CGAtomic.cpp revision e469249726840b8baa2df008ca891e213cc5c661
1//===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the code for emitting atomic operations. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGCall.h" 16#include "CodeGenModule.h" 17#include "clang/AST/ASTContext.h" 18#include "llvm/ADT/StringExtras.h" 19#include "llvm/IR/DataLayout.h" 20#include "llvm/IR/Intrinsics.h" 21#include "llvm/IR/Operator.h" 22 23using namespace clang; 24using namespace CodeGen; 25 26// The ABI values for various atomic memory orderings. 27enum AtomicOrderingKind { 28 AO_ABI_memory_order_relaxed = 0, 29 AO_ABI_memory_order_consume = 1, 30 AO_ABI_memory_order_acquire = 2, 31 AO_ABI_memory_order_release = 3, 32 AO_ABI_memory_order_acq_rel = 4, 33 AO_ABI_memory_order_seq_cst = 5 34}; 35 36namespace { 37 class AtomicInfo { 38 CodeGenFunction &CGF; 39 QualType AtomicTy; 40 QualType ValueTy; 41 uint64_t AtomicSizeInBits; 42 uint64_t ValueSizeInBits; 43 CharUnits AtomicAlign; 44 CharUnits ValueAlign; 45 CharUnits LValueAlign; 46 TypeEvaluationKind EvaluationKind; 47 bool UseLibcall; 48 public: 49 AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) : CGF(CGF) { 50 assert(lvalue.isSimple()); 51 52 AtomicTy = lvalue.getType(); 53 ValueTy = AtomicTy->castAs<AtomicType>()->getValueType(); 54 EvaluationKind = CGF.getEvaluationKind(ValueTy); 55 56 ASTContext &C = CGF.getContext(); 57 58 uint64_t valueAlignInBits; 59 llvm::tie(ValueSizeInBits, valueAlignInBits) = C.getTypeInfo(ValueTy); 60 61 uint64_t atomicAlignInBits; 62 llvm::tie(AtomicSizeInBits, atomicAlignInBits) = C.getTypeInfo(AtomicTy); 63 64 assert(ValueSizeInBits <= AtomicSizeInBits); 65 assert(valueAlignInBits <= atomicAlignInBits); 66 67 AtomicAlign = C.toCharUnitsFromBits(atomicAlignInBits); 68 ValueAlign = C.toCharUnitsFromBits(valueAlignInBits); 69 if (lvalue.getAlignment().isZero()) 70 lvalue.setAlignment(AtomicAlign); 71 72 UseLibcall = 73 (AtomicSizeInBits > uint64_t(C.toBits(lvalue.getAlignment())) || 74 AtomicSizeInBits > C.getTargetInfo().getMaxAtomicInlineWidth()); 75 } 76 77 QualType getAtomicType() const { return AtomicTy; } 78 QualType getValueType() const { return ValueTy; } 79 CharUnits getAtomicAlignment() const { return AtomicAlign; } 80 CharUnits getValueAlignment() const { return ValueAlign; } 81 uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } 82 uint64_t getValueSizeInBits() const { return AtomicSizeInBits; } 83 TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } 84 bool shouldUseLibcall() const { return UseLibcall; } 85 86 /// Is the atomic size larger than the underlying value type? 87 /// 88 /// Note that the absence of padding does not mean that atomic 89 /// objects are completely interchangeable with non-atomic 90 /// objects: we might have promoted the alignment of a type 91 /// without making it bigger. 92 bool hasPadding() const { 93 return (ValueSizeInBits != AtomicSizeInBits); 94 } 95 96 void emitMemSetZeroIfNecessary(LValue dest) const; 97 98 llvm::Value *getAtomicSizeValue() const { 99 CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits); 100 return CGF.CGM.getSize(size); 101 } 102 103 /// Cast the given pointer to an integer pointer suitable for 104 /// atomic operations. 105 llvm::Value *emitCastToAtomicIntPointer(llvm::Value *addr) const; 106 107 /// Turn an atomic-layout object into an r-value. 108 RValue convertTempToRValue(llvm::Value *addr, 109 AggValueSlot resultSlot) const; 110 111 /// Copy an atomic r-value into atomic-layout memory. 112 void emitCopyIntoMemory(RValue rvalue, LValue lvalue) const; 113 114 /// Project an l-value down to the value field. 115 LValue projectValue(LValue lvalue) const { 116 llvm::Value *addr = lvalue.getAddress(); 117 if (hasPadding()) 118 addr = CGF.Builder.CreateStructGEP(addr, 0); 119 120 return LValue::MakeAddr(addr, getValueType(), lvalue.getAlignment(), 121 CGF.getContext(), lvalue.getTBAAInfo()); 122 } 123 124 /// Materialize an atomic r-value in atomic-layout memory. 125 llvm::Value *materializeRValue(RValue rvalue) const; 126 127 private: 128 bool requiresMemSetZero(llvm::Type *type) const; 129 }; 130} 131 132static RValue emitAtomicLibcall(CodeGenFunction &CGF, 133 StringRef fnName, 134 QualType resultType, 135 CallArgList &args) { 136 const CGFunctionInfo &fnInfo = 137 CGF.CGM.getTypes().arrangeFreeFunctionCall(resultType, args, 138 FunctionType::ExtInfo(), RequiredArgs::All); 139 llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo); 140 llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName); 141 return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args); 142} 143 144/// Does a store of the given IR type modify the full expected width? 