SemaDeclObjC.cpp revision 58878f85ab89b13e9eea4af3ccf055e42c557bc8
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements semantic analysis for Objective C declarations. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/AST/ASTConsumer.h" 16#include "clang/AST/ASTContext.h" 17#include "clang/AST/ASTMutationListener.h" 18#include "clang/AST/DataRecursiveASTVisitor.h" 19#include "clang/AST/DeclObjC.h" 20#include "clang/AST/Expr.h" 21#include "clang/AST/ExprObjC.h" 22#include "clang/Basic/SourceManager.h" 23#include "clang/Sema/DeclSpec.h" 24#include "clang/Sema/ExternalSemaSource.h" 25#include "clang/Sema/Lookup.h" 26#include "clang/Sema/Scope.h" 27#include "clang/Sema/ScopeInfo.h" 28#include "llvm/ADT/DenseSet.h" 29 30using namespace clang; 31 32/// Check whether the given method, which must be in the 'init' 33/// family, is a valid member of that family. 34/// 35/// \param receiverTypeIfCall - if null, check this as if declaring it; 36/// if non-null, check this as if making a call to it with the given 37/// receiver type 38/// 39/// \return true to indicate that there was an error and appropriate 40/// actions were taken 41bool Sema::checkInitMethod(ObjCMethodDecl *method, 42 QualType receiverTypeIfCall) { 43 if (method->isInvalidDecl()) return true; 44 45 // This castAs is safe: methods that don't return an object 46 // pointer won't be inferred as inits and will reject an explicit 47 // objc_method_family(init). 48 49 // We ignore protocols here. Should we? What about Class? 50 51 const ObjCObjectType *result = 52 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); 53 54 if (result->isObjCId()) { 55 return false; 56 } else if (result->isObjCClass()) { 57 // fall through: always an error 58 } else { 59 ObjCInterfaceDecl *resultClass = result->getInterface(); 60 assert(resultClass && "unexpected object type!"); 61 62 // It's okay for the result type to still be a forward declaration 63 // if we're checking an interface declaration. 64 if (!resultClass->hasDefinition()) { 65 if (receiverTypeIfCall.isNull() && 66 !isa<ObjCImplementationDecl>(method->getDeclContext())) 67 return false; 68 69 // Otherwise, we try to compare class types. 70 } else { 71 // If this method was declared in a protocol, we can't check 72 // anything unless we have a receiver type that's an interface. 73 const ObjCInterfaceDecl *receiverClass = nullptr; 74 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 75 if (receiverTypeIfCall.isNull()) 76 return false; 77 78 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 79 ->getInterfaceDecl(); 80 81 // This can be null for calls to e.g. id<Foo>. 82 if (!receiverClass) return false; 83 } else { 84 receiverClass = method->getClassInterface(); 85 assert(receiverClass && "method not associated with a class!"); 86 } 87 88 // If either class is a subclass of the other, it's fine. 89 if (receiverClass->isSuperClassOf(resultClass) || 90 resultClass->isSuperClassOf(receiverClass)) 91 return false; 92 } 93 } 94 95 SourceLocation loc = method->getLocation(); 96 97 // If we're in a system header, and this is not a call, just make 98 // the method unusable. 99 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 100 method->addAttr(UnavailableAttr::CreateImplicit(Context, 101 "init method returns a type unrelated to its receiver type", 102 loc)); 103 return true; 104 } 105 106 // Otherwise, it's an error. 107 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 108 method->setInvalidDecl(); 109 return true; 110} 111 112void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 113 const ObjCMethodDecl *Overridden) { 114 if (Overridden->hasRelatedResultType() && 115 !NewMethod->hasRelatedResultType()) { 116 // This can only happen when the method follows a naming convention that 117 // implies a related result type, and the original (overridden) method has 118 // a suitable return type, but the new (overriding) method does not have 119 // a suitable return type. 120 QualType ResultType = NewMethod->getReturnType(); 121 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange(); 122 123 // Figure out which class this method is part of, if any. 124 ObjCInterfaceDecl *CurrentClass 125 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 126 if (!CurrentClass) { 127 DeclContext *DC = NewMethod->getDeclContext(); 128 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 129 CurrentClass = Cat->getClassInterface(); 130 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 131 CurrentClass = Impl->getClassInterface(); 132 else if (ObjCCategoryImplDecl *CatImpl 133 = dyn_cast<ObjCCategoryImplDecl>(DC)) 134 CurrentClass = CatImpl->getClassInterface(); 135 } 136 137 if (CurrentClass) { 138 Diag(NewMethod->getLocation(), 139 diag::warn_related_result_type_compatibility_class) 140 << Context.getObjCInterfaceType(CurrentClass) 141 << ResultType 142 << ResultTypeRange; 143 } else { 144 Diag(NewMethod->getLocation(), 145 diag::warn_related_result_type_compatibility_protocol) 146 << ResultType 147 << ResultTypeRange; 148 } 149 150 if (ObjCMethodFamily Family = Overridden->getMethodFamily()) 151 Diag(Overridden->getLocation(), 152 diag::note_related_result_type_family) 153 << /*overridden method*/ 0 154 << Family; 155 else 156 Diag(Overridden->getLocation(), 157 diag::note_related_result_type_overridden); 158 } 159 if (getLangOpts().ObjCAutoRefCount) { 160 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != 161 Overridden->hasAttr<NSReturnsRetainedAttr>())) { 162 Diag(NewMethod->getLocation(), 163 diag::err_nsreturns_retained_attribute_mismatch) << 1; 164 Diag(Overridden->getLocation(), diag::note_previous_decl) 165 << "method"; 166 } 167 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != 168 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { 169 Diag(NewMethod->getLocation(), 170 diag::err_nsreturns_retained_attribute_mismatch) << 0; 171 Diag(Overridden->getLocation(), diag::note_previous_decl) 172 << "method"; 173 } 174 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), 175 oe = Overridden->param_end(); 176 for (ObjCMethodDecl::param_iterator 177 ni = NewMethod->param_begin(), ne = NewMethod->param_end(); 178 ni != ne && oi != oe; ++ni, ++oi) { 179 const ParmVarDecl *oldDecl = (*oi); 180 ParmVarDecl *newDecl = (*ni); 181 if (newDecl->hasAttr<NSConsumedAttr>() != 182 oldDecl->hasAttr<NSConsumedAttr>()) { 183 Diag(newDecl->getLocation(), 184 diag::err_nsconsumed_attribute_mismatch); 185 Diag(oldDecl->getLocation(), diag::note_previous_decl) 186 << "parameter"; 187 } 188 } 189 } 190} 191 192/// \brief Check a method declaration for compatibility with the Objective-C 193/// ARC conventions. 194bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) { 195 ObjCMethodFamily family = method->getMethodFamily(); 196 switch (family) { 197 case OMF_None: 198 case OMF_finalize: 199 case OMF_retain: 200 case OMF_release: 201 case OMF_autorelease: 202 case OMF_retainCount: 203 case OMF_self: 204 case OMF_initialize: 205 case OMF_performSelector: 206 return false; 207 208 case OMF_dealloc: 209 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) { 210 SourceRange ResultTypeRange = method->getReturnTypeSourceRange(); 211 if (ResultTypeRange.isInvalid()) 212 Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 213 << method->getReturnType() 214 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)"); 215 else 216 Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 217 << method->getReturnType() 218 << FixItHint::CreateReplacement(ResultTypeRange, "void"); 219 return true; 220 } 221 return false; 222 223 case OMF_init: 224 // If the method doesn't obey the init rules, don't bother annotating it. 225 if (checkInitMethod(method, QualType())) 226 return true; 227 228 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context)); 229 230 // Don't add a second copy of this attribute, but otherwise don't 231 // let it be suppressed. 232 if (method->hasAttr<NSReturnsRetainedAttr>()) 233 return false; 234 break; 235 236 case OMF_alloc: 237 case OMF_copy: 238 case OMF_mutableCopy: 239 case OMF_new: 240 if (method->hasAttr<NSReturnsRetainedAttr>() || 241 method->hasAttr<NSReturnsNotRetainedAttr>() || 242 method->hasAttr<NSReturnsAutoreleasedAttr>()) 243 return false; 244 break; 245 } 246 247 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context)); 248 return false; 249} 250 251static void DiagnoseObjCImplementedDeprecations(Sema &S, 252 NamedDecl *ND, 253 SourceLocation ImplLoc, 254 int select) { 255 if (ND && ND->isDeprecated()) { 256 S.Diag(ImplLoc, diag::warn_deprecated_def) << select; 257 if (select == 0) 258 S.Diag(ND->getLocation(), diag::note_method_declared_at) 259 << ND->getDeclName(); 260 else 261 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; 262 } 263} 264 265/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global 266/// pool. 267void Sema::AddAnyMethodToGlobalPool(Decl *D) { 268 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 269 270 // If we don't have a valid method decl, simply return. 271 if (!MDecl) 272 return; 273 if (MDecl->isInstanceMethod()) 274 AddInstanceMethodToGlobalPool(MDecl, true); 275 else 276 AddFactoryMethodToGlobalPool(MDecl, true); 277} 278 279/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer 280/// has explicit ownership attribute; false otherwise. 281static bool 282HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { 283 QualType T = Param->getType(); 284 285 if (const PointerType *PT = T->getAs<PointerType>()) { 286 T = PT->getPointeeType(); 287 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 288 T = RT->getPointeeType(); 289 } else { 290 return true; 291 } 292 293 // If we have a lifetime qualifier, but it's local, we must have 294 // inferred it. So, it is implicit. 295 return !T.getLocalQualifiers().hasObjCLifetime(); 296} 297 298/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 299/// and user declared, in the method definition's AST. 300void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 301 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused"); 302 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 303 304 // If we don't have a valid method decl, simply return. 305 if (!MDecl) 306 return; 307 308 // Allow all of Sema to see that we are entering a method definition. 309 PushDeclContext(FnBodyScope, MDecl); 310 PushFunctionScope(); 311 312 // Create Decl objects for each parameter, entrring them in the scope for 313 // binding to their use. 314 315 // Insert the invisible arguments, self and _cmd! 316 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 317 318 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 319 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 320 321 // The ObjC parser requires parameter names so there's no need to check. 322 CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(), 323 /*CheckParameterNames=*/false); 324 325 // Introduce all of the other parameters into this scope. 326 for (auto *Param : MDecl->params()) { 327 if (!Param->isInvalidDecl() && 328 getLangOpts().ObjCAutoRefCount && 329 !HasExplicitOwnershipAttr(*this, Param)) 330 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) << 331 Param->getType(); 332 333 if (Param->getIdentifier()) 334 PushOnScopeChains(Param, FnBodyScope); 335 } 336 337 // In ARC, disallow definition of retain/release/autorelease/retainCount 338 if (getLangOpts().ObjCAutoRefCount) { 339 switch (MDecl->getMethodFamily()) { 340 case OMF_retain: 341 case OMF_retainCount: 342 case OMF_release: 343 case OMF_autorelease: 344 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 345 << 0 << MDecl->getSelector(); 346 break; 347 348 case OMF_None: 349 case OMF_dealloc: 350 case OMF_finalize: 351 case OMF_alloc: 352 case OMF_init: 353 case OMF_mutableCopy: 354 case OMF_copy: 355 case OMF_new: 356 case OMF_self: 357 case OMF_initialize: 358 case OMF_performSelector: 359 break; 360 } 361 } 362 363 // Warn on deprecated methods under -Wdeprecated-implementations, 364 // and prepare for warning on missing super calls. 365 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 366 ObjCMethodDecl *IMD = 367 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()); 368 369 if (IMD) { 370 ObjCImplDecl *ImplDeclOfMethodDef = 371 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext()); 372 ObjCContainerDecl *ContDeclOfMethodDecl = 373 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext()); 374 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; 375 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl)) 376 ImplDeclOfMethodDecl = OID->getImplementation(); 377 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) { 378 if (CD->IsClassExtension()) { 379 if (ObjCInterfaceDecl *OID = CD->getClassInterface()) 380 ImplDeclOfMethodDecl = OID->getImplementation(); 381 } else 382 ImplDeclOfMethodDecl = CD->getImplementation(); 383 } 384 // No need to issue deprecated warning if deprecated mehod in class/category 385 // is being implemented in its own implementation (no overriding is involved). 386 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) 387 DiagnoseObjCImplementedDeprecations(*this, 388 dyn_cast<NamedDecl>(IMD), 389 MDecl->getLocation(), 0); 390 } 391 392 if (MDecl->getMethodFamily() == OMF_init) { 393 if (MDecl->isDesignatedInitializerForTheInterface()) { 394 getCurFunction()->ObjCIsDesignatedInit = true; 395 getCurFunction()->ObjCWarnForNoDesignatedInitChain = 396 IC->getSuperClass() != nullptr; 397 } else if (IC->hasDesignatedInitializers()) { 398 getCurFunction()->ObjCIsSecondaryInit = true; 399 getCurFunction()->ObjCWarnForNoInitDelegation = true; 400 } 401 } 402 403 // If this is "dealloc" or "finalize", set some bit here. 404 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 405 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 406 // Only do this if the current class actually has a superclass. 407 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { 408 ObjCMethodFamily Family = MDecl->getMethodFamily(); 409 if (Family == OMF_dealloc) { 410 if (!(getLangOpts().ObjCAutoRefCount || 411 getLangOpts().getGC() == LangOptions::GCOnly)) 412 getCurFunction()->ObjCShouldCallSuper = true; 413 414 } else if (Family == OMF_finalize) { 415 if (Context.getLangOpts().getGC() != LangOptions::NonGC) 416 getCurFunction()->ObjCShouldCallSuper = true; 417 418 } else { 419 const ObjCMethodDecl *SuperMethod = 420 SuperClass->lookupMethod(MDecl->getSelector(), 421 MDecl->isInstanceMethod()); 422 getCurFunction()->ObjCShouldCallSuper = 423 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); 424 } 425 } 426 } 427} 428 429namespace { 430 431// Callback to only accept typo corrections that are Objective-C classes. 432// If an ObjCInterfaceDecl* is given to the constructor, then the validation 433// function will reject corrections to that class. 434class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback { 435 public: 436 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} 437 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) 438 : CurrentIDecl(IDecl) {} 439 440 bool ValidateCandidate(const TypoCorrection &candidate) override { 441 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); 442 return ID && !declaresSameEntity(ID, CurrentIDecl); 443 } 444 445 private: 446 ObjCInterfaceDecl *CurrentIDecl; 447}; 448 449} 450 451Decl *Sema:: 452ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 453 IdentifierInfo *ClassName, SourceLocation ClassLoc, 454 IdentifierInfo *SuperName, SourceLocation SuperLoc, 455 Decl * const *ProtoRefs, unsigned NumProtoRefs, 456 const SourceLocation *ProtoLocs, 457 SourceLocation EndProtoLoc, AttributeList *AttrList) { 458 assert(ClassName && "Missing class identifier"); 459 460 // Check for another declaration kind with the same name. 461 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 462 LookupOrdinaryName, ForRedeclaration); 463 464 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 465 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 466 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 467 } 468 469 // Create a declaration to describe this @interface. 470 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 471 472 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 473 // A previous decl with a different name is because of 474 // @compatibility_alias, for example: 475 // \code 476 // @class NewImage; 477 // @compatibility_alias OldImage NewImage; 478 // \endcode 479 // A lookup for 'OldImage' will return the 'NewImage' decl. 480 // 481 // In such a case use the real declaration name, instead of the alias one, 482 // otherwise we will break IdentifierResolver and redecls-chain invariants. 