SemaDeclObjC.cpp revision e4498c6d66a8f472cba29b6158a2e86dfc60d0ef
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements semantic analysis for Objective C declarations. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "clang/Sema/ExternalSemaSource.h" 17#include "clang/AST/Expr.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/DeclObjC.h" 20#include "clang/Parse/DeclSpec.h" 21using namespace clang; 22 23/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 24/// and user declared, in the method definition's AST. 25void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, DeclPtrTy D) { 26 assert(getCurMethodDecl() == 0 && "Method parsing confused"); 27 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D.getAs<Decl>()); 28 29 // If we don't have a valid method decl, simply return. 30 if (!MDecl) 31 return; 32 33 // Allow the rest of sema to find private method decl implementations. 34 if (MDecl->isInstanceMethod()) 35 AddInstanceMethodToGlobalPool(MDecl); 36 else 37 AddFactoryMethodToGlobalPool(MDecl); 38 39 // Allow all of Sema to see that we are entering a method definition. 40 PushDeclContext(FnBodyScope, MDecl); 41 PushFunctionScope(); 42 43 // Create Decl objects for each parameter, entrring them in the scope for 44 // binding to their use. 45 46 // Insert the invisible arguments, self and _cmd! 47 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 48 49 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 50 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 51 52 // Introduce all of the other parameters into this scope. 53 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), 54 E = MDecl->param_end(); PI != E; ++PI) 55 if ((*PI)->getIdentifier()) 56 PushOnScopeChains(*PI, FnBodyScope); 57} 58 59Sema::DeclPtrTy Sema:: 60ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 61 IdentifierInfo *ClassName, SourceLocation ClassLoc, 62 IdentifierInfo *SuperName, SourceLocation SuperLoc, 63 const DeclPtrTy *ProtoRefs, unsigned NumProtoRefs, 64 const SourceLocation *ProtoLocs, 65 SourceLocation EndProtoLoc, AttributeList *AttrList) { 66 assert(ClassName && "Missing class identifier"); 67 68 // Check for another declaration kind with the same name. 69 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 70 LookupOrdinaryName, ForRedeclaration); 71 72 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 73 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 74 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 75 } 76 77 ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 78 if (IDecl) { 79 // Class already seen. Is it a forward declaration? 80 if (!IDecl->isForwardDecl()) { 81 IDecl->setInvalidDecl(); 82 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName(); 83 Diag(IDecl->getLocation(), diag::note_previous_definition); 84 85 // Return the previous class interface. 86 // FIXME: don't leak the objects passed in! 87 return DeclPtrTy::make(IDecl); 88 } else { 89 IDecl->setLocation(AtInterfaceLoc); 90 IDecl->setForwardDecl(false); 91 IDecl->setClassLoc(ClassLoc); 92 93 // Since this ObjCInterfaceDecl was created by a forward declaration, 94 // we now add it to the DeclContext since it wasn't added before 95 // (see ActOnForwardClassDeclaration). 96 IDecl->setLexicalDeclContext(CurContext); 97 CurContext->addDecl(IDecl); 98 99 if (AttrList) 100 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 101 } 102 } else { 103 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, 104 ClassName, ClassLoc); 105 if (AttrList) 106 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 107 108 PushOnScopeChains(IDecl, TUScope); 109 } 110 111 if (SuperName) { 112 // Check if a different kind of symbol declared in this scope. 113 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 114 LookupOrdinaryName); 115 116 if (!PrevDecl) { 117 // Try to correct for a typo in the superclass name. 118 LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName); 119 if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) && 120 (PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) { 121 Diag(SuperLoc, diag::err_undef_superclass_suggest) 122 << SuperName << ClassName << PrevDecl->getDeclName(); 123 Diag(PrevDecl->getLocation(), diag::note_previous_decl) 124 << PrevDecl->getDeclName(); 125 } 126 } 127 128 if (PrevDecl == IDecl) { 129 Diag(SuperLoc, diag::err_recursive_superclass) 130 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 131 IDecl->setLocEnd(ClassLoc); 132 } else { 133 ObjCInterfaceDecl *SuperClassDecl = 134 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 135 136 // Diagnose classes that inherit from deprecated classes. 137 if (SuperClassDecl) 138 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 139 140 if (PrevDecl && SuperClassDecl == 0) { 141 // The previous declaration was not a class decl. Check if we have a 142 // typedef. If we do, get the underlying class type. 143 if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(PrevDecl)) { 144 QualType T = TDecl->getUnderlyingType(); 145 if (T->isObjCInterfaceType()) { 146 if (NamedDecl *IDecl = T->getAs<ObjCInterfaceType>()->getDecl()) 147 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 148 } 149 } 150 151 // This handles the following case: 152 // 153 // typedef int SuperClass; 154 // @interface MyClass : SuperClass {} @end 155 // 156 if (!SuperClassDecl) { 157 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 158 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 159 } 160 } 161 162 if (!dyn_cast_or_null<TypedefDecl>(PrevDecl)) { 163 if (!SuperClassDecl) 164 Diag(SuperLoc, diag::err_undef_superclass) 165 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 166 else if (SuperClassDecl->isForwardDecl()) 167 Diag(SuperLoc, diag::err_undef_superclass) 168 << SuperClassDecl->getDeclName() << ClassName 169 << SourceRange(AtInterfaceLoc, ClassLoc); 170 } 171 IDecl->setSuperClass(SuperClassDecl); 172 IDecl->setSuperClassLoc(SuperLoc); 173 IDecl->setLocEnd(SuperLoc); 174 } 175 } else { // we have a root class. 176 IDecl->setLocEnd(ClassLoc); 177 } 178 179 /// Check then save referenced protocols. 180 if (NumProtoRefs) { 181 IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 182 ProtoLocs, Context); 183 IDecl->setLocEnd(EndProtoLoc); 184 } 185 186 CheckObjCDeclScope(IDecl); 187 return DeclPtrTy::make(IDecl); 188} 189 190/// ActOnCompatiblityAlias - this action is called after complete parsing of 191/// @compatibility_alias declaration. It sets up the alias relationships. 192Sema::DeclPtrTy Sema::ActOnCompatiblityAlias(SourceLocation AtLoc, 193 IdentifierInfo *AliasName, 194 SourceLocation AliasLocation, 195 IdentifierInfo *ClassName, 196 SourceLocation ClassLocation) { 197 // Look for previous declaration of alias name 198 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 199 LookupOrdinaryName, ForRedeclaration); 200 if (ADecl) { 201 if (isa<ObjCCompatibleAliasDecl>(ADecl)) 202 Diag(AliasLocation, diag::warn_previous_alias_decl); 203 else 204 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 205 Diag(ADecl->getLocation(), diag::note_previous_declaration); 206 return DeclPtrTy(); 207 } 208 // Check for class declaration 209 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 210 LookupOrdinaryName, ForRedeclaration); 211 if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(CDeclU)) { 212 QualType T = TDecl->getUnderlyingType(); 213 if (T->isObjCInterfaceType()) { 214 if (NamedDecl *IDecl = T->getAs<ObjCInterfaceType>()->getDecl()) { 215 ClassName = IDecl->getIdentifier(); 216 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 217 LookupOrdinaryName, ForRedeclaration); 218 } 219 } 220 } 221 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 222 if (CDecl == 0) { 223 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 224 if (CDeclU) 225 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 226 return DeclPtrTy(); 227 } 228 229 // Everything checked out, instantiate a new alias declaration AST. 230 ObjCCompatibleAliasDecl *AliasDecl = 231 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 232 233 if (!CheckObjCDeclScope(AliasDecl)) 234 PushOnScopeChains(AliasDecl, TUScope); 235 236 return DeclPtrTy::make(AliasDecl); 237} 238 239void Sema::CheckForwardProtocolDeclarationForCircularDependency( 240 IdentifierInfo *PName, 241 SourceLocation &Ploc, SourceLocation PrevLoc, 242 const ObjCList<ObjCProtocolDecl> &PList) { 243 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 244 E = PList.end(); I != E; ++I) { 245 246 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 247 Ploc)) { 248 if (PDecl->getIdentifier() == PName) { 249 Diag(Ploc, diag::err_protocol_has_circular_dependency); 250 Diag(PrevLoc, diag::note_previous_definition); 251 } 252 CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 253 PDecl->getLocation(), PDecl->getReferencedProtocols()); 254 } 255 } 256} 257 258Sema::DeclPtrTy 259Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 260 IdentifierInfo *ProtocolName, 261 SourceLocation ProtocolLoc, 262 const DeclPtrTy *ProtoRefs, 263 unsigned NumProtoRefs, 264 const SourceLocation *ProtoLocs, 265 SourceLocation EndProtoLoc, 266 AttributeList *AttrList) { 267 // FIXME: Deal with AttrList. 