SemaDeclObjC.cpp revision d8bba9c15230d2b1b3893e272106aa79efc50251
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements semantic analysis for Objective C declarations. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/ExternalSemaSource.h" 17#include "clang/Sema/Scope.h" 18#include "clang/Sema/ScopeInfo.h" 19#include "clang/AST/ASTConsumer.h" 20#include "clang/AST/Expr.h" 21#include "clang/AST/ExprObjC.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/Basic/SourceManager.h" 25#include "clang/Sema/DeclSpec.h" 26#include "llvm/ADT/DenseSet.h" 27 28using namespace clang; 29 30/// Check whether the given method, which must be in the 'init' 31/// family, is a valid member of that family. 32/// 33/// \param receiverTypeIfCall - if null, check this as if declaring it; 34/// if non-null, check this as if making a call to it with the given 35/// receiver type 36/// 37/// \return true to indicate that there was an error and appropriate 38/// actions were taken 39bool Sema::checkInitMethod(ObjCMethodDecl *method, 40 QualType receiverTypeIfCall) { 41 if (method->isInvalidDecl()) return true; 42 43 // This castAs is safe: methods that don't return an object 44 // pointer won't be inferred as inits and will reject an explicit 45 // objc_method_family(init). 46 47 // We ignore protocols here. Should we? What about Class? 48 49 const ObjCObjectType *result = method->getResultType() 50 ->castAs<ObjCObjectPointerType>()->getObjectType(); 51 52 if (result->isObjCId()) { 53 return false; 54 } else if (result->isObjCClass()) { 55 // fall through: always an error 56 } else { 57 ObjCInterfaceDecl *resultClass = result->getInterface(); 58 assert(resultClass && "unexpected object type!"); 59 60 // It's okay for the result type to still be a forward declaration 61 // if we're checking an interface declaration. 62 if (resultClass->isForwardDecl()) { 63 if (receiverTypeIfCall.isNull() && 64 !isa<ObjCImplementationDecl>(method->getDeclContext())) 65 return false; 66 67 // Otherwise, we try to compare class types. 68 } else { 69 // If this method was declared in a protocol, we can't check 70 // anything unless we have a receiver type that's an interface. 71 const ObjCInterfaceDecl *receiverClass = 0; 72 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 73 if (receiverTypeIfCall.isNull()) 74 return false; 75 76 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 77 ->getInterfaceDecl(); 78 79 // This can be null for calls to e.g. id<Foo>. 80 if (!receiverClass) return false; 81 } else { 82 receiverClass = method->getClassInterface(); 83 assert(receiverClass && "method not associated with a class!"); 84 } 85 86 // If either class is a subclass of the other, it's fine. 87 if (receiverClass->isSuperClassOf(resultClass) || 88 resultClass->isSuperClassOf(receiverClass)) 89 return false; 90 } 91 } 92 93 SourceLocation loc = method->getLocation(); 94 95 // If we're in a system header, and this is not a call, just make 96 // the method unusable. 97 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 98 method->addAttr(new (Context) UnavailableAttr(loc, Context, 99 "init method returns a type unrelated to its receiver type")); 100 return true; 101 } 102 103 // Otherwise, it's an error. 104 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 105 method->setInvalidDecl(); 106 return true; 107} 108 109bool Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 110 const ObjCMethodDecl *Overridden, 111 bool IsImplementation) { 112 if (Overridden->hasRelatedResultType() && 113 !NewMethod->hasRelatedResultType()) { 114 // This can only happen when the method follows a naming convention that 115 // implies a related result type, and the original (overridden) method has 116 // a suitable return type, but the new (overriding) method does not have 117 // a suitable return type. 118 QualType ResultType = NewMethod->getResultType(); 119 SourceRange ResultTypeRange; 120 if (const TypeSourceInfo *ResultTypeInfo 121 = NewMethod->getResultTypeSourceInfo()) 122 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 123 124 // Figure out which class this method is part of, if any. 125 ObjCInterfaceDecl *CurrentClass 126 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 127 if (!CurrentClass) { 128 DeclContext *DC = NewMethod->getDeclContext(); 129 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 130 CurrentClass = Cat->getClassInterface(); 131 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 132 CurrentClass = Impl->getClassInterface(); 133 else if (ObjCCategoryImplDecl *CatImpl 134 = dyn_cast<ObjCCategoryImplDecl>(DC)) 135 CurrentClass = CatImpl->getClassInterface(); 136 } 137 138 if (CurrentClass) { 139 Diag(NewMethod->getLocation(), 140 diag::warn_related_result_type_compatibility_class) 141 << Context.getObjCInterfaceType(CurrentClass) 142 << ResultType 143 << ResultTypeRange; 144 } else { 145 Diag(NewMethod->getLocation(), 146 diag::warn_related_result_type_compatibility_protocol) 147 << ResultType 148 << ResultTypeRange; 149 } 150 151 Diag(Overridden->getLocation(), diag::note_related_result_type_overridden) 152 << Overridden->getMethodFamily(); 153 } 154 155 return false; 156} 157 158/// \brief Check for consistency between a given method declaration and the 159/// methods it overrides within the class hierarchy. 160/// 161/// This method walks the inheritance hierarchy starting at the given 162/// declaration context (\p DC), invoking Sema::CheckObjCMethodOverride() with 163/// the given new method (\p NewMethod) and any method it directly overrides 164/// in the hierarchy. Sema::CheckObjCMethodOverride() is responsible for 165/// checking consistency, e.g., among return types for methods that return a 166/// related result type. 167static bool CheckObjCMethodOverrides(Sema &S, ObjCMethodDecl *NewMethod, 168 DeclContext *DC, 169 bool SkipCurrent = true) { 170 if (!DC) 171 return false; 172 173 if (!SkipCurrent) { 174 // Look for this method. If we find it, we're done. 175 Selector Sel = NewMethod->getSelector(); 176 bool IsInstance = NewMethod->isInstanceMethod(); 177 DeclContext::lookup_const_iterator Meth, MethEnd; 178 for (llvm::tie(Meth, MethEnd) = DC->lookup(Sel); Meth != MethEnd; ++Meth) { 179 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(*Meth); 180 if (MD && MD->isInstanceMethod() == IsInstance) 181 return S.CheckObjCMethodOverride(NewMethod, MD, false); 182 } 183 } 184 185 if (ObjCInterfaceDecl *Class = llvm::dyn_cast<ObjCInterfaceDecl>(DC)) { 186 // Look through categories. 187 for (ObjCCategoryDecl *Category = Class->getCategoryList(); 188 Category; Category = Category->getNextClassCategory()) { 189 if (CheckObjCMethodOverrides(S, NewMethod, Category, false)) 190 return true; 191 } 192 193 // Look through protocols. 194 for (ObjCList<ObjCProtocolDecl>::iterator I = Class->protocol_begin(), 195 IEnd = Class->protocol_end(); 196 I != IEnd; ++I) 197 if (CheckObjCMethodOverrides(S, NewMethod, *I, false)) 198 return true; 199 200 // Look in our superclass. 201 return CheckObjCMethodOverrides(S, NewMethod, Class->getSuperClass(), 202 false); 203 } 204 205 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(DC)) { 206 // Look through protocols. 207 for (ObjCList<ObjCProtocolDecl>::iterator I = Category->protocol_begin(), 208 IEnd = Category->protocol_end(); 209 I != IEnd; ++I) 210 if (CheckObjCMethodOverrides(S, NewMethod, *I, false)) 211 return true; 212 213 return false; 214 } 215 216 if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(DC)) { 217 // Look through protocols. 218 for (ObjCList<ObjCProtocolDecl>::iterator I = Protocol->protocol_begin(), 219 IEnd = Protocol->protocol_end(); 220 I != IEnd; ++I) 221 if (CheckObjCMethodOverrides(S, NewMethod, *I, false)) 222 return true; 223 224 return false; 225 } 226 227 return false; 228} 229 230bool Sema::CheckObjCMethodOverrides(ObjCMethodDecl *NewMethod, 231 DeclContext *DC) { 232 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(DC)) 233 return ::CheckObjCMethodOverrides(*this, NewMethod, Class); 234 235 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(DC)) 236 return ::CheckObjCMethodOverrides(*this, NewMethod, Category); 237 238 if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(DC)) 239 return ::CheckObjCMethodOverrides(*this, NewMethod, Protocol); 240 241 if (ObjCImplementationDecl *Impl = dyn_cast<ObjCImplementationDecl>(DC)) 242 return ::CheckObjCMethodOverrides(*this, NewMethod, 243 Impl->getClassInterface()); 244 245 if (ObjCCategoryImplDecl *CatImpl = dyn_cast<ObjCCategoryImplDecl>(DC)) 246 return ::CheckObjCMethodOverrides(*this, NewMethod, 247 CatImpl->getClassInterface()); 248 249 return ::CheckObjCMethodOverrides(*this, NewMethod, CurContext); 250} 251 252/// \brief Check a method declaration for compatibility with the Objective-C 253/// ARC conventions. 254static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) { 255 ObjCMethodFamily family = method->getMethodFamily(); 256 switch (family) { 257 case OMF_None: 258 case OMF_dealloc: 259 case OMF_retain: 260 case OMF_release: 261 case OMF_autorelease: 262 case OMF_retainCount: 263 case OMF_self: 264 return false; 265 266 case OMF_init: 267 // If the method doesn't obey the init rules, don't bother annotating it. 268 if (S.checkInitMethod(method, QualType())) 269 return true; 270 271 method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(), 272 S.Context)); 273 274 // Don't add a second copy of this attribute, but otherwise don't 275 // let it be suppressed. 276 if (method->hasAttr<NSReturnsRetainedAttr>()) 277 return false; 278 break; 279 280 case OMF_alloc: 281 case OMF_copy: 282 case OMF_mutableCopy: 283 case OMF_new: 284 if (method->hasAttr<NSReturnsRetainedAttr>() || 285 method->hasAttr<NSReturnsNotRetainedAttr>() || 286 method->hasAttr<NSReturnsAutoreleasedAttr>()) 287 return false; 288 break; 289 } 290 291 method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(), 292 S.Context)); 293 return false; 294} 295 296static void DiagnoseObjCImplementedDeprecations(Sema &S, 297 NamedDecl *ND, 298 SourceLocation ImplLoc, 299 int select) { 300 if (ND && ND->isDeprecated()) { 301 S.Diag(ImplLoc, diag::warn_deprecated_def) << select; 302 if (select == 0) 303 S.Diag(ND->getLocation(), diag::note_method_declared_at); 304 else 305 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; 306 } 307} 308 309/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 310/// and user declared, in the method definition's AST. 311void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 312 assert(getCurMethodDecl() == 0 && "Method parsing confused"); 313 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 314 315 // If we don't have a valid method decl, simply return. 316 if (!MDecl) 317 return; 318 319 // Allow the rest of sema to find private method decl implementations. 320 if (MDecl->isInstanceMethod()) 321 AddInstanceMethodToGlobalPool(MDecl, true); 322 else 323 AddFactoryMethodToGlobalPool(MDecl, true); 324 325 // Allow all of Sema to see that we are entering a method definition. 326 PushDeclContext(FnBodyScope, MDecl); 327 PushFunctionScope(); 328 329 // Create Decl objects for each parameter, entrring them in the scope for 330 // binding to their use. 331 332 // Insert the invisible arguments, self and _cmd! 333 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 334 335 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 336 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 337 338 // Introduce all of the other parameters into this scope. 