483 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 484 // has been aliased. 485 ClassName = PrevIDecl->getIdentifier(); 486 } 487 488 ObjCInterfaceDecl *IDecl 489 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, 490 PrevIDecl, ClassLoc); 491 492 if (PrevIDecl) { 493 // Class already seen. Was it a definition? 494 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 495 Diag(AtInterfaceLoc, diag::err_duplicate_class_def) 496 << PrevIDecl->getDeclName(); 497 Diag(Def->getLocation(), diag::note_previous_definition); 498 IDecl->setInvalidDecl(); 499 } 500 } 501 502 if (AttrList) 503 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 504 PushOnScopeChains(IDecl, TUScope); 505 506 // Start the definition of this class. If we're in a redefinition case, there 507 // may already be a definition, so we'll end up adding to it. 508 if (!IDecl->hasDefinition()) 509 IDecl->startDefinition(); 510 511 if (SuperName) { 512 // Check if a different kind of symbol declared in this scope. 513 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 514 LookupOrdinaryName); 515 516 if (!PrevDecl) { 517 // Try to correct for a typo in the superclass name without correcting 518 // to the class we're defining. 519 if (TypoCorrection Corrected = 520 CorrectTypo(DeclarationNameInfo(SuperName, SuperLoc), 521 LookupOrdinaryName, TUScope, nullptr, 522 llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl), 523 CTK_ErrorRecovery)) { 524 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest) 525 << SuperName << ClassName); 526 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 527 } 528 } 529 530 if (declaresSameEntity(PrevDecl, IDecl)) { 531 Diag(SuperLoc, diag::err_recursive_superclass) 532 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 533 IDecl->setEndOfDefinitionLoc(ClassLoc); 534 } else { 535 ObjCInterfaceDecl *SuperClassDecl = 536 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 537 538 // Diagnose classes that inherit from deprecated classes. 539 if (SuperClassDecl) 540 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 541 542 if (PrevDecl && !SuperClassDecl) { 543 // The previous declaration was not a class decl. Check if we have a 544 // typedef. If we do, get the underlying class type. 545 if (const TypedefNameDecl *TDecl = 546 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 547 QualType T = TDecl->getUnderlyingType(); 548 if (T->isObjCObjectType()) { 549 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 550 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 551 // This handles the following case: 552 // @interface NewI @end 553 // typedef NewI DeprI __attribute__((deprecated("blah"))) 554 // @interface SI : DeprI /* warn here */ @end 555 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc); 556 } 557 } 558 } 559 560 // This handles the following case: 561 // 562 // typedef int SuperClass; 563 // @interface MyClass : SuperClass {} @end 564 // 565 if (!SuperClassDecl) { 566 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 567 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 568 } 569 } 570 571 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 572 if (!SuperClassDecl) 573 Diag(SuperLoc, diag::err_undef_superclass) 574 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 575 else if (RequireCompleteType(SuperLoc, 576 Context.getObjCInterfaceType(SuperClassDecl), 577 diag::err_forward_superclass, 578 SuperClassDecl->getDeclName(), 579 ClassName, 580 SourceRange(AtInterfaceLoc, ClassLoc))) { 581 SuperClassDecl = nullptr; 582 } 583 } 584 IDecl->setSuperClass(SuperClassDecl); 585 IDecl->setSuperClassLoc(SuperLoc); 586 IDecl->setEndOfDefinitionLoc(SuperLoc); 587 } 588 } else { // we have a root class. 589 IDecl->setEndOfDefinitionLoc(ClassLoc); 590 } 591 592 // Check then save referenced protocols. 593 if (NumProtoRefs) { 594 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 595 ProtoLocs, Context); 596 IDecl->setEndOfDefinitionLoc(EndProtoLoc); 597 } 598 599 CheckObjCDeclScope(IDecl); 600 return ActOnObjCContainerStartDefinition(IDecl); 601} 602 603/// ActOnTypedefedProtocols - this action finds protocol list as part of the 604/// typedef'ed use for a qualified super class and adds them to the list 605/// of the protocols. 606void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs, 607 IdentifierInfo *SuperName, 608 SourceLocation SuperLoc) { 609 if (!SuperName) 610 return; 611 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 612 LookupOrdinaryName); 613 if (!IDecl) 614 return; 615 616 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) { 617 QualType T = TDecl->getUnderlyingType(); 618 if (T->isObjCObjectType()) 619 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) 620 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end()); 621 } 622} 623 624/// ActOnCompatibilityAlias - this action is called after complete parsing of 625/// a \@compatibility_alias declaration. It sets up the alias relationships. 626Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc, 627 IdentifierInfo *AliasName, 628 SourceLocation AliasLocation, 629 IdentifierInfo *ClassName, 630 SourceLocation ClassLocation) { 631 // Look for previous declaration of alias name 632 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 633 LookupOrdinaryName, ForRedeclaration); 634 if (ADecl) { 635 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 636 Diag(ADecl->getLocation(), diag::note_previous_declaration); 637 return nullptr; 638 } 639 // Check for class declaration 640 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 641 LookupOrdinaryName, ForRedeclaration); 642 if (const TypedefNameDecl *TDecl = 643 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 644 QualType T = TDecl->getUnderlyingType(); 645 if (T->isObjCObjectType()) { 646 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 647 ClassName = IDecl->getIdentifier(); 648 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 649 LookupOrdinaryName, ForRedeclaration); 650 } 651 } 652 } 653 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 654 if (!CDecl) { 655 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 656 if (CDeclU) 657 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 658 return nullptr; 659 } 660 661 // Everything checked out, instantiate a new alias declaration AST. 662 ObjCCompatibleAliasDecl *AliasDecl = 663 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 664 665 if (!CheckObjCDeclScope(AliasDecl)) 666 PushOnScopeChains(AliasDecl, TUScope); 667 668 return AliasDecl; 669} 670 671bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 672 IdentifierInfo *PName, 673 SourceLocation &Ploc, SourceLocation PrevLoc, 674 const ObjCList<ObjCProtocolDecl> &PList) { 675 676 bool res = false; 677 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 678 E = PList.end(); I != E; ++I) { 679 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 680 Ploc)) { 681 if (PDecl->getIdentifier() == PName) { 682 Diag(Ploc, diag::err_protocol_has_circular_dependency); 683 Diag(PrevLoc, diag::note_previous_definition); 684 res = true; 685 } 686 687 if (!PDecl->hasDefinition()) 688 continue; 689 690 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 691 PDecl->getLocation(), PDecl->getReferencedProtocols())) 692 res = true; 693 } 694 } 695 return res; 696} 697 698Decl * 699Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 700 IdentifierInfo *ProtocolName, 701 SourceLocation ProtocolLoc, 702 Decl * const *ProtoRefs, 703 unsigned NumProtoRefs, 704 const SourceLocation *ProtoLocs, 705 SourceLocation EndProtoLoc, 706 AttributeList *AttrList) { 707 bool err = false; 708 // FIXME: Deal with AttrList. 709 assert(ProtocolName && "Missing protocol identifier"); 710 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, 711 ForRedeclaration); 712 ObjCProtocolDecl *PDecl = nullptr; 713 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { 714 // If we already have a definition, complain. 715 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 716 Diag(Def->getLocation(), diag::note_previous_definition); 717 718 // Create a new protocol that is completely distinct from previous 719 // declarations, and do not make this protocol available for name lookup. 720 // That way, we'll end up completely ignoring the duplicate. 721 // FIXME: Can we turn this into an error? 722 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 723 ProtocolLoc, AtProtoInterfaceLoc, 724 /*PrevDecl=*/nullptr); 725 PDecl->startDefinition(); 726 } else { 727 if (PrevDecl) { 728 // Check for circular dependencies among protocol declarations. This can 729 // only happen if this protocol was forward-declared. 730 ObjCList<ObjCProtocolDecl> PList; 731 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 732 err = CheckForwardProtocolDeclarationForCircularDependency( 733 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); 734 } 735 736 // Create the new declaration. 737 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 738 ProtocolLoc, AtProtoInterfaceLoc, 739 /*PrevDecl=*/PrevDecl); 740 741 PushOnScopeChains(PDecl, TUScope); 742 PDecl->startDefinition(); 743 } 744 745 if (AttrList) 746 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 747 748 // Merge attributes from previous declarations. 749 if (PrevDecl) 750 mergeDeclAttributes(PDecl, PrevDecl); 751 752 if (!err && NumProtoRefs ) { 753 /// Check then save referenced protocols. 754 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 755 ProtoLocs, Context); 756 } 757 758 CheckObjCDeclScope(PDecl); 759 return ActOnObjCContainerStartDefinition(PDecl); 760} 761 762static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, 763 ObjCProtocolDecl *&UndefinedProtocol) { 764 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) { 765 UndefinedProtocol = PDecl; 766 return true; 767 } 768 769 for (auto *PI : PDecl->protocols()) 770 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) { 771 UndefinedProtocol = PI; 772 return true; 773 } 774 return false; 775} 776 777/// FindProtocolDeclaration - This routine looks up protocols and 778/// issues an error if they are not declared. It returns list of 779/// protocol declarations in its 'Protocols' argument. 780void 781Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 782 const IdentifierLocPair *ProtocolId, 783 unsigned NumProtocols, 784 SmallVectorImpl<Decl *> &Protocols) { 785 for (unsigned i = 0; i != NumProtocols; ++i) { 786 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 787 ProtocolId[i].second); 788 if (!PDecl) { 789 TypoCorrection Corrected = CorrectTypo( 790 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), 791 LookupObjCProtocolName, TUScope, nullptr, 792 llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(), 793 CTK_ErrorRecovery); 794 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) 795 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest) 796 << ProtocolId[i].first); 797 } 798 799 if (!PDecl) { 800 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 801 << ProtocolId[i].first; 802 continue; 803 } 804 // If this is a forward protocol declaration, get its definition. 805 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) 806 PDecl = PDecl->getDefinition(); 807 808 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 809 810 // If this is a forward declaration and we are supposed to warn in this 811 // case, do it. 812 // FIXME: Recover nicely in the hidden case. 813 ObjCProtocolDecl *UndefinedProtocol; 814 815 if (WarnOnDeclarations && 816 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { 817 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 818 << ProtocolId[i].first; 819 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined) 820 << UndefinedProtocol; 821 } 822 Protocols.push_back(PDecl); 823 } 824} 825 826/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 827/// a class method in its extension. 828/// 829void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 830 ObjCInterfaceDecl *ID) { 831 if (!ID) 832 return; // Possibly due to previous error 833 834 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 835 for (auto *MD : ID->methods()) 836 MethodMap[MD->getSelector()] = MD; 837 838 if (MethodMap.empty()) 839 return; 840 for (const auto *Method : CAT->methods()) { 841 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 842 if (PrevMethod && 843 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && 844 !MatchTwoMethodDeclarations(Method, PrevMethod)) { 845 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 846 << Method->getDeclName(); 847 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 848 } 849 } 850} 851 852/// ActOnForwardProtocolDeclaration - Handle \@protocol foo; 853Sema::DeclGroupPtrTy 854Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 855 const IdentifierLocPair *IdentList, 856 unsigned NumElts, 857 AttributeList *attrList) { 858 SmallVector<Decl *, 8> DeclsInGroup; 859 for (unsigned i = 0; i != NumElts; ++i) { 860 IdentifierInfo *Ident = IdentList[i].first; 861 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second, 862 ForRedeclaration); 863 ObjCProtocolDecl *PDecl 864 = ObjCProtocolDecl::Create(Context, CurContext, Ident, 865 IdentList[i].second, AtProtocolLoc, 866 PrevDecl); 867 868 PushOnScopeChains(PDecl, TUScope); 869 CheckObjCDeclScope(PDecl); 870 871 if (attrList) 872 ProcessDeclAttributeList(TUScope, PDecl, attrList); 873 874 if (PrevDecl) 875 mergeDeclAttributes(PDecl, PrevDecl); 876 877 DeclsInGroup.push_back(PDecl); 878 } 879 880 return BuildDeclaratorGroup(DeclsInGroup, false); 881} 882 883Decl *Sema:: 884ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 885 IdentifierInfo *ClassName, SourceLocation ClassLoc, 886 IdentifierInfo *CategoryName, 887 SourceLocation CategoryLoc, 888 Decl * const *ProtoRefs, 889 unsigned NumProtoRefs, 890 const SourceLocation *ProtoLocs, 891 SourceLocation EndProtoLoc) { 892 ObjCCategoryDecl *CDecl; 893 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 894 895 /// Check that class of this category is already completely declared. 896 897 if (!IDecl 898 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 899 diag::err_category_forward_interface, 900 CategoryName == nullptr)) { 901 // Create an invalid ObjCCategoryDecl to serve as context for 902 // the enclosing method declarations. We mark the decl invalid 903 // to make it clear that this isn't a valid AST. 904 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 905 ClassLoc, CategoryLoc, CategoryName,IDecl); 906 CDecl->setInvalidDecl(); 907 CurContext->addDecl(CDecl); 908 909 if (!IDecl) 910 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 911 return ActOnObjCContainerStartDefinition(CDecl); 912 } 913 914 if (!CategoryName && IDecl->getImplementation()) { 915 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 916 Diag(IDecl->getImplementation()->getLocation(), 917 diag::note_implementation_declared); 918 } 919 920 if (CategoryName) { 921 /// Check for duplicate interface declaration for this category 922 if (ObjCCategoryDecl *Previous 923 = IDecl->FindCategoryDeclaration(CategoryName)) { 924 // Class extensions can be declared multiple times, categories cannot. 925 Diag(CategoryLoc, diag::warn_dup_category_def) 926 << ClassName << CategoryName; 927 Diag(Previous->getLocation(), diag::note_previous_definition); 928 } 929 } 930 931 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 932 ClassLoc, CategoryLoc, CategoryName, IDecl); 933 // FIXME: PushOnScopeChains? 934 CurContext->addDecl(CDecl); 935 936 if (NumProtoRefs) { 937 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 938 ProtoLocs, Context); 939 // Protocols in the class extension belong to the class. 940 if (CDecl->IsClassExtension()) 941 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, 942 NumProtoRefs, Context); 943 } 944 945 CheckObjCDeclScope(CDecl); 946 return ActOnObjCContainerStartDefinition(CDecl); 947} 948 949/// ActOnStartCategoryImplementation - Perform semantic checks on the 950/// category implementation declaration and build an ObjCCategoryImplDecl 951/// object. 952Decl *Sema::ActOnStartCategoryImplementation( 953 SourceLocation AtCatImplLoc, 954 IdentifierInfo *ClassName, SourceLocation ClassLoc, 955 IdentifierInfo *CatName, SourceLocation CatLoc) { 956 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 957 ObjCCategoryDecl *CatIDecl = nullptr; 958 if (IDecl && IDecl->hasDefinition()) { 959 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 960 if (!CatIDecl) { 961 // Category @implementation with no corresponding @interface. 