SemaDeclObjC.cpp revision 140ab234c23f392d5422691c5de1ee3c15026def
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Sema/DeclSpec.h"
26#include "llvm/ADT/DenseSet.h"
27
28using namespace clang;
29
30/// Check whether the given method, which must be in the 'init'
31/// family, is a valid member of that family.
32///
33/// \param receiverTypeIfCall - if null, check this as if declaring it;
34///   if non-null, check this as if making a call to it with the given
35///   receiver type
36///
37/// \return true to indicate that there was an error and appropriate
38///   actions were taken
39bool Sema::checkInitMethod(ObjCMethodDecl *method,
40                           QualType receiverTypeIfCall) {
41  if (method->isInvalidDecl()) return true;
42
43  // This castAs is safe: methods that don't return an object
44  // pointer won't be inferred as inits and will reject an explicit
45  // objc_method_family(init).
46
47  // We ignore protocols here.  Should we?  What about Class?
48
49  const ObjCObjectType *result = method->getResultType()
50    ->castAs<ObjCObjectPointerType>()->getObjectType();
51
52  if (result->isObjCId()) {
53    return false;
54  } else if (result->isObjCClass()) {
55    // fall through: always an error
56  } else {
57    ObjCInterfaceDecl *resultClass = result->getInterface();
58    assert(resultClass && "unexpected object type!");
59
60    // It's okay for the result type to still be a forward declaration
61    // if we're checking an interface declaration.
62    if (resultClass->isForwardDecl()) {
63      if (receiverTypeIfCall.isNull() &&
64          !isa<ObjCImplementationDecl>(method->getDeclContext()))
65        return false;
66
67    // Otherwise, we try to compare class types.
68    } else {
69      // If this method was declared in a protocol, we can't check
70      // anything unless we have a receiver type that's an interface.
71      const ObjCInterfaceDecl *receiverClass = 0;
72      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
73        if (receiverTypeIfCall.isNull())
74          return false;
75
76        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
77          ->getInterfaceDecl();
78
79        // This can be null for calls to e.g. id<Foo>.
80        if (!receiverClass) return false;
81      } else {
82        receiverClass = method->getClassInterface();
83        assert(receiverClass && "method not associated with a class!");
84      }
85
86      // If either class is a subclass of the other, it's fine.
87      if (receiverClass->isSuperClassOf(resultClass) ||
88          resultClass->isSuperClassOf(receiverClass))
89        return false;
90    }
91  }
92
93  SourceLocation loc = method->getLocation();
94
95  // If we're in a system header, and this is not a call, just make
96  // the method unusable.
97  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
98    method->addAttr(new (Context) UnavailableAttr(loc, Context,
99                "init method returns a type unrelated to its receiver type"));
100    return true;
101  }
102
103  // Otherwise, it's an error.
104  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
105  method->setInvalidDecl();
106  return true;
107}
108
109bool Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
110                                   const ObjCMethodDecl *Overridden,
111                                   bool IsImplementation) {
112  if (Overridden->hasRelatedResultType() &&
113      !NewMethod->hasRelatedResultType()) {
114    // This can only happen when the method follows a naming convention that
115    // implies a related result type, and the original (overridden) method has
116    // a suitable return type, but the new (overriding) method does not have
117    // a suitable return type.
118    QualType ResultType = NewMethod->getResultType();
119    SourceRange ResultTypeRange;
120    if (const TypeSourceInfo *ResultTypeInfo
121                                        = NewMethod->getResultTypeSourceInfo())
122      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
123
124    // Figure out which class this method is part of, if any.
125    ObjCInterfaceDecl *CurrentClass
126      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
127    if (!CurrentClass) {
128      DeclContext *DC = NewMethod->getDeclContext();
129      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
130        CurrentClass = Cat->getClassInterface();
131      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
132        CurrentClass = Impl->getClassInterface();
133      else if (ObjCCategoryImplDecl *CatImpl
134               = dyn_cast<ObjCCategoryImplDecl>(DC))
135        CurrentClass = CatImpl->getClassInterface();
136    }
137
138    if (CurrentClass) {
139      Diag(NewMethod->getLocation(),
140           diag::warn_related_result_type_compatibility_class)
141        << Context.getObjCInterfaceType(CurrentClass)
142        << ResultType
143        << ResultTypeRange;
144    } else {
145      Diag(NewMethod->getLocation(),
146           diag::warn_related_result_type_compatibility_protocol)
147        << ResultType
148        << ResultTypeRange;
149    }
150
151    Diag(Overridden->getLocation(), diag::note_related_result_type_overridden)
152      << Overridden->getMethodFamily();
153  }
154
155  return false;
156}
157
158/// \brief Check a method declaration for compatibility with the Objective-C
159/// ARC conventions.
160static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
161  ObjCMethodFamily family = method->getMethodFamily();
162  switch (family) {
163  case OMF_None:
164  case OMF_dealloc:
165  case OMF_finalize:
166  case OMF_retain:
167  case OMF_release:
168  case OMF_autorelease:
169  case OMF_retainCount:
170  case OMF_self:
171  case OMF_performSelector:
172    return false;
173
174  case OMF_init:
175    // If the method doesn't obey the init rules, don't bother annotating it.
176    if (S.checkInitMethod(method, QualType()))
177      return true;
178
179    method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
180                                                       S.Context));
181
182    // Don't add a second copy of this attribute, but otherwise don't
183    // let it be suppressed.
184    if (method->hasAttr<NSReturnsRetainedAttr>())
185      return false;
186    break;
187
188  case OMF_alloc:
189  case OMF_copy:
190  case OMF_mutableCopy:
191  case OMF_new:
192    if (method->hasAttr<NSReturnsRetainedAttr>() ||
193        method->hasAttr<NSReturnsNotRetainedAttr>() ||
194        method->hasAttr<NSReturnsAutoreleasedAttr>())
195      return false;
196    break;
197  }
198
199  method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
200                                                        S.Context));
201  return false;
202}
203
204static void DiagnoseObjCImplementedDeprecations(Sema &S,
205                                                NamedDecl *ND,
206                                                SourceLocation ImplLoc,
207                                                int select) {
208  if (ND && ND->isDeprecated()) {
209    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
210    if (select == 0)
211      S.Diag(ND->getLocation(), diag::note_method_declared_at);
212    else
213      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
214  }
215}
216
217/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
218/// pool.
219void Sema::AddAnyMethodToGlobalPool(Decl *D) {
220  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
221
222  // If we don't have a valid method decl, simply return.
223  if (!MDecl)
224    return;
225  if (MDecl->isInstanceMethod())
226    AddInstanceMethodToGlobalPool(MDecl, true);
227  else
228    AddFactoryMethodToGlobalPool(MDecl, true);
229}
230
231/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
232/// and user declared, in the method definition's AST.
233void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
234  assert(getCurMethodDecl() == 0 && "Method parsing confused");
235  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
236
237  // If we don't have a valid method decl, simply return.
238  if (!MDecl)
239    return;
240
241  // Allow all of Sema to see that we are entering a method definition.
242  PushDeclContext(FnBodyScope, MDecl);
243  PushFunctionScope();
244
245  // Create Decl objects for each parameter, entrring them in the scope for
246  // binding to their use.
247
248  // Insert the invisible arguments, self and _cmd!
249  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
250
251  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
252  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
253
254  // Introduce all of the other parameters into this scope.
255  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
256       E = MDecl->param_end(); PI != E; ++PI) {
257    ParmVarDecl *Param = (*PI);
258    if (!Param->isInvalidDecl() &&
259        RequireCompleteType(Param->getLocation(), Param->getType(),
260                            diag::err_typecheck_decl_incomplete_type))
261          Param->setInvalidDecl();
262    if ((*PI)->getIdentifier())
263      PushOnScopeChains(*PI, FnBodyScope);
264  }
265
266  // In ARC, disallow definition of retain/release/autorelease/retainCount
267  if (getLangOptions().ObjCAutoRefCount) {
268    switch (MDecl->getMethodFamily()) {
269    case OMF_retain:
270    case OMF_retainCount:
271    case OMF_release:
272    case OMF_autorelease:
273      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
274        << MDecl->getSelector();
275      break;
276
277    case OMF_None:
278    case OMF_dealloc:
279    case OMF_finalize:
280    case OMF_alloc:
281    case OMF_init:
282    case OMF_mutableCopy:
283    case OMF_copy:
284    case OMF_new:
285    case OMF_self:
286    case OMF_performSelector:
287      break;
288    }
289  }
290
291  // Warn on deprecated methods under -Wdeprecated-implementations,
292  // and prepare for warning on missing super calls.
293  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
294    if (ObjCMethodDecl *IMD =
295          IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
296      DiagnoseObjCImplementedDeprecations(*this,
297                                          dyn_cast<NamedDecl>(IMD),
298                                          MDecl->getLocation(), 0);
299
300    // If this is "dealloc" or "finalize", set some bit here.
301    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
302    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
303    // Only do this if the current class actually has a superclass.
304    if (IC->getSuperClass()) {
305      ObjCShouldCallSuperDealloc =
306        !Context.getLangOptions().ObjCAutoRefCount &&
307        MDecl->getMethodFamily() == OMF_dealloc;
308      ObjCShouldCallSuperFinalize =
309        !Context.getLangOptions().ObjCAutoRefCount &&
310        MDecl->getMethodFamily() == OMF_finalize;
311    }
312  }
313}
314
315Decl *Sema::
316ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
317                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
318                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
319                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
320                         const SourceLocation *ProtoLocs,
321                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
322  assert(ClassName && "Missing class identifier");
323
324  // Check for another declaration kind with the same name.
325  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
326                                         LookupOrdinaryName, ForRedeclaration);
327
328  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
329    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
330    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
331  }
332
333  ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
334  if (IDecl) {
335    // Class already seen. Is it a forward declaration?
336    if (!IDecl->isForwardDecl()) {
337      IDecl->setInvalidDecl();
338      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
339      Diag(IDecl->getLocation(), diag::note_previous_definition);
340
341      // Return the previous class interface.
342      // FIXME: don't leak the objects passed in!
343      return IDecl;
344    } else {
345      IDecl->setLocation(AtInterfaceLoc);
346      IDecl->setForwardDecl(false);
347      IDecl->setClassLoc(ClassLoc);
348      // If the forward decl was in a PCH, we need to write it again in a
349      // dependent AST file.
350      IDecl->setChangedSinceDeserialization(true);
351
352      // Since this ObjCInterfaceDecl was created by a forward declaration,
353      // we now add it to the DeclContext since it wasn't added before
354      // (see ActOnForwardClassDeclaration).
355      IDecl->setLexicalDeclContext(CurContext);
356      CurContext->addDecl(IDecl);
357
358      if (AttrList)
359        ProcessDeclAttributeList(TUScope, IDecl, AttrList);
360    }
361  } else {
362    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
363                                      ClassName, ClassLoc);
364    if (AttrList)
365      ProcessDeclAttributeList(TUScope, IDecl, AttrList);
366
367    PushOnScopeChains(IDecl, TUScope);
368  }
369
370  if (SuperName) {
371    // Check if a different kind of symbol declared in this scope.
372    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
373                                LookupOrdinaryName);
374
375    if (!PrevDecl) {
376      // Try to correct for a typo in the superclass name.
377      TypoCorrection Corrected = CorrectTypo(
378          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
379          NULL, NULL, false, CTC_NoKeywords);
380      if ((PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
381        Diag(SuperLoc, diag::err_undef_superclass_suggest)
382          << SuperName << ClassName << PrevDecl->getDeclName();
383        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
384          << PrevDecl->getDeclName();
385      }
386    }
387
388    if (PrevDecl == IDecl) {
389      Diag(SuperLoc, diag::err_recursive_superclass)
390        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
391      IDecl->setLocEnd(ClassLoc);
392    } else {
393      ObjCInterfaceDecl *SuperClassDecl =
394                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
395
396      // Diagnose classes that inherit from deprecated classes.
