CGCall.cpp revision 24095dad88dd9d48aa16afa6416417073af251b5
1//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// These classes wrap the information about a call or function 11// definition used to handle ABI compliancy. 12// 13//===----------------------------------------------------------------------===// 14 15#include "CGCall.h" 16#include "CodeGenFunction.h" 17#include "CodeGenModule.h" 18#include "clang/Basic/TargetInfo.h" 19#include "clang/AST/ASTContext.h" 20#include "clang/AST/Decl.h" 21#include "clang/AST/DeclCXX.h" 22#include "clang/AST/DeclObjC.h" 23#include "clang/AST/RecordLayout.h" 24#include "clang/Frontend/CompileOptions.h" 25#include "llvm/ADT/StringExtras.h" 26#include "llvm/Attributes.h" 27#include "llvm/Support/CallSite.h" 28#include "llvm/Support/MathExtras.h" 29#include "llvm/Target/TargetData.h" 30 31#include "ABIInfo.h" 32 33using namespace clang; 34using namespace CodeGen; 35 36/***/ 37 38// FIXME: Use iterator and sidestep silly type array creation. 39 40const 41CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionNoProtoType *FTNP) { 42 return getFunctionInfo(FTNP->getResultType(), 43 llvm::SmallVector<QualType, 16>()); 44} 45 46const 47CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionProtoType *FTP) { 48 llvm::SmallVector<QualType, 16> ArgTys; 49 // FIXME: Kill copy. 50 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 51 ArgTys.push_back(FTP->getArgType(i)); 52 return getFunctionInfo(FTP->getResultType(), ArgTys); 53} 54 55const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) { 56 llvm::SmallVector<QualType, 16> ArgTys; 57 // Add the 'this' pointer unless this is a static method. 58 if (MD->isInstance()) 59 ArgTys.push_back(MD->getThisType(Context)); 60 61 const FunctionProtoType *FTP = MD->getType()->getAsFunctionProtoType(); 62 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 63 ArgTys.push_back(FTP->getArgType(i)); 64 return getFunctionInfo(FTP->getResultType(), ArgTys); 65} 66 67const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) { 68 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 69 if (MD->isInstance()) 70 return getFunctionInfo(MD); 71 72 const FunctionType *FTy = FD->getType()->getAsFunctionType(); 73 if (const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FTy)) 74 return getFunctionInfo(FTP); 75 return getFunctionInfo(cast<FunctionNoProtoType>(FTy)); 76} 77 78const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) { 79 llvm::SmallVector<QualType, 16> ArgTys; 80 ArgTys.push_back(MD->getSelfDecl()->getType()); 81 ArgTys.push_back(Context.getObjCSelType()); 82 // FIXME: Kill copy? 83 for (ObjCMethodDecl::param_iterator i = MD->param_begin(), 84 e = MD->param_end(); i != e; ++i) 85 ArgTys.push_back((*i)->getType()); 86 return getFunctionInfo(MD->getResultType(), ArgTys); 87} 88 89const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, 90 const CallArgList &Args) { 91 // FIXME: Kill copy. 92 llvm::SmallVector<QualType, 16> ArgTys; 93 for (CallArgList::const_iterator i = Args.begin(), e = Args.end(); 94 i != e; ++i) 95 ArgTys.push_back(i->second); 96 return getFunctionInfo(ResTy, ArgTys); 97} 98 99const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, 100 const FunctionArgList &Args) { 101 // FIXME: Kill copy. 102 llvm::SmallVector<QualType, 16> ArgTys; 103 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 104 i != e; ++i) 105 ArgTys.push_back(i->second); 106 return getFunctionInfo(ResTy, ArgTys); 107} 108 109const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, 110 const llvm::SmallVector<QualType, 16> &ArgTys) { 111 // Lookup or create unique function info. 112 llvm::FoldingSetNodeID ID; 113 CGFunctionInfo::Profile(ID, ResTy, ArgTys.begin(), ArgTys.end()); 114 115 void *InsertPos = 0; 116 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos); 117 if (FI) 118 return *FI; 119 120 // Construct the function info. 121 FI = new CGFunctionInfo(ResTy, ArgTys); 122 FunctionInfos.InsertNode(FI, InsertPos); 123 124 // Compute ABI information. 125 getABIInfo().computeInfo(*FI, getContext()); 126 127 return *FI; 128} 129 130/***/ 131 132ABIInfo::~ABIInfo() {} 133 134void ABIArgInfo::dump() const { 135 fprintf(stderr, "(ABIArgInfo Kind="); 136 switch (TheKind) { 137 case Direct: 138 fprintf(stderr, "Direct"); 139 break; 140 case Ignore: 141 fprintf(stderr, "Ignore"); 142 break; 143 case Coerce: 144 fprintf(stderr, "Coerce Type="); 145 getCoerceToType()->print(llvm::errs()); 146 break; 147 case Indirect: 148 fprintf(stderr, "Indirect Align=%d", getIndirectAlign()); 149 break; 150 case Expand: 151 fprintf(stderr, "Expand"); 152 break; 153 } 154 fprintf(stderr, ")\n"); 155} 156 157/***/ 158 159static bool isEmptyRecord(ASTContext &Context, QualType T); 160 161/// isEmptyField - Return true iff a the field is "empty", that is it 162/// is an unnamed bit-field or an (array of) empty record(s). 163static bool isEmptyField(ASTContext &Context, const FieldDecl *FD) { 164 if (FD->isUnnamedBitfield()) 165 return true; 166 167 QualType FT = FD->getType(); 168 // Constant arrays of empty records count as empty, strip them off. 169 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) 170 FT = AT->getElementType(); 171 172 return isEmptyRecord(Context, FT); 173} 174 175/// isEmptyRecord - Return true iff a structure contains only empty 176/// fields. Note that a structure with a flexible array member is not 177/// considered empty. 178static bool isEmptyRecord(ASTContext &Context, QualType T) { 179 const RecordType *RT = T->getAsRecordType(); 180 if (!RT) 181 return 0; 182 const RecordDecl *RD = RT->getDecl(); 183 if (RD->hasFlexibleArrayMember()) 184 return false; 185 for (RecordDecl::field_iterator i = RD->field_begin(Context), 186 e = RD->field_end(Context); i != e; ++i) 187 if (!isEmptyField(Context, *i)) 188 return false; 189 return true; 190} 191 192/// isSingleElementStruct - Determine if a structure is a "single 193/// element struct", i.e. it has exactly one non-empty field or 194/// exactly one field which is itself a single element 195/// struct. Structures with flexible array members are never 196/// considered single element structs. 197/// 198/// \return The field declaration for the single non-empty field, if 199/// it exists. 200static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 201 const RecordType *RT = T->getAsStructureType(); 202 if (!RT) 203 return 0; 204 205 const RecordDecl *RD = RT->getDecl(); 206 if (RD->hasFlexibleArrayMember()) 207 return 0; 208 209 const Type *Found = 0; 210 for (RecordDecl::field_iterator i = RD->field_begin(Context), 211 e = RD->field_end(Context); i != e; ++i) { 212 const FieldDecl *FD = *i; 213 QualType FT = FD->getType(); 214 215 // Ignore empty fields. 216 if (isEmptyField(Context, FD)) 217 continue; 218 219 // If we already found an element then this isn't a single-element 220 // struct. 221 if (Found) 222 return 0; 223 224 // Treat single element arrays as the element. 225 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 226 if (AT->getSize().getZExtValue() != 1) 227 break; 228 FT = AT->getElementType(); 229 } 230 231 if (!CodeGenFunction::hasAggregateLLVMType(FT)) { 232 Found = FT.getTypePtr(); 233 } else { 234 Found = isSingleElementStruct(FT, Context); 235 if (!Found) 236 return 0; 237 } 238 } 239 240 return Found; 241} 242 243static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 244 if (!Ty->getAsBuiltinType() && !Ty->isPointerType()) 245 return false; 246 247 uint64_t Size = Context.getTypeSize(Ty); 248 return Size == 32 || Size == 64; 249} 250 251static bool areAllFields32Or64BitBasicType(const RecordDecl *RD, 252 ASTContext &Context) { 253 for (RecordDecl::field_iterator i = RD->field_begin(Context), 254 e = RD->field_end(Context); i != e; ++i) { 255 const FieldDecl *FD = *i; 256 257 if (!is32Or64BitBasicType(FD->getType(), Context)) 258 return false; 259 260 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 261 // how to expand them yet, and the predicate for telling if a bitfield still 262 // counts as "basic" is more complicated than what we were doing previously. 263 if (FD->isBitField()) 264 return false; 265 } 266 267 return true; 268} 269 270namespace { 271/// DefaultABIInfo - The default implementation for ABI specific 272/// details. This implementation provides information which results in 273/// self-consistent and sensible LLVM IR generation, but does not 274/// conform to any particular ABI. 275class DefaultABIInfo : public ABIInfo { 276 ABIArgInfo classifyReturnType(QualType RetTy, 277 ASTContext &Context) const; 278 279 ABIArgInfo classifyArgumentType(QualType RetTy, 280 ASTContext &Context) const; 281 282 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { 283 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); 284 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 285 it != ie; ++it) 286 it->info = classifyArgumentType(it->type, Context); 287 } 288 289 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 290 CodeGenFunction &CGF) const; 291}; 292 293/// X86_32ABIInfo - The X86-32 ABI information. 