CGCall.cpp revision 121b3facb4e0585d23766f9c1e4fdf9018a4b217
1//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// These classes wrap the information about a call or function 11// definition used to handle ABI compliancy. 12// 13//===----------------------------------------------------------------------===// 14 15#include "CGCall.h" 16#include "ABIInfo.h" 17#include "CodeGenFunction.h" 18#include "CodeGenModule.h" 19#include "clang/Basic/TargetInfo.h" 20#include "clang/AST/Decl.h" 21#include "clang/AST/DeclCXX.h" 22#include "clang/AST/DeclObjC.h" 23#include "clang/Frontend/CodeGenOptions.h" 24#include "llvm/Attributes.h" 25#include "llvm/Support/CallSite.h" 26#include "llvm/Target/TargetData.h" 27using namespace clang; 28using namespace CodeGen; 29 30/***/ 31 32static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 33 switch (CC) { 34 default: return llvm::CallingConv::C; 35 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 36 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 37 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 38 } 39} 40 41/// Derives the 'this' type for codegen purposes, i.e. ignoring method 42/// qualification. 43/// FIXME: address space qualification? 44static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 45 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 46 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 47} 48 49/// Returns the canonical formal type of the given C++ method. 50static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 51 return MD->getType()->getCanonicalTypeUnqualified() 52 .getAs<FunctionProtoType>(); 53} 54 55/// Returns the "extra-canonicalized" return type, which discards 56/// qualifiers on the return type. Codegen doesn't care about them, 57/// and it makes ABI code a little easier to be able to assume that 58/// all parameter and return types are top-level unqualified. 59static CanQualType GetReturnType(QualType RetTy) { 60 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 61} 62 63const CGFunctionInfo & 64CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP, 65 bool IsRecursive) { 66 return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(), 67 llvm::SmallVector<CanQualType, 16>(), 68 FTNP->getExtInfo(), IsRecursive); 69} 70 71/// \param Args - contains any initial parameters besides those 72/// in the formal type 73static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT, 74 llvm::SmallVectorImpl<CanQualType> &ArgTys, 75 CanQual<FunctionProtoType> FTP, 76 bool IsRecursive = false) { 77 // FIXME: Kill copy. 78 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 79 ArgTys.push_back(FTP->getArgType(i)); 80 CanQualType ResTy = FTP->getResultType().getUnqualifiedType(); 81 return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo(), IsRecursive); 82} 83 84const CGFunctionInfo & 85CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP, 86 bool IsRecursive) { 87 llvm::SmallVector<CanQualType, 16> ArgTys; 88 return ::getFunctionInfo(*this, ArgTys, FTP, IsRecursive); 89} 90 91static CallingConv getCallingConventionForDecl(const Decl *D) { 92 // Set the appropriate calling convention for the Function. 93 if (D->hasAttr<StdCallAttr>()) 94 return CC_X86StdCall; 95 96 if (D->hasAttr<FastCallAttr>()) 97 return CC_X86FastCall; 98 99 if (D->hasAttr<ThisCallAttr>()) 100 return CC_X86ThisCall; 101 102 return CC_C; 103} 104 105const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD, 106 const FunctionProtoType *FTP) { 107 llvm::SmallVector<CanQualType, 16> ArgTys; 108 109 // Add the 'this' pointer. 110 ArgTys.push_back(GetThisType(Context, RD)); 111 112 return ::getFunctionInfo(*this, ArgTys, 113 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 114} 115 116const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) { 117 llvm::SmallVector<CanQualType, 16> ArgTys; 118 119 // Add the 'this' pointer unless this is a static method. 120 if (MD->isInstance()) 121 ArgTys.push_back(GetThisType(Context, MD->getParent())); 122 123 return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD)); 124} 125 126const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D, 127 CXXCtorType Type) { 128 llvm::SmallVector<CanQualType, 16> ArgTys; 129 130 // Add the 'this' pointer. 131 ArgTys.push_back(GetThisType(Context, D->getParent())); 132 133 // Check if we need to add a VTT parameter (which has type void **). 134 if (Type == Ctor_Base && D->getParent()->getNumVBases() != 0) 135 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); 136 137 return ::getFunctionInfo(*this, ArgTys, GetFormalType(D)); 138} 139 140const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D, 141 CXXDtorType Type) { 142 llvm::SmallVector<CanQualType, 16> ArgTys; 143 144 // Add the 'this' pointer. 145 ArgTys.push_back(GetThisType(Context, D->getParent())); 146 147 // Check if we need to add a VTT parameter (which has type void **). 148 if (Type == Dtor_Base && D->getParent()->getNumVBases() != 0) 149 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); 150 151 return ::getFunctionInfo(*this, ArgTys, GetFormalType(D)); 152} 153 154const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) { 155 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 156 if (MD->isInstance()) 157 return getFunctionInfo(MD); 158 159 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 160 assert(isa<FunctionType>(FTy)); 161 if (isa<FunctionNoProtoType>(FTy)) 162 return getFunctionInfo(FTy.getAs<FunctionNoProtoType>()); 163 assert(isa<FunctionProtoType>(FTy)); 164 return getFunctionInfo(FTy.getAs<FunctionProtoType>()); 165} 166 167const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) { 168 llvm::SmallVector<CanQualType, 16> ArgTys; 169 ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType())); 170 ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 171 // FIXME: Kill copy? 172 for (ObjCMethodDecl::param_iterator i = MD->param_begin(), 173 e = MD->param_end(); i != e; ++i) { 174 ArgTys.push_back(Context.getCanonicalParamType((*i)->getType())); 175 } 176 return getFunctionInfo(GetReturnType(MD->getResultType()), 177 ArgTys, 178 FunctionType::ExtInfo( 179 /*NoReturn*/ false, 180 /*RegParm*/ 0, 181 getCallingConventionForDecl(MD))); 182} 183 184const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) { 185 // FIXME: Do we need to handle ObjCMethodDecl? 