SemaDeclObjC.cpp revision 58878f85ab89b13e9eea4af3ccf055e42c557bc8
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/DataRecursiveASTVisitor.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ExternalSemaSource.h"
25#include "clang/Sema/Lookup.h"
26#include "clang/Sema/Scope.h"
27#include "clang/Sema/ScopeInfo.h"
28#include "llvm/ADT/DenseSet.h"
29
30using namespace clang;
31
32/// Check whether the given method, which must be in the 'init'
33/// family, is a valid member of that family.
34///
35/// \param receiverTypeIfCall - if null, check this as if declaring it;
36///   if non-null, check this as if making a call to it with the given
37///   receiver type
38///
39/// \return true to indicate that there was an error and appropriate
40///   actions were taken
41bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                           QualType receiverTypeIfCall) {
43  if (method->isInvalidDecl()) return true;
44
45  // This castAs is safe: methods that don't return an object
46  // pointer won't be inferred as inits and will reject an explicit
47  // objc_method_family(init).
48
49  // We ignore protocols here.  Should we?  What about Class?
50
51  const ObjCObjectType *result =
52      method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
53
54  if (result->isObjCId()) {
55    return false;
56  } else if (result->isObjCClass()) {
57    // fall through: always an error
58  } else {
59    ObjCInterfaceDecl *resultClass = result->getInterface();
60    assert(resultClass && "unexpected object type!");
61
62    // It's okay for the result type to still be a forward declaration
63    // if we're checking an interface declaration.
64    if (!resultClass->hasDefinition()) {
65      if (receiverTypeIfCall.isNull() &&
66          !isa<ObjCImplementationDecl>(method->getDeclContext()))
67        return false;
68
69    // Otherwise, we try to compare class types.
70    } else {
71      // If this method was declared in a protocol, we can't check
72      // anything unless we have a receiver type that's an interface.
73      const ObjCInterfaceDecl *receiverClass = nullptr;
74      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75        if (receiverTypeIfCall.isNull())
76          return false;
77
78        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79          ->getInterfaceDecl();
80
81        // This can be null for calls to e.g. id<Foo>.
82        if (!receiverClass) return false;
83      } else {
84        receiverClass = method->getClassInterface();
85        assert(receiverClass && "method not associated with a class!");
86      }
87
88      // If either class is a subclass of the other, it's fine.
89      if (receiverClass->isSuperClassOf(resultClass) ||
90          resultClass->isSuperClassOf(receiverClass))
91        return false;
92    }
93  }
94
95  SourceLocation loc = method->getLocation();
96
97  // If we're in a system header, and this is not a call, just make
98  // the method unusable.
99  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100    method->addAttr(UnavailableAttr::CreateImplicit(Context,
101                "init method returns a type unrelated to its receiver type",
102                loc));
103    return true;
104  }
105
106  // Otherwise, it's an error.
107  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108  method->setInvalidDecl();
109  return true;
110}
111
112void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
113                                   const ObjCMethodDecl *Overridden) {
114  if (Overridden->hasRelatedResultType() &&
115      !NewMethod->hasRelatedResultType()) {
116    // This can only happen when the method follows a naming convention that
117    // implies a related result type, and the original (overridden) method has
118    // a suitable return type, but the new (overriding) method does not have
119    // a suitable return type.
120    QualType ResultType = NewMethod->getReturnType();
121    SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
122
123    // Figure out which class this method is part of, if any.
124    ObjCInterfaceDecl *CurrentClass
125      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
126    if (!CurrentClass) {
127      DeclContext *DC = NewMethod->getDeclContext();
128      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
129        CurrentClass = Cat->getClassInterface();
130      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
131        CurrentClass = Impl->getClassInterface();
132      else if (ObjCCategoryImplDecl *CatImpl
133               = dyn_cast<ObjCCategoryImplDecl>(DC))
134        CurrentClass = CatImpl->getClassInterface();
135    }
136
137    if (CurrentClass) {
138      Diag(NewMethod->getLocation(),
139           diag::warn_related_result_type_compatibility_class)
140        << Context.getObjCInterfaceType(CurrentClass)
141        << ResultType
142        << ResultTypeRange;
143    } else {
144      Diag(NewMethod->getLocation(),
145           diag::warn_related_result_type_compatibility_protocol)
146        << ResultType
147        << ResultTypeRange;
148    }
149
150    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
151      Diag(Overridden->getLocation(),
152           diag::note_related_result_type_family)
153        << /*overridden method*/ 0
154        << Family;
155    else
156      Diag(Overridden->getLocation(),
157           diag::note_related_result_type_overridden);
158  }
159  if (getLangOpts().ObjCAutoRefCount) {
160    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
161         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
162        Diag(NewMethod->getLocation(),
163             diag::err_nsreturns_retained_attribute_mismatch) << 1;
164        Diag(Overridden->getLocation(), diag::note_previous_decl)
165        << "method";
166    }
167    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
168              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
169        Diag(NewMethod->getLocation(),
170             diag::err_nsreturns_retained_attribute_mismatch) << 0;
171        Diag(Overridden->getLocation(), diag::note_previous_decl)
172        << "method";
173    }
174    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
175                                         oe = Overridden->param_end();
176    for (ObjCMethodDecl::param_iterator
177           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
178         ni != ne && oi != oe; ++ni, ++oi) {
179      const ParmVarDecl *oldDecl = (*oi);
180      ParmVarDecl *newDecl = (*ni);
181      if (newDecl->hasAttr<NSConsumedAttr>() !=
182          oldDecl->hasAttr<NSConsumedAttr>()) {
183        Diag(newDecl->getLocation(),
184             diag::err_nsconsumed_attribute_mismatch);
185        Diag(oldDecl->getLocation(), diag::note_previous_decl)
186          << "parameter";
187      }
188    }
189  }
190}
191
192/// \brief Check a method declaration for compatibility with the Objective-C
193/// ARC conventions.
194bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
195  ObjCMethodFamily family = method->getMethodFamily();
196  switch (family) {
197  case OMF_None:
198  case OMF_finalize:
199  case OMF_retain:
200  case OMF_release:
201  case OMF_autorelease:
202  case OMF_retainCount:
203  case OMF_self:
204  case OMF_initialize:
205  case OMF_performSelector:
206    return false;
207
208  case OMF_dealloc:
209    if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
210      SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
211      if (ResultTypeRange.isInvalid())
212        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
213            << method->getReturnType()
214            << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
215      else
216        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217            << method->getReturnType()
218            << FixItHint::CreateReplacement(ResultTypeRange, "void");
219      return true;
220    }
221    return false;
222
223  case OMF_init:
224    // If the method doesn't obey the init rules, don't bother annotating it.
225    if (checkInitMethod(method, QualType()))
226      return true;
227
228    method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
229
230    // Don't add a second copy of this attribute, but otherwise don't
231    // let it be suppressed.
232    if (method->hasAttr<NSReturnsRetainedAttr>())
233      return false;
234    break;
235
236  case OMF_alloc:
237  case OMF_copy:
238  case OMF_mutableCopy:
239  case OMF_new:
240    if (method->hasAttr<NSReturnsRetainedAttr>() ||
241        method->hasAttr<NSReturnsNotRetainedAttr>() ||
242        method->hasAttr<NSReturnsAutoreleasedAttr>())
243      return false;
244    break;
245  }
246
247  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
248  return false;
249}
250
251static void DiagnoseObjCImplementedDeprecations(Sema &S,
252                                                NamedDecl *ND,
253                                                SourceLocation ImplLoc,
254                                                int select) {
255  if (ND && ND->isDeprecated()) {
256    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
257    if (select == 0)
258      S.Diag(ND->getLocation(), diag::note_method_declared_at)
259        << ND->getDeclName();
260    else
261      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
262  }
263}
264
265/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
266/// pool.
267void Sema::AddAnyMethodToGlobalPool(Decl *D) {
268  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
269
270  // If we don't have a valid method decl, simply return.
271  if (!MDecl)
272    return;
273  if (MDecl->isInstanceMethod())
274    AddInstanceMethodToGlobalPool(MDecl, true);
275  else
276    AddFactoryMethodToGlobalPool(MDecl, true);
277}
278
279/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
280/// has explicit ownership attribute; false otherwise.
281static bool
282HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
283  QualType T = Param->getType();
284
285  if (const PointerType *PT = T->getAs<PointerType>()) {
286    T = PT->getPointeeType();
287  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
288    T = RT->getPointeeType();
289  } else {
290    return true;
291  }
292
293  // If we have a lifetime qualifier, but it's local, we must have
294  // inferred it. So, it is implicit.
295  return !T.getLocalQualifiers().hasObjCLifetime();
296}
297
298/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
299/// and user declared, in the method definition's AST.
300void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
301  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
302  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
303
304  // If we don't have a valid method decl, simply return.
305  if (!MDecl)
306    return;
307
308  // Allow all of Sema to see that we are entering a method definition.
309  PushDeclContext(FnBodyScope, MDecl);
310  PushFunctionScope();
311
312  // Create Decl objects for each parameter, entrring them in the scope for
313  // binding to their use.
314
315  // Insert the invisible arguments, self and _cmd!
316  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
317
318  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
319  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
320
321  // The ObjC parser requires parameter names so there's no need to check.
322  CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
323                           /*CheckParameterNames=*/false);
324
325  // Introduce all of the other parameters into this scope.
326  for (auto *Param : MDecl->params()) {
327    if (!Param->isInvalidDecl() &&
328        getLangOpts().ObjCAutoRefCount &&
329        !HasExplicitOwnershipAttr(*this, Param))
330      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
331            Param->getType();
332
333    if (Param->getIdentifier())
334      PushOnScopeChains(Param, FnBodyScope);
335  }
336
337  // In ARC, disallow definition of retain/release/autorelease/retainCount
338  if (getLangOpts().ObjCAutoRefCount) {
339    switch (MDecl->getMethodFamily()) {
340    case OMF_retain:
341    case OMF_retainCount:
342    case OMF_release:
343    case OMF_autorelease:
344      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
345        << 0 << MDecl->getSelector();
346      break;
347
348    case OMF_None:
349    case OMF_dealloc:
350    case OMF_finalize:
351    case OMF_alloc:
352    case OMF_init:
353    case OMF_mutableCopy:
354    case OMF_copy:
355    case OMF_new:
356    case OMF_self:
357    case OMF_initialize:
358    case OMF_performSelector:
359      break;
360    }
361  }
362
363  // Warn on deprecated methods under -Wdeprecated-implementations,
364  // and prepare for warning on missing super calls.
365  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
366    ObjCMethodDecl *IMD =
367      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
368
369    if (IMD) {
370      ObjCImplDecl *ImplDeclOfMethodDef =
371        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
372      ObjCContainerDecl *ContDeclOfMethodDecl =
373        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
374      ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
375      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
376        ImplDeclOfMethodDecl = OID->getImplementation();
377      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
378        if (CD->IsClassExtension()) {
379          if (ObjCInterfaceDecl *OID = CD->getClassInterface())
380            ImplDeclOfMethodDecl = OID->getImplementation();
381        } else
382            ImplDeclOfMethodDecl = CD->getImplementation();
383      }
384      // No need to issue deprecated warning if deprecated mehod in class/category
385      // is being implemented in its own implementation (no overriding is involved).
386      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
387        DiagnoseObjCImplementedDeprecations(*this,
388                                          dyn_cast<NamedDecl>(IMD),
389                                          MDecl->getLocation(), 0);
390    }
391
392    if (MDecl->getMethodFamily() == OMF_init) {
393      if (MDecl->isDesignatedInitializerForTheInterface()) {
394        getCurFunction()->ObjCIsDesignatedInit = true;
395        getCurFunction()->ObjCWarnForNoDesignatedInitChain =
396            IC->getSuperClass() != nullptr;
397      } else if (IC->hasDesignatedInitializers()) {
398        getCurFunction()->ObjCIsSecondaryInit = true;
399        getCurFunction()->ObjCWarnForNoInitDelegation = true;
400      }
401    }
402
403    // If this is "dealloc" or "finalize", set some bit here.
404    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
405    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
406    // Only do this if the current class actually has a superclass.
407    if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
408      ObjCMethodFamily Family = MDecl->getMethodFamily();
409      if (Family == OMF_dealloc) {
410        if (!(getLangOpts().ObjCAutoRefCount ||
411              getLangOpts().getGC() == LangOptions::GCOnly))
412          getCurFunction()->ObjCShouldCallSuper = true;
413
414      } else if (Family == OMF_finalize) {
415        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
416          getCurFunction()->ObjCShouldCallSuper = true;
417
418      } else {
419        const ObjCMethodDecl *SuperMethod =
420          SuperClass->lookupMethod(MDecl->getSelector(),
421                                   MDecl->isInstanceMethod());
422        getCurFunction()->ObjCShouldCallSuper =
423          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
424      }
425    }
426  }
427}
428
429namespace {
430
431// Callback to only accept typo corrections that are Objective-C classes.
432// If an ObjCInterfaceDecl* is given to the constructor, then the validation
433// function will reject corrections to that class.
434class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
435 public:
436  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
437  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
438      : CurrentIDecl(IDecl) {}
439
440  bool ValidateCandidate(const TypoCorrection &candidate) override {
441    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
442    return ID && !declaresSameEntity(ID, CurrentIDecl);
443  }
444
445 private:
446  ObjCInterfaceDecl *CurrentIDecl;
447};
448
449}
450
451Decl *Sema::
452ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
453                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
454                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
455                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
456                         const SourceLocation *ProtoLocs,
457                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
458  assert(ClassName && "Missing class identifier");
459
460  // Check for another declaration kind with the same name.
461  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
462                                         LookupOrdinaryName, ForRedeclaration);
463
464  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
465    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
466    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
467  }
468
469  // Create a declaration to describe this @interface.
470  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
471
472  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
473    // A previous decl with a different name is because of
474    // @compatibility_alias, for example:
475    // \code
476    //   @class NewImage;
477    //   @compatibility_alias OldImage NewImage;
478    // \endcode
479    // A lookup for 'OldImage' will return the 'NewImage' decl.
480    //
481    // In such a case use the real declaration name, instead of the alias one,
482    // otherwise we will break IdentifierResolver and redecls-chain invariants.
483    // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
484    // has been aliased.
485    ClassName = PrevIDecl->getIdentifier();
486  }
487
488  ObjCInterfaceDecl *IDecl
489    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
490                                PrevIDecl, ClassLoc);
491
492  if (PrevIDecl) {
493    // Class already seen. Was it a definition?
494    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
495      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
496        << PrevIDecl->getDeclName();
497      Diag(Def->getLocation(), diag::note_previous_definition);
498      IDecl->setInvalidDecl();
499    }
500  }
501
502  if (AttrList)
503    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
504  PushOnScopeChains(IDecl, TUScope);
505
506  // Start the definition of this class. If we're in a redefinition case, there
507  // may already be a definition, so we'll end up adding to it.