294class X86_32ABIInfo : public ABIInfo { 295 ASTContext &Context; 296 bool IsDarwin; 297 298 static bool isRegisterSize(unsigned Size) { 299 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 300 } 301 302 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); 303 304public: 305 ABIArgInfo classifyReturnType(QualType RetTy, 306 ASTContext &Context) const; 307 308 ABIArgInfo classifyArgumentType(QualType RetTy, 309 ASTContext &Context) const; 310 311 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { 312 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); 313 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 314 it != ie; ++it) 315 it->info = classifyArgumentType(it->type, Context); 316 } 317 318 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 319 CodeGenFunction &CGF) const; 320 321 X86_32ABIInfo(ASTContext &Context, bool d) 322 : ABIInfo(), Context(Context), IsDarwin(d) {} 323}; 324} 325 326 327/// shouldReturnTypeInRegister - Determine if the given type should be 328/// passed in a register (for the Darwin ABI). 329bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 330 ASTContext &Context) { 331 uint64_t Size = Context.getTypeSize(Ty); 332 333 // Type must be register sized. 334 if (!isRegisterSize(Size)) 335 return false; 336 337 if (Ty->isVectorType()) { 338 // 64- and 128- bit vectors inside structures are not returned in 339 // registers. 340 if (Size == 64 || Size == 128) 341 return false; 342 343 return true; 344 } 345 346 // If this is a builtin, pointer, or complex type, it is ok. 347 if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType()) 348 return true; 349 350 // Arrays are treated like records. 351 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 352 return shouldReturnTypeInRegister(AT->getElementType(), Context); 353 354 // Otherwise, it must be a record type. 355 const RecordType *RT = Ty->getAsRecordType(); 356 if (!RT) return false; 357 358 // Structure types are passed in register if all fields would be 359 // passed in a register. 360 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context), 361 e = RT->getDecl()->field_end(Context); i != e; ++i) { 362 const FieldDecl *FD = *i; 363 364 // Empty fields are ignored. 365 if (isEmptyField(Context, FD)) 366 continue; 367 368 // Check fields recursively. 369 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 370 return false; 371 } 372 373 return true; 374} 375 376ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 377 ASTContext &Context) const { 378 if (RetTy->isVoidType()) { 379 return ABIArgInfo::getIgnore(); 380 } else if (const VectorType *VT = RetTy->getAsVectorType()) { 381 // On Darwin, some vectors are returned in registers. 382 if (IsDarwin) { 383 uint64_t Size = Context.getTypeSize(RetTy); 384 385 // 128-bit vectors are a special case; they are returned in 386 // registers and we need to make sure to pick a type the LLVM 387 // backend will like. 388 if (Size == 128) 389 return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty, 390 2)); 391 392 // Always return in register if it fits in a general purpose 393 // register, or if it is 64 bits and has a single element. 394 if ((Size == 8 || Size == 16 || Size == 32) || 395 (Size == 64 && VT->getNumElements() == 1)) 396 return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size)); 397 398 return ABIArgInfo::getIndirect(0); 399 } 400 401 return ABIArgInfo::getDirect(); 402 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 403 // Structures with flexible arrays are always indirect. 404 if (const RecordType *RT = RetTy->getAsStructureType()) 405 if (RT->getDecl()->hasFlexibleArrayMember()) 406 return ABIArgInfo::getIndirect(0); 407 408 // Outside of Darwin, structs and unions are always indirect. 409 if (!IsDarwin && !RetTy->isAnyComplexType()) 410 return ABIArgInfo::getIndirect(0); 411 412 // Classify "single element" structs as their element type. 413 if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) { 414 if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) { 415 if (BT->isIntegerType()) { 416 // We need to use the size of the structure, padding 417 // bit-fields can adjust that to be larger than the single 418 // element type. 419 uint64_t Size = Context.getTypeSize(RetTy); 420 return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size)); 421 } else if (BT->getKind() == BuiltinType::Float) { 422 assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && 423 "Unexpect single element structure size!"); 424 return ABIArgInfo::getCoerce(llvm::Type::FloatTy); 425 } else if (BT->getKind() == BuiltinType::Double) { 426 assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && 427 "Unexpect single element structure size!"); 428 return ABIArgInfo::getCoerce(llvm::Type::DoubleTy); 429 } 430 } else if (SeltTy->isPointerType()) { 431 // FIXME: It would be really nice if this could come out as the proper 432 // pointer type. 433 llvm::Type *PtrTy = 434 llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 435 return ABIArgInfo::getCoerce(PtrTy); 436 } else if (SeltTy->isVectorType()) { 437 // 64- and 128-bit vectors are never returned in a 438 // register when inside a structure. 439 uint64_t Size = Context.getTypeSize(RetTy); 440 if (Size == 64 || Size == 128) 441 return ABIArgInfo::getIndirect(0); 442 443 return classifyReturnType(QualType(SeltTy, 0), Context); 444 } 445 } 446 447 // Small structures which are register sized are generally returned 448 // in a register. 449 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) { 450 uint64_t Size = Context.getTypeSize(RetTy); 451 return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size)); 452 } 453 454 return ABIArgInfo::getIndirect(0); 455 } else { 456 return ABIArgInfo::getDirect(); 457 } 458} 459 460ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 461 ASTContext &Context) const { 462 // FIXME: Set alignment on indirect arguments. 463 if (CodeGenFunction::hasAggregateLLVMType(Ty)) { 464 // Structures with flexible arrays are always indirect. 465 if (const RecordType *RT = Ty->getAsStructureType()) 466 if (RT->getDecl()->hasFlexibleArrayMember()) 467 return ABIArgInfo::getIndirect(0); 468 469 // Ignore empty structs. 470 uint64_t Size = Context.getTypeSize(Ty); 471 if (Ty->isStructureType() && Size == 0) 472 return ABIArgInfo::getIgnore(); 473 474 // Expand structs with size <= 128-bits which consist only of 475 // basic types (int, long long, float, double, xxx*). This is 476 // non-recursive and does not ignore empty fields. 477 if (const RecordType *RT = Ty->getAsStructureType()) { 478 if (Context.getTypeSize(Ty) <= 4*32 && 479 areAllFields32Or64BitBasicType(RT->getDecl(), Context)) 480 return ABIArgInfo::getExpand(); 481 } 482 483 return ABIArgInfo::getIndirect(0); 484 } else { 485 return ABIArgInfo::getDirect(); 486 } 487} 488 489llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 490 CodeGenFunction &CGF) const { 491 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 492 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 493 494 CGBuilderTy &Builder = CGF.Builder; 495 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 496 "ap"); 497 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 498 llvm::Type *PTy = 499 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 500 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 501 502 uint64_t Offset = 503 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 504 llvm::Value *NextAddr = 505 Builder.CreateGEP(Addr, 506 llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset), 507 "ap.next"); 508 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 509 510 return AddrTyped; 511} 512 513namespace { 514/// X86_64ABIInfo - The X86_64 ABI information. 515class X86_64ABIInfo : public ABIInfo { 516 enum Class { 517 Integer = 0, 518 SSE, 519 SSEUp, 520 X87, 521 X87Up, 522 ComplexX87, 523 NoClass, 524 Memory 525 }; 526 527 /// merge - Implement the X86_64 ABI merging algorithm. 528 /// 529 /// Merge an accumulating classification \arg Accum with a field 530 /// classification \arg Field. 531 /// 532 /// \param Accum - The accumulating classification. This should 533 /// always be either NoClass or the result of a previous merge 534 /// call. In addition, this should never be Memory (the caller 535 /// should just return Memory for the aggregate). 536 Class merge(Class Accum, Class Field) const; 537 538 /// classify - Determine the x86_64 register classes in which the 539 /// given type T should be passed. 540 /// 541 /// \param Lo - The classification for the parts of the type 542 /// residing in the low word of the containing object. 543 /// 544 /// \param Hi - The classification for the parts of the type 545 /// residing in the high word of the containing object. 546 /// 547 /// \param OffsetBase - The bit offset of this type in the 548 /// containing object. Some parameters are classified different 549 /// depending on whether they straddle an eightbyte boundary. 550 /// 551 /// If a word is unused its result will be NoClass; if a type should 552 /// be passed in Memory then at least the classification of \arg Lo 553 /// will be Memory. 554 /// 555 /// The \arg Lo class will be NoClass iff the argument is ignored. 556 /// 557 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 558 /// also be ComplexX87. 559 void classify(QualType T, ASTContext &Context, uint64_t OffsetBase, 560 Class &Lo, Class &Hi) const; 561 562 /// getCoerceResult - Given a source type \arg Ty and an LLVM type 563 /// to coerce to, chose the best way to pass Ty in the same place 564 /// that \arg CoerceTo would be passed, but while keeping the 565 /// emitted code as simple as possible. 