SemaDeclObjC.cpp revision 781472fe99a120098c631b0cbe33c89f8cef5e70
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements semantic analysis for Objective C declarations. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/Sema.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/ExternalSemaSource.h" 17#include "clang/Sema/Scope.h" 18#include "clang/Sema/ScopeInfo.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ASTContext.h" 21#include "clang/AST/DeclObjC.h" 22#include "clang/Sema/DeclSpec.h" 23#include "llvm/ADT/DenseSet.h" 24 25using namespace clang; 26 27/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 28/// and user declared, in the method definition's AST. 29void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 30 assert(getCurMethodDecl() == 0 && "Method parsing confused"); 31 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 32 33 // If we don't have a valid method decl, simply return. 34 if (!MDecl) 35 return; 36 37 // Allow the rest of sema to find private method decl implementations. 38 if (MDecl->isInstanceMethod()) 39 AddInstanceMethodToGlobalPool(MDecl, true); 40 else 41 AddFactoryMethodToGlobalPool(MDecl, true); 42 43 // Allow all of Sema to see that we are entering a method definition. 44 PushDeclContext(FnBodyScope, MDecl); 45 PushFunctionScope(); 46 47 // Create Decl objects for each parameter, entrring them in the scope for 48 // binding to their use. 49 50 // Insert the invisible arguments, self and _cmd! 51 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 52 53 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 54 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 55 56 // Introduce all of the other parameters into this scope. 57 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), 58 E = MDecl->param_end(); PI != E; ++PI) 59 if ((*PI)->getIdentifier()) 60 PushOnScopeChains(*PI, FnBodyScope); 61} 62 63Decl *Sema:: 64ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 65 IdentifierInfo *ClassName, SourceLocation ClassLoc, 66 IdentifierInfo *SuperName, SourceLocation SuperLoc, 67 Decl * const *ProtoRefs, unsigned NumProtoRefs, 68 const SourceLocation *ProtoLocs, 69 SourceLocation EndProtoLoc, AttributeList *AttrList) { 70 assert(ClassName && "Missing class identifier"); 71 72 // Check for another declaration kind with the same name. 73 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 74 LookupOrdinaryName, ForRedeclaration); 75 76 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 77 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 78 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 79 } 80 81 ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 82 if (IDecl) { 83 // Class already seen. Is it a forward declaration? 84 if (!IDecl->isForwardDecl()) { 85 IDecl->setInvalidDecl(); 86 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName(); 87 Diag(IDecl->getLocation(), diag::note_previous_definition); 88 89 // Return the previous class interface. 90 // FIXME: don't leak the objects passed in! 91 return IDecl; 92 } else { 93 IDecl->setLocation(AtInterfaceLoc); 94 IDecl->setForwardDecl(false); 95 IDecl->setClassLoc(ClassLoc); 96 // If the forward decl was in a PCH, we need to write it again in a 97 // dependent AST file. 98 IDecl->setChangedSinceDeserialization(true); 99 100 // Since this ObjCInterfaceDecl was created by a forward declaration, 101 // we now add it to the DeclContext since it wasn't added before 102 // (see ActOnForwardClassDeclaration). 103 IDecl->setLexicalDeclContext(CurContext); 104 CurContext->addDecl(IDecl); 105 106 if (AttrList) 107 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 108 } 109 } else { 110 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, 111 ClassName, ClassLoc); 112 if (AttrList) 113 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 114 115 PushOnScopeChains(IDecl, TUScope); 116 } 117 118 if (SuperName) { 119 // Check if a different kind of symbol declared in this scope. 120 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 121 LookupOrdinaryName); 122 123 if (!PrevDecl) { 124 // Try to correct for a typo in the superclass name. 125 LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName); 126 if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) && 127 (PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) { 128 Diag(SuperLoc, diag::err_undef_superclass_suggest) 129 << SuperName << ClassName << PrevDecl->getDeclName(); 130 Diag(PrevDecl->getLocation(), diag::note_previous_decl) 131 << PrevDecl->getDeclName(); 132 } 133 } 134 135 if (PrevDecl == IDecl) { 136 Diag(SuperLoc, diag::err_recursive_superclass) 137 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 138 IDecl->setLocEnd(ClassLoc); 139 } else { 140 ObjCInterfaceDecl *SuperClassDecl = 141 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 142 143 // Diagnose classes that inherit from deprecated classes. 144 if (SuperClassDecl) 145 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 146 147 if (PrevDecl && SuperClassDecl == 0) { 148 // The previous declaration was not a class decl. Check if we have a 149 // typedef. If we do, get the underlying class type. 150 if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(PrevDecl)) { 151 QualType T = TDecl->getUnderlyingType(); 152 if (T->isObjCObjectType()) { 153 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) 154 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 155 } 156 } 157 158 // This handles the following case: 159 // 160 // typedef int SuperClass; 161 // @interface MyClass : SuperClass {} @end 162 // 163 if (!SuperClassDecl) { 164 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 165 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 166 } 167 } 168 169 if (!dyn_cast_or_null<TypedefDecl>(PrevDecl)) { 170 if (!SuperClassDecl) 171 Diag(SuperLoc, diag::err_undef_superclass) 172 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 173 else if (SuperClassDecl->isForwardDecl()) 174 Diag(SuperLoc, diag::err_undef_superclass) 175 << SuperClassDecl->getDeclName() << ClassName 176 << SourceRange(AtInterfaceLoc, ClassLoc); 177 } 178 IDecl->setSuperClass(SuperClassDecl); 179 IDecl->setSuperClassLoc(SuperLoc); 180 IDecl->setLocEnd(SuperLoc); 181 } 182 } else { // we have a root class. 183 IDecl->setLocEnd(ClassLoc); 184 } 185 186 // Check then save referenced protocols. 187 if (NumProtoRefs) { 188 IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 189 ProtoLocs, Context); 190 IDecl->setLocEnd(EndProtoLoc); 191 } 192 193 CheckObjCDeclScope(IDecl); 194 return IDecl; 195} 196 197/// ActOnCompatiblityAlias - this action is called after complete parsing of 198/// @compatibility_alias declaration. It sets up the alias relationships. 199Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc, 200 IdentifierInfo *AliasName, 201 SourceLocation AliasLocation, 202 IdentifierInfo *ClassName, 203 SourceLocation ClassLocation) { 204 // Look for previous declaration of alias name 205 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 206 LookupOrdinaryName, ForRedeclaration); 207 if (ADecl) { 208 if (isa<ObjCCompatibleAliasDecl>(ADecl)) 209 Diag(AliasLocation, diag::warn_previous_alias_decl); 210 else 211 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 212 Diag(ADecl->getLocation(), diag::note_previous_declaration); 213 return 0; 214 } 215 // Check for class declaration 216 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 217 LookupOrdinaryName, ForRedeclaration); 218 if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(CDeclU)) { 219 QualType T = TDecl->getUnderlyingType(); 220 if (T->isObjCObjectType()) { 221 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 222 ClassName = IDecl->getIdentifier(); 223 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 224 LookupOrdinaryName, ForRedeclaration); 225 } 226 } 227 } 228 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 229 if (CDecl == 0) { 230 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 231 if (CDeclU) 232 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 233 return 0; 234 } 235 236 // Everything checked out, instantiate a new alias declaration AST. 237 ObjCCompatibleAliasDecl *AliasDecl = 238 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 239 240 if (!CheckObjCDeclScope(AliasDecl)) 241 PushOnScopeChains(AliasDecl, TUScope); 242 243 return AliasDecl; 244} 245 246void Sema::CheckForwardProtocolDeclarationForCircularDependency( 247 IdentifierInfo *PName, 248 SourceLocation &Ploc, SourceLocation PrevLoc, 249 const ObjCList<ObjCProtocolDecl> &PList) { 250 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 251 E = PList.end(); I != E; ++I) { 252 253 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 254 Ploc)) { 255 if (PDecl->getIdentifier() == PName) { 256 Diag(Ploc, diag::err_protocol_has_circular_dependency); 257 Diag(PrevLoc, diag::note_previous_definition); 258 } 259 CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 260 PDecl->getLocation(), PDecl->getReferencedProtocols()); 261 } 262 } 263} 264 265Decl * 266Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 267 IdentifierInfo *ProtocolName, 268 SourceLocation ProtocolLoc, 269 Decl * const *ProtoRefs, 270 unsigned NumProtoRefs, 271 const SourceLocation *ProtoLocs, 272 SourceLocation EndProtoLoc, 273 AttributeList *AttrList) { 274 // FIXME: Deal with AttrList. 