK_NoOp ||
2688        CE->getCastKind() == CK_LValueToRValue ||
2689        CE->getCastKind() == CK_ToUnion ||
2690        CE->getCastKind() == CK_ConstructorConversion)
2691      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2692
2693    break;
2694  }
2695  case MaterializeTemporaryExprClass:
2696    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2697                                            ->isConstantInitializer(Ctx, false);
2698  }
2699  return isEvaluatable(Ctx);
2700}
2701
2702bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2703  if (isInstantiationDependent())
2704    return true;
2705
2706  switch (getStmtClass()) {
2707  case NoStmtClass:
2708  #define ABSTRACT_STMT(Type)
2709  #define STMT(Type, Base) case Type##Class:
2710  #define EXPR(Type, Base)
2711  #include "clang/AST/StmtNodes.inc"
2712    llvm_unreachable("unexpected Expr kind");
2713
2714  case DependentScopeDeclRefExprClass:
2715  case CXXUnresolvedConstructExprClass:
2716  case CXXDependentScopeMemberExprClass:
2717  case UnresolvedLookupExprClass:
2718  case UnresolvedMemberExprClass:
2719  case PackExpansionExprClass:
2720  case SubstNonTypeTemplateParmPackExprClass:
2721  case FunctionParmPackExprClass:
2722    llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2723
2724  case DeclRefExprClass:
2725  case ObjCIvarRefExprClass:
2726  case PredefinedExprClass:
2727  case IntegerLiteralClass:
2728  case FloatingLiteralClass:
2729  case ImaginaryLiteralClass:
2730  case StringLiteralClass:
2731  case CharacterLiteralClass:
2732  case OffsetOfExprClass:
2733  case ImplicitValueInitExprClass:
2734  case UnaryExprOrTypeTraitExprClass:
2735  case AddrLabelExprClass:
2736  case GNUNullExprClass:
2737  case CXXBoolLiteralExprClass:
2738  case CXXNullPtrLiteralExprClass:
2739  case CXXThisExprClass:
2740  case CXXScalarValueInitExprClass:
2741  case TypeTraitExprClass:
2742  case UnaryTypeTraitExprClass:
2743  case BinaryTypeTraitExprClass:
2744  case ArrayTypeTraitExprClass:
2745  case ExpressionTraitExprClass:
2746  case CXXNoexceptExprClass:
2747  case SizeOfPackExprClass:
2748  case ObjCStringLiteralClass:
2749  case ObjCEncodeExprClass:
2750  case ObjCBoolLiteralExprClass:
2751  case CXXUuidofExprClass:
2752  case OpaqueValueExprClass:
2753    // These never have a side-effect.
2754    return false;
2755
2756  case CallExprClass:
2757  case CompoundAssignOperatorClass:
2758  case VAArgExprClass:
2759  case AtomicExprClass:
2760  case StmtExprClass:
2761  case CXXOperatorCallExprClass:
2762  case CXXMemberCallExprClass:
2763  case UserDefinedLiteralClass:
2764  case CXXThrowExprClass:
2765  case CXXNewExprClass:
2766  case CXXDeleteExprClass:
2767  case ExprWithCleanupsClass:
2768  case CXXBindTemporaryExprClass:
2769  case BlockExprClass:
2770  case CUDAKernelCallExprClass:
2771    // These always have a side-effect.
2772    return true;
2773
2774  case ParenExprClass:
2775  case ArraySubscriptExprClass:
2776  case MemberExprClass:
2777  case ConditionalOperatorClass:
2778  case BinaryConditionalOperatorClass:
2779  case CompoundLiteralExprClass:
2780  case ExtVectorElementExprClass:
2781  case DesignatedInitExprClass:
2782  case ParenListExprClass:
2783  case CXXPseudoDestructorExprClass:
2784  case SubstNonTypeTemplateParmExprClass:
2785  case MaterializeTemporaryExprClass:
2786  case ShuffleVectorExprClass:
2787  case AsTypeExprClass:
2788    // These have a side-effect if any subexpression does.
2789    break;
2790
2791  case UnaryOperatorClass:
2792    if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2793      return true;
2794    break;
2795
2796  case BinaryOperatorClass:
2797    if (cast<BinaryOperator>(this)->isAssignmentOp())
2798      return true;
2799    break;
2800
2801  case InitListExprClass:
2802    // FIXME: The children for an InitListExpr doesn't include the array filler.
2803    if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2804      if (E->HasSideEffects(Ctx))
2805        return true;
2806    break;
2807
2808  case GenericSelectionExprClass:
2809    return cast<GenericSelectionExpr>(this)->getResultExpr()->
2810        HasSideEffects(Ctx);
2811
2812  case ChooseExprClass:
2813    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->HasSideEffects(Ctx);
2814
2815  case CXXDefaultArgExprClass:
2816    return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2817
2818  case CXXDynamicCastExprClass: {
2819    // A dynamic_cast expression has side-effects if it can throw.
2820    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2821    if (DCE->getTypeAsWritten()->isReferenceType() &&
2822        DCE->getCastKind() == CK_Dynamic)
2823      return true;
2824  } // Fall through.
2825  case ImplicitCastExprClass:
2826  case CStyleCastExprClass:
2827  case CXXStaticCastExprClass:
2828  case CXXReinterpretCastExprClass:
2829  case CXXConstCastExprClass:
2830  case CXXFunctionalCastExprClass: {
2831    const CastExpr *CE = cast<CastExpr>(this);
2832    if (CE->getCastKind() == CK_LValueToRValue &&
2833        CE->getSubExpr()->getType().isVolatileQualified())
2834      return true;
2835    break;
2836  }
2837
2838  case CXXTypeidExprClass:
2839    // typeid might throw if its subexpression is potentially-evaluated, so has
2840    // side-effects in that case whether or not its subexpression does.