186 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 187 188 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 189 return getFunctionInfo(CD, GD.getCtorType()); 190 191 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 192 return getFunctionInfo(DD, GD.getDtorType()); 193 194 return getFunctionInfo(FD); 195} 196 197const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, 198 const CallArgList &Args, 199 const FunctionType::ExtInfo &Info) { 200 // FIXME: Kill copy. 201 llvm::SmallVector<CanQualType, 16> ArgTys; 202 for (CallArgList::const_iterator i = Args.begin(), e = Args.end(); 203 i != e; ++i) 204 ArgTys.push_back(Context.getCanonicalParamType(i->second)); 205 return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); 206} 207 208const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, 209 const FunctionArgList &Args, 210 const FunctionType::ExtInfo &Info) { 211 // FIXME: Kill copy. 212 llvm::SmallVector<CanQualType, 16> ArgTys; 213 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 214 i != e; ++i) 215 ArgTys.push_back(Context.getCanonicalParamType(i->second)); 216 return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); 217} 218 219const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy, 220 const llvm::SmallVectorImpl<CanQualType> &ArgTys, 221 const FunctionType::ExtInfo &Info, 222 bool IsRecursive) { 223#ifndef NDEBUG 224 for (llvm::SmallVectorImpl<CanQualType>::const_iterator 225 I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I) 226 assert(I->isCanonicalAsParam()); 227#endif 228 229 unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC()); 230 231 // Lookup or create unique function info. 232 llvm::FoldingSetNodeID ID; 233 CGFunctionInfo::Profile(ID, Info, ResTy, 234 ArgTys.begin(), ArgTys.end()); 235 236 void *InsertPos = 0; 237 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos); 238 if (FI) 239 return *FI; 240 241 // Construct the function info. 242 FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getRegParm(), ResTy, 243 ArgTys.data(), ArgTys.size()); 244 FunctionInfos.InsertNode(FI, InsertPos); 245 246 // ABI lowering wants to know what our preferred type for the argument is in 247 // various situations, pass it in. 248 llvm::SmallVector<const llvm::Type *, 8> PreferredArgTypes; 249 for (llvm::SmallVectorImpl<CanQualType>::const_iterator 250 I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I) { 251 // If this is being called from the guts of the ConvertType loop, make sure 252 // to call ConvertTypeRecursive so we don't get into issues with cyclic 253 // pointer type structures. 254 PreferredArgTypes.push_back(ConvertTypeRecursive(*I)); 255 } 256 257 // Compute ABI information. 258 getABIInfo().computeInfo(*FI, getContext(), TheModule.getContext(), 259 PreferredArgTypes.data(), PreferredArgTypes.size()); 260 261 // If this is a top-level call and ConvertTypeRecursive hit unresolved pointer 262 // types, resolve them now. These pointers may point to this function, which 263 // we *just* filled in the FunctionInfo for. 264 if (!IsRecursive && !PointersToResolve.empty()) { 265 // Use PATypeHolder's so that our preferred types don't dangle under 266 // refinement. 267 llvm::SmallVector<llvm::PATypeHolder, 8> Handles(PreferredArgTypes.begin(), 268 PreferredArgTypes.end()); 269 HandleLateResolvedPointers(); 270 PreferredArgTypes.clear(); 271 PreferredArgTypes.append(Handles.begin(), Handles.end()); 272 } 273 274 275 return *FI; 276} 277 278CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention, 279 bool _NoReturn, unsigned _RegParm, 280 CanQualType ResTy, 281 const CanQualType *ArgTys, 282 unsigned NumArgTys) 283 : CallingConvention(_CallingConvention), 284 EffectiveCallingConvention(_CallingConvention), 285 NoReturn(_NoReturn), RegParm(_RegParm) 286{ 287 NumArgs = NumArgTys; 288 289 // FIXME: Coallocate with the CGFunctionInfo object. 290 Args = new ArgInfo[1 + NumArgTys]; 291 Args[0].type = ResTy; 292 for (unsigned i = 0; i != NumArgTys; ++i) 293 Args[1 + i].type = ArgTys[i]; 294} 295 296/***/ 297 298void CodeGenTypes::GetExpandedTypes(QualType Ty, 299 std::vector<const llvm::Type*> &ArgTys, 300 bool IsRecursive) { 301 const RecordType *RT = Ty->getAsStructureType(); 302 assert(RT && "Can only expand structure types."); 303 const RecordDecl *RD = RT->getDecl(); 304 assert(!RD->hasFlexibleArrayMember() && 305 "Cannot expand structure with flexible array."); 306 307 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 308 i != e; ++i) { 309 const FieldDecl *FD = *i; 310 assert(!FD->isBitField() && 311 "Cannot expand structure with bit-field members."); 312 313 QualType FT = FD->getType(); 314 if (CodeGenFunction::hasAggregateLLVMType(FT)) { 315 GetExpandedTypes(FT, ArgTys, IsRecursive); 316 } else { 317 ArgTys.push_back(ConvertType(FT, IsRecursive)); 318 } 319 } 320} 321 322llvm::Function::arg_iterator 323CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 324 llvm::Function::arg_iterator AI) { 325 const RecordType *RT = Ty->getAsStructureType(); 326 assert(RT && "Can only expand structure types."); 327 328 RecordDecl *RD = RT->getDecl(); 329 assert(LV.isSimple() && 330 "Unexpected non-simple lvalue during struct expansion."); 331 llvm::Value *Addr = LV.getAddress(); 332 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 333 i != e; ++i) { 334 FieldDecl *FD = *i; 335 QualType FT = FD->getType(); 336 337 // FIXME: What are the right qualifiers here? 338 LValue LV = EmitLValueForField(Addr, FD, 