268 assert(ProtocolName && "Missing protocol identifier"); 269 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc); 270 if (PDecl) { 271 // Protocol already seen. Better be a forward protocol declaration 272 if (!PDecl->isForwardDecl()) { 273 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 274 Diag(PDecl->getLocation(), diag::note_previous_definition); 275 // Just return the protocol we already had. 276 // FIXME: don't leak the objects passed in! 277 return DeclPtrTy::make(PDecl); 278 } 279 ObjCList<ObjCProtocolDecl> PList; 280 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 281 CheckForwardProtocolDeclarationForCircularDependency( 282 ProtocolName, ProtocolLoc, PDecl->getLocation(), PList); 283 PList.Destroy(Context); 284 285 // Make sure the cached decl gets a valid start location. 286 PDecl->setLocation(AtProtoInterfaceLoc); 287 PDecl->setForwardDecl(false); 288 } else { 289 PDecl = ObjCProtocolDecl::Create(Context, CurContext, 290 AtProtoInterfaceLoc,ProtocolName); 291 PushOnScopeChains(PDecl, TUScope); 292 PDecl->setForwardDecl(false); 293 } 294 if (AttrList) 295 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 296 if (NumProtoRefs) { 297 /// Check then save referenced protocols. 298 PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 299 ProtoLocs, Context); 300 PDecl->setLocEnd(EndProtoLoc); 301 } 302 303 CheckObjCDeclScope(PDecl); 304 return DeclPtrTy::make(PDecl); 305} 306 307/// FindProtocolDeclaration - This routine looks up protocols and 308/// issues an error if they are not declared. It returns list of 309/// protocol declarations in its 'Protocols' argument. 310void 311Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 312 const IdentifierLocPair *ProtocolId, 313 unsigned NumProtocols, 314 llvm::SmallVectorImpl<DeclPtrTy> &Protocols) { 315 for (unsigned i = 0; i != NumProtocols; ++i) { 316 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 317 ProtocolId[i].second); 318 if (!PDecl) { 319 LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second, 320 LookupObjCProtocolName); 321 if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) && 322 (PDecl = R.getAsSingle<ObjCProtocolDecl>())) { 323 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) 324 << ProtocolId[i].first << R.getLookupName(); 325 Diag(PDecl->getLocation(), diag::note_previous_decl) 326 << PDecl->getDeclName(); 327 } 328 } 329 330 if (!PDecl) { 331 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 332 << ProtocolId[i].first; 333 continue; 334 } 335 336 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 337 338 // If this is a forward declaration and we are supposed to warn in this 339 // case, do it. 340 if (WarnOnDeclarations && PDecl->isForwardDecl()) 341 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 342 << ProtocolId[i].first; 343 Protocols.push_back(DeclPtrTy::make(PDecl)); 344 } 345} 346 347/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 348/// a class method in its extension. 349/// 350void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 351 ObjCInterfaceDecl *ID) { 352 if (!ID) 353 return; // Possibly due to previous error 354 355 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 356 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), 357 e = ID->meth_end(); i != e; ++i) { 358 ObjCMethodDecl *MD = *i; 359 MethodMap[MD->getSelector()] = MD; 360 } 361 362 if (MethodMap.empty()) 363 return; 364 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), 365 e = CAT->meth_end(); i != e; ++i) { 366 ObjCMethodDecl *Method = *i; 367 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 368 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { 369 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 370 << Method->getDeclName(); 371 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 372 } 373 } 374} 375 376/// ActOnForwardProtocolDeclaration - Handle @protocol foo; 377Action::DeclPtrTy 378Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 379 const IdentifierLocPair *IdentList, 380 unsigned NumElts, 381 AttributeList *attrList) { 382 llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols; 383 llvm::SmallVector<SourceLocation, 8> ProtoLocs; 384 385 for (unsigned i = 0; i != NumElts; ++i) { 386 IdentifierInfo *Ident = IdentList[i].first; 387 ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second); 388 if (PDecl == 0) { // Not already seen? 389 PDecl = ObjCProtocolDecl::Create(Context, CurContext, 390 IdentList[i].second, Ident); 391 PushOnScopeChains(PDecl, TUScope); 392 } 393 if (attrList) 394 ProcessDeclAttributeList(TUScope, PDecl, attrList); 395 Protocols.push_back(PDecl); 396 ProtoLocs.push_back(IdentList[i].second); 397 } 398 399 ObjCForwardProtocolDecl *PDecl = 400 ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc, 401 Protocols.data(), Protocols.size(), 402 ProtoLocs.data()); 403 CurContext->addDecl(PDecl); 404 CheckObjCDeclScope(PDecl); 405 return DeclPtrTy::make(PDecl); 406} 407 408Sema::DeclPtrTy Sema:: 409ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 410 IdentifierInfo *ClassName, SourceLocation ClassLoc, 411 IdentifierInfo *CategoryName, 412 SourceLocation CategoryLoc, 413 const DeclPtrTy *ProtoRefs, 414 unsigned NumProtoRefs, 415 const SourceLocation *ProtoLocs, 416 SourceLocation EndProtoLoc) { 417 ObjCCategoryDecl *CDecl = 0; 418 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 419 420 /// Check that class of this category is already completely declared. 421 if (!IDecl || IDecl->isForwardDecl()) { 422 // Create an invalid ObjCCategoryDecl to serve as context for 423 // the enclosing method declarations. We mark the decl invalid 424 // to make it clear that this isn't a valid AST. 425 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 426 ClassLoc, CategoryLoc, CategoryName); 427 CDecl->setInvalidDecl(); 428 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 429 return DeclPtrTy::make(CDecl); 430 } 431 432 if (!CategoryName) { 433 // Class extensions require a special treatment. Use an existing one. 434 // Note that 'getClassExtension()' can return NULL. 435 CDecl = IDecl->getClassExtension(); 436 if (IDecl->getImplementation()) { 437 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 438 Diag(IDecl->getImplementation()->getLocation(), 439 diag::note_implementation_declared); 440 } 441 } 442 443 if (!CDecl) { 444 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 445 ClassLoc, CategoryLoc, CategoryName); 446 // FIXME: PushOnScopeChains? 447 CurContext->addDecl(CDecl); 448 449 CDecl->setClassInterface(IDecl); 450 // Insert first use of class extension to the list of class's categories. 451 if (!CategoryName) 452 CDecl->insertNextClassCategory(); 453 } 454 455 // If the interface is deprecated, warn about it. 456 (void)DiagnoseUseOfDecl(IDecl, ClassLoc); 457 458 if (CategoryName) { 459 /// Check for duplicate interface declaration for this category 460 ObjCCategoryDecl *CDeclChain; 461 for (CDeclChain = IDecl->getCategoryList(); CDeclChain; 462 CDeclChain = CDeclChain->getNextClassCategory()) { 463 if (CDeclChain->getIdentifier() == CategoryName) { 464 // Class extensions can be declared multiple times. 465 Diag(CategoryLoc, diag::warn_dup_category_def) 466 << ClassName << CategoryName; 467 Diag(CDeclChain->getLocation(), diag::note_previous_definition); 468 break; 469 } 470 } 471 if (!CDeclChain) 472 CDecl->insertNextClassCategory(); 473 } 474 475 if (NumProtoRefs) { 476 CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 477 ProtoLocs, Context); 478 // Protocols in the class extension belong to the class. 479 if (CDecl->IsClassExtension()) 480 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, 481 NumProtoRefs, ProtoLocs, 482 Context); 483 } 484 485 CheckObjCDeclScope(CDecl); 486 return DeclPtrTy::make(CDecl); 487} 488 489/// ActOnStartCategoryImplementation - Perform semantic checks on the 490/// category implementation declaration and build an ObjCCategoryImplDecl 491/// object. 492Sema::DeclPtrTy Sema::ActOnStartCategoryImplementation( 493 SourceLocation AtCatImplLoc, 494 IdentifierInfo *ClassName, SourceLocation ClassLoc, 495 IdentifierInfo *CatName, SourceLocation CatLoc) { 496 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 497 ObjCCategoryDecl *CatIDecl = 0; 498 if (IDecl) { 499 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 500 if (!CatIDecl) { 501 // Category @implementation with no corresponding @interface. 