SemaDeclObjC.cpp revision ec236787c5868eef53a807ca1a68b6b0b8c604c6
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Sema/DeclSpec.h"
27#include "llvm/ADT/DenseSet.h"
28
29using namespace clang;
30
31/// Check whether the given method, which must be in the 'init'
32/// family, is a valid member of that family.
33///
34/// \param receiverTypeIfCall - if null, check this as if declaring it;
35///   if non-null, check this as if making a call to it with the given
36///   receiver type
37///
38/// \return true to indicate that there was an error and appropriate
39///   actions were taken
40bool Sema::checkInitMethod(ObjCMethodDecl *method,
41                           QualType receiverTypeIfCall) {
42  if (method->isInvalidDecl()) return true;
43
44  // This castAs is safe: methods that don't return an object
45  // pointer won't be inferred as inits and will reject an explicit
46  // objc_method_family(init).
47
48  // We ignore protocols here.  Should we?  What about Class?
49
50  const ObjCObjectType *result = method->getResultType()
51    ->castAs<ObjCObjectPointerType>()->getObjectType();
52
53  if (result->isObjCId()) {
54    return false;
55  } else if (result->isObjCClass()) {
56    // fall through: always an error
57  } else {
58    ObjCInterfaceDecl *resultClass = result->getInterface();
59    assert(resultClass && "unexpected object type!");
60
61    // It's okay for the result type to still be a forward declaration
62    // if we're checking an interface declaration.
63    if (resultClass->isForwardDecl()) {
64      if (receiverTypeIfCall.isNull() &&
65          !isa<ObjCImplementationDecl>(method->getDeclContext()))
66        return false;
67
68    // Otherwise, we try to compare class types.
69    } else {
70      // If this method was declared in a protocol, we can't check
71      // anything unless we have a receiver type that's an interface.
72      const ObjCInterfaceDecl *receiverClass = 0;
73      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
74        if (receiverTypeIfCall.isNull())
75          return false;
76
77        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
78          ->getInterfaceDecl();
79
80        // This can be null for calls to e.g. id<Foo>.
81        if (!receiverClass) return false;
82      } else {
83        receiverClass = method->getClassInterface();
84        assert(receiverClass && "method not associated with a class!");
85      }
86
87      // If either class is a subclass of the other, it's fine.
88      if (receiverClass->isSuperClassOf(resultClass) ||
89          resultClass->isSuperClassOf(receiverClass))
90        return false;
91    }
92  }
93
94  SourceLocation loc = method->getLocation();
95
96  // If we're in a system header, and this is not a call, just make
97  // the method unusable.
98  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
99    method->addAttr(new (Context) UnavailableAttr(loc, Context,
100                "init method returns a type unrelated to its receiver type"));
101    return true;
102  }
103
104  // Otherwise, it's an error.
105  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
106  method->setInvalidDecl();
107  return true;
108}
109
110void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
111                                   const ObjCMethodDecl *Overridden,
112                                   bool IsImplementation) {
113  if (Overridden->hasRelatedResultType() &&
114      !NewMethod->hasRelatedResultType()) {
115    // This can only happen when the method follows a naming convention that
116    // implies a related result type, and the original (overridden) method has
117    // a suitable return type, but the new (overriding) method does not have
118    // a suitable return type.
119    QualType ResultType = NewMethod->getResultType();
120    SourceRange ResultTypeRange;
121    if (const TypeSourceInfo *ResultTypeInfo
122                                        = NewMethod->getResultTypeSourceInfo())
123      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
124
125    // Figure out which class this method is part of, if any.
126    ObjCInterfaceDecl *CurrentClass
127      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
128    if (!CurrentClass) {
129      DeclContext *DC = NewMethod->getDeclContext();
130      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
131        CurrentClass = Cat->getClassInterface();
132      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
133        CurrentClass = Impl->getClassInterface();
134      else if (ObjCCategoryImplDecl *CatImpl
135               = dyn_cast<ObjCCategoryImplDecl>(DC))
136        CurrentClass = CatImpl->getClassInterface();
137    }
138
139    if (CurrentClass) {
140      Diag(NewMethod->getLocation(),
141           diag::warn_related_result_type_compatibility_class)
142        << Context.getObjCInterfaceType(CurrentClass)
143        << ResultType
144        << ResultTypeRange;
145    } else {
146      Diag(NewMethod->getLocation(),
147           diag::warn_related_result_type_compatibility_protocol)
148        << ResultType
149        << ResultTypeRange;
150    }
151
152    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
153      Diag(Overridden->getLocation(),
154           diag::note_related_result_type_overridden_family)
155        << Family;
156    else
157      Diag(Overridden->getLocation(),
158           diag::note_related_result_type_overridden);
159  }
160  if (getLangOptions().ObjCAutoRefCount) {
161    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
162         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
163        Diag(NewMethod->getLocation(),
164             diag::err_nsreturns_retained_attribute_mismatch) << 1;
165        Diag(Overridden->getLocation(), diag::note_previous_decl)
166        << "method";
167    }
168    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
169              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
170        Diag(NewMethod->getLocation(),
171             diag::err_nsreturns_retained_attribute_mismatch) << 0;
172        Diag(Overridden->getLocation(), diag::note_previous_decl)
173        << "method";
174    }
175    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin();
176    for (ObjCMethodDecl::param_iterator
177           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
178         ni != ne; ++ni, ++oi) {
179      const ParmVarDecl *oldDecl = (*oi);
180      ParmVarDecl *newDecl = (*ni);
181      if (newDecl->hasAttr<NSConsumedAttr>() !=
182          oldDecl->hasAttr<NSConsumedAttr>()) {
183        Diag(newDecl->getLocation(),
184             diag::err_nsconsumed_attribute_mismatch);
185        Diag(oldDecl->getLocation(), diag::note_previous_decl)
186          << "parameter";
187      }
188    }
189  }
190}
191
192/// \brief Check a method declaration for compatibility with the Objective-C
193/// ARC conventions.
194static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
195  ObjCMethodFamily family = method->getMethodFamily();
196  switch (family) {
197  case OMF_None:
198  case OMF_dealloc:
199  case OMF_finalize:
200  case OMF_retain:
201  case OMF_release:
202  case OMF_autorelease:
203  case OMF_retainCount:
204  case OMF_self:
205  case OMF_performSelector:
206    return false;
207
208  case OMF_init:
209    // If the method doesn't obey the init rules, don't bother annotating it.
210    if (S.checkInitMethod(method, QualType()))
211      return true;
212
213    method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
214                                                       S.Context));
215
216    // Don't add a second copy of this attribute, but otherwise don't
217    // let it be suppressed.
218    if (method->hasAttr<NSReturnsRetainedAttr>())
219      return false;
220    break;
221
222  case OMF_alloc:
223  case OMF_copy:
224  case OMF_mutableCopy:
225  case OMF_new:
226    if (method->hasAttr<NSReturnsRetainedAttr>() ||
227        method->hasAttr<NSReturnsNotRetainedAttr>() ||
228        method->hasAttr<NSReturnsAutoreleasedAttr>())
229      return false;
230    break;
231  }
232
233  method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
234                                                        S.Context));
235  return false;
236}
237
238static void DiagnoseObjCImplementedDeprecations(Sema &S,
239                                                NamedDecl *ND,
240                                                SourceLocation ImplLoc,
241                                                int select) {
242  if (ND && ND->isDeprecated()) {
243    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
244    if (select == 0)
245      S.Diag(ND->getLocation(), diag::note_method_declared_at);
246    else
247      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
248  }
249}
250
251/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
252/// pool.
253void Sema::AddAnyMethodToGlobalPool(Decl *D) {
254  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
255
256  // If we don't have a valid method decl, simply return.
257  if (!MDecl)
258    return;
259  if (MDecl->isInstanceMethod())
260    AddInstanceMethodToGlobalPool(MDecl, true);
261  else
262    AddFactoryMethodToGlobalPool(MDecl, true);
263}
264
265/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
266/// and user declared, in the method definition's AST.
267void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
268  assert(getCurMethodDecl() == 0 && "Method parsing confused");
269  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
270
271  // If we don't have a valid method decl, simply return.
272  if (!MDecl)
273    return;
274
275  // Allow all of Sema to see that we are entering a method definition.
276  PushDeclContext(FnBodyScope, MDecl);
277  PushFunctionScope();
278
279  // Create Decl objects for each parameter, entrring them in the scope for
280  // binding to their use.
281
282  // Insert the invisible arguments, self and _cmd!
283  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
284
285  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
286  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
287
288  // Introduce all of the other parameters into this scope.
289  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
290       E = MDecl->param_end(); PI != E; ++PI) {
291    ParmVarDecl *Param = (*PI);
292    if (!Param->isInvalidDecl() &&
293        RequireCompleteType(Param->getLocation(), Param->getType(),
294                            diag::err_typecheck_decl_incomplete_type))
295          Param->setInvalidDecl();
296    if ((*PI)->getIdentifier())
297      PushOnScopeChains(*PI, FnBodyScope);
298  }
299
300  // In ARC, disallow definition of retain/release/autorelease/retainCount
301  if (getLangOptions().ObjCAutoRefCount) {
302    switch (MDecl->getMethodFamily()) {
303    case OMF_retain:
304    case OMF_retainCount:
305    case OMF_release:
306    case OMF_autorelease:
307      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
308        << MDecl->getSelector();
309      break;
310
311    case OMF_None:
312    case OMF_dealloc:
313    case OMF_finalize:
314    case OMF_alloc:
315    case OMF_init:
316    case OMF_mutableCopy:
317    case OMF_copy:
318    case OMF_new:
319    case OMF_self:
320    case OMF_performSelector:
321      break;
322    }
323  }
324
325  // Warn on deprecated methods under -Wdeprecated-implementations,
326  // and prepare for warning on missing super calls.
327  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
328    if (ObjCMethodDecl *IMD =
329          IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
330      DiagnoseObjCImplementedDeprecations(*this,
331                                          dyn_cast<NamedDecl>(IMD),
332                                          MDecl->getLocation(), 0);
333
334    // If this is "dealloc" or "finalize", set some bit here.
335    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
336    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
337    // Only do this if the current class actually has a superclass.
338    if (IC->getSuperClass()) {
339      ObjCShouldCallSuperDealloc =
340        !(Context.getLangOptions().ObjCAutoRefCount ||
341          Context.getLangOptions().getGC() == LangOptions::GCOnly) &&
342        MDecl->getMethodFamily() == OMF_dealloc;
343      ObjCShouldCallSuperFinalize =
344        Context.getLangOptions().getGC() != LangOptions::NonGC &&
345        MDecl->getMethodFamily() == OMF_finalize;
346    }
347  }
348}
349
350Decl *Sema::
351ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
352                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
353                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
354                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
355                         const SourceLocation *ProtoLocs,
356                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
357  assert(ClassName && "Missing class identifier");
358
359  // Check for another declaration kind with the same name.
360  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
361                                         LookupOrdinaryName, ForRedeclaration);
362
363  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
364    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
365    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
366  }
367
368  ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
369  if (IDecl) {
370    // Class already seen. Is it a forward declaration?
371    if (!IDecl->isForwardDecl()) {
372      IDecl->setInvalidDecl();
373      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
374      Diag(IDecl->getLocation(), diag::note_previous_definition);
375
376      // Create a new one; the other may be in a different DeclContex, (e.g.
377      // this one may be in a LinkageSpecDecl while the other is not) which
378      // will break invariants.
379      IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
380                                        ClassName, ClassLoc);
381      if (AttrList)
382        ProcessDeclAttributeList(TUScope, IDecl, AttrList);
383      PushOnScopeChains(IDecl, TUScope);
384
385    } else {
386      IDecl->setLocation(ClassLoc);
387      IDecl->setAtStartLoc(AtInterfaceLoc);
388
389      // Since this ObjCInterfaceDecl was created by a forward declaration,
390      // we now add it to the DeclContext since it wasn't added before
391      // (see ActOnForwardClassDeclaration).
392      IDecl->setLexicalDeclContext(CurContext);
393      CurContext->addDecl(IDecl);
394
395      IDecl->completedForwardDecl();
396
397      if (AttrList)
398        ProcessDeclAttributeList(TUScope, IDecl, AttrList);
399    }
400  } else {
401    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
402                                      ClassName, ClassLoc);
403    if (AttrList)
404      ProcessDeclAttributeList(TUScope, IDecl, AttrList);
405
406    PushOnScopeChains(IDecl, TUScope);
407  }
408
409  if (SuperName) {
410    // Check if a different kind of symbol declared in this scope.
