1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/CommentDiagnostic.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/EvaluatedExprVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36#include "clang/Sema/CXXFieldCollector.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/DelayedDiagnostic.h"
39#include "clang/Sema/Initialization.h"
40#include "clang/Sema/Lookup.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/Scope.h"
43#include "clang/Sema/ScopeInfo.h"
44#include "clang/Sema/Template.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/ADT/Triple.h"
47#include <algorithm>
48#include <cstring>
49#include <functional>
50using namespace clang;
51using namespace sema;
52
53Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
54  if (OwnedType) {
55    Decl *Group[2] = { OwnedType, Ptr };
56    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
57  }
58
59  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
60}
61
62namespace {
63
64class TypeNameValidatorCCC : public CorrectionCandidateCallback {
65 public:
66  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
67                       bool AllowTemplates=false)
68      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
69        AllowClassTemplates(AllowTemplates) {
70    WantExpressionKeywords = false;
71    WantCXXNamedCasts = false;
72    WantRemainingKeywords = false;
73  }
74
75  bool ValidateCandidate(const TypoCorrection &candidate) override {
76    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
77      bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
78      bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
79      return (IsType || AllowedTemplate) &&
80             (AllowInvalidDecl || !ND->isInvalidDecl());
81    }
82    return !WantClassName && candidate.isKeyword();
83  }
84
85 private:
86  bool AllowInvalidDecl;
87  bool WantClassName;
88  bool AllowClassTemplates;
89};
90
91}
92
93/// \brief Determine whether the token kind starts a simple-type-specifier.
94bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
95  switch (Kind) {
96  // FIXME: Take into account the current language when deciding whether a
97  // token kind is a valid type specifier
98  case tok::kw_short:
99  case tok::kw_long:
100  case tok::kw___int64:
101  case tok::kw___int128:
102  case tok::kw_signed:
103  case tok::kw_unsigned:
104  case tok::kw_void:
105  case tok::kw_char:
106  case tok::kw_int:
107  case tok::kw_half:
108  case tok::kw_float:
109  case tok::kw_double:
110  case tok::kw_wchar_t:
111  case tok::kw_bool:
112  case tok::kw___underlying_type:
113  case tok::kw___auto_type:
114    return true;
115
116  case tok::annot_typename:
117  case tok::kw_char16_t:
118  case tok::kw_char32_t:
119  case tok::kw_typeof:
120  case tok::annot_decltype:
121  case tok::kw_decltype:
122    return getLangOpts().CPlusPlus;
123
124  default:
125    break;
126  }
127
128  return false;
129}
130
131namespace {
132enum class UnqualifiedTypeNameLookupResult {
133  NotFound,
134  FoundNonType,
135  FoundType
136};
137} // namespace
138
139/// \brief Tries to perform unqualified lookup of the type decls in bases for
140/// dependent class.
141/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
142/// type decl, \a FoundType if only type decls are found.
143static UnqualifiedTypeNameLookupResult
144lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
145                                SourceLocation NameLoc,
146                                const CXXRecordDecl *RD) {
147  if (!RD->hasDefinition())
148    return UnqualifiedTypeNameLookupResult::NotFound;
149  // Look for type decls in base classes.
150  UnqualifiedTypeNameLookupResult FoundTypeDecl =
151      UnqualifiedTypeNameLookupResult::NotFound;
152  for (const auto &Base : RD->bases()) {
153    const CXXRecordDecl *BaseRD = nullptr;
154    if (auto *BaseTT = Base.getType()->getAs<TagType>())
155      BaseRD = BaseTT->getAsCXXRecordDecl();
156    else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
157      // Look for type decls in dependent base classes that have known primary
158      // templates.
159      if (!TST || !TST->isDependentType())
160        continue;
161      auto *TD = TST->getTemplateName().getAsTemplateDecl();
162      if (!TD)
163        continue;
164      auto *BasePrimaryTemplate =
165          dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl());
166      if (!BasePrimaryTemplate)
167        continue;
168      BaseRD = BasePrimaryTemplate;
169    }
170    if (BaseRD) {
171      for (NamedDecl *ND : BaseRD->lookup(&II)) {
172        if (!isa<TypeDecl>(ND))
173          return UnqualifiedTypeNameLookupResult::FoundNonType;
174        FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
175      }
176      if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
177        switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
178        case UnqualifiedTypeNameLookupResult::FoundNonType:
179          return UnqualifiedTypeNameLookupResult::FoundNonType;
180        case UnqualifiedTypeNameLookupResult::FoundType:
181          FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
182          break;
183        case UnqualifiedTypeNameLookupResult::NotFound:
184          break;
185        }
186      }
187    }
188  }
189
190  return FoundTypeDecl;
191}
192
193static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
194                                                      const IdentifierInfo &II,
195                                                      SourceLocation NameLoc) {
196  // Lookup in the parent class template context, if any.
197  const CXXRecordDecl *RD = nullptr;
198  UnqualifiedTypeNameLookupResult FoundTypeDecl =
199      UnqualifiedTypeNameLookupResult::NotFound;
200  for (DeclContext *DC = S.CurContext;
201       DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
202       DC = DC->getParent()) {
203    // Look for type decls in dependent base classes that have known primary
204    // templates.
205    RD = dyn_cast<CXXRecordDecl>(DC);
206    if (RD && RD->getDescribedClassTemplate())
207      FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
208  }
209  if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
210    return ParsedType();
211
212  // We found some types in dependent base classes.  Recover as if the user
213  // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
214  // lookup during template instantiation.
215  S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
216
217  ASTContext &Context = S.Context;
218  auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
219                                          cast<Type>(Context.getRecordType(RD)));
220  QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
221
222  CXXScopeSpec SS;
223  SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
224
225  TypeLocBuilder Builder;
226  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
227  DepTL.setNameLoc(NameLoc);
228  DepTL.setElaboratedKeywordLoc(SourceLocation());
229  DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
230  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
231}
232
233/// \brief If the identifier refers to a type name within this scope,
234/// return the declaration of that type.
235///
236/// This routine performs ordinary name lookup of the identifier II
237/// within the given scope, with optional C++ scope specifier SS, to
238/// determine whether the name refers to a type. If so, returns an
239/// opaque pointer (actually a QualType) corresponding to that
240/// type. Otherwise, returns NULL.
241ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
242                             Scope *S, CXXScopeSpec *SS,
243                             bool isClassName, bool HasTrailingDot,
244                             ParsedType ObjectTypePtr,
245                             bool IsCtorOrDtorName,
246                             bool WantNontrivialTypeSourceInfo,
247                             IdentifierInfo **CorrectedII) {
248  // Determine where we will perform name lookup.
249  DeclContext *LookupCtx = nullptr;
250  if (ObjectTypePtr) {
251    QualType ObjectType = ObjectTypePtr.get();
252    if (ObjectType->isRecordType())
253      LookupCtx = computeDeclContext(ObjectType);
254  } else if (SS && SS->isNotEmpty()) {
255    LookupCtx = computeDeclContext(*SS, false);
256
257    if (!LookupCtx) {
258      if (isDependentScopeSpecifier(*SS)) {
259        // C++ [temp.res]p3:
260        //   A qualified-id that refers to a type and in which the
261        //   nested-name-specifier depends on a template-parameter (14.6.2)
262        //   shall be prefixed by the keyword typename to indicate that the
263        //   qualified-id denotes a type, forming an
264        //   elaborated-type-specifier (7.1.5.3).
265        //
266        // We therefore do not perform any name lookup if the result would
267        // refer to a member of an unknown specialization.
268        if (!isClassName && !IsCtorOrDtorName)
269          return ParsedType();
270
271        // We know from the grammar that this name refers to a type,
272        // so build a dependent node to describe the type.
273        if (WantNontrivialTypeSourceInfo)
274          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
275
276        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
277        QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
278                                       II, NameLoc);
279        return ParsedType::make(T);
280      }
281
282      return ParsedType();
283    }
284
285    if (!LookupCtx->isDependentContext() &&
286        RequireCompleteDeclContext(*SS, LookupCtx))
287      return ParsedType();
288  }
289
290  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
291  // lookup for class-names.
292  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
293                                      LookupOrdinaryName;
294  LookupResult Result(*this, &II, NameLoc, Kind);
295  if (LookupCtx) {
296    // Perform "qualified" name lookup into the declaration context we
297    // computed, which is either the type of the base of a member access
298    // expression or the declaration context associated with a prior
299    // nested-name-specifier.
300    LookupQualifiedName(Result, LookupCtx);
301
302    if (ObjectTypePtr && Result.empty()) {
303      // C++ [basic.lookup.classref]p3:
304      //   If the unqualified-id is ~type-name, the type-name is looked up
305      //   in the context of the entire postfix-expression. If the type T of
306      //   the object expression is of a class type C, the type-name is also
307      //   looked up in the scope of class C. At least one of the lookups shall
308      //   find a name that refers to (possibly cv-qualified) T.
309      LookupName(Result, S);
310    }
311  } else {
312    // Perform unqualified name lookup.
313    LookupName(Result, S);
314
315    // For unqualified lookup in a class template in MSVC mode, look into
316    // dependent base classes where the primary class template is known.
317    if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
318      if (ParsedType TypeInBase =
319              recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
320        return TypeInBase;
321    }
322  }
323
324  NamedDecl *IIDecl = nullptr;
325  switch (Result.getResultKind()) {
326  case LookupResult::NotFound:
327  case LookupResult::NotFoundInCurrentInstantiation:
328    if (CorrectedII) {
329      TypoCorrection Correction = CorrectTypo(
330          Result.getLookupNameInfo(), Kind, S, SS,
331          llvm::make_unique<TypeNameValidatorCCC>(true, isClassName),
332          CTK_ErrorRecovery);
333      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
334      TemplateTy Template;
335      bool MemberOfUnknownSpecialization;
336      UnqualifiedId TemplateName;
337      TemplateName.setIdentifier(NewII, NameLoc);
338      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
339      CXXScopeSpec NewSS, *NewSSPtr = SS;
340      if (SS && NNS) {
341        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
342        NewSSPtr = &NewSS;
343      }
344      if (Correction && (NNS || NewII != &II) &&
345          // Ignore a correction to a template type as the to-be-corrected
346          // identifier is not a template (typo correction for template names
347          // is handled elsewhere).
348          !(getLangOpts().CPlusPlus && NewSSPtr &&
349            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
350                           false, Template, MemberOfUnknownSpecialization))) {
351        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
352                                    isClassName, HasTrailingDot, ObjectTypePtr,
353                                    IsCtorOrDtorName,
354                                    WantNontrivialTypeSourceInfo);
355        if (Ty) {
356          diagnoseTypo(Correction,
357                       PDiag(diag::err_unknown_type_or_class_name_suggest)
358                         << Result.getLookupName() << isClassName);
359          if (SS && NNS)
360            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
361          *CorrectedII = NewII;
362          return Ty;
363        }
364      }
365    }
366    // If typo correction failed or was not performed, fall through
367  case LookupResult::FoundOverloaded:
368  case LookupResult::FoundUnresolvedValue:
369    Result.suppressDiagnostics();
370    return ParsedType();
371
372  case LookupResult::Ambiguous:
373    // Recover from type-hiding ambiguities by hiding the type.  We'll
374    // do the lookup again when looking for an object, and we can
375    // diagnose the error then.  If we don't do this, then the error
376    // about hiding the type will be immediately followed by an error
377    // that only makes sense if the identifier was treated like a type.
378    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
379      Result.suppressDiagnostics();
380      return ParsedType();
381    }
382
383    // Look to see if we have a type anywhere in the list of results.
384    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
385         Res != ResEnd; ++Res) {
386      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
387        if (!IIDecl ||
388            (*Res)->getLocation().getRawEncoding() <
389              IIDecl->getLocation().getRawEncoding())
390          IIDecl = *Res;
391      }
392    }
393
394    if (!IIDecl) {
395      // None of the entities we found is a type, so there is no way
396      // to even assume that the result is a type. In this case, don't
397      // complain about the ambiguity. The parser will either try to
398      // perform this lookup again (e.g., as an object name), which
399      // will produce the ambiguity, or will complain that it expected
400      // a type name.
401      Result.suppressDiagnostics();
402      return ParsedType();
403    }
404
405    // We found a type within the ambiguous lookup; diagnose the
406    // ambiguity and then return that type. This might be the right
407    // answer, or it might not be, but it suppresses any attempt to
408    // perform the name lookup again.
409    break;
410
411  case LookupResult::Found:
412    IIDecl = Result.getFoundDecl();
413    break;
414  }
415
416  assert(IIDecl && "Didn't find decl");
417
418  QualType T;
419  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
420    DiagnoseUseOfDecl(IIDecl, NameLoc);
421
422    T = Context.getTypeDeclType(TD);
423    MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
424
425    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
426    // constructor or destructor name (in such a case, the scope specifier
427    // will be attached to the enclosing Expr or Decl node).
428    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
429      if (WantNontrivialTypeSourceInfo) {
430        // Construct a type with type-source information.
431        TypeLocBuilder Builder;
432        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
433
434        T = getElaboratedType(ETK_None, *SS, T);
435        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
436        ElabTL.setElaboratedKeywordLoc(SourceLocation());
437        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
438        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
439      } else {
440        T = getElaboratedType(ETK_None, *SS, T);
441      }
442    }
443  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
444    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
445    if (!HasTrailingDot)
446      T = Context.getObjCInterfaceType(IDecl);
447  }
448
449  if (T.isNull()) {
450    // If it's not plausibly a type, suppress diagnostics.
451    Result.suppressDiagnostics();
452    return ParsedType();
453  }
454  return ParsedType::make(T);
455}
456
457// Builds a fake NNS for the given decl context.
458static NestedNameSpecifier *
459synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
460  for (;; DC = DC->getLookupParent()) {
461    DC = DC->getPrimaryContext();
462    auto *ND = dyn_cast<NamespaceDecl>(DC);
463    if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
464      return NestedNameSpecifier::Create(Context, nullptr, ND);
465    else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
466      return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
467                                         RD->getTypeForDecl());
468    else if (isa<TranslationUnitDecl>(DC))
469      return NestedNameSpecifier::GlobalSpecifier(Context);
470  }
471  llvm_unreachable("something isn't in TU scope?");
472}
473
474ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
475                                                SourceLocation NameLoc) {
476  // Accepting an undeclared identifier as a default argument for a template
477  // type parameter is a Microsoft extension.
478  Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
479
480  // Build a fake DependentNameType that will perform lookup into CurContext at
481  // instantiation time.  The name specifier isn't dependent, so template
482  // instantiation won't transform it.  It will retry the lookup, however.
483  NestedNameSpecifier *NNS =
484      synthesizeCurrentNestedNameSpecifier(Context, CurContext);
485  QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
486
487  // Build type location information.  We synthesized the qualifier, so we have
488  // to build a fake NestedNameSpecifierLoc.
489  NestedNameSpecifierLocBuilder NNSLocBuilder;
490  NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
491  NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
492
493  TypeLocBuilder Builder;
494  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
495  DepTL.setNameLoc(NameLoc);
496  DepTL.setElaboratedKeywordLoc(SourceLocation());
497  DepTL.setQualifierLoc(QualifierLoc);
498  return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
499}
500
501/// isTagName() - This method is called *for error recovery purposes only*
502/// to determine if the specified name is a valid tag name ("struct foo").  If
503/// so, this returns the TST for the tag corresponding to it (TST_enum,
504/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
505/// cases in C where the user forgot to specify the tag.
506DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
507  // Do a tag name lookup in this scope.
508  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
509  LookupName(R, S, false);
510  R.suppressDiagnostics();
511  if (R.getResultKind() == LookupResult::Found)
512    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
513      switch (TD->getTagKind()) {
514      case TTK_Struct: return DeclSpec::TST_struct;
515      case TTK_Interface: return DeclSpec::TST_interface;
516      case TTK_Union:  return DeclSpec::TST_union;
517      case TTK_Class:  return DeclSpec::TST_class;
518      case TTK_Enum:   return DeclSpec::TST_enum;
519      }
520    }
521
522  return DeclSpec::TST_unspecified;
523}
524
525/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
526/// if a CXXScopeSpec's type is equal to the type of one of the base classes
527/// then downgrade the missing typename error to a warning.
528/// This is needed for MSVC compatibility; Example:
529/// @code
530/// template<class T> class A {
531/// public:
532///   typedef int TYPE;
533/// };
534/// template<class T> class B : public A<T> {
535/// public:
536///   A<T>::TYPE a; // no typename required because A<T> is a base class.
537/// };
538/// @endcode
539bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
540  if (CurContext->isRecord()) {
541    if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
542      return true;
543
544    const Type *Ty = SS->getScopeRep()->getAsType();
545
546    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
547    for (const auto &Base : RD->bases())
548      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
549        return true;
550    return S->isFunctionPrototypeScope();
551  }
552  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
553}
554
555void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
556                                   SourceLocation IILoc,
557                                   Scope *S,
558                                   CXXScopeSpec *SS,
559                                   ParsedType &SuggestedType,
560                                   bool AllowClassTemplates) {
561  // We don't have anything to suggest (yet).
562  SuggestedType = ParsedType();
563
564  // There may have been a typo in the name of the type. Look up typo
565  // results, in case we have something that we can suggest.
566  if (TypoCorrection Corrected =
567          CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
568                      llvm::make_unique<TypeNameValidatorCCC>(
569                          false, false, AllowClassTemplates),
570                      CTK_ErrorRecovery)) {
571    if (Corrected.isKeyword()) {
572      // We corrected to a keyword.
573      diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
574      II = Corrected.getCorrectionAsIdentifierInfo();
575    } else {
576      // We found a similarly-named type or interface; suggest that.
577      if (!SS || !SS->isSet()) {
578        diagnoseTypo(Corrected,
579                     PDiag(diag::err_unknown_typename_suggest) << II);
580      } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
581        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
582        bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
583                                II->getName().equals(CorrectedStr);
584        diagnoseTypo(Corrected,
585                     PDiag(diag::err_unknown_nested_typename_suggest)
586                       << II << DC << DroppedSpecifier << SS->getRange());
587      } else {
588        llvm_unreachable("could not have corrected a typo here");
589      }
590
591      CXXScopeSpec tmpSS;
592      if (Corrected.getCorrectionSpecifier())
593        tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
594                          SourceRange(IILoc));
595      SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
596                                  IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
597                                  false, ParsedType(),
598                                  /*IsCtorOrDtorName=*/false,
599                                  /*NonTrivialTypeSourceInfo=*/true);
600    }
601    return;
602  }
603
604  if (getLangOpts().CPlusPlus) {
605    // See if II is a class template that the user forgot to pass arguments to.
606    UnqualifiedId Name;
607    Name.setIdentifier(II, IILoc);
608    CXXScopeSpec EmptySS;
609    TemplateTy TemplateResult;
610    bool MemberOfUnknownSpecialization;
611    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
612                       Name, ParsedType(), true, TemplateResult,
613                       MemberOfUnknownSpecialization) == TNK_Type_template) {
614      TemplateName TplName = TemplateResult.get();
615      Diag(IILoc, diag::err_template_missing_args) << TplName;
616      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
617        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
618          << TplDecl->getTemplateParameters()->getSourceRange();
619      }
620      return;
621    }
622  }
623
624  // FIXME: Should we move the logic that tries to recover from a missing tag
625  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
626
627  if (!SS || (!SS->isSet() && !SS->isInvalid()))
628    Diag(IILoc, diag::err_unknown_typename) << II;
629  else if (DeclContext *DC = computeDeclContext(*SS, false))
630    Diag(IILoc, diag::err_typename_nested_not_found)
631      << II << DC << SS->getRange();
632  else if (isDependentScopeSpecifier(*SS)) {
633    unsigned DiagID = diag::err_typename_missing;
634    if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
635      DiagID = diag::ext_typename_missing;
636
637    Diag(SS->getRange().getBegin(), DiagID)
638      << SS->getScopeRep() << II->getName()
639      << SourceRange(SS->getRange().getBegin(), IILoc)
640      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
641    SuggestedType = ActOnTypenameType(S, SourceLocation(),
642                                      *SS, *II, IILoc).get();
643  } else {
644    assert(SS && SS->isInvalid() &&
645           "Invalid scope specifier has already been diagnosed");
646  }
647}
648
649/// \brief Determine whether the given result set contains either a type name
650/// or
651static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
652  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
653                       NextToken.is(tok::less);
654
655  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
656    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
657      return true;
658
659    if (CheckTemplate && isa<TemplateDecl>(*I))
660      return true;
661  }
662
663  return false;
664}
665
666static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
667                                    Scope *S, CXXScopeSpec &SS,
668                                    IdentifierInfo *&Name,
669                                    SourceLocation NameLoc) {
670  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
671  SemaRef.LookupParsedName(R, S, &SS);
672  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
673    StringRef FixItTagName;
674    switch (Tag->getTagKind()) {
675      case TTK_Class:
676        FixItTagName = "class ";
677        break;
678
679      case TTK_Enum:
680        FixItTagName = "enum ";
681        break;
682
683      case TTK_Struct:
684        FixItTagName = "struct ";
685        break;
686
687      case TTK_Interface:
688        FixItTagName = "__interface ";
689        break;
690
691      case TTK_Union:
692        FixItTagName = "union ";
693        break;
694    }
695
696    StringRef TagName = FixItTagName.drop_back();
697    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
698      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
699      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
700
701    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
702         I != IEnd; ++I)
703      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
704        << Name << TagName;
705
706    // Replace lookup results with just the tag decl.
707    Result.clear(Sema::LookupTagName);
708    SemaRef.LookupParsedName(Result, S, &SS);
709    return true;
710  }
711
712  return false;
713}
714
715/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
716static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
717                                  QualType T, SourceLocation NameLoc) {
718  ASTContext &Context = S.Context;
719
720  TypeLocBuilder Builder;
721  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
722
723  T = S.getElaboratedType(ETK_None, SS, T);
724  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
725  ElabTL.setElaboratedKeywordLoc(SourceLocation());
726  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
727  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
728}
729
730Sema::NameClassification
731Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
732                   SourceLocation NameLoc, const Token &NextToken,
733                   bool IsAddressOfOperand,
734                   std::unique_ptr<CorrectionCandidateCallback> CCC) {
735  DeclarationNameInfo NameInfo(Name, NameLoc);
736  ObjCMethodDecl *CurMethod = getCurMethodDecl();
737
738  if (NextToken.is(tok::coloncolon)) {
739    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
740                                QualType(), false, SS, nullptr, false);
741  }
742
743  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
744  LookupParsedName(Result, S, &SS, !CurMethod);
745
746  // For unqualified lookup in a class template in MSVC mode, look into
747  // dependent base classes where the primary class template is known.
748  if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
749    if (ParsedType TypeInBase =
750            recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
751      return TypeInBase;
752  }
753
754  // Perform lookup for Objective-C instance variables (including automatically
755  // synthesized instance variables), if we're in an Objective-C method.
756  // FIXME: This lookup really, really needs to be folded in to the normal
757  // unqualified lookup mechanism.
758  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
759    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
760    if (E.get() || E.isInvalid())
761      return E;
762  }
763
764  bool SecondTry = false;
765  bool IsFilteredTemplateName = false;
766
767Corrected:
768  switch (Result.getResultKind()) {
769  case LookupResult::NotFound:
770    // If an unqualified-id is followed by a '(', then we have a function
771    // call.
772    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
773      // In C++, this is an ADL-only call.
774      // FIXME: Reference?
775      if (getLangOpts().CPlusPlus)
776        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
777
778      // C90 6.3.2.2:
779      //   If the expression that precedes the parenthesized argument list in a
780      //   function call consists solely of an identifier, and if no
781      //   declaration is visible for this identifier, the identifier is
782      //   implicitly declared exactly as if, in the innermost block containing
783      //   the function call, the declaration
784      //
785      //     extern int identifier ();
786      //
787      //   appeared.
788      //
789      // We also allow this in C99 as an extension.
790      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
791        Result.addDecl(D);
792        Result.resolveKind();
793        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
794      }
795    }
796
797    // In C, we first see whether there is a tag type by the same name, in
798    // which case it's likely that the user just forget to write "enum",
799    // "struct", or "union".
800    if (!getLangOpts().CPlusPlus && !SecondTry &&
801        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
802      break;
803    }
804
805    // Perform typo correction to determine if there is another name that is
806    // close to this name.
807    if (!SecondTry && CCC) {
808      SecondTry = true;
809      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
810                                                 Result.getLookupKind(), S,
811                                                 &SS, std::move(CCC),
812                                                 CTK_ErrorRecovery)) {
813        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
814        unsigned QualifiedDiag = diag::err_no_member_suggest;
815
816        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
817        NamedDecl *UnderlyingFirstDecl
818          = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
819        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
820            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
821          UnqualifiedDiag = diag::err_no_template_suggest;
822          QualifiedDiag = diag::err_no_member_template_suggest;
823        } else if (UnderlyingFirstDecl &&
824                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
825                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
826                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
827          UnqualifiedDiag = diag::err_unknown_typename_suggest;
828          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
829        }
830
831        if (SS.isEmpty()) {
832          diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
833        } else {// FIXME: is this even reachable? Test it.
834          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
835          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
836                                  Name->getName().equals(CorrectedStr);
837          diagnoseTypo(Corrected, PDiag(QualifiedDiag)
838                                    << Name << computeDeclContext(SS, false)
839                                    << DroppedSpecifier << SS.getRange());
840        }
841
842        // Update the name, so that the caller has the new name.
843        Name = Corrected.getCorrectionAsIdentifierInfo();
844
845        // Typo correction corrected to a keyword.
846        if (Corrected.isKeyword())
847          return Name;
848
849        // Also update the LookupResult...
850        // FIXME: This should probably go away at some point
851        Result.clear();
852        Result.setLookupName(Corrected.getCorrection());
853        if (FirstDecl)
854          Result.addDecl(FirstDecl);
855
856        // If we found an Objective-C instance variable, let
857        // LookupInObjCMethod build the appropriate expression to
858        // reference the ivar.
859        // FIXME: This is a gross hack.
860        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
861          Result.clear();
862          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
863          return E;
864        }
865
866        goto Corrected;
867      }
868    }
869
870    // We failed to correct; just fall through and let the parser deal with it.
871    Result.suppressDiagnostics();
872    return NameClassification::Unknown();
873
874  case LookupResult::NotFoundInCurrentInstantiation: {
875    // We performed name lookup into the current instantiation, and there were
876    // dependent bases, so we treat this result the same way as any other
877    // dependent nested-name-specifier.
878
879    // C++ [temp.res]p2:
880    //   A name used in a template declaration or definition and that is
881    //   dependent on a template-parameter is assumed not to name a type
882    //   unless the applicable name lookup finds a type name or the name is
883    //   qualified by the keyword typename.
884    //
885    // FIXME: If the next token is '<', we might want to ask the parser to
886    // perform some heroics to see if we actually have a
887    // template-argument-list, which would indicate a missing 'template'
888    // keyword here.
889    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
890                                      NameInfo, IsAddressOfOperand,
891                                      /*TemplateArgs=*/nullptr);
892  }
893
894  case LookupResult::Found:
895  case LookupResult::FoundOverloaded:
896  case LookupResult::FoundUnresolvedValue:
897    break;
898
899  case LookupResult::Ambiguous:
900    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
901        hasAnyAcceptableTemplateNames(Result)) {
902      // C++ [temp.local]p3:
903      //   A lookup that finds an injected-class-name (10.2) can result in an
904      //   ambiguity in certain cases (for example, if it is found in more than
905      //   one base class). If all of the injected-class-names that are found
906      //   refer to specializations of the same class template, and if the name
907      //   is followed by a template-argument-list, the reference refers to the
908      //   class template itself and not a specialization thereof, and is not
909      //   ambiguous.
910      //
911      // This filtering can make an ambiguous result into an unambiguous one,
912      // so try again after filtering out template names.
913      FilterAcceptableTemplateNames(Result);
914      if (!Result.isAmbiguous()) {
915        IsFilteredTemplateName = true;
916        break;
917      }
918    }
919
920    // Diagnose the ambiguity and return an error.
921    return NameClassification::Error();
922  }
923
924  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
925      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
926    // C++ [temp.names]p3:
927    //   After name lookup (3.4) finds that a name is a template-name or that
928    //   an operator-function-id or a literal- operator-id refers to a set of
929    //   overloaded functions any member of which is a function template if
930    //   this is followed by a <, the < is always taken as the delimiter of a
931    //   template-argument-list and never as the less-than operator.
932    if (!IsFilteredTemplateName)
933      FilterAcceptableTemplateNames(Result);
934
935    if (!Result.empty()) {
936      bool IsFunctionTemplate;
937      bool IsVarTemplate;
938      TemplateName Template;
939      if (Result.end() - Result.begin() > 1) {
940        IsFunctionTemplate = true;
941        Template = Context.getOverloadedTemplateName(Result.begin(),
942                                                     Result.end());
943      } else {
944        TemplateDecl *TD
945          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
946        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
947        IsVarTemplate = isa<VarTemplateDecl>(TD);
948
949        if (SS.isSet() && !SS.isInvalid())
950          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
951                                                    /*TemplateKeyword=*/false,
952                                                      TD);
953        else
954          Template = TemplateName(TD);
955      }
956
957      if (IsFunctionTemplate) {
958        // Function templates always go through overload resolution, at which
959        // point we'll perform the various checks (e.g., accessibility) we need
960        // to based on which function we selected.
961        Result.suppressDiagnostics();
962
963        return NameClassification::FunctionTemplate(Template);
964      }
965
966      return IsVarTemplate ? NameClassification::VarTemplate(Template)
967                           : NameClassification::TypeTemplate(Template);
968    }
969  }
970
971  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
972  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
973    DiagnoseUseOfDecl(Type, NameLoc);
974    MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
975    QualType T = Context.getTypeDeclType(Type);
976    if (SS.isNotEmpty())
977      return buildNestedType(*this, SS, T, NameLoc);
978    return ParsedType::make(T);
979  }
980
981  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
982  if (!Class) {
983    // FIXME: It's unfortunate that we don't have a Type node for handling this.
984    if (ObjCCompatibleAliasDecl *Alias =
985            dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
986      Class = Alias->getClassInterface();
987  }
988
989  if (Class) {
990    DiagnoseUseOfDecl(Class, NameLoc);
991
992    if (NextToken.is(tok::period)) {
993      // Interface. <something> is parsed as a property reference expression.
994      // Just return "unknown" as a fall-through for now.
995      Result.suppressDiagnostics();
996      return NameClassification::Unknown();
997    }
998
999    QualType T = Context.getObjCInterfaceType(Class);
1000    return ParsedType::make(T);
1001  }
1002
1003  // We can have a type template here if we're classifying a template argument.
1004  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
1005    return NameClassification::TypeTemplate(
1006        TemplateName(cast<TemplateDecl>(FirstDecl)));
1007
1008  // Check for a tag type hidden by a non-type decl in a few cases where it
1009  // seems likely a type is wanted instead of the non-type that was found.
1010  bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1011  if ((NextToken.is(tok::identifier) ||
1012       (NextIsOp &&
1013        FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1014      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1015    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1016    DiagnoseUseOfDecl(Type, NameLoc);
1017    QualType T = Context.getTypeDeclType(Type);
1018    if (SS.isNotEmpty())
1019      return buildNestedType(*this, SS, T, NameLoc);
1020    return ParsedType::make(T);
1021  }
1022
1023  if (FirstDecl->isCXXClassMember())
1024    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1025                                           nullptr, S);
1026
1027  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1028  return BuildDeclarationNameExpr(SS, Result, ADL);
1029}
1030
1031// Determines the context to return to after temporarily entering a
1032// context.  This depends in an unnecessarily complicated way on the
1033// exact ordering of callbacks from the parser.
1034DeclContext *Sema::getContainingDC(DeclContext *DC) {
1035
1036  // Functions defined inline within classes aren't parsed until we've
1037  // finished parsing the top-level class, so the top-level class is
1038  // the context we'll need to return to.
1039  // A Lambda call operator whose parent is a class must not be treated
1040  // as an inline member function.  A Lambda can be used legally
1041  // either as an in-class member initializer or a default argument.  These
1042  // are parsed once the class has been marked complete and so the containing
1043  // context would be the nested class (when the lambda is defined in one);
1044  // If the class is not complete, then the lambda is being used in an
1045  // ill-formed fashion (such as to specify the width of a bit-field, or
1046  // in an array-bound) - in which case we still want to return the
1047  // lexically containing DC (which could be a nested class).
1048  if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1049    DC = DC->getLexicalParent();
1050
1051    // A function not defined within a class will always return to its
1052    // lexical context.
1053    if (!isa<CXXRecordDecl>(DC))
1054      return DC;
1055
1056    // A C++ inline method/friend is parsed *after* the topmost class
1057    // it was declared in is fully parsed ("complete");  the topmost
1058    // class is the context we need to return to.
1059    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1060      DC = RD;
1061
1062    // Return the declaration context of the topmost class the inline method is
1063    // declared in.
1064    return DC;
1065  }
1066
1067  return DC->getLexicalParent();
1068}
1069
1070void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1071  assert(getContainingDC(DC) == CurContext &&
1072      "The next DeclContext should be lexically contained in the current one.");
1073  CurContext = DC;
1074  S->setEntity(DC);
1075}
1076
1077void Sema::PopDeclContext() {
1078  assert(CurContext && "DeclContext imbalance!");
1079
1080  CurContext = getContainingDC(CurContext);
1081  assert(CurContext && "Popped translation unit!");
1082}
1083
1084Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1085                                                                    Decl *D) {
1086  // Unlike PushDeclContext, the context to which we return is not necessarily
1087  // the containing DC of TD, because the new context will be some pre-existing
1088  // TagDecl definition instead of a fresh one.
1089  auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1090  CurContext = cast<TagDecl>(D)->getDefinition();
1091  assert(CurContext && "skipping definition of undefined tag");
1092  // Start lookups from the parent of the current context; we don't want to look
1093  // into the pre-existing complete definition.
1094  S->setEntity(CurContext->getLookupParent());
1095  return Result;
1096}
1097
1098void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1099  CurContext = static_cast<decltype(CurContext)>(Context);
1100}
1101
1102/// EnterDeclaratorContext - Used when we must lookup names in the context
1103/// of a declarator's nested name specifier.
1104///
1105void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1106  // C++0x [basic.lookup.unqual]p13:
1107  //   A name used in the definition of a static data member of class
1108  //   X (after the qualified-id of the static member) is looked up as
1109  //   if the name was used in a member function of X.
1110  // C++0x [basic.lookup.unqual]p14:
1111  //   If a variable member of a namespace is defined outside of the
1112  //   scope of its namespace then any name used in the definition of
1113  //   the variable member (after the declarator-id) is looked up as
1114  //   if the definition of the variable member occurred in its
1115  //   namespace.
1116  // Both of these imply that we should push a scope whose context
1117  // is the semantic context of the declaration.  We can't use
1118  // PushDeclContext here because that context is not necessarily
1119  // lexically contained in the current context.  Fortunately,
1120  // the containing scope should have the appropriate information.
1121
1122  assert(!S->getEntity() && "scope already has entity");
1123
1124#ifndef NDEBUG
1125  Scope *Ancestor = S->getParent();
1126  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1127  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1128#endif
1129
1130  CurContext = DC;
1131  S->setEntity(DC);
1132}
1133
1134void Sema::ExitDeclaratorContext(Scope *S) {
1135  assert(S->getEntity() == CurContext && "Context imbalance!");
1136
1137  // Switch back to the lexical context.  The safety of this is
1138  // enforced by an assert in EnterDeclaratorContext.
1139  Scope *Ancestor = S->getParent();
1140  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1141  CurContext = Ancestor->getEntity();
1142
1143  // We don't need to do anything with the scope, which is going to
1144  // disappear.
1145}
1146
1147
1148void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1149  // We assume that the caller has already called
1150  // ActOnReenterTemplateScope so getTemplatedDecl() works.
1151  FunctionDecl *FD = D->getAsFunction();
1152  if (!FD)
1153    return;
1154
1155  // Same implementation as PushDeclContext, but enters the context
1156  // from the lexical parent, rather than the top-level class.
1157  assert(CurContext == FD->getLexicalParent() &&
1158    "The next DeclContext should be lexically contained in the current one.");
1159  CurContext = FD;
1160  S->setEntity(CurContext);
1161
1162  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1163    ParmVarDecl *Param = FD->getParamDecl(P);
1164    // If the parameter has an identifier, then add it to the scope
1165    if (Param->getIdentifier()) {
1166      S->AddDecl(Param);
1167      IdResolver.AddDecl(Param);
1168    }
1169  }
1170}
1171
1172
1173void Sema::ActOnExitFunctionContext() {
1174  // Same implementation as PopDeclContext, but returns to the lexical parent,
1175  // rather than the top-level class.
1176  assert(CurContext && "DeclContext imbalance!");
1177  CurContext = CurContext->getLexicalParent();
1178  assert(CurContext && "Popped translation unit!");
1179}
1180
1181
1182/// \brief Determine whether we allow overloading of the function
1183/// PrevDecl with another declaration.
1184///
1185/// This routine determines whether overloading is possible, not
1186/// whether some new function is actually an overload. It will return
1187/// true in C++ (where we can always provide overloads) or, as an
1188/// extension, in C when the previous function is already an
1189/// overloaded function declaration or has the "overloadable"
1190/// attribute.
1191static bool AllowOverloadingOfFunction(LookupResult &Previous,
1192                                       ASTContext &Context) {
1193  if (Context.getLangOpts().CPlusPlus)
1194    return true;
1195
1196  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1197    return true;
1198
1199  return (Previous.getResultKind() == LookupResult::Found
1200          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1201}
1202
1203/// Add this decl to the scope shadowed decl chains.
1204void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1205  // Move up the scope chain until we find the nearest enclosing
1206  // non-transparent context. The declaration will be introduced into this
1207  // scope.
1208  while (S->getEntity() && S->getEntity()->isTransparentContext())
1209    S = S->getParent();
1210
1211  // Add scoped declarations into their context, so that they can be
1212  // found later. Declarations without a context won't be inserted
1213  // into any context.
1214  if (AddToContext)
1215    CurContext->addDecl(D);
1216
1217  // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1218  // are function-local declarations.
1219  if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1220      !D->getDeclContext()->getRedeclContext()->Equals(
1221        D->getLexicalDeclContext()->getRedeclContext()) &&
1222      !D->getLexicalDeclContext()->isFunctionOrMethod())
1223    return;
1224
1225  // Template instantiations should also not be pushed into scope.
1226  if (isa<FunctionDecl>(D) &&
1227      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1228    return;
1229
1230  // If this replaces anything in the current scope,
1231  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1232                               IEnd = IdResolver.end();
1233  for (; I != IEnd; ++I) {
1234    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1235      S->RemoveDecl(*I);
1236      IdResolver.RemoveDecl(*I);
1237
1238      // Should only need to replace one decl.
1239      break;
1240    }
1241  }
1242
1243  S->AddDecl(D);
1244
1245  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1246    // Implicitly-generated labels may end up getting generated in an order that
1247    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1248    // the label at the appropriate place in the identifier chain.
1249    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1250      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1251      if (IDC == CurContext) {
1252        if (!S->isDeclScope(*I))
1253          continue;
1254      } else if (IDC->Encloses(CurContext))
1255        break;
1256    }
1257
1258    IdResolver.InsertDeclAfter(I, D);
1259  } else {
1260    IdResolver.AddDecl(D);
1261  }
1262}
1263
1264void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1265  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1266    TUScope->AddDecl(D);
1267}
1268
1269bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1270                         bool AllowInlineNamespace) {
1271  return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1272}
1273
1274Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1275  DeclContext *TargetDC = DC->getPrimaryContext();
1276  do {
1277    if (DeclContext *ScopeDC = S->getEntity())
1278      if (ScopeDC->getPrimaryContext() == TargetDC)
1279        return S;
1280  } while ((S = S->getParent()));
1281
1282  return nullptr;
1283}
1284
1285static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1286                                            DeclContext*,
1287                                            ASTContext&);
1288
1289/// Filters out lookup results that don't fall within the given scope
1290/// as determined by isDeclInScope.
1291void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1292                                bool ConsiderLinkage,
1293                                bool AllowInlineNamespace) {
1294  LookupResult::Filter F = R.makeFilter();
1295  while (F.hasNext()) {
1296    NamedDecl *D = F.next();
1297
1298    if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1299      continue;
1300
1301    if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1302      continue;
1303
1304    F.erase();
1305  }
1306
1307  F.done();
1308}
1309
1310static bool isUsingDecl(NamedDecl *D) {
1311  return isa<UsingShadowDecl>(D) ||
1312         isa<UnresolvedUsingTypenameDecl>(D) ||
1313         isa<UnresolvedUsingValueDecl>(D);
1314}
1315
1316/// Removes using shadow declarations from the lookup results.
1317static void RemoveUsingDecls(LookupResult &R) {
1318  LookupResult::Filter F = R.makeFilter();
1319  while (F.hasNext())
1320    if (isUsingDecl(F.next()))
1321      F.erase();
1322
1323  F.done();
1324}
1325
1326/// \brief Check for this common pattern:
1327/// @code
1328/// class S {
1329///   S(const S&); // DO NOT IMPLEMENT
1330///   void operator=(const S&); // DO NOT IMPLEMENT
1331/// };
1332/// @endcode
1333static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1334  // FIXME: Should check for private access too but access is set after we get
1335  // the decl here.
1336  if (D->doesThisDeclarationHaveABody())
1337    return false;
1338
1339  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1340    return CD->isCopyConstructor();
1341  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1342    return Method->isCopyAssignmentOperator();
1343  return false;
1344}
1345
1346// We need this to handle
1347//
1348// typedef struct {
1349//   void *foo() { return 0; }
1350// } A;
1351//
1352// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1353// for example. If 'A', foo will have external linkage. If we have '*A',
1354// foo will have no linkage. Since we can't know until we get to the end
1355// of the typedef, this function finds out if D might have non-external linkage.
1356// Callers should verify at the end of the TU if it D has external linkage or
1357// not.
1358bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1359  const DeclContext *DC = D->getDeclContext();
1360  while (!DC->isTranslationUnit()) {
1361    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1362      if (!RD->hasNameForLinkage())
1363        return true;
1364    }
1365    DC = DC->getParent();
1366  }
1367
1368  return !D->isExternallyVisible();
1369}
1370
1371// FIXME: This needs to be refactored; some other isInMainFile users want
1372// these semantics.
1373static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1374  if (S.TUKind != TU_Complete)
1375    return false;
1376  return S.SourceMgr.isInMainFile(Loc);
1377}
1378
1379bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1380  assert(D);
1381
1382  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1383    return false;
1384
1385  // Ignore all entities declared within templates, and out-of-line definitions
1386  // of members of class templates.
1387  if (D->getDeclContext()->isDependentContext() ||
1388      D->getLexicalDeclContext()->isDependentContext())
1389    return false;
1390
1391  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1392    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1393      return false;
1394
1395    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1396      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1397        return false;
1398    } else {
1399      // 'static inline' functions are defined in headers; don't warn.
1400      if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1401        return false;
1402    }
1403
1404    if (FD->doesThisDeclarationHaveABody() &&
1405        Context.DeclMustBeEmitted(FD))
1406      return false;
1407  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1408    // Constants and utility variables are defined in headers with internal
1409    // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1410    // like "inline".)
1411    if (!isMainFileLoc(*this, VD->getLocation()))
1412      return false;
1413
1414    if (Context.DeclMustBeEmitted(VD))
1415      return false;
1416
1417    if (VD->isStaticDataMember() &&
1418        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1419      return false;
1420  } else {
1421    return false;
1422  }
1423
1424  // Only warn for unused decls internal to the translation unit.
1425  // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1426  // for inline functions defined in the main source file, for instance.
1427  return mightHaveNonExternalLinkage(D);
1428}
1429
1430void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1431  if (!D)
1432    return;
1433
1434  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1435    const FunctionDecl *First = FD->getFirstDecl();
1436    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1437      return; // First should already be in the vector.
1438  }
1439
1440  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1441    const VarDecl *First = VD->getFirstDecl();
1442    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1443      return; // First should already be in the vector.
1444  }
1445
1446  if (ShouldWarnIfUnusedFileScopedDecl(D))
1447    UnusedFileScopedDecls.push_back(D);
1448}
1449
1450static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1451  if (D->isInvalidDecl())
1452    return false;
1453
1454  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
1455      D->hasAttr<ObjCPreciseLifetimeAttr>())
1456    return false;
1457
1458  if (isa<LabelDecl>(D))
1459    return true;
1460
1461  // Except for labels, we only care about unused decls that are local to
1462  // functions.
1463  bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1464  if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1465    // For dependent types, the diagnostic is deferred.
1466    WithinFunction =
1467        WithinFunction || (R->isLocalClass() && !R->isDependentType());
1468  if (!WithinFunction)
1469    return false;
1470
1471  if (isa<TypedefNameDecl>(D))
1472    return true;
1473
1474  // White-list anything that isn't a local variable.
1475  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1476    return false;
1477
1478  // Types of valid local variables should be complete, so this should succeed.
1479  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1480
1481    // White-list anything with an __attribute__((unused)) type.
1482    QualType Ty = VD->getType();
1483
1484    // Only look at the outermost level of typedef.
1485    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1486      if (TT->getDecl()->hasAttr<UnusedAttr>())
1487        return false;
1488    }
1489
1490    // If we failed to complete the type for some reason, or if the type is
1491    // dependent, don't diagnose the variable.
1492    if (Ty->isIncompleteType() || Ty->isDependentType())
1493      return false;
1494
1495    if (const TagType *TT = Ty->getAs<TagType>()) {
1496      const TagDecl *Tag = TT->getDecl();
1497      if (Tag->hasAttr<UnusedAttr>())
1498        return false;
1499
1500      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1501        if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1502          return false;
1503
1504        if (const Expr *Init = VD->getInit()) {
1505          if (const ExprWithCleanups *Cleanups =
1506                  dyn_cast<ExprWithCleanups>(Init))
1507            Init = Cleanups->getSubExpr();
1508          const CXXConstructExpr *Construct =
1509            dyn_cast<CXXConstructExpr>(Init);
1510          if (Construct && !Construct->isElidable()) {
1511            CXXConstructorDecl *CD = Construct->getConstructor();
1512            if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1513              return false;
1514          }
1515        }
1516      }
1517    }
1518
1519    // TODO: __attribute__((unused)) templates?
1520  }
1521
1522  return true;
1523}
1524
1525static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1526                                     FixItHint &Hint) {
1527  if (isa<LabelDecl>(D)) {
1528    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1529                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1530    if (AfterColon.isInvalid())
1531      return;
1532    Hint = FixItHint::CreateRemoval(CharSourceRange::
1533                                    getCharRange(D->getLocStart(), AfterColon));
1534  }
1535  return;
1536}
1537
1538void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1539  if (D->getTypeForDecl()->isDependentType())
1540    return;
1541
1542  for (auto *TmpD : D->decls()) {
1543    if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1544      DiagnoseUnusedDecl(T);
1545    else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1546      DiagnoseUnusedNestedTypedefs(R);
1547  }
1548}
1549
1550/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1551/// unless they are marked attr(unused).
1552void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1553  if (!ShouldDiagnoseUnusedDecl(D))
1554    return;
1555
1556  if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1557    // typedefs can be referenced later on, so the diagnostics are emitted
1558    // at end-of-translation-unit.
1559    UnusedLocalTypedefNameCandidates.insert(TD);
1560    return;
1561  }
1562
1563  FixItHint Hint;
1564  GenerateFixForUnusedDecl(D, Context, Hint);
1565
1566  unsigned DiagID;
1567  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1568    DiagID = diag::warn_unused_exception_param;
1569  else if (isa<LabelDecl>(D))
1570    DiagID = diag::warn_unused_label;
1571  else
1572    DiagID = diag::warn_unused_variable;
1573
1574  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1575}
1576
1577static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1578  // Verify that we have no forward references left.  If so, there was a goto
1579  // or address of a label taken, but no definition of it.  Label fwd
1580  // definitions are indicated with a null substmt which is also not a resolved
1581  // MS inline assembly label name.
1582  bool Diagnose = false;
1583  if (L->isMSAsmLabel())
1584    Diagnose = !L->isResolvedMSAsmLabel();
1585  else
1586    Diagnose = L->getStmt() == nullptr;
1587  if (Diagnose)
1588    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1589}
1590
1591void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1592  S->mergeNRVOIntoParent();
1593
1594  if (S->decl_empty()) return;
1595  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1596         "Scope shouldn't contain decls!");
1597
1598  for (auto *TmpD : S->decls()) {
1599    assert(TmpD && "This decl didn't get pushed??");
1600
1601    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1602    NamedDecl *D = cast<NamedDecl>(TmpD);
1603
1604    if (!D->getDeclName()) continue;
1605
1606    // Diagnose unused variables in this scope.
1607    if (!S->hasUnrecoverableErrorOccurred()) {
1608      DiagnoseUnusedDecl(D);
1609      if (const auto *RD = dyn_cast<RecordDecl>(D))
1610        DiagnoseUnusedNestedTypedefs(RD);
1611    }
1612
1613    // If this was a forward reference to a label, verify it was defined.
1614    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1615      CheckPoppedLabel(LD, *this);
1616
1617    // Remove this name from our lexical scope.
1618    IdResolver.RemoveDecl(D);
1619  }
1620}
1621
1622/// \brief Look for an Objective-C class in the translation unit.
1623///
1624/// \param Id The name of the Objective-C class we're looking for. If
1625/// typo-correction fixes this name, the Id will be updated
1626/// to the fixed name.
1627///
1628/// \param IdLoc The location of the name in the translation unit.
1629///
1630/// \param DoTypoCorrection If true, this routine will attempt typo correction
1631/// if there is no class with the given name.
1632///
1633/// \returns The declaration of the named Objective-C class, or NULL if the
1634/// class could not be found.
1635ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1636                                              SourceLocation IdLoc,
1637                                              bool DoTypoCorrection) {
1638  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1639  // creation from this context.
1640  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1641
1642  if (!IDecl && DoTypoCorrection) {
1643    // Perform typo correction at the given location, but only if we
1644    // find an Objective-C class name.
1645    if (TypoCorrection C = CorrectTypo(
1646            DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1647            llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1648            CTK_ErrorRecovery)) {
1649      diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1650      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1651      Id = IDecl->getIdentifier();
1652    }
1653  }
1654  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1655  // This routine must always return a class definition, if any.
1656  if (Def && Def->getDefinition())
1657      Def = Def->getDefinition();
1658  return Def;
1659}
1660
1661/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1662/// from S, where a non-field would be declared. This routine copes
1663/// with the difference between C and C++ scoping rules in structs and
1664/// unions. For example, the following code is well-formed in C but
1665/// ill-formed in C++:
1666/// @code
1667/// struct S6 {
1668///   enum { BAR } e;
1669/// };
1670///
1671/// void test_S6() {
1672///   struct S6 a;
1673///   a.e = BAR;
1674/// }
1675/// @endcode
1676/// For the declaration of BAR, this routine will return a different
1677/// scope. The scope S will be the scope of the unnamed enumeration
1678/// within S6. In C++, this routine will return the scope associated
1679/// with S6, because the enumeration's scope is a transparent
1680/// context but structures can contain non-field names. In C, this
1681/// routine will return the translation unit scope, since the
1682/// enumeration's scope is a transparent context and structures cannot
1683/// contain non-field names.
1684Scope *Sema::getNonFieldDeclScope(Scope *S) {
1685  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1686         (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1687         (S->isClassScope() && !getLangOpts().CPlusPlus))
1688    S = S->getParent();
1689  return S;
1690}
1691
1692/// \brief Looks up the declaration of "struct objc_super" and
1693/// saves it for later use in building builtin declaration of
1694/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1695/// pre-existing declaration exists no action takes place.
1696static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1697                                        IdentifierInfo *II) {
1698  if (!II->isStr("objc_msgSendSuper"))
1699    return;
1700  ASTContext &Context = ThisSema.Context;
1701
1702  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1703                      SourceLocation(), Sema::LookupTagName);
1704  ThisSema.LookupName(Result, S);
1705  if (Result.getResultKind() == LookupResult::Found)
1706    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1707      Context.setObjCSuperType(Context.getTagDeclType(TD));
1708}
1709
1710static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1711  switch (Error) {
1712  case ASTContext::GE_None:
1713    return "";
1714  case ASTContext::GE_Missing_stdio:
1715    return "stdio.h";
1716  case ASTContext::GE_Missing_setjmp:
1717    return "setjmp.h";
1718  case ASTContext::GE_Missing_ucontext:
1719    return "ucontext.h";
1720  }
1721  llvm_unreachable("unhandled error kind");
1722}
1723
1724/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1725/// file scope.  lazily create a decl for it. ForRedeclaration is true
1726/// if we're creating this built-in in anticipation of redeclaring the
1727/// built-in.
1728NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1729                                     Scope *S, bool ForRedeclaration,
1730                                     SourceLocation Loc) {
1731  LookupPredefedObjCSuperType(*this, S, II);
1732
1733  ASTContext::GetBuiltinTypeError Error;
1734  QualType R = Context.GetBuiltinType(ID, Error);
1735  if (Error) {
1736    if (ForRedeclaration)
1737      Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1738          << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
1739    return nullptr;
1740  }
1741
1742  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) {
1743    Diag(Loc, diag::ext_implicit_lib_function_decl)
1744        << Context.BuiltinInfo.getName(ID) << R;
1745    if (Context.BuiltinInfo.getHeaderName(ID) &&
1746        !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1747      Diag(Loc, diag::note_include_header_or_declare)
1748          << Context.BuiltinInfo.getHeaderName(ID)
1749          << Context.BuiltinInfo.getName(ID);
1750  }
1751
1752  DeclContext *Parent = Context.getTranslationUnitDecl();
1753  if (getLangOpts().CPlusPlus) {
1754    LinkageSpecDecl *CLinkageDecl =
1755        LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1756                                LinkageSpecDecl::lang_c, false);
1757    CLinkageDecl->setImplicit();
1758    Parent->addDecl(CLinkageDecl);
1759    Parent = CLinkageDecl;
1760  }
1761
1762  FunctionDecl *New = FunctionDecl::Create(Context,
1763                                           Parent,
1764                                           Loc, Loc, II, R, /*TInfo=*/nullptr,
1765                                           SC_Extern,
1766                                           false,
1767                                           R->isFunctionProtoType());
1768  New->setImplicit();
1769
1770  // Create Decl objects for each parameter, adding them to the
1771  // FunctionDecl.
1772  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1773    SmallVector<ParmVarDecl*, 16> Params;
1774    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1775      ParmVarDecl *parm =
1776          ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
1777                              nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
1778                              SC_None, nullptr);
1779      parm->setScopeInfo(0, i);
1780      Params.push_back(parm);
1781    }
1782    New->setParams(Params);
1783  }
1784
1785  AddKnownFunctionAttributes(New);
1786  RegisterLocallyScopedExternCDecl(New, S);
1787
1788  // TUScope is the translation-unit scope to insert this function into.
1789  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1790  // relate Scopes to DeclContexts, and probably eliminate CurContext
1791  // entirely, but we're not there yet.
1792  DeclContext *SavedContext = CurContext;
1793  CurContext = Parent;
1794  PushOnScopeChains(New, TUScope);
1795  CurContext = SavedContext;
1796  return New;
1797}
1798
1799/// Typedef declarations don't have linkage, but they still denote the same
1800/// entity if their types are the same.
1801/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
1802/// isSameEntity.
1803static void filterNonConflictingPreviousTypedefDecls(Sema &S,
1804                                                     TypedefNameDecl *Decl,
1805                                                     LookupResult &Previous) {
1806  // This is only interesting when modules are enabled.
1807  if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
1808    return;
1809
1810  // Empty sets are uninteresting.
1811  if (Previous.empty())
1812    return;
1813
1814  LookupResult::Filter Filter = Previous.makeFilter();
1815  while (Filter.hasNext()) {
1816    NamedDecl *Old = Filter.next();
1817
1818    // Non-hidden declarations are never ignored.
1819    if (S.isVisible(Old))
1820      continue;
1821
1822    // Declarations of the same entity are not ignored, even if they have
1823    // different linkages.
1824    if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1825      if (S.Context.hasSameType(OldTD->getUnderlyingType(),
1826                                Decl->getUnderlyingType()))
1827        continue;
1828
1829      // If both declarations give a tag declaration a typedef name for linkage
1830      // purposes, then they declare the same entity.
1831      if (S.getLangOpts().CPlusPlus &&
1832          OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
1833          Decl->getAnonDeclWithTypedefName())
1834        continue;
1835    }
1836
1837    Filter.erase();
1838  }
1839
1840  Filter.done();
1841}
1842
1843bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1844  QualType OldType;
1845  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1846    OldType = OldTypedef->getUnderlyingType();
1847  else
1848    OldType = Context.getTypeDeclType(Old);
1849  QualType NewType = New->getUnderlyingType();
1850
1851  if (NewType->isVariablyModifiedType()) {
1852    // Must not redefine a typedef with a variably-modified type.
1853    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1854    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1855      << Kind << NewType;
1856    if (Old->getLocation().isValid())
1857      Diag(Old->getLocation(), diag::note_previous_definition);
1858    New->setInvalidDecl();
1859    return true;
1860  }
1861
1862  if (OldType != NewType &&
1863      !OldType->isDependentType() &&
1864      !NewType->isDependentType() &&
1865      !Context.hasSameType(OldType, NewType)) {
1866    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1867    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1868      << Kind << NewType << OldType;
1869    if (Old->getLocation().isValid())
1870      Diag(Old->getLocation(), diag::note_previous_definition);
1871    New->setInvalidDecl();
1872    return true;
1873  }
1874  return false;
1875}
1876
1877/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1878/// same name and scope as a previous declaration 'Old'.  Figure out
1879/// how to resolve this situation, merging decls or emitting
1880/// diagnostics as appropriate. If there was an error, set New to be invalid.
1881///
1882void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
1883                                LookupResult &OldDecls) {
1884  // If the new decl is known invalid already, don't bother doing any
1885  // merging checks.
1886  if (New->isInvalidDecl()) return;
1887
1888  // Allow multiple definitions for ObjC built-in typedefs.
1889  // FIXME: Verify the underlying types are equivalent!
1890  if (getLangOpts().ObjC1) {
1891    const IdentifierInfo *TypeID = New->getIdentifier();
1892    switch (TypeID->getLength()) {
1893    default: break;
1894    case 2:
1895      {
1896        if (!TypeID->isStr("id"))
1897          break;
1898        QualType T = New->getUnderlyingType();
1899        if (!T->isPointerType())
1900          break;
1901        if (!T->isVoidPointerType()) {
1902          QualType PT = T->getAs<PointerType>()->getPointeeType();
1903          if (!PT->isStructureType())
1904            break;
1905        }
1906        Context.setObjCIdRedefinitionType(T);
1907        // Install the built-in type for 'id', ignoring the current definition.
1908        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1909        return;
1910      }
1911    case 5:
1912      if (!TypeID->isStr("Class"))
1913        break;
1914      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1915      // Install the built-in type for 'Class', ignoring the current definition.
1916      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1917      return;
1918    case 3:
1919      if (!TypeID->isStr("SEL"))
1920        break;
1921      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1922      // Install the built-in type for 'SEL', ignoring the current definition.
1923      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1924      return;
1925    }
1926    // Fall through - the typedef name was not a builtin type.
1927  }
1928
1929  // Verify the old decl was also a type.
1930  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1931  if (!Old) {
1932    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1933      << New->getDeclName();
1934
1935    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1936    if (OldD->getLocation().isValid())
1937      Diag(OldD->getLocation(), diag::note_previous_definition);
1938
1939    return New->setInvalidDecl();
1940  }
1941
1942  // If the old declaration is invalid, just give up here.
1943  if (Old->isInvalidDecl())
1944    return New->setInvalidDecl();
1945
1946  if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1947    auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
1948    auto *NewTag = New->getAnonDeclWithTypedefName();
1949    NamedDecl *Hidden = nullptr;
1950    if (getLangOpts().CPlusPlus && OldTag && NewTag &&
1951        OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
1952        !hasVisibleDefinition(OldTag, &Hidden)) {
1953      // There is a definition of this tag, but it is not visible. Use it
1954      // instead of our tag.
1955      New->setTypeForDecl(OldTD->getTypeForDecl());
1956      if (OldTD->isModed())
1957        New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
1958                                    OldTD->getUnderlyingType());
1959      else
1960        New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
1961
1962      // Make the old tag definition visible.
1963      makeMergedDefinitionVisible(Hidden, NewTag->getLocation());
1964
1965      // If this was an unscoped enumeration, yank all of its enumerators
1966      // out of the scope.
1967      if (isa<EnumDecl>(NewTag)) {
1968        Scope *EnumScope = getNonFieldDeclScope(S);
1969        for (auto *D : NewTag->decls()) {
1970          auto *ED = cast<EnumConstantDecl>(D);
1971          assert(EnumScope->isDeclScope(ED));
1972          EnumScope->RemoveDecl(ED);
1973          IdResolver.RemoveDecl(ED);
1974          ED->getLexicalDeclContext()->removeDecl(ED);
1975        }
1976      }
1977    }
1978  }
1979
1980  // If the typedef types are not identical, reject them in all languages and
1981  // with any extensions enabled.
1982  if (isIncompatibleTypedef(Old, New))
1983    return;
1984
1985  // The types match.  Link up the redeclaration chain and merge attributes if
1986  // the old declaration was a typedef.
1987  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1988    New->setPreviousDecl(Typedef);
1989    mergeDeclAttributes(New, Old);
1990  }
1991
1992  if (getLangOpts().MicrosoftExt)
1993    return;
1994
1995  if (getLangOpts().CPlusPlus) {
1996    // C++ [dcl.typedef]p2:
1997    //   In a given non-class scope, a typedef specifier can be used to
1998    //   redefine the name of any type declared in that scope to refer
1999    //   to the type to which it already refers.
2000    if (!isa<CXXRecordDecl>(CurContext))
2001      return;
2002
2003    // C++0x [dcl.typedef]p4:
2004    //   In a given class scope, a typedef specifier can be used to redefine
2005    //   any class-name declared in that scope that is not also a typedef-name
2006    //   to refer to the type to which it already refers.
2007    //
2008    // This wording came in via DR424, which was a correction to the
2009    // wording in DR56, which accidentally banned code like:
2010    //
2011    //   struct S {
2012    //     typedef struct A { } A;
2013    //   };
2014    //
2015    // in the C++03 standard. We implement the C++0x semantics, which
2016    // allow the above but disallow
2017    //
2018    //   struct S {
2019    //     typedef int I;
2020    //     typedef int I;
2021    //   };
2022    //
2023    // since that was the intent of DR56.