502 // Create and install one. 503 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(), 504 SourceLocation(), SourceLocation(), 505 CatName); 506 CatIDecl->setClassInterface(IDecl); 507 CatIDecl->insertNextClassCategory(); 508 } 509 } 510 511 ObjCCategoryImplDecl *CDecl = 512 ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName, 513 IDecl); 514 /// Check that class of this category is already completely declared. 515 if (!IDecl || IDecl->isForwardDecl()) 516 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 517 518 // FIXME: PushOnScopeChains? 519 CurContext->addDecl(CDecl); 520 521 /// Check that CatName, category name, is not used in another implementation. 522 if (CatIDecl) { 523 if (CatIDecl->getImplementation()) { 524 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 525 << CatName; 526 Diag(CatIDecl->getImplementation()->getLocation(), 527 diag::note_previous_definition); 528 } else 529 CatIDecl->setImplementation(CDecl); 530 } 531 532 CheckObjCDeclScope(CDecl); 533 return DeclPtrTy::make(CDecl); 534} 535 536Sema::DeclPtrTy Sema::ActOnStartClassImplementation( 537 SourceLocation AtClassImplLoc, 538 IdentifierInfo *ClassName, SourceLocation ClassLoc, 539 IdentifierInfo *SuperClassname, 540 SourceLocation SuperClassLoc) { 541 ObjCInterfaceDecl* IDecl = 0; 542 // Check for another declaration kind with the same name. 543 NamedDecl *PrevDecl 544 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 545 ForRedeclaration); 546 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 547 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 548 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 549 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 550 // If this is a forward declaration of an interface, warn. 551 if (IDecl->isForwardDecl()) { 552 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 553 IDecl = 0; 554 } 555 } else { 556 // We did not find anything with the name ClassName; try to correct for 557 // typos in the class name. 558 LookupResult R(*this, ClassName, ClassLoc, LookupOrdinaryName); 559 if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) && 560 (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) { 561 // Suggest the (potentially) correct interface name. However, put the 562 // fix-it hint itself in a separate note, since changing the name in 563 // the warning would make the fix-it change semantics.However, don't 564 // provide a code-modification hint or use the typo name for recovery, 565 // because this is just a warning. The program may actually be correct. 566 Diag(ClassLoc, diag::warn_undef_interface_suggest) 567 << ClassName << R.getLookupName(); 568 Diag(IDecl->getLocation(), diag::note_previous_decl) 569 << R.getLookupName() 570 << FixItHint::CreateReplacement(ClassLoc, 571 R.getLookupName().getAsString()); 572 IDecl = 0; 573 } else { 574 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 575 } 576 } 577 578 // Check that super class name is valid class name 579 ObjCInterfaceDecl* SDecl = 0; 580 if (SuperClassname) { 581 // Check if a different kind of symbol declared in this scope. 582 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 583 LookupOrdinaryName); 584 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 585 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 586 << SuperClassname; 587 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 588 } else { 589 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 590 if (!SDecl) 591 Diag(SuperClassLoc, diag::err_undef_superclass) 592 << SuperClassname << ClassName; 593 else if (IDecl && IDecl->getSuperClass() != SDecl) { 594 // This implementation and its interface do not have the same 595 // super class. 596 Diag(SuperClassLoc, diag::err_conflicting_super_class) 597 << SDecl->getDeclName(); 598 Diag(SDecl->getLocation(), diag::note_previous_definition); 599 } 600 } 601 } 602 603 if (!IDecl) { 604 // Legacy case of @implementation with no corresponding @interface. 605 // Build, chain & install the interface decl into the identifier. 606 607 // FIXME: Do we support attributes on the @implementation? If so we should 608 // copy them over. 609 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 610 ClassName, ClassLoc, false, true); 611 IDecl->setSuperClass(SDecl); 612 IDecl->setLocEnd(ClassLoc); 613 614 PushOnScopeChains(IDecl, TUScope); 615 } else { 616 // Mark the interface as being completed, even if it was just as 617 // @class ....; 618 // declaration; the user cannot reopen it. 619 IDecl->setForwardDecl(false); 620 } 621 622 ObjCImplementationDecl* IMPDecl = 623 ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc, 624 IDecl, SDecl); 625 626 if (CheckObjCDeclScope(IMPDecl)) 627 return DeclPtrTy::make(IMPDecl); 628 629 // Check that there is no duplicate implementation of this class. 630 if (IDecl->getImplementation()) { 631 // FIXME: Don't leak everything! 632 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 633 Diag(IDecl->getImplementation()->getLocation(), 634 diag::note_previous_definition); 635 } else { // add it to the list. 636 IDecl->setImplementation(IMPDecl); 637 PushOnScopeChains(IMPDecl, TUScope); 638 } 639 return DeclPtrTy::make(IMPDecl); 640} 641 642void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 643 ObjCIvarDecl **ivars, unsigned numIvars, 644 SourceLocation RBrace) { 645 assert(ImpDecl && "missing implementation decl"); 646 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 647 if (!IDecl) 648 return; 649 /// Check case of non-existing @interface decl. 650 /// (legacy objective-c @implementation decl without an @interface decl). 651 /// Add implementations's ivar to the synthesize class's ivar list. 652 if (IDecl->isImplicitInterfaceDecl()) { 653 IDecl->setLocEnd(RBrace); 654 // Add ivar's to class's DeclContext. 655 for (unsigned i = 0, e = numIvars; i != e; ++i) { 656 ivars[i]->setLexicalDeclContext(ImpDecl); 657 IDecl->makeDeclVisibleInContext(ivars[i], false); 658 ImpDecl->addDecl(ivars[i]); 659 } 660 661 return; 662 } 663 // If implementation has empty ivar list, just return. 664 if (numIvars == 0) 665 return; 666 667 assert(ivars && "missing @implementation ivars"); 668 if (LangOpts.ObjCNonFragileABI2) { 669 if (ImpDecl->getSuperClass()) 670 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 671 for (unsigned i = 0; i < numIvars; i++) { 672 ObjCIvarDecl* ImplIvar = ivars[i]; 673 if (const ObjCIvarDecl *ClsIvar = 674 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 675 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 676 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 677 continue; 678 } 679 // Instance ivar to Implementation's DeclContext. 680 ImplIvar->setLexicalDeclContext(ImpDecl); 681 IDecl->makeDeclVisibleInContext(ImplIvar, false); 682 ImpDecl->addDecl(ImplIvar); 683 } 684 return; 685 } 686 // Check interface's Ivar list against those in the implementation. 687 // names and types must match. 688 // 689 unsigned j = 0; 690 ObjCInterfaceDecl::ivar_iterator 691 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 692 for (; numIvars > 0 && IVI != IVE; ++IVI) { 693 ObjCIvarDecl* ImplIvar = ivars[j++]; 694 ObjCIvarDecl* ClsIvar = *IVI; 695 assert (ImplIvar && "missing implementation ivar"); 696 assert (ClsIvar && "missing class ivar"); 697 698 // First, make sure the types match. 699 if (Context.getCanonicalType(ImplIvar->getType()) != 700 Context.getCanonicalType(ClsIvar->getType())) { 701 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 702 << ImplIvar->getIdentifier() 703 << ImplIvar->getType() << ClsIvar->getType(); 704 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 705 } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) { 706 Expr *ImplBitWidth = ImplIvar->getBitWidth(); 707 Expr *ClsBitWidth = ClsIvar->getBitWidth(); 708 if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() != 709 ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) { 710 Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth) 711 << ImplIvar->getIdentifier(); 712 Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition); 713 } 714 } 715 // Make sure the names are identical. 