SemaDeclObjC.cpp revision f0e00046711280d494f3ef2d85ae67a442b97406
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements semantic analysis for Objective C declarations. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/AST/ASTConsumer.h" 16#include "clang/AST/ASTContext.h" 17#include "clang/AST/ASTMutationListener.h" 18#include "clang/AST/DeclObjC.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprObjC.h" 21#include "clang/Basic/SourceManager.h" 22#include "clang/Lex/Preprocessor.h" 23#include "clang/Sema/DeclSpec.h" 24#include "clang/Sema/ExternalSemaSource.h" 25#include "clang/Sema/Lookup.h" 26#include "clang/Sema/Scope.h" 27#include "clang/Sema/ScopeInfo.h" 28#include "llvm/ADT/DenseSet.h" 29 30using namespace clang; 31 32/// Check whether the given method, which must be in the 'init' 33/// family, is a valid member of that family. 34/// 35/// \param receiverTypeIfCall - if null, check this as if declaring it; 36/// if non-null, check this as if making a call to it with the given 37/// receiver type 38/// 39/// \return true to indicate that there was an error and appropriate 40/// actions were taken 41bool Sema::checkInitMethod(ObjCMethodDecl *method, 42 QualType receiverTypeIfCall) { 43 if (method->isInvalidDecl()) return true; 44 45 // This castAs is safe: methods that don't return an object 46 // pointer won't be inferred as inits and will reject an explicit 47 // objc_method_family(init). 48 49 // We ignore protocols here. Should we? What about Class? 50 51 const ObjCObjectType *result = method->getResultType() 52 ->castAs<ObjCObjectPointerType>()->getObjectType(); 53 54 if (result->isObjCId()) { 55 return false; 56 } else if (result->isObjCClass()) { 57 // fall through: always an error 58 } else { 59 ObjCInterfaceDecl *resultClass = result->getInterface(); 60 assert(resultClass && "unexpected object type!"); 61 62 // It's okay for the result type to still be a forward declaration 63 // if we're checking an interface declaration. 64 if (!resultClass->hasDefinition()) { 65 if (receiverTypeIfCall.isNull() && 66 !isa<ObjCImplementationDecl>(method->getDeclContext())) 67 return false; 68 69 // Otherwise, we try to compare class types. 70 } else { 71 // If this method was declared in a protocol, we can't check 72 // anything unless we have a receiver type that's an interface. 73 const ObjCInterfaceDecl *receiverClass = 0; 74 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 75 if (receiverTypeIfCall.isNull()) 76 return false; 77 78 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 79 ->getInterfaceDecl(); 80 81 // This can be null for calls to e.g. id<Foo>. 82 if (!receiverClass) return false; 83 } else { 84 receiverClass = method->getClassInterface(); 85 assert(receiverClass && "method not associated with a class!"); 86 } 87 88 // If either class is a subclass of the other, it's fine. 89 if (receiverClass->isSuperClassOf(resultClass) || 90 resultClass->isSuperClassOf(receiverClass)) 91 return false; 92 } 93 } 94 95 SourceLocation loc = method->getLocation(); 96 97 // If we're in a system header, and this is not a call, just make 98 // the method unusable. 99 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 100 method->addAttr(new (Context) UnavailableAttr(loc, Context, 101 "init method returns a type unrelated to its receiver type")); 102 return true; 103 } 104 105 // Otherwise, it's an error. 106 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 107 method->setInvalidDecl(); 108 return true; 109} 110 111void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 112 const ObjCMethodDecl *Overridden) { 113 if (Overridden->hasRelatedResultType() && 114 !NewMethod->hasRelatedResultType()) { 115 // This can only happen when the method follows a naming convention that 116 // implies a related result type, and the original (overridden) method has 117 // a suitable return type, but the new (overriding) method does not have 118 // a suitable return type. 119 QualType ResultType = NewMethod->getResultType(); 120 SourceRange ResultTypeRange; 121 if (const TypeSourceInfo *ResultTypeInfo 122 = NewMethod->getResultTypeSourceInfo()) 123 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 124 125 // Figure out which class this method is part of, if any. 126 ObjCInterfaceDecl *CurrentClass 127 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 128 if (!CurrentClass) { 129 DeclContext *DC = NewMethod->getDeclContext(); 130 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 131 CurrentClass = Cat->getClassInterface(); 132 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 133 CurrentClass = Impl->getClassInterface(); 134 else if (ObjCCategoryImplDecl *CatImpl 135 = dyn_cast<ObjCCategoryImplDecl>(DC)) 136 CurrentClass = CatImpl->getClassInterface(); 137 } 138 139 if (CurrentClass) { 140 Diag(NewMethod->getLocation(), 141 diag::warn_related_result_type_compatibility_class) 142 << Context.getObjCInterfaceType(CurrentClass) 143 << ResultType 144 << ResultTypeRange; 145 } else { 146 Diag(NewMethod->getLocation(), 147 diag::warn_related_result_type_compatibility_protocol) 148 << ResultType 149 << ResultTypeRange; 150 } 151 152 if (ObjCMethodFamily Family = Overridden->getMethodFamily()) 153 Diag(Overridden->getLocation(), 154 diag::note_related_result_type_overridden_family) 155 << Family; 156 else 157 Diag(Overridden->getLocation(), 158 diag::note_related_result_type_overridden); 159 } 160 if (getLangOpts().ObjCAutoRefCount) { 161 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != 162 Overridden->hasAttr<NSReturnsRetainedAttr>())) { 163 Diag(NewMethod->getLocation(), 164 diag::err_nsreturns_retained_attribute_mismatch) << 1; 165 Diag(Overridden->getLocation(), diag::note_previous_decl) 166 << "method"; 167 } 168 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != 169 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { 170 Diag(NewMethod->getLocation(), 171 diag::err_nsreturns_retained_attribute_mismatch) << 0; 172 Diag(Overridden->getLocation(), diag::note_previous_decl) 173 << "method"; 174 } 175 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), 176 oe = Overridden->param_end(); 177 for (ObjCMethodDecl::param_iterator 178 ni = NewMethod->param_begin(), ne = NewMethod->param_end(); 179 ni != ne && oi != oe; ++ni, ++oi) { 180 const ParmVarDecl *oldDecl = (*oi); 181 ParmVarDecl *newDecl = (*ni); 182 if (newDecl->hasAttr<NSConsumedAttr>() != 183 oldDecl->hasAttr<NSConsumedAttr>()) { 184 Diag(newDecl->getLocation(), 185 diag::err_nsconsumed_attribute_mismatch); 186 Diag(oldDecl->getLocation(), diag::note_previous_decl) 187 << "parameter"; 188 } 189 } 190 } 191} 192 193/// \brief Check a method declaration for compatibility with the Objective-C 194/// ARC conventions. 195static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) { 196 ObjCMethodFamily family = method->getMethodFamily(); 197 switch (family) { 198 case OMF_None: 199 case OMF_finalize: 200 case OMF_retain: 201 case OMF_release: 202 case OMF_autorelease: 203 case OMF_retainCount: 204 case OMF_self: 205 case OMF_performSelector: 206 return false; 207 208 case OMF_dealloc: 209 if (!S.Context.hasSameType(method->getResultType(), S.Context.VoidTy)) { 210 SourceRange ResultTypeRange; 211 if (const TypeSourceInfo *ResultTypeInfo 212 = method->getResultTypeSourceInfo()) 213 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 214 if (ResultTypeRange.isInvalid()) 215 S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 216 << method->getResultType() 217 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)"); 218 else 219 S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 220 << method->getResultType() 221 << FixItHint::CreateReplacement(ResultTypeRange, "void"); 222 return true; 223 } 224 return false; 225 226 case OMF_init: 227 // If the method doesn't obey the init rules, don't bother annotating it. 228 if (S.checkInitMethod(method, QualType())) 229 return true; 230 231 method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(), 232 S.Context)); 233 234 // Don't add a second copy of this attribute, but otherwise don't 235 // let it be suppressed. 236 if (method->hasAttr<NSReturnsRetainedAttr>()) 237 return false; 238 break; 239 240 case OMF_alloc: 241 case OMF_copy: 242 case OMF_mutableCopy: 243 case OMF_new: 244 if (method->hasAttr<NSReturnsRetainedAttr>() || 245 method->hasAttr<NSReturnsNotRetainedAttr>() || 246 method->hasAttr<NSReturnsAutoreleasedAttr>()) 247 return false; 248 break; 249 } 250 251 method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(), 252 S.Context)); 253 return false; 254} 255 256static void DiagnoseObjCImplementedDeprecations(Sema &S, 257 NamedDecl *ND, 258 SourceLocation ImplLoc, 259 int select) { 260 if (ND && ND->isDeprecated()) { 261 S.Diag(ImplLoc, diag::warn_deprecated_def) << select; 262 if (select == 0) 263 S.Diag(ND->getLocation(), diag::note_method_declared_at) 264 << ND->getDeclName(); 265 else 266 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; 267 } 268} 269 270/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global 271/// pool. 272void Sema::AddAnyMethodToGlobalPool(Decl *D) { 273 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 274 275 // If we don't have a valid method decl, simply return. 276 if (!MDecl) 277 return; 278 if (MDecl->isInstanceMethod()) 279 AddInstanceMethodToGlobalPool(MDecl, true); 280 else 281 AddFactoryMethodToGlobalPool(MDecl, true); 282} 283 284/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer 285/// has explicit ownership attribute; false otherwise. 286static bool 287HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { 288 QualType T = Param->getType(); 289 290 if (const PointerType *PT = T->getAs<PointerType>()) { 291 T = PT->getPointeeType(); 292 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 293 T = RT->getPointeeType(); 294 } else { 295 return true; 296 } 297 298 // If we have a lifetime qualifier, but it's local, we must have 299 // inferred it. So, it is implicit. 300 return !T.getLocalQualifiers().hasObjCLifetime(); 301} 302 303/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 304/// and user declared, in the method definition's AST. 305void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 306 assert((getCurMethodDecl() == 0) && "Methodparsing confused"); 307 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 308 309 // If we don't have a valid method decl, simply return. 310 if (!MDecl) 311 return; 312 313 // Allow all of Sema to see that we are entering a method definition. 314 PushDeclContext(FnBodyScope, MDecl); 315 PushFunctionScope(); 316 317 // Create Decl objects for each parameter, entrring them in the scope for 318 // binding to their use. 319 320 // Insert the invisible arguments, self and _cmd! 321 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 322 323 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 324 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 325 326 // Introduce all of the other parameters into this scope. 327 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), 328 E = MDecl->param_end(); PI != E; ++PI) { 329 ParmVarDecl *Param = (*PI); 330 if (!Param->isInvalidDecl() && 331 RequireCompleteType(Param->getLocation(), Param->getType(), 332 diag::err_typecheck_decl_incomplete_type)) 333 Param->setInvalidDecl(); 334 if (!Param->isInvalidDecl() && 335 getLangOpts().ObjCAutoRefCount && 336 !HasExplicitOwnershipAttr(*this, Param)) 337 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) << 338 Param->getType(); 339 340 if ((*PI)->getIdentifier()) 341 PushOnScopeChains(*PI, FnBodyScope); 342 } 343 344 // In ARC, disallow definition of retain/release/autorelease/retainCount 345 if (getLangOpts().ObjCAutoRefCount) { 346 switch (MDecl->getMethodFamily()) { 347 case OMF_retain: 348 case OMF_retainCount: 349 case OMF_release: 350 case OMF_autorelease: 351 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 352 << MDecl->getSelector(); 353 break; 354 355 case OMF_None: 356 case OMF_dealloc: 357 case OMF_finalize: 358 case OMF_alloc: 359 case OMF_init: 360 case OMF_mutableCopy: 361 case OMF_copy: 362 case OMF_new: 363 case OMF_self: 364 case OMF_performSelector: 365 break; 366 } 367 } 368 369 // Warn on deprecated methods under -Wdeprecated-implementations, 370 // and prepare for warning on missing super calls. 371 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 372 ObjCMethodDecl *IMD = 373 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()); 374 375 if (IMD) { 376 ObjCImplDecl *ImplDeclOfMethodDef = 377 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext()); 378 ObjCContainerDecl *ContDeclOfMethodDecl = 379 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext()); 380 ObjCImplDecl *ImplDeclOfMethodDecl = 0; 381 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl)) 382 ImplDeclOfMethodDecl = OID->getImplementation(); 383 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) 384 ImplDeclOfMethodDecl = CD->getImplementation(); 385 // No need to issue deprecated warning if deprecated mehod in class/category 386 // is being implemented in its own implementation (no overriding is involved). 387 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) 388 DiagnoseObjCImplementedDeprecations(*this, 389 dyn_cast<NamedDecl>(IMD), 390 MDecl->getLocation(), 0); 391 } 392 393 // If this is "dealloc" or "finalize", set some bit here. 394 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 395 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 396 // Only do this if the current class actually has a superclass. 397 if (IC->getSuperClass()) { 398 ObjCMethodFamily Family = MDecl->getMethodFamily(); 399 if (Family == OMF_dealloc) { 400 if (!(getLangOpts().ObjCAutoRefCount || 401 getLangOpts().getGC() == LangOptions::GCOnly)) 402 getCurFunction()->ObjCShouldCallSuper = true; 403 404 } else if (Family == OMF_finalize) { 405 if (Context.getLangOpts().getGC() != LangOptions::NonGC) 406 getCurFunction()->ObjCShouldCallSuper = true; 407 408 } else { 409 const ObjCMethodDecl *SuperMethod = 410 IC->getSuperClass()->lookupMethod(MDecl->getSelector(), 411 MDecl->isInstanceMethod()); 412 getCurFunction()->ObjCShouldCallSuper = 413 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); 414 } 415 } 416 } 417} 418 419namespace { 420 421// Callback to only accept typo corrections that are Objective-C classes. 422// If an ObjCInterfaceDecl* is given to the constructor, then the validation 423// function will reject corrections to that class. 