275 assert(ProtocolName && "Missing protocol identifier"); 276 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc); 277 if (PDecl) { 278 // Protocol already seen. Better be a forward protocol declaration 279 if (!PDecl->isForwardDecl()) { 280 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 281 Diag(PDecl->getLocation(), diag::note_previous_definition); 282 // Just return the protocol we already had. 283 // FIXME: don't leak the objects passed in! 284 return PDecl; 285 } 286 ObjCList<ObjCProtocolDecl> PList; 287 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 288 CheckForwardProtocolDeclarationForCircularDependency( 289 ProtocolName, ProtocolLoc, PDecl->getLocation(), PList); 290 291 // Make sure the cached decl gets a valid start location. 292 PDecl->setLocation(AtProtoInterfaceLoc); 293 PDecl->setForwardDecl(false); 294 CurContext->addDecl(PDecl); 295 // Repeat in dependent AST files. 296 PDecl->setChangedSinceDeserialization(true); 297 } else { 298 PDecl = ObjCProtocolDecl::Create(Context, CurContext, 299 AtProtoInterfaceLoc,ProtocolName); 300 PushOnScopeChains(PDecl, TUScope); 301 PDecl->setForwardDecl(false); 302 } 303 if (AttrList) 304 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 305 if (NumProtoRefs) { 306 /// Check then save referenced protocols. 307 PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 308 ProtoLocs, Context); 309 PDecl->setLocEnd(EndProtoLoc); 310 } 311 312 CheckObjCDeclScope(PDecl); 313 return PDecl; 314} 315 316/// FindProtocolDeclaration - This routine looks up protocols and 317/// issues an error if they are not declared. It returns list of 318/// protocol declarations in its 'Protocols' argument. 319void 320Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 321 const IdentifierLocPair *ProtocolId, 322 unsigned NumProtocols, 323 llvm::SmallVectorImpl<Decl *> &Protocols) { 324 for (unsigned i = 0; i != NumProtocols; ++i) { 325 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 326 ProtocolId[i].second); 327 if (!PDecl) { 328 LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second, 329 LookupObjCProtocolName); 330 if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) && 331 (PDecl = R.getAsSingle<ObjCProtocolDecl>())) { 332 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) 333 << ProtocolId[i].first << R.getLookupName(); 334 Diag(PDecl->getLocation(), diag::note_previous_decl) 335 << PDecl->getDeclName(); 336 } 337 } 338 339 if (!PDecl) { 340 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 341 << ProtocolId[i].first; 342 continue; 343 } 344 345 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 346 347 // If this is a forward declaration and we are supposed to warn in this 348 // case, do it. 349 if (WarnOnDeclarations && PDecl->isForwardDecl()) 350 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 351 << ProtocolId[i].first; 352 Protocols.push_back(PDecl); 353 } 354} 355 356/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 357/// a class method in its extension. 358/// 359void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 360 ObjCInterfaceDecl *ID) { 361 if (!ID) 362 return; // Possibly due to previous error 363 364 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 365 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), 366 e = ID->meth_end(); i != e; ++i) { 367 ObjCMethodDecl *MD = *i; 368 MethodMap[MD->getSelector()] = MD; 369 } 370 371 if (MethodMap.empty()) 372 return; 373 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), 374 e = CAT->meth_end(); i != e; ++i) { 375 ObjCMethodDecl *Method = *i; 376 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 377 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { 378 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 379 << Method->getDeclName(); 380 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 381 } 382 } 383} 384 385/// ActOnForwardProtocolDeclaration - Handle @protocol foo; 386Decl * 387Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 388 const IdentifierLocPair *IdentList, 389 unsigned NumElts, 390 AttributeList *attrList) { 391 llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols; 392 llvm::SmallVector<SourceLocation, 8> ProtoLocs; 393 394 for (unsigned i = 0; i != NumElts; ++i) { 395 IdentifierInfo *Ident = IdentList[i].first; 396 ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second); 397 bool isNew = false; 398 if (PDecl == 0) { // Not already seen? 399 PDecl = ObjCProtocolDecl::Create(Context, CurContext, 400 IdentList[i].second, Ident); 401 PushOnScopeChains(PDecl, TUScope, false); 402 isNew = true; 403 } 404 if (attrList) { 405 ProcessDeclAttributeList(TUScope, PDecl, attrList); 406 if (!isNew) 407 PDecl->setChangedSinceDeserialization(true); 408 } 409 Protocols.push_back(PDecl); 410 ProtoLocs.push_back(IdentList[i].second); 411 } 412 413 ObjCForwardProtocolDecl *PDecl = 414 ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc, 415 Protocols.data(), Protocols.size(), 416 ProtoLocs.data()); 417 CurContext->addDecl(PDecl); 418 CheckObjCDeclScope(PDecl); 419 return PDecl; 420} 421 422Decl *Sema:: 423ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 424 IdentifierInfo *ClassName, SourceLocation ClassLoc, 425 IdentifierInfo *CategoryName, 426 SourceLocation CategoryLoc, 427 Decl * const *ProtoRefs, 428 unsigned NumProtoRefs, 429 const SourceLocation *ProtoLocs, 430 SourceLocation EndProtoLoc) { 431 ObjCCategoryDecl *CDecl; 432 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 433 434 /// Check that class of this category is already completely declared. 435 if (!IDecl || IDecl->isForwardDecl()) { 436 // Create an invalid ObjCCategoryDecl to serve as context for 437 // the enclosing method declarations. We mark the decl invalid 438 // to make it clear that this isn't a valid AST. 439 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 440 ClassLoc, CategoryLoc, CategoryName); 441 CDecl->setInvalidDecl(); 442 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 443 return CDecl; 444 } 445 446 if (!CategoryName && IDecl->getImplementation()) { 447 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 448 Diag(IDecl->getImplementation()->getLocation(), 449 diag::note_implementation_declared); 450 } 451 452 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 453 ClassLoc, CategoryLoc, CategoryName); 454 // FIXME: PushOnScopeChains? 455 CurContext->addDecl(CDecl); 456 457 CDecl->setClassInterface(IDecl); 458 // Insert class extension to the list of class's categories. 459 if (!CategoryName) 460 CDecl->insertNextClassCategory(); 461 462 // If the interface is deprecated, warn about it. 463 (void)DiagnoseUseOfDecl(IDecl, ClassLoc); 464 465 if (CategoryName) { 466 /// Check for duplicate interface declaration for this category 467 ObjCCategoryDecl *CDeclChain; 468 for (CDeclChain = IDecl->getCategoryList(); CDeclChain; 469 CDeclChain = CDeclChain->getNextClassCategory()) { 470 if (CDeclChain->getIdentifier() == CategoryName) { 471 // Class extensions can be declared multiple times. 472 Diag(CategoryLoc, diag::warn_dup_category_def) 473 << ClassName << CategoryName; 474 Diag(CDeclChain->getLocation(), diag::note_previous_definition); 475 break; 476 } 477 } 478 if (!CDeclChain) 479 CDecl->insertNextClassCategory(); 480 } 481 482 if (NumProtoRefs) { 483 CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 484 ProtoLocs, Context); 485 // Protocols in the class extension belong to the class. 486 if (CDecl->IsClassExtension()) 487 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, 488 NumProtoRefs, ProtoLocs, 489 Context); 490 } 491 492 CheckObjCDeclScope(CDecl); 493 return CDecl; 494} 495 496/// ActOnStartCategoryImplementation - Perform semantic checks on the 497/// category implementation declaration and build an ObjCCategoryImplDecl 498/// object. 