716 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 717 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 718 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 719 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 720 } 721 --numIvars; 722 } 723 724 if (numIvars > 0) 725 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); 726 else if (IVI != IVE) 727 Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count); 728} 729 730void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, 731 bool &IncompleteImpl, unsigned DiagID) { 732 if (!IncompleteImpl) { 733 Diag(ImpLoc, diag::warn_incomplete_impl); 734 IncompleteImpl = true; 735 } 736 Diag(method->getLocation(), DiagID) 737 << method->getDeclName(); 738} 739 740void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 741 ObjCMethodDecl *IntfMethodDecl) { 742 if (!Context.typesAreCompatible(IntfMethodDecl->getResultType(), 743 ImpMethodDecl->getResultType()) && 744 !Context.QualifiedIdConformsQualifiedId(IntfMethodDecl->getResultType(), 745 ImpMethodDecl->getResultType())) { 746 Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_ret_types) 747 << ImpMethodDecl->getDeclName() << IntfMethodDecl->getResultType() 748 << ImpMethodDecl->getResultType(); 749 Diag(IntfMethodDecl->getLocation(), diag::note_previous_definition); 750 } 751 752 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 753 IF = IntfMethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); 754 IM != EM; ++IM, ++IF) { 755 QualType ParmDeclTy = (*IF)->getType().getUnqualifiedType(); 756 QualType ParmImpTy = (*IM)->getType().getUnqualifiedType(); 757 if (Context.typesAreCompatible(ParmDeclTy, ParmImpTy) || 758 Context.QualifiedIdConformsQualifiedId(ParmDeclTy, ParmImpTy)) 759 continue; 760 761 Diag((*IM)->getLocation(), diag::warn_conflicting_param_types) 762 << ImpMethodDecl->getDeclName() << (*IF)->getType() 763 << (*IM)->getType(); 764 Diag((*IF)->getLocation(), diag::note_previous_definition); 765 } 766} 767 768/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 769/// improve the efficiency of selector lookups and type checking by associating 770/// with each protocol / interface / category the flattened instance tables. If 771/// we used an immutable set to keep the table then it wouldn't add significant 772/// memory cost and it would be handy for lookups. 773 774/// CheckProtocolMethodDefs - This routine checks unimplemented methods 775/// Declared in protocol, and those referenced by it. 776void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, 777 ObjCProtocolDecl *PDecl, 778 bool& IncompleteImpl, 779 const llvm::DenseSet<Selector> &InsMap, 780 const llvm::DenseSet<Selector> &ClsMap, 781 ObjCContainerDecl *CDecl) { 782 ObjCInterfaceDecl *IDecl; 783 if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) 784 IDecl = C->getClassInterface(); 785 else 786 IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl); 787 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 788 789 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 790 ObjCInterfaceDecl *NSIDecl = 0; 791 if (getLangOptions().NeXTRuntime) { 792 // check to see if class implements forwardInvocation method and objects 793 // of this class are derived from 'NSProxy' so that to forward requests 794 // from one object to another. 795 // Under such conditions, which means that every method possible is 796 // implemented in the class, we should not issue "Method definition not 797 // found" warnings. 798 // FIXME: Use a general GetUnarySelector method for this. 799 IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); 800 Selector fISelector = Context.Selectors.getSelector(1, &II); 801 if (InsMap.count(fISelector)) 802 // Is IDecl derived from 'NSProxy'? If so, no instance methods 803 // need be implemented in the implementation. 804 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); 805 } 806 807 // If a method lookup fails locally we still need to look and see if 808 // the method was implemented by a base class or an inherited 809 // protocol. This lookup is slow, but occurs rarely in correct code 810 // and otherwise would terminate in a warning. 811 812 // check unimplemented instance methods. 813 if (!NSIDecl) 814 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), 815 E = PDecl->instmeth_end(); I != E; ++I) { 816 ObjCMethodDecl *method = *I; 817 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 818 !method->isSynthesized() && !InsMap.count(method->getSelector()) && 819 (!Super || 820 !Super->lookupInstanceMethod(method->getSelector()))) { 821 // Ugly, but necessary. Method declared in protcol might have 822 // have been synthesized due to a property declared in the class which 823 // uses the protocol. 824 ObjCMethodDecl *MethodInClass = 825 IDecl->lookupInstanceMethod(method->getSelector()); 826 if (!MethodInClass || !MethodInClass->isSynthesized()) { 827 unsigned DIAG = diag::warn_unimplemented_protocol_method; 828 if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) { 829 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 830 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) 831 << PDecl->getDeclName(); 832 } 833 } 834 } 835 } 836 // check unimplemented class methods 837 for (ObjCProtocolDecl::classmeth_iterator 838 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); 839 I != E; ++I) { 840 ObjCMethodDecl *method = *I; 841 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 842 !ClsMap.count(method->getSelector()) && 843 (!Super || !Super->lookupClassMethod(method->getSelector()))) { 844 unsigned DIAG = diag::warn_unimplemented_protocol_method; 845 if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) { 846 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 847 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << 848 PDecl->getDeclName(); 849 } 850 } 851 } 852 // Check on this protocols's referenced protocols, recursively. 853 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), 854 E = PDecl->protocol_end(); PI != E; ++PI) 855 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl); 856} 857 858/// MatchAllMethodDeclarations - Check methods declaraed in interface or 859/// or protocol against those declared in their implementations. 860/// 861void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap, 862 const llvm::DenseSet<Selector> &ClsMap, 863 llvm::DenseSet<Selector> &InsMapSeen, 864 llvm::DenseSet<Selector> &ClsMapSeen, 865 ObjCImplDecl* IMPDecl, 866 ObjCContainerDecl* CDecl, 867 bool &IncompleteImpl, 868 bool ImmediateClass) { 869 // Check and see if instance methods in class interface have been 870 // implemented in the implementation class. If so, their types match. 871 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), 872 E = CDecl->instmeth_end(); I != E; ++I) { 873 if (InsMapSeen.count((*I)->getSelector())) 874 continue; 875 InsMapSeen.insert((*I)->getSelector()); 876 if (!(*I)->isSynthesized() && 877 !InsMap.count((*I)->getSelector())) { 878 if (ImmediateClass) 879 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 880 diag::note_undef_method_impl); 881 continue; 882 } else { 883 ObjCMethodDecl *ImpMethodDecl = 884 IMPDecl->getInstanceMethod((*I)->getSelector()); 885 ObjCMethodDecl *IntfMethodDecl = 886 CDecl->getInstanceMethod((*I)->getSelector()); 887 assert(IntfMethodDecl && 888 "IntfMethodDecl is null in ImplMethodsVsClassMethods"); 889 // ImpMethodDecl may be null as in a @dynamic property. 890 if (ImpMethodDecl) 891 WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl); 892 } 893 } 894 895 // Check and see if class methods in class interface have been 896 // implemented in the implementation class. If so, their types match. 897 for (ObjCInterfaceDecl::classmeth_iterator 898 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { 899 if (ClsMapSeen.count((*I)->getSelector())) 900 continue; 901 ClsMapSeen.insert((*I)->getSelector()); 902 if (!ClsMap.count((*I)->getSelector())) { 903 if (ImmediateClass) 904 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 905 diag::note_undef_method_impl); 906 } else { 907 ObjCMethodDecl *ImpMethodDecl = 908 IMPDecl->getClassMethod((*I)->getSelector()); 909 ObjCMethodDecl *IntfMethodDecl = 910 CDecl->getClassMethod((*I)->getSelector()); 911 WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl); 912 } 913 } 914 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 915 // Check for any implementation of a methods declared in protocol. 916 for (ObjCInterfaceDecl::protocol_iterator PI = I->protocol_begin(), 917 E = I->protocol_end(); PI != E; ++PI) 918 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 919 IMPDecl, 920 (*PI), IncompleteImpl, false); 921 if (I->getSuperClass()) 922 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 923 IMPDecl, 924 I->getSuperClass(), IncompleteImpl, false); 925 } 926} 927 928void Sema::ImplMethodsVsClassMethods(ObjCImplDecl* IMPDecl, 929 ObjCContainerDecl* CDecl, 930 bool IncompleteImpl) { 931 llvm::DenseSet<Selector> InsMap; 932 // Check and see if instance methods in class interface have been 933 // implemented in the implementation class. 934 for (ObjCImplementationDecl::instmeth_iterator 935 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) 936 InsMap.insert((*I)->getSelector()); 937 938 // Check and see if properties declared in the interface have either 1) 939 // an implementation or 2) there is a @synthesize/@dynamic implementation 940 // of the property in the @implementation. 