SemaDeclObjC.cpp revision 95aac15936e8362aeb4813f95bc255dee6473592
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements semantic analysis for Objective C declarations. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/ExternalSemaSource.h" 17#include "clang/Sema/Scope.h" 18#include "clang/Sema/ScopeInfo.h" 19#include "clang/AST/ASTConsumer.h" 20#include "clang/AST/Expr.h" 21#include "clang/AST/ExprObjC.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/AST/ASTMutationListener.h" 25#include "clang/Basic/SourceManager.h" 26#include "clang/Sema/DeclSpec.h" 27#include "clang/Lex/Preprocessor.h" 28#include "llvm/ADT/DenseSet.h" 29 30using namespace clang; 31 32/// Check whether the given method, which must be in the 'init' 33/// family, is a valid member of that family. 34/// 35/// \param receiverTypeIfCall - if null, check this as if declaring it; 36/// if non-null, check this as if making a call to it with the given 37/// receiver type 38/// 39/// \return true to indicate that there was an error and appropriate 40/// actions were taken 41bool Sema::checkInitMethod(ObjCMethodDecl *method, 42 QualType receiverTypeIfCall) { 43 if (method->isInvalidDecl()) return true; 44 45 // This castAs is safe: methods that don't return an object 46 // pointer won't be inferred as inits and will reject an explicit 47 // objc_method_family(init). 48 49 // We ignore protocols here. Should we? What about Class? 50 51 const ObjCObjectType *result = method->getResultType() 52 ->castAs<ObjCObjectPointerType>()->getObjectType(); 53 54 if (result->isObjCId()) { 55 return false; 56 } else if (result->isObjCClass()) { 57 // fall through: always an error 58 } else { 59 ObjCInterfaceDecl *resultClass = result->getInterface(); 60 assert(resultClass && "unexpected object type!"); 61 62 // It's okay for the result type to still be a forward declaration 63 // if we're checking an interface declaration. 64 if (!resultClass->hasDefinition()) { 65 if (receiverTypeIfCall.isNull() && 66 !isa<ObjCImplementationDecl>(method->getDeclContext())) 67 return false; 68 69 // Otherwise, we try to compare class types. 70 } else { 71 // If this method was declared in a protocol, we can't check 72 // anything unless we have a receiver type that's an interface. 73 const ObjCInterfaceDecl *receiverClass = 0; 74 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 75 if (receiverTypeIfCall.isNull()) 76 return false; 77 78 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 79 ->getInterfaceDecl(); 80 81 // This can be null for calls to e.g. id<Foo>. 82 if (!receiverClass) return false; 83 } else { 84 receiverClass = method->getClassInterface(); 85 assert(receiverClass && "method not associated with a class!"); 86 } 87 88 // If either class is a subclass of the other, it's fine. 89 if (receiverClass->isSuperClassOf(resultClass) || 90 resultClass->isSuperClassOf(receiverClass)) 91 return false; 92 } 93 } 94 95 SourceLocation loc = method->getLocation(); 96 97 // If we're in a system header, and this is not a call, just make 98 // the method unusable. 99 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 100 method->addAttr(new (Context) UnavailableAttr(loc, Context, 101 "init method returns a type unrelated to its receiver type")); 102 return true; 103 } 104 105 // Otherwise, it's an error. 106 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 107 method->setInvalidDecl(); 108 return true; 109} 110 111void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 112 const ObjCMethodDecl *Overridden, 113 bool IsImplementation) { 114 if (Overridden->hasRelatedResultType() && 115 !NewMethod->hasRelatedResultType()) { 116 // This can only happen when the method follows a naming convention that 117 // implies a related result type, and the original (overridden) method has 118 // a suitable return type, but the new (overriding) method does not have 119 // a suitable return type. 120 QualType ResultType = NewMethod->getResultType(); 121 SourceRange ResultTypeRange; 122 if (const TypeSourceInfo *ResultTypeInfo 123 = NewMethod->getResultTypeSourceInfo()) 124 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 125 126 // Figure out which class this method is part of, if any. 127 ObjCInterfaceDecl *CurrentClass 128 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 129 if (!CurrentClass) { 130 DeclContext *DC = NewMethod->getDeclContext(); 131 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 132 CurrentClass = Cat->getClassInterface(); 133 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 134 CurrentClass = Impl->getClassInterface(); 135 else if (ObjCCategoryImplDecl *CatImpl 136 = dyn_cast<ObjCCategoryImplDecl>(DC)) 137 CurrentClass = CatImpl->getClassInterface(); 138 } 139 140 if (CurrentClass) { 141 Diag(NewMethod->getLocation(), 142 diag::warn_related_result_type_compatibility_class) 143 << Context.getObjCInterfaceType(CurrentClass) 144 << ResultType 145 << ResultTypeRange; 146 } else { 147 Diag(NewMethod->getLocation(), 148 diag::warn_related_result_type_compatibility_protocol) 149 << ResultType 150 << ResultTypeRange; 151 } 152 153 if (ObjCMethodFamily Family = Overridden->getMethodFamily()) 154 Diag(Overridden->getLocation(), 155 diag::note_related_result_type_overridden_family) 156 << Family; 157 else 158 Diag(Overridden->getLocation(), 159 diag::note_related_result_type_overridden); 160 } 161 if (getLangOpts().ObjCAutoRefCount) { 162 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != 163 Overridden->hasAttr<NSReturnsRetainedAttr>())) { 164 Diag(NewMethod->getLocation(), 165 diag::err_nsreturns_retained_attribute_mismatch) << 1; 166 Diag(Overridden->getLocation(), diag::note_previous_decl) 167 << "method"; 168 } 169 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != 170 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { 171 Diag(NewMethod->getLocation(), 172 diag::err_nsreturns_retained_attribute_mismatch) << 0; 173 Diag(Overridden->getLocation(), diag::note_previous_decl) 174 << "method"; 175 } 176 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), 177 oe = Overridden->param_end(); 178 for (ObjCMethodDecl::param_iterator 179 ni = NewMethod->param_begin(), ne = NewMethod->param_end(); 180 ni != ne && oi != oe; ++ni, ++oi) { 181 const ParmVarDecl *oldDecl = (*oi); 182 ParmVarDecl *newDecl = (*ni); 183 if (newDecl->hasAttr<NSConsumedAttr>() != 184 oldDecl->hasAttr<NSConsumedAttr>()) { 185 Diag(newDecl->getLocation(), 186 diag::err_nsconsumed_attribute_mismatch); 187 Diag(oldDecl->getLocation(), diag::note_previous_decl) 188 << "parameter"; 189 } 190 } 191 } 192} 193 194/// \brief Check a method declaration for compatibility with the Objective-C 195/// ARC conventions. 196static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) { 197 ObjCMethodFamily family = method->getMethodFamily(); 198 switch (family) { 199 case OMF_None: 200 case OMF_finalize: 201 case OMF_retain: 202 case OMF_release: 203 case OMF_autorelease: 204 case OMF_retainCount: 205 case OMF_self: 206 case OMF_performSelector: 207 return false; 208 209 case OMF_dealloc: 210 if (!S.Context.hasSameType(method->getResultType(), S.Context.VoidTy)) { 211 SourceRange ResultTypeRange; 212 if (const TypeSourceInfo *ResultTypeInfo 213 = method->getResultTypeSourceInfo()) 214 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 215 if (ResultTypeRange.isInvalid()) 216 S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 217 << method->getResultType() 218 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)"); 219 else 220 S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 221 << method->getResultType() 222 << FixItHint::CreateReplacement(ResultTypeRange, "void"); 223 return true; 224 } 225 return false; 226 227 case OMF_init: 228 // If the method doesn't obey the init rules, don't bother annotating it. 229 if (S.checkInitMethod(method, QualType())) 230 return true; 231 232 method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(), 233 S.Context)); 234 235 // Don't add a second copy of this attribute, but otherwise don't 236 // let it be suppressed. 237 if (method->hasAttr<NSReturnsRetainedAttr>()) 238 return false; 239 break; 240 241 case OMF_alloc: 242 case OMF_copy: 243 case OMF_mutableCopy: 244 case OMF_new: 245 if (method->hasAttr<NSReturnsRetainedAttr>() || 246 method->hasAttr<NSReturnsNotRetainedAttr>() || 247 method->hasAttr<NSReturnsAutoreleasedAttr>()) 248 return false; 249 break; 250 } 251 252 method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(), 253 S.Context)); 254 return false; 255} 256 257static void DiagnoseObjCImplementedDeprecations(Sema &S, 258 NamedDecl *ND, 259 SourceLocation ImplLoc, 260 int select) { 261 if (ND && ND->isDeprecated()) { 262 S.Diag(ImplLoc, diag::warn_deprecated_def) << select; 263 if (select == 0) 264 S.Diag(ND->getLocation(), diag::note_method_declared_at) 265 << ND->getDeclName(); 266 else 267 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; 268 } 269} 270 271/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global 272/// pool. 273void Sema::AddAnyMethodToGlobalPool(Decl *D) { 274 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 275 276 // If we don't have a valid method decl, simply return. 277 if (!MDecl) 278 return; 279 if (MDecl->isInstanceMethod()) 280 AddInstanceMethodToGlobalPool(MDecl, true); 281 else 282 AddFactoryMethodToGlobalPool(MDecl, true); 283} 284 285/// ActOnStartOfObjCMethodOrCFunctionDef - This routine sets up parameters; invisible 286/// and user declared, in the method definition's AST. This routine is also called 287/// for C-functions defined in an Objective-c class implementation. 288void Sema::ActOnStartOfObjCMethodOrCFunctionDef(Scope *FnBodyScope, Decl *D, 289 bool parseMethod) { 290 assert((getCurMethodDecl() == 0 && getCurFunctionDecl() == 0) && 291 "Method/c-function parsing confused"); 292 if (!parseMethod) { 293 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(D); 294 // If we don't have a valid c-function decl, simply return. 295 if (!FDecl) 296 return; 297 PushDeclContext(FnBodyScope, FDecl); 298 PushFunctionScope(); 299 300 for (FunctionDecl::param_const_iterator PI = FDecl->param_begin(), 301 E = FDecl->param_end(); PI != E; ++PI) { 302 ParmVarDecl *Param = (*PI); 303 if (!Param->isInvalidDecl() && 304 RequireCompleteType(Param->getLocation(), Param->getType(), 305 diag::err_typecheck_decl_incomplete_type)) 306 Param->setInvalidDecl(); 307 if ((*PI)->getIdentifier()) 308 PushOnScopeChains(*PI, FnBodyScope); 309 } 310 return; 311 } 312 313 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 314 315 // If we don't have a valid method decl, simply return. 316 if (!MDecl) 317 return; 318 319 // Allow all of Sema to see that we are entering a method definition. 320 PushDeclContext(FnBodyScope, MDecl); 321 PushFunctionScope(); 322 323 // Create Decl objects for each parameter, entrring them in the scope for 324 // binding to their use. 325 326 // Insert the invisible arguments, self and _cmd! 327 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 328 329 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 330 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 331 332 // Introduce all of the other parameters into this scope. 333 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), 334 E = MDecl->param_end(); PI != E; ++PI) { 335 ParmVarDecl *Param = (*PI); 336 if (!Param->isInvalidDecl() && 337 RequireCompleteType(Param->getLocation(), Param->getType(), 338 diag::err_typecheck_decl_incomplete_type)) 339 Param->setInvalidDecl(); 340 if ((*PI)->getIdentifier()) 341 PushOnScopeChains(*PI, FnBodyScope); 342 } 343 344 // In ARC, disallow definition of retain/release/autorelease/retainCount 345 if (getLangOpts().ObjCAutoRefCount) { 346 switch (MDecl->getMethodFamily()) { 347 case OMF_retain: 348 case OMF_retainCount: 349 case OMF_release: 350 case OMF_autorelease: 351 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 352 << MDecl->getSelector(); 353 break; 354 355 case OMF_None: 356 case OMF_dealloc: 357 case OMF_finalize: 358 case OMF_alloc: 359 case OMF_init: 360 case OMF_mutableCopy: 361 case OMF_copy: 362 case OMF_new: 363 case OMF_self: 364 case OMF_performSelector: 365 break; 366 } 367 } 368 369 // Warn on deprecated methods under -Wdeprecated-implementations, 370 // and prepare for warning on missing super calls. 371 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 372 if (ObjCMethodDecl *IMD = 373 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod())) 374 DiagnoseObjCImplementedDeprecations(*this, 375 dyn_cast<NamedDecl>(IMD), 376 MDecl->getLocation(), 0); 377 378 // If this is "dealloc" or "finalize", set some bit here. 379 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 380 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 381 // Only do this if the current class actually has a superclass. 382 if (IC->getSuperClass()) { 383 getCurFunction()->ObjCShouldCallSuperDealloc = 384 !(Context.getLangOpts().ObjCAutoRefCount || 385 Context.getLangOpts().getGC() == LangOptions::GCOnly) && 386 MDecl->getMethodFamily() == OMF_dealloc; 387 getCurFunction()->ObjCShouldCallSuperFinalize = 388 Context.getLangOpts().getGC() != LangOptions::NonGC && 389 MDecl->getMethodFamily() == OMF_finalize; 390 } 391 } 392} 393 394namespace { 395 396// Callback to only accept typo corrections that are Objective-C classes. 397// If an ObjCInterfaceDecl* is given to the constructor, then the validation 398// function will reject corrections to that class. 399class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback { 400 public: 401 ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {} 402 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) 403 : CurrentIDecl(IDecl) {} 404 405 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 406 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); 407 return ID && !declaresSameEntity(ID, CurrentIDecl); 408 } 409 410 private: 411 ObjCInterfaceDecl *CurrentIDecl; 412}; 413 414} 415 416Decl *Sema:: 417ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 418 IdentifierInfo *ClassName, SourceLocation ClassLoc, 419 IdentifierInfo *SuperName, SourceLocation SuperLoc, 420 Decl * const *ProtoRefs, unsigned NumProtoRefs, 421 const SourceLocation *ProtoLocs, 422 SourceLocation EndProtoLoc, AttributeList *AttrList) { 423 assert(ClassName && "Missing class identifier"); 424 425 // Check for another declaration kind with the same name. 426 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 427 LookupOrdinaryName, ForRedeclaration); 428 429 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 430 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 431 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 432 } 433 434 // Create a declaration to describe this @interface. 