0); 339 if (CodeGenFunction::hasAggregateLLVMType(FT)) { 340 AI = ExpandTypeFromArgs(FT, LV, AI); 341 } else { 342 EmitStoreThroughLValue(RValue::get(AI), LV, FT); 343 ++AI; 344 } 345 } 346 347 return AI; 348} 349 350void 351CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 352 llvm::SmallVector<llvm::Value*, 16> &Args) { 353 const RecordType *RT = Ty->getAsStructureType(); 354 assert(RT && "Can only expand structure types."); 355 356 RecordDecl *RD = RT->getDecl(); 357 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 358 llvm::Value *Addr = RV.getAggregateAddr(); 359 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 360 i != e; ++i) { 361 FieldDecl *FD = *i; 362 QualType FT = FD->getType(); 363 364 // FIXME: What are the right qualifiers here? 365 LValue LV = EmitLValueForField(Addr, FD, 0); 366 if (CodeGenFunction::hasAggregateLLVMType(FT)) { 367 ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args); 368 } else { 369 RValue RV = EmitLoadOfLValue(LV, FT); 370 assert(RV.isScalar() && 371 "Unexpected non-scalar rvalue during struct expansion."); 372 Args.push_back(RV.getScalarVal()); 373 } 374 } 375} 376 377/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 378/// accessing some number of bytes out of it, try to gep into the struct to get 379/// at its inner goodness. Dive as deep as possible without entering an element 380/// with an in-memory size smaller than DstSize. 381static llvm::Value * 382EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 383 const llvm::StructType *SrcSTy, 384 uint64_t DstSize, CodeGenFunction &CGF) { 385 // We can't dive into a zero-element struct. 386 if (SrcSTy->getNumElements() == 0) return SrcPtr; 387 388 const llvm::Type *FirstElt = SrcSTy->getElementType(0); 389 390 // If the first elt is at least as large as what we're looking for, or if the 391 // first element is the same size as the whole struct, we can enter it. 392 uint64_t FirstEltSize = 393 CGF.CGM.getTargetData().getTypeAllocSize(FirstElt); 394 if (FirstEltSize < DstSize && 395 FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy)) 396 return SrcPtr; 397 398 // GEP into the first element. 399 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 400 401 // If the first element is a struct, recurse. 402 const llvm::Type *SrcTy = 403 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 404 if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 405 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 406 407 return SrcPtr; 408} 409 410/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 411/// are either integers or pointers. This does a truncation of the value if it 412/// is too large or a zero extension if it is too small. 413static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 414 const llvm::Type *Ty, 415 CodeGenFunction &CGF) { 416 if (Val->getType() == Ty) 417 return Val; 418 419 if (isa<llvm::PointerType>(Val->getType())) { 420 // If this is Pointer->Pointer avoid conversion to and from int. 421 if (isa<llvm::PointerType>(Ty)) 422 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 423 424 // Convert the pointer to an integer so we can play with its width. 425 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 426 } 427 428 const llvm::Type *DestIntTy = Ty; 429 if (isa<llvm::PointerType>(DestIntTy)) 430 DestIntTy = CGF.IntPtrTy; 431 432 if (Val->getType() != DestIntTy) 433 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 434 435 if (isa<llvm::PointerType>(Ty)) 436 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 437 return Val; 438} 439 440 441 442/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 443/// a pointer to an object of type \arg Ty. 444/// 445/// This safely handles the case when the src type is smaller than the 446/// destination type; in this situation the values of bits which not 447/// present in the src are undefined. 448static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 449 const llvm::Type *Ty, 450 CodeGenFunction &CGF) { 451 const llvm::Type *SrcTy = 452 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 453 454 // If SrcTy and Ty are the same, just do a load. 455 if (SrcTy == Ty) 456 return CGF.Builder.CreateLoad(SrcPtr); 457 458 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); 459 460 if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 461 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 462 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 463 } 464 465 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 466 467 // If the source and destination are integer or pointer types, just do an 468 // extension or truncation to the desired type. 469 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 470 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 471 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 472 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 473 } 474 475 // If load is legal, just bitcast the src pointer. 476 if (SrcSize >= DstSize) { 477 // Generally SrcSize is never greater than DstSize, since this means we are 478 // losing bits. However, this can happen in cases where the structure has 479 // additional padding, for example due to a user specified alignment. 480 // 481 // FIXME: Assert that we aren't truncating non-padding bits when have access 482 // to that information. 483 llvm::Value *Casted = 484 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 485 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 486 // FIXME: Use better alignment / avoid requiring aligned load. 487 Load->setAlignment(1); 488 return Load; 489 } 490 491 // Otherwise do coercion through memory. This is stupid, but 492 // simple. 493 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 494 llvm::Value *Casted = 495 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); 496 llvm::StoreInst *Store = 497 CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); 498 // FIXME: Use better alignment / avoid requiring aligned store. 