397      if (SuperClassDecl)
398        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
399
400      if (PrevDecl && SuperClassDecl == 0) {
401        // The previous declaration was not a class decl. Check if we have a
402        // typedef. If we do, get the underlying class type.
403        if (const TypedefNameDecl *TDecl =
404              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
405          QualType T = TDecl->getUnderlyingType();
406          if (T->isObjCObjectType()) {
407            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
408              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
409          }
410        }
411
412        // This handles the following case:
413        //
414        // typedef int SuperClass;
415        // @interface MyClass : SuperClass {} @end
416        //
417        if (!SuperClassDecl) {
418          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
419          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
420        }
421      }
422
423      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
424        if (!SuperClassDecl)
425          Diag(SuperLoc, diag::err_undef_superclass)
426            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
427        else if (SuperClassDecl->isForwardDecl()) {
428          Diag(SuperLoc, diag::err_forward_superclass)
429            << SuperClassDecl->getDeclName() << ClassName
430            << SourceRange(AtInterfaceLoc, ClassLoc);
431          Diag(SuperClassDecl->getLocation(), diag::note_forward_class);
432          SuperClassDecl = 0;
433        }
434      }
435      IDecl->setSuperClass(SuperClassDecl);
436      IDecl->setSuperClassLoc(SuperLoc);
437      IDecl->setLocEnd(SuperLoc);
438    }
439  } else { // we have a root class.
440    IDecl->setLocEnd(ClassLoc);
441  }
442
443  // Check then save referenced protocols.
444  if (NumProtoRefs) {
445    IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
446                           ProtoLocs, Context);
447    IDecl->setLocEnd(EndProtoLoc);
448  }
449
450  CheckObjCDeclScope(IDecl);
451  return IDecl;
452}
453
454/// ActOnCompatiblityAlias - this action is called after complete parsing of
455/// @compatibility_alias declaration. It sets up the alias relationships.
456Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
457                                        IdentifierInfo *AliasName,
458                                        SourceLocation AliasLocation,
459                                        IdentifierInfo *ClassName,
460                                        SourceLocation ClassLocation) {
461  // Look for previous declaration of alias name
462  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
463                                      LookupOrdinaryName, ForRedeclaration);
464  if (ADecl) {
465    if (isa<ObjCCompatibleAliasDecl>(ADecl))
466      Diag(AliasLocation, diag::warn_previous_alias_decl);
467    else
468      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
469    Diag(ADecl->getLocation(), diag::note_previous_declaration);
470    return 0;
471  }
472  // Check for class declaration
473  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
474                                       LookupOrdinaryName, ForRedeclaration);
475  if (const TypedefNameDecl *TDecl =
476        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
477    QualType T = TDecl->getUnderlyingType();
478    if (T->isObjCObjectType()) {
479      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
480        ClassName = IDecl->getIdentifier();
481        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
482                                  LookupOrdinaryName, ForRedeclaration);
483      }
484    }
485  }
486  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
487  if (CDecl == 0) {
488    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
489    if (CDeclU)
490      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
491    return 0;
492  }
493
494  // Everything checked out, instantiate a new alias declaration AST.
495  ObjCCompatibleAliasDecl *AliasDecl =
496    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
497
498  if (!CheckObjCDeclScope(AliasDecl))
499    PushOnScopeChains(AliasDecl, TUScope);
500
501  return AliasDecl;
502}
503
504bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
505  IdentifierInfo *PName,
506  SourceLocation &Ploc, SourceLocation PrevLoc,
507  const ObjCList<ObjCProtocolDecl> &PList) {
508
509  bool res = false;
510  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
511       E = PList.end(); I != E; ++I) {
512    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
513                                                 Ploc)) {
514      if (PDecl->getIdentifier() == PName) {
515        Diag(Ploc, diag::err_protocol_has_circular_dependency);
516        Diag(PrevLoc, diag::note_previous_definition);
517        res = true;
518      }
519      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
520            PDecl->getLocation(), PDecl->getReferencedProtocols()))
521        res = true;
522    }
523  }
524  return res;
525}
526
527Decl *
528Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
529                                  IdentifierInfo *ProtocolName,
530                                  SourceLocation ProtocolLoc,
531                                  Decl * const *ProtoRefs,
532                                  unsigned NumProtoRefs,
533                                  const SourceLocation *ProtoLocs,
534                                  SourceLocation EndProtoLoc,
535                                  AttributeList *AttrList) {
536  bool err = false;
537  // FIXME: Deal with AttrList.
538  assert(ProtocolName && "Missing protocol identifier");
539  ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
540  if (PDecl) {
541    // Protocol already seen. Better be a forward protocol declaration
542    if (!PDecl->isForwardDecl()) {
543      Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
544      Diag(PDecl->getLocation(), diag::note_previous_definition);
545      // Just return the protocol we already had.
546      // FIXME: don't leak the objects passed in!
547      return PDecl;
548    }
549    ObjCList<ObjCProtocolDecl> PList;
550    PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
551    err = CheckForwardProtocolDeclarationForCircularDependency(
552            ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
553
554    // Make sure the cached decl gets a valid start location.
555    PDecl->setLocation(AtProtoInterfaceLoc);
556    PDecl->setForwardDecl(false);
557    // Since this ObjCProtocolDecl was created by a forward declaration,
558    // we now add it to the DeclContext since it wasn't added before
559    PDecl->setLexicalDeclContext(CurContext);
560    CurContext->addDecl(PDecl);
561    // Repeat in dependent AST files.
562    PDecl->setChangedSinceDeserialization(true);
563  } else {
564    PDecl = ObjCProtocolDecl::Create(Context, CurContext,
565                                     AtProtoInterfaceLoc,ProtocolName);
566    PushOnScopeChains(PDecl, TUScope);
567    PDecl->setForwardDecl(false);
568  }
569  if (AttrList)
570    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
571  if (!err && NumProtoRefs ) {
572    /// Check then save referenced protocols.
573    PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
574                           ProtoLocs, Context);
575    PDecl->setLocEnd(EndProtoLoc);
576  }
577
578  CheckObjCDeclScope(PDecl);
579  return PDecl;
580}
581
582/// FindProtocolDeclaration - This routine looks up protocols and
583/// issues an error if they are not declared. It returns list of
584/// protocol declarations in its 'Protocols' argument.
585void
586Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
587                              const IdentifierLocPair *ProtocolId,
588                              unsigned NumProtocols,
589                              SmallVectorImpl<Decl *> &Protocols) {
590  for (unsigned i = 0; i != NumProtocols; ++i) {
591    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
592                                             ProtocolId[i].second);
593    if (!PDecl) {
594      TypoCorrection Corrected = CorrectTypo(
595          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
596          LookupObjCProtocolName, TUScope, NULL, NULL, false, CTC_NoKeywords);
597      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
598        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
599          << ProtocolId[i].first << Corrected.getCorrection();
600        Diag(PDecl->getLocation(), diag::note_previous_decl)
601          << PDecl->getDeclName();
602      }
603    }
604
605    if (!PDecl) {
606      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
607        << ProtocolId[i].first;
608      continue;
609    }
610
611    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
612
613    // If this is a forward declaration and we are supposed to warn in this
614    // case, do it.
615    if (WarnOnDeclarations && PDecl->isForwardDecl())
616      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
617        << ProtocolId[i].first;
618    Protocols.push_back(PDecl);
619  }
620}
621
622/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
623/// a class method in its extension.
624///
625void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
626                                            ObjCInterfaceDecl *ID) {
627  if (!ID)
628    return;  // Possibly due to previous error
629
630  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
631  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
632       e =  ID->meth_end(); i != e; ++i) {
633    ObjCMethodDecl *MD = *i;
634    MethodMap[MD->getSelector()] = MD;
635  }
636
637  if (MethodMap.empty())
638    return;
639  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
640       e =  CAT->meth_end(); i != e; ++i) {
641    ObjCMethodDecl *Method = *i;
642    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
643    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
644      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
645            << Method->getDeclName();
646      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
647    }
648  }
649}
650
651/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
652Decl *
653Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
654                                      const IdentifierLocPair *IdentList,
655                                      unsigned NumElts,
656                                      AttributeList *attrList) {
657  SmallVector<ObjCProtocolDecl*, 32> Protocols;
658  SmallVector<SourceLocation, 8> ProtoLocs;
659
660  for (unsigned i = 0; i != NumElts; ++i) {
661    IdentifierInfo *Ident = IdentList[i].first;
662    ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
663    bool isNew = false;
664    if (PDecl == 0) { // Not already seen?
665      PDecl = ObjCProtocolDecl::Create(Context, CurContext,
666                                       IdentList[i].second, Ident);
667      PushOnScopeChains(PDecl, TUScope, false);
668      isNew = true;
669    }
670    if (attrList) {
671      ProcessDeclAttributeList(TUScope, PDecl, attrList);
672      if (!isNew)
673        PDecl->setChangedSinceDeserialization(true);
674    }
675    Protocols.push_back(PDecl);
676    ProtoLocs.push_back(IdentList[i].second);
677  }
678
679  ObjCForwardProtocolDecl *PDecl =
680    ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
681                                    Protocols.data(), Protocols.size(),
682                                    ProtoLocs.data());
683  CurContext->addDecl(PDecl);
684  CheckObjCDeclScope(PDecl);
685  return PDecl;
686}
687
688Decl *Sema::
689ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
690                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
691                            IdentifierInfo *CategoryName,
692                            SourceLocation CategoryLoc,
693                            Decl * const *ProtoRefs,
694                            unsigned NumProtoRefs,
695                            const SourceLocation *ProtoLocs,
696                            SourceLocation EndProtoLoc) {
697  ObjCCategoryDecl *CDecl;
698  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
699
700  /// Check that class of this category is already completely declared.
701  if (!IDecl || IDecl->isForwardDecl()) {
702    // Create an invalid ObjCCategoryDecl to serve as context for
703    // the enclosing method declarations.  We mark the decl invalid
704    // to make it clear that this isn't a valid AST.
705    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
706                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
707    CDecl->setInvalidDecl();
708    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
709    return CDecl;
710  }
711
712  if (!CategoryName && IDecl->getImplementation()) {
713    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
714    Diag(IDecl->getImplementation()->getLocation(),
715          diag::note_implementation_declared);
716  }
717
718  if (CategoryName) {
719    /// Check for duplicate interface declaration for this category
720    ObjCCategoryDecl *CDeclChain;
721    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
722         CDeclChain = CDeclChain->getNextClassCategory()) {
723      if (CDeclChain->getIdentifier() == CategoryName) {
724        // Class extensions can be declared multiple times.
725        Diag(CategoryLoc, diag::warn_dup_category_def)
726          << ClassName << CategoryName;
727        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
728        break;
729      }
730    }
731  }
732
733  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
734                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
735  // FIXME: PushOnScopeChains?
736  CurContext->addDecl(CDecl);
737
738  // If the interface is deprecated, warn about it.
739  (void)DiagnoseUseOfDecl(IDecl, ClassLoc);
740
741  if (NumProtoRefs) {
742    CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
743                           ProtoLocs, Context);
744    // Protocols in the class extension belong to the class.
745    if (CDecl->IsClassExtension())
746     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
747                                            NumProtoRefs, Context);
748  }
749
750  CheckObjCDeclScope(CDecl);
751  return CDecl;
752}
753
754/// ActOnStartCategoryImplementation - Perform semantic checks on the
755/// category implementation declaration and build an ObjCCategoryImplDecl
756/// object.
757Decl *Sema::ActOnStartCategoryImplementation(
758                      SourceLocation AtCatImplLoc,
759                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
760                      IdentifierInfo *CatName, SourceLocation CatLoc) {
761  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
762  ObjCCategoryDecl *CatIDecl = 0;
763  if (IDecl) {
764    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
765    if (!CatIDecl) {
766      // Category @implementation with no corresponding @interface.