508  if (!IDecl->hasDefinition())
509    IDecl->startDefinition();
510
511  if (SuperName) {
512    // Check if a different kind of symbol declared in this scope.
513    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
514                                LookupOrdinaryName);
515
516    if (!PrevDecl) {
517      // Try to correct for a typo in the superclass name without correcting
518      // to the class we're defining.
519      if (TypoCorrection Corrected =
520              CorrectTypo(DeclarationNameInfo(SuperName, SuperLoc),
521                          LookupOrdinaryName, TUScope, nullptr,
522                          llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
523                          CTK_ErrorRecovery)) {
524        diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
525                                    << SuperName << ClassName);
526        PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
527      }
528    }
529
530    if (declaresSameEntity(PrevDecl, IDecl)) {
531      Diag(SuperLoc, diag::err_recursive_superclass)
532        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
533      IDecl->setEndOfDefinitionLoc(ClassLoc);
534    } else {
535      ObjCInterfaceDecl *SuperClassDecl =
536                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
537
538      // Diagnose classes that inherit from deprecated classes.
539      if (SuperClassDecl)
540        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
541
542      if (PrevDecl && !SuperClassDecl) {
543        // The previous declaration was not a class decl. Check if we have a
544        // typedef. If we do, get the underlying class type.
545        if (const TypedefNameDecl *TDecl =
546              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
547          QualType T = TDecl->getUnderlyingType();
548          if (T->isObjCObjectType()) {
549            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
550              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
551              // This handles the following case:
552              // @interface NewI @end
553              // typedef NewI DeprI __attribute__((deprecated("blah")))
554              // @interface SI : DeprI /* warn here */ @end
555              (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
556            }
557          }
558        }
559
560        // This handles the following case:
561        //
562        // typedef int SuperClass;
563        // @interface MyClass : SuperClass {} @end
564        //
565        if (!SuperClassDecl) {
566          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
567          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
568        }
569      }
570
571      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
572        if (!SuperClassDecl)
573          Diag(SuperLoc, diag::err_undef_superclass)
574            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
575        else if (RequireCompleteType(SuperLoc,
576                                  Context.getObjCInterfaceType(SuperClassDecl),
577                                     diag::err_forward_superclass,
578                                     SuperClassDecl->getDeclName(),
579                                     ClassName,
580                                     SourceRange(AtInterfaceLoc, ClassLoc))) {
581          SuperClassDecl = nullptr;
582        }
583      }
584      IDecl->setSuperClass(SuperClassDecl);
585      IDecl->setSuperClassLoc(SuperLoc);
586      IDecl->setEndOfDefinitionLoc(SuperLoc);
587    }
588  } else { // we have a root class.
589    IDecl->setEndOfDefinitionLoc(ClassLoc);
590  }
591
592  // Check then save referenced protocols.
593  if (NumProtoRefs) {
594    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
595                           ProtoLocs, Context);
596    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
597  }
598
599  CheckObjCDeclScope(IDecl);
600  return ActOnObjCContainerStartDefinition(IDecl);
601}
602
603/// ActOnTypedefedProtocols - this action finds protocol list as part of the
604/// typedef'ed use for a qualified super class and adds them to the list
605/// of the protocols.
606void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
607                                   IdentifierInfo *SuperName,
608                                   SourceLocation SuperLoc) {
609  if (!SuperName)
610    return;
611  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
612                                      LookupOrdinaryName);
613  if (!IDecl)
614    return;
615
616  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
617    QualType T = TDecl->getUnderlyingType();
618    if (T->isObjCObjectType())
619      if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
620        ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
621  }
622}
623
624/// ActOnCompatibilityAlias - this action is called after complete parsing of
625/// a \@compatibility_alias declaration. It sets up the alias relationships.
626Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
627                                    IdentifierInfo *AliasName,
628                                    SourceLocation AliasLocation,
629                                    IdentifierInfo *ClassName,
630                                    SourceLocation ClassLocation) {
631  // Look for previous declaration of alias name
632  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
633                                      LookupOrdinaryName, ForRedeclaration);
634  if (ADecl) {
635    Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
636    Diag(ADecl->getLocation(), diag::note_previous_declaration);
637    return nullptr;
638  }
639  // Check for class declaration
640  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
641                                       LookupOrdinaryName, ForRedeclaration);
642  if (const TypedefNameDecl *TDecl =
643        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
644    QualType T = TDecl->getUnderlyingType();
645    if (T->isObjCObjectType()) {
646      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
647        ClassName = IDecl->getIdentifier();
648        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
649                                  LookupOrdinaryName, ForRedeclaration);
650      }
651    }
652  }
653  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
654  if (!CDecl) {
655    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
656    if (CDeclU)
657      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
658    return nullptr;
659  }
660
661  // Everything checked out, instantiate a new alias declaration AST.
662  ObjCCompatibleAliasDecl *AliasDecl =
663    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
664
665  if (!CheckObjCDeclScope(AliasDecl))
666    PushOnScopeChains(AliasDecl, TUScope);
667
668  return AliasDecl;
669}
670
671bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
672  IdentifierInfo *PName,
673  SourceLocation &Ploc, SourceLocation PrevLoc,
674  const ObjCList<ObjCProtocolDecl> &PList) {
675
676  bool res = false;
677  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
678       E = PList.end(); I != E; ++I) {
679    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
680                                                 Ploc)) {
681      if (PDecl->getIdentifier() == PName) {
682        Diag(Ploc, diag::err_protocol_has_circular_dependency);
683        Diag(PrevLoc, diag::note_previous_definition);
684        res = true;
685      }
686
687      if (!PDecl->hasDefinition())
688        continue;
689
690      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
691            PDecl->getLocation(), PDecl->getReferencedProtocols()))
692        res = true;
693    }
694  }
695  return res;
696}
697
698Decl *
699Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
700                                  IdentifierInfo *ProtocolName,
701                                  SourceLocation ProtocolLoc,
702                                  Decl * const *ProtoRefs,
703                                  unsigned NumProtoRefs,
704                                  const SourceLocation *ProtoLocs,
705                                  SourceLocation EndProtoLoc,
706                                  AttributeList *AttrList) {
707  bool err = false;
708  // FIXME: Deal with AttrList.
709  assert(ProtocolName && "Missing protocol identifier");
710  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
711                                              ForRedeclaration);
712  ObjCProtocolDecl *PDecl = nullptr;
713  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
714    // If we already have a definition, complain.
715    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
716    Diag(Def->getLocation(), diag::note_previous_definition);
717
718    // Create a new protocol that is completely distinct from previous
719    // declarations, and do not make this protocol available for name lookup.
720    // That way, we'll end up completely ignoring the duplicate.
721    // FIXME: Can we turn this into an error?
722    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
723                                     ProtocolLoc, AtProtoInterfaceLoc,
724                                     /*PrevDecl=*/nullptr);
725    PDecl->startDefinition();
726  } else {
727    if (PrevDecl) {
728      // Check for circular dependencies among protocol declarations. This can
729      // only happen if this protocol was forward-declared.
730      ObjCList<ObjCProtocolDecl> PList;
731      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
732      err = CheckForwardProtocolDeclarationForCircularDependency(
733              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
734    }
735
736    // Create the new declaration.
737    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
738                                     ProtocolLoc, AtProtoInterfaceLoc,
739                                     /*PrevDecl=*/PrevDecl);
740
741    PushOnScopeChains(PDecl, TUScope);
742    PDecl->startDefinition();
743  }
744
745  if (AttrList)
746    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
747
748  // Merge attributes from previous declarations.
749  if (PrevDecl)
750    mergeDeclAttributes(PDecl, PrevDecl);
751
752  if (!err && NumProtoRefs ) {
753    /// Check then save referenced protocols.
754    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
755                           ProtoLocs, Context);
756  }
757
758  CheckObjCDeclScope(PDecl);
759  return ActOnObjCContainerStartDefinition(PDecl);
760}
761
762static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
763                                          ObjCProtocolDecl *&UndefinedProtocol) {
764  if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
765    UndefinedProtocol = PDecl;
766    return true;
767  }
768
769  for (auto *PI : PDecl->protocols())
770    if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
771      UndefinedProtocol = PI;
772      return true;
773    }
774  return false;
775}
776
777/// FindProtocolDeclaration - This routine looks up protocols and
778/// issues an error if they are not declared. It returns list of
779/// protocol declarations in its 'Protocols' argument.
780void
781Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
782                              const IdentifierLocPair *ProtocolId,
783                              unsigned NumProtocols,
784                              SmallVectorImpl<Decl *> &Protocols) {
785  for (unsigned i = 0; i != NumProtocols; ++i) {
786    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
787                                             ProtocolId[i].second);
788    if (!PDecl) {
789      TypoCorrection Corrected = CorrectTypo(
790          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
791          LookupObjCProtocolName, TUScope, nullptr,
792          llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
793          CTK_ErrorRecovery);
794      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
795        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
796                                    << ProtocolId[i].first);
797    }
798
799    if (!PDecl) {
800      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
801        << ProtocolId[i].first;
802      continue;
803    }
804    // If this is a forward protocol declaration, get its definition.
805    if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
806      PDecl = PDecl->getDefinition();
807
808    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
809
810    // If this is a forward declaration and we are supposed to warn in this
811    // case, do it.
812    // FIXME: Recover nicely in the hidden case.
813    ObjCProtocolDecl *UndefinedProtocol;
814
815    if (WarnOnDeclarations &&
816        NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
817      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
818        << ProtocolId[i].first;
819      Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
820        << UndefinedProtocol;
821    }
822    Protocols.push_back(PDecl);
823  }
824}
825
826/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
827/// a class method in its extension.
828///
829void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
830                                            ObjCInterfaceDecl *ID) {
831  if (!ID)
832    return;  // Possibly due to previous error
833
834  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
835  for (auto *MD : ID->methods())
836    MethodMap[MD->getSelector()] = MD;
837
838  if (MethodMap.empty())
839    return;
840  for (const auto *Method : CAT->methods()) {
841    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
842    if (PrevMethod &&
843        (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
844        !MatchTwoMethodDeclarations(Method, PrevMethod)) {
845      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
846            << Method->getDeclName();
847      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
848    }
849  }
850}
851
852/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
853Sema::DeclGroupPtrTy
854Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
855                                      const IdentifierLocPair *IdentList,
856                                      unsigned NumElts,
857                                      AttributeList *attrList) {
858  SmallVector<Decl *, 8> DeclsInGroup;
859  for (unsigned i = 0; i != NumElts; ++i) {
860    IdentifierInfo *Ident = IdentList[i].first;
861    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
862                                                ForRedeclaration);
863    ObjCProtocolDecl *PDecl
864      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
865                                 IdentList[i].second, AtProtocolLoc,
866                                 PrevDecl);
867
868    PushOnScopeChains(PDecl, TUScope);
869    CheckObjCDeclScope(PDecl);
870
871    if (attrList)
872      ProcessDeclAttributeList(TUScope, PDecl, attrList);
873
874    if (PrevDecl)
875      mergeDeclAttributes(PDecl, PrevDecl);
876
877    DeclsInGroup.push_back(PDecl);
878  }
879
880  return BuildDeclaratorGroup(DeclsInGroup, false);
881}
882
883Decl *Sema::
884ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
885                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
886                            IdentifierInfo *CategoryName,
887                            SourceLocation CategoryLoc,
888                            Decl * const *ProtoRefs,
889                            unsigned NumProtoRefs,
890                            const SourceLocation *ProtoLocs,
891                            SourceLocation EndProtoLoc) {
892  ObjCCategoryDecl *CDecl;
893  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
894
895  /// Check that class of this category is already completely declared.
896
897  if (!IDecl
898      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
899                             diag::err_category_forward_interface,
900                             CategoryName == nullptr)) {
901    // Create an invalid ObjCCategoryDecl to serve as context for
902    // the enclosing method declarations.  We mark the decl invalid
903    // to make it clear that this isn't a valid AST.
904    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
905                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
906    CDecl->setInvalidDecl();
907    CurContext->addDecl(CDecl);
908
909    if (!IDecl)
910      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
911    return ActOnObjCContainerStartDefinition(CDecl);
912  }
913
914  if (!CategoryName && IDecl->getImplementation()) {
915    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
916    Diag(IDecl->getImplementation()->getLocation(),
917          diag::note_implementation_declared);
918  }
919
920  if (CategoryName) {
921    /// Check for duplicate interface declaration for this category
922    if (ObjCCategoryDecl *Previous
923          = IDecl->FindCategoryDeclaration(CategoryName)) {
924      // Class extensions can be declared multiple times, categories cannot.
925      Diag(CategoryLoc, diag::warn_dup_category_def)
926        << ClassName << CategoryName;
927      Diag(Previous->getLocation(), diag::note_previous_definition);
928    }
929  }
930
931  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
932                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
933  // FIXME: PushOnScopeChains?
934  CurContext->addDecl(CDecl);
935
936  if (NumProtoRefs) {
937    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
938                           ProtoLocs, Context);
939    // Protocols in the class extension belong to the class.
940    if (CDecl->IsClassExtension())
941     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
942                                            NumProtoRefs, Context);
943  }
944
945  CheckObjCDeclScope(CDecl);
946  return ActOnObjCContainerStartDefinition(CDecl);
947}
948
949/// ActOnStartCategoryImplementation - Perform semantic checks on the
950/// category implementation declaration and build an ObjCCategoryImplDecl
951/// object.
952Decl *Sema::ActOnStartCategoryImplementation(
953                      SourceLocation AtCatImplLoc,
954                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
955                      IdentifierInfo *CatName, SourceLocation CatLoc) {
956  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
957  ObjCCategoryDecl *CatIDecl = nullptr;
958  if (IDecl && IDecl->hasDefinition()) {
959    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
960    if (!CatIDecl) {
961      // Category @implementation with no corresponding @interface.
962      // Create and install one.
963      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
964                                          ClassLoc, CatLoc,
965                                          CatName, IDecl);
966      CatIDecl->setImplicit();
967    }
968  }
969
970  ObjCCategoryImplDecl *CDecl =
971    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
972                                 ClassLoc, AtCatImplLoc, CatLoc);
973  /// Check that class of this category is already completely declared.
974  if (!IDecl) {
975    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
976    CDecl->setInvalidDecl();
977  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
978                                 diag::err_undef_interface)) {
979    CDecl->setInvalidDecl();
980  }
981
982  // FIXME: PushOnScopeChains?
983  CurContext->addDecl(CDecl);
984
985  // If the interface is deprecated/unavailable, warn/error about it.
986  if (IDecl)
987    DiagnoseUseOfDecl(IDecl, ClassLoc);
988
989  /// Check that CatName, category name, is not used in another implementation.