499 Store->setAlignment(1); 500 return CGF.Builder.CreateLoad(Tmp); 501} 502 503/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 504/// where the source and destination may have different types. 505/// 506/// This safely handles the case when the src type is larger than the 507/// destination type; the upper bits of the src will be lost. 508static void CreateCoercedStore(llvm::Value *Src, 509 llvm::Value *DstPtr, 510 bool DstIsVolatile, 511 CodeGenFunction &CGF) { 512 const llvm::Type *SrcTy = Src->getType(); 513 const llvm::Type *DstTy = 514 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 515 if (SrcTy == DstTy) { 516 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 517 return; 518 } 519 520 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 521 522 if (const llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 523 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 524 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 525 } 526 527 // If the source and destination are integer or pointer types, just do an 528 // extension or truncation to the desired type. 529 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 530 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 531 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 532 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 533 return; 534 } 535 536 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); 537 538 // If store is legal, just bitcast the src pointer. 539 if (SrcSize <= DstSize) { 540 llvm::Value *Casted = 541 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 542 // FIXME: Use better alignment / avoid requiring aligned store. 543 CGF.Builder.CreateStore(Src, Casted, DstIsVolatile)->setAlignment(1); 544 } else { 545 // Otherwise do coercion through memory. This is stupid, but 546 // simple. 547 548 // Generally SrcSize is never greater than DstSize, since this means we are 549 // losing bits. However, this can happen in cases where the structure has 550 // additional padding, for example due to a user specified alignment. 551 // 552 // FIXME: Assert that we aren't truncating non-padding bits when have access 553 // to that information. 554 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 555 CGF.Builder.CreateStore(Src, Tmp); 556 llvm::Value *Casted = 557 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); 558 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 559 // FIXME: Use better alignment / avoid requiring aligned load. 560 Load->setAlignment(1); 561 CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile); 562 } 563} 564 565/***/ 566 567bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) { 568 return FI.getReturnInfo().isIndirect(); 569} 570 571const llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 572 const CGFunctionInfo &FI = getFunctionInfo(GD); 573 574 // For definition purposes, don't consider a K&R function variadic. 575 bool Variadic = false; 576 if (const FunctionProtoType *FPT = 577 cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>()) 578 Variadic = FPT->isVariadic(); 579 580 return GetFunctionType(FI, Variadic, false); 581} 582 583const llvm::FunctionType * 584CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic, 585 bool IsRecursive) { 586 std::vector<const llvm::Type*> ArgTys; 587 588 const llvm::Type *ResultType = 0; 589 590 QualType RetTy = FI.getReturnType(); 591 const ABIArgInfo &RetAI = FI.getReturnInfo(); 592 switch (RetAI.getKind()) { 593 case ABIArgInfo::Expand: 594 assert(0 && "Invalid ABI kind for return argument"); 595 596 case ABIArgInfo::Extend: 597 case ABIArgInfo::Direct: 598 ResultType = ConvertType(RetTy, IsRecursive); 599 break; 600 601 case ABIArgInfo::Indirect: { 602 assert(!RetAI.getIndirectAlign() && "Align unused on indirect return."); 603 ResultType = llvm::Type::getVoidTy(getLLVMContext()); 604 const llvm::Type *STy = ConvertType(RetTy, IsRecursive); 605 ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace())); 606 break; 607 } 608 609 case ABIArgInfo::Ignore: 610 ResultType = llvm::Type::getVoidTy(getLLVMContext()); 611 break; 612 613 case ABIArgInfo::Coerce: 614 ResultType = RetAI.getCoerceToType(); 615 break; 616 } 617 618 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 619 ie = FI.arg_end(); it != ie; ++it) { 620 const ABIArgInfo &AI = it->info; 621 622 switch (AI.getKind()) { 623 case ABIArgInfo::Ignore: 624 break; 625 626 case ABIArgInfo::Coerce: { 627 // If the coerce-to type is a first class aggregate, flatten it. Either 628 // way is semantically identical, but fast-isel and the optimizer 629 // generally likes scalar values better than FCAs. 630 const llvm::Type *ArgTy = AI.getCoerceToType(); 631 if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgTy)) { 632 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 633 ArgTys.push_back(STy->getElementType(i)); 634 } else { 635 ArgTys.push_back(ArgTy); 636 } 637 break; 638 } 639 640 case ABIArgInfo::Indirect: { 641 // indirect arguments are always on the stack, which is addr space #0. 642 const llvm::Type *LTy = ConvertTypeForMem(it->type, IsRecursive); 643 ArgTys.push_back(llvm::PointerType::getUnqual(LTy)); 644 break; 645 } 646 647 case ABIArgInfo::Extend: 648 case ABIArgInfo::Direct: 649 ArgTys.push_back(ConvertType(it->type, IsRecursive)); 650 break; 651 652 case ABIArgInfo::Expand: 653 GetExpandedTypes(it->type, ArgTys, IsRecursive); 654 break; 655 } 656 } 657 658 return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic); 659} 660 661const llvm::Type * 662CodeGenTypes::GetFunctionTypeForVTable(const CXXMethodDecl *MD) { 663 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 664 665 if (!VerifyFuncTypeComplete(FPT)) 666 return GetFunctionType(getFunctionInfo(MD), FPT->isVariadic(), false); 667 668 return llvm::OpaqueType::get(getLLVMContext()); 669} 670 671void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 672 const Decl *TargetDecl, 673 AttributeListType &PAL, 674 unsigned &CallingConv) { 675 unsigned FuncAttrs = 0; 676 unsigned RetAttrs = 0; 677 678 CallingConv = FI.getEffectiveCallingConvention(); 679 680 if (FI.isNoReturn()) 681 FuncAttrs |= llvm::Attribute::NoReturn; 682 683 // FIXME: handle sseregparm someday... 