962 // Create and install one. 963 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, 964 ClassLoc, CatLoc, 965 CatName, IDecl); 966 CatIDecl->setImplicit(); 967 } 968 } 969 970 ObjCCategoryImplDecl *CDecl = 971 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, 972 ClassLoc, AtCatImplLoc, CatLoc); 973 /// Check that class of this category is already completely declared. 974 if (!IDecl) { 975 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 976 CDecl->setInvalidDecl(); 977 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 978 diag::err_undef_interface)) { 979 CDecl->setInvalidDecl(); 980 } 981 982 // FIXME: PushOnScopeChains? 983 CurContext->addDecl(CDecl); 984 985 // If the interface is deprecated/unavailable, warn/error about it. 986 if (IDecl) 987 DiagnoseUseOfDecl(IDecl, ClassLoc); 988 989 /// Check that CatName, category name, is not used in another implementation. 990 if (CatIDecl) { 991 if (CatIDecl->getImplementation()) { 992 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 993 << CatName; 994 Diag(CatIDecl->getImplementation()->getLocation(), 995 diag::note_previous_definition); 996 CDecl->setInvalidDecl(); 997 } else { 998 CatIDecl->setImplementation(CDecl); 999 // Warn on implementating category of deprecated class under 1000 // -Wdeprecated-implementations flag. 1001 DiagnoseObjCImplementedDeprecations(*this, 1002 dyn_cast<NamedDecl>(IDecl), 1003 CDecl->getLocation(), 2); 1004 } 1005 } 1006 1007 CheckObjCDeclScope(CDecl); 1008 return ActOnObjCContainerStartDefinition(CDecl); 1009} 1010 1011Decl *Sema::ActOnStartClassImplementation( 1012 SourceLocation AtClassImplLoc, 1013 IdentifierInfo *ClassName, SourceLocation ClassLoc, 1014 IdentifierInfo *SuperClassname, 1015 SourceLocation SuperClassLoc) { 1016 ObjCInterfaceDecl *IDecl = nullptr; 1017 // Check for another declaration kind with the same name. 1018 NamedDecl *PrevDecl 1019 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 1020 ForRedeclaration); 1021 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1022 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 1023 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1024 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 1025 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 1026 diag::warn_undef_interface); 1027 } else { 1028 // We did not find anything with the name ClassName; try to correct for 1029 // typos in the class name. 1030 TypoCorrection Corrected = CorrectTypo( 1031 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope, 1032 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError); 1033 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1034 // Suggest the (potentially) correct interface name. Don't provide a 1035 // code-modification hint or use the typo name for recovery, because 1036 // this is just a warning. The program may actually be correct. 1037 diagnoseTypo(Corrected, 1038 PDiag(diag::warn_undef_interface_suggest) << ClassName, 1039 /*ErrorRecovery*/false); 1040 } else { 1041 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 1042 } 1043 } 1044 1045 // Check that super class name is valid class name 1046 ObjCInterfaceDecl *SDecl = nullptr; 1047 if (SuperClassname) { 1048 // Check if a different kind of symbol declared in this scope. 1049 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 1050 LookupOrdinaryName); 1051 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1052 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 1053 << SuperClassname; 1054 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1055 } else { 1056 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 1057 if (SDecl && !SDecl->hasDefinition()) 1058 SDecl = nullptr; 1059 if (!SDecl) 1060 Diag(SuperClassLoc, diag::err_undef_superclass) 1061 << SuperClassname << ClassName; 1062 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { 1063 // This implementation and its interface do not have the same 1064 // super class. 1065 Diag(SuperClassLoc, diag::err_conflicting_super_class) 1066 << SDecl->getDeclName(); 1067 Diag(SDecl->getLocation(), diag::note_previous_definition); 1068 } 1069 } 1070 } 1071 1072 if (!IDecl) { 1073 // Legacy case of @implementation with no corresponding @interface. 1074 // Build, chain & install the interface decl into the identifier. 1075 1076 // FIXME: Do we support attributes on the @implementation? If so we should 1077 // copy them over. 1078 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 1079 ClassName, /*PrevDecl=*/nullptr, ClassLoc, 1080 true); 1081 IDecl->startDefinition(); 1082 if (SDecl) { 1083 IDecl->setSuperClass(SDecl); 1084 IDecl->setSuperClassLoc(SuperClassLoc); 1085 IDecl->setEndOfDefinitionLoc(SuperClassLoc); 1086 } else { 1087 IDecl->setEndOfDefinitionLoc(ClassLoc); 1088 } 1089 1090 PushOnScopeChains(IDecl, TUScope); 1091 } else { 1092 // Mark the interface as being completed, even if it was just as 1093 // @class ....; 1094 // declaration; the user cannot reopen it. 1095 if (!IDecl->hasDefinition()) 1096 IDecl->startDefinition(); 1097 } 1098 1099 ObjCImplementationDecl* IMPDecl = 1100 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, 1101 ClassLoc, AtClassImplLoc, SuperClassLoc); 1102 1103 if (CheckObjCDeclScope(IMPDecl)) 1104 return ActOnObjCContainerStartDefinition(IMPDecl); 1105 1106 // Check that there is no duplicate implementation of this class. 1107 if (IDecl->getImplementation()) { 1108 // FIXME: Don't leak everything! 1109 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 1110 Diag(IDecl->getImplementation()->getLocation(), 1111 diag::note_previous_definition); 1112 IMPDecl->setInvalidDecl(); 1113 } else { // add it to the list. 1114 IDecl->setImplementation(IMPDecl); 1115 PushOnScopeChains(IMPDecl, TUScope); 1116 // Warn on implementating deprecated class under 1117 // -Wdeprecated-implementations flag. 1118 DiagnoseObjCImplementedDeprecations(*this, 1119 dyn_cast<NamedDecl>(IDecl), 1120 IMPDecl->getLocation(), 1); 1121 } 1122 return ActOnObjCContainerStartDefinition(IMPDecl); 1123} 1124 1125Sema::DeclGroupPtrTy 1126Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { 1127 SmallVector<Decl *, 64> DeclsInGroup; 1128 DeclsInGroup.reserve(Decls.size() + 1); 1129 1130 for (unsigned i = 0, e = Decls.size(); i != e; ++i) { 1131 Decl *Dcl = Decls[i]; 1132 if (!Dcl) 1133 continue; 1134 if (Dcl->getDeclContext()->isFileContext()) 1135 Dcl->setTopLevelDeclInObjCContainer(); 1136 DeclsInGroup.push_back(Dcl); 1137 } 1138 1139 DeclsInGroup.push_back(ObjCImpDecl); 1140 1141 return BuildDeclaratorGroup(DeclsInGroup, false); 1142} 1143 1144void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 1145 ObjCIvarDecl **ivars, unsigned numIvars, 1146 SourceLocation RBrace) { 1147 assert(ImpDecl && "missing implementation decl"); 1148 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 1149 if (!IDecl) 1150 return; 1151 /// Check case of non-existing \@interface decl. 1152 /// (legacy objective-c \@implementation decl without an \@interface decl). 1153 /// Add implementations's ivar to the synthesize class's ivar list. 1154 if (IDecl->isImplicitInterfaceDecl()) { 1155 IDecl->setEndOfDefinitionLoc(RBrace); 1156 // Add ivar's to class's DeclContext. 1157 for (unsigned i = 0, e = numIvars; i != e; ++i) { 1158 ivars[i]->setLexicalDeclContext(ImpDecl); 1159 IDecl->makeDeclVisibleInContext(ivars[i]); 1160 ImpDecl->addDecl(ivars[i]); 1161 } 1162 1163 return; 1164 } 1165 // If implementation has empty ivar list, just return. 1166 if (numIvars == 0) 1167 return; 1168 1169 assert(ivars && "missing @implementation ivars"); 1170 if (LangOpts.ObjCRuntime.isNonFragile()) { 1171 if (ImpDecl->getSuperClass()) 1172 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 1173 for (unsigned i = 0; i < numIvars; i++) { 1174 ObjCIvarDecl* ImplIvar = ivars[i]; 1175 if (const ObjCIvarDecl *ClsIvar = 1176 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 1177 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 1178 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1179 continue; 1180 } 1181 // Check class extensions (unnamed categories) for duplicate ivars. 1182 for (const auto *CDecl : IDecl->visible_extensions()) { 1183 if (const ObjCIvarDecl *ClsExtIvar = 1184 CDecl->getIvarDecl(ImplIvar->getIdentifier())) { 1185 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 1186 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 1187 continue; 1188 } 1189 } 1190 // Instance ivar to Implementation's DeclContext. 1191 ImplIvar->setLexicalDeclContext(ImpDecl); 1192 IDecl->makeDeclVisibleInContext(ImplIvar); 1193 ImpDecl->addDecl(ImplIvar); 1194 } 1195 return; 1196 } 1197 // Check interface's Ivar list against those in the implementation. 1198 // names and types must match. 1199 // 1200 unsigned j = 0; 1201 ObjCInterfaceDecl::ivar_iterator 1202 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 1203 for (; numIvars > 0 && IVI != IVE; ++IVI) { 1204 ObjCIvarDecl* ImplIvar = ivars[j++]; 1205 ObjCIvarDecl* ClsIvar = *IVI; 1206 assert (ImplIvar && "missing implementation ivar"); 1207 assert (ClsIvar && "missing class ivar"); 1208 1209 // First, make sure the types match. 1210 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { 1211 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 1212 << ImplIvar->getIdentifier() 1213 << ImplIvar->getType() << ClsIvar->getType(); 1214 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1215 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && 1216 ImplIvar->getBitWidthValue(Context) != 1217 ClsIvar->getBitWidthValue(Context)) { 1218 Diag(ImplIvar->getBitWidth()->getLocStart(), 1219 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier(); 1220 Diag(ClsIvar->getBitWidth()->getLocStart(), 1221 diag::note_previous_definition); 1222 } 1223 // Make sure the names are identical. 1224 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 1225 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 1226 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 1227 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1228 } 1229 --numIvars; 1230 } 1231 1232 if (numIvars > 0) 1233 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count); 1234 else if (IVI != IVE) 1235 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count); 1236} 1237 1238static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, 1239 ObjCMethodDecl *method, 1240 bool &IncompleteImpl, 1241 unsigned DiagID, 1242 NamedDecl *NeededFor = nullptr) { 1243 // No point warning no definition of method which is 'unavailable'. 1244 switch (method->getAvailability()) { 1245 case AR_Available: 1246 case AR_Deprecated: 1247 break; 1248 1249 // Don't warn about unavailable or not-yet-introduced methods. 1250 case AR_NotYetIntroduced: 1251 case AR_Unavailable: 1252 return; 1253 } 1254 1255 // FIXME: For now ignore 'IncompleteImpl'. 1256 // Previously we grouped all unimplemented methods under a single 1257 // warning, but some users strongly voiced that they would prefer 1258 // separate warnings. We will give that approach a try, as that 1259 // matches what we do with protocols. 1260 { 1261 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID); 1262 B << method; 1263 if (NeededFor) 1264 B << NeededFor; 1265 } 1266 1267 // Issue a note to the original declaration. 1268 SourceLocation MethodLoc = method->getLocStart(); 1269 if (MethodLoc.isValid()) 1270 S.Diag(MethodLoc, diag::note_method_declared_at) << method; 1271} 1272 1273/// Determines if type B can be substituted for type A. Returns true if we can 1274/// guarantee that anything that the user will do to an object of type A can 1275/// also be done to an object of type B. This is trivially true if the two 1276/// types are the same, or if B is a subclass of A. It becomes more complex 1277/// in cases where protocols are involved. 1278/// 1279/// Object types in Objective-C describe the minimum requirements for an 1280/// object, rather than providing a complete description of a type. For 1281/// example, if A is a subclass of B, then B* may refer to an instance of A. 1282/// The principle of substitutability means that we may use an instance of A 1283/// anywhere that we may use an instance of B - it will implement all of the 1284/// ivars of B and all of the methods of B. 1285/// 1286/// This substitutability is important when type checking methods, because 1287/// the implementation may have stricter type definitions than the interface. 1288/// The interface specifies minimum requirements, but the implementation may 1289/// have more accurate ones. For example, a method may privately accept 1290/// instances of B, but only publish that it accepts instances of A. Any 1291/// object passed to it will be type checked against B, and so will implicitly 1292/// by a valid A*. Similarly, a method may return a subclass of the class that 1293/// it is declared as returning. 1294/// 1295/// This is most important when considering subclassing. A method in a 1296/// subclass must accept any object as an argument that its superclass's 1297/// implementation accepts. It may, however, accept a more general type 1298/// without breaking substitutability (i.e. you can still use the subclass 1299/// anywhere that you can use the superclass, but not vice versa). The 1300/// converse requirement applies to return types: the return type for a 1301/// subclass method must be a valid object of the kind that the superclass 1302/// advertises, but it may be specified more accurately. This avoids the need 1303/// for explicit down-casting by callers. 1304/// 1305/// Note: This is a stricter requirement than for assignment. 1306static bool isObjCTypeSubstitutable(ASTContext &Context, 1307 const ObjCObjectPointerType *A, 1308 const ObjCObjectPointerType *B, 1309 bool rejectId) { 1310 // Reject a protocol-unqualified id. 1311 if (rejectId && B->isObjCIdType()) return false; 1312 1313 // If B is a qualified id, then A must also be a qualified id and it must 1314 // implement all of the protocols in B. It may not be a qualified class. 1315 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 1316 // stricter definition so it is not substitutable for id<A>. 1317 if (B->isObjCQualifiedIdType()) { 1318 return A->isObjCQualifiedIdType() && 1319 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), 1320 QualType(B,0), 1321 false); 1322 } 1323 1324 /* 1325 // id is a special type that bypasses type checking completely. We want a 1326 // warning when it is used in one place but not another. 1327 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 1328 1329 1330 // If B is a qualified id, then A must also be a qualified id (which it isn't 1331 // if we've got this far) 1332 if (B->isObjCQualifiedIdType()) return false; 1333 */ 1334 1335 // Now we know that A and B are (potentially-qualified) class types. The 1336 // normal rules for assignment apply. 1337 return Context.canAssignObjCInterfaces(A, B); 1338} 1339 1340static SourceRange getTypeRange(TypeSourceInfo *TSI) { 1341 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 1342} 1343 1344static bool CheckMethodOverrideReturn(Sema &S, 1345 ObjCMethodDecl *MethodImpl, 1346 ObjCMethodDecl *MethodDecl, 1347 bool IsProtocolMethodDecl, 1348 bool IsOverridingMode, 1349 bool Warn) { 1350 if (IsProtocolMethodDecl && 1351 (MethodDecl->getObjCDeclQualifier() != 1352 MethodImpl->getObjCDeclQualifier())) { 1353 if (Warn) { 1354 S.Diag(MethodImpl->getLocation(), 1355 (IsOverridingMode 1356 ? diag::warn_conflicting_overriding_ret_type_modifiers 1357 : diag::warn_conflicting_ret_type_modifiers)) 1358 << MethodImpl->getDeclName() 1359 << MethodImpl->getReturnTypeSourceRange(); 1360 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 1361 << MethodDecl->getReturnTypeSourceRange(); 1362 } 1363 else 1364 return false; 1365 } 1366 1367 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(), 1368 MethodDecl->getReturnType())) 1369 return true; 1370 if (!Warn) 1371 return false; 1372 1373 unsigned DiagID = 1374 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 1375 : diag::warn_conflicting_ret_types; 1376 1377 // Mismatches between ObjC pointers go into a different warning 1378 // category, and sometimes they're even completely whitelisted. 