767      // Create and install one.
768      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
769                                          SourceLocation(), SourceLocation(),
770                                          CatName, IDecl);
771    }
772  }
773
774  ObjCCategoryImplDecl *CDecl =
775    ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
776                                 IDecl);
777  /// Check that class of this category is already completely declared.
778  if (!IDecl || IDecl->isForwardDecl()) {
779    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
780    CDecl->setInvalidDecl();
781  }
782
783  // FIXME: PushOnScopeChains?
784  CurContext->addDecl(CDecl);
785
786  /// Check that CatName, category name, is not used in another implementation.
787  if (CatIDecl) {
788    if (CatIDecl->getImplementation()) {
789      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
790        << CatName;
791      Diag(CatIDecl->getImplementation()->getLocation(),
792           diag::note_previous_definition);
793    } else {
794      CatIDecl->setImplementation(CDecl);
795      // Warn on implementating category of deprecated class under
796      // -Wdeprecated-implementations flag.
797      DiagnoseObjCImplementedDeprecations(*this,
798                                          dyn_cast<NamedDecl>(IDecl),
799                                          CDecl->getLocation(), 2);
800    }
801  }
802
803  CheckObjCDeclScope(CDecl);
804  return CDecl;
805}
806
807Decl *Sema::ActOnStartClassImplementation(
808                      SourceLocation AtClassImplLoc,
809                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
810                      IdentifierInfo *SuperClassname,
811                      SourceLocation SuperClassLoc) {
812  ObjCInterfaceDecl* IDecl = 0;
813  // Check for another declaration kind with the same name.
814  NamedDecl *PrevDecl
815    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
816                       ForRedeclaration);
817  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
818    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
819    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
820  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
821    // If this is a forward declaration of an interface, warn.
822    if (IDecl->isForwardDecl()) {
823      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
824      IDecl = 0;
825    }
826  } else {
827    // We did not find anything with the name ClassName; try to correct for
828    // typos in the class name.
829    TypoCorrection Corrected = CorrectTypo(
830        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
831        NULL, NULL, false, CTC_NoKeywords);
832    if ((IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
833      // Suggest the (potentially) correct interface name. However, put the
834      // fix-it hint itself in a separate note, since changing the name in
835      // the warning would make the fix-it change semantics.However, don't
836      // provide a code-modification hint or use the typo name for recovery,
837      // because this is just a warning. The program may actually be correct.
838      DeclarationName CorrectedName = Corrected.getCorrection();
839      Diag(ClassLoc, diag::warn_undef_interface_suggest)
840        << ClassName << CorrectedName;
841      Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
842        << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
843      IDecl = 0;
844    } else {
845      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
846    }
847  }
848
849  // Check that super class name is valid class name
850  ObjCInterfaceDecl* SDecl = 0;
851  if (SuperClassname) {
852    // Check if a different kind of symbol declared in this scope.
853    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
854                                LookupOrdinaryName);
855    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
856      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
857        << SuperClassname;
858      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
859    } else {
860      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
861      if (!SDecl)
862        Diag(SuperClassLoc, diag::err_undef_superclass)
863          << SuperClassname << ClassName;
864      else if (IDecl && IDecl->getSuperClass() != SDecl) {
865        // This implementation and its interface do not have the same
866        // super class.
867        Diag(SuperClassLoc, diag::err_conflicting_super_class)
868          << SDecl->getDeclName();
869        Diag(SDecl->getLocation(), diag::note_previous_definition);
870      }
871    }
872  }
873
874  if (!IDecl) {
875    // Legacy case of @implementation with no corresponding @interface.
876    // Build, chain & install the interface decl into the identifier.
877
878    // FIXME: Do we support attributes on the @implementation? If so we should
879    // copy them over.
880    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
881                                      ClassName, ClassLoc, false, true);
882    IDecl->setSuperClass(SDecl);
883    IDecl->setLocEnd(ClassLoc);
884
885    PushOnScopeChains(IDecl, TUScope);
886  } else {
887    // Mark the interface as being completed, even if it was just as
888    //   @class ....;
889    // declaration; the user cannot reopen it.
890    IDecl->setForwardDecl(false);
891  }
892
893  ObjCImplementationDecl* IMPDecl =
894    ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
895                                   IDecl, SDecl);
896
897  if (CheckObjCDeclScope(IMPDecl))
898    return IMPDecl;
899
900  // Check that there is no duplicate implementation of this class.
901  if (IDecl->getImplementation()) {
902    // FIXME: Don't leak everything!
903    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
904    Diag(IDecl->getImplementation()->getLocation(),
905         diag::note_previous_definition);
906  } else { // add it to the list.
907    IDecl->setImplementation(IMPDecl);
908    PushOnScopeChains(IMPDecl, TUScope);
909    // Warn on implementating deprecated class under
910    // -Wdeprecated-implementations flag.
911    DiagnoseObjCImplementedDeprecations(*this,
912                                        dyn_cast<NamedDecl>(IDecl),
913                                        IMPDecl->getLocation(), 1);
914  }
915  return IMPDecl;
916}
917
918void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
919                                    ObjCIvarDecl **ivars, unsigned numIvars,
920                                    SourceLocation RBrace) {
921  assert(ImpDecl && "missing implementation decl");
922  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
923  if (!IDecl)
924    return;
925  /// Check case of non-existing @interface decl.
926  /// (legacy objective-c @implementation decl without an @interface decl).
927  /// Add implementations's ivar to the synthesize class's ivar list.
928  if (IDecl->isImplicitInterfaceDecl()) {
929    IDecl->setLocEnd(RBrace);
930    // Add ivar's to class's DeclContext.
931    for (unsigned i = 0, e = numIvars; i != e; ++i) {
932      ivars[i]->setLexicalDeclContext(ImpDecl);
933      IDecl->makeDeclVisibleInContext(ivars[i], false);
934      ImpDecl->addDecl(ivars[i]);
935    }
936
937    return;
938  }
939  // If implementation has empty ivar list, just return.
940  if (numIvars == 0)
941    return;
942
943  assert(ivars && "missing @implementation ivars");
944  if (LangOpts.ObjCNonFragileABI2) {
945    if (ImpDecl->getSuperClass())
946      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
947    for (unsigned i = 0; i < numIvars; i++) {
948      ObjCIvarDecl* ImplIvar = ivars[i];
949      if (const ObjCIvarDecl *ClsIvar =
950            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
951        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
952        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
953        continue;
954      }
955      // Instance ivar to Implementation's DeclContext.
956      ImplIvar->setLexicalDeclContext(ImpDecl);
957      IDecl->makeDeclVisibleInContext(ImplIvar, false);
958      ImpDecl->addDecl(ImplIvar);
959    }
960    return;
961  }
962  // Check interface's Ivar list against those in the implementation.
963  // names and types must match.
964  //
965  unsigned j = 0;
966  ObjCInterfaceDecl::ivar_iterator
967    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
968  for (; numIvars > 0 && IVI != IVE; ++IVI) {
969    ObjCIvarDecl* ImplIvar = ivars[j++];
970    ObjCIvarDecl* ClsIvar = *IVI;
971    assert (ImplIvar && "missing implementation ivar");
972    assert (ClsIvar && "missing class ivar");
973
974    // First, make sure the types match.
975    if (Context.getCanonicalType(ImplIvar->getType()) !=
976        Context.getCanonicalType(ClsIvar->getType())) {
977      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
978        << ImplIvar->getIdentifier()
979        << ImplIvar->getType() << ClsIvar->getType();
980      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
981    } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
982      Expr *ImplBitWidth = ImplIvar->getBitWidth();
983      Expr *ClsBitWidth = ClsIvar->getBitWidth();
984      if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
985          ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
986        Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
987          << ImplIvar->getIdentifier();
988        Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
989      }
990    }
991    // Make sure the names are identical.
992    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
993      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
994        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
995      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
996    }
997    --numIvars;
998  }
999
1000  if (numIvars > 0)
1001    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1002  else if (IVI != IVE)
1003    Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
1004}
1005
1006void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1007                               bool &IncompleteImpl, unsigned DiagID) {
1008  // No point warning no definition of method which is 'unavailable'.
1009  if (method->hasAttr<UnavailableAttr>())
1010    return;
1011  if (!IncompleteImpl) {
1012    Diag(ImpLoc, diag::warn_incomplete_impl);
1013    IncompleteImpl = true;
1014  }
1015  if (DiagID == diag::warn_unimplemented_protocol_method)
1016    Diag(ImpLoc, DiagID) << method->getDeclName();
1017  else
1018    Diag(method->getLocation(), DiagID) << method->getDeclName();
1019}
1020
1021/// Determines if type B can be substituted for type A.  Returns true if we can
1022/// guarantee that anything that the user will do to an object of type A can
1023/// also be done to an object of type B.  This is trivially true if the two
1024/// types are the same, or if B is a subclass of A.  It becomes more complex
1025/// in cases where protocols are involved.
1026///
1027/// Object types in Objective-C describe the minimum requirements for an
1028/// object, rather than providing a complete description of a type.  For
1029/// example, if A is a subclass of B, then B* may refer to an instance of A.
1030/// The principle of substitutability means that we may use an instance of A
1031/// anywhere that we may use an instance of B - it will implement all of the
1032/// ivars of B and all of the methods of B.
1033///
1034/// This substitutability is important when type checking methods, because
1035/// the implementation may have stricter type definitions than the interface.
1036/// The interface specifies minimum requirements, but the implementation may
1037/// have more accurate ones.  For example, a method may privately accept
1038/// instances of B, but only publish that it accepts instances of A.  Any
1039/// object passed to it will be type checked against B, and so will implicitly
1040/// by a valid A*.  Similarly, a method may return a subclass of the class that
1041/// it is declared as returning.
1042///
1043/// This is most important when considering subclassing.  A method in a
1044/// subclass must accept any object as an argument that its superclass's
1045/// implementation accepts.  It may, however, accept a more general type
1046/// without breaking substitutability (i.e. you can still use the subclass
1047/// anywhere that you can use the superclass, but not vice versa).  The
1048/// converse requirement applies to return types: the return type for a
1049/// subclass method must be a valid object of the kind that the superclass
1050/// advertises, but it may be specified more accurately.  This avoids the need
1051/// for explicit down-casting by callers.
1052///
1053/// Note: This is a stricter requirement than for assignment.
1054static bool isObjCTypeSubstitutable(ASTContext &Context,
1055                                    const ObjCObjectPointerType *A,
1056                                    const ObjCObjectPointerType *B,
1057                                    bool rejectId) {
1058  // Reject a protocol-unqualified id.
1059  if (rejectId && B->isObjCIdType()) return false;
1060
1061  // If B is a qualified id, then A must also be a qualified id and it must
1062  // implement all of the protocols in B.  It may not be a qualified class.
1063  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1064  // stricter definition so it is not substitutable for id<A>.
1065  if (B->isObjCQualifiedIdType()) {
1066    return A->isObjCQualifiedIdType() &&
1067           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1068                                                     QualType(B,0),
1069                                                     false);
1070  }
1071
1072  /*
1073  // id is a special type that bypasses type checking completely.  We want a
1074  // warning when it is used in one place but not another.
1075  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1076
1077
1078  // If B is a qualified id, then A must also be a qualified id (which it isn't
1079  // if we've got this far)
1080  if (B->isObjCQualifiedIdType()) return false;
1081  */
1082
1083  // Now we know that A and B are (potentially-qualified) class types.  The
1084  // normal rules for assignment apply.