990  if (CatIDecl) {
991    if (CatIDecl->getImplementation()) {
992      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
993        << CatName;
994      Diag(CatIDecl->getImplementation()->getLocation(),
995           diag::note_previous_definition);
996      CDecl->setInvalidDecl();
997    } else {
998      CatIDecl->setImplementation(CDecl);
999      // Warn on implementating category of deprecated class under
1000      // -Wdeprecated-implementations flag.
1001      DiagnoseObjCImplementedDeprecations(*this,
1002                                          dyn_cast<NamedDecl>(IDecl),
1003                                          CDecl->getLocation(), 2);
1004    }
1005  }
1006
1007  CheckObjCDeclScope(CDecl);
1008  return ActOnObjCContainerStartDefinition(CDecl);
1009}
1010
1011Decl *Sema::ActOnStartClassImplementation(
1012                      SourceLocation AtClassImplLoc,
1013                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
1014                      IdentifierInfo *SuperClassname,
1015                      SourceLocation SuperClassLoc) {
1016  ObjCInterfaceDecl *IDecl = nullptr;
1017  // Check for another declaration kind with the same name.
1018  NamedDecl *PrevDecl
1019    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1020                       ForRedeclaration);
1021  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1022    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1023    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1024  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1025    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1026                        diag::warn_undef_interface);
1027  } else {
1028    // We did not find anything with the name ClassName; try to correct for
1029    // typos in the class name.
1030    TypoCorrection Corrected = CorrectTypo(
1031        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1032        nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1033    if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1034      // Suggest the (potentially) correct interface name. Don't provide a
1035      // code-modification hint or use the typo name for recovery, because
1036      // this is just a warning. The program may actually be correct.
1037      diagnoseTypo(Corrected,
1038                   PDiag(diag::warn_undef_interface_suggest) << ClassName,
1039                   /*ErrorRecovery*/false);
1040    } else {
1041      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1042    }
1043  }
1044
1045  // Check that super class name is valid class name
1046  ObjCInterfaceDecl *SDecl = nullptr;
1047  if (SuperClassname) {
1048    // Check if a different kind of symbol declared in this scope.
1049    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1050                                LookupOrdinaryName);
1051    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1052      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1053        << SuperClassname;
1054      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1055    } else {
1056      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1057      if (SDecl && !SDecl->hasDefinition())
1058        SDecl = nullptr;
1059      if (!SDecl)
1060        Diag(SuperClassLoc, diag::err_undef_superclass)
1061          << SuperClassname << ClassName;
1062      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1063        // This implementation and its interface do not have the same
1064        // super class.
1065        Diag(SuperClassLoc, diag::err_conflicting_super_class)
1066          << SDecl->getDeclName();
1067        Diag(SDecl->getLocation(), diag::note_previous_definition);
1068      }
1069    }
1070  }
1071
1072  if (!IDecl) {
1073    // Legacy case of @implementation with no corresponding @interface.
1074    // Build, chain & install the interface decl into the identifier.
1075
1076    // FIXME: Do we support attributes on the @implementation? If so we should
1077    // copy them over.
1078    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1079                                      ClassName, /*PrevDecl=*/nullptr, ClassLoc,
1080                                      true);
1081    IDecl->startDefinition();
1082    if (SDecl) {
1083      IDecl->setSuperClass(SDecl);
1084      IDecl->setSuperClassLoc(SuperClassLoc);
1085      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1086    } else {
1087      IDecl->setEndOfDefinitionLoc(ClassLoc);
1088    }
1089
1090    PushOnScopeChains(IDecl, TUScope);
1091  } else {
1092    // Mark the interface as being completed, even if it was just as
1093    //   @class ....;
1094    // declaration; the user cannot reopen it.
1095    if (!IDecl->hasDefinition())
1096      IDecl->startDefinition();
1097  }
1098
1099  ObjCImplementationDecl* IMPDecl =
1100    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1101                                   ClassLoc, AtClassImplLoc, SuperClassLoc);
1102
1103  if (CheckObjCDeclScope(IMPDecl))
1104    return ActOnObjCContainerStartDefinition(IMPDecl);
1105
1106  // Check that there is no duplicate implementation of this class.
1107  if (IDecl->getImplementation()) {
1108    // FIXME: Don't leak everything!
1109    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1110    Diag(IDecl->getImplementation()->getLocation(),
1111         diag::note_previous_definition);
1112    IMPDecl->setInvalidDecl();
1113  } else { // add it to the list.
1114    IDecl->setImplementation(IMPDecl);
1115    PushOnScopeChains(IMPDecl, TUScope);
1116    // Warn on implementating deprecated class under
1117    // -Wdeprecated-implementations flag.
1118    DiagnoseObjCImplementedDeprecations(*this,
1119                                        dyn_cast<NamedDecl>(IDecl),
1120                                        IMPDecl->getLocation(), 1);
1121  }
1122  return ActOnObjCContainerStartDefinition(IMPDecl);
1123}
1124
1125Sema::DeclGroupPtrTy
1126Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1127  SmallVector<Decl *, 64> DeclsInGroup;
1128  DeclsInGroup.reserve(Decls.size() + 1);
1129
1130  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1131    Decl *Dcl = Decls[i];
1132    if (!Dcl)
1133      continue;
1134    if (Dcl->getDeclContext()->isFileContext())
1135      Dcl->setTopLevelDeclInObjCContainer();
1136    DeclsInGroup.push_back(Dcl);
1137  }
1138
1139  DeclsInGroup.push_back(ObjCImpDecl);
1140
1141  return BuildDeclaratorGroup(DeclsInGroup, false);
1142}
1143
1144void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1145                                    ObjCIvarDecl **ivars, unsigned numIvars,
1146                                    SourceLocation RBrace) {
1147  assert(ImpDecl && "missing implementation decl");
1148  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1149  if (!IDecl)
1150    return;
1151  /// Check case of non-existing \@interface decl.
1152  /// (legacy objective-c \@implementation decl without an \@interface decl).
1153  /// Add implementations's ivar to the synthesize class's ivar list.
1154  if (IDecl->isImplicitInterfaceDecl()) {
1155    IDecl->setEndOfDefinitionLoc(RBrace);
1156    // Add ivar's to class's DeclContext.
1157    for (unsigned i = 0, e = numIvars; i != e; ++i) {
1158      ivars[i]->setLexicalDeclContext(ImpDecl);
1159      IDecl->makeDeclVisibleInContext(ivars[i]);
1160      ImpDecl->addDecl(ivars[i]);
1161    }
1162
1163    return;
1164  }
1165  // If implementation has empty ivar list, just return.
1166  if (numIvars == 0)
1167    return;
1168
1169  assert(ivars && "missing @implementation ivars");
1170  if (LangOpts.ObjCRuntime.isNonFragile()) {
1171    if (ImpDecl->getSuperClass())
1172      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1173    for (unsigned i = 0; i < numIvars; i++) {
1174      ObjCIvarDecl* ImplIvar = ivars[i];
1175      if (const ObjCIvarDecl *ClsIvar =
1176            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1177        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1178        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1179        continue;
1180      }
1181      // Check class extensions (unnamed categories) for duplicate ivars.
1182      for (const auto *CDecl : IDecl->visible_extensions()) {
1183        if (const ObjCIvarDecl *ClsExtIvar =
1184            CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1185          Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1186          Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
1187          continue;
1188        }
1189      }
1190      // Instance ivar to Implementation's DeclContext.
1191      ImplIvar->setLexicalDeclContext(ImpDecl);
1192      IDecl->makeDeclVisibleInContext(ImplIvar);
1193      ImpDecl->addDecl(ImplIvar);
1194    }
1195    return;
1196  }
1197  // Check interface's Ivar list against those in the implementation.
1198  // names and types must match.
1199  //
1200  unsigned j = 0;
1201  ObjCInterfaceDecl::ivar_iterator
1202    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1203  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1204    ObjCIvarDecl* ImplIvar = ivars[j++];
1205    ObjCIvarDecl* ClsIvar = *IVI;
1206    assert (ImplIvar && "missing implementation ivar");
1207    assert (ClsIvar && "missing class ivar");
1208
1209    // First, make sure the types match.
1210    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1211      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1212        << ImplIvar->getIdentifier()
1213        << ImplIvar->getType() << ClsIvar->getType();
1214      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1215    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1216               ImplIvar->getBitWidthValue(Context) !=
1217               ClsIvar->getBitWidthValue(Context)) {
1218      Diag(ImplIvar->getBitWidth()->getLocStart(),
1219           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1220      Diag(ClsIvar->getBitWidth()->getLocStart(),
1221           diag::note_previous_definition);
1222    }
1223    // Make sure the names are identical.
1224    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1225      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1226        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1227      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1228    }
1229    --numIvars;
1230  }
1231
1232  if (numIvars > 0)
1233    Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
1234  else if (IVI != IVE)
1235    Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
1236}
1237
1238static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
1239                                ObjCMethodDecl *method,
1240                                bool &IncompleteImpl,
1241                                unsigned DiagID,
1242                                NamedDecl *NeededFor = nullptr) {
1243  // No point warning no definition of method which is 'unavailable'.
1244  switch (method->getAvailability()) {
1245  case AR_Available:
1246  case AR_Deprecated:
1247    break;
1248
1249      // Don't warn about unavailable or not-yet-introduced methods.
1250  case AR_NotYetIntroduced:
1251  case AR_Unavailable:
1252    return;
1253  }
1254
1255  // FIXME: For now ignore 'IncompleteImpl'.
1256  // Previously we grouped all unimplemented methods under a single
1257  // warning, but some users strongly voiced that they would prefer
1258  // separate warnings.  We will give that approach a try, as that
1259  // matches what we do with protocols.
1260  {
1261    const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
1262    B << method;
1263    if (NeededFor)
1264      B << NeededFor;
1265  }
1266
1267  // Issue a note to the original declaration.
1268  SourceLocation MethodLoc = method->getLocStart();
1269  if (MethodLoc.isValid())
1270    S.Diag(MethodLoc, diag::note_method_declared_at) << method;
1271}
1272
1273/// Determines if type B can be substituted for type A.  Returns true if we can
1274/// guarantee that anything that the user will do to an object of type A can
1275/// also be done to an object of type B.  This is trivially true if the two
1276/// types are the same, or if B is a subclass of A.  It becomes more complex
1277/// in cases where protocols are involved.
1278///
1279/// Object types in Objective-C describe the minimum requirements for an
1280/// object, rather than providing a complete description of a type.  For
1281/// example, if A is a subclass of B, then B* may refer to an instance of A.
1282/// The principle of substitutability means that we may use an instance of A
1283/// anywhere that we may use an instance of B - it will implement all of the
1284/// ivars of B and all of the methods of B.
1285///
1286/// This substitutability is important when type checking methods, because
1287/// the implementation may have stricter type definitions than the interface.
1288/// The interface specifies minimum requirements, but the implementation may
1289/// have more accurate ones.  For example, a method may privately accept
1290/// instances of B, but only publish that it accepts instances of A.  Any
1291/// object passed to it will be type checked against B, and so will implicitly
1292/// by a valid A*.  Similarly, a method may return a subclass of the class that
1293/// it is declared as returning.
1294///
1295/// This is most important when considering subclassing.  A method in a
1296/// subclass must accept any object as an argument that its superclass's
1297/// implementation accepts.  It may, however, accept a more general type
1298/// without breaking substitutability (i.e. you can still use the subclass
1299/// anywhere that you can use the superclass, but not vice versa).  The
1300/// converse requirement applies to return types: the return type for a
1301/// subclass method must be a valid object of the kind that the superclass
1302/// advertises, but it may be specified more accurately.  This avoids the need
1303/// for explicit down-casting by callers.
1304///
1305/// Note: This is a stricter requirement than for assignment.
1306static bool isObjCTypeSubstitutable(ASTContext &Context,
1307                                    const ObjCObjectPointerType *A,
1308                                    const ObjCObjectPointerType *B,
1309                                    bool rejectId) {
1310  // Reject a protocol-unqualified id.
1311  if (rejectId && B->isObjCIdType()) return false;
1312
1313  // If B is a qualified id, then A must also be a qualified id and it must
1314  // implement all of the protocols in B.  It may not be a qualified class.
1315  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1316  // stricter definition so it is not substitutable for id<A>.
1317  if (B->isObjCQualifiedIdType()) {
1318    return A->isObjCQualifiedIdType() &&
1319           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1320                                                     QualType(B,0),
1321                                                     false);
1322  }
1323
1324  /*
1325  // id is a special type that bypasses type checking completely.  We want a
1326  // warning when it is used in one place but not another.
1327  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1328
1329
1330  // If B is a qualified id, then A must also be a qualified id (which it isn't
1331  // if we've got this far)
1332  if (B->isObjCQualifiedIdType()) return false;
1333  */
1334
1335  // Now we know that A and B are (potentially-qualified) class types.  The
1336  // normal rules for assignment apply.
1337  return Context.canAssignObjCInterfaces(A, B);
1338}
1339
1340static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1341  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1342}
1343
1344static bool CheckMethodOverrideReturn(Sema &S,
1345                                      ObjCMethodDecl *MethodImpl,
1346                                      ObjCMethodDecl *MethodDecl,
1347                                      bool IsProtocolMethodDecl,
1348                                      bool IsOverridingMode,
1349                                      bool Warn) {
1350  if (IsProtocolMethodDecl &&
1351      (MethodDecl->getObjCDeclQualifier() !=
1352       MethodImpl->getObjCDeclQualifier())) {
1353    if (Warn) {
1354      S.Diag(MethodImpl->getLocation(),
1355             (IsOverridingMode
1356                  ? diag::warn_conflicting_overriding_ret_type_modifiers
1357                  : diag::warn_conflicting_ret_type_modifiers))
1358          << MethodImpl->getDeclName()
1359          << MethodImpl->getReturnTypeSourceRange();
1360      S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1361          << MethodDecl->getReturnTypeSourceRange();
1362    }
1363    else
1364      return false;
1365  }
1366
1367  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
1368                                       MethodDecl->getReturnType()))
1369    return true;
1370  if (!Warn)
1371    return false;
1372
1373  unsigned DiagID =
1374    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1375                     : diag::warn_conflicting_ret_types;
1376
1377  // Mismatches between ObjC pointers go into a different warning
1378  // category, and sometimes they're even completely whitelisted.
1379  if (const ObjCObjectPointerType *ImplPtrTy =
1380          MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
1381    if (const ObjCObjectPointerType *IfacePtrTy =
1382            MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
1383      // Allow non-matching return types as long as they don't violate
1384      // the principle of substitutability.  Specifically, we permit
1385      // return types that are subclasses of the declared return type,
1386      // or that are more-qualified versions of the declared type.