1379 if (const ObjCObjectPointerType *ImplPtrTy = 1380 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { 1381 if (const ObjCObjectPointerType *IfacePtrTy = 1382 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { 1383 // Allow non-matching return types as long as they don't violate 1384 // the principle of substitutability. Specifically, we permit 1385 // return types that are subclasses of the declared return type, 1386 // or that are more-qualified versions of the declared type. 1387 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 1388 return false; 1389 1390 DiagID = 1391 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 1392 : diag::warn_non_covariant_ret_types; 1393 } 1394 } 1395 1396 S.Diag(MethodImpl->getLocation(), DiagID) 1397 << MethodImpl->getDeclName() << MethodDecl->getReturnType() 1398 << MethodImpl->getReturnType() 1399 << MethodImpl->getReturnTypeSourceRange(); 1400 S.Diag(MethodDecl->getLocation(), IsOverridingMode 1401 ? diag::note_previous_declaration 1402 : diag::note_previous_definition) 1403 << MethodDecl->getReturnTypeSourceRange(); 1404 return false; 1405} 1406 1407static bool CheckMethodOverrideParam(Sema &S, 1408 ObjCMethodDecl *MethodImpl, 1409 ObjCMethodDecl *MethodDecl, 1410 ParmVarDecl *ImplVar, 1411 ParmVarDecl *IfaceVar, 1412 bool IsProtocolMethodDecl, 1413 bool IsOverridingMode, 1414 bool Warn) { 1415 if (IsProtocolMethodDecl && 1416 (ImplVar->getObjCDeclQualifier() != 1417 IfaceVar->getObjCDeclQualifier())) { 1418 if (Warn) { 1419 if (IsOverridingMode) 1420 S.Diag(ImplVar->getLocation(), 1421 diag::warn_conflicting_overriding_param_modifiers) 1422 << getTypeRange(ImplVar->getTypeSourceInfo()) 1423 << MethodImpl->getDeclName(); 1424 else S.Diag(ImplVar->getLocation(), 1425 diag::warn_conflicting_param_modifiers) 1426 << getTypeRange(ImplVar->getTypeSourceInfo()) 1427 << MethodImpl->getDeclName(); 1428 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 1429 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1430 } 1431 else 1432 return false; 1433 } 1434 1435 QualType ImplTy = ImplVar->getType(); 1436 QualType IfaceTy = IfaceVar->getType(); 1437 1438 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 1439 return true; 1440 1441 if (!Warn) 1442 return false; 1443 unsigned DiagID = 1444 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 1445 : diag::warn_conflicting_param_types; 1446 1447 // Mismatches between ObjC pointers go into a different warning 1448 // category, and sometimes they're even completely whitelisted. 1449 if (const ObjCObjectPointerType *ImplPtrTy = 1450 ImplTy->getAs<ObjCObjectPointerType>()) { 1451 if (const ObjCObjectPointerType *IfacePtrTy = 1452 IfaceTy->getAs<ObjCObjectPointerType>()) { 1453 // Allow non-matching argument types as long as they don't 1454 // violate the principle of substitutability. Specifically, the 1455 // implementation must accept any objects that the superclass 1456 // accepts, however it may also accept others. 1457 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 1458 return false; 1459 1460 DiagID = 1461 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 1462 : diag::warn_non_contravariant_param_types; 1463 } 1464 } 1465 1466 S.Diag(ImplVar->getLocation(), DiagID) 1467 << getTypeRange(ImplVar->getTypeSourceInfo()) 1468 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 1469 S.Diag(IfaceVar->getLocation(), 1470 (IsOverridingMode ? diag::note_previous_declaration 1471 : diag::note_previous_definition)) 1472 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1473 return false; 1474} 1475 1476/// In ARC, check whether the conventional meanings of the two methods 1477/// match. If they don't, it's a hard error. 1478static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 1479 ObjCMethodDecl *decl) { 1480 ObjCMethodFamily implFamily = impl->getMethodFamily(); 1481 ObjCMethodFamily declFamily = decl->getMethodFamily(); 1482 if (implFamily == declFamily) return false; 1483 1484 // Since conventions are sorted by selector, the only possibility is 1485 // that the types differ enough to cause one selector or the other 1486 // to fall out of the family. 1487 assert(implFamily == OMF_None || declFamily == OMF_None); 1488 1489 // No further diagnostics required on invalid declarations. 1490 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 1491 1492 const ObjCMethodDecl *unmatched = impl; 1493 ObjCMethodFamily family = declFamily; 1494 unsigned errorID = diag::err_arc_lost_method_convention; 1495 unsigned noteID = diag::note_arc_lost_method_convention; 1496 if (declFamily == OMF_None) { 1497 unmatched = decl; 1498 family = implFamily; 1499 errorID = diag::err_arc_gained_method_convention; 1500 noteID = diag::note_arc_gained_method_convention; 1501 } 1502 1503 // Indexes into a %select clause in the diagnostic. 1504 enum FamilySelector { 1505 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 1506 }; 1507 FamilySelector familySelector = FamilySelector(); 1508 1509 switch (family) { 1510 case OMF_None: llvm_unreachable("logic error, no method convention"); 1511 case OMF_retain: 1512 case OMF_release: 1513 case OMF_autorelease: 1514 case OMF_dealloc: 1515 case OMF_finalize: 1516 case OMF_retainCount: 1517 case OMF_self: 1518 case OMF_initialize: 1519 case OMF_performSelector: 1520 // Mismatches for these methods don't change ownership 1521 // conventions, so we don't care. 1522 return false; 1523 1524 case OMF_init: familySelector = F_init; break; 1525 case OMF_alloc: familySelector = F_alloc; break; 1526 case OMF_copy: familySelector = F_copy; break; 1527 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 1528 case OMF_new: familySelector = F_new; break; 1529 } 1530 1531 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 1532 ReasonSelector reasonSelector; 1533 1534 // The only reason these methods don't fall within their families is 1535 // due to unusual result types. 1536 if (unmatched->getReturnType()->isObjCObjectPointerType()) { 1537 reasonSelector = R_UnrelatedReturn; 1538 } else { 1539 reasonSelector = R_NonObjectReturn; 1540 } 1541 1542 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector); 1543 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector); 1544 1545 return true; 1546} 1547 1548void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1549 ObjCMethodDecl *MethodDecl, 1550 bool IsProtocolMethodDecl) { 1551 if (getLangOpts().ObjCAutoRefCount && 1552 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 1553 return; 1554 1555 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1556 IsProtocolMethodDecl, false, 1557 true); 1558 1559 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1560 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 1561 EF = MethodDecl->param_end(); 1562 IM != EM && IF != EF; ++IM, ++IF) { 1563 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 1564 IsProtocolMethodDecl, false, true); 1565 } 1566 1567 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 1568 Diag(ImpMethodDecl->getLocation(), 1569 diag::warn_conflicting_variadic); 1570 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 1571 } 1572} 1573 1574void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, 1575 ObjCMethodDecl *Overridden, 1576 bool IsProtocolMethodDecl) { 1577 1578 CheckMethodOverrideReturn(*this, Method, Overridden, 1579 IsProtocolMethodDecl, true, 1580 true); 1581 1582 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), 1583 IF = Overridden->param_begin(), EM = Method->param_end(), 1584 EF = Overridden->param_end(); 1585 IM != EM && IF != EF; ++IM, ++IF) { 1586 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, 1587 IsProtocolMethodDecl, true, true); 1588 } 1589 1590 if (Method->isVariadic() != Overridden->isVariadic()) { 1591 Diag(Method->getLocation(), 1592 diag::warn_conflicting_overriding_variadic); 1593 Diag(Overridden->getLocation(), diag::note_previous_declaration); 1594 } 1595} 1596 1597/// WarnExactTypedMethods - This routine issues a warning if method 1598/// implementation declaration matches exactly that of its declaration. 1599void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1600 ObjCMethodDecl *MethodDecl, 1601 bool IsProtocolMethodDecl) { 1602 // don't issue warning when protocol method is optional because primary 1603 // class is not required to implement it and it is safe for protocol 1604 // to implement it. 1605 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 1606 return; 1607 // don't issue warning when primary class's method is 1608 // depecated/unavailable. 1609 if (MethodDecl->hasAttr<UnavailableAttr>() || 1610 MethodDecl->hasAttr<DeprecatedAttr>()) 1611 return; 1612 1613 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1614 IsProtocolMethodDecl, false, false); 1615 if (match) 1616 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1617 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 1618 EF = MethodDecl->param_end(); 1619 IM != EM && IF != EF; ++IM, ++IF) { 1620 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 1621 *IM, *IF, 1622 IsProtocolMethodDecl, false, false); 1623 if (!match) 1624 break; 1625 } 1626 if (match) 1627 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 1628 if (match) 1629 match = !(MethodDecl->isClassMethod() && 1630 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 1631 1632 if (match) { 1633 Diag(ImpMethodDecl->getLocation(), 1634 diag::warn_category_method_impl_match); 1635 Diag(MethodDecl->getLocation(), diag::note_method_declared_at) 1636 << MethodDecl->getDeclName(); 1637 } 1638} 1639 1640/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 1641/// improve the efficiency of selector lookups and type checking by associating 1642/// with each protocol / interface / category the flattened instance tables. If 1643/// we used an immutable set to keep the table then it wouldn't add significant 1644/// memory cost and it would be handy for lookups. 1645 1646typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; 1647typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; 1648 1649static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, 1650 ProtocolNameSet &PNS) { 1651 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) 1652 PNS.insert(PDecl->getIdentifier()); 1653 for (const auto *PI : PDecl->protocols()) 1654 findProtocolsWithExplicitImpls(PI, PNS); 1655} 1656 1657/// Recursively populates a set with all conformed protocols in a class 1658/// hierarchy that have the 'objc_protocol_requires_explicit_implementation' 1659/// attribute. 1660static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, 1661 ProtocolNameSet &PNS) { 1662 if (!Super) 1663 return; 1664 1665 for (const auto *I : Super->all_referenced_protocols()) 1666 findProtocolsWithExplicitImpls(I, PNS); 1667 1668 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS); 1669} 1670 1671/// CheckProtocolMethodDefs - This routine checks unimplemented methods 1672/// Declared in protocol, and those referenced by it. 1673static void CheckProtocolMethodDefs(Sema &S, 1674 SourceLocation ImpLoc, 1675 ObjCProtocolDecl *PDecl, 1676 bool& IncompleteImpl, 1677 const Sema::SelectorSet &InsMap, 1678 const Sema::SelectorSet &ClsMap, 1679 ObjCContainerDecl *CDecl, 1680 LazyProtocolNameSet &ProtocolsExplictImpl) { 1681 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); 1682 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 1683 : dyn_cast<ObjCInterfaceDecl>(CDecl); 1684 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 1685 1686 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 1687 ObjCInterfaceDecl *NSIDecl = nullptr; 1688 1689 // If this protocol is marked 'objc_protocol_requires_explicit_implementation' 1690 // then we should check if any class in the super class hierarchy also 1691 // conforms to this protocol, either directly or via protocol inheritance. 1692 // If so, we can skip checking this protocol completely because we 1693 // know that a parent class already satisfies this protocol. 1694 // 1695 // Note: we could generalize this logic for all protocols, and merely 1696 // add the limit on looking at the super class chain for just 1697 // specially marked protocols. This may be a good optimization. This 1698 // change is restricted to 'objc_protocol_requires_explicit_implementation' 1699 // protocols for now for controlled evaluation. 1700 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { 1701 if (!ProtocolsExplictImpl) { 1702 ProtocolsExplictImpl.reset(new ProtocolNameSet); 1703 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl); 1704 } 1705 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) != 1706 ProtocolsExplictImpl->end()) 1707 return; 1708 1709 // If no super class conforms to the protocol, we should not search 1710 // for methods in the super class to implicitly satisfy the protocol. 1711 Super = nullptr; 1712 } 1713 1714 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { 1715 // check to see if class implements forwardInvocation method and objects 1716 // of this class are derived from 'NSProxy' so that to forward requests 1717 // from one object to another. 1718 // Under such conditions, which means that every method possible is 1719 // implemented in the class, we should not issue "Method definition not 1720 // found" warnings. 1721 // FIXME: Use a general GetUnarySelector method for this. 1722 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation"); 1723 Selector fISelector = S.Context.Selectors.getSelector(1, &II); 1724 if (InsMap.count(fISelector)) 1725 // Is IDecl derived from 'NSProxy'? If so, no instance methods 1726 // need be implemented in the implementation. 1727 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy")); 1728 } 1729 1730 // If this is a forward protocol declaration, get its definition. 1731 if (!PDecl->isThisDeclarationADefinition() && 1732 PDecl->getDefinition()) 1733 PDecl = PDecl->getDefinition(); 1734 1735 // If a method lookup fails locally we still need to look and see if 1736 // the method was implemented by a base class or an inherited 1737 // protocol. This lookup is slow, but occurs rarely in correct code 1738 // and otherwise would terminate in a warning. 1739 1740 // check unimplemented instance methods. 1741 if (!NSIDecl) 1742 for (auto *method : PDecl->instance_methods()) { 1743 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1744 !method->isPropertyAccessor() && 1745 !InsMap.count(method->getSelector()) && 1746 (!Super || !Super->lookupMethod(method->getSelector(), 1747 true /* instance */, 1748 false /* shallowCategory */, 1749 true /* followsSuper */, 1750 nullptr /* category */))) { 1751 // If a method is not implemented in the category implementation but 1752 // has been declared in its primary class, superclass, 1753 // or in one of their protocols, no need to issue the warning. 1754 // This is because method will be implemented in the primary class 1755 // or one of its super class implementation. 1756 1757 // Ugly, but necessary. Method declared in protcol might have 1758 // have been synthesized due to a property declared in the class which 1759 // uses the protocol. 1760 if (ObjCMethodDecl *MethodInClass = 1761 IDecl->lookupMethod(method->getSelector(), 1762 true /* instance */, 1763 true /* shallowCategoryLookup */, 1764 false /* followSuper */)) 1765 if (C || MethodInClass->isPropertyAccessor()) 1766 continue; 1767 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1768 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 1769 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, 1770 PDecl); 1771 } 1772 } 1773 } 1774 // check unimplemented class methods 1775 for (auto *method : PDecl->class_methods()) { 1776 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1777 !ClsMap.count(method->getSelector()) && 1778 (!Super || !Super->lookupMethod(method->getSelector(), 1779 false /* class method */, 1780 false /* shallowCategoryLookup */, 1781 true /* followSuper */, 1782 nullptr /* category */))) { 1783 // See above comment for instance method lookups. 1784 if (C && IDecl->lookupMethod(method->getSelector(), 1785 false /* class */, 1786 true /* shallowCategoryLookup */, 1787 false /* followSuper */)) 1788 continue; 1789 1790 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1791 if (!S.Diags.isIgnored(DIAG, ImpLoc)) { 1792 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl); 1793 } 1794 } 1795 } 1796 // Check on this protocols's referenced protocols, recursively. 1797 for (auto *PI : PDecl->protocols()) 1798 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap, 1799 CDecl, ProtocolsExplictImpl); 1800} 1801 1802/// MatchAllMethodDeclarations - Check methods declared in interface 1803/// or protocol against those declared in their implementations. 