145static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, 146 uint64_t expectedSize) { 147 return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize); 148} 149 150/// Does the atomic type require memsetting to zero before initialization? 151/// 152/// The IR type is provided as a way of making certain queries faster. 153bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { 154 // If the atomic type has size padding, we definitely need a memset. 155 if (hasPadding()) return true; 156 157 // Otherwise, do some simple heuristics to try to avoid it: 158 switch (getEvaluationKind()) { 159 // For scalars and complexes, check whether the store size of the 160 // type uses the full size. 161 case TEK_Scalar: 162 return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits); 163 case TEK_Complex: 164 return !isFullSizeType(CGF.CGM, type->getStructElementType(0), 165 AtomicSizeInBits / 2); 166 167 // Just be pessimistic about aggregates. 168 case TEK_Aggregate: 169 return true; 170 } 171 llvm_unreachable("bad evaluation kind"); 172} 173 174void AtomicInfo::emitMemSetZeroIfNecessary(LValue dest) const { 175 llvm::Value *addr = dest.getAddress(); 176 if (!requiresMemSetZero(addr->getType()->getPointerElementType())) 177 return; 178 179 CGF.Builder.CreateMemSet(addr, llvm::ConstantInt::get(CGF.Int8Ty, 0), 180 AtomicSizeInBits / 8, 181 dest.getAlignment().getQuantity()); 182} 183 184static void 185EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 186 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 187 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 188 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 189 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 190 191 switch (E->getOp()) { 192 case AtomicExpr::AO__c11_atomic_init: 193 llvm_unreachable("Already handled!"); 194 195 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 196 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 197 case AtomicExpr::AO__atomic_compare_exchange: 198 case AtomicExpr::AO__atomic_compare_exchange_n: { 199 // Note that cmpxchg only supports specifying one ordering and 200 // doesn't support weak cmpxchg, at least at the moment. 201 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 202 LoadVal1->setAlignment(Align); 203 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 204 LoadVal2->setAlignment(Align); 205 llvm::AtomicCmpXchgInst *CXI = 206 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 207 CXI->setVolatile(E->isVolatile()); 208 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 209 StoreVal1->setAlignment(Align); 210 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 211 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 212 return; 213 } 214 215 case AtomicExpr::AO__c11_atomic_load: 216 case AtomicExpr::AO__atomic_load_n: 217 case AtomicExpr::AO__atomic_load: { 218 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 219 Load->setAtomic(Order); 220 Load->setAlignment(Size); 221 Load->setVolatile(E->isVolatile()); 222 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 223 StoreDest->setAlignment(Align); 224 return; 225 } 226 227 case AtomicExpr::AO__c11_atomic_store: 228 case AtomicExpr::AO__atomic_store: 229 case AtomicExpr::AO__atomic_store_n: { 230 assert(!Dest && "Store does not return a value"); 231 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 232 LoadVal1->setAlignment(Align); 233 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 234 Store->setAtomic(Order); 235 Store->setAlignment(Size); 236 Store->setVolatile(E->isVolatile()); 237 return; 238 } 239 240 case AtomicExpr::AO__c11_atomic_exchange: 241 case AtomicExpr::AO__atomic_exchange_n: 242 case AtomicExpr::AO__atomic_exchange: 243 Op = llvm::AtomicRMWInst::Xchg; 244 break; 245 246 case AtomicExpr::AO__atomic_add_fetch: 247 PostOp = llvm::Instruction::Add; 248 // Fall through. 249 case AtomicExpr::AO__c11_atomic_fetch_add: 250 case AtomicExpr::AO__atomic_fetch_add: 251 Op = llvm::AtomicRMWInst::Add; 252 break; 253 254 case AtomicExpr::AO__atomic_sub_fetch: 255 PostOp = llvm::Instruction::Sub; 256 // Fall through. 257 case AtomicExpr::AO__c11_atomic_fetch_sub: 258 case AtomicExpr::AO__atomic_fetch_sub: 259 Op = llvm::AtomicRMWInst::Sub; 260 break; 261 262 case AtomicExpr::AO__atomic_and_fetch: 263 PostOp = llvm::Instruction::And; 264 // Fall through. 265 case AtomicExpr::AO__c11_atomic_fetch_and: 266 case AtomicExpr::AO__atomic_fetch_and: 267 Op = llvm::AtomicRMWInst::And; 268 break; 269 270 case AtomicExpr::AO__atomic_or_fetch: 271 PostOp = llvm::Instruction::Or; 272 // Fall through. 