566 /// 567 /// FIXME: Note, this should be cleaned up to just take an enumeration of all 568 /// the ways we might want to pass things, instead of constructing an LLVM 569 /// type. This makes this code more explicit, and it makes it clearer that we 570 /// are also doing this for correctness in the case of passing scalar types. 571 ABIArgInfo getCoerceResult(QualType Ty, 572 const llvm::Type *CoerceTo, 573 ASTContext &Context) const; 574 575 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 576 /// such that the argument will be passed in memory. 577 ABIArgInfo getIndirectResult(QualType Ty, 578 ASTContext &Context) const; 579 580 ABIArgInfo classifyReturnType(QualType RetTy, 581 ASTContext &Context) const; 582 583 ABIArgInfo classifyArgumentType(QualType Ty, 584 ASTContext &Context, 585 unsigned &neededInt, 586 unsigned &neededSSE) const; 587 588public: 589 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const; 590 591 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 592 CodeGenFunction &CGF) const; 593}; 594} 595 596X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, 597 Class Field) const { 598 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 599 // classified recursively so that always two fields are 600 // considered. The resulting class is calculated according to 601 // the classes of the fields in the eightbyte: 602 // 603 // (a) If both classes are equal, this is the resulting class. 604 // 605 // (b) If one of the classes is NO_CLASS, the resulting class is 606 // the other class. 607 // 608 // (c) If one of the classes is MEMORY, the result is the MEMORY 609 // class. 610 // 611 // (d) If one of the classes is INTEGER, the result is the 612 // INTEGER. 613 // 614 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 615 // MEMORY is used as class. 616 // 617 // (f) Otherwise class SSE is used. 618 619 // Accum should never be memory (we should have returned) or 620 // ComplexX87 (because this cannot be passed in a structure). 621 assert((Accum != Memory && Accum != ComplexX87) && 622 "Invalid accumulated classification during merge."); 623 if (Accum == Field || Field == NoClass) 624 return Accum; 625 else if (Field == Memory) 626 return Memory; 627 else if (Accum == NoClass) 628 return Field; 629 else if (Accum == Integer || Field == Integer) 630 return Integer; 631 else if (Field == X87 || Field == X87Up || Field == ComplexX87 || 632 Accum == X87 || Accum == X87Up) 633 return Memory; 634 else 635 return SSE; 636} 637 638void X86_64ABIInfo::classify(QualType Ty, 639 ASTContext &Context, 640 uint64_t OffsetBase, 641 Class &Lo, Class &Hi) const { 642 // FIXME: This code can be simplified by introducing a simple value class for 643 // Class pairs with appropriate constructor methods for the various 644 // situations. 645 646 // FIXME: Some of the split computations are wrong; unaligned vectors 647 // shouldn't be passed in registers for example, so there is no chance they 648 // can straddle an eightbyte. Verify & simplify. 649 650 Lo = Hi = NoClass; 651 652 Class &Current = OffsetBase < 64 ? Lo : Hi; 653 Current = Memory; 654 655 if (const BuiltinType *BT = Ty->getAsBuiltinType()) { 656 BuiltinType::Kind k = BT->getKind(); 657 658 if (k == BuiltinType::Void) { 659 Current = NoClass; 660 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 661 Lo = Integer; 662 Hi = Integer; 663 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 664 Current = Integer; 665 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 666 Current = SSE; 667 } else if (k == BuiltinType::LongDouble) { 668 Lo = X87; 669 Hi = X87Up; 670 } 671 // FIXME: _Decimal32 and _Decimal64 are SSE. 672 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 673 } else if (const EnumType *ET = Ty->getAsEnumType()) { 674 // Classify the underlying integer type. 675 classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi); 676 } else if (Ty->hasPointerRepresentation()) { 677 Current = Integer; 678 } else if (const VectorType *VT = Ty->getAsVectorType()) { 679 uint64_t Size = Context.getTypeSize(VT); 680 if (Size == 32) { 681 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 682 // float> as integer. 683 Current = Integer; 684 685 // If this type crosses an eightbyte boundary, it should be 686 // split. 687 uint64_t EB_Real = (OffsetBase) / 64; 688 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 689 if (EB_Real != EB_Imag) 690 Hi = Lo; 691 } else if (Size == 64) { 692 // gcc passes <1 x double> in memory. :( 693 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 694 return; 695 696 // gcc passes <1 x long long> as INTEGER. 697 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong)) 698 Current = Integer; 699 else 700 Current = SSE; 701 702 // If this type crosses an eightbyte boundary, it should be 703 // split. 704 if (OffsetBase && OffsetBase != 64) 705 Hi = Lo; 706 } else if (Size == 128) { 707 Lo = SSE; 708 Hi = SSEUp; 709 } 710 } else if (const ComplexType *CT = Ty->getAsComplexType()) { 711 QualType ET = Context.getCanonicalType(CT->getElementType()); 712 713 uint64_t Size = Context.getTypeSize(Ty); 714 if (ET->isIntegralType()) { 715 if (Size <= 64) 716 Current = Integer; 717 else if (Size <= 128) 718 Lo = Hi = Integer; 719 } else if (ET == Context.FloatTy) 720 Current = SSE; 721 else if (ET == Context.DoubleTy) 722 Lo = Hi = SSE; 723 else if (ET == Context.LongDoubleTy) 724 Current = ComplexX87; 725 726 // If this complex type crosses an eightbyte boundary then it 727 // should be split. 728 uint64_t EB_Real = (OffsetBase) / 64; 729 uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64; 730 if (Hi == NoClass && EB_Real != EB_Imag) 731 Hi = Lo; 732 } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 733 // Arrays are treated like structures. 734 735 uint64_t Size = Context.getTypeSize(Ty); 736 737 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 738 // than two eightbytes, ..., it has class MEMORY. 739 if (Size > 128) 740 return; 741 742 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 743 // fields, it has class MEMORY. 744 // 745 // Only need to check alignment of array base. 746 if (OffsetBase % Context.getTypeAlign(AT->getElementType())) 747 return; 748 749 // Otherwise implement simplified merge. We could be smarter about 750 // this, but it isn't worth it and would be harder to verify. 751 Current = NoClass; 752 uint64_t EltSize = Context.getTypeSize(AT->getElementType()); 753 uint64_t ArraySize = AT->getSize().getZExtValue(); 754 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 755 Class FieldLo, FieldHi; 756 classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi); 757 Lo = merge(Lo, FieldLo); 758 Hi = merge(Hi, FieldHi); 759 if (Lo == Memory || Hi == Memory) 760 break; 761 } 762 763 // Do post merger cleanup (see below). Only case we worry about is Memory. 764 if (Hi == Memory) 765 Lo = Memory; 766 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 767 } else if (const RecordType *RT = Ty->getAsRecordType()) { 768 uint64_t Size = Context.getTypeSize(Ty); 769 770 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 771 // than two eightbytes, ..., it has class MEMORY. 772 if (Size > 128) 773 return; 774 775 const RecordDecl *RD = RT->getDecl(); 776 777 // Assume variable sized types are passed in memory. 778 if (RD->hasFlexibleArrayMember()) 779 return; 780 781 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 782 783 // Reset Lo class, this will be recomputed. 784 Current = NoClass; 785 unsigned idx = 0; 786 for (RecordDecl::field_iterator i = RD->field_begin(Context), 787 e = RD->field_end(Context); i != e; ++i, ++idx) { 788 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 789 bool BitField = i->isBitField(); 790 791 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 792 // fields, it has class MEMORY. 793 // 794 // Note, skip this test for bit-fields, see below. 795 if (!BitField && Offset % Context.getTypeAlign(i->getType())) { 796 Lo = Memory; 797 return; 798 } 799 800 // Classify this field. 801 // 802 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 803 // exceeds a single eightbyte, each is classified 804 // separately. Each eightbyte gets initialized to class 805 // NO_CLASS. 806 Class FieldLo, FieldHi; 807 808 // Bit-fields require special handling, they do not force the 809 // structure to be passed in memory even if unaligned, and 810 // therefore they can straddle an eightbyte. 811 if (BitField) { 812 // Ignore padding bit-fields. 813 if (i->isUnnamedBitfield()) 814 continue; 815 816 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 817 uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue(); 818 819 uint64_t EB_Lo = Offset / 64; 820 uint64_t EB_Hi = (Offset + Size - 1) / 64; 821 FieldLo = FieldHi = NoClass; 822 if (EB_Lo) { 823 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 824 FieldLo = NoClass; 825 FieldHi = Integer; 826 } else { 827 FieldLo = Integer; 828 FieldHi = EB_Hi ? Integer : NoClass; 829 } 830 } else 831 classify(i->getType(), Context, Offset, FieldLo, FieldHi); 832 Lo = merge(Lo, FieldLo); 833 Hi = merge(Hi, FieldHi); 834 if (Lo == Memory || Hi == Memory) 835 break; 836 } 837 838 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 839 // 840 // (a) If one of the classes is MEMORY, the whole argument is 841 // passed in memory. 842 // 843 // (b) If SSEUP is not preceeded by SSE, it is converted to SSE. 844 845 // The first of these conditions is guaranteed by how we implement 846 // the merge (just bail). 