SemaDeclObjC.cpp revision 27f0776caf8c0d0870eb0125a13a613603848203
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements semantic analysis for Objective C declarations. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/ExternalSemaSource.h" 17#include "clang/Sema/Scope.h" 18#include "clang/Sema/ScopeInfo.h" 19#include "clang/AST/ASTConsumer.h" 20#include "clang/AST/Expr.h" 21#include "clang/AST/ExprObjC.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/Basic/SourceManager.h" 25#include "clang/Sema/DeclSpec.h" 26#include "llvm/ADT/DenseSet.h" 27 28using namespace clang; 29 30/// Check whether the given method, which must be in the 'init' 31/// family, is a valid member of that family. 32/// 33/// \param receiverTypeIfCall - if null, check this as if declaring it; 34/// if non-null, check this as if making a call to it with the given 35/// receiver type 36/// 37/// \return true to indicate that there was an error and appropriate 38/// actions were taken 39bool Sema::checkInitMethod(ObjCMethodDecl *method, 40 QualType receiverTypeIfCall) { 41 if (method->isInvalidDecl()) return true; 42 43 // This castAs is safe: methods that don't return an object 44 // pointer won't be inferred as inits and will reject an explicit 45 // objc_method_family(init). 46 47 // We ignore protocols here. Should we? What about Class? 48 49 const ObjCObjectType *result = method->getResultType() 50 ->castAs<ObjCObjectPointerType>()->getObjectType(); 51 52 if (result->isObjCId()) { 53 return false; 54 } else if (result->isObjCClass()) { 55 // fall through: always an error 56 } else { 57 ObjCInterfaceDecl *resultClass = result->getInterface(); 58 assert(resultClass && "unexpected object type!"); 59 60 // It's okay for the result type to still be a forward declaration 61 // if we're checking an interface declaration. 62 if (resultClass->isForwardDecl()) { 63 if (receiverTypeIfCall.isNull() && 64 !isa<ObjCImplementationDecl>(method->getDeclContext())) 65 return false; 66 67 // Otherwise, we try to compare class types. 68 } else { 69 // If this method was declared in a protocol, we can't check 70 // anything unless we have a receiver type that's an interface. 71 const ObjCInterfaceDecl *receiverClass = 0; 72 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 73 if (receiverTypeIfCall.isNull()) 74 return false; 75 76 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 77 ->getInterfaceDecl(); 78 79 // This can be null for calls to e.g. id<Foo>. 80 if (!receiverClass) return false; 81 } else { 82 receiverClass = method->getClassInterface(); 83 assert(receiverClass && "method not associated with a class!"); 84 } 85 86 // If either class is a subclass of the other, it's fine. 87 if (receiverClass->isSuperClassOf(resultClass) || 88 resultClass->isSuperClassOf(receiverClass)) 89 return false; 90 } 91 } 92 93 SourceLocation loc = method->getLocation(); 94 95 // If we're in a system header, and this is not a call, just make 96 // the method unusable. 97 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 98 method->addAttr(new (Context) UnavailableAttr(loc, Context, 99 "init method returns a type unrelated to its receiver type")); 100 return true; 101 } 102 103 // Otherwise, it's an error. 104 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 105 method->setInvalidDecl(); 106 return true; 107} 108 109bool Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 110 const ObjCMethodDecl *Overridden, 111 bool IsImplementation) { 112 if (Overridden->hasRelatedResultType() && 113 !NewMethod->hasRelatedResultType()) { 114 // This can only happen when the method follows a naming convention that 115 // implies a related result type, and the original (overridden) method has 116 // a suitable return type, but the new (overriding) method does not have 117 // a suitable return type. 118 QualType ResultType = NewMethod->getResultType(); 119 SourceRange ResultTypeRange; 120 if (const TypeSourceInfo *ResultTypeInfo 121 = NewMethod->getResultTypeSourceInfo()) 122 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 123 124 // Figure out which class this method is part of, if any. 125 ObjCInterfaceDecl *CurrentClass 126 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 127 if (!CurrentClass) { 128 DeclContext *DC = NewMethod->getDeclContext(); 129 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 130 CurrentClass = Cat->getClassInterface(); 131 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 132 CurrentClass = Impl->getClassInterface(); 133 else if (ObjCCategoryImplDecl *CatImpl 134 = dyn_cast<ObjCCategoryImplDecl>(DC)) 135 CurrentClass = CatImpl->getClassInterface(); 136 } 137 138 if (CurrentClass) { 139 Diag(NewMethod->getLocation(), 140 diag::warn_related_result_type_compatibility_class) 141 << Context.getObjCInterfaceType(CurrentClass) 142 << ResultType 143 << ResultTypeRange; 144 } else { 145 Diag(NewMethod->getLocation(), 146 diag::warn_related_result_type_compatibility_protocol) 147 << ResultType 148 << ResultTypeRange; 149 } 150 151 Diag(Overridden->getLocation(), diag::note_related_result_type_overridden) 152 << Overridden->getMethodFamily(); 153 } 154 155 return false; 156} 157 158/// \brief Check a method declaration for compatibility with the Objective-C 159/// ARC conventions. 160static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) { 161 ObjCMethodFamily family = method->getMethodFamily(); 162 switch (family) { 163 case OMF_None: 164 case OMF_dealloc: 165 case OMF_finalize: 166 case OMF_retain: 167 case OMF_release: 168 case OMF_autorelease: 169 case OMF_retainCount: 170 case OMF_self: 171 case OMF_performSelector: 172 return false; 173 174 case OMF_init: 175 // If the method doesn't obey the init rules, don't bother annotating it. 176 if (S.checkInitMethod(method, QualType())) 177 return true; 178 179 method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(), 180 S.Context)); 181 182 // Don't add a second copy of this attribute, but otherwise don't 183 // let it be suppressed. 184 if (method->hasAttr<NSReturnsRetainedAttr>()) 185 return false; 186 break; 187 188 case OMF_alloc: 189 case OMF_copy: 190 case OMF_mutableCopy: 191 case OMF_new: 192 if (method->hasAttr<NSReturnsRetainedAttr>() || 193 method->hasAttr<NSReturnsNotRetainedAttr>() || 194 method->hasAttr<NSReturnsAutoreleasedAttr>()) 195 return false; 196 break; 197 } 198 199 method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(), 200 S.Context)); 201 return false; 202} 203 204static void DiagnoseObjCImplementedDeprecations(Sema &S, 205 NamedDecl *ND, 206 SourceLocation ImplLoc, 207 int select) { 208 if (ND && ND->isDeprecated()) { 209 S.Diag(ImplLoc, diag::warn_deprecated_def) << select; 210 if (select == 0) 211 S.Diag(ND->getLocation(), diag::note_method_declared_at); 212 else 213 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; 214 } 215} 216 217/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 218/// and user declared, in the method definition's AST. 219void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 220 assert(getCurMethodDecl() == 0 && "Method parsing confused"); 221 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 222 223 // If we don't have a valid method decl, simply return. 224 if (!MDecl) 225 return; 226 227 // Allow the rest of sema to find private method decl implementations. 228 if (MDecl->isInstanceMethod()) 229 AddInstanceMethodToGlobalPool(MDecl, true); 230 else 231 AddFactoryMethodToGlobalPool(MDecl, true); 232 233 // Allow all of Sema to see that we are entering a method definition. 234 PushDeclContext(FnBodyScope, MDecl); 235 PushFunctionScope(); 236 237 // Create Decl objects for each parameter, entrring them in the scope for 238 // binding to their use. 239 240 // Insert the invisible arguments, self and _cmd! 241 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 242 243 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 244 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 245 246 // Introduce all of the other parameters into this scope. 247 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), 248 E = MDecl->param_end(); PI != E; ++PI) { 249 ParmVarDecl *Param = (*PI); 250 if (!Param->isInvalidDecl() && 251 RequireCompleteType(Param->getLocation(), Param->getType(), 252 diag::err_typecheck_decl_incomplete_type)) 253 Param->setInvalidDecl(); 254 if ((*PI)->getIdentifier()) 255 PushOnScopeChains(*PI, FnBodyScope); 256 } 257 258 // In ARC, disallow definition of retain/release/autorelease/retainCount 259 if (getLangOptions().ObjCAutoRefCount) { 260 switch (MDecl->getMethodFamily()) { 261 case OMF_retain: 262 case OMF_retainCount: 263 case OMF_release: 264 case OMF_autorelease: 265 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 266 << MDecl->getSelector(); 267 break; 268 269 case OMF_None: 270 case OMF_dealloc: 271 case OMF_finalize: 272 case OMF_alloc: 273 case OMF_init: 274 case OMF_mutableCopy: 275 case OMF_copy: 276 case OMF_new: 277 case OMF_self: 278 case OMF_performSelector: 279 break; 280 } 281 } 282 283 // Warn on deprecated methods under -Wdeprecated-implementations, 284 // and prepare for warning on missing super calls. 285 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 286 if (ObjCMethodDecl *IMD = 287 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod())) 288 DiagnoseObjCImplementedDeprecations(*this, 289 dyn_cast<NamedDecl>(IMD), 290 MDecl->getLocation(), 0); 291 292 // If this is "dealloc" or "finalize", set some bit here. 293 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 294 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 295 // Only do this if the current class actually has a superclass. 296 if (IC->getSuperClass()) { 297 ObjCShouldCallSuperDealloc = 298 !Context.getLangOptions().ObjCAutoRefCount && 299 MDecl->getMethodFamily() == OMF_dealloc; 300 ObjCShouldCallSuperFinalize = 301 !Context.getLangOptions().ObjCAutoRefCount && 302 MDecl->getMethodFamily() == OMF_finalize; 303 } 304 } 305} 306 307Decl *Sema:: 308ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 309 IdentifierInfo *ClassName, SourceLocation ClassLoc, 310 IdentifierInfo *SuperName, SourceLocation SuperLoc, 311 Decl * const *ProtoRefs, unsigned NumProtoRefs, 312 const SourceLocation *ProtoLocs, 313 SourceLocation EndProtoLoc, AttributeList *AttrList) { 314 assert(ClassName && "Missing class identifier"); 315 316 // Check for another declaration kind with the same name. 317 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 318 LookupOrdinaryName, ForRedeclaration); 319 320 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 321 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 322 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 323 } 324 325 ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 326 if (IDecl) { 327 // Class already seen. Is it a forward declaration? 328 if (!IDecl->isForwardDecl()) { 329 IDecl->setInvalidDecl(); 330 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName(); 331 Diag(IDecl->getLocation(), diag::note_previous_definition); 332 333 // Return the previous class interface. 334 // FIXME: don't leak the objects passed in! 335 return IDecl; 336 } else { 337 IDecl->setLocation(AtInterfaceLoc); 338 IDecl->setForwardDecl(false); 339 IDecl->setClassLoc(ClassLoc); 340 // If the forward decl was in a PCH, we need to write it again in a 341 // dependent AST file. 342 IDecl->setChangedSinceDeserialization(true); 343 344 // Since this ObjCInterfaceDecl was created by a forward declaration, 345 // we now add it to the DeclContext since it wasn't added before 346 // (see ActOnForwardClassDeclaration). 347 IDecl->setLexicalDeclContext(CurContext); 348 CurContext->addDecl(IDecl); 349 350 if (AttrList) 351 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 352 } 353 } else { 354 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, 355 ClassName, ClassLoc); 356 if (AttrList) 357 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 358 359 PushOnScopeChains(IDecl, TUScope); 360 } 361 362 if (SuperName) { 363 // Check if a different kind of symbol declared in this scope. 364 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 365 LookupOrdinaryName); 366 367 if (!PrevDecl) { 368 // Try to correct for a typo in the superclass name. 369 TypoCorrection Corrected = CorrectTypo( 370 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope, 371 NULL, NULL, false, CTC_NoKeywords); 372 if ((PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) { 373 Diag(SuperLoc, diag::err_undef_superclass_suggest) 374 << SuperName << ClassName << PrevDecl->getDeclName(); 375 Diag(PrevDecl->getLocation(), diag::note_previous_decl) 376 << PrevDecl->getDeclName(); 377 } 378 } 379 380 if (PrevDecl == IDecl) { 381 Diag(SuperLoc, diag::err_recursive_superclass) 382 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 383 IDecl->setLocEnd(ClassLoc); 384 } else { 385 ObjCInterfaceDecl *SuperClassDecl = 386 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 387 388 // Diagnose classes that inherit from deprecated classes. 