941 if (isa<ObjCInterfaceDecl>(CDecl)) 942 DiagnoseUnimplementedProperties(IMPDecl, CDecl, InsMap); 943 944 llvm::DenseSet<Selector> ClsMap; 945 for (ObjCImplementationDecl::classmeth_iterator 946 I = IMPDecl->classmeth_begin(), 947 E = IMPDecl->classmeth_end(); I != E; ++I) 948 ClsMap.insert((*I)->getSelector()); 949 950 // Check for type conflict of methods declared in a class/protocol and 951 // its implementation; if any. 952 llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; 953 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 954 IMPDecl, CDecl, 955 IncompleteImpl, true); 956 957 // Check the protocol list for unimplemented methods in the @implementation 958 // class. 959 // Check and see if class methods in class interface have been 960 // implemented in the implementation class. 961 962 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 963 for (ObjCInterfaceDecl::protocol_iterator PI = I->protocol_begin(), 964 E = I->protocol_end(); PI != E; ++PI) 965 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 966 InsMap, ClsMap, I); 967 // Check class extensions (unnamed categories) 968 for (ObjCCategoryDecl *Categories = I->getCategoryList(); 969 Categories; Categories = Categories->getNextClassCategory()) { 970 if (Categories->IsClassExtension()) { 971 ImplMethodsVsClassMethods(IMPDecl, Categories, IncompleteImpl); 972 break; 973 } 974 } 975 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 976 // For extended class, unimplemented methods in its protocols will 977 // be reported in the primary class. 978 if (!C->IsClassExtension()) { 979 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), 980 E = C->protocol_end(); PI != E; ++PI) 981 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 982 InsMap, ClsMap, CDecl); 983 // Report unimplemented properties in the category as well. 984 // When reporting on missing setter/getters, do not report when 985 // setter/getter is implemented in category's primary class 986 // implementation. 987 if (ObjCInterfaceDecl *ID = C->getClassInterface()) 988 if (ObjCImplDecl *IMP = ID->getImplementation()) { 989 for (ObjCImplementationDecl::instmeth_iterator 990 I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) 991 InsMap.insert((*I)->getSelector()); 992 } 993 DiagnoseUnimplementedProperties(IMPDecl, CDecl, InsMap); 994 } 995 } else 996 assert(false && "invalid ObjCContainerDecl type."); 997} 998 999/// ActOnForwardClassDeclaration - 1000Action::DeclPtrTy 1001Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 1002 IdentifierInfo **IdentList, 1003 SourceLocation *IdentLocs, 1004 unsigned NumElts) { 1005 llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces; 1006 1007 for (unsigned i = 0; i != NumElts; ++i) { 1008 // Check for another declaration kind with the same name. 1009 NamedDecl *PrevDecl 1010 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 1011 LookupOrdinaryName, ForRedeclaration); 1012 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1013 // Maybe we will complain about the shadowed template parameter. 1014 DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); 1015 // Just pretend that we didn't see the previous declaration. 1016 PrevDecl = 0; 1017 } 1018 1019 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1020 // GCC apparently allows the following idiom: 1021 // 1022 // typedef NSObject < XCElementTogglerP > XCElementToggler; 1023 // @class XCElementToggler; 1024 // 1025 // FIXME: Make an extension? 1026 TypedefDecl *TDD = dyn_cast<TypedefDecl>(PrevDecl); 1027 if (!TDD || !isa<ObjCInterfaceType>(TDD->getUnderlyingType())) { 1028 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 1029 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1030 } else if (TDD) { 1031 // a forward class declaration matching a typedef name of a class refers 1032 // to the underlying class. 1033 if (ObjCInterfaceType * OI = 1034 dyn_cast<ObjCInterfaceType>(TDD->getUnderlyingType())) 1035 PrevDecl = OI->getDecl(); 1036 } 1037 } 1038 ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 1039 if (!IDecl) { // Not already seen? Make a forward decl. 1040 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 1041 IdentList[i], IdentLocs[i], true); 1042 1043 // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to 1044 // the current DeclContext. This prevents clients that walk DeclContext 1045 // from seeing the imaginary ObjCInterfaceDecl until it is actually 1046 // declared later (if at all). We also take care to explicitly make 1047 // sure this declaration is visible for name lookup. 1048 PushOnScopeChains(IDecl, TUScope, false); 1049 CurContext->makeDeclVisibleInContext(IDecl, true); 1050 } 1051 1052 Interfaces.push_back(IDecl); 1053 } 1054 1055 assert(Interfaces.size() == NumElts); 1056 ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc, 1057 Interfaces.data(), IdentLocs, 1058 Interfaces.size()); 1059 CurContext->addDecl(CDecl); 1060 CheckObjCDeclScope(CDecl); 1061 return DeclPtrTy::make(CDecl); 1062} 1063 1064 1065/// MatchTwoMethodDeclarations - Checks that two methods have matching type and 1066/// returns true, or false, accordingly. 1067/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 1068bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *Method, 1069 const ObjCMethodDecl *PrevMethod, 1070 bool matchBasedOnSizeAndAlignment) { 1071 QualType T1 = Context.getCanonicalType(Method->getResultType()); 1072 QualType T2 = Context.getCanonicalType(PrevMethod->getResultType()); 1073 1074 if (T1 != T2) { 1075 // The result types are different. 1076 if (!matchBasedOnSizeAndAlignment) 1077 return false; 1078 // Incomplete types don't have a size and alignment. 1079 if (T1->isIncompleteType() || T2->isIncompleteType()) 1080 return false; 1081 // Check is based on size and alignment. 1082 if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2)) 1083 return false; 1084 } 1085 1086 ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), 1087 E = Method->param_end(); 1088 ObjCMethodDecl::param_iterator PrevI = PrevMethod->param_begin(); 1089 1090 for (; ParamI != E; ++ParamI, ++PrevI) { 1091 assert(PrevI != PrevMethod->param_end() && "Param mismatch"); 1092 T1 = Context.getCanonicalType((*ParamI)->getType()); 1093 T2 = Context.getCanonicalType((*PrevI)->getType()); 1094 if (T1 != T2) { 1095 // The result types are different. 1096 if (!matchBasedOnSizeAndAlignment) 1097 return false; 1098 // Incomplete types don't have a size and alignment. 1099 if (T1->isIncompleteType() || T2->isIncompleteType()) 1100 return false; 1101 // Check is based on size and alignment. 1102 if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2)) 1103 return false; 1104 } 1105 } 1106 return true; 1107} 1108 1109/// \brief Read the contents of the instance and factory method pools 1110/// for a given selector from external storage. 1111/// 1112/// This routine should only be called once, when neither the instance 1113/// nor the factory method pool has an entry for this selector. 1114Sema::MethodPool::iterator Sema::ReadMethodPool(Selector Sel, 1115 bool isInstance) { 1116 assert(ExternalSource && "We need an external AST source"); 1117 assert(InstanceMethodPool.find(Sel) == InstanceMethodPool.end() && 1118 "Selector data already loaded into the instance method pool"); 1119 assert(FactoryMethodPool.find(Sel) == FactoryMethodPool.end() && 1120 "Selector data already loaded into the factory method pool"); 1121 1122 // Read the method list from the external source. 1123 std::pair<ObjCMethodList, ObjCMethodList> Methods 1124 = ExternalSource->ReadMethodPool(Sel); 1125 1126 if (isInstance) { 1127 if (Methods.second.Method) 1128 FactoryMethodPool[Sel] = Methods.second; 1129 return InstanceMethodPool.insert(std::make_pair(Sel, Methods.first)).first; 1130 } 1131 1132 if (Methods.first.Method) 1133 InstanceMethodPool[Sel] = Methods.first; 1134 1135 return FactoryMethodPool.insert(std::make_pair(Sel, Methods.second)).first; 1136} 1137 1138void Sema::AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method) { 1139 llvm::DenseMap<Selector, ObjCMethodList>::iterator Pos 1140 = InstanceMethodPool.find(Method->getSelector()); 1141 if (Pos == InstanceMethodPool.end()) { 1142 if (ExternalSource && !FactoryMethodPool.count(Method->getSelector())) 1143 Pos = ReadMethodPool(Method->getSelector(), /*isInstance=*/true); 1144 else 1145 Pos = InstanceMethodPool.insert(std::make_pair(Method->getSelector(), 1146 ObjCMethodList())).first; 1147 } 1148 1149 ObjCMethodList &Entry = Pos->second; 1150 if (Entry.Method == 0) { 1151 // Haven't seen a method with this selector name yet - add it. 1152 Entry.Method = Method; 1153 Entry.Next = 0; 1154 return; 1155 } 1156 1157 // We've seen a method with this name, see if we have already seen this type 1158 // signature. 1159 for (ObjCMethodList *List = &Entry; List; List = List->Next) 1160 if (MatchTwoMethodDeclarations(Method, List->Method)) 1161 return; 1162 1163 // We have a new signature for an existing method - add it. 1164 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 1165 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 1166 Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next); 1167} 1168 1169// FIXME: Finish implementing -Wno-strict-selector-match. 