273 case AtomicExpr::AO__c11_atomic_fetch_or: 274 case AtomicExpr::AO__atomic_fetch_or: 275 Op = llvm::AtomicRMWInst::Or; 276 break; 277 278 case AtomicExpr::AO__atomic_xor_fetch: 279 PostOp = llvm::Instruction::Xor; 280 // Fall through. 281 case AtomicExpr::AO__c11_atomic_fetch_xor: 282 case AtomicExpr::AO__atomic_fetch_xor: 283 Op = llvm::AtomicRMWInst::Xor; 284 break; 285 286 case AtomicExpr::AO__atomic_nand_fetch: 287 PostOp = llvm::Instruction::And; 288 // Fall through. 289 case AtomicExpr::AO__atomic_fetch_nand: 290 Op = llvm::AtomicRMWInst::Nand; 291 break; 292 } 293 294 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 295 LoadVal1->setAlignment(Align); 296 llvm::AtomicRMWInst *RMWI = 297 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 298 RMWI->setVolatile(E->isVolatile()); 299 300 // For __atomic_*_fetch operations, perform the operation again to 301 // determine the value which was written. 302 llvm::Value *Result = RMWI; 303 if (PostOp) 304 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 305 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 306 Result = CGF.Builder.CreateNot(Result); 307 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); 308 StoreDest->setAlignment(Align); 309} 310 311// This function emits any expression (scalar, complex, or aggregate) 312// into a temporary alloca. 313static llvm::Value * 314EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 315 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 316 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 317 /*Init*/ true); 318 return DeclPtr; 319} 320 321static void 322AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args, 323 bool UseOptimizedLibcall, llvm::Value *Val, 324 QualType ValTy) { 325 if (UseOptimizedLibcall) { 326 // Load value and pass it to the function directly. 327 unsigned Align = CGF.getContext().getTypeAlignInChars(ValTy).getQuantity(); 328 Val = CGF.EmitLoadOfScalar(Val, false, Align, ValTy); 329 Args.add(RValue::get(Val), ValTy); 330 } else { 331 // Non-optimized functions always take a reference. 332 Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)), 333 CGF.getContext().VoidPtrTy); 334 } 335} 336 337RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 338 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 339 QualType MemTy = AtomicTy; 340 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 341 MemTy = AT->getValueType(); 342 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 343 uint64_t Size = sizeChars.getQuantity(); 344 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 345 unsigned Align = alignChars.getQuantity(); 346 unsigned MaxInlineWidthInBits = 347 getTarget().getMaxAtomicInlineWidth(); 348 bool UseLibcall = (Size != Align || 349 getContext().toBits(sizeChars) > MaxInlineWidthInBits); 350 351 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 352 Ptr = EmitScalarExpr(E->getPtr()); 353 354 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 355 assert(!Dest && "Init does not return a value"); 356 LValue lvalue = LValue::MakeAddr(Ptr, AtomicTy, alignChars, getContext()); 357 EmitAtomicInit(E->getVal1(), lvalue); 358 return RValue::get(0); 359 } 360 361 Order = EmitScalarExpr(E->getOrder()); 362 363 switch (E->getOp()) { 364 case AtomicExpr::AO__c11_atomic_init: 365 llvm_unreachable("Already handled!"); 366 367 case AtomicExpr::AO__c11_atomic_load: 368 case AtomicExpr::AO__atomic_load_n: 369 break; 370 371 case AtomicExpr::AO__atomic_load: 372 Dest = EmitScalarExpr(E->getVal1()); 373 break; 374 375 case AtomicExpr::AO__atomic_store: 376 Val1 = EmitScalarExpr(E->getVal1()); 377 break; 378 379 case AtomicExpr::AO__atomic_exchange: 380 Val1 = EmitScalarExpr(E->getVal1()); 381 Dest = EmitScalarExpr(E->getVal2()); 382 break; 383 384 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 385 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 386 case AtomicExpr::AO__atomic_compare_exchange_n: 387 case AtomicExpr::AO__atomic_compare_exchange: 388 Val1 = EmitScalarExpr(E->getVal1()); 389 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 390 Val2 = EmitScalarExpr(E->getVal2()); 391 else 392 Val2 = EmitValToTemp(*this, E->getVal2()); 393 OrderFail = EmitScalarExpr(E->getOrderFail()); 394 // Evaluate and discard the 'weak' argument. 395 if (E->getNumSubExprs() == 6) 396 EmitScalarExpr(E->getWeak()); 397 break; 398 399 case AtomicExpr::AO__c11_atomic_fetch_add: 400 case AtomicExpr::AO__c11_atomic_fetch_sub: 401 if (MemTy->isPointerType()) { 402 // For pointer arithmetic, we're required to do a bit of math: 403 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 404 // ... but only for the C11 builtins. The GNU builtins expect the 405 // user to multiply by sizeof(T). 