847 // 848 // The second condition occurs in the case of unions; for example 849 // union { _Complex double; unsigned; }. 850 if (Hi == Memory) 851 Lo = Memory; 852 if (Hi == SSEUp && Lo != SSE) 853 Hi = SSE; 854 } 855} 856 857ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty, 858 const llvm::Type *CoerceTo, 859 ASTContext &Context) const { 860 if (CoerceTo == llvm::Type::Int64Ty) { 861 // Integer and pointer types will end up in a general purpose 862 // register. 863 if (Ty->isIntegralType() || Ty->isPointerType()) 864 return ABIArgInfo::getDirect(); 865 866 } else if (CoerceTo == llvm::Type::DoubleTy) { 867 // FIXME: It would probably be better to make CGFunctionInfo only map using 868 // canonical types than to canonize here. 869 QualType CTy = Context.getCanonicalType(Ty); 870 871 // Float and double end up in a single SSE reg. 872 if (CTy == Context.FloatTy || CTy == Context.DoubleTy) 873 return ABIArgInfo::getDirect(); 874 875 } 876 877 return ABIArgInfo::getCoerce(CoerceTo); 878} 879 880ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 881 ASTContext &Context) const { 882 // If this is a scalar LLVM value then assume LLVM will pass it in the right 883 // place naturally. 884 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) 885 return ABIArgInfo::getDirect(); 886 887 // FIXME: Set alignment correctly. 888 return ABIArgInfo::getIndirect(0); 889} 890 891ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy, 892 ASTContext &Context) const { 893 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 894 // classification algorithm. 895 X86_64ABIInfo::Class Lo, Hi; 896 classify(RetTy, Context, 0, Lo, Hi); 897 898 // Check some invariants. 899 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 900 assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); 901 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 902 903 const llvm::Type *ResType = 0; 904 switch (Lo) { 905 case NoClass: 906 return ABIArgInfo::getIgnore(); 907 908 case SSEUp: 909 case X87Up: 910 assert(0 && "Invalid classification for lo word."); 911 912 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 913 // hidden argument. 914 case Memory: 915 return getIndirectResult(RetTy, Context); 916 917 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 918 // available register of the sequence %rax, %rdx is used. 919 case Integer: 920 ResType = llvm::Type::Int64Ty; break; 921 922 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 923 // available SSE register of the sequence %xmm0, %xmm1 is used. 924 case SSE: 925 ResType = llvm::Type::DoubleTy; break; 926 927 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 928 // returned on the X87 stack in %st0 as 80-bit x87 number. 929 case X87: 930 ResType = llvm::Type::X86_FP80Ty; break; 931 932 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 933 // part of the value is returned in %st0 and the imaginary part in 934 // %st1. 935 case ComplexX87: 936 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 937 ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty, 938 llvm::Type::X86_FP80Ty, 939 NULL); 940 break; 941 } 942 943 switch (Hi) { 944 // Memory was handled previously and X87 should 945 // never occur as a hi class. 946 case Memory: 947 case X87: 948 assert(0 && "Invalid classification for hi word."); 949 950 case ComplexX87: // Previously handled. 951 case NoClass: break; 952 953 case Integer: 954 ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL); 955 break; 956 case SSE: 957 ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); 958 break; 959 960 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 961 // is passed in the upper half of the last used SSE register. 962 // 963 // SSEUP should always be preceeded by SSE, just widen. 964 case SSEUp: 965 assert(Lo == SSE && "Unexpected SSEUp classification."); 966 ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2); 967 break; 968 969 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 970 // returned together with the previous X87 value in %st0. 971 case X87Up: 972 // If X87Up is preceeded by X87, we don't need to do 973 // anything. However, in some cases with unions it may not be 974 // preceeded by X87. In such situations we follow gcc and pass the 975 // extra bits in an SSE reg. 976 if (Lo != X87) 977 ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); 978 break; 979 } 980 981 return getCoerceResult(RetTy, ResType, Context); 982} 983 984ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context, 985 unsigned &neededInt, 986 unsigned &neededSSE) const { 987 X86_64ABIInfo::Class Lo, Hi; 988 classify(Ty, Context, 0, Lo, Hi); 989 990 // Check some invariants. 991 // FIXME: Enforce these by construction. 992 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 993 assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); 994 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 995 996 neededInt = 0; 997 neededSSE = 0; 998 const llvm::Type *ResType = 0; 999 switch (Lo) { 1000 case NoClass: 1001 return ABIArgInfo::getIgnore(); 1002 1003 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 1004 // on the stack. 1005 case Memory: 1006 1007 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 1008 // COMPLEX_X87, it is passed in memory. 1009 case X87: 1010 case ComplexX87: 1011 return getIndirectResult(Ty, Context); 1012 1013 case SSEUp: 1014 case X87Up: 1015 assert(0 && "Invalid classification for lo word."); 1016 1017 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 1018 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 1019 // and %r9 is used. 1020 case Integer: 1021 ++neededInt; 1022 ResType = llvm::Type::Int64Ty; 1023 break; 1024 1025 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 1026 // available SSE register is used, the registers are taken in the 1027 // order from %xmm0 to %xmm7. 1028 case SSE: 1029 ++neededSSE; 1030 ResType = llvm::Type::DoubleTy; 1031 break; 1032 } 1033 1034 switch (Hi) { 1035 // Memory was handled previously, ComplexX87 and X87 should 1036 // never occur as hi classes, and X87Up must be preceed by X87, 1037 // which is passed in memory. 1038 case Memory: 1039 case X87: 1040 case ComplexX87: 1041 assert(0 && "Invalid classification for hi word."); 1042 break; 1043 1044 case NoClass: break; 1045 case Integer: 1046 ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL); 1047 ++neededInt; 1048 break; 1049 1050 // X87Up generally doesn't occur here (long double is passed in 1051 // memory), except in situations involving unions. 1052 case X87Up: 1053 case SSE: 1054 ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); 1055 ++neededSSE; 1056 break; 1057 1058 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 1059 // eightbyte is passed in the upper half of the last used SSE 1060 // register. 1061 case SSEUp: 1062 assert(Lo == SSE && "Unexpected SSEUp classification."); 1063 ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2); 1064 break; 1065 } 1066 1067 return getCoerceResult(Ty, ResType, Context); 1068} 1069 1070void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { 1071 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); 1072 1073 // Keep track of the number of assigned registers. 1074 unsigned freeIntRegs = 6, freeSSERegs = 8; 1075 1076 // If the return value is indirect, then the hidden argument is consuming one 1077 // integer register. 1078 if (FI.getReturnInfo().isIndirect()) 1079 --freeIntRegs; 1080 1081 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 1082 // get assigned (in left-to-right order) for passing as follows... 1083 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 1084 it != ie; ++it) { 1085 unsigned neededInt, neededSSE; 1086 it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE); 1087 1088 // AMD64-ABI 3.2.3p3: If there are no registers available for any 1089 // eightbyte of an argument, the whole argument is passed on the 1090 // stack. If registers have already been assigned for some 1091 // eightbytes of such an argument, the assignments get reverted. 1092 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 1093 freeIntRegs -= neededInt; 1094 freeSSERegs -= neededSSE; 1095 } else { 1096 it->info = getIndirectResult(it->type, Context); 1097 } 1098 } 1099} 1100 1101static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 1102 QualType Ty, 1103 CodeGenFunction &CGF) { 1104 llvm::Value *overflow_arg_area_p = 1105 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 1106 llvm::Value *overflow_arg_area = 1107 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 1108 1109 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 1110 // byte boundary if alignment needed by type exceeds 8 byte boundary. 1111 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 1112 if (Align > 8) { 1113 // Note that we follow the ABI & gcc here, even though the type 1114 // could in theory have an alignment greater than 16. This case 1115 // shouldn't ever matter in practice. 1116 1117 // overflow_arg_area = (overflow_arg_area + 15) & ~15; 1118 llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15); 1119 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 1120 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 1121 llvm::Type::Int64Ty); 1122 llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL); 1123 overflow_arg_area = 1124 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1125 overflow_arg_area->getType(), 1126 "overflow_arg_area.align"); 1127 } 1128 1129 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 1130 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 1131 llvm::Value *Res = 1132 CGF.Builder.CreateBitCast(overflow_arg_area, 1133 llvm::PointerType::getUnqual(LTy)); 1134 1135 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 1136 // l->overflow_arg_area + sizeof(type). 