1387      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1388        return false;
1389
1390      DiagID =
1391        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1392                          : diag::warn_non_covariant_ret_types;
1393    }
1394  }
1395
1396  S.Diag(MethodImpl->getLocation(), DiagID)
1397      << MethodImpl->getDeclName() << MethodDecl->getReturnType()
1398      << MethodImpl->getReturnType()
1399      << MethodImpl->getReturnTypeSourceRange();
1400  S.Diag(MethodDecl->getLocation(), IsOverridingMode
1401                                        ? diag::note_previous_declaration
1402                                        : diag::note_previous_definition)
1403      << MethodDecl->getReturnTypeSourceRange();
1404  return false;
1405}
1406
1407static bool CheckMethodOverrideParam(Sema &S,
1408                                     ObjCMethodDecl *MethodImpl,
1409                                     ObjCMethodDecl *MethodDecl,
1410                                     ParmVarDecl *ImplVar,
1411                                     ParmVarDecl *IfaceVar,
1412                                     bool IsProtocolMethodDecl,
1413                                     bool IsOverridingMode,
1414                                     bool Warn) {
1415  if (IsProtocolMethodDecl &&
1416      (ImplVar->getObjCDeclQualifier() !=
1417       IfaceVar->getObjCDeclQualifier())) {
1418    if (Warn) {
1419      if (IsOverridingMode)
1420        S.Diag(ImplVar->getLocation(),
1421               diag::warn_conflicting_overriding_param_modifiers)
1422            << getTypeRange(ImplVar->getTypeSourceInfo())
1423            << MethodImpl->getDeclName();
1424      else S.Diag(ImplVar->getLocation(),
1425             diag::warn_conflicting_param_modifiers)
1426          << getTypeRange(ImplVar->getTypeSourceInfo())
1427          << MethodImpl->getDeclName();
1428      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1429          << getTypeRange(IfaceVar->getTypeSourceInfo());
1430    }
1431    else
1432      return false;
1433  }
1434
1435  QualType ImplTy = ImplVar->getType();
1436  QualType IfaceTy = IfaceVar->getType();
1437
1438  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1439    return true;
1440
1441  if (!Warn)
1442    return false;
1443  unsigned DiagID =
1444    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1445                     : diag::warn_conflicting_param_types;
1446
1447  // Mismatches between ObjC pointers go into a different warning
1448  // category, and sometimes they're even completely whitelisted.
1449  if (const ObjCObjectPointerType *ImplPtrTy =
1450        ImplTy->getAs<ObjCObjectPointerType>()) {
1451    if (const ObjCObjectPointerType *IfacePtrTy =
1452          IfaceTy->getAs<ObjCObjectPointerType>()) {
1453      // Allow non-matching argument types as long as they don't
1454      // violate the principle of substitutability.  Specifically, the
1455      // implementation must accept any objects that the superclass
1456      // accepts, however it may also accept others.
1457      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1458        return false;
1459
1460      DiagID =
1461      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1462                       :  diag::warn_non_contravariant_param_types;
1463    }
1464  }
1465
1466  S.Diag(ImplVar->getLocation(), DiagID)
1467    << getTypeRange(ImplVar->getTypeSourceInfo())
1468    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1469  S.Diag(IfaceVar->getLocation(),
1470         (IsOverridingMode ? diag::note_previous_declaration
1471                        : diag::note_previous_definition))
1472    << getTypeRange(IfaceVar->getTypeSourceInfo());
1473  return false;
1474}
1475
1476/// In ARC, check whether the conventional meanings of the two methods
1477/// match.  If they don't, it's a hard error.
1478static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1479                                      ObjCMethodDecl *decl) {
1480  ObjCMethodFamily implFamily = impl->getMethodFamily();
1481  ObjCMethodFamily declFamily = decl->getMethodFamily();
1482  if (implFamily == declFamily) return false;
1483
1484  // Since conventions are sorted by selector, the only possibility is
1485  // that the types differ enough to cause one selector or the other
1486  // to fall out of the family.
1487  assert(implFamily == OMF_None || declFamily == OMF_None);
1488
1489  // No further diagnostics required on invalid declarations.
1490  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1491
1492  const ObjCMethodDecl *unmatched = impl;
1493  ObjCMethodFamily family = declFamily;
1494  unsigned errorID = diag::err_arc_lost_method_convention;
1495  unsigned noteID = diag::note_arc_lost_method_convention;
1496  if (declFamily == OMF_None) {
1497    unmatched = decl;
1498    family = implFamily;
1499    errorID = diag::err_arc_gained_method_convention;
1500    noteID = diag::note_arc_gained_method_convention;
1501  }
1502
1503  // Indexes into a %select clause in the diagnostic.
1504  enum FamilySelector {
1505    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1506  };
1507  FamilySelector familySelector = FamilySelector();
1508
1509  switch (family) {
1510  case OMF_None: llvm_unreachable("logic error, no method convention");
1511  case OMF_retain:
1512  case OMF_release:
1513  case OMF_autorelease:
1514  case OMF_dealloc:
1515  case OMF_finalize:
1516  case OMF_retainCount:
1517  case OMF_self:
1518  case OMF_initialize:
1519  case OMF_performSelector:
1520    // Mismatches for these methods don't change ownership
1521    // conventions, so we don't care.
1522    return false;
1523
1524  case OMF_init: familySelector = F_init; break;
1525  case OMF_alloc: familySelector = F_alloc; break;
1526  case OMF_copy: familySelector = F_copy; break;
1527  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1528  case OMF_new: familySelector = F_new; break;
1529  }
1530
1531  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1532  ReasonSelector reasonSelector;
1533
1534  // The only reason these methods don't fall within their families is
1535  // due to unusual result types.
1536  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
1537    reasonSelector = R_UnrelatedReturn;
1538  } else {
1539    reasonSelector = R_NonObjectReturn;
1540  }
1541
1542  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
1543  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
1544
1545  return true;
1546}
1547
1548void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1549                                       ObjCMethodDecl *MethodDecl,
1550                                       bool IsProtocolMethodDecl) {
1551  if (getLangOpts().ObjCAutoRefCount &&
1552      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1553    return;
1554
1555  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1556                            IsProtocolMethodDecl, false,
1557                            true);
1558
1559  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1560       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1561       EF = MethodDecl->param_end();
1562       IM != EM && IF != EF; ++IM, ++IF) {
1563    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1564                             IsProtocolMethodDecl, false, true);
1565  }
1566
1567  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1568    Diag(ImpMethodDecl->getLocation(),
1569         diag::warn_conflicting_variadic);
1570    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1571  }
1572}
1573
1574void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1575                                       ObjCMethodDecl *Overridden,
1576                                       bool IsProtocolMethodDecl) {
1577
1578  CheckMethodOverrideReturn(*this, Method, Overridden,
1579                            IsProtocolMethodDecl, true,
1580                            true);
1581
1582  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1583       IF = Overridden->param_begin(), EM = Method->param_end(),
1584       EF = Overridden->param_end();
1585       IM != EM && IF != EF; ++IM, ++IF) {
1586    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1587                             IsProtocolMethodDecl, true, true);
1588  }
1589
1590  if (Method->isVariadic() != Overridden->isVariadic()) {
1591    Diag(Method->getLocation(),
1592         diag::warn_conflicting_overriding_variadic);
1593    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1594  }
1595}
1596
1597/// WarnExactTypedMethods - This routine issues a warning if method
1598/// implementation declaration matches exactly that of its declaration.
1599void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1600                                 ObjCMethodDecl *MethodDecl,
1601                                 bool IsProtocolMethodDecl) {
1602  // don't issue warning when protocol method is optional because primary
1603  // class is not required to implement it and it is safe for protocol
1604  // to implement it.
1605  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1606    return;
1607  // don't issue warning when primary class's method is
1608  // depecated/unavailable.
1609  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1610      MethodDecl->hasAttr<DeprecatedAttr>())
1611    return;
1612
1613  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1614                                      IsProtocolMethodDecl, false, false);
1615  if (match)
1616    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1617         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1618         EF = MethodDecl->param_end();
1619         IM != EM && IF != EF; ++IM, ++IF) {
1620      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1621                                       *IM, *IF,
1622                                       IsProtocolMethodDecl, false, false);
1623      if (!match)
1624        break;
1625    }
1626  if (match)
1627    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1628  if (match)
1629    match = !(MethodDecl->isClassMethod() &&
1630              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1631
1632  if (match) {
1633    Diag(ImpMethodDecl->getLocation(),
1634         diag::warn_category_method_impl_match);
1635    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1636      << MethodDecl->getDeclName();
1637  }
1638}
1639
1640/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1641/// improve the efficiency of selector lookups and type checking by associating
1642/// with each protocol / interface / category the flattened instance tables. If
1643/// we used an immutable set to keep the table then it wouldn't add significant
1644/// memory cost and it would be handy for lookups.
1645
1646typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
1647typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
1648
1649static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
1650                                           ProtocolNameSet &PNS) {
1651  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
1652    PNS.insert(PDecl->getIdentifier());
1653  for (const auto *PI : PDecl->protocols())
1654    findProtocolsWithExplicitImpls(PI, PNS);
1655}
1656
1657/// Recursively populates a set with all conformed protocols in a class
1658/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
1659/// attribute.
1660static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
1661                                           ProtocolNameSet &PNS) {
1662  if (!Super)
1663    return;
1664
1665  for (const auto *I : Super->all_referenced_protocols())
1666    findProtocolsWithExplicitImpls(I, PNS);
1667
1668  findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
1669}
1670
1671/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1672/// Declared in protocol, and those referenced by it.
1673static void CheckProtocolMethodDefs(Sema &S,
1674                                    SourceLocation ImpLoc,
1675                                    ObjCProtocolDecl *PDecl,
1676                                    bool& IncompleteImpl,
1677                                    const Sema::SelectorSet &InsMap,
1678                                    const Sema::SelectorSet &ClsMap,
1679                                    ObjCContainerDecl *CDecl,
1680                                    LazyProtocolNameSet &ProtocolsExplictImpl) {
1681  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1682  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1683                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
1684  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1685
1686  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1687  ObjCInterfaceDecl *NSIDecl = nullptr;
1688
1689  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
1690  // then we should check if any class in the super class hierarchy also
1691  // conforms to this protocol, either directly or via protocol inheritance.
1692  // If so, we can skip checking this protocol completely because we
1693  // know that a parent class already satisfies this protocol.
1694  //
1695  // Note: we could generalize this logic for all protocols, and merely
1696  // add the limit on looking at the super class chain for just
1697  // specially marked protocols.  This may be a good optimization.  This
1698  // change is restricted to 'objc_protocol_requires_explicit_implementation'
1699  // protocols for now for controlled evaluation.
1700  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
1701    if (!ProtocolsExplictImpl) {
1702      ProtocolsExplictImpl.reset(new ProtocolNameSet);
1703      findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
1704    }
1705    if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
1706        ProtocolsExplictImpl->end())
1707      return;
1708
1709    // If no super class conforms to the protocol, we should not search
1710    // for methods in the super class to implicitly satisfy the protocol.
1711    Super = nullptr;
1712  }
1713
1714  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
1715    // check to see if class implements forwardInvocation method and objects
1716    // of this class are derived from 'NSProxy' so that to forward requests
1717    // from one object to another.
1718    // Under such conditions, which means that every method possible is
1719    // implemented in the class, we should not issue "Method definition not
1720    // found" warnings.
1721    // FIXME: Use a general GetUnarySelector method for this.
1722    IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
1723    Selector fISelector = S.Context.Selectors.getSelector(1, &II);
1724    if (InsMap.count(fISelector))
1725      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1726      // need be implemented in the implementation.
1727      NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
1728  }
1729
1730  // If this is a forward protocol declaration, get its definition.
1731  if (!PDecl->isThisDeclarationADefinition() &&
1732      PDecl->getDefinition())
1733    PDecl = PDecl->getDefinition();
1734
1735  // If a method lookup fails locally we still need to look and see if
1736  // the method was implemented by a base class or an inherited
1737  // protocol. This lookup is slow, but occurs rarely in correct code
1738  // and otherwise would terminate in a warning.
1739
1740  // check unimplemented instance methods.
1741  if (!NSIDecl)
1742    for (auto *method : PDecl->instance_methods()) {
1743      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1744          !method->isPropertyAccessor() &&
1745          !InsMap.count(method->getSelector()) &&
1746          (!Super || !Super->lookupMethod(method->getSelector(),
1747                                          true /* instance */,
1748                                          false /* shallowCategory */,
1749                                          true /* followsSuper */,
1750                                          nullptr /* category */))) {
1751            // If a method is not implemented in the category implementation but
1752            // has been declared in its primary class, superclass,
1753            // or in one of their protocols, no need to issue the warning.
1754            // This is because method will be implemented in the primary class
1755            // or one of its super class implementation.
1756
1757            // Ugly, but necessary. Method declared in protcol might have
1758            // have been synthesized due to a property declared in the class which
1759            // uses the protocol.
1760            if (ObjCMethodDecl *MethodInClass =
1761                  IDecl->lookupMethod(method->getSelector(),
1762                                      true /* instance */,
1763                                      true /* shallowCategoryLookup */,
1764                                      false /* followSuper */))
1765              if (C || MethodInClass->isPropertyAccessor())
1766                continue;
1767            unsigned DIAG = diag::warn_unimplemented_protocol_method;
1768            if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
1769              WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
1770                                  PDecl);
1771            }
1772          }
1773    }
1774  // check unimplemented class methods
1775  for (auto *method : PDecl->class_methods()) {
1776    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1777        !ClsMap.count(method->getSelector()) &&
1778        (!Super || !Super->lookupMethod(method->getSelector(),
1779                                        false /* class method */,
1780                                        false /* shallowCategoryLookup */,
1781                                        true  /* followSuper */,
1782                                        nullptr /* category */))) {
1783      // See above comment for instance method lookups.
1784      if (C && IDecl->lookupMethod(method->getSelector(),
1785                                   false /* class */,
1786                                   true /* shallowCategoryLookup */,
1787                                   false /* followSuper */))
1788        continue;
1789
1790      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1791      if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
1792        WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
1793      }
1794    }
1795  }
1796  // Check on this protocols's referenced protocols, recursively.
1797  for (auto *PI : PDecl->protocols())
1798    CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
1799                            CDecl, ProtocolsExplictImpl);
1800}
1801
1802/// MatchAllMethodDeclarations - Check methods declared in interface
1803/// or protocol against those declared in their implementations.
1804///
1805void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1806                                      const SelectorSet &ClsMap,
1807                                      SelectorSet &InsMapSeen,
1808                                      SelectorSet &ClsMapSeen,
1809                                      ObjCImplDecl* IMPDecl,
1810                                      ObjCContainerDecl* CDecl,
1811                                      bool &IncompleteImpl,
1812                                      bool ImmediateClass,
1813                                      bool WarnCategoryMethodImpl) {
1814  // Check and see if instance methods in class interface have been
1815  // implemented in the implementation class. If so, their types match.