339 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), 340 E = MDecl->param_end(); PI != E; ++PI) { 341 ParmVarDecl *Param = (*PI); 342 if (!Param->isInvalidDecl() && 343 RequireCompleteType(Param->getLocation(), Param->getType(), 344 diag::err_typecheck_decl_incomplete_type)) 345 Param->setInvalidDecl(); 346 if ((*PI)->getIdentifier()) 347 PushOnScopeChains(*PI, FnBodyScope); 348 } 349 350 // In ARC, disallow definition of retain/release/autorelease/retainCount 351 if (getLangOptions().ObjCAutoRefCount) { 352 switch (MDecl->getMethodFamily()) { 353 case OMF_retain: 354 case OMF_retainCount: 355 case OMF_release: 356 case OMF_autorelease: 357 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 358 << MDecl->getSelector(); 359 break; 360 361 case OMF_None: 362 case OMF_dealloc: 363 case OMF_alloc: 364 case OMF_init: 365 case OMF_mutableCopy: 366 case OMF_copy: 367 case OMF_new: 368 case OMF_self: 369 break; 370 } 371 } 372 373 // Warn on implementating deprecated methods under 374 // -Wdeprecated-implementations flag. 375 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) 376 if (ObjCMethodDecl *IMD = 377 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod())) 378 DiagnoseObjCImplementedDeprecations(*this, 379 dyn_cast<NamedDecl>(IMD), 380 MDecl->getLocation(), 0); 381} 382 383Decl *Sema:: 384ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 385 IdentifierInfo *ClassName, SourceLocation ClassLoc, 386 IdentifierInfo *SuperName, SourceLocation SuperLoc, 387 Decl * const *ProtoRefs, unsigned NumProtoRefs, 388 const SourceLocation *ProtoLocs, 389 SourceLocation EndProtoLoc, AttributeList *AttrList) { 390 assert(ClassName && "Missing class identifier"); 391 392 // Check for another declaration kind with the same name. 393 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 394 LookupOrdinaryName, ForRedeclaration); 395 396 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 397 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 398 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 399 } 400 401 ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 402 if (IDecl) { 403 // Class already seen. Is it a forward declaration? 404 if (!IDecl->isForwardDecl()) { 405 IDecl->setInvalidDecl(); 406 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName(); 407 Diag(IDecl->getLocation(), diag::note_previous_definition); 408 409 // Return the previous class interface. 410 // FIXME: don't leak the objects passed in! 411 return IDecl; 412 } else { 413 IDecl->setLocation(AtInterfaceLoc); 414 IDecl->setForwardDecl(false); 415 IDecl->setClassLoc(ClassLoc); 416 // If the forward decl was in a PCH, we need to write it again in a 417 // dependent AST file. 418 IDecl->setChangedSinceDeserialization(true); 419 420 // Since this ObjCInterfaceDecl was created by a forward declaration, 421 // we now add it to the DeclContext since it wasn't added before 422 // (see ActOnForwardClassDeclaration). 423 IDecl->setLexicalDeclContext(CurContext); 424 CurContext->addDecl(IDecl); 425 426 if (AttrList) 427 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 428 } 429 } else { 430 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, 431 ClassName, ClassLoc); 432 if (AttrList) 433 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 434 435 PushOnScopeChains(IDecl, TUScope); 436 } 437 438 if (SuperName) { 439 // Check if a different kind of symbol declared in this scope. 440 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 441 LookupOrdinaryName); 442 443 if (!PrevDecl) { 444 // Try to correct for a typo in the superclass name. 445 TypoCorrection Corrected = CorrectTypo( 446 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope, 447 NULL, NULL, false, CTC_NoKeywords); 448 if ((PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) { 449 Diag(SuperLoc, diag::err_undef_superclass_suggest) 450 << SuperName << ClassName << PrevDecl->getDeclName(); 451 Diag(PrevDecl->getLocation(), diag::note_previous_decl) 452 << PrevDecl->getDeclName(); 453 } 454 } 455 456 if (PrevDecl == IDecl) { 457 Diag(SuperLoc, diag::err_recursive_superclass) 458 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 459 IDecl->setLocEnd(ClassLoc); 460 } else { 461 ObjCInterfaceDecl *SuperClassDecl = 462 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 463 464 // Diagnose classes that inherit from deprecated classes. 465 if (SuperClassDecl) 466 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 467 468 if (PrevDecl && SuperClassDecl == 0) { 469 // The previous declaration was not a class decl. Check if we have a 470 // typedef. If we do, get the underlying class type. 471 if (const TypedefNameDecl *TDecl = 472 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 473 QualType T = TDecl->getUnderlyingType(); 474 if (T->isObjCObjectType()) { 475 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) 476 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 477 } 478 } 479 480 // This handles the following case: 481 // 482 // typedef int SuperClass; 483 // @interface MyClass : SuperClass {} @end 484 // 485 if (!SuperClassDecl) { 486 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 487 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 488 } 489 } 490 491 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 492 if (!SuperClassDecl) 493 Diag(SuperLoc, diag::err_undef_superclass) 494 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 495 else if (SuperClassDecl->isForwardDecl()) { 496 Diag(SuperLoc, diag::err_forward_superclass) 497 << SuperClassDecl->getDeclName() << ClassName 498 << SourceRange(AtInterfaceLoc, ClassLoc); 499 Diag(SuperClassDecl->getLocation(), diag::note_forward_class); 500 SuperClassDecl = 0; 501 } 502 } 503 IDecl->setSuperClass(SuperClassDecl); 504 IDecl->setSuperClassLoc(SuperLoc); 505 IDecl->setLocEnd(SuperLoc); 506 } 507 } else { // we have a root class. 508 IDecl->setLocEnd(ClassLoc); 509 } 510 511 // Check then save referenced protocols. 512 if (NumProtoRefs) { 513 IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 514 ProtoLocs, Context); 515 IDecl->setLocEnd(EndProtoLoc); 516 } 517 518 CheckObjCDeclScope(IDecl); 519 return IDecl; 520} 521 522/// ActOnCompatiblityAlias - this action is called after complete parsing of 523/// @compatibility_alias declaration. It sets up the alias relationships. 524Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc, 525 IdentifierInfo *AliasName, 526 SourceLocation AliasLocation, 527 IdentifierInfo *ClassName, 528 SourceLocation ClassLocation) { 529 // Look for previous declaration of alias name 530 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 531 LookupOrdinaryName, ForRedeclaration); 532 if (ADecl) { 533 if (isa<ObjCCompatibleAliasDecl>(ADecl)) 534 Diag(AliasLocation, diag::warn_previous_alias_decl); 535 else 536 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 537 Diag(ADecl->getLocation(), diag::note_previous_declaration); 538 return 0; 539 } 540 // Check for class declaration 541 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 542 LookupOrdinaryName, ForRedeclaration); 543 if (const TypedefNameDecl *TDecl = 544 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 545 QualType T = TDecl->getUnderlyingType(); 546 if (T->isObjCObjectType()) { 547 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 548 ClassName = IDecl->getIdentifier(); 549 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 550 LookupOrdinaryName, ForRedeclaration); 551 } 552 } 553 } 554 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 555 if (CDecl == 0) { 556 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 557 if (CDeclU) 558 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 559 return 0; 560 } 561 562 // Everything checked out, instantiate a new alias declaration AST. 563 ObjCCompatibleAliasDecl *AliasDecl = 564 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 565 566 if (!CheckObjCDeclScope(AliasDecl)) 567 PushOnScopeChains(AliasDecl, TUScope); 568 569 return AliasDecl; 570} 571 572bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 573 IdentifierInfo *PName, 574 SourceLocation &Ploc, SourceLocation PrevLoc, 575 const ObjCList<ObjCProtocolDecl> &PList) { 576 577 bool res = false; 578 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 579 E = PList.end(); I != E; ++I) { 580 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 581 Ploc)) { 582 if (PDecl->getIdentifier() == PName) { 583 Diag(Ploc, diag::err_protocol_has_circular_dependency); 584 Diag(PrevLoc, diag::note_previous_definition); 585 res = true; 586 } 587 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 588 PDecl->getLocation(), PDecl->getReferencedProtocols())) 589 res = true; 590 } 591 } 592 return res; 593} 594 595Decl * 596Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 597 IdentifierInfo *ProtocolName, 598 SourceLocation ProtocolLoc, 599 Decl * const *ProtoRefs, 600 unsigned NumProtoRefs, 601 const SourceLocation *ProtoLocs, 602 SourceLocation EndProtoLoc, 603 AttributeList *AttrList) { 604 bool err = false; 605 // FIXME: Deal with AttrList. 606 assert(ProtocolName && "Missing protocol identifier"); 607 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc); 608 if (PDecl) { 609 // Protocol already seen. Better be a forward protocol declaration 610 if (!PDecl->isForwardDecl()) { 611 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 612 Diag(PDecl->getLocation(), diag::note_previous_definition); 613 // Just return the protocol we already had. 614 // FIXME: don't leak the objects passed in! 615 return PDecl; 616 } 617 ObjCList<ObjCProtocolDecl> PList; 618 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 619 err = CheckForwardProtocolDeclarationForCircularDependency( 620 ProtocolName, ProtocolLoc, PDecl->getLocation(), PList); 621 622 // Make sure the cached decl gets a valid start location. 623 PDecl->setLocation(AtProtoInterfaceLoc); 624 PDecl->setForwardDecl(false); 625 CurContext->addDecl(PDecl); 626 // Repeat in dependent AST files. 627 PDecl->setChangedSinceDeserialization(true); 628 } else { 629 PDecl = ObjCProtocolDecl::Create(Context, CurContext, 630 AtProtoInterfaceLoc,ProtocolName); 631 PushOnScopeChains(PDecl, TUScope); 632 PDecl->setForwardDecl(false); 633 } 634 if (AttrList) 635 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 636 if (!err && NumProtoRefs ) { 637 /// Check then save referenced protocols. 638 PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 639 ProtoLocs, Context); 640 PDecl->setLocEnd(EndProtoLoc); 641 } 642 643 CheckObjCDeclScope(PDecl); 644 return PDecl; 645} 646 647/// FindProtocolDeclaration - This routine looks up protocols and 648/// issues an error if they are not declared. It returns list of 649/// protocol declarations in its 'Protocols' argument. 650void 651Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 652 const IdentifierLocPair *ProtocolId, 653 unsigned NumProtocols, 654 llvm::SmallVectorImpl<Decl *> &Protocols) { 655 for (unsigned i = 0; i != NumProtocols; ++i) { 656 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 657 ProtocolId[i].second); 658 if (!PDecl) { 659 TypoCorrection Corrected = CorrectTypo( 660 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), 661 LookupObjCProtocolName, TUScope, NULL, NULL, false, CTC_NoKeywords); 662 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) { 663 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) 664 << ProtocolId[i].first << Corrected.getCorrection(); 665 Diag(PDecl->getLocation(), diag::note_previous_decl) 666 << PDecl->getDeclName(); 667 } 668 } 669 670 if (!PDecl) { 671 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 672 << ProtocolId[i].first; 673 continue; 674 } 675 676 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 677 678 // If this is a forward declaration and we are supposed to warn in this 679 // case, do it. 680 if (WarnOnDeclarations && PDecl->isForwardDecl()) 681 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 682 << ProtocolId[i].first; 683 Protocols.push_back(PDecl); 684 } 685} 686 687/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 688/// a class method in its extension. 689/// 690void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 691 ObjCInterfaceDecl *ID) { 692 if (!ID) 693 return; // Possibly due to previous error 694 695 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 696 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), 697 e = ID->meth_end(); i != e; ++i) { 698 ObjCMethodDecl *MD = *i; 699 MethodMap[MD->getSelector()] = MD; 700 } 701 702 if (MethodMap.empty()) 703 return; 704 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), 705 e = CAT->meth_end(); i != e; ++i) { 706 ObjCMethodDecl *Method = *i; 707 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 708 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { 709 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 710 << Method->getDeclName(); 711 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 712 } 713 } 714} 715 716/// ActOnForwardProtocolDeclaration - Handle @protocol foo; 717Decl * 718Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 719 const IdentifierLocPair *IdentList, 720 unsigned NumElts, 721 AttributeList *attrList) { 722 llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols; 723 llvm::SmallVector<SourceLocation, 8> ProtoLocs; 724 725 for (unsigned i = 0; i != NumElts; ++i) { 726 IdentifierInfo *Ident = IdentList[i].first; 727 ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second); 728 bool isNew = false; 729 if (PDecl == 0) { // Not already seen? 730 PDecl = ObjCProtocolDecl::Create(Context, CurContext, 731 IdentList[i].second, Ident); 732 PushOnScopeChains(PDecl, TUScope, false); 733 isNew = true; 734 } 735 if (attrList) { 736 ProcessDeclAttributeList(TUScope, PDecl, attrList); 737 if (!isNew) 738 PDecl->setChangedSinceDeserialization(true); 739 } 740 Protocols.push_back(PDecl); 741 ProtoLocs.push_back(IdentList[i].second); 742 } 743 744 ObjCForwardProtocolDecl *PDecl = 745 ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc, 746 Protocols.data(), Protocols.size(), 747 ProtoLocs.data()); 748 CurContext->addDecl(PDecl); 749 CheckObjCDeclScope(PDecl); 750 return PDecl; 751} 752 753Decl *Sema:: 754ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 755 IdentifierInfo *ClassName, SourceLocation ClassLoc, 756 IdentifierInfo *CategoryName, 757 SourceLocation CategoryLoc, 758 Decl * const *ProtoRefs, 759 unsigned NumProtoRefs, 760 const SourceLocation *ProtoLocs, 761 SourceLocation EndProtoLoc) { 762 ObjCCategoryDecl *CDecl; 763 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 764 765 /// Check that class of this category is already completely declared. 