1804/// 1805void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap, 1806 const SelectorSet &ClsMap, 1807 SelectorSet &InsMapSeen, 1808 SelectorSet &ClsMapSeen, 1809 ObjCImplDecl* IMPDecl, 1810 ObjCContainerDecl* CDecl, 1811 bool &IncompleteImpl, 1812 bool ImmediateClass, 1813 bool WarnCategoryMethodImpl) { 1814 // Check and see if instance methods in class interface have been 1815 // implemented in the implementation class. If so, their types match. 1816 for (auto *I : CDecl->instance_methods()) { 1817 if (!InsMapSeen.insert(I->getSelector()).second) 1818 continue; 1819 if (!I->isPropertyAccessor() && 1820 !InsMap.count(I->getSelector())) { 1821 if (ImmediateClass) 1822 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 1823 diag::warn_undef_method_impl); 1824 continue; 1825 } else { 1826 ObjCMethodDecl *ImpMethodDecl = 1827 IMPDecl->getInstanceMethod(I->getSelector()); 1828 assert(CDecl->getInstanceMethod(I->getSelector()) && 1829 "Expected to find the method through lookup as well"); 1830 // ImpMethodDecl may be null as in a @dynamic property. 1831 if (ImpMethodDecl) { 1832 if (!WarnCategoryMethodImpl) 1833 WarnConflictingTypedMethods(ImpMethodDecl, I, 1834 isa<ObjCProtocolDecl>(CDecl)); 1835 else if (!I->isPropertyAccessor()) 1836 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl)); 1837 } 1838 } 1839 } 1840 1841 // Check and see if class methods in class interface have been 1842 // implemented in the implementation class. If so, their types match. 1843 for (auto *I : CDecl->class_methods()) { 1844 if (!ClsMapSeen.insert(I->getSelector()).second) 1845 continue; 1846 if (!ClsMap.count(I->getSelector())) { 1847 if (ImmediateClass) 1848 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl, 1849 diag::warn_undef_method_impl); 1850 } else { 1851 ObjCMethodDecl *ImpMethodDecl = 1852 IMPDecl->getClassMethod(I->getSelector()); 1853 assert(CDecl->getClassMethod(I->getSelector()) && 1854 "Expected to find the method through lookup as well"); 1855 if (!WarnCategoryMethodImpl) 1856 WarnConflictingTypedMethods(ImpMethodDecl, I, 1857 isa<ObjCProtocolDecl>(CDecl)); 1858 else 1859 WarnExactTypedMethods(ImpMethodDecl, I, 1860 isa<ObjCProtocolDecl>(CDecl)); 1861 } 1862 } 1863 1864 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) { 1865 // Also, check for methods declared in protocols inherited by 1866 // this protocol. 1867 for (auto *PI : PD->protocols()) 1868 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1869 IMPDecl, PI, IncompleteImpl, false, 1870 WarnCategoryMethodImpl); 1871 } 1872 1873 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1874 // when checking that methods in implementation match their declaration, 1875 // i.e. when WarnCategoryMethodImpl is false, check declarations in class 1876 // extension; as well as those in categories. 1877 if (!WarnCategoryMethodImpl) { 1878 for (auto *Cat : I->visible_categories()) 1879 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1880 IMPDecl, Cat, IncompleteImpl, false, 1881 WarnCategoryMethodImpl); 1882 } else { 1883 // Also methods in class extensions need be looked at next. 1884 for (auto *Ext : I->visible_extensions()) 1885 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1886 IMPDecl, Ext, IncompleteImpl, false, 1887 WarnCategoryMethodImpl); 1888 } 1889 1890 // Check for any implementation of a methods declared in protocol. 1891 for (auto *PI : I->all_referenced_protocols()) 1892 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1893 IMPDecl, PI, IncompleteImpl, false, 1894 WarnCategoryMethodImpl); 1895 1896 // FIXME. For now, we are not checking for extact match of methods 1897 // in category implementation and its primary class's super class. 1898 if (!WarnCategoryMethodImpl && I->getSuperClass()) 1899 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1900 IMPDecl, 1901 I->getSuperClass(), IncompleteImpl, false); 1902 } 1903} 1904 1905/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 1906/// category matches with those implemented in its primary class and 1907/// warns each time an exact match is found. 1908void Sema::CheckCategoryVsClassMethodMatches( 1909 ObjCCategoryImplDecl *CatIMPDecl) { 1910 // Get category's primary class. 1911 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 1912 if (!CatDecl) 1913 return; 1914 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 1915 if (!IDecl) 1916 return; 1917 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); 1918 SelectorSet InsMap, ClsMap; 1919 1920 for (const auto *I : CatIMPDecl->instance_methods()) { 1921 Selector Sel = I->getSelector(); 1922 // When checking for methods implemented in the category, skip over 1923 // those declared in category class's super class. This is because 1924 // the super class must implement the method. 1925 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true)) 1926 continue; 1927 InsMap.insert(Sel); 1928 } 1929 1930 for (const auto *I : CatIMPDecl->class_methods()) { 1931 Selector Sel = I->getSelector(); 1932 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false)) 1933 continue; 1934 ClsMap.insert(Sel); 1935 } 1936 if (InsMap.empty() && ClsMap.empty()) 1937 return; 1938 1939 SelectorSet InsMapSeen, ClsMapSeen; 1940 bool IncompleteImpl = false; 1941 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1942 CatIMPDecl, IDecl, 1943 IncompleteImpl, false, 1944 true /*WarnCategoryMethodImpl*/); 1945} 1946 1947void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 1948 ObjCContainerDecl* CDecl, 1949 bool IncompleteImpl) { 1950 SelectorSet InsMap; 1951 // Check and see if instance methods in class interface have been 1952 // implemented in the implementation class. 1953 for (const auto *I : IMPDecl->instance_methods()) 1954 InsMap.insert(I->getSelector()); 1955 1956 // Check and see if properties declared in the interface have either 1) 1957 // an implementation or 2) there is a @synthesize/@dynamic implementation 1958 // of the property in the @implementation. 1959 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 1960 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties && 1961 LangOpts.ObjCRuntime.isNonFragile() && 1962 !IDecl->isObjCRequiresPropertyDefs(); 1963 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); 1964 } 1965 1966 SelectorSet ClsMap; 1967 for (const auto *I : IMPDecl->class_methods()) 1968 ClsMap.insert(I->getSelector()); 1969 1970 // Check for type conflict of methods declared in a class/protocol and 1971 // its implementation; if any. 1972 SelectorSet InsMapSeen, ClsMapSeen; 1973 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1974 IMPDecl, CDecl, 1975 IncompleteImpl, true); 1976 1977 // check all methods implemented in category against those declared 1978 // in its primary class. 1979 if (ObjCCategoryImplDecl *CatDecl = 1980 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 1981 CheckCategoryVsClassMethodMatches(CatDecl); 1982 1983 // Check the protocol list for unimplemented methods in the @implementation 1984 // class. 1985 // Check and see if class methods in class interface have been 1986 // implemented in the implementation class. 1987 1988 LazyProtocolNameSet ExplicitImplProtocols; 1989 1990 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1991 for (auto *PI : I->all_referenced_protocols()) 1992 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl, 1993 InsMap, ClsMap, I, ExplicitImplProtocols); 1994 // Check class extensions (unnamed categories) 1995 for (auto *Ext : I->visible_extensions()) 1996 ImplMethodsVsClassMethods(S, IMPDecl, Ext, IncompleteImpl); 1997 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 1998 // For extended class, unimplemented methods in its protocols will 1999 // be reported in the primary class. 2000 if (!C->IsClassExtension()) { 2001 for (auto *P : C->protocols()) 2002 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P, 2003 IncompleteImpl, InsMap, ClsMap, CDecl, 2004 ExplicitImplProtocols); 2005 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, 2006 /*SynthesizeProperties=*/false); 2007 } 2008 } else 2009 llvm_unreachable("invalid ObjCContainerDecl type."); 2010} 2011 2012Sema::DeclGroupPtrTy 2013Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 2014 IdentifierInfo **IdentList, 2015 SourceLocation *IdentLocs, 2016 unsigned NumElts) { 2017 SmallVector<Decl *, 8> DeclsInGroup; 2018 for (unsigned i = 0; i != NumElts; ++i) { 2019 // Check for another declaration kind with the same name. 2020 NamedDecl *PrevDecl 2021 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 2022 LookupOrdinaryName, ForRedeclaration); 2023 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 2024 // GCC apparently allows the following idiom: 2025 // 2026 // typedef NSObject < XCElementTogglerP > XCElementToggler; 2027 // @class XCElementToggler; 2028 // 2029 // Here we have chosen to ignore the forward class declaration 2030 // with a warning. Since this is the implied behavior. 2031 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 2032 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 2033 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 2034 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2035 } else { 2036 // a forward class declaration matching a typedef name of a class refers 2037 // to the underlying class. Just ignore the forward class with a warning 2038 // as this will force the intended behavior which is to lookup the 2039 // typedef name. 2040 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { 2041 Diag(AtClassLoc, diag::warn_forward_class_redefinition) 2042 << IdentList[i]; 2043 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2044 continue; 2045 } 2046 } 2047 } 2048 2049 // Create a declaration to describe this forward declaration. 2050 ObjCInterfaceDecl *PrevIDecl 2051 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 2052 2053 IdentifierInfo *ClassName = IdentList[i]; 2054 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { 2055 // A previous decl with a different name is because of 2056 // @compatibility_alias, for example: 2057 // \code 2058 // @class NewImage; 2059 // @compatibility_alias OldImage NewImage; 2060 // \endcode 2061 // A lookup for 'OldImage' will return the 'NewImage' decl. 2062 // 2063 // In such a case use the real declaration name, instead of the alias one, 2064 // otherwise we will break IdentifierResolver and redecls-chain invariants. 2065 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl 2066 // has been aliased. 2067 ClassName = PrevIDecl->getIdentifier(); 2068 } 2069 2070 ObjCInterfaceDecl *IDecl 2071 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 2072 ClassName, PrevIDecl, IdentLocs[i]); 2073 IDecl->setAtEndRange(IdentLocs[i]); 2074 2075 PushOnScopeChains(IDecl, TUScope); 2076 CheckObjCDeclScope(IDecl); 2077 DeclsInGroup.push_back(IDecl); 2078 } 2079 2080 return BuildDeclaratorGroup(DeclsInGroup, false); 2081} 2082 2083static bool tryMatchRecordTypes(ASTContext &Context, 2084 Sema::MethodMatchStrategy strategy, 2085 const Type *left, const Type *right); 2086 2087static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 2088 QualType leftQT, QualType rightQT) { 2089 const Type *left = 2090 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 2091 const Type *right = 2092 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 2093 2094 if (left == right) return true; 2095 2096 // If we're doing a strict match, the types have to match exactly. 2097 if (strategy == Sema::MMS_strict) return false; 2098 2099 if (left->isIncompleteType() || right->isIncompleteType()) return false; 2100 2101 // Otherwise, use this absurdly complicated algorithm to try to 2102 // validate the basic, low-level compatibility of the two types. 2103 2104 // As a minimum, require the sizes and alignments to match. 2105 TypeInfo LeftTI = Context.getTypeInfo(left); 2106 TypeInfo RightTI = Context.getTypeInfo(right); 2107 if (LeftTI.Width != RightTI.Width) 2108 return false; 2109 2110 if (LeftTI.Align != RightTI.Align) 2111 return false; 2112 2113 // Consider all the kinds of non-dependent canonical types: 2114 // - functions and arrays aren't possible as return and parameter types 2115 2116 // - vector types of equal size can be arbitrarily mixed 2117 if (isa<VectorType>(left)) return isa<VectorType>(right); 2118 if (isa<VectorType>(right)) return false; 2119 2120 // - references should only match references of identical type 2121 // - structs, unions, and Objective-C objects must match more-or-less 2122 // exactly 2123 // - everything else should be a scalar 2124 if (!left->isScalarType() || !right->isScalarType()) 2125 return tryMatchRecordTypes(Context, strategy, left, right); 2126 2127 // Make scalars agree in kind, except count bools as chars, and group 2128 // all non-member pointers together. 2129 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 2130 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 2131 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 2132 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 2133 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) 2134 leftSK = Type::STK_ObjCObjectPointer; 2135 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) 2136 rightSK = Type::STK_ObjCObjectPointer; 2137 2138 // Note that data member pointers and function member pointers don't 2139 // intermix because of the size differences. 2140 2141 return (leftSK == rightSK); 2142} 2143 2144static bool tryMatchRecordTypes(ASTContext &Context, 2145 Sema::MethodMatchStrategy strategy, 2146 const Type *lt, const Type *rt) { 2147 assert(lt && rt && lt != rt); 2148 2149 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 2150 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 2151 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 2152 2153 // Require union-hood to match. 2154 if (left->isUnion() != right->isUnion()) return false; 2155 2156 // Require an exact match if either is non-POD. 2157 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 2158 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 2159 return false; 2160 2161 // Require size and alignment to match. 2162 TypeInfo LeftTI = Context.getTypeInfo(lt); 2163 TypeInfo RightTI = Context.getTypeInfo(rt); 2164 if (LeftTI.Width != RightTI.Width) 2165 return false; 2166 2167 if (LeftTI.Align != RightTI.Align) 2168 return false; 2169 2170 // Require fields to match. 2171 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 2172 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 2173 for (; li != le && ri != re; ++li, ++ri) { 2174 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 2175 return false; 2176 } 2177 return (li == le && ri == re); 2178} 2179 2180/// MatchTwoMethodDeclarations - Checks that two methods have matching type and 2181/// returns true, or false, accordingly. 2182/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 2183bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 2184 const ObjCMethodDecl *right, 2185 MethodMatchStrategy strategy) { 2186 if (!matchTypes(Context, strategy, left->getReturnType(), 2187 right->getReturnType())) 2188 return false; 2189 2190 // If either is hidden, it is not considered to match. 2191 if (left->isHidden() || right->isHidden()) 2192 return false; 2193 2194 if (getLangOpts().ObjCAutoRefCount && 2195 (left->hasAttr<NSReturnsRetainedAttr>() 2196 != right->hasAttr<NSReturnsRetainedAttr>() || 2197 left->hasAttr<NSConsumesSelfAttr>() 2198 != right->hasAttr<NSConsumesSelfAttr>())) 2199 return false; 2200 2201 ObjCMethodDecl::param_const_iterator 2202 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), 2203 re = right->param_end(); 2204 2205 for (; li != le && ri != re; ++li, ++ri) { 2206 assert(ri != right->param_end() && "Param mismatch"); 2207 const ParmVarDecl *lparm = *li, *rparm = *ri; 2208 2209 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 2210 return false; 2211 2212 if (getLangOpts().ObjCAutoRefCount && 2213 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 2214 return false; 2215 } 2216 return true; 2217} 2218 2219void Sema::addMethodToGlobalList(ObjCMethodList *List, 2220 ObjCMethodDecl *Method) { 2221 // Record at the head of the list whether there were 0, 1, or >= 2 methods 2222 // inside categories. 2223 if (ObjCCategoryDecl *CD = 2224 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext())) 2225 if (!CD->IsClassExtension() && List->getBits() < 2) 2226 List->setBits(List->getBits() + 1); 2227 2228 // If the list is empty, make it a singleton list. 2229 if (List->getMethod() == nullptr) { 2230 List->setMethod(Method); 2231 List->setNext(nullptr); 2232 return; 2233 } 2234 2235 // We've seen a method with this name, see if we have already seen this type 2236 // signature. 