389 if (SuperClassDecl) 390 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 391 392 if (PrevDecl && SuperClassDecl == 0) { 393 // The previous declaration was not a class decl. Check if we have a 394 // typedef. If we do, get the underlying class type. 395 if (const TypedefNameDecl *TDecl = 396 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 397 QualType T = TDecl->getUnderlyingType(); 398 if (T->isObjCObjectType()) { 399 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) 400 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 401 } 402 } 403 404 // This handles the following case: 405 // 406 // typedef int SuperClass; 407 // @interface MyClass : SuperClass {} @end 408 // 409 if (!SuperClassDecl) { 410 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 411 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 412 } 413 } 414 415 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 416 if (!SuperClassDecl) 417 Diag(SuperLoc, diag::err_undef_superclass) 418 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 419 else if (SuperClassDecl->isForwardDecl()) { 420 Diag(SuperLoc, diag::err_forward_superclass) 421 << SuperClassDecl->getDeclName() << ClassName 422 << SourceRange(AtInterfaceLoc, ClassLoc); 423 Diag(SuperClassDecl->getLocation(), diag::note_forward_class); 424 SuperClassDecl = 0; 425 } 426 } 427 IDecl->setSuperClass(SuperClassDecl); 428 IDecl->setSuperClassLoc(SuperLoc); 429 IDecl->setLocEnd(SuperLoc); 430 } 431 } else { // we have a root class. 432 IDecl->setLocEnd(ClassLoc); 433 } 434 435 // Check then save referenced protocols. 436 if (NumProtoRefs) { 437 IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 438 ProtoLocs, Context); 439 IDecl->setLocEnd(EndProtoLoc); 440 } 441 442 CheckObjCDeclScope(IDecl); 443 return IDecl; 444} 445 446/// ActOnCompatiblityAlias - this action is called after complete parsing of 447/// @compatibility_alias declaration. It sets up the alias relationships. 448Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc, 449 IdentifierInfo *AliasName, 450 SourceLocation AliasLocation, 451 IdentifierInfo *ClassName, 452 SourceLocation ClassLocation) { 453 // Look for previous declaration of alias name 454 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 455 LookupOrdinaryName, ForRedeclaration); 456 if (ADecl) { 457 if (isa<ObjCCompatibleAliasDecl>(ADecl)) 458 Diag(AliasLocation, diag::warn_previous_alias_decl); 459 else 460 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 461 Diag(ADecl->getLocation(), diag::note_previous_declaration); 462 return 0; 463 } 464 // Check for class declaration 465 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 466 LookupOrdinaryName, ForRedeclaration); 467 if (const TypedefNameDecl *TDecl = 468 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 469 QualType T = TDecl->getUnderlyingType(); 470 if (T->isObjCObjectType()) { 471 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 472 ClassName = IDecl->getIdentifier(); 473 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 474 LookupOrdinaryName, ForRedeclaration); 475 } 476 } 477 } 478 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 479 if (CDecl == 0) { 480 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 481 if (CDeclU) 482 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 483 return 0; 484 } 485 486 // Everything checked out, instantiate a new alias declaration AST. 487 ObjCCompatibleAliasDecl *AliasDecl = 488 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 489 490 if (!CheckObjCDeclScope(AliasDecl)) 491 PushOnScopeChains(AliasDecl, TUScope); 492 493 return AliasDecl; 494} 495 496bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 497 IdentifierInfo *PName, 498 SourceLocation &Ploc, SourceLocation PrevLoc, 499 const ObjCList<ObjCProtocolDecl> &PList) { 500 501 bool res = false; 502 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 503 E = PList.end(); I != E; ++I) { 504 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 505 Ploc)) { 506 if (PDecl->getIdentifier() == PName) { 507 Diag(Ploc, diag::err_protocol_has_circular_dependency); 508 Diag(PrevLoc, diag::note_previous_definition); 509 res = true; 510 } 511 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 512 PDecl->getLocation(), PDecl->getReferencedProtocols())) 513 res = true; 514 } 515 } 516 return res; 517} 518 519Decl * 520Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 521 IdentifierInfo *ProtocolName, 522 SourceLocation ProtocolLoc, 523 Decl * const *ProtoRefs, 524 unsigned NumProtoRefs, 525 const SourceLocation *ProtoLocs, 526 SourceLocation EndProtoLoc, 527 AttributeList *AttrList) { 528 bool err = false; 529 // FIXME: Deal with AttrList. 530 assert(ProtocolName && "Missing protocol identifier"); 531 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc); 532 if (PDecl) { 533 // Protocol already seen. Better be a forward protocol declaration 534 if (!PDecl->isForwardDecl()) { 535 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 536 Diag(PDecl->getLocation(), diag::note_previous_definition); 537 // Just return the protocol we already had. 538 // FIXME: don't leak the objects passed in! 539 return PDecl; 540 } 541 ObjCList<ObjCProtocolDecl> PList; 542 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 543 err = CheckForwardProtocolDeclarationForCircularDependency( 544 ProtocolName, ProtocolLoc, PDecl->getLocation(), PList); 545 546 // Make sure the cached decl gets a valid start location. 547 PDecl->setLocation(AtProtoInterfaceLoc); 548 PDecl->setForwardDecl(false); 549 // Since this ObjCProtocolDecl was created by a forward declaration, 550 // we now add it to the DeclContext since it wasn't added before 551 PDecl->setLexicalDeclContext(CurContext); 552 CurContext->addDecl(PDecl); 553 // Repeat in dependent AST files. 554 PDecl->setChangedSinceDeserialization(true); 555 } else { 556 PDecl = ObjCProtocolDecl::Create(Context, CurContext, 557 AtProtoInterfaceLoc,ProtocolName); 558 PushOnScopeChains(PDecl, TUScope); 559 PDecl->setForwardDecl(false); 560 } 561 if (AttrList) 562 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 563 if (!err && NumProtoRefs ) { 564 /// Check then save referenced protocols. 565 PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 566 ProtoLocs, Context); 567 PDecl->setLocEnd(EndProtoLoc); 568 } 569 570 CheckObjCDeclScope(PDecl); 571 return PDecl; 572} 573 574/// FindProtocolDeclaration - This routine looks up protocols and 575/// issues an error if they are not declared. It returns list of 576/// protocol declarations in its 'Protocols' argument. 577void 578Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 579 const IdentifierLocPair *ProtocolId, 580 unsigned NumProtocols, 581 SmallVectorImpl<Decl *> &Protocols) { 582 for (unsigned i = 0; i != NumProtocols; ++i) { 583 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 584 ProtocolId[i].second); 585 if (!PDecl) { 586 TypoCorrection Corrected = CorrectTypo( 587 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), 588 LookupObjCProtocolName, TUScope, NULL, NULL, false, CTC_NoKeywords); 589 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) { 590 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) 591 << ProtocolId[i].first << Corrected.getCorrection(); 592 Diag(PDecl->getLocation(), diag::note_previous_decl) 593 << PDecl->getDeclName(); 594 } 595 } 596 597 if (!PDecl) { 598 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 599 << ProtocolId[i].first; 600 continue; 601 } 602 603 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 604 605 // If this is a forward declaration and we are supposed to warn in this 606 // case, do it. 607 if (WarnOnDeclarations && PDecl->isForwardDecl()) 608 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 609 << ProtocolId[i].first; 610 Protocols.push_back(PDecl); 611 } 612} 613 614/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 615/// a class method in its extension. 616/// 617void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 618 ObjCInterfaceDecl *ID) { 619 if (!ID) 620 return; // Possibly due to previous error 621 622 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 623 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), 624 e = ID->meth_end(); i != e; ++i) { 625 ObjCMethodDecl *MD = *i; 626 MethodMap[MD->getSelector()] = MD; 627 } 628 629 if (MethodMap.empty()) 630 return; 631 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), 632 e = CAT->meth_end(); i != e; ++i) { 633 ObjCMethodDecl *Method = *i; 634 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 635 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { 636 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 637 << Method->getDeclName(); 638 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 639 } 640 } 641} 642 643/// ActOnForwardProtocolDeclaration - Handle @protocol foo; 644Decl * 645Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 646 const IdentifierLocPair *IdentList, 647 unsigned NumElts, 648 AttributeList *attrList) { 649 SmallVector<ObjCProtocolDecl*, 32> Protocols; 650 SmallVector<SourceLocation, 8> ProtoLocs; 651 652 for (unsigned i = 0; i != NumElts; ++i) { 653 IdentifierInfo *Ident = IdentList[i].first; 654 ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second); 655 bool isNew = false; 656 if (PDecl == 0) { // Not already seen? 657 PDecl = ObjCProtocolDecl::Create(Context, CurContext, 658 IdentList[i].second, Ident); 659 PushOnScopeChains(PDecl, TUScope, false); 660 isNew = true; 661 } 662 if (attrList) { 663 ProcessDeclAttributeList(TUScope, PDecl, attrList); 664 if (!isNew) 665 PDecl->setChangedSinceDeserialization(true); 666 } 667 Protocols.push_back(PDecl); 668 ProtoLocs.push_back(IdentList[i].second); 669 } 670 671 ObjCForwardProtocolDecl *PDecl = 672 ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc, 673 Protocols.data(), Protocols.size(), 674 ProtoLocs.data()); 675 CurContext->addDecl(PDecl); 676 CheckObjCDeclScope(PDecl); 677 return PDecl; 678} 679 680Decl *Sema:: 681ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 682 IdentifierInfo *ClassName, SourceLocation ClassLoc, 683 IdentifierInfo *CategoryName, 684 SourceLocation CategoryLoc, 685 Decl * const *ProtoRefs, 686 unsigned NumProtoRefs, 687 const SourceLocation *ProtoLocs, 688 SourceLocation EndProtoLoc) { 689 ObjCCategoryDecl *CDecl; 690 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 691 692 /// Check that class of this category is already completely declared. 693 if (!IDecl || IDecl->isForwardDecl()) { 694 // Create an invalid ObjCCategoryDecl to serve as context for 695 // the enclosing method declarations. We mark the decl invalid 696 // to make it clear that this isn't a valid AST. 697 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 698 ClassLoc, CategoryLoc, CategoryName); 699 CDecl->setInvalidDecl(); 700 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 701 return CDecl; 702 } 703 704 if (!CategoryName && IDecl->getImplementation()) { 705 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 706 Diag(IDecl->getImplementation()->getLocation(), 707 diag::note_implementation_declared); 708 } 709 710 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 711 ClassLoc, CategoryLoc, CategoryName); 712 // FIXME: PushOnScopeChains? 713 CurContext->addDecl(CDecl); 714 715 CDecl->setClassInterface(IDecl); 716 // Insert class extension to the list of class's categories. 717 if (!CategoryName) 718 CDecl->insertNextClassCategory(); 719 720 // If the interface is deprecated, warn about it. 721 (void)DiagnoseUseOfDecl(IDecl, ClassLoc); 722 723 if (CategoryName) { 724 /// Check for duplicate interface declaration for this category 725 ObjCCategoryDecl *CDeclChain; 726 for (CDeclChain = IDecl->getCategoryList(); CDeclChain; 727 CDeclChain = CDeclChain->getNextClassCategory()) { 728 if (CDeclChain->getIdentifier() == CategoryName) { 729 // Class extensions can be declared multiple times. 730 Diag(CategoryLoc, diag::warn_dup_category_def) 731 << ClassName << CategoryName; 732 Diag(CDeclChain->getLocation(), diag::note_previous_definition); 733 break; 734 } 735 } 736 if (!CDeclChain) 737 CDecl->insertNextClassCategory(); 738 } 739 740 if (NumProtoRefs) { 741 CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 742 ProtoLocs, Context); 743 // Protocols in the class extension belong to the class. 744 if (CDecl->IsClassExtension()) 745 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, 746 NumProtoRefs, Context); 747 } 748 749 CheckObjCDeclScope(CDecl); 750 return CDecl; 751} 752 753/// ActOnStartCategoryImplementation - Perform semantic checks on the 754/// category implementation declaration and build an ObjCCategoryImplDecl 755/// object. 756Decl *Sema::ActOnStartCategoryImplementation( 757 SourceLocation AtCatImplLoc, 758 IdentifierInfo *ClassName, SourceLocation ClassLoc, 759 IdentifierInfo *CatName, SourceLocation CatLoc) { 760 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 761 ObjCCategoryDecl *CatIDecl = 0; 762 if (IDecl) { 763 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 764 if (!CatIDecl) { 765 // Category @implementation with no corresponding @interface. 766 // Create and install one. 767 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(), 768 SourceLocation(), SourceLocation(), 769 CatName); 770 CatIDecl->setClassInterface(IDecl); 771 CatIDecl->insertNextClassCategory(); 772 } 773 } 774 775 ObjCCategoryImplDecl *CDecl = 776 ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName, 777 IDecl); 778 /// Check that class of this category is already completely declared. 