499Decl *Sema::ActOnStartCategoryImplementation( 500 SourceLocation AtCatImplLoc, 501 IdentifierInfo *ClassName, SourceLocation ClassLoc, 502 IdentifierInfo *CatName, SourceLocation CatLoc) { 503 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 504 ObjCCategoryDecl *CatIDecl = 0; 505 if (IDecl) { 506 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 507 if (!CatIDecl) { 508 // Category @implementation with no corresponding @interface. 509 // Create and install one. 510 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(), 511 SourceLocation(), SourceLocation(), 512 CatName); 513 CatIDecl->setClassInterface(IDecl); 514 CatIDecl->insertNextClassCategory(); 515 } 516 } 517 518 ObjCCategoryImplDecl *CDecl = 519 ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName, 520 IDecl); 521 /// Check that class of this category is already completely declared. 522 if (!IDecl || IDecl->isForwardDecl()) 523 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 524 525 // FIXME: PushOnScopeChains? 526 CurContext->addDecl(CDecl); 527 528 /// Check that CatName, category name, is not used in another implementation. 529 if (CatIDecl) { 530 if (CatIDecl->getImplementation()) { 531 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 532 << CatName; 533 Diag(CatIDecl->getImplementation()->getLocation(), 534 diag::note_previous_definition); 535 } else 536 CatIDecl->setImplementation(CDecl); 537 } 538 539 CheckObjCDeclScope(CDecl); 540 return CDecl; 541} 542 543Decl *Sema::ActOnStartClassImplementation( 544 SourceLocation AtClassImplLoc, 545 IdentifierInfo *ClassName, SourceLocation ClassLoc, 546 IdentifierInfo *SuperClassname, 547 SourceLocation SuperClassLoc) { 548 ObjCInterfaceDecl* IDecl = 0; 549 // Check for another declaration kind with the same name. 550 NamedDecl *PrevDecl 551 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 552 ForRedeclaration); 553 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 554 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 555 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 556 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 557 // If this is a forward declaration of an interface, warn. 558 if (IDecl->isForwardDecl()) { 559 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 560 IDecl = 0; 561 } 562 } else { 563 // We did not find anything with the name ClassName; try to correct for 564 // typos in the class name. 565 LookupResult R(*this, ClassName, ClassLoc, LookupOrdinaryName); 566 if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) && 567 (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) { 568 // Suggest the (potentially) correct interface name. However, put the 569 // fix-it hint itself in a separate note, since changing the name in 570 // the warning would make the fix-it change semantics.However, don't 571 // provide a code-modification hint or use the typo name for recovery, 572 // because this is just a warning. The program may actually be correct. 573 Diag(ClassLoc, diag::warn_undef_interface_suggest) 574 << ClassName << R.getLookupName(); 575 Diag(IDecl->getLocation(), diag::note_previous_decl) 576 << R.getLookupName() 577 << FixItHint::CreateReplacement(ClassLoc, 578 R.getLookupName().getAsString()); 579 IDecl = 0; 580 } else { 581 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 582 } 583 } 584 585 // Check that super class name is valid class name 586 ObjCInterfaceDecl* SDecl = 0; 587 if (SuperClassname) { 588 // Check if a different kind of symbol declared in this scope. 589 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 590 LookupOrdinaryName); 591 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 592 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 593 << SuperClassname; 594 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 595 } else { 596 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 597 if (!SDecl) 598 Diag(SuperClassLoc, diag::err_undef_superclass) 599 << SuperClassname << ClassName; 600 else if (IDecl && IDecl->getSuperClass() != SDecl) { 601 // This implementation and its interface do not have the same 602 // super class. 603 Diag(SuperClassLoc, diag::err_conflicting_super_class) 604 << SDecl->getDeclName(); 605 Diag(SDecl->getLocation(), diag::note_previous_definition); 606 } 607 } 608 } 609 610 if (!IDecl) { 611 // Legacy case of @implementation with no corresponding @interface. 612 // Build, chain & install the interface decl into the identifier. 613 614 // FIXME: Do we support attributes on the @implementation? If so we should 615 // copy them over. 616 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 617 ClassName, ClassLoc, false, true); 618 IDecl->setSuperClass(SDecl); 619 IDecl->setLocEnd(ClassLoc); 620 621 PushOnScopeChains(IDecl, TUScope); 622 } else { 623 // Mark the interface as being completed, even if it was just as 624 // @class ....; 625 // declaration; the user cannot reopen it. 626 IDecl->setForwardDecl(false); 627 } 628 629 ObjCImplementationDecl* IMPDecl = 630 ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc, 631 IDecl, SDecl); 632 633 if (CheckObjCDeclScope(IMPDecl)) 634 return IMPDecl; 635 636 // Check that there is no duplicate implementation of this class. 637 if (IDecl->getImplementation()) { 638 // FIXME: Don't leak everything! 639 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 640 Diag(IDecl->getImplementation()->getLocation(), 641 diag::note_previous_definition); 642 } else { // add it to the list. 643 IDecl->setImplementation(IMPDecl); 644 PushOnScopeChains(IMPDecl, TUScope); 645 } 646 return IMPDecl; 647} 648 649void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 650 ObjCIvarDecl **ivars, unsigned numIvars, 651 SourceLocation RBrace) { 652 assert(ImpDecl && "missing implementation decl"); 653 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 654 if (!IDecl) 655 return; 656 /// Check case of non-existing @interface decl. 657 /// (legacy objective-c @implementation decl without an @interface decl). 658 /// Add implementations's ivar to the synthesize class's ivar list. 659 if (IDecl->isImplicitInterfaceDecl()) { 660 IDecl->setLocEnd(RBrace); 661 // Add ivar's to class's DeclContext. 662 for (unsigned i = 0, e = numIvars; i != e; ++i) { 663 ivars[i]->setLexicalDeclContext(ImpDecl); 664 IDecl->makeDeclVisibleInContext(ivars[i], false); 665 ImpDecl->addDecl(ivars[i]); 666 } 667 668 return; 669 } 670 // If implementation has empty ivar list, just return. 671 if (numIvars == 0) 672 return; 673 674 assert(ivars && "missing @implementation ivars"); 675 if (LangOpts.ObjCNonFragileABI2) { 676 if (ImpDecl->getSuperClass()) 677 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 678 for (unsigned i = 0; i < numIvars; i++) { 679 ObjCIvarDecl* ImplIvar = ivars[i]; 680 if (const ObjCIvarDecl *ClsIvar = 681 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 682 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 683 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 684 continue; 685 } 686 // Instance ivar to Implementation's DeclContext. 687 ImplIvar->setLexicalDeclContext(ImpDecl); 688 IDecl->makeDeclVisibleInContext(ImplIvar, false); 689 ImpDecl->addDecl(ImplIvar); 690 } 691 return; 692 } 693 // Check interface's Ivar list against those in the implementation. 694 // names and types must match. 695 // 696 unsigned j = 0; 697 ObjCInterfaceDecl::ivar_iterator 698 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 699 for (; numIvars > 0 && IVI != IVE; ++IVI) { 700 ObjCIvarDecl* ImplIvar = ivars[j++]; 701 ObjCIvarDecl* ClsIvar = *IVI; 702 assert (ImplIvar && "missing implementation ivar"); 703 assert (ClsIvar && "missing class ivar"); 704 705 // First, make sure the types match. 706 if (Context.getCanonicalType(ImplIvar->getType()) != 707 Context.getCanonicalType(ClsIvar->getType())) { 708 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 709 << ImplIvar->getIdentifier() 710 << ImplIvar->getType() << ClsIvar->getType(); 711 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 712 } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) { 713 Expr *ImplBitWidth = ImplIvar->getBitWidth(); 714 Expr *ClsBitWidth = ClsIvar->getBitWidth(); 715 if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() != 716 ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) { 717 Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth) 718 << ImplIvar->getIdentifier(); 719 Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition); 720 } 721 } 722 // Make sure the names are identical. 