411    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
412                                LookupOrdinaryName);
413
414    if (!PrevDecl) {
415      // Try to correct for a typo in the superclass name.
416      TypoCorrection Corrected = CorrectTypo(
417          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
418          NULL, NULL, false, CTC_NoKeywords);
419      if ((PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
420        if (PrevDecl == IDecl) {
421          // Don't correct to the class we're defining.
422          PrevDecl = 0;
423        } else {
424          Diag(SuperLoc, diag::err_undef_superclass_suggest)
425            << SuperName << ClassName << PrevDecl->getDeclName();
426          Diag(PrevDecl->getLocation(), diag::note_previous_decl)
427            << PrevDecl->getDeclName();
428        }
429      }
430    }
431
432    if (PrevDecl == IDecl) {
433      Diag(SuperLoc, diag::err_recursive_superclass)
434        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
435      IDecl->setLocEnd(ClassLoc);
436    } else {
437      ObjCInterfaceDecl *SuperClassDecl =
438                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
439
440      // Diagnose classes that inherit from deprecated classes.
441      if (SuperClassDecl)
442        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
443
444      if (PrevDecl && SuperClassDecl == 0) {
445        // The previous declaration was not a class decl. Check if we have a
446        // typedef. If we do, get the underlying class type.
447        if (const TypedefNameDecl *TDecl =
448              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
449          QualType T = TDecl->getUnderlyingType();
450          if (T->isObjCObjectType()) {
451            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
452              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
453          }
454        }
455
456        // This handles the following case:
457        //
458        // typedef int SuperClass;
459        // @interface MyClass : SuperClass {} @end
460        //
461        if (!SuperClassDecl) {
462          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
463          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
464        }
465      }
466
467      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
468        if (!SuperClassDecl)
469          Diag(SuperLoc, diag::err_undef_superclass)
470            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
471        else if (RequireCompleteType(SuperLoc,
472                   Context.getObjCInterfaceType(SuperClassDecl),
473                   PDiag(diag::err_forward_superclass)
474                     << SuperClassDecl->getDeclName()
475                     << ClassName
476                   << SourceRange(AtInterfaceLoc, ClassLoc))) {
477          SuperClassDecl = 0;
478        }
479      }
480      IDecl->setSuperClass(SuperClassDecl);
481      IDecl->setSuperClassLoc(SuperLoc);
482      IDecl->setLocEnd(SuperLoc);
483    }
484  } else { // we have a root class.
485    IDecl->setLocEnd(ClassLoc);
486  }
487
488  // Check then save referenced protocols.
489  if (NumProtoRefs) {
490    IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
491                           ProtoLocs, Context);
492    IDecl->setLocEnd(EndProtoLoc);
493  }
494
495  CheckObjCDeclScope(IDecl);
496  return ActOnObjCContainerStartDefinition(IDecl);
497}
498
499/// ActOnCompatiblityAlias - this action is called after complete parsing of
500/// @compatibility_alias declaration. It sets up the alias relationships.
501Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
502                                        IdentifierInfo *AliasName,
503                                        SourceLocation AliasLocation,
504                                        IdentifierInfo *ClassName,
505                                        SourceLocation ClassLocation) {
506  // Look for previous declaration of alias name
507  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
508                                      LookupOrdinaryName, ForRedeclaration);
509  if (ADecl) {
510    if (isa<ObjCCompatibleAliasDecl>(ADecl))
511      Diag(AliasLocation, diag::warn_previous_alias_decl);
512    else
513      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
514    Diag(ADecl->getLocation(), diag::note_previous_declaration);
515    return 0;
516  }
517  // Check for class declaration
518  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
519                                       LookupOrdinaryName, ForRedeclaration);
520  if (const TypedefNameDecl *TDecl =
521        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
522    QualType T = TDecl->getUnderlyingType();
523    if (T->isObjCObjectType()) {
524      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
525        ClassName = IDecl->getIdentifier();
526        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
527                                  LookupOrdinaryName, ForRedeclaration);
528      }
529    }
530  }
531  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
532  if (CDecl == 0) {
533    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
534    if (CDeclU)
535      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
536    return 0;
537  }
538
539  // Everything checked out, instantiate a new alias declaration AST.
540  ObjCCompatibleAliasDecl *AliasDecl =
541    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
542
543  if (!CheckObjCDeclScope(AliasDecl))
544    PushOnScopeChains(AliasDecl, TUScope);
545
546  return AliasDecl;
547}
548
549bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
550  IdentifierInfo *PName,
551  SourceLocation &Ploc, SourceLocation PrevLoc,
552  const ObjCList<ObjCProtocolDecl> &PList) {
553
554  bool res = false;
555  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
556       E = PList.end(); I != E; ++I) {
557    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
558                                                 Ploc)) {
559      if (PDecl->getIdentifier() == PName) {
560        Diag(Ploc, diag::err_protocol_has_circular_dependency);
561        Diag(PrevLoc, diag::note_previous_definition);
562        res = true;
563      }
564      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
565            PDecl->getLocation(), PDecl->getReferencedProtocols()))
566        res = true;
567    }
568  }
569  return res;
570}
571
572Decl *
573Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
574                                  IdentifierInfo *ProtocolName,
575                                  SourceLocation ProtocolLoc,
576                                  Decl * const *ProtoRefs,
577                                  unsigned NumProtoRefs,
578                                  const SourceLocation *ProtoLocs,
579                                  SourceLocation EndProtoLoc,
580                                  AttributeList *AttrList) {
581  bool err = false;
582  // FIXME: Deal with AttrList.
583  assert(ProtocolName && "Missing protocol identifier");
584  ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
585  if (PDecl) {
586    // Protocol already seen. Better be a forward protocol declaration
587    if (!PDecl->isForwardDecl()) {
588      Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
589      Diag(PDecl->getLocation(), diag::note_previous_definition);
590
591      // Create a new one; the other may be in a different DeclContex, (e.g.
592      // this one may be in a LinkageSpecDecl while the other is not) which
593      // will break invariants.
594      // We will not add it to scope chains to ignore it as the warning says.
595      PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
596                                       ProtocolLoc, AtProtoInterfaceLoc,
597                                       /*isForwardDecl=*/false);
598
599    } else {
600      ObjCList<ObjCProtocolDecl> PList;
601      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
602      err = CheckForwardProtocolDeclarationForCircularDependency(
603              ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
604
605      // Make sure the cached decl gets a valid start location.
606      PDecl->setAtStartLoc(AtProtoInterfaceLoc);
607      PDecl->setLocation(ProtocolLoc);
608      // Since this ObjCProtocolDecl was created by a forward declaration,
609      // we now add it to the DeclContext since it wasn't added before
610      PDecl->setLexicalDeclContext(CurContext);
611      CurContext->addDecl(PDecl);
612      PDecl->completedForwardDecl();
613    }
614  } else {
615    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
616                                     ProtocolLoc, AtProtoInterfaceLoc,
617                                     /*isForwardDecl=*/false);
618    PushOnScopeChains(PDecl, TUScope);
619  }
620  if (AttrList)
621    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
622  if (!err && NumProtoRefs ) {
623    /// Check then save referenced protocols.
624    PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
625                           ProtoLocs, Context);
626    PDecl->setLocEnd(EndProtoLoc);
627  }
628
629  CheckObjCDeclScope(PDecl);
630  return ActOnObjCContainerStartDefinition(PDecl);
631}
632
633/// FindProtocolDeclaration - This routine looks up protocols and
634/// issues an error if they are not declared. It returns list of
635/// protocol declarations in its 'Protocols' argument.
636void
637Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
638                              const IdentifierLocPair *ProtocolId,
639                              unsigned NumProtocols,
640                              SmallVectorImpl<Decl *> &Protocols) {
641  for (unsigned i = 0; i != NumProtocols; ++i) {
642    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
643                                             ProtocolId[i].second);
644    if (!PDecl) {
645      TypoCorrection Corrected = CorrectTypo(
646          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
647          LookupObjCProtocolName, TUScope, NULL, NULL, false, CTC_NoKeywords);
648      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
649        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
650          << ProtocolId[i].first << Corrected.getCorrection();
651        Diag(PDecl->getLocation(), diag::note_previous_decl)
652          << PDecl->getDeclName();
653      }
654    }
655
656    if (!PDecl) {
657      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
658        << ProtocolId[i].first;
659      continue;
660    }
661
662    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
663
664    // If this is a forward declaration and we are supposed to warn in this
665    // case, do it.
666    if (WarnOnDeclarations && PDecl->isForwardDecl())
667      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
668        << ProtocolId[i].first;
669    Protocols.push_back(PDecl);
670  }
671}
672
673/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
674/// a class method in its extension.
675///
676void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
677                                            ObjCInterfaceDecl *ID) {
678  if (!ID)
679    return;  // Possibly due to previous error
680
681  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
682  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
683       e =  ID->meth_end(); i != e; ++i) {
684    ObjCMethodDecl *MD = *i;
685    MethodMap[MD->getSelector()] = MD;
686  }
687
688  if (MethodMap.empty())
689    return;
690  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
691       e =  CAT->meth_end(); i != e; ++i) {
692    ObjCMethodDecl *Method = *i;
693    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
694    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
695      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
696            << Method->getDeclName();
697      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
698    }
699  }
700}
701
702/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
703Decl *
704Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
705                                      const IdentifierLocPair *IdentList,
706                                      unsigned NumElts,
707                                      AttributeList *attrList) {
708  SmallVector<ObjCProtocolDecl*, 32> Protocols;
709  SmallVector<SourceLocation, 8> ProtoLocs;
710
711  for (unsigned i = 0; i != NumElts; ++i) {
712    IdentifierInfo *Ident = IdentList[i].first;
713    ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
714    bool isNew = false;
715    if (PDecl == 0) { // Not already seen?
716      PDecl = ObjCProtocolDecl::Create(Context, CurContext, Ident,
717                                       IdentList[i].second, AtProtocolLoc,
718                                       /*isForwardDecl=*/true);
719      PushOnScopeChains(PDecl, TUScope, false);
720      isNew = true;
721    }
722    if (attrList) {
723      ProcessDeclAttributeList(TUScope, PDecl, attrList);
724      if (!isNew) {
725        if (ASTMutationListener *L = Context.getASTMutationListener())
726          L->UpdatedAttributeList(PDecl);
727      }
728    }
729    Protocols.push_back(PDecl);
730    ProtoLocs.push_back(IdentList[i].second);
731  }
732
733  ObjCForwardProtocolDecl *PDecl =
734    ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
735                                    Protocols.data(), Protocols.size(),
736                                    ProtoLocs.data());
737  CurContext->addDecl(PDecl);
738  CheckObjCDeclScope(PDecl);
739  return PDecl;
740}
741
742Decl *Sema::
743ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
744                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
745                            IdentifierInfo *CategoryName,
746                            SourceLocation CategoryLoc,
747                            Decl * const *ProtoRefs,
748                            unsigned NumProtoRefs,
749                            const SourceLocation *ProtoLocs,
750                            SourceLocation EndProtoLoc) {
751  ObjCCategoryDecl *CDecl;
752  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
753
754  /// Check that class of this category is already completely declared.
755
756  if (!IDecl
757      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
758                             PDiag(diag::err_category_forward_interface)
759                               << (CategoryName == 0))) {
760    // Create an invalid ObjCCategoryDecl to serve as context for
761    // the enclosing method declarations.  We mark the decl invalid
762    // to make it clear that this isn't a valid AST.
763    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
764                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
765    CDecl->setInvalidDecl();
766
767    if (!IDecl)
768      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
769    return ActOnObjCContainerStartDefinition(CDecl);
770  }
771
772  if (!CategoryName && IDecl->getImplementation()) {
773    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
774    Diag(IDecl->getImplementation()->getLocation(),
775          diag::note_implementation_declared);
776  }
777
778  if (CategoryName) {
779    /// Check for duplicate interface declaration for this category
780    ObjCCategoryDecl *CDeclChain;
781    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
782         CDeclChain = CDeclChain->getNextClassCategory()) {
783      if (CDeclChain->getIdentifier() == CategoryName) {
784        // Class extensions can be declared multiple times.