2841    return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2842
2843  case CXXConstructExprClass:
2844  case CXXTemporaryObjectExprClass: {
2845    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2846    if (!CE->getConstructor()->isTrivial())
2847      return true;
2848    // A trivial constructor does not add any side-effects of its own. Just look
2849    // at its arguments.
2850    break;
2851  }
2852
2853  case LambdaExprClass: {
2854    const LambdaExpr *LE = cast<LambdaExpr>(this);
2855    for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2856                                      E = LE->capture_end(); I != E; ++I)
2857      if (I->getCaptureKind() == LCK_ByCopy)
2858        // FIXME: Only has a side-effect if the variable is volatile or if
2859        // the copy would invoke a non-trivial copy constructor.
2860        return true;
2861    return false;
2862  }
2863
2864  case PseudoObjectExprClass: {
2865    // Only look for side-effects in the semantic form, and look past
2866    // OpaqueValueExpr bindings in that form.
2867    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2868    for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
2869                                                    E = PO->semantics_end();
2870         I != E; ++I) {
2871      const Expr *Subexpr = *I;
2872      if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
2873        Subexpr = OVE->getSourceExpr();
2874      if (Subexpr->HasSideEffects(Ctx))
2875        return true;
2876    }
2877    return false;
2878  }
2879
2880  case ObjCBoxedExprClass:
2881  case ObjCArrayLiteralClass:
2882  case ObjCDictionaryLiteralClass:
2883  case ObjCMessageExprClass:
2884  case ObjCSelectorExprClass:
2885  case ObjCProtocolExprClass:
2886  case ObjCPropertyRefExprClass:
2887  case ObjCIsaExprClass:
2888  case ObjCIndirectCopyRestoreExprClass:
2889  case ObjCSubscriptRefExprClass:
2890  case ObjCBridgedCastExprClass:
2891    // FIXME: Classify these cases better.
2892    return true;
2893  }
2894
2895  // Recurse to children.
2896  for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
2897    if (const Stmt *S = *SubStmts)
2898      if (cast<Expr>(S)->HasSideEffects(Ctx))
2899        return true;
2900
2901  return false;
2902}
2903
2904namespace {
2905  /// \brief Look for a call to a non-trivial function within an expression.
2906  class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2907  {
2908    typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2909
2910    bool NonTrivial;
2911
2912  public:
2913    explicit NonTrivialCallFinder(ASTContext &Context)
2914      : Inherited(Context), NonTrivial(false) { }
2915
2916    bool hasNonTrivialCall() const { return NonTrivial; }
2917
2918    void VisitCallExpr(CallExpr *E) {
2919      if (CXXMethodDecl *Method
2920          = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2921        if (Method->isTrivial()) {
2922          // Recurse to children of the call.
2923          Inherited::VisitStmt(E);
2924          return;
2925        }
2926      }
2927
2928      NonTrivial = true;
2929    }
2930
2931    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2932      if (E->getConstructor()->isTrivial()) {
2933        // Recurse to children of the call.
2934        Inherited::VisitStmt(E);
2935        return;
2936      }
2937
2938      NonTrivial = true;
2939    }
2940
2941    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2942      if (E->getTemporary()->getDestructor()->isTrivial()) {
2943        Inherited::VisitStmt(E);
2944        return;
2945      }
2946
2947      NonTrivial = true;
2948    }
2949  };
2950}
2951
2952bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2953  NonTrivialCallFinder Finder(Ctx);
2954  Finder.Visit(this);
2955  return Finder.hasNonTrivialCall();
2956}
2957
2958/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2959/// pointer constant or not, as well as the specific kind of constant detected.
2960/// Null pointer constants can be integer constant expressions with the
2961/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2962/// (a GNU extension).
2963Expr::NullPointerConstantKind
2964Expr::isNullPointerConstant(ASTContext &Ctx,
2965                            NullPointerConstantValueDependence NPC) const {
2966  if (isValueDependent()) {
2967    switch (NPC) {
2968    case NPC_NeverValueDependent:
2969      llvm_unreachable("Unexpected value dependent expression!");
2970    case NPC_ValueDependentIsNull:
2971      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2972        return NPCK_ZeroExpression;
2973      else
2974        return NPCK_NotNull;
2975
2976    case NPC_ValueDependentIsNotNull:
2977      return NPCK_NotNull;
2978    }
2979  }
2980
2981  // Strip off a cast to void*, if it exists. Except in C++.
2982  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2983    if (!Ctx.getLangOpts().CPlusPlus) {
2984      // Check that it is a cast to void*.
2985      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2986        QualType Pointee = PT->getPointeeType();
2987        if (!Pointee.hasQualifiers() &&
2988            Pointee->isVoidType() &&                              // to void*
2989            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2990          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2991      }
2992    }
2993  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2994    // Ignore the ImplicitCastExpr type entirely.
2995    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2996  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2997    // Accept ((void*)0) as a null pointer constant, as many other
2998    // implementations do.
2999    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3000  } else if (const GenericSelectionExpr *GE =
3001               dyn_cast<GenericSelectionExpr>(this)) {
3002    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3003  } else if (const CXXDefaultArgExpr *DefaultArg
3004               = dyn_cast<CXXDefaultArgExpr>(this)) {
3005    // See through default argument expressions
3006    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3007  } else if (isa<GNUNullExpr>(this)) {
3008    // The GNU __null extension is always a null pointer constant.
3009    return NPCK_GNUNull;
3010  } else if (const MaterializeTemporaryExpr *M
3011                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
3012    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3013  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3014    if (const Expr *Source = OVE->getSourceExpr())
3015      return Source->isNullPointerConstant(Ctx, NPC);
3016  }
3017
3018  // C++11 nullptr_t is always a null pointer constant.