2237 ObjCMethodList *Previous = List; 2238 for (; List; Previous = List, List = List->getNext()) { 2239 // If we are building a module, keep all of the methods. 2240 if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty()) 2241 continue; 2242 2243 if (!MatchTwoMethodDeclarations(Method, List->getMethod())) { 2244 // Even if two method types do not match, we would like to say 2245 // there is more than one declaration so unavailability/deprecated 2246 // warning is not too noisy. 2247 if (!Method->isDefined()) 2248 List->setHasMoreThanOneDecl(true); 2249 continue; 2250 } 2251 2252 ObjCMethodDecl *PrevObjCMethod = List->getMethod(); 2253 2254 // Propagate the 'defined' bit. 2255 if (Method->isDefined()) 2256 PrevObjCMethod->setDefined(true); 2257 else { 2258 // Objective-C doesn't allow an @interface for a class after its 2259 // @implementation. So if Method is not defined and there already is 2260 // an entry for this type signature, Method has to be for a different 2261 // class than PrevObjCMethod. 2262 List->setHasMoreThanOneDecl(true); 2263 } 2264 2265 // If a method is deprecated, push it in the global pool. 2266 // This is used for better diagnostics. 2267 if (Method->isDeprecated()) { 2268 if (!PrevObjCMethod->isDeprecated()) 2269 List->setMethod(Method); 2270 } 2271 // If the new method is unavailable, push it into global pool 2272 // unless previous one is deprecated. 2273 if (Method->isUnavailable()) { 2274 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 2275 List->setMethod(Method); 2276 } 2277 2278 return; 2279 } 2280 2281 // We have a new signature for an existing method - add it. 2282 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 2283 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 2284 Previous->setNext(new (Mem) ObjCMethodList(Method)); 2285} 2286 2287/// \brief Read the contents of the method pool for a given selector from 2288/// external storage. 2289void Sema::ReadMethodPool(Selector Sel) { 2290 assert(ExternalSource && "We need an external AST source"); 2291 ExternalSource->ReadMethodPool(Sel); 2292} 2293 2294void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 2295 bool instance) { 2296 // Ignore methods of invalid containers. 2297 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) 2298 return; 2299 2300 if (ExternalSource) 2301 ReadMethodPool(Method->getSelector()); 2302 2303 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 2304 if (Pos == MethodPool.end()) 2305 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 2306 GlobalMethods())).first; 2307 2308 Method->setDefined(impl); 2309 2310 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 2311 addMethodToGlobalList(&Entry, Method); 2312} 2313 2314/// Determines if this is an "acceptable" loose mismatch in the global 2315/// method pool. This exists mostly as a hack to get around certain 2316/// global mismatches which we can't afford to make warnings / errors. 2317/// Really, what we want is a way to take a method out of the global 2318/// method pool. 2319static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 2320 ObjCMethodDecl *other) { 2321 if (!chosen->isInstanceMethod()) 2322 return false; 2323 2324 Selector sel = chosen->getSelector(); 2325 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 2326 return false; 2327 2328 // Don't complain about mismatches for -length if the method we 2329 // chose has an integral result type. 2330 return (chosen->getReturnType()->isIntegerType()); 2331} 2332 2333bool Sema::CollectMultipleMethodsInGlobalPool( 2334 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, bool instance) { 2335 if (ExternalSource) 2336 ReadMethodPool(Sel); 2337 2338 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2339 if (Pos == MethodPool.end()) 2340 return false; 2341 // Gather the non-hidden methods. 2342 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 2343 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) 2344 if (M->getMethod() && !M->getMethod()->isHidden()) 2345 Methods.push_back(M->getMethod()); 2346 return Methods.size() > 1; 2347} 2348 2349bool Sema::AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod, 2350 SourceRange R, 2351 bool receiverIdOrClass) { 2352 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2353 // Test for no method in the pool which should not trigger any warning by 2354 // caller. 2355 if (Pos == MethodPool.end()) 2356 return true; 2357 ObjCMethodList &MethList = 2358 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second; 2359 2360 // Diagnose finding more than one method in global pool 2361 SmallVector<ObjCMethodDecl *, 4> Methods; 2362 Methods.push_back(BestMethod); 2363 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) 2364 if (M->getMethod() && !M->getMethod()->isHidden() && 2365 M->getMethod() != BestMethod) 2366 Methods.push_back(M->getMethod()); 2367 if (Methods.size() > 1) 2368 DiagnoseMultipleMethodInGlobalPool(Methods, Sel, R, receiverIdOrClass); 2369 2370 return MethList.hasMoreThanOneDecl(); 2371} 2372 2373ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 2374 bool receiverIdOrClass, 2375 bool instance) { 2376 if (ExternalSource) 2377 ReadMethodPool(Sel); 2378 2379 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2380 if (Pos == MethodPool.end()) 2381 return nullptr; 2382 2383 // Gather the non-hidden methods. 2384 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 2385 SmallVector<ObjCMethodDecl *, 4> Methods; 2386 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { 2387 if (M->getMethod() && !M->getMethod()->isHidden()) 2388 return M->getMethod(); 2389 } 2390 return nullptr; 2391} 2392 2393void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods, 2394 Selector Sel, SourceRange R, 2395 bool receiverIdOrClass) { 2396 // We found multiple methods, so we may have to complain. 2397 bool issueDiagnostic = false, issueError = false; 2398 2399 // We support a warning which complains about *any* difference in 2400 // method signature. 2401 bool strictSelectorMatch = 2402 receiverIdOrClass && 2403 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin()); 2404 if (strictSelectorMatch) { 2405 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 2406 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) { 2407 issueDiagnostic = true; 2408 break; 2409 } 2410 } 2411 } 2412 2413 // If we didn't see any strict differences, we won't see any loose 2414 // differences. In ARC, however, we also need to check for loose 2415 // mismatches, because most of them are errors. 2416 if (!strictSelectorMatch || 2417 (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) 2418 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 2419 // This checks if the methods differ in type mismatch. 2420 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) && 2421 !isAcceptableMethodMismatch(Methods[0], Methods[I])) { 2422 issueDiagnostic = true; 2423 if (getLangOpts().ObjCAutoRefCount) 2424 issueError = true; 2425 break; 2426 } 2427 } 2428 2429 if (issueDiagnostic) { 2430 if (issueError) 2431 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 2432 else if (strictSelectorMatch) 2433 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 2434 else 2435 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 2436 2437 Diag(Methods[0]->getLocStart(), 2438 issueError ? diag::note_possibility : diag::note_using) 2439 << Methods[0]->getSourceRange(); 2440 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 2441 Diag(Methods[I]->getLocStart(), diag::note_also_found) 2442 << Methods[I]->getSourceRange(); 2443 } 2444 } 2445} 2446 2447ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 2448 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2449 if (Pos == MethodPool.end()) 2450 return nullptr; 2451 2452 GlobalMethods &Methods = Pos->second; 2453 for (const ObjCMethodList *Method = &Methods.first; Method; 2454 Method = Method->getNext()) 2455 if (Method->getMethod() && 2456 (Method->getMethod()->isDefined() || 2457 Method->getMethod()->isPropertyAccessor())) 2458 return Method->getMethod(); 2459 2460 for (const ObjCMethodList *Method = &Methods.second; Method; 2461 Method = Method->getNext()) 2462 if (Method->getMethod() && 2463 (Method->getMethod()->isDefined() || 2464 Method->getMethod()->isPropertyAccessor())) 2465 return Method->getMethod(); 2466 return nullptr; 2467} 2468 2469static void 2470HelperSelectorsForTypoCorrection( 2471 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, 2472 StringRef Typo, const ObjCMethodDecl * Method) { 2473 const unsigned MaxEditDistance = 1; 2474 unsigned BestEditDistance = MaxEditDistance + 1; 2475 std::string MethodName = Method->getSelector().getAsString(); 2476 2477 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size()); 2478 if (MinPossibleEditDistance > 0 && 2479 Typo.size() / MinPossibleEditDistance < 1) 2480 return; 2481 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance); 2482 if (EditDistance > MaxEditDistance) 2483 return; 2484 if (EditDistance == BestEditDistance) 2485 BestMethod.push_back(Method); 2486 else if (EditDistance < BestEditDistance) { 2487 BestMethod.clear(); 2488 BestMethod.push_back(Method); 2489 } 2490} 2491 2492static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, 2493 QualType ObjectType) { 2494 if (ObjectType.isNull()) 2495 return true; 2496 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/)) 2497 return true; 2498 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 2499 nullptr; 2500} 2501 2502const ObjCMethodDecl * 2503Sema::SelectorsForTypoCorrection(Selector Sel, 2504 QualType ObjectType) { 2505 unsigned NumArgs = Sel.getNumArgs(); 2506 SmallVector<const ObjCMethodDecl *, 8> Methods; 2507 bool ObjectIsId = true, ObjectIsClass = true; 2508 if (ObjectType.isNull()) 2509 ObjectIsId = ObjectIsClass = false; 2510 else if (!ObjectType->isObjCObjectPointerType()) 2511 return nullptr; 2512 else if (const ObjCObjectPointerType *ObjCPtr = 2513 ObjectType->getAsObjCInterfacePointerType()) { 2514 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); 2515 ObjectIsId = ObjectIsClass = false; 2516 } 2517 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) 2518 ObjectIsClass = false; 2519 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) 2520 ObjectIsId = false; 2521 else 2522 return nullptr; 2523 2524 for (GlobalMethodPool::iterator b = MethodPool.begin(), 2525 e = MethodPool.end(); b != e; b++) { 2526 // instance methods 2527 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) 2528 if (M->getMethod() && 2529 (M->getMethod()->getSelector().getNumArgs() == NumArgs) && 2530 (M->getMethod()->getSelector() != Sel)) { 2531 if (ObjectIsId) 2532 Methods.push_back(M->getMethod()); 2533 else if (!ObjectIsClass && 2534 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), 2535 ObjectType)) 2536 Methods.push_back(M->getMethod()); 2537 } 2538 // class methods 2539 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) 2540 if (M->getMethod() && 2541 (M->getMethod()->getSelector().getNumArgs() == NumArgs) && 2542 (M->getMethod()->getSelector() != Sel)) { 2543 if (ObjectIsClass) 2544 Methods.push_back(M->getMethod()); 2545 else if (!ObjectIsId && 2546 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(), 2547 ObjectType)) 2548 Methods.push_back(M->getMethod()); 2549 } 2550 } 2551 2552 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; 2553 for (unsigned i = 0, e = Methods.size(); i < e; i++) { 2554 HelperSelectorsForTypoCorrection(SelectedMethods, 2555 Sel.getAsString(), Methods[i]); 2556 } 2557 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; 2558} 2559 2560/// DiagnoseDuplicateIvars - 2561/// Check for duplicate ivars in the entire class at the start of 2562/// \@implementation. This becomes necesssary because class extension can 2563/// add ivars to a class in random order which will not be known until 2564/// class's \@implementation is seen. 2565void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 2566 ObjCInterfaceDecl *SID) { 2567 for (auto *Ivar : ID->ivars()) { 2568 if (Ivar->isInvalidDecl()) 2569 continue; 2570 if (IdentifierInfo *II = Ivar->getIdentifier()) { 2571 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 2572 if (prevIvar) { 2573 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 2574 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 2575 Ivar->setInvalidDecl(); 2576 } 2577 } 2578 } 2579} 2580 2581Sema::ObjCContainerKind Sema::getObjCContainerKind() const { 2582 switch (CurContext->getDeclKind()) { 2583 case Decl::ObjCInterface: 2584 return Sema::OCK_Interface; 2585 case Decl::ObjCProtocol: 2586 return Sema::OCK_Protocol; 2587 case Decl::ObjCCategory: 2588 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) 2589 return Sema::OCK_ClassExtension; 2590 return Sema::OCK_Category; 2591 case Decl::ObjCImplementation: 2592 return Sema::OCK_Implementation; 2593 case Decl::ObjCCategoryImpl: 2594 return Sema::OCK_CategoryImplementation; 2595 2596 default: 2597 return Sema::OCK_None; 2598 } 2599} 2600 2601// Note: For class/category implementations, allMethods is always null. 2602Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods, 2603 ArrayRef<DeclGroupPtrTy> allTUVars) { 2604 if (getObjCContainerKind() == Sema::OCK_None) 2605 return nullptr; 2606 2607 assert(AtEnd.isValid() && "Invalid location for '@end'"); 2608 2609 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2610 Decl *ClassDecl = cast<Decl>(OCD); 2611 2612 bool isInterfaceDeclKind = 2613 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 2614 || isa<ObjCProtocolDecl>(ClassDecl); 2615 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 2616 2617 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 2618 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 2619 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 2620 2621 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { 2622 ObjCMethodDecl *Method = 2623 cast_or_null<ObjCMethodDecl>(allMethods[i]); 2624 2625 if (!Method) continue; // Already issued a diagnostic. 2626 if (Method->isInstanceMethod()) { 2627 /// Check for instance method of the same name with incompatible types 2628 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 2629 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2630 : false; 2631 if ((isInterfaceDeclKind && PrevMethod && !match) 2632 || (checkIdenticalMethods && match)) { 2633 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2634 << Method->getDeclName(); 2635 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2636 Method->setInvalidDecl(); 2637 } else { 2638 if (PrevMethod) { 2639 Method->setAsRedeclaration(PrevMethod); 2640 if (!Context.getSourceManager().isInSystemHeader( 2641 Method->getLocation())) 2642 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 2643 << Method->getDeclName(); 2644 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2645 } 2646 InsMap[Method->getSelector()] = Method; 2647 /// The following allows us to typecheck messages to "id". 2648 AddInstanceMethodToGlobalPool(Method); 2649 } 2650 } else { 2651 /// Check for class method of the same name with incompatible types 2652 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 2653 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2654 : false; 2655 if ((isInterfaceDeclKind && PrevMethod && !match) 2656 || (checkIdenticalMethods && match)) { 2657 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2658 << Method->getDeclName(); 2659 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2660 Method->setInvalidDecl(); 2661 } else { 2662 if (PrevMethod) { 2663 Method->setAsRedeclaration(PrevMethod); 2664 if (!Context.getSourceManager().isInSystemHeader( 2665 Method->getLocation())) 2666 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 2667 << Method->getDeclName(); 2668 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2669 } 2670 ClsMap[Method->getSelector()] = Method; 2671 AddFactoryMethodToGlobalPool(Method); 2672 } 2673 } 2674 } 2675 if (isa<ObjCInterfaceDecl>(ClassDecl)) { 2676 // Nothing to do here. 2677 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 2678 // Categories are used to extend the class by declaring new methods. 2679 // By the same token, they are also used to add new properties. No 2680 // need to compare the added property to those in the class. 2681 2682 if (C->IsClassExtension()) { 2683 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 2684 DiagnoseClassExtensionDupMethods(C, CCPrimary); 2685 } 2686 } 2687 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 2688 if (CDecl->getIdentifier()) 2689 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 2690 // user-defined setter/getter. It also synthesizes setter/getter methods 2691 // and adds them to the DeclContext and global method pools. 