785        Diag(CategoryLoc, diag::warn_dup_category_def)
786          << ClassName << CategoryName;
787        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
788        break;
789      }
790    }
791  }
792
793  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
794                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
795  // FIXME: PushOnScopeChains?
796  CurContext->addDecl(CDecl);
797
798  if (NumProtoRefs) {
799    CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
800                           ProtoLocs, Context);
801    // Protocols in the class extension belong to the class.
802    if (CDecl->IsClassExtension())
803     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
804                                            NumProtoRefs, Context);
805  }
806
807  CheckObjCDeclScope(CDecl);
808  return ActOnObjCContainerStartDefinition(CDecl);
809}
810
811/// ActOnStartCategoryImplementation - Perform semantic checks on the
812/// category implementation declaration and build an ObjCCategoryImplDecl
813/// object.
814Decl *Sema::ActOnStartCategoryImplementation(
815                      SourceLocation AtCatImplLoc,
816                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
817                      IdentifierInfo *CatName, SourceLocation CatLoc) {
818  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
819  ObjCCategoryDecl *CatIDecl = 0;
820  if (IDecl) {
821    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
822    if (!CatIDecl) {
823      // Category @implementation with no corresponding @interface.
824      // Create and install one.
825      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
826                                          ClassLoc, CatLoc,
827                                          CatName, IDecl);
828      CatIDecl->setImplicit();
829    }
830  }
831
832  ObjCCategoryImplDecl *CDecl =
833    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
834                                 ClassLoc, AtCatImplLoc);
835  /// Check that class of this category is already completely declared.
836  if (!IDecl) {
837    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
838    CDecl->setInvalidDecl();
839  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
840                                 diag::err_undef_interface)) {
841    CDecl->setInvalidDecl();
842  }
843
844  // FIXME: PushOnScopeChains?
845  CurContext->addDecl(CDecl);
846
847  // If the interface is deprecated/unavailable, warn/error about it.
848  if (IDecl)
849    DiagnoseUseOfDecl(IDecl, ClassLoc);
850
851  /// Check that CatName, category name, is not used in another implementation.
852  if (CatIDecl) {
853    if (CatIDecl->getImplementation()) {
854      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
855        << CatName;
856      Diag(CatIDecl->getImplementation()->getLocation(),
857           diag::note_previous_definition);
858    } else {
859      CatIDecl->setImplementation(CDecl);
860      // Warn on implementating category of deprecated class under
861      // -Wdeprecated-implementations flag.
862      DiagnoseObjCImplementedDeprecations(*this,
863                                          dyn_cast<NamedDecl>(IDecl),
864                                          CDecl->getLocation(), 2);
865    }
866  }
867
868  CheckObjCDeclScope(CDecl);
869  return ActOnObjCContainerStartDefinition(CDecl);
870}
871
872Decl *Sema::ActOnStartClassImplementation(
873                      SourceLocation AtClassImplLoc,
874                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
875                      IdentifierInfo *SuperClassname,
876                      SourceLocation SuperClassLoc) {
877  ObjCInterfaceDecl* IDecl = 0;
878  // Check for another declaration kind with the same name.
879  NamedDecl *PrevDecl
880    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
881                       ForRedeclaration);
882  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
883    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
884    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
885  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
886    if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
887                            diag::warn_undef_interface))
888      IDecl = 0;
889  } else {
890    // We did not find anything with the name ClassName; try to correct for
891    // typos in the class name.
892    TypoCorrection Corrected = CorrectTypo(
893        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
894        NULL, NULL, false, CTC_NoKeywords);
895    if ((IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
896      // Suggest the (potentially) correct interface name. However, put the
897      // fix-it hint itself in a separate note, since changing the name in
898      // the warning would make the fix-it change semantics.However, don't
899      // provide a code-modification hint or use the typo name for recovery,
900      // because this is just a warning. The program may actually be correct.
901      DeclarationName CorrectedName = Corrected.getCorrection();
902      Diag(ClassLoc, diag::warn_undef_interface_suggest)
903        << ClassName << CorrectedName;
904      Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
905        << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
906      IDecl = 0;
907    } else {
908      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
909    }
910  }
911
912  // Check that super class name is valid class name
913  ObjCInterfaceDecl* SDecl = 0;
914  if (SuperClassname) {
915    // Check if a different kind of symbol declared in this scope.
916    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
917                                LookupOrdinaryName);
918    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
919      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
920        << SuperClassname;
921      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
922    } else {
923      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
924      if (!SDecl)
925        Diag(SuperClassLoc, diag::err_undef_superclass)
926          << SuperClassname << ClassName;
927      else if (IDecl && IDecl->getSuperClass() != SDecl) {
928        // This implementation and its interface do not have the same
929        // super class.
930        Diag(SuperClassLoc, diag::err_conflicting_super_class)
931          << SDecl->getDeclName();
932        Diag(SDecl->getLocation(), diag::note_previous_definition);
933      }
934    }
935  }
936
937  if (!IDecl) {
938    // Legacy case of @implementation with no corresponding @interface.
939    // Build, chain & install the interface decl into the identifier.
940
941    // FIXME: Do we support attributes on the @implementation? If so we should
942    // copy them over.
943    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
944                                      ClassName, ClassLoc, false, true);
945    IDecl->setSuperClass(SDecl);
946    IDecl->setLocEnd(ClassLoc);
947
948    PushOnScopeChains(IDecl, TUScope);
949  } else {
950    // Mark the interface as being completed, even if it was just as
951    //   @class ....;
952    // declaration; the user cannot reopen it.
953    if (IDecl->isForwardDecl())
954      IDecl->completedForwardDecl();
955  }
956
957  ObjCImplementationDecl* IMPDecl =
958    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
959                                   ClassLoc, AtClassImplLoc);
960
961  if (CheckObjCDeclScope(IMPDecl))
962    return ActOnObjCContainerStartDefinition(IMPDecl);
963
964  // Check that there is no duplicate implementation of this class.
965  if (IDecl->getImplementation()) {
966    // FIXME: Don't leak everything!
967    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
968    Diag(IDecl->getImplementation()->getLocation(),
969         diag::note_previous_definition);
970  } else { // add it to the list.
971    IDecl->setImplementation(IMPDecl);
972    PushOnScopeChains(IMPDecl, TUScope);
973    // Warn on implementating deprecated class under
974    // -Wdeprecated-implementations flag.
975    DiagnoseObjCImplementedDeprecations(*this,
976                                        dyn_cast<NamedDecl>(IDecl),
977                                        IMPDecl->getLocation(), 1);
978  }
979  return ActOnObjCContainerStartDefinition(IMPDecl);
980}
981
982void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
983                                    ObjCIvarDecl **ivars, unsigned numIvars,
984                                    SourceLocation RBrace) {
985  assert(ImpDecl && "missing implementation decl");
986  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
987  if (!IDecl)
988    return;
989  /// Check case of non-existing @interface decl.
990  /// (legacy objective-c @implementation decl without an @interface decl).
991  /// Add implementations's ivar to the synthesize class's ivar list.
992  if (IDecl->isImplicitInterfaceDecl()) {
993    IDecl->setLocEnd(RBrace);
994    // Add ivar's to class's DeclContext.
995    for (unsigned i = 0, e = numIvars; i != e; ++i) {
996      ivars[i]->setLexicalDeclContext(ImpDecl);
997      IDecl->makeDeclVisibleInContext(ivars[i], false);
998      ImpDecl->addDecl(ivars[i]);
999    }
1000
1001    return;
1002  }
1003  // If implementation has empty ivar list, just return.
1004  if (numIvars == 0)
1005    return;
1006
1007  assert(ivars && "missing @implementation ivars");
1008  if (LangOpts.ObjCNonFragileABI2) {
1009    if (ImpDecl->getSuperClass())
1010      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1011    for (unsigned i = 0; i < numIvars; i++) {
1012      ObjCIvarDecl* ImplIvar = ivars[i];
1013      if (const ObjCIvarDecl *ClsIvar =
1014            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1015        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1016        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1017        continue;
1018      }
1019      // Instance ivar to Implementation's DeclContext.
1020      ImplIvar->setLexicalDeclContext(ImpDecl);
1021      IDecl->makeDeclVisibleInContext(ImplIvar, false);
1022      ImpDecl->addDecl(ImplIvar);
1023    }
1024    return;
1025  }
1026  // Check interface's Ivar list against those in the implementation.
1027  // names and types must match.
1028  //
1029  unsigned j = 0;
1030  ObjCInterfaceDecl::ivar_iterator
1031    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1032  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1033    ObjCIvarDecl* ImplIvar = ivars[j++];
1034    ObjCIvarDecl* ClsIvar = *IVI;
1035    assert (ImplIvar && "missing implementation ivar");
1036    assert (ClsIvar && "missing class ivar");
1037
1038    // First, make sure the types match.
1039    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1040      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1041        << ImplIvar->getIdentifier()
1042        << ImplIvar->getType() << ClsIvar->getType();
1043      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1044    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1045               ImplIvar->getBitWidthValue(Context) !=
1046               ClsIvar->getBitWidthValue(Context)) {
1047      Diag(ImplIvar->getBitWidth()->getLocStart(),
1048           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1049      Diag(ClsIvar->getBitWidth()->getLocStart(),
1050           diag::note_previous_definition);
1051    }
1052    // Make sure the names are identical.
1053    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1054      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1055        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1056      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1057    }
1058    --numIvars;
1059  }
1060
1061  if (numIvars > 0)
1062    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1063  else if (IVI != IVE)
1064    Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
1065}
1066
1067void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1068                               bool &IncompleteImpl, unsigned DiagID) {
1069  // No point warning no definition of method which is 'unavailable'.
1070  if (method->hasAttr<UnavailableAttr>())
1071    return;
1072  if (!IncompleteImpl) {
1073    Diag(ImpLoc, diag::warn_incomplete_impl);
1074    IncompleteImpl = true;
1075  }
1076  if (DiagID == diag::warn_unimplemented_protocol_method)
1077    Diag(ImpLoc, DiagID) << method->getDeclName();
1078  else
1079    Diag(method->getLocation(), DiagID) << method->getDeclName();
1080}
1081
1082/// Determines if type B can be substituted for type A.  Returns true if we can
1083/// guarantee that anything that the user will do to an object of type A can
1084/// also be done to an object of type B.  This is trivially true if the two
1085/// types are the same, or if B is a subclass of A.  It becomes more complex
1086/// in cases where protocols are involved.
1087///
1088/// Object types in Objective-C describe the minimum requirements for an
1089/// object, rather than providing a complete description of a type.  For
1090/// example, if A is a subclass of B, then B* may refer to an instance of A.
1091/// The principle of substitutability means that we may use an instance of A
1092/// anywhere that we may use an instance of B - it will implement all of the
1093/// ivars of B and all of the methods of B.
1094///
1095/// This substitutability is important when type checking methods, because
1096/// the implementation may have stricter type definitions than the interface.
1097/// The interface specifies minimum requirements, but the implementation may
1098/// have more accurate ones.  For example, a method may privately accept
1099/// instances of B, but only publish that it accepts instances of A.  Any
1100/// object passed to it will be type checked against B, and so will implicitly
1101/// by a valid A*.  Similarly, a method may return a subclass of the class that
1102/// it is declared as returning.
1103///
1104/// This is most important when considering subclassing.  A method in a
1105/// subclass must accept any object as an argument that its superclass's
1106/// implementation accepts.  It may, however, accept a more general type
1107/// without breaking substitutability (i.e. you can still use the subclass
1108/// anywhere that you can use the superclass, but not vice versa).  The
1109/// converse requirement applies to return types: the return type for a
1110/// subclass method must be a valid object of the kind that the superclass
1111/// advertises, but it may be specified more accurately.  This avoids the need
1112/// for explicit down-casting by callers.
1113///
1114/// Note: This is a stricter requirement than for assignment.
1115static bool isObjCTypeSubstitutable(ASTContext &Context,
1116                                    const ObjCObjectPointerType *A,
1117                                    const ObjCObjectPointerType *B,
1118                                    bool rejectId) {
1119  // Reject a protocol-unqualified id.
1120  if (rejectId && B->isObjCIdType()) return false;
1121
1122  // If B is a qualified id, then A must also be a qualified id and it must
1123  // implement all of the protocols in B.  It may not be a qualified class.
1124  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1125  // stricter definition so it is not substitutable for id<A>.