3019  if (getType()->isNullPtrType())
3020    return NPCK_CXX11_nullptr;
3021
3022  if (const RecordType *UT = getType()->getAsUnionType())
3023    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3024      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3025        const Expr *InitExpr = CLE->getInitializer();
3026        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3027          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3028      }
3029  // This expression must be an integer type.
3030  if (!getType()->isIntegerType() ||
3031      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3032    return NPCK_NotNull;
3033
3034  // If we have an integer constant expression, we need to *evaluate* it and
3035  // test for the value 0. Don't use the C++11 constant expression semantics
3036  // for this, for now; once the dust settles on core issue 903, we might only
3037  // allow a literal 0 here in C++11 mode.
3038  if (Ctx.getLangOpts().CPlusPlus11) {
3039    if (!isCXX98IntegralConstantExpr(Ctx))
3040      return NPCK_NotNull;
3041  } else {
3042    if (!isIntegerConstantExpr(Ctx))
3043      return NPCK_NotNull;
3044  }
3045
3046  if (EvaluateKnownConstInt(Ctx) != 0)
3047    return NPCK_NotNull;
3048
3049  if (isa<IntegerLiteral>(this))
3050    return NPCK_ZeroLiteral;
3051  return NPCK_ZeroExpression;
3052}
3053
3054/// \brief If this expression is an l-value for an Objective C
3055/// property, find the underlying property reference expression.
3056const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3057  const Expr *E = this;
3058  while (true) {
3059    assert((E->getValueKind() == VK_LValue &&
3060            E->getObjectKind() == OK_ObjCProperty) &&
3061           "expression is not a property reference");
3062    E = E->IgnoreParenCasts();
3063    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3064      if (BO->getOpcode() == BO_Comma) {
3065        E = BO->getRHS();
3066        continue;
3067      }
3068    }
3069
3070    break;
3071  }
3072
3073  return cast<ObjCPropertyRefExpr>(E);
3074}
3075
3076bool Expr::isObjCSelfExpr() const {
3077  const Expr *E = IgnoreParenImpCasts();
3078
3079  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3080  if (!DRE)
3081    return false;
3082
3083  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3084  if (!Param)
3085    return false;
3086
3087  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3088  if (!M)
3089    return false;
3090
3091  return M->getSelfDecl() == Param;
3092}
3093
3094FieldDecl *Expr::getBitField() {
3095  Expr *E = this->IgnoreParens();
3096
3097  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3098    if (ICE->getCastKind() == CK_LValueToRValue ||
3099        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3100      E = ICE->getSubExpr()->IgnoreParens();
3101    else
3102      break;
3103  }
3104
3105  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3106    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3107      if (Field->isBitField())
3108        return Field;
3109
3110  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3111    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3112      if (Field->isBitField())
3113        return Field;
3114
3115  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3116    if (BinOp->isAssignmentOp() && BinOp->getLHS())
3117      return BinOp->getLHS()->getBitField();
3118
3119    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3120      return BinOp->getRHS()->getBitField();
3121  }
3122
3123  return 0;
3124}
3125
3126bool Expr::refersToVectorElement() const {
3127  const Expr *E = this->IgnoreParens();
3128
3129  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3130    if (ICE->getValueKind() != VK_RValue &&
3131        ICE->getCastKind() == CK_NoOp)
3132      E = ICE->getSubExpr()->IgnoreParens();
3133    else
3134      break;
3135  }
3136
3137  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3138    return ASE->getBase()->getType()->isVectorType();
3139
3140  if (isa<ExtVectorElementExpr>(E))
3141    return true;
3142
3143  return false;
3144}
3145
3146/// isArrow - Return true if the base expression is a pointer to vector,
3147/// return false if the base expression is a vector.
3148bool ExtVectorElementExpr::isArrow() const {
3149  return getBase()->getType()->isPointerType();
3150}
3151
3152unsigned ExtVectorElementExpr::getNumElements() const {
3153  if (const VectorType *VT = getType()->getAs<VectorType>())
3154    return VT->getNumElements();
3155  return 1;
3156}
3157
3158/// containsDuplicateElements - Return true if any element access is repeated.
3159bool ExtVectorElementExpr::containsDuplicateElements() const {
3160  // FIXME: Refactor this code to an accessor on the AST node which returns the
3161  // "type" of component access, and share with code below and in Sema.
3162  StringRef Comp = Accessor->getName();
3163
3164  // Halving swizzles do not contain duplicate elements.
3165  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3166    return false;
3167
3168  // Advance past s-char prefix on hex swizzles.