766 if (!IDecl || IDecl->isForwardDecl()) { 767 // Create an invalid ObjCCategoryDecl to serve as context for 768 // the enclosing method declarations. We mark the decl invalid 769 // to make it clear that this isn't a valid AST. 770 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 771 ClassLoc, CategoryLoc, CategoryName); 772 CDecl->setInvalidDecl(); 773 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 774 return CDecl; 775 } 776 777 if (!CategoryName && IDecl->getImplementation()) { 778 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 779 Diag(IDecl->getImplementation()->getLocation(), 780 diag::note_implementation_declared); 781 } 782 783 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 784 ClassLoc, CategoryLoc, CategoryName); 785 // FIXME: PushOnScopeChains? 786 CurContext->addDecl(CDecl); 787 788 CDecl->setClassInterface(IDecl); 789 // Insert class extension to the list of class's categories. 790 if (!CategoryName) 791 CDecl->insertNextClassCategory(); 792 793 // If the interface is deprecated, warn about it. 794 (void)DiagnoseUseOfDecl(IDecl, ClassLoc); 795 796 if (CategoryName) { 797 /// Check for duplicate interface declaration for this category 798 ObjCCategoryDecl *CDeclChain; 799 for (CDeclChain = IDecl->getCategoryList(); CDeclChain; 800 CDeclChain = CDeclChain->getNextClassCategory()) { 801 if (CDeclChain->getIdentifier() == CategoryName) { 802 // Class extensions can be declared multiple times. 803 Diag(CategoryLoc, diag::warn_dup_category_def) 804 << ClassName << CategoryName; 805 Diag(CDeclChain->getLocation(), diag::note_previous_definition); 806 break; 807 } 808 } 809 if (!CDeclChain) 810 CDecl->insertNextClassCategory(); 811 } 812 813 if (NumProtoRefs) { 814 CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 815 ProtoLocs, Context); 816 // Protocols in the class extension belong to the class. 817 if (CDecl->IsClassExtension()) 818 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, 819 NumProtoRefs, Context); 820 } 821 822 CheckObjCDeclScope(CDecl); 823 return CDecl; 824} 825 826/// ActOnStartCategoryImplementation - Perform semantic checks on the 827/// category implementation declaration and build an ObjCCategoryImplDecl 828/// object. 829Decl *Sema::ActOnStartCategoryImplementation( 830 SourceLocation AtCatImplLoc, 831 IdentifierInfo *ClassName, SourceLocation ClassLoc, 832 IdentifierInfo *CatName, SourceLocation CatLoc) { 833 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 834 ObjCCategoryDecl *CatIDecl = 0; 835 if (IDecl) { 836 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 837 if (!CatIDecl) { 838 // Category @implementation with no corresponding @interface. 839 // Create and install one. 840 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(), 841 SourceLocation(), SourceLocation(), 842 CatName); 843 CatIDecl->setClassInterface(IDecl); 844 CatIDecl->insertNextClassCategory(); 845 } 846 } 847 848 ObjCCategoryImplDecl *CDecl = 849 ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName, 850 IDecl); 851 /// Check that class of this category is already completely declared. 852 if (!IDecl || IDecl->isForwardDecl()) 853 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 854 855 // FIXME: PushOnScopeChains? 856 CurContext->addDecl(CDecl); 857 858 /// Check that CatName, category name, is not used in another implementation. 859 if (CatIDecl) { 860 if (CatIDecl->getImplementation()) { 861 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 862 << CatName; 863 Diag(CatIDecl->getImplementation()->getLocation(), 864 diag::note_previous_definition); 865 } else { 866 CatIDecl->setImplementation(CDecl); 867 // Warn on implementating category of deprecated class under 868 // -Wdeprecated-implementations flag. 869 DiagnoseObjCImplementedDeprecations(*this, 870 dyn_cast<NamedDecl>(IDecl), 871 CDecl->getLocation(), 2); 872 } 873 } 874 875 CheckObjCDeclScope(CDecl); 876 return CDecl; 877} 878 879Decl *Sema::ActOnStartClassImplementation( 880 SourceLocation AtClassImplLoc, 881 IdentifierInfo *ClassName, SourceLocation ClassLoc, 882 IdentifierInfo *SuperClassname, 883 SourceLocation SuperClassLoc) { 884 ObjCInterfaceDecl* IDecl = 0; 885 // Check for another declaration kind with the same name. 886 NamedDecl *PrevDecl 887 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 888 ForRedeclaration); 889 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 890 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 891 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 892 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 893 // If this is a forward declaration of an interface, warn. 894 if (IDecl->isForwardDecl()) { 895 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 896 IDecl = 0; 897 } 898 } else { 899 // We did not find anything with the name ClassName; try to correct for 900 // typos in the class name. 901 TypoCorrection Corrected = CorrectTypo( 902 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope, 903 NULL, NULL, false, CTC_NoKeywords); 904 if ((IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) { 905 // Suggest the (potentially) correct interface name. However, put the 906 // fix-it hint itself in a separate note, since changing the name in 907 // the warning would make the fix-it change semantics.However, don't 908 // provide a code-modification hint or use the typo name for recovery, 909 // because this is just a warning. The program may actually be correct. 910 DeclarationName CorrectedName = Corrected.getCorrection(); 911 Diag(ClassLoc, diag::warn_undef_interface_suggest) 912 << ClassName << CorrectedName; 913 Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName 914 << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString()); 915 IDecl = 0; 916 } else { 917 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 918 } 919 } 920 921 // Check that super class name is valid class name 922 ObjCInterfaceDecl* SDecl = 0; 923 if (SuperClassname) { 924 // Check if a different kind of symbol declared in this scope. 925 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 926 LookupOrdinaryName); 927 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 928 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 929 << SuperClassname; 930 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 931 } else { 932 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 933 if (!SDecl) 934 Diag(SuperClassLoc, diag::err_undef_superclass) 935 << SuperClassname << ClassName; 936 else if (IDecl && IDecl->getSuperClass() != SDecl) { 937 // This implementation and its interface do not have the same 938 // super class. 939 Diag(SuperClassLoc, diag::err_conflicting_super_class) 940 << SDecl->getDeclName(); 941 Diag(SDecl->getLocation(), diag::note_previous_definition); 942 } 943 } 944 } 945 946 if (!IDecl) { 947 // Legacy case of @implementation with no corresponding @interface. 948 // Build, chain & install the interface decl into the identifier. 949 950 // FIXME: Do we support attributes on the @implementation? If so we should 951 // copy them over. 952 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 953 ClassName, ClassLoc, false, true); 954 IDecl->setSuperClass(SDecl); 955 IDecl->setLocEnd(ClassLoc); 956 957 PushOnScopeChains(IDecl, TUScope); 958 } else { 959 // Mark the interface as being completed, even if it was just as 960 // @class ....; 961 // declaration; the user cannot reopen it. 962 IDecl->setForwardDecl(false); 963 } 964 965 ObjCImplementationDecl* IMPDecl = 966 ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc, 967 IDecl, SDecl); 968 969 if (CheckObjCDeclScope(IMPDecl)) 970 return IMPDecl; 971 972 // Check that there is no duplicate implementation of this class. 973 if (IDecl->getImplementation()) { 974 // FIXME: Don't leak everything! 975 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 976 Diag(IDecl->getImplementation()->getLocation(), 977 diag::note_previous_definition); 978 } else { // add it to the list. 979 IDecl->setImplementation(IMPDecl); 980 PushOnScopeChains(IMPDecl, TUScope); 981 // Warn on implementating deprecated class under 982 // -Wdeprecated-implementations flag. 983 DiagnoseObjCImplementedDeprecations(*this, 984 dyn_cast<NamedDecl>(IDecl), 985 IMPDecl->getLocation(), 1); 986 } 987 return IMPDecl; 988} 989 990void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 991 ObjCIvarDecl **ivars, unsigned numIvars, 992 SourceLocation RBrace) { 993 assert(ImpDecl && "missing implementation decl"); 994 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 995 if (!IDecl) 996 return; 997 /// Check case of non-existing @interface decl. 998 /// (legacy objective-c @implementation decl without an @interface decl). 999 /// Add implementations's ivar to the synthesize class's ivar list. 1000 if (IDecl->isImplicitInterfaceDecl()) { 1001 IDecl->setLocEnd(RBrace); 1002 // Add ivar's to class's DeclContext. 1003 for (unsigned i = 0, e = numIvars; i != e; ++i) { 1004 ivars[i]->setLexicalDeclContext(ImpDecl); 1005 IDecl->makeDeclVisibleInContext(ivars[i], false); 1006 ImpDecl->addDecl(ivars[i]); 1007 } 1008 1009 return; 1010 } 1011 // If implementation has empty ivar list, just return. 1012 if (numIvars == 0) 1013 return; 1014 1015 assert(ivars && "missing @implementation ivars"); 1016 if (LangOpts.ObjCNonFragileABI2) { 1017 if (ImpDecl->getSuperClass()) 1018 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 1019 for (unsigned i = 0; i < numIvars; i++) { 1020 ObjCIvarDecl* ImplIvar = ivars[i]; 1021 if (const ObjCIvarDecl *ClsIvar = 1022 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 1023 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 1024 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1025 continue; 1026 } 1027 // Instance ivar to Implementation's DeclContext. 1028 ImplIvar->setLexicalDeclContext(ImpDecl); 1029 IDecl->makeDeclVisibleInContext(ImplIvar, false); 1030 ImpDecl->addDecl(ImplIvar); 1031 } 1032 return; 1033 } 1034 // Check interface's Ivar list against those in the implementation. 1035 // names and types must match. 1036 // 1037 unsigned j = 0; 1038 ObjCInterfaceDecl::ivar_iterator 1039 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 1040 for (; numIvars > 0 && IVI != IVE; ++IVI) { 1041 ObjCIvarDecl* ImplIvar = ivars[j++]; 1042 ObjCIvarDecl* ClsIvar = *IVI; 1043 assert (ImplIvar && "missing implementation ivar"); 1044 assert (ClsIvar && "missing class ivar"); 1045 1046 // First, make sure the types match. 1047 if (Context.getCanonicalType(ImplIvar->getType()) != 1048 Context.getCanonicalType(ClsIvar->getType())) { 1049 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 1050 << ImplIvar->getIdentifier() 1051 << ImplIvar->getType() << ClsIvar->getType(); 1052 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1053 } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) { 1054 Expr *ImplBitWidth = ImplIvar->getBitWidth(); 1055 Expr *ClsBitWidth = ClsIvar->getBitWidth(); 1056 if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() != 1057 ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) { 1058 Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth) 1059 << ImplIvar->getIdentifier(); 1060 Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition); 1061 } 1062 } 1063 // Make sure the names are identical. 