424class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback { 425 public: 426 ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {} 427 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) 428 : CurrentIDecl(IDecl) {} 429 430 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 431 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); 432 return ID && !declaresSameEntity(ID, CurrentIDecl); 433 } 434 435 private: 436 ObjCInterfaceDecl *CurrentIDecl; 437}; 438 439} 440 441Decl *Sema:: 442ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 443 IdentifierInfo *ClassName, SourceLocation ClassLoc, 444 IdentifierInfo *SuperName, SourceLocation SuperLoc, 445 Decl * const *ProtoRefs, unsigned NumProtoRefs, 446 const SourceLocation *ProtoLocs, 447 SourceLocation EndProtoLoc, AttributeList *AttrList) { 448 assert(ClassName && "Missing class identifier"); 449 450 // Check for another declaration kind with the same name. 451 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 452 LookupOrdinaryName, ForRedeclaration); 453 454 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 455 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 456 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 457 } 458 459 // Create a declaration to describe this @interface. 460 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 461 ObjCInterfaceDecl *IDecl 462 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, 463 PrevIDecl, ClassLoc); 464 465 if (PrevIDecl) { 466 // Class already seen. Was it a definition? 467 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { 468 Diag(AtInterfaceLoc, diag::err_duplicate_class_def) 469 << PrevIDecl->getDeclName(); 470 Diag(Def->getLocation(), diag::note_previous_definition); 471 IDecl->setInvalidDecl(); 472 } 473 } 474 475 if (AttrList) 476 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 477 PushOnScopeChains(IDecl, TUScope); 478 479 // Start the definition of this class. If we're in a redefinition case, there 480 // may already be a definition, so we'll end up adding to it. 481 if (!IDecl->hasDefinition()) 482 IDecl->startDefinition(); 483 484 if (SuperName) { 485 // Check if a different kind of symbol declared in this scope. 486 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 487 LookupOrdinaryName); 488 489 if (!PrevDecl) { 490 // Try to correct for a typo in the superclass name without correcting 491 // to the class we're defining. 492 ObjCInterfaceValidatorCCC Validator(IDecl); 493 if (TypoCorrection Corrected = CorrectTypo( 494 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope, 495 NULL, Validator)) { 496 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 497 Diag(SuperLoc, diag::err_undef_superclass_suggest) 498 << SuperName << ClassName << PrevDecl->getDeclName(); 499 Diag(PrevDecl->getLocation(), diag::note_previous_decl) 500 << PrevDecl->getDeclName(); 501 } 502 } 503 504 if (declaresSameEntity(PrevDecl, IDecl)) { 505 Diag(SuperLoc, diag::err_recursive_superclass) 506 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 507 IDecl->setEndOfDefinitionLoc(ClassLoc); 508 } else { 509 ObjCInterfaceDecl *SuperClassDecl = 510 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 511 512 // Diagnose classes that inherit from deprecated classes. 513 if (SuperClassDecl) 514 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 515 516 if (PrevDecl && SuperClassDecl == 0) { 517 // The previous declaration was not a class decl. Check if we have a 518 // typedef. If we do, get the underlying class type. 519 if (const TypedefNameDecl *TDecl = 520 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 521 QualType T = TDecl->getUnderlyingType(); 522 if (T->isObjCObjectType()) { 523 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) 524 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 525 } 526 } 527 528 // This handles the following case: 529 // 530 // typedef int SuperClass; 531 // @interface MyClass : SuperClass {} @end 532 // 533 if (!SuperClassDecl) { 534 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 535 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 536 } 537 } 538 539 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 540 if (!SuperClassDecl) 541 Diag(SuperLoc, diag::err_undef_superclass) 542 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 543 else if (RequireCompleteType(SuperLoc, 544 Context.getObjCInterfaceType(SuperClassDecl), 545 diag::err_forward_superclass, 546 SuperClassDecl->getDeclName(), 547 ClassName, 548 SourceRange(AtInterfaceLoc, ClassLoc))) { 549 SuperClassDecl = 0; 550 } 551 } 552 IDecl->setSuperClass(SuperClassDecl); 553 IDecl->setSuperClassLoc(SuperLoc); 554 IDecl->setEndOfDefinitionLoc(SuperLoc); 555 } 556 } else { // we have a root class. 557 IDecl->setEndOfDefinitionLoc(ClassLoc); 558 } 559 560 // Check then save referenced protocols. 561 if (NumProtoRefs) { 562 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 563 ProtoLocs, Context); 564 IDecl->setEndOfDefinitionLoc(EndProtoLoc); 565 } 566 567 CheckObjCDeclScope(IDecl); 568 return ActOnObjCContainerStartDefinition(IDecl); 569} 570 571/// ActOnCompatibilityAlias - this action is called after complete parsing of 572/// a \@compatibility_alias declaration. It sets up the alias relationships. 573Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc, 574 IdentifierInfo *AliasName, 575 SourceLocation AliasLocation, 576 IdentifierInfo *ClassName, 577 SourceLocation ClassLocation) { 578 // Look for previous declaration of alias name 579 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 580 LookupOrdinaryName, ForRedeclaration); 581 if (ADecl) { 582 if (isa<ObjCCompatibleAliasDecl>(ADecl)) 583 Diag(AliasLocation, diag::warn_previous_alias_decl); 584 else 585 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 586 Diag(ADecl->getLocation(), diag::note_previous_declaration); 587 return 0; 588 } 589 // Check for class declaration 590 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 591 LookupOrdinaryName, ForRedeclaration); 592 if (const TypedefNameDecl *TDecl = 593 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 594 QualType T = TDecl->getUnderlyingType(); 595 if (T->isObjCObjectType()) { 596 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 597 ClassName = IDecl->getIdentifier(); 598 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 599 LookupOrdinaryName, ForRedeclaration); 600 } 601 } 602 } 603 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 604 if (CDecl == 0) { 605 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 606 if (CDeclU) 607 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 608 return 0; 609 } 610 611 // Everything checked out, instantiate a new alias declaration AST. 612 ObjCCompatibleAliasDecl *AliasDecl = 613 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 614 615 if (!CheckObjCDeclScope(AliasDecl)) 616 PushOnScopeChains(AliasDecl, TUScope); 617 618 return AliasDecl; 619} 620 621bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 622 IdentifierInfo *PName, 623 SourceLocation &Ploc, SourceLocation PrevLoc, 624 const ObjCList<ObjCProtocolDecl> &PList) { 625 626 bool res = false; 627 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 628 E = PList.end(); I != E; ++I) { 629 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 630 Ploc)) { 631 if (PDecl->getIdentifier() == PName) { 632 Diag(Ploc, diag::err_protocol_has_circular_dependency); 633 Diag(PrevLoc, diag::note_previous_definition); 634 res = true; 635 } 636 637 if (!PDecl->hasDefinition()) 638 continue; 639 640 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 641 PDecl->getLocation(), PDecl->getReferencedProtocols())) 642 res = true; 643 } 644 } 645 return res; 646} 647 648Decl * 649Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 650 IdentifierInfo *ProtocolName, 651 SourceLocation ProtocolLoc, 652 Decl * const *ProtoRefs, 653 unsigned NumProtoRefs, 654 const SourceLocation *ProtoLocs, 655 SourceLocation EndProtoLoc, 656 AttributeList *AttrList) { 657 bool err = false; 658 // FIXME: Deal with AttrList. 659 assert(ProtocolName && "Missing protocol identifier"); 660 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, 661 ForRedeclaration); 662 ObjCProtocolDecl *PDecl = 0; 663 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) { 664 // If we already have a definition, complain. 665 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 666 Diag(Def->getLocation(), diag::note_previous_definition); 667 668 // Create a new protocol that is completely distinct from previous 669 // declarations, and do not make this protocol available for name lookup. 670 // That way, we'll end up completely ignoring the duplicate. 671 // FIXME: Can we turn this into an error? 672 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 673 ProtocolLoc, AtProtoInterfaceLoc, 674 /*PrevDecl=*/0); 675 PDecl->startDefinition(); 676 } else { 677 if (PrevDecl) { 678 // Check for circular dependencies among protocol declarations. This can 679 // only happen if this protocol was forward-declared. 680 ObjCList<ObjCProtocolDecl> PList; 681 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 682 err = CheckForwardProtocolDeclarationForCircularDependency( 683 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); 684 } 685 686 // Create the new declaration. 687 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 688 ProtocolLoc, AtProtoInterfaceLoc, 689 /*PrevDecl=*/PrevDecl); 690 691 PushOnScopeChains(PDecl, TUScope); 692 PDecl->startDefinition(); 693 } 694 695 if (AttrList) 696 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 697 698 // Merge attributes from previous declarations. 699 if (PrevDecl) 700 mergeDeclAttributes(PDecl, PrevDecl); 701 702 if (!err && NumProtoRefs ) { 703 /// Check then save referenced protocols. 704 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 705 ProtoLocs, Context); 706 } 707 708 CheckObjCDeclScope(PDecl); 709 return ActOnObjCContainerStartDefinition(PDecl); 710} 711 712/// FindProtocolDeclaration - This routine looks up protocols and 713/// issues an error if they are not declared. It returns list of 714/// protocol declarations in its 'Protocols' argument. 715void 716Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 717 const IdentifierLocPair *ProtocolId, 718 unsigned NumProtocols, 719 SmallVectorImpl<Decl *> &Protocols) { 720 for (unsigned i = 0; i != NumProtocols; ++i) { 721 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 722 ProtocolId[i].second); 723 if (!PDecl) { 724 DeclFilterCCC<ObjCProtocolDecl> Validator; 725 TypoCorrection Corrected = CorrectTypo( 726 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), 727 LookupObjCProtocolName, TUScope, NULL, Validator); 728 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) { 729 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) 730 << ProtocolId[i].first << Corrected.getCorrection(); 731 Diag(PDecl->getLocation(), diag::note_previous_decl) 732 << PDecl->getDeclName(); 733 } 734 } 735 736 if (!PDecl) { 737 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 738 << ProtocolId[i].first; 739 continue; 740 } 741 742 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 743 744 // If this is a forward declaration and we are supposed to warn in this 745 // case, do it. 746 if (WarnOnDeclarations && !PDecl->hasDefinition()) 747 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 748 << ProtocolId[i].first; 749 Protocols.push_back(PDecl); 750 } 751} 752 753/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 754/// a class method in its extension. 755/// 756void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 757 ObjCInterfaceDecl *ID) { 758 if (!ID) 759 return; // Possibly due to previous error 760 761 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 762 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), 763 e = ID->meth_end(); i != e; ++i) { 764 ObjCMethodDecl *MD = *i; 765 MethodMap[MD->getSelector()] = MD; 766 } 767 768 if (MethodMap.empty()) 769 return; 770 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), 771 e = CAT->meth_end(); i != e; ++i) { 772 ObjCMethodDecl *Method = *i; 773 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 774 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { 775 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 776 << Method->getDeclName(); 777 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 778 } 779 } 780} 781 782/// ActOnForwardProtocolDeclaration - Handle \@protocol foo; 783Sema::DeclGroupPtrTy 784Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 785 const IdentifierLocPair *IdentList, 786 unsigned NumElts, 787 AttributeList *attrList) { 788 SmallVector<Decl *, 8> DeclsInGroup; 789 for (unsigned i = 0; i != NumElts; ++i) { 790 IdentifierInfo *Ident = IdentList[i].first; 791 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second, 792 ForRedeclaration); 793 ObjCProtocolDecl *PDecl 794 = ObjCProtocolDecl::Create(Context, CurContext, Ident, 795 IdentList[i].second, AtProtocolLoc, 796 PrevDecl); 797 798 PushOnScopeChains(PDecl, TUScope); 799 CheckObjCDeclScope(PDecl); 800 801 if (attrList) 802 ProcessDeclAttributeList(TUScope, PDecl, attrList); 803 804 if (PrevDecl) 805 mergeDeclAttributes(PDecl, PrevDecl); 806 807 DeclsInGroup.push_back(PDecl); 808 } 809 810 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); 811} 812 813Decl *Sema:: 814ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 815 IdentifierInfo *ClassName, SourceLocation ClassLoc, 816 IdentifierInfo *CategoryName, 817 SourceLocation CategoryLoc, 818 Decl * const *ProtoRefs, 819 unsigned NumProtoRefs, 820 const SourceLocation *ProtoLocs, 821 SourceLocation EndProtoLoc) { 822 ObjCCategoryDecl *CDecl; 823 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 824 825 /// Check that class of this category is already completely declared. 826 827 if (!IDecl 828 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 829 diag::err_category_forward_interface, 830 CategoryName == 0)) { 831 // Create an invalid ObjCCategoryDecl to serve as context for 832 // the enclosing method declarations. We mark the decl invalid 833 // to make it clear that this isn't a valid AST. 834 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 835 ClassLoc, CategoryLoc, CategoryName,IDecl); 836 CDecl->setInvalidDecl(); 837 CurContext->addDecl(CDecl); 838 839 if (!IDecl) 840 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 841 return ActOnObjCContainerStartDefinition(CDecl); 842 } 843 844 if (!CategoryName && IDecl->getImplementation()) { 845 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 846 Diag(IDecl->getImplementation()->getLocation(), 847 diag::note_implementation_declared); 848 } 849 850 if (CategoryName) { 851 /// Check for duplicate interface declaration for this category 852 ObjCCategoryDecl *CDeclChain; 853 for (CDeclChain = IDecl->getCategoryList(); CDeclChain; 854 CDeclChain = CDeclChain->getNextClassCategory()) { 855 if (CDeclChain->getIdentifier() == CategoryName) { 856 // Class extensions can be declared multiple times. 857 Diag(CategoryLoc, diag::warn_dup_category_def) 858 << ClassName << CategoryName; 859 Diag(CDeclChain->getLocation(), diag::note_previous_definition); 860 break; 861 } 862 } 863 } 864 865 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 866 ClassLoc, CategoryLoc, CategoryName, IDecl); 867 // FIXME: PushOnScopeChains? 