723 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 724 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 725 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 726 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 727 } 728 --numIvars; 729 } 730 731 if (numIvars > 0) 732 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); 733 else if (IVI != IVE) 734 Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count); 735} 736 737void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, 738 bool &IncompleteImpl, unsigned DiagID) { 739 if (!IncompleteImpl) { 740 Diag(ImpLoc, diag::warn_incomplete_impl); 741 IncompleteImpl = true; 742 } 743 Diag(method->getLocation(), DiagID) 744 << method->getDeclName(); 745} 746 747void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 748 ObjCMethodDecl *IntfMethodDecl) { 749 if (!Context.typesAreCompatible(IntfMethodDecl->getResultType(), 750 ImpMethodDecl->getResultType()) && 751 !Context.QualifiedIdConformsQualifiedId(IntfMethodDecl->getResultType(), 752 ImpMethodDecl->getResultType())) { 753 Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_ret_types) 754 << ImpMethodDecl->getDeclName() << IntfMethodDecl->getResultType() 755 << ImpMethodDecl->getResultType(); 756 Diag(IntfMethodDecl->getLocation(), diag::note_previous_definition); 757 } 758 759 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 760 IF = IntfMethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); 761 IM != EM; ++IM, ++IF) { 762 QualType ParmDeclTy = (*IF)->getType().getUnqualifiedType(); 763 QualType ParmImpTy = (*IM)->getType().getUnqualifiedType(); 764 if (Context.typesAreCompatible(ParmDeclTy, ParmImpTy) || 765 Context.QualifiedIdConformsQualifiedId(ParmDeclTy, ParmImpTy)) 766 continue; 767 768 Diag((*IM)->getLocation(), diag::warn_conflicting_param_types) 769 << ImpMethodDecl->getDeclName() << (*IF)->getType() 770 << (*IM)->getType(); 771 Diag((*IF)->getLocation(), diag::note_previous_definition); 772 } 773 if (ImpMethodDecl->isVariadic() != IntfMethodDecl->isVariadic()) { 774 Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic); 775 Diag(IntfMethodDecl->getLocation(), diag::note_previous_declaration); 776 } 777} 778 779/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 780/// improve the efficiency of selector lookups and type checking by associating 781/// with each protocol / interface / category the flattened instance tables. If 782/// we used an immutable set to keep the table then it wouldn't add significant 783/// memory cost and it would be handy for lookups. 784 785/// CheckProtocolMethodDefs - This routine checks unimplemented methods 786/// Declared in protocol, and those referenced by it. 787void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, 788 ObjCProtocolDecl *PDecl, 789 bool& IncompleteImpl, 790 const llvm::DenseSet<Selector> &InsMap, 791 const llvm::DenseSet<Selector> &ClsMap, 792 ObjCContainerDecl *CDecl) { 793 ObjCInterfaceDecl *IDecl; 794 if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) 795 IDecl = C->getClassInterface(); 796 else 797 IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl); 798 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 799 800 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 801 ObjCInterfaceDecl *NSIDecl = 0; 802 if (getLangOptions().NeXTRuntime) { 803 // check to see if class implements forwardInvocation method and objects 804 // of this class are derived from 'NSProxy' so that to forward requests 805 // from one object to another. 806 // Under such conditions, which means that every method possible is 807 // implemented in the class, we should not issue "Method definition not 808 // found" warnings. 809 // FIXME: Use a general GetUnarySelector method for this. 810 IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); 811 Selector fISelector = Context.Selectors.getSelector(1, &II); 812 if (InsMap.count(fISelector)) 813 // Is IDecl derived from 'NSProxy'? If so, no instance methods 814 // need be implemented in the implementation. 815 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); 816 } 817 818 // If a method lookup fails locally we still need to look and see if 819 // the method was implemented by a base class or an inherited 820 // protocol. This lookup is slow, but occurs rarely in correct code 821 // and otherwise would terminate in a warning. 822 823 // check unimplemented instance methods. 824 if (!NSIDecl) 825 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), 826 E = PDecl->instmeth_end(); I != E; ++I) { 827 ObjCMethodDecl *method = *I; 828 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 829 !method->isSynthesized() && !InsMap.count(method->getSelector()) && 830 (!Super || 831 !Super->lookupInstanceMethod(method->getSelector()))) { 832 // Ugly, but necessary. Method declared in protcol might have 833 // have been synthesized due to a property declared in the class which 834 // uses the protocol. 835 ObjCMethodDecl *MethodInClass = 836 IDecl->lookupInstanceMethod(method->getSelector()); 837 if (!MethodInClass || !MethodInClass->isSynthesized()) { 838 unsigned DIAG = diag::warn_unimplemented_protocol_method; 839 if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) { 840 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 841 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) 842 << PDecl->getDeclName(); 843 } 844 } 845 } 846 } 847 // check unimplemented class methods 848 for (ObjCProtocolDecl::classmeth_iterator 849 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); 850 I != E; ++I) { 851 ObjCMethodDecl *method = *I; 852 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 853 !ClsMap.count(method->getSelector()) && 854 (!Super || !Super->lookupClassMethod(method->getSelector()))) { 855 unsigned DIAG = diag::warn_unimplemented_protocol_method; 856 if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) { 857 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 858 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << 859 PDecl->getDeclName(); 860 } 861 } 862 } 863 // Check on this protocols's referenced protocols, recursively. 864 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), 865 E = PDecl->protocol_end(); PI != E; ++PI) 866 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl); 867} 868 869/// MatchAllMethodDeclarations - Check methods declaraed in interface or 870/// or protocol against those declared in their implementations. 871/// 872void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap, 873 const llvm::DenseSet<Selector> &ClsMap, 874 llvm::DenseSet<Selector> &InsMapSeen, 875 llvm::DenseSet<Selector> &ClsMapSeen, 876 ObjCImplDecl* IMPDecl, 877 ObjCContainerDecl* CDecl, 878 bool &IncompleteImpl, 879 bool ImmediateClass) { 880 // Check and see if instance methods in class interface have been 881 // implemented in the implementation class. If so, their types match. 882 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), 883 E = CDecl->instmeth_end(); I != E; ++I) { 884 if (InsMapSeen.count((*I)->getSelector())) 885 continue; 886 InsMapSeen.insert((*I)->getSelector()); 887 if (!(*I)->isSynthesized() && 888 !InsMap.count((*I)->getSelector())) { 889 if (ImmediateClass) 890 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 891 diag::note_undef_method_impl); 892 continue; 893 } else { 894 ObjCMethodDecl *ImpMethodDecl = 895 IMPDecl->getInstanceMethod((*I)->getSelector()); 896 ObjCMethodDecl *IntfMethodDecl = 897 CDecl->getInstanceMethod((*I)->getSelector()); 898 assert(IntfMethodDecl && 899 "IntfMethodDecl is null in ImplMethodsVsClassMethods"); 900 // ImpMethodDecl may be null as in a @dynamic property. 901 if (ImpMethodDecl) 902 WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl); 903 } 904 } 905 906 // Check and see if class methods in class interface have been 907 // implemented in the implementation class. If so, their types match. 908 for (ObjCInterfaceDecl::classmeth_iterator 909 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { 910 if (ClsMapSeen.count((*I)->getSelector())) 911 continue; 912 ClsMapSeen.insert((*I)->getSelector()); 913 if (!ClsMap.count((*I)->getSelector())) { 914 if (ImmediateClass) 915 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 916 diag::note_undef_method_impl); 917 } else { 918 ObjCMethodDecl *ImpMethodDecl = 919 IMPDecl->getClassMethod((*I)->getSelector()); 920 ObjCMethodDecl *IntfMethodDecl = 921 CDecl->getClassMethod((*I)->getSelector()); 922 WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl); 923 } 924 } 925 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 926 // Check for any implementation of a methods declared in protocol. 