435 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 436 ObjCInterfaceDecl *IDecl 437 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, 438 PrevIDecl, ClassLoc); 439 440 if (PrevIDecl) { 441 // Class already seen. Was it a definition? 442 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 443 Diag(AtInterfaceLoc, diag::err_duplicate_class_def) 444 << PrevIDecl->getDeclName(); 445 Diag(Def->getLocation(), diag::note_previous_definition); 446 IDecl->setInvalidDecl(); 447 } 448 } 449 450 if (AttrList) 451 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 452 PushOnScopeChains(IDecl, TUScope); 453 454 // Start the definition of this class. If we're in a redefinition case, there 455 // may already be a definition, so we'll end up adding to it. 456 if (!IDecl->hasDefinition()) 457 IDecl->startDefinition(); 458 459 if (SuperName) { 460 // Check if a different kind of symbol declared in this scope. 461 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 462 LookupOrdinaryName); 463 464 if (!PrevDecl) { 465 // Try to correct for a typo in the superclass name without correcting 466 // to the class we're defining. 467 ObjCInterfaceValidatorCCC Validator(IDecl); 468 if (TypoCorrection Corrected = CorrectTypo( 469 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope, 470 NULL, Validator)) { 471 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 472 Diag(SuperLoc, diag::err_undef_superclass_suggest) 473 << SuperName << ClassName << PrevDecl->getDeclName(); 474 Diag(PrevDecl->getLocation(), diag::note_previous_decl) 475 << PrevDecl->getDeclName(); 476 } 477 } 478 479 if (declaresSameEntity(PrevDecl, IDecl)) { 480 Diag(SuperLoc, diag::err_recursive_superclass) 481 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 482 IDecl->setEndOfDefinitionLoc(ClassLoc); 483 } else { 484 ObjCInterfaceDecl *SuperClassDecl = 485 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 486 487 // Diagnose classes that inherit from deprecated classes. 488 if (SuperClassDecl) 489 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 490 491 if (PrevDecl && SuperClassDecl == 0) { 492 // The previous declaration was not a class decl. Check if we have a 493 // typedef. If we do, get the underlying class type. 494 if (const TypedefNameDecl *TDecl = 495 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 496 QualType T = TDecl->getUnderlyingType(); 497 if (T->isObjCObjectType()) { 498 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) 499 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 500 } 501 } 502 503 // This handles the following case: 504 // 505 // typedef int SuperClass; 506 // @interface MyClass : SuperClass {} @end 507 // 508 if (!SuperClassDecl) { 509 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 510 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 511 } 512 } 513 514 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 515 if (!SuperClassDecl) 516 Diag(SuperLoc, diag::err_undef_superclass) 517 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 518 else if (RequireCompleteType(SuperLoc, 519 Context.getObjCInterfaceType(SuperClassDecl), 520 diag::err_forward_superclass, 521 SuperClassDecl->getDeclName(), 522 ClassName, 523 SourceRange(AtInterfaceLoc, ClassLoc))) { 524 SuperClassDecl = 0; 525 } 526 } 527 IDecl->setSuperClass(SuperClassDecl); 528 IDecl->setSuperClassLoc(SuperLoc); 529 IDecl->setEndOfDefinitionLoc(SuperLoc); 530 } 531 } else { // we have a root class. 532 IDecl->setEndOfDefinitionLoc(ClassLoc); 533 } 534 535 // Check then save referenced protocols. 536 if (NumProtoRefs) { 537 IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 538 ProtoLocs, Context); 539 IDecl->setEndOfDefinitionLoc(EndProtoLoc); 540 } 541 542 CheckObjCDeclScope(IDecl); 543 return ActOnObjCContainerStartDefinition(IDecl); 544} 545 546/// ActOnCompatiblityAlias - this action is called after complete parsing of 547/// a \@compatibility_alias declaration. It sets up the alias relationships. 548Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc, 549 IdentifierInfo *AliasName, 550 SourceLocation AliasLocation, 551 IdentifierInfo *ClassName, 552 SourceLocation ClassLocation) { 553 // Look for previous declaration of alias name 554 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 555 LookupOrdinaryName, ForRedeclaration); 556 if (ADecl) { 557 if (isa<ObjCCompatibleAliasDecl>(ADecl)) 558 Diag(AliasLocation, diag::warn_previous_alias_decl); 559 else 560 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 561 Diag(ADecl->getLocation(), diag::note_previous_declaration); 562 return 0; 563 } 564 // Check for class declaration 565 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 566 LookupOrdinaryName, ForRedeclaration); 567 if (const TypedefNameDecl *TDecl = 568 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 569 QualType T = TDecl->getUnderlyingType(); 570 if (T->isObjCObjectType()) { 571 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 572 ClassName = IDecl->getIdentifier(); 573 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 574 LookupOrdinaryName, ForRedeclaration); 575 } 576 } 577 } 578 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 579 if (CDecl == 0) { 580 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 581 if (CDeclU) 582 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 583 return 0; 584 } 585 586 // Everything checked out, instantiate a new alias declaration AST. 587 ObjCCompatibleAliasDecl *AliasDecl = 588 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 589 590 if (!CheckObjCDeclScope(AliasDecl)) 591 PushOnScopeChains(AliasDecl, TUScope); 592 593 return AliasDecl; 594} 595 596bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 597 IdentifierInfo *PName, 598 SourceLocation &Ploc, SourceLocation PrevLoc, 599 const ObjCList<ObjCProtocolDecl> &PList) { 600 601 bool res = false; 602 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 603 E = PList.end(); I != E; ++I) { 604 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 605 Ploc)) { 606 if (PDecl->getIdentifier() == PName) { 607 Diag(Ploc, diag::err_protocol_has_circular_dependency); 608 Diag(PrevLoc, diag::note_previous_definition); 609 res = true; 610 } 611 612 if (!PDecl->hasDefinition()) 613 continue; 614 615 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 616 PDecl->getLocation(), PDecl->getReferencedProtocols())) 617 res = true; 618 } 619 } 620 return res; 621} 622 623Decl * 624Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 625 IdentifierInfo *ProtocolName, 626 SourceLocation ProtocolLoc, 627 Decl * const *ProtoRefs, 628 unsigned NumProtoRefs, 629 const SourceLocation *ProtoLocs, 630 SourceLocation EndProtoLoc, 631 AttributeList *AttrList) { 632 bool err = false; 633 // FIXME: Deal with AttrList. 634 assert(ProtocolName && "Missing protocol identifier"); 635 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, 636 ForRedeclaration); 637 ObjCProtocolDecl *PDecl = 0; 638 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) { 639 // If we already have a definition, complain. 640 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 641 Diag(Def->getLocation(), diag::note_previous_definition); 642 643 // Create a new protocol that is completely distinct from previous 644 // declarations, and do not make this protocol available for name lookup. 645 // That way, we'll end up completely ignoring the duplicate. 646 // FIXME: Can we turn this into an error? 647 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 648 ProtocolLoc, AtProtoInterfaceLoc, 649 /*PrevDecl=*/0); 650 PDecl->startDefinition(); 651 } else { 652 if (PrevDecl) { 653 // Check for circular dependencies among protocol declarations. This can 654 // only happen if this protocol was forward-declared. 655 ObjCList<ObjCProtocolDecl> PList; 656 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 657 err = CheckForwardProtocolDeclarationForCircularDependency( 658 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); 659 } 660 661 // Create the new declaration. 662 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 663 ProtocolLoc, AtProtoInterfaceLoc, 664 /*PrevDecl=*/PrevDecl); 665 666 PushOnScopeChains(PDecl, TUScope); 667 PDecl->startDefinition(); 668 } 669 670 if (AttrList) 671 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 672 673 // Merge attributes from previous declarations. 674 if (PrevDecl) 675 mergeDeclAttributes(PDecl, PrevDecl); 676 677 if (!err && NumProtoRefs ) { 678 /// Check then save referenced protocols. 679 PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 680 ProtoLocs, Context); 681 } 682 683 CheckObjCDeclScope(PDecl); 684 return ActOnObjCContainerStartDefinition(PDecl); 685} 686 687/// FindProtocolDeclaration - This routine looks up protocols and 688/// issues an error if they are not declared. It returns list of 689/// protocol declarations in its 'Protocols' argument. 690void 691Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 692 const IdentifierLocPair *ProtocolId, 693 unsigned NumProtocols, 694 SmallVectorImpl<Decl *> &Protocols) { 695 for (unsigned i = 0; i != NumProtocols; ++i) { 696 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 697 ProtocolId[i].second); 698 if (!PDecl) { 699 DeclFilterCCC<ObjCProtocolDecl> Validator; 700 TypoCorrection Corrected = CorrectTypo( 701 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), 702 LookupObjCProtocolName, TUScope, NULL, Validator); 703 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) { 704 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) 705 << ProtocolId[i].first << Corrected.getCorrection(); 706 Diag(PDecl->getLocation(), diag::note_previous_decl) 707 << PDecl->getDeclName(); 708 } 709 } 710 711 if (!PDecl) { 712 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 713 << ProtocolId[i].first; 714 continue; 715 } 716 717 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 718 719 // If this is a forward declaration and we are supposed to warn in this 720 // case, do it. 721 if (WarnOnDeclarations && !PDecl->hasDefinition()) 722 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 723 << ProtocolId[i].first; 724 Protocols.push_back(PDecl); 725 } 726} 727 728/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 729/// a class method in its extension. 730/// 731void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 732 ObjCInterfaceDecl *ID) { 733 if (!ID) 734 return; // Possibly due to previous error 735 736 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 737 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), 738 e = ID->meth_end(); i != e; ++i) { 739 ObjCMethodDecl *MD = *i; 740 MethodMap[MD->getSelector()] = MD; 741 } 742 743 if (MethodMap.empty()) 744 return; 745 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), 746 e = CAT->meth_end(); i != e; ++i) { 747 ObjCMethodDecl *Method = *i; 748 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 749 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { 750 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 751 << Method->getDeclName(); 752 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 753 } 754 } 755} 756 757/// ActOnForwardProtocolDeclaration - Handle \@protocol foo; 758Sema::DeclGroupPtrTy 759Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 760 const IdentifierLocPair *IdentList, 761 unsigned NumElts, 762 AttributeList *attrList) { 763 SmallVector<Decl *, 8> DeclsInGroup; 764 for (unsigned i = 0; i != NumElts; ++i) { 765 IdentifierInfo *Ident = IdentList[i].first; 766 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second, 767 ForRedeclaration); 768 ObjCProtocolDecl *PDecl 769 = ObjCProtocolDecl::Create(Context, CurContext, Ident, 770 IdentList[i].second, AtProtocolLoc, 771 PrevDecl); 772 773 PushOnScopeChains(PDecl, TUScope); 774 CheckObjCDeclScope(PDecl); 775 776 if (attrList) 777 ProcessDeclAttributeList(TUScope, PDecl, attrList); 778 779 if (PrevDecl) 780 mergeDeclAttributes(PDecl, PrevDecl); 781 782 DeclsInGroup.push_back(PDecl); 783 } 784 785 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); 786} 787 788Decl *Sema:: 789ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 790 IdentifierInfo *ClassName, SourceLocation ClassLoc, 791 IdentifierInfo *CategoryName, 792 SourceLocation CategoryLoc, 793 Decl * const *ProtoRefs, 794 unsigned NumProtoRefs, 795 const SourceLocation *ProtoLocs, 796 SourceLocation EndProtoLoc) { 797 ObjCCategoryDecl *CDecl; 798 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 799 800 /// Check that class of this category is already completely declared. 801 802 if (!IDecl 803 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 804 diag::err_category_forward_interface, 805 CategoryName == 0)) { 806 // Create an invalid ObjCCategoryDecl to serve as context for 807 // the enclosing method declarations. We mark the decl invalid 808 // to make it clear that this isn't a valid AST. 809 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 810 ClassLoc, CategoryLoc, CategoryName,IDecl); 811 CDecl->setInvalidDecl(); 812 CurContext->addDecl(CDecl); 813 814 if (!IDecl) 815 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 816 return ActOnObjCContainerStartDefinition(CDecl); 817 } 818 819 if (!CategoryName && IDecl->getImplementation()) { 820 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 821 Diag(IDecl->getImplementation()->getLocation(), 822 diag::note_implementation_declared); 823 } 824 825 if (CategoryName) { 826 /// Check for duplicate interface declaration for this category 827 ObjCCategoryDecl *CDeclChain; 828 for (CDeclChain = IDecl->getCategoryList(); CDeclChain; 829 CDeclChain = CDeclChain->getNextClassCategory()) { 830 if (CDeclChain->getIdentifier() == CategoryName) { 831 // Class extensions can be declared multiple times. 832 Diag(CategoryLoc, diag::warn_dup_category_def) 833 << ClassName << CategoryName; 834 Diag(CDeclChain->getLocation(), diag::note_previous_definition); 835 break; 836 } 837 } 838 } 839 840 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 841 ClassLoc, CategoryLoc, CategoryName, IDecl); 842 // FIXME: PushOnScopeChains? 843 CurContext->addDecl(CDecl); 844 845 if (NumProtoRefs) { 846 CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 847 ProtoLocs, Context); 848 // Protocols in the class extension belong to the class. 