406 QualType Val1Ty = E->getVal1()->getType(); 407 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 408 CharUnits PointeeIncAmt = 409 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 410 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 411 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 412 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 413 break; 414 } 415 // Fall through. 416 case AtomicExpr::AO__atomic_fetch_add: 417 case AtomicExpr::AO__atomic_fetch_sub: 418 case AtomicExpr::AO__atomic_add_fetch: 419 case AtomicExpr::AO__atomic_sub_fetch: 420 case AtomicExpr::AO__c11_atomic_store: 421 case AtomicExpr::AO__c11_atomic_exchange: 422 case AtomicExpr::AO__atomic_store_n: 423 case AtomicExpr::AO__atomic_exchange_n: 424 case AtomicExpr::AO__c11_atomic_fetch_and: 425 case AtomicExpr::AO__c11_atomic_fetch_or: 426 case AtomicExpr::AO__c11_atomic_fetch_xor: 427 case AtomicExpr::AO__atomic_fetch_and: 428 case AtomicExpr::AO__atomic_fetch_or: 429 case AtomicExpr::AO__atomic_fetch_xor: 430 case AtomicExpr::AO__atomic_fetch_nand: 431 case AtomicExpr::AO__atomic_and_fetch: 432 case AtomicExpr::AO__atomic_or_fetch: 433 case AtomicExpr::AO__atomic_xor_fetch: 434 case AtomicExpr::AO__atomic_nand_fetch: 435 Val1 = EmitValToTemp(*this, E->getVal1()); 436 break; 437 } 438 439 if (!E->getType()->isVoidType() && !Dest) 440 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 441 442 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 443 if (UseLibcall) { 444 bool UseOptimizedLibcall = false; 445 switch (E->getOp()) { 446 case AtomicExpr::AO__c11_atomic_fetch_add: 447 case AtomicExpr::AO__atomic_fetch_add: 448 case AtomicExpr::AO__c11_atomic_fetch_and: 449 case AtomicExpr::AO__atomic_fetch_and: 450 case AtomicExpr::AO__c11_atomic_fetch_or: 451 case AtomicExpr::AO__atomic_fetch_or: 452 case AtomicExpr::AO__c11_atomic_fetch_sub: 453 case AtomicExpr::AO__atomic_fetch_sub: 454 case AtomicExpr::AO__c11_atomic_fetch_xor: 455 case AtomicExpr::AO__atomic_fetch_xor: 456 // For these, only library calls for certain sizes exist. 457 UseOptimizedLibcall = true; 458 break; 459 default: 460 // Only use optimized library calls for sizes for which they exist. 461 if (Size == 1 || Size == 2 || Size == 4 || Size == 8) 462 UseOptimizedLibcall = true; 463 break; 464 } 465 466 CallArgList Args; 467 if (!UseOptimizedLibcall) { 468 // For non-optimized library calls, the size is the first parameter 469 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 470 getContext().getSizeType()); 471 } 472 // Atomic address is the first or second parameter 473 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 474 getContext().VoidPtrTy); 475 476 std::string LibCallName; 477 QualType RetTy; 478 bool HaveRetTy = false; 479 switch (E->getOp()) { 480 // There is only one libcall for compare an exchange, because there is no 481 // optimisation benefit possible from a libcall version of a weak compare 482 // and exchange. 483 // bool __atomic_compare_exchange(size_t size, void *mem, void *expected, 484 // void *desired, int success, int failure) 485 // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired, 486 // int success, int failure) 487 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 488 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 489 case AtomicExpr::AO__atomic_compare_exchange: 490 case AtomicExpr::AO__atomic_compare_exchange_n: 491 LibCallName = "__atomic_compare_exchange"; 492 RetTy = getContext().BoolTy; 493 HaveRetTy = true; 494 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 495 getContext().VoidPtrTy); 496 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2, MemTy); 497 Args.add(RValue::get(Order), 498 getContext().IntTy); 499 Order = OrderFail; 500 break; 501 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 502 // int order) 503 // T __atomic_exchange_N(T *mem, T val, int order) 504 case AtomicExpr::AO__c11_atomic_exchange: 505 case AtomicExpr::AO__atomic_exchange_n: 506 case AtomicExpr::AO__atomic_exchange: 507 LibCallName = "__atomic_exchange"; 508 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy); 509 break; 510 // void __atomic_store(size_t size, void *mem, void *val, int order) 511 // void __atomic_store_N(T *mem, T val, int order) 512 case AtomicExpr::AO__c11_atomic_store: 513 case AtomicExpr::AO__atomic_store: 514 case AtomicExpr::AO__atomic_store_n: 515 LibCallName = "__atomic_store"; 516 RetTy = getContext().VoidTy; 517 HaveRetTy = true; 518 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy); 