1816  for (auto *I : CDecl->instance_methods()) {
1817    if (!InsMapSeen.insert(I->getSelector()).second)
1818      continue;
1819    if (!I->isPropertyAccessor() &&
1820        !InsMap.count(I->getSelector())) {
1821      if (ImmediateClass)
1822        WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
1823                            diag::warn_undef_method_impl);
1824      continue;
1825    } else {
1826      ObjCMethodDecl *ImpMethodDecl =
1827        IMPDecl->getInstanceMethod(I->getSelector());
1828      assert(CDecl->getInstanceMethod(I->getSelector()) &&
1829             "Expected to find the method through lookup as well");
1830      // ImpMethodDecl may be null as in a @dynamic property.
1831      if (ImpMethodDecl) {
1832        if (!WarnCategoryMethodImpl)
1833          WarnConflictingTypedMethods(ImpMethodDecl, I,
1834                                      isa<ObjCProtocolDecl>(CDecl));
1835        else if (!I->isPropertyAccessor())
1836          WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
1837      }
1838    }
1839  }
1840
1841  // Check and see if class methods in class interface have been
1842  // implemented in the implementation class. If so, their types match.
1843  for (auto *I : CDecl->class_methods()) {
1844    if (!ClsMapSeen.insert(I->getSelector()).second)
1845      continue;
1846    if (!ClsMap.count(I->getSelector())) {
1847      if (ImmediateClass)
1848        WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
1849                            diag::warn_undef_method_impl);
1850    } else {
1851      ObjCMethodDecl *ImpMethodDecl =
1852        IMPDecl->getClassMethod(I->getSelector());
1853      assert(CDecl->getClassMethod(I->getSelector()) &&
1854             "Expected to find the method through lookup as well");
1855      if (!WarnCategoryMethodImpl)
1856        WarnConflictingTypedMethods(ImpMethodDecl, I,
1857                                    isa<ObjCProtocolDecl>(CDecl));
1858      else
1859        WarnExactTypedMethods(ImpMethodDecl, I,
1860                              isa<ObjCProtocolDecl>(CDecl));
1861    }
1862  }
1863
1864  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
1865    // Also, check for methods declared in protocols inherited by
1866    // this protocol.
1867    for (auto *PI : PD->protocols())
1868      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1869                                 IMPDecl, PI, IncompleteImpl, false,
1870                                 WarnCategoryMethodImpl);
1871  }
1872
1873  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1874    // when checking that methods in implementation match their declaration,
1875    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
1876    // extension; as well as those in categories.
1877    if (!WarnCategoryMethodImpl) {
1878      for (auto *Cat : I->visible_categories())
1879        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1880                                   IMPDecl, Cat, IncompleteImpl, false,
1881                                   WarnCategoryMethodImpl);
1882    } else {
1883      // Also methods in class extensions need be looked at next.
1884      for (auto *Ext : I->visible_extensions())
1885        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1886                                   IMPDecl, Ext, IncompleteImpl, false,
1887                                   WarnCategoryMethodImpl);
1888    }
1889
1890    // Check for any implementation of a methods declared in protocol.
1891    for (auto *PI : I->all_referenced_protocols())
1892      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1893                                 IMPDecl, PI, IncompleteImpl, false,
1894                                 WarnCategoryMethodImpl);
1895
1896    // FIXME. For now, we are not checking for extact match of methods
1897    // in category implementation and its primary class's super class.
1898    if (!WarnCategoryMethodImpl && I->getSuperClass())
1899      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1900                                 IMPDecl,
1901                                 I->getSuperClass(), IncompleteImpl, false);
1902  }
1903}
1904
1905/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1906/// category matches with those implemented in its primary class and
1907/// warns each time an exact match is found.
1908void Sema::CheckCategoryVsClassMethodMatches(
1909                                  ObjCCategoryImplDecl *CatIMPDecl) {
1910  // Get category's primary class.
1911  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1912  if (!CatDecl)
1913    return;
1914  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1915  if (!IDecl)
1916    return;
1917  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
1918  SelectorSet InsMap, ClsMap;
1919
1920  for (const auto *I : CatIMPDecl->instance_methods()) {
1921    Selector Sel = I->getSelector();
1922    // When checking for methods implemented in the category, skip over
1923    // those declared in category class's super class. This is because
1924    // the super class must implement the method.
1925    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
1926      continue;
1927    InsMap.insert(Sel);
1928  }
1929
1930  for (const auto *I : CatIMPDecl->class_methods()) {
1931    Selector Sel = I->getSelector();
1932    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
1933      continue;
1934    ClsMap.insert(Sel);
1935  }
1936  if (InsMap.empty() && ClsMap.empty())
1937    return;
1938
1939  SelectorSet InsMapSeen, ClsMapSeen;
1940  bool IncompleteImpl = false;
1941  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1942                             CatIMPDecl, IDecl,
1943                             IncompleteImpl, false,
1944                             true /*WarnCategoryMethodImpl*/);
1945}
1946
1947void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1948                                     ObjCContainerDecl* CDecl,
1949                                     bool IncompleteImpl) {
1950  SelectorSet InsMap;
1951  // Check and see if instance methods in class interface have been
1952  // implemented in the implementation class.
1953  for (const auto *I : IMPDecl->instance_methods())
1954    InsMap.insert(I->getSelector());
1955
1956  // Check and see if properties declared in the interface have either 1)
1957  // an implementation or 2) there is a @synthesize/@dynamic implementation
1958  // of the property in the @implementation.
1959  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1960    bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
1961                                LangOpts.ObjCRuntime.isNonFragile() &&
1962                                !IDecl->isObjCRequiresPropertyDefs();
1963    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
1964  }
1965
1966  SelectorSet ClsMap;
1967  for (const auto *I : IMPDecl->class_methods())
1968    ClsMap.insert(I->getSelector());
1969
1970  // Check for type conflict of methods declared in a class/protocol and
1971  // its implementation; if any.
1972  SelectorSet InsMapSeen, ClsMapSeen;
1973  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1974                             IMPDecl, CDecl,
1975                             IncompleteImpl, true);
1976
1977  // check all methods implemented in category against those declared
1978  // in its primary class.
1979  if (ObjCCategoryImplDecl *CatDecl =
1980        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1981    CheckCategoryVsClassMethodMatches(CatDecl);
1982
1983  // Check the protocol list for unimplemented methods in the @implementation
1984  // class.
1985  // Check and see if class methods in class interface have been
1986  // implemented in the implementation class.
1987
1988  LazyProtocolNameSet ExplicitImplProtocols;
1989
1990  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1991    for (auto *PI : I->all_referenced_protocols())
1992      CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
1993                              InsMap, ClsMap, I, ExplicitImplProtocols);
1994    // Check class extensions (unnamed categories)
1995    for (auto *Ext : I->visible_extensions())
1996      ImplMethodsVsClassMethods(S, IMPDecl, Ext, IncompleteImpl);
1997  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1998    // For extended class, unimplemented methods in its protocols will
1999    // be reported in the primary class.
2000    if (!C->IsClassExtension()) {
2001      for (auto *P : C->protocols())
2002        CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2003                                IncompleteImpl, InsMap, ClsMap, CDecl,
2004                                ExplicitImplProtocols);
2005      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2006                                      /*SynthesizeProperties=*/false);
2007    }
2008  } else
2009    llvm_unreachable("invalid ObjCContainerDecl type.");
2010}
2011
2012Sema::DeclGroupPtrTy
2013Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
2014                                   IdentifierInfo **IdentList,
2015                                   SourceLocation *IdentLocs,
2016                                   unsigned NumElts) {
2017  SmallVector<Decl *, 8> DeclsInGroup;
2018  for (unsigned i = 0; i != NumElts; ++i) {
2019    // Check for another declaration kind with the same name.
2020    NamedDecl *PrevDecl
2021      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
2022                         LookupOrdinaryName, ForRedeclaration);
2023    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2024      // GCC apparently allows the following idiom:
2025      //
2026      // typedef NSObject < XCElementTogglerP > XCElementToggler;
2027      // @class XCElementToggler;
2028      //
2029      // Here we have chosen to ignore the forward class declaration
2030      // with a warning. Since this is the implied behavior.
2031      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
2032      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
2033        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
2034        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2035      } else {
2036        // a forward class declaration matching a typedef name of a class refers
2037        // to the underlying class. Just ignore the forward class with a warning
2038        // as this will force the intended behavior which is to lookup the
2039        // typedef name.
2040        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
2041          Diag(AtClassLoc, diag::warn_forward_class_redefinition)
2042              << IdentList[i];
2043          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2044          continue;
2045        }
2046      }
2047    }
2048
2049    // Create a declaration to describe this forward declaration.
2050    ObjCInterfaceDecl *PrevIDecl
2051      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2052
2053    IdentifierInfo *ClassName = IdentList[i];
2054    if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
2055      // A previous decl with a different name is because of
2056      // @compatibility_alias, for example:
2057      // \code
2058      //   @class NewImage;
2059      //   @compatibility_alias OldImage NewImage;
2060      // \endcode
2061      // A lookup for 'OldImage' will return the 'NewImage' decl.
2062      //
2063      // In such a case use the real declaration name, instead of the alias one,
2064      // otherwise we will break IdentifierResolver and redecls-chain invariants.
2065      // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
2066      // has been aliased.
2067      ClassName = PrevIDecl->getIdentifier();
2068    }
2069
2070    ObjCInterfaceDecl *IDecl
2071      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
2072                                  ClassName, PrevIDecl, IdentLocs[i]);
2073    IDecl->setAtEndRange(IdentLocs[i]);
2074
2075    PushOnScopeChains(IDecl, TUScope);
2076    CheckObjCDeclScope(IDecl);
2077    DeclsInGroup.push_back(IDecl);
2078  }
2079
2080  return BuildDeclaratorGroup(DeclsInGroup, false);
2081}
2082
2083static bool tryMatchRecordTypes(ASTContext &Context,
2084                                Sema::MethodMatchStrategy strategy,
2085                                const Type *left, const Type *right);
2086
2087static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
2088                       QualType leftQT, QualType rightQT) {
2089  const Type *left =
2090    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
2091  const Type *right =
2092    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
2093
2094  if (left == right) return true;
2095
2096  // If we're doing a strict match, the types have to match exactly.
2097  if (strategy == Sema::MMS_strict) return false;
2098
2099  if (left->isIncompleteType() || right->isIncompleteType()) return false;
2100
2101  // Otherwise, use this absurdly complicated algorithm to try to
2102  // validate the basic, low-level compatibility of the two types.
2103
2104  // As a minimum, require the sizes and alignments to match.
2105  TypeInfo LeftTI = Context.getTypeInfo(left);
2106  TypeInfo RightTI = Context.getTypeInfo(right);
2107  if (LeftTI.Width != RightTI.Width)
2108    return false;
2109
2110  if (LeftTI.Align != RightTI.Align)
2111    return false;
2112
2113  // Consider all the kinds of non-dependent canonical types:
2114  // - functions and arrays aren't possible as return and parameter types
2115
2116  // - vector types of equal size can be arbitrarily mixed
2117  if (isa<VectorType>(left)) return isa<VectorType>(right);
2118  if (isa<VectorType>(right)) return false;
2119
2120  // - references should only match references of identical type
2121  // - structs, unions, and Objective-C objects must match more-or-less
2122  //   exactly
2123  // - everything else should be a scalar
2124  if (!left->isScalarType() || !right->isScalarType())
2125    return tryMatchRecordTypes(Context, strategy, left, right);
2126
2127  // Make scalars agree in kind, except count bools as chars, and group
2128  // all non-member pointers together.
2129  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
2130  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
2131  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
2132  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
2133  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
2134    leftSK = Type::STK_ObjCObjectPointer;
2135  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
2136    rightSK = Type::STK_ObjCObjectPointer;
2137
2138  // Note that data member pointers and function member pointers don't
2139  // intermix because of the size differences.
2140
2141  return (leftSK == rightSK);
2142}
2143
2144static bool tryMatchRecordTypes(ASTContext &Context,
2145                                Sema::MethodMatchStrategy strategy,
2146                                const Type *lt, const Type *rt) {
2147  assert(lt && rt && lt != rt);
2148
2149  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
2150  RecordDecl *left = cast<RecordType>(lt)->getDecl();
2151  RecordDecl *right = cast<RecordType>(rt)->getDecl();
2152
2153  // Require union-hood to match.
2154  if (left->isUnion() != right->isUnion()) return false;
2155
2156  // Require an exact match if either is non-POD.
2157  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
2158      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
2159    return false;
2160
2161  // Require size and alignment to match.
2162  TypeInfo LeftTI = Context.getTypeInfo(lt);
2163  TypeInfo RightTI = Context.getTypeInfo(rt);
2164  if (LeftTI.Width != RightTI.Width)
2165    return false;
2166
2167  if (LeftTI.Align != RightTI.Align)
2168    return false;
2169
2170  // Require fields to match.
2171  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
2172  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
2173  for (; li != le && ri != re; ++li, ++ri) {
2174    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
2175      return false;
2176  }
2177  return (li == le && ri == re);
2178}
2179
2180/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
2181/// returns true, or false, accordingly.
2182/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
2183bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
2184                                      const ObjCMethodDecl *right,
2185                                      MethodMatchStrategy strategy) {
2186  if (!matchTypes(Context, strategy, left->getReturnType(),
2187                  right->getReturnType()))
2188    return false;
2189
2190  // If either is hidden, it is not considered to match.
2191  if (left->isHidden() || right->isHidden())
2192    return false;
2193
2194  if (getLangOpts().ObjCAutoRefCount &&
2195      (left->hasAttr<NSReturnsRetainedAttr>()
2196         != right->hasAttr<NSReturnsRetainedAttr>() ||
2197       left->hasAttr<NSConsumesSelfAttr>()
2198         != right->hasAttr<NSConsumesSelfAttr>()))
2199    return false;
2200
2201  ObjCMethodDecl::param_const_iterator
2202    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2203    re = right->param_end();
2204
2205  for (; li != le && ri != re; ++li, ++ri) {
2206    assert(ri != right->param_end() && "Param mismatch");
2207    const ParmVarDecl *lparm = *li, *rparm = *ri;
2208
2209    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2210      return false;
2211
2212    if (getLangOpts().ObjCAutoRefCount &&
2213        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2214      return false;
2215  }
2216  return true;
2217}
2218
2219void Sema::addMethodToGlobalList(ObjCMethodList *List,
2220                                 ObjCMethodDecl *Method) {
2221  // Record at the head of the list whether there were 0, 1, or >= 2 methods
2222  // inside categories.