1064 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 1065 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 1066 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 1067 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1068 } 1069 --numIvars; 1070 } 1071 1072 if (numIvars > 0) 1073 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); 1074 else if (IVI != IVE) 1075 Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count); 1076} 1077 1078void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, 1079 bool &IncompleteImpl, unsigned DiagID) { 1080 // No point warning no definition of method which is 'unavailable'. 1081 if (method->hasAttr<UnavailableAttr>()) 1082 return; 1083 if (!IncompleteImpl) { 1084 Diag(ImpLoc, diag::warn_incomplete_impl); 1085 IncompleteImpl = true; 1086 } 1087 if (DiagID == diag::warn_unimplemented_protocol_method) 1088 Diag(ImpLoc, DiagID) << method->getDeclName(); 1089 else 1090 Diag(method->getLocation(), DiagID) << method->getDeclName(); 1091} 1092 1093/// Determines if type B can be substituted for type A. Returns true if we can 1094/// guarantee that anything that the user will do to an object of type A can 1095/// also be done to an object of type B. This is trivially true if the two 1096/// types are the same, or if B is a subclass of A. It becomes more complex 1097/// in cases where protocols are involved. 1098/// 1099/// Object types in Objective-C describe the minimum requirements for an 1100/// object, rather than providing a complete description of a type. For 1101/// example, if A is a subclass of B, then B* may refer to an instance of A. 1102/// The principle of substitutability means that we may use an instance of A 1103/// anywhere that we may use an instance of B - it will implement all of the 1104/// ivars of B and all of the methods of B. 1105/// 1106/// This substitutability is important when type checking methods, because 1107/// the implementation may have stricter type definitions than the interface. 1108/// The interface specifies minimum requirements, but the implementation may 1109/// have more accurate ones. For example, a method may privately accept 1110/// instances of B, but only publish that it accepts instances of A. Any 1111/// object passed to it will be type checked against B, and so will implicitly 1112/// by a valid A*. Similarly, a method may return a subclass of the class that 1113/// it is declared as returning. 1114/// 1115/// This is most important when considering subclassing. A method in a 1116/// subclass must accept any object as an argument that its superclass's 1117/// implementation accepts. It may, however, accept a more general type 1118/// without breaking substitutability (i.e. you can still use the subclass 1119/// anywhere that you can use the superclass, but not vice versa). The 1120/// converse requirement applies to return types: the return type for a 1121/// subclass method must be a valid object of the kind that the superclass 1122/// advertises, but it may be specified more accurately. This avoids the need 1123/// for explicit down-casting by callers. 1124/// 1125/// Note: This is a stricter requirement than for assignment. 1126static bool isObjCTypeSubstitutable(ASTContext &Context, 1127 const ObjCObjectPointerType *A, 1128 const ObjCObjectPointerType *B, 1129 bool rejectId) { 1130 // Reject a protocol-unqualified id. 1131 if (rejectId && B->isObjCIdType()) return false; 1132 1133 // If B is a qualified id, then A must also be a qualified id and it must 1134 // implement all of the protocols in B. It may not be a qualified class. 1135 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 1136 // stricter definition so it is not substitutable for id<A>. 1137 if (B->isObjCQualifiedIdType()) { 1138 return A->isObjCQualifiedIdType() && 1139 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), 1140 QualType(B,0), 1141 false); 1142 } 1143 1144 /* 1145 // id is a special type that bypasses type checking completely. We want a 1146 // warning when it is used in one place but not another. 1147 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 1148 1149 1150 // If B is a qualified id, then A must also be a qualified id (which it isn't 1151 // if we've got this far) 1152 if (B->isObjCQualifiedIdType()) return false; 1153 */ 1154 1155 // Now we know that A and B are (potentially-qualified) class types. The 1156 // normal rules for assignment apply. 1157 return Context.canAssignObjCInterfaces(A, B); 1158} 1159 1160static SourceRange getTypeRange(TypeSourceInfo *TSI) { 1161 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 1162} 1163 1164static void CheckMethodOverrideReturn(Sema &S, 1165 ObjCMethodDecl *MethodImpl, 1166 ObjCMethodDecl *MethodDecl, 1167 bool IsProtocolMethodDecl) { 1168 if (IsProtocolMethodDecl && 1169 (MethodDecl->getObjCDeclQualifier() != 1170 MethodImpl->getObjCDeclQualifier())) { 1171 S.Diag(MethodImpl->getLocation(), 1172 diag::warn_conflicting_ret_type_modifiers) 1173 << MethodImpl->getDeclName() 1174 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1175 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 1176 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1177 } 1178 1179 if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(), 1180 MethodDecl->getResultType())) 1181 return; 1182 1183 unsigned DiagID = diag::warn_conflicting_ret_types; 1184 1185 // Mismatches between ObjC pointers go into a different warning 1186 // category, and sometimes they're even completely whitelisted. 1187 if (const ObjCObjectPointerType *ImplPtrTy = 1188 MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) { 1189 if (const ObjCObjectPointerType *IfacePtrTy = 1190 MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) { 1191 // Allow non-matching return types as long as they don't violate 1192 // the principle of substitutability. Specifically, we permit 1193 // return types that are subclasses of the declared return type, 1194 // or that are more-qualified versions of the declared type. 1195 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 1196 return; 1197 1198 DiagID = diag::warn_non_covariant_ret_types; 1199 } 1200 } 1201 1202 S.Diag(MethodImpl->getLocation(), DiagID) 1203 << MethodImpl->getDeclName() 1204 << MethodDecl->getResultType() 1205 << MethodImpl->getResultType() 1206 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1207 S.Diag(MethodDecl->getLocation(), diag::note_previous_definition) 1208 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1209} 1210 1211static void CheckMethodOverrideParam(Sema &S, 1212 ObjCMethodDecl *MethodImpl, 1213 ObjCMethodDecl *MethodDecl, 1214 ParmVarDecl *ImplVar, 1215 ParmVarDecl *IfaceVar, 1216 bool IsProtocolMethodDecl) { 1217 if (IsProtocolMethodDecl && 1218 (ImplVar->getObjCDeclQualifier() != 1219 IfaceVar->getObjCDeclQualifier())) { 1220 S.Diag(ImplVar->getLocation(), 1221 diag::warn_conflicting_param_modifiers) 1222 << getTypeRange(ImplVar->getTypeSourceInfo()) 1223 << MethodImpl->getDeclName(); 1224 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 1225 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1226 } 1227 1228 QualType ImplTy = ImplVar->getType(); 1229 QualType IfaceTy = IfaceVar->getType(); 1230 1231 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 1232 return; 1233 1234 unsigned DiagID = diag::warn_conflicting_param_types; 1235 1236 // Mismatches between ObjC pointers go into a different warning 1237 // category, and sometimes they're even completely whitelisted. 1238 if (const ObjCObjectPointerType *ImplPtrTy = 1239 ImplTy->getAs<ObjCObjectPointerType>()) { 1240 if (const ObjCObjectPointerType *IfacePtrTy = 1241 IfaceTy->getAs<ObjCObjectPointerType>()) { 1242 // Allow non-matching argument types as long as they don't 1243 // violate the principle of substitutability. Specifically, the 1244 // implementation must accept any objects that the superclass 1245 // accepts, however it may also accept others. 1246 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 1247 return; 1248 1249 DiagID = diag::warn_non_contravariant_param_types; 1250 } 1251 } 1252 1253 S.Diag(ImplVar->getLocation(), DiagID) 1254 << getTypeRange(ImplVar->getTypeSourceInfo()) 1255 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 1256 S.Diag(IfaceVar->getLocation(), diag::note_previous_definition) 1257 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1258} 1259 1260/// In ARC, check whether the conventional meanings of the two methods 1261/// match. If they don't, it's a hard error. 1262static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 1263 ObjCMethodDecl *decl) { 1264 ObjCMethodFamily implFamily = impl->getMethodFamily(); 1265 ObjCMethodFamily declFamily = decl->getMethodFamily(); 1266 if (implFamily == declFamily) return false; 1267 1268 // Since conventions are sorted by selector, the only possibility is 1269 // that the types differ enough to cause one selector or the other 1270 // to fall out of the family. 1271 assert(implFamily == OMF_None || declFamily == OMF_None); 1272 1273 // No further diagnostics required on invalid declarations. 1274 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 1275 1276 const ObjCMethodDecl *unmatched = impl; 1277 ObjCMethodFamily family = declFamily; 1278 unsigned errorID = diag::err_arc_lost_method_convention; 1279 unsigned noteID = diag::note_arc_lost_method_convention; 1280 if (declFamily == OMF_None) { 1281 unmatched = decl; 1282 family = implFamily; 1283 errorID = diag::err_arc_gained_method_convention; 1284 noteID = diag::note_arc_gained_method_convention; 1285 } 1286 1287 // Indexes into a %select clause in the diagnostic. 1288 enum FamilySelector { 1289 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 1290 }; 1291 FamilySelector familySelector = FamilySelector(); 1292 1293 switch (family) { 1294 case OMF_None: llvm_unreachable("logic error, no method convention"); 1295 case OMF_retain: 1296 case OMF_release: 1297 case OMF_autorelease: 1298 case OMF_dealloc: 1299 case OMF_retainCount: 1300 case OMF_self: 1301 // Mismatches for these methods don't change ownership 1302 // conventions, so we don't care. 1303 return false; 1304 1305 case OMF_init: familySelector = F_init; break; 1306 case OMF_alloc: familySelector = F_alloc; break; 1307 case OMF_copy: familySelector = F_copy; break; 1308 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 1309 case OMF_new: familySelector = F_new; break; 1310 } 1311 1312 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 1313 ReasonSelector reasonSelector; 1314 1315 // The only reason these methods don't fall within their families is 1316 // due to unusual result types. 1317 if (unmatched->getResultType()->isObjCObjectPointerType()) { 1318 reasonSelector = R_UnrelatedReturn; 1319 } else { 1320 reasonSelector = R_NonObjectReturn; 1321 } 1322 1323 S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector; 1324 S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector; 1325 1326 return true; 1327} 1328 1329void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1330 ObjCMethodDecl *MethodDecl, 1331 bool IsProtocolMethodDecl) { 1332 if (getLangOptions().ObjCAutoRefCount && 1333 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 1334 return; 1335 1336 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1337 IsProtocolMethodDecl); 1338 1339 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1340 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); 1341 IM != EM; ++IM, ++IF) 1342 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 1343 IsProtocolMethodDecl); 1344 1345 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 1346 Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic); 1347 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 1348 } 1349} 1350 1351/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 1352/// improve the efficiency of selector lookups and type checking by associating 1353/// with each protocol / interface / category the flattened instance tables. If 1354/// we used an immutable set to keep the table then it wouldn't add significant 1355/// memory cost and it would be handy for lookups. 