519 break; 520 // void __atomic_load(size_t size, void *mem, void *return, int order) 521 // T __atomic_load_N(T *mem, int order) 522 case AtomicExpr::AO__c11_atomic_load: 523 case AtomicExpr::AO__atomic_load: 524 case AtomicExpr::AO__atomic_load_n: 525 LibCallName = "__atomic_load"; 526 break; 527 // T __atomic_fetch_add_N(T *mem, T val, int order) 528 case AtomicExpr::AO__c11_atomic_fetch_add: 529 case AtomicExpr::AO__atomic_fetch_add: 530 LibCallName = "__atomic_fetch_add"; 531 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy); 532 break; 533 // T __atomic_fetch_and_N(T *mem, T val, int order) 534 case AtomicExpr::AO__c11_atomic_fetch_and: 535 case AtomicExpr::AO__atomic_fetch_and: 536 LibCallName = "__atomic_fetch_and"; 537 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy); 538 break; 539 // T __atomic_fetch_or_N(T *mem, T val, int order) 540 case AtomicExpr::AO__c11_atomic_fetch_or: 541 case AtomicExpr::AO__atomic_fetch_or: 542 LibCallName = "__atomic_fetch_or"; 543 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy); 544 break; 545 // T __atomic_fetch_sub_N(T *mem, T val, int order) 546 case AtomicExpr::AO__c11_atomic_fetch_sub: 547 case AtomicExpr::AO__atomic_fetch_sub: 548 LibCallName = "__atomic_fetch_sub"; 549 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy); 550 break; 551 // T __atomic_fetch_xor_N(T *mem, T val, int order) 552 case AtomicExpr::AO__c11_atomic_fetch_xor: 553 case AtomicExpr::AO__atomic_fetch_xor: 554 LibCallName = "__atomic_fetch_xor"; 555 AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy); 556 break; 557 default: return EmitUnsupportedRValue(E, "atomic library call"); 558 } 559 560 // Optimized functions have the size in their name. 561 if (UseOptimizedLibcall) 562 LibCallName += "_" + llvm::utostr(Size); 563 // By default, assume we return a value of the atomic type. 564 if (!HaveRetTy) { 565 if (UseOptimizedLibcall) { 566 // Value is returned directly. 567 RetTy = MemTy; 568 } else { 569 // Value is returned through parameter before the order. 570 RetTy = getContext().VoidTy; 571 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 572 getContext().VoidPtrTy); 573 } 574 } 575 // order is always the last parameter 576 Args.add(RValue::get(Order), 577 getContext().IntTy); 578 579 const CGFunctionInfo &FuncInfo = 580 CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args, 581 FunctionType::ExtInfo(), RequiredArgs::All); 582 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 583 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 584 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 585 if (!RetTy->isVoidType()) 586 return Res; 587 if (E->getType()->isVoidType()) 588 return RValue::get(0); 589 return convertTempToRValue(Dest, E->getType()); 590 } 591 592 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 593 E->getOp() == AtomicExpr::AO__atomic_store || 594 E->getOp() == AtomicExpr::AO__atomic_store_n; 595 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 596 E->getOp() == AtomicExpr::AO__atomic_load || 597 E->getOp() == AtomicExpr::AO__atomic_load_n; 598 599 llvm::Type *IPtrTy = 600 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 601 llvm::Value *OrigDest = Dest; 602 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 603 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 604 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 605 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 606 607 if (isa<llvm::ConstantInt>(Order)) { 608 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 609 switch (ord) { 610 case AO_ABI_memory_order_relaxed: 611 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 612 llvm::Monotonic); 613 break; 614 case AO_ABI_memory_order_consume: 615 case AO_ABI_memory_order_acquire: 616 if (IsStore) 617 break; // Avoid crashing on code with undefined behavior 618 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 619 llvm::Acquire); 620 break; 621 case AO_ABI_memory_order_release: 622 if (IsLoad) 623 break; // Avoid crashing on code with undefined behavior 624 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 625 llvm::Release); 626 break; 627 case AO_ABI_memory_order_acq_rel: 628 if (IsLoad || IsStore) 629 break; // Avoid crashing on code with undefined behavior 630 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 631 llvm::AcquireRelease); 632 break; 633 case AO_ABI_memory_order_seq_cst: 634 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 635 llvm::SequentiallyConsistent); 636 break; 637 default: // invalid order 638 // We should not ever get here normally, but it's hard to 639 // enforce that in general. 