3169  if (Comp[0] == 's' || Comp[0] == 'S')
3170    Comp = Comp.substr(1);
3171
3172  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3173    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3174        return true;
3175
3176  return false;
3177}
3178
3179/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3180void ExtVectorElementExpr::getEncodedElementAccess(
3181                                  SmallVectorImpl<unsigned> &Elts) const {
3182  StringRef Comp = Accessor->getName();
3183  if (Comp[0] == 's' || Comp[0] == 'S')
3184    Comp = Comp.substr(1);
3185
3186  bool isHi =   Comp == "hi";
3187  bool isLo =   Comp == "lo";
3188  bool isEven = Comp == "even";
3189  bool isOdd  = Comp == "odd";
3190
3191  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3192    uint64_t Index;
3193
3194    if (isHi)
3195      Index = e + i;
3196    else if (isLo)
3197      Index = i;
3198    else if (isEven)
3199      Index = 2 * i;
3200    else if (isOdd)
3201      Index = 2 * i + 1;
3202    else
3203      Index = ExtVectorType::getAccessorIdx(Comp[i]);
3204
3205    Elts.push_back(Index);
3206  }
3207}
3208
3209ObjCMessageExpr::ObjCMessageExpr(QualType T,
3210                                 ExprValueKind VK,
3211                                 SourceLocation LBracLoc,
3212                                 SourceLocation SuperLoc,
3213                                 bool IsInstanceSuper,
3214                                 QualType SuperType,
3215                                 Selector Sel,
3216                                 ArrayRef<SourceLocation> SelLocs,
3217                                 SelectorLocationsKind SelLocsK,
3218                                 ObjCMethodDecl *Method,
3219                                 ArrayRef<Expr *> Args,
3220                                 SourceLocation RBracLoc,
3221                                 bool isImplicit)
3222  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3223         /*TypeDependent=*/false, /*ValueDependent=*/false,
3224         /*InstantiationDependent=*/false,
3225         /*ContainsUnexpandedParameterPack=*/false),
3226    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3227                                                       : Sel.getAsOpaquePtr())),
3228    Kind(IsInstanceSuper? SuperInstance : SuperClass),
3229    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3230    SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3231{
3232  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3233  setReceiverPointer(SuperType.getAsOpaquePtr());
3234}
3235
3236ObjCMessageExpr::ObjCMessageExpr(QualType T,
3237                                 ExprValueKind VK,
3238                                 SourceLocation LBracLoc,
3239                                 TypeSourceInfo *Receiver,
3240                                 Selector Sel,
3241                                 ArrayRef<SourceLocation> SelLocs,
3242                                 SelectorLocationsKind SelLocsK,
3243                                 ObjCMethodDecl *Method,
3244                                 ArrayRef<Expr *> Args,
3245                                 SourceLocation RBracLoc,
3246                                 bool isImplicit)
3247  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3248         T->isDependentType(), T->isInstantiationDependentType(),
3249         T->containsUnexpandedParameterPack()),
3250    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3251                                                       : Sel.getAsOpaquePtr())),
3252    Kind(Class),
3253    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3254    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3255{
3256  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3257  setReceiverPointer(Receiver);
3258}
3259
3260ObjCMessageExpr::ObjCMessageExpr(QualType T,
3261                                 ExprValueKind VK,
3262                                 SourceLocation LBracLoc,
3263                                 Expr *Receiver,
3264                                 Selector Sel,
3265                                 ArrayRef<SourceLocation> SelLocs,
3266                                 SelectorLocationsKind SelLocsK,
3267                                 ObjCMethodDecl *Method,
3268                                 ArrayRef<Expr *> Args,
3269                                 SourceLocation RBracLoc,
3270                                 bool isImplicit)
3271  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3272         Receiver->isTypeDependent(),
3273         Receiver->isInstantiationDependent(),
3274         Receiver->containsUnexpandedParameterPack()),
3275    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3276                                                       : Sel.getAsOpaquePtr())),
3277    Kind(Instance),
3278    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3279    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3280{
3281  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3282  setReceiverPointer(Receiver);
3283}
3284
3285void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3286                                         ArrayRef<SourceLocation> SelLocs,
3287                                         SelectorLocationsKind SelLocsK) {
3288  setNumArgs(Args.size());
3289  Expr **MyArgs = getArgs();
3290  for (unsigned I = 0; I != Args.size(); ++I) {
3291    if (Args[I]->isTypeDependent())
3292      ExprBits.TypeDependent = true;
3293    if (Args[I]->isValueDependent())
3294      ExprBits.ValueDependent = true;
3295    if (Args[I]->isInstantiationDependent())
3296      ExprBits.InstantiationDependent = true;
3297    if (Args[I]->containsUnexpandedParameterPack())
3298      ExprBits.ContainsUnexpandedParameterPack = true;
3299
3300    MyArgs[I] = Args[I];
3301  }
3302
3303  SelLocsKind = SelLocsK;
3304  if (!isImplicit()) {
3305    if (SelLocsK == SelLoc_NonStandard)
3306      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3307  }
3308}
3309
3310ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3311                                         ExprValueKind VK,
3312                                         SourceLocation LBracLoc,
3313                                         SourceLocation SuperLoc,
3314                                         bool IsInstanceSuper,
3315                                         QualType SuperType,
3316                                         Selector Sel,
3317                                         ArrayRef<SourceLocation> SelLocs,
3318                                         ObjCMethodDecl *Method,
3319                                         ArrayRef<Expr *> Args,
3320                                         SourceLocation RBracLoc,
3321                                         bool isImplicit) {
3322  assert((!SelLocs.empty() || isImplicit) &&
3323         "No selector locs for non-implicit message");
3324  ObjCMessageExpr *Mem;
3325  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3326  if (isImplicit)
3327    Mem = alloc(Context, Args.size(), 0);
3328  else
3329    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3330  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3331                                   SuperType, Sel, SelLocs, SelLocsK,
3332                                   Method, Args, RBracLoc, isImplicit);
3333}
3334
3335ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3336                                         ExprValueKind VK,
3337                                         SourceLocation LBracLoc,
3338                                         TypeSourceInfo *Receiver,
3339                                         Selector Sel,
3340                                         ArrayRef<SourceLocation> SelLocs,
3341                                         ObjCMethodDecl *Method,
3342                                         ArrayRef<Expr *> Args,
3343                                         SourceLocation RBracLoc,
3344                                         bool isImplicit) {
3345  assert((!SelLocs.empty() || isImplicit) &&
3346         "No selector locs for non-implicit message");
3347  ObjCMessageExpr *Mem;
3348  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3349  if (isImplicit)
3350    Mem = alloc(Context, Args.size(), 0);
3351  else
3352    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3353  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3354                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3355                                   isImplicit);
3356}
3357
3358ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3359                                         ExprValueKind VK,
3360                                         SourceLocation LBracLoc,
3361                                         Expr *Receiver,
3362                                         Selector Sel,
3363                                         ArrayRef<SourceLocation> SelLocs,
3364                                         ObjCMethodDecl *Method,
3365                                         ArrayRef<Expr *> Args,
3366                                         SourceLocation RBracLoc,
3367                                         bool isImplicit) {
3368  assert((!SelLocs.empty() || isImplicit) &&
3369         "No selector locs for non-implicit message");
3370  ObjCMessageExpr *Mem;