849 if (CDecl->IsClassExtension()) 850 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, 851 NumProtoRefs, Context); 852 } 853 854 CheckObjCDeclScope(CDecl); 855 return ActOnObjCContainerStartDefinition(CDecl); 856} 857 858/// ActOnStartCategoryImplementation - Perform semantic checks on the 859/// category implementation declaration and build an ObjCCategoryImplDecl 860/// object. 861Decl *Sema::ActOnStartCategoryImplementation( 862 SourceLocation AtCatImplLoc, 863 IdentifierInfo *ClassName, SourceLocation ClassLoc, 864 IdentifierInfo *CatName, SourceLocation CatLoc) { 865 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 866 ObjCCategoryDecl *CatIDecl = 0; 867 if (IDecl && IDecl->hasDefinition()) { 868 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 869 if (!CatIDecl) { 870 // Category @implementation with no corresponding @interface. 871 // Create and install one. 872 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, 873 ClassLoc, CatLoc, 874 CatName, IDecl); 875 CatIDecl->setImplicit(); 876 } 877 } 878 879 ObjCCategoryImplDecl *CDecl = 880 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, 881 ClassLoc, AtCatImplLoc, CatLoc); 882 /// Check that class of this category is already completely declared. 883 if (!IDecl) { 884 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 885 CDecl->setInvalidDecl(); 886 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 887 diag::err_undef_interface)) { 888 CDecl->setInvalidDecl(); 889 } 890 891 // FIXME: PushOnScopeChains? 892 CurContext->addDecl(CDecl); 893 894 // If the interface is deprecated/unavailable, warn/error about it. 895 if (IDecl) 896 DiagnoseUseOfDecl(IDecl, ClassLoc); 897 898 /// Check that CatName, category name, is not used in another implementation. 899 if (CatIDecl) { 900 if (CatIDecl->getImplementation()) { 901 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 902 << CatName; 903 Diag(CatIDecl->getImplementation()->getLocation(), 904 diag::note_previous_definition); 905 } else { 906 CatIDecl->setImplementation(CDecl); 907 // Warn on implementating category of deprecated class under 908 // -Wdeprecated-implementations flag. 909 DiagnoseObjCImplementedDeprecations(*this, 910 dyn_cast<NamedDecl>(IDecl), 911 CDecl->getLocation(), 2); 912 } 913 } 914 915 CheckObjCDeclScope(CDecl); 916 return ActOnObjCContainerStartDefinition(CDecl); 917} 918 919Decl *Sema::ActOnStartClassImplementation( 920 SourceLocation AtClassImplLoc, 921 IdentifierInfo *ClassName, SourceLocation ClassLoc, 922 IdentifierInfo *SuperClassname, 923 SourceLocation SuperClassLoc) { 924 ObjCInterfaceDecl* IDecl = 0; 925 // Check for another declaration kind with the same name. 926 NamedDecl *PrevDecl 927 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 928 ForRedeclaration); 929 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 930 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 931 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 932 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 933 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 934 diag::warn_undef_interface); 935 } else { 936 // We did not find anything with the name ClassName; try to correct for 937 // typos in the class name. 938 ObjCInterfaceValidatorCCC Validator; 939 if (TypoCorrection Corrected = CorrectTypo( 940 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope, 941 NULL, Validator)) { 942 // Suggest the (potentially) correct interface name. However, put the 943 // fix-it hint itself in a separate note, since changing the name in 944 // the warning would make the fix-it change semantics.However, don't 945 // provide a code-modification hint or use the typo name for recovery, 946 // because this is just a warning. The program may actually be correct. 947 IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 948 DeclarationName CorrectedName = Corrected.getCorrection(); 949 Diag(ClassLoc, diag::warn_undef_interface_suggest) 950 << ClassName << CorrectedName; 951 Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName 952 << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString()); 953 IDecl = 0; 954 } else { 955 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 956 } 957 } 958 959 // Check that super class name is valid class name 960 ObjCInterfaceDecl* SDecl = 0; 961 if (SuperClassname) { 962 // Check if a different kind of symbol declared in this scope. 963 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 964 LookupOrdinaryName); 965 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 966 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 967 << SuperClassname; 968 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 969 } else { 970 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 971 if (SDecl && !SDecl->hasDefinition()) 972 SDecl = 0; 973 if (!SDecl) 974 Diag(SuperClassLoc, diag::err_undef_superclass) 975 << SuperClassname << ClassName; 976 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { 977 // This implementation and its interface do not have the same 978 // super class. 979 Diag(SuperClassLoc, diag::err_conflicting_super_class) 980 << SDecl->getDeclName(); 981 Diag(SDecl->getLocation(), diag::note_previous_definition); 982 } 983 } 984 } 985 986 if (!IDecl) { 987 // Legacy case of @implementation with no corresponding @interface. 988 // Build, chain & install the interface decl into the identifier. 989 990 // FIXME: Do we support attributes on the @implementation? If so we should 991 // copy them over. 992 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 993 ClassName, /*PrevDecl=*/0, ClassLoc, 994 true); 995 IDecl->startDefinition(); 996 if (SDecl) { 997 IDecl->setSuperClass(SDecl); 998 IDecl->setSuperClassLoc(SuperClassLoc); 999 IDecl->setEndOfDefinitionLoc(SuperClassLoc); 1000 } else { 1001 IDecl->setEndOfDefinitionLoc(ClassLoc); 1002 } 1003 1004 PushOnScopeChains(IDecl, TUScope); 1005 } else { 1006 // Mark the interface as being completed, even if it was just as 1007 // @class ....; 1008 // declaration; the user cannot reopen it. 1009 if (!IDecl->hasDefinition()) 1010 IDecl->startDefinition(); 1011 } 1012 1013 ObjCImplementationDecl* IMPDecl = 1014 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, 1015 ClassLoc, AtClassImplLoc); 1016 1017 if (CheckObjCDeclScope(IMPDecl)) 1018 return ActOnObjCContainerStartDefinition(IMPDecl); 1019 1020 // Check that there is no duplicate implementation of this class. 1021 if (IDecl->getImplementation()) { 1022 // FIXME: Don't leak everything! 1023 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 1024 Diag(IDecl->getImplementation()->getLocation(), 1025 diag::note_previous_definition); 1026 } else { // add it to the list. 1027 IDecl->setImplementation(IMPDecl); 1028 PushOnScopeChains(IMPDecl, TUScope); 1029 // Warn on implementating deprecated class under 1030 // -Wdeprecated-implementations flag. 1031 DiagnoseObjCImplementedDeprecations(*this, 1032 dyn_cast<NamedDecl>(IDecl), 1033 IMPDecl->getLocation(), 1); 1034 } 1035 return ActOnObjCContainerStartDefinition(IMPDecl); 1036} 1037 1038Sema::DeclGroupPtrTy 1039Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { 1040 SmallVector<Decl *, 64> DeclsInGroup; 1041 DeclsInGroup.reserve(Decls.size() + 1); 1042 1043 for (unsigned i = 0, e = Decls.size(); i != e; ++i) { 1044 Decl *Dcl = Decls[i]; 1045 if (!Dcl) 1046 continue; 1047 if (Dcl->getDeclContext()->isFileContext()) 1048 Dcl->setTopLevelDeclInObjCContainer(); 1049 DeclsInGroup.push_back(Dcl); 1050 } 1051 1052 DeclsInGroup.push_back(ObjCImpDecl); 1053 1054 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); 1055} 1056 1057void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 1058 ObjCIvarDecl **ivars, unsigned numIvars, 1059 SourceLocation RBrace) { 1060 assert(ImpDecl && "missing implementation decl"); 1061 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 1062 if (!IDecl) 1063 return; 1064 /// Check case of non-existing \@interface decl. 1065 /// (legacy objective-c \@implementation decl without an \@interface decl). 1066 /// Add implementations's ivar to the synthesize class's ivar list. 1067 if (IDecl->isImplicitInterfaceDecl()) { 1068 IDecl->setEndOfDefinitionLoc(RBrace); 1069 // Add ivar's to class's DeclContext. 1070 for (unsigned i = 0, e = numIvars; i != e; ++i) { 1071 ivars[i]->setLexicalDeclContext(ImpDecl); 1072 IDecl->makeDeclVisibleInContext(ivars[i]); 1073 ImpDecl->addDecl(ivars[i]); 1074 } 1075 1076 return; 1077 } 1078 // If implementation has empty ivar list, just return. 1079 if (numIvars == 0) 1080 return; 1081 1082 assert(ivars && "missing @implementation ivars"); 1083 if (LangOpts.ObjCRuntime.isNonFragile()) { 1084 if (ImpDecl->getSuperClass()) 1085 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 1086 for (unsigned i = 0; i < numIvars; i++) { 1087 ObjCIvarDecl* ImplIvar = ivars[i]; 1088 if (const ObjCIvarDecl *ClsIvar = 1089 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 1090 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 1091 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1092 continue; 1093 } 1094 // Instance ivar to Implementation's DeclContext. 1095 ImplIvar->setLexicalDeclContext(ImpDecl); 1096 IDecl->makeDeclVisibleInContext(ImplIvar); 1097 ImpDecl->addDecl(ImplIvar); 1098 } 1099 return; 1100 } 1101 // Check interface's Ivar list against those in the implementation. 1102 // names and types must match. 1103 // 1104 unsigned j = 0; 1105 ObjCInterfaceDecl::ivar_iterator 1106 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 1107 for (; numIvars > 0 && IVI != IVE; ++IVI) { 1108 ObjCIvarDecl* ImplIvar = ivars[j++]; 1109 ObjCIvarDecl* ClsIvar = *IVI; 1110 assert (ImplIvar && "missing implementation ivar"); 1111 assert (ClsIvar && "missing class ivar"); 1112 1113 // First, make sure the types match. 1114 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { 1115 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 1116 << ImplIvar->getIdentifier() 1117 << ImplIvar->getType() << ClsIvar->getType(); 1118 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1119 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && 1120 ImplIvar->getBitWidthValue(Context) != 1121 ClsIvar->getBitWidthValue(Context)) { 1122 Diag(ImplIvar->getBitWidth()->getLocStart(), 1123 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier(); 1124 Diag(ClsIvar->getBitWidth()->getLocStart(), 1125 diag::note_previous_definition); 1126 } 1127 // Make sure the names are identical. 1128 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 1129 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 1130 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 1131 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1132 } 1133 --numIvars; 1134 } 1135 1136 if (numIvars > 0) 1137 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); 1138 else if (IVI != IVE) 1139 Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count); 1140} 1141 1142void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, 1143 bool &IncompleteImpl, unsigned DiagID) { 1144 // No point warning no definition of method which is 'unavailable'. 1145 if (method->hasAttr<UnavailableAttr>()) 1146 return; 1147 if (!IncompleteImpl) { 1148 Diag(ImpLoc, diag::warn_incomplete_impl); 1149 IncompleteImpl = true; 1150 } 1151 if (DiagID == diag::warn_unimplemented_protocol_method) 1152 Diag(ImpLoc, DiagID) << method->getDeclName(); 1153 else 1154 Diag(method->getLocation(), DiagID) << method->getDeclName(); 1155} 1156 1157/// Determines if type B can be substituted for type A. Returns true if we can 1158/// guarantee that anything that the user will do to an object of type A can 1159/// also be done to an object of type B. This is trivially true if the two 1160/// types are the same, or if B is a subclass of A. It becomes more complex 1161/// in cases where protocols are involved. 1162/// 1163/// Object types in Objective-C describe the minimum requirements for an 1164/// object, rather than providing a complete description of a type. For 1165/// example, if A is a subclass of B, then B* may refer to an instance of A. 1166/// The principle of substitutability means that we may use an instance of A 1167/// anywhere that we may use an instance of B - it will implement all of the 1168/// ivars of B and all of the methods of B. 1169/// 1170/// This substitutability is important when type checking methods, because 1171/// the implementation may have stricter type definitions than the interface. 1172/// The interface specifies minimum requirements, but the implementation may 1173/// have more accurate ones. For example, a method may privately accept 1174/// instances of B, but only publish that it accepts instances of A. Any 1175/// object passed to it will be type checked against B, and so will implicitly 1176/// by a valid A*. Similarly, a method may return a subclass of the class that 1177/// it is declared as returning. 1178/// 1179/// This is most important when considering subclassing. A method in a 1180/// subclass must accept any object as an argument that its superclass's 1181/// implementation accepts. It may, however, accept a more general type 1182/// without breaking substitutability (i.e. you can still use the subclass 1183/// anywhere that you can use the superclass, but not vice versa). The 1184/// converse requirement applies to return types: the return type for a 1185/// subclass method must be a valid object of the kind that the superclass 1186/// advertises, but it may be specified more accurately. This avoids the need 1187/// for explicit down-casting by callers. 1188/// 1189/// Note: This is a stricter requirement than for assignment. 1190static bool isObjCTypeSubstitutable(ASTContext &Context, 1191 const ObjCObjectPointerType *A, 1192 const ObjCObjectPointerType *B, 1193 bool rejectId) { 1194 // Reject a protocol-unqualified id. 1195 if (rejectId && B->isObjCIdType()) return false; 1196 1197 // If B is a qualified id, then A must also be a qualified id and it must 1198 // implement all of the protocols in B. It may not be a qualified class. 1199 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 1200 // stricter definition so it is not substitutable for id<A>. 1201 if (B->isObjCQualifiedIdType()) { 1202 return A->isObjCQualifiedIdType() && 1203 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), 1204 QualType(B,0), 1205 false); 1206 } 1207 1208 /* 1209 // id is a special type that bypasses type checking completely. We want a 1210 // warning when it is used in one place but not another. 1211 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 1212 1213 1214 // If B is a qualified id, then A must also be a qualified id (which it isn't 1215 // if we've got this far) 1216 if (B->isObjCQualifiedIdType()) return false; 1217 */ 1218 1219 // Now we know that A and B are (potentially-qualified) class types. The 1220 // normal rules for assignment apply. 