1356 1357/// CheckProtocolMethodDefs - This routine checks unimplemented methods 1358/// Declared in protocol, and those referenced by it. 1359void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, 1360 ObjCProtocolDecl *PDecl, 1361 bool& IncompleteImpl, 1362 const llvm::DenseSet<Selector> &InsMap, 1363 const llvm::DenseSet<Selector> &ClsMap, 1364 ObjCContainerDecl *CDecl) { 1365 ObjCInterfaceDecl *IDecl; 1366 if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) 1367 IDecl = C->getClassInterface(); 1368 else 1369 IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl); 1370 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 1371 1372 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 1373 ObjCInterfaceDecl *NSIDecl = 0; 1374 if (getLangOptions().NeXTRuntime) { 1375 // check to see if class implements forwardInvocation method and objects 1376 // of this class are derived from 'NSProxy' so that to forward requests 1377 // from one object to another. 1378 // Under such conditions, which means that every method possible is 1379 // implemented in the class, we should not issue "Method definition not 1380 // found" warnings. 1381 // FIXME: Use a general GetUnarySelector method for this. 1382 IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); 1383 Selector fISelector = Context.Selectors.getSelector(1, &II); 1384 if (InsMap.count(fISelector)) 1385 // Is IDecl derived from 'NSProxy'? If so, no instance methods 1386 // need be implemented in the implementation. 1387 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); 1388 } 1389 1390 // If a method lookup fails locally we still need to look and see if 1391 // the method was implemented by a base class or an inherited 1392 // protocol. This lookup is slow, but occurs rarely in correct code 1393 // and otherwise would terminate in a warning. 1394 1395 // check unimplemented instance methods. 1396 if (!NSIDecl) 1397 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), 1398 E = PDecl->instmeth_end(); I != E; ++I) { 1399 ObjCMethodDecl *method = *I; 1400 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1401 !method->isSynthesized() && !InsMap.count(method->getSelector()) && 1402 (!Super || 1403 !Super->lookupInstanceMethod(method->getSelector()))) { 1404 // Ugly, but necessary. Method declared in protcol might have 1405 // have been synthesized due to a property declared in the class which 1406 // uses the protocol. 1407 ObjCMethodDecl *MethodInClass = 1408 IDecl->lookupInstanceMethod(method->getSelector()); 1409 if (!MethodInClass || !MethodInClass->isSynthesized()) { 1410 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1411 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) 1412 != Diagnostic::Ignored) { 1413 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1414 Diag(method->getLocation(), diag::note_method_declared_at); 1415 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) 1416 << PDecl->getDeclName(); 1417 } 1418 } 1419 } 1420 } 1421 // check unimplemented class methods 1422 for (ObjCProtocolDecl::classmeth_iterator 1423 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); 1424 I != E; ++I) { 1425 ObjCMethodDecl *method = *I; 1426 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1427 !ClsMap.count(method->getSelector()) && 1428 (!Super || !Super->lookupClassMethod(method->getSelector()))) { 1429 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1430 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != Diagnostic::Ignored) { 1431 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1432 Diag(method->getLocation(), diag::note_method_declared_at); 1433 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << 1434 PDecl->getDeclName(); 1435 } 1436 } 1437 } 1438 // Check on this protocols's referenced protocols, recursively. 1439 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), 1440 E = PDecl->protocol_end(); PI != E; ++PI) 1441 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl); 1442} 1443 1444/// MatchAllMethodDeclarations - Check methods declaraed in interface or 1445/// or protocol against those declared in their implementations. 1446/// 1447void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap, 1448 const llvm::DenseSet<Selector> &ClsMap, 1449 llvm::DenseSet<Selector> &InsMapSeen, 1450 llvm::DenseSet<Selector> &ClsMapSeen, 1451 ObjCImplDecl* IMPDecl, 1452 ObjCContainerDecl* CDecl, 1453 bool &IncompleteImpl, 1454 bool ImmediateClass) { 1455 // Check and see if instance methods in class interface have been 1456 // implemented in the implementation class. If so, their types match. 1457 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), 1458 E = CDecl->instmeth_end(); I != E; ++I) { 1459 if (InsMapSeen.count((*I)->getSelector())) 1460 continue; 1461 InsMapSeen.insert((*I)->getSelector()); 1462 if (!(*I)->isSynthesized() && 1463 !InsMap.count((*I)->getSelector())) { 1464 if (ImmediateClass) 1465 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1466 diag::note_undef_method_impl); 1467 continue; 1468 } else { 1469 ObjCMethodDecl *ImpMethodDecl = 1470 IMPDecl->getInstanceMethod((*I)->getSelector()); 1471 ObjCMethodDecl *MethodDecl = 1472 CDecl->getInstanceMethod((*I)->getSelector()); 1473 assert(MethodDecl && 1474 "MethodDecl is null in ImplMethodsVsClassMethods"); 1475 // ImpMethodDecl may be null as in a @dynamic property. 1476 if (ImpMethodDecl) 1477 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1478 isa<ObjCProtocolDecl>(CDecl)); 1479 } 1480 } 1481 1482 // Check and see if class methods in class interface have been 1483 // implemented in the implementation class. If so, their types match. 1484 for (ObjCInterfaceDecl::classmeth_iterator 1485 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { 1486 if (ClsMapSeen.count((*I)->getSelector())) 1487 continue; 1488 ClsMapSeen.insert((*I)->getSelector()); 1489 if (!ClsMap.count((*I)->getSelector())) { 1490 if (ImmediateClass) 1491 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1492 diag::note_undef_method_impl); 1493 } else { 1494 ObjCMethodDecl *ImpMethodDecl = 1495 IMPDecl->getClassMethod((*I)->getSelector()); 1496 ObjCMethodDecl *MethodDecl = 1497 CDecl->getClassMethod((*I)->getSelector()); 1498 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1499 isa<ObjCProtocolDecl>(CDecl)); 1500 } 1501 } 1502 1503 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1504 // Also methods in class extensions need be looked at next. 1505 for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); 1506 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) 1507 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1508 IMPDecl, 1509 const_cast<ObjCCategoryDecl *>(ClsExtDecl), 1510 IncompleteImpl, false); 1511 1512 // Check for any implementation of a methods declared in protocol. 1513 for (ObjCInterfaceDecl::all_protocol_iterator 1514 PI = I->all_referenced_protocol_begin(), 1515 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1516 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1517 IMPDecl, 1518 (*PI), IncompleteImpl, false); 1519 if (I->getSuperClass()) 1520 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1521 IMPDecl, 1522 I->getSuperClass(), IncompleteImpl, false); 1523 } 1524} 1525 1526void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 1527 ObjCContainerDecl* CDecl, 1528 bool IncompleteImpl) { 1529 llvm::DenseSet<Selector> InsMap; 1530 // Check and see if instance methods in class interface have been 1531 // implemented in the implementation class. 1532 for (ObjCImplementationDecl::instmeth_iterator 1533 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) 1534 InsMap.insert((*I)->getSelector()); 1535 1536 // Check and see if properties declared in the interface have either 1) 1537 // an implementation or 2) there is a @synthesize/@dynamic implementation 1538 // of the property in the @implementation. 1539 if (isa<ObjCInterfaceDecl>(CDecl) && 1540 !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2)) 1541 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1542 1543 llvm::DenseSet<Selector> ClsMap; 1544 for (ObjCImplementationDecl::classmeth_iterator 1545 I = IMPDecl->classmeth_begin(), 1546 E = IMPDecl->classmeth_end(); I != E; ++I) 1547 ClsMap.insert((*I)->getSelector()); 1548 1549 // Check for type conflict of methods declared in a class/protocol and 1550 // its implementation; if any. 1551 llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; 1552 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1553 IMPDecl, CDecl, 1554 IncompleteImpl, true); 1555 1556 // Check the protocol list for unimplemented methods in the @implementation 1557 // class. 1558 // Check and see if class methods in class interface have been 1559 // implemented in the implementation class. 1560 1561 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1562 for (ObjCInterfaceDecl::all_protocol_iterator 1563 PI = I->all_referenced_protocol_begin(), 1564 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1565 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1566 InsMap, ClsMap, I); 1567 // Check class extensions (unnamed categories) 1568 for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension(); 1569 Categories; Categories = Categories->getNextClassExtension()) 1570 ImplMethodsVsClassMethods(S, IMPDecl, 1571 const_cast<ObjCCategoryDecl*>(Categories), 1572 IncompleteImpl); 1573 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 1574 // For extended class, unimplemented methods in its protocols will 1575 // be reported in the primary class. 1576 if (!C->IsClassExtension()) { 1577 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), 1578 E = C->protocol_end(); PI != E; ++PI) 1579 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1580 InsMap, ClsMap, CDecl); 1581 // Report unimplemented properties in the category as well. 1582 // When reporting on missing setter/getters, do not report when 1583 // setter/getter is implemented in category's primary class 1584 // implementation. 1585 if (ObjCInterfaceDecl *ID = C->getClassInterface()) 1586 if (ObjCImplDecl *IMP = ID->getImplementation()) { 1587 for (ObjCImplementationDecl::instmeth_iterator 1588 I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) 1589 InsMap.insert((*I)->getSelector()); 1590 } 1591 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1592 } 1593 } else 1594 assert(false && "invalid ObjCContainerDecl type."); 1595} 1596 1597/// ActOnForwardClassDeclaration - 1598Decl * 1599Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 1600 IdentifierInfo **IdentList, 1601 SourceLocation *IdentLocs, 1602 unsigned NumElts) { 1603 llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces; 1604 1605 for (unsigned i = 0; i != NumElts; ++i) { 1606 // Check for another declaration kind with the same name. 1607 NamedDecl *PrevDecl 1608 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 1609 LookupOrdinaryName, ForRedeclaration); 1610 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1611 // Maybe we will complain about the shadowed template parameter. 1612 DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); 1613 // Just pretend that we didn't see the previous declaration. 1614 PrevDecl = 0; 1615 } 1616 1617 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1618 // GCC apparently allows the following idiom: 1619 // 1620 // typedef NSObject < XCElementTogglerP > XCElementToggler; 1621 // @class XCElementToggler; 1622 // 1623 // FIXME: Make an extension? 1624 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 1625 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 1626 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 1627 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1628 } else { 1629 // a forward class declaration matching a typedef name of a class refers 1630 // to the underlying class. 1631 if (const ObjCObjectType *OI = 1632 TDD->getUnderlyingType()->getAs<ObjCObjectType>()) 1633 PrevDecl = OI->getInterface(); 1634 } 1635 } 1636 ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 1637 if (!IDecl) { // Not already seen? Make a forward decl. 1638 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 1639 IdentList[i], IdentLocs[i], true); 1640 1641 // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to 1642 // the current DeclContext. This prevents clients that walk DeclContext 1643 // from seeing the imaginary ObjCInterfaceDecl until it is actually 1644 // declared later (if at all). We also take care to explicitly make 1645 // sure this declaration is visible for name lookup. 