1126  if (B->isObjCQualifiedIdType()) {
1127    return A->isObjCQualifiedIdType() &&
1128           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1129                                                     QualType(B,0),
1130                                                     false);
1131  }
1132
1133  /*
1134  // id is a special type that bypasses type checking completely.  We want a
1135  // warning when it is used in one place but not another.
1136  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1137
1138
1139  // If B is a qualified id, then A must also be a qualified id (which it isn't
1140  // if we've got this far)
1141  if (B->isObjCQualifiedIdType()) return false;
1142  */
1143
1144  // Now we know that A and B are (potentially-qualified) class types.  The
1145  // normal rules for assignment apply.
1146  return Context.canAssignObjCInterfaces(A, B);
1147}
1148
1149static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1150  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1151}
1152
1153static bool CheckMethodOverrideReturn(Sema &S,
1154                                      ObjCMethodDecl *MethodImpl,
1155                                      ObjCMethodDecl *MethodDecl,
1156                                      bool IsProtocolMethodDecl,
1157                                      bool IsOverridingMode,
1158                                      bool Warn) {
1159  if (IsProtocolMethodDecl &&
1160      (MethodDecl->getObjCDeclQualifier() !=
1161       MethodImpl->getObjCDeclQualifier())) {
1162    if (Warn) {
1163        S.Diag(MethodImpl->getLocation(),
1164               (IsOverridingMode ?
1165                 diag::warn_conflicting_overriding_ret_type_modifiers
1166                 : diag::warn_conflicting_ret_type_modifiers))
1167          << MethodImpl->getDeclName()
1168          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1169        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1170          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1171    }
1172    else
1173      return false;
1174  }
1175
1176  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1177                                       MethodDecl->getResultType()))
1178    return true;
1179  if (!Warn)
1180    return false;
1181
1182  unsigned DiagID =
1183    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1184                     : diag::warn_conflicting_ret_types;
1185
1186  // Mismatches between ObjC pointers go into a different warning
1187  // category, and sometimes they're even completely whitelisted.
1188  if (const ObjCObjectPointerType *ImplPtrTy =
1189        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1190    if (const ObjCObjectPointerType *IfacePtrTy =
1191          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1192      // Allow non-matching return types as long as they don't violate
1193      // the principle of substitutability.  Specifically, we permit
1194      // return types that are subclasses of the declared return type,
1195      // or that are more-qualified versions of the declared type.
1196      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1197        return false;
1198
1199      DiagID =
1200        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1201                          : diag::warn_non_covariant_ret_types;
1202    }
1203  }
1204
1205  S.Diag(MethodImpl->getLocation(), DiagID)
1206    << MethodImpl->getDeclName()
1207    << MethodDecl->getResultType()
1208    << MethodImpl->getResultType()
1209    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1210  S.Diag(MethodDecl->getLocation(),
1211         IsOverridingMode ? diag::note_previous_declaration
1212                          : diag::note_previous_definition)
1213    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1214  return false;
1215}
1216
1217static bool CheckMethodOverrideParam(Sema &S,
1218                                     ObjCMethodDecl *MethodImpl,
1219                                     ObjCMethodDecl *MethodDecl,
1220                                     ParmVarDecl *ImplVar,
1221                                     ParmVarDecl *IfaceVar,
1222                                     bool IsProtocolMethodDecl,
1223                                     bool IsOverridingMode,
1224                                     bool Warn) {
1225  if (IsProtocolMethodDecl &&
1226      (ImplVar->getObjCDeclQualifier() !=
1227       IfaceVar->getObjCDeclQualifier())) {
1228    if (Warn) {
1229      if (IsOverridingMode)
1230        S.Diag(ImplVar->getLocation(),
1231               diag::warn_conflicting_overriding_param_modifiers)
1232            << getTypeRange(ImplVar->getTypeSourceInfo())
1233            << MethodImpl->getDeclName();
1234      else S.Diag(ImplVar->getLocation(),
1235             diag::warn_conflicting_param_modifiers)
1236          << getTypeRange(ImplVar->getTypeSourceInfo())
1237          << MethodImpl->getDeclName();
1238      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1239          << getTypeRange(IfaceVar->getTypeSourceInfo());
1240    }
1241    else
1242      return false;
1243  }
1244
1245  QualType ImplTy = ImplVar->getType();
1246  QualType IfaceTy = IfaceVar->getType();
1247
1248  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1249    return true;
1250
1251  if (!Warn)
1252    return false;
1253  unsigned DiagID =
1254    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1255                     : diag::warn_conflicting_param_types;
1256
1257  // Mismatches between ObjC pointers go into a different warning
1258  // category, and sometimes they're even completely whitelisted.
1259  if (const ObjCObjectPointerType *ImplPtrTy =
1260        ImplTy->getAs<ObjCObjectPointerType>()) {
1261    if (const ObjCObjectPointerType *IfacePtrTy =
1262          IfaceTy->getAs<ObjCObjectPointerType>()) {
1263      // Allow non-matching argument types as long as they don't
1264      // violate the principle of substitutability.  Specifically, the
1265      // implementation must accept any objects that the superclass
1266      // accepts, however it may also accept others.
1267      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1268        return false;
1269
1270      DiagID =
1271      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1272                       :  diag::warn_non_contravariant_param_types;
1273    }
1274  }
1275
1276  S.Diag(ImplVar->getLocation(), DiagID)
1277    << getTypeRange(ImplVar->getTypeSourceInfo())
1278    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1279  S.Diag(IfaceVar->getLocation(),
1280         (IsOverridingMode ? diag::note_previous_declaration
1281                        : diag::note_previous_definition))
1282    << getTypeRange(IfaceVar->getTypeSourceInfo());
1283  return false;
1284}
1285
1286/// In ARC, check whether the conventional meanings of the two methods
1287/// match.  If they don't, it's a hard error.
1288static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1289                                      ObjCMethodDecl *decl) {
1290  ObjCMethodFamily implFamily = impl->getMethodFamily();
1291  ObjCMethodFamily declFamily = decl->getMethodFamily();
1292  if (implFamily == declFamily) return false;
1293
1294  // Since conventions are sorted by selector, the only possibility is
1295  // that the types differ enough to cause one selector or the other
1296  // to fall out of the family.
1297  assert(implFamily == OMF_None || declFamily == OMF_None);
1298
1299  // No further diagnostics required on invalid declarations.
1300  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1301
1302  const ObjCMethodDecl *unmatched = impl;
1303  ObjCMethodFamily family = declFamily;
1304  unsigned errorID = diag::err_arc_lost_method_convention;
1305  unsigned noteID = diag::note_arc_lost_method_convention;
1306  if (declFamily == OMF_None) {
1307    unmatched = decl;
1308    family = implFamily;
1309    errorID = diag::err_arc_gained_method_convention;
1310    noteID = diag::note_arc_gained_method_convention;
1311  }
1312
1313  // Indexes into a %select clause in the diagnostic.
1314  enum FamilySelector {
1315    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1316  };
1317  FamilySelector familySelector = FamilySelector();
1318
1319  switch (family) {
1320  case OMF_None: llvm_unreachable("logic error, no method convention");
1321  case OMF_retain:
1322  case OMF_release:
1323  case OMF_autorelease:
1324  case OMF_dealloc:
1325  case OMF_finalize:
1326  case OMF_retainCount:
1327  case OMF_self:
1328  case OMF_performSelector:
1329    // Mismatches for these methods don't change ownership
1330    // conventions, so we don't care.
1331    return false;
1332
1333  case OMF_init: familySelector = F_init; break;
1334  case OMF_alloc: familySelector = F_alloc; break;
1335  case OMF_copy: familySelector = F_copy; break;
1336  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1337  case OMF_new: familySelector = F_new; break;
1338  }
1339
1340  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1341  ReasonSelector reasonSelector;
1342
1343  // The only reason these methods don't fall within their families is
1344  // due to unusual result types.
1345  if (unmatched->getResultType()->isObjCObjectPointerType()) {
1346    reasonSelector = R_UnrelatedReturn;
1347  } else {
1348    reasonSelector = R_NonObjectReturn;
1349  }
1350
1351  S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1352  S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1353
1354  return true;
1355}
1356
1357void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1358                                       ObjCMethodDecl *MethodDecl,
1359                                       bool IsProtocolMethodDecl) {
1360  if (getLangOptions().ObjCAutoRefCount &&
1361      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1362    return;
1363
1364  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1365                            IsProtocolMethodDecl, false,
1366                            true);
1367
1368  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1369       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1370       IM != EM; ++IM, ++IF) {
1371    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1372                             IsProtocolMethodDecl, false, true);
1373  }
1374
1375  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1376    Diag(ImpMethodDecl->getLocation(),
1377         diag::warn_conflicting_variadic);
1378    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1379  }
1380}
1381
1382void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1383                                       ObjCMethodDecl *Overridden,
1384                                       bool IsProtocolMethodDecl) {
1385
1386  CheckMethodOverrideReturn(*this, Method, Overridden,
1387                            IsProtocolMethodDecl, true,
1388                            true);
1389
1390  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1391       IF = Overridden->param_begin(), EM = Method->param_end();
1392       IM != EM; ++IM, ++IF) {
1393    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1394                             IsProtocolMethodDecl, true, true);
1395  }
1396
1397  if (Method->isVariadic() != Overridden->isVariadic()) {
1398    Diag(Method->getLocation(),
1399         diag::warn_conflicting_overriding_variadic);
1400    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1401  }
1402}
1403
1404/// WarnExactTypedMethods - This routine issues a warning if method
1405/// implementation declaration matches exactly that of its declaration.
1406void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1407                                 ObjCMethodDecl *MethodDecl,
1408                                 bool IsProtocolMethodDecl) {
1409  // don't issue warning when protocol method is optional because primary
1410  // class is not required to implement it and it is safe for protocol
1411  // to implement it.
1412  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1413    return;
1414  // don't issue warning when primary class's method is
1415  // depecated/unavailable.
1416  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1417      MethodDecl->hasAttr<DeprecatedAttr>())
1418    return;
1419
1420  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1421                                      IsProtocolMethodDecl, false, false);
1422  if (match)
1423    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1424         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1425         IM != EM; ++IM, ++IF) {
1426      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1427                                       *IM, *IF,
1428                                       IsProtocolMethodDecl, false, false);
1429      if (!match)
1430        break;
1431    }
1432  if (match)
1433    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1434  if (match)
1435    match = !(MethodDecl->isClassMethod() &&
1436              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1437
1438  if (match) {
1439    Diag(ImpMethodDecl->getLocation(),
1440         diag::warn_category_method_impl_match);
1441    Diag(MethodDecl->getLocation(), diag::note_method_declared_at);
1442  }
1443}
1444
1445/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1446/// improve the efficiency of selector lookups and type checking by associating
1447/// with each protocol / interface / category the flattened instance tables. If
1448/// we used an immutable set to keep the table then it wouldn't add significant
1449/// memory cost and it would be handy for lookups.
1450
1451/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1452/// Declared in protocol, and those referenced by it.
1453void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1454                                   ObjCProtocolDecl *PDecl,
1455                                   bool& IncompleteImpl,
1456                                   const llvm::DenseSet<Selector> &InsMap,
1457                                   const llvm::DenseSet<Selector> &ClsMap,
1458                                   ObjCContainerDecl *CDecl) {
1459  ObjCInterfaceDecl *IDecl;
1460  if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
1461    IDecl = C->getClassInterface();
1462  else
1463    IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
1464  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1465
1466  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1467  ObjCInterfaceDecl *NSIDecl = 0;
1468  if (getLangOptions().NeXTRuntime) {
1469    // check to see if class implements forwardInvocation method and objects
1470    // of this class are derived from 'NSProxy' so that to forward requests
1471    // from one object to another.
1472    // Under such conditions, which means that every method possible is
1473    // implemented in the class, we should not issue "Method definition not
1474    // found" warnings.
1475    // FIXME: Use a general GetUnarySelector method for this.
1476    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1477    Selector fISelector = Context.Selectors.getSelector(1, &II);
1478    if (InsMap.count(fISelector))
1479      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1480      // need be implemented in the implementation.
1481      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1482  }
1483
1484  // If a method lookup fails locally we still need to look and see if
1485  // the method was implemented by a base class or an inherited
1486  // protocol. This lookup is slow, but occurs rarely in correct code
1487  // and otherwise would terminate in a warning.