927 for (ObjCInterfaceDecl::protocol_iterator PI = I->protocol_begin(), 928 E = I->protocol_end(); PI != E; ++PI) 929 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 930 IMPDecl, 931 (*PI), IncompleteImpl, false); 932 if (I->getSuperClass()) 933 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 934 IMPDecl, 935 I->getSuperClass(), IncompleteImpl, false); 936 } 937} 938 939void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 940 ObjCContainerDecl* CDecl, 941 bool IncompleteImpl) { 942 llvm::DenseSet<Selector> InsMap; 943 // Check and see if instance methods in class interface have been 944 // implemented in the implementation class. 945 for (ObjCImplementationDecl::instmeth_iterator 946 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) 947 InsMap.insert((*I)->getSelector()); 948 949 // Check and see if properties declared in the interface have either 1) 950 // an implementation or 2) there is a @synthesize/@dynamic implementation 951 // of the property in the @implementation. 952 if (isa<ObjCInterfaceDecl>(CDecl) && !LangOpts.ObjCNonFragileABI2) 953 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 954 955 llvm::DenseSet<Selector> ClsMap; 956 for (ObjCImplementationDecl::classmeth_iterator 957 I = IMPDecl->classmeth_begin(), 958 E = IMPDecl->classmeth_end(); I != E; ++I) 959 ClsMap.insert((*I)->getSelector()); 960 961 // Check for type conflict of methods declared in a class/protocol and 962 // its implementation; if any. 963 llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; 964 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 965 IMPDecl, CDecl, 966 IncompleteImpl, true); 967 968 // Check the protocol list for unimplemented methods in the @implementation 969 // class. 970 // Check and see if class methods in class interface have been 971 // implemented in the implementation class. 972 973 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 974 for (ObjCInterfaceDecl::protocol_iterator PI = I->protocol_begin(), 975 E = I->protocol_end(); PI != E; ++PI) 976 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 977 InsMap, ClsMap, I); 978 // Check class extensions (unnamed categories) 979 for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension(); 980 Categories; Categories = Categories->getNextClassExtension()) 981 ImplMethodsVsClassMethods(S, IMPDecl, 982 const_cast<ObjCCategoryDecl*>(Categories), 983 IncompleteImpl); 984 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 985 // For extended class, unimplemented methods in its protocols will 986 // be reported in the primary class. 987 if (!C->IsClassExtension()) { 988 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), 989 E = C->protocol_end(); PI != E; ++PI) 990 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 991 InsMap, ClsMap, CDecl); 992 // Report unimplemented properties in the category as well. 993 // When reporting on missing setter/getters, do not report when 994 // setter/getter is implemented in category's primary class 995 // implementation. 996 if (ObjCInterfaceDecl *ID = C->getClassInterface()) 997 if (ObjCImplDecl *IMP = ID->getImplementation()) { 998 for (ObjCImplementationDecl::instmeth_iterator 999 I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) 1000 InsMap.insert((*I)->getSelector()); 1001 } 1002 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1003 } 1004 } else 1005 assert(false && "invalid ObjCContainerDecl type."); 1006} 1007 1008/// ActOnForwardClassDeclaration - 1009Decl * 1010Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 1011 IdentifierInfo **IdentList, 1012 SourceLocation *IdentLocs, 1013 unsigned NumElts) { 1014 llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces; 1015 1016 for (unsigned i = 0; i != NumElts; ++i) { 1017 // Check for another declaration kind with the same name. 1018 NamedDecl *PrevDecl 1019 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 1020 LookupOrdinaryName, ForRedeclaration); 1021 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1022 // Maybe we will complain about the shadowed template parameter. 1023 DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); 1024 // Just pretend that we didn't see the previous declaration. 1025 PrevDecl = 0; 1026 } 1027 1028 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1029 // GCC apparently allows the following idiom: 1030 // 1031 // typedef NSObject < XCElementTogglerP > XCElementToggler; 1032 // @class XCElementToggler; 1033 // 1034 // FIXME: Make an extension? 1035 TypedefDecl *TDD = dyn_cast<TypedefDecl>(PrevDecl); 1036 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 1037 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 1038 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1039 } else { 1040 // a forward class declaration matching a typedef name of a class refers 1041 // to the underlying class. 1042 if (const ObjCObjectType *OI = 1043 TDD->getUnderlyingType()->getAs<ObjCObjectType>()) 1044 PrevDecl = OI->getInterface(); 1045 } 1046 } 1047 ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 1048 if (!IDecl) { // Not already seen? Make a forward decl. 1049 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 1050 IdentList[i], IdentLocs[i], true); 1051 1052 // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to 1053 // the current DeclContext. This prevents clients that walk DeclContext 1054 // from seeing the imaginary ObjCInterfaceDecl until it is actually 1055 // declared later (if at all). We also take care to explicitly make 1056 // sure this declaration is visible for name lookup. 1057 PushOnScopeChains(IDecl, TUScope, false); 1058 CurContext->makeDeclVisibleInContext(IDecl, true); 1059 } 1060 1061 Interfaces.push_back(IDecl); 1062 } 1063 1064 assert(Interfaces.size() == NumElts); 1065 ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc, 1066 Interfaces.data(), IdentLocs, 1067 Interfaces.size()); 1068 CurContext->addDecl(CDecl); 1069 CheckObjCDeclScope(CDecl); 1070 return CDecl; 1071} 1072 1073 1074/// MatchTwoMethodDeclarations - Checks that two methods have matching type and 1075/// returns true, or false, accordingly. 1076/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 1077bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *Method, 1078 const ObjCMethodDecl *PrevMethod, 1079 bool matchBasedOnSizeAndAlignment, 1080 bool matchBasedOnStrictEqulity) { 1081 QualType T1 = Context.getCanonicalType(Method->getResultType()); 1082 QualType T2 = Context.getCanonicalType(PrevMethod->getResultType()); 1083 1084 if (T1 != T2) { 1085 // The result types are different. 1086 if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity) 1087 return false; 1088 // Incomplete types don't have a size and alignment. 1089 if (T1->isIncompleteType() || T2->isIncompleteType()) 1090 return false; 1091 // Check is based on size and alignment. 1092 if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2)) 1093 return false; 1094 } 1095 1096 ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), 1097 E = Method->param_end(); 1098 ObjCMethodDecl::param_iterator PrevI = PrevMethod->param_begin(); 1099 1100 for (; ParamI != E; ++ParamI, ++PrevI) { 1101 assert(PrevI != PrevMethod->param_end() && "Param mismatch"); 1102 T1 = Context.getCanonicalType((*ParamI)->getType()); 1103 T2 = Context.getCanonicalType((*PrevI)->getType()); 1104 if (T1 != T2) { 1105 // The result types are different. 1106 if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity) 1107 return false; 1108 // Incomplete types don't have a size and alignment. 1109 if (T1->isIncompleteType() || T2->isIncompleteType()) 1110 return false; 1111 // Check is based on size and alignment. 1112 if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2)) 1113 return false; 1114 } 1115 } 1116 return true; 1117} 1118 1119/// \brief Read the contents of the method pool for a given selector from 1120/// external storage. 1121/// 1122/// This routine should only be called once, when the method pool has no entry 1123/// for this selector. 1124Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) { 1125 assert(ExternalSource && "We need an external AST source"); 1126 assert(MethodPool.find(Sel) == MethodPool.end() && 1127 "Selector data already loaded into the method pool"); 1128 1129 // Read the method list from the external source. 