1137 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 1138 // an 8 byte boundary. 1139 1140 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 1141 llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1142 (SizeInBytes + 7) & ~7); 1143 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 1144 "overflow_arg_area.next"); 1145 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 1146 1147 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 1148 return Res; 1149} 1150 1151llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1152 CodeGenFunction &CGF) const { 1153 // Assume that va_list type is correct; should be pointer to LLVM type: 1154 // struct { 1155 // i32 gp_offset; 1156 // i32 fp_offset; 1157 // i8* overflow_arg_area; 1158 // i8* reg_save_area; 1159 // }; 1160 unsigned neededInt, neededSSE; 1161 ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), 1162 neededInt, neededSSE); 1163 1164 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 1165 // in the registers. If not go to step 7. 1166 if (!neededInt && !neededSSE) 1167 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 1168 1169 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 1170 // general purpose registers needed to pass type and num_fp to hold 1171 // the number of floating point registers needed. 1172 1173 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 1174 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 1175 // l->fp_offset > 304 - num_fp * 16 go to step 7. 1176 // 1177 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 1178 // register save space). 1179 1180 llvm::Value *InRegs = 0; 1181 llvm::Value *gp_offset_p = 0, *gp_offset = 0; 1182 llvm::Value *fp_offset_p = 0, *fp_offset = 0; 1183 if (neededInt) { 1184 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 1185 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 1186 InRegs = 1187 CGF.Builder.CreateICmpULE(gp_offset, 1188 llvm::ConstantInt::get(llvm::Type::Int32Ty, 1189 48 - neededInt * 8), 1190 "fits_in_gp"); 1191 } 1192 1193 if (neededSSE) { 1194 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 1195 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 1196 llvm::Value *FitsInFP = 1197 CGF.Builder.CreateICmpULE(fp_offset, 1198 llvm::ConstantInt::get(llvm::Type::Int32Ty, 1199 176 - neededSSE * 16), 1200 "fits_in_fp"); 1201 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 1202 } 1203 1204 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 1205 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 1206 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 1207 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 1208 1209 // Emit code to load the value if it was passed in registers. 1210 1211 CGF.EmitBlock(InRegBlock); 1212 1213 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 1214 // an offset of l->gp_offset and/or l->fp_offset. This may require 1215 // copying to a temporary location in case the parameter is passed 1216 // in different register classes or requires an alignment greater 1217 // than 8 for general purpose registers and 16 for XMM registers. 1218 // 1219 // FIXME: This really results in shameful code when we end up needing to 1220 // collect arguments from different places; often what should result in a 1221 // simple assembling of a structure from scattered addresses has many more 1222 // loads than necessary. Can we clean this up? 1223 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 1224 llvm::Value *RegAddr = 1225 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 1226 "reg_save_area"); 1227 if (neededInt && neededSSE) { 1228 // FIXME: Cleanup. 1229 assert(AI.isCoerce() && "Unexpected ABI info for mixed regs"); 1230 const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 1231 llvm::Value *Tmp = CGF.CreateTempAlloca(ST); 1232 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 1233 const llvm::Type *TyLo = ST->getElementType(0); 1234 const llvm::Type *TyHi = ST->getElementType(1); 1235 assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) && 1236 "Unexpected ABI info for mixed regs"); 1237 const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 1238 const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 1239 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 1240 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 1241 llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr; 1242 llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr; 1243 llvm::Value *V = 1244 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 1245 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 1246 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 1247 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 1248 1249 RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy)); 1250 } else if (neededInt) { 1251 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 1252 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 1253 llvm::PointerType::getUnqual(LTy)); 1254 } else { 1255 if (neededSSE == 1) { 1256 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 1257 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 1258 llvm::PointerType::getUnqual(LTy)); 1259 } else { 1260 assert(neededSSE == 2 && "Invalid number of needed registers!"); 1261 // SSE registers are spaced 16 bytes apart in the register save 1262 // area, we need to collect the two eightbytes together. 1263 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 1264 llvm::Value *RegAddrHi = 1265 CGF.Builder.CreateGEP(RegAddrLo, 1266 llvm::ConstantInt::get(llvm::Type::Int32Ty, 16)); 1267 const llvm::Type *DblPtrTy = 1268 llvm::PointerType::getUnqual(llvm::Type::DoubleTy); 1269 const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy, 1270 llvm::Type::DoubleTy, 1271 NULL); 1272 llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); 1273 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 1274 DblPtrTy)); 1275 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 1276 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 1277 DblPtrTy)); 1278 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 1279 RegAddr = CGF.Builder.CreateBitCast(Tmp, 1280 llvm::PointerType::getUnqual(LTy)); 1281 } 1282 } 1283 1284 // AMD64-ABI 3.5.7p5: Step 5. Set: 1285 // l->gp_offset = l->gp_offset + num_gp * 8 1286 // l->fp_offset = l->fp_offset + num_fp * 16. 1287 if (neededInt) { 1288 llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1289 neededInt * 8); 1290 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 1291 gp_offset_p); 1292 } 1293 if (neededSSE) { 1294 llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1295 neededSSE * 16); 1296 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 1297 fp_offset_p); 1298 } 1299 CGF.EmitBranch(ContBlock); 1300 1301 // Emit code to load the value if it was passed in memory. 1302 1303 CGF.EmitBlock(InMemBlock); 1304 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 1305 1306 // Return the appropriate result. 1307 1308 CGF.EmitBlock(ContBlock); 1309 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 1310 "vaarg.addr"); 1311 ResAddr->reserveOperandSpace(2); 1312 ResAddr->addIncoming(RegAddr, InRegBlock); 1313 ResAddr->addIncoming(MemAddr, InMemBlock); 1314 1315 return ResAddr; 1316} 1317 1318// ABI Info for PIC16 1319class PIC16ABIInfo : public ABIInfo { 1320 ABIArgInfo classifyReturnType(QualType RetTy, 1321 ASTContext &Context) const; 1322 1323 ABIArgInfo classifyArgumentType(QualType RetTy, 1324 ASTContext &Context) const; 1325 1326 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { 1327 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); 1328 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 1329 it != ie; ++it) 1330 it->info = classifyArgumentType(it->type, Context); 1331 } 1332 1333 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1334 CodeGenFunction &CGF) const; 1335 1336}; 1337 1338ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy, 1339 ASTContext &Context) const { 1340 if (RetTy->isVoidType()) { 1341 return ABIArgInfo::getIgnore(); 1342 } else { 1343 return ABIArgInfo::getDirect(); 1344 } 1345} 1346 1347ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty, 1348 ASTContext &Context) const { 1349 return ABIArgInfo::getDirect(); 1350} 1351 1352llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1353 CodeGenFunction &CGF) const { 1354 return 0; 1355} 1356 1357class ARMABIInfo : public ABIInfo { 1358 ABIArgInfo classifyReturnType(QualType RetTy, 1359 ASTContext &Context) const; 1360 1361 ABIArgInfo classifyArgumentType(QualType RetTy, 1362 ASTContext &Context) const; 1363 1364 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const; 1365 1366 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1367 CodeGenFunction &CGF) const; 1368}; 1369 1370void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { 1371 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); 1372 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 1373 it != ie; ++it) { 1374 it->info = classifyArgumentType(it->type, Context); 1375 } 1376} 1377 1378ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 1379 ASTContext &Context) const { 1380 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 1381 return ABIArgInfo::getDirect(); 1382 } 1383 // FIXME: This is kind of nasty... but there isn't much choice because the ARM 1384 // backend doesn't support byval. 