1221 return Context.canAssignObjCInterfaces(A, B); 1222} 1223 1224static SourceRange getTypeRange(TypeSourceInfo *TSI) { 1225 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 1226} 1227 1228static bool CheckMethodOverrideReturn(Sema &S, 1229 ObjCMethodDecl *MethodImpl, 1230 ObjCMethodDecl *MethodDecl, 1231 bool IsProtocolMethodDecl, 1232 bool IsOverridingMode, 1233 bool Warn) { 1234 if (IsProtocolMethodDecl && 1235 (MethodDecl->getObjCDeclQualifier() != 1236 MethodImpl->getObjCDeclQualifier())) { 1237 if (Warn) { 1238 S.Diag(MethodImpl->getLocation(), 1239 (IsOverridingMode ? 1240 diag::warn_conflicting_overriding_ret_type_modifiers 1241 : diag::warn_conflicting_ret_type_modifiers)) 1242 << MethodImpl->getDeclName() 1243 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1244 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 1245 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1246 } 1247 else 1248 return false; 1249 } 1250 1251 if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(), 1252 MethodDecl->getResultType())) 1253 return true; 1254 if (!Warn) 1255 return false; 1256 1257 unsigned DiagID = 1258 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 1259 : diag::warn_conflicting_ret_types; 1260 1261 // Mismatches between ObjC pointers go into a different warning 1262 // category, and sometimes they're even completely whitelisted. 1263 if (const ObjCObjectPointerType *ImplPtrTy = 1264 MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) { 1265 if (const ObjCObjectPointerType *IfacePtrTy = 1266 MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) { 1267 // Allow non-matching return types as long as they don't violate 1268 // the principle of substitutability. Specifically, we permit 1269 // return types that are subclasses of the declared return type, 1270 // or that are more-qualified versions of the declared type. 1271 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 1272 return false; 1273 1274 DiagID = 1275 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 1276 : diag::warn_non_covariant_ret_types; 1277 } 1278 } 1279 1280 S.Diag(MethodImpl->getLocation(), DiagID) 1281 << MethodImpl->getDeclName() 1282 << MethodDecl->getResultType() 1283 << MethodImpl->getResultType() 1284 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1285 S.Diag(MethodDecl->getLocation(), 1286 IsOverridingMode ? diag::note_previous_declaration 1287 : diag::note_previous_definition) 1288 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1289 return false; 1290} 1291 1292static bool CheckMethodOverrideParam(Sema &S, 1293 ObjCMethodDecl *MethodImpl, 1294 ObjCMethodDecl *MethodDecl, 1295 ParmVarDecl *ImplVar, 1296 ParmVarDecl *IfaceVar, 1297 bool IsProtocolMethodDecl, 1298 bool IsOverridingMode, 1299 bool Warn) { 1300 if (IsProtocolMethodDecl && 1301 (ImplVar->getObjCDeclQualifier() != 1302 IfaceVar->getObjCDeclQualifier())) { 1303 if (Warn) { 1304 if (IsOverridingMode) 1305 S.Diag(ImplVar->getLocation(), 1306 diag::warn_conflicting_overriding_param_modifiers) 1307 << getTypeRange(ImplVar->getTypeSourceInfo()) 1308 << MethodImpl->getDeclName(); 1309 else S.Diag(ImplVar->getLocation(), 1310 diag::warn_conflicting_param_modifiers) 1311 << getTypeRange(ImplVar->getTypeSourceInfo()) 1312 << MethodImpl->getDeclName(); 1313 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 1314 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1315 } 1316 else 1317 return false; 1318 } 1319 1320 QualType ImplTy = ImplVar->getType(); 1321 QualType IfaceTy = IfaceVar->getType(); 1322 1323 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 1324 return true; 1325 1326 if (!Warn) 1327 return false; 1328 unsigned DiagID = 1329 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 1330 : diag::warn_conflicting_param_types; 1331 1332 // Mismatches between ObjC pointers go into a different warning 1333 // category, and sometimes they're even completely whitelisted. 1334 if (const ObjCObjectPointerType *ImplPtrTy = 1335 ImplTy->getAs<ObjCObjectPointerType>()) { 1336 if (const ObjCObjectPointerType *IfacePtrTy = 1337 IfaceTy->getAs<ObjCObjectPointerType>()) { 1338 // Allow non-matching argument types as long as they don't 1339 // violate the principle of substitutability. Specifically, the 1340 // implementation must accept any objects that the superclass 1341 // accepts, however it may also accept others. 1342 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 1343 return false; 1344 1345 DiagID = 1346 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 1347 : diag::warn_non_contravariant_param_types; 1348 } 1349 } 1350 1351 S.Diag(ImplVar->getLocation(), DiagID) 1352 << getTypeRange(ImplVar->getTypeSourceInfo()) 1353 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 1354 S.Diag(IfaceVar->getLocation(), 1355 (IsOverridingMode ? diag::note_previous_declaration 1356 : diag::note_previous_definition)) 1357 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1358 return false; 1359} 1360 1361/// In ARC, check whether the conventional meanings of the two methods 1362/// match. If they don't, it's a hard error. 1363static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 1364 ObjCMethodDecl *decl) { 1365 ObjCMethodFamily implFamily = impl->getMethodFamily(); 1366 ObjCMethodFamily declFamily = decl->getMethodFamily(); 1367 if (implFamily == declFamily) return false; 1368 1369 // Since conventions are sorted by selector, the only possibility is 1370 // that the types differ enough to cause one selector or the other 1371 // to fall out of the family. 1372 assert(implFamily == OMF_None || declFamily == OMF_None); 1373 1374 // No further diagnostics required on invalid declarations. 1375 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 1376 1377 const ObjCMethodDecl *unmatched = impl; 1378 ObjCMethodFamily family = declFamily; 1379 unsigned errorID = diag::err_arc_lost_method_convention; 1380 unsigned noteID = diag::note_arc_lost_method_convention; 1381 if (declFamily == OMF_None) { 1382 unmatched = decl; 1383 family = implFamily; 1384 errorID = diag::err_arc_gained_method_convention; 1385 noteID = diag::note_arc_gained_method_convention; 1386 } 1387 1388 // Indexes into a %select clause in the diagnostic. 1389 enum FamilySelector { 1390 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 1391 }; 1392 FamilySelector familySelector = FamilySelector(); 1393 1394 switch (family) { 1395 case OMF_None: llvm_unreachable("logic error, no method convention"); 1396 case OMF_retain: 1397 case OMF_release: 1398 case OMF_autorelease: 1399 case OMF_dealloc: 1400 case OMF_finalize: 1401 case OMF_retainCount: 1402 case OMF_self: 1403 case OMF_performSelector: 1404 // Mismatches for these methods don't change ownership 1405 // conventions, so we don't care. 1406 return false; 1407 1408 case OMF_init: familySelector = F_init; break; 1409 case OMF_alloc: familySelector = F_alloc; break; 1410 case OMF_copy: familySelector = F_copy; break; 1411 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 1412 case OMF_new: familySelector = F_new; break; 1413 } 1414 1415 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 1416 ReasonSelector reasonSelector; 1417 1418 // The only reason these methods don't fall within their families is 1419 // due to unusual result types. 1420 if (unmatched->getResultType()->isObjCObjectPointerType()) { 1421 reasonSelector = R_UnrelatedReturn; 1422 } else { 1423 reasonSelector = R_NonObjectReturn; 1424 } 1425 1426 S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector; 1427 S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector; 1428 1429 return true; 1430} 1431 1432void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1433 ObjCMethodDecl *MethodDecl, 1434 bool IsProtocolMethodDecl) { 1435 if (getLangOpts().ObjCAutoRefCount && 1436 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 1437 return; 1438 1439 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1440 IsProtocolMethodDecl, false, 1441 true); 1442 1443 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1444 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 1445 EF = MethodDecl->param_end(); 1446 IM != EM && IF != EF; ++IM, ++IF) { 1447 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 1448 IsProtocolMethodDecl, false, true); 1449 } 1450 1451 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 1452 Diag(ImpMethodDecl->getLocation(), 1453 diag::warn_conflicting_variadic); 1454 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 1455 } 1456} 1457 1458void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, 1459 ObjCMethodDecl *Overridden, 1460 bool IsProtocolMethodDecl) { 1461 1462 CheckMethodOverrideReturn(*this, Method, Overridden, 1463 IsProtocolMethodDecl, true, 1464 true); 1465 1466 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), 1467 IF = Overridden->param_begin(), EM = Method->param_end(), 1468 EF = Overridden->param_end(); 1469 IM != EM && IF != EF; ++IM, ++IF) { 1470 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, 1471 IsProtocolMethodDecl, true, true); 1472 } 1473 1474 if (Method->isVariadic() != Overridden->isVariadic()) { 1475 Diag(Method->getLocation(), 1476 diag::warn_conflicting_overriding_variadic); 1477 Diag(Overridden->getLocation(), diag::note_previous_declaration); 1478 } 1479} 1480 1481/// WarnExactTypedMethods - This routine issues a warning if method 1482/// implementation declaration matches exactly that of its declaration. 1483void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1484 ObjCMethodDecl *MethodDecl, 1485 bool IsProtocolMethodDecl) { 1486 // don't issue warning when protocol method is optional because primary 1487 // class is not required to implement it and it is safe for protocol 1488 // to implement it. 1489 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 1490 return; 1491 // don't issue warning when primary class's method is 1492 // depecated/unavailable. 1493 if (MethodDecl->hasAttr<UnavailableAttr>() || 1494 MethodDecl->hasAttr<DeprecatedAttr>()) 1495 return; 1496 1497 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1498 IsProtocolMethodDecl, false, false); 1499 if (match) 1500 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1501 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 1502 EF = MethodDecl->param_end(); 1503 IM != EM && IF != EF; ++IM, ++IF) { 1504 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 1505 *IM, *IF, 1506 IsProtocolMethodDecl, false, false); 1507 if (!match) 1508 break; 1509 } 1510 if (match) 1511 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 1512 if (match) 1513 match = !(MethodDecl->isClassMethod() && 1514 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 1515 1516 if (match) { 1517 Diag(ImpMethodDecl->getLocation(), 1518 diag::warn_category_method_impl_match); 1519 Diag(MethodDecl->getLocation(), diag::note_method_declared_at) 1520 << MethodDecl->getDeclName(); 1521 } 1522} 1523 1524/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 1525/// improve the efficiency of selector lookups and type checking by associating 1526/// with each protocol / interface / category the flattened instance tables. If 1527/// we used an immutable set to keep the table then it wouldn't add significant 1528/// memory cost and it would be handy for lookups. 1529 1530/// CheckProtocolMethodDefs - This routine checks unimplemented methods 1531/// Declared in protocol, and those referenced by it. 1532void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, 1533 ObjCProtocolDecl *PDecl, 1534 bool& IncompleteImpl, 1535 const SelectorSet &InsMap, 1536 const SelectorSet &ClsMap, 1537 ObjCContainerDecl *CDecl) { 1538 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); 1539 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 1540 : dyn_cast<ObjCInterfaceDecl>(CDecl); 1541 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 1542 1543 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 1544 ObjCInterfaceDecl *NSIDecl = 0; 1545 if (getLangOpts().ObjCRuntime.isNeXTFamily()) { 1546 // check to see if class implements forwardInvocation method and objects 1547 // of this class are derived from 'NSProxy' so that to forward requests 1548 // from one object to another. 1549 // Under such conditions, which means that every method possible is 1550 // implemented in the class, we should not issue "Method definition not 1551 // found" warnings. 1552 // FIXME: Use a general GetUnarySelector method for this. 1553 IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); 1554 Selector fISelector = Context.Selectors.getSelector(1, &II); 1555 if (InsMap.count(fISelector)) 1556 // Is IDecl derived from 'NSProxy'? If so, no instance methods 1557 // need be implemented in the implementation. 1558 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); 1559 } 1560 1561 // If a method lookup fails locally we still need to look and see if 1562 // the method was implemented by a base class or an inherited 1563 // protocol. This lookup is slow, but occurs rarely in correct code 1564 // and otherwise would terminate in a warning. 1565 1566 // check unimplemented instance methods. 1567 if (!NSIDecl) 1568 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), 1569 E = PDecl->instmeth_end(); I != E; ++I) { 1570 ObjCMethodDecl *method = *I; 1571 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1572 !method->isSynthesized() && !InsMap.count(method->getSelector()) && 1573 (!Super || 1574 !Super->lookupInstanceMethod(method->getSelector()))) { 1575 // If a method is not implemented in the category implementation but 1576 // has been declared in its primary class, superclass, 1577 // or in one of their protocols, no need to issue the warning. 1578 // This is because method will be implemented in the primary class 1579 // or one of its super class implementation. 1580 1581 // Ugly, but necessary. Method declared in protcol might have 1582 // have been synthesized due to a property declared in the class which 1583 // uses the protocol. 