2223  if (ObjCCategoryDecl *CD =
2224          dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
2225    if (!CD->IsClassExtension() && List->getBits() < 2)
2226      List->setBits(List->getBits() + 1);
2227
2228  // If the list is empty, make it a singleton list.
2229  if (List->getMethod() == nullptr) {
2230    List->setMethod(Method);
2231    List->setNext(nullptr);
2232    return;
2233  }
2234
2235  // We've seen a method with this name, see if we have already seen this type
2236  // signature.
2237  ObjCMethodList *Previous = List;
2238  for (; List; Previous = List, List = List->getNext()) {
2239    // If we are building a module, keep all of the methods.
2240    if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
2241      continue;
2242
2243    if (!MatchTwoMethodDeclarations(Method, List->getMethod())) {
2244      // Even if two method types do not match, we would like to say
2245      // there is more than one declaration so unavailability/deprecated
2246      // warning is not too noisy.
2247      if (!Method->isDefined())
2248        List->setHasMoreThanOneDecl(true);
2249      continue;
2250    }
2251
2252    ObjCMethodDecl *PrevObjCMethod = List->getMethod();
2253
2254    // Propagate the 'defined' bit.
2255    if (Method->isDefined())
2256      PrevObjCMethod->setDefined(true);
2257    else {
2258      // Objective-C doesn't allow an @interface for a class after its
2259      // @implementation. So if Method is not defined and there already is
2260      // an entry for this type signature, Method has to be for a different
2261      // class than PrevObjCMethod.
2262      List->setHasMoreThanOneDecl(true);
2263    }
2264
2265    // If a method is deprecated, push it in the global pool.
2266    // This is used for better diagnostics.
2267    if (Method->isDeprecated()) {
2268      if (!PrevObjCMethod->isDeprecated())
2269        List->setMethod(Method);
2270    }
2271    // If the new method is unavailable, push it into global pool
2272    // unless previous one is deprecated.
2273    if (Method->isUnavailable()) {
2274      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2275        List->setMethod(Method);
2276    }
2277
2278    return;
2279  }
2280
2281  // We have a new signature for an existing method - add it.
2282  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2283  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2284  Previous->setNext(new (Mem) ObjCMethodList(Method));
2285}
2286
2287/// \brief Read the contents of the method pool for a given selector from
2288/// external storage.
2289void Sema::ReadMethodPool(Selector Sel) {
2290  assert(ExternalSource && "We need an external AST source");
2291  ExternalSource->ReadMethodPool(Sel);
2292}
2293
2294void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2295                                 bool instance) {
2296  // Ignore methods of invalid containers.
2297  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2298    return;
2299
2300  if (ExternalSource)
2301    ReadMethodPool(Method->getSelector());
2302
2303  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2304  if (Pos == MethodPool.end())
2305    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2306                                           GlobalMethods())).first;
2307
2308  Method->setDefined(impl);
2309
2310  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2311  addMethodToGlobalList(&Entry, Method);
2312}
2313
2314/// Determines if this is an "acceptable" loose mismatch in the global
2315/// method pool.  This exists mostly as a hack to get around certain
2316/// global mismatches which we can't afford to make warnings / errors.
2317/// Really, what we want is a way to take a method out of the global
2318/// method pool.
2319static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2320                                       ObjCMethodDecl *other) {
2321  if (!chosen->isInstanceMethod())
2322    return false;
2323
2324  Selector sel = chosen->getSelector();
2325  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2326    return false;
2327
2328  // Don't complain about mismatches for -length if the method we
2329  // chose has an integral result type.
2330  return (chosen->getReturnType()->isIntegerType());
2331}
2332
2333bool Sema::CollectMultipleMethodsInGlobalPool(
2334    Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, bool instance) {
2335  if (ExternalSource)
2336    ReadMethodPool(Sel);
2337
2338  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2339  if (Pos == MethodPool.end())
2340    return false;
2341  // Gather the non-hidden methods.
2342  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2343  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
2344    if (M->getMethod() && !M->getMethod()->isHidden())
2345      Methods.push_back(M->getMethod());
2346  return Methods.size() > 1;
2347}
2348
2349bool Sema::AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
2350                                          SourceRange R,
2351                                          bool receiverIdOrClass) {
2352  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2353  // Test for no method in the pool which should not trigger any warning by
2354  // caller.
2355  if (Pos == MethodPool.end())
2356    return true;
2357  ObjCMethodList &MethList =
2358    BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
2359
2360  // Diagnose finding more than one method in global pool
2361  SmallVector<ObjCMethodDecl *, 4> Methods;
2362  Methods.push_back(BestMethod);
2363  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
2364    if (M->getMethod() && !M->getMethod()->isHidden() &&
2365        M->getMethod() != BestMethod)
2366      Methods.push_back(M->getMethod());
2367  if (Methods.size() > 1)
2368    DiagnoseMultipleMethodInGlobalPool(Methods, Sel, R, receiverIdOrClass);
2369
2370  return MethList.hasMoreThanOneDecl();
2371}
2372
2373ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2374                                               bool receiverIdOrClass,
2375                                               bool instance) {
2376  if (ExternalSource)
2377    ReadMethodPool(Sel);
2378
2379  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2380  if (Pos == MethodPool.end())
2381    return nullptr;
2382
2383  // Gather the non-hidden methods.
2384  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2385  SmallVector<ObjCMethodDecl *, 4> Methods;
2386  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
2387    if (M->getMethod() && !M->getMethod()->isHidden())
2388      return M->getMethod();
2389  }
2390  return nullptr;
2391}
2392
2393void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
2394                                              Selector Sel, SourceRange R,
2395                                              bool receiverIdOrClass) {
2396  // We found multiple methods, so we may have to complain.
2397  bool issueDiagnostic = false, issueError = false;
2398
2399  // We support a warning which complains about *any* difference in
2400  // method signature.
2401  bool strictSelectorMatch =
2402  receiverIdOrClass &&
2403  !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
2404  if (strictSelectorMatch) {
2405    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2406      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
2407        issueDiagnostic = true;
2408        break;
2409      }
2410    }
2411  }
2412
2413  // If we didn't see any strict differences, we won't see any loose
2414  // differences.  In ARC, however, we also need to check for loose
2415  // mismatches, because most of them are errors.
2416  if (!strictSelectorMatch ||
2417      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2418    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2419      // This checks if the methods differ in type mismatch.
2420      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
2421          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
2422        issueDiagnostic = true;
2423        if (getLangOpts().ObjCAutoRefCount)
2424          issueError = true;
2425        break;
2426      }
2427    }
2428
2429  if (issueDiagnostic) {
2430    if (issueError)
2431      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2432    else if (strictSelectorMatch)
2433      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2434    else
2435      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2436
2437    Diag(Methods[0]->getLocStart(),
2438         issueError ? diag::note_possibility : diag::note_using)
2439    << Methods[0]->getSourceRange();
2440    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2441      Diag(Methods[I]->getLocStart(), diag::note_also_found)
2442      << Methods[I]->getSourceRange();
2443    }
2444  }
2445}
2446
2447ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2448  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2449  if (Pos == MethodPool.end())
2450    return nullptr;
2451
2452  GlobalMethods &Methods = Pos->second;
2453  for (const ObjCMethodList *Method = &Methods.first; Method;
2454       Method = Method->getNext())
2455    if (Method->getMethod() &&
2456        (Method->getMethod()->isDefined() ||
2457         Method->getMethod()->isPropertyAccessor()))
2458      return Method->getMethod();
2459
2460  for (const ObjCMethodList *Method = &Methods.second; Method;
2461       Method = Method->getNext())
2462    if (Method->getMethod() &&
2463        (Method->getMethod()->isDefined() ||
2464         Method->getMethod()->isPropertyAccessor()))
2465      return Method->getMethod();
2466  return nullptr;
2467}
2468
2469static void
2470HelperSelectorsForTypoCorrection(
2471                      SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
2472                      StringRef Typo, const ObjCMethodDecl * Method) {
2473  const unsigned MaxEditDistance = 1;
2474  unsigned BestEditDistance = MaxEditDistance + 1;
2475  std::string MethodName = Method->getSelector().getAsString();
2476
2477  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
2478  if (MinPossibleEditDistance > 0 &&
2479      Typo.size() / MinPossibleEditDistance < 1)
2480    return;
2481  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
2482  if (EditDistance > MaxEditDistance)
2483    return;
2484  if (EditDistance == BestEditDistance)
2485    BestMethod.push_back(Method);
2486  else if (EditDistance < BestEditDistance) {
2487    BestMethod.clear();
2488    BestMethod.push_back(Method);
2489  }
2490}
2491
2492static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
2493                                     QualType ObjectType) {
2494  if (ObjectType.isNull())
2495    return true;
2496  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
2497    return true;
2498  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
2499         nullptr;
2500}
2501
2502const ObjCMethodDecl *
2503Sema::SelectorsForTypoCorrection(Selector Sel,
2504                                 QualType ObjectType) {
2505  unsigned NumArgs = Sel.getNumArgs();
2506  SmallVector<const ObjCMethodDecl *, 8> Methods;
2507  bool ObjectIsId = true, ObjectIsClass = true;
2508  if (ObjectType.isNull())
2509    ObjectIsId = ObjectIsClass = false;
2510  else if (!ObjectType->isObjCObjectPointerType())
2511    return nullptr;
2512  else if (const ObjCObjectPointerType *ObjCPtr =
2513           ObjectType->getAsObjCInterfacePointerType()) {
2514    ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
2515    ObjectIsId = ObjectIsClass = false;
2516  }
2517  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
2518    ObjectIsClass = false;
2519  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
2520    ObjectIsId = false;
2521  else
2522    return nullptr;
2523
2524  for (GlobalMethodPool::iterator b = MethodPool.begin(),
2525       e = MethodPool.end(); b != e; b++) {
2526    // instance methods
2527    for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
2528      if (M->getMethod() &&
2529          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
2530          (M->getMethod()->getSelector() != Sel)) {
2531        if (ObjectIsId)
2532          Methods.push_back(M->getMethod());
2533        else if (!ObjectIsClass &&
2534                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
2535                                          ObjectType))
2536          Methods.push_back(M->getMethod());
2537      }
2538    // class methods
2539    for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
2540      if (M->getMethod() &&
2541          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
2542          (M->getMethod()->getSelector() != Sel)) {
2543        if (ObjectIsClass)
2544          Methods.push_back(M->getMethod());
2545        else if (!ObjectIsId &&
2546                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
2547                                          ObjectType))
2548          Methods.push_back(M->getMethod());
2549      }
2550  }
2551
2552  SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
2553  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
2554    HelperSelectorsForTypoCorrection(SelectedMethods,
2555                                     Sel.getAsString(), Methods[i]);
2556  }
2557  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
2558}
2559
2560/// DiagnoseDuplicateIvars -
2561/// Check for duplicate ivars in the entire class at the start of
2562/// \@implementation. This becomes necesssary because class extension can
2563/// add ivars to a class in random order which will not be known until
2564/// class's \@implementation is seen.
2565void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2566                                  ObjCInterfaceDecl *SID) {
2567  for (auto *Ivar : ID->ivars()) {
2568    if (Ivar->isInvalidDecl())
2569      continue;
2570    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2571      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2572      if (prevIvar) {
2573        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2574        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2575        Ivar->setInvalidDecl();
2576      }
2577    }
2578  }
2579}
2580
2581Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2582  switch (CurContext->getDeclKind()) {
2583    case Decl::ObjCInterface:
2584      return Sema::OCK_Interface;
2585    case Decl::ObjCProtocol:
2586      return Sema::OCK_Protocol;
2587    case Decl::ObjCCategory:
2588      if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2589        return Sema::OCK_ClassExtension;
2590      return Sema::OCK_Category;
2591    case Decl::ObjCImplementation:
2592      return Sema::OCK_Implementation;
2593    case Decl::ObjCCategoryImpl:
2594      return Sema::OCK_CategoryImplementation;
2595
2596    default:
2597      return Sema::OCK_None;
2598  }
2599}
2600
2601// Note: For class/category implementations, allMethods is always null.
2602Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
2603                       ArrayRef<DeclGroupPtrTy> allTUVars) {
2604  if (getObjCContainerKind() == Sema::OCK_None)
2605    return nullptr;
2606
2607  assert(AtEnd.isValid() && "Invalid location for '@end'");
2608
2609  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2610  Decl *ClassDecl = cast<Decl>(OCD);
2611
2612  bool isInterfaceDeclKind =
2613        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2614         || isa<ObjCProtocolDecl>(ClassDecl);
2615  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2616
2617  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2618  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2619  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2620
2621  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
2622    ObjCMethodDecl *Method =
2623      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2624
2625    if (!Method) continue;  // Already issued a diagnostic.
2626    if (Method->isInstanceMethod()) {
2627      /// Check for instance method of the same name with incompatible types
2628      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2629      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2630                              : false;
2631      if ((isInterfaceDeclKind && PrevMethod && !match)
2632          || (checkIdenticalMethods && match)) {
2633          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2634            << Method->getDeclName();
2635          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2636        Method->setInvalidDecl();
2637      } else {
2638        if (PrevMethod) {
2639          Method->setAsRedeclaration(PrevMethod);
2640          if (!Context.getSourceManager().isInSystemHeader(
2641                 Method->getLocation()))
2642            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2643              << Method->getDeclName();
2644          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2645        }
2646        InsMap[Method->getSelector()] = Method;
2647        /// The following allows us to typecheck messages to "id".
2648        AddInstanceMethodToGlobalPool(Method);
2649      }
2650    } else {
2651      /// Check for class method of the same name with incompatible types
2652      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2653      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2654                              : false;
2655      if ((isInterfaceDeclKind && PrevMethod && !match)
2656          || (checkIdenticalMethods && match)) {
2657        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2658          << Method->getDeclName();
2659        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2660        Method->setInvalidDecl();
2661      } else {
2662        if (PrevMethod) {
2663          Method->setAsRedeclaration(PrevMethod);
2664          if (!Context.getSourceManager().isInSystemHeader(
2665                 Method->getLocation()))
2666            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2667              << Method->getDeclName();
2668          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2669        }
2670        ClsMap[Method->getSelector()] = Method;
2671        AddFactoryMethodToGlobalPool(Method);
2672      }
2673    }
2674  }
2675  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
2676    // Nothing to do here.
2677  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2678    // Categories are used to extend the class by declaring new methods.
2679    // By the same token, they are also used to add new properties. No
2680    // need to compare the added property to those in the class.
2681
2682    if (C->IsClassExtension()) {
2683      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2684      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2685    }
2686  }
2687  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2688    if (CDecl->getIdentifier())
2689      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2690      // user-defined setter/getter. It also synthesizes setter/getter methods
2691      // and adds them to the DeclContext and global method pools.