1488
1489  // check unimplemented instance methods.
1490  if (!NSIDecl)
1491    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1492         E = PDecl->instmeth_end(); I != E; ++I) {
1493      ObjCMethodDecl *method = *I;
1494      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1495          !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
1496          (!Super ||
1497           !Super->lookupInstanceMethod(method->getSelector()))) {
1498            // Ugly, but necessary. Method declared in protcol might have
1499            // have been synthesized due to a property declared in the class which
1500            // uses the protocol.
1501            ObjCMethodDecl *MethodInClass =
1502            IDecl->lookupInstanceMethod(method->getSelector());
1503            if (!MethodInClass || !MethodInClass->isSynthesized()) {
1504              unsigned DIAG = diag::warn_unimplemented_protocol_method;
1505              if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1506                      != DiagnosticsEngine::Ignored) {
1507                WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1508                Diag(method->getLocation(), diag::note_method_declared_at);
1509                Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1510                  << PDecl->getDeclName();
1511              }
1512            }
1513          }
1514    }
1515  // check unimplemented class methods
1516  for (ObjCProtocolDecl::classmeth_iterator
1517         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1518       I != E; ++I) {
1519    ObjCMethodDecl *method = *I;
1520    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1521        !ClsMap.count(method->getSelector()) &&
1522        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1523      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1524      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1525            DiagnosticsEngine::Ignored) {
1526        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1527        Diag(method->getLocation(), diag::note_method_declared_at);
1528        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1529          PDecl->getDeclName();
1530      }
1531    }
1532  }
1533  // Check on this protocols's referenced protocols, recursively.
1534  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1535       E = PDecl->protocol_end(); PI != E; ++PI)
1536    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
1537}
1538
1539/// MatchAllMethodDeclarations - Check methods declared in interface
1540/// or protocol against those declared in their implementations.
1541///
1542void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
1543                                      const llvm::DenseSet<Selector> &ClsMap,
1544                                      llvm::DenseSet<Selector> &InsMapSeen,
1545                                      llvm::DenseSet<Selector> &ClsMapSeen,
1546                                      ObjCImplDecl* IMPDecl,
1547                                      ObjCContainerDecl* CDecl,
1548                                      bool &IncompleteImpl,
1549                                      bool ImmediateClass,
1550                                      bool WarnExactMatch) {
1551  // Check and see if instance methods in class interface have been
1552  // implemented in the implementation class. If so, their types match.
1553  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1554       E = CDecl->instmeth_end(); I != E; ++I) {
1555    if (InsMapSeen.count((*I)->getSelector()))
1556        continue;
1557    InsMapSeen.insert((*I)->getSelector());
1558    if (!(*I)->isSynthesized() &&
1559        !InsMap.count((*I)->getSelector())) {
1560      if (ImmediateClass)
1561        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1562                            diag::note_undef_method_impl);
1563      continue;
1564    } else {
1565      ObjCMethodDecl *ImpMethodDecl =
1566        IMPDecl->getInstanceMethod((*I)->getSelector());
1567      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1568             "Expected to find the method through lookup as well");
1569      ObjCMethodDecl *MethodDecl = *I;
1570      // ImpMethodDecl may be null as in a @dynamic property.
1571      if (ImpMethodDecl) {
1572        if (!WarnExactMatch)
1573          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1574                                      isa<ObjCProtocolDecl>(CDecl));
1575        else if (!MethodDecl->isSynthesized())
1576          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1577                               isa<ObjCProtocolDecl>(CDecl));
1578      }
1579    }
1580  }
1581
1582  // Check and see if class methods in class interface have been
1583  // implemented in the implementation class. If so, their types match.
1584   for (ObjCInterfaceDecl::classmeth_iterator
1585       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1586     if (ClsMapSeen.count((*I)->getSelector()))
1587       continue;
1588     ClsMapSeen.insert((*I)->getSelector());
1589    if (!ClsMap.count((*I)->getSelector())) {
1590      if (ImmediateClass)
1591        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1592                            diag::note_undef_method_impl);
1593    } else {
1594      ObjCMethodDecl *ImpMethodDecl =
1595        IMPDecl->getClassMethod((*I)->getSelector());
1596      assert(CDecl->getClassMethod((*I)->getSelector()) &&
1597             "Expected to find the method through lookup as well");
1598      ObjCMethodDecl *MethodDecl = *I;
1599      if (!WarnExactMatch)
1600        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1601                                    isa<ObjCProtocolDecl>(CDecl));
1602      else
1603        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1604                             isa<ObjCProtocolDecl>(CDecl));
1605    }
1606  }
1607
1608  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1609    // Also methods in class extensions need be looked at next.
1610    for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1611         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1612      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1613                                 IMPDecl,
1614                                 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1615                                 IncompleteImpl, false, WarnExactMatch);
1616
1617    // Check for any implementation of a methods declared in protocol.
1618    for (ObjCInterfaceDecl::all_protocol_iterator
1619          PI = I->all_referenced_protocol_begin(),
1620          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1621      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1622                                 IMPDecl,
1623                                 (*PI), IncompleteImpl, false, WarnExactMatch);
1624
1625    // FIXME. For now, we are not checking for extact match of methods
1626    // in category implementation and its primary class's super class.
1627    if (!WarnExactMatch && I->getSuperClass())
1628      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1629                                 IMPDecl,
1630                                 I->getSuperClass(), IncompleteImpl, false);
1631  }
1632}
1633
1634/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1635/// category matches with those implemented in its primary class and
1636/// warns each time an exact match is found.
1637void Sema::CheckCategoryVsClassMethodMatches(
1638                                  ObjCCategoryImplDecl *CatIMPDecl) {
1639  llvm::DenseSet<Selector> InsMap, ClsMap;
1640
1641  for (ObjCImplementationDecl::instmeth_iterator
1642       I = CatIMPDecl->instmeth_begin(),
1643       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1644    InsMap.insert((*I)->getSelector());
1645
1646  for (ObjCImplementationDecl::classmeth_iterator
1647       I = CatIMPDecl->classmeth_begin(),
1648       E = CatIMPDecl->classmeth_end(); I != E; ++I)
1649    ClsMap.insert((*I)->getSelector());
1650  if (InsMap.empty() && ClsMap.empty())
1651    return;
1652
1653  // Get category's primary class.
1654  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1655  if (!CatDecl)
1656    return;
1657  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1658  if (!IDecl)
1659    return;
1660  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1661  bool IncompleteImpl = false;
1662  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1663                             CatIMPDecl, IDecl,
1664                             IncompleteImpl, false, true /*WarnExactMatch*/);
1665}
1666
1667void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1668                                     ObjCContainerDecl* CDecl,
1669                                     bool IncompleteImpl) {
1670  llvm::DenseSet<Selector> InsMap;
1671  // Check and see if instance methods in class interface have been
1672  // implemented in the implementation class.
1673  for (ObjCImplementationDecl::instmeth_iterator
1674         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1675    InsMap.insert((*I)->getSelector());
1676
1677  // Check and see if properties declared in the interface have either 1)
1678  // an implementation or 2) there is a @synthesize/@dynamic implementation
1679  // of the property in the @implementation.
1680  if (isa<ObjCInterfaceDecl>(CDecl) &&
1681        !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2))
1682    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1683
1684  llvm::DenseSet<Selector> ClsMap;
1685  for (ObjCImplementationDecl::classmeth_iterator
1686       I = IMPDecl->classmeth_begin(),
1687       E = IMPDecl->classmeth_end(); I != E; ++I)
1688    ClsMap.insert((*I)->getSelector());
1689
1690  // Check for type conflict of methods declared in a class/protocol and
1691  // its implementation; if any.
1692  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1693  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1694                             IMPDecl, CDecl,
1695                             IncompleteImpl, true);
1696
1697  // check all methods implemented in category against those declared
1698  // in its primary class.
1699  if (ObjCCategoryImplDecl *CatDecl =
1700        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1701    CheckCategoryVsClassMethodMatches(CatDecl);
1702
1703  // Check the protocol list for unimplemented methods in the @implementation
1704  // class.
1705  // Check and see if class methods in class interface have been
1706  // implemented in the implementation class.
1707
1708  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1709    for (ObjCInterfaceDecl::all_protocol_iterator
1710          PI = I->all_referenced_protocol_begin(),
1711          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1712      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1713                              InsMap, ClsMap, I);
1714    // Check class extensions (unnamed categories)
1715    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1716         Categories; Categories = Categories->getNextClassExtension())
1717      ImplMethodsVsClassMethods(S, IMPDecl,
1718                                const_cast<ObjCCategoryDecl*>(Categories),
1719                                IncompleteImpl);
1720  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1721    // For extended class, unimplemented methods in its protocols will
1722    // be reported in the primary class.
1723    if (!C->IsClassExtension()) {
1724      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1725           E = C->protocol_end(); PI != E; ++PI)
1726        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1727                                InsMap, ClsMap, CDecl);
1728      // Report unimplemented properties in the category as well.
1729      // When reporting on missing setter/getters, do not report when
1730      // setter/getter is implemented in category's primary class
1731      // implementation.
1732      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1733        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1734          for (ObjCImplementationDecl::instmeth_iterator
1735               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1736            InsMap.insert((*I)->getSelector());
1737        }
1738      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1739    }
1740  } else
1741    llvm_unreachable("invalid ObjCContainerDecl type.");
1742}
1743
1744/// ActOnForwardClassDeclaration -
1745Sema::DeclGroupPtrTy
1746Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1747                                   IdentifierInfo **IdentList,
1748                                   SourceLocation *IdentLocs,
1749                                   unsigned NumElts) {
1750  SmallVector<Decl *, 8> DeclsInGroup;
1751  for (unsigned i = 0; i != NumElts; ++i) {
1752    // Check for another declaration kind with the same name.
1753    NamedDecl *PrevDecl
1754      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1755                         LookupOrdinaryName, ForRedeclaration);
1756    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1757      // Maybe we will complain about the shadowed template parameter.
1758      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1759      // Just pretend that we didn't see the previous declaration.
1760      PrevDecl = 0;
1761    }
1762
1763    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1764      // GCC apparently allows the following idiom:
1765      //
1766      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1767      // @class XCElementToggler;
1768      //
1769      // FIXME: Make an extension?
1770      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1771      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1772        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1773        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1774      } else {
1775        // a forward class declaration matching a typedef name of a class refers
1776        // to the underlying class.
1777        if (const ObjCObjectType *OI =
1778              TDD->getUnderlyingType()->getAs<ObjCObjectType>())
1779          PrevDecl = OI->getInterface();
1780      }
1781    }
1782    ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1783    if (!IDecl) {  // Not already seen?  Make a forward decl.
1784      IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1785                                        IdentList[i], IdentLocs[i], true);
1786
1787      // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
1788      // the current DeclContext.  This prevents clients that walk DeclContext
1789      // from seeing the imaginary ObjCInterfaceDecl until it is actually
1790      // declared later (if at all).  We also take care to explicitly make
1791      // sure this declaration is visible for name lookup.
1792      PushOnScopeChains(IDecl, TUScope, false);
1793      CurContext->makeDeclVisibleInContext(IDecl, true);
1794    }
1795    ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
1796                                                 IDecl, IdentLocs[i]);
1797    CurContext->addDecl(CDecl);
1798    CheckObjCDeclScope(CDecl);
1799    DeclsInGroup.push_back(CDecl);
1800  }
1801
1802  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1803}
1804
1805static bool tryMatchRecordTypes(ASTContext &Context,
1806                                Sema::MethodMatchStrategy strategy,
1807                                const Type *left, const Type *right);
1808
1809static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1810                       QualType leftQT, QualType rightQT) {
1811  const Type *left =
1812    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1813  const Type *right =
1814    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1815
1816  if (left == right) return true;
1817
1818  // If we're doing a strict match, the types have to match exactly.
1819  if (strategy == Sema::MMS_strict) return false;
1820
1821  if (left->isIncompleteType() || right->isIncompleteType()) return false;
1822
1823  // Otherwise, use this absurdly complicated algorithm to try to
1824  // validate the basic, low-level compatibility of the two types.
1825
1826  // As a minimum, require the sizes and alignments to match.