1584 if (ObjCMethodDecl *MethodInClass = 1585 IDecl->lookupInstanceMethod(method->getSelector(), 1586 true /*shallowCategoryLookup*/)) 1587 if (C || MethodInClass->isSynthesized()) 1588 continue; 1589 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1590 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) 1591 != DiagnosticsEngine::Ignored) { 1592 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1593 Diag(method->getLocation(), diag::note_method_declared_at) 1594 << method->getDeclName(); 1595 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) 1596 << PDecl->getDeclName(); 1597 } 1598 } 1599 } 1600 // check unimplemented class methods 1601 for (ObjCProtocolDecl::classmeth_iterator 1602 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); 1603 I != E; ++I) { 1604 ObjCMethodDecl *method = *I; 1605 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1606 !ClsMap.count(method->getSelector()) && 1607 (!Super || !Super->lookupClassMethod(method->getSelector()))) { 1608 // See above comment for instance method lookups. 1609 if (C && IDecl->lookupClassMethod(method->getSelector(), 1610 true /*shallowCategoryLookup*/)) 1611 continue; 1612 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1613 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != 1614 DiagnosticsEngine::Ignored) { 1615 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1616 Diag(method->getLocation(), diag::note_method_declared_at) 1617 << method->getDeclName(); 1618 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << 1619 PDecl->getDeclName(); 1620 } 1621 } 1622 } 1623 // Check on this protocols's referenced protocols, recursively. 1624 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), 1625 E = PDecl->protocol_end(); PI != E; ++PI) 1626 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl); 1627} 1628 1629/// MatchAllMethodDeclarations - Check methods declared in interface 1630/// or protocol against those declared in their implementations. 1631/// 1632void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap, 1633 const SelectorSet &ClsMap, 1634 SelectorSet &InsMapSeen, 1635 SelectorSet &ClsMapSeen, 1636 ObjCImplDecl* IMPDecl, 1637 ObjCContainerDecl* CDecl, 1638 bool &IncompleteImpl, 1639 bool ImmediateClass, 1640 bool WarnCategoryMethodImpl) { 1641 // Check and see if instance methods in class interface have been 1642 // implemented in the implementation class. If so, their types match. 1643 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), 1644 E = CDecl->instmeth_end(); I != E; ++I) { 1645 if (InsMapSeen.count((*I)->getSelector())) 1646 continue; 1647 InsMapSeen.insert((*I)->getSelector()); 1648 if (!(*I)->isSynthesized() && 1649 !InsMap.count((*I)->getSelector())) { 1650 if (ImmediateClass) 1651 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1652 diag::note_undef_method_impl); 1653 continue; 1654 } else { 1655 ObjCMethodDecl *ImpMethodDecl = 1656 IMPDecl->getInstanceMethod((*I)->getSelector()); 1657 assert(CDecl->getInstanceMethod((*I)->getSelector()) && 1658 "Expected to find the method through lookup as well"); 1659 ObjCMethodDecl *MethodDecl = *I; 1660 // ImpMethodDecl may be null as in a @dynamic property. 1661 if (ImpMethodDecl) { 1662 if (!WarnCategoryMethodImpl) 1663 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1664 isa<ObjCProtocolDecl>(CDecl)); 1665 else if (!MethodDecl->isSynthesized()) 1666 WarnExactTypedMethods(ImpMethodDecl, MethodDecl, 1667 isa<ObjCProtocolDecl>(CDecl)); 1668 } 1669 } 1670 } 1671 1672 // Check and see if class methods in class interface have been 1673 // implemented in the implementation class. If so, their types match. 1674 for (ObjCInterfaceDecl::classmeth_iterator 1675 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { 1676 if (ClsMapSeen.count((*I)->getSelector())) 1677 continue; 1678 ClsMapSeen.insert((*I)->getSelector()); 1679 if (!ClsMap.count((*I)->getSelector())) { 1680 if (ImmediateClass) 1681 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1682 diag::note_undef_method_impl); 1683 } else { 1684 ObjCMethodDecl *ImpMethodDecl = 1685 IMPDecl->getClassMethod((*I)->getSelector()); 1686 assert(CDecl->getClassMethod((*I)->getSelector()) && 1687 "Expected to find the method through lookup as well"); 1688 ObjCMethodDecl *MethodDecl = *I; 1689 if (!WarnCategoryMethodImpl) 1690 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1691 isa<ObjCProtocolDecl>(CDecl)); 1692 else 1693 WarnExactTypedMethods(ImpMethodDecl, MethodDecl, 1694 isa<ObjCProtocolDecl>(CDecl)); 1695 } 1696 } 1697 1698 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1699 // Also methods in class extensions need be looked at next. 1700 for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); 1701 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) 1702 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1703 IMPDecl, 1704 const_cast<ObjCCategoryDecl *>(ClsExtDecl), 1705 IncompleteImpl, false, 1706 WarnCategoryMethodImpl); 1707 1708 // Check for any implementation of a methods declared in protocol. 1709 for (ObjCInterfaceDecl::all_protocol_iterator 1710 PI = I->all_referenced_protocol_begin(), 1711 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1712 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1713 IMPDecl, 1714 (*PI), IncompleteImpl, false, 1715 WarnCategoryMethodImpl); 1716 1717 // FIXME. For now, we are not checking for extact match of methods 1718 // in category implementation and its primary class's super class. 1719 if (!WarnCategoryMethodImpl && I->getSuperClass()) 1720 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1721 IMPDecl, 1722 I->getSuperClass(), IncompleteImpl, false); 1723 } 1724} 1725 1726/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 1727/// category matches with those implemented in its primary class and 1728/// warns each time an exact match is found. 1729void Sema::CheckCategoryVsClassMethodMatches( 1730 ObjCCategoryImplDecl *CatIMPDecl) { 1731 SelectorSet InsMap, ClsMap; 1732 1733 for (ObjCImplementationDecl::instmeth_iterator 1734 I = CatIMPDecl->instmeth_begin(), 1735 E = CatIMPDecl->instmeth_end(); I!=E; ++I) 1736 InsMap.insert((*I)->getSelector()); 1737 1738 for (ObjCImplementationDecl::classmeth_iterator 1739 I = CatIMPDecl->classmeth_begin(), 1740 E = CatIMPDecl->classmeth_end(); I != E; ++I) 1741 ClsMap.insert((*I)->getSelector()); 1742 if (InsMap.empty() && ClsMap.empty()) 1743 return; 1744 1745 // Get category's primary class. 1746 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 1747 if (!CatDecl) 1748 return; 1749 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 1750 if (!IDecl) 1751 return; 1752 SelectorSet InsMapSeen, ClsMapSeen; 1753 bool IncompleteImpl = false; 1754 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1755 CatIMPDecl, IDecl, 1756 IncompleteImpl, false, 1757 true /*WarnCategoryMethodImpl*/); 1758} 1759 1760void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 1761 ObjCContainerDecl* CDecl, 1762 bool IncompleteImpl) { 1763 SelectorSet InsMap; 1764 // Check and see if instance methods in class interface have been 1765 // implemented in the implementation class. 1766 for (ObjCImplementationDecl::instmeth_iterator 1767 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) 1768 InsMap.insert((*I)->getSelector()); 1769 1770 // Check and see if properties declared in the interface have either 1) 1771 // an implementation or 2) there is a @synthesize/@dynamic implementation 1772 // of the property in the @implementation. 1773 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) 1774 if (!(LangOpts.ObjCDefaultSynthProperties && 1775 LangOpts.ObjCRuntime.isNonFragile()) || 1776 IDecl->isObjCRequiresPropertyDefs()) 1777 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1778 1779 SelectorSet ClsMap; 1780 for (ObjCImplementationDecl::classmeth_iterator 1781 I = IMPDecl->classmeth_begin(), 1782 E = IMPDecl->classmeth_end(); I != E; ++I) 1783 ClsMap.insert((*I)->getSelector()); 1784 1785 // Check for type conflict of methods declared in a class/protocol and 1786 // its implementation; if any. 1787 SelectorSet InsMapSeen, ClsMapSeen; 1788 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1789 IMPDecl, CDecl, 1790 IncompleteImpl, true); 1791 1792 // check all methods implemented in category against those declared 1793 // in its primary class. 1794 if (ObjCCategoryImplDecl *CatDecl = 1795 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 1796 CheckCategoryVsClassMethodMatches(CatDecl); 1797 1798 // Check the protocol list for unimplemented methods in the @implementation 1799 // class. 1800 // Check and see if class methods in class interface have been 1801 // implemented in the implementation class. 1802 1803 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1804 for (ObjCInterfaceDecl::all_protocol_iterator 1805 PI = I->all_referenced_protocol_begin(), 1806 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1807 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1808 InsMap, ClsMap, I); 1809 // Check class extensions (unnamed categories) 1810 for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension(); 1811 Categories; Categories = Categories->getNextClassExtension()) 1812 ImplMethodsVsClassMethods(S, IMPDecl, 1813 const_cast<ObjCCategoryDecl*>(Categories), 1814 IncompleteImpl); 1815 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 1816 // For extended class, unimplemented methods in its protocols will 1817 // be reported in the primary class. 1818 if (!C->IsClassExtension()) { 1819 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), 1820 E = C->protocol_end(); PI != E; ++PI) 1821 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1822 InsMap, ClsMap, CDecl); 1823 // Report unimplemented properties in the category as well. 1824 // When reporting on missing setter/getters, do not report when 1825 // setter/getter is implemented in category's primary class 1826 // implementation. 1827 if (ObjCInterfaceDecl *ID = C->getClassInterface()) 1828 if (ObjCImplDecl *IMP = ID->getImplementation()) { 1829 for (ObjCImplementationDecl::instmeth_iterator 1830 I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) 1831 InsMap.insert((*I)->getSelector()); 1832 } 1833 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1834 } 1835 } else 1836 llvm_unreachable("invalid ObjCContainerDecl type."); 1837} 1838 1839/// ActOnForwardClassDeclaration - 1840Sema::DeclGroupPtrTy 1841Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 1842 IdentifierInfo **IdentList, 1843 SourceLocation *IdentLocs, 1844 unsigned NumElts) { 1845 SmallVector<Decl *, 8> DeclsInGroup; 1846 for (unsigned i = 0; i != NumElts; ++i) { 1847 // Check for another declaration kind with the same name. 1848 NamedDecl *PrevDecl 1849 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 1850 LookupOrdinaryName, ForRedeclaration); 1851 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1852 // Maybe we will complain about the shadowed template parameter. 1853 DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); 1854 // Just pretend that we didn't see the previous declaration. 1855 PrevDecl = 0; 1856 } 1857 1858 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1859 // GCC apparently allows the following idiom: 1860 // 1861 // typedef NSObject < XCElementTogglerP > XCElementToggler; 1862 // @class XCElementToggler; 1863 // 1864 // Here we have chosen to ignore the forward class declaration 1865 // with a warning. Since this is the implied behavior. 1866 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 1867 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 1868 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 1869 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1870 } else { 1871 // a forward class declaration matching a typedef name of a class refers 1872 // to the underlying class. Just ignore the forward class with a warning 1873 // as this will force the intended behavior which is to lookup the typedef 1874 // name. 1875 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { 1876 Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i]; 1877 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1878 continue; 1879 } 1880 } 1881 } 1882 1883 // Create a declaration to describe this forward declaration. 1884 ObjCInterfaceDecl *PrevIDecl 1885 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 1886 ObjCInterfaceDecl *IDecl 1887 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 1888 IdentList[i], PrevIDecl, IdentLocs[i]); 1889 IDecl->setAtEndRange(IdentLocs[i]); 1890 1891 PushOnScopeChains(IDecl, TUScope); 1892 CheckObjCDeclScope(IDecl); 1893 DeclsInGroup.push_back(IDecl); 1894 } 1895 1896 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); 1897} 1898 1899static bool tryMatchRecordTypes(ASTContext &Context, 1900 Sema::MethodMatchStrategy strategy, 1901 const Type *left, const Type *right); 1902 1903static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 1904 QualType leftQT, QualType rightQT) { 1905 const Type *left = 1906 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 1907 const Type *right = 1908 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 1909 1910 if (left == right) return true; 1911 1912 // If we're doing a strict match, the types have to match exactly. 1913 if (strategy == Sema::MMS_strict) return false; 1914 1915 if (left->isIncompleteType() || right->isIncompleteType()) return false; 1916 1917 // Otherwise, use this absurdly complicated algorithm to try to 1918 // validate the basic, low-level compatibility of the two types. 1919 1920 // As a minimum, require the sizes and alignments to match. 1921 if (Context.getTypeInfo(left) != Context.getTypeInfo(right)) 1922 return false; 1923 1924 // Consider all the kinds of non-dependent canonical types: 1925 // - functions and arrays aren't possible as return and parameter types 1926 1927 // - vector types of equal size can be arbitrarily mixed 1928 if (isa<VectorType>(left)) return isa<VectorType>(right); 1929 if (isa<VectorType>(right)) return false; 1930 1931 // - references should only match references of identical type 1932 // - structs, unions, and Objective-C objects must match more-or-less 1933 // exactly 1934 // - everything else should be a scalar 1935 if (!left->isScalarType() || !right->isScalarType()) 1936 return tryMatchRecordTypes(Context, strategy, left, right); 1937 1938 // Make scalars agree in kind, except count bools as chars, and group 1939 // all non-member pointers together. 1940 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 1941 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 1942 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 1943 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 1944 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) 1945 leftSK = Type::STK_ObjCObjectPointer; 1946 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) 1947 rightSK = Type::STK_ObjCObjectPointer; 1948 1949 // Note that data member pointers and function member pointers don't 1950 // intermix because of the size differences. 