3371  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3372  if (isImplicit)
3373    Mem = alloc(Context, Args.size(), 0);
3374  else
3375    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3376  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3377                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3378                                   isImplicit);
3379}
3380
3381ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3382                                              unsigned NumArgs,
3383                                              unsigned NumStoredSelLocs) {
3384  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3385  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3386}
3387
3388ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3389                                        ArrayRef<Expr *> Args,
3390                                        SourceLocation RBraceLoc,
3391                                        ArrayRef<SourceLocation> SelLocs,
3392                                        Selector Sel,
3393                                        SelectorLocationsKind &SelLocsK) {
3394  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3395  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3396                                                               : 0;
3397  return alloc(C, Args.size(), NumStoredSelLocs);
3398}
3399
3400ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3401                                        unsigned NumArgs,
3402                                        unsigned NumStoredSelLocs) {
3403  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3404    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3405  return (ObjCMessageExpr *)C.Allocate(Size,
3406                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
3407}
3408
3409void ObjCMessageExpr::getSelectorLocs(
3410                               SmallVectorImpl<SourceLocation> &SelLocs) const {
3411  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3412    SelLocs.push_back(getSelectorLoc(i));
3413}
3414
3415SourceRange ObjCMessageExpr::getReceiverRange() const {
3416  switch (getReceiverKind()) {
3417  case Instance:
3418    return getInstanceReceiver()->getSourceRange();
3419
3420  case Class:
3421    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3422
3423  case SuperInstance:
3424  case SuperClass:
3425    return getSuperLoc();
3426  }
3427
3428  llvm_unreachable("Invalid ReceiverKind!");
3429}
3430
3431Selector ObjCMessageExpr::getSelector() const {
3432  if (HasMethod)
3433    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3434                                                               ->getSelector();
3435  return Selector(SelectorOrMethod);
3436}
3437
3438QualType ObjCMessageExpr::getReceiverType() const {
3439  switch (getReceiverKind()) {
3440  case Instance:
3441    return getInstanceReceiver()->getType();
3442  case Class:
3443    return getClassReceiver();
3444  case SuperInstance:
3445  case SuperClass:
3446    return getSuperType();
3447  }
3448
3449  llvm_unreachable("unexpected receiver kind");
3450}
3451
3452ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3453  QualType T = getReceiverType();
3454
3455  if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3456    return Ptr->getInterfaceDecl();
3457
3458  if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3459    return Ty->getInterface();
3460
3461  return 0;
3462}
3463
3464StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3465  switch (getBridgeKind()) {
3466  case OBC_Bridge:
3467    return "__bridge";
3468  case OBC_BridgeTransfer:
3469    return "__bridge_transfer";
3470  case OBC_BridgeRetained:
3471    return "__bridge_retained";
3472  }
3473
3474  llvm_unreachable("Invalid BridgeKind!");
3475}
3476
3477bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3478  return getCond()->EvaluateKnownConstInt(C) != 0;
3479}
3480
3481ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args,
3482                                     QualType Type, SourceLocation BLoc,
3483                                     SourceLocation RP)
3484   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3485          Type->isDependentType(), Type->isDependentType(),
3486          Type->isInstantiationDependentType(),
3487          Type->containsUnexpandedParameterPack()),
3488     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3489{
3490  SubExprs = new (C) Stmt*[args.size()];
3491  for (unsigned i = 0; i != args.size(); i++) {
3492    if (args[i]->isTypeDependent())
3493      ExprBits.TypeDependent = true;
3494    if (args[i]->isValueDependent())
3495      ExprBits.ValueDependent = true;
3496    if (args[i]->isInstantiationDependent())
3497      ExprBits.InstantiationDependent = true;
3498    if (args[i]->containsUnexpandedParameterPack())
3499      ExprBits.ContainsUnexpandedParameterPack = true;
3500
3501    SubExprs[i] = args[i];
3502  }
3503}
3504
3505void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3506                                 unsigned NumExprs) {
3507  if (SubExprs) C.Deallocate(SubExprs);
3508
3509  SubExprs = new (C) Stmt* [NumExprs];
3510  this->NumExprs = NumExprs;
3511  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3512}
3513
3514GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3515                               SourceLocation GenericLoc, Expr *ControllingExpr,
3516                               ArrayRef<TypeSourceInfo*> AssocTypes,
3517                               ArrayRef<Expr*> AssocExprs,
3518                               SourceLocation DefaultLoc,
3519                               SourceLocation RParenLoc,
3520                               bool ContainsUnexpandedParameterPack,
3521                               unsigned ResultIndex)
3522  : Expr(GenericSelectionExprClass,
3523         AssocExprs[ResultIndex]->getType(),
3524         AssocExprs[ResultIndex]->getValueKind(),
3525         AssocExprs[ResultIndex]->getObjectKind(),
3526         AssocExprs[ResultIndex]->isTypeDependent(),
3527         AssocExprs[ResultIndex]->isValueDependent(),
3528         AssocExprs[ResultIndex]->isInstantiationDependent(),
3529         ContainsUnexpandedParameterPack),
3530    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3531    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3532    NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3533    GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3534  SubExprs[CONTROLLING] = ControllingExpr;
3535  assert(AssocTypes.size() == AssocExprs.size());
3536  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3537  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3538}
3539
3540GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3541                               SourceLocation GenericLoc, Expr *ControllingExpr,
3542                               ArrayRef<TypeSourceInfo*> AssocTypes,
3543                               ArrayRef<Expr*> AssocExprs,
3544                               SourceLocation DefaultLoc,
3545                               SourceLocation RParenLoc,
3546                               bool ContainsUnexpandedParameterPack)
3547  : Expr(GenericSelectionExprClass,
3548         Context.DependentTy,
3549         VK_RValue,
3550         OK_Ordinary,
3551         /*isTypeDependent=*/true,
3552         /*isValueDependent=*/true,
3553         /*isInstantiationDependent=*/true,
3554         ContainsUnexpandedParameterPack),
3555    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3556    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3557    NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3558    DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3559  SubExprs[CONTROLLING] = ControllingExpr;
3560  assert(AssocTypes.size() == AssocExprs.size());
3561  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3562  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3563}
3564
3565//===----------------------------------------------------------------------===//
3566//  DesignatedInitExpr
3567//===----------------------------------------------------------------------===//
3568
3569IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3570  assert(Kind == FieldDesignator && "Only valid on a field designator");
3571  if (Field.NameOrField & 0x01)
3572    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3573  else
3574    return getField()->getIdentifier();
3575}
3576
3577DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3578                                       unsigned NumDesignators,
3579                                       const Designator *Designators,
3580                                       SourceLocation EqualOrColonLoc,
3581                                       bool GNUSyntax,
3582                                       ArrayRef<Expr*> IndexExprs,
3583                                       Expr *Init)
3584  : Expr(DesignatedInitExprClass, Ty,
3585         Init->getValueKind(), Init->getObjectKind(),
3586         Init->isTypeDependent(), Init->isValueDependent(),
3587         Init->isInstantiationDependent(),
3588         Init->containsUnexpandedParameterPack()),
3589    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3590    NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3591  this->Designators = new (C) Designator[NumDesignators];
3592
3593  // Record the initializer itself.