1827  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1828    return false;
1829
1830  // Consider all the kinds of non-dependent canonical types:
1831  // - functions and arrays aren't possible as return and parameter types
1832
1833  // - vector types of equal size can be arbitrarily mixed
1834  if (isa<VectorType>(left)) return isa<VectorType>(right);
1835  if (isa<VectorType>(right)) return false;
1836
1837  // - references should only match references of identical type
1838  // - structs, unions, and Objective-C objects must match more-or-less
1839  //   exactly
1840  // - everything else should be a scalar
1841  if (!left->isScalarType() || !right->isScalarType())
1842    return tryMatchRecordTypes(Context, strategy, left, right);
1843
1844  // Make scalars agree in kind, except count bools as chars, and group
1845  // all non-member pointers together.
1846  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
1847  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
1848  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
1849  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
1850  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
1851    leftSK = Type::STK_ObjCObjectPointer;
1852  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
1853    rightSK = Type::STK_ObjCObjectPointer;
1854
1855  // Note that data member pointers and function member pointers don't
1856  // intermix because of the size differences.
1857
1858  return (leftSK == rightSK);
1859}
1860
1861static bool tryMatchRecordTypes(ASTContext &Context,
1862                                Sema::MethodMatchStrategy strategy,
1863                                const Type *lt, const Type *rt) {
1864  assert(lt && rt && lt != rt);
1865
1866  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
1867  RecordDecl *left = cast<RecordType>(lt)->getDecl();
1868  RecordDecl *right = cast<RecordType>(rt)->getDecl();
1869
1870  // Require union-hood to match.
1871  if (left->isUnion() != right->isUnion()) return false;
1872
1873  // Require an exact match if either is non-POD.
1874  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
1875      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
1876    return false;
1877
1878  // Require size and alignment to match.
1879  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
1880
1881  // Require fields to match.
1882  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
1883  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
1884  for (; li != le && ri != re; ++li, ++ri) {
1885    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
1886      return false;
1887  }
1888  return (li == le && ri == re);
1889}
1890
1891/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1892/// returns true, or false, accordingly.
1893/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1894bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
1895                                      const ObjCMethodDecl *right,
1896                                      MethodMatchStrategy strategy) {
1897  if (!matchTypes(Context, strategy,
1898                  left->getResultType(), right->getResultType()))
1899    return false;
1900
1901  if (getLangOptions().ObjCAutoRefCount &&
1902      (left->hasAttr<NSReturnsRetainedAttr>()
1903         != right->hasAttr<NSReturnsRetainedAttr>() ||
1904       left->hasAttr<NSConsumesSelfAttr>()
1905         != right->hasAttr<NSConsumesSelfAttr>()))
1906    return false;
1907
1908  ObjCMethodDecl::param_const_iterator
1909    li = left->param_begin(), le = left->param_end(), ri = right->param_begin();
1910
1911  for (; li != le; ++li, ++ri) {
1912    assert(ri != right->param_end() && "Param mismatch");
1913    const ParmVarDecl *lparm = *li, *rparm = *ri;
1914
1915    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
1916      return false;
1917
1918    if (getLangOptions().ObjCAutoRefCount &&
1919        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
1920      return false;
1921  }
1922  return true;
1923}
1924
1925/// \brief Read the contents of the method pool for a given selector from
1926/// external storage.
1927///
1928/// This routine should only be called once, when the method pool has no entry
1929/// for this selector.
1930Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
1931  assert(ExternalSource && "We need an external AST source");
1932  assert(MethodPool.find(Sel) == MethodPool.end() &&
1933         "Selector data already loaded into the method pool");
1934
1935  // Read the method list from the external source.
1936  GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
1937
1938  return MethodPool.insert(std::make_pair(Sel, Methods)).first;
1939}
1940
1941void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
1942                                 bool instance) {
1943  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
1944  if (Pos == MethodPool.end()) {
1945    if (ExternalSource)
1946      Pos = ReadMethodPool(Method->getSelector());
1947    else
1948      Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
1949                                             GlobalMethods())).first;
1950  }
1951  Method->setDefined(impl);
1952  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
1953  if (Entry.Method == 0) {
1954    // Haven't seen a method with this selector name yet - add it.
1955    Entry.Method = Method;
1956    Entry.Next = 0;
1957    return;
1958  }
1959
1960  // We've seen a method with this name, see if we have already seen this type
1961  // signature.
1962  for (ObjCMethodList *List = &Entry; List; List = List->Next) {
1963    bool match = MatchTwoMethodDeclarations(Method, List->Method);
1964
1965    if (match) {
1966      ObjCMethodDecl *PrevObjCMethod = List->Method;
1967      PrevObjCMethod->setDefined(impl);
1968      // If a method is deprecated, push it in the global pool.
1969      // This is used for better diagnostics.
1970      if (Method->isDeprecated()) {
1971        if (!PrevObjCMethod->isDeprecated())
1972          List->Method = Method;
1973      }
1974      // If new method is unavailable, push it into global pool
1975      // unless previous one is deprecated.
1976      if (Method->isUnavailable()) {
1977        if (PrevObjCMethod->getAvailability() < AR_Deprecated)
1978          List->Method = Method;
1979      }
1980      return;
1981    }
1982  }
1983
1984  // We have a new signature for an existing method - add it.
1985  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
1986  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
1987  Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
1988}
1989
1990/// Determines if this is an "acceptable" loose mismatch in the global
1991/// method pool.  This exists mostly as a hack to get around certain
1992/// global mismatches which we can't afford to make warnings / errors.
1993/// Really, what we want is a way to take a method out of the global
1994/// method pool.
1995static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
1996                                       ObjCMethodDecl *other) {
1997  if (!chosen->isInstanceMethod())
1998    return false;
1999
2000  Selector sel = chosen->getSelector();
2001  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2002    return false;
2003
2004  // Don't complain about mismatches for -length if the method we
2005  // chose has an integral result type.
2006  return (chosen->getResultType()->isIntegerType());
2007}
2008
2009ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2010                                               bool receiverIdOrClass,
2011                                               bool warn, bool instance) {
2012  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2013  if (Pos == MethodPool.end()) {
2014    if (ExternalSource)
2015      Pos = ReadMethodPool(Sel);
2016    else
2017      return 0;
2018  }
2019
2020  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2021
2022  if (warn && MethList.Method && MethList.Next) {
2023    bool issueDiagnostic = false, issueError = false;
2024
2025    // We support a warning which complains about *any* difference in
2026    // method signature.
2027    bool strictSelectorMatch =
2028      (receiverIdOrClass && warn &&
2029       (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2030                                 R.getBegin()) !=
2031      DiagnosticsEngine::Ignored));
2032    if (strictSelectorMatch)
2033      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2034        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2035                                        MMS_strict)) {
2036          issueDiagnostic = true;
2037          break;
2038        }
2039      }
2040
2041    // If we didn't see any strict differences, we won't see any loose
2042    // differences.  In ARC, however, we also need to check for loose
2043    // mismatches, because most of them are errors.
2044    if (!strictSelectorMatch ||
2045        (issueDiagnostic && getLangOptions().ObjCAutoRefCount))
2046      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2047        // This checks if the methods differ in type mismatch.
2048        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2049                                        MMS_loose) &&
2050            !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
2051          issueDiagnostic = true;
2052          if (getLangOptions().ObjCAutoRefCount)
2053            issueError = true;
2054          break;
2055        }
2056      }
2057
2058    if (issueDiagnostic) {
2059      if (issueError)
2060        Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2061      else if (strictSelectorMatch)
2062        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2063      else
2064        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2065
2066      Diag(MethList.Method->getLocStart(),
2067           issueError ? diag::note_possibility : diag::note_using)
2068        << MethList.Method->getSourceRange();
2069      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
2070        Diag(Next->Method->getLocStart(), diag::note_also_found)
2071          << Next->Method->getSourceRange();
2072    }
2073  }
2074  return MethList.Method;
2075}
2076
2077ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2078  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2079  if (Pos == MethodPool.end())
2080    return 0;
2081
2082  GlobalMethods &Methods = Pos->second;
2083
2084  if (Methods.first.Method && Methods.first.Method->isDefined())
2085    return Methods.first.Method;
2086  if (Methods.second.Method && Methods.second.Method->isDefined())
2087    return Methods.second.Method;
2088  return 0;
2089}
2090
2091/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
2092/// identical selector names in current and its super classes and issues
2093/// a warning if any of their argument types are incompatible.
2094void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
2095                                             ObjCMethodDecl *Method,
2096                                             bool IsInstance)  {
2097  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2098  if (ID == 0) return;
2099
2100  while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
2101    ObjCMethodDecl *SuperMethodDecl =
2102        SD->lookupMethod(Method->getSelector(), IsInstance);
2103    if (SuperMethodDecl == 0) {
2104      ID = SD;
2105      continue;
2106    }
2107    ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
2108      E = Method->param_end();
2109    ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
2110    for (; ParamI != E; ++ParamI, ++PrevI) {
2111      // Number of parameters are the same and is guaranteed by selector match.
2112      assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
2113      QualType T1 = Context.getCanonicalType((*ParamI)->getType());
2114      QualType T2 = Context.getCanonicalType((*PrevI)->getType());
2115      // If type of argument of method in this class does not match its
2116      // respective argument type in the super class method, issue warning;
2117      if (!Context.typesAreCompatible(T1, T2)) {
2118        Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
2119          << T1 << T2;
2120        Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
2121        return;
2122      }
2123    }
2124    ID = SD;
2125  }
2126}
2127
2128/// DiagnoseDuplicateIvars -
2129/// Check for duplicate ivars in the entire class at the start of
2130/// @implementation. This becomes necesssary because class extension can
2131/// add ivars to a class in random order which will not be known until
2132/// class's @implementation is seen.
2133void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2134                                  ObjCInterfaceDecl *SID) {
2135  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2136       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2137    ObjCIvarDecl* Ivar = (*IVI);
2138    if (Ivar->isInvalidDecl())
2139      continue;
2140    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2141      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2142      if (prevIvar) {
2143        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2144        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2145        Ivar->setInvalidDecl();
2146      }
2147    }
2148  }
2149}
2150
2151// Note: For class/category implemenations, allMethods/allProperties is
2152// always null.
2153void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2154                      Decl **allMethods, unsigned allNum,
2155                      Decl **allProperties, unsigned pNum,
2156                      DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2157
2158  if (!CurContext->isObjCContainer())
2159    return;
2160  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2161  Decl *ClassDecl = cast<Decl>(OCD);
2162
2163  bool isInterfaceDeclKind =
2164        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2165         || isa<ObjCProtocolDecl>(ClassDecl);
2166  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2167
2168  if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
2169    // FIXME: This is wrong.  We shouldn't be pretending that there is
2170    //  an '@end' in the declaration.
2171    SourceLocation L = OCD->getAtStartLoc();
2172    AtEnd.setBegin(L);
2173    AtEnd.setEnd(L);
2174    Diag(L, diag::err_missing_atend);
2175  }
2176
2177  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2178  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2179  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2180
2181  for (unsigned i = 0; i < allNum; i++ ) {
2182    ObjCMethodDecl *Method =
2183      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2184
2185    if (!Method) continue;  // Already issued a diagnostic.
2186    if (Method->isInstanceMethod()) {
2187      /// Check for instance method of the same name with incompatible types
2188      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2189      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2190                              : false;
2191      if ((isInterfaceDeclKind && PrevMethod && !match)
2192          || (checkIdenticalMethods && match)) {
2193          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2194            << Method->getDeclName();
2195          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2196        Method->setInvalidDecl();
2197      } else {
2198        if (PrevMethod)
2199          Method->setAsRedeclaration(PrevMethod);
2200        InsMap[Method->getSelector()] = Method;
2201        /// The following allows us to typecheck messages to "id".
2202        AddInstanceMethodToGlobalPool(Method);
2203        // verify that the instance method conforms to the same definition of
2204        // parent methods if it shadows one.
2205        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
2206      }
2207    } else {
2208      /// Check for class method of the same name with incompatible types
2209      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2210      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2211                              : false;
2212      if ((isInterfaceDeclKind && PrevMethod && !match)
2213          || (checkIdenticalMethods && match)) {
2214        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2215          << Method->getDeclName();
2216        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2217        Method->setInvalidDecl();
2218      } else {
2219        if (PrevMethod)
2220          Method->setAsRedeclaration(PrevMethod);
2221        ClsMap[Method->getSelector()] = Method;
2222        /// The following allows us to typecheck messages to "Class".