1130 GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel); 1131 1132 return MethodPool.insert(std::make_pair(Sel, Methods)).first; 1133} 1134 1135void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 1136 bool instance) { 1137 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 1138 if (Pos == MethodPool.end()) { 1139 if (ExternalSource) 1140 Pos = ReadMethodPool(Method->getSelector()); 1141 else 1142 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 1143 GlobalMethods())).first; 1144 } 1145 Method->setDefined(impl); 1146 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 1147 if (Entry.Method == 0) { 1148 // Haven't seen a method with this selector name yet - add it. 1149 Entry.Method = Method; 1150 Entry.Next = 0; 1151 return; 1152 } 1153 1154 // We've seen a method with this name, see if we have already seen this type 1155 // signature. 1156 for (ObjCMethodList *List = &Entry; List; List = List->Next) 1157 if (MatchTwoMethodDeclarations(Method, List->Method)) { 1158 List->Method->setDefined(impl); 1159 return; 1160 } 1161 1162 // We have a new signature for an existing method - add it. 1163 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 1164 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 1165 Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next); 1166} 1167 1168ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 1169 bool receiverIdOrClass, 1170 bool warn, bool instance) { 1171 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 1172 if (Pos == MethodPool.end()) { 1173 if (ExternalSource) 1174 Pos = ReadMethodPool(Sel); 1175 else 1176 return 0; 1177 } 1178 1179 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 1180 1181 bool strictSelectorMatch = receiverIdOrClass && warn && 1182 (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl) != 1183 Diagnostic::Ignored); 1184 if (warn && MethList.Method && MethList.Next) { 1185 bool issueWarning = false; 1186 if (strictSelectorMatch) 1187 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 1188 // This checks if the methods differ in type mismatch. 1189 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, false, true)) 1190 issueWarning = true; 1191 } 1192 1193 if (!issueWarning) 1194 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 1195 // This checks if the methods differ by size & alignment. 1196 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true)) 1197 issueWarning = true; 1198 } 1199 1200 if (issueWarning) { 1201 if (strictSelectorMatch) 1202 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 1203 else 1204 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 1205 Diag(MethList.Method->getLocStart(), diag::note_using) 1206 << MethList.Method->getSourceRange(); 1207 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) 1208 Diag(Next->Method->getLocStart(), diag::note_also_found) 1209 << Next->Method->getSourceRange(); 1210 } 1211 } 1212 return MethList.Method; 1213} 1214 1215ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 1216 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 1217 if (Pos == MethodPool.end()) 1218 return 0; 1219 1220 GlobalMethods &Methods = Pos->second; 1221 1222 if (Methods.first.Method && Methods.first.Method->isDefined()) 1223 return Methods.first.Method; 1224 if (Methods.second.Method && Methods.second.Method->isDefined()) 1225 return Methods.second.Method; 1226 return 0; 1227} 1228 1229/// CompareMethodParamsInBaseAndSuper - This routine compares methods with 1230/// identical selector names in current and its super classes and issues 1231/// a warning if any of their argument types are incompatible. 1232void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl, 1233 ObjCMethodDecl *Method, 1234 bool IsInstance) { 1235 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 1236 if (ID == 0) return; 1237 1238 while (ObjCInterfaceDecl *SD = ID->getSuperClass()) { 1239 ObjCMethodDecl *SuperMethodDecl = 1240 SD->lookupMethod(Method->getSelector(), IsInstance); 1241 if (SuperMethodDecl == 0) { 1242 ID = SD; 1243 continue; 1244 } 1245 ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), 1246 E = Method->param_end(); 1247 ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin(); 1248 for (; ParamI != E; ++ParamI, ++PrevI) { 1249 // Number of parameters are the same and is guaranteed by selector match. 1250 assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch"); 1251 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 1252 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 1253 // If type of arguement of method in this class does not match its 1254 // respective argument type in the super class method, issue warning; 1255 if (!Context.typesAreCompatible(T1, T2)) { 1256 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 1257 << T1 << T2; 1258 Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration); 1259 return; 1260 } 1261 } 1262 ID = SD; 1263 } 1264} 1265 1266/// DiagnoseDuplicateIvars - 1267/// Check for duplicate ivars in the entire class at the start of 1268/// @implementation. This becomes necesssary because class extension can 1269/// add ivars to a class in random order which will not be known until 1270/// class's @implementation is seen. 1271void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 1272 ObjCInterfaceDecl *SID) { 1273 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), 1274 IVE = ID->ivar_end(); IVI != IVE; ++IVI) { 1275 ObjCIvarDecl* Ivar = (*IVI); 1276 if (Ivar->isInvalidDecl()) 1277 continue; 1278 if (IdentifierInfo *II = Ivar->getIdentifier()) { 1279 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 1280 if (prevIvar) { 1281 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 1282 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 1283 Ivar->setInvalidDecl(); 1284 } 1285 } 1286 } 1287} 1288 1289// Note: For class/category implemenations, allMethods/allProperties is 1290// always null. 1291void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, 1292 Decl *ClassDecl, 1293 Decl **allMethods, unsigned allNum, 1294 Decl **allProperties, unsigned pNum, 1295 DeclGroupPtrTy *allTUVars, unsigned tuvNum) { 1296 // FIXME: If we don't have a ClassDecl, we have an error. We should consider 1297 // always passing in a decl. If the decl has an error, isInvalidDecl() 1298 // should be true. 1299 if (!ClassDecl) 1300 return; 1301 1302 bool isInterfaceDeclKind = 1303 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 1304 || isa<ObjCProtocolDecl>(ClassDecl); 1305 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 1306 1307 if (!isInterfaceDeclKind && AtEnd.isInvalid()) { 1308 // FIXME: This is wrong. We shouldn't be pretending that there is 1309 // an '@end' in the declaration. 1310 SourceLocation L = ClassDecl->getLocation(); 1311 AtEnd.setBegin(L); 1312 AtEnd.setEnd(L); 1313 Diag(L, diag::warn_missing_atend); 1314 } 1315 1316 DeclContext *DC = dyn_cast<DeclContext>(ClassDecl); 1317 1318 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 1319 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 1320 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 1321 1322 for (unsigned i = 0; i < allNum; i++ ) { 1323 ObjCMethodDecl *Method = 1324 cast_or_null<ObjCMethodDecl>(allMethods[i]); 1325 1326 if (!Method) continue; // Already issued a diagnostic. 1327 if (Method->isInstanceMethod()) { 1328 /// Check for instance method of the same name with incompatible types 1329 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 1330 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 1331 : false; 1332 if ((isInterfaceDeclKind && PrevMethod && !match) 1333 || (checkIdenticalMethods && match)) { 1334 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 1335 << Method->getDeclName(); 1336 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 1337 } else { 1338 DC->addDecl(Method); 1339 InsMap[Method->getSelector()] = Method; 1340 /// The following allows us to typecheck messages to "id". 1341 AddInstanceMethodToGlobalPool(Method); 1342 // verify that the instance method conforms to the same definition of 1343 // parent methods if it shadows one. 1344 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true); 1345 } 1346 } else { 1347 /// Check for class method of the same name with incompatible types 1348 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 1349 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 1350 : false; 1351 if ((isInterfaceDeclKind && PrevMethod && !match) 1352 || (checkIdenticalMethods && match)) { 1353 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 1354 << Method->getDeclName(); 1355 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 1356 } else { 1357 DC->addDecl(Method); 1358 ClsMap[Method->getSelector()] = Method; 1359 /// The following allows us to typecheck messages to "Class". 