640 break; 641 } 642 if (E->getType()->isVoidType()) 643 return RValue::get(0); 644 return convertTempToRValue(OrigDest, E->getType()); 645 } 646 647 // Long case, when Order isn't obviously constant. 648 649 // Create all the relevant BB's 650 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 651 *AcqRelBB = 0, *SeqCstBB = 0; 652 MonotonicBB = createBasicBlock("monotonic", CurFn); 653 if (!IsStore) 654 AcquireBB = createBasicBlock("acquire", CurFn); 655 if (!IsLoad) 656 ReleaseBB = createBasicBlock("release", CurFn); 657 if (!IsLoad && !IsStore) 658 AcqRelBB = createBasicBlock("acqrel", CurFn); 659 SeqCstBB = createBasicBlock("seqcst", CurFn); 660 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 661 662 // Create the switch for the split 663 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 664 // doesn't matter unless someone is crazy enough to use something that 665 // doesn't fold to a constant for the ordering. 666 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 667 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 668 669 // Emit all the different atomics 670 Builder.SetInsertPoint(MonotonicBB); 671 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 672 llvm::Monotonic); 673 Builder.CreateBr(ContBB); 674 if (!IsStore) { 675 Builder.SetInsertPoint(AcquireBB); 676 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 677 llvm::Acquire); 678 Builder.CreateBr(ContBB); 679 SI->addCase(Builder.getInt32(1), AcquireBB); 680 SI->addCase(Builder.getInt32(2), AcquireBB); 681 } 682 if (!IsLoad) { 683 Builder.SetInsertPoint(ReleaseBB); 684 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 685 llvm::Release); 686 Builder.CreateBr(ContBB); 687 SI->addCase(Builder.getInt32(3), ReleaseBB); 688 } 689 if (!IsLoad && !IsStore) { 690 Builder.SetInsertPoint(AcqRelBB); 691 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 692 llvm::AcquireRelease); 693 Builder.CreateBr(ContBB); 694 SI->addCase(Builder.getInt32(4), AcqRelBB); 695 } 696 Builder.SetInsertPoint(SeqCstBB); 697 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 698 llvm::SequentiallyConsistent); 699 Builder.CreateBr(ContBB); 700 SI->addCase(Builder.getInt32(5), SeqCstBB); 701 702 // Cleanup and return 703 Builder.SetInsertPoint(ContBB); 704 if (E->getType()->isVoidType()) 705 return RValue::get(0); 706 return convertTempToRValue(OrigDest, E->getType()); 707} 708 709llvm::Value *AtomicInfo::emitCastToAtomicIntPointer(llvm::Value *addr) const { 710 unsigned addrspace = 711 cast<llvm::PointerType>(addr->getType())->getAddressSpace(); 712 llvm::IntegerType *ty = 713 llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits); 714 return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace)); 715} 716 717RValue AtomicInfo::convertTempToRValue(llvm::Value *addr, 718 AggValueSlot resultSlot) const { 719 if (EvaluationKind == TEK_Aggregate) { 720 // Nothing to do if the result is ignored. 721 if (resultSlot.isIgnored()) return resultSlot.asRValue(); 722 723 assert(resultSlot.getAddr() == addr || hasPadding()); 724 725 // In these cases, we should have emitted directly into the result slot. 726 if (!hasPadding() || resultSlot.isValueOfAtomic()) 727 return resultSlot.asRValue(); 728 729 // Otherwise, fall into the common path. 730 } 731 732 // Drill into the padding structure if we have one. 733 if (hasPadding()) 734 addr = CGF.Builder.CreateStructGEP(addr, 0); 735 736 // If we're emitting to an aggregate, copy into the result slot. 737 if (EvaluationKind == TEK_Aggregate) { 738 CGF.EmitAggregateCopy(resultSlot.getAddr(), addr, getValueType(), 739 resultSlot.isVolatile()); 740 return resultSlot.asRValue(); 741 } 742 743 // Otherwise, just convert the temporary to an r-value using the 744 // normal conversion routine. 745 return CGF.convertTempToRValue(addr, getValueType()); 746} 747 748/// Emit a load from an l-value of atomic type. Note that the r-value 749/// we produce is an r-value of the atomic *value* type. 750RValue CodeGenFunction::EmitAtomicLoad(LValue src, AggValueSlot resultSlot) { 751 AtomicInfo atomics(*this, src); 752 753 // Check whether we should use a library call. 754 if (atomics.shouldUseLibcall()) { 755 llvm::Value *tempAddr; 756 if (resultSlot.isValueOfAtomic()) { 757 assert(atomics.getEvaluationKind() == TEK_Aggregate); 758 tempAddr = resultSlot.getPaddedAtomicAddr(); 759 } else if (!resultSlot.isIgnored() && !atomics.hasPadding()) { 760 assert(atomics.getEvaluationKind() == TEK_Aggregate); 761 tempAddr = resultSlot.getAddr(); 762 } else { 763 tempAddr = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp"); 764 } 765 766 // void __atomic_load(size_t size, void *mem, void *return, int order); 767 CallArgList args; 768 args.add(RValue::get(atomics.getAtomicSizeValue()), 769 getContext().getSizeType()); 770 args.add(RValue::get(EmitCastToVoidPtr(src.getAddress())), 771 getContext().VoidPtrTy); 772 args.add(RValue::get(EmitCastToVoidPtr(tempAddr)), 773 getContext().VoidPtrTy); 774 args.add(RValue::get(llvm::ConstantInt::get(IntTy, 775 AO_ABI_memory_order_seq_cst)), 776 getContext().IntTy); 777 emitAtomicLibcall(*this, "__atomic_load", getContext().VoidTy, args); 778 779 // Produce the r-value. 