2223        AddFactoryMethodToGlobalPool(Method);
2224        // verify that the class method conforms to the same definition of
2225        // parent methods if it shadows one.
2226        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
2227      }
2228    }
2229  }
2230  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
2231    // Compares properties declared in this class to those of its
2232    // super class.
2233    ComparePropertiesInBaseAndSuper(I);
2234    CompareProperties(I, I);
2235  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2236    // Categories are used to extend the class by declaring new methods.
2237    // By the same token, they are also used to add new properties. No
2238    // need to compare the added property to those in the class.
2239
2240    // Compare protocol properties with those in category
2241    CompareProperties(C, C);
2242    if (C->IsClassExtension()) {
2243      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2244      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2245    }
2246  }
2247  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2248    if (CDecl->getIdentifier())
2249      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2250      // user-defined setter/getter. It also synthesizes setter/getter methods
2251      // and adds them to the DeclContext and global method pools.
2252      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2253                                            E = CDecl->prop_end();
2254           I != E; ++I)
2255        ProcessPropertyDecl(*I, CDecl);
2256    CDecl->setAtEndRange(AtEnd);
2257  }
2258  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2259    IC->setAtEndRange(AtEnd);
2260    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2261      // Any property declared in a class extension might have user
2262      // declared setter or getter in current class extension or one
2263      // of the other class extensions. Mark them as synthesized as
2264      // property will be synthesized when property with same name is
2265      // seen in the @implementation.
2266      for (const ObjCCategoryDecl *ClsExtDecl =
2267           IDecl->getFirstClassExtension();
2268           ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
2269        for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
2270             E = ClsExtDecl->prop_end(); I != E; ++I) {
2271          ObjCPropertyDecl *Property = (*I);
2272          // Skip over properties declared @dynamic
2273          if (const ObjCPropertyImplDecl *PIDecl
2274              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2275            if (PIDecl->getPropertyImplementation()
2276                  == ObjCPropertyImplDecl::Dynamic)
2277              continue;
2278
2279          for (const ObjCCategoryDecl *CExtDecl =
2280               IDecl->getFirstClassExtension();
2281               CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
2282            if (ObjCMethodDecl *GetterMethod =
2283                CExtDecl->getInstanceMethod(Property->getGetterName()))
2284              GetterMethod->setSynthesized(true);
2285            if (!Property->isReadOnly())
2286              if (ObjCMethodDecl *SetterMethod =
2287                  CExtDecl->getInstanceMethod(Property->getSetterName()))
2288                SetterMethod->setSynthesized(true);
2289          }
2290        }
2291      }
2292      ImplMethodsVsClassMethods(S, IC, IDecl);
2293      AtomicPropertySetterGetterRules(IC, IDecl);
2294      DiagnoseOwningPropertyGetterSynthesis(IC);
2295
2296      if (LangOpts.ObjCNonFragileABI2)
2297        while (IDecl->getSuperClass()) {
2298          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2299          IDecl = IDecl->getSuperClass();
2300        }
2301    }
2302    SetIvarInitializers(IC);
2303  } else if (ObjCCategoryImplDecl* CatImplClass =
2304                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2305    CatImplClass->setAtEndRange(AtEnd);
2306
2307    // Find category interface decl and then check that all methods declared
2308    // in this interface are implemented in the category @implementation.
2309    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2310      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
2311           Categories; Categories = Categories->getNextClassCategory()) {
2312        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
2313          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
2314          break;
2315        }
2316      }
2317    }
2318  }
2319  if (isInterfaceDeclKind) {
2320    // Reject invalid vardecls.
2321    for (unsigned i = 0; i != tuvNum; i++) {
2322      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2323      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2324        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2325          if (!VDecl->hasExternalStorage())
2326            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2327        }
2328    }
2329  }
2330  ActOnObjCContainerFinishDefinition();
2331
2332  for (unsigned i = 0; i != tuvNum; i++) {
2333    DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2334    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2335      (*I)->setTopLevelDeclInObjCContainer();
2336    Consumer.HandleTopLevelDeclInObjCContainer(DG);
2337  }
2338}
2339
2340
2341/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2342/// objective-c's type qualifier from the parser version of the same info.
2343static Decl::ObjCDeclQualifier
2344CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2345  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2346}
2347
2348static inline
2349bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2350                                        const AttrVec &A) {
2351  // If method is only declared in implementation (private method),
2352  // No need to issue any diagnostics on method definition with attributes.
2353  if (!IMD)
2354    return false;
2355
2356  // method declared in interface has no attribute.
2357  // But implementation has attributes. This is invalid
2358  if (!IMD->hasAttrs())
2359    return true;
2360
2361  const AttrVec &D = IMD->getAttrs();
2362  if (D.size() != A.size())
2363    return true;
2364
2365  // attributes on method declaration and definition must match exactly.
2366  // Note that we have at most a couple of attributes on methods, so this
2367  // n*n search is good enough.
2368  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2369    bool match = false;
2370    for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2371      if ((*i)->getKind() == (*i1)->getKind()) {
2372        match = true;
2373        break;
2374      }
2375    }
2376    if (!match)
2377      return true;
2378  }
2379  return false;
2380}
2381
2382namespace  {
2383  /// \brief Describes the compatibility of a result type with its method.
2384  enum ResultTypeCompatibilityKind {
2385    RTC_Compatible,
2386    RTC_Incompatible,
2387    RTC_Unknown
2388  };
2389}
2390
2391/// \brief Check whether the declared result type of the given Objective-C
2392/// method declaration is compatible with the method's class.
2393///
2394static ResultTypeCompatibilityKind
2395CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2396                                    ObjCInterfaceDecl *CurrentClass) {
2397  QualType ResultType = Method->getResultType();
2398
2399  // If an Objective-C method inherits its related result type, then its
2400  // declared result type must be compatible with its own class type. The
2401  // declared result type is compatible if:
2402  if (const ObjCObjectPointerType *ResultObjectType
2403                                = ResultType->getAs<ObjCObjectPointerType>()) {
2404    //   - it is id or qualified id, or
2405    if (ResultObjectType->isObjCIdType() ||
2406        ResultObjectType->isObjCQualifiedIdType())
2407      return RTC_Compatible;
2408
2409    if (CurrentClass) {
2410      if (ObjCInterfaceDecl *ResultClass
2411                                      = ResultObjectType->getInterfaceDecl()) {
2412        //   - it is the same as the method's class type, or
2413        if (CurrentClass == ResultClass)
2414          return RTC_Compatible;
2415
2416        //   - it is a superclass of the method's class type
2417        if (ResultClass->isSuperClassOf(CurrentClass))
2418          return RTC_Compatible;
2419      }
2420    } else {
2421      // Any Objective-C pointer type might be acceptable for a protocol
2422      // method; we just don't know.
2423      return RTC_Unknown;
2424    }
2425  }
2426
2427  return RTC_Incompatible;
2428}
2429
2430namespace {
2431/// A helper class for searching for methods which a particular method
2432/// overrides.
2433class OverrideSearch {
2434  Sema &S;
2435  ObjCMethodDecl *Method;
2436  llvm::SmallPtrSet<ObjCContainerDecl*, 8> Searched;
2437  llvm::SmallPtrSet<ObjCMethodDecl*, 8> Overridden;
2438  bool Recursive;
2439
2440public:
2441  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2442    Selector selector = method->getSelector();
2443
2444    // Bypass this search if we've never seen an instance/class method
2445    // with this selector before.
2446    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2447    if (it == S.MethodPool.end()) {
2448      if (!S.ExternalSource) return;
2449      it = S.ReadMethodPool(selector);
2450    }
2451    ObjCMethodList &list =
2452      method->isInstanceMethod() ? it->second.first : it->second.second;
2453    if (!list.Method) return;
2454
2455    ObjCContainerDecl *container
2456      = cast<ObjCContainerDecl>(method->getDeclContext());
2457
2458    // Prevent the search from reaching this container again.  This is
2459    // important with categories, which override methods from the
2460    // interface and each other.
2461    Searched.insert(container);
2462    searchFromContainer(container);
2463  }
2464
2465  typedef llvm::SmallPtrSet<ObjCMethodDecl*,8>::iterator iterator;
2466  iterator begin() const { return Overridden.begin(); }
2467  iterator end() const { return Overridden.end(); }
2468
2469private:
2470  void searchFromContainer(ObjCContainerDecl *container) {
2471    if (container->isInvalidDecl()) return;
2472
2473    switch (container->getDeclKind()) {
2474#define OBJCCONTAINER(type, base) \
2475    case Decl::type: \
2476      searchFrom(cast<type##Decl>(container)); \
2477      break;
2478#define ABSTRACT_DECL(expansion)
2479#define DECL(type, base) \
2480    case Decl::type:
2481#include "clang/AST/DeclNodes.inc"
2482      llvm_unreachable("not an ObjC container!");
2483    }
2484  }
2485
2486  void searchFrom(ObjCProtocolDecl *protocol) {
2487    // A method in a protocol declaration overrides declarations from
2488    // referenced ("parent") protocols.
2489    search(protocol->getReferencedProtocols());
2490  }
2491
2492  void searchFrom(ObjCCategoryDecl *category) {
2493    // A method in a category declaration overrides declarations from
2494    // the main class and from protocols the category references.
2495    search(category->getClassInterface());
2496    search(category->getReferencedProtocols());
2497  }
2498
2499  void searchFrom(ObjCCategoryImplDecl *impl) {
2500    // A method in a category definition that has a category
2501    // declaration overrides declarations from the category
2502    // declaration.
2503    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2504      search(category);
2505
2506    // Otherwise it overrides declarations from the class.
2507    } else {
2508      search(impl->getClassInterface());
2509    }
2510  }
2511
2512  void searchFrom(ObjCInterfaceDecl *iface) {
2513    // A method in a class declaration overrides declarations from
2514
2515    //   - categories,
2516    for (ObjCCategoryDecl *category = iface->getCategoryList();
2517           category; category = category->getNextClassCategory())
2518      search(category);
2519
2520    //   - the super class, and
2521    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2522      search(super);
2523
2524    //   - any referenced protocols.
2525    search(iface->getReferencedProtocols());
2526  }
2527
2528  void searchFrom(ObjCImplementationDecl *impl) {
2529    // A method in a class implementation overrides declarations from
2530    // the class interface.
2531    search(impl->getClassInterface());
2532  }
2533
2534
2535  void search(const ObjCProtocolList &protocols) {
2536    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2537         i != e; ++i)
2538      search(*i);
2539  }
2540
2541  void search(ObjCContainerDecl *container) {
2542    // Abort if we've already searched this container.
2543    if (!Searched.insert(container)) return;
2544
2545    // Check for a method in this container which matches this selector.
2546    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2547                                                Method->isInstanceMethod());
2548
2549    // If we find one, record it and bail out.
2550    if (meth) {
2551      Overridden.insert(meth);
2552      return;
2553    }
2554
2555    // Otherwise, search for methods that a hypothetical method here
2556    // would have overridden.
2557
2558    // Note that we're now in a recursive case.
2559    Recursive = true;
2560
2561    searchFromContainer(container);
2562  }
2563};
2564}
2565
2566Decl *Sema::ActOnMethodDeclaration(
2567    Scope *S,
2568    SourceLocation MethodLoc, SourceLocation EndLoc,
2569    tok::TokenKind MethodType,
2570    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2571    ArrayRef<SourceLocation> SelectorLocs,
2572    Selector Sel,
2573    // optional arguments. The number of types/arguments is obtained
2574    // from the Sel.getNumArgs().
2575    ObjCArgInfo *ArgInfo,
2576    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2577    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2578    bool isVariadic, bool MethodDefinition) {
2579  // Make sure we can establish a context for the method.
2580  if (!CurContext->isObjCContainer()) {
2581    Diag(MethodLoc, diag::error_missing_method_context);
2582    return 0;
2583  }
2584  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2585  Decl *ClassDecl = cast<Decl>(OCD);
2586  QualType resultDeclType;
2587
2588  bool HasRelatedResultType = false;
2589  TypeSourceInfo *ResultTInfo = 0;
2590  if (ReturnType) {
2591    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2592
2593    // Methods cannot return interface types. All ObjC objects are
2594    // passed by reference.
2595    if (resultDeclType->isObjCObjectType()) {
2596      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2597        << 0 << resultDeclType;
2598      return 0;
2599    }
2600
2601    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
2602  } else { // get the type for "id".