2692      for (auto *I : CDecl->properties())
2693        ProcessPropertyDecl(I, CDecl);
2694    CDecl->setAtEndRange(AtEnd);
2695  }
2696  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2697    IC->setAtEndRange(AtEnd);
2698    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2699      // Any property declared in a class extension might have user
2700      // declared setter or getter in current class extension or one
2701      // of the other class extensions. Mark them as synthesized as
2702      // property will be synthesized when property with same name is
2703      // seen in the @implementation.
2704      for (const auto *Ext : IDecl->visible_extensions()) {
2705        for (const auto *Property : Ext->properties()) {
2706          // Skip over properties declared @dynamic
2707          if (const ObjCPropertyImplDecl *PIDecl
2708              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2709            if (PIDecl->getPropertyImplementation()
2710                  == ObjCPropertyImplDecl::Dynamic)
2711              continue;
2712
2713          for (const auto *Ext : IDecl->visible_extensions()) {
2714            if (ObjCMethodDecl *GetterMethod
2715                  = Ext->getInstanceMethod(Property->getGetterName()))
2716              GetterMethod->setPropertyAccessor(true);
2717            if (!Property->isReadOnly())
2718              if (ObjCMethodDecl *SetterMethod
2719                    = Ext->getInstanceMethod(Property->getSetterName()))
2720                SetterMethod->setPropertyAccessor(true);
2721          }
2722        }
2723      }
2724      ImplMethodsVsClassMethods(S, IC, IDecl);
2725      AtomicPropertySetterGetterRules(IC, IDecl);
2726      DiagnoseOwningPropertyGetterSynthesis(IC);
2727      DiagnoseUnusedBackingIvarInAccessor(S, IC);
2728      if (IDecl->hasDesignatedInitializers())
2729        DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
2730
2731      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2732      if (IDecl->getSuperClass() == nullptr) {
2733        // This class has no superclass, so check that it has been marked with
2734        // __attribute((objc_root_class)).
2735        if (!HasRootClassAttr) {
2736          SourceLocation DeclLoc(IDecl->getLocation());
2737          SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
2738          Diag(DeclLoc, diag::warn_objc_root_class_missing)
2739            << IDecl->getIdentifier();
2740          // See if NSObject is in the current scope, and if it is, suggest
2741          // adding " : NSObject " to the class declaration.
2742          NamedDecl *IF = LookupSingleName(TUScope,
2743                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2744                                           DeclLoc, LookupOrdinaryName);
2745          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2746          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2747            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2748              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2749          } else {
2750            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2751          }
2752        }
2753      } else if (HasRootClassAttr) {
2754        // Complain that only root classes may have this attribute.
2755        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2756      }
2757
2758      if (LangOpts.ObjCRuntime.isNonFragile()) {
2759        while (IDecl->getSuperClass()) {
2760          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2761          IDecl = IDecl->getSuperClass();
2762        }
2763      }
2764    }
2765    SetIvarInitializers(IC);
2766  } else if (ObjCCategoryImplDecl* CatImplClass =
2767                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2768    CatImplClass->setAtEndRange(AtEnd);
2769
2770    // Find category interface decl and then check that all methods declared
2771    // in this interface are implemented in the category @implementation.
2772    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2773      if (ObjCCategoryDecl *Cat
2774            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
2775        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
2776      }
2777    }
2778  }
2779  if (isInterfaceDeclKind) {
2780    // Reject invalid vardecls.
2781    for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2782      DeclGroupRef DG = allTUVars[i].get();
2783      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2784        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2785          if (!VDecl->hasExternalStorage())
2786            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2787        }
2788    }
2789  }
2790  ActOnObjCContainerFinishDefinition();
2791
2792  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2793    DeclGroupRef DG = allTUVars[i].get();
2794    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2795      (*I)->setTopLevelDeclInObjCContainer();
2796    Consumer.HandleTopLevelDeclInObjCContainer(DG);
2797  }
2798
2799  ActOnDocumentableDecl(ClassDecl);
2800  return ClassDecl;
2801}
2802
2803
2804/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2805/// objective-c's type qualifier from the parser version of the same info.
2806static Decl::ObjCDeclQualifier
2807CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2808  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2809}
2810
2811/// \brief Check whether the declared result type of the given Objective-C
2812/// method declaration is compatible with the method's class.
2813///
2814static Sema::ResultTypeCompatibilityKind
2815CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2816                                    ObjCInterfaceDecl *CurrentClass) {
2817  QualType ResultType = Method->getReturnType();
2818
2819  // If an Objective-C method inherits its related result type, then its
2820  // declared result type must be compatible with its own class type. The
2821  // declared result type is compatible if:
2822  if (const ObjCObjectPointerType *ResultObjectType
2823                                = ResultType->getAs<ObjCObjectPointerType>()) {
2824    //   - it is id or qualified id, or
2825    if (ResultObjectType->isObjCIdType() ||
2826        ResultObjectType->isObjCQualifiedIdType())
2827      return Sema::RTC_Compatible;
2828
2829    if (CurrentClass) {
2830      if (ObjCInterfaceDecl *ResultClass
2831                                      = ResultObjectType->getInterfaceDecl()) {
2832        //   - it is the same as the method's class type, or
2833        if (declaresSameEntity(CurrentClass, ResultClass))
2834          return Sema::RTC_Compatible;
2835
2836        //   - it is a superclass of the method's class type
2837        if (ResultClass->isSuperClassOf(CurrentClass))
2838          return Sema::RTC_Compatible;
2839      }
2840    } else {
2841      // Any Objective-C pointer type might be acceptable for a protocol
2842      // method; we just don't know.
2843      return Sema::RTC_Unknown;
2844    }
2845  }
2846
2847  return Sema::RTC_Incompatible;
2848}
2849
2850namespace {
2851/// A helper class for searching for methods which a particular method
2852/// overrides.
2853class OverrideSearch {
2854public:
2855  Sema &S;
2856  ObjCMethodDecl *Method;
2857  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2858  bool Recursive;
2859
2860public:
2861  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2862    Selector selector = method->getSelector();
2863
2864    // Bypass this search if we've never seen an instance/class method
2865    // with this selector before.
2866    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2867    if (it == S.MethodPool.end()) {
2868      if (!S.getExternalSource()) return;
2869      S.ReadMethodPool(selector);
2870
2871      it = S.MethodPool.find(selector);
2872      if (it == S.MethodPool.end())
2873        return;
2874    }
2875    ObjCMethodList &list =
2876      method->isInstanceMethod() ? it->second.first : it->second.second;
2877    if (!list.getMethod()) return;
2878
2879    ObjCContainerDecl *container
2880      = cast<ObjCContainerDecl>(method->getDeclContext());
2881
2882    // Prevent the search from reaching this container again.  This is
2883    // important with categories, which override methods from the
2884    // interface and each other.
2885    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2886      searchFromContainer(container);
2887      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2888        searchFromContainer(Interface);
2889    } else {
2890      searchFromContainer(container);
2891    }
2892  }
2893
2894  typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
2895  iterator begin() const { return Overridden.begin(); }
2896  iterator end() const { return Overridden.end(); }
2897
2898private:
2899  void searchFromContainer(ObjCContainerDecl *container) {
2900    if (container->isInvalidDecl()) return;
2901
2902    switch (container->getDeclKind()) {
2903#define OBJCCONTAINER(type, base) \
2904    case Decl::type: \
2905      searchFrom(cast<type##Decl>(container)); \
2906      break;
2907#define ABSTRACT_DECL(expansion)
2908#define DECL(type, base) \
2909    case Decl::type:
2910#include "clang/AST/DeclNodes.inc"
2911      llvm_unreachable("not an ObjC container!");
2912    }
2913  }
2914
2915  void searchFrom(ObjCProtocolDecl *protocol) {
2916    if (!protocol->hasDefinition())
2917      return;
2918
2919    // A method in a protocol declaration overrides declarations from
2920    // referenced ("parent") protocols.
2921    search(protocol->getReferencedProtocols());
2922  }
2923
2924  void searchFrom(ObjCCategoryDecl *category) {
2925    // A method in a category declaration overrides declarations from
2926    // the main class and from protocols the category references.
2927    // The main class is handled in the constructor.
2928    search(category->getReferencedProtocols());
2929  }
2930
2931  void searchFrom(ObjCCategoryImplDecl *impl) {
2932    // A method in a category definition that has a category
2933    // declaration overrides declarations from the category
2934    // declaration.
2935    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2936      search(category);
2937      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2938        search(Interface);
2939
2940    // Otherwise it overrides declarations from the class.
2941    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2942      search(Interface);
2943    }
2944  }
2945
2946  void searchFrom(ObjCInterfaceDecl *iface) {
2947    // A method in a class declaration overrides declarations from
2948    if (!iface->hasDefinition())
2949      return;
2950
2951    //   - categories,
2952    for (auto *Cat : iface->known_categories())
2953      search(Cat);
2954
2955    //   - the super class, and
2956    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2957      search(super);
2958
2959    //   - any referenced protocols.
2960    search(iface->getReferencedProtocols());
2961  }
2962
2963  void searchFrom(ObjCImplementationDecl *impl) {
2964    // A method in a class implementation overrides declarations from
2965    // the class interface.
2966    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2967      search(Interface);
2968  }
2969
2970
2971  void search(const ObjCProtocolList &protocols) {
2972    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2973         i != e; ++i)
2974      search(*i);
2975  }
2976
2977  void search(ObjCContainerDecl *container) {
2978    // Check for a method in this container which matches this selector.
2979    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2980                                                Method->isInstanceMethod(),
2981                                                /*AllowHidden=*/true);
2982
2983    // If we find one, record it and bail out.
2984    if (meth) {
2985      Overridden.insert(meth);
2986      return;
2987    }
2988
2989    // Otherwise, search for methods that a hypothetical method here
2990    // would have overridden.
2991
2992    // Note that we're now in a recursive case.
2993    Recursive = true;
2994
2995    searchFromContainer(container);
2996  }
2997};
2998}
2999
3000void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
3001                                    ObjCInterfaceDecl *CurrentClass,
3002                                    ResultTypeCompatibilityKind RTC) {
3003  // Search for overridden methods and merge information down from them.
3004  OverrideSearch overrides(*this, ObjCMethod);
3005  // Keep track if the method overrides any method in the class's base classes,
3006  // its protocols, or its categories' protocols; we will keep that info
3007  // in the ObjCMethodDecl.
3008  // For this info, a method in an implementation is not considered as
3009  // overriding the same method in the interface or its categories.
3010  bool hasOverriddenMethodsInBaseOrProtocol = false;
3011  for (OverrideSearch::iterator
3012         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
3013    ObjCMethodDecl *overridden = *i;
3014
3015    if (!hasOverriddenMethodsInBaseOrProtocol) {
3016      if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
3017          CurrentClass != overridden->getClassInterface() ||
3018          overridden->isOverriding()) {
3019        hasOverriddenMethodsInBaseOrProtocol = true;
3020
3021      } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
3022        // OverrideSearch will return as "overridden" the same method in the
3023        // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
3024        // check whether a category of a base class introduced a method with the
3025        // same selector, after the interface method declaration.
3026        // To avoid unnecessary lookups in the majority of cases, we use the
3027        // extra info bits in GlobalMethodPool to check whether there were any
3028        // category methods with this selector.
3029        GlobalMethodPool::iterator It =
3030            MethodPool.find(ObjCMethod->getSelector());
3031        if (It != MethodPool.end()) {
3032          ObjCMethodList &List =
3033            ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
3034          unsigned CategCount = List.getBits();
3035          if (CategCount > 0) {
3036            // If the method is in a category we'll do lookup if there were at
3037            // least 2 category methods recorded, otherwise only one will do.
3038            if (CategCount > 1 ||
3039                !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
3040              OverrideSearch overrides(*this, overridden);
3041              for (OverrideSearch::iterator
3042                     OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
3043                ObjCMethodDecl *SuperOverridden = *OI;
3044                if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
3045                    CurrentClass != SuperOverridden->getClassInterface()) {
3046                  hasOverriddenMethodsInBaseOrProtocol = true;
3047                  overridden->setOverriding(true);
3048                  break;
3049                }
3050              }
3051            }
3052          }
3053        }
3054      }
3055    }
3056
3057    // Propagate down the 'related result type' bit from overridden methods.
3058    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
3059      ObjCMethod->SetRelatedResultType();
3060
3061    // Then merge the declarations.
3062    mergeObjCMethodDecls(ObjCMethod, overridden);
3063
3064    if (ObjCMethod->isImplicit() && overridden->isImplicit())
3065      continue; // Conflicting properties are detected elsewhere.
3066
3067    // Check for overriding methods
3068    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
3069        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
3070      CheckConflictingOverridingMethod(ObjCMethod, overridden,
3071              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
3072
3073    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
3074        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
3075        !overridden->isImplicit() /* not meant for properties */) {
3076      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
3077                                          E = ObjCMethod->param_end();
3078      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
3079                                     PrevE = overridden->param_end();
3080      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
3081        assert(PrevI != overridden->param_end() && "Param mismatch");
3082        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
3083        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
3084        // If type of argument of method in this class does not match its
3085        // respective argument type in the super class method, issue warning;
3086        if (!Context.typesAreCompatible(T1, T2)) {
3087          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
3088            << T1 << T2;
3089          Diag(overridden->getLocation(), diag::note_previous_declaration);
3090          break;
3091        }
3092      }
3093    }
3094  }
3095
3096  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
3097}
3098
3099Decl *Sema::ActOnMethodDeclaration(
3100    Scope *S,
3101    SourceLocation MethodLoc, SourceLocation EndLoc,
3102    tok::TokenKind MethodType,
3103    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
3104    ArrayRef<SourceLocation> SelectorLocs,
3105    Selector Sel,
3106    // optional arguments. The number of types/arguments is obtained
3107    // from the Sel.getNumArgs().
3108    ObjCArgInfo *ArgInfo,
3109    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
3110    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
3111    bool isVariadic, bool MethodDefinition) {
3112  // Make sure we can establish a context for the method.
3113  if (!CurContext->isObjCContainer()) {
3114    Diag(MethodLoc, diag::error_missing_method_context);
3115    return nullptr;
3116  }
3117  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3118  Decl *ClassDecl = cast<Decl>(OCD);
3119  QualType resultDeclType;
3120
3121  bool HasRelatedResultType = false;
3122  TypeSourceInfo *ReturnTInfo = nullptr;
3123  if (ReturnType) {
3124    resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
3125
3126    if (CheckFunctionReturnType(resultDeclType, MethodLoc))
3127      return nullptr;
3128
3129    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
3130  } else { // get the type for "id".