2692 for (auto *I : CDecl->properties()) 2693 ProcessPropertyDecl(I, CDecl); 2694 CDecl->setAtEndRange(AtEnd); 2695 } 2696 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 2697 IC->setAtEndRange(AtEnd); 2698 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 2699 // Any property declared in a class extension might have user 2700 // declared setter or getter in current class extension or one 2701 // of the other class extensions. Mark them as synthesized as 2702 // property will be synthesized when property with same name is 2703 // seen in the @implementation. 2704 for (const auto *Ext : IDecl->visible_extensions()) { 2705 for (const auto *Property : Ext->properties()) { 2706 // Skip over properties declared @dynamic 2707 if (const ObjCPropertyImplDecl *PIDecl 2708 = IC->FindPropertyImplDecl(Property->getIdentifier())) 2709 if (PIDecl->getPropertyImplementation() 2710 == ObjCPropertyImplDecl::Dynamic) 2711 continue; 2712 2713 for (const auto *Ext : IDecl->visible_extensions()) { 2714 if (ObjCMethodDecl *GetterMethod 2715 = Ext->getInstanceMethod(Property->getGetterName())) 2716 GetterMethod->setPropertyAccessor(true); 2717 if (!Property->isReadOnly()) 2718 if (ObjCMethodDecl *SetterMethod 2719 = Ext->getInstanceMethod(Property->getSetterName())) 2720 SetterMethod->setPropertyAccessor(true); 2721 } 2722 } 2723 } 2724 ImplMethodsVsClassMethods(S, IC, IDecl); 2725 AtomicPropertySetterGetterRules(IC, IDecl); 2726 DiagnoseOwningPropertyGetterSynthesis(IC); 2727 DiagnoseUnusedBackingIvarInAccessor(S, IC); 2728 if (IDecl->hasDesignatedInitializers()) 2729 DiagnoseMissingDesignatedInitOverrides(IC, IDecl); 2730 2731 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); 2732 if (IDecl->getSuperClass() == nullptr) { 2733 // This class has no superclass, so check that it has been marked with 2734 // __attribute((objc_root_class)). 2735 if (!HasRootClassAttr) { 2736 SourceLocation DeclLoc(IDecl->getLocation()); 2737 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc)); 2738 Diag(DeclLoc, diag::warn_objc_root_class_missing) 2739 << IDecl->getIdentifier(); 2740 // See if NSObject is in the current scope, and if it is, suggest 2741 // adding " : NSObject " to the class declaration. 2742 NamedDecl *IF = LookupSingleName(TUScope, 2743 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), 2744 DeclLoc, LookupOrdinaryName); 2745 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 2746 if (NSObjectDecl && NSObjectDecl->getDefinition()) { 2747 Diag(SuperClassLoc, diag::note_objc_needs_superclass) 2748 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); 2749 } else { 2750 Diag(SuperClassLoc, diag::note_objc_needs_superclass); 2751 } 2752 } 2753 } else if (HasRootClassAttr) { 2754 // Complain that only root classes may have this attribute. 2755 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); 2756 } 2757 2758 if (LangOpts.ObjCRuntime.isNonFragile()) { 2759 while (IDecl->getSuperClass()) { 2760 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 2761 IDecl = IDecl->getSuperClass(); 2762 } 2763 } 2764 } 2765 SetIvarInitializers(IC); 2766 } else if (ObjCCategoryImplDecl* CatImplClass = 2767 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 2768 CatImplClass->setAtEndRange(AtEnd); 2769 2770 // Find category interface decl and then check that all methods declared 2771 // in this interface are implemented in the category @implementation. 2772 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 2773 if (ObjCCategoryDecl *Cat 2774 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) { 2775 ImplMethodsVsClassMethods(S, CatImplClass, Cat); 2776 } 2777 } 2778 } 2779 if (isInterfaceDeclKind) { 2780 // Reject invalid vardecls. 2781 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 2782 DeclGroupRef DG = allTUVars[i].get(); 2783 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2784 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 2785 if (!VDecl->hasExternalStorage()) 2786 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 2787 } 2788 } 2789 } 2790 ActOnObjCContainerFinishDefinition(); 2791 2792 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { 2793 DeclGroupRef DG = allTUVars[i].get(); 2794 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2795 (*I)->setTopLevelDeclInObjCContainer(); 2796 Consumer.HandleTopLevelDeclInObjCContainer(DG); 2797 } 2798 2799 ActOnDocumentableDecl(ClassDecl); 2800 return ClassDecl; 2801} 2802 2803 2804/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 2805/// objective-c's type qualifier from the parser version of the same info. 2806static Decl::ObjCDeclQualifier 2807CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 2808 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 2809} 2810 2811/// \brief Check whether the declared result type of the given Objective-C 2812/// method declaration is compatible with the method's class. 2813/// 2814static Sema::ResultTypeCompatibilityKind 2815CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 2816 ObjCInterfaceDecl *CurrentClass) { 2817 QualType ResultType = Method->getReturnType(); 2818 2819 // If an Objective-C method inherits its related result type, then its 2820 // declared result type must be compatible with its own class type. The 2821 // declared result type is compatible if: 2822 if (const ObjCObjectPointerType *ResultObjectType 2823 = ResultType->getAs<ObjCObjectPointerType>()) { 2824 // - it is id or qualified id, or 2825 if (ResultObjectType->isObjCIdType() || 2826 ResultObjectType->isObjCQualifiedIdType()) 2827 return Sema::RTC_Compatible; 2828 2829 if (CurrentClass) { 2830 if (ObjCInterfaceDecl *ResultClass 2831 = ResultObjectType->getInterfaceDecl()) { 2832 // - it is the same as the method's class type, or 2833 if (declaresSameEntity(CurrentClass, ResultClass)) 2834 return Sema::RTC_Compatible; 2835 2836 // - it is a superclass of the method's class type 2837 if (ResultClass->isSuperClassOf(CurrentClass)) 2838 return Sema::RTC_Compatible; 2839 } 2840 } else { 2841 // Any Objective-C pointer type might be acceptable for a protocol 2842 // method; we just don't know. 2843 return Sema::RTC_Unknown; 2844 } 2845 } 2846 2847 return Sema::RTC_Incompatible; 2848} 2849 2850namespace { 2851/// A helper class for searching for methods which a particular method 2852/// overrides. 2853class OverrideSearch { 2854public: 2855 Sema &S; 2856 ObjCMethodDecl *Method; 2857 llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden; 2858 bool Recursive; 2859 2860public: 2861 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) { 2862 Selector selector = method->getSelector(); 2863 2864 // Bypass this search if we've never seen an instance/class method 2865 // with this selector before. 2866 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 2867 if (it == S.MethodPool.end()) { 2868 if (!S.getExternalSource()) return; 2869 S.ReadMethodPool(selector); 2870 2871 it = S.MethodPool.find(selector); 2872 if (it == S.MethodPool.end()) 2873 return; 2874 } 2875 ObjCMethodList &list = 2876 method->isInstanceMethod() ? it->second.first : it->second.second; 2877 if (!list.getMethod()) return; 2878 2879 ObjCContainerDecl *container 2880 = cast<ObjCContainerDecl>(method->getDeclContext()); 2881 2882 // Prevent the search from reaching this container again. This is 2883 // important with categories, which override methods from the 2884 // interface and each other. 2885 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) { 2886 searchFromContainer(container); 2887 if (ObjCInterfaceDecl *Interface = Category->getClassInterface()) 2888 searchFromContainer(Interface); 2889 } else { 2890 searchFromContainer(container); 2891 } 2892 } 2893 2894 typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator; 2895 iterator begin() const { return Overridden.begin(); } 2896 iterator end() const { return Overridden.end(); } 2897 2898private: 2899 void searchFromContainer(ObjCContainerDecl *container) { 2900 if (container->isInvalidDecl()) return; 2901 2902 switch (container->getDeclKind()) { 2903#define OBJCCONTAINER(type, base) \ 2904 case Decl::type: \ 2905 searchFrom(cast<type##Decl>(container)); \ 2906 break; 2907#define ABSTRACT_DECL(expansion) 2908#define DECL(type, base) \ 2909 case Decl::type: 2910#include "clang/AST/DeclNodes.inc" 2911 llvm_unreachable("not an ObjC container!"); 2912 } 2913 } 2914 2915 void searchFrom(ObjCProtocolDecl *protocol) { 2916 if (!protocol->hasDefinition()) 2917 return; 2918 2919 // A method in a protocol declaration overrides declarations from 2920 // referenced ("parent") protocols. 2921 search(protocol->getReferencedProtocols()); 2922 } 2923 2924 void searchFrom(ObjCCategoryDecl *category) { 2925 // A method in a category declaration overrides declarations from 2926 // the main class and from protocols the category references. 2927 // The main class is handled in the constructor. 2928 search(category->getReferencedProtocols()); 2929 } 2930 2931 void searchFrom(ObjCCategoryImplDecl *impl) { 2932 // A method in a category definition that has a category 2933 // declaration overrides declarations from the category 2934 // declaration. 2935 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 2936 search(category); 2937 if (ObjCInterfaceDecl *Interface = category->getClassInterface()) 2938 search(Interface); 2939 2940 // Otherwise it overrides declarations from the class. 2941 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) { 2942 search(Interface); 2943 } 2944 } 2945 2946 void searchFrom(ObjCInterfaceDecl *iface) { 2947 // A method in a class declaration overrides declarations from 2948 if (!iface->hasDefinition()) 2949 return; 2950 2951 // - categories, 2952 for (auto *Cat : iface->known_categories()) 2953 search(Cat); 2954 2955 // - the super class, and 2956 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 2957 search(super); 2958 2959 // - any referenced protocols. 2960 search(iface->getReferencedProtocols()); 2961 } 2962 2963 void searchFrom(ObjCImplementationDecl *impl) { 2964 // A method in a class implementation overrides declarations from 2965 // the class interface. 2966 if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) 2967 search(Interface); 2968 } 2969 2970 2971 void search(const ObjCProtocolList &protocols) { 2972 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end(); 2973 i != e; ++i) 2974 search(*i); 2975 } 2976 2977 void search(ObjCContainerDecl *container) { 2978 // Check for a method in this container which matches this selector. 2979 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 2980 Method->isInstanceMethod(), 2981 /*AllowHidden=*/true); 2982 2983 // If we find one, record it and bail out. 2984 if (meth) { 2985 Overridden.insert(meth); 2986 return; 2987 } 2988 2989 // Otherwise, search for methods that a hypothetical method here 2990 // would have overridden. 2991 2992 // Note that we're now in a recursive case. 2993 Recursive = true; 2994 2995 searchFromContainer(container); 2996 } 2997}; 2998} 2999 3000void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, 3001 ObjCInterfaceDecl *CurrentClass, 3002 ResultTypeCompatibilityKind RTC) { 3003 // Search for overridden methods and merge information down from them. 3004 OverrideSearch overrides(*this, ObjCMethod); 3005 // Keep track if the method overrides any method in the class's base classes, 3006 // its protocols, or its categories' protocols; we will keep that info 3007 // in the ObjCMethodDecl. 3008 // For this info, a method in an implementation is not considered as 3009 // overriding the same method in the interface or its categories. 3010 bool hasOverriddenMethodsInBaseOrProtocol = false; 3011 for (OverrideSearch::iterator 3012 i = overrides.begin(), e = overrides.end(); i != e; ++i) { 3013 ObjCMethodDecl *overridden = *i; 3014 3015 if (!hasOverriddenMethodsInBaseOrProtocol) { 3016 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || 3017 CurrentClass != overridden->getClassInterface() || 3018 overridden->isOverriding()) { 3019 hasOverriddenMethodsInBaseOrProtocol = true; 3020 3021 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) { 3022 // OverrideSearch will return as "overridden" the same method in the 3023 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to 3024 // check whether a category of a base class introduced a method with the 3025 // same selector, after the interface method declaration. 3026 // To avoid unnecessary lookups in the majority of cases, we use the 3027 // extra info bits in GlobalMethodPool to check whether there were any 3028 // category methods with this selector. 3029 GlobalMethodPool::iterator It = 3030 MethodPool.find(ObjCMethod->getSelector()); 3031 if (It != MethodPool.end()) { 3032 ObjCMethodList &List = 3033 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; 3034 unsigned CategCount = List.getBits(); 3035 if (CategCount > 0) { 3036 // If the method is in a category we'll do lookup if there were at 3037 // least 2 category methods recorded, otherwise only one will do. 3038 if (CategCount > 1 || 3039 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) { 3040 OverrideSearch overrides(*this, overridden); 3041 for (OverrideSearch::iterator 3042 OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) { 3043 ObjCMethodDecl *SuperOverridden = *OI; 3044 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) || 3045 CurrentClass != SuperOverridden->getClassInterface()) { 3046 hasOverriddenMethodsInBaseOrProtocol = true; 3047 overridden->setOverriding(true); 3048 break; 3049 } 3050 } 3051 } 3052 } 3053 } 3054 } 3055 } 3056 3057 // Propagate down the 'related result type' bit from overridden methods. 3058 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType()) 3059 ObjCMethod->SetRelatedResultType(); 3060 3061 // Then merge the declarations. 3062 mergeObjCMethodDecls(ObjCMethod, overridden); 3063 3064 if (ObjCMethod->isImplicit() && overridden->isImplicit()) 3065 continue; // Conflicting properties are detected elsewhere. 3066 3067 // Check for overriding methods 3068 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 3069 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) 3070 CheckConflictingOverridingMethod(ObjCMethod, overridden, 3071 isa<ObjCProtocolDecl>(overridden->getDeclContext())); 3072 3073 if (CurrentClass && overridden->getDeclContext() != CurrentClass && 3074 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && 3075 !overridden->isImplicit() /* not meant for properties */) { 3076 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), 3077 E = ObjCMethod->param_end(); 3078 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), 3079 PrevE = overridden->param_end(); 3080 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { 3081 assert(PrevI != overridden->param_end() && "Param mismatch"); 3082 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 3083 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 3084 // If type of argument of method in this class does not match its 3085 // respective argument type in the super class method, issue warning; 3086 if (!Context.typesAreCompatible(T1, T2)) { 3087 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 3088 << T1 << T2; 3089 Diag(overridden->getLocation(), diag::note_previous_declaration); 3090 break; 3091 } 3092 } 3093 } 3094 } 3095 3096 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); 3097} 3098 3099Decl *Sema::ActOnMethodDeclaration( 3100 Scope *S, 3101 SourceLocation MethodLoc, SourceLocation EndLoc, 3102 tok::TokenKind MethodType, 3103 ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 3104 ArrayRef<SourceLocation> SelectorLocs, 3105 Selector Sel, 3106 // optional arguments. The number of types/arguments is obtained 3107 // from the Sel.getNumArgs(). 3108 ObjCArgInfo *ArgInfo, 3109 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 3110 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 3111 bool isVariadic, bool MethodDefinition) { 3112 // Make sure we can establish a context for the method. 3113 if (!CurContext->isObjCContainer()) { 3114 Diag(MethodLoc, diag::error_missing_method_context); 3115 return nullptr; 3116 } 3117 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 3118 Decl *ClassDecl = cast<Decl>(OCD); 3119 QualType resultDeclType; 3120 3121 bool HasRelatedResultType = false; 3122 TypeSourceInfo *ReturnTInfo = nullptr; 3123 if (ReturnType) { 3124 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo); 3125 3126 if (CheckFunctionReturnType(resultDeclType, MethodLoc)) 3127 return nullptr; 3128 3129 HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType()); 3130 } else { // get the type for "id". 