868 CurContext->addDecl(CDecl); 869 870 if (NumProtoRefs) { 871 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 872 ProtoLocs, Context); 873 // Protocols in the class extension belong to the class. 874 if (CDecl->IsClassExtension()) 875 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, 876 NumProtoRefs, Context); 877 } 878 879 CheckObjCDeclScope(CDecl); 880 return ActOnObjCContainerStartDefinition(CDecl); 881} 882 883/// ActOnStartCategoryImplementation - Perform semantic checks on the 884/// category implementation declaration and build an ObjCCategoryImplDecl 885/// object. 886Decl *Sema::ActOnStartCategoryImplementation( 887 SourceLocation AtCatImplLoc, 888 IdentifierInfo *ClassName, SourceLocation ClassLoc, 889 IdentifierInfo *CatName, SourceLocation CatLoc) { 890 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 891 ObjCCategoryDecl *CatIDecl = 0; 892 if (IDecl && IDecl->hasDefinition()) { 893 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 894 if (!CatIDecl) { 895 // Category @implementation with no corresponding @interface. 896 // Create and install one. 897 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, 898 ClassLoc, CatLoc, 899 CatName, IDecl); 900 CatIDecl->setImplicit(); 901 } 902 } 903 904 ObjCCategoryImplDecl *CDecl = 905 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, 906 ClassLoc, AtCatImplLoc, CatLoc); 907 /// Check that class of this category is already completely declared. 908 if (!IDecl) { 909 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 910 CDecl->setInvalidDecl(); 911 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 912 diag::err_undef_interface)) { 913 CDecl->setInvalidDecl(); 914 } 915 916 // FIXME: PushOnScopeChains? 917 CurContext->addDecl(CDecl); 918 919 // If the interface is deprecated/unavailable, warn/error about it. 920 if (IDecl) 921 DiagnoseUseOfDecl(IDecl, ClassLoc); 922 923 /// Check that CatName, category name, is not used in another implementation. 924 if (CatIDecl) { 925 if (CatIDecl->getImplementation()) { 926 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 927 << CatName; 928 Diag(CatIDecl->getImplementation()->getLocation(), 929 diag::note_previous_definition); 930 } else { 931 CatIDecl->setImplementation(CDecl); 932 // Warn on implementating category of deprecated class under 933 // -Wdeprecated-implementations flag. 934 DiagnoseObjCImplementedDeprecations(*this, 935 dyn_cast<NamedDecl>(IDecl), 936 CDecl->getLocation(), 2); 937 } 938 } 939 940 CheckObjCDeclScope(CDecl); 941 return ActOnObjCContainerStartDefinition(CDecl); 942} 943 944Decl *Sema::ActOnStartClassImplementation( 945 SourceLocation AtClassImplLoc, 946 IdentifierInfo *ClassName, SourceLocation ClassLoc, 947 IdentifierInfo *SuperClassname, 948 SourceLocation SuperClassLoc) { 949 ObjCInterfaceDecl* IDecl = 0; 950 // Check for another declaration kind with the same name. 951 NamedDecl *PrevDecl 952 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 953 ForRedeclaration); 954 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 955 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 956 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 957 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 958 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), 959 diag::warn_undef_interface); 960 } else { 961 // We did not find anything with the name ClassName; try to correct for 962 // typos in the class name. 963 ObjCInterfaceValidatorCCC Validator; 964 if (TypoCorrection Corrected = CorrectTypo( 965 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope, 966 NULL, Validator)) { 967 // Suggest the (potentially) correct interface name. However, put the 968 // fix-it hint itself in a separate note, since changing the name in 969 // the warning would make the fix-it change semantics.However, don't 970 // provide a code-modification hint or use the typo name for recovery, 971 // because this is just a warning. The program may actually be correct. 972 IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); 973 DeclarationName CorrectedName = Corrected.getCorrection(); 974 Diag(ClassLoc, diag::warn_undef_interface_suggest) 975 << ClassName << CorrectedName; 976 Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName 977 << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString()); 978 IDecl = 0; 979 } else { 980 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 981 } 982 } 983 984 // Check that super class name is valid class name 985 ObjCInterfaceDecl* SDecl = 0; 986 if (SuperClassname) { 987 // Check if a different kind of symbol declared in this scope. 988 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 989 LookupOrdinaryName); 990 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 991 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 992 << SuperClassname; 993 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 994 } else { 995 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 996 if (SDecl && !SDecl->hasDefinition()) 997 SDecl = 0; 998 if (!SDecl) 999 Diag(SuperClassLoc, diag::err_undef_superclass) 1000 << SuperClassname << ClassName; 1001 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { 1002 // This implementation and its interface do not have the same 1003 // super class. 1004 Diag(SuperClassLoc, diag::err_conflicting_super_class) 1005 << SDecl->getDeclName(); 1006 Diag(SDecl->getLocation(), diag::note_previous_definition); 1007 } 1008 } 1009 } 1010 1011 if (!IDecl) { 1012 // Legacy case of @implementation with no corresponding @interface. 1013 // Build, chain & install the interface decl into the identifier. 1014 1015 // FIXME: Do we support attributes on the @implementation? If so we should 1016 // copy them over. 1017 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 1018 ClassName, /*PrevDecl=*/0, ClassLoc, 1019 true); 1020 IDecl->startDefinition(); 1021 if (SDecl) { 1022 IDecl->setSuperClass(SDecl); 1023 IDecl->setSuperClassLoc(SuperClassLoc); 1024 IDecl->setEndOfDefinitionLoc(SuperClassLoc); 1025 } else { 1026 IDecl->setEndOfDefinitionLoc(ClassLoc); 1027 } 1028 1029 PushOnScopeChains(IDecl, TUScope); 1030 } else { 1031 // Mark the interface as being completed, even if it was just as 1032 // @class ....; 1033 // declaration; the user cannot reopen it. 1034 if (!IDecl->hasDefinition()) 1035 IDecl->startDefinition(); 1036 } 1037 1038 ObjCImplementationDecl* IMPDecl = 1039 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, 1040 ClassLoc, AtClassImplLoc); 1041 1042 if (CheckObjCDeclScope(IMPDecl)) 1043 return ActOnObjCContainerStartDefinition(IMPDecl); 1044 1045 // Check that there is no duplicate implementation of this class. 1046 if (IDecl->getImplementation()) { 1047 // FIXME: Don't leak everything! 1048 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 1049 Diag(IDecl->getImplementation()->getLocation(), 1050 diag::note_previous_definition); 1051 } else { // add it to the list. 1052 IDecl->setImplementation(IMPDecl); 1053 PushOnScopeChains(IMPDecl, TUScope); 1054 // Warn on implementating deprecated class under 1055 // -Wdeprecated-implementations flag. 1056 DiagnoseObjCImplementedDeprecations(*this, 1057 dyn_cast<NamedDecl>(IDecl), 1058 IMPDecl->getLocation(), 1); 1059 } 1060 return ActOnObjCContainerStartDefinition(IMPDecl); 1061} 1062 1063Sema::DeclGroupPtrTy 1064Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { 1065 SmallVector<Decl *, 64> DeclsInGroup; 1066 DeclsInGroup.reserve(Decls.size() + 1); 1067 1068 for (unsigned i = 0, e = Decls.size(); i != e; ++i) { 1069 Decl *Dcl = Decls[i]; 1070 if (!Dcl) 1071 continue; 1072 if (Dcl->getDeclContext()->isFileContext()) 1073 Dcl->setTopLevelDeclInObjCContainer(); 1074 DeclsInGroup.push_back(Dcl); 1075 } 1076 1077 DeclsInGroup.push_back(ObjCImpDecl); 1078 1079 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); 1080} 1081 1082void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 1083 ObjCIvarDecl **ivars, unsigned numIvars, 1084 SourceLocation RBrace) { 1085 assert(ImpDecl && "missing implementation decl"); 1086 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 1087 if (!IDecl) 1088 return; 1089 /// Check case of non-existing \@interface decl. 1090 /// (legacy objective-c \@implementation decl without an \@interface decl). 1091 /// Add implementations's ivar to the synthesize class's ivar list. 1092 if (IDecl->isImplicitInterfaceDecl()) { 1093 IDecl->setEndOfDefinitionLoc(RBrace); 1094 // Add ivar's to class's DeclContext. 1095 for (unsigned i = 0, e = numIvars; i != e; ++i) { 1096 ivars[i]->setLexicalDeclContext(ImpDecl); 1097 IDecl->makeDeclVisibleInContext(ivars[i]); 1098 ImpDecl->addDecl(ivars[i]); 1099 } 1100 1101 return; 1102 } 1103 // If implementation has empty ivar list, just return. 1104 if (numIvars == 0) 1105 return; 1106 1107 assert(ivars && "missing @implementation ivars"); 1108 if (LangOpts.ObjCRuntime.isNonFragile()) { 1109 if (ImpDecl->getSuperClass()) 1110 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 1111 for (unsigned i = 0; i < numIvars; i++) { 1112 ObjCIvarDecl* ImplIvar = ivars[i]; 1113 if (const ObjCIvarDecl *ClsIvar = 1114 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 1115 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 1116 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1117 continue; 1118 } 1119 // Instance ivar to Implementation's DeclContext. 1120 ImplIvar->setLexicalDeclContext(ImpDecl); 1121 IDecl->makeDeclVisibleInContext(ImplIvar); 1122 ImpDecl->addDecl(ImplIvar); 1123 } 1124 return; 1125 } 1126 // Check interface's Ivar list against those in the implementation. 1127 // names and types must match. 1128 // 1129 unsigned j = 0; 1130 ObjCInterfaceDecl::ivar_iterator 1131 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 1132 for (; numIvars > 0 && IVI != IVE; ++IVI) { 1133 ObjCIvarDecl* ImplIvar = ivars[j++]; 1134 ObjCIvarDecl* ClsIvar = *IVI; 1135 assert (ImplIvar && "missing implementation ivar"); 1136 assert (ClsIvar && "missing class ivar"); 1137 1138 // First, make sure the types match. 1139 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { 1140 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 1141 << ImplIvar->getIdentifier() 1142 << ImplIvar->getType() << ClsIvar->getType(); 1143 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1144 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && 1145 ImplIvar->getBitWidthValue(Context) != 1146 ClsIvar->getBitWidthValue(Context)) { 1147 Diag(ImplIvar->getBitWidth()->getLocStart(), 1148 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier(); 1149 Diag(ClsIvar->getBitWidth()->getLocStart(), 1150 diag::note_previous_definition); 1151 } 1152 // Make sure the names are identical. 1153 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 1154 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 1155 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 1156 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1157 } 1158 --numIvars; 1159 } 1160 1161 if (numIvars > 0) 1162 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); 1163 else if (IVI != IVE) 1164 Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count); 1165} 1166 1167void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, 1168 bool &IncompleteImpl, unsigned DiagID) { 1169 // No point warning no definition of method which is 'unavailable'. 1170 switch (method->getAvailability()) { 1171 case AR_Available: 1172 case AR_Deprecated: 1173 break; 1174 1175 // Don't warn about unavailable or not-yet-introduced methods. 1176 case AR_NotYetIntroduced: 1177 case AR_Unavailable: 1178 return; 1179 } 1180 1181 if (!IncompleteImpl) { 1182 Diag(ImpLoc, diag::warn_incomplete_impl); 1183 IncompleteImpl = true; 1184 } 1185 if (DiagID == diag::warn_unimplemented_protocol_method) 1186 Diag(ImpLoc, DiagID) << method->getDeclName(); 1187 else 1188 Diag(method->getLocation(), DiagID) << method->getDeclName(); 1189} 1190 1191/// Determines if type B can be substituted for type A. Returns true if we can 1192/// guarantee that anything that the user will do to an object of type A can 1193/// also be done to an object of type B. This is trivially true if the two 1194/// types are the same, or if B is a subclass of A. It becomes more complex 1195/// in cases where protocols are involved. 1196/// 1197/// Object types in Objective-C describe the minimum requirements for an 1198/// object, rather than providing a complete description of a type. For 1199/// example, if A is a subclass of B, then B* may refer to an instance of A. 1200/// The principle of substitutability means that we may use an instance of A 1201/// anywhere that we may use an instance of B - it will implement all of the 1202/// ivars of B and all of the methods of B. 1203/// 1204/// This substitutability is important when type checking methods, because 1205/// the implementation may have stricter type definitions than the interface. 1206/// The interface specifies minimum requirements, but the implementation may 1207/// have more accurate ones. For example, a method may privately accept 1208/// instances of B, but only publish that it accepts instances of A. Any 1209/// object passed to it will be type checked against B, and so will implicitly 1210/// by a valid A*. Similarly, a method may return a subclass of the class that 1211/// it is declared as returning. 1212/// 1213/// This is most important when considering subclassing. A method in a 1214/// subclass must accept any object as an argument that its superclass's 1215/// implementation accepts. It may, however, accept a more general type 1216/// without breaking substitutability (i.e. you can still use the subclass 1217/// anywhere that you can use the superclass, but not vice versa). The 1218/// converse requirement applies to return types: the return type for a 1219/// subclass method must be a valid object of the kind that the superclass 1220/// advertises, but it may be specified more accurately. This avoids the need 1221/// for explicit down-casting by callers. 1222/// 1223/// Note: This is a stricter requirement than for assignment. 1224static bool isObjCTypeSubstitutable(ASTContext &Context, 1225 const ObjCObjectPointerType *A, 1226 const ObjCObjectPointerType *B, 1227 bool rejectId) { 1228 // Reject a protocol-unqualified id. 1229 if (rejectId && B->isObjCIdType()) return false; 1230 1231 // If B is a qualified id, then A must also be a qualified id and it must 1232 // implement all of the protocols in B. It may not be a qualified class. 1233 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 1234 // stricter definition so it is not substitutable for id<A>. 1235 if (B->isObjCQualifiedIdType()) { 1236 return A->isObjCQualifiedIdType() && 1237 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), 1238 QualType(B,0), 1239 false); 1240 } 1241 1242 /* 1243 // id is a special type that bypasses type checking completely. We want a 1244 // warning when it is used in one place but not another. 