2024    if (!isa<TypedefNameDecl>(Old))
2025      return;
2026
2027    Diag(New->getLocation(), diag::err_redefinition)
2028      << New->getDeclName();
2029    Diag(Old->getLocation(), diag::note_previous_definition);
2030    return New->setInvalidDecl();
2031  }
2032
2033  // Modules always permit redefinition of typedefs, as does C11.
2034  if (getLangOpts().Modules || getLangOpts().C11)
2035    return;
2036
2037  // If we have a redefinition of a typedef in C, emit a warning.  This warning
2038  // is normally mapped to an error, but can be controlled with
2039  // -Wtypedef-redefinition.  If either the original or the redefinition is
2040  // in a system header, don't emit this for compatibility with GCC.
2041  if (getDiagnostics().getSuppressSystemWarnings() &&
2042      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2043       Context.getSourceManager().isInSystemHeader(New->getLocation())))
2044    return;
2045
2046  Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2047    << New->getDeclName();
2048  Diag(Old->getLocation(), diag::note_previous_definition);
2049}
2050
2051/// DeclhasAttr - returns true if decl Declaration already has the target
2052/// attribute.
2053static bool DeclHasAttr(const Decl *D, const Attr *A) {
2054  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2055  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2056  for (const auto *i : D->attrs())
2057    if (i->getKind() == A->getKind()) {
2058      if (Ann) {
2059        if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2060          return true;
2061        continue;
2062      }
2063      // FIXME: Don't hardcode this check
2064      if (OA && isa<OwnershipAttr>(i))
2065        return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2066      return true;
2067    }
2068
2069  return false;
2070}
2071
2072static bool isAttributeTargetADefinition(Decl *D) {
2073  if (VarDecl *VD = dyn_cast<VarDecl>(D))
2074    return VD->isThisDeclarationADefinition();
2075  if (TagDecl *TD = dyn_cast<TagDecl>(D))
2076    return TD->isCompleteDefinition() || TD->isBeingDefined();
2077  return true;
2078}
2079
2080/// Merge alignment attributes from \p Old to \p New, taking into account the
2081/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2082///
2083/// \return \c true if any attributes were added to \p New.
2084static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2085  // Look for alignas attributes on Old, and pick out whichever attribute
2086  // specifies the strictest alignment requirement.
2087  AlignedAttr *OldAlignasAttr = nullptr;
2088  AlignedAttr *OldStrictestAlignAttr = nullptr;
2089  unsigned OldAlign = 0;
2090  for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2091    // FIXME: We have no way of representing inherited dependent alignments
2092    // in a case like:
2093    //   template<int A, int B> struct alignas(A) X;
2094    //   template<int A, int B> struct alignas(B) X {};
2095    // For now, we just ignore any alignas attributes which are not on the
2096    // definition in such a case.
2097    if (I->isAlignmentDependent())
2098      return false;
2099
2100    if (I->isAlignas())
2101      OldAlignasAttr = I;
2102
2103    unsigned Align = I->getAlignment(S.Context);
2104    if (Align > OldAlign) {
2105      OldAlign = Align;
2106      OldStrictestAlignAttr = I;
2107    }
2108  }
2109
2110  // Look for alignas attributes on New.
2111  AlignedAttr *NewAlignasAttr = nullptr;
2112  unsigned NewAlign = 0;
2113  for (auto *I : New->specific_attrs<AlignedAttr>()) {
2114    if (I->isAlignmentDependent())
2115      return false;
2116
2117    if (I->isAlignas())
2118      NewAlignasAttr = I;
2119
2120    unsigned Align = I->getAlignment(S.Context);
2121    if (Align > NewAlign)
2122      NewAlign = Align;
2123  }
2124
2125  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2126    // Both declarations have 'alignas' attributes. We require them to match.
2127    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2128    // fall short. (If two declarations both have alignas, they must both match
2129    // every definition, and so must match each other if there is a definition.)
2130
2131    // If either declaration only contains 'alignas(0)' specifiers, then it
2132    // specifies the natural alignment for the type.
2133    if (OldAlign == 0 || NewAlign == 0) {
2134      QualType Ty;
2135      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2136        Ty = VD->getType();
2137      else
2138        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2139
2140      if (OldAlign == 0)
2141        OldAlign = S.Context.getTypeAlign(Ty);
2142      if (NewAlign == 0)
2143        NewAlign = S.Context.getTypeAlign(Ty);
2144    }
2145
2146    if (OldAlign != NewAlign) {
2147      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2148        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2149        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2150      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2151    }
2152  }
2153
2154  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2155    // C++11 [dcl.align]p6:
2156    //   if any declaration of an entity has an alignment-specifier,
2157    //   every defining declaration of that entity shall specify an
2158    //   equivalent alignment.
2159    // C11 6.7.5/7:
2160    //   If the definition of an object does not have an alignment
2161    //   specifier, any other declaration of that object shall also
2162    //   have no alignment specifier.
2163    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2164      << OldAlignasAttr;
2165    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2166      << OldAlignasAttr;
2167  }
2168
2169  bool AnyAdded = false;
2170
2171  // Ensure we have an attribute representing the strictest alignment.
2172  if (OldAlign > NewAlign) {
2173    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2174    Clone->setInherited(true);
2175    New->addAttr(Clone);
2176    AnyAdded = true;
2177  }
2178
2179  // Ensure we have an alignas attribute if the old declaration had one.
2180  if (OldAlignasAttr && !NewAlignasAttr &&
2181      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2182    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2183    Clone->setInherited(true);
2184    New->addAttr(Clone);
2185    AnyAdded = true;
2186  }
2187
2188  return AnyAdded;
2189}
2190
2191static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2192                               const InheritableAttr *Attr,
2193                               Sema::AvailabilityMergeKind AMK) {
2194  InheritableAttr *NewAttr = nullptr;
2195  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2196  if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2197    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2198                                      AA->getIntroduced(), AA->getDeprecated(),
2199                                      AA->getObsoleted(), AA->getUnavailable(),
2200                                      AA->getMessage(), AMK,
2201                                      AttrSpellingListIndex);
2202  else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2203    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2204                                    AttrSpellingListIndex);
2205  else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2206    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2207                                        AttrSpellingListIndex);
2208  else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2209    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2210                                   AttrSpellingListIndex);
2211  else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2212    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2213                                   AttrSpellingListIndex);
2214  else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2215    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2216                                FA->getFormatIdx(), FA->getFirstArg(),
2217                                AttrSpellingListIndex);
2218  else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2219    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2220                                 AttrSpellingListIndex);
2221  else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2222    NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2223                                       AttrSpellingListIndex,
2224                                       IA->getSemanticSpelling());
2225  else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2226    NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2227                                      &S.Context.Idents.get(AA->getSpelling()),
2228                                      AttrSpellingListIndex);
2229  else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2230    NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2231  else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2232    NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2233  else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2234    NewAttr = S.mergeInternalLinkageAttr(
2235        D, InternalLinkageA->getRange(),
2236        &S.Context.Idents.get(InternalLinkageA->getSpelling()),
2237        AttrSpellingListIndex);
2238  else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2239    NewAttr = S.mergeCommonAttr(D, CommonA->getRange(),
2240                                &S.Context.Idents.get(CommonA->getSpelling()),
2241                                AttrSpellingListIndex);
2242  else if (isa<AlignedAttr>(Attr))
2243    // AlignedAttrs are handled separately, because we need to handle all
2244    // such attributes on a declaration at the same time.
2245    NewAttr = nullptr;
2246  else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2247           (AMK == Sema::AMK_Override ||
2248            AMK == Sema::AMK_ProtocolImplementation))
2249    NewAttr = nullptr;
2250  else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
2251    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2252
2253  if (NewAttr) {
2254    NewAttr->setInherited(true);
2255    D->addAttr(NewAttr);
2256    return true;
2257  }
2258
2259  return false;
2260}
2261
2262static const Decl *getDefinition(const Decl *D) {
2263  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2264    return TD->getDefinition();
2265  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2266    const VarDecl *Def = VD->getDefinition();
2267    if (Def)
2268      return Def;
2269    return VD->getActingDefinition();
2270  }
2271  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2272    const FunctionDecl* Def;
2273    if (FD->isDefined(Def))
2274      return Def;
2275  }
2276  return nullptr;
2277}
2278
2279static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2280  for (const auto *Attribute : D->attrs())
2281    if (Attribute->getKind() == Kind)
2282      return true;
2283  return false;
2284}
2285
2286/// checkNewAttributesAfterDef - If we already have a definition, check that
2287/// there are no new attributes in this declaration.
2288static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2289  if (!New->hasAttrs())
2290    return;
2291
2292  const Decl *Def = getDefinition(Old);
2293  if (!Def || Def == New)
2294    return;
2295
2296  AttrVec &NewAttributes = New->getAttrs();
2297  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2298    const Attr *NewAttribute = NewAttributes[I];
2299
2300    if (isa<AliasAttr>(NewAttribute)) {
2301      if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2302        Sema::SkipBodyInfo SkipBody;
2303        S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2304
2305        // If we're skipping this definition, drop the "alias" attribute.
2306        if (SkipBody.ShouldSkip) {
2307          NewAttributes.erase(NewAttributes.begin() + I);
2308          --E;
2309          continue;
2310        }
2311      } else {
2312        VarDecl *VD = cast<VarDecl>(New);
2313        unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2314                                VarDecl::TentativeDefinition
2315                            ? diag::err_alias_after_tentative
2316                            : diag::err_redefinition;
2317        S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2318        S.Diag(Def->getLocation(), diag::note_previous_definition);
2319        VD->setInvalidDecl();
2320      }
2321      ++I;
2322      continue;
2323    }
2324
2325    if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2326      // Tentative definitions are only interesting for the alias check above.
2327      if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2328        ++I;
2329        continue;
2330      }
2331    }
2332
2333    if (hasAttribute(Def, NewAttribute->getKind())) {
2334      ++I;
2335      continue; // regular attr merging will take care of validating this.
2336    }
2337
2338    if (isa<C11NoReturnAttr>(NewAttribute)) {
2339      // C's _Noreturn is allowed to be added to a function after it is defined.
2340      ++I;
2341      continue;
2342    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2343      if (AA->isAlignas()) {
2344        // C++11 [dcl.align]p6:
2345        //   if any declaration of an entity has an alignment-specifier,
2346        //   every defining declaration of that entity shall specify an
2347        //   equivalent alignment.
2348        // C11 6.7.5/7:
2349        //   If the definition of an object does not have an alignment
2350        //   specifier, any other declaration of that object shall also
2351        //   have no alignment specifier.
2352        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2353          << AA;
2354        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2355          << AA;
2356        NewAttributes.erase(NewAttributes.begin() + I);
2357        --E;
2358        continue;
2359      }
2360    }
2361
2362    S.Diag(NewAttribute->getLocation(),
2363           diag::warn_attribute_precede_definition);
2364    S.Diag(Def->getLocation(), diag::note_previous_definition);
2365    NewAttributes.erase(NewAttributes.begin() + I);
2366    --E;
2367  }
2368}
2369
2370/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2371void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2372                               AvailabilityMergeKind AMK) {
2373  if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2374    UsedAttr *NewAttr = OldAttr->clone(Context);
2375    NewAttr->setInherited(true);
2376    New->addAttr(NewAttr);
2377  }
2378
2379  if (!Old->hasAttrs() && !New->hasAttrs())
2380    return;
2381
2382  // Attributes declared post-definition are currently ignored.
2383  checkNewAttributesAfterDef(*this, New, Old);
2384
2385  if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2386    if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2387      if (OldA->getLabel() != NewA->getLabel()) {
2388        // This redeclaration changes __asm__ label.
2389        Diag(New->getLocation(), diag::err_different_asm_label);
2390        Diag(OldA->getLocation(), diag::note_previous_declaration);
2391      }
2392    } else if (Old->isUsed()) {
2393      // This redeclaration adds an __asm__ label to a declaration that has
2394      // already been ODR-used.
2395      Diag(New->getLocation(), diag::err_late_asm_label_name)
2396        << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2397    }
2398  }
2399
2400  if (!Old->hasAttrs())
2401    return;
2402
2403  bool foundAny = New->hasAttrs();
2404
2405  // Ensure that any moving of objects within the allocated map is done before
2406  // we process them.
2407  if (!foundAny) New->setAttrs(AttrVec());
2408
2409  for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2410    // Ignore deprecated/unavailable/availability attributes if requested.
2411    AvailabilityMergeKind LocalAMK = AMK_None;
2412    if (isa<DeprecatedAttr>(I) ||
2413        isa<UnavailableAttr>(I) ||
2414        isa<AvailabilityAttr>(I)) {
2415      switch (AMK) {
2416      case AMK_None:
2417        continue;
2418
2419      case AMK_Redeclaration:
2420      case AMK_Override:
2421      case AMK_ProtocolImplementation:
2422        LocalAMK = AMK;
2423        break;
2424      }
2425    }
2426
2427    // Already handled.
2428    if (isa<UsedAttr>(I))
2429      continue;
2430
2431    if (mergeDeclAttribute(*this, New, I, LocalAMK))
2432      foundAny = true;
2433  }
2434
2435  if (mergeAlignedAttrs(*this, New, Old))
2436    foundAny = true;
2437
2438  if (!foundAny) New->dropAttrs();
2439}
2440
2441/// mergeParamDeclAttributes - Copy attributes from the old parameter
2442/// to the new one.
2443static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2444                                     const ParmVarDecl *oldDecl,
2445                                     Sema &S) {
2446  // C++11 [dcl.attr.depend]p2:
2447  //   The first declaration of a function shall specify the
2448  //   carries_dependency attribute for its declarator-id if any declaration
2449  //   of the function specifies the carries_dependency attribute.
2450  const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2451  if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2452    S.Diag(CDA->getLocation(),
2453           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2454    // Find the first declaration of the parameter.
2455    // FIXME: Should we build redeclaration chains for function parameters?
2456    const FunctionDecl *FirstFD =
2457      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2458    const ParmVarDecl *FirstVD =
2459      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2460    S.Diag(FirstVD->getLocation(),
2461           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2462  }
2463
2464  if (!oldDecl->hasAttrs())
2465    return;
2466
2467  bool foundAny = newDecl->hasAttrs();
2468
2469  // Ensure that any moving of objects within the allocated map is
2470  // done before we process them.
2471  if (!foundAny) newDecl->setAttrs(AttrVec());
2472
2473  for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2474    if (!DeclHasAttr(newDecl, I)) {
2475      InheritableAttr *newAttr =
2476        cast<InheritableParamAttr>(I->clone(S.Context));
2477      newAttr->setInherited(true);
2478      newDecl->addAttr(newAttr);
2479      foundAny = true;
2480    }
2481  }
2482
2483  if (!foundAny) newDecl->dropAttrs();
2484}
2485
2486static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2487                                const ParmVarDecl *OldParam,
2488                                Sema &S) {
2489  if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2490    if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2491      if (*Oldnullability != *Newnullability) {
2492        S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2493          << DiagNullabilityKind(
2494               *Newnullability,
2495               ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2496                != 0))
2497          << DiagNullabilityKind(
2498               *Oldnullability,
2499               ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2500                != 0));
2501        S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2502      }
2503    } else {
2504      QualType NewT = NewParam->getType();
2505      NewT = S.Context.getAttributedType(
2506                         AttributedType::getNullabilityAttrKind(*Oldnullability),
2507                         NewT, NewT);
2508      NewParam->setType(NewT);
2509    }
2510  }
2511}
2512
2513namespace {
2514
2515/// Used in MergeFunctionDecl to keep track of function parameters in
2516/// C.
2517struct GNUCompatibleParamWarning {
2518  ParmVarDecl *OldParm;
2519  ParmVarDecl *NewParm;
2520  QualType PromotedType;
2521};
2522
2523}
2524
2525/// getSpecialMember - get the special member enum for a method.
2526Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2527  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2528    if (Ctor->isDefaultConstructor())
2529      return Sema::CXXDefaultConstructor;
2530
2531    if (Ctor->isCopyConstructor())
2532      return Sema::CXXCopyConstructor;
2533
2534    if (Ctor->isMoveConstructor())
2535      return Sema::CXXMoveConstructor;
2536  } else if (isa<CXXDestructorDecl>(MD)) {
2537    return Sema::CXXDestructor;
2538  } else if (MD->isCopyAssignmentOperator()) {
2539    return Sema::CXXCopyAssignment;
2540  } else if (MD->isMoveAssignmentOperator()) {
2541    return Sema::CXXMoveAssignment;
2542  }
2543
2544  return Sema::CXXInvalid;
2545}
2546
2547// Determine whether the previous declaration was a definition, implicit
2548// declaration, or a declaration.
2549template <typename T>
2550static std::pair<diag::kind, SourceLocation>
2551getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2552  diag::kind PrevDiag;
2553  SourceLocation OldLocation = Old->getLocation();
2554  if (Old->isThisDeclarationADefinition())
2555    PrevDiag = diag::note_previous_definition;
2556  else if (Old->isImplicit()) {
2557    PrevDiag = diag::note_previous_implicit_declaration;
2558    if (OldLocation.isInvalid())
2559      OldLocation = New->getLocation();
2560  } else
2561    PrevDiag = diag::note_previous_declaration;
2562  return std::make_pair(PrevDiag, OldLocation);
2563}
2564
2565/// canRedefineFunction - checks if a function can be redefined. Currently,
2566/// only extern inline functions can be redefined, and even then only in
2567/// GNU89 mode.
2568static bool canRedefineFunction(const FunctionDecl *FD,
2569                                const LangOptions& LangOpts) {
2570  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2571          !LangOpts.CPlusPlus &&
2572          FD->isInlineSpecified() &&
2573          FD->getStorageClass() == SC_Extern);
2574}
2575
2576const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2577  const AttributedType *AT = T->getAs<AttributedType>();
2578  while (AT && !AT->isCallingConv())
2579    AT = AT->getModifiedType()->getAs<AttributedType>();
2580  return AT;
2581}
2582
2583template <typename T>
2584static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2585  const DeclContext *DC = Old->getDeclContext();
2586  if (DC->isRecord())
2587    return false;
2588
2589  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2590  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2591    return true;
2592  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2593    return true;
2594  return false;
2595}
2596
2597template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2598static bool isExternC(VarTemplateDecl *) { return false; }
2599
2600/// \brief Check whether a redeclaration of an entity introduced by a
2601/// using-declaration is valid, given that we know it's not an overload
2602/// (nor a hidden tag declaration).
2603template<typename ExpectedDecl>
2604static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2605                                   ExpectedDecl *New) {
2606  // C++11 [basic.scope.declarative]p4:
2607  //   Given a set of declarations in a single declarative region, each of
2608  //   which specifies the same unqualified name,
2609  //   -- they shall all refer to the same entity, or all refer to functions
2610  //      and function templates; or
2611  //   -- exactly one declaration shall declare a class name or enumeration
2612  //      name that is not a typedef name and the other declarations shall all
2613  //      refer to the same variable or enumerator, or all refer to functions
2614  //      and function templates; in this case the class name or enumeration
2615  //      name is hidden (3.3.10).
2616
2617  // C++11 [namespace.udecl]p14:
2618  //   If a function declaration in namespace scope or block scope has the
2619  //   same name and the same parameter-type-list as a function introduced
2620  //   by a using-declaration, and the declarations do not declare the same
2621  //   function, the program is ill-formed.
2622
2623  auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2624  if (Old &&
2625      !Old->getDeclContext()->getRedeclContext()->Equals(
2626          New->getDeclContext()->getRedeclContext()) &&
2627      !(isExternC(Old) && isExternC(New)))
2628    Old = nullptr;
2629
2630  if (!Old) {
2631    S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2632    S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2633    S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2634    return true;
2635  }
2636  return false;
2637}
2638
2639static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2640                                            const FunctionDecl *B) {
2641  assert(A->getNumParams() == B->getNumParams());
2642
2643  auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2644    const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2645    const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2646    if (AttrA == AttrB)
2647      return true;
2648    return AttrA && AttrB && AttrA->getType() == AttrB->getType();
2649  };
2650
2651  return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2652}
2653
2654/// MergeFunctionDecl - We just parsed a function 'New' from
2655/// declarator D which has the same name and scope as a previous
2656/// declaration 'Old'.  Figure out how to resolve this situation,
2657/// merging decls or emitting diagnostics as appropriate.
2658///
2659/// In C++, New and Old must be declarations that are not
2660/// overloaded. Use IsOverload to determine whether New and Old are
2661/// overloaded, and to select the Old declaration that New should be
2662/// merged with.
2663///
2664/// Returns true if there was an error, false otherwise.
2665bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2666                             Scope *S, bool MergeTypeWithOld) {
2667  // Verify the old decl was also a function.
2668  FunctionDecl *Old = OldD->getAsFunction();
2669  if (!Old) {
2670    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2671      if (New->getFriendObjectKind()) {
2672        Diag(New->getLocation(), diag::err_using_decl_friend);
2673        Diag(Shadow->getTargetDecl()->getLocation(),
2674             diag::note_using_decl_target);
2675        Diag(Shadow->getUsingDecl()->getLocation(),
2676             diag::note_using_decl) << 0;
2677        return true;
2678      }
2679
2680      // Check whether the two declarations might declare the same function.
2681      if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
2682        return true;
2683      OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
2684    } else {
2685      Diag(New->getLocation(), diag::err_redefinition_different_kind)
2686        << New->getDeclName();
2687      Diag(OldD->getLocation(), diag::note_previous_definition);
2688      return true;
2689    }
2690  }
2691
2692  // If the old declaration is invalid, just give up here.
2693  if (Old->isInvalidDecl())
2694    return true;
2695
2696  diag::kind PrevDiag;
2697  SourceLocation OldLocation;
2698  std::tie(PrevDiag, OldLocation) =
2699      getNoteDiagForInvalidRedeclaration(Old, New);
2700
2701  // Don't complain about this if we're in GNU89 mode and the old function
2702  // is an extern inline function.
2703  // Don't complain about specializations. They are not supposed to have
2704  // storage classes.
2705  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2706      New->getStorageClass() == SC_Static &&
2707      Old->hasExternalFormalLinkage() &&
2708      !New->getTemplateSpecializationInfo() &&
2709      !canRedefineFunction(Old, getLangOpts())) {
2710    if (getLangOpts().MicrosoftExt) {
2711      Diag(New->getLocation(), diag::ext_static_non_static) << New;
2712      Diag(OldLocation, PrevDiag);
2713    } else {
2714      Diag(New->getLocation(), diag::err_static_non_static) << New;
2715      Diag(OldLocation, PrevDiag);
2716      return true;
2717    }
2718  }
2719
2720  if (New->hasAttr<InternalLinkageAttr>() &&
2721      !Old->hasAttr<InternalLinkageAttr>()) {
2722    Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
2723        << New->getDeclName();
2724    Diag(Old->getLocation(), diag::note_previous_definition);
2725    New->dropAttr<InternalLinkageAttr>();
2726  }
2727
2728  // If a function is first declared with a calling convention, but is later
2729  // declared or defined without one, all following decls assume the calling
2730  // convention of the first.
2731  //
2732  // It's OK if a function is first declared without a calling convention,
2733  // but is later declared or defined with the default calling convention.
2734  //
2735  // To test if either decl has an explicit calling convention, we look for
2736  // AttributedType sugar nodes on the type as written.  If they are missing or
2737  // were canonicalized away, we assume the calling convention was implicit.
2738  //
2739  // Note also that we DO NOT return at this point, because we still have
2740  // other tests to run.
2741  QualType OldQType = Context.getCanonicalType(Old->getType());
2742  QualType NewQType = Context.getCanonicalType(New->getType());
2743  const FunctionType *OldType = cast<FunctionType>(OldQType);
2744  const FunctionType *NewType = cast<FunctionType>(NewQType);
2745  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2746  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2747  bool RequiresAdjustment = false;
2748
2749  if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2750    FunctionDecl *First = Old->getFirstDecl();
2751    const FunctionType *FT =
2752        First->getType().getCanonicalType()->castAs<FunctionType>();
2753    FunctionType::ExtInfo FI = FT->getExtInfo();
2754    bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2755    if (!NewCCExplicit) {
2756      // Inherit the CC from the previous declaration if it was specified
2757      // there but not here.
2758      NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2759      RequiresAdjustment = true;
2760    } else {
2761      // Calling conventions aren't compatible, so complain.
2762      bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2763      Diag(New->getLocation(), diag::err_cconv_change)
2764        << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2765        << !FirstCCExplicit
2766        << (!FirstCCExplicit ? "" :
2767            FunctionType::getNameForCallConv(FI.getCC()));
2768
2769      // Put the note on the first decl, since it is the one that matters.
2770      Diag(First->getLocation(), diag::note_previous_declaration);
2771      return true;
2772    }
2773  }
2774
2775  // FIXME: diagnose the other way around?
2776  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2777    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2778    RequiresAdjustment = true;
2779  }
2780
2781  // Merge regparm attribute.
2782  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2783      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2784    if (NewTypeInfo.getHasRegParm()) {
2785      Diag(New->getLocation(), diag::err_regparm_mismatch)
2786        << NewType->getRegParmType()
2787        << OldType->getRegParmType();
2788      Diag(OldLocation, diag::note_previous_declaration);
2789      return true;
2790    }
2791
2792    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2793    RequiresAdjustment = true;
2794  }
2795
2796  // Merge ns_returns_retained attribute.
2797  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2798    if (NewTypeInfo.getProducesResult()) {
2799      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2800      Diag(OldLocation, diag::note_previous_declaration);
2801      return true;
2802    }
2803
2804    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2805    RequiresAdjustment = true;
2806  }
2807
2808  if (RequiresAdjustment) {
2809    const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2810    AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2811    New->setType(QualType(AdjustedType, 0));
2812    NewQType = Context.getCanonicalType(New->getType());
2813    NewType = cast<FunctionType>(NewQType);
2814  }
2815
2816  // If this redeclaration makes the function inline, we may need to add it to
2817  // UndefinedButUsed.
2818  if (!Old->isInlined() && New->isInlined() &&
2819      !New->hasAttr<GNUInlineAttr>() &&
2820      !getLangOpts().GNUInline &&
2821      Old->isUsed(false) &&
2822      !Old->isDefined() && !New->isThisDeclarationADefinition())
2823    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2824                                           SourceLocation()));
2825
2826  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2827  // about it.
2828  if (New->hasAttr<GNUInlineAttr>() &&
2829      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2830    UndefinedButUsed.erase(Old->getCanonicalDecl());
2831  }
2832
2833  // If pass_object_size params don't match up perfectly, this isn't a valid
2834  // redeclaration.
2835  if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
2836      !hasIdenticalPassObjectSizeAttrs(Old, New)) {
2837    Diag(New->getLocation(), diag::err_different_pass_object_size_params)
2838        << New->getDeclName();
2839    Diag(OldLocation, PrevDiag) << Old << Old->getType();
2840    return true;
2841  }
2842
2843  if (getLangOpts().CPlusPlus) {
2844    // (C++98 13.1p2):
2845    //   Certain function declarations cannot be overloaded:
2846    //     -- Function declarations that differ only in the return type
2847    //        cannot be overloaded.
2848
2849    // Go back to the type source info to compare the declared return types,
2850    // per C++1y [dcl.type.auto]p13:
2851    //   Redeclarations or specializations of a function or function template
2852    //   with a declared return type that uses a placeholder type shall also
2853    //   use that placeholder, not a deduced type.
2854    QualType OldDeclaredReturnType =
2855        (Old->getTypeSourceInfo()
2856             ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2857             : OldType)->getReturnType();
2858    QualType NewDeclaredReturnType =
2859        (New->getTypeSourceInfo()
2860             ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2861             : NewType)->getReturnType();
2862    QualType ResQT;
2863    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2864        !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2865          New->isLocalExternDecl())) {
2866      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2867          OldDeclaredReturnType->isObjCObjectPointerType())
2868        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2869      if (ResQT.isNull()) {
2870        if (New->isCXXClassMember() && New->isOutOfLine())
2871          Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
2872              << New << New->getReturnTypeSourceRange();
2873        else
2874          Diag(New->getLocation(), diag::err_ovl_diff_return_type)
2875              << New->getReturnTypeSourceRange();
2876        Diag(OldLocation, PrevDiag) << Old << Old->getType()
2877                                    << Old->getReturnTypeSourceRange();
2878        return true;
2879      }
2880      else
2881        NewQType = ResQT;
2882    }
2883
2884    QualType OldReturnType = OldType->getReturnType();
2885    QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
2886    if (OldReturnType != NewReturnType) {
2887      // If this function has a deduced return type and has already been
2888      // defined, copy the deduced value from the old declaration.
2889      AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
2890      if (OldAT && OldAT->isDeduced()) {
2891        New->setType(
2892            SubstAutoType(New->getType(),
2893                          OldAT->isDependentType() ? Context.DependentTy
2894                                                   : OldAT->getDeducedType()));
2895        NewQType = Context.getCanonicalType(
2896            SubstAutoType(NewQType,
2897                          OldAT->isDependentType() ? Context.DependentTy
2898                                                   : OldAT->getDeducedType()));
2899      }
2900    }
2901
2902    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2903    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2904    if (OldMethod && NewMethod) {
2905      // Preserve triviality.
2906      NewMethod->setTrivial(OldMethod->isTrivial());
2907
2908      // MSVC allows explicit template specialization at class scope:
2909      // 2 CXXMethodDecls referring to the same function will be injected.
2910      // We don't want a redeclaration error.
2911      bool IsClassScopeExplicitSpecialization =
2912                              OldMethod->isFunctionTemplateSpecialization() &&
2913                              NewMethod->isFunctionTemplateSpecialization();
2914      bool isFriend = NewMethod->getFriendObjectKind();
2915
2916      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2917          !IsClassScopeExplicitSpecialization) {
2918        //    -- Member function declarations with the same name and the
2919        //       same parameter types cannot be overloaded if any of them
2920        //       is a static member function declaration.
2921        if (OldMethod->isStatic() != NewMethod->isStatic()) {
2922          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2923          Diag(OldLocation, PrevDiag) << Old << Old->getType();
2924          return true;
2925        }
2926
2927        // C++ [class.mem]p1:
2928        //   [...] A member shall not be declared twice in the
2929        //   member-specification, except that a nested class or member
2930        //   class template can be declared and then later defined.
2931        if (ActiveTemplateInstantiations.empty()) {
2932          unsigned NewDiag;
2933          if (isa<CXXConstructorDecl>(OldMethod))
2934            NewDiag = diag::err_constructor_redeclared;
2935          else if (isa<CXXDestructorDecl>(NewMethod))
2936            NewDiag = diag::err_destructor_redeclared;
2937          else if (isa<CXXConversionDecl>(NewMethod))
2938            NewDiag = diag::err_conv_function_redeclared;
2939          else
2940            NewDiag = diag::err_member_redeclared;
2941
2942          Diag(New->getLocation(), NewDiag);
2943        } else {
2944          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2945            << New << New->getType();
2946        }
2947        Diag(OldLocation, PrevDiag) << Old << Old->getType();
2948        return true;
2949
2950      // Complain if this is an explicit declaration of a special
2951      // member that was initially declared implicitly.
2952      //
2953      // As an exception, it's okay to befriend such methods in order
2954      // to permit the implicit constructor/destructor/operator calls.
2955      } else if (OldMethod->isImplicit()) {
2956        if (isFriend) {
2957          NewMethod->setImplicit();
2958        } else {
2959          Diag(NewMethod->getLocation(),
2960               diag::err_definition_of_implicitly_declared_member)
2961            << New << getSpecialMember(OldMethod);
2962          return true;
2963        }
2964      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2965        Diag(NewMethod->getLocation(),
2966             diag::err_definition_of_explicitly_defaulted_member)
2967          << getSpecialMember(OldMethod);
2968        return true;
2969      }
2970    }
2971
2972    // C++11 [dcl.attr.noreturn]p1:
2973    //   The first declaration of a function shall specify the noreturn
2974    //   attribute if any declaration of that function specifies the noreturn
2975    //   attribute.
2976    const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
2977    if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
2978      Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
2979      Diag(Old->getFirstDecl()->getLocation(),
2980           diag::note_noreturn_missing_first_decl);
2981    }
2982
2983    // C++11 [dcl.attr.depend]p2:
2984    //   The first declaration of a function shall specify the
2985    //   carries_dependency attribute for its declarator-id if any declaration
2986    //   of the function specifies the carries_dependency attribute.
2987    const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
2988    if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
2989      Diag(CDA->getLocation(),
2990           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2991      Diag(Old->getFirstDecl()->getLocation(),
2992           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2993    }
2994
2995    // (C++98 8.3.5p3):
2996    //   All declarations for a function shall agree exactly in both the
2997    //   return type and the parameter-type-list.
2998    // We also want to respect all the extended bits except noreturn.
2999
3000    // noreturn should now match unless the old type info didn't have it.
3001    QualType OldQTypeForComparison = OldQType;
3002    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3003      assert(OldQType == QualType(OldType, 0));
3004      const FunctionType *OldTypeForComparison
3005        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3006      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3007      assert(OldQTypeForComparison.isCanonical());
3008    }
3009
3010    if (haveIncompatibleLanguageLinkages(Old, New)) {
3011      // As a special case, retain the language linkage from previous
3012      // declarations of a friend function as an extension.
3013      //
3014      // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3015      // and is useful because there's otherwise no way to specify language
3016      // linkage within class scope.
3017      //
3018      // Check cautiously as the friend object kind isn't yet complete.
3019      if (New->getFriendObjectKind() != Decl::FOK_None) {
3020        Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3021        Diag(OldLocation, PrevDiag);
3022      } else {
3023        Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3024        Diag(OldLocation, PrevDiag);
3025        return true;
3026      }
3027    }
3028
3029    if (OldQTypeForComparison == NewQType)
3030      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3031
3032    if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
3033        New->isLocalExternDecl()) {
3034      // It's OK if we couldn't merge types for a local function declaraton
3035      // if either the old or new type is dependent. We'll merge the types
3036      // when we instantiate the function.
3037      return false;
3038    }
3039
3040    // Fall through for conflicting redeclarations and redefinitions.
3041  }
3042
3043  // C: Function types need to be compatible, not identical. This handles
3044  // duplicate function decls like "void f(int); void f(enum X);" properly.
3045  if (!getLangOpts().CPlusPlus &&
3046      Context.typesAreCompatible(OldQType, NewQType)) {
3047    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3048    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3049    const FunctionProtoType *OldProto = nullptr;
3050    if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3051        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3052      // The old declaration provided a function prototype, but the
3053      // new declaration does not. Merge in the prototype.
3054      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3055      SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3056      NewQType =
3057          Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3058                                  OldProto->getExtProtoInfo());
3059      New->setType(NewQType);
3060      New->setHasInheritedPrototype();
3061
3062      // Synthesize parameters with the same types.
3063      SmallVector<ParmVarDecl*, 16> Params;
3064      for (const auto &ParamType : OldProto->param_types()) {
3065        ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3066                                                 SourceLocation(), nullptr,
3067                                                 ParamType, /*TInfo=*/nullptr,
3068                                                 SC_None, nullptr);
3069        Param->setScopeInfo(0, Params.size());
3070        Param->setImplicit();
3071        Params.push_back(Param);
3072      }
3073
3074      New->setParams(Params);
3075    }
3076
3077    return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3078  }
3079
3080  // GNU C permits a K&R definition to follow a prototype declaration
3081  // if the declared types of the parameters in the K&R definition
3082  // match the types in the prototype declaration, even when the
3083  // promoted types of the parameters from the K&R definition differ
3084  // from the types in the prototype. GCC then keeps the types from
3085  // the prototype.
3086  //
3087  // If a variadic prototype is followed by a non-variadic K&R definition,
3088  // the K&R definition becomes variadic.  This is sort of an edge case, but
3089  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3090  // C99 6.9.1p8.
3091  if (!getLangOpts().CPlusPlus &&
3092      Old->hasPrototype() && !New->hasPrototype() &&
3093      New->getType()->getAs<FunctionProtoType>() &&
3094      Old->getNumParams() == New->getNumParams()) {
3095    SmallVector<QualType, 16> ArgTypes;
3096    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3097    const FunctionProtoType *OldProto
3098      = Old->getType()->getAs<FunctionProtoType>();
3099    const FunctionProtoType *NewProto
3100      = New->getType()->getAs<FunctionProtoType>();
3101
3102    // Determine whether this is the GNU C extension.
3103    QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3104                                               NewProto->getReturnType());
3105    bool LooseCompatible = !MergedReturn.isNull();
3106    for (unsigned Idx = 0, End = Old->getNumParams();
3107         LooseCompatible && Idx != End; ++Idx) {
3108      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3109      ParmVarDecl *NewParm = New->getParamDecl(Idx);
3110      if (Context.typesAreCompatible(OldParm->getType(),
3111                                     NewProto->getParamType(Idx))) {
3112        ArgTypes.push_back(NewParm->getType());
3113      } else if (Context.typesAreCompatible(OldParm->getType(),
3114                                            NewParm->getType(),
3115                                            /*CompareUnqualified=*/true)) {
3116        GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3117                                           NewProto->getParamType(Idx) };
3118        Warnings.push_back(Warn);
3119        ArgTypes.push_back(NewParm->getType());
3120      } else
3121        LooseCompatible = false;
3122    }
3123
3124    if (LooseCompatible) {
3125      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3126        Diag(Warnings[Warn].NewParm->getLocation(),
3127             diag::ext_param_promoted_not_compatible_with_prototype)
3128          << Warnings[Warn].PromotedType
3129          << Warnings[Warn].OldParm->getType();
3130        if (Warnings[Warn].OldParm->getLocation().isValid())
3131          Diag(Warnings[Warn].OldParm->getLocation(),
3132               diag::note_previous_declaration);
3133      }
3134
3135      if (MergeTypeWithOld)
3136        New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3137                                             OldProto->getExtProtoInfo()));
3138      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3139    }
3140
3141    // Fall through to diagnose conflicting types.
3142  }
3143
3144  // A function that has already been declared has been redeclared or
3145  // defined with a different type; show an appropriate diagnostic.
3146
3147  // If the previous declaration was an implicitly-generated builtin
3148  // declaration, then at the very least we should use a specialized note.
3149  unsigned BuiltinID;
3150  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3151    // If it's actually a library-defined builtin function like 'malloc'
3152    // or 'printf', just warn about the incompatible redeclaration.
3153    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3154      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3155      Diag(OldLocation, diag::note_previous_builtin_declaration)
3156        << Old << Old->getType();
3157
3158      // If this is a global redeclaration, just forget hereafter
3159      // about the "builtin-ness" of the function.
3160      //
3161      // Doing this for local extern declarations is problematic.  If
3162      // the builtin declaration remains visible, a second invalid
3163      // local declaration will produce a hard error; if it doesn't
3164      // remain visible, a single bogus local redeclaration (which is
3165      // actually only a warning) could break all the downstream code.
3166      if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3167        New->getIdentifier()->revertBuiltin();
3168
3169      return false;
3170    }
3171
3172    PrevDiag = diag::note_previous_builtin_declaration;
3173  }
3174
3175  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3176  Diag(OldLocation, PrevDiag) << Old << Old->getType();
3177  return true;
3178}
3179
3180/// \brief Completes the merge of two function declarations that are
3181/// known to be compatible.
3182///
3183/// This routine handles the merging of attributes and other
3184/// properties of function declarations from the old declaration to
3185/// the new declaration, once we know that New is in fact a
3186/// redeclaration of Old.
3187///
3188/// \returns false
3189bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3190                                        Scope *S, bool MergeTypeWithOld) {
3191  // Merge the attributes
3192  mergeDeclAttributes(New, Old);
3193
3194  // Merge "pure" flag.
3195  if (Old->isPure())
3196    New->setPure();
3197
3198  // Merge "used" flag.
3199  if (Old->getMostRecentDecl()->isUsed(false))
3200    New->setIsUsed();
3201
3202  // Merge attributes from the parameters.  These can mismatch with K&R
3203  // declarations.
3204  if (New->getNumParams() == Old->getNumParams())
3205      for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3206        ParmVarDecl *NewParam = New->getParamDecl(i);
3207        ParmVarDecl *OldParam = Old->getParamDecl(i);
3208        mergeParamDeclAttributes(NewParam, OldParam, *this);
3209        mergeParamDeclTypes(NewParam, OldParam, *this);
3210      }
3211
3212  if (getLangOpts().CPlusPlus)
3213    return MergeCXXFunctionDecl(New, Old, S);
3214
3215  // Merge the function types so the we get the composite types for the return
3216  // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3217  // was visible.
3218  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3219  if (!Merged.isNull() && MergeTypeWithOld)
3220    New->setType(Merged);
3221
3222  return false;
3223}
3224
3225
3226void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3227                                ObjCMethodDecl *oldMethod) {
3228
3229  // Merge the attributes, including deprecated/unavailable
3230  AvailabilityMergeKind MergeKind =
3231    isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3232      ? AMK_ProtocolImplementation
3233      : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3234                                                       : AMK_Override;
3235
3236  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3237
3238  // Merge attributes from the parameters.
3239  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3240                                       oe = oldMethod->param_end();
3241  for (ObjCMethodDecl::param_iterator
3242         ni = newMethod->param_begin(), ne = newMethod->param_end();
3243       ni != ne && oi != oe; ++ni, ++oi)
3244    mergeParamDeclAttributes(*ni, *oi, *this);
3245
3246  CheckObjCMethodOverride(newMethod, oldMethod);
3247}
3248
3249/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3250/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3251/// emitting diagnostics as appropriate.
3252///
3253/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3254/// to here in AddInitializerToDecl. We can't check them before the initializer
3255/// is attached.
3256void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3257                             bool MergeTypeWithOld) {
3258  if (New->isInvalidDecl() || Old->isInvalidDecl())
3259    return;
3260
3261  QualType MergedT;
3262  if (getLangOpts().CPlusPlus) {
3263    if (New->getType()->isUndeducedType()) {
3264      // We don't know what the new type is until the initializer is attached.
3265      return;
3266    } else if (Context.hasSameType(New->getType(), Old->getType())) {
3267      // These could still be something that needs exception specs checked.
3268      return MergeVarDeclExceptionSpecs(New, Old);
3269    }
3270    // C++ [basic.link]p10:
3271    //   [...] the types specified by all declarations referring to a given
3272    //   object or function shall be identical, except that declarations for an
3273    //   array object can specify array types that differ by the presence or
3274    //   absence of a major array bound (8.3.4).
3275    else if (Old->getType()->isIncompleteArrayType() &&
3276             New->getType()->isArrayType()) {
3277      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3278      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3279      if (Context.hasSameType(OldArray->getElementType(),
3280                              NewArray->getElementType()))
3281        MergedT = New->getType();
3282    } else if (Old->getType()->isArrayType() &&
3283               New->getType()->isIncompleteArrayType()) {
3284      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3285      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3286      if (Context.hasSameType(OldArray->getElementType(),
3287                              NewArray->getElementType()))
3288        MergedT = Old->getType();
3289    } else if (New->getType()->isObjCObjectPointerType() &&
3290               Old->getType()->isObjCObjectPointerType()) {
3291      MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3292                                              Old->getType());
3293    }
3294  } else {
3295    // C 6.2.7p2:
3296    //   All declarations that refer to the same object or function shall have
3297    //   compatible type.
3298    MergedT = Context.mergeTypes(New->getType(), Old->getType());
3299  }
3300  if (MergedT.isNull()) {
3301    // It's OK if we couldn't merge types if either type is dependent, for a
3302    // block-scope variable. In other cases (static data members of class
3303    // templates, variable templates, ...), we require the types to be
3304    // equivalent.
3305    // FIXME: The C++ standard doesn't say anything about this.
3306    if ((New->getType()->isDependentType() ||
3307         Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3308      // If the old type was dependent, we can't merge with it, so the new type
3309      // becomes dependent for now. We'll reproduce the original type when we
3310      // instantiate the TypeSourceInfo for the variable.
3311      if (!New->getType()->isDependentType() && MergeTypeWithOld)
3312        New->setType(Context.DependentTy);
3313      return;
3314    }
3315
3316    // FIXME: Even if this merging succeeds, some other non-visible declaration
3317    // of this variable might have an incompatible type. For instance:
3318    //
3319    //   extern int arr[];
3320    //   void f() { extern int arr[2]; }
3321    //   void g() { extern int arr[3]; }
3322    //
3323    // Neither C nor C++ requires a diagnostic for this, but we should still try
3324    // to diagnose it.
3325    Diag(New->getLocation(), New->isThisDeclarationADefinition()
3326                                 ? diag::err_redefinition_different_type
3327                                 : diag::err_redeclaration_different_type)
3328        << New->getDeclName() << New->getType() << Old->getType();
3329
3330    diag::kind PrevDiag;
3331    SourceLocation OldLocation;
3332    std::tie(PrevDiag, OldLocation) =
3333        getNoteDiagForInvalidRedeclaration(Old, New);
3334    Diag(OldLocation, PrevDiag);
3335    return New->setInvalidDecl();
3336  }
3337
3338  // Don't actually update the type on the new declaration if the old
3339  // declaration was an extern declaration in a different scope.
3340  if (MergeTypeWithOld)
3341    New->setType(MergedT);
3342}
3343
3344static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3345                                  LookupResult &Previous) {
3346  // C11 6.2.7p4:
3347  //   For an identifier with internal or external linkage declared
3348  //   in a scope in which a prior declaration of that identifier is
3349  //   visible, if the prior declaration specifies internal or
3350  //   external linkage, the type of the identifier at the later
3351  //   declaration becomes the composite type.
3352  //
3353  // If the variable isn't visible, we do not merge with its type.
3354  if (Previous.isShadowed())
3355    return false;
3356
3357  if (S.getLangOpts().CPlusPlus) {
3358    // C++11 [dcl.array]p3:
3359    //   If there is a preceding declaration of the entity in the same
3360    //   scope in which the bound was specified, an omitted array bound
3361    //   is taken to be the same as in that earlier declaration.
3362    return NewVD->isPreviousDeclInSameBlockScope() ||
3363           (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3364            !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3365  } else {
3366    // If the old declaration was function-local, don't merge with its
3367    // type unless we're in the same function.
3368    return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3369           OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3370  }
3371}
3372
3373/// MergeVarDecl - We just parsed a variable 'New' which has the same name
3374/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3375/// situation, merging decls or emitting diagnostics as appropriate.
3376///
3377/// Tentative definition rules (C99 6.9.2p2) are checked by
3378/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3379/// definitions here, since the initializer hasn't been attached.
3380///
3381void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3382  // If the new decl is already invalid, don't do any other checking.
3383  if (New->isInvalidDecl())
3384    return;
3385
3386  if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3387    return;
3388
3389  VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3390
3391  // Verify the old decl was also a variable or variable template.
3392  VarDecl *Old = nullptr;
3393  VarTemplateDecl *OldTemplate = nullptr;
3394  if (Previous.isSingleResult()) {
3395    if (NewTemplate) {
3396      OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3397      Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3398
3399      if (auto *Shadow =
3400              dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3401        if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3402          return New->setInvalidDecl();
3403    } else {
3404      Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3405
3406      if (auto *Shadow =
3407              dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3408        if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3409          return New->setInvalidDecl();
3410    }
3411  }
3412  if (!Old) {
3413    Diag(New->getLocation(), diag::err_redefinition_different_kind)
3414      << New->getDeclName();
3415    Diag(Previous.getRepresentativeDecl()->getLocation(),
3416         diag::note_previous_definition);
3417    return New->setInvalidDecl();
3418  }
3419
3420  // Ensure the template parameters are compatible.
3421  if (NewTemplate &&
3422      !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3423                                      OldTemplate->getTemplateParameters(),
3424                                      /*Complain=*/true, TPL_TemplateMatch))
3425    return New->setInvalidDecl();
3426
3427  // C++ [class.mem]p1:
3428  //   A member shall not be declared twice in the member-specification [...]
3429  //
3430  // Here, we need only consider static data members.
3431  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3432    Diag(New->getLocation(), diag::err_duplicate_member)
3433      << New->getIdentifier();
3434    Diag(Old->getLocation(), diag::note_previous_declaration);
3435    New->setInvalidDecl();
3436  }
3437
3438  mergeDeclAttributes(New, Old);
3439  // Warn if an already-declared variable is made a weak_import in a subsequent
3440  // declaration
3441  if (New->hasAttr<WeakImportAttr>() &&
3442      Old->getStorageClass() == SC_None &&
3443      !Old->hasAttr<WeakImportAttr>()) {
3444    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3445    Diag(Old->getLocation(), diag::note_previous_definition);
3446    // Remove weak_import attribute on new declaration.
3447    New->dropAttr<WeakImportAttr>();
3448  }
3449
3450  if (New->hasAttr<InternalLinkageAttr>() &&
3451      !Old->hasAttr<InternalLinkageAttr>()) {
3452    Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3453        << New->getDeclName();
3454    Diag(Old->getLocation(), diag::note_previous_definition);
3455    New->dropAttr<InternalLinkageAttr>();
3456  }
3457
3458  // Merge the types.
3459  VarDecl *MostRecent = Old->getMostRecentDecl();
3460  if (MostRecent != Old) {
3461    MergeVarDeclTypes(New, MostRecent,
3462                      mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3463    if (New->isInvalidDecl())
3464      return;
3465  }
3466
3467  MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3468  if (New->isInvalidDecl())
3469    return;
3470
3471  diag::kind PrevDiag;
3472  SourceLocation OldLocation;
3473  std::tie(PrevDiag, OldLocation) =
3474      getNoteDiagForInvalidRedeclaration(Old, New);
3475
3476  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3477  if (New->getStorageClass() == SC_Static &&
3478      !New->isStaticDataMember() &&
3479      Old->hasExternalFormalLinkage()) {
3480    if (getLangOpts().MicrosoftExt) {
3481      Diag(New->getLocation(), diag::ext_static_non_static)
3482          << New->getDeclName();
3483      Diag(OldLocation, PrevDiag);
3484    } else {
3485      Diag(New->getLocation(), diag::err_static_non_static)
3486          << New->getDeclName();
3487      Diag(OldLocation, PrevDiag);
3488      return New->setInvalidDecl();
3489    }
3490  }
3491  // C99 6.2.2p4:
3492  //   For an identifier declared with the storage-class specifier
3493  //   extern in a scope in which a prior declaration of that
3494  //   identifier is visible,23) if the prior declaration specifies
3495  //   internal or external linkage, the linkage of the identifier at
3496  //   the later declaration is the same as the linkage specified at
3497  //   the prior declaration. If no prior declaration is visible, or
3498  //   if the prior declaration specifies no linkage, then the
3499  //   identifier has external linkage.
3500  if (New->hasExternalStorage() && Old->hasLinkage())
3501    /* Okay */;
3502  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3503           !New->isStaticDataMember() &&
3504           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3505    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3506    Diag(OldLocation, PrevDiag);
3507    return New->setInvalidDecl();
3508  }
3509
3510  // Check if extern is followed by non-extern and vice-versa.
3511  if (New->hasExternalStorage() &&
3512      !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3513    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3514    Diag(OldLocation, PrevDiag);
3515    return New->setInvalidDecl();
3516  }
3517  if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3518      !New->hasExternalStorage()) {
3519    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3520    Diag(OldLocation, PrevDiag);
3521    return New->setInvalidDecl();
3522  }
3523
3524  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3525
3526  // FIXME: The test for external storage here seems wrong? We still
3527  // need to check for mismatches.
3528  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3529      // Don't complain about out-of-line definitions of static members.
3530      !(Old->getLexicalDeclContext()->isRecord() &&
3531        !New->getLexicalDeclContext()->isRecord())) {
3532    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3533    Diag(OldLocation, PrevDiag);
3534    return New->setInvalidDecl();
3535  }
3536
3537  if (New->getTLSKind() != Old->getTLSKind()) {
3538    if (!Old->getTLSKind()) {
3539      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3540      Diag(OldLocation, PrevDiag);
3541    } else if (!New->getTLSKind()) {
3542      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3543      Diag(OldLocation, PrevDiag);
3544    } else {
3545      // Do not allow redeclaration to change the variable between requiring
3546      // static and dynamic initialization.
3547      // FIXME: GCC allows this, but uses the TLS keyword on the first
3548      // declaration to determine the kind. Do we need to be compatible here?
3549      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3550        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3551      Diag(OldLocation, PrevDiag);
3552    }
3553  }
3554
3555  // C++ doesn't have tentative definitions, so go right ahead and check here.
3556  VarDecl *Def;
3557  if (getLangOpts().CPlusPlus &&
3558      New->isThisDeclarationADefinition() == VarDecl::Definition &&
3559      (Def = Old->getDefinition())) {
3560    NamedDecl *Hidden = nullptr;
3561    if (!hasVisibleDefinition(Def, &Hidden) &&
3562        (New->getFormalLinkage() == InternalLinkage ||
3563         New->getDescribedVarTemplate() ||
3564         New->getNumTemplateParameterLists() ||
3565         New->getDeclContext()->isDependentContext())) {
3566      // The previous definition is hidden, and multiple definitions are
3567      // permitted (in separate TUs). Form another definition of it.
3568    } else {
3569      Diag(New->getLocation(), diag::err_redefinition) << New;
3570      Diag(Def->getLocation(), diag::note_previous_definition);
3571      New->setInvalidDecl();
3572      return;
3573    }
3574  }
3575
3576  if (haveIncompatibleLanguageLinkages(Old, New)) {
3577    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3578    Diag(OldLocation, PrevDiag);
3579    New->setInvalidDecl();
3580    return;
3581  }
3582
3583  // Merge "used" flag.
3584  if (Old->getMostRecentDecl()->isUsed(false))
3585    New->setIsUsed();
3586
3587  // Keep a chain of previous declarations.
3588  New->setPreviousDecl(Old);
3589  if (NewTemplate)
3590    NewTemplate->setPreviousDecl(OldTemplate);
3591
3592  // Inherit access appropriately.
3593  New->setAccess(Old->getAccess());
3594  if (NewTemplate)
3595    NewTemplate->setAccess(New->getAccess());
3596}
3597
3598/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3599/// no declarator (e.g. "struct foo;") is parsed.
3600Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3601                                       DeclSpec &DS) {
3602  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3603}
3604
3605// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
3606// disambiguate entities defined in different scopes.
3607// While the VS2015 ABI fixes potential miscompiles, it is also breaks
3608// compatibility.
3609// We will pick our mangling number depending on which version of MSVC is being
3610// targeted.
3611static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
3612  return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
3613             ? S->getMSCurManglingNumber()
3614             : S->getMSLastManglingNumber();
3615}
3616
3617void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
3618  if (!Context.getLangOpts().CPlusPlus)
3619    return;
3620
3621  if (isa<CXXRecordDecl>(Tag->getParent())) {
3622    // If this tag is the direct child of a class, number it if
3623    // it is anonymous.
3624    if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3625      return;
3626    MangleNumberingContext &MCtx =
3627        Context.getManglingNumberContext(Tag->getParent());
3628    Context.setManglingNumber(
3629        Tag, MCtx.getManglingNumber(
3630                 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3631    return;
3632  }
3633
3634  // If this tag isn't a direct child of a class, number it if it is local.
3635  Decl *ManglingContextDecl;
3636  if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
3637          Tag->getDeclContext(), ManglingContextDecl)) {
3638    Context.setManglingNumber(
3639        Tag, MCtx->getManglingNumber(
3640                 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3641  }
3642}
3643
3644void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
3645                                        TypedefNameDecl *NewTD) {
3646  if (TagFromDeclSpec->isInvalidDecl())
3647    return;
3648
3649  // Do nothing if the tag already has a name for linkage purposes.
3650  if (TagFromDeclSpec->hasNameForLinkage())
3651    return;
3652
3653  // A well-formed anonymous tag must always be a TUK_Definition.
3654  assert(TagFromDeclSpec->isThisDeclarationADefinition());
3655
3656  // The type must match the tag exactly;  no qualifiers allowed.
3657  if (!Context.hasSameType(NewTD->getUnderlyingType(),
3658                           Context.getTagDeclType(TagFromDeclSpec))) {
3659    if (getLangOpts().CPlusPlus)
3660      Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
3661    return;
3662  }
3663
3664  // If we've already computed linkage for the anonymous tag, then
3665  // adding a typedef name for the anonymous decl can change that
3666  // linkage, which might be a serious problem.  Diagnose this as
3667  // unsupported and ignore the typedef name.  TODO: we should
3668  // pursue this as a language defect and establish a formal rule
3669  // for how to handle it.
3670  if (TagFromDeclSpec->hasLinkageBeenComputed()) {
3671    Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
3672
3673    SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
3674    tagLoc = getLocForEndOfToken(tagLoc);
3675
3676    llvm::SmallString<40> textToInsert;
3677    textToInsert += ' ';
3678    textToInsert += NewTD->getIdentifier()->getName();
3679    Diag(tagLoc, diag::note_typedef_changes_linkage)
3680        << FixItHint::CreateInsertion(tagLoc, textToInsert);
3681    return;
3682  }
3683
3684  // Otherwise, set this is the anon-decl typedef for the tag.
3685  TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
3686}
3687
3688static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
3689  switch (T) {
3690  case DeclSpec::TST_class:
3691    return 0;
3692  case DeclSpec::TST_struct:
3693    return 1;
3694  case DeclSpec::TST_interface:
3695    return 2;
3696  case DeclSpec::TST_union:
3697    return 3;
3698  case DeclSpec::TST_enum:
3699    return 4;
3700  default:
3701    llvm_unreachable("unexpected type specifier");
3702  }
3703}
3704
3705/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3706/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3707/// parameters to cope with template friend declarations.
3708Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3709                                       DeclSpec &DS,
3710                                       MultiTemplateParamsArg TemplateParams,
3711                                       bool IsExplicitInstantiation) {
3712  Decl *TagD = nullptr;
3713  TagDecl *Tag = nullptr;
3714  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3715      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3716      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3717      DS.getTypeSpecType() == DeclSpec::TST_union ||
3718      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3719    TagD = DS.getRepAsDecl();
3720
3721    if (!TagD) // We probably had an error
3722      return nullptr;
3723
3724    // Note that the above type specs guarantee that the
3725    // type rep is a Decl, whereas in many of the others
3726    // it's a Type.
3727    if (isa<TagDecl>(TagD))
3728      Tag = cast<TagDecl>(TagD);
3729    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3730      Tag = CTD->getTemplatedDecl();
3731  }
3732
3733  if (Tag) {
3734    handleTagNumbering(Tag, S);
3735    Tag->setFreeStanding();
3736    if (Tag->isInvalidDecl())
3737      return Tag;
3738  }
3739
3740  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3741    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3742    // or incomplete types shall not be restrict-qualified."
3743    if (TypeQuals & DeclSpec::TQ_restrict)
3744      Diag(DS.getRestrictSpecLoc(),
3745           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3746           << DS.getSourceRange();
3747  }
3748
3749  if (DS.isConstexprSpecified()) {
3750    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3751    // and definitions of functions and variables.
3752    if (Tag)
3753      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3754          << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
3755    else
3756      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3757    // Don't emit warnings after this error.
3758    return TagD;
3759  }
3760
3761  if (DS.isConceptSpecified()) {
3762    // C++ Concepts TS [dcl.spec.concept]p1: A concept definition refers to
3763    // either a function concept and its definition or a variable concept and
3764    // its initializer.
3765    Diag(DS.getConceptSpecLoc(), diag::err_concept_wrong_decl_kind);
3766    return TagD;
3767  }
3768
3769  DiagnoseFunctionSpecifiers(DS);
3770
3771  if (DS.isFriendSpecified()) {
3772    // If we're dealing with a decl but not a TagDecl, assume that
3773    // whatever routines created it handled the friendship aspect.
3774    if (TagD && !Tag)
3775      return nullptr;
3776    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3777  }
3778
3779  const CXXScopeSpec &SS = DS.getTypeSpecScope();
3780  bool IsExplicitSpecialization =
3781    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3782  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3783      !IsExplicitInstantiation && !IsExplicitSpecialization &&
3784      !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
3785    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3786    // nested-name-specifier unless it is an explicit instantiation
3787    // or an explicit specialization.
3788    //
3789    // FIXME: We allow class template partial specializations here too, per the
3790    // obvious intent of DR1819.
3791    //
3792    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3793    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3794        << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
3795    return nullptr;
3796  }
3797
3798  // Track whether this decl-specifier declares anything.
3799  bool DeclaresAnything = true;
3800
3801  // Handle anonymous struct definitions.
3802  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3803    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3804        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3805      if (getLangOpts().CPlusPlus ||
3806          Record->getDeclContext()->isRecord())
3807        return BuildAnonymousStructOrUnion(S, DS, AS, Record,
3808                                           Context.getPrintingPolicy());
3809
3810      DeclaresAnything = false;
3811    }
3812  }
3813
3814  // C11 6.7.2.1p2:
3815  //   A struct-declaration that does not declare an anonymous structure or
3816  //   anonymous union shall contain a struct-declarator-list.
3817  //
3818  // This rule also existed in C89 and C99; the grammar for struct-declaration
3819  // did not permit a struct-declaration without a struct-declarator-list.
3820  if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
3821      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3822    // Check for Microsoft C extension: anonymous struct/union member.
3823    // Handle 2 kinds of anonymous struct/union:
3824    //   struct STRUCT;
3825    //   union UNION;
3826    // and
3827    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3828    //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
3829    if ((Tag && Tag->getDeclName()) ||
3830        DS.getTypeSpecType() == DeclSpec::TST_typename) {
3831      RecordDecl *Record = nullptr;
3832      if (Tag)
3833        Record = dyn_cast<RecordDecl>(Tag);
3834      else if (const RecordType *RT =
3835                   DS.getRepAsType().get()->getAsStructureType())
3836        Record = RT->getDecl();
3837      else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
3838        Record = UT->getDecl();
3839
3840      if (Record && getLangOpts().MicrosoftExt) {
3841        Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
3842          << Record->isUnion() << DS.getSourceRange();
3843        return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3844      }
3845
3846      DeclaresAnything = false;
3847    }
3848  }
3849
3850  // Skip all the checks below if we have a type error.
3851  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3852      (TagD && TagD->isInvalidDecl()))
3853    return TagD;
3854
3855  if (getLangOpts().CPlusPlus &&
3856      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3857    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3858      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3859          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3860        DeclaresAnything = false;
3861
3862  if (!DS.isMissingDeclaratorOk()) {
3863    // Customize diagnostic for a typedef missing a name.
3864    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3865      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3866        << DS.getSourceRange();
3867    else
3868      DeclaresAnything = false;
3869  }
3870
3871  if (DS.isModulePrivateSpecified() &&
3872      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3873    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3874      << Tag->getTagKind()
3875      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3876
3877  ActOnDocumentableDecl(TagD);
3878
3879  // C 6.7/2:
3880  //   A declaration [...] shall declare at least a declarator [...], a tag,
3881  //   or the members of an enumeration.
3882  // C++ [dcl.dcl]p3:
3883  //   [If there are no declarators], and except for the declaration of an
3884  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3885  //   names into the program, or shall redeclare a name introduced by a
3886  //   previous declaration.