779 if (!IDecl || IDecl->isForwardDecl()) { 780 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 781 CDecl->setInvalidDecl(); 782 } 783 784 // FIXME: PushOnScopeChains? 785 CurContext->addDecl(CDecl); 786 787 /// Check that CatName, category name, is not used in another implementation. 788 if (CatIDecl) { 789 if (CatIDecl->getImplementation()) { 790 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 791 << CatName; 792 Diag(CatIDecl->getImplementation()->getLocation(), 793 diag::note_previous_definition); 794 } else { 795 CatIDecl->setImplementation(CDecl); 796 // Warn on implementating category of deprecated class under 797 // -Wdeprecated-implementations flag. 798 DiagnoseObjCImplementedDeprecations(*this, 799 dyn_cast<NamedDecl>(IDecl), 800 CDecl->getLocation(), 2); 801 } 802 } 803 804 CheckObjCDeclScope(CDecl); 805 return CDecl; 806} 807 808Decl *Sema::ActOnStartClassImplementation( 809 SourceLocation AtClassImplLoc, 810 IdentifierInfo *ClassName, SourceLocation ClassLoc, 811 IdentifierInfo *SuperClassname, 812 SourceLocation SuperClassLoc) { 813 ObjCInterfaceDecl* IDecl = 0; 814 // Check for another declaration kind with the same name. 815 NamedDecl *PrevDecl 816 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 817 ForRedeclaration); 818 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 819 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 820 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 821 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 822 // If this is a forward declaration of an interface, warn. 823 if (IDecl->isForwardDecl()) { 824 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 825 IDecl = 0; 826 } 827 } else { 828 // We did not find anything with the name ClassName; try to correct for 829 // typos in the class name. 830 TypoCorrection Corrected = CorrectTypo( 831 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope, 832 NULL, NULL, false, CTC_NoKeywords); 833 if ((IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) { 834 // Suggest the (potentially) correct interface name. However, put the 835 // fix-it hint itself in a separate note, since changing the name in 836 // the warning would make the fix-it change semantics.However, don't 837 // provide a code-modification hint or use the typo name for recovery, 838 // because this is just a warning. The program may actually be correct. 839 DeclarationName CorrectedName = Corrected.getCorrection(); 840 Diag(ClassLoc, diag::warn_undef_interface_suggest) 841 << ClassName << CorrectedName; 842 Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName 843 << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString()); 844 IDecl = 0; 845 } else { 846 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 847 } 848 } 849 850 // Check that super class name is valid class name 851 ObjCInterfaceDecl* SDecl = 0; 852 if (SuperClassname) { 853 // Check if a different kind of symbol declared in this scope. 854 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 855 LookupOrdinaryName); 856 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 857 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 858 << SuperClassname; 859 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 860 } else { 861 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 862 if (!SDecl) 863 Diag(SuperClassLoc, diag::err_undef_superclass) 864 << SuperClassname << ClassName; 865 else if (IDecl && IDecl->getSuperClass() != SDecl) { 866 // This implementation and its interface do not have the same 867 // super class. 868 Diag(SuperClassLoc, diag::err_conflicting_super_class) 869 << SDecl->getDeclName(); 870 Diag(SDecl->getLocation(), diag::note_previous_definition); 871 } 872 } 873 } 874 875 if (!IDecl) { 876 // Legacy case of @implementation with no corresponding @interface. 877 // Build, chain & install the interface decl into the identifier. 878 879 // FIXME: Do we support attributes on the @implementation? If so we should 880 // copy them over. 881 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 882 ClassName, ClassLoc, false, true); 883 IDecl->setSuperClass(SDecl); 884 IDecl->setLocEnd(ClassLoc); 885 886 PushOnScopeChains(IDecl, TUScope); 887 } else { 888 // Mark the interface as being completed, even if it was just as 889 // @class ....; 890 // declaration; the user cannot reopen it. 891 IDecl->setForwardDecl(false); 892 } 893 894 ObjCImplementationDecl* IMPDecl = 895 ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc, 896 IDecl, SDecl); 897 898 if (CheckObjCDeclScope(IMPDecl)) 899 return IMPDecl; 900 901 // Check that there is no duplicate implementation of this class. 902 if (IDecl->getImplementation()) { 903 // FIXME: Don't leak everything! 904 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 905 Diag(IDecl->getImplementation()->getLocation(), 906 diag::note_previous_definition); 907 } else { // add it to the list. 908 IDecl->setImplementation(IMPDecl); 909 PushOnScopeChains(IMPDecl, TUScope); 910 // Warn on implementating deprecated class under 911 // -Wdeprecated-implementations flag. 912 DiagnoseObjCImplementedDeprecations(*this, 913 dyn_cast<NamedDecl>(IDecl), 914 IMPDecl->getLocation(), 1); 915 } 916 return IMPDecl; 917} 918 919void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 920 ObjCIvarDecl **ivars, unsigned numIvars, 921 SourceLocation RBrace) { 922 assert(ImpDecl && "missing implementation decl"); 923 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 924 if (!IDecl) 925 return; 926 /// Check case of non-existing @interface decl. 927 /// (legacy objective-c @implementation decl without an @interface decl). 928 /// Add implementations's ivar to the synthesize class's ivar list. 929 if (IDecl->isImplicitInterfaceDecl()) { 930 IDecl->setLocEnd(RBrace); 931 // Add ivar's to class's DeclContext. 932 for (unsigned i = 0, e = numIvars; i != e; ++i) { 933 ivars[i]->setLexicalDeclContext(ImpDecl); 934 IDecl->makeDeclVisibleInContext(ivars[i], false); 935 ImpDecl->addDecl(ivars[i]); 936 } 937 938 return; 939 } 940 // If implementation has empty ivar list, just return. 941 if (numIvars == 0) 942 return; 943 944 assert(ivars && "missing @implementation ivars"); 945 if (LangOpts.ObjCNonFragileABI2) { 946 if (ImpDecl->getSuperClass()) 947 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 948 for (unsigned i = 0; i < numIvars; i++) { 949 ObjCIvarDecl* ImplIvar = ivars[i]; 950 if (const ObjCIvarDecl *ClsIvar = 951 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 952 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 953 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 954 continue; 955 } 956 // Instance ivar to Implementation's DeclContext. 957 ImplIvar->setLexicalDeclContext(ImpDecl); 958 IDecl->makeDeclVisibleInContext(ImplIvar, false); 959 ImpDecl->addDecl(ImplIvar); 960 } 961 return; 962 } 963 // Check interface's Ivar list against those in the implementation. 964 // names and types must match. 965 // 966 unsigned j = 0; 967 ObjCInterfaceDecl::ivar_iterator 968 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 969 for (; numIvars > 0 && IVI != IVE; ++IVI) { 970 ObjCIvarDecl* ImplIvar = ivars[j++]; 971 ObjCIvarDecl* ClsIvar = *IVI; 972 assert (ImplIvar && "missing implementation ivar"); 973 assert (ClsIvar && "missing class ivar"); 974 975 // First, make sure the types match. 976 if (Context.getCanonicalType(ImplIvar->getType()) != 977 Context.getCanonicalType(ClsIvar->getType())) { 978 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 979 << ImplIvar->getIdentifier() 980 << ImplIvar->getType() << ClsIvar->getType(); 981 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 982 } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) { 983 Expr *ImplBitWidth = ImplIvar->getBitWidth(); 984 Expr *ClsBitWidth = ClsIvar->getBitWidth(); 985 if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() != 986 ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) { 987 Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth) 988 << ImplIvar->getIdentifier(); 989 Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition); 990 } 991 } 992 // Make sure the names are identical. 993 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 994 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 995 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 996 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 997 } 998 --numIvars; 999 } 1000 1001 if (numIvars > 0) 1002 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); 1003 else if (IVI != IVE) 1004 Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count); 1005} 1006 1007void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, 1008 bool &IncompleteImpl, unsigned DiagID) { 1009 // No point warning no definition of method which is 'unavailable'. 1010 if (method->hasAttr<UnavailableAttr>()) 1011 return; 1012 if (!IncompleteImpl) { 1013 Diag(ImpLoc, diag::warn_incomplete_impl); 1014 IncompleteImpl = true; 1015 } 1016 if (DiagID == diag::warn_unimplemented_protocol_method) 1017 Diag(ImpLoc, DiagID) << method->getDeclName(); 1018 else 1019 Diag(method->getLocation(), DiagID) << method->getDeclName(); 1020} 1021 1022/// Determines if type B can be substituted for type A. Returns true if we can 1023/// guarantee that anything that the user will do to an object of type A can 1024/// also be done to an object of type B. This is trivially true if the two 1025/// types are the same, or if B is a subclass of A. It becomes more complex 1026/// in cases where protocols are involved. 1027/// 1028/// Object types in Objective-C describe the minimum requirements for an 1029/// object, rather than providing a complete description of a type. For 1030/// example, if A is a subclass of B, then B* may refer to an instance of A. 1031/// The principle of substitutability means that we may use an instance of A 1032/// anywhere that we may use an instance of B - it will implement all of the 1033/// ivars of B and all of the methods of B. 1034/// 1035/// This substitutability is important when type checking methods, because 1036/// the implementation may have stricter type definitions than the interface. 1037/// The interface specifies minimum requirements, but the implementation may 1038/// have more accurate ones. For example, a method may privately accept 1039/// instances of B, but only publish that it accepts instances of A. Any 1040/// object passed to it will be type checked against B, and so will implicitly 1041/// by a valid A*. Similarly, a method may return a subclass of the class that 1042/// it is declared as returning. 1043/// 1044/// This is most important when considering subclassing. A method in a 1045/// subclass must accept any object as an argument that its superclass's 1046/// implementation accepts. It may, however, accept a more general type 1047/// without breaking substitutability (i.e. you can still use the subclass 1048/// anywhere that you can use the superclass, but not vice versa). The 1049/// converse requirement applies to return types: the return type for a 1050/// subclass method must be a valid object of the kind that the superclass 1051/// advertises, but it may be specified more accurately. This avoids the need 1052/// for explicit down-casting by callers. 1053/// 1054/// Note: This is a stricter requirement than for assignment. 1055static bool isObjCTypeSubstitutable(ASTContext &Context, 1056 const ObjCObjectPointerType *A, 1057 const ObjCObjectPointerType *B, 1058 bool rejectId) { 1059 // Reject a protocol-unqualified id. 1060 if (rejectId && B->isObjCIdType()) return false; 1061 1062 // If B is a qualified id, then A must also be a qualified id and it must 1063 // implement all of the protocols in B. It may not be a qualified class. 1064 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 1065 // stricter definition so it is not substitutable for id<A>. 1066 if (B->isObjCQualifiedIdType()) { 1067 return A->isObjCQualifiedIdType() && 1068 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), 1069 QualType(B,0), 1070 false); 1071 } 1072 1073 /* 1074 // id is a special type that bypasses type checking completely. We want a 1075 // warning when it is used in one place but not another. 1076 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 1077 1078 1079 // If B is a qualified id, then A must also be a qualified id (which it isn't 1080 // if we've got this far) 1081 if (B->isObjCQualifiedIdType()) return false; 1082 */ 1083 1084 // Now we know that A and B are (potentially-qualified) class types. The 1085 // normal rules for assignment apply. 1086 return Context.canAssignObjCInterfaces(A, B); 1087} 1088 1089static SourceRange getTypeRange(TypeSourceInfo *TSI) { 1090 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 1091} 1092 1093static bool CheckMethodOverrideReturn(Sema &S, 1094 ObjCMethodDecl *MethodImpl, 1095 ObjCMethodDecl *MethodDecl, 1096 bool IsProtocolMethodDecl, 1097 bool IsOverridingMode, 1098 bool Warn) { 1099 if (IsProtocolMethodDecl && 1100 (MethodDecl->getObjCDeclQualifier() != 1101 MethodImpl->getObjCDeclQualifier())) { 1102 if (Warn) { 1103 S.Diag(MethodImpl->getLocation(), 1104 (IsOverridingMode ? 