780 return atomics.convertTempToRValue(tempAddr, resultSlot); 781 } 782 783 // Okay, we're doing this natively. 784 llvm::Value *addr = atomics.emitCastToAtomicIntPointer(src.getAddress()); 785 llvm::LoadInst *load = Builder.CreateLoad(addr, "atomic-load"); 786 load->setAtomic(llvm::SequentiallyConsistent); 787 788 // Other decoration. 789 load->setAlignment(src.getAlignment().getQuantity()); 790 if (src.isVolatileQualified()) 791 load->setVolatile(true); 792 if (src.getTBAAInfo()) 793 CGM.DecorateInstruction(load, src.getTBAAInfo()); 794 795 // Okay, turn that back into the original value type. 796 QualType valueType = atomics.getValueType(); 797 llvm::Value *result = load; 798 799 // If we're ignoring an aggregate return, don't do anything. 800 if (atomics.getEvaluationKind() == TEK_Aggregate && resultSlot.isIgnored()) 801 return RValue::getAggregate(0, false); 802 803 // The easiest way to do this this is to go through memory, but we 804 // try not to in some easy cases. 805 if (atomics.getEvaluationKind() == TEK_Scalar && !atomics.hasPadding()) { 806 llvm::Type *resultTy = CGM.getTypes().ConvertTypeForMem(valueType); 807 if (isa<llvm::IntegerType>(resultTy)) { 808 assert(result->getType() == resultTy); 809 result = EmitFromMemory(result, valueType); 810 } else if (isa<llvm::PointerType>(resultTy)) { 811 result = Builder.CreateIntToPtr(result, resultTy); 812 } else { 813 result = Builder.CreateBitCast(result, resultTy); 814 } 815 return RValue::get(result); 816 } 817 818 // Create a temporary. This needs to be big enough to hold the 819 // atomic integer. 820 llvm::Value *temp; 821 bool tempIsVolatile = false; 822 CharUnits tempAlignment; 823 if (atomics.getEvaluationKind() == TEK_Aggregate && 824 (!atomics.hasPadding() || resultSlot.isValueOfAtomic())) { 825 assert(!resultSlot.isIgnored()); 826 if (resultSlot.isValueOfAtomic()) { 827 temp = resultSlot.getPaddedAtomicAddr(); 828 tempAlignment = atomics.getAtomicAlignment(); 829 } else { 830 temp = resultSlot.getAddr(); 831 tempAlignment = atomics.getValueAlignment(); 832 } 833 tempIsVolatile = resultSlot.isVolatile(); 834 } else { 835 temp = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp"); 836 tempAlignment = atomics.getAtomicAlignment(); 837 } 838 839 // Slam the integer into the temporary. 840 llvm::Value *castTemp = atomics.emitCastToAtomicIntPointer(temp); 841 Builder.CreateAlignedStore(result, castTemp, tempAlignment.getQuantity()) 842 ->setVolatile(tempIsVolatile); 843 844 return atomics.convertTempToRValue(temp, resultSlot); 845} 846 847 848 849/// Copy an r-value into memory as part of storing to an atomic type. 850/// This needs to create a bit-pattern suitable for atomic operations. 851void AtomicInfo::emitCopyIntoMemory(RValue rvalue, LValue dest) const { 852 // If we have an r-value, the rvalue should be of the atomic type, 853 // which means that the caller is responsible for having zeroed 854 // any padding. Just do an aggregate copy of that type. 855 if (rvalue.isAggregate()) { 856 CGF.EmitAggregateCopy(dest.getAddress(), 857 rvalue.getAggregateAddr(), 858 getAtomicType(), 859 (rvalue.isVolatileQualified() 860 || dest.isVolatileQualified()), 861 dest.getAlignment()); 862 return; 863 } 864 865 // Okay, otherwise we're copying stuff. 866 867 // Zero out the buffer if necessary. 868 emitMemSetZeroIfNecessary(dest); 869 870 // Drill past the padding if present. 871 dest = projectValue(dest); 872 873 // Okay, store the rvalue in. 874 if (rvalue.isScalar()) { 875 CGF.EmitStoreOfScalar(rvalue.getScalarVal(), dest, /*init*/ true); 876 } else { 877 CGF.EmitStoreOfComplex(rvalue.getComplexVal(), dest, /*init*/ true); 878 } 879} 880 881 882/// Materialize an r-value into memory for the purposes of storing it 883/// to an atomic type. 884llvm::Value *AtomicInfo::materializeRValue(RValue rvalue) const { 885 // Aggregate r-values are already in memory, and EmitAtomicStore 886 // requires them to be values of the atomic type. 887 if (rvalue.isAggregate()) 888 return rvalue.getAggregateAddr(); 889 890 // Otherwise, make a temporary and materialize into it. 891 llvm::Value *temp = CGF.CreateMemTemp(getAtomicType(), "atomic-store-temp"); 892 LValue tempLV = CGF.MakeAddrLValue(temp, getAtomicType(), getAtomicAlignment()); 893 emitCopyIntoMemory(rvalue, tempLV); 894 return temp; 895} 896 897/// Emit a store to an l-value of atomic type. 898/// 899/// Note that the r-value is expected to be an r-value *of the atomic 900/// type*; this means that for aggregate r-values, it should include 901/// storage for any padding that was necessary. 