3131 resultDeclType = Context.getObjCIdType(); 3132 Diag(MethodLoc, diag::warn_missing_method_return_type) 3133 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); 3134 } 3135 3136 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( 3137 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext, 3138 MethodType == tok::minus, isVariadic, 3139 /*isPropertyAccessor=*/false, 3140 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 3141 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional 3142 : ObjCMethodDecl::Required, 3143 HasRelatedResultType); 3144 3145 SmallVector<ParmVarDecl*, 16> Params; 3146 3147 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 3148 QualType ArgType; 3149 TypeSourceInfo *DI; 3150 3151 if (!ArgInfo[i].Type) { 3152 ArgType = Context.getObjCIdType(); 3153 DI = nullptr; 3154 } else { 3155 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 3156 } 3157 3158 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 3159 LookupOrdinaryName, ForRedeclaration); 3160 LookupName(R, S); 3161 if (R.isSingleResult()) { 3162 NamedDecl *PrevDecl = R.getFoundDecl(); 3163 if (S->isDeclScope(PrevDecl)) { 3164 Diag(ArgInfo[i].NameLoc, 3165 (MethodDefinition ? diag::warn_method_param_redefinition 3166 : diag::warn_method_param_declaration)) 3167 << ArgInfo[i].Name; 3168 Diag(PrevDecl->getLocation(), 3169 diag::note_previous_declaration); 3170 } 3171 } 3172 3173 SourceLocation StartLoc = DI 3174 ? DI->getTypeLoc().getBeginLoc() 3175 : ArgInfo[i].NameLoc; 3176 3177 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 3178 ArgInfo[i].NameLoc, ArgInfo[i].Name, 3179 ArgType, DI, SC_None); 3180 3181 Param->setObjCMethodScopeInfo(i); 3182 3183 Param->setObjCDeclQualifier( 3184 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 3185 3186 // Apply the attributes to the parameter. 3187 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 3188 3189 if (Param->hasAttr<BlocksAttr>()) { 3190 Diag(Param->getLocation(), diag::err_block_on_nonlocal); 3191 Param->setInvalidDecl(); 3192 } 3193 S->AddDecl(Param); 3194 IdResolver.AddDecl(Param); 3195 3196 Params.push_back(Param); 3197 } 3198 3199 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 3200 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 3201 QualType ArgType = Param->getType(); 3202 if (ArgType.isNull()) 3203 ArgType = Context.getObjCIdType(); 3204 else 3205 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 3206 ArgType = Context.getAdjustedParameterType(ArgType); 3207 3208 Param->setDeclContext(ObjCMethod); 3209 Params.push_back(Param); 3210 } 3211 3212 ObjCMethod->setMethodParams(Context, Params, SelectorLocs); 3213 ObjCMethod->setObjCDeclQualifier( 3214 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 3215 3216 if (AttrList) 3217 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 3218 3219 // Add the method now. 3220 const ObjCMethodDecl *PrevMethod = nullptr; 3221 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 3222 if (MethodType == tok::minus) { 3223 PrevMethod = ImpDecl->getInstanceMethod(Sel); 3224 ImpDecl->addInstanceMethod(ObjCMethod); 3225 } else { 3226 PrevMethod = ImpDecl->getClassMethod(Sel); 3227 ImpDecl->addClassMethod(ObjCMethod); 3228 } 3229 3230 ObjCMethodDecl *IMD = nullptr; 3231 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) 3232 IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 3233 ObjCMethod->isInstanceMethod()); 3234 if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() && 3235 !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) { 3236 // merge the attribute into implementation. 3237 ObjCMethod->addAttr(ObjCRequiresSuperAttr::CreateImplicit(Context, 3238 ObjCMethod->getLocation())); 3239 } 3240 if (isa<ObjCCategoryImplDecl>(ImpDecl)) { 3241 ObjCMethodFamily family = 3242 ObjCMethod->getSelector().getMethodFamily(); 3243 if (family == OMF_dealloc && IMD && IMD->isOverriding()) 3244 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category) 3245 << ObjCMethod->getDeclName(); 3246 } 3247 } else { 3248 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 3249 } 3250 3251 if (PrevMethod) { 3252 // You can never have two method definitions with the same name. 3253 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 3254 << ObjCMethod->getDeclName(); 3255 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 3256 ObjCMethod->setInvalidDecl(); 3257 return ObjCMethod; 3258 } 3259 3260 // If this Objective-C method does not have a related result type, but we 3261 // are allowed to infer related result types, try to do so based on the 3262 // method family. 3263 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 3264 if (!CurrentClass) { 3265 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 3266 CurrentClass = Cat->getClassInterface(); 3267 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 3268 CurrentClass = Impl->getClassInterface(); 3269 else if (ObjCCategoryImplDecl *CatImpl 3270 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 3271 CurrentClass = CatImpl->getClassInterface(); 3272 } 3273 3274 ResultTypeCompatibilityKind RTC 3275 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); 3276 3277 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); 3278 3279 bool ARCError = false; 3280 if (getLangOpts().ObjCAutoRefCount) 3281 ARCError = CheckARCMethodDecl(ObjCMethod); 3282 3283 // Infer the related result type when possible. 3284 if (!ARCError && RTC == Sema::RTC_Compatible && 3285 !ObjCMethod->hasRelatedResultType() && 3286 LangOpts.ObjCInferRelatedResultType) { 3287 bool InferRelatedResultType = false; 3288 switch (ObjCMethod->getMethodFamily()) { 3289 case OMF_None: 3290 case OMF_copy: 3291 case OMF_dealloc: 3292 case OMF_finalize: 3293 case OMF_mutableCopy: 3294 case OMF_release: 3295 case OMF_retainCount: 3296 case OMF_initialize: 3297 case OMF_performSelector: 3298 break; 3299 3300 case OMF_alloc: 3301 case OMF_new: 3302 InferRelatedResultType = ObjCMethod->isClassMethod(); 3303 break; 3304 3305 case OMF_init: 3306 case OMF_autorelease: 3307 case OMF_retain: 3308 case OMF_self: 3309 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 3310 break; 3311 } 3312 3313 if (InferRelatedResultType && 3314 !ObjCMethod->getReturnType()->isObjCIndependentClassType()) 3315 ObjCMethod->SetRelatedResultType(); 3316 } 3317 3318 ActOnDocumentableDecl(ObjCMethod); 3319 3320 return ObjCMethod; 3321} 3322 3323bool Sema::CheckObjCDeclScope(Decl *D) { 3324 // Following is also an error. But it is caused by a missing @end 3325 // and diagnostic is issued elsewhere. 3326 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) 3327 return false; 3328 3329 // If we switched context to translation unit while we are still lexically in 3330 // an objc container, it means the parser missed emitting an error. 3331 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) 3332 return false; 3333 3334 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 3335 D->setInvalidDecl(); 3336 3337 return true; 3338} 3339 3340/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the 3341/// instance variables of ClassName into Decls. 3342void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 3343 IdentifierInfo *ClassName, 3344 SmallVectorImpl<Decl*> &Decls) { 3345 // Check that ClassName is a valid class 3346 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 3347 if (!Class) { 3348 Diag(DeclStart, diag::err_undef_interface) << ClassName; 3349 return; 3350 } 3351 if (LangOpts.ObjCRuntime.isNonFragile()) { 3352 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 3353 return; 3354 } 3355 3356 // Collect the instance variables 3357 SmallVector<const ObjCIvarDecl*, 32> Ivars; 3358 Context.DeepCollectObjCIvars(Class, true, Ivars); 3359 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 3360 for (unsigned i = 0; i < Ivars.size(); i++) { 3361 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]); 3362 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 3363 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 3364 /*FIXME: StartL=*/ID->getLocation(), 3365 ID->getLocation(), 3366 ID->getIdentifier(), ID->getType(), 3367 ID->getBitWidth()); 3368 Decls.push_back(FD); 3369 } 3370 3371 // Introduce all of these fields into the appropriate scope. 3372 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 3373 D != Decls.end(); ++D) { 3374 FieldDecl *FD = cast<FieldDecl>(*D); 3375 if (getLangOpts().CPlusPlus) 3376 PushOnScopeChains(cast<FieldDecl>(FD), S); 3377 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 3378 Record->addDecl(FD); 3379 } 3380} 3381 3382/// \brief Build a type-check a new Objective-C exception variable declaration. 3383VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 3384 SourceLocation StartLoc, 3385 SourceLocation IdLoc, 3386 IdentifierInfo *Id, 3387 bool Invalid) { 3388 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 3389 // duration shall not be qualified by an address-space qualifier." 3390 // Since all parameters have automatic store duration, they can not have 3391 // an address space. 3392 if (T.getAddressSpace() != 0) { 3393 Diag(IdLoc, diag::err_arg_with_address_space); 3394 Invalid = true; 3395 } 3396 3397 // An @catch parameter must be an unqualified object pointer type; 3398 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 3399 if (Invalid) { 3400 // Don't do any further checking. 3401 } else if (T->isDependentType()) { 3402 // Okay: we don't know what this type will instantiate to. 3403 } else if (!T->isObjCObjectPointerType()) { 3404 Invalid = true; 3405 Diag(IdLoc ,diag::err_catch_param_not_objc_type); 3406 } else if (T->isObjCQualifiedIdType()) { 3407 Invalid = true; 3408 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 3409 } 3410 3411 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 3412 T, TInfo, SC_None); 3413 New->setExceptionVariable(true); 3414 3415 // In ARC, infer 'retaining' for variables of retainable type. 3416 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) 3417 Invalid = true; 3418 3419 if (Invalid) 3420 New->setInvalidDecl(); 3421 return New; 3422} 3423 3424Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 3425 const DeclSpec &DS = D.getDeclSpec(); 3426 3427 // We allow the "register" storage class on exception variables because 3428 // GCC did, but we drop it completely. Any other storage class is an error. 3429 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 3430 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 3431 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 3432 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 3433 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 3434 << DeclSpec::getSpecifierName(SCS); 3435 } 3436 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 3437 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 3438 diag::err_invalid_thread) 3439 << DeclSpec::getSpecifierName(TSCS); 3440 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3441 3442 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 3443 3444 // Check that there are no default arguments inside the type of this 3445 // exception object (C++ only). 3446 if (getLangOpts().CPlusPlus) 3447 CheckExtraCXXDefaultArguments(D); 3448 3449 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 3450 QualType ExceptionType = TInfo->getType(); 3451 3452 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 3453 D.getSourceRange().getBegin(), 3454 D.getIdentifierLoc(), 3455 D.getIdentifier(), 3456 D.isInvalidType()); 3457 3458 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 3459 if (D.getCXXScopeSpec().isSet()) { 3460 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 3461 << D.getCXXScopeSpec().getRange(); 3462 New->setInvalidDecl(); 3463 } 3464 3465 // Add the parameter declaration into this scope. 3466 S->AddDecl(New); 3467 if (D.getIdentifier()) 3468 IdResolver.AddDecl(New); 3469 3470 ProcessDeclAttributes(S, New, D); 3471 3472 if (New->hasAttr<BlocksAttr>()) 3473 Diag(New->getLocation(), diag::err_block_on_nonlocal); 3474 return New; 3475} 3476 3477/// CollectIvarsToConstructOrDestruct - Collect those ivars which require 3478/// initialization. 3479void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 3480 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 3481 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 3482 Iv= Iv->getNextIvar()) { 3483 QualType QT = Context.getBaseElementType(Iv->getType()); 3484 if (QT->isRecordType()) 3485 Ivars.push_back(Iv); 3486 } 3487} 3488 3489void Sema::DiagnoseUseOfUnimplementedSelectors() { 3490 // Load referenced selectors from the external source. 3491 if (ExternalSource) { 3492 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 3493 ExternalSource->ReadReferencedSelectors(Sels); 3494 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 3495 ReferencedSelectors[Sels[I].first] = Sels[I].second; 3496 } 3497 3498 // Warning will be issued only when selector table is 3499 // generated (which means there is at lease one implementation 3500 // in the TU). This is to match gcc's behavior. 3501 if (ReferencedSelectors.empty() || 3502 !Context.AnyObjCImplementation()) 3503 return; 3504 for (auto &SelectorAndLocation : ReferencedSelectors) { 3505 Selector Sel = SelectorAndLocation.first; 3506 SourceLocation Loc = SelectorAndLocation.second; 3507 if (!LookupImplementedMethodInGlobalPool(Sel)) 3508 Diag(Loc, diag::warn_unimplemented_selector) << Sel; 3509 } 3510 return; 3511} 3512 3513ObjCIvarDecl * 3514Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, 3515 const ObjCPropertyDecl *&PDecl) const { 3516 if (Method->isClassMethod()) 3517 return nullptr; 3518 const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); 3519 if (!IDecl) 3520 return nullptr; 3521 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true, 3522 /*shallowCategoryLookup=*/false, 3523 /*followSuper=*/false); 3524 if (!Method || !Method->isPropertyAccessor()) 3525 return nullptr; 3526 if ((PDecl = Method->findPropertyDecl())) 3527 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { 3528 // property backing ivar must belong to property's class 3529 // or be a private ivar in class's implementation. 3530 // FIXME. fix the const-ness issue. 3531 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( 3532 IV->getIdentifier()); 3533 return IV; 3534 } 3535 return nullptr; 3536} 3537 3538namespace { 3539 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property 3540 /// accessor references the backing ivar. 3541 class UnusedBackingIvarChecker : 3542 public DataRecursiveASTVisitor<UnusedBackingIvarChecker> { 3543 public: 3544 Sema &S; 3545 const ObjCMethodDecl *Method; 3546 const ObjCIvarDecl *IvarD; 3547 bool AccessedIvar; 3548 bool InvokedSelfMethod; 3549 3550 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, 3551 const ObjCIvarDecl *IvarD) 3552 : S(S), Method(Method), IvarD(IvarD), 3553 AccessedIvar(false), InvokedSelfMethod(false) { 3554 assert(IvarD); 3555 } 3556 3557 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 3558 if (E->getDecl() == IvarD) { 3559 AccessedIvar = true; 3560 return false; 3561 } 3562 return true; 3563 } 3564 3565 bool VisitObjCMessageExpr(ObjCMessageExpr *E) { 3566 if (E->getReceiverKind() == ObjCMessageExpr::Instance && 3567 S.isSelfExpr(E->getInstanceReceiver(), Method)) { 3568 InvokedSelfMethod = true; 3569 } 3570 return true; 3571 } 3572 }; 3573} 3574 3575void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S, 3576 const ObjCImplementationDecl *ImplD) { 3577 if (S->hasUnrecoverableErrorOccurred()) 3578 return; 3579 3580 for (const auto *CurMethod : ImplD->instance_methods()) { 3581 unsigned DIAG = diag::warn_unused_property_backing_ivar; 3582 SourceLocation Loc = CurMethod->getLocation(); 3583 if (Diags.isIgnored(DIAG, Loc)) 3584 continue; 3585 3586 const ObjCPropertyDecl *PDecl; 3587 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl); 3588 if (!IV) 3589 continue; 3590 3591 UnusedBackingIvarChecker Checker(*this, CurMethod, IV); 3592 Checker.TraverseStmt(CurMethod->getBody()); 3593 if (Checker.AccessedIvar) 3594 continue; 3595 3596 // Do not issue this warning if backing ivar is used somewhere and accessor 3597 // implementation makes a self call. This is to prevent false positive in 3598 // cases where the ivar is accessed by another method that the accessor 3599 // delegates to. 3600 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { 3601 Diag(Loc, DIAG) << IV; 3602 Diag(PDecl->getLocation(), diag::note_property_declare); 3603 } 3604 } 3605} 3606