1385 // FIXME: This doesn't handle alignment > 64 bits. 1386 const llvm::Type* ElemTy; 1387 unsigned SizeRegs; 1388 if (Context.getTypeAlign(Ty) > 32) { 1389 ElemTy = llvm::Type::Int64Ty; 1390 SizeRegs = (Context.getTypeSize(Ty) + 63) / 64; 1391 } else { 1392 ElemTy = llvm::Type::Int32Ty; 1393 SizeRegs = (Context.getTypeSize(Ty) + 31) / 32; 1394 } 1395 std::vector<const llvm::Type*> LLVMFields; 1396 LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs)); 1397 const llvm::Type* STy = llvm::StructType::get(LLVMFields, true); 1398 return ABIArgInfo::getCoerce(STy); 1399} 1400 1401ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 1402 ASTContext &Context) const { 1403 if (RetTy->isVoidType()) { 1404 return ABIArgInfo::getIgnore(); 1405 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1406 // Aggregates <= 4 bytes are returned in r0; other aggregates 1407 // are returned indirectly. 1408 uint64_t Size = Context.getTypeSize(RetTy); 1409 if (Size <= 32) 1410 return ABIArgInfo::getCoerce(llvm::Type::Int32Ty); 1411 return ABIArgInfo::getIndirect(0); 1412 } else { 1413 return ABIArgInfo::getDirect(); 1414 } 1415} 1416 1417llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1418 CodeGenFunction &CGF) const { 1419 // FIXME: Need to handle alignment 1420 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 1421 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 1422 1423 CGBuilderTy &Builder = CGF.Builder; 1424 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1425 "ap"); 1426 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1427 llvm::Type *PTy = 1428 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1429 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1430 1431 uint64_t Offset = 1432 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 1433 llvm::Value *NextAddr = 1434 Builder.CreateGEP(Addr, 1435 llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset), 1436 "ap.next"); 1437 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1438 1439 return AddrTyped; 1440} 1441 1442ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy, 1443 ASTContext &Context) const { 1444 if (RetTy->isVoidType()) { 1445 return ABIArgInfo::getIgnore(); 1446 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1447 return ABIArgInfo::getIndirect(0); 1448 } else { 1449 return ABIArgInfo::getDirect(); 1450 } 1451} 1452 1453ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty, 1454 ASTContext &Context) const { 1455 if (CodeGenFunction::hasAggregateLLVMType(Ty)) { 1456 return ABIArgInfo::getIndirect(0); 1457 } else { 1458 return ABIArgInfo::getDirect(); 1459 } 1460} 1461 1462llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1463 CodeGenFunction &CGF) const { 1464 return 0; 1465} 1466 1467const ABIInfo &CodeGenTypes::getABIInfo() const { 1468 if (TheABIInfo) 1469 return *TheABIInfo; 1470 1471 // For now we just cache this in the CodeGenTypes and don't bother 1472 // to free it. 1473 const char *TargetPrefix = getContext().Target.getTargetPrefix(); 1474 if (strcmp(TargetPrefix, "x86") == 0) { 1475 bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin"); 1476 switch (getContext().Target.getPointerWidth(0)) { 1477 case 32: 1478 return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin)); 1479 case 64: 1480 return *(TheABIInfo = new X86_64ABIInfo()); 1481 } 1482 } else if (strcmp(TargetPrefix, "arm") == 0) { 1483 // FIXME: Support for OABI? 1484 return *(TheABIInfo = new ARMABIInfo()); 1485 } else if (strcmp(TargetPrefix, "pic16") == 0) { 1486 return *(TheABIInfo = new PIC16ABIInfo()); 1487 } 1488 1489 return *(TheABIInfo = new DefaultABIInfo); 1490} 1491 1492/***/ 1493 1494CGFunctionInfo::CGFunctionInfo(QualType ResTy, 1495 const llvm::SmallVector<QualType, 16> &ArgTys) { 1496 NumArgs = ArgTys.size(); 1497 Args = new ArgInfo[1 + NumArgs]; 1498 Args[0].type = ResTy; 1499 for (unsigned i = 0; i < NumArgs; ++i) 1500 Args[1 + i].type = ArgTys[i]; 1501} 1502 1503/***/ 1504 1505void CodeGenTypes::GetExpandedTypes(QualType Ty, 1506 std::vector<const llvm::Type*> &ArgTys) { 1507 const RecordType *RT = Ty->getAsStructureType(); 1508 assert(RT && "Can only expand structure types."); 1509 const RecordDecl *RD = RT->getDecl(); 1510 assert(!RD->hasFlexibleArrayMember() && 1511 "Cannot expand structure with flexible array."); 1512 1513 for (RecordDecl::field_iterator i = RD->field_begin(Context), 1514 e = RD->field_end(Context); i != e; ++i) { 1515 const FieldDecl *FD = *i; 1516 assert(!FD->isBitField() && 1517 "Cannot expand structure with bit-field members."); 1518 1519 QualType FT = FD->getType(); 1520 if (CodeGenFunction::hasAggregateLLVMType(FT)) { 1521 GetExpandedTypes(FT, ArgTys); 1522 } else { 1523 ArgTys.push_back(ConvertType(FT)); 1524 } 1525 } 1526} 1527 1528llvm::Function::arg_iterator 1529CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1530 llvm::Function::arg_iterator AI) { 1531 const RecordType *RT = Ty->getAsStructureType(); 1532 assert(RT && "Can only expand structure types."); 1533 1534 RecordDecl *RD = RT->getDecl(); 1535 assert(LV.isSimple() && 1536 "Unexpected non-simple lvalue during struct expansion."); 1537 llvm::Value *Addr = LV.getAddress(); 1538 for (RecordDecl::field_iterator i = RD->field_begin(getContext()), 1539 e = RD->field_end(getContext()); i != e; ++i) { 1540 FieldDecl *FD = *i; 1541 QualType FT = FD->getType(); 1542 1543 // FIXME: What are the right qualifiers here? 1544 LValue LV = EmitLValueForField(Addr, FD, false, 0); 1545 if (CodeGenFunction::hasAggregateLLVMType(FT)) { 1546 AI = ExpandTypeFromArgs(FT, LV, AI); 1547 } else { 1548 EmitStoreThroughLValue(RValue::get(AI), LV, FT); 1549 ++AI; 1550 } 1551 } 1552 1553 return AI; 1554} 1555 1556void 1557CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 1558 llvm::SmallVector<llvm::Value*, 16> &Args) { 1559 const RecordType *RT = Ty->getAsStructureType(); 1560 assert(RT && "Can only expand structure types."); 1561 1562 RecordDecl *RD = RT->getDecl(); 1563 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 1564 llvm::Value *Addr = RV.getAggregateAddr(); 1565 for (RecordDecl::field_iterator i = RD->field_begin(getContext()), 1566 e = RD->field_end(getContext()); i != e; ++i) { 1567 FieldDecl *FD = *i; 1568 QualType FT = FD->getType(); 1569 1570 // FIXME: What are the right qualifiers here? 1571 LValue LV = EmitLValueForField(Addr, FD, false, 0); 1572 if (CodeGenFunction::hasAggregateLLVMType(FT)) { 1573 ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args); 1574 } else { 1575 RValue RV = EmitLoadOfLValue(LV, FT); 1576 assert(RV.isScalar() && 1577 "Unexpected non-scalar rvalue during struct expansion."); 1578 Args.push_back(RV.getScalarVal()); 1579 } 1580 } 1581} 1582 1583/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1584/// a pointer to an object of type \arg Ty. 1585/// 1586/// This safely handles the case when the src type is smaller than the 1587/// destination type; in this situation the values of bits which not 1588/// present in the src are undefined. 1589static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 1590 const llvm::Type *Ty, 1591 CodeGenFunction &CGF) { 1592 const llvm::Type *SrcTy = 1593 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 1594 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 1595 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); 1596 1597 // If load is legal, just bitcast the src pointer. 1598 if (SrcSize >= DstSize) { 1599 // Generally SrcSize is never greater than DstSize, since this means we are 1600 // losing bits. However, this can happen in cases where the structure has 1601 // additional padding, for example due to a user specified alignment. 1602 // 1603 // FIXME: Assert that we aren't truncating non-padding bits when have access 1604 // to that information. 1605 llvm::Value *Casted = 1606 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 1607 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 1608 // FIXME: Use better alignment / avoid requiring aligned load. 1609 Load->setAlignment(1); 1610 return Load; 1611 } else { 1612 // Otherwise do coercion through memory. This is stupid, but 1613 // simple. 1614 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 1615 llvm::Value *Casted = 1616 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); 1617 llvm::StoreInst *Store = 1618 CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); 1619 // FIXME: Use better alignment / avoid requiring aligned store. 1620 Store->setAlignment(1); 1621 return CGF.Builder.CreateLoad(Tmp); 1622 } 1623} 1624 1625/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1626/// where the source and destination may have different types. 1627/// 1628/// This safely handles the case when the src type is larger than the 1629/// destination type; the upper bits of the src will be lost. 1630static void CreateCoercedStore(llvm::Value *Src, 1631 llvm::Value *DstPtr, 1632 CodeGenFunction &CGF) { 1633 const llvm::Type *SrcTy = Src->getType(); 1634 const llvm::Type *DstTy = 1635 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 1636 1637 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 1638 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); 1639 1640 // If store is legal, just bitcast the src pointer. 