1085  return Context.canAssignObjCInterfaces(A, B);
1086}
1087
1088static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1089  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1090}
1091
1092static bool CheckMethodOverrideReturn(Sema &S,
1093                                      ObjCMethodDecl *MethodImpl,
1094                                      ObjCMethodDecl *MethodDecl,
1095                                      bool IsProtocolMethodDecl,
1096                                      bool IsOverridingMode,
1097                                      bool Warn) {
1098  if (IsProtocolMethodDecl &&
1099      (MethodDecl->getObjCDeclQualifier() !=
1100       MethodImpl->getObjCDeclQualifier())) {
1101    if (Warn) {
1102        S.Diag(MethodImpl->getLocation(),
1103               (IsOverridingMode ?
1104                 diag::warn_conflicting_overriding_ret_type_modifiers
1105                 : diag::warn_conflicting_ret_type_modifiers))
1106          << MethodImpl->getDeclName()
1107          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1108        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1109          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1110    }
1111    else
1112      return false;
1113  }
1114
1115  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1116                                       MethodDecl->getResultType()))
1117    return true;
1118  if (!Warn)
1119    return false;
1120
1121  unsigned DiagID =
1122    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1123                     : diag::warn_conflicting_ret_types;
1124
1125  // Mismatches between ObjC pointers go into a different warning
1126  // category, and sometimes they're even completely whitelisted.
1127  if (const ObjCObjectPointerType *ImplPtrTy =
1128        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1129    if (const ObjCObjectPointerType *IfacePtrTy =
1130          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1131      // Allow non-matching return types as long as they don't violate
1132      // the principle of substitutability.  Specifically, we permit
1133      // return types that are subclasses of the declared return type,
1134      // or that are more-qualified versions of the declared type.
1135      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1136        return false;
1137
1138      DiagID =
1139        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1140                          : diag::warn_non_covariant_ret_types;
1141    }
1142  }
1143
1144  S.Diag(MethodImpl->getLocation(), DiagID)
1145    << MethodImpl->getDeclName()
1146    << MethodDecl->getResultType()
1147    << MethodImpl->getResultType()
1148    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1149  S.Diag(MethodDecl->getLocation(),
1150         IsOverridingMode ? diag::note_previous_declaration
1151                          : diag::note_previous_definition)
1152    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1153  return false;
1154}
1155
1156static bool CheckMethodOverrideParam(Sema &S,
1157                                     ObjCMethodDecl *MethodImpl,
1158                                     ObjCMethodDecl *MethodDecl,
1159                                     ParmVarDecl *ImplVar,
1160                                     ParmVarDecl *IfaceVar,
1161                                     bool IsProtocolMethodDecl,
1162                                     bool IsOverridingMode,
1163                                     bool Warn) {
1164  if (IsProtocolMethodDecl &&
1165      (ImplVar->getObjCDeclQualifier() !=
1166       IfaceVar->getObjCDeclQualifier())) {
1167    if (Warn) {
1168      if (IsOverridingMode)
1169        S.Diag(ImplVar->getLocation(),
1170               diag::warn_conflicting_overriding_param_modifiers)
1171            << getTypeRange(ImplVar->getTypeSourceInfo())
1172            << MethodImpl->getDeclName();
1173      else S.Diag(ImplVar->getLocation(),
1174             diag::warn_conflicting_param_modifiers)
1175          << getTypeRange(ImplVar->getTypeSourceInfo())
1176          << MethodImpl->getDeclName();
1177      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1178          << getTypeRange(IfaceVar->getTypeSourceInfo());
1179    }
1180    else
1181      return false;
1182  }
1183
1184  QualType ImplTy = ImplVar->getType();
1185  QualType IfaceTy = IfaceVar->getType();
1186
1187  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1188    return true;
1189
1190  if (!Warn)
1191    return false;
1192  unsigned DiagID =
1193    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1194                     : diag::warn_conflicting_param_types;
1195
1196  // Mismatches between ObjC pointers go into a different warning
1197  // category, and sometimes they're even completely whitelisted.
1198  if (const ObjCObjectPointerType *ImplPtrTy =
1199        ImplTy->getAs<ObjCObjectPointerType>()) {
1200    if (const ObjCObjectPointerType *IfacePtrTy =
1201          IfaceTy->getAs<ObjCObjectPointerType>()) {
1202      // Allow non-matching argument types as long as they don't
1203      // violate the principle of substitutability.  Specifically, the
1204      // implementation must accept any objects that the superclass
1205      // accepts, however it may also accept others.
1206      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1207        return false;
1208
1209      DiagID =
1210      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1211                       :  diag::warn_non_contravariant_param_types;
1212    }
1213  }
1214
1215  S.Diag(ImplVar->getLocation(), DiagID)
1216    << getTypeRange(ImplVar->getTypeSourceInfo())
1217    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1218  S.Diag(IfaceVar->getLocation(),
1219         (IsOverridingMode ? diag::note_previous_declaration
1220                        : diag::note_previous_definition))
1221    << getTypeRange(IfaceVar->getTypeSourceInfo());
1222  return false;
1223}
1224
1225/// In ARC, check whether the conventional meanings of the two methods
1226/// match.  If they don't, it's a hard error.
1227static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1228                                      ObjCMethodDecl *decl) {
1229  ObjCMethodFamily implFamily = impl->getMethodFamily();
1230  ObjCMethodFamily declFamily = decl->getMethodFamily();
1231  if (implFamily == declFamily) return false;
1232
1233  // Since conventions are sorted by selector, the only possibility is
1234  // that the types differ enough to cause one selector or the other
1235  // to fall out of the family.
1236  assert(implFamily == OMF_None || declFamily == OMF_None);
1237
1238  // No further diagnostics required on invalid declarations.
1239  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1240
1241  const ObjCMethodDecl *unmatched = impl;
1242  ObjCMethodFamily family = declFamily;
1243  unsigned errorID = diag::err_arc_lost_method_convention;
1244  unsigned noteID = diag::note_arc_lost_method_convention;
1245  if (declFamily == OMF_None) {
1246    unmatched = decl;
1247    family = implFamily;
1248    errorID = diag::err_arc_gained_method_convention;
1249    noteID = diag::note_arc_gained_method_convention;
1250  }
1251
1252  // Indexes into a %select clause in the diagnostic.
1253  enum FamilySelector {
1254    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1255  };
1256  FamilySelector familySelector = FamilySelector();
1257
1258  switch (family) {
1259  case OMF_None: llvm_unreachable("logic error, no method convention");
1260  case OMF_retain:
1261  case OMF_release:
1262  case OMF_autorelease:
1263  case OMF_dealloc:
1264  case OMF_finalize:
1265  case OMF_retainCount:
1266  case OMF_self:
1267  case OMF_performSelector:
1268    // Mismatches for these methods don't change ownership
1269    // conventions, so we don't care.
1270    return false;
1271
1272  case OMF_init: familySelector = F_init; break;
1273  case OMF_alloc: familySelector = F_alloc; break;
1274  case OMF_copy: familySelector = F_copy; break;
1275  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1276  case OMF_new: familySelector = F_new; break;
1277  }
1278
1279  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1280  ReasonSelector reasonSelector;
1281
1282  // The only reason these methods don't fall within their families is
1283  // due to unusual result types.
1284  if (unmatched->getResultType()->isObjCObjectPointerType()) {
1285    reasonSelector = R_UnrelatedReturn;
1286  } else {
1287    reasonSelector = R_NonObjectReturn;
1288  }
1289
1290  S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1291  S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1292
1293  return true;
1294}
1295
1296void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1297                                       ObjCMethodDecl *MethodDecl,
1298                                       bool IsProtocolMethodDecl,
1299                                       bool IsOverridingMode) {
1300  if (getLangOptions().ObjCAutoRefCount &&
1301      !IsOverridingMode &&
1302      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1303    return;
1304
1305  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1306                            IsProtocolMethodDecl, IsOverridingMode,
1307                            true);
1308
1309  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1310       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1311       IM != EM; ++IM, ++IF) {
1312    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1313                             IsProtocolMethodDecl, IsOverridingMode, true);
1314  }
1315
1316  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1317    if (IsOverridingMode)
1318      Diag(ImpMethodDecl->getLocation(),
1319           diag::warn_conflicting_overriding_variadic);
1320    else
1321      Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic);
1322    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1323  }
1324}
1325
1326/// WarnExactTypedMethods - This routine issues a warning if method
1327/// implementation declaration matches exactly that of its declaration.
1328void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1329                                 ObjCMethodDecl *MethodDecl,
1330                                 bool IsProtocolMethodDecl) {
1331  // don't issue warning when protocol method is optional because primary
1332  // class is not required to implement it and it is safe for protocol
1333  // to implement it.
1334  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1335    return;
1336  // don't issue warning when primary class's method is
1337  // depecated/unavailable.
1338  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1339      MethodDecl->hasAttr<DeprecatedAttr>())
1340    return;
1341
1342  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1343                                      IsProtocolMethodDecl, false, false);
1344  if (match)
1345    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1346         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1347         IM != EM; ++IM, ++IF) {
1348      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1349                                       *IM, *IF,
1350                                       IsProtocolMethodDecl, false, false);
1351      if (!match)
1352        break;
1353    }
1354  if (match)
1355    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1356  if (match)
1357    match = !(MethodDecl->isClassMethod() &&
1358              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1359
1360  if (match) {
1361    Diag(ImpMethodDecl->getLocation(),
1362         diag::warn_category_method_impl_match);
1363    Diag(MethodDecl->getLocation(), diag::note_method_declared_at);
1364  }
1365}
1366
1367/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1368/// improve the efficiency of selector lookups and type checking by associating
1369/// with each protocol / interface / category the flattened instance tables. If
1370/// we used an immutable set to keep the table then it wouldn't add significant
1371/// memory cost and it would be handy for lookups.
1372
1373/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1374/// Declared in protocol, and those referenced by it.
1375void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1376                                   ObjCProtocolDecl *PDecl,
1377                                   bool& IncompleteImpl,
1378                                   const llvm::DenseSet<Selector> &InsMap,
1379                                   const llvm::DenseSet<Selector> &ClsMap,
1380                                   ObjCContainerDecl *CDecl) {
1381  ObjCInterfaceDecl *IDecl;
1382  if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
1383    IDecl = C->getClassInterface();
1384  else
1385    IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
1386  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1387
1388  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1389  ObjCInterfaceDecl *NSIDecl = 0;
1390  if (getLangOptions().NeXTRuntime) {
1391    // check to see if class implements forwardInvocation method and objects
1392    // of this class are derived from 'NSProxy' so that to forward requests
1393    // from one object to another.
1394    // Under such conditions, which means that every method possible is
1395    // implemented in the class, we should not issue "Method definition not
1396    // found" warnings.
1397    // FIXME: Use a general GetUnarySelector method for this.
1398    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1399    Selector fISelector = Context.Selectors.getSelector(1, &II);
1400    if (InsMap.count(fISelector))
1401      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1402      // need be implemented in the implementation.
1403      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1404  }
1405
1406  // If a method lookup fails locally we still need to look and see if
1407  // the method was implemented by a base class or an inherited
1408  // protocol. This lookup is slow, but occurs rarely in correct code
1409  // and otherwise would terminate in a warning.
1410
1411  // check unimplemented instance methods.
1412  if (!NSIDecl)
1413    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1414         E = PDecl->instmeth_end(); I != E; ++I) {
1415      ObjCMethodDecl *method = *I;
1416      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1417          !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
1418          (!Super ||
1419           !Super->lookupInstanceMethod(method->getSelector()))) {
1420            // Ugly, but necessary. Method declared in protcol might have
1421            // have been synthesized due to a property declared in the class which
1422            // uses the protocol.