2603    resultDeclType = Context.getObjCIdType();
2604    Diag(MethodLoc, diag::warn_missing_method_return_type)
2605      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
2606  }
2607
2608  ObjCMethodDecl* ObjCMethod =
2609    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
2610                           resultDeclType,
2611                           ResultTInfo,
2612                           CurContext,
2613                           MethodType == tok::minus, isVariadic,
2614                           /*isSynthesized=*/false,
2615                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
2616                           MethodDeclKind == tok::objc_optional
2617                             ? ObjCMethodDecl::Optional
2618                             : ObjCMethodDecl::Required,
2619                           HasRelatedResultType);
2620
2621  SmallVector<ParmVarDecl*, 16> Params;
2622
2623  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2624    QualType ArgType;
2625    TypeSourceInfo *DI;
2626
2627    if (ArgInfo[i].Type == 0) {
2628      ArgType = Context.getObjCIdType();
2629      DI = 0;
2630    } else {
2631      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2632      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2633      ArgType = Context.getAdjustedParameterType(ArgType);
2634    }
2635
2636    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
2637                   LookupOrdinaryName, ForRedeclaration);
2638    LookupName(R, S);
2639    if (R.isSingleResult()) {
2640      NamedDecl *PrevDecl = R.getFoundDecl();
2641      if (S->isDeclScope(PrevDecl)) {
2642        Diag(ArgInfo[i].NameLoc,
2643             (MethodDefinition ? diag::warn_method_param_redefinition
2644                               : diag::warn_method_param_declaration))
2645          << ArgInfo[i].Name;
2646        Diag(PrevDecl->getLocation(),
2647             diag::note_previous_declaration);
2648      }
2649    }
2650
2651    SourceLocation StartLoc = DI
2652      ? DI->getTypeLoc().getBeginLoc()
2653      : ArgInfo[i].NameLoc;
2654
2655    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2656                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
2657                                        ArgType, DI, SC_None, SC_None);
2658
2659    Param->setObjCMethodScopeInfo(i);
2660
2661    Param->setObjCDeclQualifier(
2662      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2663
2664    // Apply the attributes to the parameter.
2665    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2666
2667    S->AddDecl(Param);
2668    IdResolver.AddDecl(Param);
2669
2670    Params.push_back(Param);
2671  }
2672
2673  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2674    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2675    QualType ArgType = Param->getType();
2676    if (ArgType.isNull())
2677      ArgType = Context.getObjCIdType();
2678    else
2679      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2680      ArgType = Context.getAdjustedParameterType(ArgType);
2681    if (ArgType->isObjCObjectType()) {
2682      Diag(Param->getLocation(),
2683           diag::err_object_cannot_be_passed_returned_by_value)
2684      << 1 << ArgType;
2685      Param->setInvalidDecl();
2686    }
2687    Param->setDeclContext(ObjCMethod);
2688
2689    Params.push_back(Param);
2690  }
2691
2692  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
2693  ObjCMethod->setObjCDeclQualifier(
2694    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
2695
2696  if (AttrList)
2697    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
2698
2699  // Add the method now.
2700  const ObjCMethodDecl *PrevMethod = 0;
2701  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
2702    if (MethodType == tok::minus) {
2703      PrevMethod = ImpDecl->getInstanceMethod(Sel);
2704      ImpDecl->addInstanceMethod(ObjCMethod);
2705    } else {
2706      PrevMethod = ImpDecl->getClassMethod(Sel);
2707      ImpDecl->addClassMethod(ObjCMethod);
2708    }
2709
2710    ObjCMethodDecl *IMD = 0;
2711    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
2712      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
2713                                ObjCMethod->isInstanceMethod());
2714    if (ObjCMethod->hasAttrs() &&
2715        containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
2716      Diag(EndLoc, diag::warn_attribute_method_def);
2717      Diag(IMD->getLocation(), diag::note_method_declared_at);
2718    }
2719  } else {
2720    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
2721  }
2722
2723  if (PrevMethod) {
2724    // You can never have two method definitions with the same name.
2725    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
2726      << ObjCMethod->getDeclName();
2727    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2728  }
2729
2730  // If this Objective-C method does not have a related result type, but we
2731  // are allowed to infer related result types, try to do so based on the
2732  // method family.
2733  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2734  if (!CurrentClass) {
2735    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
2736      CurrentClass = Cat->getClassInterface();
2737    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
2738      CurrentClass = Impl->getClassInterface();
2739    else if (ObjCCategoryImplDecl *CatImpl
2740                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
2741      CurrentClass = CatImpl->getClassInterface();
2742  }
2743
2744  ResultTypeCompatibilityKind RTC
2745    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
2746
2747  // Search for overridden methods and merge information down from them.
2748  OverrideSearch overrides(*this, ObjCMethod);
2749  for (OverrideSearch::iterator
2750         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2751    ObjCMethodDecl *overridden = *i;
2752
2753    // Propagate down the 'related result type' bit from overridden methods.
2754    if (RTC != RTC_Incompatible && overridden->hasRelatedResultType())
2755      ObjCMethod->SetRelatedResultType();
2756
2757    // Then merge the declarations.
2758    mergeObjCMethodDecls(ObjCMethod, overridden);
2759
2760    // Check for overriding methods
2761    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
2762        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
2763      CheckConflictingOverridingMethod(ObjCMethod, overridden,
2764              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
2765  }
2766
2767  bool ARCError = false;
2768  if (getLangOptions().ObjCAutoRefCount)
2769    ARCError = CheckARCMethodDecl(*this, ObjCMethod);
2770
2771  // Infer the related result type when possible.
2772  if (!ARCError && RTC == RTC_Compatible &&
2773      !ObjCMethod->hasRelatedResultType() &&
2774      LangOpts.ObjCInferRelatedResultType) {
2775    bool InferRelatedResultType = false;
2776    switch (ObjCMethod->getMethodFamily()) {
2777    case OMF_None:
2778    case OMF_copy:
2779    case OMF_dealloc:
2780    case OMF_finalize:
2781    case OMF_mutableCopy:
2782    case OMF_release:
2783    case OMF_retainCount:
2784    case OMF_performSelector:
2785      break;
2786
2787    case OMF_alloc:
2788    case OMF_new:
2789      InferRelatedResultType = ObjCMethod->isClassMethod();
2790      break;
2791
2792    case OMF_init:
2793    case OMF_autorelease:
2794    case OMF_retain:
2795    case OMF_self:
2796      InferRelatedResultType = ObjCMethod->isInstanceMethod();
2797      break;
2798    }
2799
2800    if (InferRelatedResultType)
2801      ObjCMethod->SetRelatedResultType();
2802  }
2803
2804  return ObjCMethod;
2805}
2806
2807bool Sema::CheckObjCDeclScope(Decl *D) {
2808  if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
2809    return false;
2810  // Following is also an error. But it is caused by a missing @end
2811  // and diagnostic is issued elsewhere.
2812  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) {
2813    return false;
2814  }
2815
2816  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
2817  D->setInvalidDecl();
2818
2819  return true;
2820}
2821
2822/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2823/// instance variables of ClassName into Decls.
2824void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
2825                     IdentifierInfo *ClassName,
2826                     SmallVectorImpl<Decl*> &Decls) {
2827  // Check that ClassName is a valid class
2828  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
2829  if (!Class) {
2830    Diag(DeclStart, diag::err_undef_interface) << ClassName;
2831    return;
2832  }
2833  if (LangOpts.ObjCNonFragileABI) {
2834    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
2835    return;
2836  }
2837
2838  // Collect the instance variables
2839  SmallVector<const ObjCIvarDecl*, 32> Ivars;
2840  Context.DeepCollectObjCIvars(Class, true, Ivars);
2841  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2842  for (unsigned i = 0; i < Ivars.size(); i++) {
2843    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
2844    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
2845    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
2846                                           /*FIXME: StartL=*/ID->getLocation(),
2847                                           ID->getLocation(),
2848                                           ID->getIdentifier(), ID->getType(),
2849                                           ID->getBitWidth());
2850    Decls.push_back(FD);
2851  }
2852
2853  // Introduce all of these fields into the appropriate scope.
2854  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
2855       D != Decls.end(); ++D) {
2856    FieldDecl *FD = cast<FieldDecl>(*D);
2857    if (getLangOptions().CPlusPlus)
2858      PushOnScopeChains(cast<FieldDecl>(FD), S);
2859    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
2860      Record->addDecl(FD);
2861  }
2862}
2863
2864/// \brief Build a type-check a new Objective-C exception variable declaration.
2865VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
2866                                      SourceLocation StartLoc,
2867                                      SourceLocation IdLoc,
2868                                      IdentifierInfo *Id,
2869                                      bool Invalid) {
2870  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
2871  // duration shall not be qualified by an address-space qualifier."
2872  // Since all parameters have automatic store duration, they can not have
2873  // an address space.
2874  if (T.getAddressSpace() != 0) {
2875    Diag(IdLoc, diag::err_arg_with_address_space);
2876    Invalid = true;
2877  }
2878
2879  // An @catch parameter must be an unqualified object pointer type;
2880  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
2881  if (Invalid) {
2882    // Don't do any further checking.
2883  } else if (T->isDependentType()) {
2884    // Okay: we don't know what this type will instantiate to.
2885  } else if (!T->isObjCObjectPointerType()) {
2886    Invalid = true;
2887    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
2888  } else if (T->isObjCQualifiedIdType()) {
2889    Invalid = true;
2890    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
2891  }
2892
2893  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
2894                                 T, TInfo, SC_None, SC_None);
2895  New->setExceptionVariable(true);
2896
2897  if (Invalid)
2898    New->setInvalidDecl();
2899  return New;
2900}
2901
2902Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
2903  const DeclSpec &DS = D.getDeclSpec();
2904
2905  // We allow the "register" storage class on exception variables because
2906  // GCC did, but we drop it completely. Any other storage class is an error.
2907  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2908    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
2909      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
2910  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2911    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
2912      << DS.getStorageClassSpec();
2913  }
2914  if (D.getDeclSpec().isThreadSpecified())
2915    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2916  D.getMutableDeclSpec().ClearStorageClassSpecs();
2917
2918  DiagnoseFunctionSpecifiers(D);
2919
2920  // Check that there are no default arguments inside the type of this
2921  // exception object (C++ only).
2922  if (getLangOptions().CPlusPlus)
2923    CheckExtraCXXDefaultArguments(D);
2924
2925  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2926  QualType ExceptionType = TInfo->getType();
2927
2928  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
2929                                        D.getSourceRange().getBegin(),
2930                                        D.getIdentifierLoc(),
2931                                        D.getIdentifier(),
2932                                        D.isInvalidType());
2933
2934  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2935  if (D.getCXXScopeSpec().isSet()) {
2936    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
2937      << D.getCXXScopeSpec().getRange();
2938    New->setInvalidDecl();
2939  }
2940
2941  // Add the parameter declaration into this scope.
2942  S->AddDecl(New);
2943  if (D.getIdentifier())
2944    IdResolver.AddDecl(New);
2945
2946  ProcessDeclAttributes(S, New, D);
2947
2948  if (New->hasAttr<BlocksAttr>())
2949    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2950  return New;
2951}
2952
2953/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
2954/// initialization.
2955void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
2956                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
2957  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
2958       Iv= Iv->getNextIvar()) {
2959    QualType QT = Context.getBaseElementType(Iv->getType());
2960    if (QT->isRecordType())
2961      Ivars.push_back(Iv);
2962  }
2963}
2964
2965void Sema::DiagnoseUseOfUnimplementedSelectors() {
2966  // Load referenced selectors from the external source.
2967  if (ExternalSource) {
2968    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
2969    ExternalSource->ReadReferencedSelectors(Sels);
2970    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
2971      ReferencedSelectors[Sels[I].first] = Sels[I].second;
2972  }
2973
2974  // Warning will be issued only when selector table is
2975  // generated (which means there is at lease one implementation
2976  // in the TU). This is to match gcc's behavior.
2977  if (ReferencedSelectors.empty() ||
2978      !Context.AnyObjCImplementation())
2979    return;
2980  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
2981        ReferencedSelectors.begin(),
2982       E = ReferencedSelectors.end(); S != E; ++S) {
2983    Selector Sel = (*S).first;
2984    if (!LookupImplementedMethodInGlobalPool(Sel))
2985      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
2986  }
2987  return;
2988}
2989