1245 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 1246 1247 1248 // If B is a qualified id, then A must also be a qualified id (which it isn't 1249 // if we've got this far) 1250 if (B->isObjCQualifiedIdType()) return false; 1251 */ 1252 1253 // Now we know that A and B are (potentially-qualified) class types. The 1254 // normal rules for assignment apply. 1255 return Context.canAssignObjCInterfaces(A, B); 1256} 1257 1258static SourceRange getTypeRange(TypeSourceInfo *TSI) { 1259 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 1260} 1261 1262static bool CheckMethodOverrideReturn(Sema &S, 1263 ObjCMethodDecl *MethodImpl, 1264 ObjCMethodDecl *MethodDecl, 1265 bool IsProtocolMethodDecl, 1266 bool IsOverridingMode, 1267 bool Warn) { 1268 if (IsProtocolMethodDecl && 1269 (MethodDecl->getObjCDeclQualifier() != 1270 MethodImpl->getObjCDeclQualifier())) { 1271 if (Warn) { 1272 S.Diag(MethodImpl->getLocation(), 1273 (IsOverridingMode ? 1274 diag::warn_conflicting_overriding_ret_type_modifiers 1275 : diag::warn_conflicting_ret_type_modifiers)) 1276 << MethodImpl->getDeclName() 1277 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1278 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 1279 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1280 } 1281 else 1282 return false; 1283 } 1284 1285 if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(), 1286 MethodDecl->getResultType())) 1287 return true; 1288 if (!Warn) 1289 return false; 1290 1291 unsigned DiagID = 1292 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 1293 : diag::warn_conflicting_ret_types; 1294 1295 // Mismatches between ObjC pointers go into a different warning 1296 // category, and sometimes they're even completely whitelisted. 1297 if (const ObjCObjectPointerType *ImplPtrTy = 1298 MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) { 1299 if (const ObjCObjectPointerType *IfacePtrTy = 1300 MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) { 1301 // Allow non-matching return types as long as they don't violate 1302 // the principle of substitutability. Specifically, we permit 1303 // return types that are subclasses of the declared return type, 1304 // or that are more-qualified versions of the declared type. 1305 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 1306 return false; 1307 1308 DiagID = 1309 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 1310 : diag::warn_non_covariant_ret_types; 1311 } 1312 } 1313 1314 S.Diag(MethodImpl->getLocation(), DiagID) 1315 << MethodImpl->getDeclName() 1316 << MethodDecl->getResultType() 1317 << MethodImpl->getResultType() 1318 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1319 S.Diag(MethodDecl->getLocation(), 1320 IsOverridingMode ? diag::note_previous_declaration 1321 : diag::note_previous_definition) 1322 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1323 return false; 1324} 1325 1326static bool CheckMethodOverrideParam(Sema &S, 1327 ObjCMethodDecl *MethodImpl, 1328 ObjCMethodDecl *MethodDecl, 1329 ParmVarDecl *ImplVar, 1330 ParmVarDecl *IfaceVar, 1331 bool IsProtocolMethodDecl, 1332 bool IsOverridingMode, 1333 bool Warn) { 1334 if (IsProtocolMethodDecl && 1335 (ImplVar->getObjCDeclQualifier() != 1336 IfaceVar->getObjCDeclQualifier())) { 1337 if (Warn) { 1338 if (IsOverridingMode) 1339 S.Diag(ImplVar->getLocation(), 1340 diag::warn_conflicting_overriding_param_modifiers) 1341 << getTypeRange(ImplVar->getTypeSourceInfo()) 1342 << MethodImpl->getDeclName(); 1343 else S.Diag(ImplVar->getLocation(), 1344 diag::warn_conflicting_param_modifiers) 1345 << getTypeRange(ImplVar->getTypeSourceInfo()) 1346 << MethodImpl->getDeclName(); 1347 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 1348 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1349 } 1350 else 1351 return false; 1352 } 1353 1354 QualType ImplTy = ImplVar->getType(); 1355 QualType IfaceTy = IfaceVar->getType(); 1356 1357 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 1358 return true; 1359 1360 if (!Warn) 1361 return false; 1362 unsigned DiagID = 1363 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 1364 : diag::warn_conflicting_param_types; 1365 1366 // Mismatches between ObjC pointers go into a different warning 1367 // category, and sometimes they're even completely whitelisted. 1368 if (const ObjCObjectPointerType *ImplPtrTy = 1369 ImplTy->getAs<ObjCObjectPointerType>()) { 1370 if (const ObjCObjectPointerType *IfacePtrTy = 1371 IfaceTy->getAs<ObjCObjectPointerType>()) { 1372 // Allow non-matching argument types as long as they don't 1373 // violate the principle of substitutability. Specifically, the 1374 // implementation must accept any objects that the superclass 1375 // accepts, however it may also accept others. 1376 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 1377 return false; 1378 1379 DiagID = 1380 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 1381 : diag::warn_non_contravariant_param_types; 1382 } 1383 } 1384 1385 S.Diag(ImplVar->getLocation(), DiagID) 1386 << getTypeRange(ImplVar->getTypeSourceInfo()) 1387 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 1388 S.Diag(IfaceVar->getLocation(), 1389 (IsOverridingMode ? diag::note_previous_declaration 1390 : diag::note_previous_definition)) 1391 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1392 return false; 1393} 1394 1395/// In ARC, check whether the conventional meanings of the two methods 1396/// match. If they don't, it's a hard error. 1397static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 1398 ObjCMethodDecl *decl) { 1399 ObjCMethodFamily implFamily = impl->getMethodFamily(); 1400 ObjCMethodFamily declFamily = decl->getMethodFamily(); 1401 if (implFamily == declFamily) return false; 1402 1403 // Since conventions are sorted by selector, the only possibility is 1404 // that the types differ enough to cause one selector or the other 1405 // to fall out of the family. 1406 assert(implFamily == OMF_None || declFamily == OMF_None); 1407 1408 // No further diagnostics required on invalid declarations. 1409 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 1410 1411 const ObjCMethodDecl *unmatched = impl; 1412 ObjCMethodFamily family = declFamily; 1413 unsigned errorID = diag::err_arc_lost_method_convention; 1414 unsigned noteID = diag::note_arc_lost_method_convention; 1415 if (declFamily == OMF_None) { 1416 unmatched = decl; 1417 family = implFamily; 1418 errorID = diag::err_arc_gained_method_convention; 1419 noteID = diag::note_arc_gained_method_convention; 1420 } 1421 1422 // Indexes into a %select clause in the diagnostic. 1423 enum FamilySelector { 1424 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 1425 }; 1426 FamilySelector familySelector = FamilySelector(); 1427 1428 switch (family) { 1429 case OMF_None: llvm_unreachable("logic error, no method convention"); 1430 case OMF_retain: 1431 case OMF_release: 1432 case OMF_autorelease: 1433 case OMF_dealloc: 1434 case OMF_finalize: 1435 case OMF_retainCount: 1436 case OMF_self: 1437 case OMF_performSelector: 1438 // Mismatches for these methods don't change ownership 1439 // conventions, so we don't care. 1440 return false; 1441 1442 case OMF_init: familySelector = F_init; break; 1443 case OMF_alloc: familySelector = F_alloc; break; 1444 case OMF_copy: familySelector = F_copy; break; 1445 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 1446 case OMF_new: familySelector = F_new; break; 1447 } 1448 1449 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 1450 ReasonSelector reasonSelector; 1451 1452 // The only reason these methods don't fall within their families is 1453 // due to unusual result types. 1454 if (unmatched->getResultType()->isObjCObjectPointerType()) { 1455 reasonSelector = R_UnrelatedReturn; 1456 } else { 1457 reasonSelector = R_NonObjectReturn; 1458 } 1459 1460 S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector; 1461 S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector; 1462 1463 return true; 1464} 1465 1466void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1467 ObjCMethodDecl *MethodDecl, 1468 bool IsProtocolMethodDecl) { 1469 if (getLangOpts().ObjCAutoRefCount && 1470 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 1471 return; 1472 1473 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1474 IsProtocolMethodDecl, false, 1475 true); 1476 1477 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1478 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 1479 EF = MethodDecl->param_end(); 1480 IM != EM && IF != EF; ++IM, ++IF) { 1481 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 1482 IsProtocolMethodDecl, false, true); 1483 } 1484 1485 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 1486 Diag(ImpMethodDecl->getLocation(), 1487 diag::warn_conflicting_variadic); 1488 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 1489 } 1490} 1491 1492void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, 1493 ObjCMethodDecl *Overridden, 1494 bool IsProtocolMethodDecl) { 1495 1496 CheckMethodOverrideReturn(*this, Method, Overridden, 1497 IsProtocolMethodDecl, true, 1498 true); 1499 1500 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), 1501 IF = Overridden->param_begin(), EM = Method->param_end(), 1502 EF = Overridden->param_end(); 1503 IM != EM && IF != EF; ++IM, ++IF) { 1504 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, 1505 IsProtocolMethodDecl, true, true); 1506 } 1507 1508 if (Method->isVariadic() != Overridden->isVariadic()) { 1509 Diag(Method->getLocation(), 1510 diag::warn_conflicting_overriding_variadic); 1511 Diag(Overridden->getLocation(), diag::note_previous_declaration); 1512 } 1513} 1514 1515/// WarnExactTypedMethods - This routine issues a warning if method 1516/// implementation declaration matches exactly that of its declaration. 1517void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1518 ObjCMethodDecl *MethodDecl, 1519 bool IsProtocolMethodDecl) { 1520 // don't issue warning when protocol method is optional because primary 1521 // class is not required to implement it and it is safe for protocol 1522 // to implement it. 1523 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 1524 return; 1525 // don't issue warning when primary class's method is 1526 // depecated/unavailable. 1527 if (MethodDecl->hasAttr<UnavailableAttr>() || 1528 MethodDecl->hasAttr<DeprecatedAttr>()) 1529 return; 1530 1531 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1532 IsProtocolMethodDecl, false, false); 1533 if (match) 1534 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1535 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), 1536 EF = MethodDecl->param_end(); 1537 IM != EM && IF != EF; ++IM, ++IF) { 1538 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 1539 *IM, *IF, 1540 IsProtocolMethodDecl, false, false); 1541 if (!match) 1542 break; 1543 } 1544 if (match) 1545 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 1546 if (match) 1547 match = !(MethodDecl->isClassMethod() && 1548 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 1549 1550 if (match) { 1551 Diag(ImpMethodDecl->getLocation(), 1552 diag::warn_category_method_impl_match); 1553 Diag(MethodDecl->getLocation(), diag::note_method_declared_at) 1554 << MethodDecl->getDeclName(); 1555 } 1556} 1557 1558/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 1559/// improve the efficiency of selector lookups and type checking by associating 1560/// with each protocol / interface / category the flattened instance tables. If 1561/// we used an immutable set to keep the table then it wouldn't add significant 1562/// memory cost and it would be handy for lookups. 1563 1564/// CheckProtocolMethodDefs - This routine checks unimplemented methods 1565/// Declared in protocol, and those referenced by it. 1566void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, 1567 ObjCProtocolDecl *PDecl, 1568 bool& IncompleteImpl, 1569 const SelectorSet &InsMap, 1570 const SelectorSet &ClsMap, 1571 ObjCContainerDecl *CDecl) { 1572 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); 1573 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 1574 : dyn_cast<ObjCInterfaceDecl>(CDecl); 1575 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 1576 1577 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 1578 ObjCInterfaceDecl *NSIDecl = 0; 1579 if (getLangOpts().ObjCRuntime.isNeXTFamily()) { 1580 // check to see if class implements forwardInvocation method and objects 1581 // of this class are derived from 'NSProxy' so that to forward requests 1582 // from one object to another. 1583 // Under such conditions, which means that every method possible is 1584 // implemented in the class, we should not issue "Method definition not 1585 // found" warnings. 1586 // FIXME: Use a general GetUnarySelector method for this. 1587 IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); 1588 Selector fISelector = Context.Selectors.getSelector(1, &II); 1589 if (InsMap.count(fISelector)) 1590 // Is IDecl derived from 'NSProxy'? If so, no instance methods 1591 // need be implemented in the implementation. 1592 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); 1593 } 1594 1595 // If this is a forward protocol declaration, get its definition. 1596 if (!PDecl->isThisDeclarationADefinition() && 1597 PDecl->getDefinition()) 1598 PDecl = PDecl->getDefinition(); 1599 1600 // If a method lookup fails locally we still need to look and see if 1601 // the method was implemented by a base class or an inherited 1602 // protocol. This lookup is slow, but occurs rarely in correct code 1603 // and otherwise would terminate in a warning. 1604 1605 // check unimplemented instance methods. 1606 if (!NSIDecl) 1607 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), 1608 E = PDecl->instmeth_end(); I != E; ++I) { 1609 ObjCMethodDecl *method = *I; 1610 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1611 !method->isPropertyAccessor() && 1612 !InsMap.count(method->getSelector()) && 1613 (!Super || !Super->lookupInstanceMethod(method->getSelector()))) { 1614 // If a method is not implemented in the category implementation but 1615 // has been declared in its primary class, superclass, 1616 // or in one of their protocols, no need to issue the warning. 1617 // This is because method will be implemented in the primary class 1618 // or one of its super class implementation. 1619 1620 // Ugly, but necessary. Method declared in protcol might have 1621 // have been synthesized due to a property declared in the class which 1622 // uses the protocol. 