1423            ObjCMethodDecl *MethodInClass =
1424            IDecl->lookupInstanceMethod(method->getSelector());
1425            if (!MethodInClass || !MethodInClass->isSynthesized()) {
1426              unsigned DIAG = diag::warn_unimplemented_protocol_method;
1427              if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1428                      != Diagnostic::Ignored) {
1429                WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1430                Diag(method->getLocation(), diag::note_method_declared_at);
1431                Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1432                  << PDecl->getDeclName();
1433              }
1434            }
1435          }
1436    }
1437  // check unimplemented class methods
1438  for (ObjCProtocolDecl::classmeth_iterator
1439         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1440       I != E; ++I) {
1441    ObjCMethodDecl *method = *I;
1442    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1443        !ClsMap.count(method->getSelector()) &&
1444        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1445      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1446      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != Diagnostic::Ignored) {
1447        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1448        Diag(method->getLocation(), diag::note_method_declared_at);
1449        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1450          PDecl->getDeclName();
1451      }
1452    }
1453  }
1454  // Check on this protocols's referenced protocols, recursively.
1455  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1456       E = PDecl->protocol_end(); PI != E; ++PI)
1457    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
1458}
1459
1460/// MatchAllMethodDeclarations - Check methods declared in interface
1461/// or protocol against those declared in their implementations.
1462///
1463void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
1464                                      const llvm::DenseSet<Selector> &ClsMap,
1465                                      llvm::DenseSet<Selector> &InsMapSeen,
1466                                      llvm::DenseSet<Selector> &ClsMapSeen,
1467                                      ObjCImplDecl* IMPDecl,
1468                                      ObjCContainerDecl* CDecl,
1469                                      bool &IncompleteImpl,
1470                                      bool ImmediateClass,
1471                                      bool WarnExactMatch) {
1472  // Check and see if instance methods in class interface have been
1473  // implemented in the implementation class. If so, their types match.
1474  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1475       E = CDecl->instmeth_end(); I != E; ++I) {
1476    if (InsMapSeen.count((*I)->getSelector()))
1477        continue;
1478    InsMapSeen.insert((*I)->getSelector());
1479    if (!(*I)->isSynthesized() &&
1480        !InsMap.count((*I)->getSelector())) {
1481      if (ImmediateClass)
1482        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1483                            diag::note_undef_method_impl);
1484      continue;
1485    } else {
1486      ObjCMethodDecl *ImpMethodDecl =
1487        IMPDecl->getInstanceMethod((*I)->getSelector());
1488      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1489             "Expected to find the method through lookup as well");
1490      ObjCMethodDecl *MethodDecl = *I;
1491      // ImpMethodDecl may be null as in a @dynamic property.
1492      if (ImpMethodDecl) {
1493        if (!WarnExactMatch)
1494          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1495                                      isa<ObjCProtocolDecl>(CDecl));
1496        else if (!MethodDecl->isSynthesized())
1497          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1498                               isa<ObjCProtocolDecl>(CDecl));
1499      }
1500    }
1501  }
1502
1503  // Check and see if class methods in class interface have been
1504  // implemented in the implementation class. If so, their types match.
1505   for (ObjCInterfaceDecl::classmeth_iterator
1506       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1507     if (ClsMapSeen.count((*I)->getSelector()))
1508       continue;
1509     ClsMapSeen.insert((*I)->getSelector());
1510    if (!ClsMap.count((*I)->getSelector())) {
1511      if (ImmediateClass)
1512        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1513                            diag::note_undef_method_impl);
1514    } else {
1515      ObjCMethodDecl *ImpMethodDecl =
1516        IMPDecl->getClassMethod((*I)->getSelector());
1517      assert(CDecl->getClassMethod((*I)->getSelector()) &&
1518             "Expected to find the method through lookup as well");
1519      ObjCMethodDecl *MethodDecl = *I;
1520      if (!WarnExactMatch)
1521        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1522                                    isa<ObjCProtocolDecl>(CDecl));
1523      else
1524        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1525                             isa<ObjCProtocolDecl>(CDecl));
1526    }
1527  }
1528
1529  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1530    // Also methods in class extensions need be looked at next.
1531    for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1532         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1533      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1534                                 IMPDecl,
1535                                 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1536                                 IncompleteImpl, false, WarnExactMatch);
1537
1538    // Check for any implementation of a methods declared in protocol.
1539    for (ObjCInterfaceDecl::all_protocol_iterator
1540          PI = I->all_referenced_protocol_begin(),
1541          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1542      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1543                                 IMPDecl,
1544                                 (*PI), IncompleteImpl, false, WarnExactMatch);
1545
1546    // FIXME. For now, we are not checking for extact match of methods
1547    // in category implementation and its primary class's super class.
1548    if (!WarnExactMatch && I->getSuperClass())
1549      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1550                                 IMPDecl,
1551                                 I->getSuperClass(), IncompleteImpl, false);
1552  }
1553}
1554
1555/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1556/// category matches with those implemented in its primary class and
1557/// warns each time an exact match is found.
1558void Sema::CheckCategoryVsClassMethodMatches(
1559                                  ObjCCategoryImplDecl *CatIMPDecl) {
1560  llvm::DenseSet<Selector> InsMap, ClsMap;
1561
1562  for (ObjCImplementationDecl::instmeth_iterator
1563       I = CatIMPDecl->instmeth_begin(),
1564       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1565    InsMap.insert((*I)->getSelector());
1566
1567  for (ObjCImplementationDecl::classmeth_iterator
1568       I = CatIMPDecl->classmeth_begin(),
1569       E = CatIMPDecl->classmeth_end(); I != E; ++I)
1570    ClsMap.insert((*I)->getSelector());
1571  if (InsMap.empty() && ClsMap.empty())
1572    return;
1573
1574  // Get category's primary class.
1575  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1576  if (!CatDecl)
1577    return;
1578  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1579  if (!IDecl)
1580    return;
1581  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1582  bool IncompleteImpl = false;
1583  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1584                             CatIMPDecl, IDecl,
1585                             IncompleteImpl, false, true /*WarnExactMatch*/);
1586}
1587
1588void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1589                                     ObjCContainerDecl* CDecl,
1590                                     bool IncompleteImpl) {
1591  llvm::DenseSet<Selector> InsMap;
1592  // Check and see if instance methods in class interface have been
1593  // implemented in the implementation class.
1594  for (ObjCImplementationDecl::instmeth_iterator
1595         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1596    InsMap.insert((*I)->getSelector());
1597
1598  // Check and see if properties declared in the interface have either 1)
1599  // an implementation or 2) there is a @synthesize/@dynamic implementation
1600  // of the property in the @implementation.
1601  if (isa<ObjCInterfaceDecl>(CDecl) &&
1602        !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2))
1603    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1604
1605  llvm::DenseSet<Selector> ClsMap;
1606  for (ObjCImplementationDecl::classmeth_iterator
1607       I = IMPDecl->classmeth_begin(),
1608       E = IMPDecl->classmeth_end(); I != E; ++I)
1609    ClsMap.insert((*I)->getSelector());
1610
1611  // Check for type conflict of methods declared in a class/protocol and
1612  // its implementation; if any.
1613  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1614  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1615                             IMPDecl, CDecl,
1616                             IncompleteImpl, true);
1617
1618  // check all methods implemented in category against those declared
1619  // in its primary class.
1620  if (ObjCCategoryImplDecl *CatDecl =
1621        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1622    CheckCategoryVsClassMethodMatches(CatDecl);
1623
1624  // Check the protocol list for unimplemented methods in the @implementation
1625  // class.
1626  // Check and see if class methods in class interface have been
1627  // implemented in the implementation class.
1628
1629  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1630    for (ObjCInterfaceDecl::all_protocol_iterator
1631          PI = I->all_referenced_protocol_begin(),
1632          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1633      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1634                              InsMap, ClsMap, I);
1635    // Check class extensions (unnamed categories)
1636    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1637         Categories; Categories = Categories->getNextClassExtension())
1638      ImplMethodsVsClassMethods(S, IMPDecl,
1639                                const_cast<ObjCCategoryDecl*>(Categories),
1640                                IncompleteImpl);
1641  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1642    // For extended class, unimplemented methods in its protocols will
1643    // be reported in the primary class.
1644    if (!C->IsClassExtension()) {
1645      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1646           E = C->protocol_end(); PI != E; ++PI)
1647        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1648                                InsMap, ClsMap, CDecl);
1649      // Report unimplemented properties in the category as well.
1650      // When reporting on missing setter/getters, do not report when
1651      // setter/getter is implemented in category's primary class
1652      // implementation.
1653      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1654        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1655          for (ObjCImplementationDecl::instmeth_iterator
1656               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1657            InsMap.insert((*I)->getSelector());
1658        }
1659      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1660    }
1661  } else
1662    assert(false && "invalid ObjCContainerDecl type.");
1663}
1664
1665/// ActOnForwardClassDeclaration -
1666Sema::DeclGroupPtrTy
1667Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1668                                   IdentifierInfo **IdentList,
1669                                   SourceLocation *IdentLocs,
1670                                   unsigned NumElts) {
1671  SmallVector<Decl *, 8> DeclsInGroup;
1672  for (unsigned i = 0; i != NumElts; ++i) {
1673    // Check for another declaration kind with the same name.
1674    NamedDecl *PrevDecl
1675      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1676                         LookupOrdinaryName, ForRedeclaration);
1677    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1678      // Maybe we will complain about the shadowed template parameter.
1679      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1680      // Just pretend that we didn't see the previous declaration.
1681      PrevDecl = 0;
1682    }
1683
1684    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1685      // GCC apparently allows the following idiom:
1686      //
1687      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1688      // @class XCElementToggler;
1689      //
1690      // FIXME: Make an extension?
1691      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1692      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1693        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1694        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1695      } else {
1696        // a forward class declaration matching a typedef name of a class refers
1697        // to the underlying class.
1698        if (const ObjCObjectType *OI =
1699              TDD->getUnderlyingType()->getAs<ObjCObjectType>())
1700          PrevDecl = OI->getInterface();
1701      }
1702    }
1703    ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1704    if (!IDecl) {  // Not already seen?  Make a forward decl.
1705      IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1706                                        IdentList[i], IdentLocs[i], true);
1707
1708      // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
1709      // the current DeclContext.  This prevents clients that walk DeclContext
1710      // from seeing the imaginary ObjCInterfaceDecl until it is actually
1711      // declared later (if at all).  We also take care to explicitly make
1712      // sure this declaration is visible for name lookup.
1713      PushOnScopeChains(IDecl, TUScope, false);
1714      CurContext->makeDeclVisibleInContext(IDecl, true);
1715    }
1716    ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
1717                                                 IDecl, IdentLocs[i]);
1718    CurContext->addDecl(CDecl);
1719    CheckObjCDeclScope(CDecl);
1720    DeclsInGroup.push_back(CDecl);
1721  }
1722
1723  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1724}
1725
1726static bool tryMatchRecordTypes(ASTContext &Context,
1727                                Sema::MethodMatchStrategy strategy,
1728                                const Type *left, const Type *right);
1729
1730static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1731                       QualType leftQT, QualType rightQT) {
1732  const Type *left =
1733    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1734  const Type *right =
1735    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1736
1737  if (left == right) return true;
1738
1739  // If we're doing a strict match, the types have to match exactly.
1740  if (strategy == Sema::MMS_strict) return false;
1741
1742  if (left->isIncompleteType() || right->isIncompleteType()) return false;
1743
1744  // Otherwise, use this absurdly complicated algorithm to try to
1745  // validate the basic, low-level compatibility of the two types.
1746
1747  // As a minimum, require the sizes and alignments to match.
1748  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1749    return false;
1750
1751  // Consider all the kinds of non-dependent canonical types:
1752  // - functions and arrays aren't possible as return and parameter types
1753
1754  // - vector types of equal size can be arbitrarily mixed
1755  if (isa<VectorType>(left)) return isa<VectorType>(right);
1756  if (isa<VectorType>(right)) return false;
1757
1758  // - references should only match references of identical type
1759  // - structs, unions, and Objective-C objects must match more-or-less
1760  //   exactly
1761  // - everything else should be a scalar
1762  if (!left->isScalarType() || !right->isScalarType())
1763    return tryMatchRecordTypes(Context, strategy, left, right);
1764
1765  // Make scalars agree in kind, except count bools as chars.