1170ObjCMethodDecl *Sema::LookupInstanceMethodInGlobalPool(Selector Sel, 1171 SourceRange R, 1172 bool warn) { 1173 llvm::DenseMap<Selector, ObjCMethodList>::iterator Pos 1174 = InstanceMethodPool.find(Sel); 1175 if (Pos == InstanceMethodPool.end()) { 1176 if (ExternalSource && !FactoryMethodPool.count(Sel)) 1177 Pos = ReadMethodPool(Sel, /*isInstance=*/true); 1178 else 1179 return 0; 1180 } 1181 1182 ObjCMethodList &MethList = Pos->second; 1183 bool issueWarning = false; 1184 1185 if (MethList.Method && MethList.Next) { 1186 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) 1187 // This checks if the methods differ by size & alignment. 1188 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true)) 1189 issueWarning = warn; 1190 } 1191 if (issueWarning && (MethList.Method && MethList.Next)) { 1192 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 1193 Diag(MethList.Method->getLocStart(), diag::note_using) 1194 << MethList.Method->getSourceRange(); 1195 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) 1196 Diag(Next->Method->getLocStart(), diag::note_also_found) 1197 << Next->Method->getSourceRange(); 1198 } 1199 return MethList.Method; 1200} 1201 1202void Sema::AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method) { 1203 llvm::DenseMap<Selector, ObjCMethodList>::iterator Pos 1204 = FactoryMethodPool.find(Method->getSelector()); 1205 if (Pos == FactoryMethodPool.end()) { 1206 if (ExternalSource && !InstanceMethodPool.count(Method->getSelector())) 1207 Pos = ReadMethodPool(Method->getSelector(), /*isInstance=*/false); 1208 else 1209 Pos = FactoryMethodPool.insert(std::make_pair(Method->getSelector(), 1210 ObjCMethodList())).first; 1211 } 1212 1213 ObjCMethodList &FirstMethod = Pos->second; 1214 if (!FirstMethod.Method) { 1215 // Haven't seen a method with this selector name yet - add it. 1216 FirstMethod.Method = Method; 1217 FirstMethod.Next = 0; 1218 } else { 1219 // We've seen a method with this name, now check the type signature(s). 1220 bool match = MatchTwoMethodDeclarations(Method, FirstMethod.Method); 1221 1222 for (ObjCMethodList *Next = FirstMethod.Next; !match && Next; 1223 Next = Next->Next) 1224 match = MatchTwoMethodDeclarations(Method, Next->Method); 1225 1226 if (!match) { 1227 // We have a new signature for an existing method - add it. 1228 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 1229 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 1230 ObjCMethodList *OMI = new (Mem) ObjCMethodList(Method, FirstMethod.Next); 1231 FirstMethod.Next = OMI; 1232 } 1233 } 1234} 1235 1236ObjCMethodDecl *Sema::LookupFactoryMethodInGlobalPool(Selector Sel, 1237 SourceRange R) { 1238 llvm::DenseMap<Selector, ObjCMethodList>::iterator Pos 1239 = FactoryMethodPool.find(Sel); 1240 if (Pos == FactoryMethodPool.end()) { 1241 if (ExternalSource && !InstanceMethodPool.count(Sel)) 1242 Pos = ReadMethodPool(Sel, /*isInstance=*/false); 1243 else 1244 return 0; 1245 } 1246 1247 ObjCMethodList &MethList = Pos->second; 1248 bool issueWarning = false; 1249 1250 if (MethList.Method && MethList.Next) { 1251 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) 1252 // This checks if the methods differ by size & alignment. 1253 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true)) 1254 issueWarning = true; 1255 } 1256 if (issueWarning && (MethList.Method && MethList.Next)) { 1257 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 1258 Diag(MethList.Method->getLocStart(), diag::note_using) 1259 << MethList.Method->getSourceRange(); 1260 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) 1261 Diag(Next->Method->getLocStart(), diag::note_also_found) 1262 << Next->Method->getSourceRange(); 1263 } 1264 return MethList.Method; 1265} 1266 1267/// CompareMethodParamsInBaseAndSuper - This routine compares methods with 1268/// identical selector names in current and its super classes and issues 1269/// a warning if any of their argument types are incompatible. 1270void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl, 1271 ObjCMethodDecl *Method, 1272 bool IsInstance) { 1273 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 1274 if (ID == 0) return; 1275 1276 while (ObjCInterfaceDecl *SD = ID->getSuperClass()) { 1277 ObjCMethodDecl *SuperMethodDecl = 1278 SD->lookupMethod(Method->getSelector(), IsInstance); 1279 if (SuperMethodDecl == 0) { 1280 ID = SD; 1281 continue; 1282 } 1283 ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), 1284 E = Method->param_end(); 1285 ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin(); 1286 for (; ParamI != E; ++ParamI, ++PrevI) { 1287 // Number of parameters are the same and is guaranteed by selector match. 1288 assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch"); 1289 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 1290 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 1291 // If type of arguement of method in this class does not match its 1292 // respective argument type in the super class method, issue warning; 1293 if (!Context.typesAreCompatible(T1, T2)) { 1294 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 1295 << T1 << T2; 1296 Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration); 1297 return; 1298 } 1299 } 1300 ID = SD; 1301 } 1302} 1303 1304/// DiagnoseDuplicateIvars - 1305/// Check for duplicate ivars in the entire class at the start of 1306/// @implementation. This becomes necesssary because class extension can 1307/// add ivars to a class in random order which will not be known until 1308/// class's @implementation is seen. 1309void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 1310 ObjCInterfaceDecl *SID) { 1311 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), 1312 IVE = ID->ivar_end(); IVI != IVE; ++IVI) { 1313 ObjCIvarDecl* Ivar = (*IVI); 1314 if (Ivar->isInvalidDecl()) 1315 continue; 1316 if (IdentifierInfo *II = Ivar->getIdentifier()) { 1317 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 1318 if (prevIvar) { 1319 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 1320 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 1321 Ivar->setInvalidDecl(); 1322 } 1323 } 1324 } 1325} 1326 1327// Note: For class/category implemenations, allMethods/allProperties is 1328// always null. 1329void Sema::ActOnAtEnd(SourceRange AtEnd, 1330 DeclPtrTy classDecl, 1331 DeclPtrTy *allMethods, unsigned allNum, 1332 DeclPtrTy *allProperties, unsigned pNum, 1333 DeclGroupPtrTy *allTUVars, unsigned tuvNum) { 1334 Decl *ClassDecl = classDecl.getAs<Decl>(); 1335 1336 // FIXME: If we don't have a ClassDecl, we have an error. We should consider 1337 // always passing in a decl. If the decl has an error, isInvalidDecl() 1338 // should be true. 1339 if (!ClassDecl) 1340 return; 1341 1342 bool isInterfaceDeclKind = 1343 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 1344 || isa<ObjCProtocolDecl>(ClassDecl); 1345 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 1346 1347 if (!isInterfaceDeclKind && AtEnd.isInvalid()) { 1348 // FIXME: This is wrong. We shouldn't be pretending that there is 1349 // an '@end' in the declaration. 1350 SourceLocation L = ClassDecl->getLocation(); 1351 AtEnd.setBegin(L); 1352 AtEnd.setEnd(L); 1353 Diag(L, diag::warn_missing_atend); 1354 } 1355 1356 DeclContext *DC = dyn_cast<DeclContext>(ClassDecl); 1357 1358 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 1359 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 1360 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 1361 1362 for (unsigned i = 0; i < allNum; i++ ) { 1363 ObjCMethodDecl *Method = 1364 cast_or_null<ObjCMethodDecl>(allMethods[i].getAs<Decl>()); 1365 1366 if (!Method) continue; // Already issued a diagnostic. 1367 if (Method->isInstanceMethod()) { 1368 /// Check for instance method of the same name with incompatible types 1369 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 1370 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 1371 : false; 1372 if ((isInterfaceDeclKind && PrevMethod && !match) 1373 || (checkIdenticalMethods && match)) { 1374 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 1375 << Method->getDeclName(); 1376 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 1377 } else { 1378 DC->addDecl(Method); 1379 InsMap[Method->getSelector()] = Method; 1380 /// The following allows us to typecheck messages to "id". 