1105 diag::warn_conflicting_overriding_ret_type_modifiers 1106 : diag::warn_conflicting_ret_type_modifiers)) 1107 << MethodImpl->getDeclName() 1108 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1109 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 1110 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1111 } 1112 else 1113 return false; 1114 } 1115 1116 if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(), 1117 MethodDecl->getResultType())) 1118 return true; 1119 if (!Warn) 1120 return false; 1121 1122 unsigned DiagID = 1123 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 1124 : diag::warn_conflicting_ret_types; 1125 1126 // Mismatches between ObjC pointers go into a different warning 1127 // category, and sometimes they're even completely whitelisted. 1128 if (const ObjCObjectPointerType *ImplPtrTy = 1129 MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) { 1130 if (const ObjCObjectPointerType *IfacePtrTy = 1131 MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) { 1132 // Allow non-matching return types as long as they don't violate 1133 // the principle of substitutability. Specifically, we permit 1134 // return types that are subclasses of the declared return type, 1135 // or that are more-qualified versions of the declared type. 1136 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 1137 return false; 1138 1139 DiagID = 1140 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 1141 : diag::warn_non_covariant_ret_types; 1142 } 1143 } 1144 1145 S.Diag(MethodImpl->getLocation(), DiagID) 1146 << MethodImpl->getDeclName() 1147 << MethodDecl->getResultType() 1148 << MethodImpl->getResultType() 1149 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1150 S.Diag(MethodDecl->getLocation(), 1151 IsOverridingMode ? diag::note_previous_declaration 1152 : diag::note_previous_definition) 1153 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1154 return false; 1155} 1156 1157static bool CheckMethodOverrideParam(Sema &S, 1158 ObjCMethodDecl *MethodImpl, 1159 ObjCMethodDecl *MethodDecl, 1160 ParmVarDecl *ImplVar, 1161 ParmVarDecl *IfaceVar, 1162 bool IsProtocolMethodDecl, 1163 bool IsOverridingMode, 1164 bool Warn) { 1165 if (IsProtocolMethodDecl && 1166 (ImplVar->getObjCDeclQualifier() != 1167 IfaceVar->getObjCDeclQualifier())) { 1168 if (Warn) { 1169 if (IsOverridingMode) 1170 S.Diag(ImplVar->getLocation(), 1171 diag::warn_conflicting_overriding_param_modifiers) 1172 << getTypeRange(ImplVar->getTypeSourceInfo()) 1173 << MethodImpl->getDeclName(); 1174 else S.Diag(ImplVar->getLocation(), 1175 diag::warn_conflicting_param_modifiers) 1176 << getTypeRange(ImplVar->getTypeSourceInfo()) 1177 << MethodImpl->getDeclName(); 1178 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 1179 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1180 } 1181 else 1182 return false; 1183 } 1184 1185 QualType ImplTy = ImplVar->getType(); 1186 QualType IfaceTy = IfaceVar->getType(); 1187 1188 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 1189 return true; 1190 1191 if (!Warn) 1192 return false; 1193 unsigned DiagID = 1194 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 1195 : diag::warn_conflicting_param_types; 1196 1197 // Mismatches between ObjC pointers go into a different warning 1198 // category, and sometimes they're even completely whitelisted. 1199 if (const ObjCObjectPointerType *ImplPtrTy = 1200 ImplTy->getAs<ObjCObjectPointerType>()) { 1201 if (const ObjCObjectPointerType *IfacePtrTy = 1202 IfaceTy->getAs<ObjCObjectPointerType>()) { 1203 // Allow non-matching argument types as long as they don't 1204 // violate the principle of substitutability. Specifically, the 1205 // implementation must accept any objects that the superclass 1206 // accepts, however it may also accept others. 1207 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 1208 return false; 1209 1210 DiagID = 1211 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 1212 : diag::warn_non_contravariant_param_types; 1213 } 1214 } 1215 1216 S.Diag(ImplVar->getLocation(), DiagID) 1217 << getTypeRange(ImplVar->getTypeSourceInfo()) 1218 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 1219 S.Diag(IfaceVar->getLocation(), 1220 (IsOverridingMode ? diag::note_previous_declaration 1221 : diag::note_previous_definition)) 1222 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1223 return false; 1224} 1225 1226/// In ARC, check whether the conventional meanings of the two methods 1227/// match. If they don't, it's a hard error. 1228static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 1229 ObjCMethodDecl *decl) { 1230 ObjCMethodFamily implFamily = impl->getMethodFamily(); 1231 ObjCMethodFamily declFamily = decl->getMethodFamily(); 1232 if (implFamily == declFamily) return false; 1233 1234 // Since conventions are sorted by selector, the only possibility is 1235 // that the types differ enough to cause one selector or the other 1236 // to fall out of the family. 1237 assert(implFamily == OMF_None || declFamily == OMF_None); 1238 1239 // No further diagnostics required on invalid declarations. 1240 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 1241 1242 const ObjCMethodDecl *unmatched = impl; 1243 ObjCMethodFamily family = declFamily; 1244 unsigned errorID = diag::err_arc_lost_method_convention; 1245 unsigned noteID = diag::note_arc_lost_method_convention; 1246 if (declFamily == OMF_None) { 1247 unmatched = decl; 1248 family = implFamily; 1249 errorID = diag::err_arc_gained_method_convention; 1250 noteID = diag::note_arc_gained_method_convention; 1251 } 1252 1253 // Indexes into a %select clause in the diagnostic. 1254 enum FamilySelector { 1255 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 1256 }; 1257 FamilySelector familySelector = FamilySelector(); 1258 1259 switch (family) { 1260 case OMF_None: llvm_unreachable("logic error, no method convention"); 1261 case OMF_retain: 1262 case OMF_release: 1263 case OMF_autorelease: 1264 case OMF_dealloc: 1265 case OMF_finalize: 1266 case OMF_retainCount: 1267 case OMF_self: 1268 case OMF_performSelector: 1269 // Mismatches for these methods don't change ownership 1270 // conventions, so we don't care. 1271 return false; 1272 1273 case OMF_init: familySelector = F_init; break; 1274 case OMF_alloc: familySelector = F_alloc; break; 1275 case OMF_copy: familySelector = F_copy; break; 1276 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 1277 case OMF_new: familySelector = F_new; break; 1278 } 1279 1280 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 1281 ReasonSelector reasonSelector; 1282 1283 // The only reason these methods don't fall within their families is 1284 // due to unusual result types. 1285 if (unmatched->getResultType()->isObjCObjectPointerType()) { 1286 reasonSelector = R_UnrelatedReturn; 1287 } else { 1288 reasonSelector = R_NonObjectReturn; 1289 } 1290 1291 S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector; 1292 S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector; 1293 1294 return true; 1295} 1296 1297void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1298 ObjCMethodDecl *MethodDecl, 1299 bool IsProtocolMethodDecl, 1300 bool IsOverridingMode) { 1301 if (getLangOptions().ObjCAutoRefCount && 1302 !IsOverridingMode && 1303 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 1304 return; 1305 1306 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1307 IsProtocolMethodDecl, IsOverridingMode, 1308 true); 1309 1310 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1311 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); 1312 IM != EM; ++IM, ++IF) { 1313 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 1314 IsProtocolMethodDecl, IsOverridingMode, true); 1315 } 1316 1317 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 1318 if (IsOverridingMode) 1319 Diag(ImpMethodDecl->getLocation(), 1320 diag::warn_conflicting_overriding_variadic); 1321 else 1322 Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic); 1323 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 1324 } 1325} 1326 1327/// WarnExactTypedMethods - This routine issues a warning if method 1328/// implementation declaration matches exactly that of its declaration. 1329void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1330 ObjCMethodDecl *MethodDecl, 1331 bool IsProtocolMethodDecl) { 1332 // don't issue warning when protocol method is optional because primary 1333 // class is not required to implement it and it is safe for protocol 1334 // to implement it. 1335 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 1336 return; 1337 // don't issue warning when primary class's method is 1338 // depecated/unavailable. 1339 if (MethodDecl->hasAttr<UnavailableAttr>() || 1340 MethodDecl->hasAttr<DeprecatedAttr>()) 1341 return; 1342 1343 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1344 IsProtocolMethodDecl, false, false); 1345 if (match) 1346 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1347 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); 1348 IM != EM; ++IM, ++IF) { 1349 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 1350 *IM, *IF, 1351 IsProtocolMethodDecl, false, false); 1352 if (!match) 1353 break; 1354 } 1355 if (match) 1356 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 1357 if (match) 1358 match = !(MethodDecl->isClassMethod() && 1359 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 1360 1361 if (match) { 1362 Diag(ImpMethodDecl->getLocation(), 1363 diag::warn_category_method_impl_match); 1364 Diag(MethodDecl->getLocation(), diag::note_method_declared_at); 1365 } 1366} 1367 1368/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 1369/// improve the efficiency of selector lookups and type checking by associating 1370/// with each protocol / interface / category the flattened instance tables. If 1371/// we used an immutable set to keep the table then it wouldn't add significant 1372/// memory cost and it would be handy for lookups. 1373 1374/// CheckProtocolMethodDefs - This routine checks unimplemented methods 1375/// Declared in protocol, and those referenced by it. 1376void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, 1377 ObjCProtocolDecl *PDecl, 1378 bool& IncompleteImpl, 1379 const llvm::DenseSet<Selector> &InsMap, 1380 const llvm::DenseSet<Selector> &ClsMap, 1381 ObjCContainerDecl *CDecl) { 1382 ObjCInterfaceDecl *IDecl; 1383 if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) 1384 IDecl = C->getClassInterface(); 1385 else 1386 IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl); 1387 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 1388 1389 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 1390 ObjCInterfaceDecl *NSIDecl = 0; 1391 if (getLangOptions().NeXTRuntime) { 1392 // check to see if class implements forwardInvocation method and objects 1393 // of this class are derived from 'NSProxy' so that to forward requests 1394 // from one object to another. 1395 // Under such conditions, which means that every method possible is 1396 // implemented in the class, we should not issue "Method definition not 1397 // found" warnings. 1398 // FIXME: Use a general GetUnarySelector method for this. 1399 IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); 1400 Selector fISelector = Context.Selectors.getSelector(1, &II); 1401 if (InsMap.count(fISelector)) 1402 // Is IDecl derived from 'NSProxy'? If so, no instance methods 1403 // need be implemented in the implementation. 1404 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); 1405 } 1406 1407 // If a method lookup fails locally we still need to look and see if 1408 // the method was implemented by a base class or an inherited 1409 // protocol. This lookup is slow, but occurs rarely in correct code 1410 // and otherwise would terminate in a warning. 1411 1412 // check unimplemented instance methods. 1413 if (!NSIDecl) 1414 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), 1415 E = PDecl->instmeth_end(); I != E; ++I) { 1416 ObjCMethodDecl *method = *I; 1417 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1418 !method->isSynthesized() && !InsMap.count(method->getSelector()) && 1419 (!Super || 1420 !Super->lookupInstanceMethod(method->getSelector()))) { 1421 // Ugly, but necessary. Method declared in protcol might have 1422 // have been synthesized due to a property declared in the class which 1423 // uses the protocol. 1424 ObjCMethodDecl *MethodInClass = 1425 IDecl->lookupInstanceMethod(method->getSelector()); 1426 if (!MethodInClass || !MethodInClass->isSynthesized()) { 1427 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1428 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) 1429 != Diagnostic::Ignored) { 1430 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1431 Diag(method->getLocation(), diag::note_method_declared_at); 1432 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) 1433 << PDecl->getDeclName(); 1434 } 1435 } 1436 } 1437 } 1438 // check unimplemented class methods 1439 for (ObjCProtocolDecl::classmeth_iterator 1440 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); 1441 I != E; ++I) { 1442 ObjCMethodDecl *method = *I; 1443 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1444 !ClsMap.count(method->getSelector()) && 1445 (!Super || !Super->lookupClassMethod(method->getSelector()))) { 1446 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1447 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != Diagnostic::Ignored) { 1448 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1449 Diag(method->getLocation(), diag::note_method_declared_at); 1450 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << 1451 PDecl->getDeclName(); 1452 } 1453 } 1454 } 1455 // Check on this protocols's referenced protocols, recursively. 1456 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), 1457 E = PDecl->protocol_end(); PI != E; ++PI) 1458 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl); 1459} 1460 1461/// MatchAllMethodDeclarations - Check methods declared in interface 1462/// or protocol against those declared in their implementations. 1463/// 1464void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap, 1465 const llvm::DenseSet<Selector> &ClsMap, 1466 llvm::DenseSet<Selector> &InsMapSeen, 1467 llvm::DenseSet<Selector> &ClsMapSeen, 1468 ObjCImplDecl* IMPDecl, 1469 ObjCContainerDecl* CDecl, 1470 bool &IncompleteImpl, 1471 bool ImmediateClass, 1472 bool WarnExactMatch) { 1473 // Check and see if instance methods in class interface have been 1474 // implemented in the implementation class. If so, their types match. 1475 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), 1476 E = CDecl->instmeth_end(); I != E; ++I) { 1477 if (InsMapSeen.count((*I)->getSelector())) 1478 continue; 1479 InsMapSeen.insert((*I)->getSelector()); 1480 if (!(*I)->isSynthesized() && 1481 !InsMap.count((*I)->getSelector())) { 1482 if (ImmediateClass) 1483 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1484 diag::note_undef_method_impl); 1485 continue; 1486 } else { 1487 ObjCMethodDecl *ImpMethodDecl = 1488 IMPDecl->getInstanceMethod((*I)->getSelector()); 1489 ObjCMethodDecl *MethodDecl = 1490 CDecl->getInstanceMethod((*I)->getSelector()); 1491 assert(MethodDecl && 1492 "MethodDecl is null in ImplMethodsVsClassMethods"); 1493 // ImpMethodDecl may be null as in a @dynamic property. 1494 if (ImpMethodDecl) { 1495 if (!WarnExactMatch) 1496 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1497 isa<ObjCProtocolDecl>(CDecl)); 1498 else if (!MethodDecl->isSynthesized()) 1499 WarnExactTypedMethods(ImpMethodDecl, MethodDecl, 1500 isa<ObjCProtocolDecl>(CDecl)); 1501 } 1502 } 1503 } 1504 1505 // Check and see if class methods in class interface have been 1506 // implemented in the implementation class. If so, their types match. 1507 for (ObjCInterfaceDecl::classmeth_iterator 1508 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { 1509 if (ClsMapSeen.count((*I)->getSelector())) 1510 continue; 1511 ClsMapSeen.insert((*I)->getSelector()); 1512 if (!ClsMap.count((*I)->getSelector())) { 1513 if (ImmediateClass) 1514 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1515 diag::note_undef_method_impl); 1516 } else { 1517 ObjCMethodDecl *ImpMethodDecl = 1518 IMPDecl->getClassMethod((*I)->getSelector()); 1519 ObjCMethodDecl *MethodDecl = 1520 CDecl->getClassMethod((*I)->getSelector()); 1521 if (!WarnExactMatch) 1522 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1523 isa<ObjCProtocolDecl>(CDecl)); 1524 else 1525 WarnExactTypedMethods(ImpMethodDecl, MethodDecl, 1526 isa<ObjCProtocolDecl>(CDecl)); 1527 } 1528 } 1529 1530 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1531 // Also methods in class extensions need be looked at next. 1532 for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); 1533 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) 1534 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1535 IMPDecl, 1536 const_cast<ObjCCategoryDecl *>(ClsExtDecl), 1537 IncompleteImpl, false, WarnExactMatch); 1538 1539 // Check for any implementation of a methods declared in protocol. 1540 for (ObjCInterfaceDecl::all_protocol_iterator 1541 PI = I->all_referenced_protocol_begin(), 1542 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1543 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1544 IMPDecl, 1545 (*PI), IncompleteImpl, false, WarnExactMatch); 1546 1547 // FIXME. For now, we are not checking for extact match of methods 1548 // in category implementation and its primary class's super class. 1549 if (!WarnExactMatch && I->getSuperClass()) 1550 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1551 IMPDecl, 1552 I->getSuperClass(), IncompleteImpl, false); 1553 } 1554} 1555 1556/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 1557/// category matches with those implemented in its primary class and 1558/// warns each time an exact match is found. 1559void Sema::CheckCategoryVsClassMethodMatches( 1560 ObjCCategoryImplDecl *CatIMPDecl) { 1561 llvm::DenseSet<Selector> InsMap, ClsMap; 1562 1563 for (ObjCImplementationDecl::instmeth_iterator 1564 I = CatIMPDecl->instmeth_begin(), 1565 E = CatIMPDecl->instmeth_end(); I!=E; ++I) 1566 InsMap.insert((*I)->getSelector()); 1567 1568 for (ObjCImplementationDecl::classmeth_iterator 1569 I = CatIMPDecl->classmeth_begin(), 1570 E = CatIMPDecl->classmeth_end(); I != E; ++I) 1571 ClsMap.insert((*I)->getSelector()); 1572 if (InsMap.empty() && ClsMap.empty()) 1573 return; 1574 1575 // Get category's primary class. 1576 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 1577 if (!CatDecl) 1578 return; 1579 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 1580 if (!IDecl) 1581 return; 1582 llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; 1583 bool IncompleteImpl = false; 1584 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1585 CatIMPDecl, IDecl, 1586 IncompleteImpl, false, true /*WarnExactMatch*/); 1587} 1588 1589void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 1590 ObjCContainerDecl* CDecl, 1591 bool IncompleteImpl) { 1592 llvm::DenseSet<Selector> InsMap; 1593 // Check and see if instance methods in class interface have been 1594 // implemented in the implementation class. 1595 for (ObjCImplementationDecl::instmeth_iterator 1596 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) 1597 InsMap.insert((*I)->getSelector()); 1598 1599 // Check and see if properties declared in the interface have either 1) 1600 // an implementation or 2) there is a @synthesize/@dynamic implementation 1601 // of the property in the @implementation. 1602 if (isa<ObjCInterfaceDecl>(CDecl) && 1603 !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2)) 1604 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1605 1606 llvm::DenseSet<Selector> ClsMap; 1607 for (ObjCImplementationDecl::classmeth_iterator 1608 I = IMPDecl->classmeth_begin(), 1609 E = IMPDecl->classmeth_end(); I != E; ++I) 1610 ClsMap.insert((*I)->getSelector()); 1611 1612 // Check for type conflict of methods declared in a class/protocol and 1613 // its implementation; if any. 1614 llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; 1615 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1616 IMPDecl, CDecl, 1617 IncompleteImpl, true); 1618 1619 // check all methods implemented in category against those declared 1620 // in its primary class. 1621 if (ObjCCategoryImplDecl *CatDecl = 1622 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 1623 CheckCategoryVsClassMethodMatches(CatDecl); 1624 1625 // Check the protocol list for unimplemented methods in the @implementation 1626 // class. 1627 // Check and see if class methods in class interface have been 1628 // implemented in the implementation class. 1629 1630 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1631 for (ObjCInterfaceDecl::all_protocol_iterator 1632 PI = I->all_referenced_protocol_begin(), 1633 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1634 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1635 InsMap, ClsMap, I); 1636 // Check class extensions (unnamed categories) 1637 for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension(); 1638 Categories; Categories = Categories->getNextClassExtension()) 1639 ImplMethodsVsClassMethods(S, IMPDecl, 1640 const_cast<ObjCCategoryDecl*>(Categories), 1641 IncompleteImpl); 1642 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 1643 // For extended class, unimplemented methods in its protocols will 1644 // be reported in the primary class. 1645 if (!C->IsClassExtension()) { 1646 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), 1647 E = C->protocol_end(); PI != E; ++PI) 1648 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1649 InsMap, ClsMap, CDecl); 1650 // Report unimplemented properties in the category as well. 1651 // When reporting on missing setter/getters, do not report when 1652 // setter/getter is implemented in category's primary class 1653 // implementation. 1654 if (ObjCInterfaceDecl *ID = C->getClassInterface()) 1655 if (ObjCImplDecl *IMP = ID->getImplementation()) { 1656 for (ObjCImplementationDecl::instmeth_iterator 1657 I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) 1658 InsMap.insert((*I)->getSelector()); 1659 } 1660 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1661 } 1662 } else 1663 assert(false && "invalid ObjCContainerDecl type."); 1664} 1665 1666/// ActOnForwardClassDeclaration - 1667Sema::DeclGroupPtrTy 1668Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 1669 IdentifierInfo **IdentList, 1670 SourceLocation *IdentLocs, 1671 unsigned NumElts) { 1672 SmallVector<Decl *, 8> DeclsInGroup; 1673 for (unsigned i = 0; i != NumElts; ++i) { 1674 // Check for another declaration kind with the same name. 1675 NamedDecl *PrevDecl 1676 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 1677 LookupOrdinaryName, ForRedeclaration); 1678 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1679 // Maybe we will complain about the shadowed template parameter. 1680 DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); 1681 // Just pretend that we didn't see the previous declaration. 1682 PrevDecl = 0; 1683 } 1684 1685 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1686 // GCC apparently allows the following idiom: 1687 // 1688 // typedef NSObject < XCElementTogglerP > XCElementToggler; 1689 // @class XCElementToggler; 1690 // 1691 // FIXME: Make an extension? 1692 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 1693 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 1694 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 1695 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1696 } else { 1697 // a forward class declaration matching a typedef name of a class refers 1698 // to the underlying class. 1699 if (const ObjCObjectType *OI = 1700 TDD->getUnderlyingType()->getAs<ObjCObjectType>()) 1701 PrevDecl = OI->getInterface(); 1702 } 1703 } 1704 ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 1705 if (!IDecl) { // Not already seen? Make a forward decl. 1706 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 1707 IdentList[i], IdentLocs[i], true); 1708 1709 // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to 1710 // the current DeclContext. This prevents clients that walk DeclContext 1711 // from seeing the imaginary ObjCInterfaceDecl until it is actually 1712 // declared later (if at all). We also take care to explicitly make 1713 // sure this declaration is visible for name lookup. 1714 PushOnScopeChains(IDecl, TUScope, false); 1715 CurContext->makeDeclVisibleInContext(IDecl, true); 1716 } 1717 ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc, 1718 IDecl, IdentLocs[i]); 1719 CurContext->addDecl(CDecl); 1720 CheckObjCDeclScope(CDecl); 1721 DeclsInGroup.push_back(CDecl); 1722 } 1723 1724 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); 1725} 1726 1727static bool tryMatchRecordTypes(ASTContext &Context, 1728 Sema::MethodMatchStrategy strategy, 1729 const Type *left, const Type *right); 1730 1731static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 1732 QualType leftQT, QualType rightQT) { 1733 const Type *left = 1734 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 1735 const Type *right = 1736 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 1737 1738 if (left == right) return true; 1739 1740 // If we're doing a strict match, the types have to match exactly. 1741 if (strategy == Sema::MMS_strict) return false; 1742 1743 if (left->isIncompleteType() || right->isIncompleteType()) return false; 1744 1745 // Otherwise, use this absurdly complicated algorithm to try to 1746 // validate the basic, low-level compatibility of the two types. 1747 1748 // As a minimum, require the sizes and alignments to match. 1749 if (Context.getTypeInfo(left) != Context.getTypeInfo(right)) 1750 return false; 1751 1752 // Consider all the kinds of non-dependent canonical types: 1753 // - functions and arrays aren't possible as return and parameter types 1754 1755 // - vector types of equal size can be arbitrarily mixed 1756 if (isa<VectorType>(left)) return isa<VectorType>(right); 1757 if (isa<VectorType>(right)) return false; 1758 1759 // - references should only match references of identical type 1760 // - structs, unions, and Objective-C objects must match more-or-less 1761 // exactly 1762 // - everything else should be a scalar 1763 if (!left->isScalarType() || !right->isScalarType()) 1764 return tryMatchRecordTypes(Context, strategy, left, right); 1765 1766 // Make scalars agree in kind, except count bools as chars. 