1766  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
1767  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
1768  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
1769  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
1770
1771  // Note that data member pointers and function member pointers don't
1772  // intermix because of the size differences.
1773
1774  return (leftSK == rightSK);
1775}
1776
1777static bool tryMatchRecordTypes(ASTContext &Context,
1778                                Sema::MethodMatchStrategy strategy,
1779                                const Type *lt, const Type *rt) {
1780  assert(lt && rt && lt != rt);
1781
1782  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
1783  RecordDecl *left = cast<RecordType>(lt)->getDecl();
1784  RecordDecl *right = cast<RecordType>(rt)->getDecl();
1785
1786  // Require union-hood to match.
1787  if (left->isUnion() != right->isUnion()) return false;
1788
1789  // Require an exact match if either is non-POD.
1790  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
1791      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
1792    return false;
1793
1794  // Require size and alignment to match.
1795  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
1796
1797  // Require fields to match.
1798  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
1799  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
1800  for (; li != le && ri != re; ++li, ++ri) {
1801    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
1802      return false;
1803  }
1804  return (li == le && ri == re);
1805}
1806
1807/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1808/// returns true, or false, accordingly.
1809/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1810bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
1811                                      const ObjCMethodDecl *right,
1812                                      MethodMatchStrategy strategy) {
1813  if (!matchTypes(Context, strategy,
1814                  left->getResultType(), right->getResultType()))
1815    return false;
1816
1817  if (getLangOptions().ObjCAutoRefCount &&
1818      (left->hasAttr<NSReturnsRetainedAttr>()
1819         != right->hasAttr<NSReturnsRetainedAttr>() ||
1820       left->hasAttr<NSConsumesSelfAttr>()
1821         != right->hasAttr<NSConsumesSelfAttr>()))
1822    return false;
1823
1824  ObjCMethodDecl::param_iterator
1825    li = left->param_begin(), le = left->param_end(), ri = right->param_begin();
1826
1827  for (; li != le; ++li, ++ri) {
1828    assert(ri != right->param_end() && "Param mismatch");
1829    ParmVarDecl *lparm = *li, *rparm = *ri;
1830
1831    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
1832      return false;
1833
1834    if (getLangOptions().ObjCAutoRefCount &&
1835        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
1836      return false;
1837  }
1838  return true;
1839}
1840
1841/// \brief Read the contents of the method pool for a given selector from
1842/// external storage.
1843///
1844/// This routine should only be called once, when the method pool has no entry
1845/// for this selector.
1846Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
1847  assert(ExternalSource && "We need an external AST source");
1848  assert(MethodPool.find(Sel) == MethodPool.end() &&
1849         "Selector data already loaded into the method pool");
1850
1851  // Read the method list from the external source.
1852  GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
1853
1854  return MethodPool.insert(std::make_pair(Sel, Methods)).first;
1855}
1856
1857void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
1858                                 bool instance) {
1859  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
1860  if (Pos == MethodPool.end()) {
1861    if (ExternalSource)
1862      Pos = ReadMethodPool(Method->getSelector());
1863    else
1864      Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
1865                                             GlobalMethods())).first;
1866  }
1867  Method->setDefined(impl);
1868  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
1869  if (Entry.Method == 0) {
1870    // Haven't seen a method with this selector name yet - add it.
1871    Entry.Method = Method;
1872    Entry.Next = 0;
1873    return;
1874  }
1875
1876  // We've seen a method with this name, see if we have already seen this type
1877  // signature.
1878  for (ObjCMethodList *List = &Entry; List; List = List->Next) {
1879    bool match = MatchTwoMethodDeclarations(Method, List->Method);
1880
1881    if (match) {
1882      ObjCMethodDecl *PrevObjCMethod = List->Method;
1883      PrevObjCMethod->setDefined(impl);
1884      // If a method is deprecated, push it in the global pool.
1885      // This is used for better diagnostics.
1886      if (Method->isDeprecated()) {
1887        if (!PrevObjCMethod->isDeprecated())
1888          List->Method = Method;
1889      }
1890      // If new method is unavailable, push it into global pool
1891      // unless previous one is deprecated.
1892      if (Method->isUnavailable()) {
1893        if (PrevObjCMethod->getAvailability() < AR_Deprecated)
1894          List->Method = Method;
1895      }
1896      return;
1897    }
1898  }
1899
1900  // We have a new signature for an existing method - add it.
1901  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
1902  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
1903  Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
1904}
1905
1906/// Determines if this is an "acceptable" loose mismatch in the global
1907/// method pool.  This exists mostly as a hack to get around certain
1908/// global mismatches which we can't afford to make warnings / errors.
1909/// Really, what we want is a way to take a method out of the global
1910/// method pool.
1911static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
1912                                       ObjCMethodDecl *other) {
1913  if (!chosen->isInstanceMethod())
1914    return false;
1915
1916  Selector sel = chosen->getSelector();
1917  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
1918    return false;
1919
1920  // Don't complain about mismatches for -length if the method we
1921  // chose has an integral result type.
1922  return (chosen->getResultType()->isIntegerType());
1923}
1924
1925ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
1926                                               bool receiverIdOrClass,
1927                                               bool warn, bool instance) {
1928  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1929  if (Pos == MethodPool.end()) {
1930    if (ExternalSource)
1931      Pos = ReadMethodPool(Sel);
1932    else
1933      return 0;
1934  }
1935
1936  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
1937
1938  if (warn && MethList.Method && MethList.Next) {
1939    bool issueDiagnostic = false, issueError = false;
1940
1941    // We support a warning which complains about *any* difference in
1942    // method signature.
1943    bool strictSelectorMatch =
1944      (receiverIdOrClass && warn &&
1945       (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
1946                                 R.getBegin()) !=
1947      Diagnostic::Ignored));
1948    if (strictSelectorMatch)
1949      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1950        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
1951                                        MMS_strict)) {
1952          issueDiagnostic = true;
1953          break;
1954        }
1955      }
1956
1957    // If we didn't see any strict differences, we won't see any loose
1958    // differences.  In ARC, however, we also need to check for loose
1959    // mismatches, because most of them are errors.
1960    if (!strictSelectorMatch ||
1961        (issueDiagnostic && getLangOptions().ObjCAutoRefCount))
1962      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1963        // This checks if the methods differ in type mismatch.
1964        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
1965                                        MMS_loose) &&
1966            !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
1967          issueDiagnostic = true;
1968          if (getLangOptions().ObjCAutoRefCount)
1969            issueError = true;
1970          break;
1971        }
1972      }
1973
1974    if (issueDiagnostic) {
1975      if (issueError)
1976        Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
1977      else if (strictSelectorMatch)
1978        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
1979      else
1980        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
1981
1982      Diag(MethList.Method->getLocStart(),
1983           issueError ? diag::note_possibility : diag::note_using)
1984        << MethList.Method->getSourceRange();
1985      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
1986        Diag(Next->Method->getLocStart(), diag::note_also_found)
1987          << Next->Method->getSourceRange();
1988    }
1989  }
1990  return MethList.Method;
1991}
1992
1993ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
1994  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1995  if (Pos == MethodPool.end())
1996    return 0;
1997
1998  GlobalMethods &Methods = Pos->second;
1999
2000  if (Methods.first.Method && Methods.first.Method->isDefined())
2001    return Methods.first.Method;
2002  if (Methods.second.Method && Methods.second.Method->isDefined())
2003    return Methods.second.Method;
2004  return 0;
2005}
2006
2007/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
2008/// identical selector names in current and its super classes and issues
2009/// a warning if any of their argument types are incompatible.
2010void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
2011                                             ObjCMethodDecl *Method,
2012                                             bool IsInstance)  {
2013  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2014  if (ID == 0) return;
2015
2016  while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
2017    ObjCMethodDecl *SuperMethodDecl =
2018        SD->lookupMethod(Method->getSelector(), IsInstance);
2019    if (SuperMethodDecl == 0) {
2020      ID = SD;
2021      continue;
2022    }
2023    ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
2024      E = Method->param_end();
2025    ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
2026    for (; ParamI != E; ++ParamI, ++PrevI) {
2027      // Number of parameters are the same and is guaranteed by selector match.
2028      assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
2029      QualType T1 = Context.getCanonicalType((*ParamI)->getType());
2030      QualType T2 = Context.getCanonicalType((*PrevI)->getType());
2031      // If type of argument of method in this class does not match its
2032      // respective argument type in the super class method, issue warning;
2033      if (!Context.typesAreCompatible(T1, T2)) {
2034        Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
2035          << T1 << T2;
2036        Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
2037        return;
2038      }
2039    }
2040    ID = SD;
2041  }
2042}
2043
2044/// DiagnoseDuplicateIvars -
2045/// Check for duplicate ivars in the entire class at the start of
2046/// @implementation. This becomes necesssary because class extension can
2047/// add ivars to a class in random order which will not be known until
2048/// class's @implementation is seen.
2049void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2050                                  ObjCInterfaceDecl *SID) {
2051  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2052       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2053    ObjCIvarDecl* Ivar = (*IVI);
2054    if (Ivar->isInvalidDecl())
2055      continue;
2056    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2057      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2058      if (prevIvar) {
2059        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2060        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2061        Ivar->setInvalidDecl();
2062      }
2063    }
2064  }
2065}
2066
2067// Note: For class/category implemenations, allMethods/allProperties is
2068// always null.
2069void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2070                      Decl **allMethods, unsigned allNum,
2071                      Decl **allProperties, unsigned pNum,
2072                      DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2073
2074  if (!CurContext->isObjCContainer())
2075    return;
2076  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2077  Decl *ClassDecl = cast<Decl>(OCD);
2078
2079  bool isInterfaceDeclKind =
2080        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2081         || isa<ObjCProtocolDecl>(ClassDecl);
2082  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2083
2084  if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
2085    // FIXME: This is wrong.  We shouldn't be pretending that there is
2086    //  an '@end' in the declaration.
2087    SourceLocation L = ClassDecl->getLocation();
2088    AtEnd.setBegin(L);
2089    AtEnd.setEnd(L);
2090    Diag(L, diag::err_missing_atend);
2091  }
2092
2093  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2094  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2095  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2096
2097  for (unsigned i = 0; i < allNum; i++ ) {
2098    ObjCMethodDecl *Method =
2099      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2100
2101    if (!Method) continue;  // Already issued a diagnostic.
2102    if (Method->isInstanceMethod()) {
2103      /// Check for instance method of the same name with incompatible types
2104      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2105      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2106                              : false;
2107      if ((isInterfaceDeclKind && PrevMethod && !match)
2108          || (checkIdenticalMethods && match)) {
2109          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2110            << Method->getDeclName();
2111          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2112        Method->setInvalidDecl();
2113      } else {
2114        InsMap[Method->getSelector()] = Method;
2115        /// The following allows us to typecheck messages to "id".
2116        AddInstanceMethodToGlobalPool(Method);
2117        // verify that the instance method conforms to the same definition of
2118        // parent methods if it shadows one.
2119        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
2120      }
2121    } else {
2122      /// Check for class method of the same name with incompatible types
2123      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2124      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2125                              : false;
2126      if ((isInterfaceDeclKind && PrevMethod && !match)
2127          || (checkIdenticalMethods && match)) {
2128        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2129          << Method->getDeclName();
2130        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2131        Method->setInvalidDecl();
2132      } else {
2133        ClsMap[Method->getSelector()] = Method;
2134        /// The following allows us to typecheck messages to "Class".
2135        AddFactoryMethodToGlobalPool(Method);
2136        // verify that the class method conforms to the same definition of
2137        // parent methods if it shadows one.