3594  child_range Child = children();
3595  *Child++ = Init;
3596
3597  // Copy the designators and their subexpressions, computing
3598  // value-dependence along the way.
3599  unsigned IndexIdx = 0;
3600  for (unsigned I = 0; I != NumDesignators; ++I) {
3601    this->Designators[I] = Designators[I];
3602
3603    if (this->Designators[I].isArrayDesignator()) {
3604      // Compute type- and value-dependence.
3605      Expr *Index = IndexExprs[IndexIdx];
3606      if (Index->isTypeDependent() || Index->isValueDependent())
3607        ExprBits.ValueDependent = true;
3608      if (Index->isInstantiationDependent())
3609        ExprBits.InstantiationDependent = true;
3610      // Propagate unexpanded parameter packs.
3611      if (Index->containsUnexpandedParameterPack())
3612        ExprBits.ContainsUnexpandedParameterPack = true;
3613
3614      // Copy the index expressions into permanent storage.
3615      *Child++ = IndexExprs[IndexIdx++];
3616    } else if (this->Designators[I].isArrayRangeDesignator()) {
3617      // Compute type- and value-dependence.
3618      Expr *Start = IndexExprs[IndexIdx];
3619      Expr *End = IndexExprs[IndexIdx + 1];
3620      if (Start->isTypeDependent() || Start->isValueDependent() ||
3621          End->isTypeDependent() || End->isValueDependent()) {
3622        ExprBits.ValueDependent = true;
3623        ExprBits.InstantiationDependent = true;
3624      } else if (Start->isInstantiationDependent() ||
3625                 End->isInstantiationDependent()) {
3626        ExprBits.InstantiationDependent = true;
3627      }
3628
3629      // Propagate unexpanded parameter packs.
3630      if (Start->containsUnexpandedParameterPack() ||
3631          End->containsUnexpandedParameterPack())
3632        ExprBits.ContainsUnexpandedParameterPack = true;
3633
3634      // Copy the start/end expressions into permanent storage.
3635      *Child++ = IndexExprs[IndexIdx++];
3636      *Child++ = IndexExprs[IndexIdx++];
3637    }
3638  }
3639
3640  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3641}
3642
3643DesignatedInitExpr *
3644DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3645                           unsigned NumDesignators,
3646                           ArrayRef<Expr*> IndexExprs,
3647                           SourceLocation ColonOrEqualLoc,
3648                           bool UsesColonSyntax, Expr *Init) {
3649  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3650                         sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3651  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3652                                      ColonOrEqualLoc, UsesColonSyntax,
3653                                      IndexExprs, Init);
3654}
3655
3656DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3657                                                    unsigned NumIndexExprs) {
3658  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3659                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3660  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3661}
3662
3663void DesignatedInitExpr::setDesignators(ASTContext &C,
3664                                        const Designator *Desigs,
3665                                        unsigned NumDesigs) {
3666  Designators = new (C) Designator[NumDesigs];
3667  NumDesignators = NumDesigs;
3668  for (unsigned I = 0; I != NumDesigs; ++I)
3669    Designators[I] = Desigs[I];
3670}
3671
3672SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3673  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3674  if (size() == 1)
3675    return DIE->getDesignator(0)->getSourceRange();
3676  return SourceRange(DIE->getDesignator(0)->getLocStart(),
3677                     DIE->getDesignator(size()-1)->getLocEnd());
3678}
3679
3680SourceLocation DesignatedInitExpr::getLocStart() const {
3681  SourceLocation StartLoc;
3682  Designator &First =
3683    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3684  if (First.isFieldDesignator()) {
3685    if (GNUSyntax)
3686      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3687    else
3688      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3689  } else
3690    StartLoc =
3691      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3692  return StartLoc;
3693}
3694
3695SourceLocation DesignatedInitExpr::getLocEnd() const {
3696  return getInit()->getLocEnd();
3697}
3698
3699Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3700  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3701  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3702  Ptr += sizeof(DesignatedInitExpr);
3703  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3704  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3705}
3706
3707Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3708  assert(D.Kind == Designator::ArrayRangeDesignator &&
3709         "Requires array range designator");
3710  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3711  Ptr += sizeof(DesignatedInitExpr);
3712  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3713  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3714}
3715
3716Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3717  assert(D.Kind == Designator::ArrayRangeDesignator &&
3718         "Requires array range designator");
3719  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3720  Ptr += sizeof(DesignatedInitExpr);
3721  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3722  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3723}
3724
3725/// \brief Replaces the designator at index @p Idx with the series
3726/// of designators in [First, Last).