1360 AddFactoryMethodToGlobalPool(Method); 1361 // verify that the class method conforms to the same definition of 1362 // parent methods if it shadows one. 1363 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false); 1364 } 1365 } 1366 } 1367 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 1368 // Compares properties declared in this class to those of its 1369 // super class. 1370 ComparePropertiesInBaseAndSuper(I); 1371 CompareProperties(I, I); 1372 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 1373 // Categories are used to extend the class by declaring new methods. 1374 // By the same token, they are also used to add new properties. No 1375 // need to compare the added property to those in the class. 1376 1377 // Compare protocol properties with those in category 1378 CompareProperties(C, C); 1379 if (C->IsClassExtension()) 1380 DiagnoseClassExtensionDupMethods(C, C->getClassInterface()); 1381 } 1382 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 1383 if (CDecl->getIdentifier()) 1384 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 1385 // user-defined setter/getter. It also synthesizes setter/getter methods 1386 // and adds them to the DeclContext and global method pools. 1387 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), 1388 E = CDecl->prop_end(); 1389 I != E; ++I) 1390 ProcessPropertyDecl(*I, CDecl); 1391 CDecl->setAtEndRange(AtEnd); 1392 } 1393 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 1394 IC->setAtEndRange(AtEnd); 1395 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 1396 if (LangOpts.ObjCNonFragileABI2) 1397 DefaultSynthesizeProperties(S, IC, IDecl); 1398 ImplMethodsVsClassMethods(S, IC, IDecl); 1399 AtomicPropertySetterGetterRules(IC, IDecl); 1400 1401 if (LangOpts.ObjCNonFragileABI2) 1402 while (IDecl->getSuperClass()) { 1403 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 1404 IDecl = IDecl->getSuperClass(); 1405 } 1406 } 1407 SetIvarInitializers(IC); 1408 } else if (ObjCCategoryImplDecl* CatImplClass = 1409 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 1410 CatImplClass->setAtEndRange(AtEnd); 1411 1412 // Find category interface decl and then check that all methods declared 1413 // in this interface are implemented in the category @implementation. 1414 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 1415 for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); 1416 Categories; Categories = Categories->getNextClassCategory()) { 1417 if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { 1418 ImplMethodsVsClassMethods(S, CatImplClass, Categories); 1419 break; 1420 } 1421 } 1422 } 1423 } 1424 if (isInterfaceDeclKind) { 1425 // Reject invalid vardecls. 1426 for (unsigned i = 0; i != tuvNum; i++) { 1427 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 1428 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 1429 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 1430 if (!VDecl->hasExternalStorage()) 1431 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 1432 } 1433 } 1434 } 1435} 1436 1437 1438/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 1439/// objective-c's type qualifier from the parser version of the same info. 1440static Decl::ObjCDeclQualifier 1441CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 1442 Decl::ObjCDeclQualifier ret = Decl::OBJC_TQ_None; 1443 if (PQTVal & ObjCDeclSpec::DQ_In) 1444 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_In); 1445 if (PQTVal & ObjCDeclSpec::DQ_Inout) 1446 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Inout); 1447 if (PQTVal & ObjCDeclSpec::DQ_Out) 1448 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Out); 1449 if (PQTVal & ObjCDeclSpec::DQ_Bycopy) 1450 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Bycopy); 1451 if (PQTVal & ObjCDeclSpec::DQ_Byref) 1452 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Byref); 1453 if (PQTVal & ObjCDeclSpec::DQ_Oneway) 1454 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Oneway); 1455 1456 return ret; 1457} 1458 1459static inline 1460bool containsInvalidMethodImplAttribute(const AttrVec &A) { 1461 // The 'ibaction' attribute is allowed on method definitions because of 1462 // how the IBAction macro is used on both method declarations and definitions. 1463 // If the method definitions contains any other attributes, return true. 1464 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) 1465 if ((*i)->getKind() != attr::IBAction) 1466 return true; 1467 return false; 1468} 1469 1470Decl *Sema::ActOnMethodDeclaration( 1471 SourceLocation MethodLoc, SourceLocation EndLoc, 1472 tok::TokenKind MethodType, Decl *ClassDecl, 1473 ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 1474 Selector Sel, 1475 // optional arguments. The number of types/arguments is obtained 1476 // from the Sel.getNumArgs(). 1477 ObjCArgInfo *ArgInfo, 1478 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 1479 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 1480 bool isVariadic) { 1481 // Make sure we can establish a context for the method. 1482 if (!ClassDecl) { 1483 Diag(MethodLoc, diag::error_missing_method_context); 1484 getCurFunction()->LabelMap.clear(); 1485 return 0; 1486 } 1487 QualType resultDeclType; 1488 1489 TypeSourceInfo *ResultTInfo = 0; 1490 if (ReturnType) { 1491 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); 1492 1493 // Methods cannot return interface types. All ObjC objects are 1494 // passed by reference. 1495 if (resultDeclType->isObjCObjectType()) { 1496 Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) 1497 << 0 << resultDeclType; 1498 return 0; 1499 } 1500 } else // get the type for "id". 1501 resultDeclType = Context.getObjCIdType(); 1502 1503 ObjCMethodDecl* ObjCMethod = 1504 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType, 1505 ResultTInfo, 1506 cast<DeclContext>(ClassDecl), 1507 MethodType == tok::minus, isVariadic, 1508 false, false, 1509 MethodDeclKind == tok::objc_optional ? 1510 ObjCMethodDecl::Optional : 1511 ObjCMethodDecl::Required); 1512 1513 llvm::SmallVector<ParmVarDecl*, 16> Params; 1514 1515 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 1516 QualType ArgType; 1517 TypeSourceInfo *DI; 1518 1519 if (ArgInfo[i].Type == 0) { 1520 ArgType = Context.getObjCIdType(); 1521 DI = 0; 1522 } else { 1523 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 1524 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 1525 ArgType = adjustParameterType(ArgType); 1526 } 1527 1528 ParmVarDecl* Param 1529 = ParmVarDecl::Create(Context, ObjCMethod, ArgInfo[i].NameLoc, 1530 ArgInfo[i].Name, ArgType, DI, 1531 VarDecl::None, VarDecl::None, 0); 1532 1533 if (ArgType->isObjCObjectType()) { 1534 Diag(ArgInfo[i].NameLoc, 1535 diag::err_object_cannot_be_passed_returned_by_value) 1536 << 1 << ArgType; 1537 Param->setInvalidDecl(); 1538 } 1539 1540 Param->setObjCDeclQualifier( 1541 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 1542 1543 // Apply the attributes to the parameter. 1544 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 1545 1546 Params.push_back(Param); 1547 } 1548 1549 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 1550 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 1551 QualType ArgType = Param->getType(); 1552 if (ArgType.isNull()) 1553 ArgType = Context.getObjCIdType(); 1554 else 1555 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 1556 ArgType = adjustParameterType(ArgType); 1557 if (ArgType->isObjCObjectType()) { 1558 Diag(Param->getLocation(), 1559 diag::err_object_cannot_be_passed_returned_by_value) 1560 << 1 << ArgType; 1561 Param->setInvalidDecl(); 1562 } 1563 Param->setDeclContext(ObjCMethod); 1564 if (Param->getDeclName()) 1565 IdResolver.RemoveDecl(Param); 1566 Params.push_back(Param); 1567 } 1568 1569 ObjCMethod->setMethodParams(Context, Params.data(), Params.size(), 1570 Sel.getNumArgs()); 1571 ObjCMethod->setObjCDeclQualifier( 1572 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 1573 const ObjCMethodDecl *PrevMethod = 0; 1574 1575 if (AttrList) 1576 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 1577 1578 const ObjCMethodDecl *InterfaceMD = 0; 1579 1580 // For implementations (which can be very "coarse grain"), we add the 1581 // method now. This allows the AST to implement lookup methods that work 1582 // incrementally (without waiting until we parse the @end). It also allows 1583 // us to flag multiple declaration errors as they occur. 