3887  if (!DeclaresAnything) {
3888    // In C, we allow this as a (popular) extension / bug. Don't bother
3889    // producing further diagnostics for redundant qualifiers after this.
3890    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3891    return TagD;
3892  }
3893
3894  // C++ [dcl.stc]p1:
3895  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3896  //   init-declarator-list of the declaration shall not be empty.
3897  // C++ [dcl.fct.spec]p1:
3898  //   If a cv-qualifier appears in a decl-specifier-seq, the
3899  //   init-declarator-list of the declaration shall not be empty.
3900  //
3901  // Spurious qualifiers here appear to be valid in C.
3902  unsigned DiagID = diag::warn_standalone_specifier;
3903  if (getLangOpts().CPlusPlus)
3904    DiagID = diag::ext_standalone_specifier;
3905
3906  // Note that a linkage-specification sets a storage class, but
3907  // 'extern "C" struct foo;' is actually valid and not theoretically
3908  // useless.
3909  if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3910    if (SCS == DeclSpec::SCS_mutable)
3911      // Since mutable is not a viable storage class specifier in C, there is
3912      // no reason to treat it as an extension. Instead, diagnose as an error.
3913      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
3914    else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3915      Diag(DS.getStorageClassSpecLoc(), DiagID)
3916        << DeclSpec::getSpecifierName(SCS);
3917  }
3918
3919  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3920    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3921      << DeclSpec::getSpecifierName(TSCS);
3922  if (DS.getTypeQualifiers()) {
3923    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3924      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3925    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3926      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3927    // Restrict is covered above.
3928    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3929      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3930  }
3931
3932  // Warn about ignored type attributes, for example:
3933  // __attribute__((aligned)) struct A;
3934  // Attributes should be placed after tag to apply to type declaration.
3935  if (!DS.getAttributes().empty()) {
3936    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3937    if (TypeSpecType == DeclSpec::TST_class ||
3938        TypeSpecType == DeclSpec::TST_struct ||
3939        TypeSpecType == DeclSpec::TST_interface ||
3940        TypeSpecType == DeclSpec::TST_union ||
3941        TypeSpecType == DeclSpec::TST_enum) {
3942      for (AttributeList* attrs = DS.getAttributes().getList(); attrs;
3943           attrs = attrs->getNext())
3944        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3945            << attrs->getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
3946    }
3947  }
3948
3949  return TagD;
3950}
3951
3952/// We are trying to inject an anonymous member into the given scope;
3953/// check if there's an existing declaration that can't be overloaded.
3954///
3955/// \return true if this is a forbidden redeclaration
3956static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3957                                         Scope *S,
3958                                         DeclContext *Owner,
3959                                         DeclarationName Name,
3960                                         SourceLocation NameLoc,
3961                                         bool IsUnion) {
3962  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3963                 Sema::ForRedeclaration);
3964  if (!SemaRef.LookupName(R, S)) return false;
3965
3966  if (R.getAsSingle<TagDecl>())
3967    return false;
3968
3969  // Pick a representative declaration.
3970  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3971  assert(PrevDecl && "Expected a non-null Decl");
3972
3973  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3974    return false;
3975
3976  SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
3977    << IsUnion << Name;
3978  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3979
3980  return true;
3981}
3982
3983/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3984/// anonymous struct or union AnonRecord into the owning context Owner
3985/// and scope S. This routine will be invoked just after we realize
3986/// that an unnamed union or struct is actually an anonymous union or
3987/// struct, e.g.,
3988///
3989/// @code
3990/// union {
3991///   int i;
3992///   float f;
3993/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3994///    // f into the surrounding scope.x
3995/// @endcode
3996///
3997/// This routine is recursive, injecting the names of nested anonymous
3998/// structs/unions into the owning context and scope as well.
3999static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
4000                                         DeclContext *Owner,
4001                                         RecordDecl *AnonRecord,
4002                                         AccessSpecifier AS,
4003                                         SmallVectorImpl<NamedDecl *> &Chaining,
4004                                         bool MSAnonStruct) {
4005  bool Invalid = false;
4006
4007  // Look every FieldDecl and IndirectFieldDecl with a name.
4008  for (auto *D : AnonRecord->decls()) {
4009    if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4010        cast<NamedDecl>(D)->getDeclName()) {
4011      ValueDecl *VD = cast<ValueDecl>(D);
4012      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4013                                       VD->getLocation(),
4014                                       AnonRecord->isUnion())) {
4015        // C++ [class.union]p2:
4016        //   The names of the members of an anonymous union shall be
4017        //   distinct from the names of any other entity in the
4018        //   scope in which the anonymous union is declared.
4019        Invalid = true;
4020      } else {
4021        // C++ [class.union]p2:
4022        //   For the purpose of name lookup, after the anonymous union
4023        //   definition, the members of the anonymous union are
4024        //   considered to have been defined in the scope in which the
4025        //   anonymous union is declared.
4026        unsigned OldChainingSize = Chaining.size();
4027        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4028          Chaining.append(IF->chain_begin(), IF->chain_end());
4029        else
4030          Chaining.push_back(VD);
4031
4032        assert(Chaining.size() >= 2);
4033        NamedDecl **NamedChain =
4034          new (SemaRef.Context)NamedDecl*[Chaining.size()];
4035        for (unsigned i = 0; i < Chaining.size(); i++)
4036          NamedChain[i] = Chaining[i];
4037
4038        IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4039            SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4040            VD->getType(), NamedChain, Chaining.size());
4041
4042        for (const auto *Attr : VD->attrs())
4043          IndirectField->addAttr(Attr->clone(SemaRef.Context));
4044
4045        IndirectField->setAccess(AS);
4046        IndirectField->setImplicit();
4047        SemaRef.PushOnScopeChains(IndirectField, S);
4048
4049        // That includes picking up the appropriate access specifier.
4050        if (AS != AS_none) IndirectField->setAccess(AS);
4051
4052        Chaining.resize(OldChainingSize);
4053      }
4054    }
4055  }
4056
4057  return Invalid;
4058}
4059
4060/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4061/// a VarDecl::StorageClass. Any error reporting is up to the caller:
4062/// illegal input values are mapped to SC_None.
4063static StorageClass
4064StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4065  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4066  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4067         "Parser allowed 'typedef' as storage class VarDecl.");
4068  switch (StorageClassSpec) {
4069  case DeclSpec::SCS_unspecified:    return SC_None;
4070  case DeclSpec::SCS_extern:
4071    if (DS.isExternInLinkageSpec())
4072      return SC_None;
4073    return SC_Extern;
4074  case DeclSpec::SCS_static:         return SC_Static;
4075  case DeclSpec::SCS_auto:           return SC_Auto;
4076  case DeclSpec::SCS_register:       return SC_Register;
4077  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4078    // Illegal SCSs map to None: error reporting is up to the caller.
4079  case DeclSpec::SCS_mutable:        // Fall through.
4080  case DeclSpec::SCS_typedef:        return SC_None;
4081  }
4082  llvm_unreachable("unknown storage class specifier");
4083}
4084
4085static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4086  assert(Record->hasInClassInitializer());
4087
4088  for (const auto *I : Record->decls()) {
4089    const auto *FD = dyn_cast<FieldDecl>(I);
4090    if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4091      FD = IFD->getAnonField();
4092    if (FD && FD->hasInClassInitializer())
4093      return FD->getLocation();
4094  }
4095
4096  llvm_unreachable("couldn't find in-class initializer");
4097}
4098
4099static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4100                                      SourceLocation DefaultInitLoc) {
4101  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4102    return;
4103
4104  S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4105  S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4106}
4107
4108static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4109                                      CXXRecordDecl *AnonUnion) {
4110  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4111    return;
4112
4113  checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4114}
4115
4116/// BuildAnonymousStructOrUnion - Handle the declaration of an
4117/// anonymous structure or union. Anonymous unions are a C++ feature
4118/// (C++ [class.union]) and a C11 feature; anonymous structures
4119/// are a C11 feature and GNU C++ extension.
4120Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4121                                        AccessSpecifier AS,
4122                                        RecordDecl *Record,
4123                                        const PrintingPolicy &Policy) {
4124  DeclContext *Owner = Record->getDeclContext();
4125
4126  // Diagnose whether this anonymous struct/union is an extension.
4127  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4128    Diag(Record->getLocation(), diag::ext_anonymous_union);
4129  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4130    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4131  else if (!Record->isUnion() && !getLangOpts().C11)
4132    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4133
4134  // C and C++ require different kinds of checks for anonymous
4135  // structs/unions.
4136  bool Invalid = false;
4137  if (getLangOpts().CPlusPlus) {
4138    const char *PrevSpec = nullptr;
4139    unsigned DiagID;
4140    if (Record->isUnion()) {
4141      // C++ [class.union]p6:
4142      //   Anonymous unions declared in a named namespace or in the
4143      //   global namespace shall be declared static.
4144      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4145          (isa<TranslationUnitDecl>(Owner) ||
4146           (isa<NamespaceDecl>(Owner) &&
4147            cast<NamespaceDecl>(Owner)->getDeclName()))) {
4148        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4149          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4150
4151        // Recover by adding 'static'.
4152        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4153                               PrevSpec, DiagID, Policy);
4154      }
4155      // C++ [class.union]p6:
4156      //   A storage class is not allowed in a declaration of an
4157      //   anonymous union in a class scope.
4158      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4159               isa<RecordDecl>(Owner)) {
4160        Diag(DS.getStorageClassSpecLoc(),
4161             diag::err_anonymous_union_with_storage_spec)
4162          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4163
4164        // Recover by removing the storage specifier.
4165        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4166                               SourceLocation(),
4167                               PrevSpec, DiagID, Context.getPrintingPolicy());
4168      }
4169    }
4170
4171    // Ignore const/volatile/restrict qualifiers.
4172    if (DS.getTypeQualifiers()) {
4173      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4174        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4175          << Record->isUnion() << "const"
4176          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4177      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4178        Diag(DS.getVolatileSpecLoc(),
4179             diag::ext_anonymous_struct_union_qualified)
4180          << Record->isUnion() << "volatile"
4181          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4182      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4183        Diag(DS.getRestrictSpecLoc(),
4184             diag::ext_anonymous_struct_union_qualified)
4185          << Record->isUnion() << "restrict"
4186          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4187      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4188        Diag(DS.getAtomicSpecLoc(),
4189             diag::ext_anonymous_struct_union_qualified)
4190          << Record->isUnion() << "_Atomic"
4191          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4192
4193      DS.ClearTypeQualifiers();
4194    }
4195
4196    // C++ [class.union]p2:
4197    //   The member-specification of an anonymous union shall only
4198    //   define non-static data members. [Note: nested types and
4199    //   functions cannot be declared within an anonymous union. ]
4200    for (auto *Mem : Record->decls()) {
4201      if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4202        // C++ [class.union]p3:
4203        //   An anonymous union shall not have private or protected
4204        //   members (clause 11).
4205        assert(FD->getAccess() != AS_none);
4206        if (FD->getAccess() != AS_public) {
4207          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4208            << Record->isUnion() << (FD->getAccess() == AS_protected);
4209          Invalid = true;
4210        }
4211
4212        // C++ [class.union]p1
4213        //   An object of a class with a non-trivial constructor, a non-trivial
4214        //   copy constructor, a non-trivial destructor, or a non-trivial copy
4215        //   assignment operator cannot be a member of a union, nor can an
4216        //   array of such objects.
4217        if (CheckNontrivialField(FD))
4218          Invalid = true;
4219      } else if (Mem->isImplicit()) {
4220        // Any implicit members are fine.
4221      } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4222        // This is a type that showed up in an
4223        // elaborated-type-specifier inside the anonymous struct or
4224        // union, but which actually declares a type outside of the
4225        // anonymous struct or union. It's okay.
4226      } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4227        if (!MemRecord->isAnonymousStructOrUnion() &&
4228            MemRecord->getDeclName()) {
4229          // Visual C++ allows type definition in anonymous struct or union.
4230          if (getLangOpts().MicrosoftExt)
4231            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4232              << Record->isUnion();
4233          else {
4234            // This is a nested type declaration.
4235            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4236              << Record->isUnion();
4237            Invalid = true;
4238          }
4239        } else {
4240          // This is an anonymous type definition within another anonymous type.
4241          // This is a popular extension, provided by Plan9, MSVC and GCC, but
4242          // not part of standard C++.
4243          Diag(MemRecord->getLocation(),
4244               diag::ext_anonymous_record_with_anonymous_type)
4245            << Record->isUnion();
4246        }
4247      } else if (isa<AccessSpecDecl>(Mem)) {
4248        // Any access specifier is fine.
4249      } else if (isa<StaticAssertDecl>(Mem)) {
4250        // In C++1z, static_assert declarations are also fine.
4251      } else {
4252        // We have something that isn't a non-static data
4253        // member. Complain about it.
4254        unsigned DK = diag::err_anonymous_record_bad_member;
4255        if (isa<TypeDecl>(Mem))
4256          DK = diag::err_anonymous_record_with_type;
4257        else if (isa<FunctionDecl>(Mem))
4258          DK = diag::err_anonymous_record_with_function;
4259        else if (isa<VarDecl>(Mem))
4260          DK = diag::err_anonymous_record_with_static;
4261
4262        // Visual C++ allows type definition in anonymous struct or union.
4263        if (getLangOpts().MicrosoftExt &&
4264            DK == diag::err_anonymous_record_with_type)
4265          Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4266            << Record->isUnion();
4267        else {
4268          Diag(Mem->getLocation(), DK) << Record->isUnion();
4269          Invalid = true;
4270        }
4271      }
4272    }
4273
4274    // C++11 [class.union]p8 (DR1460):
4275    //   At most one variant member of a union may have a
4276    //   brace-or-equal-initializer.
4277    if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4278        Owner->isRecord())
4279      checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4280                                cast<CXXRecordDecl>(Record));
4281  }
4282
4283  if (!Record->isUnion() && !Owner->isRecord()) {
4284    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4285      << getLangOpts().CPlusPlus;
4286    Invalid = true;
4287  }
4288
4289  // Mock up a declarator.
4290  Declarator Dc(DS, Declarator::MemberContext);
4291  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4292  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4293
4294  // Create a declaration for this anonymous struct/union.
4295  NamedDecl *Anon = nullptr;
4296  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4297    Anon = FieldDecl::Create(Context, OwningClass,
4298                             DS.getLocStart(),
4299                             Record->getLocation(),
4300                             /*IdentifierInfo=*/nullptr,
4301                             Context.getTypeDeclType(Record),
4302                             TInfo,
4303                             /*BitWidth=*/nullptr, /*Mutable=*/false,
4304                             /*InitStyle=*/ICIS_NoInit);
4305    Anon->setAccess(AS);
4306    if (getLangOpts().CPlusPlus)
4307      FieldCollector->Add(cast<FieldDecl>(Anon));
4308  } else {
4309    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4310    StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4311    if (SCSpec == DeclSpec::SCS_mutable) {
4312      // mutable can only appear on non-static class members, so it's always
4313      // an error here
4314      Diag(Record->getLocation(), diag::err_mutable_nonmember);
4315      Invalid = true;
4316      SC = SC_None;
4317    }
4318
4319    Anon = VarDecl::Create(Context, Owner,
4320                           DS.getLocStart(),
4321                           Record->getLocation(), /*IdentifierInfo=*/nullptr,
4322                           Context.getTypeDeclType(Record),
4323                           TInfo, SC);
4324
4325    // Default-initialize the implicit variable. This initialization will be
4326    // trivial in almost all cases, except if a union member has an in-class
4327    // initializer:
4328    //   union { int n = 0; };
4329    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
4330  }
4331  Anon->setImplicit();
4332
4333  // Mark this as an anonymous struct/union type.
4334  Record->setAnonymousStructOrUnion(true);
4335
4336  // Add the anonymous struct/union object to the current
4337  // context. We'll be referencing this object when we refer to one of
4338  // its members.
4339  Owner->addDecl(Anon);
4340
4341  // Inject the members of the anonymous struct/union into the owning
4342  // context and into the identifier resolver chain for name lookup
4343  // purposes.
4344  SmallVector<NamedDecl*, 2> Chain;
4345  Chain.push_back(Anon);
4346
4347  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
4348                                          Chain, false))
4349    Invalid = true;
4350
4351  if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4352    if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4353      Decl *ManglingContextDecl;
4354      if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4355              NewVD->getDeclContext(), ManglingContextDecl)) {
4356        Context.setManglingNumber(
4357            NewVD, MCtx->getManglingNumber(
4358                       NewVD, getMSManglingNumber(getLangOpts(), S)));
4359        Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4360      }
4361    }
4362  }
4363
4364  if (Invalid)
4365    Anon->setInvalidDecl();
4366
4367  return Anon;
4368}
4369
4370/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4371/// Microsoft C anonymous structure.
4372/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4373/// Example:
4374///
4375/// struct A { int a; };
4376/// struct B { struct A; int b; };
4377///
4378/// void foo() {
4379///   B var;
4380///   var.a = 3;
4381/// }
4382///
4383Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4384                                           RecordDecl *Record) {
4385  assert(Record && "expected a record!");
4386
4387  // Mock up a declarator.
4388  Declarator Dc(DS, Declarator::TypeNameContext);
4389  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4390  assert(TInfo && "couldn't build declarator info for anonymous struct");
4391
4392  auto *ParentDecl = cast<RecordDecl>(CurContext);
4393  QualType RecTy = Context.getTypeDeclType(Record);
4394
4395  // Create a declaration for this anonymous struct.
4396  NamedDecl *Anon = FieldDecl::Create(Context,
4397                             ParentDecl,
4398                             DS.getLocStart(),
4399                             DS.getLocStart(),
4400                             /*IdentifierInfo=*/nullptr,
4401                             RecTy,
4402                             TInfo,
4403                             /*BitWidth=*/nullptr, /*Mutable=*/false,
4404                             /*InitStyle=*/ICIS_NoInit);
4405  Anon->setImplicit();
4406
4407  // Add the anonymous struct object to the current context.
4408  CurContext->addDecl(Anon);
4409
4410  // Inject the members of the anonymous struct into the current
4411  // context and into the identifier resolver chain for name lookup
4412  // purposes.
4413  SmallVector<NamedDecl*, 2> Chain;
4414  Chain.push_back(Anon);
4415
4416  RecordDecl *RecordDef = Record->getDefinition();
4417  if (RequireCompleteType(Anon->getLocation(), RecTy,
4418                          diag::err_field_incomplete) ||
4419      InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4420                                          AS_none, Chain, true)) {
4421    Anon->setInvalidDecl();
4422    ParentDecl->setInvalidDecl();
4423  }
4424
4425  return Anon;
4426}
4427
4428/// GetNameForDeclarator - Determine the full declaration name for the
4429/// given Declarator.
4430DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4431  return GetNameFromUnqualifiedId(D.getName());
4432}
4433
4434/// \brief Retrieves the declaration name from a parsed unqualified-id.
4435DeclarationNameInfo
4436Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4437  DeclarationNameInfo NameInfo;
4438  NameInfo.setLoc(Name.StartLocation);
4439
4440  switch (Name.getKind()) {
4441
4442  case UnqualifiedId::IK_ImplicitSelfParam:
4443  case UnqualifiedId::IK_Identifier:
4444    NameInfo.setName(Name.Identifier);
4445    NameInfo.setLoc(Name.StartLocation);
4446    return NameInfo;
4447
4448  case UnqualifiedId::IK_OperatorFunctionId:
4449    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4450                                           Name.OperatorFunctionId.Operator));
4451    NameInfo.setLoc(Name.StartLocation);
4452    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4453      = Name.OperatorFunctionId.SymbolLocations[0];
4454    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4455      = Name.EndLocation.getRawEncoding();
4456    return NameInfo;
4457
4458  case UnqualifiedId::IK_LiteralOperatorId:
4459    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4460                                                           Name.Identifier));
4461    NameInfo.setLoc(Name.StartLocation);
4462    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4463    return NameInfo;
4464
4465  case UnqualifiedId::IK_ConversionFunctionId: {
4466    TypeSourceInfo *TInfo;
4467    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4468    if (Ty.isNull())
4469      return DeclarationNameInfo();
4470    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4471                                               Context.getCanonicalType(Ty)));
4472    NameInfo.setLoc(Name.StartLocation);
4473    NameInfo.setNamedTypeInfo(TInfo);
4474    return NameInfo;
4475  }
4476
4477  case UnqualifiedId::IK_ConstructorName: {
4478    TypeSourceInfo *TInfo;
4479    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
4480    if (Ty.isNull())
4481      return DeclarationNameInfo();
4482    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4483                                              Context.getCanonicalType(Ty)));
4484    NameInfo.setLoc(Name.StartLocation);
4485    NameInfo.setNamedTypeInfo(TInfo);
4486    return NameInfo;
4487  }
4488
4489  case UnqualifiedId::IK_ConstructorTemplateId: {
4490    // In well-formed code, we can only have a constructor
4491    // template-id that refers to the current context, so go there
4492    // to find the actual type being constructed.
4493    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
4494    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
4495      return DeclarationNameInfo();
4496
4497    // Determine the type of the class being constructed.
4498    QualType CurClassType = Context.getTypeDeclType(CurClass);
4499
4500    // FIXME: Check two things: that the template-id names the same type as
4501    // CurClassType, and that the template-id does not occur when the name
4502    // was qualified.
4503
4504    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4505                                    Context.getCanonicalType(CurClassType)));
4506    NameInfo.setLoc(Name.StartLocation);
4507    // FIXME: should we retrieve TypeSourceInfo?
4508    NameInfo.setNamedTypeInfo(nullptr);
4509    return NameInfo;
4510  }
4511
4512  case UnqualifiedId::IK_DestructorName: {
4513    TypeSourceInfo *TInfo;
4514    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
4515    if (Ty.isNull())
4516      return DeclarationNameInfo();
4517    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
4518                                              Context.getCanonicalType(Ty)));
4519    NameInfo.setLoc(Name.StartLocation);
4520    NameInfo.setNamedTypeInfo(TInfo);
4521    return NameInfo;
4522  }
4523
4524  case UnqualifiedId::IK_TemplateId: {
4525    TemplateName TName = Name.TemplateId->Template.get();
4526    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
4527    return Context.getNameForTemplate(TName, TNameLoc);
4528  }
4529
4530  } // switch (Name.getKind())
4531
4532  llvm_unreachable("Unknown name kind");
4533}
4534
4535static QualType getCoreType(QualType Ty) {
4536  do {
4537    if (Ty->isPointerType() || Ty->isReferenceType())
4538      Ty = Ty->getPointeeType();
4539    else if (Ty->isArrayType())
4540      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
4541    else
4542      return Ty.withoutLocalFastQualifiers();
4543  } while (true);
4544}
4545
4546/// hasSimilarParameters - Determine whether the C++ functions Declaration
4547/// and Definition have "nearly" matching parameters. This heuristic is
4548/// used to improve diagnostics in the case where an out-of-line function
4549/// definition doesn't match any declaration within the class or namespace.
4550/// Also sets Params to the list of indices to the parameters that differ
4551/// between the declaration and the definition. If hasSimilarParameters
4552/// returns true and Params is empty, then all of the parameters match.
4553static bool hasSimilarParameters(ASTContext &Context,
4554                                     FunctionDecl *Declaration,
4555                                     FunctionDecl *Definition,
4556                                     SmallVectorImpl<unsigned> &Params) {
4557  Params.clear();
4558  if (Declaration->param_size() != Definition->param_size())
4559    return false;
4560  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
4561    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
4562    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
4563
4564    // The parameter types are identical
4565    if (Context.hasSameType(DefParamTy, DeclParamTy))
4566      continue;
4567
4568    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
4569    QualType DefParamBaseTy = getCoreType(DefParamTy);
4570    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
4571    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
4572
4573    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
4574        (DeclTyName && DeclTyName == DefTyName))
4575      Params.push_back(Idx);
4576    else  // The two parameters aren't even close
4577      return false;
4578  }
4579
4580  return true;
4581}
4582
4583/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
4584/// declarator needs to be rebuilt in the current instantiation.
4585/// Any bits of declarator which appear before the name are valid for
4586/// consideration here.  That's specifically the type in the decl spec
4587/// and the base type in any member-pointer chunks.
4588static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
4589                                                    DeclarationName Name) {
4590  // The types we specifically need to rebuild are:
4591  //   - typenames, typeofs, and decltypes
4592  //   - types which will become injected class names
4593  // Of course, we also need to rebuild any type referencing such a
4594  // type.  It's safest to just say "dependent", but we call out a
4595  // few cases here.
4596
4597  DeclSpec &DS = D.getMutableDeclSpec();
4598  switch (DS.getTypeSpecType()) {
4599  case DeclSpec::TST_typename:
4600  case DeclSpec::TST_typeofType:
4601  case DeclSpec::TST_underlyingType:
4602  case DeclSpec::TST_atomic: {
4603    // Grab the type from the parser.
4604    TypeSourceInfo *TSI = nullptr;
4605    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4606    if (T.isNull() || !T->isDependentType()) break;
4607
4608    // Make sure there's a type source info.  This isn't really much
4609    // of a waste; most dependent types should have type source info
4610    // attached already.
4611    if (!TSI)
4612      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4613
4614    // Rebuild the type in the current instantiation.
4615    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4616    if (!TSI) return true;
4617
4618    // Store the new type back in the decl spec.
4619    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4620    DS.UpdateTypeRep(LocType);
4621    break;
4622  }
4623
4624  case DeclSpec::TST_decltype:
4625  case DeclSpec::TST_typeofExpr: {
4626    Expr *E = DS.getRepAsExpr();
4627    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4628    if (Result.isInvalid()) return true;
4629    DS.UpdateExprRep(Result.get());
4630    break;
4631  }
4632
4633  default:
4634    // Nothing to do for these decl specs.
4635    break;
4636  }
4637
4638  // It doesn't matter what order we do this in.
4639  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4640    DeclaratorChunk &Chunk = D.getTypeObject(I);
4641
4642    // The only type information in the declarator which can come
4643    // before the declaration name is the base type of a member
4644    // pointer.
4645    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4646      continue;
4647
4648    // Rebuild the scope specifier in-place.
4649    CXXScopeSpec &SS = Chunk.Mem.Scope();
4650    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4651      return true;
4652  }
4653
4654  return false;
4655}
4656
4657Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4658  D.setFunctionDefinitionKind(FDK_Declaration);
4659  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4660
4661  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4662      Dcl && Dcl->getDeclContext()->isFileContext())
4663    Dcl->setTopLevelDeclInObjCContainer();
4664
4665  return Dcl;
4666}
4667
4668/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4669///   If T is the name of a class, then each of the following shall have a
4670///   name different from T:
4671///     - every static data member of class T;
4672///     - every member function of class T
4673///     - every member of class T that is itself a type;
4674/// \returns true if the declaration name violates these rules.
4675bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4676                                   DeclarationNameInfo NameInfo) {
4677  DeclarationName Name = NameInfo.getName();
4678
4679  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4680    if (Record->getIdentifier() && Record->getDeclName() == Name) {
4681      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4682      return true;
4683    }
4684
4685  return false;
4686}
4687
4688/// \brief Diagnose a declaration whose declarator-id has the given
4689/// nested-name-specifier.
4690///
4691/// \param SS The nested-name-specifier of the declarator-id.
4692///
4693/// \param DC The declaration context to which the nested-name-specifier
4694/// resolves.
4695///
4696/// \param Name The name of the entity being declared.
4697///
4698/// \param Loc The location of the name of the entity being declared.
4699///
4700/// \returns true if we cannot safely recover from this error, false otherwise.
4701bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4702                                        DeclarationName Name,
4703                                        SourceLocation Loc) {
4704  DeclContext *Cur = CurContext;
4705  while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4706    Cur = Cur->getParent();
4707
4708  // If the user provided a superfluous scope specifier that refers back to the
4709  // class in which the entity is already declared, diagnose and ignore it.
4710  //
4711  // class X {
4712  //   void X::f();
4713  // };
4714  //
4715  // Note, it was once ill-formed to give redundant qualification in all
4716  // contexts, but that rule was removed by DR482.
4717  if (Cur->Equals(DC)) {
4718    if (Cur->isRecord()) {
4719      Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
4720                                      : diag::err_member_extra_qualification)
4721        << Name << FixItHint::CreateRemoval(SS.getRange());
4722      SS.clear();
4723    } else {
4724      Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
4725    }
4726    return false;
4727  }
4728
4729  // Check whether the qualifying scope encloses the scope of the original
4730  // declaration.
4731  if (!Cur->Encloses(DC)) {
4732    if (Cur->isRecord())
4733      Diag(Loc, diag::err_member_qualification)
4734        << Name << SS.getRange();
4735    else if (isa<TranslationUnitDecl>(DC))
4736      Diag(Loc, diag::err_invalid_declarator_global_scope)
4737        << Name << SS.getRange();
4738    else if (isa<FunctionDecl>(Cur))
4739      Diag(Loc, diag::err_invalid_declarator_in_function)
4740        << Name << SS.getRange();
4741    else if (isa<BlockDecl>(Cur))
4742      Diag(Loc, diag::err_invalid_declarator_in_block)
4743        << Name << SS.getRange();
4744    else
4745      Diag(Loc, diag::err_invalid_declarator_scope)
4746      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4747
4748    return true;
4749  }
4750
4751  if (Cur->isRecord()) {
4752    // Cannot qualify members within a class.
4753    Diag(Loc, diag::err_member_qualification)
4754      << Name << SS.getRange();
4755    SS.clear();
4756
4757    // C++ constructors and destructors with incorrect scopes can break
4758    // our AST invariants by having the wrong underlying types. If
4759    // that's the case, then drop this declaration entirely.
4760    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4761         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4762        !Context.hasSameType(Name.getCXXNameType(),
4763                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4764      return true;
4765
4766    return false;
4767  }
4768
4769  // C++11 [dcl.meaning]p1:
4770  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4771  //   not begin with a decltype-specifer"
4772  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4773  while (SpecLoc.getPrefix())
4774    SpecLoc = SpecLoc.getPrefix();
4775  if (dyn_cast_or_null<DecltypeType>(
4776        SpecLoc.getNestedNameSpecifier()->getAsType()))
4777    Diag(Loc, diag::err_decltype_in_declarator)
4778      << SpecLoc.getTypeLoc().getSourceRange();
4779
4780  return false;
4781}
4782
4783NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4784                                  MultiTemplateParamsArg TemplateParamLists) {
4785  // TODO: consider using NameInfo for diagnostic.
4786  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4787  DeclarationName Name = NameInfo.getName();
4788
4789  // All of these full declarators require an identifier.  If it doesn't have
4790  // one, the ParsedFreeStandingDeclSpec action should be used.
4791  if (!Name) {
4792    if (!D.isInvalidType())  // Reject this if we think it is valid.
4793      Diag(D.getDeclSpec().getLocStart(),
4794           diag::err_declarator_need_ident)
4795        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4796    return nullptr;
4797  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4798    return nullptr;
4799
4800  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4801  // we find one that is.
4802  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4803         (S->getFlags() & Scope::TemplateParamScope) != 0)
4804    S = S->getParent();
4805
4806  DeclContext *DC = CurContext;
4807  if (D.getCXXScopeSpec().isInvalid())
4808    D.setInvalidType();
4809  else if (D.getCXXScopeSpec().isSet()) {
4810    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4811                                        UPPC_DeclarationQualifier))
4812      return nullptr;
4813
4814    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4815    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4816    if (!DC || isa<EnumDecl>(DC)) {
4817      // If we could not compute the declaration context, it's because the
4818      // declaration context is dependent but does not refer to a class,
4819      // class template, or class template partial specialization. Complain
4820      // and return early, to avoid the coming semantic disaster.
4821      Diag(D.getIdentifierLoc(),
4822           diag::err_template_qualified_declarator_no_match)
4823        << D.getCXXScopeSpec().getScopeRep()
4824        << D.getCXXScopeSpec().getRange();
4825      return nullptr;
4826    }
4827    bool IsDependentContext = DC->isDependentContext();
4828
4829    if (!IsDependentContext &&
4830        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4831      return nullptr;
4832
4833    // If a class is incomplete, do not parse entities inside it.
4834    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4835      Diag(D.getIdentifierLoc(),
4836           diag::err_member_def_undefined_record)
4837        << Name << DC << D.getCXXScopeSpec().getRange();
4838      return nullptr;
4839    }
4840    if (!D.getDeclSpec().isFriendSpecified()) {
4841      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4842                                      Name, D.getIdentifierLoc())) {
4843        if (DC->isRecord())
4844          return nullptr;
4845
4846        D.setInvalidType();
4847      }
4848    }
4849
4850    // Check whether we need to rebuild the type of the given
4851    // declaration in the current instantiation.
4852    if (EnteringContext && IsDependentContext &&
4853        TemplateParamLists.size() != 0) {
4854      ContextRAII SavedContext(*this, DC);
4855      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4856        D.setInvalidType();
4857    }
4858  }
4859
4860  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4861  QualType R = TInfo->getType();
4862
4863  if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
4864    // If this is a typedef, we'll end up spewing multiple diagnostics.
4865    // Just return early; it's safer. If this is a function, let the
4866    // "constructor cannot have a return type" diagnostic handle it.
4867    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4868      return nullptr;
4869
4870  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4871                                      UPPC_DeclarationType))
4872    D.setInvalidType();
4873
4874  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4875                        ForRedeclaration);
4876
4877  // See if this is a redefinition of a variable in the same scope.
4878  if (!D.getCXXScopeSpec().isSet()) {
4879    bool IsLinkageLookup = false;
4880    bool CreateBuiltins = false;
4881
4882    // If the declaration we're planning to build will be a function
4883    // or object with linkage, then look for another declaration with
4884    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4885    //
4886    // If the declaration we're planning to build will be declared with
4887    // external linkage in the translation unit, create any builtin with
4888    // the same name.
4889    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4890      /* Do nothing*/;
4891    else if (CurContext->isFunctionOrMethod() &&
4892             (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4893              R->isFunctionType())) {
4894      IsLinkageLookup = true;
4895      CreateBuiltins =
4896          CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4897    } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4898               D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4899      CreateBuiltins = true;
4900
4901    if (IsLinkageLookup)
4902      Previous.clear(LookupRedeclarationWithLinkage);
4903
4904    LookupName(Previous, S, CreateBuiltins);
4905  } else { // Something like "int foo::x;"
4906    LookupQualifiedName(Previous, DC);
4907
4908    // C++ [dcl.meaning]p1:
4909    //   When the declarator-id is qualified, the declaration shall refer to a
4910    //  previously declared member of the class or namespace to which the
4911    //  qualifier refers (or, in the case of a namespace, of an element of the
4912    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4913    //  thereof; [...]
4914    //
4915    // Note that we already checked the context above, and that we do not have
4916    // enough information to make sure that Previous contains the declaration
4917    // we want to match. For example, given:
4918    //
4919    //   class X {
4920    //     void f();
4921    //     void f(float);
4922    //   };
4923    //
4924    //   void X::f(int) { } // ill-formed
4925    //
4926    // In this case, Previous will point to the overload set
4927    // containing the two f's declared in X, but neither of them
4928    // matches.
4929
4930    // C++ [dcl.meaning]p1:
4931    //   [...] the member shall not merely have been introduced by a
4932    //   using-declaration in the scope of the class or namespace nominated by
4933    //   the nested-name-specifier of the declarator-id.
4934    RemoveUsingDecls(Previous);
4935  }
4936
4937  if (Previous.isSingleResult() &&
4938      Previous.getFoundDecl()->isTemplateParameter()) {
4939    // Maybe we will complain about the shadowed template parameter.
4940    if (!D.isInvalidType())
4941      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4942                                      Previous.getFoundDecl());
4943
4944    // Just pretend that we didn't see the previous declaration.
4945    Previous.clear();
4946  }
4947
4948  // In C++, the previous declaration we find might be a tag type
4949  // (class or enum). In this case, the new declaration will hide the
4950  // tag type. Note that this does does not apply if we're declaring a
4951  // typedef (C++ [dcl.typedef]p4).
4952  if (Previous.isSingleTagDecl() &&
4953      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4954    Previous.clear();
4955
4956  // Check that there are no default arguments other than in the parameters
4957  // of a function declaration (C++ only).
4958  if (getLangOpts().CPlusPlus)
4959    CheckExtraCXXDefaultArguments(D);
4960
4961  if (D.getDeclSpec().isConceptSpecified()) {
4962    // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
4963    // applied only to the definition of a function template or variable
4964    // template, declared in namespace scope
4965    if (!TemplateParamLists.size()) {
4966      Diag(D.getDeclSpec().getConceptSpecLoc(),
4967           diag:: err_concept_wrong_decl_kind);
4968      return nullptr;
4969    }
4970
4971    if (!DC->getRedeclContext()->isFileContext()) {
4972      Diag(D.getIdentifierLoc(),
4973           diag::err_concept_decls_may_only_appear_in_namespace_scope);
4974      return nullptr;
4975    }
4976  }
4977
4978  NamedDecl *New;
4979
4980  bool AddToScope = true;
4981  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4982    if (TemplateParamLists.size()) {
4983      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4984      return nullptr;
4985    }
4986
4987    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4988  } else if (R->isFunctionType()) {
4989    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4990                                  TemplateParamLists,
4991                                  AddToScope);
4992  } else {
4993    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4994                                  AddToScope);
4995  }
4996
4997  if (!New)
4998    return nullptr;
4999
5000  // If this has an identifier and is not an invalid redeclaration or
5001  // function template specialization, add it to the scope stack.
5002  if (New->getDeclName() && AddToScope &&
5003       !(D.isRedeclaration() && New->isInvalidDecl())) {
5004    // Only make a locally-scoped extern declaration visible if it is the first
5005    // declaration of this entity. Qualified lookup for such an entity should
5006    // only find this declaration if there is no visible declaration of it.
5007    bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
5008    PushOnScopeChains(New, S, AddToContext);
5009    if (!AddToContext)
5010      CurContext->addHiddenDecl(New);
5011  }
5012
5013  return New;
5014}
5015
5016/// Helper method to turn variable array types into constant array
5017/// types in certain situations which would otherwise be errors (for
5018/// GCC compatibility).
5019static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5020                                                    ASTContext &Context,
5021                                                    bool &SizeIsNegative,
5022                                                    llvm::APSInt &Oversized) {
5023  // This method tries to turn a variable array into a constant
5024  // array even when the size isn't an ICE.  This is necessary
5025  // for compatibility with code that depends on gcc's buggy
5026  // constant expression folding, like struct {char x[(int)(char*)2];}
5027  SizeIsNegative = false;
5028  Oversized = 0;
5029
5030  if (T->isDependentType())
5031    return QualType();
5032
5033  QualifierCollector Qs;
5034  const Type *Ty = Qs.strip(T);
5035
5036  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5037    QualType Pointee = PTy->getPointeeType();
5038    QualType FixedType =
5039        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5040                                            Oversized);
5041    if (FixedType.isNull()) return FixedType;
5042    FixedType = Context.getPointerType(FixedType);
5043    return Qs.apply(Context, FixedType);
5044  }
5045  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5046    QualType Inner = PTy->getInnerType();
5047    QualType FixedType =
5048        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5049                                            Oversized);
5050    if (FixedType.isNull()) return FixedType;
5051    FixedType = Context.getParenType(FixedType);
5052    return Qs.apply(Context, FixedType);
5053  }
5054
5055  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5056  if (!VLATy)
5057    return QualType();
5058  // FIXME: We should probably handle this case
5059  if (VLATy->getElementType()->isVariablyModifiedType())
5060    return QualType();
5061
5062  llvm::APSInt Res;
5063  if (!VLATy->getSizeExpr() ||
5064      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
5065    return QualType();
5066
5067  // Check whether the array size is negative.
5068  if (Res.isSigned() && Res.isNegative()) {
5069    SizeIsNegative = true;
5070    return QualType();
5071  }
5072
5073  // Check whether the array is too large to be addressed.
5074  unsigned ActiveSizeBits
5075    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5076                                              Res);
5077  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5078    Oversized = Res;
5079    return QualType();
5080  }
5081
5082  return Context.getConstantArrayType(VLATy->getElementType(),
5083                                      Res, ArrayType::Normal, 0);
5084}
5085
5086static void
5087FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5088  SrcTL = SrcTL.getUnqualifiedLoc();
5089  DstTL = DstTL.getUnqualifiedLoc();
5090  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5091    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5092    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5093                                      DstPTL.getPointeeLoc());
5094    DstPTL.setStarLoc(SrcPTL.getStarLoc());
5095    return;
5096  }
5097  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5098    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5099    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5100                                      DstPTL.getInnerLoc());
5101    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5102    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5103    return;
5104  }
5105  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5106  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5107  TypeLoc SrcElemTL = SrcATL.getElementLoc();
5108  TypeLoc DstElemTL = DstATL.getElementLoc();
5109  DstElemTL.initializeFullCopy(SrcElemTL);
5110  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5111  DstATL.setSizeExpr(SrcATL.getSizeExpr());
5112  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5113}
5114
5115/// Helper method to turn variable array types into constant array
5116/// types in certain situations which would otherwise be errors (for
5117/// GCC compatibility).
5118static TypeSourceInfo*
5119TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5120                                              ASTContext &Context,
5121                                              bool &SizeIsNegative,
5122                                              llvm::APSInt &Oversized) {
5123  QualType FixedTy
5124    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5125                                          SizeIsNegative, Oversized);
5126  if (FixedTy.isNull())
5127    return nullptr;
5128  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5129  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5130                                    FixedTInfo->getTypeLoc());
5131  return FixedTInfo;
5132}
5133
5134/// \brief Register the given locally-scoped extern "C" declaration so
5135/// that it can be found later for redeclarations. We include any extern "C"
5136/// declaration that is not visible in the translation unit here, not just
5137/// function-scope declarations.
5138void
5139Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5140  if (!getLangOpts().CPlusPlus &&
5141      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5142    // Don't need to track declarations in the TU in C.
5143    return;
5144
5145  // Note that we have a locally-scoped external with this name.
5146  Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5147}
5148
5149NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5150  // FIXME: We can have multiple results via __attribute__((overloadable)).
5151  auto Result = Context.getExternCContextDecl()->lookup(Name);
5152  return Result.empty() ? nullptr : *Result.begin();
5153}
5154
5155/// \brief Diagnose function specifiers on a declaration of an identifier that
5156/// does not identify a function.
5157void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5158  // FIXME: We should probably indicate the identifier in question to avoid
5159  // confusion for constructs like "inline int a(), b;"
5160  if (DS.isInlineSpecified())
5161    Diag(DS.getInlineSpecLoc(),
5162         diag::err_inline_non_function);
5163
5164  if (DS.isVirtualSpecified())
5165    Diag(DS.getVirtualSpecLoc(),
5166         diag::err_virtual_non_function);
5167
5168  if (DS.isExplicitSpecified())
5169    Diag(DS.getExplicitSpecLoc(),
5170         diag::err_explicit_non_function);
5171
5172  if (DS.isNoreturnSpecified())
5173    Diag(DS.getNoreturnSpecLoc(),
5174         diag::err_noreturn_non_function);
5175}
5176
5177NamedDecl*
5178Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5179                             TypeSourceInfo *TInfo, LookupResult &Previous) {
5180  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5181  if (D.getCXXScopeSpec().isSet()) {
5182    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5183      << D.getCXXScopeSpec().getRange();
5184    D.setInvalidType();
5185    // Pretend we didn't see the scope specifier.
5186    DC = CurContext;
5187    Previous.clear();
5188  }
5189
5190  DiagnoseFunctionSpecifiers(D.getDeclSpec());
5191
5192  if (D.getDeclSpec().isConstexprSpecified())
5193    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5194      << 1;
5195  if (D.getDeclSpec().isConceptSpecified())
5196    Diag(D.getDeclSpec().getConceptSpecLoc(),
5197         diag::err_concept_wrong_decl_kind);
5198
5199  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
5200    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5201      << D.getName().getSourceRange();
5202    return nullptr;
5203  }
5204
5205  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5206  if (!NewTD) return nullptr;
5207
5208  // Handle attributes prior to checking for duplicates in MergeVarDecl
5209  ProcessDeclAttributes(S, NewTD, D);
5210
5211  CheckTypedefForVariablyModifiedType(S, NewTD);
5212
5213  bool Redeclaration = D.isRedeclaration();
5214  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5215  D.setRedeclaration(Redeclaration);
5216  return ND;
5217}
5218
5219void
5220Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5221  // C99 6.7.7p2: If a typedef name specifies a variably modified type
5222  // then it shall have block scope.
5223  // Note that variably modified types must be fixed before merging the decl so
5224  // that redeclarations will match.
5225  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5226  QualType T = TInfo->getType();
5227  if (T->isVariablyModifiedType()) {
5228    getCurFunction()->setHasBranchProtectedScope();
5229
5230    if (S->getFnParent() == nullptr) {
5231      bool SizeIsNegative;
5232      llvm::APSInt Oversized;
5233      TypeSourceInfo *FixedTInfo =
5234        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5235                                                      SizeIsNegative,
5236                                                      Oversized);
5237      if (FixedTInfo) {
5238        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5239        NewTD->setTypeSourceInfo(FixedTInfo);
5240      } else {
5241        if (SizeIsNegative)
5242          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5243        else if (T->isVariableArrayType())
5244          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5245        else if (Oversized.getBoolValue())
5246          Diag(NewTD->getLocation(), diag::err_array_too_large)
5247            << Oversized.toString(10);
5248        else
5249          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5250        NewTD->setInvalidDecl();
5251      }
5252    }
5253  }
5254}
5255
5256
5257/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5258/// declares a typedef-name, either using the 'typedef' type specifier or via
5259/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5260NamedDecl*
5261Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5262                           LookupResult &Previous, bool &Redeclaration) {
5263  // Merge the decl with the existing one if appropriate. If the decl is
5264  // in an outer scope, it isn't the same thing.
5265  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5266                       /*AllowInlineNamespace*/false);
5267  filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5268  if (!Previous.empty()) {
5269    Redeclaration = true;
5270    MergeTypedefNameDecl(S, NewTD, Previous);
5271  }
5272
5273  // If this is the C FILE type, notify the AST context.
5274  if (IdentifierInfo *II = NewTD->getIdentifier())
5275    if (!NewTD->isInvalidDecl() &&
5276        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5277      if (II->isStr("FILE"))
5278        Context.setFILEDecl(NewTD);
5279      else if (II->isStr("jmp_buf"))
5280        Context.setjmp_bufDecl(NewTD);
5281      else if (II->isStr("sigjmp_buf"))
5282        Context.setsigjmp_bufDecl(NewTD);
5283      else if (II->isStr("ucontext_t"))
5284        Context.setucontext_tDecl(NewTD);
5285    }
5286
5287  return NewTD;
5288}
5289
5290/// \brief Determines whether the given declaration is an out-of-scope
5291/// previous declaration.
5292///
5293/// This routine should be invoked when name lookup has found a
5294/// previous declaration (PrevDecl) that is not in the scope where a
5295/// new declaration by the same name is being introduced. If the new
5296/// declaration occurs in a local scope, previous declarations with
5297/// linkage may still be considered previous declarations (C99
5298/// 6.2.2p4-5, C++ [basic.link]p6).
5299///
5300/// \param PrevDecl the previous declaration found by name
5301/// lookup
5302///
5303/// \param DC the context in which the new declaration is being
5304/// declared.
5305///
5306/// \returns true if PrevDecl is an out-of-scope previous declaration
5307/// for a new delcaration with the same name.
5308static bool
5309isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5310                                ASTContext &Context) {
5311  if (!PrevDecl)
5312    return false;
5313
5314  if (!PrevDecl->hasLinkage())
5315    return false;
5316
5317  if (Context.getLangOpts().CPlusPlus) {
5318    // C++ [basic.link]p6:
5319    //   If there is a visible declaration of an entity with linkage
5320    //   having the same name and type, ignoring entities declared
5321    //   outside the innermost enclosing namespace scope, the block
5322    //   scope declaration declares that same entity and receives the
5323    //   linkage of the previous declaration.
5324    DeclContext *OuterContext = DC->getRedeclContext();
5325    if (!OuterContext->isFunctionOrMethod())
5326      // This rule only applies to block-scope declarations.
5327      return false;
5328
5329    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5330    if (PrevOuterContext->isRecord())
5331      // We found a member function: ignore it.
5332      return false;
5333
5334    // Find the innermost enclosing namespace for the new and
5335    // previous declarations.
5336    OuterContext = OuterContext->getEnclosingNamespaceContext();
5337    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5338
5339    // The previous declaration is in a different namespace, so it
5340    // isn't the same function.
5341    if (!OuterContext->Equals(PrevOuterContext))
5342      return false;
5343  }
5344
5345  return true;
5346}
5347
5348static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
5349  CXXScopeSpec &SS = D.getCXXScopeSpec();
5350  if (!SS.isSet()) return;
5351  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
5352}
5353
5354bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5355  QualType type = decl->getType();
5356  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5357  if (lifetime == Qualifiers::OCL_Autoreleasing) {
5358    // Various kinds of declaration aren't allowed to be __autoreleasing.
5359    unsigned kind = -1U;
5360    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5361      if (var->hasAttr<BlocksAttr>())
5362        kind = 0; // __block
5363      else if (!var->hasLocalStorage())
5364        kind = 1; // global
5365    } else if (isa<ObjCIvarDecl>(decl)) {
5366      kind = 3; // ivar
5367    } else if (isa<FieldDecl>(decl)) {
5368      kind = 2; // field
5369    }
5370
5371    if (kind != -1U) {
5372      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5373        << kind;
5374    }
5375  } else if (lifetime == Qualifiers::OCL_None) {
5376    // Try to infer lifetime.
5377    if (!type->isObjCLifetimeType())
5378      return false;
5379
5380    lifetime = type->getObjCARCImplicitLifetime();
5381    type = Context.getLifetimeQualifiedType(type, lifetime);
5382    decl->setType(type);
5383  }
5384
5385  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5386    // Thread-local variables cannot have lifetime.
5387    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5388        var->getTLSKind()) {
5389      Diag(var->getLocation(), diag::err_arc_thread_ownership)
5390        << var->getType();
5391      return true;
5392    }
5393  }
5394
5395  return false;
5396}
5397
5398static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5399  // Ensure that an auto decl is deduced otherwise the checks below might cache
5400  // the wrong linkage.
5401  assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5402
5403  // 'weak' only applies to declarations with external linkage.
5404  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5405    if (!ND.isExternallyVisible()) {
5406      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5407      ND.dropAttr<WeakAttr>();
5408    }
5409  }
5410  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5411    if (ND.isExternallyVisible()) {
5412      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5413      ND.dropAttr<WeakRefAttr>();
5414      ND.dropAttr<AliasAttr>();
5415    }
5416  }
5417
5418  if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5419    if (VD->hasInit()) {
5420      if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5421        assert(VD->isThisDeclarationADefinition() &&
5422               !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
5423        S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD;
5424        VD->dropAttr<AliasAttr>();
5425      }
5426    }
5427  }
5428
5429  // 'selectany' only applies to externally visible variable declarations.
5430  // It does not apply to functions.
5431  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5432    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5433      S.Diag(Attr->getLocation(),
5434             diag::err_attribute_selectany_non_extern_data);
5435      ND.dropAttr<SelectAnyAttr>();
5436    }
5437  }
5438
5439  if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5440    // dll attributes require external linkage. Static locals may have external
5441    // linkage but still cannot be explicitly imported or exported.
5442    auto *VD = dyn_cast<VarDecl>(&ND);
5443    if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
5444      S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5445        << &ND << Attr;
5446      ND.setInvalidDecl();
5447    }
5448  }
5449
5450  // Virtual functions cannot be marked as 'notail'.
5451  if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
5452    if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
5453      if (MD->isVirtual()) {
5454        S.Diag(ND.getLocation(),
5455               diag::err_invalid_attribute_on_virtual_function)
5456            << Attr;
5457        ND.dropAttr<NotTailCalledAttr>();
5458      }
5459}
5460
5461static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5462                                           NamedDecl *NewDecl,
5463                                           bool IsSpecialization) {
5464  if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
5465    OldDecl = OldTD->getTemplatedDecl();
5466  if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
5467    NewDecl = NewTD->getTemplatedDecl();
5468
5469  if (!OldDecl || !NewDecl)
5470    return;
5471
5472  const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
5473  const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
5474  const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
5475  const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
5476
5477  // dllimport and dllexport are inheritable attributes so we have to exclude
5478  // inherited attribute instances.
5479  bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
5480                    (NewExportAttr && !NewExportAttr->isInherited());
5481
5482  // A redeclaration is not allowed to add a dllimport or dllexport attribute,
5483  // the only exception being explicit specializations.
5484  // Implicitly generated declarations are also excluded for now because there
5485  // is no other way to switch these to use dllimport or dllexport.
5486  bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
5487
5488  if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
5489    // Allow with a warning for free functions and global variables.
5490    bool JustWarn = false;
5491    if (!OldDecl->isCXXClassMember()) {
5492      auto *VD = dyn_cast<VarDecl>(OldDecl);
5493      if (VD && !VD->getDescribedVarTemplate())
5494        JustWarn = true;
5495      auto *FD = dyn_cast<FunctionDecl>(OldDecl);
5496      if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
5497        JustWarn = true;
5498    }
5499
5500    // We cannot change a declaration that's been used because IR has already
5501    // been emitted. Dllimported functions will still work though (modulo
5502    // address equality) as they can use the thunk.
5503    if (OldDecl->isUsed())
5504      if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
5505        JustWarn = false;
5506
5507    unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
5508                               : diag::err_attribute_dll_redeclaration;
5509    S.Diag(NewDecl->getLocation(), DiagID)
5510        << NewDecl
5511        << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
5512    S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5513    if (!JustWarn) {
5514      NewDecl->setInvalidDecl();
5515      return;
5516    }
5517  }
5518
5519  // A redeclaration is not allowed to drop a dllimport attribute, the only
5520  // exceptions being inline function definitions, local extern declarations,
5521  // and qualified friend declarations.
5522  // NB: MSVC converts such a declaration to dllexport.
5523  bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
5524  if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
5525    // Ignore static data because out-of-line definitions are diagnosed
5526    // separately.
5527    IsStaticDataMember = VD->isStaticDataMember();
5528  else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
5529    IsInline = FD->isInlined();
5530    IsQualifiedFriend = FD->getQualifier() &&
5531                        FD->getFriendObjectKind() == Decl::FOK_Declared;
5532  }
5533
5534  if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember &&
5535      !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
5536    S.Diag(NewDecl->getLocation(),
5537           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5538      << NewDecl << OldImportAttr;
5539    S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5540    S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
5541    OldDecl->dropAttr<DLLImportAttr>();
5542    NewDecl->dropAttr<DLLImportAttr>();
5543  } else if (IsInline && OldImportAttr &&
5544             !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5545    // In MinGW, seeing a function declared inline drops the dllimport attribute.
5546    OldDecl->dropAttr<DLLImportAttr>();
5547    NewDecl->dropAttr<DLLImportAttr>();
5548    S.Diag(NewDecl->getLocation(),
5549           diag::warn_dllimport_dropped_from_inline_function)
5550        << NewDecl << OldImportAttr;
5551  }
5552}
5553
5554/// Given that we are within the definition of the given function,
5555/// will that definition behave like C99's 'inline', where the
5556/// definition is discarded except for optimization purposes?
5557static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
5558  // Try to avoid calling GetGVALinkageForFunction.
5559
5560  // All cases of this require the 'inline' keyword.
5561  if (!FD->isInlined()) return false;
5562
5563  // This is only possible in C++ with the gnu_inline attribute.
5564  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
5565    return false;
5566
5567  // Okay, go ahead and call the relatively-more-expensive function.
5568
5569#ifndef NDEBUG
5570  // AST quite reasonably asserts that it's working on a function
5571  // definition.  We don't really have a way to tell it that we're
5572  // currently defining the function, so just lie to it in +Asserts
5573  // builds.  This is an awful hack.
5574  FD->setLazyBody(1);
5575#endif
5576
5577  bool isC99Inline =
5578      S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
5579
5580#ifndef NDEBUG
5581  FD->setLazyBody(0);
5582#endif
5583
5584  return isC99Inline;
5585}
5586
5587/// Determine whether a variable is extern "C" prior to attaching
5588/// an initializer. We can't just call isExternC() here, because that
5589/// will also compute and cache whether the declaration is externally
5590/// visible, which might change when we attach the initializer.
5591///
5592/// This can only be used if the declaration is known to not be a
5593/// redeclaration of an internal linkage declaration.
5594///
5595/// For instance:
5596///
5597///   auto x = []{};
5598///
5599/// Attaching the initializer here makes this declaration not externally
5600/// visible, because its type has internal linkage.
5601///
5602/// FIXME: This is a hack.
5603template<typename T>
5604static bool isIncompleteDeclExternC(Sema &S, const T *D) {
5605  if (S.getLangOpts().CPlusPlus) {
5606    // In C++, the overloadable attribute negates the effects of extern "C".
5607    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
5608      return false;
5609
5610    // So do CUDA's host/device attributes if overloading is enabled.
5611    if (S.getLangOpts().CUDA && S.getLangOpts().CUDATargetOverloads &&
5612        (D->template hasAttr<CUDADeviceAttr>() ||
5613         D->template hasAttr<CUDAHostAttr>()))
5614      return false;
5615  }
5616  return D->isExternC();
5617}
5618
5619static bool shouldConsiderLinkage(const VarDecl *VD) {
5620  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
5621  if (DC->isFunctionOrMethod())
5622    return VD->hasExternalStorage();
5623  if (DC->isFileContext())
5624    return true;
5625  if (DC->isRecord())
5626    return false;
5627  llvm_unreachable("Unexpected context");
5628}
5629
5630static bool shouldConsiderLinkage(const FunctionDecl *FD) {
5631  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
5632  if (DC->isFileContext() || DC->isFunctionOrMethod())
5633    return true;
5634  if (DC->isRecord())
5635    return false;
5636  llvm_unreachable("Unexpected context");
5637}
5638
5639static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
5640                          AttributeList::Kind Kind) {
5641  for (const AttributeList *L = AttrList; L; L = L->getNext())
5642    if (L->getKind() == Kind)
5643      return true;
5644  return false;
5645}
5646
5647static bool hasParsedAttr(Scope *S, const Declarator &PD,
5648                          AttributeList::Kind Kind) {
5649  // Check decl attributes on the DeclSpec.
5650  if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
5651    return true;
5652
5653  // Walk the declarator structure, checking decl attributes that were in a type
5654  // position to the decl itself.
5655  for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
5656    if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
5657      return true;
5658  }
5659
5660  // Finally, check attributes on the decl itself.
5661  return hasParsedAttr(S, PD.getAttributes(), Kind);
5662}
5663
5664/// Adjust the \c DeclContext for a function or variable that might be a
5665/// function-local external declaration.
5666bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
5667  if (!DC->isFunctionOrMethod())
5668    return false;
5669
5670  // If this is a local extern function or variable declared within a function
5671  // template, don't add it into the enclosing namespace scope until it is
5672  // instantiated; it might have a dependent type right now.
5673  if (DC->isDependentContext())
5674    return true;
5675
5676  // C++11 [basic.link]p7:
5677  //   When a block scope declaration of an entity with linkage is not found to
5678  //   refer to some other declaration, then that entity is a member of the
5679  //   innermost enclosing namespace.
5680  //
5681  // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
5682  // semantically-enclosing namespace, not a lexically-enclosing one.
5683  while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
5684    DC = DC->getParent();
5685  return true;
5686}
5687
5688/// \brief Returns true if given declaration has external C language linkage.
5689static bool isDeclExternC(const Decl *D) {
5690  if (const auto *FD = dyn_cast<FunctionDecl>(D))
5691    return FD->isExternC();
5692  if (const auto *VD = dyn_cast<VarDecl>(D))
5693    return VD->isExternC();
5694
5695  llvm_unreachable("Unknown type of decl!");
5696}
5697
5698NamedDecl *
5699Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5700                              TypeSourceInfo *TInfo, LookupResult &Previous,
5701                              MultiTemplateParamsArg TemplateParamLists,
5702                              bool &AddToScope) {
5703  QualType R = TInfo->getType();
5704  DeclarationName Name = GetNameForDeclarator(D).getName();
5705
5706  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
5707  StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
5708
5709  // dllimport globals without explicit storage class are treated as extern. We
5710  // have to change the storage class this early to get the right DeclContext.
5711  if (SC == SC_None && !DC->isRecord() &&
5712      hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
5713      !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
5714    SC = SC_Extern;
5715
5716  DeclContext *OriginalDC = DC;
5717  bool IsLocalExternDecl = SC == SC_Extern &&
5718                           adjustContextForLocalExternDecl(DC);
5719
5720  if (getLangOpts().OpenCL) {
5721    // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
5722    QualType NR = R;
5723    while (NR->isPointerType()) {
5724      if (NR->isFunctionPointerType()) {
5725        Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
5726        D.setInvalidType();
5727        break;
5728      }
5729      NR = NR->getPointeeType();
5730    }
5731
5732    if (!getOpenCLOptions().cl_khr_fp16) {
5733      // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
5734      // half array type (unless the cl_khr_fp16 extension is enabled).
5735      if (Context.getBaseElementType(R)->isHalfType()) {
5736        Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
5737        D.setInvalidType();
5738      }
5739    }
5740  }
5741
5742  if (SCSpec == DeclSpec::SCS_mutable) {
5743    // mutable can only appear on non-static class members, so it's always
5744    // an error here
5745    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
5746    D.setInvalidType();
5747    SC = SC_None;
5748  }
5749
5750  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
5751      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
5752                              D.getDeclSpec().getStorageClassSpecLoc())) {
5753    // In C++11, the 'register' storage class specifier is deprecated.
5754    // Suppress the warning in system macros, it's used in macros in some
5755    // popular C system headers, such as in glibc's htonl() macro.
5756    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5757         getLangOpts().CPlusPlus1z ? diag::ext_register_storage_class
5758                                   : diag::warn_deprecated_register)
5759      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5760  }
5761
5762  IdentifierInfo *II = Name.getAsIdentifierInfo();
5763  if (!II) {
5764    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
5765      << Name;
5766    return nullptr;
5767  }
5768
5769  DiagnoseFunctionSpecifiers(D.getDeclSpec());
5770
5771  if (!DC->isRecord() && S->getFnParent() == nullptr) {
5772    // C99 6.9p2: The storage-class specifiers auto and register shall not
5773    // appear in the declaration specifiers in an external declaration.
5774    // Global Register+Asm is a GNU extension we support.
5775    if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
5776      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
5777      D.setInvalidType();
5778    }
5779  }
5780
5781  if (getLangOpts().OpenCL) {
5782    // OpenCL v1.2 s6.9.b p4:
5783    // The sampler type cannot be used with the __local and __global address
5784    // space qualifiers.
5785    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5786      R.getAddressSpace() == LangAS::opencl_global)) {
5787      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5788    }
5789
5790    // OpenCL 1.2 spec, p6.9 r:
5791    // The event type cannot be used to declare a program scope variable.