3131    resultDeclType = Context.getObjCIdType();
3132    Diag(MethodLoc, diag::warn_missing_method_return_type)
3133      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
3134  }
3135
3136  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
3137      Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
3138      MethodType == tok::minus, isVariadic,
3139      /*isPropertyAccessor=*/false,
3140      /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
3141      MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
3142                                           : ObjCMethodDecl::Required,
3143      HasRelatedResultType);
3144
3145  SmallVector<ParmVarDecl*, 16> Params;
3146
3147  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
3148    QualType ArgType;
3149    TypeSourceInfo *DI;
3150
3151    if (!ArgInfo[i].Type) {
3152      ArgType = Context.getObjCIdType();
3153      DI = nullptr;
3154    } else {
3155      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
3156    }
3157
3158    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
3159                   LookupOrdinaryName, ForRedeclaration);
3160    LookupName(R, S);
3161    if (R.isSingleResult()) {
3162      NamedDecl *PrevDecl = R.getFoundDecl();
3163      if (S->isDeclScope(PrevDecl)) {
3164        Diag(ArgInfo[i].NameLoc,
3165             (MethodDefinition ? diag::warn_method_param_redefinition
3166                               : diag::warn_method_param_declaration))
3167          << ArgInfo[i].Name;
3168        Diag(PrevDecl->getLocation(),
3169             diag::note_previous_declaration);
3170      }
3171    }
3172
3173    SourceLocation StartLoc = DI
3174      ? DI->getTypeLoc().getBeginLoc()
3175      : ArgInfo[i].NameLoc;
3176
3177    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
3178                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
3179                                        ArgType, DI, SC_None);
3180
3181    Param->setObjCMethodScopeInfo(i);
3182
3183    Param->setObjCDeclQualifier(
3184      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
3185
3186    // Apply the attributes to the parameter.
3187    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
3188
3189    if (Param->hasAttr<BlocksAttr>()) {
3190      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
3191      Param->setInvalidDecl();
3192    }
3193    S->AddDecl(Param);
3194    IdResolver.AddDecl(Param);
3195
3196    Params.push_back(Param);
3197  }
3198
3199  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
3200    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
3201    QualType ArgType = Param->getType();
3202    if (ArgType.isNull())
3203      ArgType = Context.getObjCIdType();
3204    else
3205      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
3206      ArgType = Context.getAdjustedParameterType(ArgType);
3207
3208    Param->setDeclContext(ObjCMethod);
3209    Params.push_back(Param);
3210  }
3211
3212  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
3213  ObjCMethod->setObjCDeclQualifier(
3214    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
3215
3216  if (AttrList)
3217    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
3218
3219  // Add the method now.
3220  const ObjCMethodDecl *PrevMethod = nullptr;
3221  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
3222    if (MethodType == tok::minus) {
3223      PrevMethod = ImpDecl->getInstanceMethod(Sel);
3224      ImpDecl->addInstanceMethod(ObjCMethod);
3225    } else {
3226      PrevMethod = ImpDecl->getClassMethod(Sel);
3227      ImpDecl->addClassMethod(ObjCMethod);
3228    }
3229
3230    ObjCMethodDecl *IMD = nullptr;
3231    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
3232      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
3233                                ObjCMethod->isInstanceMethod());
3234    if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() &&
3235        !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) {
3236      // merge the attribute into implementation.
3237      ObjCMethod->addAttr(ObjCRequiresSuperAttr::CreateImplicit(Context,
3238                                                   ObjCMethod->getLocation()));
3239    }
3240    if (isa<ObjCCategoryImplDecl>(ImpDecl)) {
3241      ObjCMethodFamily family =
3242        ObjCMethod->getSelector().getMethodFamily();
3243      if (family == OMF_dealloc && IMD && IMD->isOverriding())
3244        Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
3245          << ObjCMethod->getDeclName();
3246    }
3247  } else {
3248    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
3249  }
3250
3251  if (PrevMethod) {
3252    // You can never have two method definitions with the same name.
3253    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
3254      << ObjCMethod->getDeclName();
3255    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3256    ObjCMethod->setInvalidDecl();
3257    return ObjCMethod;
3258  }
3259
3260  // If this Objective-C method does not have a related result type, but we
3261  // are allowed to infer related result types, try to do so based on the
3262  // method family.
3263  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
3264  if (!CurrentClass) {
3265    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
3266      CurrentClass = Cat->getClassInterface();
3267    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
3268      CurrentClass = Impl->getClassInterface();
3269    else if (ObjCCategoryImplDecl *CatImpl
3270                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
3271      CurrentClass = CatImpl->getClassInterface();
3272  }
3273
3274  ResultTypeCompatibilityKind RTC
3275    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
3276
3277  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
3278
3279  bool ARCError = false;
3280  if (getLangOpts().ObjCAutoRefCount)
3281    ARCError = CheckARCMethodDecl(ObjCMethod);
3282
3283  // Infer the related result type when possible.
3284  if (!ARCError && RTC == Sema::RTC_Compatible &&
3285      !ObjCMethod->hasRelatedResultType() &&
3286      LangOpts.ObjCInferRelatedResultType) {
3287    bool InferRelatedResultType = false;
3288    switch (ObjCMethod->getMethodFamily()) {
3289    case OMF_None:
3290    case OMF_copy:
3291    case OMF_dealloc:
3292    case OMF_finalize:
3293    case OMF_mutableCopy:
3294    case OMF_release:
3295    case OMF_retainCount:
3296    case OMF_initialize:
3297    case OMF_performSelector:
3298      break;
3299
3300    case OMF_alloc:
3301    case OMF_new:
3302        InferRelatedResultType = ObjCMethod->isClassMethod();
3303      break;
3304
3305    case OMF_init:
3306    case OMF_autorelease:
3307    case OMF_retain:
3308    case OMF_self:
3309      InferRelatedResultType = ObjCMethod->isInstanceMethod();
3310      break;
3311    }
3312
3313    if (InferRelatedResultType &&
3314        !ObjCMethod->getReturnType()->isObjCIndependentClassType())
3315      ObjCMethod->SetRelatedResultType();
3316  }
3317
3318  ActOnDocumentableDecl(ObjCMethod);
3319
3320  return ObjCMethod;
3321}
3322
3323bool Sema::CheckObjCDeclScope(Decl *D) {
3324  // Following is also an error. But it is caused by a missing @end
3325  // and diagnostic is issued elsewhere.
3326  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3327    return false;
3328
3329  // If we switched context to translation unit while we are still lexically in
3330  // an objc container, it means the parser missed emitting an error.
3331  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3332    return false;
3333
3334  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3335  D->setInvalidDecl();
3336
3337  return true;
3338}
3339
3340/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
3341/// instance variables of ClassName into Decls.
3342void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3343                     IdentifierInfo *ClassName,
3344                     SmallVectorImpl<Decl*> &Decls) {
3345  // Check that ClassName is a valid class
3346  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3347  if (!Class) {
3348    Diag(DeclStart, diag::err_undef_interface) << ClassName;
3349    return;
3350  }
3351  if (LangOpts.ObjCRuntime.isNonFragile()) {
3352    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3353    return;
3354  }
3355
3356  // Collect the instance variables
3357  SmallVector<const ObjCIvarDecl*, 32> Ivars;
3358  Context.DeepCollectObjCIvars(Class, true, Ivars);
3359  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3360  for (unsigned i = 0; i < Ivars.size(); i++) {
3361    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3362    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3363    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3364                                           /*FIXME: StartL=*/ID->getLocation(),
3365                                           ID->getLocation(),
3366                                           ID->getIdentifier(), ID->getType(),
3367                                           ID->getBitWidth());
3368    Decls.push_back(FD);
3369  }
3370
3371  // Introduce all of these fields into the appropriate scope.
3372  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3373       D != Decls.end(); ++D) {
3374    FieldDecl *FD = cast<FieldDecl>(*D);
3375    if (getLangOpts().CPlusPlus)
3376      PushOnScopeChains(cast<FieldDecl>(FD), S);
3377    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3378      Record->addDecl(FD);
3379  }
3380}
3381
3382/// \brief Build a type-check a new Objective-C exception variable declaration.
3383VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3384                                      SourceLocation StartLoc,
3385                                      SourceLocation IdLoc,
3386                                      IdentifierInfo *Id,
3387                                      bool Invalid) {
3388  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3389  // duration shall not be qualified by an address-space qualifier."
3390  // Since all parameters have automatic store duration, they can not have
3391  // an address space.
3392  if (T.getAddressSpace() != 0) {
3393    Diag(IdLoc, diag::err_arg_with_address_space);
3394    Invalid = true;
3395  }
3396
3397  // An @catch parameter must be an unqualified object pointer type;
3398  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3399  if (Invalid) {
3400    // Don't do any further checking.
3401  } else if (T->isDependentType()) {
3402    // Okay: we don't know what this type will instantiate to.
3403  } else if (!T->isObjCObjectPointerType()) {
3404    Invalid = true;
3405    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3406  } else if (T->isObjCQualifiedIdType()) {
3407    Invalid = true;
3408    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3409  }
3410
3411  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3412                                 T, TInfo, SC_None);
3413  New->setExceptionVariable(true);
3414
3415  // In ARC, infer 'retaining' for variables of retainable type.
3416  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3417    Invalid = true;
3418
3419  if (Invalid)
3420    New->setInvalidDecl();
3421  return New;
3422}
3423
3424Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3425  const DeclSpec &DS = D.getDeclSpec();
3426
3427  // We allow the "register" storage class on exception variables because
3428  // GCC did, but we drop it completely. Any other storage class is an error.
3429  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3430    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3431      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3432  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3433    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3434      << DeclSpec::getSpecifierName(SCS);
3435  }
3436  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
3437    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
3438         diag::err_invalid_thread)
3439     << DeclSpec::getSpecifierName(TSCS);
3440  D.getMutableDeclSpec().ClearStorageClassSpecs();
3441
3442  DiagnoseFunctionSpecifiers(D.getDeclSpec());
3443
3444  // Check that there are no default arguments inside the type of this
3445  // exception object (C++ only).
3446  if (getLangOpts().CPlusPlus)
3447    CheckExtraCXXDefaultArguments(D);
3448
3449  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3450  QualType ExceptionType = TInfo->getType();
3451
3452  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3453                                        D.getSourceRange().getBegin(),
3454                                        D.getIdentifierLoc(),
3455                                        D.getIdentifier(),
3456                                        D.isInvalidType());
3457
3458  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3459  if (D.getCXXScopeSpec().isSet()) {
3460    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3461      << D.getCXXScopeSpec().getRange();
3462    New->setInvalidDecl();
3463  }
3464
3465  // Add the parameter declaration into this scope.
3466  S->AddDecl(New);
3467  if (D.getIdentifier())
3468    IdResolver.AddDecl(New);
3469
3470  ProcessDeclAttributes(S, New, D);
3471
3472  if (New->hasAttr<BlocksAttr>())
3473    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3474  return New;
3475}
3476
3477/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3478/// initialization.
3479void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3480                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3481  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3482       Iv= Iv->getNextIvar()) {
3483    QualType QT = Context.getBaseElementType(Iv->getType());
3484    if (QT->isRecordType())
3485      Ivars.push_back(Iv);
3486  }
3487}
3488
3489void Sema::DiagnoseUseOfUnimplementedSelectors() {
3490  // Load referenced selectors from the external source.
3491  if (ExternalSource) {
3492    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3493    ExternalSource->ReadReferencedSelectors(Sels);
3494    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3495      ReferencedSelectors[Sels[I].first] = Sels[I].second;
3496  }
3497
3498  // Warning will be issued only when selector table is
3499  // generated (which means there is at lease one implementation
3500  // in the TU). This is to match gcc's behavior.
3501  if (ReferencedSelectors.empty() ||
3502      !Context.AnyObjCImplementation())
3503    return;
3504  for (auto &SelectorAndLocation : ReferencedSelectors) {
3505    Selector Sel = SelectorAndLocation.first;
3506    SourceLocation Loc = SelectorAndLocation.second;
3507    if (!LookupImplementedMethodInGlobalPool(Sel))
3508      Diag(Loc, diag::warn_unimplemented_selector) << Sel;
3509  }
3510  return;
3511}
3512
3513ObjCIvarDecl *
3514Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
3515                                     const ObjCPropertyDecl *&PDecl) const {
3516  if (Method->isClassMethod())
3517    return nullptr;
3518  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
3519  if (!IDecl)
3520    return nullptr;
3521  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
3522                               /*shallowCategoryLookup=*/false,
3523                               /*followSuper=*/false);
3524  if (!Method || !Method->isPropertyAccessor())
3525    return nullptr;
3526  if ((PDecl = Method->findPropertyDecl()))
3527    if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
3528      // property backing ivar must belong to property's class
3529      // or be a private ivar in class's implementation.
3530      // FIXME. fix the const-ness issue.
3531      IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
3532                                                        IV->getIdentifier());
3533      return IV;
3534    }
3535  return nullptr;
3536}
3537
3538namespace {
3539  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
3540  /// accessor references the backing ivar.
3541  class UnusedBackingIvarChecker :
3542      public DataRecursiveASTVisitor<UnusedBackingIvarChecker> {
3543  public:
3544    Sema &S;
3545    const ObjCMethodDecl *Method;
3546    const ObjCIvarDecl *IvarD;
3547    bool AccessedIvar;
3548    bool InvokedSelfMethod;
3549
3550    UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
3551                             const ObjCIvarDecl *IvarD)
3552      : S(S), Method(Method), IvarD(IvarD),
3553        AccessedIvar(false), InvokedSelfMethod(false) {
3554      assert(IvarD);
3555    }
3556
3557    bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
3558      if (E->getDecl() == IvarD) {
3559        AccessedIvar = true;
3560        return false;
3561      }
3562      return true;
3563    }
3564
3565    bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
3566      if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
3567          S.isSelfExpr(E->getInstanceReceiver(), Method)) {
3568        InvokedSelfMethod = true;
3569      }
3570      return true;
3571    }
3572  };
3573}
3574
3575void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
3576                                          const ObjCImplementationDecl *ImplD) {
3577  if (S->hasUnrecoverableErrorOccurred())
3578    return;
3579
3580  for (const auto *CurMethod : ImplD->instance_methods()) {
3581    unsigned DIAG = diag::warn_unused_property_backing_ivar;
3582    SourceLocation Loc = CurMethod->getLocation();
3583    if (Diags.isIgnored(DIAG, Loc))
3584      continue;
3585
3586    const ObjCPropertyDecl *PDecl;
3587    const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
3588    if (!IV)
3589      continue;
3590
3591    UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
3592    Checker.TraverseStmt(CurMethod->getBody());
3593    if (Checker.AccessedIvar)
3594      continue;
3595
3596    // Do not issue this warning if backing ivar is used somewhere and accessor
3597    // implementation makes a self call. This is to prevent false positive in
3598    // cases where the ivar is accessed by another method that the accessor
3599    // delegates to.
3600    if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
3601      Diag(Loc, DIAG) << IV;
3602      Diag(PDecl->getLocation(), diag::note_property_declare);
3603    }
3604  }
3605}
3606