1951 1952 return (leftSK == rightSK); 1953} 1954 1955static bool tryMatchRecordTypes(ASTContext &Context, 1956 Sema::MethodMatchStrategy strategy, 1957 const Type *lt, const Type *rt) { 1958 assert(lt && rt && lt != rt); 1959 1960 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 1961 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 1962 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 1963 1964 // Require union-hood to match. 1965 if (left->isUnion() != right->isUnion()) return false; 1966 1967 // Require an exact match if either is non-POD. 1968 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 1969 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 1970 return false; 1971 1972 // Require size and alignment to match. 1973 if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false; 1974 1975 // Require fields to match. 1976 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 1977 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 1978 for (; li != le && ri != re; ++li, ++ri) { 1979 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 1980 return false; 1981 } 1982 return (li == le && ri == re); 1983} 1984 1985/// MatchTwoMethodDeclarations - Checks that two methods have matching type and 1986/// returns true, or false, accordingly. 1987/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 1988bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 1989 const ObjCMethodDecl *right, 1990 MethodMatchStrategy strategy) { 1991 if (!matchTypes(Context, strategy, 1992 left->getResultType(), right->getResultType())) 1993 return false; 1994 1995 if (getLangOpts().ObjCAutoRefCount && 1996 (left->hasAttr<NSReturnsRetainedAttr>() 1997 != right->hasAttr<NSReturnsRetainedAttr>() || 1998 left->hasAttr<NSConsumesSelfAttr>() 1999 != right->hasAttr<NSConsumesSelfAttr>())) 2000 return false; 2001 2002 ObjCMethodDecl::param_const_iterator 2003 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), 2004 re = right->param_end(); 2005 2006 for (; li != le && ri != re; ++li, ++ri) { 2007 assert(ri != right->param_end() && "Param mismatch"); 2008 const ParmVarDecl *lparm = *li, *rparm = *ri; 2009 2010 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 2011 return false; 2012 2013 if (getLangOpts().ObjCAutoRefCount && 2014 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 2015 return false; 2016 } 2017 return true; 2018} 2019 2020void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) { 2021 // If the list is empty, make it a singleton list. 2022 if (List->Method == 0) { 2023 List->Method = Method; 2024 List->Next = 0; 2025 return; 2026 } 2027 2028 // We've seen a method with this name, see if we have already seen this type 2029 // signature. 2030 ObjCMethodList *Previous = List; 2031 for (; List; Previous = List, List = List->Next) { 2032 if (!MatchTwoMethodDeclarations(Method, List->Method)) 2033 continue; 2034 2035 ObjCMethodDecl *PrevObjCMethod = List->Method; 2036 2037 // Propagate the 'defined' bit. 2038 if (Method->isDefined()) 2039 PrevObjCMethod->setDefined(true); 2040 2041 // If a method is deprecated, push it in the global pool. 2042 // This is used for better diagnostics. 2043 if (Method->isDeprecated()) { 2044 if (!PrevObjCMethod->isDeprecated()) 2045 List->Method = Method; 2046 } 2047 // If new method is unavailable, push it into global pool 2048 // unless previous one is deprecated. 2049 if (Method->isUnavailable()) { 2050 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 2051 List->Method = Method; 2052 } 2053 2054 return; 2055 } 2056 2057 // We have a new signature for an existing method - add it. 2058 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 2059 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 2060 Previous->Next = new (Mem) ObjCMethodList(Method, 0); 2061} 2062 2063/// \brief Read the contents of the method pool for a given selector from 2064/// external storage. 2065void Sema::ReadMethodPool(Selector Sel) { 2066 assert(ExternalSource && "We need an external AST source"); 2067 ExternalSource->ReadMethodPool(Sel); 2068} 2069 2070void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 2071 bool instance) { 2072 // Ignore methods of invalid containers. 2073 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) 2074 return; 2075 2076 if (ExternalSource) 2077 ReadMethodPool(Method->getSelector()); 2078 2079 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 2080 if (Pos == MethodPool.end()) 2081 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 2082 GlobalMethods())).first; 2083 2084 Method->setDefined(impl); 2085 2086 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 2087 addMethodToGlobalList(&Entry, Method); 2088} 2089 2090/// Determines if this is an "acceptable" loose mismatch in the global 2091/// method pool. This exists mostly as a hack to get around certain 2092/// global mismatches which we can't afford to make warnings / errors. 2093/// Really, what we want is a way to take a method out of the global 2094/// method pool. 2095static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 2096 ObjCMethodDecl *other) { 2097 if (!chosen->isInstanceMethod()) 2098 return false; 2099 2100 Selector sel = chosen->getSelector(); 2101 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 2102 return false; 2103 2104 // Don't complain about mismatches for -length if the method we 2105 // chose has an integral result type. 2106 return (chosen->getResultType()->isIntegerType()); 2107} 2108 2109ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 2110 bool receiverIdOrClass, 2111 bool warn, bool instance) { 2112 if (ExternalSource) 2113 ReadMethodPool(Sel); 2114 2115 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2116 if (Pos == MethodPool.end()) 2117 return 0; 2118 2119 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 2120 2121 if (warn && MethList.Method && MethList.Next) { 2122 bool issueDiagnostic = false, issueError = false; 2123 2124 // We support a warning which complains about *any* difference in 2125 // method signature. 2126 bool strictSelectorMatch = 2127 (receiverIdOrClass && warn && 2128 (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl, 2129 R.getBegin()) != 2130 DiagnosticsEngine::Ignored)); 2131 if (strictSelectorMatch) 2132 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 2133 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 2134 MMS_strict)) { 2135 issueDiagnostic = true; 2136 break; 2137 } 2138 } 2139 2140 // If we didn't see any strict differences, we won't see any loose 2141 // differences. In ARC, however, we also need to check for loose 2142 // mismatches, because most of them are errors. 2143 if (!strictSelectorMatch || 2144 (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) 2145 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 2146 // This checks if the methods differ in type mismatch. 2147 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 2148 MMS_loose) && 2149 !isAcceptableMethodMismatch(MethList.Method, Next->Method)) { 2150 issueDiagnostic = true; 2151 if (getLangOpts().ObjCAutoRefCount) 2152 issueError = true; 2153 break; 2154 } 2155 } 2156 2157 if (issueDiagnostic) { 2158 if (issueError) 2159 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 2160 else if (strictSelectorMatch) 2161 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 2162 else 2163 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 2164 2165 Diag(MethList.Method->getLocStart(), 2166 issueError ? diag::note_possibility : diag::note_using) 2167 << MethList.Method->getSourceRange(); 2168 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) 2169 Diag(Next->Method->getLocStart(), diag::note_also_found) 2170 << Next->Method->getSourceRange(); 2171 } 2172 } 2173 return MethList.Method; 2174} 2175 2176ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 2177 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2178 if (Pos == MethodPool.end()) 2179 return 0; 2180 2181 GlobalMethods &Methods = Pos->second; 2182 2183 if (Methods.first.Method && Methods.first.Method->isDefined()) 2184 return Methods.first.Method; 2185 if (Methods.second.Method && Methods.second.Method->isDefined()) 2186 return Methods.second.Method; 2187 return 0; 2188} 2189 2190/// DiagnoseDuplicateIvars - 2191/// Check for duplicate ivars in the entire class at the start of 2192/// \@implementation. This becomes necesssary because class extension can 2193/// add ivars to a class in random order which will not be known until 2194/// class's \@implementation is seen. 2195void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 2196 ObjCInterfaceDecl *SID) { 2197 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), 2198 IVE = ID->ivar_end(); IVI != IVE; ++IVI) { 2199 ObjCIvarDecl* Ivar = *IVI; 2200 if (Ivar->isInvalidDecl()) 2201 continue; 2202 if (IdentifierInfo *II = Ivar->getIdentifier()) { 2203 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 2204 if (prevIvar) { 2205 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 2206 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 2207 Ivar->setInvalidDecl(); 2208 } 2209 } 2210 } 2211} 2212 2213Sema::ObjCContainerKind Sema::getObjCContainerKind() const { 2214 switch (CurContext->getDeclKind()) { 2215 case Decl::ObjCInterface: 2216 return Sema::OCK_Interface; 2217 case Decl::ObjCProtocol: 2218 return Sema::OCK_Protocol; 2219 case Decl::ObjCCategory: 2220 if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) 2221 return Sema::OCK_ClassExtension; 2222 else 2223 return Sema::OCK_Category; 2224 case Decl::ObjCImplementation: 2225 return Sema::OCK_Implementation; 2226 case Decl::ObjCCategoryImpl: 2227 return Sema::OCK_CategoryImplementation; 2228 2229 default: 2230 return Sema::OCK_None; 2231 } 2232} 2233 2234// Note: For class/category implemenations, allMethods/allProperties is 2235// always null. 2236Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, 2237 Decl **allMethods, unsigned allNum, 2238 Decl **allProperties, unsigned pNum, 2239 DeclGroupPtrTy *allTUVars, unsigned tuvNum) { 2240 2241 if (getObjCContainerKind() == Sema::OCK_None) 2242 return 0; 2243 2244 assert(AtEnd.isValid() && "Invalid location for '@end'"); 2245 2246 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2247 Decl *ClassDecl = cast<Decl>(OCD); 2248 2249 bool isInterfaceDeclKind = 2250 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 2251 || isa<ObjCProtocolDecl>(ClassDecl); 2252 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 2253 2254 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 2255 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 2256 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 2257 2258 for (unsigned i = 0; i < allNum; i++ ) { 2259 ObjCMethodDecl *Method = 2260 cast_or_null<ObjCMethodDecl>(allMethods[i]); 2261 2262 if (!Method) continue; // Already issued a diagnostic. 2263 if (Method->isInstanceMethod()) { 2264 /// Check for instance method of the same name with incompatible types 2265 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 2266 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2267 : false; 2268 if ((isInterfaceDeclKind && PrevMethod && !match) 2269 || (checkIdenticalMethods && match)) { 2270 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2271 << Method->getDeclName(); 2272 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2273 Method->setInvalidDecl(); 2274 } else { 2275 if (PrevMethod) { 2276 Method->setAsRedeclaration(PrevMethod); 2277 if (!Context.getSourceManager().isInSystemHeader( 2278 Method->getLocation())) 2279 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 2280 << Method->getDeclName(); 2281 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2282 } 2283 InsMap[Method->getSelector()] = Method; 2284 /// The following allows us to typecheck messages to "id". 2285 AddInstanceMethodToGlobalPool(Method); 2286 } 2287 } else { 2288 /// Check for class method of the same name with incompatible types 2289 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 2290 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2291 : false; 2292 if ((isInterfaceDeclKind && PrevMethod && !match) 2293 || (checkIdenticalMethods && match)) { 2294 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2295 << Method->getDeclName(); 2296 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2297 Method->setInvalidDecl(); 2298 } else { 2299 if (PrevMethod) { 2300 Method->setAsRedeclaration(PrevMethod); 2301 if (!Context.getSourceManager().isInSystemHeader( 2302 Method->getLocation())) 2303 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 2304 << Method->getDeclName(); 2305 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2306 } 2307 ClsMap[Method->getSelector()] = Method; 2308 AddFactoryMethodToGlobalPool(Method); 2309 } 2310 } 2311 } 2312 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 2313 // Compares properties declared in this class to those of its 2314 // super class. 2315 ComparePropertiesInBaseAndSuper(I); 2316 CompareProperties(I, I); 2317 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 2318 // Categories are used to extend the class by declaring new methods. 2319 // By the same token, they are also used to add new properties. No 2320 // need to compare the added property to those in the class. 2321 2322 // Compare protocol properties with those in category 2323 CompareProperties(C, C); 2324 if (C->IsClassExtension()) { 2325 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 2326 DiagnoseClassExtensionDupMethods(C, CCPrimary); 2327 } 2328 } 2329 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 2330 if (CDecl->getIdentifier()) 2331 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 2332 // user-defined setter/getter. It also synthesizes setter/getter methods 2333 // and adds them to the DeclContext and global method pools. 2334 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), 2335 E = CDecl->prop_end(); 2336 I != E; ++I) 2337 ProcessPropertyDecl(*I, CDecl); 2338 CDecl->setAtEndRange(AtEnd); 2339 } 2340 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 2341 IC->setAtEndRange(AtEnd); 2342 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 2343 // Any property declared in a class extension might have user 2344 // declared setter or getter in current class extension or one 2345 // of the other class extensions. Mark them as synthesized as 2346 // property will be synthesized when property with same name is 2347 // seen in the @implementation. 