1623 if (ObjCMethodDecl *MethodInClass = 1624 IDecl->lookupInstanceMethod(method->getSelector(), 1625 true /*shallowCategoryLookup*/)) 1626 if (C || MethodInClass->isPropertyAccessor()) 1627 continue; 1628 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1629 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) 1630 != DiagnosticsEngine::Ignored) { 1631 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1632 Diag(method->getLocation(), diag::note_method_declared_at) 1633 << method->getDeclName(); 1634 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) 1635 << PDecl->getDeclName(); 1636 } 1637 } 1638 } 1639 // check unimplemented class methods 1640 for (ObjCProtocolDecl::classmeth_iterator 1641 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); 1642 I != E; ++I) { 1643 ObjCMethodDecl *method = *I; 1644 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1645 !ClsMap.count(method->getSelector()) && 1646 (!Super || !Super->lookupClassMethod(method->getSelector()))) { 1647 // See above comment for instance method lookups. 1648 if (C && IDecl->lookupClassMethod(method->getSelector(), 1649 true /*shallowCategoryLookup*/)) 1650 continue; 1651 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1652 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != 1653 DiagnosticsEngine::Ignored) { 1654 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1655 Diag(method->getLocation(), diag::note_method_declared_at) 1656 << method->getDeclName(); 1657 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << 1658 PDecl->getDeclName(); 1659 } 1660 } 1661 } 1662 // Check on this protocols's referenced protocols, recursively. 1663 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), 1664 E = PDecl->protocol_end(); PI != E; ++PI) 1665 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl); 1666} 1667 1668/// MatchAllMethodDeclarations - Check methods declared in interface 1669/// or protocol against those declared in their implementations. 1670/// 1671void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap, 1672 const SelectorSet &ClsMap, 1673 SelectorSet &InsMapSeen, 1674 SelectorSet &ClsMapSeen, 1675 ObjCImplDecl* IMPDecl, 1676 ObjCContainerDecl* CDecl, 1677 bool &IncompleteImpl, 1678 bool ImmediateClass, 1679 bool WarnCategoryMethodImpl) { 1680 // Check and see if instance methods in class interface have been 1681 // implemented in the implementation class. If so, their types match. 1682 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), 1683 E = CDecl->instmeth_end(); I != E; ++I) { 1684 if (InsMapSeen.count((*I)->getSelector())) 1685 continue; 1686 InsMapSeen.insert((*I)->getSelector()); 1687 if (!(*I)->isPropertyAccessor() && 1688 !InsMap.count((*I)->getSelector())) { 1689 if (ImmediateClass) 1690 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1691 diag::note_undef_method_impl); 1692 continue; 1693 } else { 1694 ObjCMethodDecl *ImpMethodDecl = 1695 IMPDecl->getInstanceMethod((*I)->getSelector()); 1696 assert(CDecl->getInstanceMethod((*I)->getSelector()) && 1697 "Expected to find the method through lookup as well"); 1698 ObjCMethodDecl *MethodDecl = *I; 1699 // ImpMethodDecl may be null as in a @dynamic property. 1700 if (ImpMethodDecl) { 1701 if (!WarnCategoryMethodImpl) 1702 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1703 isa<ObjCProtocolDecl>(CDecl)); 1704 else if (!MethodDecl->isPropertyAccessor()) 1705 WarnExactTypedMethods(ImpMethodDecl, MethodDecl, 1706 isa<ObjCProtocolDecl>(CDecl)); 1707 } 1708 } 1709 } 1710 1711 // Check and see if class methods in class interface have been 1712 // implemented in the implementation class. If so, their types match. 1713 for (ObjCInterfaceDecl::classmeth_iterator 1714 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { 1715 if (ClsMapSeen.count((*I)->getSelector())) 1716 continue; 1717 ClsMapSeen.insert((*I)->getSelector()); 1718 if (!ClsMap.count((*I)->getSelector())) { 1719 if (ImmediateClass) 1720 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1721 diag::note_undef_method_impl); 1722 } else { 1723 ObjCMethodDecl *ImpMethodDecl = 1724 IMPDecl->getClassMethod((*I)->getSelector()); 1725 assert(CDecl->getClassMethod((*I)->getSelector()) && 1726 "Expected to find the method through lookup as well"); 1727 ObjCMethodDecl *MethodDecl = *I; 1728 if (!WarnCategoryMethodImpl) 1729 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1730 isa<ObjCProtocolDecl>(CDecl)); 1731 else 1732 WarnExactTypedMethods(ImpMethodDecl, MethodDecl, 1733 isa<ObjCProtocolDecl>(CDecl)); 1734 } 1735 } 1736 1737 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1738 // when checking that methods in implementation match their declaration, 1739 // i.e. when WarnCategoryMethodImpl is false, check declarations in class 1740 // extension; as well as those in categories. 1741 if (!WarnCategoryMethodImpl) 1742 for (const ObjCCategoryDecl *CDeclChain = I->getCategoryList(); 1743 CDeclChain; CDeclChain = CDeclChain->getNextClassCategory()) 1744 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1745 IMPDecl, 1746 const_cast<ObjCCategoryDecl *>(CDeclChain), 1747 IncompleteImpl, false, 1748 WarnCategoryMethodImpl); 1749 else 1750 // Also methods in class extensions need be looked at next. 1751 for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); 1752 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) 1753 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1754 IMPDecl, 1755 const_cast<ObjCCategoryDecl *>(ClsExtDecl), 1756 IncompleteImpl, false, 1757 WarnCategoryMethodImpl); 1758 1759 // Check for any implementation of a methods declared in protocol. 1760 for (ObjCInterfaceDecl::all_protocol_iterator 1761 PI = I->all_referenced_protocol_begin(), 1762 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1763 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1764 IMPDecl, 1765 (*PI), IncompleteImpl, false, 1766 WarnCategoryMethodImpl); 1767 1768 // FIXME. For now, we are not checking for extact match of methods 1769 // in category implementation and its primary class's super class. 1770 if (!WarnCategoryMethodImpl && I->getSuperClass()) 1771 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1772 IMPDecl, 1773 I->getSuperClass(), IncompleteImpl, false); 1774 } 1775} 1776 1777/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 1778/// category matches with those implemented in its primary class and 1779/// warns each time an exact match is found. 1780void Sema::CheckCategoryVsClassMethodMatches( 1781 ObjCCategoryImplDecl *CatIMPDecl) { 1782 SelectorSet InsMap, ClsMap; 1783 1784 for (ObjCImplementationDecl::instmeth_iterator 1785 I = CatIMPDecl->instmeth_begin(), 1786 E = CatIMPDecl->instmeth_end(); I!=E; ++I) 1787 InsMap.insert((*I)->getSelector()); 1788 1789 for (ObjCImplementationDecl::classmeth_iterator 1790 I = CatIMPDecl->classmeth_begin(), 1791 E = CatIMPDecl->classmeth_end(); I != E; ++I) 1792 ClsMap.insert((*I)->getSelector()); 1793 if (InsMap.empty() && ClsMap.empty()) 1794 return; 1795 1796 // Get category's primary class. 1797 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 1798 if (!CatDecl) 1799 return; 1800 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 1801 if (!IDecl) 1802 return; 1803 SelectorSet InsMapSeen, ClsMapSeen; 1804 bool IncompleteImpl = false; 1805 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1806 CatIMPDecl, IDecl, 1807 IncompleteImpl, false, 1808 true /*WarnCategoryMethodImpl*/); 1809} 1810 1811void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 1812 ObjCContainerDecl* CDecl, 1813 bool IncompleteImpl) { 1814 SelectorSet InsMap; 1815 // Check and see if instance methods in class interface have been 1816 // implemented in the implementation class. 1817 for (ObjCImplementationDecl::instmeth_iterator 1818 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) 1819 InsMap.insert((*I)->getSelector()); 1820 1821 // Check and see if properties declared in the interface have either 1) 1822 // an implementation or 2) there is a @synthesize/@dynamic implementation 1823 // of the property in the @implementation. 1824 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) 1825 if (!(LangOpts.ObjCDefaultSynthProperties && 1826 LangOpts.ObjCRuntime.isNonFragile()) || 1827 IDecl->isObjCRequiresPropertyDefs()) 1828 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1829 1830 SelectorSet ClsMap; 1831 for (ObjCImplementationDecl::classmeth_iterator 1832 I = IMPDecl->classmeth_begin(), 1833 E = IMPDecl->classmeth_end(); I != E; ++I) 1834 ClsMap.insert((*I)->getSelector()); 1835 1836 // Check for type conflict of methods declared in a class/protocol and 1837 // its implementation; if any. 1838 SelectorSet InsMapSeen, ClsMapSeen; 1839 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1840 IMPDecl, CDecl, 1841 IncompleteImpl, true); 1842 1843 // check all methods implemented in category against those declared 1844 // in its primary class. 1845 if (ObjCCategoryImplDecl *CatDecl = 1846 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 1847 CheckCategoryVsClassMethodMatches(CatDecl); 1848 1849 // Check the protocol list for unimplemented methods in the @implementation 1850 // class. 1851 // Check and see if class methods in class interface have been 1852 // implemented in the implementation class. 1853 1854 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1855 for (ObjCInterfaceDecl::all_protocol_iterator 1856 PI = I->all_referenced_protocol_begin(), 1857 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1858 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1859 InsMap, ClsMap, I); 1860 // Check class extensions (unnamed categories) 1861 for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension(); 1862 Categories; Categories = Categories->getNextClassExtension()) 1863 ImplMethodsVsClassMethods(S, IMPDecl, 1864 const_cast<ObjCCategoryDecl*>(Categories), 1865 IncompleteImpl); 1866 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 1867 // For extended class, unimplemented methods in its protocols will 1868 // be reported in the primary class. 1869 if (!C->IsClassExtension()) { 1870 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), 1871 E = C->protocol_end(); PI != E; ++PI) 1872 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1873 InsMap, ClsMap, CDecl); 1874 // Report unimplemented properties in the category as well. 1875 // When reporting on missing setter/getters, do not report when 1876 // setter/getter is implemented in category's primary class 1877 // implementation. 1878 if (ObjCInterfaceDecl *ID = C->getClassInterface()) 1879 if (ObjCImplDecl *IMP = ID->getImplementation()) { 1880 for (ObjCImplementationDecl::instmeth_iterator 1881 I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) 1882 InsMap.insert((*I)->getSelector()); 1883 } 1884 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1885 } 1886 } else 1887 llvm_unreachable("invalid ObjCContainerDecl type."); 1888} 1889 1890/// ActOnForwardClassDeclaration - 1891Sema::DeclGroupPtrTy 1892Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 1893 IdentifierInfo **IdentList, 1894 SourceLocation *IdentLocs, 1895 unsigned NumElts) { 1896 SmallVector<Decl *, 8> DeclsInGroup; 1897 for (unsigned i = 0; i != NumElts; ++i) { 1898 // Check for another declaration kind with the same name. 1899 NamedDecl *PrevDecl 1900 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 1901 LookupOrdinaryName, ForRedeclaration); 1902 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1903 // Maybe we will complain about the shadowed template parameter. 1904 DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); 1905 // Just pretend that we didn't see the previous declaration. 1906 PrevDecl = 0; 1907 } 1908 1909 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1910 // GCC apparently allows the following idiom: 1911 // 1912 // typedef NSObject < XCElementTogglerP > XCElementToggler; 1913 // @class XCElementToggler; 1914 // 1915 // Here we have chosen to ignore the forward class declaration 1916 // with a warning. Since this is the implied behavior. 1917 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 1918 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 1919 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 1920 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1921 } else { 1922 // a forward class declaration matching a typedef name of a class refers 1923 // to the underlying class. Just ignore the forward class with a warning 1924 // as this will force the intended behavior which is to lookup the typedef 1925 // name. 1926 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { 1927 Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i]; 1928 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1929 continue; 1930 } 1931 } 1932 } 1933 1934 // Create a declaration to describe this forward declaration. 1935 ObjCInterfaceDecl *PrevIDecl 1936 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 1937 ObjCInterfaceDecl *IDecl 1938 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 1939 IdentList[i], PrevIDecl, IdentLocs[i]); 1940 IDecl->setAtEndRange(IdentLocs[i]); 1941 1942 PushOnScopeChains(IDecl, TUScope); 1943 CheckObjCDeclScope(IDecl); 1944 DeclsInGroup.push_back(IDecl); 1945 } 1946 1947 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); 1948} 1949 1950static bool tryMatchRecordTypes(ASTContext &Context, 1951 Sema::MethodMatchStrategy strategy, 1952 const Type *left, const Type *right); 1953 1954static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 1955 QualType leftQT, QualType rightQT) { 1956 const Type *left = 1957 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 1958 const Type *right = 1959 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 1960 1961 if (left == right) return true; 1962 1963 // If we're doing a strict match, the types have to match exactly. 1964 if (strategy == Sema::MMS_strict) return false; 1965 1966 if (left->isIncompleteType() || right->isIncompleteType()) return false; 1967 1968 // Otherwise, use this absurdly complicated algorithm to try to 1969 // validate the basic, low-level compatibility of the two types. 1970 1971 // As a minimum, require the sizes and alignments to match. 1972 if (Context.getTypeInfo(left) != Context.getTypeInfo(right)) 1973 return false; 1974 1975 // Consider all the kinds of non-dependent canonical types: 1976 // - functions and arrays aren't possible as return and parameter types 1977 1978 // - vector types of equal size can be arbitrarily mixed 1979 if (isa<VectorType>(left)) return isa<VectorType>(right); 1980 if (isa<VectorType>(right)) return false; 1981 1982 // - references should only match references of identical type 1983 // - structs, unions, and Objective-C objects must match more-or-less 1984 // exactly 1985 // - everything else should be a scalar 1986 if (!left->isScalarType() || !right->isScalarType()) 1987 return tryMatchRecordTypes(Context, strategy, left, right); 1988 1989 // Make scalars agree in kind, except count bools as chars, and group 1990 // all non-member pointers together. 