1646 PushOnScopeChains(IDecl, TUScope, false); 1647 CurContext->makeDeclVisibleInContext(IDecl, true); 1648 } 1649 1650 Interfaces.push_back(IDecl); 1651 } 1652 1653 assert(Interfaces.size() == NumElts); 1654 ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc, 1655 Interfaces.data(), IdentLocs, 1656 Interfaces.size()); 1657 CurContext->addDecl(CDecl); 1658 CheckObjCDeclScope(CDecl); 1659 return CDecl; 1660} 1661 1662static bool tryMatchRecordTypes(ASTContext &Context, 1663 Sema::MethodMatchStrategy strategy, 1664 const Type *left, const Type *right); 1665 1666static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 1667 QualType leftQT, QualType rightQT) { 1668 const Type *left = 1669 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 1670 const Type *right = 1671 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 1672 1673 if (left == right) return true; 1674 1675 // If we're doing a strict match, the types have to match exactly. 1676 if (strategy == Sema::MMS_strict) return false; 1677 1678 if (left->isIncompleteType() || right->isIncompleteType()) return false; 1679 1680 // Otherwise, use this absurdly complicated algorithm to try to 1681 // validate the basic, low-level compatibility of the two types. 1682 1683 // As a minimum, require the sizes and alignments to match. 1684 if (Context.getTypeInfo(left) != Context.getTypeInfo(right)) 1685 return false; 1686 1687 // Consider all the kinds of non-dependent canonical types: 1688 // - functions and arrays aren't possible as return and parameter types 1689 1690 // - vector types of equal size can be arbitrarily mixed 1691 if (isa<VectorType>(left)) return isa<VectorType>(right); 1692 if (isa<VectorType>(right)) return false; 1693 1694 // - references should only match references of identical type 1695 // - structs, unions, and Objective-C objects must match more-or-less 1696 // exactly 1697 // - everything else should be a scalar 1698 if (!left->isScalarType() || !right->isScalarType()) 1699 return tryMatchRecordTypes(Context, strategy, left, right); 1700 1701 // Make scalars agree in kind, except count bools as chars. 1702 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 1703 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 1704 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 1705 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 1706 1707 // Note that data member pointers and function member pointers don't 1708 // intermix because of the size differences. 1709 1710 return (leftSK == rightSK); 1711} 1712 1713static bool tryMatchRecordTypes(ASTContext &Context, 1714 Sema::MethodMatchStrategy strategy, 1715 const Type *lt, const Type *rt) { 1716 assert(lt && rt && lt != rt); 1717 1718 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 1719 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 1720 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 1721 1722 // Require union-hood to match. 1723 if (left->isUnion() != right->isUnion()) return false; 1724 1725 // Require an exact match if either is non-POD. 1726 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 1727 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 1728 return false; 1729 1730 // Require size and alignment to match. 1731 if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false; 1732 1733 // Require fields to match. 1734 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 1735 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 1736 for (; li != le && ri != re; ++li, ++ri) { 1737 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 1738 return false; 1739 } 1740 return (li == le && ri == re); 1741} 1742 1743/// MatchTwoMethodDeclarations - Checks that two methods have matching type and 1744/// returns true, or false, accordingly. 1745/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 1746bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 1747 const ObjCMethodDecl *right, 1748 MethodMatchStrategy strategy) { 1749 if (!matchTypes(Context, strategy, 1750 left->getResultType(), right->getResultType())) 1751 return false; 1752 1753 if (getLangOptions().ObjCAutoRefCount && 1754 (left->hasAttr<NSReturnsRetainedAttr>() 1755 != right->hasAttr<NSReturnsRetainedAttr>() || 1756 left->hasAttr<NSConsumesSelfAttr>() 1757 != right->hasAttr<NSConsumesSelfAttr>())) 1758 return false; 1759 1760 ObjCMethodDecl::param_iterator 1761 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(); 1762 1763 for (; li != le; ++li, ++ri) { 1764 assert(ri != right->param_end() && "Param mismatch"); 1765 ParmVarDecl *lparm = *li, *rparm = *ri; 1766 1767 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 1768 return false; 1769 1770 if (getLangOptions().ObjCAutoRefCount && 1771 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 1772 return false; 1773 } 1774 return true; 1775} 1776 1777/// \brief Read the contents of the method pool for a given selector from 1778/// external storage. 1779/// 1780/// This routine should only be called once, when the method pool has no entry 1781/// for this selector. 1782Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) { 1783 assert(ExternalSource && "We need an external AST source"); 1784 assert(MethodPool.find(Sel) == MethodPool.end() && 1785 "Selector data already loaded into the method pool"); 1786 1787 // Read the method list from the external source. 1788 GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel); 1789 1790 return MethodPool.insert(std::make_pair(Sel, Methods)).first; 1791} 1792 1793void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 1794 bool instance) { 1795 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 1796 if (Pos == MethodPool.end()) { 1797 if (ExternalSource) 1798 Pos = ReadMethodPool(Method->getSelector()); 1799 else 1800 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 1801 GlobalMethods())).first; 1802 } 1803 Method->setDefined(impl); 1804 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 1805 if (Entry.Method == 0) { 1806 // Haven't seen a method with this selector name yet - add it. 1807 Entry.Method = Method; 1808 Entry.Next = 0; 1809 return; 1810 } 1811 1812 // We've seen a method with this name, see if we have already seen this type 1813 // signature. 1814 for (ObjCMethodList *List = &Entry; List; List = List->Next) { 1815 bool match = MatchTwoMethodDeclarations(Method, List->Method); 1816 1817 if (match) { 1818 ObjCMethodDecl *PrevObjCMethod = List->Method; 1819 PrevObjCMethod->setDefined(impl); 1820 // If a method is deprecated, push it in the global pool. 1821 // This is used for better diagnostics. 1822 if (Method->isDeprecated()) { 1823 if (!PrevObjCMethod->isDeprecated()) 1824 List->Method = Method; 1825 } 1826 // If new method is unavailable, push it into global pool 1827 // unless previous one is deprecated. 1828 if (Method->isUnavailable()) { 1829 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 1830 List->Method = Method; 1831 } 1832 return; 1833 } 1834 } 1835 1836 // We have a new signature for an existing method - add it. 1837 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 1838 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 1839 Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next); 1840} 1841 1842/// Determines if this is an "acceptable" loose mismatch in the global 1843/// method pool. This exists mostly as a hack to get around certain 1844/// global mismatches which we can't afford to make warnings / errors. 1845/// Really, what we want is a way to take a method out of the global 1846/// method pool. 1847static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 1848 ObjCMethodDecl *other) { 1849 if (!chosen->isInstanceMethod()) 1850 return false; 1851 1852 Selector sel = chosen->getSelector(); 1853 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 1854 return false; 1855 1856 // Don't complain about mismatches for -length if the method we 1857 // chose has an integral result type. 1858 return (chosen->getResultType()->isIntegerType()); 1859} 1860 1861ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 1862 bool receiverIdOrClass, 1863 bool warn, bool instance) { 1864 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 1865 if (Pos == MethodPool.end()) { 1866 if (ExternalSource) 1867 Pos = ReadMethodPool(Sel); 1868 else 1869 return 0; 1870 } 1871 1872 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 1873 1874 if (warn && MethList.Method && MethList.Next) { 1875 bool issueDiagnostic = false, issueError = false; 1876 1877 // We support a warning which complains about *any* difference in 1878 // method signature. 1879 bool strictSelectorMatch = 1880 (receiverIdOrClass && warn && 1881 (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl, 1882 R.getBegin()) != 1883 Diagnostic::Ignored)); 1884 if (strictSelectorMatch) 1885 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 1886 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 1887 MMS_strict)) { 1888 issueDiagnostic = true; 1889 break; 1890 } 1891 } 1892 1893 // If we didn't see any strict differences, we won't see any loose 1894 // differences. In ARC, however, we also need to check for loose 1895 // mismatches, because most of them are errors. 1896 if (!strictSelectorMatch || 1897 (issueDiagnostic && getLangOptions().ObjCAutoRefCount)) 1898 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 1899 // This checks if the methods differ in type mismatch. 1900 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 1901 MMS_loose) && 1902 !isAcceptableMethodMismatch(MethList.Method, Next->Method)) { 1903 issueDiagnostic = true; 1904 if (getLangOptions().ObjCAutoRefCount) 1905 issueError = true; 1906 break; 1907 } 1908 } 1909 1910 if (issueDiagnostic) { 1911 if (issueError) 1912 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 1913 else if (strictSelectorMatch) 1914 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 1915 else 1916 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 1917 1918 Diag(MethList.Method->getLocStart(), 1919 issueError ? diag::note_possibility : diag::note_using) 1920 << MethList.Method->getSourceRange(); 1921 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) 1922 Diag(Next->Method->getLocStart(), diag::note_also_found) 1923 << Next->Method->getSourceRange(); 1924 } 1925 } 1926 return MethList.Method; 1927} 1928 1929ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 1930 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 1931 if (Pos == MethodPool.end()) 1932 return 0; 1933 1934 GlobalMethods &Methods = Pos->second; 1935 1936 if (Methods.first.Method && Methods.first.Method->isDefined()) 1937 return Methods.first.Method; 1938 if (Methods.second.Method && Methods.second.Method->isDefined()) 1939 return Methods.second.Method; 1940 return 0; 1941} 1942 1943/// CompareMethodParamsInBaseAndSuper - This routine compares methods with 1944/// identical selector names in current and its super classes and issues 1945/// a warning if any of their argument types are incompatible. 1946void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl, 1947 ObjCMethodDecl *Method, 1948 bool IsInstance) { 1949 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 1950 if (ID == 0) return; 1951 1952 while (ObjCInterfaceDecl *SD = ID->getSuperClass()) { 1953 ObjCMethodDecl *SuperMethodDecl = 1954 SD->lookupMethod(Method->getSelector(), IsInstance); 1955 if (SuperMethodDecl == 0) { 1956 ID = SD; 1957 continue; 1958 } 1959 ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), 1960 E = Method->param_end(); 1961 ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin(); 1962 for (; ParamI != E; ++ParamI, ++PrevI) { 1963 // Number of parameters are the same and is guaranteed by selector match. 1964 assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch"); 1965 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 1966 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 1967 // If type of argument of method in this class does not match its 1968 // respective argument type in the super class method, issue warning; 1969 if (!Context.typesAreCompatible(T1, T2)) { 1970 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 1971 << T1 << T2; 1972 Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration); 1973 return; 1974 } 1975 } 1976 ID = SD; 1977 } 1978} 1979 1980/// DiagnoseDuplicateIvars - 1981/// Check for duplicate ivars in the entire class at the start of 1982/// @implementation. This becomes necesssary because class extension can 1983/// add ivars to a class in random order which will not be known until 1984/// class's @implementation is seen. 1985void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 1986 ObjCInterfaceDecl *SID) { 1987 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), 1988 IVE = ID->ivar_end(); IVI != IVE; ++IVI) { 1989 ObjCIvarDecl* Ivar = (*IVI); 1990 if (Ivar->isInvalidDecl()) 1991 continue; 1992 if (IdentifierInfo *II = Ivar->getIdentifier()) { 1993 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 1994 if (prevIvar) { 1995 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 1996 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 1997 Ivar->setInvalidDecl(); 1998 } 1999 } 2000 } 2001} 2002 2003// Note: For class/category implemenations, allMethods/allProperties is 2004// always null. 2005void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, 2006 Decl *ClassDecl, 2007 Decl **allMethods, unsigned allNum, 2008 Decl **allProperties, unsigned pNum, 2009 DeclGroupPtrTy *allTUVars, unsigned tuvNum) { 2010 // FIXME: If we don't have a ClassDecl, we have an error. We should consider 2011 // always passing in a decl. If the decl has an error, isInvalidDecl() 2012 // should be true. 2013 if (!ClassDecl) 2014 return; 2015 2016 bool isInterfaceDeclKind = 2017 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 2018 || isa<ObjCProtocolDecl>(ClassDecl); 2019 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 2020 2021 if (!isInterfaceDeclKind && AtEnd.isInvalid()) { 2022 // FIXME: This is wrong. We shouldn't be pretending that there is 2023 // an '@end' in the declaration. 