684 if (TargetDecl) { 685 if (TargetDecl->hasAttr<NoThrowAttr>()) 686 FuncAttrs |= llvm::Attribute::NoUnwind; 687 if (TargetDecl->hasAttr<NoReturnAttr>()) 688 FuncAttrs |= llvm::Attribute::NoReturn; 689 if (TargetDecl->hasAttr<ConstAttr>()) 690 FuncAttrs |= llvm::Attribute::ReadNone; 691 else if (TargetDecl->hasAttr<PureAttr>()) 692 FuncAttrs |= llvm::Attribute::ReadOnly; 693 if (TargetDecl->hasAttr<MallocAttr>()) 694 RetAttrs |= llvm::Attribute::NoAlias; 695 } 696 697 if (CodeGenOpts.OptimizeSize) 698 FuncAttrs |= llvm::Attribute::OptimizeForSize; 699 if (CodeGenOpts.DisableRedZone) 700 FuncAttrs |= llvm::Attribute::NoRedZone; 701 if (CodeGenOpts.NoImplicitFloat) 702 FuncAttrs |= llvm::Attribute::NoImplicitFloat; 703 704 QualType RetTy = FI.getReturnType(); 705 unsigned Index = 1; 706 const ABIArgInfo &RetAI = FI.getReturnInfo(); 707 switch (RetAI.getKind()) { 708 case ABIArgInfo::Extend: 709 if (RetTy->isSignedIntegerType()) { 710 RetAttrs |= llvm::Attribute::SExt; 711 } else if (RetTy->isUnsignedIntegerType()) { 712 RetAttrs |= llvm::Attribute::ZExt; 713 } 714 // FALLTHROUGH 715 case ABIArgInfo::Direct: 716 break; 717 718 case ABIArgInfo::Indirect: 719 PAL.push_back(llvm::AttributeWithIndex::get(Index, 720 llvm::Attribute::StructRet)); 721 ++Index; 722 // sret disables readnone and readonly 723 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 724 llvm::Attribute::ReadNone); 725 break; 726 727 case ABIArgInfo::Ignore: 728 case ABIArgInfo::Coerce: 729 break; 730 731 case ABIArgInfo::Expand: 732 assert(0 && "Invalid ABI kind for return argument"); 733 } 734 735 if (RetAttrs) 736 PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); 737 738 // FIXME: we need to honour command line settings also... 739 // FIXME: RegParm should be reduced in case of nested functions and/or global 740 // register variable. 741 signed RegParm = FI.getRegParm(); 742 743 unsigned PointerWidth = getContext().Target.getPointerWidth(0); 744 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 745 ie = FI.arg_end(); it != ie; ++it) { 746 QualType ParamType = it->type; 747 const ABIArgInfo &AI = it->info; 748 unsigned Attributes = 0; 749 750 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 751 // have the corresponding parameter variable. It doesn't make 752 // sense to do it here because parameters are so fucked up. 753 754 switch (AI.getKind()) { 755 case ABIArgInfo::Coerce: 756 if (const llvm::StructType *STy = 757 dyn_cast<llvm::StructType>(AI.getCoerceToType())) 758 Index += STy->getNumElements(); 759 else 760 ++Index; 761 continue; // Skip index increment. 762 763 case ABIArgInfo::Indirect: 764 if (AI.getIndirectByVal()) 765 Attributes |= llvm::Attribute::ByVal; 766 767 Attributes |= 768 llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); 769 // byval disables readnone and readonly. 770 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 771 llvm::Attribute::ReadNone); 772 break; 773 774 case ABIArgInfo::Extend: 775 if (ParamType->isSignedIntegerType()) { 776 Attributes |= llvm::Attribute::SExt; 777 } else if (ParamType->isUnsignedIntegerType()) { 778 Attributes |= llvm::Attribute::ZExt; 779 } 780 // FALLS THROUGH 781 case ABIArgInfo::Direct: 782 if (RegParm > 0 && 783 (ParamType->isIntegerType() || ParamType->isPointerType())) { 784 RegParm -= 785 (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; 786 if (RegParm >= 0) 787 Attributes |= llvm::Attribute::InReg; 788 } 789 // FIXME: handle sseregparm someday... 790 break; 791 792 case ABIArgInfo::Ignore: 793 // Skip increment, no matching LLVM parameter. 794 continue; 795 796 case ABIArgInfo::Expand: { 797 std::vector<const llvm::Type*> Tys; 798 // FIXME: This is rather inefficient. Do we ever actually need to do 799 // anything here? The result should be just reconstructed on the other 800 // side, so extension should be a non-issue. 801 getTypes().GetExpandedTypes(ParamType, Tys, false); 802 Index += Tys.size(); 803 continue; 804 } 805 } 806 807 if (Attributes) 808 PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes)); 809 ++Index; 810 } 811 if (FuncAttrs) 812 PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); 813} 814 815void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 816 llvm::Function *Fn, 817 const FunctionArgList &Args) { 818 // If this is an implicit-return-zero function, go ahead and 819 // initialize the return value. TODO: it might be nice to have 820 // a more general mechanism for this that didn't require synthesized 821 // return statements. 822 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 823 if (FD->hasImplicitReturnZero()) { 824 QualType RetTy = FD->getResultType().getUnqualifiedType(); 825 const llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 826 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 827 Builder.CreateStore(Zero, ReturnValue); 828 } 829 } 830 831 // FIXME: We no longer need the types from FunctionArgList; lift up and 832 // simplify. 833 834 // Emit allocs for param decls. Give the LLVM Argument nodes names. 835 llvm::Function::arg_iterator AI = Fn->arg_begin(); 836 837 // Name the struct return argument. 838 if (CGM.ReturnTypeUsesSret(FI)) { 839 AI->setName("agg.result"); 840 ++AI; 841 } 842 843 assert(FI.arg_size() == Args.size() && 844 "Mismatch between function signature & arguments."); 845 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 846 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 847 i != e; ++i, ++info_it) { 848 const VarDecl *Arg = i->first; 849 QualType Ty = info_it->type; 850 const ABIArgInfo &ArgI = info_it->info; 851 852 switch (ArgI.getKind()) { 853 case ABIArgInfo::Indirect: { 854 llvm::Value *V = AI; 855 if (hasAggregateLLVMType(Ty)) { 856 // Do nothing, aggregates and complex variables are accessed by 857 // reference. 