1991 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 1992 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 1993 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 1994 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 1995 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) 1996 leftSK = Type::STK_ObjCObjectPointer; 1997 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) 1998 rightSK = Type::STK_ObjCObjectPointer; 1999 2000 // Note that data member pointers and function member pointers don't 2001 // intermix because of the size differences. 2002 2003 return (leftSK == rightSK); 2004} 2005 2006static bool tryMatchRecordTypes(ASTContext &Context, 2007 Sema::MethodMatchStrategy strategy, 2008 const Type *lt, const Type *rt) { 2009 assert(lt && rt && lt != rt); 2010 2011 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 2012 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 2013 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 2014 2015 // Require union-hood to match. 2016 if (left->isUnion() != right->isUnion()) return false; 2017 2018 // Require an exact match if either is non-POD. 2019 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 2020 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 2021 return false; 2022 2023 // Require size and alignment to match. 2024 if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false; 2025 2026 // Require fields to match. 2027 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 2028 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 2029 for (; li != le && ri != re; ++li, ++ri) { 2030 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 2031 return false; 2032 } 2033 return (li == le && ri == re); 2034} 2035 2036/// MatchTwoMethodDeclarations - Checks that two methods have matching type and 2037/// returns true, or false, accordingly. 2038/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 2039bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 2040 const ObjCMethodDecl *right, 2041 MethodMatchStrategy strategy) { 2042 if (!matchTypes(Context, strategy, 2043 left->getResultType(), right->getResultType())) 2044 return false; 2045 2046 if (getLangOpts().ObjCAutoRefCount && 2047 (left->hasAttr<NSReturnsRetainedAttr>() 2048 != right->hasAttr<NSReturnsRetainedAttr>() || 2049 left->hasAttr<NSConsumesSelfAttr>() 2050 != right->hasAttr<NSConsumesSelfAttr>())) 2051 return false; 2052 2053 ObjCMethodDecl::param_const_iterator 2054 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), 2055 re = right->param_end(); 2056 2057 for (; li != le && ri != re; ++li, ++ri) { 2058 assert(ri != right->param_end() && "Param mismatch"); 2059 const ParmVarDecl *lparm = *li, *rparm = *ri; 2060 2061 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 2062 return false; 2063 2064 if (getLangOpts().ObjCAutoRefCount && 2065 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 2066 return false; 2067 } 2068 return true; 2069} 2070 2071void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) { 2072 // If the list is empty, make it a singleton list. 2073 if (List->Method == 0) { 2074 List->Method = Method; 2075 List->Next = 0; 2076 return; 2077 } 2078 2079 // We've seen a method with this name, see if we have already seen this type 2080 // signature. 2081 ObjCMethodList *Previous = List; 2082 for (; List; Previous = List, List = List->Next) { 2083 if (!MatchTwoMethodDeclarations(Method, List->Method)) 2084 continue; 2085 2086 ObjCMethodDecl *PrevObjCMethod = List->Method; 2087 2088 // Propagate the 'defined' bit. 2089 if (Method->isDefined()) 2090 PrevObjCMethod->setDefined(true); 2091 2092 // If a method is deprecated, push it in the global pool. 2093 // This is used for better diagnostics. 2094 if (Method->isDeprecated()) { 2095 if (!PrevObjCMethod->isDeprecated()) 2096 List->Method = Method; 2097 } 2098 // If new method is unavailable, push it into global pool 2099 // unless previous one is deprecated. 2100 if (Method->isUnavailable()) { 2101 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 2102 List->Method = Method; 2103 } 2104 2105 return; 2106 } 2107 2108 // We have a new signature for an existing method - add it. 2109 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 2110 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 2111 Previous->Next = new (Mem) ObjCMethodList(Method, 0); 2112} 2113 2114/// \brief Read the contents of the method pool for a given selector from 2115/// external storage. 2116void Sema::ReadMethodPool(Selector Sel) { 2117 assert(ExternalSource && "We need an external AST source"); 2118 ExternalSource->ReadMethodPool(Sel); 2119} 2120 2121void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 2122 bool instance) { 2123 // Ignore methods of invalid containers. 2124 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) 2125 return; 2126 2127 if (ExternalSource) 2128 ReadMethodPool(Method->getSelector()); 2129 2130 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 2131 if (Pos == MethodPool.end()) 2132 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 2133 GlobalMethods())).first; 2134 2135 Method->setDefined(impl); 2136 2137 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 2138 addMethodToGlobalList(&Entry, Method); 2139} 2140 2141/// Determines if this is an "acceptable" loose mismatch in the global 2142/// method pool. This exists mostly as a hack to get around certain 2143/// global mismatches which we can't afford to make warnings / errors. 2144/// Really, what we want is a way to take a method out of the global 2145/// method pool. 2146static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 2147 ObjCMethodDecl *other) { 2148 if (!chosen->isInstanceMethod()) 2149 return false; 2150 2151 Selector sel = chosen->getSelector(); 2152 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 2153 return false; 2154 2155 // Don't complain about mismatches for -length if the method we 2156 // chose has an integral result type. 2157 return (chosen->getResultType()->isIntegerType()); 2158} 2159 2160ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 2161 bool receiverIdOrClass, 2162 bool warn, bool instance) { 2163 if (ExternalSource) 2164 ReadMethodPool(Sel); 2165 2166 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2167 if (Pos == MethodPool.end()) 2168 return 0; 2169 2170 // Gather the non-hidden methods. 2171 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 2172 llvm::SmallVector<ObjCMethodDecl *, 4> Methods; 2173 for (ObjCMethodList *M = &MethList; M; M = M->Next) { 2174 if (M->Method && !M->Method->isHidden()) { 2175 // If we're not supposed to warn about mismatches, we're done. 2176 if (!warn) 2177 return M->Method; 2178 2179 Methods.push_back(M->Method); 2180 } 2181 } 2182 2183 // If there aren't any visible methods, we're done. 2184 // FIXME: Recover if there are any known-but-hidden methods? 2185 if (Methods.empty()) 2186 return 0; 2187 2188 if (Methods.size() == 1) 2189 return Methods[0]; 2190 2191 // We found multiple methods, so we may have to complain. 2192 bool issueDiagnostic = false, issueError = false; 2193 2194 // We support a warning which complains about *any* difference in 2195 // method signature. 2196 bool strictSelectorMatch = 2197 (receiverIdOrClass && warn && 2198 (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl, 2199 R.getBegin()) 2200 != DiagnosticsEngine::Ignored)); 2201 if (strictSelectorMatch) { 2202 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 2203 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) { 2204 issueDiagnostic = true; 2205 break; 2206 } 2207 } 2208 } 2209 2210 // If we didn't see any strict differences, we won't see any loose 2211 // differences. In ARC, however, we also need to check for loose 2212 // mismatches, because most of them are errors. 2213 if (!strictSelectorMatch || 2214 (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) 2215 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 2216 // This checks if the methods differ in type mismatch. 2217 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) && 2218 !isAcceptableMethodMismatch(Methods[0], Methods[I])) { 2219 issueDiagnostic = true; 2220 if (getLangOpts().ObjCAutoRefCount) 2221 issueError = true; 2222 break; 2223 } 2224 } 2225 2226 if (issueDiagnostic) { 2227 if (issueError) 2228 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 2229 else if (strictSelectorMatch) 2230 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 2231 else 2232 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 2233 2234 Diag(Methods[0]->getLocStart(), 2235 issueError ? diag::note_possibility : diag::note_using) 2236 << Methods[0]->getSourceRange(); 2237 for (unsigned I = 1, N = Methods.size(); I != N; ++I) { 2238 Diag(Methods[I]->getLocStart(), diag::note_also_found) 2239 << Methods[I]->getSourceRange(); 2240 } 2241 } 2242 return Methods[0]; 2243} 2244 2245ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 2246 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2247 if (Pos == MethodPool.end()) 2248 return 0; 2249 2250 GlobalMethods &Methods = Pos->second; 2251 2252 if (Methods.first.Method && Methods.first.Method->isDefined()) 2253 return Methods.first.Method; 2254 if (Methods.second.Method && Methods.second.Method->isDefined()) 2255 return Methods.second.Method; 2256 return 0; 2257} 2258 2259/// DiagnoseDuplicateIvars - 2260/// Check for duplicate ivars in the entire class at the start of 2261/// \@implementation. This becomes necesssary because class extension can 2262/// add ivars to a class in random order which will not be known until 2263/// class's \@implementation is seen. 2264void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 2265 ObjCInterfaceDecl *SID) { 2266 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), 2267 IVE = ID->ivar_end(); IVI != IVE; ++IVI) { 2268 ObjCIvarDecl* Ivar = *IVI; 2269 if (Ivar->isInvalidDecl()) 2270 continue; 2271 if (IdentifierInfo *II = Ivar->getIdentifier()) { 2272 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 2273 if (prevIvar) { 2274 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 2275 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 2276 Ivar->setInvalidDecl(); 2277 } 2278 } 2279 } 2280} 2281 2282Sema::ObjCContainerKind Sema::getObjCContainerKind() const { 2283 switch (CurContext->getDeclKind()) { 2284 case Decl::ObjCInterface: 2285 return Sema::OCK_Interface; 2286 case Decl::ObjCProtocol: 2287 return Sema::OCK_Protocol; 2288 case Decl::ObjCCategory: 2289 if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) 2290 return Sema::OCK_ClassExtension; 2291 else 2292 return Sema::OCK_Category; 2293 case Decl::ObjCImplementation: 2294 return Sema::OCK_Implementation; 2295 case Decl::ObjCCategoryImpl: 2296 return Sema::OCK_CategoryImplementation; 2297 2298 default: 2299 return Sema::OCK_None; 2300 } 2301} 2302 2303// Note: For class/category implemenations, allMethods/allProperties is 2304// always null. 2305Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, 2306 Decl **allMethods, unsigned allNum, 2307 Decl **allProperties, unsigned pNum, 2308 DeclGroupPtrTy *allTUVars, unsigned tuvNum) { 2309 2310 if (getObjCContainerKind() == Sema::OCK_None) 2311 return 0; 2312 2313 assert(AtEnd.isValid() && "Invalid location for '@end'"); 2314 2315 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2316 Decl *ClassDecl = cast<Decl>(OCD); 2317 2318 bool isInterfaceDeclKind = 2319 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 2320 || isa<ObjCProtocolDecl>(ClassDecl); 2321 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 2322 2323 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 2324 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 2325 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 2326 2327 for (unsigned i = 0; i < allNum; i++ ) { 2328 ObjCMethodDecl *Method = 2329 cast_or_null<ObjCMethodDecl>(allMethods[i]); 2330 2331 if (!Method) continue; // Already issued a diagnostic. 2332 if (Method->isInstanceMethod()) { 2333 /// Check for instance method of the same name with incompatible types 2334 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 2335 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2336 : false; 2337 if ((isInterfaceDeclKind && PrevMethod && !match) 2338 || (checkIdenticalMethods && match)) { 2339 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2340 << Method->getDeclName(); 2341 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2342 Method->setInvalidDecl(); 2343 } else { 2344 if (PrevMethod) { 2345 Method->setAsRedeclaration(PrevMethod); 2346 if (!Context.getSourceManager().isInSystemHeader( 2347 Method->getLocation())) 2348 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 2349 << Method->getDeclName(); 2350 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2351 } 2352 InsMap[Method->getSelector()] = Method; 2353 /// The following allows us to typecheck messages to "id". 2354 AddInstanceMethodToGlobalPool(Method); 2355 } 2356 } else { 2357 /// Check for class method of the same name with incompatible types 2358 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 2359 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2360 : false; 2361 if ((isInterfaceDeclKind && PrevMethod && !match) 2362 || (checkIdenticalMethods && match)) { 2363 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2364 << Method->getDeclName(); 2365 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2366 Method->setInvalidDecl(); 2367 } else { 2368 if (PrevMethod) { 2369 Method->setAsRedeclaration(PrevMethod); 2370 if (!Context.getSourceManager().isInSystemHeader( 2371 Method->getLocation())) 2372 Diag(Method->getLocation(), diag::warn_duplicate_method_decl) 2373 << Method->getDeclName(); 2374 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2375 } 2376 ClsMap[Method->getSelector()] = Method; 2377 AddFactoryMethodToGlobalPool(Method); 2378 } 2379 } 2380 } 2381 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 2382 // Compares properties declared in this class to those of its 2383 // super class. 2384 ComparePropertiesInBaseAndSuper(I); 2385 CompareProperties(I, I); 2386 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 2387 // Categories are used to extend the class by declaring new methods. 2388 // By the same token, they are also used to add new properties. No 2389 // need to compare the added property to those in the class. 2390 2391 // Compare protocol properties with those in category 2392 CompareProperties(C, C); 2393 if (C->IsClassExtension()) { 2394 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 2395 DiagnoseClassExtensionDupMethods(C, CCPrimary); 2396 } 2397 } 2398 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 2399 if (CDecl->getIdentifier()) 2400 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 2401 // user-defined setter/getter. It also synthesizes setter/getter methods 2402 // and adds them to the DeclContext and global method pools. 