2024 SourceLocation L = ClassDecl->getLocation(); 2025 AtEnd.setBegin(L); 2026 AtEnd.setEnd(L); 2027 Diag(L, diag::err_missing_atend); 2028 } 2029 2030 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 2031 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 2032 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 2033 2034 for (unsigned i = 0; i < allNum; i++ ) { 2035 ObjCMethodDecl *Method = 2036 cast_or_null<ObjCMethodDecl>(allMethods[i]); 2037 2038 if (!Method) continue; // Already issued a diagnostic. 2039 if (Method->isInstanceMethod()) { 2040 /// Check for instance method of the same name with incompatible types 2041 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 2042 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2043 : false; 2044 if ((isInterfaceDeclKind && PrevMethod && !match) 2045 || (checkIdenticalMethods && match)) { 2046 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2047 << Method->getDeclName(); 2048 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2049 Method->setInvalidDecl(); 2050 } else { 2051 InsMap[Method->getSelector()] = Method; 2052 /// The following allows us to typecheck messages to "id". 2053 AddInstanceMethodToGlobalPool(Method); 2054 // verify that the instance method conforms to the same definition of 2055 // parent methods if it shadows one. 2056 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true); 2057 } 2058 } else { 2059 /// Check for class method of the same name with incompatible types 2060 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 2061 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2062 : false; 2063 if ((isInterfaceDeclKind && PrevMethod && !match) 2064 || (checkIdenticalMethods && match)) { 2065 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2066 << Method->getDeclName(); 2067 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2068 Method->setInvalidDecl(); 2069 } else { 2070 ClsMap[Method->getSelector()] = Method; 2071 /// The following allows us to typecheck messages to "Class". 2072 AddFactoryMethodToGlobalPool(Method); 2073 // verify that the class method conforms to the same definition of 2074 // parent methods if it shadows one. 2075 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false); 2076 } 2077 } 2078 } 2079 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 2080 // Compares properties declared in this class to those of its 2081 // super class. 2082 ComparePropertiesInBaseAndSuper(I); 2083 CompareProperties(I, I); 2084 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 2085 // Categories are used to extend the class by declaring new methods. 2086 // By the same token, they are also used to add new properties. No 2087 // need to compare the added property to those in the class. 2088 2089 // Compare protocol properties with those in category 2090 CompareProperties(C, C); 2091 if (C->IsClassExtension()) { 2092 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 2093 DiagnoseClassExtensionDupMethods(C, CCPrimary); 2094 } 2095 } 2096 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 2097 if (CDecl->getIdentifier()) 2098 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 2099 // user-defined setter/getter. It also synthesizes setter/getter methods 2100 // and adds them to the DeclContext and global method pools. 2101 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), 2102 E = CDecl->prop_end(); 2103 I != E; ++I) 2104 ProcessPropertyDecl(*I, CDecl); 2105 CDecl->setAtEndRange(AtEnd); 2106 } 2107 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 2108 IC->setAtEndRange(AtEnd); 2109 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 2110 // Any property declared in a class extension might have user 2111 // declared setter or getter in current class extension or one 2112 // of the other class extensions. Mark them as synthesized as 2113 // property will be synthesized when property with same name is 2114 // seen in the @implementation. 2115 for (const ObjCCategoryDecl *ClsExtDecl = 2116 IDecl->getFirstClassExtension(); 2117 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) { 2118 for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(), 2119 E = ClsExtDecl->prop_end(); I != E; ++I) { 2120 ObjCPropertyDecl *Property = (*I); 2121 // Skip over properties declared @dynamic 2122 if (const ObjCPropertyImplDecl *PIDecl 2123 = IC->FindPropertyImplDecl(Property->getIdentifier())) 2124 if (PIDecl->getPropertyImplementation() 2125 == ObjCPropertyImplDecl::Dynamic) 2126 continue; 2127 2128 for (const ObjCCategoryDecl *CExtDecl = 2129 IDecl->getFirstClassExtension(); 2130 CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) { 2131 if (ObjCMethodDecl *GetterMethod = 2132 CExtDecl->getInstanceMethod(Property->getGetterName())) 2133 GetterMethod->setSynthesized(true); 2134 if (!Property->isReadOnly()) 2135 if (ObjCMethodDecl *SetterMethod = 2136 CExtDecl->getInstanceMethod(Property->getSetterName())) 2137 SetterMethod->setSynthesized(true); 2138 } 2139 } 2140 } 2141 2142 if (LangOpts.ObjCDefaultSynthProperties && 2143 LangOpts.ObjCNonFragileABI2) 2144 DefaultSynthesizeProperties(S, IC, IDecl); 2145 ImplMethodsVsClassMethods(S, IC, IDecl); 2146 AtomicPropertySetterGetterRules(IC, IDecl); 2147 DiagnoseOwningPropertyGetterSynthesis(IC); 2148 2149 if (LangOpts.ObjCNonFragileABI2) 2150 while (IDecl->getSuperClass()) { 2151 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 2152 IDecl = IDecl->getSuperClass(); 2153 } 2154 } 2155 SetIvarInitializers(IC); 2156 } else if (ObjCCategoryImplDecl* CatImplClass = 2157 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 2158 CatImplClass->setAtEndRange(AtEnd); 2159 2160 // Find category interface decl and then check that all methods declared 2161 // in this interface are implemented in the category @implementation. 2162 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 2163 for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); 2164 Categories; Categories = Categories->getNextClassCategory()) { 2165 if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { 2166 ImplMethodsVsClassMethods(S, CatImplClass, Categories); 2167 break; 2168 } 2169 } 2170 } 2171 } 2172 if (isInterfaceDeclKind) { 2173 // Reject invalid vardecls. 2174 for (unsigned i = 0; i != tuvNum; i++) { 2175 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 2176 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2177 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 2178 if (!VDecl->hasExternalStorage()) 2179 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 2180 } 2181 } 2182 } 2183} 2184 2185 2186/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 2187/// objective-c's type qualifier from the parser version of the same info. 2188static Decl::ObjCDeclQualifier 2189CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 2190 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 2191} 2192 2193static inline 2194bool containsInvalidMethodImplAttribute(const AttrVec &A) { 2195 // The 'ibaction' attribute is allowed on method definitions because of 2196 // how the IBAction macro is used on both method declarations and definitions. 2197 // If the method definitions contains any other attributes, return true. 2198 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) 2199 if ((*i)->getKind() != attr::IBAction) 2200 return true; 2201 return false; 2202} 2203 2204/// \brief Check whether the declared result type of the given Objective-C 2205/// method declaration is compatible with the method's class. 2206/// 2207static bool 2208CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 2209 ObjCInterfaceDecl *CurrentClass) { 2210 QualType ResultType = Method->getResultType(); 2211 SourceRange ResultTypeRange; 2212 if (const TypeSourceInfo *ResultTypeInfo = Method->getResultTypeSourceInfo()) 2213 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 2214 2215 // If an Objective-C method inherits its related result type, then its 2216 // declared result type must be compatible with its own class type. The 2217 // declared result type is compatible if: 2218 if (const ObjCObjectPointerType *ResultObjectType 2219 = ResultType->getAs<ObjCObjectPointerType>()) { 2220 // - it is id or qualified id, or 2221 if (ResultObjectType->isObjCIdType() || 2222 ResultObjectType->isObjCQualifiedIdType()) 2223 return false; 2224 2225 if (CurrentClass) { 2226 if (ObjCInterfaceDecl *ResultClass 2227 = ResultObjectType->getInterfaceDecl()) { 2228 // - it is the same as the method's class type, or 2229 if (CurrentClass == ResultClass) 2230 return false; 2231 2232 // - it is a superclass of the method's class type 2233 if (ResultClass->isSuperClassOf(CurrentClass)) 2234 return false; 2235 } 2236 } 2237 } 2238 2239 return true; 2240} 2241 2242/// \brief Determine if any method in the global method pool has an inferred 2243/// result type. 2244static bool 2245anyMethodInfersRelatedResultType(Sema &S, Selector Sel, bool IsInstance) { 2246 Sema::GlobalMethodPool::iterator Pos = S.MethodPool.find(Sel); 2247 if (Pos == S.MethodPool.end()) { 2248 if (S.ExternalSource) 2249 Pos = S.ReadMethodPool(Sel); 2250 else 2251 return 0; 2252 } 2253 2254 ObjCMethodList &List = IsInstance ? Pos->second.first : Pos->second.second; 2255 for (ObjCMethodList *M = &List; M; M = M->Next) { 2256 if (M->Method && M->Method->hasRelatedResultType()) 2257 return true; 2258 } 2259 2260 return false; 2261} 2262 2263Decl *Sema::ActOnMethodDeclaration( 2264 Scope *S, 2265 SourceLocation MethodLoc, SourceLocation EndLoc, 2266 tok::TokenKind MethodType, Decl *ClassDecl, 2267 ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 2268 SourceLocation SelectorStartLoc, 2269 Selector Sel, 2270 // optional arguments. The number of types/arguments is obtained 2271 // from the Sel.getNumArgs(). 2272 ObjCArgInfo *ArgInfo, 2273 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 2274 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 2275 bool isVariadic, bool MethodDefinition) { 2276 // Make sure we can establish a context for the method. 2277 if (!ClassDecl) { 2278 Diag(MethodLoc, diag::error_missing_method_context); 2279 return 0; 2280 } 2281 QualType resultDeclType; 2282 2283 TypeSourceInfo *ResultTInfo = 0; 2284 if (ReturnType) { 2285 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); 2286 2287 // Methods cannot return interface types. All ObjC objects are 2288 // passed by reference. 2289 if (resultDeclType->isObjCObjectType()) { 2290 Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) 2291 << 0 << resultDeclType; 2292 return 0; 2293 } 2294 } else // get the type for "id". 