5792    // The event type cannot be used with the __local, __constant and __global
5793    // address space qualifiers.
5794    if (R->isEventT()) {
5795      if (S->getParent() == nullptr) {
5796        Diag(D.getLocStart(), diag::err_event_t_global_var);
5797        D.setInvalidType();
5798      }
5799
5800      if (R.getAddressSpace()) {
5801        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5802        D.setInvalidType();
5803      }
5804    }
5805  }
5806
5807  bool IsExplicitSpecialization = false;
5808  bool IsVariableTemplateSpecialization = false;
5809  bool IsPartialSpecialization = false;
5810  bool IsVariableTemplate = false;
5811  VarDecl *NewVD = nullptr;
5812  VarTemplateDecl *NewTemplate = nullptr;
5813  TemplateParameterList *TemplateParams = nullptr;
5814  if (!getLangOpts().CPlusPlus) {
5815    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5816                            D.getIdentifierLoc(), II,
5817                            R, TInfo, SC);
5818
5819    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5820      ParsingInitForAutoVars.insert(NewVD);
5821
5822    if (D.isInvalidType())
5823      NewVD->setInvalidDecl();
5824  } else {
5825    bool Invalid = false;
5826
5827    if (DC->isRecord() && !CurContext->isRecord()) {
5828      // This is an out-of-line definition of a static data member.
5829      switch (SC) {
5830      case SC_None:
5831        break;
5832      case SC_Static:
5833        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5834             diag::err_static_out_of_line)
5835          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5836        break;
5837      case SC_Auto:
5838      case SC_Register:
5839      case SC_Extern:
5840        // [dcl.stc] p2: The auto or register specifiers shall be applied only
5841        // to names of variables declared in a block or to function parameters.
5842        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5843        // of class members
5844
5845        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5846             diag::err_storage_class_for_static_member)
5847          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5848        break;
5849      case SC_PrivateExtern:
5850        llvm_unreachable("C storage class in c++!");
5851      }
5852    }
5853
5854    if (SC == SC_Static && CurContext->isRecord()) {
5855      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5856        if (RD->isLocalClass())
5857          Diag(D.getIdentifierLoc(),
5858               diag::err_static_data_member_not_allowed_in_local_class)
5859            << Name << RD->getDeclName();
5860
5861        // C++98 [class.union]p1: If a union contains a static data member,
5862        // the program is ill-formed. C++11 drops this restriction.
5863        if (RD->isUnion())
5864          Diag(D.getIdentifierLoc(),
5865               getLangOpts().CPlusPlus11
5866                 ? diag::warn_cxx98_compat_static_data_member_in_union
5867                 : diag::ext_static_data_member_in_union) << Name;
5868        // We conservatively disallow static data members in anonymous structs.
5869        else if (!RD->getDeclName())
5870          Diag(D.getIdentifierLoc(),
5871               diag::err_static_data_member_not_allowed_in_anon_struct)
5872            << Name << RD->isUnion();
5873      }
5874    }
5875
5876    // Match up the template parameter lists with the scope specifier, then
5877    // determine whether we have a template or a template specialization.
5878    TemplateParams = MatchTemplateParametersToScopeSpecifier(
5879        D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5880        D.getCXXScopeSpec(),
5881        D.getName().getKind() == UnqualifiedId::IK_TemplateId
5882            ? D.getName().TemplateId
5883            : nullptr,
5884        TemplateParamLists,
5885        /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5886
5887    if (TemplateParams) {
5888      if (!TemplateParams->size() &&
5889          D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5890        // There is an extraneous 'template<>' for this variable. Complain
5891        // about it, but allow the declaration of the variable.
5892        Diag(TemplateParams->getTemplateLoc(),
5893             diag::err_template_variable_noparams)
5894          << II
5895          << SourceRange(TemplateParams->getTemplateLoc(),
5896                         TemplateParams->getRAngleLoc());
5897        TemplateParams = nullptr;
5898      } else {
5899        if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5900          // This is an explicit specialization or a partial specialization.
5901          // FIXME: Check that we can declare a specialization here.
5902          IsVariableTemplateSpecialization = true;
5903          IsPartialSpecialization = TemplateParams->size() > 0;
5904        } else { // if (TemplateParams->size() > 0)
5905          // This is a template declaration.
5906          IsVariableTemplate = true;
5907
5908          // Check that we can declare a template here.
5909          if (CheckTemplateDeclScope(S, TemplateParams))
5910            return nullptr;
5911
5912          // Only C++1y supports variable templates (N3651).
5913          Diag(D.getIdentifierLoc(),
5914               getLangOpts().CPlusPlus14
5915                   ? diag::warn_cxx11_compat_variable_template
5916                   : diag::ext_variable_template);
5917        }
5918      }
5919    } else {
5920      assert(
5921          (Invalid || D.getName().getKind() != UnqualifiedId::IK_TemplateId) &&
5922          "should have a 'template<>' for this decl");
5923    }
5924
5925    if (IsVariableTemplateSpecialization) {
5926      SourceLocation TemplateKWLoc =
5927          TemplateParamLists.size() > 0
5928              ? TemplateParamLists[0]->getTemplateLoc()
5929              : SourceLocation();
5930      DeclResult Res = ActOnVarTemplateSpecialization(
5931          S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5932          IsPartialSpecialization);
5933      if (Res.isInvalid())
5934        return nullptr;
5935      NewVD = cast<VarDecl>(Res.get());
5936      AddToScope = false;
5937    } else
5938      NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5939                              D.getIdentifierLoc(), II, R, TInfo, SC);
5940
5941    // If this is supposed to be a variable template, create it as such.
5942    if (IsVariableTemplate) {
5943      NewTemplate =
5944          VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5945                                  TemplateParams, NewVD);
5946      NewVD->setDescribedVarTemplate(NewTemplate);
5947    }
5948
5949    // If this decl has an auto type in need of deduction, make a note of the
5950    // Decl so we can diagnose uses of it in its own initializer.
5951    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5952      ParsingInitForAutoVars.insert(NewVD);
5953
5954    if (D.isInvalidType() || Invalid) {
5955      NewVD->setInvalidDecl();
5956      if (NewTemplate)
5957        NewTemplate->setInvalidDecl();
5958    }
5959
5960    SetNestedNameSpecifier(NewVD, D);
5961
5962    // If we have any template parameter lists that don't directly belong to
5963    // the variable (matching the scope specifier), store them.
5964    unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
5965    if (TemplateParamLists.size() > VDTemplateParamLists)
5966      NewVD->setTemplateParameterListsInfo(
5967          Context, TemplateParamLists.drop_back(VDTemplateParamLists));
5968
5969    if (D.getDeclSpec().isConstexprSpecified())
5970      NewVD->setConstexpr(true);
5971
5972    if (D.getDeclSpec().isConceptSpecified()) {
5973      NewVD->setConcept(true);
5974
5975      // C++ Concepts TS [dcl.spec.concept]p2: A concept definition shall not
5976      // be declared with the thread_local, inline, friend, or constexpr
5977      // specifiers, [...]
5978      if (D.getDeclSpec().getThreadStorageClassSpec() == TSCS_thread_local) {
5979        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5980             diag::err_concept_decl_invalid_specifiers)
5981            << 0 << 0;
5982        NewVD->setInvalidDecl(true);
5983      }
5984
5985      if (D.getDeclSpec().isConstexprSpecified()) {
5986        Diag(D.getDeclSpec().getConstexprSpecLoc(),
5987             diag::err_concept_decl_invalid_specifiers)
5988            << 0 << 3;
5989        NewVD->setInvalidDecl(true);
5990      }
5991    }
5992  }
5993
5994  // Set the lexical context. If the declarator has a C++ scope specifier, the
5995  // lexical context will be different from the semantic context.
5996  NewVD->setLexicalDeclContext(CurContext);
5997  if (NewTemplate)
5998    NewTemplate->setLexicalDeclContext(CurContext);
5999
6000  if (IsLocalExternDecl)
6001    NewVD->setLocalExternDecl();
6002
6003  bool EmitTLSUnsupportedError = false;
6004  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6005    // C++11 [dcl.stc]p4:
6006    //   When thread_local is applied to a variable of block scope the
6007    //   storage-class-specifier static is implied if it does not appear
6008    //   explicitly.
6009    // Core issue: 'static' is not implied if the variable is declared
6010    //   'extern'.
6011    if (NewVD->hasLocalStorage() &&
6012        (SCSpec != DeclSpec::SCS_unspecified ||
6013         TSCS != DeclSpec::TSCS_thread_local ||
6014         !DC->isFunctionOrMethod()))
6015      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6016           diag::err_thread_non_global)
6017        << DeclSpec::getSpecifierName(TSCS);
6018    else if (!Context.getTargetInfo().isTLSSupported()) {
6019      if (getLangOpts().CUDA) {
6020        // Postpone error emission until we've collected attributes required to
6021        // figure out whether it's a host or device variable and whether the
6022        // error should be ignored.
6023        EmitTLSUnsupportedError = true;
6024        // We still need to mark the variable as TLS so it shows up in AST with
6025        // proper storage class for other tools to use even if we're not going
6026        // to emit any code for it.
6027        NewVD->setTSCSpec(TSCS);
6028      } else
6029        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6030             diag::err_thread_unsupported);
6031    } else
6032      NewVD->setTSCSpec(TSCS);
6033  }
6034
6035  // C99 6.7.4p3
6036  //   An inline definition of a function with external linkage shall
6037  //   not contain a definition of a modifiable object with static or
6038  //   thread storage duration...
6039  // We only apply this when the function is required to be defined
6040  // elsewhere, i.e. when the function is not 'extern inline'.  Note
6041  // that a local variable with thread storage duration still has to
6042  // be marked 'static'.  Also note that it's possible to get these
6043  // semantics in C++ using __attribute__((gnu_inline)).
6044  if (SC == SC_Static && S->getFnParent() != nullptr &&
6045      !NewVD->getType().isConstQualified()) {
6046    FunctionDecl *CurFD = getCurFunctionDecl();
6047    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6048      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6049           diag::warn_static_local_in_extern_inline);
6050      MaybeSuggestAddingStaticToDecl(CurFD);
6051    }
6052  }
6053
6054  if (D.getDeclSpec().isModulePrivateSpecified()) {
6055    if (IsVariableTemplateSpecialization)
6056      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6057          << (IsPartialSpecialization ? 1 : 0)
6058          << FixItHint::CreateRemoval(
6059                 D.getDeclSpec().getModulePrivateSpecLoc());
6060    else if (IsExplicitSpecialization)
6061      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6062        << 2
6063        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6064    else if (NewVD->hasLocalStorage())
6065      Diag(NewVD->getLocation(), diag::err_module_private_local)
6066        << 0 << NewVD->getDeclName()
6067        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6068        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6069    else {
6070      NewVD->setModulePrivate();
6071      if (NewTemplate)
6072        NewTemplate->setModulePrivate();
6073    }
6074  }
6075
6076  // Handle attributes prior to checking for duplicates in MergeVarDecl
6077  ProcessDeclAttributes(S, NewVD, D);
6078
6079  if (getLangOpts().CUDA) {
6080    if (EmitTLSUnsupportedError && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD))
6081      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6082           diag::err_thread_unsupported);
6083    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6084    // storage [duration]."
6085    if (SC == SC_None && S->getFnParent() != nullptr &&
6086        (NewVD->hasAttr<CUDASharedAttr>() ||
6087         NewVD->hasAttr<CUDAConstantAttr>())) {
6088      NewVD->setStorageClass(SC_Static);
6089    }
6090  }
6091
6092  // Ensure that dllimport globals without explicit storage class are treated as
6093  // extern. The storage class is set above using parsed attributes. Now we can
6094  // check the VarDecl itself.
6095  assert(!NewVD->hasAttr<DLLImportAttr>() ||
6096         NewVD->getAttr<DLLImportAttr>()->isInherited() ||
6097         NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
6098
6099  // In auto-retain/release, infer strong retension for variables of
6100  // retainable type.
6101  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6102    NewVD->setInvalidDecl();
6103
6104  // Handle GNU asm-label extension (encoded as an attribute).
6105  if (Expr *E = (Expr*)D.getAsmLabel()) {
6106    // The parser guarantees this is a string.
6107    StringLiteral *SE = cast<StringLiteral>(E);
6108    StringRef Label = SE->getString();
6109    if (S->getFnParent() != nullptr) {
6110      switch (SC) {
6111      case SC_None:
6112      case SC_Auto:
6113        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6114        break;
6115      case SC_Register:
6116        // Local Named register
6117        if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6118            DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6119          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6120        break;
6121      case SC_Static:
6122      case SC_Extern:
6123      case SC_PrivateExtern:
6124        break;
6125      }
6126    } else if (SC == SC_Register) {
6127      // Global Named register
6128      if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6129        const auto &TI = Context.getTargetInfo();
6130        bool HasSizeMismatch;
6131
6132        if (!TI.isValidGCCRegisterName(Label))
6133          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6134        else if (!TI.validateGlobalRegisterVariable(Label,
6135                                                    Context.getTypeSize(R),
6136                                                    HasSizeMismatch))
6137          Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6138        else if (HasSizeMismatch)
6139          Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6140      }
6141
6142      if (!R->isIntegralType(Context) && !R->isPointerType()) {
6143        Diag(D.getLocStart(), diag::err_asm_bad_register_type);
6144        NewVD->setInvalidDecl(true);
6145      }
6146    }
6147
6148    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6149                                                Context, Label, 0));
6150  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6151    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6152      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6153    if (I != ExtnameUndeclaredIdentifiers.end()) {
6154      if (isDeclExternC(NewVD)) {
6155        NewVD->addAttr(I->second);
6156        ExtnameUndeclaredIdentifiers.erase(I);
6157      } else
6158        Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6159            << /*Variable*/1 << NewVD;
6160    }
6161  }
6162
6163  // Diagnose shadowed variables before filtering for scope.
6164  if (D.getCXXScopeSpec().isEmpty())
6165    CheckShadow(S, NewVD, Previous);
6166
6167  // Don't consider existing declarations that are in a different
6168  // scope and are out-of-semantic-context declarations (if the new
6169  // declaration has linkage).
6170  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6171                       D.getCXXScopeSpec().isNotEmpty() ||
6172                       IsExplicitSpecialization ||
6173                       IsVariableTemplateSpecialization);
6174
6175  // Check whether the previous declaration is in the same block scope. This
6176  // affects whether we merge types with it, per C++11 [dcl.array]p3.
6177  if (getLangOpts().CPlusPlus &&
6178      NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6179    NewVD->setPreviousDeclInSameBlockScope(
6180        Previous.isSingleResult() && !Previous.isShadowed() &&
6181        isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6182
6183  if (!getLangOpts().CPlusPlus) {
6184    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6185  } else {
6186    // If this is an explicit specialization of a static data member, check it.
6187    if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
6188        CheckMemberSpecialization(NewVD, Previous))
6189      NewVD->setInvalidDecl();
6190
6191    // Merge the decl with the existing one if appropriate.
6192    if (!Previous.empty()) {
6193      if (Previous.isSingleResult() &&
6194          isa<FieldDecl>(Previous.getFoundDecl()) &&
6195          D.getCXXScopeSpec().isSet()) {
6196        // The user tried to define a non-static data member
6197        // out-of-line (C++ [dcl.meaning]p1).
6198        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6199          << D.getCXXScopeSpec().getRange();
6200        Previous.clear();
6201        NewVD->setInvalidDecl();
6202      }
6203    } else if (D.getCXXScopeSpec().isSet()) {
6204      // No previous declaration in the qualifying scope.
6205      Diag(D.getIdentifierLoc(), diag::err_no_member)
6206        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6207        << D.getCXXScopeSpec().getRange();
6208      NewVD->setInvalidDecl();
6209    }
6210
6211    if (!IsVariableTemplateSpecialization)
6212      D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6213
6214    if (NewTemplate) {
6215      VarTemplateDecl *PrevVarTemplate =
6216          NewVD->getPreviousDecl()
6217              ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6218              : nullptr;
6219
6220      // Check the template parameter list of this declaration, possibly
6221      // merging in the template parameter list from the previous variable
6222      // template declaration.
6223      if (CheckTemplateParameterList(
6224              TemplateParams,
6225              PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6226                              : nullptr,
6227              (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6228               DC->isDependentContext())
6229                  ? TPC_ClassTemplateMember
6230                  : TPC_VarTemplate))
6231        NewVD->setInvalidDecl();
6232
6233      // If we are providing an explicit specialization of a static variable
6234      // template, make a note of that.
6235      if (PrevVarTemplate &&
6236          PrevVarTemplate->getInstantiatedFromMemberTemplate())
6237        PrevVarTemplate->setMemberSpecialization();
6238    }
6239  }
6240
6241  ProcessPragmaWeak(S, NewVD);
6242
6243  // If this is the first declaration of an extern C variable, update
6244  // the map of such variables.
6245  if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6246      isIncompleteDeclExternC(*this, NewVD))
6247    RegisterLocallyScopedExternCDecl(NewVD, S);
6248
6249  if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6250    Decl *ManglingContextDecl;
6251    if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6252            NewVD->getDeclContext(), ManglingContextDecl)) {
6253      Context.setManglingNumber(
6254          NewVD, MCtx->getManglingNumber(
6255                     NewVD, getMSManglingNumber(getLangOpts(), S)));
6256      Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6257    }
6258  }
6259
6260  // Special handling of variable named 'main'.
6261  if (Name.isIdentifier() && Name.getAsIdentifierInfo()->isStr("main") &&
6262      NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6263      !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6264
6265    // C++ [basic.start.main]p3
6266    // A program that declares a variable main at global scope is ill-formed.
6267    if (getLangOpts().CPlusPlus)
6268      Diag(D.getLocStart(), diag::err_main_global_variable);
6269
6270    // In C, and external-linkage variable named main results in undefined
6271    // behavior.
6272    else if (NewVD->hasExternalFormalLinkage())
6273      Diag(D.getLocStart(), diag::warn_main_redefined);
6274  }
6275
6276  if (D.isRedeclaration() && !Previous.empty()) {
6277    checkDLLAttributeRedeclaration(
6278        *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
6279        IsExplicitSpecialization);
6280  }
6281
6282  if (NewTemplate) {
6283    if (NewVD->isInvalidDecl())
6284      NewTemplate->setInvalidDecl();
6285    ActOnDocumentableDecl(NewTemplate);
6286    return NewTemplate;
6287  }
6288
6289  return NewVD;
6290}
6291
6292/// \brief Diagnose variable or built-in function shadowing.  Implements
6293/// -Wshadow.
6294///
6295/// This method is called whenever a VarDecl is added to a "useful"
6296/// scope.
6297///
6298/// \param S the scope in which the shadowing name is being declared
6299/// \param R the lookup of the name
6300///
6301void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
6302  // Return if warning is ignored.
6303  if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
6304    return;
6305
6306  // Don't diagnose declarations at file scope.
6307  if (D->hasGlobalStorage())
6308    return;
6309
6310  DeclContext *NewDC = D->getDeclContext();
6311
6312  // Only diagnose if we're shadowing an unambiguous field or variable.
6313  if (R.getResultKind() != LookupResult::Found)
6314    return;
6315
6316  NamedDecl* ShadowedDecl = R.getFoundDecl();
6317  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
6318    return;
6319
6320  // Fields are not shadowed by variables in C++ static methods.
6321  if (isa<FieldDecl>(ShadowedDecl))
6322    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
6323      if (MD->isStatic())
6324        return;
6325
6326  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
6327    if (shadowedVar->isExternC()) {
6328      // For shadowing external vars, make sure that we point to the global
6329      // declaration, not a locally scoped extern declaration.
6330      for (auto I : shadowedVar->redecls())
6331        if (I->isFileVarDecl()) {
6332          ShadowedDecl = I;
6333          break;
6334        }
6335    }
6336
6337  DeclContext *OldDC = ShadowedDecl->getDeclContext();
6338
6339  // Only warn about certain kinds of shadowing for class members.
6340  if (NewDC && NewDC->isRecord()) {
6341    // In particular, don't warn about shadowing non-class members.
6342    if (!OldDC->isRecord())
6343      return;
6344
6345    // TODO: should we warn about static data members shadowing
6346    // static data members from base classes?
6347
6348    // TODO: don't diagnose for inaccessible shadowed members.
6349    // This is hard to do perfectly because we might friend the
6350    // shadowing context, but that's just a false negative.
6351  }
6352
6353  // Determine what kind of declaration we're shadowing.
6354  unsigned Kind;
6355  if (isa<RecordDecl>(OldDC)) {
6356    if (isa<FieldDecl>(ShadowedDecl))
6357      Kind = 3; // field
6358    else
6359      Kind = 2; // static data member
6360  } else if (OldDC->isFileContext())
6361    Kind = 1; // global
6362  else
6363    Kind = 0; // local
6364
6365  DeclarationName Name = R.getLookupName();
6366
6367  // Emit warning and note.
6368  if (getSourceManager().isInSystemMacro(R.getNameLoc()))
6369    return;
6370  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
6371  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
6372}
6373
6374/// \brief Check -Wshadow without the advantage of a previous lookup.
6375void Sema::CheckShadow(Scope *S, VarDecl *D) {
6376  if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
6377    return;
6378
6379  LookupResult R(*this, D->getDeclName(), D->getLocation(),
6380                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
6381  LookupName(R, S);
6382  CheckShadow(S, D, R);
6383}
6384
6385/// Check for conflict between this global or extern "C" declaration and
6386/// previous global or extern "C" declarations. This is only used in C++.
6387template<typename T>
6388static bool checkGlobalOrExternCConflict(
6389    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
6390  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
6391  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
6392
6393  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
6394    // The common case: this global doesn't conflict with any extern "C"
6395    // declaration.
6396    return false;
6397  }
6398
6399  if (Prev) {
6400    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
6401      // Both the old and new declarations have C language linkage. This is a
6402      // redeclaration.
6403      Previous.clear();
6404      Previous.addDecl(Prev);
6405      return true;
6406    }
6407
6408    // This is a global, non-extern "C" declaration, and there is a previous
6409    // non-global extern "C" declaration. Diagnose if this is a variable
6410    // declaration.
6411    if (!isa<VarDecl>(ND))
6412      return false;
6413  } else {
6414    // The declaration is extern "C". Check for any declaration in the
6415    // translation unit which might conflict.
6416    if (IsGlobal) {
6417      // We have already performed the lookup into the translation unit.
6418      IsGlobal = false;
6419      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6420           I != E; ++I) {
6421        if (isa<VarDecl>(*I)) {
6422          Prev = *I;
6423          break;
6424        }
6425      }
6426    } else {
6427      DeclContext::lookup_result R =
6428          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
6429      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
6430           I != E; ++I) {
6431        if (isa<VarDecl>(*I)) {
6432          Prev = *I;
6433          break;
6434        }
6435        // FIXME: If we have any other entity with this name in global scope,
6436        // the declaration is ill-formed, but that is a defect: it breaks the
6437        // 'stat' hack, for instance. Only variables can have mangled name
6438        // clashes with extern "C" declarations, so only they deserve a
6439        // diagnostic.
6440      }
6441    }
6442
6443    if (!Prev)
6444      return false;
6445  }
6446
6447  // Use the first declaration's location to ensure we point at something which
6448  // is lexically inside an extern "C" linkage-spec.
6449  assert(Prev && "should have found a previous declaration to diagnose");
6450  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
6451    Prev = FD->getFirstDecl();
6452  else
6453    Prev = cast<VarDecl>(Prev)->getFirstDecl();
6454
6455  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
6456    << IsGlobal << ND;
6457  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
6458    << IsGlobal;
6459  return false;
6460}
6461
6462/// Apply special rules for handling extern "C" declarations. Returns \c true
6463/// if we have found that this is a redeclaration of some prior entity.
6464///
6465/// Per C++ [dcl.link]p6:
6466///   Two declarations [for a function or variable] with C language linkage
6467///   with the same name that appear in different scopes refer to the same
6468///   [entity]. An entity with C language linkage shall not be declared with
6469///   the same name as an entity in global scope.
6470template<typename T>
6471static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
6472                                                  LookupResult &Previous) {
6473  if (!S.getLangOpts().CPlusPlus) {
6474    // In C, when declaring a global variable, look for a corresponding 'extern'
6475    // variable declared in function scope. We don't need this in C++, because
6476    // we find local extern decls in the surrounding file-scope DeclContext.
6477    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6478      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
6479        Previous.clear();
6480        Previous.addDecl(Prev);
6481        return true;
6482      }
6483    }
6484    return false;
6485  }
6486
6487  // A declaration in the translation unit can conflict with an extern "C"
6488  // declaration.
6489  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
6490    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
6491
6492  // An extern "C" declaration can conflict with a declaration in the
6493  // translation unit or can be a redeclaration of an extern "C" declaration
6494  // in another scope.
6495  if (isIncompleteDeclExternC(S,ND))
6496    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
6497
6498  // Neither global nor extern "C": nothing to do.
6499  return false;
6500}
6501
6502void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
6503  // If the decl is already known invalid, don't check it.
6504  if (NewVD->isInvalidDecl())
6505    return;
6506
6507  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
6508  QualType T = TInfo->getType();
6509
6510  // Defer checking an 'auto' type until its initializer is attached.
6511  if (T->isUndeducedType())
6512    return;
6513
6514  if (NewVD->hasAttrs())
6515    CheckAlignasUnderalignment(NewVD);
6516
6517  if (T->isObjCObjectType()) {
6518    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
6519      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
6520    T = Context.getObjCObjectPointerType(T);
6521    NewVD->setType(T);
6522  }
6523
6524  // Emit an error if an address space was applied to decl with local storage.
6525  // This includes arrays of objects with address space qualifiers, but not
6526  // automatic variables that point to other address spaces.
6527  // ISO/IEC TR 18037 S5.1.2
6528  if (!getLangOpts().OpenCL
6529      && NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
6530    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
6531    NewVD->setInvalidDecl();
6532    return;
6533  }
6534
6535  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
6536  // scope.
6537  if (getLangOpts().OpenCLVersion == 120 &&
6538      !getOpenCLOptions().cl_clang_storage_class_specifiers &&
6539      NewVD->isStaticLocal()) {
6540    Diag(NewVD->getLocation(), diag::err_static_function_scope);
6541    NewVD->setInvalidDecl();
6542    return;
6543  }
6544
6545  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
6546  // __constant address space.
6547  // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
6548  // variables inside a function can also be declared in the global
6549  // address space.
6550  if (getLangOpts().OpenCL) {
6551    if (NewVD->isFileVarDecl()) {
6552      if (!T->isSamplerT() &&
6553          !(T.getAddressSpace() == LangAS::opencl_constant ||
6554            (T.getAddressSpace() == LangAS::opencl_global &&
6555             getLangOpts().OpenCLVersion == 200))) {
6556        if (getLangOpts().OpenCLVersion == 200)
6557          Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6558              << "global or constant";
6559        else
6560          Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6561              << "constant";
6562        NewVD->setInvalidDecl();
6563        return;
6564      }
6565    } else {
6566      // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
6567      // variables inside a function can also be declared in the global
6568      // address space.
6569      if (NewVD->isStaticLocal() &&
6570          !(T.getAddressSpace() == LangAS::opencl_constant ||
6571            (T.getAddressSpace() == LangAS::opencl_global &&
6572             getLangOpts().OpenCLVersion == 200))) {
6573        if (getLangOpts().OpenCLVersion == 200)
6574          Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6575              << "global or constant";
6576        else
6577          Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6578              << "constant";
6579        NewVD->setInvalidDecl();
6580        return;
6581      }
6582      // OpenCL v1.1 s6.5.2 and s6.5.3 no local or constant variables
6583      // in functions.
6584      if (T.getAddressSpace() == LangAS::opencl_constant ||
6585          T.getAddressSpace() == LangAS::opencl_local) {
6586        FunctionDecl *FD = getCurFunctionDecl();
6587        if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
6588          if (T.getAddressSpace() == LangAS::opencl_constant)
6589            Diag(NewVD->getLocation(), diag::err_opencl_non_kernel_variable)
6590                << "constant";
6591          else
6592            Diag(NewVD->getLocation(), diag::err_opencl_non_kernel_variable)
6593                << "local";
6594          NewVD->setInvalidDecl();
6595          return;
6596        }
6597      }
6598    }
6599  }
6600
6601  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
6602      && !NewVD->hasAttr<BlocksAttr>()) {
6603    if (getLangOpts().getGC() != LangOptions::NonGC)
6604      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
6605    else {
6606      assert(!getLangOpts().ObjCAutoRefCount);
6607      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
6608    }
6609  }
6610
6611  bool isVM = T->isVariablyModifiedType();
6612  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
6613      NewVD->hasAttr<BlocksAttr>())
6614    getCurFunction()->setHasBranchProtectedScope();
6615
6616  if ((isVM && NewVD->hasLinkage()) ||
6617      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
6618    bool SizeIsNegative;
6619    llvm::APSInt Oversized;
6620    TypeSourceInfo *FixedTInfo =
6621      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6622                                                    SizeIsNegative, Oversized);
6623    if (!FixedTInfo && T->isVariableArrayType()) {
6624      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
6625      // FIXME: This won't give the correct result for
6626      // int a[10][n];
6627      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
6628
6629      if (NewVD->isFileVarDecl())
6630        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
6631        << SizeRange;
6632      else if (NewVD->isStaticLocal())
6633        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
6634        << SizeRange;
6635      else
6636        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
6637        << SizeRange;
6638      NewVD->setInvalidDecl();
6639      return;
6640    }
6641
6642    if (!FixedTInfo) {
6643      if (NewVD->isFileVarDecl())
6644        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
6645      else
6646        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
6647      NewVD->setInvalidDecl();
6648      return;
6649    }
6650
6651    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
6652    NewVD->setType(FixedTInfo->getType());
6653    NewVD->setTypeSourceInfo(FixedTInfo);
6654  }
6655
6656  if (T->isVoidType()) {
6657    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
6658    //                    of objects and functions.
6659    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
6660      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
6661        << T;
6662      NewVD->setInvalidDecl();
6663      return;
6664    }
6665  }
6666
6667  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
6668    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
6669    NewVD->setInvalidDecl();
6670    return;
6671  }
6672
6673  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
6674    Diag(NewVD->getLocation(), diag::err_block_on_vm);
6675    NewVD->setInvalidDecl();
6676    return;
6677  }
6678
6679  if (NewVD->isConstexpr() && !T->isDependentType() &&
6680      RequireLiteralType(NewVD->getLocation(), T,
6681                         diag::err_constexpr_var_non_literal)) {
6682    NewVD->setInvalidDecl();
6683    return;
6684  }
6685}
6686
6687/// \brief Perform semantic checking on a newly-created variable
6688/// declaration.
6689///
6690/// This routine performs all of the type-checking required for a
6691/// variable declaration once it has been built. It is used both to
6692/// check variables after they have been parsed and their declarators
6693/// have been translated into a declaration, and to check variables
6694/// that have been instantiated from a template.
6695///
6696/// Sets NewVD->isInvalidDecl() if an error was encountered.
6697///
6698/// Returns true if the variable declaration is a redeclaration.
6699bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
6700  CheckVariableDeclarationType(NewVD);
6701
6702  // If the decl is already known invalid, don't check it.
6703  if (NewVD->isInvalidDecl())
6704    return false;
6705
6706  // If we did not find anything by this name, look for a non-visible
6707  // extern "C" declaration with the same name.
6708  if (Previous.empty() &&
6709      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
6710    Previous.setShadowed();
6711
6712  if (!Previous.empty()) {
6713    MergeVarDecl(NewVD, Previous);
6714    return true;
6715  }
6716  return false;
6717}
6718
6719namespace {
6720struct FindOverriddenMethod {
6721  Sema *S;
6722  CXXMethodDecl *Method;
6723
6724  /// Member lookup function that determines whether a given C++
6725  /// method overrides a method in a base class, to be used with
6726  /// CXXRecordDecl::lookupInBases().
6727  bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
6728    RecordDecl *BaseRecord =
6729        Specifier->getType()->getAs<RecordType>()->getDecl();
6730
6731    DeclarationName Name = Method->getDeclName();
6732
6733    // FIXME: Do we care about other names here too?
6734    if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6735      // We really want to find the base class destructor here.
6736      QualType T = S->Context.getTypeDeclType(BaseRecord);
6737      CanQualType CT = S->Context.getCanonicalType(T);
6738
6739      Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
6740    }
6741
6742    for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
6743         Path.Decls = Path.Decls.slice(1)) {
6744      NamedDecl *D = Path.Decls.front();
6745      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6746        if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
6747          return true;
6748      }
6749    }
6750
6751    return false;
6752  }
6753};
6754
6755enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
6756} // end anonymous namespace
6757
6758/// \brief Report an error regarding overriding, along with any relevant
6759/// overriden methods.
6760///
6761/// \param DiagID the primary error to report.
6762/// \param MD the overriding method.
6763/// \param OEK which overrides to include as notes.
6764static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
6765                            OverrideErrorKind OEK = OEK_All) {
6766  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6767  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6768                                      E = MD->end_overridden_methods();
6769       I != E; ++I) {
6770    // This check (& the OEK parameter) could be replaced by a predicate, but
6771    // without lambdas that would be overkill. This is still nicer than writing
6772    // out the diag loop 3 times.
6773    if ((OEK == OEK_All) ||
6774        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
6775        (OEK == OEK_Deleted && (*I)->isDeleted()))
6776      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
6777  }
6778}
6779
6780/// AddOverriddenMethods - See if a method overrides any in the base classes,
6781/// and if so, check that it's a valid override and remember it.
6782bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
6783  // Look for methods in base classes that this method might override.
6784  CXXBasePaths Paths;
6785  FindOverriddenMethod FOM;
6786  FOM.Method = MD;
6787  FOM.S = this;
6788  bool hasDeletedOverridenMethods = false;
6789  bool hasNonDeletedOverridenMethods = false;
6790  bool AddedAny = false;
6791  if (DC->lookupInBases(FOM, Paths)) {
6792    for (auto *I : Paths.found_decls()) {
6793      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
6794        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
6795        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
6796            !CheckOverridingFunctionAttributes(MD, OldMD) &&
6797            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
6798            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
6799          hasDeletedOverridenMethods |= OldMD->isDeleted();
6800          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
6801          AddedAny = true;
6802        }
6803      }
6804    }
6805  }
6806
6807  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
6808    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
6809  }
6810  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
6811    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
6812  }
6813
6814  return AddedAny;
6815}
6816
6817namespace {
6818  // Struct for holding all of the extra arguments needed by
6819  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
6820  struct ActOnFDArgs {
6821    Scope *S;
6822    Declarator &D;
6823    MultiTemplateParamsArg TemplateParamLists;
6824    bool AddToScope;
6825  };
6826}
6827
6828namespace {
6829
6830// Callback to only accept typo corrections that have a non-zero edit distance.
6831// Also only accept corrections that have the same parent decl.
6832class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
6833 public:
6834  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
6835                            CXXRecordDecl *Parent)
6836      : Context(Context), OriginalFD(TypoFD),
6837        ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
6838
6839  bool ValidateCandidate(const TypoCorrection &candidate) override {
6840    if (candidate.getEditDistance() == 0)
6841      return false;
6842
6843    SmallVector<unsigned, 1> MismatchedParams;
6844    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
6845                                          CDeclEnd = candidate.end();
6846         CDecl != CDeclEnd; ++CDecl) {
6847      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6848
6849      if (FD && !FD->hasBody() &&
6850          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6851        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6852          CXXRecordDecl *Parent = MD->getParent();
6853          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6854            return true;
6855        } else if (!ExpectedParent) {
6856          return true;
6857        }
6858      }
6859    }
6860
6861    return false;
6862  }
6863
6864 private:
6865  ASTContext &Context;
6866  FunctionDecl *OriginalFD;
6867  CXXRecordDecl *ExpectedParent;
6868};
6869
6870}
6871
6872/// \brief Generate diagnostics for an invalid function redeclaration.
6873///
6874/// This routine handles generating the diagnostic messages for an invalid
6875/// function redeclaration, including finding possible similar declarations
6876/// or performing typo correction if there are no previous declarations with
6877/// the same name.
6878///
6879/// Returns a NamedDecl iff typo correction was performed and substituting in
6880/// the new declaration name does not cause new errors.
6881static NamedDecl *DiagnoseInvalidRedeclaration(
6882    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6883    ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6884  DeclarationName Name = NewFD->getDeclName();
6885  DeclContext *NewDC = NewFD->getDeclContext();
6886  SmallVector<unsigned, 1> MismatchedParams;
6887  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6888  TypoCorrection Correction;
6889  bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6890  unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6891                                   : diag::err_member_decl_does_not_match;
6892  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6893                    IsLocalFriend ? Sema::LookupLocalFriendName
6894                                  : Sema::LookupOrdinaryName,
6895                    Sema::ForRedeclaration);
6896
6897  NewFD->setInvalidDecl();
6898  if (IsLocalFriend)
6899    SemaRef.LookupName(Prev, S);
6900  else
6901    SemaRef.LookupQualifiedName(Prev, NewDC);
6902  assert(!Prev.isAmbiguous() &&
6903         "Cannot have an ambiguity in previous-declaration lookup");
6904  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6905  if (!Prev.empty()) {
6906    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6907         Func != FuncEnd; ++Func) {
6908      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6909      if (FD &&
6910          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6911        // Add 1 to the index so that 0 can mean the mismatch didn't
6912        // involve a parameter
6913        unsigned ParamNum =
6914            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6915        NearMatches.push_back(std::make_pair(FD, ParamNum));
6916      }
6917    }
6918  // If the qualified name lookup yielded nothing, try typo correction
6919  } else if ((Correction = SemaRef.CorrectTypo(
6920                  Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6921                  &ExtraArgs.D.getCXXScopeSpec(),
6922                  llvm::make_unique<DifferentNameValidatorCCC>(
6923                      SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
6924                  Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
6925    // Set up everything for the call to ActOnFunctionDeclarator
6926    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6927                              ExtraArgs.D.getIdentifierLoc());
6928    Previous.clear();
6929    Previous.setLookupName(Correction.getCorrection());
6930    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6931                                    CDeclEnd = Correction.end();
6932         CDecl != CDeclEnd; ++CDecl) {
6933      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6934      if (FD && !FD->hasBody() &&
6935          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6936        Previous.addDecl(FD);
6937      }
6938    }
6939    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6940
6941    NamedDecl *Result;
6942    // Retry building the function declaration with the new previous
6943    // declarations, and with errors suppressed.
6944    {
6945      // Trap errors.
6946      Sema::SFINAETrap Trap(SemaRef);
6947
6948      // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6949      // pieces need to verify the typo-corrected C++ declaration and hopefully
6950      // eliminate the need for the parameter pack ExtraArgs.
6951      Result = SemaRef.ActOnFunctionDeclarator(
6952          ExtraArgs.S, ExtraArgs.D,
6953          Correction.getCorrectionDecl()->getDeclContext(),
6954          NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6955          ExtraArgs.AddToScope);
6956
6957      if (Trap.hasErrorOccurred())
6958        Result = nullptr;
6959    }
6960
6961    if (Result) {
6962      // Determine which correction we picked.
6963      Decl *Canonical = Result->getCanonicalDecl();
6964      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6965           I != E; ++I)
6966        if ((*I)->getCanonicalDecl() == Canonical)
6967          Correction.setCorrectionDecl(*I);
6968
6969      SemaRef.diagnoseTypo(
6970          Correction,
6971          SemaRef.PDiag(IsLocalFriend
6972                          ? diag::err_no_matching_local_friend_suggest
6973                          : diag::err_member_decl_does_not_match_suggest)
6974            << Name << NewDC << IsDefinition);
6975      return Result;
6976    }
6977
6978    // Pretend the typo correction never occurred
6979    ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6980                              ExtraArgs.D.getIdentifierLoc());
6981    ExtraArgs.D.setRedeclaration(wasRedeclaration);
6982    Previous.clear();
6983    Previous.setLookupName(Name);
6984  }
6985
6986  SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6987      << Name << NewDC << IsDefinition << NewFD->getLocation();
6988
6989  bool NewFDisConst = false;
6990  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6991    NewFDisConst = NewMD->isConst();
6992
6993  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6994       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6995       NearMatch != NearMatchEnd; ++NearMatch) {
6996    FunctionDecl *FD = NearMatch->first;
6997    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6998    bool FDisConst = MD && MD->isConst();
6999    bool IsMember = MD || !IsLocalFriend;
7000
7001    // FIXME: These notes are poorly worded for the local friend case.
7002    if (unsigned Idx = NearMatch->second) {
7003      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7004      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7005      if (Loc.isInvalid()) Loc = FD->getLocation();
7006      SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7007                                 : diag::note_local_decl_close_param_match)
7008        << Idx << FDParam->getType()
7009        << NewFD->getParamDecl(Idx - 1)->getType();
7010    } else if (FDisConst != NewFDisConst) {
7011      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7012          << NewFDisConst << FD->getSourceRange().getEnd();
7013    } else
7014      SemaRef.Diag(FD->getLocation(),
7015                   IsMember ? diag::note_member_def_close_match
7016                            : diag::note_local_decl_close_match);
7017  }
7018  return nullptr;
7019}
7020
7021static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
7022  switch (D.getDeclSpec().getStorageClassSpec()) {
7023  default: llvm_unreachable("Unknown storage class!");
7024  case DeclSpec::SCS_auto:
7025  case DeclSpec::SCS_register:
7026  case DeclSpec::SCS_mutable:
7027    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7028                 diag::err_typecheck_sclass_func);
7029    D.setInvalidType();
7030    break;
7031  case DeclSpec::SCS_unspecified: break;
7032  case DeclSpec::SCS_extern:
7033    if (D.getDeclSpec().isExternInLinkageSpec())
7034      return SC_None;
7035    return SC_Extern;
7036  case DeclSpec::SCS_static: {
7037    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7038      // C99 6.7.1p5:
7039      //   The declaration of an identifier for a function that has
7040      //   block scope shall have no explicit storage-class specifier
7041      //   other than extern
7042      // See also (C++ [dcl.stc]p4).
7043      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7044                   diag::err_static_block_func);
7045      break;
7046    } else
7047      return SC_Static;
7048  }
7049  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
7050  }
7051
7052  // No explicit storage class has already been returned
7053  return SC_None;
7054}
7055
7056static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
7057                                           DeclContext *DC, QualType &R,
7058                                           TypeSourceInfo *TInfo,
7059                                           StorageClass SC,
7060                                           bool &IsVirtualOkay) {
7061  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
7062  DeclarationName Name = NameInfo.getName();
7063
7064  FunctionDecl *NewFD = nullptr;
7065  bool isInline = D.getDeclSpec().isInlineSpecified();
7066
7067  if (!SemaRef.getLangOpts().CPlusPlus) {
7068    // Determine whether the function was written with a
7069    // prototype. This true when:
7070    //   - there is a prototype in the declarator, or
7071    //   - the type R of the function is some kind of typedef or other reference
7072    //     to a type name (which eventually refers to a function type).
7073    bool HasPrototype =
7074      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
7075      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
7076
7077    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
7078                                 D.getLocStart(), NameInfo, R,
7079                                 TInfo, SC, isInline,
7080                                 HasPrototype, false);
7081    if (D.isInvalidType())
7082      NewFD->setInvalidDecl();
7083
7084    return NewFD;
7085  }
7086
7087  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7088  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7089
7090  // Check that the return type is not an abstract class type.
7091  // For record types, this is done by the AbstractClassUsageDiagnoser once
7092  // the class has been completely parsed.
7093  if (!DC->isRecord() &&
7094      SemaRef.RequireNonAbstractType(
7095          D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
7096          diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
7097    D.setInvalidType();
7098
7099  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
7100    // This is a C++ constructor declaration.
7101    assert(DC->isRecord() &&
7102           "Constructors can only be declared in a member context");
7103
7104    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
7105    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7106                                      D.getLocStart(), NameInfo,
7107                                      R, TInfo, isExplicit, isInline,
7108                                      /*isImplicitlyDeclared=*/false,
7109                                      isConstexpr);
7110
7111  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7112    // This is a C++ destructor declaration.
7113    if (DC->isRecord()) {
7114      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
7115      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
7116      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
7117                                        SemaRef.Context, Record,
7118                                        D.getLocStart(),
7119                                        NameInfo, R, TInfo, isInline,
7120                                        /*isImplicitlyDeclared=*/false);
7121
7122      // If the class is complete, then we now create the implicit exception
7123      // specification. If the class is incomplete or dependent, we can't do
7124      // it yet.
7125      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
7126          Record->getDefinition() && !Record->isBeingDefined() &&
7127          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
7128        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
7129      }
7130
7131      IsVirtualOkay = true;
7132      return NewDD;
7133
7134    } else {
7135      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
7136      D.setInvalidType();
7137
7138      // Create a FunctionDecl to satisfy the function definition parsing
7139      // code path.
7140      return FunctionDecl::Create(SemaRef.Context, DC,
7141                                  D.getLocStart(),
7142                                  D.getIdentifierLoc(), Name, R, TInfo,
7143                                  SC, isInline,
7144                                  /*hasPrototype=*/true, isConstexpr);
7145    }
7146
7147  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
7148    if (!DC->isRecord()) {
7149      SemaRef.Diag(D.getIdentifierLoc(),
7150           diag::err_conv_function_not_member);
7151      return nullptr;
7152    }
7153
7154    SemaRef.CheckConversionDeclarator(D, R, SC);
7155    IsVirtualOkay = true;
7156    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7157                                     D.getLocStart(), NameInfo,
7158                                     R, TInfo, isInline, isExplicit,
7159                                     isConstexpr, SourceLocation());
7160
7161  } else if (DC->isRecord()) {
7162    // If the name of the function is the same as the name of the record,
7163    // then this must be an invalid constructor that has a return type.
7164    // (The parser checks for a return type and makes the declarator a
7165    // constructor if it has no return type).
7166    if (Name.getAsIdentifierInfo() &&
7167        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
7168      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
7169        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
7170        << SourceRange(D.getIdentifierLoc());
7171      return nullptr;
7172    }
7173
7174    // This is a C++ method declaration.
7175    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
7176                                               cast<CXXRecordDecl>(DC),
7177                                               D.getLocStart(), NameInfo, R,
7178                                               TInfo, SC, isInline,
7179                                               isConstexpr, SourceLocation());
7180    IsVirtualOkay = !Ret->isStatic();
7181    return Ret;
7182  } else {
7183    bool isFriend =
7184        SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
7185    if (!isFriend && SemaRef.CurContext->isRecord())
7186      return nullptr;
7187
7188    // Determine whether the function was written with a
7189    // prototype. This true when:
7190    //   - we're in C++ (where every function has a prototype),
7191    return FunctionDecl::Create(SemaRef.Context, DC,
7192                                D.getLocStart(),
7193                                NameInfo, R, TInfo, SC, isInline,
7194                                true/*HasPrototype*/, isConstexpr);
7195  }
7196}
7197
7198enum OpenCLParamType {
7199  ValidKernelParam,
7200  PtrPtrKernelParam,
7201  PtrKernelParam,
7202  PrivatePtrKernelParam,
7203  InvalidKernelParam,
7204  RecordKernelParam
7205};
7206
7207static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
7208  if (PT->isPointerType()) {
7209    QualType PointeeType = PT->getPointeeType();
7210    if (PointeeType->isPointerType())
7211      return PtrPtrKernelParam;
7212    return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
7213                                              : PtrKernelParam;
7214  }
7215
7216  // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
7217  // be used as builtin types.
7218
7219  if (PT->isImageType())
7220    return PtrKernelParam;
7221
7222  if (PT->isBooleanType())
7223    return InvalidKernelParam;
7224
7225  if (PT->isEventT())
7226    return InvalidKernelParam;
7227
7228  if (PT->isHalfType())
7229    return InvalidKernelParam;
7230
7231  if (PT->isRecordType())
7232    return RecordKernelParam;
7233
7234  return ValidKernelParam;
7235}
7236
7237static void checkIsValidOpenCLKernelParameter(
7238  Sema &S,
7239  Declarator &D,
7240  ParmVarDecl *Param,
7241  llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
7242  QualType PT = Param->getType();
7243
7244  // Cache the valid types we encounter to avoid rechecking structs that are
7245  // used again
7246  if (ValidTypes.count(PT.getTypePtr()))
7247    return;
7248
7249  switch (getOpenCLKernelParameterType(PT)) {
7250  case PtrPtrKernelParam:
7251    // OpenCL v1.2 s6.9.a:
7252    // A kernel function argument cannot be declared as a
7253    // pointer to a pointer type.
7254    S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
7255    D.setInvalidType();
7256    return;
7257
7258  case PrivatePtrKernelParam:
7259    // OpenCL v1.2 s6.9.a:
7260    // A kernel function argument cannot be declared as a
7261    // pointer to the private address space.
7262    S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
7263    D.setInvalidType();
7264    return;
7265
7266    // OpenCL v1.2 s6.9.k:
7267    // Arguments to kernel functions in a program cannot be declared with the
7268    // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
7269    // uintptr_t or a struct and/or union that contain fields declared to be
7270    // one of these built-in scalar types.
7271
7272  case InvalidKernelParam:
7273    // OpenCL v1.2 s6.8 n:
7274    // A kernel function argument cannot be declared
7275    // of event_t type.
7276    S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
7277    D.setInvalidType();
7278    return;
7279
7280  case PtrKernelParam:
7281  case ValidKernelParam:
7282    ValidTypes.insert(PT.getTypePtr());
7283    return;
7284
7285  case RecordKernelParam:
7286    break;
7287  }
7288
7289  // Track nested structs we will inspect
7290  SmallVector<const Decl *, 4> VisitStack;
7291
7292  // Track where we are in the nested structs. Items will migrate from
7293  // VisitStack to HistoryStack as we do the DFS for bad field.
7294  SmallVector<const FieldDecl *, 4> HistoryStack;
7295  HistoryStack.push_back(nullptr);
7296
7297  const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
7298  VisitStack.push_back(PD);
7299
7300  assert(VisitStack.back() && "First decl null?");
7301
7302  do {
7303    const Decl *Next = VisitStack.pop_back_val();
7304    if (!Next) {
7305      assert(!HistoryStack.empty());
7306      // Found a marker, we have gone up a level
7307      if (const FieldDecl *Hist = HistoryStack.pop_back_val())
7308        ValidTypes.insert(Hist->getType().getTypePtr());
7309
7310      continue;
7311    }
7312
7313    // Adds everything except the original parameter declaration (which is not a
7314    // field itself) to the history stack.
7315    const RecordDecl *RD;
7316    if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
7317      HistoryStack.push_back(Field);
7318      RD = Field->getType()->castAs<RecordType>()->getDecl();
7319    } else {
7320      RD = cast<RecordDecl>(Next);
7321    }
7322
7323    // Add a null marker so we know when we've gone back up a level
7324    VisitStack.push_back(nullptr);
7325
7326    for (const auto *FD : RD->fields()) {
7327      QualType QT = FD->getType();
7328
7329      if (ValidTypes.count(QT.getTypePtr()))
7330        continue;
7331
7332      OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
7333      if (ParamType == ValidKernelParam)
7334        continue;
7335
7336      if (ParamType == RecordKernelParam) {
7337        VisitStack.push_back(FD);
7338        continue;
7339      }
7340
7341      // OpenCL v1.2 s6.9.p:
7342      // Arguments to kernel functions that are declared to be a struct or union
7343      // do not allow OpenCL objects to be passed as elements of the struct or
7344      // union.
7345      if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
7346          ParamType == PrivatePtrKernelParam) {
7347        S.Diag(Param->getLocation(),
7348               diag::err_record_with_pointers_kernel_param)
7349          << PT->isUnionType()
7350          << PT;
7351      } else {
7352        S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
7353      }
7354
7355      S.Diag(PD->getLocation(), diag::note_within_field_of_type)
7356        << PD->getDeclName();
7357
7358      // We have an error, now let's go back up through history and show where
7359      // the offending field came from
7360      for (ArrayRef<const FieldDecl *>::const_iterator
7361               I = HistoryStack.begin() + 1,
7362               E = HistoryStack.end();
7363           I != E; ++I) {
7364        const FieldDecl *OuterField = *I;
7365        S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
7366          << OuterField->getType();
7367      }
7368
7369      S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
7370        << QT->isPointerType()
7371        << QT;
7372      D.setInvalidType();
7373      return;
7374    }
7375  } while (!VisitStack.empty());
7376}
7377
7378NamedDecl*
7379Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
7380                              TypeSourceInfo *TInfo, LookupResult &Previous,
7381                              MultiTemplateParamsArg TemplateParamLists,
7382                              bool &AddToScope) {
7383  QualType R = TInfo->getType();
7384
7385  assert(R.getTypePtr()->isFunctionType());
7386
7387  // TODO: consider using NameInfo for diagnostic.
7388  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7389  DeclarationName Name = NameInfo.getName();
7390  StorageClass SC = getFunctionStorageClass(*this, D);
7391
7392  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
7393    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7394         diag::err_invalid_thread)
7395      << DeclSpec::getSpecifierName(TSCS);
7396
7397  if (D.isFirstDeclarationOfMember())
7398    adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
7399                           D.getIdentifierLoc());
7400
7401  bool isFriend = false;
7402  FunctionTemplateDecl *FunctionTemplate = nullptr;
7403  bool isExplicitSpecialization = false;
7404  bool isFunctionTemplateSpecialization = false;
7405
7406  bool isDependentClassScopeExplicitSpecialization = false;
7407  bool HasExplicitTemplateArgs = false;
7408  TemplateArgumentListInfo TemplateArgs;
7409
7410  bool isVirtualOkay = false;
7411
7412  DeclContext *OriginalDC = DC;
7413  bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
7414
7415  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
7416                                              isVirtualOkay);
7417  if (!NewFD) return nullptr;
7418
7419  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
7420    NewFD->setTopLevelDeclInObjCContainer();
7421
7422  // Set the lexical context. If this is a function-scope declaration, or has a
7423  // C++ scope specifier, or is the object of a friend declaration, the lexical
7424  // context will be different from the semantic context.
7425  NewFD->setLexicalDeclContext(CurContext);
7426
7427  if (IsLocalExternDecl)
7428    NewFD->setLocalExternDecl();
7429
7430  if (getLangOpts().CPlusPlus) {
7431    bool isInline = D.getDeclSpec().isInlineSpecified();
7432    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7433    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7434    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7435    bool isConcept = D.getDeclSpec().isConceptSpecified();
7436    isFriend = D.getDeclSpec().isFriendSpecified();
7437    if (isFriend && !isInline && D.isFunctionDefinition()) {
7438      // C++ [class.friend]p5
7439      //   A function can be defined in a friend declaration of a
7440      //   class . . . . Such a function is implicitly inline.
7441      NewFD->setImplicitlyInline();
7442    }
7443
7444    // If this is a method defined in an __interface, and is not a constructor
7445    // or an overloaded operator, then set the pure flag (isVirtual will already
7446    // return true).
7447    if (const CXXRecordDecl *Parent =
7448          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
7449      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
7450        NewFD->setPure(true);
7451
7452      // C++ [class.union]p2
7453      //   A union can have member functions, but not virtual functions.
7454      if (isVirtual && Parent->isUnion())
7455        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
7456    }
7457
7458    SetNestedNameSpecifier(NewFD, D);
7459    isExplicitSpecialization = false;
7460    isFunctionTemplateSpecialization = false;
7461    if (D.isInvalidType())
7462      NewFD->setInvalidDecl();
7463
7464    // Match up the template parameter lists with the scope specifier, then
7465    // determine whether we have a template or a template specialization.
7466    bool Invalid = false;
7467    if (TemplateParameterList *TemplateParams =
7468            MatchTemplateParametersToScopeSpecifier(
7469                D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
7470                D.getCXXScopeSpec(),
7471                D.getName().getKind() == UnqualifiedId::IK_TemplateId
7472                    ? D.getName().TemplateId
7473                    : nullptr,
7474                TemplateParamLists, isFriend, isExplicitSpecialization,
7475                Invalid)) {
7476      if (TemplateParams->size() > 0) {
7477        // This is a function template
7478
7479        // Check that we can declare a template here.
7480        if (CheckTemplateDeclScope(S, TemplateParams))
7481          NewFD->setInvalidDecl();
7482
7483        // A destructor cannot be a template.
7484        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7485          Diag(NewFD->getLocation(), diag::err_destructor_template);
7486          NewFD->setInvalidDecl();
7487        }
7488
7489        // If we're adding a template to a dependent context, we may need to
7490        // rebuilding some of the types used within the template parameter list,
7491        // now that we know what the current instantiation is.
7492        if (DC->isDependentContext()) {
7493          ContextRAII SavedContext(*this, DC);
7494          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
7495            Invalid = true;
7496        }
7497
7498
7499        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
7500                                                        NewFD->getLocation(),
7501                                                        Name, TemplateParams,
7502                                                        NewFD);
7503        FunctionTemplate->setLexicalDeclContext(CurContext);
7504        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
7505
7506        // For source fidelity, store the other template param lists.
7507        if (TemplateParamLists.size() > 1) {
7508          NewFD->setTemplateParameterListsInfo(Context,
7509                                               TemplateParamLists.drop_back(1));
7510        }
7511      } else {
7512        // This is a function template specialization.
7513        isFunctionTemplateSpecialization = true;
7514        // For source fidelity, store all the template param lists.
7515        if (TemplateParamLists.size() > 0)
7516          NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
7517
7518        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
7519        if (isFriend) {
7520          // We want to remove the "template<>", found here.
7521          SourceRange RemoveRange = TemplateParams->getSourceRange();
7522
7523          // If we remove the template<> and the name is not a
7524          // template-id, we're actually silently creating a problem:
7525          // the friend declaration will refer to an untemplated decl,
7526          // and clearly the user wants a template specialization.  So
7527          // we need to insert '<>' after the name.
7528          SourceLocation InsertLoc;
7529          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7530            InsertLoc = D.getName().getSourceRange().getEnd();
7531            InsertLoc = getLocForEndOfToken(InsertLoc);
7532          }
7533
7534          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
7535            << Name << RemoveRange
7536            << FixItHint::CreateRemoval(RemoveRange)
7537            << FixItHint::CreateInsertion(InsertLoc, "<>");
7538        }
7539      }
7540    }
7541    else {
7542      // All template param lists were matched against the scope specifier:
7543      // this is NOT (an explicit specialization of) a template.
7544      if (TemplateParamLists.size() > 0)
7545        // For source fidelity, store all the template param lists.
7546        NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
7547    }
7548
7549    if (Invalid) {
7550      NewFD->setInvalidDecl();
7551      if (FunctionTemplate)
7552        FunctionTemplate->setInvalidDecl();
7553    }
7554
7555    // C++ [dcl.fct.spec]p5:
7556    //   The virtual specifier shall only be used in declarations of
7557    //   nonstatic class member functions that appear within a
7558    //   member-specification of a class declaration; see 10.3.
7559    //
7560    if (isVirtual && !NewFD->isInvalidDecl()) {
7561      if (!isVirtualOkay) {
7562        Diag(D.getDeclSpec().getVirtualSpecLoc(),
7563             diag::err_virtual_non_function);
7564      } else if (!CurContext->isRecord()) {
7565        // 'virtual' was specified outside of the class.
7566        Diag(D.getDeclSpec().getVirtualSpecLoc(),
7567             diag::err_virtual_out_of_class)
7568          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7569      } else if (NewFD->getDescribedFunctionTemplate()) {
7570        // C++ [temp.mem]p3:
7571        //  A member function template shall not be virtual.
7572        Diag(D.getDeclSpec().getVirtualSpecLoc(),
7573             diag::err_virtual_member_function_template)
7574          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7575      } else {
7576        // Okay: Add virtual to the method.
7577        NewFD->setVirtualAsWritten(true);
7578      }
7579
7580      if (getLangOpts().CPlusPlus14 &&
7581          NewFD->getReturnType()->isUndeducedType())
7582        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
7583    }
7584
7585    if (getLangOpts().CPlusPlus14 &&
7586        (NewFD->isDependentContext() ||
7587         (isFriend && CurContext->isDependentContext())) &&
7588        NewFD->getReturnType()->isUndeducedType()) {
7589      // If the function template is referenced directly (for instance, as a
7590      // member of the current instantiation), pretend it has a dependent type.
7591      // This is not really justified by the standard, but is the only sane
7592      // thing to do.
7593      // FIXME: For a friend function, we have not marked the function as being
7594      // a friend yet, so 'isDependentContext' on the FD doesn't work.
7595      const FunctionProtoType *FPT =
7596          NewFD->getType()->castAs<FunctionProtoType>();
7597      QualType Result =
7598          SubstAutoType(FPT->getReturnType(), Context.DependentTy);
7599      NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
7600                                             FPT->getExtProtoInfo()));
7601    }
7602
7603    // C++ [dcl.fct.spec]p3:
7604    //  The inline specifier shall not appear on a block scope function
7605    //  declaration.
7606    if (isInline && !NewFD->isInvalidDecl()) {
7607      if (CurContext->isFunctionOrMethod()) {
7608        // 'inline' is not allowed on block scope function declaration.
7609        Diag(D.getDeclSpec().getInlineSpecLoc(),
7610             diag::err_inline_declaration_block_scope) << Name
7611          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7612      }
7613    }
7614
7615    // C++ [dcl.fct.spec]p6:
7616    //  The explicit specifier shall be used only in the declaration of a
7617    //  constructor or conversion function within its class definition;
7618    //  see 12.3.1 and 12.3.2.
7619    if (isExplicit && !NewFD->isInvalidDecl()) {
7620      if (!CurContext->isRecord()) {
7621        // 'explicit' was specified outside of the class.
7622        Diag(D.getDeclSpec().getExplicitSpecLoc(),
7623             diag::err_explicit_out_of_class)
7624          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7625      } else if (!isa<CXXConstructorDecl>(NewFD) &&
7626                 !isa<CXXConversionDecl>(NewFD)) {
7627        // 'explicit' was specified on a function that wasn't a constructor
7628        // or conversion function.
7629        Diag(D.getDeclSpec().getExplicitSpecLoc(),
7630             diag::err_explicit_non_ctor_or_conv_function)
7631          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7632      }
7633    }
7634
7635    if (isConstexpr) {
7636      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
7637      // are implicitly inline.
7638      NewFD->setImplicitlyInline();
7639
7640      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
7641      // be either constructors or to return a literal type. Therefore,
7642      // destructors cannot be declared constexpr.
7643      if (isa<CXXDestructorDecl>(NewFD))
7644        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
7645    }
7646
7647    if (isConcept) {
7648      // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
7649      // applied only to the definition of a function template [...]
7650      if (!D.isFunctionDefinition()) {
7651        Diag(D.getDeclSpec().getConceptSpecLoc(),
7652             diag::err_function_concept_not_defined);
7653        NewFD->setInvalidDecl();
7654      }
7655
7656      // C++ Concepts TS [dcl.spec.concept]p1: [...] A function concept shall
7657      // have no exception-specification and is treated as if it were specified
7658      // with noexcept(true) (15.4). [...]