1767 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 1768 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 1769 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 1770 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 1771 1772 // Note that data member pointers and function member pointers don't 1773 // intermix because of the size differences. 1774 1775 return (leftSK == rightSK); 1776} 1777 1778static bool tryMatchRecordTypes(ASTContext &Context, 1779 Sema::MethodMatchStrategy strategy, 1780 const Type *lt, const Type *rt) { 1781 assert(lt && rt && lt != rt); 1782 1783 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 1784 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 1785 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 1786 1787 // Require union-hood to match. 1788 if (left->isUnion() != right->isUnion()) return false; 1789 1790 // Require an exact match if either is non-POD. 1791 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 1792 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 1793 return false; 1794 1795 // Require size and alignment to match. 1796 if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false; 1797 1798 // Require fields to match. 1799 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 1800 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 1801 for (; li != le && ri != re; ++li, ++ri) { 1802 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 1803 return false; 1804 } 1805 return (li == le && ri == re); 1806} 1807 1808/// MatchTwoMethodDeclarations - Checks that two methods have matching type and 1809/// returns true, or false, accordingly. 1810/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 1811bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 1812 const ObjCMethodDecl *right, 1813 MethodMatchStrategy strategy) { 1814 if (!matchTypes(Context, strategy, 1815 left->getResultType(), right->getResultType())) 1816 return false; 1817 1818 if (getLangOptions().ObjCAutoRefCount && 1819 (left->hasAttr<NSReturnsRetainedAttr>() 1820 != right->hasAttr<NSReturnsRetainedAttr>() || 1821 left->hasAttr<NSConsumesSelfAttr>() 1822 != right->hasAttr<NSConsumesSelfAttr>())) 1823 return false; 1824 1825 ObjCMethodDecl::param_iterator 1826 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(); 1827 1828 for (; li != le; ++li, ++ri) { 1829 assert(ri != right->param_end() && "Param mismatch"); 1830 ParmVarDecl *lparm = *li, *rparm = *ri; 1831 1832 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 1833 return false; 1834 1835 if (getLangOptions().ObjCAutoRefCount && 1836 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 1837 return false; 1838 } 1839 return true; 1840} 1841 1842/// \brief Read the contents of the method pool for a given selector from 1843/// external storage. 1844/// 1845/// This routine should only be called once, when the method pool has no entry 1846/// for this selector. 1847Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) { 1848 assert(ExternalSource && "We need an external AST source"); 1849 assert(MethodPool.find(Sel) == MethodPool.end() && 1850 "Selector data already loaded into the method pool"); 1851 1852 // Read the method list from the external source. 1853 GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel); 1854 1855 return MethodPool.insert(std::make_pair(Sel, Methods)).first; 1856} 1857 1858void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 1859 bool instance) { 1860 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 1861 if (Pos == MethodPool.end()) { 1862 if (ExternalSource) 1863 Pos = ReadMethodPool(Method->getSelector()); 1864 else 1865 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 1866 GlobalMethods())).first; 1867 } 1868 Method->setDefined(impl); 1869 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 1870 if (Entry.Method == 0) { 1871 // Haven't seen a method with this selector name yet - add it. 1872 Entry.Method = Method; 1873 Entry.Next = 0; 1874 return; 1875 } 1876 1877 // We've seen a method with this name, see if we have already seen this type 1878 // signature. 1879 for (ObjCMethodList *List = &Entry; List; List = List->Next) { 1880 bool match = MatchTwoMethodDeclarations(Method, List->Method); 1881 1882 if (match) { 1883 ObjCMethodDecl *PrevObjCMethod = List->Method; 1884 PrevObjCMethod->setDefined(impl); 1885 // If a method is deprecated, push it in the global pool. 1886 // This is used for better diagnostics. 1887 if (Method->isDeprecated()) { 1888 if (!PrevObjCMethod->isDeprecated()) 1889 List->Method = Method; 1890 } 1891 // If new method is unavailable, push it into global pool 1892 // unless previous one is deprecated. 1893 if (Method->isUnavailable()) { 1894 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 1895 List->Method = Method; 1896 } 1897 return; 1898 } 1899 } 1900 1901 // We have a new signature for an existing method - add it. 1902 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 1903 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 1904 Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next); 1905} 1906 1907/// Determines if this is an "acceptable" loose mismatch in the global 1908/// method pool. This exists mostly as a hack to get around certain 1909/// global mismatches which we can't afford to make warnings / errors. 1910/// Really, what we want is a way to take a method out of the global 1911/// method pool. 1912static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 1913 ObjCMethodDecl *other) { 1914 if (!chosen->isInstanceMethod()) 1915 return false; 1916 1917 Selector sel = chosen->getSelector(); 1918 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 1919 return false; 1920 1921 // Don't complain about mismatches for -length if the method we 1922 // chose has an integral result type. 1923 return (chosen->getResultType()->isIntegerType()); 1924} 1925 1926ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 1927 bool receiverIdOrClass, 1928 bool warn, bool instance) { 1929 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 1930 if (Pos == MethodPool.end()) { 1931 if (ExternalSource) 1932 Pos = ReadMethodPool(Sel); 1933 else 1934 return 0; 1935 } 1936 1937 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 1938 1939 if (warn && MethList.Method && MethList.Next) { 1940 bool issueDiagnostic = false, issueError = false; 1941 1942 // We support a warning which complains about *any* difference in 1943 // method signature. 1944 bool strictSelectorMatch = 1945 (receiverIdOrClass && warn && 1946 (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl, 1947 R.getBegin()) != 1948 Diagnostic::Ignored)); 1949 if (strictSelectorMatch) 1950 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 1951 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 1952 MMS_strict)) { 1953 issueDiagnostic = true; 1954 break; 1955 } 1956 } 1957 1958 // If we didn't see any strict differences, we won't see any loose 1959 // differences. In ARC, however, we also need to check for loose 1960 // mismatches, because most of them are errors. 1961 if (!strictSelectorMatch || 1962 (issueDiagnostic && getLangOptions().ObjCAutoRefCount)) 1963 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 1964 // This checks if the methods differ in type mismatch. 1965 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 1966 MMS_loose) && 1967 !isAcceptableMethodMismatch(MethList.Method, Next->Method)) { 1968 issueDiagnostic = true; 1969 if (getLangOptions().ObjCAutoRefCount) 1970 issueError = true; 1971 break; 1972 } 1973 } 1974 1975 if (issueDiagnostic) { 1976 if (issueError) 1977 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 1978 else if (strictSelectorMatch) 1979 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 1980 else 1981 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 1982 1983 Diag(MethList.Method->getLocStart(), 1984 issueError ? diag::note_possibility : diag::note_using) 1985 << MethList.Method->getSourceRange(); 1986 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) 1987 Diag(Next->Method->getLocStart(), diag::note_also_found) 1988 << Next->Method->getSourceRange(); 1989 } 1990 } 1991 return MethList.Method; 1992} 1993 1994ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 1995 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 1996 if (Pos == MethodPool.end()) 1997 return 0; 1998 1999 GlobalMethods &Methods = Pos->second; 2000 2001 if (Methods.first.Method && Methods.first.Method->isDefined()) 2002 return Methods.first.Method; 2003 if (Methods.second.Method && Methods.second.Method->isDefined()) 2004 return Methods.second.Method; 2005 return 0; 2006} 2007 2008/// CompareMethodParamsInBaseAndSuper - This routine compares methods with 2009/// identical selector names in current and its super classes and issues 2010/// a warning if any of their argument types are incompatible. 2011void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl, 2012 ObjCMethodDecl *Method, 2013 bool IsInstance) { 2014 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 2015 if (ID == 0) return; 2016 2017 while (ObjCInterfaceDecl *SD = ID->getSuperClass()) { 2018 ObjCMethodDecl *SuperMethodDecl = 2019 SD->lookupMethod(Method->getSelector(), IsInstance); 2020 if (SuperMethodDecl == 0) { 2021 ID = SD; 2022 continue; 2023 } 2024 ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), 2025 E = Method->param_end(); 2026 ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin(); 2027 for (; ParamI != E; ++ParamI, ++PrevI) { 2028 // Number of parameters are the same and is guaranteed by selector match. 2029 assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch"); 2030 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 2031 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 2032 // If type of argument of method in this class does not match its 2033 // respective argument type in the super class method, issue warning; 2034 if (!Context.typesAreCompatible(T1, T2)) { 2035 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 2036 << T1 << T2; 2037 Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration); 2038 return; 2039 } 2040 } 2041 ID = SD; 2042 } 2043} 2044 2045/// DiagnoseDuplicateIvars - 2046/// Check for duplicate ivars in the entire class at the start of 2047/// @implementation. This becomes necesssary because class extension can 2048/// add ivars to a class in random order which will not be known until 2049/// class's @implementation is seen. 2050void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 2051 ObjCInterfaceDecl *SID) { 2052 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), 2053 IVE = ID->ivar_end(); IVI != IVE; ++IVI) { 2054 ObjCIvarDecl* Ivar = (*IVI); 2055 if (Ivar->isInvalidDecl()) 2056 continue; 2057 if (IdentifierInfo *II = Ivar->getIdentifier()) { 2058 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 2059 if (prevIvar) { 2060 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 2061 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 2062 Ivar->setInvalidDecl(); 2063 } 2064 } 2065 } 2066} 2067 2068// Note: For class/category implemenations, allMethods/allProperties is 2069// always null. 2070void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, 2071 Decl **allMethods, unsigned allNum, 2072 Decl **allProperties, unsigned pNum, 2073 DeclGroupPtrTy *allTUVars, unsigned tuvNum) { 2074 2075 if (!CurContext->isObjCContainer()) 2076 return; 2077 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2078 Decl *ClassDecl = cast<Decl>(OCD); 2079 2080 bool isInterfaceDeclKind = 2081 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 2082 || isa<ObjCProtocolDecl>(ClassDecl); 2083 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 2084 2085 if (!isInterfaceDeclKind && AtEnd.isInvalid()) { 2086 // FIXME: This is wrong. We shouldn't be pretending that there is 2087 // an '@end' in the declaration. 2088 SourceLocation L = ClassDecl->getLocation(); 2089 AtEnd.setBegin(L); 2090 AtEnd.setEnd(L); 2091 Diag(L, diag::err_missing_atend); 2092 } 2093 2094 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 2095 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 2096 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 2097 2098 for (unsigned i = 0; i < allNum; i++ ) { 2099 ObjCMethodDecl *Method = 2100 cast_or_null<ObjCMethodDecl>(allMethods[i]); 2101 2102 if (!Method) continue; // Already issued a diagnostic. 2103 if (Method->isInstanceMethod()) { 2104 /// Check for instance method of the same name with incompatible types 2105 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 2106 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2107 : false; 2108 if ((isInterfaceDeclKind && PrevMethod && !match) 2109 || (checkIdenticalMethods && match)) { 2110 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2111 << Method->getDeclName(); 2112 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2113 Method->setInvalidDecl(); 2114 } else { 2115 InsMap[Method->getSelector()] = Method; 2116 /// The following allows us to typecheck messages to "id". 