1381 AddInstanceMethodToGlobalPool(Method); 1382 // verify that the instance method conforms to the same definition of 1383 // parent methods if it shadows one. 1384 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true); 1385 } 1386 } else { 1387 /// Check for class method of the same name with incompatible types 1388 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 1389 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 1390 : false; 1391 if ((isInterfaceDeclKind && PrevMethod && !match) 1392 || (checkIdenticalMethods && match)) { 1393 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 1394 << Method->getDeclName(); 1395 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 1396 } else { 1397 DC->addDecl(Method); 1398 ClsMap[Method->getSelector()] = Method; 1399 /// The following allows us to typecheck messages to "Class". 1400 AddFactoryMethodToGlobalPool(Method); 1401 // verify that the class method conforms to the same definition of 1402 // parent methods if it shadows one. 1403 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false); 1404 } 1405 } 1406 } 1407 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 1408 // Compares properties declared in this class to those of its 1409 // super class. 1410 ComparePropertiesInBaseAndSuper(I); 1411 CompareProperties(I, DeclPtrTy::make(I)); 1412 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 1413 // Categories are used to extend the class by declaring new methods. 1414 // By the same token, they are also used to add new properties. No 1415 // need to compare the added property to those in the class. 1416 1417 // Compare protocol properties with those in category 1418 CompareProperties(C, DeclPtrTy::make(C)); 1419 if (C->IsClassExtension()) 1420 DiagnoseClassExtensionDupMethods(C, C->getClassInterface()); 1421 } 1422 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 1423 if (CDecl->getIdentifier()) 1424 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 1425 // user-defined setter/getter. It also synthesizes setter/getter methods 1426 // and adds them to the DeclContext and global method pools. 1427 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), 1428 E = CDecl->prop_end(); 1429 I != E; ++I) 1430 ProcessPropertyDecl(*I, CDecl); 1431 CDecl->setAtEndRange(AtEnd); 1432 } 1433 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 1434 IC->setAtEndRange(AtEnd); 1435 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 1436 ImplMethodsVsClassMethods(IC, IDecl); 1437 AtomicPropertySetterGetterRules(IC, IDecl); 1438 if (LangOpts.ObjCNonFragileABI2) 1439 while (IDecl->getSuperClass()) { 1440 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 1441 IDecl = IDecl->getSuperClass(); 1442 } 1443 } 1444 SetIvarInitializers(IC); 1445 } else if (ObjCCategoryImplDecl* CatImplClass = 1446 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 1447 CatImplClass->setAtEndRange(AtEnd); 1448 1449 // Find category interface decl and then check that all methods declared 1450 // in this interface are implemented in the category @implementation. 1451 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 1452 for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); 1453 Categories; Categories = Categories->getNextClassCategory()) { 1454 if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { 1455 ImplMethodsVsClassMethods(CatImplClass, Categories); 1456 break; 1457 } 1458 } 1459 } 1460 } 1461 if (isInterfaceDeclKind) { 1462 // Reject invalid vardecls. 1463 for (unsigned i = 0; i != tuvNum; i++) { 1464 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 1465 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 1466 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 1467 if (!VDecl->hasExternalStorage()) 1468 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 1469 } 1470 } 1471 } 1472} 1473 1474 1475/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 1476/// objective-c's type qualifier from the parser version of the same info. 1477static Decl::ObjCDeclQualifier 1478CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 1479 Decl::ObjCDeclQualifier ret = Decl::OBJC_TQ_None; 1480 if (PQTVal & ObjCDeclSpec::DQ_In) 1481 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_In); 1482 if (PQTVal & ObjCDeclSpec::DQ_Inout) 1483 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Inout); 1484 if (PQTVal & ObjCDeclSpec::DQ_Out) 1485 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Out); 1486 if (PQTVal & ObjCDeclSpec::DQ_Bycopy) 1487 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Bycopy); 1488 if (PQTVal & ObjCDeclSpec::DQ_Byref) 1489 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Byref); 1490 if (PQTVal & ObjCDeclSpec::DQ_Oneway) 1491 ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Oneway); 1492 1493 return ret; 1494} 1495 1496static inline 1497bool containsInvalidMethodImplAttribute(const AttributeList *A) { 1498 // The 'ibaction' attribute is allowed on method definitions because of 1499 // how the IBAction macro is used on both method declarations and definitions. 1500 // If the method definitions contains any other attributes, return true. 1501 while (A && A->getKind() == AttributeList::AT_IBAction) 1502 A = A->getNext(); 1503 return A != NULL; 1504} 1505 1506Sema::DeclPtrTy Sema::ActOnMethodDeclaration( 1507 SourceLocation MethodLoc, SourceLocation EndLoc, 1508 tok::TokenKind MethodType, DeclPtrTy classDecl, 1509 ObjCDeclSpec &ReturnQT, TypeTy *ReturnType, 1510 Selector Sel, 1511 // optional arguments. The number of types/arguments is obtained 1512 // from the Sel.getNumArgs(). 1513 ObjCArgInfo *ArgInfo, 1514 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 1515 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 1516 bool isVariadic) { 1517 Decl *ClassDecl = classDecl.getAs<Decl>(); 1518 1519 // Make sure we can establish a context for the method. 1520 if (!ClassDecl) { 1521 Diag(MethodLoc, diag::error_missing_method_context); 1522 getLabelMap().clear(); 1523 return DeclPtrTy(); 1524 } 1525 QualType resultDeclType; 1526 1527 TypeSourceInfo *ResultTInfo = 0; 1528 if (ReturnType) { 1529 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); 1530 1531 // Methods cannot return interface types. All ObjC objects are 1532 // passed by reference. 1533 if (resultDeclType->isObjCInterfaceType()) { 1534 Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) 1535 << 0 << resultDeclType; 1536 return DeclPtrTy(); 1537 } 1538 } else // get the type for "id". 1539 resultDeclType = Context.getObjCIdType(); 1540 1541 ObjCMethodDecl* ObjCMethod = 1542 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType, 1543 ResultTInfo, 1544 cast<DeclContext>(ClassDecl), 1545 MethodType == tok::minus, isVariadic, 1546 false, 1547 MethodDeclKind == tok::objc_optional ? 1548 ObjCMethodDecl::Optional : 1549 ObjCMethodDecl::Required); 1550 1551 llvm::SmallVector<ParmVarDecl*, 16> Params; 1552 1553 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 1554 QualType ArgType; 1555 TypeSourceInfo *DI; 1556 1557 if (ArgInfo[i].Type == 0) { 1558 ArgType = Context.getObjCIdType(); 1559 DI = 0; 1560 } else { 1561 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 1562 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 1563 ArgType = adjustParameterType(ArgType); 1564 } 1565 1566 ParmVarDecl* Param 1567 = ParmVarDecl::Create(Context, ObjCMethod, ArgInfo[i].NameLoc, 1568 ArgInfo[i].Name, ArgType, DI, 1569 VarDecl::None, VarDecl::None, 0); 1570 1571 if (ArgType->isObjCInterfaceType()) { 1572 Diag(ArgInfo[i].NameLoc, 1573 diag::err_object_cannot_be_passed_returned_by_value) 1574 << 1 << ArgType; 1575 Param->setInvalidDecl(); 1576 } 1577 1578 Param->setObjCDeclQualifier( 1579 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 1580 1581 // Apply the attributes to the parameter. 1582 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 1583 1584 Params.push_back(Param); 1585 } 1586 1587 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 1588 ParmVarDecl *Param = CParamInfo[i].Param.getAs<ParmVarDecl>(); 1589 QualType ArgType = Param->getType(); 1590 if (ArgType.isNull()) 1591 ArgType = Context.getObjCIdType(); 1592 else 1593 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 1594 ArgType = adjustParameterType(ArgType); 1595 if (ArgType->isObjCInterfaceType()) { 1596 Diag(Param->getLocation(), 1597 diag::err_object_cannot_be_passed_returned_by_value) 1598 << 1 << ArgType; 1599 Param->setInvalidDecl(); 1600 } 1601 Param->setDeclContext(ObjCMethod); 1602 IdResolver.RemoveDecl(Param); 1603 Params.push_back(Param); 1604 } 1605 1606 ObjCMethod->setMethodParams(Context, Params.data(), Params.size(), 1607 Sel.getNumArgs()); 1608 ObjCMethod->setObjCDeclQualifier( 1609 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 1610 const ObjCMethodDecl *PrevMethod = 0; 1611 1612 if (AttrList) 1613 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 1614 1615 const ObjCMethodDecl *InterfaceMD = 0; 1616 1617 // For implementations (which can be very "coarse grain"), we add the 1618 // method now. This allows the AST to implement lookup methods that work 1619 // incrementally (without waiting until we parse the @end). It also allows 1620 // us to flag multiple declaration errors as they occur. 