7659      if (const FunctionProtoType *FPT = R->getAs<FunctionProtoType>()) {
7660        if (FPT->hasExceptionSpec()) {
7661          SourceRange Range;
7662          if (D.isFunctionDeclarator())
7663            Range = D.getFunctionTypeInfo().getExceptionSpecRange();
7664          Diag(NewFD->getLocation(), diag::err_function_concept_exception_spec)
7665              << FixItHint::CreateRemoval(Range);
7666          NewFD->setInvalidDecl();
7667        } else {
7668          Context.adjustExceptionSpec(NewFD, EST_BasicNoexcept);
7669        }
7670
7671        // C++ Concepts TS [dcl.spec.concept]p5: A function concept has the
7672        // following restrictions:
7673        // - The declaration's parameter list shall be equivalent to an empty
7674        //   parameter list.
7675        if (FPT->getNumParams() > 0 || FPT->isVariadic())
7676          Diag(NewFD->getLocation(), diag::err_function_concept_with_params);
7677      }
7678
7679      // C++ Concepts TS [dcl.spec.concept]p2: Every concept definition is
7680      // implicity defined to be a constexpr declaration (implicitly inline)
7681      NewFD->setImplicitlyInline();
7682
7683      // C++ Concepts TS [dcl.spec.concept]p2: A concept definition shall not
7684      // be declared with the thread_local, inline, friend, or constexpr
7685      // specifiers, [...]
7686      if (isInline) {
7687        Diag(D.getDeclSpec().getInlineSpecLoc(),
7688             diag::err_concept_decl_invalid_specifiers)
7689            << 1 << 1;
7690        NewFD->setInvalidDecl(true);
7691      }
7692
7693      if (isFriend) {
7694        Diag(D.getDeclSpec().getFriendSpecLoc(),
7695             diag::err_concept_decl_invalid_specifiers)
7696            << 1 << 2;
7697        NewFD->setInvalidDecl(true);
7698      }
7699
7700      if (isConstexpr) {
7701        Diag(D.getDeclSpec().getConstexprSpecLoc(),
7702             diag::err_concept_decl_invalid_specifiers)
7703            << 1 << 3;
7704        NewFD->setInvalidDecl(true);
7705      }
7706    }
7707
7708    // If __module_private__ was specified, mark the function accordingly.
7709    if (D.getDeclSpec().isModulePrivateSpecified()) {
7710      if (isFunctionTemplateSpecialization) {
7711        SourceLocation ModulePrivateLoc
7712          = D.getDeclSpec().getModulePrivateSpecLoc();
7713        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
7714          << 0
7715          << FixItHint::CreateRemoval(ModulePrivateLoc);
7716      } else {
7717        NewFD->setModulePrivate();
7718        if (FunctionTemplate)
7719          FunctionTemplate->setModulePrivate();
7720      }
7721    }
7722
7723    if (isFriend) {
7724      if (FunctionTemplate) {
7725        FunctionTemplate->setObjectOfFriendDecl();
7726        FunctionTemplate->setAccess(AS_public);
7727      }
7728      NewFD->setObjectOfFriendDecl();
7729      NewFD->setAccess(AS_public);
7730    }
7731
7732    // If a function is defined as defaulted or deleted, mark it as such now.
7733    // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
7734    // definition kind to FDK_Definition.
7735    switch (D.getFunctionDefinitionKind()) {
7736      case FDK_Declaration:
7737      case FDK_Definition:
7738        break;
7739
7740      case FDK_Defaulted:
7741        NewFD->setDefaulted();
7742        break;
7743
7744      case FDK_Deleted:
7745        NewFD->setDeletedAsWritten();
7746        break;
7747    }
7748
7749    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
7750        D.isFunctionDefinition()) {
7751      // C++ [class.mfct]p2:
7752      //   A member function may be defined (8.4) in its class definition, in
7753      //   which case it is an inline member function (7.1.2)
7754      NewFD->setImplicitlyInline();
7755    }
7756
7757    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
7758        !CurContext->isRecord()) {
7759      // C++ [class.static]p1:
7760      //   A data or function member of a class may be declared static
7761      //   in a class definition, in which case it is a static member of
7762      //   the class.
7763
7764      // Complain about the 'static' specifier if it's on an out-of-line
7765      // member function definition.
7766      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7767           diag::err_static_out_of_line)
7768        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7769    }
7770
7771    // C++11 [except.spec]p15:
7772    //   A deallocation function with no exception-specification is treated
7773    //   as if it were specified with noexcept(true).
7774    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
7775    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
7776         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
7777        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
7778      NewFD->setType(Context.getFunctionType(
7779          FPT->getReturnType(), FPT->getParamTypes(),
7780          FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
7781  }
7782
7783  // Filter out previous declarations that don't match the scope.
7784  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
7785                       D.getCXXScopeSpec().isNotEmpty() ||
7786                       isExplicitSpecialization ||
7787                       isFunctionTemplateSpecialization);
7788
7789  // Handle GNU asm-label extension (encoded as an attribute).
7790  if (Expr *E = (Expr*) D.getAsmLabel()) {
7791    // The parser guarantees this is a string.
7792    StringLiteral *SE = cast<StringLiteral>(E);
7793    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
7794                                                SE->getString(), 0));
7795  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7796    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7797      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
7798    if (I != ExtnameUndeclaredIdentifiers.end()) {
7799      if (isDeclExternC(NewFD)) {
7800        NewFD->addAttr(I->second);
7801        ExtnameUndeclaredIdentifiers.erase(I);
7802      } else
7803        Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
7804            << /*Variable*/0 << NewFD;
7805    }
7806  }
7807
7808  // Copy the parameter declarations from the declarator D to the function
7809  // declaration NewFD, if they are available.  First scavenge them into Params.
7810  SmallVector<ParmVarDecl*, 16> Params;
7811  if (D.isFunctionDeclarator()) {
7812    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7813
7814    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
7815    // function that takes no arguments, not a function that takes a
7816    // single void argument.
7817    // We let through "const void" here because Sema::GetTypeForDeclarator
7818    // already checks for that case.
7819    if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
7820      for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
7821        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
7822        assert(Param->getDeclContext() != NewFD && "Was set before ?");
7823        Param->setDeclContext(NewFD);
7824        Params.push_back(Param);
7825
7826        if (Param->isInvalidDecl())
7827          NewFD->setInvalidDecl();
7828      }
7829    }
7830
7831  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
7832    // When we're declaring a function with a typedef, typeof, etc as in the
7833    // following example, we'll need to synthesize (unnamed)
7834    // parameters for use in the declaration.
7835    //
7836    // @code
7837    // typedef void fn(int);
7838    // fn f;
7839    // @endcode
7840
7841    // Synthesize a parameter for each argument type.
7842    for (const auto &AI : FT->param_types()) {
7843      ParmVarDecl *Param =
7844          BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
7845      Param->setScopeInfo(0, Params.size());
7846      Params.push_back(Param);
7847    }
7848  } else {
7849    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
7850           "Should not need args for typedef of non-prototype fn");
7851  }
7852
7853  // Finally, we know we have the right number of parameters, install them.
7854  NewFD->setParams(Params);
7855
7856  // Find all anonymous symbols defined during the declaration of this function
7857  // and add to NewFD. This lets us track decls such 'enum Y' in:
7858  //
7859  //   void f(enum Y {AA} x) {}
7860  //
7861  // which would otherwise incorrectly end up in the translation unit scope.
7862  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
7863  DeclsInPrototypeScope.clear();
7864
7865  if (D.getDeclSpec().isNoreturnSpecified())
7866    NewFD->addAttr(
7867        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
7868                                       Context, 0));
7869
7870  // Functions returning a variably modified type violate C99 6.7.5.2p2
7871  // because all functions have linkage.
7872  if (!NewFD->isInvalidDecl() &&
7873      NewFD->getReturnType()->isVariablyModifiedType()) {
7874    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
7875    NewFD->setInvalidDecl();
7876  }
7877
7878  // Apply an implicit SectionAttr if #pragma code_seg is active.
7879  if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
7880      !NewFD->hasAttr<SectionAttr>()) {
7881    NewFD->addAttr(
7882        SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
7883                                    CodeSegStack.CurrentValue->getString(),
7884                                    CodeSegStack.CurrentPragmaLocation));
7885    if (UnifySection(CodeSegStack.CurrentValue->getString(),
7886                     ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
7887                         ASTContext::PSF_Read,
7888                     NewFD))
7889      NewFD->dropAttr<SectionAttr>();
7890  }
7891
7892  // Handle attributes.
7893  ProcessDeclAttributes(S, NewFD, D);
7894
7895  if (getLangOpts().OpenCL) {
7896    // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
7897    // type declaration will generate a compilation error.
7898    unsigned AddressSpace = NewFD->getReturnType().getAddressSpace();
7899    if (AddressSpace == LangAS::opencl_local ||
7900        AddressSpace == LangAS::opencl_global ||
7901        AddressSpace == LangAS::opencl_constant) {
7902      Diag(NewFD->getLocation(),
7903           diag::err_opencl_return_value_with_address_space);
7904      NewFD->setInvalidDecl();
7905    }
7906  }
7907
7908  if (!getLangOpts().CPlusPlus) {
7909    // Perform semantic checking on the function declaration.
7910    bool isExplicitSpecialization=false;
7911    if (!NewFD->isInvalidDecl() && NewFD->isMain())
7912      CheckMain(NewFD, D.getDeclSpec());
7913
7914    if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7915      CheckMSVCRTEntryPoint(NewFD);
7916
7917    if (!NewFD->isInvalidDecl())
7918      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7919                                                  isExplicitSpecialization));
7920    else if (!Previous.empty())
7921      // Recover gracefully from an invalid redeclaration.
7922      D.setRedeclaration(true);
7923    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7924            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7925           "previous declaration set still overloaded");
7926
7927    // Diagnose no-prototype function declarations with calling conventions that
7928    // don't support variadic calls. Only do this in C and do it after merging
7929    // possibly prototyped redeclarations.
7930    const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
7931    if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
7932      CallingConv CC = FT->getExtInfo().getCC();
7933      if (!supportsVariadicCall(CC)) {
7934        // Windows system headers sometimes accidentally use stdcall without
7935        // (void) parameters, so we relax this to a warning.
7936        int DiagID =
7937            CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
7938        Diag(NewFD->getLocation(), DiagID)
7939            << FunctionType::getNameForCallConv(CC);
7940      }
7941    }
7942  } else {
7943    // C++11 [replacement.functions]p3:
7944    //  The program's definitions shall not be specified as inline.
7945    //
7946    // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7947    //
7948    // Suppress the diagnostic if the function is __attribute__((used)), since
7949    // that forces an external definition to be emitted.
7950    if (D.getDeclSpec().isInlineSpecified() &&
7951        NewFD->isReplaceableGlobalAllocationFunction() &&
7952        !NewFD->hasAttr<UsedAttr>())
7953      Diag(D.getDeclSpec().getInlineSpecLoc(),
7954           diag::ext_operator_new_delete_declared_inline)
7955        << NewFD->getDeclName();
7956
7957    // If the declarator is a template-id, translate the parser's template
7958    // argument list into our AST format.
7959    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7960      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7961      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7962      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7963      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7964                                         TemplateId->NumArgs);
7965      translateTemplateArguments(TemplateArgsPtr,
7966                                 TemplateArgs);
7967
7968      HasExplicitTemplateArgs = true;
7969
7970      if (NewFD->isInvalidDecl()) {
7971        HasExplicitTemplateArgs = false;
7972      } else if (FunctionTemplate) {
7973        // Function template with explicit template arguments.
7974        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7975          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7976
7977        HasExplicitTemplateArgs = false;
7978      } else {
7979        assert((isFunctionTemplateSpecialization ||
7980                D.getDeclSpec().isFriendSpecified()) &&
7981               "should have a 'template<>' for this decl");
7982        // "friend void foo<>(int);" is an implicit specialization decl.
7983        isFunctionTemplateSpecialization = true;
7984      }
7985    } else if (isFriend && isFunctionTemplateSpecialization) {
7986      // This combination is only possible in a recovery case;  the user
7987      // wrote something like:
7988      //   template <> friend void foo(int);
7989      // which we're recovering from as if the user had written:
7990      //   friend void foo<>(int);
7991      // Go ahead and fake up a template id.
7992      HasExplicitTemplateArgs = true;
7993      TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7994      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7995    }
7996
7997    // If it's a friend (and only if it's a friend), it's possible
7998    // that either the specialized function type or the specialized
7999    // template is dependent, and therefore matching will fail.  In
8000    // this case, don't check the specialization yet.
8001    bool InstantiationDependent = false;
8002    if (isFunctionTemplateSpecialization && isFriend &&
8003        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
8004         TemplateSpecializationType::anyDependentTemplateArguments(
8005            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
8006            InstantiationDependent))) {
8007      assert(HasExplicitTemplateArgs &&
8008             "friend function specialization without template args");
8009      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
8010                                                       Previous))
8011        NewFD->setInvalidDecl();
8012    } else if (isFunctionTemplateSpecialization) {
8013      if (CurContext->isDependentContext() && CurContext->isRecord()
8014          && !isFriend) {
8015        isDependentClassScopeExplicitSpecialization = true;
8016        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
8017          diag::ext_function_specialization_in_class :
8018          diag::err_function_specialization_in_class)
8019          << NewFD->getDeclName();
8020      } else if (CheckFunctionTemplateSpecialization(NewFD,
8021                                  (HasExplicitTemplateArgs ? &TemplateArgs
8022                                                           : nullptr),
8023                                                     Previous))
8024        NewFD->setInvalidDecl();
8025
8026      // C++ [dcl.stc]p1:
8027      //   A storage-class-specifier shall not be specified in an explicit
8028      //   specialization (14.7.3)
8029      FunctionTemplateSpecializationInfo *Info =
8030          NewFD->getTemplateSpecializationInfo();
8031      if (Info && SC != SC_None) {
8032        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
8033          Diag(NewFD->getLocation(),
8034               diag::err_explicit_specialization_inconsistent_storage_class)
8035            << SC
8036            << FixItHint::CreateRemoval(
8037                                      D.getDeclSpec().getStorageClassSpecLoc());
8038
8039        else
8040          Diag(NewFD->getLocation(),
8041               diag::ext_explicit_specialization_storage_class)
8042            << FixItHint::CreateRemoval(
8043                                      D.getDeclSpec().getStorageClassSpecLoc());
8044      }
8045
8046    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
8047      if (CheckMemberSpecialization(NewFD, Previous))
8048          NewFD->setInvalidDecl();
8049    }
8050
8051    // Perform semantic checking on the function declaration.
8052    if (!isDependentClassScopeExplicitSpecialization) {
8053      if (!NewFD->isInvalidDecl() && NewFD->isMain())
8054        CheckMain(NewFD, D.getDeclSpec());
8055
8056      if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8057        CheckMSVCRTEntryPoint(NewFD);
8058
8059      if (!NewFD->isInvalidDecl())
8060        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8061                                                    isExplicitSpecialization));
8062      else if (!Previous.empty())
8063        // Recover gracefully from an invalid redeclaration.
8064        D.setRedeclaration(true);
8065    }
8066
8067    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8068            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
8069           "previous declaration set still overloaded");
8070
8071    NamedDecl *PrincipalDecl = (FunctionTemplate
8072                                ? cast<NamedDecl>(FunctionTemplate)
8073                                : NewFD);
8074
8075    if (isFriend && D.isRedeclaration()) {
8076      AccessSpecifier Access = AS_public;
8077      if (!NewFD->isInvalidDecl())
8078        Access = NewFD->getPreviousDecl()->getAccess();
8079
8080      NewFD->setAccess(Access);
8081      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
8082    }
8083
8084    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
8085        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
8086      PrincipalDecl->setNonMemberOperator();
8087
8088    // If we have a function template, check the template parameter
8089    // list. This will check and merge default template arguments.
8090    if (FunctionTemplate) {
8091      FunctionTemplateDecl *PrevTemplate =
8092                                     FunctionTemplate->getPreviousDecl();
8093      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
8094                       PrevTemplate ? PrevTemplate->getTemplateParameters()
8095                                    : nullptr,
8096                            D.getDeclSpec().isFriendSpecified()
8097                              ? (D.isFunctionDefinition()
8098                                   ? TPC_FriendFunctionTemplateDefinition
8099                                   : TPC_FriendFunctionTemplate)
8100                              : (D.getCXXScopeSpec().isSet() &&
8101                                 DC && DC->isRecord() &&
8102                                 DC->isDependentContext())
8103                                  ? TPC_ClassTemplateMember
8104                                  : TPC_FunctionTemplate);
8105    }
8106
8107    if (NewFD->isInvalidDecl()) {
8108      // Ignore all the rest of this.
8109    } else if (!D.isRedeclaration()) {
8110      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
8111                                       AddToScope };
8112      // Fake up an access specifier if it's supposed to be a class member.
8113      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
8114        NewFD->setAccess(AS_public);
8115
8116      // Qualified decls generally require a previous declaration.
8117      if (D.getCXXScopeSpec().isSet()) {
8118        // ...with the major exception of templated-scope or
8119        // dependent-scope friend declarations.
8120
8121        // TODO: we currently also suppress this check in dependent
8122        // contexts because (1) the parameter depth will be off when
8123        // matching friend templates and (2) we might actually be
8124        // selecting a friend based on a dependent factor.  But there
8125        // are situations where these conditions don't apply and we
8126        // can actually do this check immediately.
8127        if (isFriend &&
8128            (TemplateParamLists.size() ||
8129             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
8130             CurContext->isDependentContext())) {
8131          // ignore these
8132        } else {
8133          // The user tried to provide an out-of-line definition for a
8134          // function that is a member of a class or namespace, but there
8135          // was no such member function declared (C++ [class.mfct]p2,
8136          // C++ [namespace.memdef]p2). For example:
8137          //
8138          // class X {
8139          //   void f() const;
8140          // };
8141          //
8142          // void X::f() { } // ill-formed
8143          //
8144          // Complain about this problem, and attempt to suggest close
8145          // matches (e.g., those that differ only in cv-qualifiers and
8146          // whether the parameter types are references).
8147
8148          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8149                  *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
8150            AddToScope = ExtraArgs.AddToScope;
8151            return Result;
8152          }
8153        }
8154
8155        // Unqualified local friend declarations are required to resolve
8156        // to something.
8157      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
8158        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8159                *this, Previous, NewFD, ExtraArgs, true, S)) {
8160          AddToScope = ExtraArgs.AddToScope;
8161          return Result;
8162        }
8163      }
8164
8165    } else if (!D.isFunctionDefinition() &&
8166               isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
8167               !isFriend && !isFunctionTemplateSpecialization &&
8168               !isExplicitSpecialization) {
8169      // An out-of-line member function declaration must also be a
8170      // definition (C++ [class.mfct]p2).
8171      // Note that this is not the case for explicit specializations of
8172      // function templates or member functions of class templates, per
8173      // C++ [temp.expl.spec]p2. We also allow these declarations as an
8174      // extension for compatibility with old SWIG code which likes to
8175      // generate them.
8176      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
8177        << D.getCXXScopeSpec().getRange();
8178    }
8179  }
8180
8181  ProcessPragmaWeak(S, NewFD);
8182  checkAttributesAfterMerging(*this, *NewFD);
8183
8184  AddKnownFunctionAttributes(NewFD);
8185
8186  if (NewFD->hasAttr<OverloadableAttr>() &&
8187      !NewFD->getType()->getAs<FunctionProtoType>()) {
8188    Diag(NewFD->getLocation(),
8189         diag::err_attribute_overloadable_no_prototype)
8190      << NewFD;
8191
8192    // Turn this into a variadic function with no parameters.
8193    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
8194    FunctionProtoType::ExtProtoInfo EPI(
8195        Context.getDefaultCallingConvention(true, false));
8196    EPI.Variadic = true;
8197    EPI.ExtInfo = FT->getExtInfo();
8198
8199    QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
8200    NewFD->setType(R);
8201  }
8202
8203  // If there's a #pragma GCC visibility in scope, and this isn't a class
8204  // member, set the visibility of this function.
8205  if (!DC->isRecord() && NewFD->isExternallyVisible())
8206    AddPushedVisibilityAttribute(NewFD);
8207
8208  // If there's a #pragma clang arc_cf_code_audited in scope, consider
8209  // marking the function.
8210  AddCFAuditedAttribute(NewFD);
8211
8212  // If this is a function definition, check if we have to apply optnone due to
8213  // a pragma.
8214  if(D.isFunctionDefinition())
8215    AddRangeBasedOptnone(NewFD);
8216
8217  // If this is the first declaration of an extern C variable, update
8218  // the map of such variables.
8219  if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
8220      isIncompleteDeclExternC(*this, NewFD))
8221    RegisterLocallyScopedExternCDecl(NewFD, S);
8222
8223  // Set this FunctionDecl's range up to the right paren.
8224  NewFD->setRangeEnd(D.getSourceRange().getEnd());
8225
8226  if (D.isRedeclaration() && !Previous.empty()) {
8227    checkDLLAttributeRedeclaration(
8228        *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
8229        isExplicitSpecialization || isFunctionTemplateSpecialization);
8230  }
8231
8232  if (getLangOpts().CPlusPlus) {
8233    if (FunctionTemplate) {
8234      if (NewFD->isInvalidDecl())
8235        FunctionTemplate->setInvalidDecl();
8236      return FunctionTemplate;
8237    }
8238  }
8239
8240  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
8241    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
8242    if ((getLangOpts().OpenCLVersion >= 120)
8243        && (SC == SC_Static)) {
8244      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
8245      D.setInvalidType();
8246    }
8247
8248    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
8249    if (!NewFD->getReturnType()->isVoidType()) {
8250      SourceRange RTRange = NewFD->getReturnTypeSourceRange();
8251      Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
8252          << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
8253                                : FixItHint());
8254      D.setInvalidType();
8255    }
8256
8257    llvm::SmallPtrSet<const Type *, 16> ValidTypes;
8258    for (auto Param : NewFD->params())
8259      checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
8260  }
8261
8262  MarkUnusedFileScopedDecl(NewFD);
8263
8264  if (getLangOpts().CUDA)
8265    if (IdentifierInfo *II = NewFD->getIdentifier())
8266      if (!NewFD->isInvalidDecl() &&
8267          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8268        if (II->isStr("cudaConfigureCall")) {
8269          if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
8270            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
8271
8272          Context.setcudaConfigureCallDecl(NewFD);
8273        }
8274      }
8275
8276  // Here we have an function template explicit specialization at class scope.
8277  // The actually specialization will be postponed to template instatiation
8278  // time via the ClassScopeFunctionSpecializationDecl node.
8279  if (isDependentClassScopeExplicitSpecialization) {
8280    ClassScopeFunctionSpecializationDecl *NewSpec =
8281                         ClassScopeFunctionSpecializationDecl::Create(
8282                                Context, CurContext, SourceLocation(),
8283                                cast<CXXMethodDecl>(NewFD),
8284                                HasExplicitTemplateArgs, TemplateArgs);
8285    CurContext->addDecl(NewSpec);
8286    AddToScope = false;
8287  }
8288
8289  return NewFD;
8290}
8291
8292/// \brief Perform semantic checking of a new function declaration.
8293///
8294/// Performs semantic analysis of the new function declaration
8295/// NewFD. This routine performs all semantic checking that does not
8296/// require the actual declarator involved in the declaration, and is
8297/// used both for the declaration of functions as they are parsed
8298/// (called via ActOnDeclarator) and for the declaration of functions
8299/// that have been instantiated via C++ template instantiation (called
8300/// via InstantiateDecl).
8301///
8302/// \param IsExplicitSpecialization whether this new function declaration is
8303/// an explicit specialization of the previous declaration.
8304///
8305/// This sets NewFD->isInvalidDecl() to true if there was an error.
8306///
8307/// \returns true if the function declaration is a redeclaration.
8308bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
8309                                    LookupResult &Previous,
8310                                    bool IsExplicitSpecialization) {
8311  assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
8312         "Variably modified return types are not handled here");
8313
8314  // Determine whether the type of this function should be merged with
8315  // a previous visible declaration. This never happens for functions in C++,
8316  // and always happens in C if the previous declaration was visible.
8317  bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
8318                               !Previous.isShadowed();
8319
8320  bool Redeclaration = false;
8321  NamedDecl *OldDecl = nullptr;
8322
8323  // Merge or overload the declaration with an existing declaration of
8324  // the same name, if appropriate.
8325  if (!Previous.empty()) {
8326    // Determine whether NewFD is an overload of PrevDecl or
8327    // a declaration that requires merging. If it's an overload,
8328    // there's no more work to do here; we'll just add the new
8329    // function to the scope.
8330    if (!AllowOverloadingOfFunction(Previous, Context)) {
8331      NamedDecl *Candidate = Previous.getRepresentativeDecl();
8332      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
8333        Redeclaration = true;
8334        OldDecl = Candidate;
8335      }
8336    } else {
8337      switch (CheckOverload(S, NewFD, Previous, OldDecl,
8338                            /*NewIsUsingDecl*/ false)) {
8339      case Ovl_Match:
8340        Redeclaration = true;
8341        break;
8342
8343      case Ovl_NonFunction:
8344        Redeclaration = true;
8345        break;
8346
8347      case Ovl_Overload:
8348        Redeclaration = false;
8349        break;
8350      }
8351
8352      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
8353        // If a function name is overloadable in C, then every function
8354        // with that name must be marked "overloadable".
8355        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
8356          << Redeclaration << NewFD;
8357        NamedDecl *OverloadedDecl = nullptr;
8358        if (Redeclaration)
8359          OverloadedDecl = OldDecl;
8360        else if (!Previous.empty())
8361          OverloadedDecl = Previous.getRepresentativeDecl();
8362        if (OverloadedDecl)
8363          Diag(OverloadedDecl->getLocation(),
8364               diag::note_attribute_overloadable_prev_overload);
8365        NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
8366      }
8367    }
8368  }
8369
8370  // Check for a previous extern "C" declaration with this name.
8371  if (!Redeclaration &&
8372      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
8373    if (!Previous.empty()) {
8374      // This is an extern "C" declaration with the same name as a previous
8375      // declaration, and thus redeclares that entity...
8376      Redeclaration = true;
8377      OldDecl = Previous.getFoundDecl();
8378      MergeTypeWithPrevious = false;
8379
8380      // ... except in the presence of __attribute__((overloadable)).
8381      if (OldDecl->hasAttr<OverloadableAttr>()) {
8382        if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
8383          Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
8384            << Redeclaration << NewFD;
8385          Diag(Previous.getFoundDecl()->getLocation(),
8386               diag::note_attribute_overloadable_prev_overload);
8387          NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
8388        }
8389        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
8390          Redeclaration = false;
8391          OldDecl = nullptr;
8392        }
8393      }
8394    }
8395  }
8396
8397  // C++11 [dcl.constexpr]p8:
8398  //   A constexpr specifier for a non-static member function that is not
8399  //   a constructor declares that member function to be const.
8400  //
8401  // This needs to be delayed until we know whether this is an out-of-line
8402  // definition of a static member function.
8403  //
8404  // This rule is not present in C++1y, so we produce a backwards
8405  // compatibility warning whenever it happens in C++11.
8406  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8407  if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
8408      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
8409      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
8410    CXXMethodDecl *OldMD = nullptr;
8411    if (OldDecl)
8412      OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
8413    if (!OldMD || !OldMD->isStatic()) {
8414      const FunctionProtoType *FPT =
8415        MD->getType()->castAs<FunctionProtoType>();
8416      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8417      EPI.TypeQuals |= Qualifiers::Const;
8418      MD->setType(Context.getFunctionType(FPT->getReturnType(),
8419                                          FPT->getParamTypes(), EPI));
8420
8421      // Warn that we did this, if we're not performing template instantiation.
8422      // In that case, we'll have warned already when the template was defined.
8423      if (ActiveTemplateInstantiations.empty()) {
8424        SourceLocation AddConstLoc;
8425        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
8426                .IgnoreParens().getAs<FunctionTypeLoc>())
8427          AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
8428
8429        Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
8430          << FixItHint::CreateInsertion(AddConstLoc, " const");
8431      }
8432    }
8433  }
8434
8435  if (Redeclaration) {
8436    // NewFD and OldDecl represent declarations that need to be
8437    // merged.
8438    if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
8439      NewFD->setInvalidDecl();
8440      return Redeclaration;
8441    }
8442
8443    Previous.clear();
8444    Previous.addDecl(OldDecl);
8445
8446    if (FunctionTemplateDecl *OldTemplateDecl
8447                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
8448      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
8449      FunctionTemplateDecl *NewTemplateDecl
8450        = NewFD->getDescribedFunctionTemplate();
8451      assert(NewTemplateDecl && "Template/non-template mismatch");
8452      if (CXXMethodDecl *Method
8453            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
8454        Method->setAccess(OldTemplateDecl->getAccess());
8455        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
8456      }
8457
8458      // If this is an explicit specialization of a member that is a function
8459      // template, mark it as a member specialization.
8460      if (IsExplicitSpecialization &&
8461          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
8462        NewTemplateDecl->setMemberSpecialization();
8463        assert(OldTemplateDecl->isMemberSpecialization());
8464      }
8465
8466    } else {
8467      // This needs to happen first so that 'inline' propagates.
8468      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
8469
8470      if (isa<CXXMethodDecl>(NewFD))
8471        NewFD->setAccess(OldDecl->getAccess());
8472    }
8473  }
8474
8475  // Semantic checking for this function declaration (in isolation).
8476
8477  if (getLangOpts().CPlusPlus) {
8478    // C++-specific checks.
8479    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
8480      CheckConstructor(Constructor);
8481    } else if (CXXDestructorDecl *Destructor =
8482                dyn_cast<CXXDestructorDecl>(NewFD)) {
8483      CXXRecordDecl *Record = Destructor->getParent();
8484      QualType ClassType = Context.getTypeDeclType(Record);
8485
8486      // FIXME: Shouldn't we be able to perform this check even when the class
8487      // type is dependent? Both gcc and edg can handle that.
8488      if (!ClassType->isDependentType()) {
8489        DeclarationName Name
8490          = Context.DeclarationNames.getCXXDestructorName(
8491                                        Context.getCanonicalType(ClassType));
8492        if (NewFD->getDeclName() != Name) {
8493          Diag(NewFD->getLocation(), diag::err_destructor_name);
8494          NewFD->setInvalidDecl();
8495          return Redeclaration;
8496        }
8497      }
8498    } else if (CXXConversionDecl *Conversion
8499               = dyn_cast<CXXConversionDecl>(NewFD)) {
8500      ActOnConversionDeclarator(Conversion);
8501    }
8502
8503    // Find any virtual functions that this function overrides.
8504    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
8505      if (!Method->isFunctionTemplateSpecialization() &&
8506          !Method->getDescribedFunctionTemplate() &&
8507          Method->isCanonicalDecl()) {
8508        if (AddOverriddenMethods(Method->getParent(), Method)) {
8509          // If the function was marked as "static", we have a problem.
8510          if (NewFD->getStorageClass() == SC_Static) {
8511            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
8512          }
8513        }
8514      }
8515
8516      if (Method->isStatic())
8517        checkThisInStaticMemberFunctionType(Method);
8518    }
8519
8520    // Extra checking for C++ overloaded operators (C++ [over.oper]).
8521    if (NewFD->isOverloadedOperator() &&
8522        CheckOverloadedOperatorDeclaration(NewFD)) {
8523      NewFD->setInvalidDecl();
8524      return Redeclaration;
8525    }
8526
8527    // Extra checking for C++0x literal operators (C++0x [over.literal]).
8528    if (NewFD->getLiteralIdentifier() &&
8529        CheckLiteralOperatorDeclaration(NewFD)) {
8530      NewFD->setInvalidDecl();
8531      return Redeclaration;
8532    }
8533
8534    // In C++, check default arguments now that we have merged decls. Unless
8535    // the lexical context is the class, because in this case this is done
8536    // during delayed parsing anyway.
8537    if (!CurContext->isRecord())
8538      CheckCXXDefaultArguments(NewFD);
8539
8540    // If this function declares a builtin function, check the type of this
8541    // declaration against the expected type for the builtin.
8542    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
8543      ASTContext::GetBuiltinTypeError Error;
8544      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
8545      QualType T = Context.GetBuiltinType(BuiltinID, Error);
8546      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
8547        // The type of this function differs from the type of the builtin,
8548        // so forget about the builtin entirely.
8549        Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
8550      }
8551    }
8552
8553    // If this function is declared as being extern "C", then check to see if
8554    // the function returns a UDT (class, struct, or union type) that is not C
8555    // compatible, and if it does, warn the user.
8556    // But, issue any diagnostic on the first declaration only.
8557    if (Previous.empty() && NewFD->isExternC()) {
8558      QualType R = NewFD->getReturnType();
8559      if (R->isIncompleteType() && !R->isVoidType())
8560        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
8561            << NewFD << R;
8562      else if (!R.isPODType(Context) && !R->isVoidType() &&
8563               !R->isObjCObjectPointerType())
8564        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
8565    }
8566  }
8567  return Redeclaration;
8568}
8569
8570void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
8571  // C++11 [basic.start.main]p3:
8572  //   A program that [...] declares main to be inline, static or
8573  //   constexpr is ill-formed.
8574  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
8575  //   appear in a declaration of main.
8576  // static main is not an error under C99, but we should warn about it.
8577  // We accept _Noreturn main as an extension.
8578  if (FD->getStorageClass() == SC_Static)
8579    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
8580         ? diag::err_static_main : diag::warn_static_main)
8581      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
8582  if (FD->isInlineSpecified())
8583    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
8584      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
8585  if (DS.isNoreturnSpecified()) {
8586    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
8587    SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
8588    Diag(NoreturnLoc, diag::ext_noreturn_main);
8589    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
8590      << FixItHint::CreateRemoval(NoreturnRange);
8591  }
8592  if (FD->isConstexpr()) {
8593    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
8594      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
8595    FD->setConstexpr(false);
8596  }
8597
8598  if (getLangOpts().OpenCL) {
8599    Diag(FD->getLocation(), diag::err_opencl_no_main)
8600        << FD->hasAttr<OpenCLKernelAttr>();
8601    FD->setInvalidDecl();
8602    return;
8603  }
8604
8605  QualType T = FD->getType();
8606  assert(T->isFunctionType() && "function decl is not of function type");
8607  const FunctionType* FT = T->castAs<FunctionType>();
8608
8609  if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
8610    // In C with GNU extensions we allow main() to have non-integer return
8611    // type, but we should warn about the extension, and we disable the
8612    // implicit-return-zero rule.
8613
8614    // GCC in C mode accepts qualified 'int'.
8615    if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
8616      FD->setHasImplicitReturnZero(true);
8617    else {
8618      Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
8619      SourceRange RTRange = FD->getReturnTypeSourceRange();
8620      if (RTRange.isValid())
8621        Diag(RTRange.getBegin(), diag::note_main_change_return_type)
8622            << FixItHint::CreateReplacement(RTRange, "int");
8623    }
8624  } else {
8625    // In C and C++, main magically returns 0 if you fall off the end;
8626    // set the flag which tells us that.
8627    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
8628
8629    // All the standards say that main() should return 'int'.
8630    if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
8631      FD->setHasImplicitReturnZero(true);
8632    else {
8633      // Otherwise, this is just a flat-out error.
8634      SourceRange RTRange = FD->getReturnTypeSourceRange();
8635      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
8636          << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
8637                                : FixItHint());
8638      FD->setInvalidDecl(true);
8639    }
8640  }
8641
8642  // Treat protoless main() as nullary.
8643  if (isa<FunctionNoProtoType>(FT)) return;
8644
8645  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
8646  unsigned nparams = FTP->getNumParams();
8647  assert(FD->getNumParams() == nparams);
8648
8649  bool HasExtraParameters = (nparams > 3);
8650
8651  if (FTP->isVariadic()) {
8652    Diag(FD->getLocation(), diag::ext_variadic_main);
8653    // FIXME: if we had information about the location of the ellipsis, we
8654    // could add a FixIt hint to remove it as a parameter.
8655  }
8656
8657  // Darwin passes an undocumented fourth argument of type char**.  If
8658  // other platforms start sprouting these, the logic below will start
8659  // getting shifty.
8660  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
8661    HasExtraParameters = false;
8662
8663  if (HasExtraParameters) {
8664    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
8665    FD->setInvalidDecl(true);
8666    nparams = 3;
8667  }
8668
8669  // FIXME: a lot of the following diagnostics would be improved
8670  // if we had some location information about types.
8671
8672  QualType CharPP =
8673    Context.getPointerType(Context.getPointerType(Context.CharTy));
8674  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
8675
8676  for (unsigned i = 0; i < nparams; ++i) {
8677    QualType AT = FTP->getParamType(i);
8678
8679    bool mismatch = true;
8680
8681    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
8682      mismatch = false;
8683    else if (Expected[i] == CharPP) {
8684      // As an extension, the following forms are okay:
8685      //   char const **
8686      //   char const * const *
8687      //   char * const *
8688
8689      QualifierCollector qs;
8690      const PointerType* PT;
8691      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
8692          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
8693          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
8694                              Context.CharTy)) {
8695        qs.removeConst();
8696        mismatch = !qs.empty();
8697      }
8698    }
8699
8700    if (mismatch) {
8701      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
8702      // TODO: suggest replacing given type with expected type
8703      FD->setInvalidDecl(true);
8704    }
8705  }
8706
8707  if (nparams == 1 && !FD->isInvalidDecl()) {
8708    Diag(FD->getLocation(), diag::warn_main_one_arg);
8709  }
8710
8711  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8712    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8713    FD->setInvalidDecl();
8714  }
8715}
8716
8717void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
8718  QualType T = FD->getType();
8719  assert(T->isFunctionType() && "function decl is not of function type");
8720  const FunctionType *FT = T->castAs<FunctionType>();
8721
8722  // Set an implicit return of 'zero' if the function can return some integral,
8723  // enumeration, pointer or nullptr type.
8724  if (FT->getReturnType()->isIntegralOrEnumerationType() ||
8725      FT->getReturnType()->isAnyPointerType() ||
8726      FT->getReturnType()->isNullPtrType())
8727    // DllMain is exempt because a return value of zero means it failed.
8728    if (FD->getName() != "DllMain")
8729      FD->setHasImplicitReturnZero(true);
8730
8731  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8732    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8733    FD->setInvalidDecl();
8734  }
8735}
8736
8737bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
8738  // FIXME: Need strict checking.  In C89, we need to check for
8739  // any assignment, increment, decrement, function-calls, or
8740  // commas outside of a sizeof.  In C99, it's the same list,
8741  // except that the aforementioned are allowed in unevaluated
8742  // expressions.  Everything else falls under the
8743  // "may accept other forms of constant expressions" exception.
8744  // (We never end up here for C++, so the constant expression
8745  // rules there don't matter.)
8746  const Expr *Culprit;
8747  if (Init->isConstantInitializer(Context, false, &Culprit))
8748    return false;
8749  Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
8750    << Culprit->getSourceRange();
8751  return true;
8752}
8753
8754namespace {
8755  // Visits an initialization expression to see if OrigDecl is evaluated in
8756  // its own initialization and throws a warning if it does.
8757  class SelfReferenceChecker
8758      : public EvaluatedExprVisitor<SelfReferenceChecker> {
8759    Sema &S;
8760    Decl *OrigDecl;
8761    bool isRecordType;
8762    bool isPODType;
8763    bool isReferenceType;
8764
8765    bool isInitList;
8766    llvm::SmallVector<unsigned, 4> InitFieldIndex;
8767  public:
8768    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
8769
8770    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
8771                                                    S(S), OrigDecl(OrigDecl) {
8772      isPODType = false;
8773      isRecordType = false;
8774      isReferenceType = false;
8775      isInitList = false;
8776      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
8777        isPODType = VD->getType().isPODType(S.Context);
8778        isRecordType = VD->getType()->isRecordType();
8779        isReferenceType = VD->getType()->isReferenceType();
8780      }
8781    }
8782
8783    // For most expressions, just call the visitor.  For initializer lists,
8784    // track the index of the field being initialized since fields are
8785    // initialized in order allowing use of previously initialized fields.
8786    void CheckExpr(Expr *E) {
8787      InitListExpr *InitList = dyn_cast<InitListExpr>(E);
8788      if (!InitList) {
8789        Visit(E);
8790        return;
8791      }
8792
8793      // Track and increment the index here.
8794      isInitList = true;
8795      InitFieldIndex.push_back(0);
8796      for (auto Child : InitList->children()) {
8797        CheckExpr(cast<Expr>(Child));
8798        ++InitFieldIndex.back();
8799      }
8800      InitFieldIndex.pop_back();
8801    }
8802
8803    // Returns true if MemberExpr is checked and no futher checking is needed.
8804    // Returns false if additional checking is required.
8805    bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
8806      llvm::SmallVector<FieldDecl*, 4> Fields;
8807      Expr *Base = E;
8808      bool ReferenceField = false;
8809
8810      // Get the field memebers used.
8811      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8812        FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
8813        if (!FD)
8814          return false;
8815        Fields.push_back(FD);
8816        if (FD->getType()->isReferenceType())
8817          ReferenceField = true;
8818        Base = ME->getBase()->IgnoreParenImpCasts();
8819      }
8820
8821      // Keep checking only if the base Decl is the same.
8822      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
8823      if (!DRE || DRE->getDecl() != OrigDecl)
8824        return false;
8825
8826      // A reference field can be bound to an unininitialized field.
8827      if (CheckReference && !ReferenceField)
8828        return true;
8829
8830      // Convert FieldDecls to their index number.
8831      llvm::SmallVector<unsigned, 4> UsedFieldIndex;
8832      for (const FieldDecl *I : llvm::reverse(Fields))
8833        UsedFieldIndex.push_back(I->getFieldIndex());
8834
8835      // See if a warning is needed by checking the first difference in index
8836      // numbers.  If field being used has index less than the field being
8837      // initialized, then the use is safe.
8838      for (auto UsedIter = UsedFieldIndex.begin(),
8839                UsedEnd = UsedFieldIndex.end(),
8840                OrigIter = InitFieldIndex.begin(),
8841                OrigEnd = InitFieldIndex.end();
8842           UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
8843        if (*UsedIter < *OrigIter)
8844          return true;
8845        if (*UsedIter > *OrigIter)
8846          break;
8847      }
8848
8849      // TODO: Add a different warning which will print the field names.
8850      HandleDeclRefExpr(DRE);
8851      return true;
8852    }
8853
8854    // For most expressions, the cast is directly above the DeclRefExpr.
8855    // For conditional operators, the cast can be outside the conditional
8856    // operator if both expressions are DeclRefExpr's.
8857    void HandleValue(Expr *E) {
8858      E = E->IgnoreParens();
8859      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
8860        HandleDeclRefExpr(DRE);
8861        return;
8862      }
8863
8864      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8865        Visit(CO->getCond());
8866        HandleValue(CO->getTrueExpr());
8867        HandleValue(CO->getFalseExpr());
8868        return;
8869      }
8870
8871      if (BinaryConditionalOperator *BCO =
8872              dyn_cast<BinaryConditionalOperator>(E)) {
8873        Visit(BCO->getCond());
8874        HandleValue(BCO->getFalseExpr());
8875        return;
8876      }
8877
8878      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
8879        HandleValue(OVE->getSourceExpr());
8880        return;
8881      }
8882
8883      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8884        if (BO->getOpcode() == BO_Comma) {
8885          Visit(BO->getLHS());
8886          HandleValue(BO->getRHS());
8887          return;
8888        }
8889      }
8890
8891      if (isa<MemberExpr>(E)) {
8892        if (isInitList) {
8893          if (CheckInitListMemberExpr(cast<MemberExpr>(E),
8894                                      false /*CheckReference*/))
8895            return;
8896        }
8897
8898        Expr *Base = E->IgnoreParenImpCasts();
8899        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8900          // Check for static member variables and don't warn on them.
8901          if (!isa<FieldDecl>(ME->getMemberDecl()))
8902            return;
8903          Base = ME->getBase()->IgnoreParenImpCasts();
8904        }
8905        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
8906          HandleDeclRefExpr(DRE);
8907        return;
8908      }
8909
8910      Visit(E);
8911    }
8912
8913    // Reference types not handled in HandleValue are handled here since all
8914    // uses of references are bad, not just r-value uses.
8915    void VisitDeclRefExpr(DeclRefExpr *E) {
8916      if (isReferenceType)
8917        HandleDeclRefExpr(E);
8918    }
8919
8920    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
8921      if (E->getCastKind() == CK_LValueToRValue) {
8922        HandleValue(E->getSubExpr());
8923        return;
8924      }
8925
8926      Inherited::VisitImplicitCastExpr(E);
8927    }
8928
8929    void VisitMemberExpr(MemberExpr *E) {
8930      if (isInitList) {
8931        if (CheckInitListMemberExpr(E, true /*CheckReference*/))
8932          return;
8933      }
8934
8935      // Don't warn on arrays since they can be treated as pointers.
8936      if (E->getType()->canDecayToPointerType()) return;
8937
8938      // Warn when a non-static method call is followed by non-static member
8939      // field accesses, which is followed by a DeclRefExpr.
8940      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
8941      bool Warn = (MD && !MD->isStatic());
8942      Expr *Base = E->getBase()->IgnoreParenImpCasts();
8943      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8944        if (!isa<FieldDecl>(ME->getMemberDecl()))
8945          Warn = false;
8946        Base = ME->getBase()->IgnoreParenImpCasts();
8947      }
8948
8949      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
8950        if (Warn)
8951          HandleDeclRefExpr(DRE);
8952        return;
8953      }
8954
8955      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
8956      // Visit that expression.
8957      Visit(Base);
8958    }
8959
8960    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
8961      Expr *Callee = E->getCallee();
8962
8963      if (isa<UnresolvedLookupExpr>(Callee))
8964        return Inherited::VisitCXXOperatorCallExpr(E);
8965
8966      Visit(Callee);
8967      for (auto Arg: E->arguments())
8968        HandleValue(Arg->IgnoreParenImpCasts());
8969    }
8970
8971    void VisitUnaryOperator(UnaryOperator *E) {
8972      // For POD record types, addresses of its own members are well-defined.
8973      if (E->getOpcode() == UO_AddrOf && isRecordType &&
8974          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
8975        if (!isPODType)
8976          HandleValue(E->getSubExpr());
8977        return;
8978      }
8979
8980      if (E->isIncrementDecrementOp()) {
8981        HandleValue(E->getSubExpr());
8982        return;
8983      }
8984
8985      Inherited::VisitUnaryOperator(E);
8986    }
8987
8988    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
8989
8990    void VisitCXXConstructExpr(CXXConstructExpr *E) {
8991      if (E->getConstructor()->isCopyConstructor()) {
8992        Expr *ArgExpr = E->getArg(0);
8993        if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
8994          if (ILE->getNumInits() == 1)
8995            ArgExpr = ILE->getInit(0);
8996        if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8997          if (ICE->getCastKind() == CK_NoOp)
8998            ArgExpr = ICE->getSubExpr();
8999        HandleValue(ArgExpr);
9000        return;
9001      }
9002      Inherited::VisitCXXConstructExpr(E);
9003    }
9004
9005    void VisitCallExpr(CallExpr *E) {
9006      // Treat std::move as a use.
9007      if (E->getNumArgs() == 1) {
9008        if (FunctionDecl *FD = E->getDirectCallee()) {
9009          if (FD->isInStdNamespace() && FD->getIdentifier() &&
9010              FD->getIdentifier()->isStr("move")) {
9011            HandleValue(E->getArg(0));
9012            return;
9013          }
9014        }
9015      }
9016
9017      Inherited::VisitCallExpr(E);
9018    }
9019
9020    void VisitBinaryOperator(BinaryOperator *E) {
9021      if (E->isCompoundAssignmentOp()) {
9022        HandleValue(E->getLHS());
9023        Visit(E->getRHS());
9024        return;
9025      }
9026
9027      Inherited::VisitBinaryOperator(E);
9028    }
9029
9030    // A custom visitor for BinaryConditionalOperator is needed because the
9031    // regular visitor would check the condition and true expression separately
9032    // but both point to the same place giving duplicate diagnostics.
9033    void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
9034      Visit(E->getCond());
9035      Visit(E->getFalseExpr());
9036    }
9037
9038    void HandleDeclRefExpr(DeclRefExpr *DRE) {
9039      Decl* ReferenceDecl = DRE->getDecl();
9040      if (OrigDecl != ReferenceDecl) return;
9041      unsigned diag;
9042      if (isReferenceType) {
9043        diag = diag::warn_uninit_self_reference_in_reference_init;
9044      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
9045        diag = diag::warn_static_self_reference_in_init;
9046      } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
9047                 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
9048                 DRE->getDecl()->getType()->isRecordType()) {
9049        diag = diag::warn_uninit_self_reference_in_init;
9050      } else {
9051        // Local variables will be handled by the CFG analysis.
9052        return;
9053      }
9054
9055      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
9056                            S.PDiag(diag)
9057                              << DRE->getNameInfo().getName()
9058                              << OrigDecl->getLocation()
9059                              << DRE->getSourceRange());
9060    }
9061  };
9062
9063  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
9064  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
9065                                 bool DirectInit) {
9066    // Parameters arguments are occassionially constructed with itself,
9067    // for instance, in recursive functions.  Skip them.
9068    if (isa<ParmVarDecl>(OrigDecl))
9069      return;
9070
9071    E = E->IgnoreParens();
9072
9073    // Skip checking T a = a where T is not a record or reference type.
9074    // Doing so is a way to silence uninitialized warnings.
9075    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
9076      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
9077        if (ICE->getCastKind() == CK_LValueToRValue)
9078          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
9079            if (DRE->getDecl() == OrigDecl)
9080              return;
9081
9082    SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
9083  }
9084}
9085
9086QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
9087                                            DeclarationName Name, QualType Type,
9088                                            TypeSourceInfo *TSI,
9089                                            SourceRange Range, bool DirectInit,
9090                                            Expr *Init) {
9091  bool IsInitCapture = !VDecl;
9092  assert((!VDecl || !VDecl->isInitCapture()) &&
9093         "init captures are expected to be deduced prior to initialization");
9094
9095  ArrayRef<Expr *> DeduceInits = Init;
9096  if (DirectInit) {
9097    if (auto *PL = dyn_cast<ParenListExpr>(Init))
9098      DeduceInits = PL->exprs();
9099    else if (auto *IL = dyn_cast<InitListExpr>(Init))
9100      DeduceInits = IL->inits();
9101  }
9102
9103  // Deduction only works if we have exactly one source expression.
9104  if (DeduceInits.empty()) {
9105    // It isn't possible to write this directly, but it is possible to
9106    // end up in this situation with "auto x(some_pack...);"
9107    Diag(Init->getLocStart(), IsInitCapture
9108                                  ? diag::err_init_capture_no_expression
9109                                  : diag::err_auto_var_init_no_expression)
9110        << Name << Type << Range;
9111    return QualType();
9112  }
9113
9114  if (DeduceInits.size() > 1) {
9115    Diag(DeduceInits[1]->getLocStart(),
9116         IsInitCapture ? diag::err_init_capture_multiple_expressions
9117                       : diag::err_auto_var_init_multiple_expressions)
9118        << Name << Type << Range;
9119    return QualType();
9120  }
9121
9122  Expr *DeduceInit = DeduceInits[0];
9123  if (DirectInit && isa<InitListExpr>(DeduceInit)) {
9124    Diag(Init->getLocStart(), IsInitCapture
9125                                  ? diag::err_init_capture_paren_braces
9126                                  : diag::err_auto_var_init_paren_braces)
9127        << isa<InitListExpr>(Init) << Name << Type << Range;
9128    return QualType();
9129  }
9130
9131  // Expressions default to 'id' when we're in a debugger.
9132  bool DefaultedAnyToId = false;
9133  if (getLangOpts().DebuggerCastResultToId &&
9134      Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
9135    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
9136    if (Result.isInvalid()) {
9137      return QualType();
9138    }
9139    Init = Result.get();
9140    DefaultedAnyToId = true;
9141  }
9142
9143  QualType DeducedType;
9144  if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
9145    if (!IsInitCapture)
9146      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
9147    else if (isa<InitListExpr>(Init))
9148      Diag(Range.getBegin(),
9149           diag::err_init_capture_deduction_failure_from_init_list)
9150          << Name
9151          << (DeduceInit->getType().isNull() ? TSI->getType()
9152                                             : DeduceInit->getType())
9153          << DeduceInit->getSourceRange();
9154    else
9155      Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
9156          << Name << TSI->getType()
9157          << (DeduceInit->getType().isNull() ? TSI->getType()
9158                                             : DeduceInit->getType())
9159          << DeduceInit->getSourceRange();
9160  }
9161
9162  // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
9163  // 'id' instead of a specific object type prevents most of our usual
9164  // checks.
9165  // We only want to warn outside of template instantiations, though:
9166  // inside a template, the 'id' could have come from a parameter.
9167  if (ActiveTemplateInstantiations.empty() && !DefaultedAnyToId &&
9168      !IsInitCapture && !DeducedType.isNull() && DeducedType->isObjCIdType()) {
9169    SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
9170    Diag(Loc, diag::warn_auto_var_is_id) << Name << Range;
9171  }
9172
9173  return DeducedType;
9174}
9175
9176/// AddInitializerToDecl - Adds the initializer Init to the
9177/// declaration dcl. If DirectInit is true, this is C++ direct
9178/// initialization rather than copy initialization.
9179void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
9180                                bool DirectInit, bool TypeMayContainAuto) {
9181  // If there is no declaration, there was an error parsing it.  Just ignore
9182  // the initializer.
9183  if (!RealDecl || RealDecl->isInvalidDecl()) {
9184    CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
9185    return;
9186  }
9187
9188  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
9189    // Pure-specifiers are handled in ActOnPureSpecifier.
9190    Diag(Method->getLocation(), diag::err_member_function_initialization)
9191      << Method->getDeclName() << Init->getSourceRange();
9192    Method->setInvalidDecl();
9193    return;
9194  }
9195
9196  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9197  if (!VDecl) {
9198    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
9199    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9200    RealDecl->setInvalidDecl();
9201    return;
9202  }
9203
9204  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9205  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
9206    // Attempt typo correction early so that the type of the init expression can
9207    // be deduced based on the chosen correction if the original init contains a
9208    // TypoExpr.
9209    ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
9210    if (!Res.isUsable()) {
9211      RealDecl->setInvalidDecl();
9212      return;
9213    }
9214    Init = Res.get();
9215
9216    QualType DeducedType = deduceVarTypeFromInitializer(
9217        VDecl, VDecl->getDeclName(), VDecl->getType(),
9218        VDecl->getTypeSourceInfo(), VDecl->getSourceRange(), DirectInit, Init);
9219    if (DeducedType.isNull()) {
9220      RealDecl->setInvalidDecl();
9221      return;
9222    }
9223
9224    VDecl->setType(DeducedType);
9225    assert(VDecl->isLinkageValid());
9226
9227    // In ARC, infer lifetime.
9228    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9229      VDecl->setInvalidDecl();
9230
9231    // If this is a redeclaration, check that the type we just deduced matches
9232    // the previously declared type.
9233    if (VarDecl *Old = VDecl->getPreviousDecl()) {
9234      // We never need to merge the type, because we cannot form an incomplete
9235      // array of auto, nor deduce such a type.
9236      MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
9237    }
9238
9239    // Check the deduced type is valid for a variable declaration.
9240    CheckVariableDeclarationType(VDecl);
9241    if (VDecl->isInvalidDecl())
9242      return;
9243  }
9244
9245  // dllimport cannot be used on variable definitions.
9246  if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
9247    Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
9248    VDecl->setInvalidDecl();
9249    return;
9250  }
9251
9252  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
9253    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
9254    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
9255    VDecl->setInvalidDecl();
9256    return;
9257  }
9258
9259  if (!VDecl->getType()->isDependentType()) {
9260    // A definition must end up with a complete type, which means it must be
9261    // complete with the restriction that an array type might be completed by
9262    // the initializer; note that later code assumes this restriction.
9263    QualType BaseDeclType = VDecl->getType();
9264    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
9265      BaseDeclType = Array->getElementType();
9266    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
9267                            diag::err_typecheck_decl_incomplete_type)) {
9268      RealDecl->setInvalidDecl();
9269      return;
9270    }
9271
9272    // The variable can not have an abstract class type.
9273    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9274                               diag::err_abstract_type_in_decl,
9275                               AbstractVariableType))
9276      VDecl->setInvalidDecl();
9277  }
9278
9279  VarDecl *Def;
9280  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9281    NamedDecl *Hidden = nullptr;
9282    if (!hasVisibleDefinition(Def, &Hidden) &&
9283        (VDecl->getFormalLinkage() == InternalLinkage ||
9284         VDecl->getDescribedVarTemplate() ||
9285         VDecl->getNumTemplateParameterLists() ||
9286         VDecl->getDeclContext()->isDependentContext())) {
9287      // The previous definition is hidden, and multiple definitions are
9288      // permitted (in separate TUs). Form another definition of it.
9289    } else {
9290      Diag(VDecl->getLocation(), diag::err_redefinition)
9291        << VDecl->getDeclName();
9292      Diag(Def->getLocation(), diag::note_previous_definition);
9293      VDecl->setInvalidDecl();
9294      return;
9295    }
9296  }
9297
9298  if (getLangOpts().CPlusPlus) {
9299    // C++ [class.static.data]p4
9300    //   If a static data member is of const integral or const
9301    //   enumeration type, its declaration in the class definition can
9302    //   specify a constant-initializer which shall be an integral
9303    //   constant expression (5.19). In that case, the member can appear
9304    //   in integral constant expressions. The member shall still be
9305    //   defined in a namespace scope if it is used in the program and the
9306    //   namespace scope definition shall not contain an initializer.
9307    //
9308    // We already performed a redefinition check above, but for static
9309    // data members we also need to check whether there was an in-class
9310    // declaration with an initializer.
9311    if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
9312      Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
9313          << VDecl->getDeclName();
9314      Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
9315           diag::note_previous_initializer)
9316          << 0;
9317      return;
9318    }
9319
9320    if (VDecl->hasLocalStorage())
9321      getCurFunction()->setHasBranchProtectedScope();
9322
9323    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
9324      VDecl->setInvalidDecl();
9325      return;
9326    }
9327  }
9328
9329  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
9330  // a kernel function cannot be initialized."
9331  if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
9332    Diag(VDecl->getLocation(), diag::err_local_cant_init);
9333    VDecl->setInvalidDecl();
9334    return;
9335  }
9336
9337  // Get the decls type and save a reference for later, since
9338  // CheckInitializerTypes may change it.
9339  QualType DclT = VDecl->getType(), SavT = DclT;
9340
9341  // Expressions default to 'id' when we're in a debugger
9342  // and we are assigning it to a variable of Objective-C pointer type.
9343  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
9344      Init->getType() == Context.UnknownAnyTy) {
9345    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
9346    if (Result.isInvalid()) {
9347      VDecl->setInvalidDecl();
9348      return;
9349    }
9350    Init = Result.get();
9351  }
9352
9353  // Perform the initialization.
9354  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
9355  if (!VDecl->isInvalidDecl()) {
9356    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9357    InitializationKind Kind =
9358        DirectInit
9359            ? CXXDirectInit
9360                  ? InitializationKind::CreateDirect(VDecl->getLocation(),
9361                                                     Init->getLocStart(),
9362                                                     Init->getLocEnd())
9363                  : InitializationKind::CreateDirectList(VDecl->getLocation())
9364            : InitializationKind::CreateCopy(VDecl->getLocation(),
9365                                             Init->getLocStart());
9366
9367    MultiExprArg Args = Init;
9368    if (CXXDirectInit)
9369      Args = MultiExprArg(CXXDirectInit->getExprs(),
9370                          CXXDirectInit->getNumExprs());
9371
9372    // Try to correct any TypoExprs in the initialization arguments.
9373    for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
9374      ExprResult Res = CorrectDelayedTyposInExpr(
9375          Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
9376            InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
9377            return Init.Failed() ? ExprError() : E;
9378          });
9379      if (Res.isInvalid()) {
9380        VDecl->setInvalidDecl();
9381      } else if (Res.get() != Args[Idx]) {
9382        Args[Idx] = Res.get();
9383      }
9384    }
9385    if (VDecl->isInvalidDecl())
9386      return;
9387
9388    InitializationSequence InitSeq(*this, Entity, Kind, Args);
9389    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
9390    if (Result.isInvalid()) {
9391      VDecl->setInvalidDecl();
9392      return;
9393    }
9394
9395    Init = Result.getAs<Expr>();
9396  }
9397
9398  // Check for self-references within variable initializers.
9399  // Variables declared within a function/method body (except for references)
9400  // are handled by a dataflow analysis.
9401  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
9402      VDecl->getType()->isReferenceType()) {
9403    CheckSelfReference(*this, RealDecl, Init, DirectInit);
9404  }
9405
9406  // If the type changed, it means we had an incomplete type that was
9407  // completed by the initializer. For example:
9408  //   int ary[] = { 1, 3, 5 };
9409  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
9410  if (!VDecl->isInvalidDecl() && (DclT != SavT))
9411    VDecl->setType(DclT);
9412
9413  if (!VDecl->isInvalidDecl()) {
9414    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
9415
9416    if (VDecl->hasAttr<BlocksAttr>())
9417      checkRetainCycles(VDecl, Init);
9418
9419    // It is safe to assign a weak reference into a strong variable.
9420    // Although this code can still have problems:
9421    //   id x = self.weakProp;
9422    //   id y = self.weakProp;
9423    // we do not warn to warn spuriously when 'x' and 'y' are on separate
9424    // paths through the function. This should be revisited if
9425    // -Wrepeated-use-of-weak is made flow-sensitive.
9426    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
9427        !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
9428                         Init->getLocStart()))
9429      getCurFunction()->markSafeWeakUse(Init);
9430  }
9431
9432  // The initialization is usually a full-expression.
9433  //
9434  // FIXME: If this is a braced initialization of an aggregate, it is not
9435  // an expression, and each individual field initializer is a separate
9436  // full-expression. For instance, in:
9437  //
9438  //   struct Temp { ~Temp(); };
9439  //   struct S { S(Temp); };
9440  //   struct T { S a, b; } t = { Temp(), Temp() }
9441  //
9442  // we should destroy the first Temp before constructing the second.
9443  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
9444                                          false,
9445                                          VDecl->isConstexpr());
9446  if (Result.isInvalid()) {
9447    VDecl->setInvalidDecl();
9448    return;
9449  }
9450  Init = Result.get();
9451
9452  // Attach the initializer to the decl.
9453  VDecl->setInit(Init);
9454
9455  if (VDecl->isLocalVarDecl()) {
9456    // C99 6.7.8p4: All the expressions in an initializer for an object that has
9457    // static storage duration shall be constant expressions or string literals.