2348 for (const ObjCCategoryDecl *ClsExtDecl = 2349 IDecl->getFirstClassExtension(); 2350 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) { 2351 for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(), 2352 E = ClsExtDecl->prop_end(); I != E; ++I) { 2353 ObjCPropertyDecl *Property = *I; 2354 // Skip over properties declared @dynamic 2355 if (const ObjCPropertyImplDecl *PIDecl 2356 = IC->FindPropertyImplDecl(Property->getIdentifier())) 2357 if (PIDecl->getPropertyImplementation() 2358 == ObjCPropertyImplDecl::Dynamic) 2359 continue; 2360 2361 for (const ObjCCategoryDecl *CExtDecl = 2362 IDecl->getFirstClassExtension(); 2363 CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) { 2364 if (ObjCMethodDecl *GetterMethod = 2365 CExtDecl->getInstanceMethod(Property->getGetterName())) 2366 GetterMethod->setSynthesized(true); 2367 if (!Property->isReadOnly()) 2368 if (ObjCMethodDecl *SetterMethod = 2369 CExtDecl->getInstanceMethod(Property->getSetterName())) 2370 SetterMethod->setSynthesized(true); 2371 } 2372 } 2373 } 2374 ImplMethodsVsClassMethods(S, IC, IDecl); 2375 AtomicPropertySetterGetterRules(IC, IDecl); 2376 DiagnoseOwningPropertyGetterSynthesis(IC); 2377 2378 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); 2379 if (IDecl->getSuperClass() == NULL) { 2380 // This class has no superclass, so check that it has been marked with 2381 // __attribute((objc_root_class)). 2382 if (!HasRootClassAttr) { 2383 SourceLocation DeclLoc(IDecl->getLocation()); 2384 SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc)); 2385 Diag(DeclLoc, diag::warn_objc_root_class_missing) 2386 << IDecl->getIdentifier(); 2387 // See if NSObject is in the current scope, and if it is, suggest 2388 // adding " : NSObject " to the class declaration. 2389 NamedDecl *IF = LookupSingleName(TUScope, 2390 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), 2391 DeclLoc, LookupOrdinaryName); 2392 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 2393 if (NSObjectDecl && NSObjectDecl->getDefinition()) { 2394 Diag(SuperClassLoc, diag::note_objc_needs_superclass) 2395 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); 2396 } else { 2397 Diag(SuperClassLoc, diag::note_objc_needs_superclass); 2398 } 2399 } 2400 } else if (HasRootClassAttr) { 2401 // Complain that only root classes may have this attribute. 2402 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); 2403 } 2404 2405 if (LangOpts.ObjCRuntime.isNonFragile()) { 2406 while (IDecl->getSuperClass()) { 2407 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 2408 IDecl = IDecl->getSuperClass(); 2409 } 2410 } 2411 } 2412 SetIvarInitializers(IC); 2413 } else if (ObjCCategoryImplDecl* CatImplClass = 2414 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 2415 CatImplClass->setAtEndRange(AtEnd); 2416 2417 // Find category interface decl and then check that all methods declared 2418 // in this interface are implemented in the category @implementation. 2419 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 2420 for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); 2421 Categories; Categories = Categories->getNextClassCategory()) { 2422 if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { 2423 ImplMethodsVsClassMethods(S, CatImplClass, Categories); 2424 break; 2425 } 2426 } 2427 } 2428 } 2429 if (isInterfaceDeclKind) { 2430 // Reject invalid vardecls. 2431 for (unsigned i = 0; i != tuvNum; i++) { 2432 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 2433 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2434 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 2435 if (!VDecl->hasExternalStorage()) 2436 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 2437 } 2438 } 2439 } 2440 ActOnObjCContainerFinishDefinition(); 2441 2442 for (unsigned i = 0; i != tuvNum; i++) { 2443 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 2444 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2445 (*I)->setTopLevelDeclInObjCContainer(); 2446 Consumer.HandleTopLevelDeclInObjCContainer(DG); 2447 } 2448 2449 ActOnDocumentableDecl(ClassDecl); 2450 return ClassDecl; 2451} 2452 2453 2454/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 2455/// objective-c's type qualifier from the parser version of the same info. 2456static Decl::ObjCDeclQualifier 2457CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 2458 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 2459} 2460 2461static inline 2462bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD, 2463 const AttrVec &A) { 2464 // If method is only declared in implementation (private method), 2465 // No need to issue any diagnostics on method definition with attributes. 2466 if (!IMD) 2467 return false; 2468 2469 // method declared in interface has no attribute. 2470 // But implementation has attributes. This is invalid 2471 if (!IMD->hasAttrs()) 2472 return true; 2473 2474 const AttrVec &D = IMD->getAttrs(); 2475 if (D.size() != A.size()) 2476 return true; 2477 2478 // attributes on method declaration and definition must match exactly. 2479 // Note that we have at most a couple of attributes on methods, so this 2480 // n*n search is good enough. 2481 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) { 2482 bool match = false; 2483 for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) { 2484 if ((*i)->getKind() == (*i1)->getKind()) { 2485 match = true; 2486 break; 2487 } 2488 } 2489 if (!match) 2490 return true; 2491 } 2492 return false; 2493} 2494 2495/// \brief Check whether the declared result type of the given Objective-C 2496/// method declaration is compatible with the method's class. 2497/// 2498static Sema::ResultTypeCompatibilityKind 2499CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 2500 ObjCInterfaceDecl *CurrentClass) { 2501 QualType ResultType = Method->getResultType(); 2502 2503 // If an Objective-C method inherits its related result type, then its 2504 // declared result type must be compatible with its own class type. The 2505 // declared result type is compatible if: 2506 if (const ObjCObjectPointerType *ResultObjectType 2507 = ResultType->getAs<ObjCObjectPointerType>()) { 2508 // - it is id or qualified id, or 2509 if (ResultObjectType->isObjCIdType() || 2510 ResultObjectType->isObjCQualifiedIdType()) 2511 return Sema::RTC_Compatible; 2512 2513 if (CurrentClass) { 2514 if (ObjCInterfaceDecl *ResultClass 2515 = ResultObjectType->getInterfaceDecl()) { 2516 // - it is the same as the method's class type, or 2517 if (declaresSameEntity(CurrentClass, ResultClass)) 2518 return Sema::RTC_Compatible; 2519 2520 // - it is a superclass of the method's class type 2521 if (ResultClass->isSuperClassOf(CurrentClass)) 2522 return Sema::RTC_Compatible; 2523 } 2524 } else { 2525 // Any Objective-C pointer type might be acceptable for a protocol 2526 // method; we just don't know. 2527 return Sema::RTC_Unknown; 2528 } 2529 } 2530 2531 return Sema::RTC_Incompatible; 2532} 2533 2534namespace { 2535/// A helper class for searching for methods which a particular method 2536/// overrides. 2537class OverrideSearch { 2538public: 2539 Sema &S; 2540 ObjCMethodDecl *Method; 2541 llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden; 2542 bool Recursive; 2543 2544public: 2545 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) { 2546 Selector selector = method->getSelector(); 2547 2548 // Bypass this search if we've never seen an instance/class method 2549 // with this selector before. 2550 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 2551 if (it == S.MethodPool.end()) { 2552 if (!S.ExternalSource) return; 2553 S.ReadMethodPool(selector); 2554 2555 it = S.MethodPool.find(selector); 2556 if (it == S.MethodPool.end()) 2557 return; 2558 } 2559 ObjCMethodList &list = 2560 method->isInstanceMethod() ? it->second.first : it->second.second; 2561 if (!list.Method) return; 2562 2563 ObjCContainerDecl *container 2564 = cast<ObjCContainerDecl>(method->getDeclContext()); 2565 2566 // Prevent the search from reaching this container again. This is 2567 // important with categories, which override methods from the 2568 // interface and each other. 2569 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) { 2570 searchFromContainer(container); 2571 if (ObjCInterfaceDecl *Interface = Category->getClassInterface()) 2572 searchFromContainer(Interface); 2573 } else { 2574 searchFromContainer(container); 2575 } 2576 } 2577 2578 typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator; 2579 iterator begin() const { return Overridden.begin(); } 2580 iterator end() const { return Overridden.end(); } 2581 2582private: 2583 void searchFromContainer(ObjCContainerDecl *container) { 2584 if (container->isInvalidDecl()) return; 2585 2586 switch (container->getDeclKind()) { 2587#define OBJCCONTAINER(type, base) \ 2588 case Decl::type: \ 2589 searchFrom(cast<type##Decl>(container)); \ 2590 break; 2591#define ABSTRACT_DECL(expansion) 2592#define DECL(type, base) \ 2593 case Decl::type: 2594#include "clang/AST/DeclNodes.inc" 2595 llvm_unreachable("not an ObjC container!"); 2596 } 2597 } 2598 2599 void searchFrom(ObjCProtocolDecl *protocol) { 2600 if (!protocol->hasDefinition()) 2601 return; 2602 2603 // A method in a protocol declaration overrides declarations from 2604 // referenced ("parent") protocols. 2605 search(protocol->getReferencedProtocols()); 2606 } 2607 2608 void searchFrom(ObjCCategoryDecl *category) { 2609 // A method in a category declaration overrides declarations from 2610 // the main class and from protocols the category references. 2611 // The main class is handled in the constructor. 2612 search(category->getReferencedProtocols()); 2613 } 2614 2615 void searchFrom(ObjCCategoryImplDecl *impl) { 2616 // A method in a category definition that has a category 2617 // declaration overrides declarations from the category 2618 // declaration. 2619 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 2620 search(category); 2621 if (ObjCInterfaceDecl *Interface = category->getClassInterface()) 2622 search(Interface); 2623 2624 // Otherwise it overrides declarations from the class. 2625 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) { 2626 search(Interface); 2627 } 2628 } 2629 2630 void searchFrom(ObjCInterfaceDecl *iface) { 2631 // A method in a class declaration overrides declarations from 2632 if (!iface->hasDefinition()) 2633 return; 2634 2635 // - categories, 2636 for (ObjCCategoryDecl *category = iface->getCategoryList(); 2637 category; category = category->getNextClassCategory()) 2638 search(category); 2639 2640 // - the super class, and 2641 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 2642 search(super); 2643 2644 // - any referenced protocols. 2645 search(iface->getReferencedProtocols()); 2646 } 2647 2648 void searchFrom(ObjCImplementationDecl *impl) { 2649 // A method in a class implementation overrides declarations from 2650 // the class interface. 2651 if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) 2652 search(Interface); 2653 } 2654 2655 2656 void search(const ObjCProtocolList &protocols) { 2657 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end(); 2658 i != e; ++i) 2659 search(*i); 2660 } 2661 2662 void search(ObjCContainerDecl *container) { 2663 // Check for a method in this container which matches this selector. 2664 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 2665 Method->isInstanceMethod()); 2666 2667 // If we find one, record it and bail out. 2668 if (meth) { 2669 Overridden.insert(meth); 2670 return; 2671 } 2672 2673 // Otherwise, search for methods that a hypothetical method here 2674 // would have overridden. 2675 2676 // Note that we're now in a recursive case. 2677 Recursive = true; 2678 2679 searchFromContainer(container); 2680 } 2681}; 2682} 2683 2684void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, 2685 ObjCInterfaceDecl *CurrentClass, 2686 ResultTypeCompatibilityKind RTC) { 2687 // Search for overridden methods and merge information down from them. 2688 OverrideSearch overrides(*this, ObjCMethod); 2689 // Keep track if the method overrides any method in the class's base classes, 2690 // its protocols, or its categories' protocols; we will keep that info 2691 // in the ObjCMethodDecl. 2692 // For this info, a method in an implementation is not considered as 2693 // overriding the same method in the interface or its categories. 2694 bool hasOverriddenMethodsInBaseOrProtocol = false; 2695 for (OverrideSearch::iterator 2696 i = overrides.begin(), e = overrides.end(); i != e; ++i) { 2697 ObjCMethodDecl *overridden = *i; 2698 2699 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || 2700 CurrentClass != overridden->getClassInterface() || 2701 overridden->isOverriding()) 2702 hasOverriddenMethodsInBaseOrProtocol = true; 2703 2704 // Propagate down the 'related result type' bit from overridden methods. 2705 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType()) 2706 ObjCMethod->SetRelatedResultType(); 2707 2708 // Then merge the declarations. 2709 mergeObjCMethodDecls(ObjCMethod, overridden); 2710 2711 if (ObjCMethod->isImplicit() && overridden->isImplicit()) 2712 continue; // Conflicting properties are detected elsewhere. 2713 2714 // Check for overriding methods 2715 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 2716 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) 2717 CheckConflictingOverridingMethod(ObjCMethod, overridden, 2718 isa<ObjCProtocolDecl>(overridden->getDeclContext())); 2719 2720 if (CurrentClass && overridden->getDeclContext() != CurrentClass && 2721 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && 2722 !overridden->isImplicit() /* not meant for properties */) { 2723 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), 2724 E = ObjCMethod->param_end(); 2725 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), 2726 PrevE = overridden->param_end(); 2727 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { 2728 assert(PrevI != overridden->param_end() && "Param mismatch"); 2729 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 2730 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 2731 // If type of argument of method in this class does not match its 2732 // respective argument type in the super class method, issue warning; 2733 if (!Context.typesAreCompatible(T1, T2)) { 2734 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 2735 << T1 << T2; 2736 Diag(overridden->getLocation(), diag::note_previous_declaration); 2737 break; 2738 } 2739 } 2740 } 2741 } 2742 2743 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); 2744} 2745 2746Decl *Sema::ActOnMethodDeclaration( 2747 Scope *S, 2748 SourceLocation MethodLoc, SourceLocation EndLoc, 2749 tok::TokenKind MethodType, 2750 ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 2751 ArrayRef<SourceLocation> SelectorLocs, 2752 Selector Sel, 2753 // optional arguments. The number of types/arguments is obtained 2754 // from the Sel.getNumArgs(). 