3727void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3728                                          const Designator *First,
3729                                          const Designator *Last) {
3730  unsigned NumNewDesignators = Last - First;
3731  if (NumNewDesignators == 0) {
3732    std::copy_backward(Designators + Idx + 1,
3733                       Designators + NumDesignators,
3734                       Designators + Idx);
3735    --NumNewDesignators;
3736    return;
3737  } else if (NumNewDesignators == 1) {
3738    Designators[Idx] = *First;
3739    return;
3740  }
3741
3742  Designator *NewDesignators
3743    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3744  std::copy(Designators, Designators + Idx, NewDesignators);
3745  std::copy(First, Last, NewDesignators + Idx);
3746  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3747            NewDesignators + Idx + NumNewDesignators);
3748  Designators = NewDesignators;
3749  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3750}
3751
3752ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3753                             ArrayRef<Expr*> exprs,
3754                             SourceLocation rparenloc)
3755  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3756         false, false, false, false),
3757    NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3758  Exprs = new (C) Stmt*[exprs.size()];
3759  for (unsigned i = 0; i != exprs.size(); ++i) {
3760    if (exprs[i]->isTypeDependent())
3761      ExprBits.TypeDependent = true;
3762    if (exprs[i]->isValueDependent())
3763      ExprBits.ValueDependent = true;
3764    if (exprs[i]->isInstantiationDependent())
3765      ExprBits.InstantiationDependent = true;
3766    if (exprs[i]->containsUnexpandedParameterPack())
3767      ExprBits.ContainsUnexpandedParameterPack = true;
3768
3769    Exprs[i] = exprs[i];
3770  }
3771}
3772
3773const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3774  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3775    e = ewc->getSubExpr();
3776  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3777    e = m->GetTemporaryExpr();
3778  e = cast<CXXConstructExpr>(e)->getArg(0);
3779  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3780    e = ice->getSubExpr();
3781  return cast<OpaqueValueExpr>(e);
3782}
3783
3784PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3785                                           unsigned numSemanticExprs) {
3786  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3787                                    (1 + numSemanticExprs) * sizeof(Expr*),
3788                                  llvm::alignOf<PseudoObjectExpr>());
3789  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3790}
3791
3792PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3793  : Expr(PseudoObjectExprClass, shell) {
3794  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3795}
3796
3797PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3798                                           ArrayRef<Expr*> semantics,
3799                                           unsigned resultIndex) {
3800  assert(syntax && "no syntactic expression!");
3801  assert(semantics.size() && "no semantic expressions!");
3802
3803  QualType type;
3804  ExprValueKind VK;
3805  if (resultIndex == NoResult) {
3806    type = C.VoidTy;
3807    VK = VK_RValue;
3808  } else {
3809    assert(resultIndex < semantics.size());
3810    type = semantics[resultIndex]->getType();
3811    VK = semantics[resultIndex]->getValueKind();
3812    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3813  }
3814
3815  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3816                              (1 + semantics.size()) * sizeof(Expr*),
3817                            llvm::alignOf<PseudoObjectExpr>());
3818  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3819                                      resultIndex);
3820}
3821
3822PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3823                                   Expr *syntax, ArrayRef<Expr*> semantics,
3824                                   unsigned resultIndex)
3825  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3826         /*filled in at end of ctor*/ false, false, false, false) {
3827  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3828  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3829
3830  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3831    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3832    getSubExprsBuffer()[i] = E;
3833
3834    if (E->isTypeDependent())
3835      ExprBits.TypeDependent = true;
3836    if (E->isValueDependent())
3837      ExprBits.ValueDependent = true;
3838    if (E->isInstantiationDependent())
3839      ExprBits.InstantiationDependent = true;
3840    if (E->containsUnexpandedParameterPack())
3841      ExprBits.ContainsUnexpandedParameterPack = true;
3842
3843    if (isa<OpaqueValueExpr>(E))
3844      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3845             "opaque-value semantic expressions for pseudo-object "
3846             "operations must have sources");
3847  }
3848}
3849
3850//===----------------------------------------------------------------------===//
3851//  ExprIterator.
3852//===----------------------------------------------------------------------===//
3853
3854Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3855Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3856Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3857const Expr* ConstExprIterator::operator[](size_t idx) const {
3858  return cast<Expr>(I[idx]);
3859}
3860const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3861const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3862
3863//===----------------------------------------------------------------------===//
3864//  Child Iterators for iterating over subexpressions/substatements
3865//===----------------------------------------------------------------------===//
3866
3867// UnaryExprOrTypeTraitExpr
3868Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3869  // If this is of a type and the type is a VLA type (and not a typedef), the
3870  // size expression of the VLA needs to be treated as an executable expression.
3871  // Why isn't this weirdness documented better in StmtIterator?