2403 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), 2404 E = CDecl->prop_end(); 2405 I != E; ++I) 2406 ProcessPropertyDecl(*I, CDecl); 2407 CDecl->setAtEndRange(AtEnd); 2408 } 2409 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 2410 IC->setAtEndRange(AtEnd); 2411 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 2412 // Any property declared in a class extension might have user 2413 // declared setter or getter in current class extension or one 2414 // of the other class extensions. Mark them as synthesized as 2415 // property will be synthesized when property with same name is 2416 // seen in the @implementation. 2417 for (const ObjCCategoryDecl *ClsExtDecl = 2418 IDecl->getFirstClassExtension(); 2419 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) { 2420 for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(), 2421 E = ClsExtDecl->prop_end(); I != E; ++I) { 2422 ObjCPropertyDecl *Property = *I; 2423 // Skip over properties declared @dynamic 2424 if (const ObjCPropertyImplDecl *PIDecl 2425 = IC->FindPropertyImplDecl(Property->getIdentifier())) 2426 if (PIDecl->getPropertyImplementation() 2427 == ObjCPropertyImplDecl::Dynamic) 2428 continue; 2429 2430 for (const ObjCCategoryDecl *CExtDecl = 2431 IDecl->getFirstClassExtension(); 2432 CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) { 2433 if (ObjCMethodDecl *GetterMethod = 2434 CExtDecl->getInstanceMethod(Property->getGetterName())) 2435 GetterMethod->setPropertyAccessor(true); 2436 if (!Property->isReadOnly()) 2437 if (ObjCMethodDecl *SetterMethod = 2438 CExtDecl->getInstanceMethod(Property->getSetterName())) 2439 SetterMethod->setPropertyAccessor(true); 2440 } 2441 } 2442 } 2443 ImplMethodsVsClassMethods(S, IC, IDecl); 2444 AtomicPropertySetterGetterRules(IC, IDecl); 2445 DiagnoseOwningPropertyGetterSynthesis(IC); 2446 2447 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); 2448 if (IDecl->getSuperClass() == NULL) { 2449 // This class has no superclass, so check that it has been marked with 2450 // __attribute((objc_root_class)). 2451 if (!HasRootClassAttr) { 2452 SourceLocation DeclLoc(IDecl->getLocation()); 2453 SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc)); 2454 Diag(DeclLoc, diag::warn_objc_root_class_missing) 2455 << IDecl->getIdentifier(); 2456 // See if NSObject is in the current scope, and if it is, suggest 2457 // adding " : NSObject " to the class declaration. 2458 NamedDecl *IF = LookupSingleName(TUScope, 2459 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), 2460 DeclLoc, LookupOrdinaryName); 2461 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 2462 if (NSObjectDecl && NSObjectDecl->getDefinition()) { 2463 Diag(SuperClassLoc, diag::note_objc_needs_superclass) 2464 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); 2465 } else { 2466 Diag(SuperClassLoc, diag::note_objc_needs_superclass); 2467 } 2468 } 2469 } else if (HasRootClassAttr) { 2470 // Complain that only root classes may have this attribute. 2471 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); 2472 } 2473 2474 if (LangOpts.ObjCRuntime.isNonFragile()) { 2475 while (IDecl->getSuperClass()) { 2476 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 2477 IDecl = IDecl->getSuperClass(); 2478 } 2479 } 2480 } 2481 SetIvarInitializers(IC); 2482 } else if (ObjCCategoryImplDecl* CatImplClass = 2483 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 2484 CatImplClass->setAtEndRange(AtEnd); 2485 2486 // Find category interface decl and then check that all methods declared 2487 // in this interface are implemented in the category @implementation. 2488 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 2489 for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); 2490 Categories; Categories = Categories->getNextClassCategory()) { 2491 if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { 2492 ImplMethodsVsClassMethods(S, CatImplClass, Categories); 2493 break; 2494 } 2495 } 2496 } 2497 } 2498 if (isInterfaceDeclKind) { 2499 // Reject invalid vardecls. 2500 for (unsigned i = 0; i != tuvNum; i++) { 2501 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 2502 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2503 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 2504 if (!VDecl->hasExternalStorage()) 2505 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 2506 } 2507 } 2508 } 2509 ActOnObjCContainerFinishDefinition(); 2510 2511 for (unsigned i = 0; i != tuvNum; i++) { 2512 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 2513 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2514 (*I)->setTopLevelDeclInObjCContainer(); 2515 Consumer.HandleTopLevelDeclInObjCContainer(DG); 2516 } 2517 2518 ActOnDocumentableDecl(ClassDecl); 2519 return ClassDecl; 2520} 2521 2522 2523/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 2524/// objective-c's type qualifier from the parser version of the same info. 2525static Decl::ObjCDeclQualifier 2526CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 2527 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 2528} 2529 2530static inline 2531unsigned countAlignAttr(const AttrVec &A) { 2532 unsigned count=0; 2533 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) 2534 if ((*i)->getKind() == attr::Aligned) 2535 ++count; 2536 return count; 2537} 2538 2539static inline 2540bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD, 2541 const AttrVec &A) { 2542 // If method is only declared in implementation (private method), 2543 // No need to issue any diagnostics on method definition with attributes. 2544 if (!IMD) 2545 return false; 2546 2547 // method declared in interface has no attribute. 2548 // But implementation has attributes. This is invalid. 2549 // Except when implementation has 'Align' attribute which is 2550 // immaterial to method declared in interface. 2551 if (!IMD->hasAttrs()) 2552 return (A.size() > countAlignAttr(A)); 2553 2554 const AttrVec &D = IMD->getAttrs(); 2555 2556 unsigned countAlignOnImpl = countAlignAttr(A); 2557 if (!countAlignOnImpl && (A.size() != D.size())) 2558 return true; 2559 else if (countAlignOnImpl) { 2560 unsigned countAlignOnDecl = countAlignAttr(D); 2561 if (countAlignOnDecl && (A.size() != D.size())) 2562 return true; 2563 else if (!countAlignOnDecl && 2564 ((A.size()-countAlignOnImpl) != D.size())) 2565 return true; 2566 } 2567 2568 // attributes on method declaration and definition must match exactly. 2569 // Note that we have at most a couple of attributes on methods, so this 2570 // n*n search is good enough. 2571 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) { 2572 if ((*i)->getKind() == attr::Aligned) 2573 continue; 2574 bool match = false; 2575 for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) { 2576 if ((*i)->getKind() == (*i1)->getKind()) { 2577 match = true; 2578 break; 2579 } 2580 } 2581 if (!match) 2582 return true; 2583 } 2584 2585 return false; 2586} 2587 2588/// \brief Check whether the declared result type of the given Objective-C 2589/// method declaration is compatible with the method's class. 2590/// 2591static Sema::ResultTypeCompatibilityKind 2592CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 2593 ObjCInterfaceDecl *CurrentClass) { 2594 QualType ResultType = Method->getResultType(); 2595 2596 // If an Objective-C method inherits its related result type, then its 2597 // declared result type must be compatible with its own class type. The 2598 // declared result type is compatible if: 2599 if (const ObjCObjectPointerType *ResultObjectType 2600 = ResultType->getAs<ObjCObjectPointerType>()) { 2601 // - it is id or qualified id, or 2602 if (ResultObjectType->isObjCIdType() || 2603 ResultObjectType->isObjCQualifiedIdType()) 2604 return Sema::RTC_Compatible; 2605 2606 if (CurrentClass) { 2607 if (ObjCInterfaceDecl *ResultClass 2608 = ResultObjectType->getInterfaceDecl()) { 2609 // - it is the same as the method's class type, or 2610 if (declaresSameEntity(CurrentClass, ResultClass)) 2611 return Sema::RTC_Compatible; 2612 2613 // - it is a superclass of the method's class type 2614 if (ResultClass->isSuperClassOf(CurrentClass)) 2615 return Sema::RTC_Compatible; 2616 } 2617 } else { 2618 // Any Objective-C pointer type might be acceptable for a protocol 2619 // method; we just don't know. 2620 return Sema::RTC_Unknown; 2621 } 2622 } 2623 2624 return Sema::RTC_Incompatible; 2625} 2626 2627namespace { 2628/// A helper class for searching for methods which a particular method 2629/// overrides. 2630class OverrideSearch { 2631public: 2632 Sema &S; 2633 ObjCMethodDecl *Method; 2634 llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden; 2635 bool Recursive; 2636 2637public: 2638 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) { 2639 Selector selector = method->getSelector(); 2640 2641 // Bypass this search if we've never seen an instance/class method 2642 // with this selector before. 2643 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 2644 if (it == S.MethodPool.end()) { 2645 if (!S.getExternalSource()) return; 2646 S.ReadMethodPool(selector); 2647 2648 it = S.MethodPool.find(selector); 2649 if (it == S.MethodPool.end()) 2650 return; 2651 } 2652 ObjCMethodList &list = 2653 method->isInstanceMethod() ? it->second.first : it->second.second; 2654 if (!list.Method) return; 2655 2656 ObjCContainerDecl *container 2657 = cast<ObjCContainerDecl>(method->getDeclContext()); 2658 2659 // Prevent the search from reaching this container again. This is 2660 // important with categories, which override methods from the 2661 // interface and each other. 2662 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) { 2663 searchFromContainer(container); 2664 if (ObjCInterfaceDecl *Interface = Category->getClassInterface()) 2665 searchFromContainer(Interface); 2666 } else { 2667 searchFromContainer(container); 2668 } 2669 } 2670 2671 typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator; 2672 iterator begin() const { return Overridden.begin(); } 2673 iterator end() const { return Overridden.end(); } 2674 2675private: 2676 void searchFromContainer(ObjCContainerDecl *container) { 2677 if (container->isInvalidDecl()) return; 2678 2679 switch (container->getDeclKind()) { 2680#define OBJCCONTAINER(type, base) \ 2681 case Decl::type: \ 2682 searchFrom(cast<type##Decl>(container)); \ 2683 break; 2684#define ABSTRACT_DECL(expansion) 2685#define DECL(type, base) \ 2686 case Decl::type: 2687#include "clang/AST/DeclNodes.inc" 2688 llvm_unreachable("not an ObjC container!"); 2689 } 2690 } 2691 2692 void searchFrom(ObjCProtocolDecl *protocol) { 2693 if (!protocol->hasDefinition()) 2694 return; 2695 2696 // A method in a protocol declaration overrides declarations from 2697 // referenced ("parent") protocols. 2698 search(protocol->getReferencedProtocols()); 2699 } 2700 2701 void searchFrom(ObjCCategoryDecl *category) { 2702 // A method in a category declaration overrides declarations from 2703 // the main class and from protocols the category references. 2704 // The main class is handled in the constructor. 2705 search(category->getReferencedProtocols()); 2706 } 2707 2708 void searchFrom(ObjCCategoryImplDecl *impl) { 2709 // A method in a category definition that has a category 2710 // declaration overrides declarations from the category 2711 // declaration. 2712 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 2713 search(category); 2714 if (ObjCInterfaceDecl *Interface = category->getClassInterface()) 2715 search(Interface); 2716 2717 // Otherwise it overrides declarations from the class. 2718 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) { 2719 search(Interface); 2720 } 2721 } 2722 2723 void searchFrom(ObjCInterfaceDecl *iface) { 2724 // A method in a class declaration overrides declarations from 2725 if (!iface->hasDefinition()) 2726 return; 2727 2728 // - categories, 2729 for (ObjCCategoryDecl *category = iface->getCategoryList(); 2730 category; category = category->getNextClassCategory()) 2731 search(category); 2732 2733 // - the super class, and 2734 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 2735 search(super); 2736 2737 // - any referenced protocols. 2738 search(iface->getReferencedProtocols()); 2739 } 2740 2741 void searchFrom(ObjCImplementationDecl *impl) { 2742 // A method in a class implementation overrides declarations from 2743 // the class interface. 2744 if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) 2745 search(Interface); 2746 } 2747 2748 2749 void search(const ObjCProtocolList &protocols) { 2750 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end(); 2751 i != e; ++i) 2752 search(*i); 2753 } 2754 2755 void search(ObjCContainerDecl *container) { 2756 // Check for a method in this container which matches this selector. 2757 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 2758 Method->isInstanceMethod()); 2759 2760 // If we find one, record it and bail out. 2761 if (meth) { 2762 Overridden.insert(meth); 2763 return; 2764 } 2765 2766 // Otherwise, search for methods that a hypothetical method here 2767 // would have overridden. 2768 2769 // Note that we're now in a recursive case. 2770 Recursive = true; 2771 2772 searchFromContainer(container); 2773 } 2774}; 2775} 2776 2777void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, 2778 ObjCInterfaceDecl *CurrentClass, 2779 ResultTypeCompatibilityKind RTC) { 2780 // Search for overridden methods and merge information down from them. 2781 OverrideSearch overrides(*this, ObjCMethod); 2782 // Keep track if the method overrides any method in the class's base classes, 2783 // its protocols, or its categories' protocols; we will keep that info 2784 // in the ObjCMethodDecl. 2785 // For this info, a method in an implementation is not considered as 2786 // overriding the same method in the interface or its categories. 2787 bool hasOverriddenMethodsInBaseOrProtocol = false; 2788 for (OverrideSearch::iterator 2789 i = overrides.begin(), e = overrides.end(); i != e; ++i) { 2790 ObjCMethodDecl *overridden = *i; 2791 2792 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) || 2793 CurrentClass != overridden->getClassInterface() || 2794 overridden->isOverriding()) 2795 hasOverriddenMethodsInBaseOrProtocol = true; 2796 2797 // Propagate down the 'related result type' bit from overridden methods. 2798 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType()) 2799 ObjCMethod->SetRelatedResultType(); 2800 2801 // Then merge the declarations. 2802 mergeObjCMethodDecls(ObjCMethod, overridden); 2803 2804 if (ObjCMethod->isImplicit() && overridden->isImplicit()) 2805 continue; // Conflicting properties are detected elsewhere. 