2117 AddInstanceMethodToGlobalPool(Method); 2118 // verify that the instance method conforms to the same definition of 2119 // parent methods if it shadows one. 2120 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true); 2121 } 2122 } else { 2123 /// Check for class method of the same name with incompatible types 2124 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 2125 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2126 : false; 2127 if ((isInterfaceDeclKind && PrevMethod && !match) 2128 || (checkIdenticalMethods && match)) { 2129 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2130 << Method->getDeclName(); 2131 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2132 Method->setInvalidDecl(); 2133 } else { 2134 ClsMap[Method->getSelector()] = Method; 2135 /// The following allows us to typecheck messages to "Class". 2136 AddFactoryMethodToGlobalPool(Method); 2137 // verify that the class method conforms to the same definition of 2138 // parent methods if it shadows one. 2139 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false); 2140 } 2141 } 2142 } 2143 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 2144 // Compares properties declared in this class to those of its 2145 // super class. 2146 ComparePropertiesInBaseAndSuper(I); 2147 CompareProperties(I, I); 2148 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 2149 // Categories are used to extend the class by declaring new methods. 2150 // By the same token, they are also used to add new properties. No 2151 // need to compare the added property to those in the class. 2152 2153 // Compare protocol properties with those in category 2154 CompareProperties(C, C); 2155 if (C->IsClassExtension()) { 2156 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 2157 DiagnoseClassExtensionDupMethods(C, CCPrimary); 2158 } 2159 } 2160 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 2161 if (CDecl->getIdentifier()) 2162 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 2163 // user-defined setter/getter. It also synthesizes setter/getter methods 2164 // and adds them to the DeclContext and global method pools. 2165 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), 2166 E = CDecl->prop_end(); 2167 I != E; ++I) 2168 ProcessPropertyDecl(*I, CDecl); 2169 CDecl->setAtEndRange(AtEnd); 2170 } 2171 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 2172 IC->setAtEndRange(AtEnd); 2173 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 2174 // Any property declared in a class extension might have user 2175 // declared setter or getter in current class extension or one 2176 // of the other class extensions. Mark them as synthesized as 2177 // property will be synthesized when property with same name is 2178 // seen in the @implementation. 2179 for (const ObjCCategoryDecl *ClsExtDecl = 2180 IDecl->getFirstClassExtension(); 2181 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) { 2182 for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(), 2183 E = ClsExtDecl->prop_end(); I != E; ++I) { 2184 ObjCPropertyDecl *Property = (*I); 2185 // Skip over properties declared @dynamic 2186 if (const ObjCPropertyImplDecl *PIDecl 2187 = IC->FindPropertyImplDecl(Property->getIdentifier())) 2188 if (PIDecl->getPropertyImplementation() 2189 == ObjCPropertyImplDecl::Dynamic) 2190 continue; 2191 2192 for (const ObjCCategoryDecl *CExtDecl = 2193 IDecl->getFirstClassExtension(); 2194 CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) { 2195 if (ObjCMethodDecl *GetterMethod = 2196 CExtDecl->getInstanceMethod(Property->getGetterName())) 2197 GetterMethod->setSynthesized(true); 2198 if (!Property->isReadOnly()) 2199 if (ObjCMethodDecl *SetterMethod = 2200 CExtDecl->getInstanceMethod(Property->getSetterName())) 2201 SetterMethod->setSynthesized(true); 2202 } 2203 } 2204 } 2205 2206 if (LangOpts.ObjCDefaultSynthProperties && 2207 LangOpts.ObjCNonFragileABI2) 2208 DefaultSynthesizeProperties(S, IC, IDecl); 2209 ImplMethodsVsClassMethods(S, IC, IDecl); 2210 AtomicPropertySetterGetterRules(IC, IDecl); 2211 DiagnoseOwningPropertyGetterSynthesis(IC); 2212 2213 if (LangOpts.ObjCNonFragileABI2) 2214 while (IDecl->getSuperClass()) { 2215 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 2216 IDecl = IDecl->getSuperClass(); 2217 } 2218 } 2219 SetIvarInitializers(IC); 2220 } else if (ObjCCategoryImplDecl* CatImplClass = 2221 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 2222 CatImplClass->setAtEndRange(AtEnd); 2223 2224 // Find category interface decl and then check that all methods declared 2225 // in this interface are implemented in the category @implementation. 2226 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 2227 for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); 2228 Categories; Categories = Categories->getNextClassCategory()) { 2229 if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { 2230 ImplMethodsVsClassMethods(S, CatImplClass, Categories); 2231 break; 2232 } 2233 } 2234 } 2235 } 2236 if (isInterfaceDeclKind) { 2237 // Reject invalid vardecls. 2238 for (unsigned i = 0; i != tuvNum; i++) { 2239 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 2240 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2241 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 2242 if (!VDecl->hasExternalStorage()) 2243 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 2244 } 2245 } 2246 } 2247 ActOnObjCContainerFinishDefinition(); 2248} 2249 2250 2251/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 2252/// objective-c's type qualifier from the parser version of the same info. 2253static Decl::ObjCDeclQualifier 2254CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 2255 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 2256} 2257 2258static inline 2259bool containsInvalidMethodImplAttribute(const AttrVec &A) { 2260 // The 'ibaction' attribute is allowed on method definitions because of 2261 // how the IBAction macro is used on both method declarations and definitions. 2262 // If the method definitions contains any other attributes, return true. 2263 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) 2264 if ((*i)->getKind() != attr::IBAction) 2265 return true; 2266 return false; 2267} 2268 2269/// \brief Check whether the declared result type of the given Objective-C 2270/// method declaration is compatible with the method's class. 2271/// 2272static bool 2273CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 2274 ObjCInterfaceDecl *CurrentClass) { 2275 QualType ResultType = Method->getResultType(); 2276 SourceRange ResultTypeRange; 2277 if (const TypeSourceInfo *ResultTypeInfo = Method->getResultTypeSourceInfo()) 2278 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 2279 2280 // If an Objective-C method inherits its related result type, then its 2281 // declared result type must be compatible with its own class type. The 2282 // declared result type is compatible if: 2283 if (const ObjCObjectPointerType *ResultObjectType 2284 = ResultType->getAs<ObjCObjectPointerType>()) { 2285 // - it is id or qualified id, or 2286 if (ResultObjectType->isObjCIdType() || 2287 ResultObjectType->isObjCQualifiedIdType()) 2288 return false; 2289 2290 if (CurrentClass) { 2291 if (ObjCInterfaceDecl *ResultClass 2292 = ResultObjectType->getInterfaceDecl()) { 2293 // - it is the same as the method's class type, or 2294 if (CurrentClass == ResultClass) 2295 return false; 2296 2297 // - it is a superclass of the method's class type 2298 if (ResultClass->isSuperClassOf(CurrentClass)) 2299 return false; 2300 } 2301 } 2302 } 2303 2304 return true; 2305} 2306 2307namespace { 2308/// A helper class for searching for methods which a particular method 2309/// overrides. 2310class OverrideSearch { 2311 Sema &S; 2312 ObjCMethodDecl *Method; 2313 llvm::SmallPtrSet<ObjCContainerDecl*, 8> Searched; 2314 llvm::SmallPtrSet<ObjCMethodDecl*, 8> Overridden; 2315 bool Recursive; 2316 2317public: 2318 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) { 2319 Selector selector = method->getSelector(); 2320 2321 // Bypass this search if we've never seen an instance/class method 2322 // with this selector before. 2323 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 2324 if (it == S.MethodPool.end()) { 2325 if (!S.ExternalSource) return; 2326 it = S.ReadMethodPool(selector); 2327 } 2328 ObjCMethodList &list = 2329 method->isInstanceMethod() ? it->second.first : it->second.second; 2330 if (!list.Method) return; 2331 2332 ObjCContainerDecl *container 2333 = cast<ObjCContainerDecl>(method->getDeclContext()); 2334 2335 // Prevent the search from reaching this container again. This is 2336 // important with categories, which override methods from the 2337 // interface and each other. 2338 Searched.insert(container); 2339 searchFromContainer(container); 2340 } 2341 2342 typedef llvm::SmallPtrSet<ObjCMethodDecl*,8>::iterator iterator; 2343 iterator begin() const { return Overridden.begin(); } 2344 iterator end() const { return Overridden.end(); } 2345 2346private: 2347 void searchFromContainer(ObjCContainerDecl *container) { 2348 if (container->isInvalidDecl()) return; 2349 2350 switch (container->getDeclKind()) { 2351#define OBJCCONTAINER(type, base) \ 2352 case Decl::type: \ 2353 searchFrom(cast<type##Decl>(container)); \ 2354 break; 2355#define ABSTRACT_DECL(expansion) 2356#define DECL(type, base) \ 2357 case Decl::type: 2358#include "clang/AST/DeclNodes.inc" 2359 llvm_unreachable("not an ObjC container!"); 2360 } 2361 } 2362 2363 void searchFrom(ObjCProtocolDecl *protocol) { 2364 // A method in a protocol declaration overrides declarations from 2365 // referenced ("parent") protocols. 2366 search(protocol->getReferencedProtocols()); 2367 } 2368 2369 void searchFrom(ObjCCategoryDecl *category) { 2370 // A method in a category declaration overrides declarations from 2371 // the main class and from protocols the category references. 2372 search(category->getClassInterface()); 2373 search(category->getReferencedProtocols()); 2374 } 2375 2376 void searchFrom(ObjCCategoryImplDecl *impl) { 2377 // A method in a category definition that has a category 2378 // declaration overrides declarations from the category 2379 // declaration. 2380 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 2381 search(category); 2382 2383 // Otherwise it overrides declarations from the class. 2384 } else { 2385 search(impl->getClassInterface()); 2386 } 2387 } 2388 2389 void searchFrom(ObjCInterfaceDecl *iface) { 2390 // A method in a class declaration overrides declarations from 2391 2392 // - categories, 2393 for (ObjCCategoryDecl *category = iface->getCategoryList(); 2394 category; category = category->getNextClassCategory()) 2395 search(category); 2396 2397 // - the super class, and 2398 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 2399 search(super); 2400 2401 // - any referenced protocols. 2402 search(iface->getReferencedProtocols()); 2403 } 2404 2405 void searchFrom(ObjCImplementationDecl *impl) { 2406 // A method in a class implementation overrides declarations from 2407 // the class interface. 2408 search(impl->getClassInterface()); 2409 } 2410 2411 2412 void search(const ObjCProtocolList &protocols) { 2413 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end(); 2414 i != e; ++i) 2415 search(*i); 2416 } 2417 2418 void search(ObjCContainerDecl *container) { 2419 // Abort if we've already searched this container. 2420 if (!Searched.insert(container)) return; 2421 2422 // Check for a method in this container which matches this selector. 2423 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 2424 Method->isInstanceMethod()); 2425 2426 // If we find one, record it and bail out. 2427 if (meth) { 2428 Overridden.insert(meth); 2429 return; 2430 } 2431 2432 // Otherwise, search for methods that a hypothetical method here 2433 // would have overridden. 2434 2435 // Note that we're now in a recursive case. 2436 Recursive = true; 2437 2438 searchFromContainer(container); 2439 } 2440}; 2441} 2442 2443Decl *Sema::ActOnMethodDeclaration( 2444 Scope *S, 2445 SourceLocation MethodLoc, SourceLocation EndLoc, 2446 tok::TokenKind MethodType, 2447 ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 2448 SourceLocation SelectorStartLoc, 2449 Selector Sel, 2450 // optional arguments. The number of types/arguments is obtained 2451 // from the Sel.getNumArgs(). 2452 ObjCArgInfo *ArgInfo, 2453 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 2454 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 2455 bool isVariadic, bool MethodDefinition) { 2456 // Make sure we can establish a context for the method. 2457 if (!CurContext->isObjCContainer()) { 2458 Diag(MethodLoc, diag::error_missing_method_context); 2459 return 0; 2460 } 2461 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2462 Decl *ClassDecl = cast<Decl>(OCD); 2463 QualType resultDeclType; 2464 2465 TypeSourceInfo *ResultTInfo = 0; 2466 if (ReturnType) { 2467 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); 2468 2469 // Methods cannot return interface types. All ObjC objects are 2470 // passed by reference. 2471 if (resultDeclType->isObjCObjectType()) { 2472 Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) 2473 << 0 << resultDeclType; 2474 return 0; 2475 } 2476 } else { // get the type for "id". 