2295 resultDeclType = Context.getObjCIdType(); 2296 2297 ObjCMethodDecl* ObjCMethod = 2298 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType, 2299 ResultTInfo, 2300 cast<DeclContext>(ClassDecl), 2301 MethodType == tok::minus, isVariadic, 2302 false, false, 2303 MethodDeclKind == tok::objc_optional 2304 ? ObjCMethodDecl::Optional 2305 : ObjCMethodDecl::Required, 2306 false); 2307 2308 llvm::SmallVector<ParmVarDecl*, 16> Params; 2309 2310 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 2311 QualType ArgType; 2312 TypeSourceInfo *DI; 2313 2314 if (ArgInfo[i].Type == 0) { 2315 ArgType = Context.getObjCIdType(); 2316 DI = 0; 2317 } else { 2318 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 2319 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2320 ArgType = adjustParameterType(ArgType); 2321 } 2322 2323 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 2324 LookupOrdinaryName, ForRedeclaration); 2325 LookupName(R, S); 2326 if (R.isSingleResult()) { 2327 NamedDecl *PrevDecl = R.getFoundDecl(); 2328 if (S->isDeclScope(PrevDecl)) { 2329 Diag(ArgInfo[i].NameLoc, 2330 (MethodDefinition ? diag::warn_method_param_redefinition 2331 : diag::warn_method_param_declaration)) 2332 << ArgInfo[i].Name; 2333 Diag(PrevDecl->getLocation(), 2334 diag::note_previous_declaration); 2335 } 2336 } 2337 2338 SourceLocation StartLoc = DI 2339 ? DI->getTypeLoc().getBeginLoc() 2340 : ArgInfo[i].NameLoc; 2341 2342 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 2343 ArgInfo[i].NameLoc, ArgInfo[i].Name, 2344 ArgType, DI, SC_None, SC_None); 2345 2346 Param->setObjCMethodScopeInfo(i); 2347 2348 Param->setObjCDeclQualifier( 2349 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 2350 2351 // Apply the attributes to the parameter. 2352 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 2353 2354 S->AddDecl(Param); 2355 IdResolver.AddDecl(Param); 2356 2357 Params.push_back(Param); 2358 } 2359 2360 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 2361 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 2362 QualType ArgType = Param->getType(); 2363 if (ArgType.isNull()) 2364 ArgType = Context.getObjCIdType(); 2365 else 2366 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2367 ArgType = adjustParameterType(ArgType); 2368 if (ArgType->isObjCObjectType()) { 2369 Diag(Param->getLocation(), 2370 diag::err_object_cannot_be_passed_returned_by_value) 2371 << 1 << ArgType; 2372 Param->setInvalidDecl(); 2373 } 2374 Param->setDeclContext(ObjCMethod); 2375 2376 Params.push_back(Param); 2377 } 2378 2379 ObjCMethod->setMethodParams(Context, Params.data(), Params.size(), 2380 Sel.getNumArgs()); 2381 ObjCMethod->setObjCDeclQualifier( 2382 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 2383 const ObjCMethodDecl *PrevMethod = 0; 2384 2385 if (AttrList) 2386 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 2387 2388 const ObjCMethodDecl *InterfaceMD = 0; 2389 2390 // Add the method now. 2391 if (ObjCImplementationDecl *ImpDecl = 2392 dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 2393 if (MethodType == tok::minus) { 2394 PrevMethod = ImpDecl->getInstanceMethod(Sel); 2395 ImpDecl->addInstanceMethod(ObjCMethod); 2396 } else { 2397 PrevMethod = ImpDecl->getClassMethod(Sel); 2398 ImpDecl->addClassMethod(ObjCMethod); 2399 } 2400 InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel, 2401 MethodType == tok::minus); 2402 2403 if (ObjCMethod->hasAttrs() && 2404 containsInvalidMethodImplAttribute(ObjCMethod->getAttrs())) 2405 Diag(EndLoc, diag::warn_attribute_method_def); 2406 } else if (ObjCCategoryImplDecl *CatImpDecl = 2407 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 2408 if (MethodType == tok::minus) { 2409 PrevMethod = CatImpDecl->getInstanceMethod(Sel); 2410 CatImpDecl->addInstanceMethod(ObjCMethod); 2411 } else { 2412 PrevMethod = CatImpDecl->getClassMethod(Sel); 2413 CatImpDecl->addClassMethod(ObjCMethod); 2414 } 2415 2416 if (ObjCCategoryDecl *Cat = CatImpDecl->getCategoryDecl()) 2417 InterfaceMD = Cat->getMethod(Sel, MethodType == tok::minus); 2418 2419 if (ObjCMethod->hasAttrs() && 2420 containsInvalidMethodImplAttribute(ObjCMethod->getAttrs())) 2421 Diag(EndLoc, diag::warn_attribute_method_def); 2422 } else { 2423 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 2424 } 2425 if (PrevMethod) { 2426 // You can never have two method definitions with the same name. 2427 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 2428 << ObjCMethod->getDeclName(); 2429 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2430 } 2431 2432 // If this Objective-C method does not have a related result type, but we 2433 // are allowed to infer related result types, try to do so based on the 2434 // method family. 2435 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 2436 if (!CurrentClass) { 2437 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 2438 CurrentClass = Cat->getClassInterface(); 2439 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 2440 CurrentClass = Impl->getClassInterface(); 2441 else if (ObjCCategoryImplDecl *CatImpl 2442 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 2443 CurrentClass = CatImpl->getClassInterface(); 2444 } 2445 2446 // Merge information down from the interface declaration if we have one. 2447 if (InterfaceMD) { 2448 // Inherit the related result type, if we can. 2449 if (InterfaceMD->hasRelatedResultType() && 2450 !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass)) 2451 ObjCMethod->SetRelatedResultType(); 2452 2453 mergeObjCMethodDecls(ObjCMethod, InterfaceMD); 2454 } 2455 2456 bool ARCError = false; 2457 if (getLangOptions().ObjCAutoRefCount) 2458 ARCError = CheckARCMethodDecl(*this, ObjCMethod); 2459 2460 if (!ObjCMethod->hasRelatedResultType() && !ARCError && 2461 getLangOptions().ObjCInferRelatedResultType) { 2462 bool InferRelatedResultType = false; 2463 switch (ObjCMethod->getMethodFamily()) { 2464 case OMF_None: 2465 case OMF_copy: 2466 case OMF_dealloc: 2467 case OMF_mutableCopy: 2468 case OMF_release: 2469 case OMF_retainCount: 2470 break; 2471 2472 case OMF_alloc: 2473 case OMF_new: 2474 InferRelatedResultType = ObjCMethod->isClassMethod(); 2475 break; 2476 2477 case OMF_init: 2478 case OMF_autorelease: 2479 case OMF_retain: 2480 case OMF_self: 2481 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 2482 break; 2483 } 2484 2485 if (InferRelatedResultType && 2486 !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass)) 2487 ObjCMethod->SetRelatedResultType(); 2488 2489 if (!InterfaceMD && 2490 anyMethodInfersRelatedResultType(*this, ObjCMethod->getSelector(), 2491 ObjCMethod->isInstanceMethod())) 2492 CheckObjCMethodOverrides(ObjCMethod, cast<DeclContext>(ClassDecl)); 2493 } 2494 2495 return ObjCMethod; 2496} 2497 2498bool Sema::CheckObjCDeclScope(Decl *D) { 2499 if (isa<TranslationUnitDecl>(CurContext->getRedeclContext())) 2500 return false; 2501 2502 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 2503 D->setInvalidDecl(); 2504 2505 return true; 2506} 2507 2508/// Called whenever @defs(ClassName) is encountered in the source. Inserts the 2509/// instance variables of ClassName into Decls. 2510void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 2511 IdentifierInfo *ClassName, 2512 llvm::SmallVectorImpl<Decl*> &Decls) { 2513 // Check that ClassName is a valid class 2514 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 2515 if (!Class) { 2516 Diag(DeclStart, diag::err_undef_interface) << ClassName; 2517 return; 2518 } 2519 if (LangOpts.ObjCNonFragileABI) { 2520 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 2521 return; 2522 } 2523 2524 // Collect the instance variables 2525 llvm::SmallVector<ObjCIvarDecl*, 32> Ivars; 2526 Context.DeepCollectObjCIvars(Class, true, Ivars); 2527 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 2528 for (unsigned i = 0; i < Ivars.size(); i++) { 2529 FieldDecl* ID = cast<FieldDecl>(Ivars[i]); 2530 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 2531 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 2532 /*FIXME: StartL=*/ID->getLocation(), 2533 ID->getLocation(), 2534 ID->getIdentifier(), ID->getType(), 2535 ID->getBitWidth()); 2536 Decls.push_back(FD); 2537 } 2538 2539 // Introduce all of these fields into the appropriate scope. 2540 for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 2541 D != Decls.end(); ++D) { 2542 FieldDecl *FD = cast<FieldDecl>(*D); 2543 if (getLangOptions().CPlusPlus) 2544 PushOnScopeChains(cast<FieldDecl>(FD), S); 2545 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 2546 Record->addDecl(FD); 2547 } 2548} 2549 2550/// \brief Build a type-check a new Objective-C exception variable declaration. 2551VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 2552 SourceLocation StartLoc, 2553 SourceLocation IdLoc, 2554 IdentifierInfo *Id, 2555 bool Invalid) { 2556 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 2557 // duration shall not be qualified by an address-space qualifier." 2558 // Since all parameters have automatic store duration, they can not have 2559 // an address space. 2560 if (T.getAddressSpace() != 0) { 2561 Diag(IdLoc, diag::err_arg_with_address_space); 2562 Invalid = true; 2563 } 2564 2565 // An @catch parameter must be an unqualified object pointer type; 2566 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 2567 if (Invalid) { 2568 // Don't do any further checking. 2569 } else if (T->isDependentType()) { 2570 // Okay: we don't know what this type will instantiate to. 2571 } else if (!T->isObjCObjectPointerType()) { 2572 Invalid = true; 2573 Diag(IdLoc ,diag::err_catch_param_not_objc_type); 2574 } else if (T->isObjCQualifiedIdType()) { 2575 Invalid = true; 2576 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 2577 } 2578 2579 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 2580 T, TInfo, SC_None, SC_None); 2581 New->setExceptionVariable(true); 2582 2583 if (Invalid) 2584 New->setInvalidDecl(); 2585 return New; 2586} 2587 2588Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 2589 const DeclSpec &DS = D.getDeclSpec(); 2590 2591 // We allow the "register" storage class on exception variables because 2592 // GCC did, but we drop it completely. Any other storage class is an error. 2593 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 2594 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 2595 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 2596 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 2597 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 2598 << DS.getStorageClassSpec(); 2599 } 2600 if (D.getDeclSpec().isThreadSpecified()) 2601 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); 2602 D.getMutableDeclSpec().ClearStorageClassSpecs(); 2603 2604 DiagnoseFunctionSpecifiers(D); 2605 2606 // Check that there are no default arguments inside the type of this 2607 // exception object (C++ only). 2608 if (getLangOptions().CPlusPlus) 2609 CheckExtraCXXDefaultArguments(D); 2610 2611 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 2612 QualType ExceptionType = TInfo->getType(); 2613 2614 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 2615 D.getSourceRange().getBegin(), 2616 D.getIdentifierLoc(), 2617 D.getIdentifier(), 2618 D.isInvalidType()); 2619 2620 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 2621 if (D.getCXXScopeSpec().isSet()) { 2622 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 2623 << D.getCXXScopeSpec().getRange(); 2624 New->setInvalidDecl(); 2625 } 2626 2627 // Add the parameter declaration into this scope. 2628 S->AddDecl(New); 2629 if (D.getIdentifier()) 2630 IdResolver.AddDecl(New); 2631 2632 ProcessDeclAttributes(S, New, D); 2633 2634 if (New->hasAttr<BlocksAttr>()) 2635 Diag(New->getLocation(), diag::err_block_on_nonlocal); 2636 return New; 2637} 2638 2639/// CollectIvarsToConstructOrDestruct - Collect those ivars which require 2640/// initialization. 2641void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 2642 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 2643 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 2644 Iv= Iv->getNextIvar()) { 2645 QualType QT = Context.getBaseElementType(Iv->getType()); 2646 if (QT->isRecordType()) 2647 Ivars.push_back(Iv); 2648 } 2649} 2650 2651void ObjCImplementationDecl::setIvarInitializers(ASTContext &C, 2652 CXXCtorInitializer ** initializers, 2653 unsigned numInitializers) { 2654 if (numInitializers > 0) { 2655 NumIvarInitializers = numInitializers; 2656 CXXCtorInitializer **ivarInitializers = 2657 new (C) CXXCtorInitializer*[NumIvarInitializers]; 2658 memcpy(ivarInitializers, initializers, 2659 numInitializers * sizeof(CXXCtorInitializer*)); 2660 IvarInitializers = ivarInitializers; 2661 } 2662} 2663 2664void Sema::DiagnoseUseOfUnimplementedSelectors() { 2665 // Warning will be issued only when selector table is 2666 // generated (which means there is at lease one implementation 2667 // in the TU). This is to match gcc's behavior. 2668 if (ReferencedSelectors.empty() || 2669 !Context.AnyObjCImplementation()) 2670 return; 2671 for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 2672 ReferencedSelectors.begin(), 2673 E = ReferencedSelectors.end(); S != E; ++S) { 2674 Selector Sel = (*S).first; 2675 if (!LookupImplementedMethodInGlobalPool(Sel)) 2676 Diag((*S).second, diag::warn_unimplemented_selector) << Sel; 2677 } 2678 return; 2679} 2680