1621 if (ObjCImplementationDecl *ImpDecl = 1622 dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 1623 if (MethodType == tok::minus) { 1624 PrevMethod = ImpDecl->getInstanceMethod(Sel); 1625 ImpDecl->addInstanceMethod(ObjCMethod); 1626 } else { 1627 PrevMethod = ImpDecl->getClassMethod(Sel); 1628 ImpDecl->addClassMethod(ObjCMethod); 1629 } 1630 InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel, 1631 MethodType == tok::minus); 1632 if (containsInvalidMethodImplAttribute(AttrList)) 1633 Diag(EndLoc, diag::warn_attribute_method_def); 1634 } else if (ObjCCategoryImplDecl *CatImpDecl = 1635 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 1636 if (MethodType == tok::minus) { 1637 PrevMethod = CatImpDecl->getInstanceMethod(Sel); 1638 CatImpDecl->addInstanceMethod(ObjCMethod); 1639 } else { 1640 PrevMethod = CatImpDecl->getClassMethod(Sel); 1641 CatImpDecl->addClassMethod(ObjCMethod); 1642 } 1643 if (containsInvalidMethodImplAttribute(AttrList)) 1644 Diag(EndLoc, diag::warn_attribute_method_def); 1645 } 1646 if (PrevMethod) { 1647 // You can never have two method definitions with the same name. 1648 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 1649 << ObjCMethod->getDeclName(); 1650 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 1651 } 1652 1653 // If the interface declared this method, and it was deprecated there, 1654 // mark it deprecated here. 1655 if (InterfaceMD && InterfaceMD->hasAttr<DeprecatedAttr>()) 1656 ObjCMethod->addAttr(::new (Context) DeprecatedAttr()); 1657 1658 return DeclPtrTy::make(ObjCMethod); 1659} 1660 1661bool Sema::CheckObjCDeclScope(Decl *D) { 1662 if (isa<TranslationUnitDecl>(CurContext->getLookupContext())) 1663 return false; 1664 1665 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 1666 D->setInvalidDecl(); 1667 1668 return true; 1669} 1670 1671/// Called whenever @defs(ClassName) is encountered in the source. Inserts the 1672/// instance variables of ClassName into Decls. 1673void Sema::ActOnDefs(Scope *S, DeclPtrTy TagD, SourceLocation DeclStart, 1674 IdentifierInfo *ClassName, 1675 llvm::SmallVectorImpl<DeclPtrTy> &Decls) { 1676 // Check that ClassName is a valid class 1677 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 1678 if (!Class) { 1679 Diag(DeclStart, diag::err_undef_interface) << ClassName; 1680 return; 1681 } 1682 if (LangOpts.ObjCNonFragileABI) { 1683 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 1684 return; 1685 } 1686 1687 // Collect the instance variables 1688 llvm::SmallVector<FieldDecl*, 32> RecFields; 1689 Context.CollectObjCIvars(Class, RecFields); 1690 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 1691 for (unsigned i = 0; i < RecFields.size(); i++) { 1692 FieldDecl* ID = RecFields[i]; 1693 RecordDecl *Record = dyn_cast<RecordDecl>(TagD.getAs<Decl>()); 1694 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, ID->getLocation(), 1695 ID->getIdentifier(), ID->getType(), 1696 ID->getBitWidth()); 1697 Decls.push_back(Sema::DeclPtrTy::make(FD)); 1698 } 1699 1700 // Introduce all of these fields into the appropriate scope. 1701 for (llvm::SmallVectorImpl<DeclPtrTy>::iterator D = Decls.begin(); 1702 D != Decls.end(); ++D) { 1703 FieldDecl *FD = cast<FieldDecl>(D->getAs<Decl>()); 1704 if (getLangOptions().CPlusPlus) 1705 PushOnScopeChains(cast<FieldDecl>(FD), S); 1706 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD.getAs<Decl>())) 1707 Record->addDecl(FD); 1708 } 1709} 1710 1711/// \brief Build a type-check a new Objective-C exception variable declaration. 1712VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, 1713 QualType T, 1714 IdentifierInfo *Name, 1715 SourceLocation NameLoc, 1716 bool Invalid) { 1717 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 1718 // duration shall not be qualified by an address-space qualifier." 1719 // Since all parameters have automatic store duration, they can not have 1720 // an address space. 1721 if (T.getAddressSpace() != 0) { 1722 Diag(NameLoc, diag::err_arg_with_address_space); 1723 Invalid = true; 1724 } 1725 1726 // An @catch parameter must be an unqualified object pointer type; 1727 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 1728 if (Invalid) { 1729 // Don't do any further checking. 1730 } else if (T->isDependentType()) { 1731 // Okay: we don't know what this type will instantiate to. 1732 } else if (!T->isObjCObjectPointerType()) { 1733 Invalid = true; 1734 Diag(NameLoc ,diag::err_catch_param_not_objc_type); 1735 } else if (T->isObjCQualifiedIdType()) { 1736 Invalid = true; 1737 Diag(NameLoc, diag::err_illegal_qualifiers_on_catch_parm); 1738 } 1739 1740 VarDecl *New = VarDecl::Create(Context, CurContext, NameLoc, Name, T, TInfo, 1741 VarDecl::None, VarDecl::None); 1742 if (Invalid) 1743 New->setInvalidDecl(); 1744 return New; 1745} 1746 1747Sema::DeclPtrTy Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 1748 const DeclSpec &DS = D.getDeclSpec(); 1749 1750 // We allow the "register" storage class on exception variables because 1751 // GCC did, but we drop it completely. Any other storage class is an error. 1752 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 1753 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 1754 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 1755 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 1756 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 1757 << DS.getStorageClassSpec(); 1758 } 1759 if (D.getDeclSpec().isThreadSpecified()) 1760 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); 1761 D.getMutableDeclSpec().ClearStorageClassSpecs(); 1762 1763 DiagnoseFunctionSpecifiers(D); 1764 1765 // Check that there are no default arguments inside the type of this 1766 // exception object (C++ only). 1767 if (getLangOptions().CPlusPlus) 1768 CheckExtraCXXDefaultArguments(D); 1769 1770 TypeSourceInfo *TInfo = 0; 1771 TagDecl *OwnedDecl = 0; 1772 QualType ExceptionType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl); 1773 1774 if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) { 1775 // Objective-C++: Types shall not be defined in exception types. 1776 Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type) 1777 << Context.getTypeDeclType(OwnedDecl); 1778 } 1779 1780 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, D.getIdentifier(), 1781 D.getIdentifierLoc(), 1782 D.isInvalidType()); 1783 1784 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 1785 if (D.getCXXScopeSpec().isSet()) { 1786 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 1787 << D.getCXXScopeSpec().getRange(); 1788 New->setInvalidDecl(); 1789 } 1790 1791 // Add the parameter declaration into this scope. 1792 S->AddDecl(DeclPtrTy::make(New)); 1793 if (D.getIdentifier()) 1794 IdResolver.AddDecl(New); 1795 1796 ProcessDeclAttributes(S, New, D); 1797 1798 if (New->hasAttr<BlocksAttr>()) 1799 Diag(New->getLocation(), diag::err_block_on_nonlocal); 1800 return DeclPtrTy::make(New); 1801} 1802 1803/// CollectIvarsToConstructOrDestruct - Collect those ivars which require 1804/// initialization. 1805void Sema::CollectIvarsToConstructOrDestruct(const ObjCInterfaceDecl *OI, 1806 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 1807 for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(), 1808 E = OI->ivar_end(); I != E; ++I) { 1809 ObjCIvarDecl *Iv = (*I); 1810 QualType QT = Context.getBaseElementType(Iv->getType()); 1811 if (isa<RecordType>(QT)) 1812 Ivars.push_back(*I); 1813 } 1814 1815 // Find ivars to construct/destruct in class extension. 1816 if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) { 1817 for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(), 1818 E = CDecl->ivar_end(); I != E; ++I) { 1819 ObjCIvarDecl *Iv = (*I); 1820 QualType QT = Context.getBaseElementType(Iv->getType()); 1821 if (isa<RecordType>(QT)) 1822 Ivars.push_back(*I); 1823 } 1824 } 1825 1826 // Also add any ivar defined in this class's implementation. This 1827 // includes synthesized ivars. 1828 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) { 1829 for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(), 1830 E = ImplDecl->ivar_end(); I != E; ++I) { 1831 ObjCIvarDecl *Iv = (*I); 1832 QualType QT = Context.getBaseElementType(Iv->getType()); 1833 if (isa<RecordType>(QT)) 1834 Ivars.push_back(*I); 1835 } 1836 } 1837} 1838 1839void ObjCImplementationDecl::setIvarInitializers(ASTContext &C, 1840 CXXBaseOrMemberInitializer ** initializers, 1841 unsigned numInitializers) { 1842 if (numInitializers > 0) { 1843 NumIvarInitializers = numInitializers; 1844 CXXBaseOrMemberInitializer **ivarInitializers = 1845 new (C) CXXBaseOrMemberInitializer*[NumIvarInitializers]; 1846 memcpy(ivarInitializers, initializers, 1847 numInitializers * sizeof(CXXBaseOrMemberInitializer*)); 1848 IvarInitializers = ivarInitializers; 1849 } 1850} 1851 1852