1641 if (SrcSize >= DstSize) { 1642 // Generally SrcSize is never greater than DstSize, since this means we are 1643 // losing bits. However, this can happen in cases where the structure has 1644 // additional padding, for example due to a user specified alignment. 1645 // 1646 // FIXME: Assert that we aren't truncating non-padding bits when have access 1647 // to that information. 1648 llvm::Value *Casted = 1649 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 1650 // FIXME: Use better alignment / avoid requiring aligned store. 1651 CGF.Builder.CreateStore(Src, Casted)->setAlignment(1); 1652 } else { 1653 // Otherwise do coercion through memory. This is stupid, but 1654 // simple. 1655 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 1656 CGF.Builder.CreateStore(Src, Tmp); 1657 llvm::Value *Casted = 1658 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); 1659 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 1660 // FIXME: Use better alignment / avoid requiring aligned load. 1661 Load->setAlignment(1); 1662 CGF.Builder.CreateStore(Load, DstPtr); 1663 } 1664} 1665 1666/***/ 1667 1668bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) { 1669 return FI.getReturnInfo().isIndirect(); 1670} 1671 1672const llvm::FunctionType * 1673CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) { 1674 std::vector<const llvm::Type*> ArgTys; 1675 1676 const llvm::Type *ResultType = 0; 1677 1678 QualType RetTy = FI.getReturnType(); 1679 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1680 switch (RetAI.getKind()) { 1681 case ABIArgInfo::Expand: 1682 assert(0 && "Invalid ABI kind for return argument"); 1683 1684 case ABIArgInfo::Direct: 1685 ResultType = ConvertType(RetTy); 1686 break; 1687 1688 case ABIArgInfo::Indirect: { 1689 assert(!RetAI.getIndirectAlign() && "Align unused on indirect return."); 1690 ResultType = llvm::Type::VoidTy; 1691 const llvm::Type *STy = ConvertType(RetTy); 1692 ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace())); 1693 break; 1694 } 1695 1696 case ABIArgInfo::Ignore: 1697 ResultType = llvm::Type::VoidTy; 1698 break; 1699 1700 case ABIArgInfo::Coerce: 1701 ResultType = RetAI.getCoerceToType(); 1702 break; 1703 } 1704 1705 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1706 ie = FI.arg_end(); it != ie; ++it) { 1707 const ABIArgInfo &AI = it->info; 1708 1709 switch (AI.getKind()) { 1710 case ABIArgInfo::Ignore: 1711 break; 1712 1713 case ABIArgInfo::Coerce: 1714 ArgTys.push_back(AI.getCoerceToType()); 1715 break; 1716 1717 case ABIArgInfo::Indirect: { 1718 // indirect arguments are always on the stack, which is addr space #0. 1719 const llvm::Type *LTy = ConvertTypeForMem(it->type); 1720 ArgTys.push_back(llvm::PointerType::getUnqual(LTy)); 1721 break; 1722 } 1723 1724 case ABIArgInfo::Direct: 1725 ArgTys.push_back(ConvertType(it->type)); 1726 break; 1727 1728 case ABIArgInfo::Expand: 1729 GetExpandedTypes(it->type, ArgTys); 1730 break; 1731 } 1732 } 1733 1734 return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic); 1735} 1736 1737void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 1738 const Decl *TargetDecl, 1739 AttributeListType &PAL) { 1740 unsigned FuncAttrs = 0; 1741 unsigned RetAttrs = 0; 1742 1743 // FIXME: handle sseregparm someday... 1744 if (TargetDecl) { 1745 if (TargetDecl->hasAttr<NoThrowAttr>()) 1746 FuncAttrs |= llvm::Attribute::NoUnwind; 1747 if (TargetDecl->hasAttr<NoReturnAttr>()) 1748 FuncAttrs |= llvm::Attribute::NoReturn; 1749 if (TargetDecl->hasAttr<ConstAttr>()) 1750 FuncAttrs |= llvm::Attribute::ReadNone; 1751 else if (TargetDecl->hasAttr<PureAttr>()) 1752 FuncAttrs |= llvm::Attribute::ReadOnly; 1753 } 1754 1755 if (CompileOpts.DisableRedZone) 1756 FuncAttrs |= llvm::Attribute::NoRedZone; 1757 1758 QualType RetTy = FI.getReturnType(); 1759 unsigned Index = 1; 1760 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1761 switch (RetAI.getKind()) { 1762 case ABIArgInfo::Direct: 1763 if (RetTy->isPromotableIntegerType()) { 1764 if (RetTy->isSignedIntegerType()) { 1765 RetAttrs |= llvm::Attribute::SExt; 1766 } else if (RetTy->isUnsignedIntegerType()) { 1767 RetAttrs |= llvm::Attribute::ZExt; 1768 } 1769 } 1770 break; 1771 1772 case ABIArgInfo::Indirect: 1773 PAL.push_back(llvm::AttributeWithIndex::get(Index, 1774 llvm::Attribute::StructRet | 1775 llvm::Attribute::NoAlias)); 1776 ++Index; 1777 // sret disables readnone and readonly 1778 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 1779 llvm::Attribute::ReadNone); 1780 break; 1781 1782 case ABIArgInfo::Ignore: 1783 case ABIArgInfo::Coerce: 1784 break; 1785 1786 case ABIArgInfo::Expand: 1787 assert(0 && "Invalid ABI kind for return argument"); 1788 } 1789 1790 if (RetAttrs) 1791 PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); 1792 1793 // FIXME: we need to honour command line settings also... 1794 // FIXME: RegParm should be reduced in case of nested functions and/or global 1795 // register variable. 1796 signed RegParm = 0; 1797 if (TargetDecl) 1798 if (const RegparmAttr *RegParmAttr = TargetDecl->getAttr<RegparmAttr>()) 1799 RegParm = RegParmAttr->getNumParams(); 1800 1801 unsigned PointerWidth = getContext().Target.getPointerWidth(0); 1802 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1803 ie = FI.arg_end(); it != ie; ++it) { 1804 QualType ParamType = it->type; 1805 const ABIArgInfo &AI = it->info; 1806 unsigned Attributes = 0; 1807 1808 switch (AI.getKind()) { 1809 case ABIArgInfo::Coerce: 1810 break; 1811 1812 case ABIArgInfo::Indirect: 1813 Attributes |= llvm::Attribute::ByVal; 1814 Attributes |= 1815 llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); 1816 // byval disables readnone and readonly. 1817 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 1818 llvm::Attribute::ReadNone); 1819 break; 1820 1821 case ABIArgInfo::Direct: 1822 if (ParamType->isPromotableIntegerType()) { 1823 if (ParamType->isSignedIntegerType()) { 1824 Attributes |= llvm::Attribute::SExt; 1825 } else if (ParamType->isUnsignedIntegerType()) { 1826 Attributes |= llvm::Attribute::ZExt; 1827 } 1828 } 1829 if (RegParm > 0 && 1830 (ParamType->isIntegerType() || ParamType->isPointerType())) { 1831 RegParm -= 1832 (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; 1833 if (RegParm >= 0) 1834 Attributes |= llvm::Attribute::InReg; 1835 } 1836 // FIXME: handle sseregparm someday... 1837 break; 1838 1839 case ABIArgInfo::Ignore: 1840 // Skip increment, no matching LLVM parameter. 1841 continue; 1842 1843 case ABIArgInfo::Expand: { 1844 std::vector<const llvm::Type*> Tys; 1845 // FIXME: This is rather inefficient. Do we ever actually need to do 1846 // anything here? The result should be just reconstructed on the other 1847 // side, so extension should be a non-issue. 1848 getTypes().GetExpandedTypes(ParamType, Tys); 1849 Index += Tys.size(); 1850 continue; 1851 } 1852 } 1853 1854 if (Attributes) 1855 PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes)); 1856 ++Index; 1857 } 1858 if (FuncAttrs) 1859 PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); 1860} 1861 1862void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1863 llvm::Function *Fn, 1864 const FunctionArgList &Args) { 1865 // FIXME: We no longer need the types from FunctionArgList; lift up and 1866 // simplify. 1867 1868 // Emit allocs for param decls. Give the LLVM Argument nodes names. 1869 llvm::Function::arg_iterator AI = Fn->arg_begin(); 1870 1871 // Name the struct return argument. 1872 if (CGM.ReturnTypeUsesSret(FI)) { 1873 AI->setName("agg.result"); 1874 ++AI; 1875 } 1876 1877 assert(FI.arg_size() == Args.size() && 1878 "Mismatch between function signature & arguments."); 1879 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1880 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1881 i != e; ++i, ++info_it) { 1882 const VarDecl *Arg = i->first; 1883 QualType Ty = info_it->type; 1884 const ABIArgInfo &ArgI = info_it->info; 1885 1886 switch (ArgI.getKind()) { 1887 case ABIArgInfo::Indirect: { 1888 llvm::Value* V = AI; 1889 if (hasAggregateLLVMType(Ty)) { 1890 // Do nothing, aggregates and complex variables are accessed by 1891 // reference. 1892 } else { 1893 // Load scalar value from indirect argument. 1894 V = EmitLoadOfScalar(V, false, Ty); 1895 if (!getContext().typesAreCompatible(Ty, Arg->getType())) { 1896 // This must be a promotion, for something like 1897 // "void a(x) short x; {..." 1898 V = EmitScalarConversion(V, Ty, Arg->getType()); 1899 } 1900 } 1901 EmitParmDecl(*Arg, V); 1902 break; 1903 } 1904 1905 case ABIArgInfo::Direct: { 1906 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1907 llvm::Value* V = AI; 1908 if (hasAggregateLLVMType(Ty)) { 1909 // Create a temporary alloca to hold the argument; the rest of 1910 // codegen expects to access aggregates & complex values by 1911 // reference. 1912 V = CreateTempAlloca(ConvertTypeForMem(Ty)); 1913 Builder.CreateStore(AI, V); 1914 } else { 1915 if (!getContext().typesAreCompatible(Ty, Arg->getType())) { 1916 // This must be a promotion, for something like 1917 // "void a(x) short x; {..." 1918 V = EmitScalarConversion(V, Ty, Arg->getType()); 1919 } 1920 } 1921 EmitParmDecl(*Arg, V); 1922 break; 1923 } 1924 1925 case ABIArgInfo::Expand: { 1926 // If this structure was expanded into multiple arguments then 1927 // we need to create a temporary and reconstruct it from the 1928 // arguments. 