902void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, 903 bool isInit) { 904 // If this is an aggregate r-value, it should agree in type except 905 // maybe for address-space qualification. 906 assert(!rvalue.isAggregate() || 907 rvalue.getAggregateAddr()->getType()->getPointerElementType() 908 == dest.getAddress()->getType()->getPointerElementType()); 909 910 AtomicInfo atomics(*this, dest); 911 912 // If this is an initialization, just put the value there normally. 913 if (isInit) { 914 atomics.emitCopyIntoMemory(rvalue, dest); 915 return; 916 } 917 918 // Check whether we should use a library call. 919 if (atomics.shouldUseLibcall()) { 920 // Produce a source address. 921 llvm::Value *srcAddr = atomics.materializeRValue(rvalue); 922 923 // void __atomic_store(size_t size, void *mem, void *val, int order) 924 CallArgList args; 925 args.add(RValue::get(atomics.getAtomicSizeValue()), 926 getContext().getSizeType()); 927 args.add(RValue::get(EmitCastToVoidPtr(dest.getAddress())), 928 getContext().VoidPtrTy); 929 args.add(RValue::get(EmitCastToVoidPtr(srcAddr)), 930 getContext().VoidPtrTy); 931 args.add(RValue::get(llvm::ConstantInt::get(IntTy, 932 AO_ABI_memory_order_seq_cst)), 933 getContext().IntTy); 934 emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args); 935 return; 936 } 937 938 // Okay, we're doing this natively. 939 llvm::Value *intValue; 940 941 // If we've got a scalar value of the right size, try to avoid going 942 // through memory. 943 if (rvalue.isScalar() && !atomics.hasPadding()) { 944 llvm::Value *value = rvalue.getScalarVal(); 945 if (isa<llvm::IntegerType>(value->getType())) { 946 intValue = value; 947 } else { 948 llvm::IntegerType *inputIntTy = 949 llvm::IntegerType::get(getLLVMContext(), atomics.getValueSizeInBits()); 950 if (isa<llvm::PointerType>(value->getType())) { 951 intValue = Builder.CreatePtrToInt(value, inputIntTy); 952 } else { 953 intValue = Builder.CreateBitCast(value, inputIntTy); 954 } 955 } 956 957 // Otherwise, we need to go through memory. 958 } else { 959 // Put the r-value in memory. 960 llvm::Value *addr = atomics.materializeRValue(rvalue); 961 962 // Cast the temporary to the atomic int type and pull a value out. 963 addr = atomics.emitCastToAtomicIntPointer(addr); 964 intValue = Builder.CreateAlignedLoad(addr, 965 atomics.getAtomicAlignment().getQuantity()); 966 } 967 968 // Do the atomic store. 969 llvm::Value *addr = atomics.emitCastToAtomicIntPointer(dest.getAddress()); 970 llvm::StoreInst *store = Builder.CreateStore(intValue, addr); 971 972 // Initializations don't need to be atomic. 973 if (!isInit) store->setAtomic(llvm::SequentiallyConsistent); 974 975 // Other decoration. 976 store->setAlignment(dest.getAlignment().getQuantity()); 977 if (dest.isVolatileQualified()) 978 store->setVolatile(true); 979 if (dest.getTBAAInfo()) 980 CGM.DecorateInstruction(store, dest.getTBAAInfo()); 981} 982 983void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { 984 AtomicInfo atomics(*this, dest); 985 986 switch (atomics.getEvaluationKind()) { 987 case TEK_Scalar: { 988 llvm::Value *value = EmitScalarExpr(init); 989 atomics.emitCopyIntoMemory(RValue::get(value), dest); 990 return; 991 } 992 993 case TEK_Complex: { 994 ComplexPairTy value = EmitComplexExpr(init); 995 atomics.emitCopyIntoMemory(RValue::getComplex(value), dest); 996 return; 997 } 998 999 case TEK_Aggregate: { 1000 // Memset the buffer first if there's any possibility of 1001 // uninitialized internal bits. 1002 atomics.emitMemSetZeroIfNecessary(dest); 1003 1004 // HACK: whether the initializer actually has an atomic type 1005 // doesn't really seem reliable right now. 1006 if (!init->getType()->isAtomicType()) { 1007 dest = atomics.projectValue(dest); 1008 } 1009 1010 // Evaluate the expression directly into the destination. 1011 AggValueSlot slot = AggValueSlot::forLValue(dest, 1012 AggValueSlot::IsNotDestructed, 1013 AggValueSlot::DoesNotNeedGCBarriers, 1014 AggValueSlot::IsNotAliased); 1015 EmitAggExpr(init, slot); 1016 return; 1017 } 1018 } 1019 llvm_unreachable("bad evaluation kind"); 1020} 1021