2138        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
2139      }
2140    }
2141  }
2142  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
2143    // Compares properties declared in this class to those of its
2144    // super class.
2145    ComparePropertiesInBaseAndSuper(I);
2146    CompareProperties(I, I);
2147  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2148    // Categories are used to extend the class by declaring new methods.
2149    // By the same token, they are also used to add new properties. No
2150    // need to compare the added property to those in the class.
2151
2152    // Compare protocol properties with those in category
2153    CompareProperties(C, C);
2154    if (C->IsClassExtension()) {
2155      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2156      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2157    }
2158  }
2159  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2160    if (CDecl->getIdentifier())
2161      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2162      // user-defined setter/getter. It also synthesizes setter/getter methods
2163      // and adds them to the DeclContext and global method pools.
2164      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2165                                            E = CDecl->prop_end();
2166           I != E; ++I)
2167        ProcessPropertyDecl(*I, CDecl);
2168    CDecl->setAtEndRange(AtEnd);
2169  }
2170  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2171    IC->setAtEndRange(AtEnd);
2172    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2173      // Any property declared in a class extension might have user
2174      // declared setter or getter in current class extension or one
2175      // of the other class extensions. Mark them as synthesized as
2176      // property will be synthesized when property with same name is
2177      // seen in the @implementation.
2178      for (const ObjCCategoryDecl *ClsExtDecl =
2179           IDecl->getFirstClassExtension();
2180           ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
2181        for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
2182             E = ClsExtDecl->prop_end(); I != E; ++I) {
2183          ObjCPropertyDecl *Property = (*I);
2184          // Skip over properties declared @dynamic
2185          if (const ObjCPropertyImplDecl *PIDecl
2186              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2187            if (PIDecl->getPropertyImplementation()
2188                  == ObjCPropertyImplDecl::Dynamic)
2189              continue;
2190
2191          for (const ObjCCategoryDecl *CExtDecl =
2192               IDecl->getFirstClassExtension();
2193               CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
2194            if (ObjCMethodDecl *GetterMethod =
2195                CExtDecl->getInstanceMethod(Property->getGetterName()))
2196              GetterMethod->setSynthesized(true);
2197            if (!Property->isReadOnly())
2198              if (ObjCMethodDecl *SetterMethod =
2199                  CExtDecl->getInstanceMethod(Property->getSetterName()))
2200                SetterMethod->setSynthesized(true);
2201          }
2202        }
2203      }
2204
2205      if (LangOpts.ObjCDefaultSynthProperties &&
2206          LangOpts.ObjCNonFragileABI2)
2207        DefaultSynthesizeProperties(S, IC, IDecl);
2208      ImplMethodsVsClassMethods(S, IC, IDecl);
2209      AtomicPropertySetterGetterRules(IC, IDecl);
2210      DiagnoseOwningPropertyGetterSynthesis(IC);
2211
2212      if (LangOpts.ObjCNonFragileABI2)
2213        while (IDecl->getSuperClass()) {
2214          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2215          IDecl = IDecl->getSuperClass();
2216        }
2217    }
2218    SetIvarInitializers(IC);
2219  } else if (ObjCCategoryImplDecl* CatImplClass =
2220                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2221    CatImplClass->setAtEndRange(AtEnd);
2222
2223    // Find category interface decl and then check that all methods declared
2224    // in this interface are implemented in the category @implementation.
2225    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2226      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
2227           Categories; Categories = Categories->getNextClassCategory()) {
2228        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
2229          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
2230          break;
2231        }
2232      }
2233    }
2234  }
2235  if (isInterfaceDeclKind) {
2236    // Reject invalid vardecls.
2237    for (unsigned i = 0; i != tuvNum; i++) {
2238      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2239      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2240        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2241          if (!VDecl->hasExternalStorage())
2242            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2243        }
2244    }
2245  }
2246  ActOnObjCContainerFinishDefinition();
2247}
2248
2249
2250/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2251/// objective-c's type qualifier from the parser version of the same info.
2252static Decl::ObjCDeclQualifier
2253CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2254  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2255}
2256
2257static inline
2258bool containsInvalidMethodImplAttribute(const AttrVec &A) {
2259  // The 'ibaction' attribute is allowed on method definitions because of
2260  // how the IBAction macro is used on both method declarations and definitions.
2261  // If the method definitions contains any other attributes, return true.
2262  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
2263    if ((*i)->getKind() != attr::IBAction)
2264      return true;
2265  return false;
2266}
2267
2268/// \brief Check whether the declared result type of the given Objective-C
2269/// method declaration is compatible with the method's class.
2270///
2271static bool
2272CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2273                                    ObjCInterfaceDecl *CurrentClass) {
2274  QualType ResultType = Method->getResultType();
2275  SourceRange ResultTypeRange;
2276  if (const TypeSourceInfo *ResultTypeInfo = Method->getResultTypeSourceInfo())
2277    ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
2278
2279  // If an Objective-C method inherits its related result type, then its
2280  // declared result type must be compatible with its own class type. The
2281  // declared result type is compatible if:
2282  if (const ObjCObjectPointerType *ResultObjectType
2283                                = ResultType->getAs<ObjCObjectPointerType>()) {
2284    //   - it is id or qualified id, or
2285    if (ResultObjectType->isObjCIdType() ||
2286        ResultObjectType->isObjCQualifiedIdType())
2287      return false;
2288
2289    if (CurrentClass) {
2290      if (ObjCInterfaceDecl *ResultClass
2291                                      = ResultObjectType->getInterfaceDecl()) {
2292        //   - it is the same as the method's class type, or
2293        if (CurrentClass == ResultClass)
2294          return false;
2295
2296        //   - it is a superclass of the method's class type
2297        if (ResultClass->isSuperClassOf(CurrentClass))
2298          return false;
2299      }
2300    }
2301  }
2302
2303  return true;
2304}
2305
2306namespace {
2307/// A helper class for searching for methods which a particular method
2308/// overrides.
2309class OverrideSearch {
2310  Sema &S;
2311  ObjCMethodDecl *Method;
2312  llvm::SmallPtrSet<ObjCContainerDecl*, 8> Searched;
2313  llvm::SmallPtrSet<ObjCMethodDecl*, 8> Overridden;
2314  bool Recursive;
2315
2316public:
2317  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2318    Selector selector = method->getSelector();
2319
2320    // Bypass this search if we've never seen an instance/class method
2321    // with this selector before.
2322    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2323    if (it == S.MethodPool.end()) {
2324      if (!S.ExternalSource) return;
2325      it = S.ReadMethodPool(selector);
2326    }
2327    ObjCMethodList &list =
2328      method->isInstanceMethod() ? it->second.first : it->second.second;
2329    if (!list.Method) return;
2330
2331    ObjCContainerDecl *container
2332      = cast<ObjCContainerDecl>(method->getDeclContext());
2333
2334    // Prevent the search from reaching this container again.  This is
2335    // important with categories, which override methods from the
2336    // interface and each other.
2337    Searched.insert(container);
2338    searchFromContainer(container);
2339  }
2340
2341  typedef llvm::SmallPtrSet<ObjCMethodDecl*,8>::iterator iterator;
2342  iterator begin() const { return Overridden.begin(); }
2343  iterator end() const { return Overridden.end(); }
2344
2345private:
2346  void searchFromContainer(ObjCContainerDecl *container) {
2347    if (container->isInvalidDecl()) return;
2348
2349    switch (container->getDeclKind()) {
2350#define OBJCCONTAINER(type, base) \
2351    case Decl::type: \
2352      searchFrom(cast<type##Decl>(container)); \
2353      break;
2354#define ABSTRACT_DECL(expansion)
2355#define DECL(type, base) \
2356    case Decl::type:
2357#include "clang/AST/DeclNodes.inc"
2358      llvm_unreachable("not an ObjC container!");
2359    }
2360  }
2361
2362  void searchFrom(ObjCProtocolDecl *protocol) {
2363    // A method in a protocol declaration overrides declarations from
2364    // referenced ("parent") protocols.
2365    search(protocol->getReferencedProtocols());
2366  }
2367
2368  void searchFrom(ObjCCategoryDecl *category) {
2369    // A method in a category declaration overrides declarations from
2370    // the main class and from protocols the category references.
2371    search(category->getClassInterface());
2372    search(category->getReferencedProtocols());
2373  }
2374
2375  void searchFrom(ObjCCategoryImplDecl *impl) {
2376    // A method in a category definition that has a category
2377    // declaration overrides declarations from the category
2378    // declaration.
2379    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2380      search(category);
2381
2382    // Otherwise it overrides declarations from the class.
2383    } else {
2384      search(impl->getClassInterface());
2385    }
2386  }
2387
2388  void searchFrom(ObjCInterfaceDecl *iface) {
2389    // A method in a class declaration overrides declarations from
2390
2391    //   - categories,
2392    for (ObjCCategoryDecl *category = iface->getCategoryList();
2393           category; category = category->getNextClassCategory())
2394      search(category);
2395
2396    //   - the super class, and
2397    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2398      search(super);
2399
2400    //   - any referenced protocols.
2401    search(iface->getReferencedProtocols());
2402  }
2403
2404  void searchFrom(ObjCImplementationDecl *impl) {
2405    // A method in a class implementation overrides declarations from
2406    // the class interface.
2407    search(impl->getClassInterface());
2408  }
2409
2410
2411  void search(const ObjCProtocolList &protocols) {
2412    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2413         i != e; ++i)
2414      search(*i);
2415  }
2416
2417  void search(ObjCContainerDecl *container) {
2418    // Abort if we've already searched this container.
2419    if (!Searched.insert(container)) return;
2420
2421    // Check for a method in this container which matches this selector.
2422    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2423                                                Method->isInstanceMethod());
2424
2425    // If we find one, record it and bail out.
2426    if (meth) {
2427      Overridden.insert(meth);
2428      return;
2429    }
2430
2431    // Otherwise, search for methods that a hypothetical method here
2432    // would have overridden.
2433
2434    // Note that we're now in a recursive case.
2435    Recursive = true;
2436
2437    searchFromContainer(container);
2438  }
2439};
2440}
2441
2442Decl *Sema::ActOnMethodDeclaration(
2443    Scope *S,
2444    SourceLocation MethodLoc, SourceLocation EndLoc,
2445    tok::TokenKind MethodType,
2446    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2447    SourceLocation SelectorStartLoc,
2448    Selector Sel,
2449    // optional arguments. The number of types/arguments is obtained
2450    // from the Sel.getNumArgs().
2451    ObjCArgInfo *ArgInfo,
2452    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2453    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2454    bool isVariadic, bool MethodDefinition) {
2455  // Make sure we can establish a context for the method.
2456  if (!CurContext->isObjCContainer()) {
2457    Diag(MethodLoc, diag::error_missing_method_context);
2458    return 0;
2459  }
2460  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2461  Decl *ClassDecl = cast<Decl>(OCD);
2462  QualType resultDeclType;
2463
2464  TypeSourceInfo *ResultTInfo = 0;
2465  if (ReturnType) {
2466    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2467
2468    // Methods cannot return interface types. All ObjC objects are
2469    // passed by reference.
2470    if (resultDeclType->isObjCObjectType()) {
2471      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2472        << 0 << resultDeclType;
2473      return 0;
2474    }
2475  } else { // get the type for "id".