9458    // C++ does not have this restriction.
9459    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
9460      const Expr *Culprit;
9461      if (VDecl->getStorageClass() == SC_Static)
9462        CheckForConstantInitializer(Init, DclT);
9463      // C89 is stricter than C99 for non-static aggregate types.
9464      // C89 6.5.7p3: All the expressions [...] in an initializer list
9465      // for an object that has aggregate or union type shall be
9466      // constant expressions.
9467      else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
9468               isa<InitListExpr>(Init) &&
9469               !Init->isConstantInitializer(Context, false, &Culprit))
9470        Diag(Culprit->getExprLoc(),
9471             diag::ext_aggregate_init_not_constant)
9472          << Culprit->getSourceRange();
9473    }
9474  } else if (VDecl->isStaticDataMember() &&
9475             VDecl->getLexicalDeclContext()->isRecord()) {
9476    // This is an in-class initialization for a static data member, e.g.,
9477    //
9478    // struct S {
9479    //   static const int value = 17;
9480    // };
9481
9482    // C++ [class.mem]p4:
9483    //   A member-declarator can contain a constant-initializer only
9484    //   if it declares a static member (9.4) of const integral or
9485    //   const enumeration type, see 9.4.2.
9486    //
9487    // C++11 [class.static.data]p3:
9488    //   If a non-volatile const static data member is of integral or
9489    //   enumeration type, its declaration in the class definition can
9490    //   specify a brace-or-equal-initializer in which every initalizer-clause
9491    //   that is an assignment-expression is a constant expression. A static
9492    //   data member of literal type can be declared in the class definition
9493    //   with the constexpr specifier; if so, its declaration shall specify a
9494    //   brace-or-equal-initializer in which every initializer-clause that is
9495    //   an assignment-expression is a constant expression.
9496
9497    // Do nothing on dependent types.
9498    if (DclT->isDependentType()) {
9499
9500    // Allow any 'static constexpr' members, whether or not they are of literal
9501    // type. We separately check that every constexpr variable is of literal
9502    // type.
9503    } else if (VDecl->isConstexpr()) {
9504
9505    // Require constness.
9506    } else if (!DclT.isConstQualified()) {
9507      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
9508        << Init->getSourceRange();
9509      VDecl->setInvalidDecl();
9510
9511    // We allow integer constant expressions in all cases.
9512    } else if (DclT->isIntegralOrEnumerationType()) {
9513      // Check whether the expression is a constant expression.
9514      SourceLocation Loc;
9515      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
9516        // In C++11, a non-constexpr const static data member with an
9517        // in-class initializer cannot be volatile.
9518        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
9519      else if (Init->isValueDependent())
9520        ; // Nothing to check.
9521      else if (Init->isIntegerConstantExpr(Context, &Loc))
9522        ; // Ok, it's an ICE!
9523      else if (Init->isEvaluatable(Context)) {
9524        // If we can constant fold the initializer through heroics, accept it,
9525        // but report this as a use of an extension for -pedantic.
9526        Diag(Loc, diag::ext_in_class_initializer_non_constant)
9527          << Init->getSourceRange();
9528      } else {
9529        // Otherwise, this is some crazy unknown case.  Report the issue at the
9530        // location provided by the isIntegerConstantExpr failed check.
9531        Diag(Loc, diag::err_in_class_initializer_non_constant)
9532          << Init->getSourceRange();
9533        VDecl->setInvalidDecl();
9534      }
9535
9536    // We allow foldable floating-point constants as an extension.
9537    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
9538      // In C++98, this is a GNU extension. In C++11, it is not, but we support
9539      // it anyway and provide a fixit to add the 'constexpr'.
9540      if (getLangOpts().CPlusPlus11) {
9541        Diag(VDecl->getLocation(),
9542             diag::ext_in_class_initializer_float_type_cxx11)
9543            << DclT << Init->getSourceRange();
9544        Diag(VDecl->getLocStart(),
9545             diag::note_in_class_initializer_float_type_cxx11)
9546            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9547      } else {
9548        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
9549          << DclT << Init->getSourceRange();
9550
9551        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
9552          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
9553            << Init->getSourceRange();
9554          VDecl->setInvalidDecl();
9555        }
9556      }
9557
9558    // Suggest adding 'constexpr' in C++11 for literal types.
9559    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
9560      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
9561        << DclT << Init->getSourceRange()
9562        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9563      VDecl->setConstexpr(true);
9564
9565    } else {
9566      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
9567        << DclT << Init->getSourceRange();
9568      VDecl->setInvalidDecl();
9569    }
9570  } else if (VDecl->isFileVarDecl()) {
9571    if (VDecl->getStorageClass() == SC_Extern &&
9572        (!getLangOpts().CPlusPlus ||
9573         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
9574           VDecl->isExternC())) &&
9575        !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
9576      Diag(VDecl->getLocation(), diag::warn_extern_init);
9577
9578    // C99 6.7.8p4. All file scoped initializers need to be constant.
9579    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
9580      CheckForConstantInitializer(Init, DclT);
9581  }
9582
9583  // We will represent direct-initialization similarly to copy-initialization:
9584  //    int x(1);  -as-> int x = 1;
9585  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9586  //
9587  // Clients that want to distinguish between the two forms, can check for
9588  // direct initializer using VarDecl::getInitStyle().
9589  // A major benefit is that clients that don't particularly care about which
9590  // exactly form was it (like the CodeGen) can handle both cases without
9591  // special case code.
9592
9593  // C++ 8.5p11:
9594  // The form of initialization (using parentheses or '=') is generally
9595  // insignificant, but does matter when the entity being initialized has a
9596  // class type.
9597  if (CXXDirectInit) {
9598    assert(DirectInit && "Call-style initializer must be direct init.");
9599    VDecl->setInitStyle(VarDecl::CallInit);
9600  } else if (DirectInit) {
9601    // This must be list-initialization. No other way is direct-initialization.
9602    VDecl->setInitStyle(VarDecl::ListInit);
9603  }
9604
9605  CheckCompleteVariableDeclaration(VDecl);
9606}
9607
9608/// ActOnInitializerError - Given that there was an error parsing an
9609/// initializer for the given declaration, try to return to some form
9610/// of sanity.
9611void Sema::ActOnInitializerError(Decl *D) {
9612  // Our main concern here is re-establishing invariants like "a
9613  // variable's type is either dependent or complete".
9614  if (!D || D->isInvalidDecl()) return;
9615
9616  VarDecl *VD = dyn_cast<VarDecl>(D);
9617  if (!VD) return;
9618
9619  // Auto types are meaningless if we can't make sense of the initializer.
9620  if (ParsingInitForAutoVars.count(D)) {
9621    D->setInvalidDecl();
9622    return;
9623  }
9624
9625  QualType Ty = VD->getType();
9626  if (Ty->isDependentType()) return;
9627
9628  // Require a complete type.
9629  if (RequireCompleteType(VD->getLocation(),
9630                          Context.getBaseElementType(Ty),
9631                          diag::err_typecheck_decl_incomplete_type)) {
9632    VD->setInvalidDecl();
9633    return;
9634  }
9635
9636  // Require a non-abstract type.
9637  if (RequireNonAbstractType(VD->getLocation(), Ty,
9638                             diag::err_abstract_type_in_decl,
9639                             AbstractVariableType)) {
9640    VD->setInvalidDecl();
9641    return;
9642  }
9643
9644  // Don't bother complaining about constructors or destructors,
9645  // though.
9646}
9647
9648void Sema::ActOnUninitializedDecl(Decl *RealDecl,
9649                                  bool TypeMayContainAuto) {
9650  // If there is no declaration, there was an error parsing it. Just ignore it.
9651  if (!RealDecl)
9652    return;
9653
9654  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
9655    QualType Type = Var->getType();
9656
9657    // C++11 [dcl.spec.auto]p3
9658    if (TypeMayContainAuto && Type->getContainedAutoType()) {
9659      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
9660        << Var->getDeclName() << Type;
9661      Var->setInvalidDecl();
9662      return;
9663    }
9664
9665    // C++11 [class.static.data]p3: A static data member can be declared with
9666    // the constexpr specifier; if so, its declaration shall specify
9667    // a brace-or-equal-initializer.
9668    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
9669    // the definition of a variable [...] or the declaration of a static data
9670    // member.
9671    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
9672      if (Var->isStaticDataMember())
9673        Diag(Var->getLocation(),
9674             diag::err_constexpr_static_mem_var_requires_init)
9675          << Var->getDeclName();
9676      else
9677        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
9678      Var->setInvalidDecl();
9679      return;
9680    }
9681
9682    // C++ Concepts TS [dcl.spec.concept]p1: [...]  A variable template
9683    // definition having the concept specifier is called a variable concept. A
9684    // concept definition refers to [...] a variable concept and its initializer.
9685    if (Var->isConcept()) {
9686      Diag(Var->getLocation(), diag::err_var_concept_not_initialized);
9687      Var->setInvalidDecl();
9688      return;
9689    }
9690
9691    // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
9692    // be initialized.
9693    if (!Var->isInvalidDecl() &&
9694        Var->getType().getAddressSpace() == LangAS::opencl_constant &&
9695        Var->getStorageClass() != SC_Extern && !Var->getInit()) {
9696      Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
9697      Var->setInvalidDecl();
9698      return;
9699    }
9700
9701    switch (Var->isThisDeclarationADefinition()) {
9702    case VarDecl::Definition:
9703      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
9704        break;
9705
9706      // We have an out-of-line definition of a static data member
9707      // that has an in-class initializer, so we type-check this like
9708      // a declaration.
9709      //
9710      // Fall through
9711
9712    case VarDecl::DeclarationOnly:
9713      // It's only a declaration.
9714
9715      // Block scope. C99 6.7p7: If an identifier for an object is
9716      // declared with no linkage (C99 6.2.2p6), the type for the
9717      // object shall be complete.
9718      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
9719          !Var->hasLinkage() && !Var->isInvalidDecl() &&
9720          RequireCompleteType(Var->getLocation(), Type,
9721                              diag::err_typecheck_decl_incomplete_type))
9722        Var->setInvalidDecl();
9723
9724      // Make sure that the type is not abstract.
9725      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9726          RequireNonAbstractType(Var->getLocation(), Type,
9727                                 diag::err_abstract_type_in_decl,
9728                                 AbstractVariableType))
9729        Var->setInvalidDecl();
9730      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9731          Var->getStorageClass() == SC_PrivateExtern) {
9732        Diag(Var->getLocation(), diag::warn_private_extern);
9733        Diag(Var->getLocation(), diag::note_private_extern);
9734      }
9735
9736      return;
9737
9738    case VarDecl::TentativeDefinition:
9739      // File scope. C99 6.9.2p2: A declaration of an identifier for an
9740      // object that has file scope without an initializer, and without a
9741      // storage-class specifier or with the storage-class specifier "static",
9742      // constitutes a tentative definition. Note: A tentative definition with
9743      // external linkage is valid (C99 6.2.2p5).
9744      if (!Var->isInvalidDecl()) {
9745        if (const IncompleteArrayType *ArrayT
9746                                    = Context.getAsIncompleteArrayType(Type)) {
9747          if (RequireCompleteType(Var->getLocation(),
9748                                  ArrayT->getElementType(),
9749                                  diag::err_illegal_decl_array_incomplete_type))
9750            Var->setInvalidDecl();
9751        } else if (Var->getStorageClass() == SC_Static) {
9752          // C99 6.9.2p3: If the declaration of an identifier for an object is
9753          // a tentative definition and has internal linkage (C99 6.2.2p3), the
9754          // declared type shall not be an incomplete type.
9755          // NOTE: code such as the following
9756          //     static struct s;
9757          //     struct s { int a; };
9758          // is accepted by gcc. Hence here we issue a warning instead of
9759          // an error and we do not invalidate the static declaration.
9760          // NOTE: to avoid multiple warnings, only check the first declaration.
9761          if (Var->isFirstDecl())
9762            RequireCompleteType(Var->getLocation(), Type,
9763                                diag::ext_typecheck_decl_incomplete_type);
9764        }
9765      }
9766
9767      // Record the tentative definition; we're done.
9768      if (!Var->isInvalidDecl())
9769        TentativeDefinitions.push_back(Var);
9770      return;
9771    }
9772
9773    // Provide a specific diagnostic for uninitialized variable
9774    // definitions with incomplete array type.
9775    if (Type->isIncompleteArrayType()) {
9776      Diag(Var->getLocation(),
9777           diag::err_typecheck_incomplete_array_needs_initializer);
9778      Var->setInvalidDecl();
9779      return;
9780    }
9781
9782    // Provide a specific diagnostic for uninitialized variable
9783    // definitions with reference type.
9784    if (Type->isReferenceType()) {
9785      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
9786        << Var->getDeclName()
9787        << SourceRange(Var->getLocation(), Var->getLocation());
9788      Var->setInvalidDecl();
9789      return;
9790    }
9791
9792    // Do not attempt to type-check the default initializer for a
9793    // variable with dependent type.
9794    if (Type->isDependentType())
9795      return;
9796
9797    if (Var->isInvalidDecl())
9798      return;
9799
9800    if (!Var->hasAttr<AliasAttr>()) {
9801      if (RequireCompleteType(Var->getLocation(),
9802                              Context.getBaseElementType(Type),
9803                              diag::err_typecheck_decl_incomplete_type)) {
9804        Var->setInvalidDecl();
9805        return;
9806      }
9807    } else {
9808      return;
9809    }
9810
9811    // The variable can not have an abstract class type.
9812    if (RequireNonAbstractType(Var->getLocation(), Type,
9813                               diag::err_abstract_type_in_decl,
9814                               AbstractVariableType)) {
9815      Var->setInvalidDecl();
9816      return;
9817    }
9818
9819    // Check for jumps past the implicit initializer.  C++0x
9820    // clarifies that this applies to a "variable with automatic
9821    // storage duration", not a "local variable".
9822    // C++11 [stmt.dcl]p3
9823    //   A program that jumps from a point where a variable with automatic
9824    //   storage duration is not in scope to a point where it is in scope is
9825    //   ill-formed unless the variable has scalar type, class type with a
9826    //   trivial default constructor and a trivial destructor, a cv-qualified
9827    //   version of one of these types, or an array of one of the preceding
9828    //   types and is declared without an initializer.
9829    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
9830      if (const RecordType *Record
9831            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
9832        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
9833        // Mark the function for further checking even if the looser rules of
9834        // C++11 do not require such checks, so that we can diagnose
9835        // incompatibilities with C++98.
9836        if (!CXXRecord->isPOD())
9837          getCurFunction()->setHasBranchProtectedScope();
9838      }
9839    }
9840
9841    // C++03 [dcl.init]p9:
9842    //   If no initializer is specified for an object, and the
9843    //   object is of (possibly cv-qualified) non-POD class type (or
9844    //   array thereof), the object shall be default-initialized; if
9845    //   the object is of const-qualified type, the underlying class
9846    //   type shall have a user-declared default
9847    //   constructor. Otherwise, if no initializer is specified for
9848    //   a non- static object, the object and its subobjects, if
9849    //   any, have an indeterminate initial value); if the object
9850    //   or any of its subobjects are of const-qualified type, the
9851    //   program is ill-formed.
9852    // C++0x [dcl.init]p11:
9853    //   If no initializer is specified for an object, the object is
9854    //   default-initialized; [...].
9855    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
9856    InitializationKind Kind
9857      = InitializationKind::CreateDefault(Var->getLocation());
9858
9859    InitializationSequence InitSeq(*this, Entity, Kind, None);
9860    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
9861    if (Init.isInvalid())
9862      Var->setInvalidDecl();
9863    else if (Init.get()) {
9864      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
9865      // This is important for template substitution.
9866      Var->setInitStyle(VarDecl::CallInit);
9867    }
9868
9869    CheckCompleteVariableDeclaration(Var);
9870  }
9871}
9872
9873void Sema::ActOnCXXForRangeDecl(Decl *D) {
9874  VarDecl *VD = dyn_cast<VarDecl>(D);
9875  if (!VD) {
9876    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
9877    D->setInvalidDecl();
9878    return;
9879  }
9880
9881  VD->setCXXForRangeDecl(true);
9882
9883  // for-range-declaration cannot be given a storage class specifier.
9884  int Error = -1;
9885  switch (VD->getStorageClass()) {
9886  case SC_None:
9887    break;
9888  case SC_Extern:
9889    Error = 0;
9890    break;
9891  case SC_Static:
9892    Error = 1;
9893    break;
9894  case SC_PrivateExtern:
9895    Error = 2;
9896    break;
9897  case SC_Auto:
9898    Error = 3;
9899    break;
9900  case SC_Register:
9901    Error = 4;
9902    break;
9903  }
9904  if (Error != -1) {
9905    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
9906      << VD->getDeclName() << Error;
9907    D->setInvalidDecl();
9908  }
9909}
9910
9911StmtResult
9912Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
9913                                 IdentifierInfo *Ident,
9914                                 ParsedAttributes &Attrs,
9915                                 SourceLocation AttrEnd) {
9916  // C++1y [stmt.iter]p1:
9917  //   A range-based for statement of the form
9918  //      for ( for-range-identifier : for-range-initializer ) statement
9919  //   is equivalent to
9920  //      for ( auto&& for-range-identifier : for-range-initializer ) statement
9921  DeclSpec DS(Attrs.getPool().getFactory());
9922
9923  const char *PrevSpec;
9924  unsigned DiagID;
9925  DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
9926                     getPrintingPolicy());
9927
9928  Declarator D(DS, Declarator::ForContext);
9929  D.SetIdentifier(Ident, IdentLoc);
9930  D.takeAttributes(Attrs, AttrEnd);
9931
9932  ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
9933  D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
9934                EmptyAttrs, IdentLoc);
9935  Decl *Var = ActOnDeclarator(S, D);
9936  cast<VarDecl>(Var)->setCXXForRangeDecl(true);
9937  FinalizeDeclaration(Var);
9938  return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
9939                       AttrEnd.isValid() ? AttrEnd : IdentLoc);
9940}
9941
9942void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
9943  if (var->isInvalidDecl()) return;
9944
9945  // In Objective-C, don't allow jumps past the implicit initialization of a
9946  // local retaining variable.
9947  if (getLangOpts().ObjC1 &&
9948      var->hasLocalStorage()) {
9949    switch (var->getType().getObjCLifetime()) {
9950    case Qualifiers::OCL_None:
9951    case Qualifiers::OCL_ExplicitNone:
9952    case Qualifiers::OCL_Autoreleasing:
9953      break;
9954
9955    case Qualifiers::OCL_Weak:
9956    case Qualifiers::OCL_Strong:
9957      getCurFunction()->setHasBranchProtectedScope();
9958      break;
9959    }
9960  }
9961
9962  // Warn about externally-visible variables being defined without a
9963  // prior declaration.  We only want to do this for global
9964  // declarations, but we also specifically need to avoid doing it for
9965  // class members because the linkage of an anonymous class can
9966  // change if it's later given a typedef name.
9967  if (var->isThisDeclarationADefinition() &&
9968      var->getDeclContext()->getRedeclContext()->isFileContext() &&
9969      var->isExternallyVisible() && var->hasLinkage() &&
9970      !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
9971                                  var->getLocation())) {
9972    // Find a previous declaration that's not a definition.
9973    VarDecl *prev = var->getPreviousDecl();
9974    while (prev && prev->isThisDeclarationADefinition())
9975      prev = prev->getPreviousDecl();
9976
9977    if (!prev)
9978      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
9979  }
9980
9981  if (var->getTLSKind() == VarDecl::TLS_Static) {
9982    const Expr *Culprit;
9983    if (var->getType().isDestructedType()) {
9984      // GNU C++98 edits for __thread, [basic.start.term]p3:
9985      //   The type of an object with thread storage duration shall not
9986      //   have a non-trivial destructor.
9987      Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
9988      if (getLangOpts().CPlusPlus11)
9989        Diag(var->getLocation(), diag::note_use_thread_local);
9990    } else if (getLangOpts().CPlusPlus && var->hasInit() &&
9991               !var->getInit()->isConstantInitializer(
9992                   Context, var->getType()->isReferenceType(), &Culprit)) {
9993      // GNU C++98 edits for __thread, [basic.start.init]p4:
9994      //   An object of thread storage duration shall not require dynamic
9995      //   initialization.
9996      // FIXME: Need strict checking here.
9997      Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
9998        << Culprit->getSourceRange();
9999      if (getLangOpts().CPlusPlus11)
10000        Diag(var->getLocation(), diag::note_use_thread_local);
10001    }
10002
10003  }
10004
10005  // Apply section attributes and pragmas to global variables.
10006  bool GlobalStorage = var->hasGlobalStorage();
10007  if (GlobalStorage && var->isThisDeclarationADefinition() &&
10008      ActiveTemplateInstantiations.empty()) {
10009    PragmaStack<StringLiteral *> *Stack = nullptr;
10010    int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
10011    if (var->getType().isConstQualified())
10012      Stack = &ConstSegStack;
10013    else if (!var->getInit()) {
10014      Stack = &BSSSegStack;
10015      SectionFlags |= ASTContext::PSF_Write;
10016    } else {
10017      Stack = &DataSegStack;
10018      SectionFlags |= ASTContext::PSF_Write;
10019    }
10020    if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
10021      var->addAttr(SectionAttr::CreateImplicit(
10022          Context, SectionAttr::Declspec_allocate,
10023          Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
10024    }
10025    if (const SectionAttr *SA = var->getAttr<SectionAttr>())
10026      if (UnifySection(SA->getName(), SectionFlags, var))
10027        var->dropAttr<SectionAttr>();
10028
10029    // Apply the init_seg attribute if this has an initializer.  If the
10030    // initializer turns out to not be dynamic, we'll end up ignoring this
10031    // attribute.
10032    if (CurInitSeg && var->getInit())
10033      var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
10034                                               CurInitSegLoc));
10035  }
10036
10037  // All the following checks are C++ only.
10038  if (!getLangOpts().CPlusPlus) return;
10039
10040  QualType type = var->getType();
10041  if (type->isDependentType()) return;
10042
10043  // __block variables might require us to capture a copy-initializer.
10044  if (var->hasAttr<BlocksAttr>()) {
10045    // It's currently invalid to ever have a __block variable with an
10046    // array type; should we diagnose that here?
10047
10048    // Regardless, we don't want to ignore array nesting when
10049    // constructing this copy.
10050    if (type->isStructureOrClassType()) {
10051      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10052      SourceLocation poi = var->getLocation();
10053      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
10054      ExprResult result
10055        = PerformMoveOrCopyInitialization(
10056            InitializedEntity::InitializeBlock(poi, type, false),
10057            var, var->getType(), varRef, /*AllowNRVO=*/true);
10058      if (!result.isInvalid()) {
10059        result = MaybeCreateExprWithCleanups(result);
10060        Expr *init = result.getAs<Expr>();
10061        Context.setBlockVarCopyInits(var, init);
10062      }
10063    }
10064  }
10065
10066  Expr *Init = var->getInit();
10067  bool IsGlobal = GlobalStorage && !var->isStaticLocal();
10068  QualType baseType = Context.getBaseElementType(type);
10069
10070  if (!var->getDeclContext()->isDependentContext() &&
10071      Init && !Init->isValueDependent()) {
10072    if (IsGlobal && !var->isConstexpr() &&
10073        !getDiagnostics().isIgnored(diag::warn_global_constructor,
10074                                    var->getLocation())) {
10075      // Warn about globals which don't have a constant initializer.  Don't
10076      // warn about globals with a non-trivial destructor because we already
10077      // warned about them.
10078      CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
10079      if (!(RD && !RD->hasTrivialDestructor()) &&
10080          !Init->isConstantInitializer(Context, baseType->isReferenceType()))
10081        Diag(var->getLocation(), diag::warn_global_constructor)
10082          << Init->getSourceRange();
10083    }
10084
10085    if (var->isConstexpr()) {
10086      SmallVector<PartialDiagnosticAt, 8> Notes;
10087      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
10088        SourceLocation DiagLoc = var->getLocation();
10089        // If the note doesn't add any useful information other than a source
10090        // location, fold it into the primary diagnostic.
10091        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10092              diag::note_invalid_subexpr_in_const_expr) {
10093          DiagLoc = Notes[0].first;
10094          Notes.clear();
10095        }
10096        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
10097          << var << Init->getSourceRange();
10098        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10099          Diag(Notes[I].first, Notes[I].second);
10100      }
10101    } else if (var->isUsableInConstantExpressions(Context)) {
10102      // Check whether the initializer of a const variable of integral or
10103      // enumeration type is an ICE now, since we can't tell whether it was
10104      // initialized by a constant expression if we check later.
10105      var->checkInitIsICE();
10106    }
10107  }
10108
10109  // Require the destructor.
10110  if (const RecordType *recordType = baseType->getAs<RecordType>())
10111    FinalizeVarWithDestructor(var, recordType);
10112}
10113
10114/// \brief Determines if a variable's alignment is dependent.
10115static bool hasDependentAlignment(VarDecl *VD) {
10116  if (VD->getType()->isDependentType())
10117    return true;
10118  for (auto *I : VD->specific_attrs<AlignedAttr>())
10119    if (I->isAlignmentDependent())
10120      return true;
10121  return false;
10122}
10123
10124/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
10125/// any semantic actions necessary after any initializer has been attached.
10126void
10127Sema::FinalizeDeclaration(Decl *ThisDecl) {
10128  // Note that we are no longer parsing the initializer for this declaration.
10129  ParsingInitForAutoVars.erase(ThisDecl);
10130
10131  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
10132  if (!VD)
10133    return;
10134
10135  checkAttributesAfterMerging(*this, *VD);
10136
10137  // Perform TLS alignment check here after attributes attached to the variable
10138  // which may affect the alignment have been processed. Only perform the check
10139  // if the target has a maximum TLS alignment (zero means no constraints).
10140  if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
10141    // Protect the check so that it's not performed on dependent types and
10142    // dependent alignments (we can't determine the alignment in that case).
10143    if (VD->getTLSKind() && !hasDependentAlignment(VD)) {
10144      CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
10145      if (Context.getDeclAlign(VD) > MaxAlignChars) {
10146        Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
10147          << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
10148          << (unsigned)MaxAlignChars.getQuantity();
10149      }
10150    }
10151  }
10152
10153  // Static locals inherit dll attributes from their function.
10154  if (VD->isStaticLocal()) {
10155    if (FunctionDecl *FD =
10156            dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
10157      if (Attr *A = getDLLAttr(FD)) {
10158        auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
10159        NewAttr->setInherited(true);
10160        VD->addAttr(NewAttr);
10161      }
10162    }
10163  }
10164
10165  // Grab the dllimport or dllexport attribute off of the VarDecl.
10166  const InheritableAttr *DLLAttr = getDLLAttr(VD);
10167
10168  // Imported static data members cannot be defined out-of-line.
10169  if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
10170    if (VD->isStaticDataMember() && VD->isOutOfLine() &&
10171        VD->isThisDeclarationADefinition()) {
10172      // We allow definitions of dllimport class template static data members
10173      // with a warning.
10174      CXXRecordDecl *Context =
10175        cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
10176      bool IsClassTemplateMember =
10177          isa<ClassTemplatePartialSpecializationDecl>(Context) ||
10178          Context->getDescribedClassTemplate();
10179
10180      Diag(VD->getLocation(),
10181           IsClassTemplateMember
10182               ? diag::warn_attribute_dllimport_static_field_definition
10183               : diag::err_attribute_dllimport_static_field_definition);
10184      Diag(IA->getLocation(), diag::note_attribute);
10185      if (!IsClassTemplateMember)
10186        VD->setInvalidDecl();
10187    }
10188  }
10189
10190  // dllimport/dllexport variables cannot be thread local, their TLS index
10191  // isn't exported with the variable.
10192  if (DLLAttr && VD->getTLSKind()) {
10193    auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
10194    if (F && getDLLAttr(F)) {
10195      assert(VD->isStaticLocal());
10196      // But if this is a static local in a dlimport/dllexport function, the
10197      // function will never be inlined, which means the var would never be
10198      // imported, so having it marked import/export is safe.
10199    } else {
10200      Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
10201                                                                    << DLLAttr;
10202      VD->setInvalidDecl();
10203    }
10204  }
10205
10206  if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
10207    if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
10208      Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
10209      VD->dropAttr<UsedAttr>();
10210    }
10211  }
10212
10213  const DeclContext *DC = VD->getDeclContext();
10214  // If there's a #pragma GCC visibility in scope, and this isn't a class
10215  // member, set the visibility of this variable.
10216  if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
10217    AddPushedVisibilityAttribute(VD);
10218
10219  // FIXME: Warn on unused templates.
10220  if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
10221      !isa<VarTemplatePartialSpecializationDecl>(VD))
10222    MarkUnusedFileScopedDecl(VD);
10223
10224  // Now we have parsed the initializer and can update the table of magic
10225  // tag values.
10226  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
10227      !VD->getType()->isIntegralOrEnumerationType())
10228    return;
10229
10230  for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
10231    const Expr *MagicValueExpr = VD->getInit();
10232    if (!MagicValueExpr) {
10233      continue;
10234    }
10235    llvm::APSInt MagicValueInt;
10236    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
10237      Diag(I->getRange().getBegin(),
10238           diag::err_type_tag_for_datatype_not_ice)
10239        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
10240      continue;
10241    }
10242    if (MagicValueInt.getActiveBits() > 64) {
10243      Diag(I->getRange().getBegin(),
10244           diag::err_type_tag_for_datatype_too_large)
10245        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
10246      continue;
10247    }
10248    uint64_t MagicValue = MagicValueInt.getZExtValue();
10249    RegisterTypeTagForDatatype(I->getArgumentKind(),
10250                               MagicValue,
10251                               I->getMatchingCType(),
10252                               I->getLayoutCompatible(),
10253                               I->getMustBeNull());
10254  }
10255}
10256
10257Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
10258                                                   ArrayRef<Decl *> Group) {
10259  SmallVector<Decl*, 8> Decls;
10260
10261  if (DS.isTypeSpecOwned())
10262    Decls.push_back(DS.getRepAsDecl());
10263
10264  DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
10265  for (unsigned i = 0, e = Group.size(); i != e; ++i)
10266    if (Decl *D = Group[i]) {
10267      if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
10268        if (!FirstDeclaratorInGroup)
10269          FirstDeclaratorInGroup = DD;
10270      Decls.push_back(D);
10271    }
10272
10273  if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
10274    if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
10275      handleTagNumbering(Tag, S);
10276      if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
10277          getLangOpts().CPlusPlus)
10278        Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
10279    }
10280  }
10281
10282  return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
10283}
10284
10285/// BuildDeclaratorGroup - convert a list of declarations into a declaration
10286/// group, performing any necessary semantic checking.
10287Sema::DeclGroupPtrTy
10288Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
10289                           bool TypeMayContainAuto) {
10290  // C++0x [dcl.spec.auto]p7:
10291  //   If the type deduced for the template parameter U is not the same in each
10292  //   deduction, the program is ill-formed.
10293  // FIXME: When initializer-list support is added, a distinction is needed
10294  // between the deduced type U and the deduced type which 'auto' stands for.
10295  //   auto a = 0, b = { 1, 2, 3 };
10296  // is legal because the deduced type U is 'int' in both cases.
10297  if (TypeMayContainAuto && Group.size() > 1) {
10298    QualType Deduced;
10299    CanQualType DeducedCanon;
10300    VarDecl *DeducedDecl = nullptr;
10301    for (unsigned i = 0, e = Group.size(); i != e; ++i) {
10302      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
10303        AutoType *AT = D->getType()->getContainedAutoType();
10304        // Don't reissue diagnostics when instantiating a template.
10305        if (AT && D->isInvalidDecl())
10306          break;
10307        QualType U = AT ? AT->getDeducedType() : QualType();
10308        if (!U.isNull()) {
10309          CanQualType UCanon = Context.getCanonicalType(U);
10310          if (Deduced.isNull()) {
10311            Deduced = U;
10312            DeducedCanon = UCanon;
10313            DeducedDecl = D;
10314          } else if (DeducedCanon != UCanon) {
10315            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
10316                 diag::err_auto_different_deductions)
10317              << (unsigned)AT->getKeyword()
10318              << Deduced << DeducedDecl->getDeclName()
10319              << U << D->getDeclName()
10320              << DeducedDecl->getInit()->getSourceRange()
10321              << D->getInit()->getSourceRange();
10322            D->setInvalidDecl();
10323            break;
10324          }
10325        }
10326      }
10327    }
10328  }
10329
10330  ActOnDocumentableDecls(Group);
10331
10332  return DeclGroupPtrTy::make(
10333      DeclGroupRef::Create(Context, Group.data(), Group.size()));
10334}
10335
10336void Sema::ActOnDocumentableDecl(Decl *D) {
10337  ActOnDocumentableDecls(D);
10338}
10339
10340void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
10341  // Don't parse the comment if Doxygen diagnostics are ignored.
10342  if (Group.empty() || !Group[0])
10343    return;
10344
10345  if (Diags.isIgnored(diag::warn_doc_param_not_found,
10346                      Group[0]->getLocation()) &&
10347      Diags.isIgnored(diag::warn_unknown_comment_command_name,
10348                      Group[0]->getLocation()))
10349    return;
10350
10351  if (Group.size() >= 2) {
10352    // This is a decl group.  Normally it will contain only declarations
10353    // produced from declarator list.  But in case we have any definitions or
10354    // additional declaration references:
10355    //   'typedef struct S {} S;'
10356    //   'typedef struct S *S;'
10357    //   'struct S *pS;'
10358    // FinalizeDeclaratorGroup adds these as separate declarations.
10359    Decl *MaybeTagDecl = Group[0];
10360    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
10361      Group = Group.slice(1);
10362    }
10363  }
10364
10365  // See if there are any new comments that are not attached to a decl.
10366  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
10367  if (!Comments.empty() &&
10368      !Comments.back()->isAttached()) {
10369    // There is at least one comment that not attached to a decl.
10370    // Maybe it should be attached to one of these decls?
10371    //
10372    // Note that this way we pick up not only comments that precede the
10373    // declaration, but also comments that *follow* the declaration -- thanks to
10374    // the lookahead in the lexer: we've consumed the semicolon and looked
10375    // ahead through comments.
10376    for (unsigned i = 0, e = Group.size(); i != e; ++i)
10377      Context.getCommentForDecl(Group[i], &PP);
10378  }
10379}
10380
10381/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
10382/// to introduce parameters into function prototype scope.
10383Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
10384  const DeclSpec &DS = D.getDeclSpec();
10385
10386  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
10387
10388  // C++03 [dcl.stc]p2 also permits 'auto'.
10389  StorageClass SC = SC_None;
10390  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
10391    SC = SC_Register;
10392  } else if (getLangOpts().CPlusPlus &&
10393             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
10394    SC = SC_Auto;
10395  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
10396    Diag(DS.getStorageClassSpecLoc(),
10397         diag::err_invalid_storage_class_in_func_decl);
10398    D.getMutableDeclSpec().ClearStorageClassSpecs();
10399  }
10400
10401  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
10402    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
10403      << DeclSpec::getSpecifierName(TSCS);
10404  if (DS.isConstexprSpecified())
10405    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
10406      << 0;
10407  if (DS.isConceptSpecified())
10408    Diag(DS.getConceptSpecLoc(), diag::err_concept_wrong_decl_kind);
10409
10410  DiagnoseFunctionSpecifiers(DS);
10411
10412  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10413  QualType parmDeclType = TInfo->getType();
10414
10415  if (getLangOpts().CPlusPlus) {
10416    // Check that there are no default arguments inside the type of this
10417    // parameter.
10418    CheckExtraCXXDefaultArguments(D);
10419
10420    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
10421    if (D.getCXXScopeSpec().isSet()) {
10422      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
10423        << D.getCXXScopeSpec().getRange();
10424      D.getCXXScopeSpec().clear();
10425    }
10426  }
10427
10428  // Ensure we have a valid name
10429  IdentifierInfo *II = nullptr;
10430  if (D.hasName()) {
10431    II = D.getIdentifier();
10432    if (!II) {
10433      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
10434        << GetNameForDeclarator(D).getName();
10435      D.setInvalidType(true);
10436    }
10437  }
10438
10439  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
10440  if (II) {
10441    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
10442                   ForRedeclaration);
10443    LookupName(R, S);
10444    if (R.isSingleResult()) {
10445      NamedDecl *PrevDecl = R.getFoundDecl();
10446      if (PrevDecl->isTemplateParameter()) {
10447        // Maybe we will complain about the shadowed template parameter.
10448        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10449        // Just pretend that we didn't see the previous declaration.
10450        PrevDecl = nullptr;
10451      } else if (S->isDeclScope(PrevDecl)) {
10452        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
10453        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10454
10455        // Recover by removing the name
10456        II = nullptr;
10457        D.SetIdentifier(nullptr, D.getIdentifierLoc());
10458        D.setInvalidType(true);
10459      }
10460    }
10461  }
10462
10463  // Temporarily put parameter variables in the translation unit, not
10464  // the enclosing context.  This prevents them from accidentally
10465  // looking like class members in C++.
10466  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
10467                                    D.getLocStart(),
10468                                    D.getIdentifierLoc(), II,
10469                                    parmDeclType, TInfo,
10470                                    SC);
10471
10472  if (D.isInvalidType())
10473    New->setInvalidDecl();
10474
10475  assert(S->isFunctionPrototypeScope());
10476  assert(S->getFunctionPrototypeDepth() >= 1);
10477  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
10478                    S->getNextFunctionPrototypeIndex());
10479
10480  // Add the parameter declaration into this scope.
10481  S->AddDecl(New);
10482  if (II)
10483    IdResolver.AddDecl(New);
10484
10485  ProcessDeclAttributes(S, New, D);
10486
10487  if (D.getDeclSpec().isModulePrivateSpecified())
10488    Diag(New->getLocation(), diag::err_module_private_local)
10489      << 1 << New->getDeclName()
10490      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10491      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10492
10493  if (New->hasAttr<BlocksAttr>()) {
10494    Diag(New->getLocation(), diag::err_block_on_nonlocal);
10495  }
10496  return New;
10497}
10498
10499/// \brief Synthesizes a variable for a parameter arising from a
10500/// typedef.
10501ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
10502                                              SourceLocation Loc,
10503                                              QualType T) {
10504  /* FIXME: setting StartLoc == Loc.
10505     Would it be worth to modify callers so as to provide proper source
10506     location for the unnamed parameters, embedding the parameter's type? */
10507  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
10508                                T, Context.getTrivialTypeSourceInfo(T, Loc),
10509                                           SC_None, nullptr);
10510  Param->setImplicit();
10511  return Param;
10512}
10513
10514void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
10515                                    ParmVarDecl * const *ParamEnd) {
10516  // Don't diagnose unused-parameter errors in template instantiations; we
10517  // will already have done so in the template itself.
10518  if (!ActiveTemplateInstantiations.empty())
10519    return;
10520
10521  for (; Param != ParamEnd; ++Param) {
10522    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
10523        !(*Param)->hasAttr<UnusedAttr>()) {
10524      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
10525        << (*Param)->getDeclName();
10526    }
10527  }
10528}
10529
10530void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
10531                                                  ParmVarDecl * const *ParamEnd,
10532                                                  QualType ReturnTy,
10533                                                  NamedDecl *D) {
10534  if (LangOpts.NumLargeByValueCopy == 0) // No check.
10535    return;
10536
10537  // Warn if the return value is pass-by-value and larger than the specified
10538  // threshold.
10539  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
10540    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
10541    if (Size > LangOpts.NumLargeByValueCopy)
10542      Diag(D->getLocation(), diag::warn_return_value_size)
10543          << D->getDeclName() << Size;
10544  }
10545
10546  // Warn if any parameter is pass-by-value and larger than the specified
10547  // threshold.
10548  for (; Param != ParamEnd; ++Param) {
10549    QualType T = (*Param)->getType();
10550    if (T->isDependentType() || !T.isPODType(Context))
10551      continue;
10552    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
10553    if (Size > LangOpts.NumLargeByValueCopy)
10554      Diag((*Param)->getLocation(), diag::warn_parameter_size)
10555          << (*Param)->getDeclName() << Size;
10556  }
10557}
10558
10559ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
10560                                  SourceLocation NameLoc, IdentifierInfo *Name,
10561                                  QualType T, TypeSourceInfo *TSInfo,
10562                                  StorageClass SC) {
10563  // In ARC, infer a lifetime qualifier for appropriate parameter types.
10564  if (getLangOpts().ObjCAutoRefCount &&
10565      T.getObjCLifetime() == Qualifiers::OCL_None &&
10566      T->isObjCLifetimeType()) {
10567
10568    Qualifiers::ObjCLifetime lifetime;
10569
10570    // Special cases for arrays:
10571    //   - if it's const, use __unsafe_unretained
10572    //   - otherwise, it's an error
10573    if (T->isArrayType()) {
10574      if (!T.isConstQualified()) {
10575        DelayedDiagnostics.add(
10576            sema::DelayedDiagnostic::makeForbiddenType(
10577            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
10578      }
10579      lifetime = Qualifiers::OCL_ExplicitNone;
10580    } else {
10581      lifetime = T->getObjCARCImplicitLifetime();
10582    }
10583    T = Context.getLifetimeQualifiedType(T, lifetime);
10584  }
10585
10586  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
10587                                         Context.getAdjustedParameterType(T),
10588                                         TSInfo, SC, nullptr);
10589
10590  // Parameters can not be abstract class types.
10591  // For record types, this is done by the AbstractClassUsageDiagnoser once
10592  // the class has been completely parsed.
10593  if (!CurContext->isRecord() &&
10594      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
10595                             AbstractParamType))
10596    New->setInvalidDecl();
10597
10598  // Parameter declarators cannot be interface types. All ObjC objects are
10599  // passed by reference.
10600  if (T->isObjCObjectType()) {
10601    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
10602    Diag(NameLoc,
10603         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
10604      << FixItHint::CreateInsertion(TypeEndLoc, "*");
10605    T = Context.getObjCObjectPointerType(T);
10606    New->setType(T);
10607  }
10608
10609  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
10610  // duration shall not be qualified by an address-space qualifier."
10611  // Since all parameters have automatic store duration, they can not have
10612  // an address space.
10613  if (T.getAddressSpace() != 0) {
10614    // OpenCL allows function arguments declared to be an array of a type
10615    // to be qualified with an address space.
10616    if (!(getLangOpts().OpenCL && T->isArrayType())) {
10617      Diag(NameLoc, diag::err_arg_with_address_space);
10618      New->setInvalidDecl();
10619    }
10620  }
10621
10622  return New;
10623}
10624
10625void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
10626                                           SourceLocation LocAfterDecls) {
10627  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10628
10629  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
10630  // for a K&R function.
10631  if (!FTI.hasPrototype) {
10632    for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
10633      --i;
10634      if (FTI.Params[i].Param == nullptr) {
10635        SmallString<256> Code;
10636        llvm::raw_svector_ostream(Code)
10637            << "  int " << FTI.Params[i].Ident->getName() << ";\n";
10638        Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
10639            << FTI.Params[i].Ident
10640            << FixItHint::CreateInsertion(LocAfterDecls, Code);
10641
10642        // Implicitly declare the argument as type 'int' for lack of a better
10643        // type.
10644        AttributeFactory attrs;
10645        DeclSpec DS(attrs);
10646        const char* PrevSpec; // unused
10647        unsigned DiagID; // unused
10648        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
10649                           DiagID, Context.getPrintingPolicy());
10650        // Use the identifier location for the type source range.
10651        DS.SetRangeStart(FTI.Params[i].IdentLoc);
10652        DS.SetRangeEnd(FTI.Params[i].IdentLoc);
10653        Declarator ParamD(DS, Declarator::KNRTypeListContext);
10654        ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
10655        FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
10656      }
10657    }
10658  }
10659}
10660
10661Decl *
10662Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
10663                              MultiTemplateParamsArg TemplateParameterLists,
10664                              SkipBodyInfo *SkipBody) {
10665  assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
10666  assert(D.isFunctionDeclarator() && "Not a function declarator!");
10667  Scope *ParentScope = FnBodyScope->getParent();
10668
10669  D.setFunctionDefinitionKind(FDK_Definition);
10670  Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
10671  return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
10672}
10673
10674void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
10675  Consumer.HandleInlineMethodDefinition(D);
10676}
10677
10678static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
10679                             const FunctionDecl*& PossibleZeroParamPrototype) {
10680  // Don't warn about invalid declarations.
10681  if (FD->isInvalidDecl())
10682    return false;
10683
10684  // Or declarations that aren't global.
10685  if (!FD->isGlobal())
10686    return false;
10687
10688  // Don't warn about C++ member functions.
10689  if (isa<CXXMethodDecl>(FD))
10690    return false;
10691
10692  // Don't warn about 'main'.
10693  if (FD->isMain())
10694    return false;
10695
10696  // Don't warn about inline functions.
10697  if (FD->isInlined())
10698    return false;
10699
10700  // Don't warn about function templates.
10701  if (FD->getDescribedFunctionTemplate())
10702    return false;
10703
10704  // Don't warn about function template specializations.
10705  if (FD->isFunctionTemplateSpecialization())
10706    return false;
10707
10708  // Don't warn for OpenCL kernels.
10709  if (FD->hasAttr<OpenCLKernelAttr>())
10710    return false;
10711
10712  // Don't warn on explicitly deleted functions.
10713  if (FD->isDeleted())
10714    return false;
10715
10716  bool MissingPrototype = true;
10717  for (const FunctionDecl *Prev = FD->getPreviousDecl();
10718       Prev; Prev = Prev->getPreviousDecl()) {
10719    // Ignore any declarations that occur in function or method
10720    // scope, because they aren't visible from the header.
10721    if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
10722      continue;
10723
10724    MissingPrototype = !Prev->getType()->isFunctionProtoType();
10725    if (FD->getNumParams() == 0)
10726      PossibleZeroParamPrototype = Prev;
10727    break;
10728  }
10729
10730  return MissingPrototype;
10731}
10732
10733void
10734Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
10735                                   const FunctionDecl *EffectiveDefinition,
10736                                   SkipBodyInfo *SkipBody) {
10737  // Don't complain if we're in GNU89 mode and the previous definition
10738  // was an extern inline function.
10739  const FunctionDecl *Definition = EffectiveDefinition;
10740  if (!Definition)
10741    if (!FD->isDefined(Definition))
10742      return;
10743
10744  if (canRedefineFunction(Definition, getLangOpts()))
10745    return;
10746
10747  // If we don't have a visible definition of the function, and it's inline or
10748  // a template, skip the new definition.
10749  if (SkipBody && !hasVisibleDefinition(Definition) &&
10750      (Definition->getFormalLinkage() == InternalLinkage ||
10751       Definition->isInlined() ||
10752       Definition->getDescribedFunctionTemplate() ||
10753       Definition->getNumTemplateParameterLists())) {
10754    SkipBody->ShouldSkip = true;
10755    if (auto *TD = Definition->getDescribedFunctionTemplate())
10756      makeMergedDefinitionVisible(TD, FD->getLocation());
10757    else
10758      makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition),
10759                                  FD->getLocation());
10760    return;
10761  }
10762
10763  if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
10764      Definition->getStorageClass() == SC_Extern)
10765    Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
10766        << FD->getDeclName() << getLangOpts().CPlusPlus;
10767  else
10768    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
10769
10770  Diag(Definition->getLocation(), diag::note_previous_definition);
10771  FD->setInvalidDecl();
10772}
10773
10774
10775static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
10776                                   Sema &S) {
10777  CXXRecordDecl *const LambdaClass = CallOperator->getParent();
10778
10779  LambdaScopeInfo *LSI = S.PushLambdaScope();
10780  LSI->CallOperator = CallOperator;
10781  LSI->Lambda = LambdaClass;
10782  LSI->ReturnType = CallOperator->getReturnType();
10783  const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
10784
10785  if (LCD == LCD_None)
10786    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
10787  else if (LCD == LCD_ByCopy)
10788    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
10789  else if (LCD == LCD_ByRef)
10790    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
10791  DeclarationNameInfo DNI = CallOperator->getNameInfo();
10792
10793  LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
10794  LSI->Mutable = !CallOperator->isConst();
10795
10796  // Add the captures to the LSI so they can be noted as already
10797  // captured within tryCaptureVar.
10798  auto I = LambdaClass->field_begin();
10799  for (const auto &C : LambdaClass->captures()) {
10800    if (C.capturesVariable()) {
10801      VarDecl *VD = C.getCapturedVar();
10802      if (VD->isInitCapture())
10803        S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
10804      QualType CaptureType = VD->getType();
10805      const bool ByRef = C.getCaptureKind() == LCK_ByRef;
10806      LSI->addCapture(VD, /*IsBlock*/false, ByRef,
10807          /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
10808          /*EllipsisLoc*/C.isPackExpansion()
10809                         ? C.getEllipsisLoc() : SourceLocation(),
10810          CaptureType, /*Expr*/ nullptr);
10811
10812    } else if (C.capturesThis()) {
10813      LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
10814                              S.getCurrentThisType(), /*Expr*/ nullptr);
10815    } else {
10816      LSI->addVLATypeCapture(C.getLocation(), I->getType());
10817    }
10818    ++I;
10819  }
10820}
10821
10822Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
10823                                    SkipBodyInfo *SkipBody) {
10824  // Clear the last template instantiation error context.
10825  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
10826
10827  if (!D)
10828    return D;
10829  FunctionDecl *FD = nullptr;
10830
10831  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
10832    FD = FunTmpl->getTemplatedDecl();
10833  else
10834    FD = cast<FunctionDecl>(D);
10835
10836  // See if this is a redefinition.
10837  if (!FD->isLateTemplateParsed()) {
10838    CheckForFunctionRedefinition(FD, nullptr, SkipBody);
10839
10840    // If we're skipping the body, we're done. Don't enter the scope.
10841    if (SkipBody && SkipBody->ShouldSkip)
10842      return D;
10843  }
10844
10845  // If we are instantiating a generic lambda call operator, push
10846  // a LambdaScopeInfo onto the function stack.  But use the information
10847  // that's already been calculated (ActOnLambdaExpr) to prime the current
10848  // LambdaScopeInfo.
10849  // When the template operator is being specialized, the LambdaScopeInfo,
10850  // has to be properly restored so that tryCaptureVariable doesn't try
10851  // and capture any new variables. In addition when calculating potential
10852  // captures during transformation of nested lambdas, it is necessary to
10853  // have the LSI properly restored.
10854  if (isGenericLambdaCallOperatorSpecialization(FD)) {
10855    assert(ActiveTemplateInstantiations.size() &&
10856      "There should be an active template instantiation on the stack "
10857      "when instantiating a generic lambda!");
10858    RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
10859  }
10860  else
10861    // Enter a new function scope
10862    PushFunctionScope();
10863
10864  // Builtin functions cannot be defined.
10865  if (unsigned BuiltinID = FD->getBuiltinID()) {
10866    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
10867        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
10868      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
10869      FD->setInvalidDecl();
10870    }
10871  }
10872
10873  // The return type of a function definition must be complete
10874  // (C99 6.9.1p3, C++ [dcl.fct]p6).
10875  QualType ResultType = FD->getReturnType();
10876  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
10877      !FD->isInvalidDecl() &&
10878      RequireCompleteType(FD->getLocation(), ResultType,
10879                          diag::err_func_def_incomplete_result))
10880    FD->setInvalidDecl();
10881
10882  if (FnBodyScope)
10883    PushDeclContext(FnBodyScope, FD);
10884
10885  // Check the validity of our function parameters
10886  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
10887                           /*CheckParameterNames=*/true);
10888
10889  // Introduce our parameters into the function scope
10890  for (auto Param : FD->params()) {
10891    Param->setOwningFunction(FD);
10892
10893    // If this has an identifier, add it to the scope stack.
10894    if (Param->getIdentifier() && FnBodyScope) {
10895      CheckShadow(FnBodyScope, Param);
10896
10897      PushOnScopeChains(Param, FnBodyScope);
10898    }
10899  }
10900
10901  // If we had any tags defined in the function prototype,
10902  // introduce them into the function scope.
10903  if (FnBodyScope) {
10904    for (ArrayRef<NamedDecl *>::iterator
10905             I = FD->getDeclsInPrototypeScope().begin(),
10906             E = FD->getDeclsInPrototypeScope().end();
10907         I != E; ++I) {
10908      NamedDecl *D = *I;
10909
10910      // Some of these decls (like enums) may have been pinned to the
10911      // translation unit for lack of a real context earlier. If so, remove
10912      // from the translation unit and reattach to the current context.
10913      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
10914        // Is the decl actually in the context?
10915        for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
10916          if (DI == D) {
10917            Context.getTranslationUnitDecl()->removeDecl(D);
10918            break;
10919          }
10920        }
10921        // Either way, reassign the lexical decl context to our FunctionDecl.
10922        D->setLexicalDeclContext(CurContext);
10923      }
10924
10925      // If the decl has a non-null name, make accessible in the current scope.
10926      if (!D->getName().empty())
10927        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
10928
10929      // Similarly, dive into enums and fish their constants out, making them
10930      // accessible in this scope.
10931      if (auto *ED = dyn_cast<EnumDecl>(D)) {
10932        for (auto *EI : ED->enumerators())
10933          PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
10934      }
10935    }
10936  }
10937
10938  // Ensure that the function's exception specification is instantiated.
10939  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
10940    ResolveExceptionSpec(D->getLocation(), FPT);
10941
10942  // dllimport cannot be applied to non-inline function definitions.
10943  if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
10944      !FD->isTemplateInstantiation()) {
10945    assert(!FD->hasAttr<DLLExportAttr>());
10946    Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
10947    FD->setInvalidDecl();
10948    return D;
10949  }
10950  // We want to attach documentation to original Decl (which might be
10951  // a function template).
10952  ActOnDocumentableDecl(D);
10953  if (getCurLexicalContext()->isObjCContainer() &&
10954      getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
10955      getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
10956    Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
10957
10958  return D;
10959}
10960
10961/// \brief Given the set of return statements within a function body,
10962/// compute the variables that are subject to the named return value
10963/// optimization.
10964///
10965/// Each of the variables that is subject to the named return value
10966/// optimization will be marked as NRVO variables in the AST, and any
10967/// return statement that has a marked NRVO variable as its NRVO candidate can
10968/// use the named return value optimization.
10969///
10970/// This function applies a very simplistic algorithm for NRVO: if every return
10971/// statement in the scope of a variable has the same NRVO candidate, that
10972/// candidate is an NRVO variable.
10973void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
10974  ReturnStmt **Returns = Scope->Returns.data();
10975
10976  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
10977    if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
10978      if (!NRVOCandidate->isNRVOVariable())
10979        Returns[I]->setNRVOCandidate(nullptr);
10980    }
10981  }
10982}
10983
10984bool Sema::canDelayFunctionBody(const Declarator &D) {
10985  // We can't delay parsing the body of a constexpr function template (yet).
10986  if (D.getDeclSpec().isConstexprSpecified())
10987    return false;
10988
10989  // We can't delay parsing the body of a function template with a deduced
10990  // return type (yet).
10991  if (D.getDeclSpec().containsPlaceholderType()) {
10992    // If the placeholder introduces a non-deduced trailing return type,
10993    // we can still delay parsing it.
10994    if (D.getNumTypeObjects()) {
10995      const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
10996      if (Outer.Kind == DeclaratorChunk::Function &&
10997          Outer.Fun.hasTrailingReturnType()) {
10998        QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
10999        return Ty.isNull() || !Ty->isUndeducedType();
11000      }
11001    }
11002    return false;
11003  }
11004
11005  return true;
11006}
11007
11008bool Sema::canSkipFunctionBody(Decl *D) {
11009  // We cannot skip the body of a function (or function template) which is
11010  // constexpr, since we may need to evaluate its body in order to parse the
11011  // rest of the file.
11012  // We cannot skip the body of a function with an undeduced return type,
11013  // because any callers of that function need to know the type.
11014  if (const FunctionDecl *FD = D->getAsFunction())
11015    if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
11016      return false;
11017  return Consumer.shouldSkipFunctionBody(D);
11018}
11019
11020Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
11021  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
11022    FD->setHasSkippedBody();
11023  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
11024    MD->setHasSkippedBody();
11025  return ActOnFinishFunctionBody(Decl, nullptr);
11026}
11027
11028Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
11029  return ActOnFinishFunctionBody(D, BodyArg, false);
11030}
11031
11032Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
11033                                    bool IsInstantiation) {
11034  FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
11035
11036  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
11037  sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
11038
11039  if (getLangOpts().Coroutines && !getCurFunction()->CoroutineStmts.empty())
11040    CheckCompletedCoroutineBody(FD, Body);
11041
11042  if (FD) {
11043    FD->setBody(Body);
11044
11045    if (getLangOpts().CPlusPlus14 && !FD->isInvalidDecl() && Body &&
11046        !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
11047      // If the function has a deduced result type but contains no 'return'
11048      // statements, the result type as written must be exactly 'auto', and
11049      // the deduced result type is 'void'.
11050      if (!FD->getReturnType()->getAs<AutoType>()) {
11051        Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
11052            << FD->getReturnType();
11053        FD->setInvalidDecl();
11054      } else {
11055        // Substitute 'void' for the 'auto' in the type.
11056        TypeLoc ResultType = getReturnTypeLoc(FD);
11057        Context.adjustDeducedFunctionResultType(
11058            FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
11059      }
11060    } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
11061      auto *LSI = getCurLambda();
11062      if (LSI->HasImplicitReturnType) {
11063        deduceClosureReturnType(*LSI);
11064
11065        // C++11 [expr.prim.lambda]p4:
11066        //   [...] if there are no return statements in the compound-statement
11067        //   [the deduced type is] the type void
11068        QualType RetType =
11069            LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
11070
11071        // Update the return type to the deduced type.
11072        const FunctionProtoType *Proto =
11073            FD->getType()->getAs<FunctionProtoType>();
11074        FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
11075                                            Proto->getExtProtoInfo()));
11076      }
11077    }
11078
11079    // The only way to be included in UndefinedButUsed is if there is an
11080    // ODR use before the definition. Avoid the expensive map lookup if this
11081    // is the first declaration.
11082    if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
11083      if (!FD->isExternallyVisible())
11084        UndefinedButUsed.erase(FD);
11085      else if (FD->isInlined() &&
11086               !LangOpts.GNUInline &&
11087               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
11088        UndefinedButUsed.erase(FD);
11089    }
11090
11091    // If the function implicitly returns zero (like 'main') or is naked,
11092    // don't complain about missing return statements.
11093    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
11094      WP.disableCheckFallThrough();
11095
11096    // MSVC permits the use of pure specifier (=0) on function definition,
11097    // defined at class scope, warn about this non-standard construct.
11098    if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
11099      Diag(FD->getLocation(), diag::ext_pure_function_definition);
11100
11101    if (!FD->isInvalidDecl()) {
11102      // Don't diagnose unused parameters of defaulted or deleted functions.
11103      if (!FD->isDeleted() && !FD->isDefaulted())
11104        DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
11105      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
11106                                             FD->getReturnType(), FD);
11107
11108      // If this is a structor, we need a vtable.
11109      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
11110        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
11111      else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
11112        MarkVTableUsed(FD->getLocation(), Destructor->getParent());
11113
11114      // Try to apply the named return value optimization. We have to check
11115      // if we can do this here because lambdas keep return statements around
11116      // to deduce an implicit return type.
11117      if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
11118          !FD->isDependentContext())
11119        computeNRVO(Body, getCurFunction());
11120    }
11121
11122    // GNU warning -Wmissing-prototypes:
11123    //   Warn if a global function is defined without a previous
11124    //   prototype declaration. This warning is issued even if the
11125    //   definition itself provides a prototype. The aim is to detect
11126    //   global functions that fail to be declared in header files.
11127    const FunctionDecl *PossibleZeroParamPrototype = nullptr;
11128    if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
11129      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
11130
11131      if (PossibleZeroParamPrototype) {
11132        // We found a declaration that is not a prototype,
11133        // but that could be a zero-parameter prototype
11134        if (TypeSourceInfo *TI =
11135                PossibleZeroParamPrototype->getTypeSourceInfo()) {
11136          TypeLoc TL = TI->getTypeLoc();
11137          if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
11138            Diag(PossibleZeroParamPrototype->getLocation(),
11139                 diag::note_declaration_not_a_prototype)
11140                << PossibleZeroParamPrototype
11141                << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
11142        }
11143      }
11144    }
11145
11146    if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11147      const CXXMethodDecl *KeyFunction;
11148      if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
11149          MD->isVirtual() &&
11150          (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
11151          MD == KeyFunction->getCanonicalDecl()) {
11152        // Update the key-function state if necessary for this ABI.
11153        if (FD->isInlined() &&
11154            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11155          Context.setNonKeyFunction(MD);
11156
11157          // If the newly-chosen key function is already defined, then we
11158          // need to mark the vtable as used retroactively.
11159          KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
11160          const FunctionDecl *Definition;
11161          if (KeyFunction && KeyFunction->isDefined(Definition))
11162            MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
11163        } else {
11164          // We just defined they key function; mark the vtable as used.
11165          MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
11166        }
11167      }
11168    }
11169
11170    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
11171           "Function parsing confused");
11172  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
11173    assert(MD == getCurMethodDecl() && "Method parsing confused");
11174    MD->setBody(Body);
11175    if (!MD->isInvalidDecl()) {
11176      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
11177      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
11178                                             MD->getReturnType(), MD);
11179
11180      if (Body)
11181        computeNRVO(Body, getCurFunction());
11182    }
11183    if (getCurFunction()->ObjCShouldCallSuper) {
11184      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
11185        << MD->getSelector().getAsString();
11186      getCurFunction()->ObjCShouldCallSuper = false;
11187    }
11188    if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
11189      const ObjCMethodDecl *InitMethod = nullptr;
11190      bool isDesignated =
11191          MD->isDesignatedInitializerForTheInterface(&InitMethod);
11192      assert(isDesignated && InitMethod);
11193      (void)isDesignated;
11194
11195      auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
11196        auto IFace = MD->getClassInterface();
11197        if (!IFace)
11198          return false;
11199        auto SuperD = IFace->getSuperClass();
11200        if (!SuperD)
11201          return false;
11202        return SuperD->getIdentifier() ==
11203            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
11204      };
11205      // Don't issue this warning for unavailable inits or direct subclasses
11206      // of NSObject.
11207      if (!MD->isUnavailable() && !superIsNSObject(MD)) {
11208        Diag(MD->getLocation(),
11209             diag::warn_objc_designated_init_missing_super_call);
11210        Diag(InitMethod->getLocation(),
11211             diag::note_objc_designated_init_marked_here);
11212      }
11213      getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
11214    }
11215    if (getCurFunction()->ObjCWarnForNoInitDelegation) {
11216      // Don't issue this warning for unavaialable inits.