3872  if (isArgumentType()) {
3873    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3874                                   getArgumentType().getTypePtr()))
3875      return child_range(child_iterator(T), child_iterator());
3876    return child_range();
3877  }
3878  return child_range(&Argument.Ex, &Argument.Ex + 1);
3879}
3880
3881// ObjCMessageExpr
3882Stmt::child_range ObjCMessageExpr::children() {
3883  Stmt **begin;
3884  if (getReceiverKind() == Instance)
3885    begin = reinterpret_cast<Stmt **>(this + 1);
3886  else
3887    begin = reinterpret_cast<Stmt **>(getArgs());
3888  return child_range(begin,
3889                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3890}
3891
3892ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
3893                                   QualType T, ObjCMethodDecl *Method,
3894                                   SourceRange SR)
3895  : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3896         false, false, false, false),
3897    NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3898{
3899  Expr **SaveElements = getElements();
3900  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3901    if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3902      ExprBits.ValueDependent = true;
3903    if (Elements[I]->isInstantiationDependent())
3904      ExprBits.InstantiationDependent = true;
3905    if (Elements[I]->containsUnexpandedParameterPack())
3906      ExprBits.ContainsUnexpandedParameterPack = true;
3907
3908    SaveElements[I] = Elements[I];
3909  }
3910}
3911
3912ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3913                                           ArrayRef<Expr *> Elements,
3914                                           QualType T, ObjCMethodDecl * Method,
3915                                           SourceRange SR) {
3916  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3917                         + Elements.size() * sizeof(Expr *));
3918  return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3919}
3920
3921ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3922                                                unsigned NumElements) {
3923
3924  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3925                         + NumElements * sizeof(Expr *));
3926  return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3927}
3928
3929ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3930                                             ArrayRef<ObjCDictionaryElement> VK,
3931                                             bool HasPackExpansions,
3932                                             QualType T, ObjCMethodDecl *method,
3933                                             SourceRange SR)
3934  : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3935         false, false),
3936    NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3937    DictWithObjectsMethod(method)
3938{
3939  KeyValuePair *KeyValues = getKeyValues();
3940  ExpansionData *Expansions = getExpansionData();
3941  for (unsigned I = 0; I < NumElements; I++) {
3942    if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3943        VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3944      ExprBits.ValueDependent = true;
3945    if (VK[I].Key->isInstantiationDependent() ||
3946        VK[I].Value->isInstantiationDependent())
3947      ExprBits.InstantiationDependent = true;
3948    if (VK[I].EllipsisLoc.isInvalid() &&
3949        (VK[I].Key->containsUnexpandedParameterPack() ||
3950         VK[I].Value->containsUnexpandedParameterPack()))
3951      ExprBits.ContainsUnexpandedParameterPack = true;
3952
3953    KeyValues[I].Key = VK[I].Key;
3954    KeyValues[I].Value = VK[I].Value;
3955    if (Expansions) {
3956      Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3957      if (VK[I].NumExpansions)
3958        Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3959      else
3960        Expansions[I].NumExpansionsPlusOne = 0;
3961    }
3962  }
3963}
3964
3965ObjCDictionaryLiteral *
3966ObjCDictionaryLiteral::Create(ASTContext &C,
3967                              ArrayRef<ObjCDictionaryElement> VK,
3968                              bool HasPackExpansions,
3969                              QualType T, ObjCMethodDecl *method,
3970                              SourceRange SR) {
3971  unsigned ExpansionsSize = 0;
3972  if (HasPackExpansions)
3973    ExpansionsSize = sizeof(ExpansionData) * VK.size();
3974
3975  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3976                         sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
3977  return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
3978}
3979
3980ObjCDictionaryLiteral *
3981ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
3982                                   bool HasPackExpansions) {
3983  unsigned ExpansionsSize = 0;
3984  if (HasPackExpansions)
3985    ExpansionsSize = sizeof(ExpansionData) * NumElements;
3986  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3987                         sizeof(KeyValuePair) * NumElements + ExpansionsSize);
3988  return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
3989                                         HasPackExpansions);
3990}
3991
3992ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
3993                                                   Expr *base,
3994                                                   Expr *key, QualType T,
3995                                                   ObjCMethodDecl *getMethod,
3996                                                   ObjCMethodDecl *setMethod,
3997                                                   SourceLocation RB) {
3998  void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
3999  return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
4000                                        OK_ObjCSubscript,
4001                                        getMethod, setMethod, RB);
4002}
4003
4004AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4005                       QualType t, AtomicOp op, SourceLocation RP)
4006  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4007         false, false, false, false),
4008    NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4009{
4010  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4011  for (unsigned i = 0; i != args.size(); i++) {
4012    if (args[i]->isTypeDependent())
4013      ExprBits.TypeDependent = true;
4014    if (args[i]->isValueDependent())
4015      ExprBits.ValueDependent = true;
4016    if (args[i]->isInstantiationDependent())
4017      ExprBits.InstantiationDependent = true;
4018    if (args[i]->containsUnexpandedParameterPack())
4019      ExprBits.ContainsUnexpandedParameterPack = true;
4020
4021    SubExprs[i] = args[i];
4022  }
4023}
4024
4025unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4026  switch (Op) {
4027  case AO__c11_atomic_init:
4028  case AO__c11_atomic_load:
4029  case AO__atomic_load_n:
4030    return 2;
4031
4032  case AO__c11_atomic_store:
4033  case AO__c11_atomic_exchange:
4034  case AO__atomic_load:
4035  case AO__atomic_store:
4036  case AO__atomic_store_n:
4037  case AO__atomic_exchange_n:
4038  case AO__c11_atomic_fetch_add:
4039  case AO__c11_atomic_fetch_sub:
4040  case AO__c11_atomic_fetch_and:
4041  case AO__c11_atomic_fetch_or:
4042  case AO__c11_atomic_fetch_xor:
4043  case AO__atomic_fetch_add:
4044  case AO__atomic_fetch_sub:
4045  case AO__atomic_fetch_and:
4046  case AO__atomic_fetch_or:
4047  case AO__atomic_fetch_xor:
4048  case AO__atomic_fetch_nand:
4049  case AO__atomic_add_fetch:
4050  case AO__atomic_sub_fetch:
4051  case AO__atomic_and_fetch:
4052  case AO__atomic_or_fetch:
4053  case AO__atomic_xor_fetch:
4054  case AO__atomic_nand_fetch:
4055    return 3;
4056
4057  case AO__atomic_exchange:
4058    return 4;
4059
4060  case AO__c11_atomic_compare_exchange_strong:
4061  case AO__c11_atomic_compare_exchange_weak:
4062    return 5;
4063
4064  case AO__atomic_compare_exchange:
4065  case AO__atomic_compare_exchange_n:
4066    return 6;
4067  }
4068  llvm_unreachable("unknown atomic op");
4069}
4070