858 } else { 859 // Load scalar value from indirect argument. 860 V = EmitLoadOfScalar(V, false, Ty); 861 if (!getContext().typesAreCompatible(Ty, Arg->getType())) { 862 // This must be a promotion, for something like 863 // "void a(x) short x; {..." 864 V = EmitScalarConversion(V, Ty, Arg->getType()); 865 } 866 } 867 EmitParmDecl(*Arg, V); 868 break; 869 } 870 871 case ABIArgInfo::Extend: 872 case ABIArgInfo::Direct: { 873 assert(AI != Fn->arg_end() && "Argument mismatch!"); 874 llvm::Value *V = AI; 875 if (hasAggregateLLVMType(Ty)) { 876 // Create a temporary alloca to hold the argument; the rest of 877 // codegen expects to access aggregates & complex values by 878 // reference. 879 V = CreateMemTemp(Ty); 880 Builder.CreateStore(AI, V); 881 } else { 882 if (Arg->getType().isRestrictQualified()) 883 AI->addAttr(llvm::Attribute::NoAlias); 884 885 if (!getContext().typesAreCompatible(Ty, Arg->getType())) { 886 // This must be a promotion, for something like 887 // "void a(x) short x; {..." 888 V = EmitScalarConversion(V, Ty, Arg->getType()); 889 } 890 } 891 EmitParmDecl(*Arg, V); 892 break; 893 } 894 895 case ABIArgInfo::Expand: { 896 // If this structure was expanded into multiple arguments then 897 // we need to create a temporary and reconstruct it from the 898 // arguments. 899 llvm::Value *Temp = CreateMemTemp(Ty, Arg->getName() + ".addr"); 900 // FIXME: What are the right qualifiers here? 901 llvm::Function::arg_iterator End = 902 ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp, Qualifiers()), AI); 903 EmitParmDecl(*Arg, Temp); 904 905 // Name the arguments used in expansion and increment AI. 906 unsigned Index = 0; 907 for (; AI != End; ++AI, ++Index) 908 AI->setName(Arg->getName() + "." + llvm::Twine(Index)); 909 continue; 910 } 911 912 case ABIArgInfo::Ignore: 913 // Initialize the local variable appropriately. 914 if (hasAggregateLLVMType(Ty)) { 915 EmitParmDecl(*Arg, CreateMemTemp(Ty)); 916 } else { 917 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType()))); 918 } 919 920 // Skip increment, no matching LLVM parameter. 921 continue; 922 923 case ABIArgInfo::Coerce: { 924 // FIXME: This is very wasteful; EmitParmDecl is just going to drop the 925 // result in a new alloca anyway, so we could just store into that 926 // directly if we broke the abstraction down more. 927 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce"); 928 Alloca->setAlignment(getContext().getDeclAlign(Arg).getQuantity()); 929 llvm::Value *V = Alloca; 930 931 // If the coerce-to type is a first class aggregate, we flatten it and 932 // pass the elements. Either way is semantically identical, but fast-isel 933 // and the optimizer generally likes scalar values better than FCAs. 934 if (const llvm::StructType *STy = 935 dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) { 936 // If the argument and alloca types match up, we don't have to build the 937 // FCA at all, emit a series of GEPs and stores, which is better for 938 // fast isel. 939 if (STy == cast<llvm::PointerType>(V->getType())->getElementType()) { 940 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 941 assert(AI != Fn->arg_end() && "Argument mismatch!"); 942 AI->setName(Arg->getName() + ".coerce" + llvm::Twine(i)); 943 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(V, 0, i); 944 Builder.CreateStore(AI++, EltPtr); 945 } 946 } else { 947 // Reconstruct the FCA here so we can do a coerced store. 948 llvm::Value *FormalArg = llvm::UndefValue::get(STy); 949 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 950 assert(AI != Fn->arg_end() && "Argument mismatch!"); 951 AI->setName(Arg->getName() + ".coerce" + llvm::Twine(i)); 952 FormalArg = Builder.CreateInsertValue(FormalArg, AI++, i); 953 } 954 CreateCoercedStore(FormalArg, V, /*DestIsVolatile=*/false, *this); 955 } 956 } else { 957 // Simple case, just do a coerced store of the argument into the alloca. 958 assert(AI != Fn->arg_end() && "Argument mismatch!"); 959 AI->setName(Arg->getName() + ".coerce"); 960 CreateCoercedStore(AI++, V, /*DestIsVolatile=*/false, *this); 961 } 962 963 964 // Match to what EmitParmDecl is expecting for this type. 965 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 966 V = EmitLoadOfScalar(V, false, Ty); 967 if (!getContext().typesAreCompatible(Ty, Arg->getType())) { 968 // This must be a promotion, for something like 969 // "void a(x) short x; {..." 970 V = EmitScalarConversion(V, Ty, Arg->getType()); 971 } 972 } 973 EmitParmDecl(*Arg, V); 974 continue; // Skip ++AI increment, already done. 975 } 976 } 977 978 ++AI; 979 } 980 assert(AI == Fn->arg_end() && "Argument mismatch!"); 981} 982 983void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) { 984 // Functions with no result always return void. 985 if (ReturnValue == 0) { 986 Builder.CreateRetVoid(); 987 return; 988 } 989 990 llvm::MDNode *RetDbgInfo = 0; 991 llvm::Value *RV = 0; 992 QualType RetTy = FI.getReturnType(); 993 const ABIArgInfo &RetAI = FI.getReturnInfo(); 994 995 switch (RetAI.getKind()) { 996 case ABIArgInfo::Indirect: 997 if (RetTy->isAnyComplexType()) { 998 ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); 999 StoreComplexToAddr(RT, CurFn->arg_begin(), false); 1000 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1001 // Do nothing; aggregrates get evaluated directly into the destination. 1002 } else { 1003 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), 1004 false, RetTy); 1005 } 1006 break; 1007 1008 case ABIArgInfo::Extend: 1009 case ABIArgInfo::Direct: { 1010 // The internal return value temp always will have pointer-to-return-type 1011 // type, just do a load. 1012 1013 // If the instruction right before the insertion point is a store to the 1014 // return value, we can elide the load, zap the store, and usually zap the 1015 // alloca. 