11217      if (!MD->isUnavailable())
11218        Diag(MD->getLocation(),
11219             diag::warn_objc_secondary_init_missing_init_call);
11220      getCurFunction()->ObjCWarnForNoInitDelegation = false;
11221    }
11222  } else {
11223    return nullptr;
11224  }
11225
11226  assert(!getCurFunction()->ObjCShouldCallSuper &&
11227         "This should only be set for ObjC methods, which should have been "
11228         "handled in the block above.");
11229
11230  // Verify and clean out per-function state.
11231  if (Body && (!FD || !FD->isDefaulted())) {
11232    // C++ constructors that have function-try-blocks can't have return
11233    // statements in the handlers of that block. (C++ [except.handle]p14)
11234    // Verify this.
11235    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
11236      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
11237
11238    // Verify that gotos and switch cases don't jump into scopes illegally.
11239    if (getCurFunction()->NeedsScopeChecking() &&
11240        !PP.isCodeCompletionEnabled())
11241      DiagnoseInvalidJumps(Body);
11242
11243    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
11244      if (!Destructor->getParent()->isDependentType())
11245        CheckDestructor(Destructor);
11246
11247      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
11248                                             Destructor->getParent());
11249    }
11250
11251    // If any errors have occurred, clear out any temporaries that may have
11252    // been leftover. This ensures that these temporaries won't be picked up for
11253    // deletion in some later function.
11254    if (getDiagnostics().hasErrorOccurred() ||
11255        getDiagnostics().getSuppressAllDiagnostics()) {
11256      DiscardCleanupsInEvaluationContext();
11257    }
11258    if (!getDiagnostics().hasUncompilableErrorOccurred() &&
11259        !isa<FunctionTemplateDecl>(dcl)) {
11260      // Since the body is valid, issue any analysis-based warnings that are
11261      // enabled.
11262      ActivePolicy = &WP;
11263    }
11264
11265    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
11266        (!CheckConstexprFunctionDecl(FD) ||
11267         !CheckConstexprFunctionBody(FD, Body)))
11268      FD->setInvalidDecl();
11269
11270    if (FD && FD->hasAttr<NakedAttr>()) {
11271      for (const Stmt *S : Body->children()) {
11272        if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
11273          Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
11274          Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
11275          FD->setInvalidDecl();
11276          break;
11277        }
11278      }
11279    }
11280
11281    assert(ExprCleanupObjects.size() ==
11282               ExprEvalContexts.back().NumCleanupObjects &&
11283           "Leftover temporaries in function");
11284    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
11285    assert(MaybeODRUseExprs.empty() &&
11286           "Leftover expressions for odr-use checking");
11287  }
11288
11289  if (!IsInstantiation)
11290    PopDeclContext();
11291
11292  PopFunctionScopeInfo(ActivePolicy, dcl);
11293  // If any errors have occurred, clear out any temporaries that may have
11294  // been leftover. This ensures that these temporaries won't be picked up for
11295  // deletion in some later function.
11296  if (getDiagnostics().hasErrorOccurred()) {
11297    DiscardCleanupsInEvaluationContext();
11298  }
11299
11300  return dcl;
11301}
11302
11303
11304/// When we finish delayed parsing of an attribute, we must attach it to the
11305/// relevant Decl.
11306void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
11307                                       ParsedAttributes &Attrs) {
11308  // Always attach attributes to the underlying decl.
11309  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
11310    D = TD->getTemplatedDecl();
11311  ProcessDeclAttributeList(S, D, Attrs.getList());
11312
11313  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
11314    if (Method->isStatic())
11315      checkThisInStaticMemberFunctionAttributes(Method);
11316}
11317
11318
11319/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
11320/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
11321NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
11322                                          IdentifierInfo &II, Scope *S) {
11323  // Before we produce a declaration for an implicitly defined
11324  // function, see whether there was a locally-scoped declaration of
11325  // this name as a function or variable. If so, use that
11326  // (non-visible) declaration, and complain about it.
11327  if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
11328    Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
11329    Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
11330    return ExternCPrev;
11331  }
11332
11333  // Extension in C99.  Legal in C90, but warn about it.
11334  unsigned diag_id;
11335  if (II.getName().startswith("__builtin_"))
11336    diag_id = diag::warn_builtin_unknown;
11337  else if (getLangOpts().C99)
11338    diag_id = diag::ext_implicit_function_decl;
11339  else
11340    diag_id = diag::warn_implicit_function_decl;
11341  Diag(Loc, diag_id) << &II;
11342
11343  // Because typo correction is expensive, only do it if the implicit
11344  // function declaration is going to be treated as an error.
11345  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
11346    TypoCorrection Corrected;
11347    if (S &&
11348        (Corrected = CorrectTypo(
11349             DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
11350             llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
11351      diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
11352                   /*ErrorRecovery*/false);
11353  }
11354
11355  // Set a Declarator for the implicit definition: int foo();
11356  const char *Dummy;
11357  AttributeFactory attrFactory;
11358  DeclSpec DS(attrFactory);
11359  unsigned DiagID;
11360  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
11361                                  Context.getPrintingPolicy());
11362  (void)Error; // Silence warning.
11363  assert(!Error && "Error setting up implicit decl!");
11364  SourceLocation NoLoc;
11365  Declarator D(DS, Declarator::BlockContext);
11366  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
11367                                             /*IsAmbiguous=*/false,
11368                                             /*LParenLoc=*/NoLoc,
11369                                             /*Params=*/nullptr,
11370                                             /*NumParams=*/0,
11371                                             /*EllipsisLoc=*/NoLoc,
11372                                             /*RParenLoc=*/NoLoc,
11373                                             /*TypeQuals=*/0,
11374                                             /*RefQualifierIsLvalueRef=*/true,
11375                                             /*RefQualifierLoc=*/NoLoc,
11376                                             /*ConstQualifierLoc=*/NoLoc,
11377                                             /*VolatileQualifierLoc=*/NoLoc,
11378                                             /*RestrictQualifierLoc=*/NoLoc,
11379                                             /*MutableLoc=*/NoLoc,
11380                                             EST_None,
11381                                             /*ESpecRange=*/SourceRange(),
11382                                             /*Exceptions=*/nullptr,
11383                                             /*ExceptionRanges=*/nullptr,
11384                                             /*NumExceptions=*/0,
11385                                             /*NoexceptExpr=*/nullptr,
11386                                             /*ExceptionSpecTokens=*/nullptr,
11387                                             Loc, Loc, D),
11388                DS.getAttributes(),
11389                SourceLocation());
11390  D.SetIdentifier(&II, Loc);
11391
11392  // Insert this function into translation-unit scope.
11393
11394  DeclContext *PrevDC = CurContext;
11395  CurContext = Context.getTranslationUnitDecl();
11396
11397  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
11398  FD->setImplicit();
11399
11400  CurContext = PrevDC;
11401
11402  AddKnownFunctionAttributes(FD);
11403
11404  return FD;
11405}
11406
11407/// \brief Adds any function attributes that we know a priori based on
11408/// the declaration of this function.
11409///
11410/// These attributes can apply both to implicitly-declared builtins
11411/// (like __builtin___printf_chk) or to library-declared functions
11412/// like NSLog or printf.
11413///
11414/// We need to check for duplicate attributes both here and where user-written
11415/// attributes are applied to declarations.
11416void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
11417  if (FD->isInvalidDecl())
11418    return;
11419
11420  // If this is a built-in function, map its builtin attributes to
11421  // actual attributes.
11422  if (unsigned BuiltinID = FD->getBuiltinID()) {
11423    // Handle printf-formatting attributes.
11424    unsigned FormatIdx;
11425    bool HasVAListArg;
11426    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
11427      if (!FD->hasAttr<FormatAttr>()) {
11428        const char *fmt = "printf";
11429        unsigned int NumParams = FD->getNumParams();
11430        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
11431            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
11432          fmt = "NSString";
11433        FD->addAttr(FormatAttr::CreateImplicit(Context,
11434                                               &Context.Idents.get(fmt),
11435                                               FormatIdx+1,
11436                                               HasVAListArg ? 0 : FormatIdx+2,
11437                                               FD->getLocation()));
11438      }
11439    }
11440    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
11441                                             HasVAListArg)) {
11442     if (!FD->hasAttr<FormatAttr>())
11443       FD->addAttr(FormatAttr::CreateImplicit(Context,
11444                                              &Context.Idents.get("scanf"),
11445                                              FormatIdx+1,
11446                                              HasVAListArg ? 0 : FormatIdx+2,
11447                                              FD->getLocation()));
11448    }
11449
11450    // Mark const if we don't care about errno and that is the only
11451    // thing preventing the function from being const. This allows
11452    // IRgen to use LLVM intrinsics for such functions.
11453    if (!getLangOpts().MathErrno &&
11454        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
11455      if (!FD->hasAttr<ConstAttr>())
11456        FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
11457    }
11458
11459    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
11460        !FD->hasAttr<ReturnsTwiceAttr>())
11461      FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
11462                                         FD->getLocation()));
11463    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
11464      FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
11465    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
11466      FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
11467    if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads &&
11468        Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
11469        !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
11470      // Assign appropriate attribute depending on CUDA compilation
11471      // mode and the target builtin belongs to. E.g. during host
11472      // compilation, aux builtins are __device__, the rest are __host__.
11473      if (getLangOpts().CUDAIsDevice !=
11474          Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
11475        FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
11476      else
11477        FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
11478    }
11479  }
11480
11481  IdentifierInfo *Name = FD->getIdentifier();
11482  if (!Name)
11483    return;
11484  if ((!getLangOpts().CPlusPlus &&
11485       FD->getDeclContext()->isTranslationUnit()) ||
11486      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
11487       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
11488       LinkageSpecDecl::lang_c)) {
11489    // Okay: this could be a libc/libm/Objective-C function we know
11490    // about.
11491  } else
11492    return;
11493
11494  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
11495    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
11496    // target-specific builtins, perhaps?
11497    if (!FD->hasAttr<FormatAttr>())
11498      FD->addAttr(FormatAttr::CreateImplicit(Context,
11499                                             &Context.Idents.get("printf"), 2,
11500                                             Name->isStr("vasprintf") ? 0 : 3,
11501                                             FD->getLocation()));
11502  }
11503
11504  if (Name->isStr("__CFStringMakeConstantString")) {
11505    // We already have a __builtin___CFStringMakeConstantString,
11506    // but builds that use -fno-constant-cfstrings don't go through that.
11507    if (!FD->hasAttr<FormatArgAttr>())
11508      FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
11509                                                FD->getLocation()));
11510  }
11511}
11512
11513TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
11514                                    TypeSourceInfo *TInfo) {
11515  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
11516  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
11517
11518  if (!TInfo) {
11519    assert(D.isInvalidType() && "no declarator info for valid type");
11520    TInfo = Context.getTrivialTypeSourceInfo(T);
11521  }
11522
11523  // Scope manipulation handled by caller.
11524  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
11525                                           D.getLocStart(),
11526                                           D.getIdentifierLoc(),
11527                                           D.getIdentifier(),
11528                                           TInfo);
11529
11530  // Bail out immediately if we have an invalid declaration.
11531  if (D.isInvalidType()) {
11532    NewTD->setInvalidDecl();
11533    return NewTD;
11534  }
11535
11536  if (D.getDeclSpec().isModulePrivateSpecified()) {
11537    if (CurContext->isFunctionOrMethod())
11538      Diag(NewTD->getLocation(), diag::err_module_private_local)
11539        << 2 << NewTD->getDeclName()
11540        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
11541        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
11542    else
11543      NewTD->setModulePrivate();
11544  }
11545
11546  // C++ [dcl.typedef]p8:
11547  //   If the typedef declaration defines an unnamed class (or
11548  //   enum), the first typedef-name declared by the declaration
11549  //   to be that class type (or enum type) is used to denote the
11550  //   class type (or enum type) for linkage purposes only.
11551  // We need to check whether the type was declared in the declaration.
11552  switch (D.getDeclSpec().getTypeSpecType()) {
11553  case TST_enum:
11554  case TST_struct:
11555  case TST_interface:
11556  case TST_union:
11557  case TST_class: {
11558    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
11559    setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
11560    break;
11561  }
11562
11563  default:
11564    break;
11565  }
11566
11567  return NewTD;
11568}
11569
11570
11571/// \brief Check that this is a valid underlying type for an enum declaration.
11572bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
11573  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
11574  QualType T = TI->getType();
11575
11576  if (T->isDependentType())
11577    return false;
11578
11579  if (const BuiltinType *BT = T->getAs<BuiltinType>())
11580    if (BT->isInteger())
11581      return false;
11582
11583  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
11584  return true;
11585}
11586
11587/// Check whether this is a valid redeclaration of a previous enumeration.
11588/// \return true if the redeclaration was invalid.
11589bool Sema::CheckEnumRedeclaration(
11590    SourceLocation EnumLoc, bool IsScoped, QualType EnumUnderlyingTy,
11591    bool EnumUnderlyingIsImplicit, const EnumDecl *Prev) {
11592  bool IsFixed = !EnumUnderlyingTy.isNull();
11593
11594  if (IsScoped != Prev->isScoped()) {
11595    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
11596      << Prev->isScoped();
11597    Diag(Prev->getLocation(), diag::note_previous_declaration);
11598    return true;
11599  }
11600
11601  if (IsFixed && Prev->isFixed()) {
11602    if (!EnumUnderlyingTy->isDependentType() &&
11603        !Prev->getIntegerType()->isDependentType() &&
11604        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
11605                                        Prev->getIntegerType())) {
11606      // TODO: Highlight the underlying type of the redeclaration.
11607      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
11608        << EnumUnderlyingTy << Prev->getIntegerType();
11609      Diag(Prev->getLocation(), diag::note_previous_declaration)
11610          << Prev->getIntegerTypeRange();
11611      return true;
11612    }
11613  } else if (IsFixed && !Prev->isFixed() && EnumUnderlyingIsImplicit) {
11614    ;
11615  } else if (!IsFixed && Prev->isFixed() && !Prev->getIntegerTypeSourceInfo()) {
11616    ;
11617  } else if (IsFixed != Prev->isFixed()) {
11618    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
11619      << Prev->isFixed();
11620    Diag(Prev->getLocation(), diag::note_previous_declaration);
11621    return true;
11622  }
11623
11624  return false;
11625}
11626
11627/// \brief Get diagnostic %select index for tag kind for
11628/// redeclaration diagnostic message.
11629/// WARNING: Indexes apply to particular diagnostics only!
11630///
11631/// \returns diagnostic %select index.
11632static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
11633  switch (Tag) {
11634  case TTK_Struct: return 0;
11635  case TTK_Interface: return 1;
11636  case TTK_Class:  return 2;
11637  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
11638  }
11639}
11640
11641/// \brief Determine if tag kind is a class-key compatible with
11642/// class for redeclaration (class, struct, or __interface).
11643///
11644/// \returns true iff the tag kind is compatible.
11645static bool isClassCompatTagKind(TagTypeKind Tag)
11646{
11647  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
11648}
11649
11650/// \brief Determine whether a tag with a given kind is acceptable
11651/// as a redeclaration of the given tag declaration.
11652///
11653/// \returns true if the new tag kind is acceptable, false otherwise.
11654bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
11655                                        TagTypeKind NewTag, bool isDefinition,
11656                                        SourceLocation NewTagLoc,
11657                                        const IdentifierInfo *Name) {
11658  // C++ [dcl.type.elab]p3:
11659  //   The class-key or enum keyword present in the
11660  //   elaborated-type-specifier shall agree in kind with the
11661  //   declaration to which the name in the elaborated-type-specifier
11662  //   refers. This rule also applies to the form of
11663  //   elaborated-type-specifier that declares a class-name or
11664  //   friend class since it can be construed as referring to the
11665  //   definition of the class. Thus, in any
11666  //   elaborated-type-specifier, the enum keyword shall be used to
11667  //   refer to an enumeration (7.2), the union class-key shall be
11668  //   used to refer to a union (clause 9), and either the class or
11669  //   struct class-key shall be used to refer to a class (clause 9)
11670  //   declared using the class or struct class-key.
11671  TagTypeKind OldTag = Previous->getTagKind();
11672  if (!isDefinition || !isClassCompatTagKind(NewTag))
11673    if (OldTag == NewTag)
11674      return true;
11675
11676  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
11677    // Warn about the struct/class tag mismatch.
11678    bool isTemplate = false;
11679    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
11680      isTemplate = Record->getDescribedClassTemplate();
11681
11682    if (!ActiveTemplateInstantiations.empty()) {
11683      // In a template instantiation, do not offer fix-its for tag mismatches
11684      // since they usually mess up the template instead of fixing the problem.
11685      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11686        << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11687        << getRedeclDiagFromTagKind(OldTag);
11688      return true;
11689    }
11690
11691    if (isDefinition) {
11692      // On definitions, check previous tags and issue a fix-it for each
11693      // one that doesn't match the current tag.
11694      if (Previous->getDefinition()) {
11695        // Don't suggest fix-its for redefinitions.
11696        return true;
11697      }
11698
11699      bool previousMismatch = false;
11700      for (auto I : Previous->redecls()) {
11701        if (I->getTagKind() != NewTag) {
11702          if (!previousMismatch) {
11703            previousMismatch = true;
11704            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
11705              << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11706              << getRedeclDiagFromTagKind(I->getTagKind());
11707          }
11708          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
11709            << getRedeclDiagFromTagKind(NewTag)
11710            << FixItHint::CreateReplacement(I->getInnerLocStart(),
11711                 TypeWithKeyword::getTagTypeKindName(NewTag));
11712        }
11713      }
11714      return true;
11715    }
11716
11717    // Check for a previous definition.  If current tag and definition
11718    // are same type, do nothing.  If no definition, but disagree with
11719    // with previous tag type, give a warning, but no fix-it.
11720    const TagDecl *Redecl = Previous->getDefinition() ?
11721                            Previous->getDefinition() : Previous;
11722    if (Redecl->getTagKind() == NewTag) {
11723      return true;
11724    }
11725
11726    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11727      << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11728      << getRedeclDiagFromTagKind(OldTag);
11729    Diag(Redecl->getLocation(), diag::note_previous_use);
11730
11731    // If there is a previous definition, suggest a fix-it.
11732    if (Previous->getDefinition()) {
11733        Diag(NewTagLoc, diag::note_struct_class_suggestion)
11734          << getRedeclDiagFromTagKind(Redecl->getTagKind())
11735          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
11736               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
11737    }
11738
11739    return true;
11740  }
11741  return false;
11742}
11743
11744/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
11745/// from an outer enclosing namespace or file scope inside a friend declaration.
11746/// This should provide the commented out code in the following snippet:
11747///   namespace N {
11748///     struct X;
11749///     namespace M {
11750///       struct Y { friend struct /*N::*/ X; };
11751///     }
11752///   }
11753static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
11754                                         SourceLocation NameLoc) {
11755  // While the decl is in a namespace, do repeated lookup of that name and see
11756  // if we get the same namespace back.  If we do not, continue until
11757  // translation unit scope, at which point we have a fully qualified NNS.
11758  SmallVector<IdentifierInfo *, 4> Namespaces;
11759  DeclContext *DC = ND->getDeclContext()->getRedeclContext();
11760  for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
11761    // This tag should be declared in a namespace, which can only be enclosed by
11762    // other namespaces.  Bail if there's an anonymous namespace in the chain.
11763    NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
11764    if (!Namespace || Namespace->isAnonymousNamespace())
11765      return FixItHint();
11766    IdentifierInfo *II = Namespace->getIdentifier();
11767    Namespaces.push_back(II);
11768    NamedDecl *Lookup = SemaRef.LookupSingleName(
11769        S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
11770    if (Lookup == Namespace)
11771      break;
11772  }
11773
11774  // Once we have all the namespaces, reverse them to go outermost first, and
11775  // build an NNS.
11776  SmallString<64> Insertion;
11777  llvm::raw_svector_ostream OS(Insertion);
11778  if (DC->isTranslationUnit())
11779    OS << "::";
11780  std::reverse(Namespaces.begin(), Namespaces.end());
11781  for (auto *II : Namespaces)
11782    OS << II->getName() << "::";
11783  return FixItHint::CreateInsertion(NameLoc, Insertion);
11784}
11785
11786/// \brief Determine whether a tag originally declared in context \p OldDC can
11787/// be redeclared with an unqualfied name in \p NewDC (assuming name lookup
11788/// found a declaration in \p OldDC as a previous decl, perhaps through a
11789/// using-declaration).
11790static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
11791                                         DeclContext *NewDC) {
11792  OldDC = OldDC->getRedeclContext();
11793  NewDC = NewDC->getRedeclContext();
11794
11795  if (OldDC->Equals(NewDC))
11796    return true;
11797
11798  // In MSVC mode, we allow a redeclaration if the contexts are related (either
11799  // encloses the other).
11800  if (S.getLangOpts().MSVCCompat &&
11801      (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
11802    return true;
11803
11804  return false;
11805}
11806
11807/// \brief This is invoked when we see 'struct foo' or 'struct {'.  In the
11808/// former case, Name will be non-null.  In the later case, Name will be null.
11809/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
11810/// reference/declaration/definition of a tag.
11811///
11812/// \param IsTypeSpecifier \c true if this is a type-specifier (or
11813/// trailing-type-specifier) other than one in an alias-declaration.
11814///
11815/// \param SkipBody If non-null, will be set to indicate if the caller should
11816/// skip the definition of this tag and treat it as if it were a declaration.
11817Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
11818                     SourceLocation KWLoc, CXXScopeSpec &SS,
11819                     IdentifierInfo *Name, SourceLocation NameLoc,
11820                     AttributeList *Attr, AccessSpecifier AS,
11821                     SourceLocation ModulePrivateLoc,
11822                     MultiTemplateParamsArg TemplateParameterLists,
11823                     bool &OwnedDecl, bool &IsDependent,
11824                     SourceLocation ScopedEnumKWLoc,
11825                     bool ScopedEnumUsesClassTag,
11826                     TypeResult UnderlyingType,
11827                     bool IsTypeSpecifier, SkipBodyInfo *SkipBody) {
11828  // If this is not a definition, it must have a name.
11829  IdentifierInfo *OrigName = Name;
11830  assert((Name != nullptr || TUK == TUK_Definition) &&
11831         "Nameless record must be a definition!");
11832  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
11833
11834  OwnedDecl = false;
11835  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11836  bool ScopedEnum = ScopedEnumKWLoc.isValid();
11837
11838  // FIXME: Check explicit specializations more carefully.
11839  bool isExplicitSpecialization = false;
11840  bool Invalid = false;
11841
11842  // We only need to do this matching if we have template parameters
11843  // or a scope specifier, which also conveniently avoids this work
11844  // for non-C++ cases.
11845  if (TemplateParameterLists.size() > 0 ||
11846      (SS.isNotEmpty() && TUK != TUK_Reference)) {
11847    if (TemplateParameterList *TemplateParams =
11848            MatchTemplateParametersToScopeSpecifier(
11849                KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
11850                TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
11851      if (Kind == TTK_Enum) {
11852        Diag(KWLoc, diag::err_enum_template);
11853        return nullptr;
11854      }
11855
11856      if (TemplateParams->size() > 0) {
11857        // This is a declaration or definition of a class template (which may
11858        // be a member of another template).
11859
11860        if (Invalid)
11861          return nullptr;
11862
11863        OwnedDecl = false;
11864        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
11865                                               SS, Name, NameLoc, Attr,
11866                                               TemplateParams, AS,
11867                                               ModulePrivateLoc,
11868                                               /*FriendLoc*/SourceLocation(),
11869                                               TemplateParameterLists.size()-1,
11870                                               TemplateParameterLists.data(),
11871                                               SkipBody);
11872        return Result.get();
11873      } else {
11874        // The "template<>" header is extraneous.
11875        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11876          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11877        isExplicitSpecialization = true;
11878      }
11879    }
11880  }
11881
11882  // Figure out the underlying type if this a enum declaration. We need to do
11883  // this early, because it's needed to detect if this is an incompatible
11884  // redeclaration.
11885  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
11886  bool EnumUnderlyingIsImplicit = false;
11887
11888  if (Kind == TTK_Enum) {
11889    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
11890      // No underlying type explicitly specified, or we failed to parse the
11891      // type, default to int.
11892      EnumUnderlying = Context.IntTy.getTypePtr();
11893    else if (UnderlyingType.get()) {
11894      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
11895      // integral type; any cv-qualification is ignored.
11896      TypeSourceInfo *TI = nullptr;
11897      GetTypeFromParser(UnderlyingType.get(), &TI);
11898      EnumUnderlying = TI;
11899
11900      if (CheckEnumUnderlyingType(TI))
11901        // Recover by falling back to int.
11902        EnumUnderlying = Context.IntTy.getTypePtr();
11903
11904      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
11905                                          UPPC_FixedUnderlyingType))
11906        EnumUnderlying = Context.IntTy.getTypePtr();
11907
11908    } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
11909      if (getLangOpts().MSVCCompat || TUK == TUK_Definition) {
11910        // Microsoft enums are always of int type.
11911        EnumUnderlying = Context.IntTy.getTypePtr();
11912        EnumUnderlyingIsImplicit = true;
11913      }
11914    }
11915  }
11916
11917  DeclContext *SearchDC = CurContext;
11918  DeclContext *DC = CurContext;
11919  bool isStdBadAlloc = false;
11920
11921  RedeclarationKind Redecl = ForRedeclaration;
11922  if (TUK == TUK_Friend || TUK == TUK_Reference)
11923    Redecl = NotForRedeclaration;
11924
11925  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
11926  if (Name && SS.isNotEmpty()) {
11927    // We have a nested-name tag ('struct foo::bar').
11928
11929    // Check for invalid 'foo::'.
11930    if (SS.isInvalid()) {
11931      Name = nullptr;
11932      goto CreateNewDecl;
11933    }
11934
11935    // If this is a friend or a reference to a class in a dependent
11936    // context, don't try to make a decl for it.
11937    if (TUK == TUK_Friend || TUK == TUK_Reference) {
11938      DC = computeDeclContext(SS, false);
11939      if (!DC) {
11940        IsDependent = true;
11941        return nullptr;
11942      }
11943    } else {
11944      DC = computeDeclContext(SS, true);
11945      if (!DC) {
11946        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
11947          << SS.getRange();
11948        return nullptr;
11949      }
11950    }
11951
11952    if (RequireCompleteDeclContext(SS, DC))
11953      return nullptr;
11954
11955    SearchDC = DC;
11956    // Look-up name inside 'foo::'.
11957    LookupQualifiedName(Previous, DC);
11958
11959    if (Previous.isAmbiguous())
11960      return nullptr;
11961
11962    if (Previous.empty()) {
11963      // Name lookup did not find anything. However, if the
11964      // nested-name-specifier refers to the current instantiation,
11965      // and that current instantiation has any dependent base
11966      // classes, we might find something at instantiation time: treat
11967      // this as a dependent elaborated-type-specifier.
11968      // But this only makes any sense for reference-like lookups.
11969      if (Previous.wasNotFoundInCurrentInstantiation() &&
11970          (TUK == TUK_Reference || TUK == TUK_Friend)) {
11971        IsDependent = true;
11972        return nullptr;
11973      }
11974
11975      // A tag 'foo::bar' must already exist.
11976      Diag(NameLoc, diag::err_not_tag_in_scope)
11977        << Kind << Name << DC << SS.getRange();
11978      Name = nullptr;
11979      Invalid = true;
11980      goto CreateNewDecl;
11981    }
11982  } else if (Name) {
11983    // C++14 [class.mem]p14:
11984    //   If T is the name of a class, then each of the following shall have a
11985    //   name different from T:
11986    //    -- every member of class T that is itself a type
11987    if (TUK != TUK_Reference && TUK != TUK_Friend &&
11988        DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
11989      return nullptr;
11990
11991    // If this is a named struct, check to see if there was a previous forward
11992    // declaration or definition.
11993    // FIXME: We're looking into outer scopes here, even when we
11994    // shouldn't be. Doing so can result in ambiguities that we
11995    // shouldn't be diagnosing.
11996    LookupName(Previous, S);
11997
11998    // When declaring or defining a tag, ignore ambiguities introduced
11999    // by types using'ed into this scope.
12000    if (Previous.isAmbiguous() &&
12001        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
12002      LookupResult::Filter F = Previous.makeFilter();
12003      while (F.hasNext()) {
12004        NamedDecl *ND = F.next();
12005        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
12006          F.erase();
12007      }
12008      F.done();
12009    }
12010
12011    // C++11 [namespace.memdef]p3:
12012    //   If the name in a friend declaration is neither qualified nor
12013    //   a template-id and the declaration is a function or an
12014    //   elaborated-type-specifier, the lookup to determine whether
12015    //   the entity has been previously declared shall not consider
12016    //   any scopes outside the innermost enclosing namespace.
12017    //
12018    // MSVC doesn't implement the above rule for types, so a friend tag
12019    // declaration may be a redeclaration of a type declared in an enclosing
12020    // scope.  They do implement this rule for friend functions.
12021    //
12022    // Does it matter that this should be by scope instead of by
12023    // semantic context?
12024    if (!Previous.empty() && TUK == TUK_Friend) {
12025      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
12026      LookupResult::Filter F = Previous.makeFilter();
12027      bool FriendSawTagOutsideEnclosingNamespace = false;
12028      while (F.hasNext()) {
12029        NamedDecl *ND = F.next();
12030        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
12031        if (DC->isFileContext() &&
12032            !EnclosingNS->Encloses(ND->getDeclContext())) {
12033          if (getLangOpts().MSVCCompat)
12034            FriendSawTagOutsideEnclosingNamespace = true;
12035          else
12036            F.erase();
12037        }
12038      }
12039      F.done();
12040
12041      // Diagnose this MSVC extension in the easy case where lookup would have
12042      // unambiguously found something outside the enclosing namespace.
12043      if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
12044        NamedDecl *ND = Previous.getFoundDecl();
12045        Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
12046            << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
12047      }
12048    }
12049
12050    // Note:  there used to be some attempt at recovery here.
12051    if (Previous.isAmbiguous())
12052      return nullptr;
12053
12054    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
12055      // FIXME: This makes sure that we ignore the contexts associated
12056      // with C structs, unions, and enums when looking for a matching
12057      // tag declaration or definition. See the similar lookup tweak
12058      // in Sema::LookupName; is there a better way to deal with this?
12059      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
12060        SearchDC = SearchDC->getParent();
12061    }
12062  }
12063
12064  if (Previous.isSingleResult() &&
12065      Previous.getFoundDecl()->isTemplateParameter()) {
12066    // Maybe we will complain about the shadowed template parameter.
12067    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
12068    // Just pretend that we didn't see the previous declaration.
12069    Previous.clear();
12070  }
12071
12072  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
12073      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
12074    // This is a declaration of or a reference to "std::bad_alloc".
12075    isStdBadAlloc = true;
12076
12077    if (Previous.empty() && StdBadAlloc) {
12078      // std::bad_alloc has been implicitly declared (but made invisible to
12079      // name lookup). Fill in this implicit declaration as the previous
12080      // declaration, so that the declarations get chained appropriately.
12081      Previous.addDecl(getStdBadAlloc());
12082    }
12083  }
12084
12085  // If we didn't find a previous declaration, and this is a reference
12086  // (or friend reference), move to the correct scope.  In C++, we
12087  // also need to do a redeclaration lookup there, just in case
12088  // there's a shadow friend decl.
12089  if (Name && Previous.empty() &&
12090      (TUK == TUK_Reference || TUK == TUK_Friend)) {
12091    if (Invalid) goto CreateNewDecl;
12092    assert(SS.isEmpty());
12093
12094    if (TUK == TUK_Reference) {
12095      // C++ [basic.scope.pdecl]p5:
12096      //   -- for an elaborated-type-specifier of the form
12097      //
12098      //          class-key identifier
12099      //
12100      //      if the elaborated-type-specifier is used in the
12101      //      decl-specifier-seq or parameter-declaration-clause of a
12102      //      function defined in namespace scope, the identifier is
12103      //      declared as a class-name in the namespace that contains
12104      //      the declaration; otherwise, except as a friend
12105      //      declaration, the identifier is declared in the smallest
12106      //      non-class, non-function-prototype scope that contains the
12107      //      declaration.
12108      //
12109      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
12110      // C structs and unions.
12111      //
12112      // It is an error in C++ to declare (rather than define) an enum
12113      // type, including via an elaborated type specifier.  We'll
12114      // diagnose that later; for now, declare the enum in the same
12115      // scope as we would have picked for any other tag type.
12116      //
12117      // GNU C also supports this behavior as part of its incomplete
12118      // enum types extension, while GNU C++ does not.
12119      //
12120      // Find the context where we'll be declaring the tag.
12121      // FIXME: We would like to maintain the current DeclContext as the
12122      // lexical context,
12123      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
12124        SearchDC = SearchDC->getParent();
12125
12126      // Find the scope where we'll be declaring the tag.
12127      while (S->isClassScope() ||
12128             (getLangOpts().CPlusPlus &&
12129              S->isFunctionPrototypeScope()) ||
12130             ((S->getFlags() & Scope::DeclScope) == 0) ||
12131             (S->getEntity() && S->getEntity()->isTransparentContext()))
12132        S = S->getParent();
12133    } else {
12134      assert(TUK == TUK_Friend);
12135      // C++ [namespace.memdef]p3:
12136      //   If a friend declaration in a non-local class first declares a
12137      //   class or function, the friend class or function is a member of
12138      //   the innermost enclosing namespace.
12139      SearchDC = SearchDC->getEnclosingNamespaceContext();
12140    }
12141
12142    // In C++, we need to do a redeclaration lookup to properly
12143    // diagnose some problems.
12144    // FIXME: redeclaration lookup is also used (with and without C++) to find a
12145    // hidden declaration so that we don't get ambiguity errors when using a
12146    // type declared by an elaborated-type-specifier.  In C that is not correct
12147    // and we should instead merge compatible types found by lookup.
12148    if (getLangOpts().CPlusPlus) {
12149      Previous.setRedeclarationKind(ForRedeclaration);
12150      LookupQualifiedName(Previous, SearchDC);
12151    } else {
12152      Previous.setRedeclarationKind(ForRedeclaration);
12153      LookupName(Previous, S);
12154    }
12155  }
12156
12157  // If we have a known previous declaration to use, then use it.
12158  if (Previous.empty() && SkipBody && SkipBody->Previous)
12159    Previous.addDecl(SkipBody->Previous);
12160
12161  if (!Previous.empty()) {
12162    NamedDecl *PrevDecl = Previous.getFoundDecl();
12163    NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
12164
12165    // It's okay to have a tag decl in the same scope as a typedef
12166    // which hides a tag decl in the same scope.  Finding this
12167    // insanity with a redeclaration lookup can only actually happen
12168    // in C++.
12169    //
12170    // This is also okay for elaborated-type-specifiers, which is
12171    // technically forbidden by the current standard but which is
12172    // okay according to the likely resolution of an open issue;
12173    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
12174    if (getLangOpts().CPlusPlus) {
12175      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
12176        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
12177          TagDecl *Tag = TT->getDecl();
12178          if (Tag->getDeclName() == Name &&
12179              Tag->getDeclContext()->getRedeclContext()
12180                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
12181            PrevDecl = Tag;
12182            Previous.clear();
12183            Previous.addDecl(Tag);
12184            Previous.resolveKind();
12185          }
12186        }
12187      }
12188    }
12189
12190    // If this is a redeclaration of a using shadow declaration, it must
12191    // declare a tag in the same context. In MSVC mode, we allow a
12192    // redefinition if either context is within the other.
12193    if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
12194      auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
12195      if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
12196          isDeclInScope(Shadow, SearchDC, S, isExplicitSpecialization) &&
12197          !(OldTag && isAcceptableTagRedeclContext(
12198                          *this, OldTag->getDeclContext(), SearchDC))) {
12199        Diag(KWLoc, diag::err_using_decl_conflict_reverse);
12200        Diag(Shadow->getTargetDecl()->getLocation(),
12201             diag::note_using_decl_target);
12202        Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
12203            << 0;
12204        // Recover by ignoring the old declaration.
12205        Previous.clear();
12206        goto CreateNewDecl;
12207      }
12208    }
12209
12210    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
12211      // If this is a use of a previous tag, or if the tag is already declared
12212      // in the same scope (so that the definition/declaration completes or
12213      // rementions the tag), reuse the decl.
12214      if (TUK == TUK_Reference || TUK == TUK_Friend ||
12215          isDeclInScope(DirectPrevDecl, SearchDC, S,
12216                        SS.isNotEmpty() || isExplicitSpecialization)) {
12217        // Make sure that this wasn't declared as an enum and now used as a
12218        // struct or something similar.
12219        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
12220                                          TUK == TUK_Definition, KWLoc,
12221                                          Name)) {
12222          bool SafeToContinue
12223            = (PrevTagDecl->getTagKind() != TTK_Enum &&
12224               Kind != TTK_Enum);
12225          if (SafeToContinue)
12226            Diag(KWLoc, diag::err_use_with_wrong_tag)
12227              << Name
12228              << FixItHint::CreateReplacement(SourceRange(KWLoc),
12229                                              PrevTagDecl->getKindName());
12230          else
12231            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
12232          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
12233
12234          if (SafeToContinue)
12235            Kind = PrevTagDecl->getTagKind();
12236          else {
12237            // Recover by making this an anonymous redefinition.
12238            Name = nullptr;
12239            Previous.clear();
12240            Invalid = true;
12241          }
12242        }
12243
12244        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
12245          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
12246
12247          // If this is an elaborated-type-specifier for a scoped enumeration,
12248          // the 'class' keyword is not necessary and not permitted.
12249          if (TUK == TUK_Reference || TUK == TUK_Friend) {
12250            if (ScopedEnum)
12251              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
12252                << PrevEnum->isScoped()
12253                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
12254            return PrevTagDecl;
12255          }
12256
12257          QualType EnumUnderlyingTy;
12258          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
12259            EnumUnderlyingTy = TI->getType().getUnqualifiedType();
12260          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
12261            EnumUnderlyingTy = QualType(T, 0);
12262
12263          // All conflicts with previous declarations are recovered by
12264          // returning the previous declaration, unless this is a definition,
12265          // in which case we want the caller to bail out.
12266          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
12267                                     ScopedEnum, EnumUnderlyingTy,
12268                                     EnumUnderlyingIsImplicit, PrevEnum))
12269            return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
12270        }
12271
12272        // C++11 [class.mem]p1:
12273        //   A member shall not be declared twice in the member-specification,
12274        //   except that a nested class or member class template can be declared
12275        //   and then later defined.
12276        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
12277            S->isDeclScope(PrevDecl)) {
12278          Diag(NameLoc, diag::ext_member_redeclared);
12279          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
12280        }
12281
12282        if (!Invalid) {
12283          // If this is a use, just return the declaration we found, unless
12284          // we have attributes.
12285
12286          // FIXME: In the future, return a variant or some other clue
12287          // for the consumer of this Decl to know it doesn't own it.
12288          // For our current ASTs this shouldn't be a problem, but will
12289          // need to be changed with DeclGroups.
12290          if (!Attr &&
12291              ((TUK == TUK_Reference &&
12292                (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
12293               || TUK == TUK_Friend))
12294            return PrevTagDecl;
12295
12296          // Diagnose attempts to redefine a tag.
12297          if (TUK == TUK_Definition) {
12298            if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
12299              // If we're defining a specialization and the previous definition
12300              // is from an implicit instantiation, don't emit an error
12301              // here; we'll catch this in the general case below.
12302              bool IsExplicitSpecializationAfterInstantiation = false;
12303              if (isExplicitSpecialization) {
12304                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
12305                  IsExplicitSpecializationAfterInstantiation =
12306                    RD->getTemplateSpecializationKind() !=
12307                    TSK_ExplicitSpecialization;
12308                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
12309                  IsExplicitSpecializationAfterInstantiation =
12310                    ED->getTemplateSpecializationKind() !=
12311                    TSK_ExplicitSpecialization;
12312              }
12313
12314              NamedDecl *Hidden = nullptr;
12315              if (SkipBody && getLangOpts().CPlusPlus &&
12316                  !hasVisibleDefinition(Def, &Hidden)) {
12317                // There is a definition of this tag, but it is not visible. We
12318                // explicitly make use of C++'s one definition rule here, and
12319                // assume that this definition is identical to the hidden one
12320                // we already have. Make the existing definition visible and
12321                // use it in place of this one.
12322                SkipBody->ShouldSkip = true;
12323                makeMergedDefinitionVisible(Hidden, KWLoc);
12324                return Def;
12325              } else if (!IsExplicitSpecializationAfterInstantiation) {
12326                // A redeclaration in function prototype scope in C isn't
12327                // visible elsewhere, so merely issue a warning.
12328                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
12329                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
12330                else
12331                  Diag(NameLoc, diag::err_redefinition) << Name;
12332                Diag(Def->getLocation(), diag::note_previous_definition);
12333                // If this is a redefinition, recover by making this
12334                // struct be anonymous, which will make any later
12335                // references get the previous definition.
12336                Name = nullptr;
12337                Previous.clear();
12338                Invalid = true;
12339              }
12340            } else {
12341              // If the type is currently being defined, complain
12342              // about a nested redefinition.
12343              auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
12344              if (TD->isBeingDefined()) {
12345                Diag(NameLoc, diag::err_nested_redefinition) << Name;
12346                Diag(PrevTagDecl->getLocation(),
12347                     diag::note_previous_definition);
12348                Name = nullptr;
12349                Previous.clear();
12350                Invalid = true;
12351              }
12352            }
12353
12354            // Okay, this is definition of a previously declared or referenced
12355            // tag. We're going to create a new Decl for it.
12356          }
12357
12358          // Okay, we're going to make a redeclaration.  If this is some kind
12359          // of reference, make sure we build the redeclaration in the same DC
12360          // as the original, and ignore the current access specifier.
12361          if (TUK == TUK_Friend || TUK == TUK_Reference) {
12362            SearchDC = PrevTagDecl->getDeclContext();
12363            AS = AS_none;
12364          }
12365        }
12366        // If we get here we have (another) forward declaration or we
12367        // have a definition.  Just create a new decl.
12368
12369      } else {
12370        // If we get here, this is a definition of a new tag type in a nested
12371        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
12372        // new decl/type.  We set PrevDecl to NULL so that the entities
12373        // have distinct types.
12374        Previous.clear();
12375      }
12376      // If we get here, we're going to create a new Decl. If PrevDecl
12377      // is non-NULL, it's a definition of the tag declared by
12378      // PrevDecl. If it's NULL, we have a new definition.
12379
12380
12381    // Otherwise, PrevDecl is not a tag, but was found with tag
12382    // lookup.  This is only actually possible in C++, where a few
12383    // things like templates still live in the tag namespace.
12384    } else {
12385      // Use a better diagnostic if an elaborated-type-specifier
12386      // found the wrong kind of type on the first
12387      // (non-redeclaration) lookup.
12388      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
12389          !Previous.isForRedeclaration()) {
12390        unsigned Kind = 0;
12391        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
12392        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
12393        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
12394        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
12395        Diag(PrevDecl->getLocation(), diag::note_declared_at);
12396        Invalid = true;
12397
12398      // Otherwise, only diagnose if the declaration is in scope.
12399      } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
12400                                SS.isNotEmpty() || isExplicitSpecialization)) {
12401        // do nothing
12402
12403      // Diagnose implicit declarations introduced by elaborated types.
12404      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
12405        unsigned Kind = 0;
12406        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
12407        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
12408        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
12409        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
12410        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
12411        Invalid = true;
12412
12413      // Otherwise it's a declaration.  Call out a particularly common
12414      // case here.
12415      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
12416        unsigned Kind = 0;
12417        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
12418        Diag(NameLoc, diag::err_tag_definition_of_typedef)
12419          << Name << Kind << TND->getUnderlyingType();
12420        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
12421        Invalid = true;
12422
12423      // Otherwise, diagnose.
12424      } else {
12425        // The tag name clashes with something else in the target scope,
12426        // issue an error and recover by making this tag be anonymous.
12427        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
12428        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12429        Name = nullptr;
12430        Invalid = true;
12431      }
12432
12433      // The existing declaration isn't relevant to us; we're in a
12434      // new scope, so clear out the previous declaration.
12435      Previous.clear();
12436    }
12437  }
12438
12439CreateNewDecl:
12440
12441  TagDecl *PrevDecl = nullptr;
12442  if (Previous.isSingleResult())
12443    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
12444
12445  // If there is an identifier, use the location of the identifier as the
12446  // location of the decl, otherwise use the location of the struct/union
12447  // keyword.
12448  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
12449
12450  // Otherwise, create a new declaration. If there is a previous
12451  // declaration of the same entity, the two will be linked via
12452  // PrevDecl.
12453  TagDecl *New;
12454
12455  bool IsForwardReference = false;
12456  if (Kind == TTK_Enum) {
12457    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
12458    // enum X { A, B, C } D;    D should chain to X.
12459    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
12460                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
12461                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
12462    // If this is an undefined enum, warn.
12463    if (TUK != TUK_Definition && !Invalid) {
12464      TagDecl *Def;
12465      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
12466          cast<EnumDecl>(New)->isFixed()) {
12467        // C++0x: 7.2p2: opaque-enum-declaration.
12468        // Conflicts are diagnosed above. Do nothing.
12469      }
12470      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
12471        Diag(Loc, diag::ext_forward_ref_enum_def)
12472          << New;
12473        Diag(Def->getLocation(), diag::note_previous_definition);
12474      } else {
12475        unsigned DiagID = diag::ext_forward_ref_enum;
12476        if (getLangOpts().MSVCCompat)
12477          DiagID = diag::ext_ms_forward_ref_enum;
12478        else if (getLangOpts().CPlusPlus)
12479          DiagID = diag::err_forward_ref_enum;
12480        Diag(Loc, DiagID);
12481
12482        // If this is a forward-declared reference to an enumeration, make a
12483        // note of it; we won't actually be introducing the declaration into
12484        // the declaration context.
12485        if (TUK == TUK_Reference)
12486          IsForwardReference = true;
12487      }
12488    }
12489
12490    if (EnumUnderlying) {
12491      EnumDecl *ED = cast<EnumDecl>(New);
12492      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
12493        ED->setIntegerTypeSourceInfo(TI);
12494      else
12495        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
12496      ED->setPromotionType(ED->getIntegerType());
12497    }
12498
12499  } else {
12500    // struct/union/class
12501
12502    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
12503    // struct X { int A; } D;    D should chain to X.
12504    if (getLangOpts().CPlusPlus) {
12505      // FIXME: Look for a way to use RecordDecl for simple structs.
12506      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
12507                                  cast_or_null<CXXRecordDecl>(PrevDecl));
12508
12509      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
12510        StdBadAlloc = cast<CXXRecordDecl>(New);
12511    } else
12512      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
12513                               cast_or_null<RecordDecl>(PrevDecl));
12514  }
12515
12516  // C++11 [dcl.type]p3:
12517  //   A type-specifier-seq shall not define a class or enumeration [...].
12518  if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
12519    Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
12520      << Context.getTagDeclType(New);
12521    Invalid = true;
12522  }
12523
12524  // Maybe add qualifier info.
12525  if (SS.isNotEmpty()) {
12526    if (SS.isSet()) {
12527      // If this is either a declaration or a definition, check the
12528      // nested-name-specifier against the current context. We don't do this
12529      // for explicit specializations, because they have similar checking
12530      // (with more specific diagnostics) in the call to
12531      // CheckMemberSpecialization, below.
12532      if (!isExplicitSpecialization &&
12533          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
12534          diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc))
12535        Invalid = true;
12536
12537      New->setQualifierInfo(SS.getWithLocInContext(Context));
12538      if (TemplateParameterLists.size() > 0) {
12539        New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
12540      }
12541    }
12542    else
12543      Invalid = true;
12544  }
12545
12546  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
12547    // Add alignment attributes if necessary; these attributes are checked when
12548    // the ASTContext lays out the structure.
12549    //
12550    // It is important for implementing the correct semantics that this
12551    // happen here (in act on tag decl). The #pragma pack stack is
12552    // maintained as a result of parser callbacks which can occur at
12553    // many points during the parsing of a struct declaration (because
12554    // the #pragma tokens are effectively skipped over during the
12555    // parsing of the struct).
12556    if (TUK == TUK_Definition) {
12557      AddAlignmentAttributesForRecord(RD);
12558      AddMsStructLayoutForRecord(RD);
12559    }
12560  }
12561
12562  if (ModulePrivateLoc.isValid()) {
12563    if (isExplicitSpecialization)
12564      Diag(New->getLocation(), diag::err_module_private_specialization)
12565        << 2
12566        << FixItHint::CreateRemoval(ModulePrivateLoc);
12567    // __module_private__ does not apply to local classes. However, we only
12568    // diagnose this as an error when the declaration specifiers are
12569    // freestanding. Here, we just ignore the __module_private__.
12570    else if (!SearchDC->isFunctionOrMethod())
12571      New->setModulePrivate();
12572  }
12573
12574  // If this is a specialization of a member class (of a class template),
12575  // check the specialization.
12576  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
12577    Invalid = true;
12578
12579  // If we're declaring or defining a tag in function prototype scope in C,
12580  // note that this type can only be used within the function and add it to
12581  // the list of decls to inject into the function definition scope.
12582  if ((Name || Kind == TTK_Enum) &&
12583      getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
12584    if (getLangOpts().CPlusPlus) {
12585      // C++ [dcl.fct]p6:
12586      //   Types shall not be defined in return or parameter types.
12587      if (TUK == TUK_Definition && !IsTypeSpecifier) {
12588        Diag(Loc, diag::err_type_defined_in_param_type)
12589            << Name;
12590        Invalid = true;
12591      }
12592    } else {
12593      Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
12594    }
12595    DeclsInPrototypeScope.push_back(New);
12596  }
12597
12598  if (Invalid)
12599    New->setInvalidDecl();
12600
12601  if (Attr)
12602    ProcessDeclAttributeList(S, New, Attr);
12603
12604  // Set the lexical context. If the tag has a C++ scope specifier, the
12605  // lexical context will be different from the semantic context.
12606  New->setLexicalDeclContext(CurContext);
12607
12608  // Mark this as a friend decl if applicable.
12609  // In Microsoft mode, a friend declaration also acts as a forward
12610  // declaration so we always pass true to setObjectOfFriendDecl to make
12611  // the tag name visible.
12612  if (TUK == TUK_Friend)
12613    New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
12614
12615  // Set the access specifier.
12616  if (!Invalid && SearchDC->isRecord())
12617    SetMemberAccessSpecifier(New, PrevDecl, AS);
12618
12619  if (TUK == TUK_Definition)
12620    New->startDefinition();
12621
12622  // If this has an identifier, add it to the scope stack.
12623  if (TUK == TUK_Friend) {
12624    // We might be replacing an existing declaration in the lookup tables;
12625    // if so, borrow its access specifier.
12626    if (PrevDecl)
12627      New->setAccess(PrevDecl->getAccess());
12628
12629    DeclContext *DC = New->getDeclContext()->getRedeclContext();
12630    DC->makeDeclVisibleInContext(New);
12631    if (Name) // can be null along some error paths
12632      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12633        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
12634  } else if (Name) {
12635    S = getNonFieldDeclScope(S);
12636    PushOnScopeChains(New, S, !IsForwardReference);
12637    if (IsForwardReference)
12638      SearchDC->makeDeclVisibleInContext(New);
12639
12640  } else {
12641    CurContext->addDecl(New);
12642  }
12643
12644  // If this is the C FILE type, notify the AST context.
12645  if (IdentifierInfo *II = New->getIdentifier())
12646    if (!New->isInvalidDecl() &&
12647        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
12648        II->isStr("FILE"))
12649      Context.setFILEDecl(New);
12650
12651  if (PrevDecl)
12652    mergeDeclAttributes(New, PrevDecl);
12653
12654  // If there's a #pragma GCC visibility in scope, set the visibility of this
12655  // record.
12656  AddPushedVisibilityAttribute(New);
12657
12658  OwnedDecl = true;
12659  // In C++, don't return an invalid declaration. We can't recover well from
12660  // the cases where we make the type anonymous.
12661  return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
12662}
12663
12664void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
12665  AdjustDeclIfTemplate(TagD);
12666  TagDecl *Tag = cast<TagDecl>(TagD);
12667
12668  // Enter the tag context.
12669  PushDeclContext(S, Tag);
12670
12671  ActOnDocumentableDecl(TagD);
12672
12673  // If there's a #pragma GCC visibility in scope, set the visibility of this
12674  // record.
12675  AddPushedVisibilityAttribute(Tag);
12676}
12677
12678Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
12679  assert(isa<ObjCContainerDecl>(IDecl) &&
12680         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
12681  DeclContext *OCD = cast<DeclContext>(IDecl);
12682  assert(getContainingDC(OCD) == CurContext &&
12683      "The next DeclContext should be lexically contained in the current one.");
12684  CurContext = OCD;
12685  return IDecl;
12686}
12687
12688void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
12689                                           SourceLocation FinalLoc,
12690                                           bool IsFinalSpelledSealed,
12691                                           SourceLocation LBraceLoc) {
12692  AdjustDeclIfTemplate(TagD);
12693  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
12694
12695  FieldCollector->StartClass();
12696
12697  if (!Record->getIdentifier())
12698    return;
12699
12700  if (FinalLoc.isValid())
12701    Record->addAttr(new (Context)
12702                    FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
12703
12704  // C++ [class]p2:
12705  //   [...] The class-name is also inserted into the scope of the
12706  //   class itself; this is known as the injected-class-name. For
12707  //   purposes of access checking, the injected-class-name is treated
12708  //   as if it were a public member name.
12709  CXXRecordDecl *InjectedClassName
12710    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
12711                            Record->getLocStart(), Record->getLocation(),
12712                            Record->getIdentifier(),
12713                            /*PrevDecl=*/nullptr,
12714                            /*DelayTypeCreation=*/true);
12715  Context.getTypeDeclType(InjectedClassName, Record);
12716  InjectedClassName->setImplicit();
12717  InjectedClassName->setAccess(AS_public);
12718  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
12719      InjectedClassName->setDescribedClassTemplate(Template);
12720  PushOnScopeChains(InjectedClassName, S);
12721  assert(InjectedClassName->isInjectedClassName() &&
12722         "Broken injected-class-name");
12723}
12724
12725void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
12726                                    SourceLocation RBraceLoc) {
12727  AdjustDeclIfTemplate(TagD);
12728  TagDecl *Tag = cast<TagDecl>(TagD);
12729  Tag->setRBraceLoc(RBraceLoc);
12730
12731  // Make sure we "complete" the definition even it is invalid.
12732  if (Tag->isBeingDefined()) {
12733    assert(Tag->isInvalidDecl() && "We should already have completed it");
12734    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12735      RD->completeDefinition();
12736  }
12737
12738  if (isa<CXXRecordDecl>(Tag))
12739    FieldCollector->FinishClass();
12740
12741  // Exit this scope of this tag's definition.
12742  PopDeclContext();
12743
12744  if (getCurLexicalContext()->isObjCContainer() &&
12745      Tag->getDeclContext()->isFileContext())
12746    Tag->setTopLevelDeclInObjCContainer();
12747
12748  // Notify the consumer that we've defined a tag.
12749  if (!Tag->isInvalidDecl())
12750    Consumer.HandleTagDeclDefinition(Tag);
12751}
12752
12753void Sema::ActOnObjCContainerFinishDefinition() {
12754  // Exit this scope of this interface definition.
12755  PopDeclContext();
12756}
12757
12758void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
12759  assert(DC == CurContext && "Mismatch of container contexts");
12760  OriginalLexicalContext = DC;
12761  ActOnObjCContainerFinishDefinition();
12762}
12763
12764void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
12765  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
12766  OriginalLexicalContext = nullptr;
12767}
12768
12769void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
12770  AdjustDeclIfTemplate(TagD);
12771  TagDecl *Tag = cast<TagDecl>(TagD);
12772  Tag->setInvalidDecl();
12773
12774  // Make sure we "complete" the definition even it is invalid.
12775  if (Tag->isBeingDefined()) {
12776    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12777      RD->completeDefinition();
12778  }
12779
12780  // We're undoing ActOnTagStartDefinition here, not
12781  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
12782  // the FieldCollector.
12783
12784  PopDeclContext();
12785}
12786
12787// Note that FieldName may be null for anonymous bitfields.
12788ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
12789                                IdentifierInfo *FieldName,
12790                                QualType FieldTy, bool IsMsStruct,
12791                                Expr *BitWidth, bool *ZeroWidth) {
12792  // Default to true; that shouldn't confuse checks for emptiness
12793  if (ZeroWidth)
12794    *ZeroWidth = true;
12795
12796  // C99 6.7.2.1p4 - verify the field type.
12797  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
12798  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
12799    // Handle incomplete types with specific error.
12800    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
12801      return ExprError();
12802    if (FieldName)
12803      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
12804        << FieldName << FieldTy << BitWidth->getSourceRange();
12805    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
12806      << FieldTy << BitWidth->getSourceRange();
12807  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
12808                                             UPPC_BitFieldWidth))
12809    return ExprError();
12810
12811  // If the bit-width is type- or value-dependent, don't try to check
12812  // it now.
12813  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
12814    return BitWidth;
12815
12816  llvm::APSInt Value;
12817  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
12818  if (ICE.isInvalid())
12819    return ICE;
12820  BitWidth = ICE.get();
12821
12822  if (Value != 0 && ZeroWidth)
12823    *ZeroWidth = false;
12824
12825  // Zero-width bitfield is ok for anonymous field.
12826  if (Value == 0 && FieldName)
12827    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
12828
12829  if (Value.isSigned() && Value.isNegative()) {
12830    if (FieldName)
12831      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
12832               << FieldName << Value.toString(10);
12833    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
12834      << Value.toString(10);
12835  }
12836
12837  if (!FieldTy->isDependentType()) {
12838    uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
12839    uint64_t TypeWidth = Context.getIntWidth(FieldTy);
12840    bool BitfieldIsOverwide = Value.ugt(TypeWidth);
12841
12842    // Over-wide bitfields are an error in C or when using the MSVC bitfield
12843    // ABI.
12844    bool CStdConstraintViolation =
12845        BitfieldIsOverwide && !getLangOpts().CPlusPlus;
12846    bool MSBitfieldViolation =
12847        Value.ugt(TypeStorageSize) &&
12848        (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
12849    if (CStdConstraintViolation || MSBitfieldViolation) {
12850      unsigned DiagWidth =
12851          CStdConstraintViolation ? TypeWidth : TypeStorageSize;
12852      if (FieldName)
12853        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
12854               << FieldName << (unsigned)Value.getZExtValue()
12855               << !CStdConstraintViolation << DiagWidth;
12856
12857      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
12858             << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
12859             << DiagWidth;
12860    }
12861
12862    // Warn on types where the user might conceivably expect to get all
12863    // specified bits as value bits: that's all integral types other than
12864    // 'bool'.
12865    if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
12866      if (FieldName)
12867        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
12868            << FieldName << (unsigned)Value.getZExtValue()
12869            << (unsigned)TypeWidth;
12870      else
12871        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
12872            << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
12873    }
12874  }
12875
12876  return BitWidth;
12877}
12878
12879/// ActOnField - Each field of a C struct/union is passed into this in order
12880/// to create a FieldDecl object for it.
12881Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
12882                       Declarator &D, Expr *BitfieldWidth) {
12883  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
12884                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
12885                               /*InitStyle=*/ICIS_NoInit, AS_public);
12886  return Res;
12887}
12888
12889/// HandleField - Analyze a field of a C struct or a C++ data member.
12890///
12891FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
12892                             SourceLocation DeclStart,
12893                             Declarator &D, Expr *BitWidth,
12894                             InClassInitStyle InitStyle,
12895                             AccessSpecifier AS) {
12896  IdentifierInfo *II = D.getIdentifier();
12897  SourceLocation Loc = DeclStart;
12898  if (II) Loc = D.getIdentifierLoc();
12899
12900  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12901  QualType T = TInfo->getType();
12902  if (getLangOpts().CPlusPlus) {
12903    CheckExtraCXXDefaultArguments(D);
12904
12905    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12906                                        UPPC_DataMemberType)) {
12907      D.setInvalidType();
12908      T = Context.IntTy;
12909      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12910    }
12911  }
12912
12913  // TR 18037 does not allow fields to be declared with address spaces.
12914  if (T.getQualifiers().hasAddressSpace()) {
12915    Diag(Loc, diag::err_field_with_address_space);
12916    D.setInvalidType();
12917  }
12918
12919  // OpenCL 1.2 spec, s6.9 r:
12920  // The event type cannot be used to declare a structure or union field.
12921  if (LangOpts.OpenCL && T->isEventT()) {
12922    Diag(Loc, diag::err_event_t_struct_field);
12923    D.setInvalidType();
12924  }
12925
12926  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12927
12928  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12929    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12930         diag::err_invalid_thread)
12931      << DeclSpec::getSpecifierName(TSCS);
12932
12933  // Check to see if this name was declared as a member previously
12934  NamedDecl *PrevDecl = nullptr;
12935  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12936  LookupName(Previous, S);
12937  switch (Previous.getResultKind()) {
12938    case LookupResult::Found:
12939    case LookupResult::FoundUnresolvedValue:
12940      PrevDecl = Previous.getAsSingle<NamedDecl>();
12941      break;
12942
12943    case LookupResult::FoundOverloaded:
12944      PrevDecl = Previous.getRepresentativeDecl();
12945      break;
12946
12947    case LookupResult::NotFound:
12948    case LookupResult::NotFoundInCurrentInstantiation:
12949    case LookupResult::Ambiguous:
12950      break;
12951  }
12952  Previous.suppressDiagnostics();
12953
12954  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12955    // Maybe we will complain about the shadowed template parameter.
12956    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12957    // Just pretend that we didn't see the previous declaration.
12958    PrevDecl = nullptr;
12959  }
12960
12961  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12962    PrevDecl = nullptr;
12963
12964  bool Mutable
12965    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
12966  SourceLocation TSSL = D.getLocStart();
12967  FieldDecl *NewFD
12968    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
12969                     TSSL, AS, PrevDecl, &D);
12970
12971  if (NewFD->isInvalidDecl())
12972    Record->setInvalidDecl();
12973
12974  if (D.getDeclSpec().isModulePrivateSpecified())
12975    NewFD->setModulePrivate();
12976
12977  if (NewFD->isInvalidDecl() && PrevDecl) {
12978    // Don't introduce NewFD into scope; there's already something
12979    // with the same name in the same scope.
12980  } else if (II) {
12981    PushOnScopeChains(NewFD, S);
12982  } else
12983    Record->addDecl(NewFD);
12984
12985  return NewFD;
12986}
12987
12988/// \brief Build a new FieldDecl and check its well-formedness.
12989///
12990/// This routine builds a new FieldDecl given the fields name, type,
12991/// record, etc. \p PrevDecl should refer to any previous declaration
12992/// with the same name and in the same scope as the field to be
12993/// created.