1584 if (ObjCImplementationDecl *ImpDecl = 1585 dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 1586 if (MethodType == tok::minus) { 1587 PrevMethod = ImpDecl->getInstanceMethod(Sel); 1588 ImpDecl->addInstanceMethod(ObjCMethod); 1589 } else { 1590 PrevMethod = ImpDecl->getClassMethod(Sel); 1591 ImpDecl->addClassMethod(ObjCMethod); 1592 } 1593 InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel, 1594 MethodType == tok::minus); 1595 if (ObjCMethod->hasAttrs() && 1596 containsInvalidMethodImplAttribute(ObjCMethod->getAttrs())) 1597 Diag(EndLoc, diag::warn_attribute_method_def); 1598 } else if (ObjCCategoryImplDecl *CatImpDecl = 1599 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 1600 if (MethodType == tok::minus) { 1601 PrevMethod = CatImpDecl->getInstanceMethod(Sel); 1602 CatImpDecl->addInstanceMethod(ObjCMethod); 1603 } else { 1604 PrevMethod = CatImpDecl->getClassMethod(Sel); 1605 CatImpDecl->addClassMethod(ObjCMethod); 1606 } 1607 if (ObjCMethod->hasAttrs() && 1608 containsInvalidMethodImplAttribute(ObjCMethod->getAttrs())) 1609 Diag(EndLoc, diag::warn_attribute_method_def); 1610 } 1611 if (PrevMethod) { 1612 // You can never have two method definitions with the same name. 1613 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 1614 << ObjCMethod->getDeclName(); 1615 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 1616 } 1617 1618 // If the interface declared this method, and it was deprecated there, 1619 // mark it deprecated here. 1620 if (InterfaceMD) 1621 if (Attr *DA = InterfaceMD->getAttr<DeprecatedAttr>()) 1622 ObjCMethod->addAttr(::new (Context) DeprecatedAttr(DA->getLocation(), 1623 Context)); 1624 1625 return ObjCMethod; 1626} 1627 1628bool Sema::CheckObjCDeclScope(Decl *D) { 1629 if (isa<TranslationUnitDecl>(CurContext->getLookupContext())) 1630 return false; 1631 1632 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 1633 D->setInvalidDecl(); 1634 1635 return true; 1636} 1637 1638/// Called whenever @defs(ClassName) is encountered in the source. Inserts the 1639/// instance variables of ClassName into Decls. 1640void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 1641 IdentifierInfo *ClassName, 1642 llvm::SmallVectorImpl<Decl*> &Decls) { 1643 // Check that ClassName is a valid class 1644 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 1645 if (!Class) { 1646 Diag(DeclStart, diag::err_undef_interface) << ClassName; 1647 return; 1648 } 1649 if (LangOpts.ObjCNonFragileABI) { 1650 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 1651 return; 1652 } 1653 1654 // Collect the instance variables 1655 llvm::SmallVector<ObjCIvarDecl*, 32> Ivars; 1656 Context.DeepCollectObjCIvars(Class, true, Ivars); 1657 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 1658 for (unsigned i = 0; i < Ivars.size(); i++) { 1659 FieldDecl* ID = cast<FieldDecl>(Ivars[i]); 1660 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 1661 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, ID->getLocation(), 1662 ID->getIdentifier(), ID->getType(), 1663 ID->getBitWidth()); 1664 Decls.push_back(FD); 1665 } 1666 1667 // Introduce all of these fields into the appropriate scope. 1668 for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 1669 D != Decls.end(); ++D) { 1670 FieldDecl *FD = cast<FieldDecl>(*D); 1671 if (getLangOptions().CPlusPlus) 1672 PushOnScopeChains(cast<FieldDecl>(FD), S); 1673 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 1674 Record->addDecl(FD); 1675 } 1676} 1677 1678/// \brief Build a type-check a new Objective-C exception variable declaration. 1679VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, 1680 QualType T, 1681 IdentifierInfo *Name, 1682 SourceLocation NameLoc, 1683 bool Invalid) { 1684 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 1685 // duration shall not be qualified by an address-space qualifier." 1686 // Since all parameters have automatic store duration, they can not have 1687 // an address space. 1688 if (T.getAddressSpace() != 0) { 1689 Diag(NameLoc, diag::err_arg_with_address_space); 1690 Invalid = true; 1691 } 1692 1693 // An @catch parameter must be an unqualified object pointer type; 1694 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 1695 if (Invalid) { 1696 // Don't do any further checking. 1697 } else if (T->isDependentType()) { 1698 // Okay: we don't know what this type will instantiate to. 1699 } else if (!T->isObjCObjectPointerType()) { 1700 Invalid = true; 1701 Diag(NameLoc ,diag::err_catch_param_not_objc_type); 1702 } else if (T->isObjCQualifiedIdType()) { 1703 Invalid = true; 1704 Diag(NameLoc, diag::err_illegal_qualifiers_on_catch_parm); 1705 } 1706 1707 VarDecl *New = VarDecl::Create(Context, CurContext, NameLoc, Name, T, TInfo, 1708 VarDecl::None, VarDecl::None); 1709 New->setExceptionVariable(true); 1710 1711 if (Invalid) 1712 New->setInvalidDecl(); 1713 return New; 1714} 1715 1716Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 1717 const DeclSpec &DS = D.getDeclSpec(); 1718 1719 // We allow the "register" storage class on exception variables because 1720 // GCC did, but we drop it completely. Any other storage class is an error. 1721 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 1722 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 1723 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 1724 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 1725 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 1726 << DS.getStorageClassSpec(); 1727 } 1728 if (D.getDeclSpec().isThreadSpecified()) 1729 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); 1730 D.getMutableDeclSpec().ClearStorageClassSpecs(); 1731 1732 DiagnoseFunctionSpecifiers(D); 1733 1734 // Check that there are no default arguments inside the type of this 1735 // exception object (C++ only). 1736 if (getLangOptions().CPlusPlus) 1737 CheckExtraCXXDefaultArguments(D); 1738 1739 TagDecl *OwnedDecl = 0; 1740 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl); 1741 QualType ExceptionType = TInfo->getType(); 1742 1743 if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) { 1744 // Objective-C++: Types shall not be defined in exception types. 1745 Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type) 1746 << Context.getTypeDeclType(OwnedDecl); 1747 } 1748 1749 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, D.getIdentifier(), 1750 D.getIdentifierLoc(), 1751 D.isInvalidType()); 1752 1753 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 1754 if (D.getCXXScopeSpec().isSet()) { 1755 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 1756 << D.getCXXScopeSpec().getRange(); 1757 New->setInvalidDecl(); 1758 } 1759 1760 // Add the parameter declaration into this scope. 1761 S->AddDecl(New); 1762 if (D.getIdentifier()) 1763 IdResolver.AddDecl(New); 1764 1765 ProcessDeclAttributes(S, New, D); 1766 1767 if (New->hasAttr<BlocksAttr>()) 1768 Diag(New->getLocation(), diag::err_block_on_nonlocal); 1769 return New; 1770} 1771 1772/// CollectIvarsToConstructOrDestruct - Collect those ivars which require 1773/// initialization. 1774void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 1775 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 1776 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 1777 Iv= Iv->getNextIvar()) { 1778 QualType QT = Context.getBaseElementType(Iv->getType()); 1779 if (QT->isRecordType()) 1780 Ivars.push_back(Iv); 1781 } 1782} 1783 1784void ObjCImplementationDecl::setIvarInitializers(ASTContext &C, 1785 CXXBaseOrMemberInitializer ** initializers, 1786 unsigned numInitializers) { 1787 if (numInitializers > 0) { 1788 NumIvarInitializers = numInitializers; 1789 CXXBaseOrMemberInitializer **ivarInitializers = 1790 new (C) CXXBaseOrMemberInitializer*[NumIvarInitializers]; 1791 memcpy(ivarInitializers, initializers, 1792 numInitializers * sizeof(CXXBaseOrMemberInitializer*)); 1793 IvarInitializers = ivarInitializers; 1794 } 1795} 1796 1797void Sema::DiagnoseUseOfUnimplementedSelectors() { 1798 if (ReferencedSelectors.empty()) 1799 return; 1800 for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 1801 ReferencedSelectors.begin(), 1802 E = ReferencedSelectors.end(); S != E; ++S) { 1803 Selector Sel = (*S).first; 1804 if (!LookupImplementedMethodInGlobalPool(Sel)) 1805 Diag((*S).second, diag::warn_unimplemented_selector) << Sel; 1806 } 1807 return; 1808} 1809