2476    resultDeclType = Context.getObjCIdType();
2477    Diag(MethodLoc, diag::warn_missing_method_return_type)
2478      << FixItHint::CreateInsertion(SelectorStartLoc, "(id)");
2479  }
2480
2481  ObjCMethodDecl* ObjCMethod =
2482    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
2483                           ResultTInfo,
2484                           CurContext,
2485                           MethodType == tok::minus, isVariadic,
2486                           /*isSynthesized=*/false,
2487                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
2488                           MethodDeclKind == tok::objc_optional
2489                             ? ObjCMethodDecl::Optional
2490                             : ObjCMethodDecl::Required,
2491                           false);
2492
2493  SmallVector<ParmVarDecl*, 16> Params;
2494
2495  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2496    QualType ArgType;
2497    TypeSourceInfo *DI;
2498
2499    if (ArgInfo[i].Type == 0) {
2500      ArgType = Context.getObjCIdType();
2501      DI = 0;
2502    } else {
2503      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2504      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2505      ArgType = Context.getAdjustedParameterType(ArgType);
2506    }
2507
2508    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
2509                   LookupOrdinaryName, ForRedeclaration);
2510    LookupName(R, S);
2511    if (R.isSingleResult()) {
2512      NamedDecl *PrevDecl = R.getFoundDecl();
2513      if (S->isDeclScope(PrevDecl)) {
2514        Diag(ArgInfo[i].NameLoc,
2515             (MethodDefinition ? diag::warn_method_param_redefinition
2516                               : diag::warn_method_param_declaration))
2517          << ArgInfo[i].Name;
2518        Diag(PrevDecl->getLocation(),
2519             diag::note_previous_declaration);
2520      }
2521    }
2522
2523    SourceLocation StartLoc = DI
2524      ? DI->getTypeLoc().getBeginLoc()
2525      : ArgInfo[i].NameLoc;
2526
2527    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2528                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
2529                                        ArgType, DI, SC_None, SC_None);
2530
2531    Param->setObjCMethodScopeInfo(i);
2532
2533    Param->setObjCDeclQualifier(
2534      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2535
2536    // Apply the attributes to the parameter.
2537    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2538
2539    S->AddDecl(Param);
2540    IdResolver.AddDecl(Param);
2541
2542    Params.push_back(Param);
2543  }
2544
2545  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2546    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2547    QualType ArgType = Param->getType();
2548    if (ArgType.isNull())
2549      ArgType = Context.getObjCIdType();
2550    else
2551      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2552      ArgType = Context.getAdjustedParameterType(ArgType);
2553    if (ArgType->isObjCObjectType()) {
2554      Diag(Param->getLocation(),
2555           diag::err_object_cannot_be_passed_returned_by_value)
2556      << 1 << ArgType;
2557      Param->setInvalidDecl();
2558    }
2559    Param->setDeclContext(ObjCMethod);
2560
2561    Params.push_back(Param);
2562  }
2563
2564  ObjCMethod->setMethodParams(Context, Params.data(), Params.size(),
2565                              Sel.getNumArgs());
2566  ObjCMethod->setObjCDeclQualifier(
2567    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
2568
2569  if (AttrList)
2570    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
2571
2572  // Add the method now.
2573  const ObjCMethodDecl *PrevMethod = 0;
2574  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
2575    if (MethodType == tok::minus) {
2576      PrevMethod = ImpDecl->getInstanceMethod(Sel);
2577      ImpDecl->addInstanceMethod(ObjCMethod);
2578    } else {
2579      PrevMethod = ImpDecl->getClassMethod(Sel);
2580      ImpDecl->addClassMethod(ObjCMethod);
2581    }
2582
2583    if (ObjCMethod->hasAttrs() &&
2584        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
2585      Diag(EndLoc, diag::warn_attribute_method_def);
2586  } else {
2587    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
2588  }
2589
2590  if (PrevMethod) {
2591    // You can never have two method definitions with the same name.
2592    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
2593      << ObjCMethod->getDeclName();
2594    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2595  }
2596
2597  // If this Objective-C method does not have a related result type, but we
2598  // are allowed to infer related result types, try to do so based on the
2599  // method family.
2600  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2601  if (!CurrentClass) {
2602    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
2603      CurrentClass = Cat->getClassInterface();
2604    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
2605      CurrentClass = Impl->getClassInterface();
2606    else if (ObjCCategoryImplDecl *CatImpl
2607                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
2608      CurrentClass = CatImpl->getClassInterface();
2609  }
2610
2611  bool isRelatedResultTypeCompatible =
2612    (getLangOptions().ObjCInferRelatedResultType &&
2613     !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass));
2614
2615  // Search for overridden methods and merge information down from them.
2616  OverrideSearch overrides(*this, ObjCMethod);
2617  for (OverrideSearch::iterator
2618         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2619    ObjCMethodDecl *overridden = *i;
2620
2621    // Propagate down the 'related result type' bit from overridden methods.
2622    if (isRelatedResultTypeCompatible && overridden->hasRelatedResultType())
2623      ObjCMethod->SetRelatedResultType();
2624
2625    // Then merge the declarations.
2626    mergeObjCMethodDecls(ObjCMethod, overridden);
2627
2628    // Check for overriding methods
2629    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
2630        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) {
2631      WarnConflictingTypedMethods(ObjCMethod, overridden,
2632              isa<ObjCProtocolDecl>(overridden->getDeclContext()), true);
2633    }
2634  }
2635
2636  bool ARCError = false;
2637  if (getLangOptions().ObjCAutoRefCount)
2638    ARCError = CheckARCMethodDecl(*this, ObjCMethod);
2639
2640  if (!ARCError && isRelatedResultTypeCompatible &&
2641      !ObjCMethod->hasRelatedResultType()) {
2642    bool InferRelatedResultType = false;
2643    switch (ObjCMethod->getMethodFamily()) {
2644    case OMF_None:
2645    case OMF_copy:
2646    case OMF_dealloc:
2647    case OMF_finalize:
2648    case OMF_mutableCopy:
2649    case OMF_release:
2650    case OMF_retainCount:
2651    case OMF_performSelector:
2652      break;
2653
2654    case OMF_alloc:
2655    case OMF_new:
2656      InferRelatedResultType = ObjCMethod->isClassMethod();
2657      break;
2658
2659    case OMF_init:
2660    case OMF_autorelease:
2661    case OMF_retain:
2662    case OMF_self:
2663      InferRelatedResultType = ObjCMethod->isInstanceMethod();
2664      break;
2665    }
2666
2667    if (InferRelatedResultType)
2668      ObjCMethod->SetRelatedResultType();
2669  }
2670
2671  return ObjCMethod;
2672}
2673
2674bool Sema::CheckObjCDeclScope(Decl *D) {
2675  if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
2676    return false;
2677  // Following is also an error. But it is caused by a missing @end
2678  // and diagnostic is issued elsewhere.
2679  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) {
2680    return false;
2681  }
2682
2683  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
2684  D->setInvalidDecl();
2685
2686  return true;
2687}
2688
2689/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2690/// instance variables of ClassName into Decls.
2691void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
2692                     IdentifierInfo *ClassName,
2693                     SmallVectorImpl<Decl*> &Decls) {
2694  // Check that ClassName is a valid class
2695  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
2696  if (!Class) {
2697    Diag(DeclStart, diag::err_undef_interface) << ClassName;
2698    return;
2699  }
2700  if (LangOpts.ObjCNonFragileABI) {
2701    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
2702    return;
2703  }
2704
2705  // Collect the instance variables
2706  SmallVector<const ObjCIvarDecl*, 32> Ivars;
2707  Context.DeepCollectObjCIvars(Class, true, Ivars);
2708  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2709  for (unsigned i = 0; i < Ivars.size(); i++) {
2710    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
2711    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
2712    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
2713                                           /*FIXME: StartL=*/ID->getLocation(),
2714                                           ID->getLocation(),
2715                                           ID->getIdentifier(), ID->getType(),
2716                                           ID->getBitWidth());
2717    Decls.push_back(FD);
2718  }
2719
2720  // Introduce all of these fields into the appropriate scope.
2721  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
2722       D != Decls.end(); ++D) {
2723    FieldDecl *FD = cast<FieldDecl>(*D);
2724    if (getLangOptions().CPlusPlus)
2725      PushOnScopeChains(cast<FieldDecl>(FD), S);
2726    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
2727      Record->addDecl(FD);
2728  }
2729}
2730
2731/// \brief Build a type-check a new Objective-C exception variable declaration.
2732VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
2733                                      SourceLocation StartLoc,
2734                                      SourceLocation IdLoc,
2735                                      IdentifierInfo *Id,
2736                                      bool Invalid) {
2737  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
2738  // duration shall not be qualified by an address-space qualifier."
2739  // Since all parameters have automatic store duration, they can not have
2740  // an address space.
2741  if (T.getAddressSpace() != 0) {
2742    Diag(IdLoc, diag::err_arg_with_address_space);
2743    Invalid = true;
2744  }
2745
2746  // An @catch parameter must be an unqualified object pointer type;
2747  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
2748  if (Invalid) {
2749    // Don't do any further checking.
2750  } else if (T->isDependentType()) {
2751    // Okay: we don't know what this type will instantiate to.
2752  } else if (!T->isObjCObjectPointerType()) {
2753    Invalid = true;
2754    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
2755  } else if (T->isObjCQualifiedIdType()) {
2756    Invalid = true;
2757    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
2758  }
2759
2760  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
2761                                 T, TInfo, SC_None, SC_None);
2762  New->setExceptionVariable(true);
2763
2764  if (Invalid)
2765    New->setInvalidDecl();
2766  return New;
2767}
2768
2769Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
2770  const DeclSpec &DS = D.getDeclSpec();
2771
2772  // We allow the "register" storage class on exception variables because
2773  // GCC did, but we drop it completely. Any other storage class is an error.
2774  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2775    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
2776      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
2777  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2778    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
2779      << DS.getStorageClassSpec();
2780  }
2781  if (D.getDeclSpec().isThreadSpecified())
2782    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2783  D.getMutableDeclSpec().ClearStorageClassSpecs();
2784
2785  DiagnoseFunctionSpecifiers(D);
2786
2787  // Check that there are no default arguments inside the type of this
2788  // exception object (C++ only).
2789  if (getLangOptions().CPlusPlus)
2790    CheckExtraCXXDefaultArguments(D);
2791
2792  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2793  QualType ExceptionType = TInfo->getType();
2794
2795  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
2796                                        D.getSourceRange().getBegin(),
2797                                        D.getIdentifierLoc(),
2798                                        D.getIdentifier(),
2799                                        D.isInvalidType());
2800
2801  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2802  if (D.getCXXScopeSpec().isSet()) {
2803    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
2804      << D.getCXXScopeSpec().getRange();
2805    New->setInvalidDecl();
2806  }
2807
2808  // Add the parameter declaration into this scope.
2809  S->AddDecl(New);
2810  if (D.getIdentifier())
2811    IdResolver.AddDecl(New);
2812
2813  ProcessDeclAttributes(S, New, D);
2814
2815  if (New->hasAttr<BlocksAttr>())
2816    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2817  return New;
2818}
2819
2820/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
2821/// initialization.
2822void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
2823                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
2824  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
2825       Iv= Iv->getNextIvar()) {
2826    QualType QT = Context.getBaseElementType(Iv->getType());
2827    if (QT->isRecordType())
2828      Ivars.push_back(Iv);
2829  }
2830}
2831
2832void Sema::DiagnoseUseOfUnimplementedSelectors() {
2833  // Load referenced selectors from the external source.
2834  if (ExternalSource) {
2835    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
2836    ExternalSource->ReadReferencedSelectors(Sels);
2837    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
2838      ReferencedSelectors[Sels[I].first] = Sels[I].second;
2839  }
2840
2841  // Warning will be issued only when selector table is
2842  // generated (which means there is at lease one implementation
2843  // in the TU). This is to match gcc's behavior.
2844  if (ReferencedSelectors.empty() ||
2845      !Context.AnyObjCImplementation())
2846    return;
2847  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
2848        ReferencedSelectors.begin(),
2849       E = ReferencedSelectors.end(); S != E; ++S) {
2850    Selector Sel = (*S).first;
2851    if (!LookupImplementedMethodInGlobalPool(Sel))
2852      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
2853  }
2854  return;
2855}
2856