1929 std::string Name = Arg->getNameAsString(); 1930 llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(Ty), 1931 (Name + ".addr").c_str()); 1932 // FIXME: What are the right qualifiers here? 1933 llvm::Function::arg_iterator End = 1934 ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp,0), AI); 1935 EmitParmDecl(*Arg, Temp); 1936 1937 // Name the arguments used in expansion and increment AI. 1938 unsigned Index = 0; 1939 for (; AI != End; ++AI, ++Index) 1940 AI->setName(Name + "." + llvm::utostr(Index)); 1941 continue; 1942 } 1943 1944 case ABIArgInfo::Ignore: 1945 // Initialize the local variable appropriately. 1946 if (hasAggregateLLVMType(Ty)) { 1947 EmitParmDecl(*Arg, CreateTempAlloca(ConvertTypeForMem(Ty))); 1948 } else { 1949 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType()))); 1950 } 1951 1952 // Skip increment, no matching LLVM parameter. 1953 continue; 1954 1955 case ABIArgInfo::Coerce: { 1956 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1957 // FIXME: This is very wasteful; EmitParmDecl is just going to drop the 1958 // result in a new alloca anyway, so we could just store into that 1959 // directly if we broke the abstraction down more. 1960 llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(Ty), "coerce"); 1961 CreateCoercedStore(AI, V, *this); 1962 // Match to what EmitParmDecl is expecting for this type. 1963 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 1964 V = EmitLoadOfScalar(V, false, Ty); 1965 if (!getContext().typesAreCompatible(Ty, Arg->getType())) { 1966 // This must be a promotion, for something like 1967 // "void a(x) short x; {..." 1968 V = EmitScalarConversion(V, Ty, Arg->getType()); 1969 } 1970 } 1971 EmitParmDecl(*Arg, V); 1972 break; 1973 } 1974 } 1975 1976 ++AI; 1977 } 1978 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1979} 1980 1981void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 1982 llvm::Value *ReturnValue) { 1983 llvm::Value *RV = 0; 1984 1985 // Functions with no result always return void. 1986 if (ReturnValue) { 1987 QualType RetTy = FI.getReturnType(); 1988 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1989 1990 switch (RetAI.getKind()) { 1991 case ABIArgInfo::Indirect: 1992 if (RetTy->isAnyComplexType()) { 1993 ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); 1994 StoreComplexToAddr(RT, CurFn->arg_begin(), false); 1995 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1996 EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy); 1997 } else { 1998 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), 1999 false, RetTy); 2000 } 2001 break; 2002 2003 case ABIArgInfo::Direct: 2004 // The internal return value temp always will have 2005 // pointer-to-return-type type. 2006 RV = Builder.CreateLoad(ReturnValue); 2007 break; 2008 2009 case ABIArgInfo::Ignore: 2010 break; 2011 2012 case ABIArgInfo::Coerce: 2013 RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this); 2014 break; 2015 2016 case ABIArgInfo::Expand: 2017 assert(0 && "Invalid ABI kind for return argument"); 2018 } 2019 } 2020 2021 if (RV) { 2022 Builder.CreateRet(RV); 2023 } else { 2024 Builder.CreateRetVoid(); 2025 } 2026} 2027 2028RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) { 2029 if (ArgType->isReferenceType()) 2030 return EmitReferenceBindingToExpr(E, ArgType); 2031 2032 return EmitAnyExprToTemp(E); 2033} 2034 2035RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 2036 llvm::Value *Callee, 2037 const CallArgList &CallArgs, 2038 const Decl *TargetDecl) { 2039 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 2040 llvm::SmallVector<llvm::Value*, 16> Args; 2041 2042 // Handle struct-return functions by passing a pointer to the 2043 // location that we would like to return into. 2044 QualType RetTy = CallInfo.getReturnType(); 2045 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 2046 if (CGM.ReturnTypeUsesSret(CallInfo)) { 2047 // Create a temporary alloca to hold the result of the call. :( 2048 Args.push_back(CreateTempAlloca(ConvertTypeForMem(RetTy))); 2049 } 2050 2051 assert(CallInfo.arg_size() == CallArgs.size() && 2052 "Mismatch between function signature & arguments."); 2053 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 2054 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 2055 I != E; ++I, ++info_it) { 2056 const ABIArgInfo &ArgInfo = info_it->info; 2057 RValue RV = I->first; 2058 2059 switch (ArgInfo.getKind()) { 2060 case ABIArgInfo::Indirect: 2061 if (RV.isScalar() || RV.isComplex()) { 2062 // Make a temporary alloca to pass the argument. 2063 Args.push_back(CreateTempAlloca(ConvertTypeForMem(I->second))); 2064 if (RV.isScalar()) 2065 EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, I->second); 2066 else 2067 StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); 2068 } else { 2069 Args.push_back(RV.getAggregateAddr()); 2070 } 2071 break; 2072 2073 case ABIArgInfo::Direct: 2074 if (RV.isScalar()) { 2075 Args.push_back(RV.getScalarVal()); 2076 } else if (RV.isComplex()) { 2077 llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second)); 2078 Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0); 2079 Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1); 2080 Args.push_back(Tmp); 2081 } else { 2082 Args.push_back(Builder.CreateLoad(RV.getAggregateAddr())); 2083 } 2084 break; 2085 2086 case ABIArgInfo::Ignore: 2087 break; 2088 2089 case ABIArgInfo::Coerce: { 2090 // FIXME: Avoid the conversion through memory if possible. 2091 llvm::Value *SrcPtr; 2092 if (RV.isScalar()) { 2093 SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce"); 2094 EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, I->second); 2095 } else if (RV.isComplex()) { 2096 SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce"); 2097 StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); 2098 } else 2099 SrcPtr = RV.getAggregateAddr(); 2100 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 2101 *this)); 2102 break; 2103 } 2104 2105 case ABIArgInfo::Expand: 2106 ExpandTypeToArgs(I->second, RV, Args); 2107 break; 2108 } 2109 } 2110 2111 llvm::BasicBlock *InvokeDest = getInvokeDest(); 2112 CodeGen::AttributeListType AttributeList; 2113 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList); 2114 llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), 2115 AttributeList.end()); 2116 2117 llvm::CallSite CS; 2118 if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) { 2119 CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size()); 2120 } else { 2121 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 2122 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, 2123 Args.data(), Args.data()+Args.size()); 2124 EmitBlock(Cont); 2125 } 2126 2127 CS.setAttributes(Attrs); 2128 if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) 2129 CS.setCallingConv(F->getCallingConv()); 2130 2131 // If the call doesn't return, finish the basic block and clear the 2132 // insertion point; this allows the rest of IRgen to discard 2133 // unreachable code. 2134 if (CS.doesNotReturn()) { 2135 Builder.CreateUnreachable(); 2136 Builder.ClearInsertionPoint(); 2137 2138 // FIXME: For now, emit a dummy basic block because expr emitters in 2139 // generally are not ready to handle emitting expressions at unreachable 2140 // points. 2141 EnsureInsertPoint(); 2142 2143 // Return a reasonable RValue. 2144 return GetUndefRValue(RetTy); 2145 } 2146 2147 llvm::Instruction *CI = CS.getInstruction(); 2148 if (Builder.isNamePreserving() && CI->getType() != llvm::Type::VoidTy) 2149 CI->setName("call"); 2150 2151 switch (RetAI.getKind()) { 2152 case ABIArgInfo::Indirect: 2153 if (RetTy->isAnyComplexType()) 2154 return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); 2155 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 2156 return RValue::getAggregate(Args[0]); 2157 return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy)); 2158 2159 case ABIArgInfo::Direct: 2160 if (RetTy->isAnyComplexType()) { 2161 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 2162 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 2163 return RValue::getComplex(std::make_pair(Real, Imag)); 2164 } 2165 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 2166 llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "agg.tmp"); 2167 Builder.CreateStore(CI, V); 2168 return RValue::getAggregate(V); 2169 } 2170 return RValue::get(CI); 2171 2172 case ABIArgInfo::Ignore: 2173 // If we are ignoring an argument that had a result, make sure to 2174 // construct the appropriate return value for our caller. 2175 return GetUndefRValue(RetTy); 2176 2177 case ABIArgInfo::Coerce: { 2178 // FIXME: Avoid the conversion through memory if possible. 2179 llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "coerce"); 2180 CreateCoercedStore(CI, V, *this); 2181 if (RetTy->isAnyComplexType()) 2182 return RValue::getComplex(LoadComplexFromAddr(V, false)); 2183 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 2184 return RValue::getAggregate(V); 2185 return RValue::get(EmitLoadOfScalar(V, false, RetTy)); 2186 } 2187 2188 case ABIArgInfo::Expand: 2189 assert(0 && "Invalid ABI kind for return argument"); 2190 } 2191 2192 assert(0 && "Unhandled ABIArgInfo::Kind"); 2193 return RValue::get(0); 2194} 2195 2196/* VarArg handling */ 2197 2198llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 2199 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 2200} 2201