1016 llvm::BasicBlock *InsertBB = Builder.GetInsertBlock(); 1017 llvm::StoreInst *SI = 0; 1018 if (InsertBB->empty() || 1019 !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) || 1020 SI->getPointerOperand() != ReturnValue || SI->isVolatile()) { 1021 RV = Builder.CreateLoad(ReturnValue); 1022 } else { 1023 // Get the stored value and nuke the now-dead store. 1024 RetDbgInfo = SI->getDbgMetadata(); 1025 RV = SI->getValueOperand(); 1026 SI->eraseFromParent(); 1027 1028 // If that was the only use of the return value, nuke it as well now. 1029 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1030 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1031 ReturnValue = 0; 1032 } 1033 } 1034 break; 1035 } 1036 case ABIArgInfo::Ignore: 1037 break; 1038 1039 case ABIArgInfo::Coerce: 1040 RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this); 1041 break; 1042 1043 case ABIArgInfo::Expand: 1044 assert(0 && "Invalid ABI kind for return argument"); 1045 } 1046 1047 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1048 if (RetDbgInfo) 1049 Ret->setDbgMetadata(RetDbgInfo); 1050} 1051 1052RValue CodeGenFunction::EmitDelegateCallArg(const VarDecl *Param) { 1053 // StartFunction converted the ABI-lowered parameter(s) into a 1054 // local alloca. We need to turn that into an r-value suitable 1055 // for EmitCall. 1056 llvm::Value *Local = GetAddrOfLocalVar(Param); 1057 1058 QualType ArgType = Param->getType(); 1059 1060 // For the most part, we just need to load the alloca, except: 1061 // 1) aggregate r-values are actually pointers to temporaries, and 1062 // 2) references to aggregates are pointers directly to the aggregate. 1063 // I don't know why references to non-aggregates are different here. 1064 if (const ReferenceType *RefType = ArgType->getAs<ReferenceType>()) { 1065 if (hasAggregateLLVMType(RefType->getPointeeType())) 1066 return RValue::getAggregate(Local); 1067 1068 // Locals which are references to scalars are represented 1069 // with allocas holding the pointer. 1070 return RValue::get(Builder.CreateLoad(Local)); 1071 } 1072 1073 if (ArgType->isAnyComplexType()) 1074 return RValue::getComplex(LoadComplexFromAddr(Local, /*volatile*/ false)); 1075 1076 if (hasAggregateLLVMType(ArgType)) 1077 return RValue::getAggregate(Local); 1078 1079 return RValue::get(EmitLoadOfScalar(Local, false, ArgType)); 1080} 1081 1082RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) { 1083 if (ArgType->isReferenceType()) 1084 return EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 1085 1086 return EmitAnyExprToTemp(E); 1087} 1088 1089RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 1090 llvm::Value *Callee, 1091 ReturnValueSlot ReturnValue, 1092 const CallArgList &CallArgs, 1093 const Decl *TargetDecl, 1094 llvm::Instruction **callOrInvoke) { 1095 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 1096 llvm::SmallVector<llvm::Value*, 16> Args; 1097 1098 // Handle struct-return functions by passing a pointer to the 1099 // location that we would like to return into. 1100 QualType RetTy = CallInfo.getReturnType(); 1101 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 1102 1103 1104 // If the call returns a temporary with struct return, create a temporary 1105 // alloca to hold the result, unless one is given to us. 1106 if (CGM.ReturnTypeUsesSret(CallInfo)) { 1107 llvm::Value *Value = ReturnValue.getValue(); 1108 if (!Value) 1109 Value = CreateMemTemp(RetTy); 1110 Args.push_back(Value); 1111 } 1112 1113 assert(CallInfo.arg_size() == CallArgs.size() && 1114 "Mismatch between function signature & arguments."); 1115 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 1116 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 1117 I != E; ++I, ++info_it) { 1118 const ABIArgInfo &ArgInfo = info_it->info; 1119 RValue RV = I->first; 1120 1121 switch (ArgInfo.getKind()) { 1122 case ABIArgInfo::Indirect: 1123 if (RV.isScalar() || RV.isComplex()) { 1124 // Make a temporary alloca to pass the argument. 1125 Args.push_back(CreateMemTemp(I->second)); 1126 if (RV.isScalar()) 1127 EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, I->second); 1128 else 1129 StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); 1130 } else { 1131 Args.push_back(RV.getAggregateAddr()); 1132 } 1133 break; 1134 1135 case ABIArgInfo::Extend: 1136 case ABIArgInfo::Direct: 1137 if (RV.isScalar()) { 1138 Args.push_back(RV.getScalarVal()); 1139 } else if (RV.isComplex()) { 1140 llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second)); 1141 Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0); 1142 Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1); 1143 Args.push_back(Tmp); 1144 } else { 1145 Args.push_back(Builder.CreateLoad(RV.getAggregateAddr())); 1146 } 1147 break; 1148 1149 case ABIArgInfo::Ignore: 1150 break; 1151 1152 case ABIArgInfo::Coerce: { 1153 // FIXME: Avoid the conversion through memory if possible. 1154 llvm::Value *SrcPtr; 1155 if (RV.isScalar()) { 1156 SrcPtr = CreateMemTemp(I->second, "coerce"); 1157 EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, I->second); 1158 } else if (RV.isComplex()) { 1159 SrcPtr = CreateMemTemp(I->second, "coerce"); 1160 StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); 1161 } else 1162 SrcPtr = RV.getAggregateAddr(); 1163 1164 // If the coerce-to type is a first class aggregate, we flatten it and 1165 // pass the elements. Either way is semantically identical, but fast-isel 1166 // and the optimizer generally likes scalar values better than FCAs. 1167 if (const llvm::StructType *STy = 1168 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 1169 // If the argument and alloca types match up, we don't have to build the 1170 // FCA at all, emit a series of GEPs and loads, which is better for 1171 // fast isel. 1172 if (STy ==cast<llvm::PointerType>(SrcPtr->getType())->getElementType()){ 1173 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1174 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 1175 Args.push_back(Builder.CreateLoad(EltPtr)); 1176 } 1177 } else { 1178 // Otherwise, do a coerced load the entire FCA and handle the pieces. 