2755 ObjCArgInfo *ArgInfo, 2756 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 2757 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 2758 bool isVariadic, bool MethodDefinition) { 2759 // Make sure we can establish a context for the method. 2760 if (!CurContext->isObjCContainer()) { 2761 Diag(MethodLoc, diag::error_missing_method_context); 2762 return 0; 2763 } 2764 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2765 Decl *ClassDecl = cast<Decl>(OCD); 2766 QualType resultDeclType; 2767 2768 bool HasRelatedResultType = false; 2769 TypeSourceInfo *ResultTInfo = 0; 2770 if (ReturnType) { 2771 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); 2772 2773 // Methods cannot return interface types. All ObjC objects are 2774 // passed by reference. 2775 if (resultDeclType->isObjCObjectType()) { 2776 Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) 2777 << 0 << resultDeclType; 2778 return 0; 2779 } 2780 2781 HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType()); 2782 } else { // get the type for "id". 2783 resultDeclType = Context.getObjCIdType(); 2784 Diag(MethodLoc, diag::warn_missing_method_return_type) 2785 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); 2786 } 2787 2788 ObjCMethodDecl* ObjCMethod = 2789 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, 2790 resultDeclType, 2791 ResultTInfo, 2792 CurContext, 2793 MethodType == tok::minus, isVariadic, 2794 /*isSynthesized=*/false, 2795 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 2796 MethodDeclKind == tok::objc_optional 2797 ? ObjCMethodDecl::Optional 2798 : ObjCMethodDecl::Required, 2799 HasRelatedResultType); 2800 2801 SmallVector<ParmVarDecl*, 16> Params; 2802 2803 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 2804 QualType ArgType; 2805 TypeSourceInfo *DI; 2806 2807 if (ArgInfo[i].Type == 0) { 2808 ArgType = Context.getObjCIdType(); 2809 DI = 0; 2810 } else { 2811 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 2812 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2813 ArgType = Context.getAdjustedParameterType(ArgType); 2814 } 2815 2816 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 2817 LookupOrdinaryName, ForRedeclaration); 2818 LookupName(R, S); 2819 if (R.isSingleResult()) { 2820 NamedDecl *PrevDecl = R.getFoundDecl(); 2821 if (S->isDeclScope(PrevDecl)) { 2822 Diag(ArgInfo[i].NameLoc, 2823 (MethodDefinition ? diag::warn_method_param_redefinition 2824 : diag::warn_method_param_declaration)) 2825 << ArgInfo[i].Name; 2826 Diag(PrevDecl->getLocation(), 2827 diag::note_previous_declaration); 2828 } 2829 } 2830 2831 SourceLocation StartLoc = DI 2832 ? DI->getTypeLoc().getBeginLoc() 2833 : ArgInfo[i].NameLoc; 2834 2835 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 2836 ArgInfo[i].NameLoc, ArgInfo[i].Name, 2837 ArgType, DI, SC_None, SC_None); 2838 2839 Param->setObjCMethodScopeInfo(i); 2840 2841 Param->setObjCDeclQualifier( 2842 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 2843 2844 // Apply the attributes to the parameter. 2845 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 2846 2847 if (Param->hasAttr<BlocksAttr>()) { 2848 Diag(Param->getLocation(), diag::err_block_on_nonlocal); 2849 Param->setInvalidDecl(); 2850 } 2851 S->AddDecl(Param); 2852 IdResolver.AddDecl(Param); 2853 2854 Params.push_back(Param); 2855 } 2856 2857 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 2858 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 2859 QualType ArgType = Param->getType(); 2860 if (ArgType.isNull()) 2861 ArgType = Context.getObjCIdType(); 2862 else 2863 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2864 ArgType = Context.getAdjustedParameterType(ArgType); 2865 if (ArgType->isObjCObjectType()) { 2866 Diag(Param->getLocation(), 2867 diag::err_object_cannot_be_passed_returned_by_value) 2868 << 1 << ArgType; 2869 Param->setInvalidDecl(); 2870 } 2871 Param->setDeclContext(ObjCMethod); 2872 2873 Params.push_back(Param); 2874 } 2875 2876 ObjCMethod->setMethodParams(Context, Params, SelectorLocs); 2877 ObjCMethod->setObjCDeclQualifier( 2878 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 2879 2880 if (AttrList) 2881 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 2882 2883 // Add the method now. 2884 const ObjCMethodDecl *PrevMethod = 0; 2885 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 2886 if (MethodType == tok::minus) { 2887 PrevMethod = ImpDecl->getInstanceMethod(Sel); 2888 ImpDecl->addInstanceMethod(ObjCMethod); 2889 } else { 2890 PrevMethod = ImpDecl->getClassMethod(Sel); 2891 ImpDecl->addClassMethod(ObjCMethod); 2892 } 2893 2894 ObjCMethodDecl *IMD = 0; 2895 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) 2896 IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 2897 ObjCMethod->isInstanceMethod()); 2898 if (ObjCMethod->hasAttrs() && 2899 containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) { 2900 SourceLocation MethodLoc = IMD->getLocation(); 2901 if (!getSourceManager().isInSystemHeader(MethodLoc)) { 2902 Diag(EndLoc, diag::warn_attribute_method_def); 2903 Diag(MethodLoc, diag::note_method_declared_at) 2904 << ObjCMethod->getDeclName(); 2905 } 2906 } 2907 } else { 2908 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 2909 } 2910 2911 if (PrevMethod) { 2912 // You can never have two method definitions with the same name. 2913 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 2914 << ObjCMethod->getDeclName(); 2915 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2916 } 2917 2918 // If this Objective-C method does not have a related result type, but we 2919 // are allowed to infer related result types, try to do so based on the 2920 // method family. 2921 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 2922 if (!CurrentClass) { 2923 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 2924 CurrentClass = Cat->getClassInterface(); 2925 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 2926 CurrentClass = Impl->getClassInterface(); 2927 else if (ObjCCategoryImplDecl *CatImpl 2928 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 2929 CurrentClass = CatImpl->getClassInterface(); 2930 } 2931 2932 ResultTypeCompatibilityKind RTC 2933 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); 2934 2935 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); 2936 2937 bool ARCError = false; 2938 if (getLangOpts().ObjCAutoRefCount) 2939 ARCError = CheckARCMethodDecl(*this, ObjCMethod); 2940 2941 // Infer the related result type when possible. 2942 if (!ARCError && RTC == Sema::RTC_Compatible && 2943 !ObjCMethod->hasRelatedResultType() && 2944 LangOpts.ObjCInferRelatedResultType) { 2945 bool InferRelatedResultType = false; 2946 switch (ObjCMethod->getMethodFamily()) { 2947 case OMF_None: 2948 case OMF_copy: 2949 case OMF_dealloc: 2950 case OMF_finalize: 2951 case OMF_mutableCopy: 2952 case OMF_release: 2953 case OMF_retainCount: 2954 case OMF_performSelector: 2955 break; 2956 2957 case OMF_alloc: 2958 case OMF_new: 2959 InferRelatedResultType = ObjCMethod->isClassMethod(); 2960 break; 2961 2962 case OMF_init: 2963 case OMF_autorelease: 2964 case OMF_retain: 2965 case OMF_self: 2966 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 2967 break; 2968 } 2969 2970 if (InferRelatedResultType) 2971 ObjCMethod->SetRelatedResultType(); 2972 } 2973 2974 ActOnDocumentableDecl(ObjCMethod); 2975 2976 return ObjCMethod; 2977} 2978 2979bool Sema::CheckObjCDeclScope(Decl *D) { 2980 // Following is also an error. But it is caused by a missing @end 2981 // and diagnostic is issued elsewhere. 2982 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) 2983 return false; 2984 2985 // If we switched context to translation unit while we are still lexically in 2986 // an objc container, it means the parser missed emitting an error. 2987 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) 2988 return false; 2989 2990 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 2991 D->setInvalidDecl(); 2992 2993 return true; 2994} 2995 2996/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the 2997/// instance variables of ClassName into Decls. 2998void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 2999 IdentifierInfo *ClassName, 3000 SmallVectorImpl<Decl*> &Decls) { 3001 // Check that ClassName is a valid class 3002 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 3003 if (!Class) { 3004 Diag(DeclStart, diag::err_undef_interface) << ClassName; 3005 return; 3006 } 3007 if (LangOpts.ObjCRuntime.isNonFragile()) { 3008 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 3009 return; 3010 } 3011 3012 // Collect the instance variables 3013 SmallVector<const ObjCIvarDecl*, 32> Ivars; 3014 Context.DeepCollectObjCIvars(Class, true, Ivars); 3015 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 3016 for (unsigned i = 0; i < Ivars.size(); i++) { 3017 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]); 3018 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 3019 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 3020 /*FIXME: StartL=*/ID->getLocation(), 3021 ID->getLocation(), 3022 ID->getIdentifier(), ID->getType(), 3023 ID->getBitWidth()); 3024 Decls.push_back(FD); 3025 } 3026 3027 // Introduce all of these fields into the appropriate scope. 3028 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 3029 D != Decls.end(); ++D) { 3030 FieldDecl *FD = cast<FieldDecl>(*D); 3031 if (getLangOpts().CPlusPlus) 3032 PushOnScopeChains(cast<FieldDecl>(FD), S); 3033 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 3034 Record->addDecl(FD); 3035 } 3036} 3037 3038/// \brief Build a type-check a new Objective-C exception variable declaration. 3039VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 3040 SourceLocation StartLoc, 3041 SourceLocation IdLoc, 3042 IdentifierInfo *Id, 3043 bool Invalid) { 3044 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 3045 // duration shall not be qualified by an address-space qualifier." 3046 // Since all parameters have automatic store duration, they can not have 3047 // an address space. 3048 if (T.getAddressSpace() != 0) { 3049 Diag(IdLoc, diag::err_arg_with_address_space); 3050 Invalid = true; 3051 } 3052 3053 // An @catch parameter must be an unqualified object pointer type; 3054 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 3055 if (Invalid) { 3056 // Don't do any further checking. 3057 } else if (T->isDependentType()) { 3058 // Okay: we don't know what this type will instantiate to. 3059 } else if (!T->isObjCObjectPointerType()) { 3060 Invalid = true; 3061 Diag(IdLoc ,diag::err_catch_param_not_objc_type); 3062 } else if (T->isObjCQualifiedIdType()) { 3063 Invalid = true; 3064 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 3065 } 3066 3067 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 3068 T, TInfo, SC_None, SC_None); 3069 New->setExceptionVariable(true); 3070 3071 // In ARC, infer 'retaining' for variables of retainable type. 3072 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) 3073 Invalid = true; 3074 3075 if (Invalid) 3076 New->setInvalidDecl(); 3077 return New; 3078} 3079 3080Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 3081 const DeclSpec &DS = D.getDeclSpec(); 3082 3083 // We allow the "register" storage class on exception variables because 3084 // GCC did, but we drop it completely. Any other storage class is an error. 3085 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 3086 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 3087 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 3088 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 3089 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 3090 << DS.getStorageClassSpec(); 3091 } 3092 if (D.getDeclSpec().isThreadSpecified()) 3093 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); 3094 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3095 3096 DiagnoseFunctionSpecifiers(D); 3097 3098 // Check that there are no default arguments inside the type of this 3099 // exception object (C++ only). 3100 if (getLangOpts().CPlusPlus) 3101 CheckExtraCXXDefaultArguments(D); 3102 3103 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 3104 QualType ExceptionType = TInfo->getType(); 3105 3106 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 3107 D.getSourceRange().getBegin(), 3108 D.getIdentifierLoc(), 3109 D.getIdentifier(), 3110 D.isInvalidType()); 3111 3112 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 3113 if (D.getCXXScopeSpec().isSet()) { 3114 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 3115 << D.getCXXScopeSpec().getRange(); 3116 New->setInvalidDecl(); 3117 } 3118 3119 // Add the parameter declaration into this scope. 3120 S->AddDecl(New); 3121 if (D.getIdentifier()) 3122 IdResolver.AddDecl(New); 3123 3124 ProcessDeclAttributes(S, New, D); 3125 3126 if (New->hasAttr<BlocksAttr>()) 3127 Diag(New->getLocation(), diag::err_block_on_nonlocal); 3128 return New; 3129} 3130 3131/// CollectIvarsToConstructOrDestruct - Collect those ivars which require 3132/// initialization. 3133void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 3134 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 3135 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 3136 Iv= Iv->getNextIvar()) { 3137 QualType QT = Context.getBaseElementType(Iv->getType()); 3138 if (QT->isRecordType()) 3139 Ivars.push_back(Iv); 3140 } 3141} 3142 3143void Sema::DiagnoseUseOfUnimplementedSelectors() { 3144 // Load referenced selectors from the external source. 3145 if (ExternalSource) { 3146 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 3147 ExternalSource->ReadReferencedSelectors(Sels); 3148 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 3149 ReferencedSelectors[Sels[I].first] = Sels[I].second; 3150 } 3151 3152 // Warning will be issued only when selector table is 3153 // generated (which means there is at lease one implementation 3154 // in the TU). This is to match gcc's behavior. 3155 if (ReferencedSelectors.empty() || 3156 !Context.AnyObjCImplementation()) 3157 return; 3158 for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 3159 ReferencedSelectors.begin(), 3160 E = ReferencedSelectors.end(); S != E; ++S) { 3161 Selector Sel = (*S).first; 3162 if (!LookupImplementedMethodInGlobalPool(Sel)) 3163 Diag((*S).second, diag::warn_unimplemented_selector) << Sel; 3164 } 3165 return; 3166} 3167