12994///
12995/// \returns a new FieldDecl.
12996///
12997/// \todo The Declarator argument is a hack. It will be removed once
12998FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
12999                                TypeSourceInfo *TInfo,
13000                                RecordDecl *Record, SourceLocation Loc,
13001                                bool Mutable, Expr *BitWidth,
13002                                InClassInitStyle InitStyle,
13003                                SourceLocation TSSL,
13004                                AccessSpecifier AS, NamedDecl *PrevDecl,
13005                                Declarator *D) {
13006  IdentifierInfo *II = Name.getAsIdentifierInfo();
13007  bool InvalidDecl = false;
13008  if (D) InvalidDecl = D->isInvalidType();
13009
13010  // If we receive a broken type, recover by assuming 'int' and
13011  // marking this declaration as invalid.
13012  if (T.isNull()) {
13013    InvalidDecl = true;
13014    T = Context.IntTy;
13015  }
13016
13017  QualType EltTy = Context.getBaseElementType(T);
13018  if (!EltTy->isDependentType()) {
13019    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
13020      // Fields of incomplete type force their record to be invalid.
13021      Record->setInvalidDecl();
13022      InvalidDecl = true;
13023    } else {
13024      NamedDecl *Def;
13025      EltTy->isIncompleteType(&Def);
13026      if (Def && Def->isInvalidDecl()) {
13027        Record->setInvalidDecl();
13028        InvalidDecl = true;
13029      }
13030    }
13031  }
13032
13033  // OpenCL v1.2 s6.9.c: bitfields are not supported.
13034  if (BitWidth && getLangOpts().OpenCL) {
13035    Diag(Loc, diag::err_opencl_bitfields);
13036    InvalidDecl = true;
13037  }
13038
13039  // C99 6.7.2.1p8: A member of a structure or union may have any type other
13040  // than a variably modified type.
13041  if (!InvalidDecl && T->isVariablyModifiedType()) {
13042    bool SizeIsNegative;
13043    llvm::APSInt Oversized;
13044
13045    TypeSourceInfo *FixedTInfo =
13046      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
13047                                                    SizeIsNegative,
13048                                                    Oversized);
13049    if (FixedTInfo) {
13050      Diag(Loc, diag::warn_illegal_constant_array_size);
13051      TInfo = FixedTInfo;
13052      T = FixedTInfo->getType();
13053    } else {
13054      if (SizeIsNegative)
13055        Diag(Loc, diag::err_typecheck_negative_array_size);
13056      else if (Oversized.getBoolValue())
13057        Diag(Loc, diag::err_array_too_large)
13058          << Oversized.toString(10);
13059      else
13060        Diag(Loc, diag::err_typecheck_field_variable_size);
13061      InvalidDecl = true;
13062    }
13063  }
13064
13065  // Fields can not have abstract class types
13066  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
13067                                             diag::err_abstract_type_in_decl,
13068                                             AbstractFieldType))
13069    InvalidDecl = true;
13070
13071  bool ZeroWidth = false;
13072  if (InvalidDecl)
13073    BitWidth = nullptr;
13074  // If this is declared as a bit-field, check the bit-field.
13075  if (BitWidth) {
13076    BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
13077                              &ZeroWidth).get();
13078    if (!BitWidth) {
13079      InvalidDecl = true;
13080      BitWidth = nullptr;
13081      ZeroWidth = false;
13082    }
13083  }
13084
13085  // Check that 'mutable' is consistent with the type of the declaration.
13086  if (!InvalidDecl && Mutable) {
13087    unsigned DiagID = 0;
13088    if (T->isReferenceType())
13089      DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
13090                                        : diag::err_mutable_reference;
13091    else if (T.isConstQualified())
13092      DiagID = diag::err_mutable_const;
13093
13094    if (DiagID) {
13095      SourceLocation ErrLoc = Loc;
13096      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
13097        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
13098      Diag(ErrLoc, DiagID);
13099      if (DiagID != diag::ext_mutable_reference) {
13100        Mutable = false;
13101        InvalidDecl = true;
13102      }
13103    }
13104  }
13105
13106  // C++11 [class.union]p8 (DR1460):
13107  //   At most one variant member of a union may have a
13108  //   brace-or-equal-initializer.
13109  if (InitStyle != ICIS_NoInit)
13110    checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
13111
13112  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
13113                                       BitWidth, Mutable, InitStyle);
13114  if (InvalidDecl)
13115    NewFD->setInvalidDecl();
13116
13117  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
13118    Diag(Loc, diag::err_duplicate_member) << II;
13119    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13120    NewFD->setInvalidDecl();
13121  }
13122
13123  if (!InvalidDecl && getLangOpts().CPlusPlus) {
13124    if (Record->isUnion()) {
13125      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
13126        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
13127        if (RDecl->getDefinition()) {
13128          // C++ [class.union]p1: An object of a class with a non-trivial
13129          // constructor, a non-trivial copy constructor, a non-trivial
13130          // destructor, or a non-trivial copy assignment operator
13131          // cannot be a member of a union, nor can an array of such
13132          // objects.
13133          if (CheckNontrivialField(NewFD))
13134            NewFD->setInvalidDecl();
13135        }
13136      }
13137
13138      // C++ [class.union]p1: If a union contains a member of reference type,
13139      // the program is ill-formed, except when compiling with MSVC extensions
13140      // enabled.
13141      if (EltTy->isReferenceType()) {
13142        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
13143                                    diag::ext_union_member_of_reference_type :
13144                                    diag::err_union_member_of_reference_type)
13145          << NewFD->getDeclName() << EltTy;
13146        if (!getLangOpts().MicrosoftExt)
13147          NewFD->setInvalidDecl();
13148      }
13149    }
13150  }
13151
13152  // FIXME: We need to pass in the attributes given an AST
13153  // representation, not a parser representation.
13154  if (D) {
13155    // FIXME: The current scope is almost... but not entirely... correct here.
13156    ProcessDeclAttributes(getCurScope(), NewFD, *D);
13157
13158    if (NewFD->hasAttrs())
13159      CheckAlignasUnderalignment(NewFD);
13160  }
13161
13162  // In auto-retain/release, infer strong retension for fields of
13163  // retainable type.
13164  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
13165    NewFD->setInvalidDecl();
13166
13167  if (T.isObjCGCWeak())
13168    Diag(Loc, diag::warn_attribute_weak_on_field);
13169
13170  NewFD->setAccess(AS);
13171  return NewFD;
13172}
13173
13174bool Sema::CheckNontrivialField(FieldDecl *FD) {
13175  assert(FD);
13176  assert(getLangOpts().CPlusPlus && "valid check only for C++");
13177
13178  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
13179    return false;
13180
13181  QualType EltTy = Context.getBaseElementType(FD->getType());
13182  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
13183    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
13184    if (RDecl->getDefinition()) {
13185      // We check for copy constructors before constructors
13186      // because otherwise we'll never get complaints about
13187      // copy constructors.
13188
13189      CXXSpecialMember member = CXXInvalid;
13190      // We're required to check for any non-trivial constructors. Since the
13191      // implicit default constructor is suppressed if there are any
13192      // user-declared constructors, we just need to check that there is a
13193      // trivial default constructor and a trivial copy constructor. (We don't
13194      // worry about move constructors here, since this is a C++98 check.)
13195      if (RDecl->hasNonTrivialCopyConstructor())
13196        member = CXXCopyConstructor;
13197      else if (!RDecl->hasTrivialDefaultConstructor())
13198        member = CXXDefaultConstructor;
13199      else if (RDecl->hasNonTrivialCopyAssignment())
13200        member = CXXCopyAssignment;
13201      else if (RDecl->hasNonTrivialDestructor())
13202        member = CXXDestructor;
13203
13204      if (member != CXXInvalid) {
13205        if (!getLangOpts().CPlusPlus11 &&
13206            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
13207          // Objective-C++ ARC: it is an error to have a non-trivial field of
13208          // a union. However, system headers in Objective-C programs
13209          // occasionally have Objective-C lifetime objects within unions,
13210          // and rather than cause the program to fail, we make those
13211          // members unavailable.
13212          SourceLocation Loc = FD->getLocation();
13213          if (getSourceManager().isInSystemHeader(Loc)) {
13214            if (!FD->hasAttr<UnavailableAttr>())
13215              FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
13216                            UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
13217            return false;
13218          }
13219        }
13220
13221        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
13222               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
13223               diag::err_illegal_union_or_anon_struct_member)
13224          << FD->getParent()->isUnion() << FD->getDeclName() << member;
13225        DiagnoseNontrivial(RDecl, member);
13226        return !getLangOpts().CPlusPlus11;
13227      }
13228    }
13229  }
13230
13231  return false;
13232}
13233
13234/// TranslateIvarVisibility - Translate visibility from a token ID to an
13235///  AST enum value.
13236static ObjCIvarDecl::AccessControl
13237TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
13238  switch (ivarVisibility) {
13239  default: llvm_unreachable("Unknown visitibility kind");
13240  case tok::objc_private: return ObjCIvarDecl::Private;
13241  case tok::objc_public: return ObjCIvarDecl::Public;
13242  case tok::objc_protected: return ObjCIvarDecl::Protected;
13243  case tok::objc_package: return ObjCIvarDecl::Package;
13244  }
13245}
13246
13247/// ActOnIvar - Each ivar field of an objective-c class is passed into this
13248/// in order to create an IvarDecl object for it.
13249Decl *Sema::ActOnIvar(Scope *S,
13250                                SourceLocation DeclStart,
13251                                Declarator &D, Expr *BitfieldWidth,
13252                                tok::ObjCKeywordKind Visibility) {
13253
13254  IdentifierInfo *II = D.getIdentifier();
13255  Expr *BitWidth = (Expr*)BitfieldWidth;
13256  SourceLocation Loc = DeclStart;
13257  if (II) Loc = D.getIdentifierLoc();
13258
13259  // FIXME: Unnamed fields can be handled in various different ways, for
13260  // example, unnamed unions inject all members into the struct namespace!
13261
13262  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13263  QualType T = TInfo->getType();
13264
13265  if (BitWidth) {
13266    // 6.7.2.1p3, 6.7.2.1p4
13267    BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
13268    if (!BitWidth)
13269      D.setInvalidType();
13270  } else {
13271    // Not a bitfield.
13272
13273    // validate II.
13274
13275  }
13276  if (T->isReferenceType()) {
13277    Diag(Loc, diag::err_ivar_reference_type);
13278    D.setInvalidType();
13279  }
13280  // C99 6.7.2.1p8: A member of a structure or union may have any type other
13281  // than a variably modified type.
13282  else if (T->isVariablyModifiedType()) {
13283    Diag(Loc, diag::err_typecheck_ivar_variable_size);
13284    D.setInvalidType();
13285  }
13286
13287  // Get the visibility (access control) for this ivar.
13288  ObjCIvarDecl::AccessControl ac =
13289    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
13290                                        : ObjCIvarDecl::None;
13291  // Must set ivar's DeclContext to its enclosing interface.
13292  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
13293  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
13294    return nullptr;
13295  ObjCContainerDecl *EnclosingContext;
13296  if (ObjCImplementationDecl *IMPDecl =
13297      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
13298    if (LangOpts.ObjCRuntime.isFragile()) {
13299    // Case of ivar declared in an implementation. Context is that of its class.
13300      EnclosingContext = IMPDecl->getClassInterface();
13301      assert(EnclosingContext && "Implementation has no class interface!");
13302    }
13303    else
13304      EnclosingContext = EnclosingDecl;
13305  } else {
13306    if (ObjCCategoryDecl *CDecl =
13307        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
13308      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
13309        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
13310        return nullptr;
13311      }
13312    }
13313    EnclosingContext = EnclosingDecl;
13314  }
13315
13316  // Construct the decl.
13317  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
13318                                             DeclStart, Loc, II, T,
13319                                             TInfo, ac, (Expr *)BitfieldWidth);
13320
13321  if (II) {
13322    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
13323                                           ForRedeclaration);
13324    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
13325        && !isa<TagDecl>(PrevDecl)) {
13326      Diag(Loc, diag::err_duplicate_member) << II;
13327      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13328      NewID->setInvalidDecl();
13329    }
13330  }
13331
13332  // Process attributes attached to the ivar.
13333  ProcessDeclAttributes(S, NewID, D);
13334
13335  if (D.isInvalidType())
13336    NewID->setInvalidDecl();
13337
13338  // In ARC, infer 'retaining' for ivars of retainable type.
13339  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
13340    NewID->setInvalidDecl();
13341
13342  if (D.getDeclSpec().isModulePrivateSpecified())
13343    NewID->setModulePrivate();
13344
13345  if (II) {
13346    // FIXME: When interfaces are DeclContexts, we'll need to add
13347    // these to the interface.
13348    S->AddDecl(NewID);
13349    IdResolver.AddDecl(NewID);
13350  }
13351
13352  if (LangOpts.ObjCRuntime.isNonFragile() &&
13353      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
13354    Diag(Loc, diag::warn_ivars_in_interface);
13355
13356  return NewID;
13357}
13358
13359/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
13360/// class and class extensions. For every class \@interface and class
13361/// extension \@interface, if the last ivar is a bitfield of any type,
13362/// then add an implicit `char :0` ivar to the end of that interface.
13363void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
13364                             SmallVectorImpl<Decl *> &AllIvarDecls) {
13365  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
13366    return;
13367
13368  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
13369  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
13370
13371  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
13372    return;
13373  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
13374  if (!ID) {
13375    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
13376      if (!CD->IsClassExtension())
13377        return;
13378    }
13379    // No need to add this to end of @implementation.
13380    else
13381      return;
13382  }
13383  // All conditions are met. Add a new bitfield to the tail end of ivars.
13384  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
13385  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
13386
13387  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
13388                              DeclLoc, DeclLoc, nullptr,
13389                              Context.CharTy,
13390                              Context.getTrivialTypeSourceInfo(Context.CharTy,
13391                                                               DeclLoc),
13392                              ObjCIvarDecl::Private, BW,
13393                              true);
13394  AllIvarDecls.push_back(Ivar);
13395}
13396
13397void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
13398                       ArrayRef<Decl *> Fields, SourceLocation LBrac,
13399                       SourceLocation RBrac, AttributeList *Attr) {
13400  assert(EnclosingDecl && "missing record or interface decl");
13401
13402  // If this is an Objective-C @implementation or category and we have
13403  // new fields here we should reset the layout of the interface since
13404  // it will now change.
13405  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
13406    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
13407    switch (DC->getKind()) {
13408    default: break;
13409    case Decl::ObjCCategory:
13410      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
13411      break;
13412    case Decl::ObjCImplementation:
13413      Context.
13414        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
13415      break;
13416    }
13417  }
13418
13419  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
13420
13421  // Start counting up the number of named members; make sure to include
13422  // members of anonymous structs and unions in the total.
13423  unsigned NumNamedMembers = 0;
13424  if (Record) {
13425    for (const auto *I : Record->decls()) {
13426      if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
13427        if (IFD->getDeclName())
13428          ++NumNamedMembers;
13429    }
13430  }
13431
13432  // Verify that all the fields are okay.
13433  SmallVector<FieldDecl*, 32> RecFields;
13434
13435  bool ARCErrReported = false;
13436  for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
13437       i != end; ++i) {
13438    FieldDecl *FD = cast<FieldDecl>(*i);
13439
13440    // Get the type for the field.
13441    const Type *FDTy = FD->getType().getTypePtr();
13442
13443    if (!FD->isAnonymousStructOrUnion()) {
13444      // Remember all fields written by the user.
13445      RecFields.push_back(FD);
13446    }
13447
13448    // If the field is already invalid for some reason, don't emit more
13449    // diagnostics about it.
13450    if (FD->isInvalidDecl()) {
13451      EnclosingDecl->setInvalidDecl();
13452      continue;
13453    }
13454
13455    // C99 6.7.2.1p2:
13456    //   A structure or union shall not contain a member with
13457    //   incomplete or function type (hence, a structure shall not
13458    //   contain an instance of itself, but may contain a pointer to
13459    //   an instance of itself), except that the last member of a
13460    //   structure with more than one named member may have incomplete
13461    //   array type; such a structure (and any union containing,
13462    //   possibly recursively, a member that is such a structure)
13463    //   shall not be a member of a structure or an element of an
13464    //   array.
13465    if (FDTy->isFunctionType()) {
13466      // Field declared as a function.
13467      Diag(FD->getLocation(), diag::err_field_declared_as_function)
13468        << FD->getDeclName();
13469      FD->setInvalidDecl();
13470      EnclosingDecl->setInvalidDecl();
13471      continue;
13472    } else if (FDTy->isIncompleteArrayType() && Record &&
13473               ((i + 1 == Fields.end() && !Record->isUnion()) ||
13474                ((getLangOpts().MicrosoftExt ||
13475                  getLangOpts().CPlusPlus) &&
13476                 (i + 1 == Fields.end() || Record->isUnion())))) {
13477      // Flexible array member.
13478      // Microsoft and g++ is more permissive regarding flexible array.
13479      // It will accept flexible array in union and also
13480      // as the sole element of a struct/class.
13481      unsigned DiagID = 0;
13482      if (Record->isUnion())
13483        DiagID = getLangOpts().MicrosoftExt
13484                     ? diag::ext_flexible_array_union_ms
13485                     : getLangOpts().CPlusPlus
13486                           ? diag::ext_flexible_array_union_gnu
13487                           : diag::err_flexible_array_union;
13488      else if (Fields.size() == 1)
13489        DiagID = getLangOpts().MicrosoftExt
13490                     ? diag::ext_flexible_array_empty_aggregate_ms
13491                     : getLangOpts().CPlusPlus
13492                           ? diag::ext_flexible_array_empty_aggregate_gnu
13493                           : NumNamedMembers < 1
13494                                 ? diag::err_flexible_array_empty_aggregate
13495                                 : 0;
13496
13497      if (DiagID)
13498        Diag(FD->getLocation(), DiagID) << FD->getDeclName()
13499                                        << Record->getTagKind();
13500      // While the layout of types that contain virtual bases is not specified
13501      // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
13502      // virtual bases after the derived members.  This would make a flexible
13503      // array member declared at the end of an object not adjacent to the end
13504      // of the type.
13505      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
13506        if (RD->getNumVBases() != 0)
13507          Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
13508            << FD->getDeclName() << Record->getTagKind();
13509      if (!getLangOpts().C99)
13510        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
13511          << FD->getDeclName() << Record->getTagKind();
13512
13513      // If the element type has a non-trivial destructor, we would not
13514      // implicitly destroy the elements, so disallow it for now.
13515      //
13516      // FIXME: GCC allows this. We should probably either implicitly delete
13517      // the destructor of the containing class, or just allow this.
13518      QualType BaseElem = Context.getBaseElementType(FD->getType());
13519      if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
13520        Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
13521          << FD->getDeclName() << FD->getType();
13522        FD->setInvalidDecl();
13523        EnclosingDecl->setInvalidDecl();
13524        continue;
13525      }
13526      // Okay, we have a legal flexible array member at the end of the struct.
13527      Record->setHasFlexibleArrayMember(true);
13528    } else if (!FDTy->isDependentType() &&
13529               RequireCompleteType(FD->getLocation(), FD->getType(),
13530                                   diag::err_field_incomplete)) {
13531      // Incomplete type
13532      FD->setInvalidDecl();
13533      EnclosingDecl->setInvalidDecl();
13534      continue;
13535    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
13536      if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
13537        // A type which contains a flexible array member is considered to be a
13538        // flexible array member.
13539        Record->setHasFlexibleArrayMember(true);
13540        if (!Record->isUnion()) {
13541          // If this is a struct/class and this is not the last element, reject
13542          // it.  Note that GCC supports variable sized arrays in the middle of
13543          // structures.
13544          if (i + 1 != Fields.end())
13545            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
13546              << FD->getDeclName() << FD->getType();
13547          else {
13548            // We support flexible arrays at the end of structs in
13549            // other structs as an extension.
13550            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
13551              << FD->getDeclName();
13552          }
13553        }
13554      }
13555      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
13556          RequireNonAbstractType(FD->getLocation(), FD->getType(),
13557                                 diag::err_abstract_type_in_decl,
13558                                 AbstractIvarType)) {
13559        // Ivars can not have abstract class types
13560        FD->setInvalidDecl();
13561      }
13562      if (Record && FDTTy->getDecl()->hasObjectMember())
13563        Record->setHasObjectMember(true);
13564      if (Record && FDTTy->getDecl()->hasVolatileMember())
13565        Record->setHasVolatileMember(true);
13566    } else if (FDTy->isObjCObjectType()) {
13567      /// A field cannot be an Objective-c object
13568      Diag(FD->getLocation(), diag::err_statically_allocated_object)
13569        << FixItHint::CreateInsertion(FD->getLocation(), "*");
13570      QualType T = Context.getObjCObjectPointerType(FD->getType());
13571      FD->setType(T);
13572    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
13573               (!getLangOpts().CPlusPlus || Record->isUnion())) {
13574      // It's an error in ARC if a field has lifetime.
13575      // We don't want to report this in a system header, though,
13576      // so we just make the field unavailable.
13577      // FIXME: that's really not sufficient; we need to make the type
13578      // itself invalid to, say, initialize or copy.
13579      QualType T = FD->getType();
13580      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
13581      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
13582        SourceLocation loc = FD->getLocation();
13583        if (getSourceManager().isInSystemHeader(loc)) {
13584          if (!FD->hasAttr<UnavailableAttr>()) {
13585            FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
13586                          UnavailableAttr::IR_ARCFieldWithOwnership, loc));
13587          }
13588        } else {
13589          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
13590            << T->isBlockPointerType() << Record->getTagKind();
13591        }
13592        ARCErrReported = true;
13593      }
13594    } else if (getLangOpts().ObjC1 &&
13595               getLangOpts().getGC() != LangOptions::NonGC &&
13596               Record && !Record->hasObjectMember()) {
13597      if (FD->getType()->isObjCObjectPointerType() ||
13598          FD->getType().isObjCGCStrong())
13599        Record->setHasObjectMember(true);
13600      else if (Context.getAsArrayType(FD->getType())) {
13601        QualType BaseType = Context.getBaseElementType(FD->getType());
13602        if (BaseType->isRecordType() &&
13603            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
13604          Record->setHasObjectMember(true);
13605        else if (BaseType->isObjCObjectPointerType() ||
13606                 BaseType.isObjCGCStrong())
13607               Record->setHasObjectMember(true);
13608      }
13609    }
13610    if (Record && FD->getType().isVolatileQualified())
13611      Record->setHasVolatileMember(true);
13612    // Keep track of the number of named members.
13613    if (FD->getIdentifier())
13614      ++NumNamedMembers;
13615  }
13616
13617  // Okay, we successfully defined 'Record'.
13618  if (Record) {
13619    bool Completed = false;
13620    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
13621      if (!CXXRecord->isInvalidDecl()) {
13622        // Set access bits correctly on the directly-declared conversions.
13623        for (CXXRecordDecl::conversion_iterator
13624               I = CXXRecord->conversion_begin(),
13625               E = CXXRecord->conversion_end(); I != E; ++I)
13626          I.setAccess((*I)->getAccess());
13627
13628        if (!CXXRecord->isDependentType()) {
13629          if (CXXRecord->hasUserDeclaredDestructor()) {
13630            // Adjust user-defined destructor exception spec.
13631            if (getLangOpts().CPlusPlus11)
13632              AdjustDestructorExceptionSpec(CXXRecord,
13633                                            CXXRecord->getDestructor());
13634          }
13635
13636          // Add any implicitly-declared members to this class.
13637          AddImplicitlyDeclaredMembersToClass(CXXRecord);
13638
13639          // If we have virtual base classes, we may end up finding multiple
13640          // final overriders for a given virtual function. Check for this
13641          // problem now.
13642          if (CXXRecord->getNumVBases()) {
13643            CXXFinalOverriderMap FinalOverriders;
13644            CXXRecord->getFinalOverriders(FinalOverriders);
13645
13646            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
13647                                             MEnd = FinalOverriders.end();
13648                 M != MEnd; ++M) {
13649              for (OverridingMethods::iterator SO = M->second.begin(),
13650                                            SOEnd = M->second.end();
13651                   SO != SOEnd; ++SO) {
13652                assert(SO->second.size() > 0 &&
13653                       "Virtual function without overridding functions?");
13654                if (SO->second.size() == 1)
13655                  continue;
13656
13657                // C++ [class.virtual]p2:
13658                //   In a derived class, if a virtual member function of a base
13659                //   class subobject has more than one final overrider the
13660                //   program is ill-formed.
13661                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
13662                  << (const NamedDecl *)M->first << Record;
13663                Diag(M->first->getLocation(),
13664                     diag::note_overridden_virtual_function);
13665                for (OverridingMethods::overriding_iterator
13666                          OM = SO->second.begin(),
13667                       OMEnd = SO->second.end();
13668                     OM != OMEnd; ++OM)
13669                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
13670                    << (const NamedDecl *)M->first << OM->Method->getParent();
13671
13672                Record->setInvalidDecl();
13673              }
13674            }
13675            CXXRecord->completeDefinition(&FinalOverriders);
13676            Completed = true;
13677          }
13678        }
13679      }
13680    }
13681
13682    if (!Completed)
13683      Record->completeDefinition();
13684
13685    if (Record->hasAttrs()) {
13686      CheckAlignasUnderalignment(Record);
13687
13688      if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
13689        checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
13690                                           IA->getRange(), IA->getBestCase(),
13691                                           IA->getSemanticSpelling());
13692    }
13693
13694    // Check if the structure/union declaration is a type that can have zero
13695    // size in C. For C this is a language extension, for C++ it may cause
13696    // compatibility problems.
13697    bool CheckForZeroSize;
13698    if (!getLangOpts().CPlusPlus) {
13699      CheckForZeroSize = true;
13700    } else {
13701      // For C++ filter out types that cannot be referenced in C code.
13702      CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
13703      CheckForZeroSize =
13704          CXXRecord->getLexicalDeclContext()->isExternCContext() &&
13705          !CXXRecord->isDependentType() &&
13706          CXXRecord->isCLike();
13707    }
13708    if (CheckForZeroSize) {
13709      bool ZeroSize = true;
13710      bool IsEmpty = true;
13711      unsigned NonBitFields = 0;
13712      for (RecordDecl::field_iterator I = Record->field_begin(),
13713                                      E = Record->field_end();
13714           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
13715        IsEmpty = false;
13716        if (I->isUnnamedBitfield()) {
13717          if (I->getBitWidthValue(Context) > 0)
13718            ZeroSize = false;
13719        } else {
13720          ++NonBitFields;
13721          QualType FieldType = I->getType();
13722          if (FieldType->isIncompleteType() ||
13723              !Context.getTypeSizeInChars(FieldType).isZero())
13724            ZeroSize = false;
13725        }
13726      }
13727
13728      // Empty structs are an extension in C (C99 6.7.2.1p7). They are
13729      // allowed in C++, but warn if its declaration is inside
13730      // extern "C" block.
13731      if (ZeroSize) {
13732        Diag(RecLoc, getLangOpts().CPlusPlus ?
13733                         diag::warn_zero_size_struct_union_in_extern_c :
13734                         diag::warn_zero_size_struct_union_compat)
13735          << IsEmpty << Record->isUnion() << (NonBitFields > 1);
13736      }
13737
13738      // Structs without named members are extension in C (C99 6.7.2.1p7),
13739      // but are accepted by GCC.
13740      if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
13741        Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
13742                               diag::ext_no_named_members_in_struct_union)
13743          << Record->isUnion();
13744      }
13745    }
13746  } else {
13747    ObjCIvarDecl **ClsFields =
13748      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
13749    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
13750      ID->setEndOfDefinitionLoc(RBrac);
13751      // Add ivar's to class's DeclContext.
13752      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13753        ClsFields[i]->setLexicalDeclContext(ID);
13754        ID->addDecl(ClsFields[i]);
13755      }
13756      // Must enforce the rule that ivars in the base classes may not be
13757      // duplicates.
13758      if (ID->getSuperClass())
13759        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
13760    } else if (ObjCImplementationDecl *IMPDecl =
13761                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
13762      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
13763      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
13764        // Ivar declared in @implementation never belongs to the implementation.
13765        // Only it is in implementation's lexical context.
13766        ClsFields[I]->setLexicalDeclContext(IMPDecl);
13767      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
13768      IMPDecl->setIvarLBraceLoc(LBrac);
13769      IMPDecl->setIvarRBraceLoc(RBrac);
13770    } else if (ObjCCategoryDecl *CDecl =
13771                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
13772      // case of ivars in class extension; all other cases have been
13773      // reported as errors elsewhere.
13774      // FIXME. Class extension does not have a LocEnd field.
13775      // CDecl->setLocEnd(RBrac);
13776      // Add ivar's to class extension's DeclContext.
13777      // Diagnose redeclaration of private ivars.
13778      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
13779      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13780        if (IDecl) {
13781          if (const ObjCIvarDecl *ClsIvar =
13782              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
13783            Diag(ClsFields[i]->getLocation(),
13784                 diag::err_duplicate_ivar_declaration);
13785            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
13786            continue;
13787          }
13788          for (const auto *Ext : IDecl->known_extensions()) {
13789            if (const ObjCIvarDecl *ClsExtIvar
13790                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
13791              Diag(ClsFields[i]->getLocation(),
13792                   diag::err_duplicate_ivar_declaration);
13793              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
13794              continue;
13795            }
13796          }
13797        }
13798        ClsFields[i]->setLexicalDeclContext(CDecl);
13799        CDecl->addDecl(ClsFields[i]);
13800      }
13801      CDecl->setIvarLBraceLoc(LBrac);
13802      CDecl->setIvarRBraceLoc(RBrac);
13803    }
13804  }
13805
13806  if (Attr)
13807    ProcessDeclAttributeList(S, Record, Attr);
13808}
13809
13810/// \brief Determine whether the given integral value is representable within
13811/// the given type T.
13812static bool isRepresentableIntegerValue(ASTContext &Context,
13813                                        llvm::APSInt &Value,
13814                                        QualType T) {
13815  assert(T->isIntegralType(Context) && "Integral type required!");
13816  unsigned BitWidth = Context.getIntWidth(T);
13817
13818  if (Value.isUnsigned() || Value.isNonNegative()) {
13819    if (T->isSignedIntegerOrEnumerationType())
13820      --BitWidth;
13821    return Value.getActiveBits() <= BitWidth;
13822  }
13823  return Value.getMinSignedBits() <= BitWidth;
13824}
13825
13826// \brief Given an integral type, return the next larger integral type
13827// (or a NULL type of no such type exists).
13828static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
13829  // FIXME: Int128/UInt128 support, which also needs to be introduced into
13830  // enum checking below.
13831  assert(T->isIntegralType(Context) && "Integral type required!");
13832  const unsigned NumTypes = 4;
13833  QualType SignedIntegralTypes[NumTypes] = {
13834    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
13835  };
13836  QualType UnsignedIntegralTypes[NumTypes] = {
13837    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
13838    Context.UnsignedLongLongTy
13839  };
13840
13841  unsigned BitWidth = Context.getTypeSize(T);
13842  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
13843                                                        : UnsignedIntegralTypes;
13844  for (unsigned I = 0; I != NumTypes; ++I)
13845    if (Context.getTypeSize(Types[I]) > BitWidth)
13846      return Types[I];
13847
13848  return QualType();
13849}
13850
13851EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
13852                                          EnumConstantDecl *LastEnumConst,
13853                                          SourceLocation IdLoc,
13854                                          IdentifierInfo *Id,
13855                                          Expr *Val) {
13856  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13857  llvm::APSInt EnumVal(IntWidth);
13858  QualType EltTy;
13859
13860  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
13861    Val = nullptr;
13862
13863  if (Val)
13864    Val = DefaultLvalueConversion(Val).get();
13865
13866  if (Val) {
13867    if (Enum->isDependentType() || Val->isTypeDependent())
13868      EltTy = Context.DependentTy;
13869    else {
13870      SourceLocation ExpLoc;
13871      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
13872          !getLangOpts().MSVCCompat) {
13873        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
13874        // constant-expression in the enumerator-definition shall be a converted
13875        // constant expression of the underlying type.
13876        EltTy = Enum->getIntegerType();
13877        ExprResult Converted =
13878          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
13879                                           CCEK_Enumerator);
13880        if (Converted.isInvalid())
13881          Val = nullptr;
13882        else
13883          Val = Converted.get();
13884      } else if (!Val->isValueDependent() &&
13885                 !(Val = VerifyIntegerConstantExpression(Val,
13886                                                         &EnumVal).get())) {
13887        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
13888      } else {
13889        if (Enum->isFixed()) {
13890          EltTy = Enum->getIntegerType();
13891
13892          // In Obj-C and Microsoft mode, require the enumeration value to be
13893          // representable in the underlying type of the enumeration. In C++11,
13894          // we perform a non-narrowing conversion as part of converted constant
13895          // expression checking.
13896          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
13897            if (getLangOpts().MSVCCompat) {
13898              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
13899              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13900            } else
13901              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
13902          } else
13903            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13904        } else if (getLangOpts().CPlusPlus) {
13905          // C++11 [dcl.enum]p5:
13906          //   If the underlying type is not fixed, the type of each enumerator
13907          //   is the type of its initializing value:
13908          //     - If an initializer is specified for an enumerator, the
13909          //       initializing value has the same type as the expression.
13910          EltTy = Val->getType();
13911        } else {
13912          // C99 6.7.2.2p2:
13913          //   The expression that defines the value of an enumeration constant
13914          //   shall be an integer constant expression that has a value
13915          //   representable as an int.
13916
13917          // Complain if the value is not representable in an int.
13918          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
13919            Diag(IdLoc, diag::ext_enum_value_not_int)
13920              << EnumVal.toString(10) << Val->getSourceRange()
13921              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
13922          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
13923            // Force the type of the expression to 'int'.
13924            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
13925          }
13926          EltTy = Val->getType();
13927        }
13928      }
13929    }
13930  }
13931
13932  if (!Val) {
13933    if (Enum->isDependentType())
13934      EltTy = Context.DependentTy;
13935    else if (!LastEnumConst) {
13936      // C++0x [dcl.enum]p5:
13937      //   If the underlying type is not fixed, the type of each enumerator
13938      //   is the type of its initializing value:
13939      //     - If no initializer is specified for the first enumerator, the
13940      //       initializing value has an unspecified integral type.
13941      //
13942      // GCC uses 'int' for its unspecified integral type, as does
13943      // C99 6.7.2.2p3.
13944      if (Enum->isFixed()) {
13945        EltTy = Enum->getIntegerType();
13946      }
13947      else {
13948        EltTy = Context.IntTy;
13949      }
13950    } else {
13951      // Assign the last value + 1.
13952      EnumVal = LastEnumConst->getInitVal();
13953      ++EnumVal;
13954      EltTy = LastEnumConst->getType();
13955
13956      // Check for overflow on increment.
13957      if (EnumVal < LastEnumConst->getInitVal()) {
13958        // C++0x [dcl.enum]p5:
13959        //   If the underlying type is not fixed, the type of each enumerator
13960        //   is the type of its initializing value:
13961        //
13962        //     - Otherwise the type of the initializing value is the same as
13963        //       the type of the initializing value of the preceding enumerator
13964        //       unless the incremented value is not representable in that type,
13965        //       in which case the type is an unspecified integral type
13966        //       sufficient to contain the incremented value. If no such type
13967        //       exists, the program is ill-formed.
13968        QualType T = getNextLargerIntegralType(Context, EltTy);
13969        if (T.isNull() || Enum->isFixed()) {
13970          // There is no integral type larger enough to represent this
13971          // value. Complain, then allow the value to wrap around.
13972          EnumVal = LastEnumConst->getInitVal();
13973          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
13974          ++EnumVal;
13975          if (Enum->isFixed())
13976            // When the underlying type is fixed, this is ill-formed.
13977            Diag(IdLoc, diag::err_enumerator_wrapped)
13978              << EnumVal.toString(10)
13979              << EltTy;
13980          else
13981            Diag(IdLoc, diag::ext_enumerator_increment_too_large)
13982              << EnumVal.toString(10);
13983        } else {
13984          EltTy = T;
13985        }
13986
13987        // Retrieve the last enumerator's value, extent that type to the
13988        // type that is supposed to be large enough to represent the incremented
13989        // value, then increment.
13990        EnumVal = LastEnumConst->getInitVal();
13991        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
13992        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
13993        ++EnumVal;
13994
13995        // If we're not in C++, diagnose the overflow of enumerator values,
13996        // which in C99 means that the enumerator value is not representable in
13997        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
13998        // permits enumerator values that are representable in some larger
13999        // integral type.
14000        if (!getLangOpts().CPlusPlus && !T.isNull())
14001          Diag(IdLoc, diag::warn_enum_value_overflow);
14002      } else if (!getLangOpts().CPlusPlus &&
14003                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
14004        // Enforce C99 6.7.2.2p2 even when we compute the next value.
14005        Diag(IdLoc, diag::ext_enum_value_not_int)
14006          << EnumVal.toString(10) << 1;
14007      }
14008    }
14009  }
14010
14011  if (!EltTy->isDependentType()) {
14012    // Make the enumerator value match the signedness and size of the
14013    // enumerator's type.
14014    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
14015    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
14016  }
14017
14018  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
14019                                  Val, EnumVal);
14020}
14021
14022Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
14023                                                SourceLocation IILoc) {
14024  if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
14025      !getLangOpts().CPlusPlus)
14026    return SkipBodyInfo();
14027
14028  // We have an anonymous enum definition. Look up the first enumerator to
14029  // determine if we should merge the definition with an existing one and
14030  // skip the body.
14031  NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
14032                                         ForRedeclaration);
14033  auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
14034  if (!PrevECD)
14035    return SkipBodyInfo();
14036
14037  EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
14038  NamedDecl *Hidden;
14039  if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
14040    SkipBodyInfo Skip;
14041    Skip.Previous = Hidden;
14042    return Skip;
14043  }
14044
14045  return SkipBodyInfo();
14046}
14047
14048Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
14049                              SourceLocation IdLoc, IdentifierInfo *Id,
14050                              AttributeList *Attr,
14051                              SourceLocation EqualLoc, Expr *Val) {
14052  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
14053  EnumConstantDecl *LastEnumConst =
14054    cast_or_null<EnumConstantDecl>(lastEnumConst);
14055
14056  // The scope passed in may not be a decl scope.  Zip up the scope tree until
14057  // we find one that is.
14058  S = getNonFieldDeclScope(S);
14059
14060  // Verify that there isn't already something declared with this name in this
14061  // scope.
14062  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
14063                                         ForRedeclaration);
14064  if (PrevDecl && PrevDecl->isTemplateParameter()) {
14065    // Maybe we will complain about the shadowed template parameter.
14066    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
14067    // Just pretend that we didn't see the previous declaration.
14068    PrevDecl = nullptr;
14069  }
14070
14071  // C++ [class.mem]p15:
14072  // If T is the name of a class, then each of the following shall have a name
14073  // different from T:
14074  // - every enumerator of every member of class T that is an unscoped
14075  // enumerated type
14076  if (!TheEnumDecl->isScoped())
14077    DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
14078                            DeclarationNameInfo(Id, IdLoc));
14079
14080  EnumConstantDecl *New =
14081    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
14082  if (!New)
14083    return nullptr;
14084
14085  if (PrevDecl) {
14086    // When in C++, we may get a TagDecl with the same name; in this case the
14087    // enum constant will 'hide' the tag.
14088    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
14089           "Received TagDecl when not in C++!");
14090    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S) &&
14091        shouldLinkPossiblyHiddenDecl(PrevDecl, New)) {
14092      if (isa<EnumConstantDecl>(PrevDecl))
14093        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
14094      else
14095        Diag(IdLoc, diag::err_redefinition) << Id;
14096      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
14097      return nullptr;
14098    }
14099  }
14100
14101  // Process attributes.
14102  if (Attr) ProcessDeclAttributeList(S, New, Attr);
14103
14104  // Register this decl in the current scope stack.
14105  New->setAccess(TheEnumDecl->getAccess());
14106  PushOnScopeChains(New, S);
14107
14108  ActOnDocumentableDecl(New);
14109
14110  return New;
14111}
14112
14113// Returns true when the enum initial expression does not trigger the
14114// duplicate enum warning.  A few common cases are exempted as follows:
14115// Element2 = Element1
14116// Element2 = Element1 + 1
14117// Element2 = Element1 - 1
14118// Where Element2 and Element1 are from the same enum.
14119static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
14120  Expr *InitExpr = ECD->getInitExpr();
14121  if (!InitExpr)
14122    return true;
14123  InitExpr = InitExpr->IgnoreImpCasts();
14124
14125  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
14126    if (!BO->isAdditiveOp())
14127      return true;
14128    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
14129    if (!IL)
14130      return true;
14131    if (IL->getValue() != 1)
14132      return true;
14133
14134    InitExpr = BO->getLHS();
14135  }
14136
14137  // This checks if the elements are from the same enum.
14138  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
14139  if (!DRE)
14140    return true;
14141
14142  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
14143  if (!EnumConstant)
14144    return true;
14145
14146  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
14147      Enum)
14148    return true;
14149
14150  return false;
14151}
14152
14153namespace {
14154struct DupKey {
14155  int64_t val;
14156  bool isTombstoneOrEmptyKey;
14157  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
14158    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
14159};
14160
14161static DupKey GetDupKey(const llvm::APSInt& Val) {
14162  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
14163                false);
14164}
14165
14166struct DenseMapInfoDupKey {
14167  static DupKey getEmptyKey() { return DupKey(0, true); }
14168  static DupKey getTombstoneKey() { return DupKey(1, true); }
14169  static unsigned getHashValue(const DupKey Key) {
14170    return (unsigned)(Key.val * 37);
14171  }
14172  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
14173    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
14174           LHS.val == RHS.val;
14175  }
14176};
14177} // end anonymous namespace
14178
14179// Emits a warning when an element is implicitly set a value that
14180// a previous element has already been set to.
14181static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
14182                                        EnumDecl *Enum,
14183                                        QualType EnumType) {
14184  if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
14185    return;
14186  // Avoid anonymous enums
14187  if (!Enum->getIdentifier())
14188    return;
14189
14190  // Only check for small enums.
14191  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
14192    return;
14193
14194  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
14195  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
14196
14197  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
14198  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
14199          ValueToVectorMap;
14200
14201  DuplicatesVector DupVector;
14202  ValueToVectorMap EnumMap;
14203
14204  // Populate the EnumMap with all values represented by enum constants without
14205  // an initialier.
14206  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14207    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
14208
14209    // Null EnumConstantDecl means a previous diagnostic has been emitted for
14210    // this constant.  Skip this enum since it may be ill-formed.
14211    if (!ECD) {
14212      return;
14213    }
14214
14215    if (ECD->getInitExpr())
14216      continue;
14217
14218    DupKey Key = GetDupKey(ECD->getInitVal());
14219    DeclOrVector &Entry = EnumMap[Key];
14220
14221    // First time encountering this value.
14222    if (Entry.isNull())
14223      Entry = ECD;
14224  }
14225
14226  // Create vectors for any values that has duplicates.
14227  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14228    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
14229    if (!ValidDuplicateEnum(ECD, Enum))
14230      continue;
14231
14232    DupKey Key = GetDupKey(ECD->getInitVal());
14233
14234    DeclOrVector& Entry = EnumMap[Key];
14235    if (Entry.isNull())
14236      continue;
14237
14238    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
14239      // Ensure constants are different.
14240      if (D == ECD)
14241        continue;
14242
14243      // Create new vector and push values onto it.
14244      ECDVector *Vec = new ECDVector();
14245      Vec->push_back(D);
14246      Vec->push_back(ECD);
14247
14248      // Update entry to point to the duplicates vector.
14249      Entry = Vec;
14250
14251      // Store the vector somewhere we can consult later for quick emission of
14252      // diagnostics.
14253      DupVector.push_back(Vec);
14254      continue;
14255    }
14256
14257    ECDVector *Vec = Entry.get<ECDVector*>();
14258    // Make sure constants are not added more than once.
14259    if (*Vec->begin() == ECD)
14260      continue;
14261
14262    Vec->push_back(ECD);
14263  }
14264
14265  // Emit diagnostics.
14266  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
14267                                  DupVectorEnd = DupVector.end();
14268       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
14269    ECDVector *Vec = *DupVectorIter;
14270    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
14271
14272    // Emit warning for one enum constant.
14273    ECDVector::iterator I = Vec->begin();
14274    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
14275      << (*I)->getName() << (*I)->getInitVal().toString(10)
14276      << (*I)->getSourceRange();
14277    ++I;
14278
14279    // Emit one note for each of the remaining enum constants with
14280    // the same value.
14281    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
14282      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
14283        << (*I)->getName() << (*I)->getInitVal().toString(10)
14284        << (*I)->getSourceRange();
14285    delete Vec;
14286  }
14287}
14288
14289bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
14290                             bool AllowMask) const {
14291  assert(ED->hasAttr<FlagEnumAttr>() && "looking for value in non-flag enum");
14292  assert(ED->isCompleteDefinition() && "expected enum definition");
14293
14294  auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
14295  llvm::APInt &FlagBits = R.first->second;
14296
14297  if (R.second) {
14298    for (auto *E : ED->enumerators()) {
14299      const auto &EVal = E->getInitVal();
14300      // Only single-bit enumerators introduce new flag values.
14301      if (EVal.isPowerOf2())
14302        FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
14303    }
14304  }
14305
14306  // A value is in a flag enum if either its bits are a subset of the enum's
14307  // flag bits (the first condition) or we are allowing masks and the same is
14308  // true of its complement (the second condition). When masks are allowed, we
14309  // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
14310  //
14311  // While it's true that any value could be used as a mask, the assumption is
14312  // that a mask will have all of the insignificant bits set. Anything else is
14313  // likely a logic error.
14314  llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
14315  return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
14316}
14317
14318void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
14319                         SourceLocation RBraceLoc, Decl *EnumDeclX,
14320                         ArrayRef<Decl *> Elements,
14321                         Scope *S, AttributeList *Attr) {
14322  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
14323  QualType EnumType = Context.getTypeDeclType(Enum);
14324
14325  if (Attr)
14326    ProcessDeclAttributeList(S, Enum, Attr);
14327
14328  if (Enum->isDependentType()) {
14329    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14330      EnumConstantDecl *ECD =
14331        cast_or_null<EnumConstantDecl>(Elements[i]);
14332      if (!ECD) continue;
14333
14334      ECD->setType(EnumType);
14335    }
14336
14337    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
14338    return;
14339  }
14340
14341  // TODO: If the result value doesn't fit in an int, it must be a long or long
14342  // long value.  ISO C does not support this, but GCC does as an extension,
14343  // emit a warning.
14344  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
14345  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
14346  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
14347
14348  // Verify that all the values are okay, compute the size of the values, and
14349  // reverse the list.
14350  unsigned NumNegativeBits = 0;
14351  unsigned NumPositiveBits = 0;
14352
14353  // Keep track of whether all elements have type int.
14354  bool AllElementsInt = true;
14355
14356  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14357    EnumConstantDecl *ECD =
14358      cast_or_null<EnumConstantDecl>(Elements[i]);
14359    if (!ECD) continue;  // Already issued a diagnostic.
14360
14361    const llvm::APSInt &InitVal = ECD->getInitVal();
14362
14363    // Keep track of the size of positive and negative values.
14364    if (InitVal.isUnsigned() || InitVal.isNonNegative())
14365      NumPositiveBits = std::max(NumPositiveBits,
14366                                 (unsigned)InitVal.getActiveBits());
14367    else
14368      NumNegativeBits = std::max(NumNegativeBits,
14369                                 (unsigned)InitVal.getMinSignedBits());
14370
14371    // Keep track of whether every enum element has type int (very commmon).
14372    if (AllElementsInt)
14373      AllElementsInt = ECD->getType() == Context.IntTy;
14374  }
14375
14376  // Figure out the type that should be used for this enum.
14377  QualType BestType;
14378  unsigned BestWidth;
14379
14380  // C++0x N3000 [conv.prom]p3:
14381  //   An rvalue of an unscoped enumeration type whose underlying
14382  //   type is not fixed can be converted to an rvalue of the first
14383  //   of the following types that can represent all the values of
14384  //   the enumeration: int, unsigned int, long int, unsigned long
14385  //   int, long long int, or unsigned long long int.
14386  // C99 6.4.4.3p2:
14387  //   An identifier declared as an enumeration constant has type int.
14388  // The C99 rule is modified by a gcc extension
14389  QualType BestPromotionType;
14390
14391  bool Packed = Enum->hasAttr<PackedAttr>();
14392  // -fshort-enums is the equivalent to specifying the packed attribute on all
14393  // enum definitions.
14394  if (LangOpts.ShortEnums)
14395    Packed = true;
14396
14397  if (Enum->isFixed()) {
14398    BestType = Enum->getIntegerType();
14399    if (BestType->isPromotableIntegerType())
14400      BestPromotionType = Context.getPromotedIntegerType(BestType);
14401    else
14402      BestPromotionType = BestType;
14403
14404    BestWidth = Context.getIntWidth(BestType);
14405  }
14406  else if (NumNegativeBits) {
14407    // If there is a negative value, figure out the smallest integer type (of
14408    // int/long/longlong) that fits.
14409    // If it's packed, check also if it fits a char or a short.
14410    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
14411      BestType = Context.SignedCharTy;
14412      BestWidth = CharWidth;
14413    } else if (Packed && NumNegativeBits <= ShortWidth &&
14414               NumPositiveBits < ShortWidth) {
14415      BestType = Context.ShortTy;
14416      BestWidth = ShortWidth;
14417    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
14418      BestType = Context.IntTy;
14419      BestWidth = IntWidth;
14420    } else {
14421      BestWidth = Context.getTargetInfo().getLongWidth();
14422
14423      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
14424        BestType = Context.LongTy;
14425      } else {
14426        BestWidth = Context.getTargetInfo().getLongLongWidth();
14427
14428        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
14429          Diag(Enum->getLocation(), diag::ext_enum_too_large);
14430        BestType = Context.LongLongTy;
14431      }
14432    }
14433    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
14434  } else {
14435    // If there is no negative value, figure out the smallest type that fits
14436    // all of the enumerator values.
14437    // If it's packed, check also if it fits a char or a short.
14438    if (Packed && NumPositiveBits <= CharWidth) {
14439      BestType = Context.UnsignedCharTy;
14440      BestPromotionType = Context.IntTy;
14441      BestWidth = CharWidth;
14442    } else if (Packed && NumPositiveBits <= ShortWidth) {
14443      BestType = Context.UnsignedShortTy;
14444      BestPromotionType = Context.IntTy;
14445      BestWidth = ShortWidth;
14446    } else if (NumPositiveBits <= IntWidth) {
14447      BestType = Context.UnsignedIntTy;
14448      BestWidth = IntWidth;
14449      BestPromotionType
14450        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14451                           ? Context.UnsignedIntTy : Context.IntTy;
14452    } else if (NumPositiveBits <=
14453               (BestWidth = Context.getTargetInfo().getLongWidth())) {
14454      BestType = Context.UnsignedLongTy;
14455      BestPromotionType
14456        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14457                           ? Context.UnsignedLongTy : Context.LongTy;
14458    } else {
14459      BestWidth = Context.getTargetInfo().getLongLongWidth();
14460      assert(NumPositiveBits <= BestWidth &&
14461             "How could an initializer get larger than ULL?");
14462      BestType = Context.UnsignedLongLongTy;
14463      BestPromotionType
14464        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14465                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
14466    }
14467  }
14468
14469  // Loop over all of the enumerator constants, changing their types to match
14470  // the type of the enum if needed.
14471  for (auto *D : Elements) {
14472    auto *ECD = cast_or_null<EnumConstantDecl>(D);
14473    if (!ECD) continue;  // Already issued a diagnostic.
14474
14475    // Standard C says the enumerators have int type, but we allow, as an
14476    // extension, the enumerators to be larger than int size.  If each
14477    // enumerator value fits in an int, type it as an int, otherwise type it the
14478    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
14479    // that X has type 'int', not 'unsigned'.
14480
14481    // Determine whether the value fits into an int.
14482    llvm::APSInt InitVal = ECD->getInitVal();
14483
14484    // If it fits into an integer type, force it.  Otherwise force it to match
14485    // the enum decl type.
14486    QualType NewTy;
14487    unsigned NewWidth;
14488    bool NewSign;
14489    if (!getLangOpts().CPlusPlus &&
14490        !Enum->isFixed() &&
14491        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
14492      NewTy = Context.IntTy;
14493      NewWidth = IntWidth;
14494      NewSign = true;
14495    } else if (ECD->getType() == BestType) {
14496      // Already the right type!
14497      if (getLangOpts().CPlusPlus)
14498        // C++ [dcl.enum]p4: Following the closing brace of an
14499        // enum-specifier, each enumerator has the type of its
14500        // enumeration.
14501        ECD->setType(EnumType);
14502      continue;
14503    } else {
14504      NewTy = BestType;
14505      NewWidth = BestWidth;
14506      NewSign = BestType->isSignedIntegerOrEnumerationType();
14507    }
14508
14509    // Adjust the APSInt value.
14510    InitVal = InitVal.extOrTrunc(NewWidth);
14511    InitVal.setIsSigned(NewSign);
14512    ECD->setInitVal(InitVal);
14513
14514    // Adjust the Expr initializer and type.
14515    if (ECD->getInitExpr() &&
14516        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
14517      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
14518                                                CK_IntegralCast,
14519                                                ECD->getInitExpr(),
14520                                                /*base paths*/ nullptr,
14521                                                VK_RValue));
14522    if (getLangOpts().CPlusPlus)
14523      // C++ [dcl.enum]p4: Following the closing brace of an
14524      // enum-specifier, each enumerator has the type of its
14525      // enumeration.
14526      ECD->setType(EnumType);
14527    else
14528      ECD->setType(NewTy);
14529  }
14530
14531  Enum->completeDefinition(BestType, BestPromotionType,
14532                           NumPositiveBits, NumNegativeBits);
14533
14534  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
14535
14536  if (Enum->hasAttr<FlagEnumAttr>()) {
14537    for (Decl *D : Elements) {
14538      EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
14539      if (!ECD) continue;  // Already issued a diagnostic.
14540
14541      llvm::APSInt InitVal = ECD->getInitVal();
14542      if (InitVal != 0 && !InitVal.isPowerOf2() &&
14543          !IsValueInFlagEnum(Enum, InitVal, true))
14544        Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
14545          << ECD << Enum;
14546    }
14547  }
14548
14549  // Now that the enum type is defined, ensure it's not been underaligned.
14550  if (Enum->hasAttrs())
14551    CheckAlignasUnderalignment(Enum);
14552}
14553
14554Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
14555                                  SourceLocation StartLoc,
14556                                  SourceLocation EndLoc) {
14557  StringLiteral *AsmString = cast<StringLiteral>(expr);
14558
14559  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
14560                                                   AsmString, StartLoc,
14561                                                   EndLoc);
14562  CurContext->addDecl(New);
14563  return New;
14564}
14565
14566static void checkModuleImportContext(Sema &S, Module *M,
14567                                     SourceLocation ImportLoc, DeclContext *DC,
14568                                     bool FromInclude = false) {
14569  SourceLocation ExternCLoc;
14570
14571  if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
14572    switch (LSD->getLanguage()) {
14573    case LinkageSpecDecl::lang_c:
14574      if (ExternCLoc.isInvalid())
14575        ExternCLoc = LSD->getLocStart();
14576      break;
14577    case LinkageSpecDecl::lang_cxx:
14578      break;
14579    }
14580    DC = LSD->getParent();
14581  }
14582
14583  while (isa<LinkageSpecDecl>(DC))
14584    DC = DC->getParent();
14585
14586  if (!isa<TranslationUnitDecl>(DC)) {
14587    S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
14588                          ? diag::ext_module_import_not_at_top_level_noop
14589                          : diag::err_module_import_not_at_top_level_fatal)
14590        << M->getFullModuleName() << DC;
14591    S.Diag(cast<Decl>(DC)->getLocStart(),
14592           diag::note_module_import_not_at_top_level) << DC;
14593  } else if (!M->IsExternC && ExternCLoc.isValid()) {
14594    S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
14595      << M->getFullModuleName();
14596    S.Diag(ExternCLoc, diag::note_module_import_in_extern_c);
14597  }
14598}
14599
14600void Sema::diagnoseMisplacedModuleImport(Module *M, SourceLocation ImportLoc) {
14601  return checkModuleImportContext(*this, M, ImportLoc, CurContext);
14602}
14603
14604DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
14605                                   SourceLocation ImportLoc,
14606                                   ModuleIdPath Path) {
14607  Module *Mod =
14608      getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
14609                                   /*IsIncludeDirective=*/false);
14610  if (!Mod)
14611    return true;
14612
14613  VisibleModules.setVisible(Mod, ImportLoc);
14614
14615  checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
14616
14617  // FIXME: we should support importing a submodule within a different submodule
14618  // of the same top-level module. Until we do, make it an error rather than
14619  // silently ignoring the import.
14620  if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
14621    Diag(ImportLoc, diag::err_module_self_import)
14622        << Mod->getFullModuleName() << getLangOpts().CurrentModule;
14623  else if (Mod->getTopLevelModuleName() == getLangOpts().ImplementationOfModule)
14624    Diag(ImportLoc, diag::err_module_import_in_implementation)
14625        << Mod->getFullModuleName() << getLangOpts().ImplementationOfModule;
14626
14627  SmallVector<SourceLocation, 2> IdentifierLocs;
14628  Module *ModCheck = Mod;
14629  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
14630    // If we've run out of module parents, just drop the remaining identifiers.
14631    // We need the length to be consistent.
14632    if (!ModCheck)
14633      break;
14634    ModCheck = ModCheck->Parent;
14635
14636    IdentifierLocs.push_back(Path[I].second);
14637  }
14638
14639  ImportDecl *Import = ImportDecl::Create(Context,
14640                                          Context.getTranslationUnitDecl(),
14641                                          AtLoc.isValid()? AtLoc : ImportLoc,
14642                                          Mod, IdentifierLocs);
14643  Context.getTranslationUnitDecl()->addDecl(Import);
14644  return Import;
14645}
14646
14647void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
14648  checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
14649
14650  // Determine whether we're in the #include buffer for a module. The #includes
14651  // in that buffer do not qualify as module imports; they're just an
14652  // implementation detail of us building the module.
14653  //
14654  // FIXME: Should we even get ActOnModuleInclude calls for those?
14655  bool IsInModuleIncludes =
14656      TUKind == TU_Module &&
14657      getSourceManager().isWrittenInMainFile(DirectiveLoc);
14658
14659  // If this module import was due to an inclusion directive, create an
14660  // implicit import declaration to capture it in the AST.
14661  if (!IsInModuleIncludes) {
14662    TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
14663    ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
14664                                                     DirectiveLoc, Mod,
14665                                                     DirectiveLoc);
14666    TU->addDecl(ImportD);
14667    Consumer.HandleImplicitImportDecl(ImportD);
14668  }
14669
14670  getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
14671  VisibleModules.setVisible(Mod, DirectiveLoc);
14672}
14673
14674void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
14675  checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
14676
14677  if (getLangOpts().ModulesLocalVisibility)
14678    VisibleModulesStack.push_back(std::move(VisibleModules));
14679  VisibleModules.setVisible(Mod, DirectiveLoc);
14680}
14681
14682void Sema::ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod) {
14683  checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
14684
14685  if (getLangOpts().ModulesLocalVisibility) {
14686    VisibleModules = std::move(VisibleModulesStack.back());
14687    VisibleModulesStack.pop_back();
14688    VisibleModules.setVisible(Mod, DirectiveLoc);
14689  }
14690}
14691
14692void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
14693                                                      Module *Mod) {
14694  // Bail if we're not allowed to implicitly import a module here.
14695  if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
14696    return;
14697
14698  // Create the implicit import declaration.
14699  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
14700  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
14701                                                   Loc, Mod, Loc);
14702  TU->addDecl(ImportD);
14703  Consumer.HandleImplicitImportDecl(ImportD);
14704
14705  // Make the module visible.
14706  getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
14707  VisibleModules.setVisible(Mod, Loc);
14708}
14709
14710void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
14711                                      IdentifierInfo* AliasName,
14712                                      SourceLocation PragmaLoc,
14713                                      SourceLocation NameLoc,
14714                                      SourceLocation AliasNameLoc) {
14715  NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
14716                                         LookupOrdinaryName);
14717  AsmLabelAttr *Attr =
14718      AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
14719
14720  // If a declaration that:
14721  // 1) declares a function or a variable
14722  // 2) has external linkage
14723  // already exists, add a label attribute to it.
14724  if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
14725    if (isDeclExternC(PrevDecl))
14726      PrevDecl->addAttr(Attr);
14727    else
14728      Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
14729          << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
14730  // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
14731  } else
14732    (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
14733}
14734
14735void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
14736                             SourceLocation PragmaLoc,
14737                             SourceLocation NameLoc) {
14738  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
14739
14740  if (PrevDecl) {
14741    PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
14742  } else {
14743    (void)WeakUndeclaredIdentifiers.insert(
14744      std::pair<IdentifierInfo*,WeakInfo>
14745        (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
14746  }
14747}
14748
14749void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
14750                                IdentifierInfo* AliasName,
14751                                SourceLocation PragmaLoc,
14752                                SourceLocation NameLoc,
14753                                SourceLocation AliasNameLoc) {
14754  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
14755                                    LookupOrdinaryName);
14756  WeakInfo W = WeakInfo(Name, NameLoc);
14757
14758  if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
14759    if (!PrevDecl->hasAttr<AliasAttr>())
14760      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
14761        DeclApplyPragmaWeak(TUScope, ND, W);
14762  } else {
14763    (void)WeakUndeclaredIdentifiers.insert(
14764      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
14765  }
14766}
14767
14768Decl *Sema::getObjCDeclContext() const {
14769  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
14770}
14771
14772AvailabilityResult Sema::getCurContextAvailability() const {
14773  const Decl *D = cast_or_null<Decl>(getCurObjCLexicalContext());
14774  if (!D)
14775    return AR_Available;
14776
14777  // If we are within an Objective-C method, we should consult
14778  // both the availability of the method as well as the
14779  // enclosing class.  If the class is (say) deprecated,
14780  // the entire method is considered deprecated from the
14781  // purpose of checking if the current context is deprecated.
14782  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
14783    AvailabilityResult R = MD->getAvailability();
14784    if (R != AR_Available)
14785      return R;
14786    D = MD->getClassInterface();
14787  }
14788  // If we are within an Objective-c @implementation, it
14789  // gets the same availability context as the @interface.
14790  else if (const ObjCImplementationDecl *ID =
14791            dyn_cast<ObjCImplementationDecl>(D)) {
14792    D = ID->getClassInterface();
14793  }
14794  // Recover from user error.
14795  return D ? D->getAvailability() : AR_Available;
14796}
14797