2477 resultDeclType = Context.getObjCIdType(); 2478 Diag(MethodLoc, diag::warn_missing_method_return_type) 2479 << FixItHint::CreateInsertion(SelectorStartLoc, "(id)"); 2480 } 2481 2482 ObjCMethodDecl* ObjCMethod = 2483 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType, 2484 ResultTInfo, 2485 CurContext, 2486 MethodType == tok::minus, isVariadic, 2487 /*isSynthesized=*/false, 2488 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 2489 MethodDeclKind == tok::objc_optional 2490 ? ObjCMethodDecl::Optional 2491 : ObjCMethodDecl::Required, 2492 false); 2493 2494 SmallVector<ParmVarDecl*, 16> Params; 2495 2496 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 2497 QualType ArgType; 2498 TypeSourceInfo *DI; 2499 2500 if (ArgInfo[i].Type == 0) { 2501 ArgType = Context.getObjCIdType(); 2502 DI = 0; 2503 } else { 2504 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 2505 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2506 ArgType = Context.getAdjustedParameterType(ArgType); 2507 } 2508 2509 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 2510 LookupOrdinaryName, ForRedeclaration); 2511 LookupName(R, S); 2512 if (R.isSingleResult()) { 2513 NamedDecl *PrevDecl = R.getFoundDecl(); 2514 if (S->isDeclScope(PrevDecl)) { 2515 Diag(ArgInfo[i].NameLoc, 2516 (MethodDefinition ? diag::warn_method_param_redefinition 2517 : diag::warn_method_param_declaration)) 2518 << ArgInfo[i].Name; 2519 Diag(PrevDecl->getLocation(), 2520 diag::note_previous_declaration); 2521 } 2522 } 2523 2524 SourceLocation StartLoc = DI 2525 ? DI->getTypeLoc().getBeginLoc() 2526 : ArgInfo[i].NameLoc; 2527 2528 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 2529 ArgInfo[i].NameLoc, ArgInfo[i].Name, 2530 ArgType, DI, SC_None, SC_None); 2531 2532 Param->setObjCMethodScopeInfo(i); 2533 2534 Param->setObjCDeclQualifier( 2535 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 2536 2537 // Apply the attributes to the parameter. 2538 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 2539 2540 S->AddDecl(Param); 2541 IdResolver.AddDecl(Param); 2542 2543 Params.push_back(Param); 2544 } 2545 2546 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 2547 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 2548 QualType ArgType = Param->getType(); 2549 if (ArgType.isNull()) 2550 ArgType = Context.getObjCIdType(); 2551 else 2552 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2553 ArgType = Context.getAdjustedParameterType(ArgType); 2554 if (ArgType->isObjCObjectType()) { 2555 Diag(Param->getLocation(), 2556 diag::err_object_cannot_be_passed_returned_by_value) 2557 << 1 << ArgType; 2558 Param->setInvalidDecl(); 2559 } 2560 Param->setDeclContext(ObjCMethod); 2561 2562 Params.push_back(Param); 2563 } 2564 2565 ObjCMethod->setMethodParams(Context, Params.data(), Params.size(), 2566 Sel.getNumArgs()); 2567 ObjCMethod->setObjCDeclQualifier( 2568 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 2569 2570 if (AttrList) 2571 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 2572 2573 // Add the method now. 2574 const ObjCMethodDecl *PrevMethod = 0; 2575 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 2576 if (MethodType == tok::minus) { 2577 PrevMethod = ImpDecl->getInstanceMethod(Sel); 2578 ImpDecl->addInstanceMethod(ObjCMethod); 2579 } else { 2580 PrevMethod = ImpDecl->getClassMethod(Sel); 2581 ImpDecl->addClassMethod(ObjCMethod); 2582 } 2583 2584 if (ObjCMethod->hasAttrs() && 2585 containsInvalidMethodImplAttribute(ObjCMethod->getAttrs())) 2586 Diag(EndLoc, diag::warn_attribute_method_def); 2587 } else { 2588 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 2589 } 2590 2591 if (PrevMethod) { 2592 // You can never have two method definitions with the same name. 2593 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 2594 << ObjCMethod->getDeclName(); 2595 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2596 } 2597 2598 // If this Objective-C method does not have a related result type, but we 2599 // are allowed to infer related result types, try to do so based on the 2600 // method family. 2601 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 2602 if (!CurrentClass) { 2603 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 2604 CurrentClass = Cat->getClassInterface(); 2605 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 2606 CurrentClass = Impl->getClassInterface(); 2607 else if (ObjCCategoryImplDecl *CatImpl 2608 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 2609 CurrentClass = CatImpl->getClassInterface(); 2610 } 2611 2612 bool isRelatedResultTypeCompatible = 2613 (getLangOptions().ObjCInferRelatedResultType && 2614 !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass)); 2615 2616 // Search for overridden methods and merge information down from them. 2617 OverrideSearch overrides(*this, ObjCMethod); 2618 for (OverrideSearch::iterator 2619 i = overrides.begin(), e = overrides.end(); i != e; ++i) { 2620 ObjCMethodDecl *overridden = *i; 2621 2622 // Propagate down the 'related result type' bit from overridden methods. 2623 if (isRelatedResultTypeCompatible && overridden->hasRelatedResultType()) 2624 ObjCMethod->SetRelatedResultType(); 2625 2626 // Then merge the declarations. 2627 mergeObjCMethodDecls(ObjCMethod, overridden); 2628 2629 // Check for overriding methods 2630 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 2631 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) { 2632 WarnConflictingTypedMethods(ObjCMethod, overridden, 2633 isa<ObjCProtocolDecl>(overridden->getDeclContext()), true); 2634 } 2635 } 2636 2637 bool ARCError = false; 2638 if (getLangOptions().ObjCAutoRefCount) 2639 ARCError = CheckARCMethodDecl(*this, ObjCMethod); 2640 2641 if (!ARCError && isRelatedResultTypeCompatible && 2642 !ObjCMethod->hasRelatedResultType()) { 2643 bool InferRelatedResultType = false; 2644 switch (ObjCMethod->getMethodFamily()) { 2645 case OMF_None: 2646 case OMF_copy: 2647 case OMF_dealloc: 2648 case OMF_finalize: 2649 case OMF_mutableCopy: 2650 case OMF_release: 2651 case OMF_retainCount: 2652 case OMF_performSelector: 2653 break; 2654 2655 case OMF_alloc: 2656 case OMF_new: 2657 InferRelatedResultType = ObjCMethod->isClassMethod(); 2658 break; 2659 2660 case OMF_init: 2661 case OMF_autorelease: 2662 case OMF_retain: 2663 case OMF_self: 2664 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 2665 break; 2666 } 2667 2668 if (InferRelatedResultType) 2669 ObjCMethod->SetRelatedResultType(); 2670 } 2671 2672 return ObjCMethod; 2673} 2674 2675bool Sema::CheckObjCDeclScope(Decl *D) { 2676 if (isa<TranslationUnitDecl>(CurContext->getRedeclContext())) 2677 return false; 2678 // Following is also an error. But it is caused by a missing @end 2679 // and diagnostic is issued elsewhere. 2680 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) { 2681 return false; 2682 } 2683 2684 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 2685 D->setInvalidDecl(); 2686 2687 return true; 2688} 2689 2690/// Called whenever @defs(ClassName) is encountered in the source. Inserts the 2691/// instance variables of ClassName into Decls. 2692void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 2693 IdentifierInfo *ClassName, 2694 SmallVectorImpl<Decl*> &Decls) { 2695 // Check that ClassName is a valid class 2696 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 2697 if (!Class) { 2698 Diag(DeclStart, diag::err_undef_interface) << ClassName; 2699 return; 2700 } 2701 if (LangOpts.ObjCNonFragileABI) { 2702 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 2703 return; 2704 } 2705 2706 // Collect the instance variables 2707 SmallVector<const ObjCIvarDecl*, 32> Ivars; 2708 Context.DeepCollectObjCIvars(Class, true, Ivars); 2709 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 2710 for (unsigned i = 0; i < Ivars.size(); i++) { 2711 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]); 2712 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 2713 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 2714 /*FIXME: StartL=*/ID->getLocation(), 2715 ID->getLocation(), 2716 ID->getIdentifier(), ID->getType(), 2717 ID->getBitWidth()); 2718 Decls.push_back(FD); 2719 } 2720 2721 // Introduce all of these fields into the appropriate scope. 2722 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 2723 D != Decls.end(); ++D) { 2724 FieldDecl *FD = cast<FieldDecl>(*D); 2725 if (getLangOptions().CPlusPlus) 2726 PushOnScopeChains(cast<FieldDecl>(FD), S); 2727 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 2728 Record->addDecl(FD); 2729 } 2730} 2731 2732/// \brief Build a type-check a new Objective-C exception variable declaration. 2733VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 2734 SourceLocation StartLoc, 2735 SourceLocation IdLoc, 2736 IdentifierInfo *Id, 2737 bool Invalid) { 2738 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 2739 // duration shall not be qualified by an address-space qualifier." 2740 // Since all parameters have automatic store duration, they can not have 2741 // an address space. 2742 if (T.getAddressSpace() != 0) { 2743 Diag(IdLoc, diag::err_arg_with_address_space); 2744 Invalid = true; 2745 } 2746 2747 // An @catch parameter must be an unqualified object pointer type; 2748 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 2749 if (Invalid) { 2750 // Don't do any further checking. 2751 } else if (T->isDependentType()) { 2752 // Okay: we don't know what this type will instantiate to. 2753 } else if (!T->isObjCObjectPointerType()) { 2754 Invalid = true; 2755 Diag(IdLoc ,diag::err_catch_param_not_objc_type); 2756 } else if (T->isObjCQualifiedIdType()) { 2757 Invalid = true; 2758 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 2759 } 2760 2761 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 2762 T, TInfo, SC_None, SC_None); 2763 New->setExceptionVariable(true); 2764 2765 if (Invalid) 2766 New->setInvalidDecl(); 2767 return New; 2768} 2769 2770Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 2771 const DeclSpec &DS = D.getDeclSpec(); 2772 2773 // We allow the "register" storage class on exception variables because 2774 // GCC did, but we drop it completely. Any other storage class is an error. 2775 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 2776 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 2777 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 2778 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 2779 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 2780 << DS.getStorageClassSpec(); 2781 } 2782 if (D.getDeclSpec().isThreadSpecified()) 2783 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); 2784 D.getMutableDeclSpec().ClearStorageClassSpecs(); 2785 2786 DiagnoseFunctionSpecifiers(D); 2787 2788 // Check that there are no default arguments inside the type of this 2789 // exception object (C++ only). 2790 if (getLangOptions().CPlusPlus) 2791 CheckExtraCXXDefaultArguments(D); 2792 2793 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 2794 QualType ExceptionType = TInfo->getType(); 2795 2796 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 2797 D.getSourceRange().getBegin(), 2798 D.getIdentifierLoc(), 2799 D.getIdentifier(), 2800 D.isInvalidType()); 2801 2802 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 2803 if (D.getCXXScopeSpec().isSet()) { 2804 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 2805 << D.getCXXScopeSpec().getRange(); 2806 New->setInvalidDecl(); 2807 } 2808 2809 // Add the parameter declaration into this scope. 2810 S->AddDecl(New); 2811 if (D.getIdentifier()) 2812 IdResolver.AddDecl(New); 2813 2814 ProcessDeclAttributes(S, New, D); 2815 2816 if (New->hasAttr<BlocksAttr>()) 2817 Diag(New->getLocation(), diag::err_block_on_nonlocal); 2818 return New; 2819} 2820 2821/// CollectIvarsToConstructOrDestruct - Collect those ivars which require 2822/// initialization. 2823void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 2824 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 2825 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 2826 Iv= Iv->getNextIvar()) { 2827 QualType QT = Context.getBaseElementType(Iv->getType()); 2828 if (QT->isRecordType()) 2829 Ivars.push_back(Iv); 2830 } 2831} 2832 2833void Sema::DiagnoseUseOfUnimplementedSelectors() { 2834 // Load referenced selectors from the external source. 2835 if (ExternalSource) { 2836 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 2837 ExternalSource->ReadReferencedSelectors(Sels); 2838 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 2839 ReferencedSelectors[Sels[I].first] = Sels[I].second; 2840 } 2841 2842 // Warning will be issued only when selector table is 2843 // generated (which means there is at lease one implementation 2844 // in the TU). This is to match gcc's behavior. 2845 if (ReferencedSelectors.empty() || 2846 !Context.AnyObjCImplementation()) 2847 return; 2848 for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 2849 ReferencedSelectors.begin(), 2850 E = ReferencedSelectors.end(); S != E; ++S) { 2851 Selector Sel = (*S).first; 2852 if (!LookupImplementedMethodInGlobalPool(Sel)) 2853 Diag((*S).second, diag::warn_unimplemented_selector) << Sel; 2854 } 2855 return; 2856} 2857