1179 llvm::Value *SrcVal = 1180 CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), *this); 1181 1182 // Extract the elements of the value to pass in. 1183 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1184 Args.push_back(Builder.CreateExtractValue(SrcVal, i)); 1185 } 1186 } else { 1187 // In the simple case, just pass the coerced loaded value. 1188 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 1189 *this)); 1190 } 1191 1192 break; 1193 } 1194 1195 case ABIArgInfo::Expand: 1196 ExpandTypeToArgs(I->second, RV, Args); 1197 break; 1198 } 1199 } 1200 1201 // If the callee is a bitcast of a function to a varargs pointer to function 1202 // type, check to see if we can remove the bitcast. This handles some cases 1203 // with unprototyped functions. 1204 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 1205 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 1206 const llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 1207 const llvm::FunctionType *CurFT = 1208 cast<llvm::FunctionType>(CurPT->getElementType()); 1209 const llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 1210 1211 if (CE->getOpcode() == llvm::Instruction::BitCast && 1212 ActualFT->getReturnType() == CurFT->getReturnType() && 1213 ActualFT->getNumParams() == CurFT->getNumParams() && 1214 ActualFT->getNumParams() == Args.size()) { 1215 bool ArgsMatch = true; 1216 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 1217 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 1218 ArgsMatch = false; 1219 break; 1220 } 1221 1222 // Strip the cast if we can get away with it. This is a nice cleanup, 1223 // but also allows us to inline the function at -O0 if it is marked 1224 // always_inline. 1225 if (ArgsMatch) 1226 Callee = CalleeF; 1227 } 1228 } 1229 1230 1231 llvm::BasicBlock *InvokeDest = getInvokeDest(); 1232 unsigned CallingConv; 1233 CodeGen::AttributeListType AttributeList; 1234 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); 1235 llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), 1236 AttributeList.end()); 1237 1238 llvm::CallSite CS; 1239 if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) { 1240 CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size()); 1241 } else { 1242 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 1243 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, 1244 Args.data(), Args.data()+Args.size()); 1245 EmitBlock(Cont); 1246 } 1247 if (callOrInvoke) 1248 *callOrInvoke = CS.getInstruction(); 1249 1250 CS.setAttributes(Attrs); 1251 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1252 1253 // If the call doesn't return, finish the basic block and clear the 1254 // insertion point; this allows the rest of IRgen to discard 1255 // unreachable code. 1256 if (CS.doesNotReturn()) { 1257 Builder.CreateUnreachable(); 1258 Builder.ClearInsertionPoint(); 1259 1260 // FIXME: For now, emit a dummy basic block because expr emitters in 1261 // generally are not ready to handle emitting expressions at unreachable 1262 // points. 1263 EnsureInsertPoint(); 1264 1265 // Return a reasonable RValue. 1266 return GetUndefRValue(RetTy); 1267 } 1268 1269 llvm::Instruction *CI = CS.getInstruction(); 1270 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 1271 CI->setName("call"); 1272 1273 switch (RetAI.getKind()) { 1274 case ABIArgInfo::Indirect: 1275 if (RetTy->isAnyComplexType()) 1276 return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); 1277 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 1278 return RValue::getAggregate(Args[0]); 1279 return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy)); 1280 1281 case ABIArgInfo::Extend: 1282 case ABIArgInfo::Direct: 1283 if (RetTy->isAnyComplexType()) { 1284 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 1285 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 1286 return RValue::getComplex(std::make_pair(Real, Imag)); 1287 } 1288 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1289 llvm::Value *DestPtr = ReturnValue.getValue(); 1290 bool DestIsVolatile = ReturnValue.isVolatile(); 1291 1292 if (!DestPtr) { 1293 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 1294 DestIsVolatile = false; 1295 } 1296 Builder.CreateStore(CI, DestPtr, DestIsVolatile); 1297 return RValue::getAggregate(DestPtr); 1298 } 1299 return RValue::get(CI); 1300 1301 case ABIArgInfo::Ignore: 1302 // If we are ignoring an argument that had a result, make sure to 1303 // construct the appropriate return value for our caller. 1304 return GetUndefRValue(RetTy); 1305 1306 case ABIArgInfo::Coerce: { 1307 llvm::Value *DestPtr = ReturnValue.getValue(); 1308 bool DestIsVolatile = ReturnValue.isVolatile(); 1309 1310 if (!DestPtr) { 1311 DestPtr = CreateMemTemp(RetTy, "coerce"); 1312 DestIsVolatile = false; 1313 } 1314 1315 CreateCoercedStore(CI, DestPtr, DestIsVolatile, *this); 1316 if (RetTy->isAnyComplexType()) 1317 return RValue::getComplex(LoadComplexFromAddr(DestPtr, false)); 1318 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 1319 return RValue::getAggregate(DestPtr); 1320 return RValue::get(EmitLoadOfScalar(DestPtr, false, RetTy)); 1321 } 1322 1323 case ABIArgInfo::Expand: 1324 assert(0 && "Invalid ABI kind for return argument"); 1325 } 1326 1327 assert(0 && "Unhandled ABIArgInfo::Kind"); 1328 return RValue::get(0); 1329} 1330 1331/* VarArg handling */ 1332 1333llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 1334 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 1335} 1336