2806 2807 // Check for overriding methods 2808 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 2809 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) 2810 CheckConflictingOverridingMethod(ObjCMethod, overridden, 2811 isa<ObjCProtocolDecl>(overridden->getDeclContext())); 2812 2813 if (CurrentClass && overridden->getDeclContext() != CurrentClass && 2814 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) && 2815 !overridden->isImplicit() /* not meant for properties */) { 2816 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), 2817 E = ObjCMethod->param_end(); 2818 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), 2819 PrevE = overridden->param_end(); 2820 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { 2821 assert(PrevI != overridden->param_end() && "Param mismatch"); 2822 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 2823 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 2824 // If type of argument of method in this class does not match its 2825 // respective argument type in the super class method, issue warning; 2826 if (!Context.typesAreCompatible(T1, T2)) { 2827 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 2828 << T1 << T2; 2829 Diag(overridden->getLocation(), diag::note_previous_declaration); 2830 break; 2831 } 2832 } 2833 } 2834 } 2835 2836 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); 2837} 2838 2839Decl *Sema::ActOnMethodDeclaration( 2840 Scope *S, 2841 SourceLocation MethodLoc, SourceLocation EndLoc, 2842 tok::TokenKind MethodType, 2843 ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 2844 ArrayRef<SourceLocation> SelectorLocs, 2845 Selector Sel, 2846 // optional arguments. The number of types/arguments is obtained 2847 // from the Sel.getNumArgs(). 2848 ObjCArgInfo *ArgInfo, 2849 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 2850 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 2851 bool isVariadic, bool MethodDefinition) { 2852 // Make sure we can establish a context for the method. 2853 if (!CurContext->isObjCContainer()) { 2854 Diag(MethodLoc, diag::error_missing_method_context); 2855 return 0; 2856 } 2857 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2858 Decl *ClassDecl = cast<Decl>(OCD); 2859 QualType resultDeclType; 2860 2861 bool HasRelatedResultType = false; 2862 TypeSourceInfo *ResultTInfo = 0; 2863 if (ReturnType) { 2864 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); 2865 2866 // Methods cannot return interface types. All ObjC objects are 2867 // passed by reference. 2868 if (resultDeclType->isObjCObjectType()) { 2869 Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) 2870 << 0 << resultDeclType; 2871 return 0; 2872 } 2873 2874 HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType()); 2875 } else { // get the type for "id". 2876 resultDeclType = Context.getObjCIdType(); 2877 Diag(MethodLoc, diag::warn_missing_method_return_type) 2878 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); 2879 } 2880 2881 ObjCMethodDecl* ObjCMethod = 2882 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, 2883 resultDeclType, 2884 ResultTInfo, 2885 CurContext, 2886 MethodType == tok::minus, isVariadic, 2887 /*isPropertyAccessor=*/false, 2888 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 2889 MethodDeclKind == tok::objc_optional 2890 ? ObjCMethodDecl::Optional 2891 : ObjCMethodDecl::Required, 2892 HasRelatedResultType); 2893 2894 SmallVector<ParmVarDecl*, 16> Params; 2895 2896 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 2897 QualType ArgType; 2898 TypeSourceInfo *DI; 2899 2900 if (ArgInfo[i].Type == 0) { 2901 ArgType = Context.getObjCIdType(); 2902 DI = 0; 2903 } else { 2904 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 2905 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2906 ArgType = Context.getAdjustedParameterType(ArgType); 2907 } 2908 2909 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 2910 LookupOrdinaryName, ForRedeclaration); 2911 LookupName(R, S); 2912 if (R.isSingleResult()) { 2913 NamedDecl *PrevDecl = R.getFoundDecl(); 2914 if (S->isDeclScope(PrevDecl)) { 2915 Diag(ArgInfo[i].NameLoc, 2916 (MethodDefinition ? diag::warn_method_param_redefinition 2917 : diag::warn_method_param_declaration)) 2918 << ArgInfo[i].Name; 2919 Diag(PrevDecl->getLocation(), 2920 diag::note_previous_declaration); 2921 } 2922 } 2923 2924 SourceLocation StartLoc = DI 2925 ? DI->getTypeLoc().getBeginLoc() 2926 : ArgInfo[i].NameLoc; 2927 2928 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 2929 ArgInfo[i].NameLoc, ArgInfo[i].Name, 2930 ArgType, DI, SC_None, SC_None); 2931 2932 Param->setObjCMethodScopeInfo(i); 2933 2934 Param->setObjCDeclQualifier( 2935 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 2936 2937 // Apply the attributes to the parameter. 2938 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 2939 2940 if (Param->hasAttr<BlocksAttr>()) { 2941 Diag(Param->getLocation(), diag::err_block_on_nonlocal); 2942 Param->setInvalidDecl(); 2943 } 2944 S->AddDecl(Param); 2945 IdResolver.AddDecl(Param); 2946 2947 Params.push_back(Param); 2948 } 2949 2950 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 2951 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 2952 QualType ArgType = Param->getType(); 2953 if (ArgType.isNull()) 2954 ArgType = Context.getObjCIdType(); 2955 else 2956 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2957 ArgType = Context.getAdjustedParameterType(ArgType); 2958 if (ArgType->isObjCObjectType()) { 2959 Diag(Param->getLocation(), 2960 diag::err_object_cannot_be_passed_returned_by_value) 2961 << 1 << ArgType; 2962 Param->setInvalidDecl(); 2963 } 2964 Param->setDeclContext(ObjCMethod); 2965 2966 Params.push_back(Param); 2967 } 2968 2969 ObjCMethod->setMethodParams(Context, Params, SelectorLocs); 2970 ObjCMethod->setObjCDeclQualifier( 2971 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 2972 2973 if (AttrList) 2974 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 2975 2976 // Add the method now. 2977 const ObjCMethodDecl *PrevMethod = 0; 2978 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 2979 if (MethodType == tok::minus) { 2980 PrevMethod = ImpDecl->getInstanceMethod(Sel); 2981 ImpDecl->addInstanceMethod(ObjCMethod); 2982 } else { 2983 PrevMethod = ImpDecl->getClassMethod(Sel); 2984 ImpDecl->addClassMethod(ObjCMethod); 2985 } 2986 2987 ObjCMethodDecl *IMD = 0; 2988 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) 2989 IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 2990 ObjCMethod->isInstanceMethod()); 2991 if (ObjCMethod->hasAttrs() && 2992 containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) { 2993 SourceLocation MethodLoc = IMD->getLocation(); 2994 if (!getSourceManager().isInSystemHeader(MethodLoc)) { 2995 Diag(EndLoc, diag::warn_attribute_method_def); 2996 Diag(MethodLoc, diag::note_method_declared_at) 2997 << ObjCMethod->getDeclName(); 2998 } 2999 } 3000 } else { 3001 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 3002 } 3003 3004 if (PrevMethod) { 3005 // You can never have two method definitions with the same name. 3006 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 3007 << ObjCMethod->getDeclName(); 3008 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 3009 } 3010 3011 // If this Objective-C method does not have a related result type, but we 3012 // are allowed to infer related result types, try to do so based on the 3013 // method family. 3014 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 3015 if (!CurrentClass) { 3016 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 3017 CurrentClass = Cat->getClassInterface(); 3018 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 3019 CurrentClass = Impl->getClassInterface(); 3020 else if (ObjCCategoryImplDecl *CatImpl 3021 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 3022 CurrentClass = CatImpl->getClassInterface(); 3023 } 3024 3025 ResultTypeCompatibilityKind RTC 3026 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); 3027 3028 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); 3029 3030 bool ARCError = false; 3031 if (getLangOpts().ObjCAutoRefCount) 3032 ARCError = CheckARCMethodDecl(*this, ObjCMethod); 3033 3034 // Infer the related result type when possible. 3035 if (!ARCError && RTC == Sema::RTC_Compatible && 3036 !ObjCMethod->hasRelatedResultType() && 3037 LangOpts.ObjCInferRelatedResultType) { 3038 bool InferRelatedResultType = false; 3039 switch (ObjCMethod->getMethodFamily()) { 3040 case OMF_None: 3041 case OMF_copy: 3042 case OMF_dealloc: 3043 case OMF_finalize: 3044 case OMF_mutableCopy: 3045 case OMF_release: 3046 case OMF_retainCount: 3047 case OMF_performSelector: 3048 break; 3049 3050 case OMF_alloc: 3051 case OMF_new: 3052 InferRelatedResultType = ObjCMethod->isClassMethod(); 3053 break; 3054 3055 case OMF_init: 3056 case OMF_autorelease: 3057 case OMF_retain: 3058 case OMF_self: 3059 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 3060 break; 3061 } 3062 3063 if (InferRelatedResultType) 3064 ObjCMethod->SetRelatedResultType(); 3065 } 3066 3067 ActOnDocumentableDecl(ObjCMethod); 3068 3069 return ObjCMethod; 3070} 3071 3072bool Sema::CheckObjCDeclScope(Decl *D) { 3073 // Following is also an error. But it is caused by a missing @end 3074 // and diagnostic is issued elsewhere. 3075 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) 3076 return false; 3077 3078 // If we switched context to translation unit while we are still lexically in 3079 // an objc container, it means the parser missed emitting an error. 3080 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) 3081 return false; 3082 3083 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 3084 D->setInvalidDecl(); 3085 3086 return true; 3087} 3088 3089/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the 3090/// instance variables of ClassName into Decls. 3091void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 3092 IdentifierInfo *ClassName, 3093 SmallVectorImpl<Decl*> &Decls) { 3094 // Check that ClassName is a valid class 3095 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 3096 if (!Class) { 3097 Diag(DeclStart, diag::err_undef_interface) << ClassName; 3098 return; 3099 } 3100 if (LangOpts.ObjCRuntime.isNonFragile()) { 3101 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 3102 return; 3103 } 3104 3105 // Collect the instance variables 3106 SmallVector<const ObjCIvarDecl*, 32> Ivars; 3107 Context.DeepCollectObjCIvars(Class, true, Ivars); 3108 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 3109 for (unsigned i = 0; i < Ivars.size(); i++) { 3110 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]); 3111 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 3112 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 3113 /*FIXME: StartL=*/ID->getLocation(), 3114 ID->getLocation(), 3115 ID->getIdentifier(), ID->getType(), 3116 ID->getBitWidth()); 3117 Decls.push_back(FD); 3118 } 3119 3120 // Introduce all of these fields into the appropriate scope. 3121 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 3122 D != Decls.end(); ++D) { 3123 FieldDecl *FD = cast<FieldDecl>(*D); 3124 if (getLangOpts().CPlusPlus) 3125 PushOnScopeChains(cast<FieldDecl>(FD), S); 3126 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 3127 Record->addDecl(FD); 3128 } 3129} 3130 3131/// \brief Build a type-check a new Objective-C exception variable declaration. 3132VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 3133 SourceLocation StartLoc, 3134 SourceLocation IdLoc, 3135 IdentifierInfo *Id, 3136 bool Invalid) { 3137 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 3138 // duration shall not be qualified by an address-space qualifier." 3139 // Since all parameters have automatic store duration, they can not have 3140 // an address space. 3141 if (T.getAddressSpace() != 0) { 3142 Diag(IdLoc, diag::err_arg_with_address_space); 3143 Invalid = true; 3144 } 3145 3146 // An @catch parameter must be an unqualified object pointer type; 3147 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 3148 if (Invalid) { 3149 // Don't do any further checking. 3150 } else if (T->isDependentType()) { 3151 // Okay: we don't know what this type will instantiate to. 3152 } else if (!T->isObjCObjectPointerType()) { 3153 Invalid = true; 3154 Diag(IdLoc ,diag::err_catch_param_not_objc_type); 3155 } else if (T->isObjCQualifiedIdType()) { 3156 Invalid = true; 3157 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 3158 } 3159 3160 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 3161 T, TInfo, SC_None, SC_None); 3162 New->setExceptionVariable(true); 3163 3164 // In ARC, infer 'retaining' for variables of retainable type. 3165 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) 3166 Invalid = true; 3167 3168 if (Invalid) 3169 New->setInvalidDecl(); 3170 return New; 3171} 3172 3173Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 3174 const DeclSpec &DS = D.getDeclSpec(); 3175 3176 // We allow the "register" storage class on exception variables because 3177 // GCC did, but we drop it completely. Any other storage class is an error. 3178 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 3179 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 3180 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 3181 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 3182 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 3183 << DS.getStorageClassSpec(); 3184 } 3185 if (D.getDeclSpec().isThreadSpecified()) 3186 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); 3187 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3188 3189 DiagnoseFunctionSpecifiers(D); 3190 3191 // Check that there are no default arguments inside the type of this 3192 // exception object (C++ only). 3193 if (getLangOpts().CPlusPlus) 3194 CheckExtraCXXDefaultArguments(D); 3195 3196 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 3197 QualType ExceptionType = TInfo->getType(); 3198 3199 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 3200 D.getSourceRange().getBegin(), 3201 D.getIdentifierLoc(), 3202 D.getIdentifier(), 3203 D.isInvalidType()); 3204 3205 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 3206 if (D.getCXXScopeSpec().isSet()) { 3207 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 3208 << D.getCXXScopeSpec().getRange(); 3209 New->setInvalidDecl(); 3210 } 3211 3212 // Add the parameter declaration into this scope. 3213 S->AddDecl(New); 3214 if (D.getIdentifier()) 3215 IdResolver.AddDecl(New); 3216 3217 ProcessDeclAttributes(S, New, D); 3218 3219 if (New->hasAttr<BlocksAttr>()) 3220 Diag(New->getLocation(), diag::err_block_on_nonlocal); 3221 return New; 3222} 3223 3224/// CollectIvarsToConstructOrDestruct - Collect those ivars which require 3225/// initialization. 3226void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 3227 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 3228 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 3229 Iv= Iv->getNextIvar()) { 3230 QualType QT = Context.getBaseElementType(Iv->getType()); 3231 if (QT->isRecordType()) 3232 Ivars.push_back(Iv); 3233 } 3234} 3235 3236void Sema::DiagnoseUseOfUnimplementedSelectors() { 3237 // Load referenced selectors from the external source. 3238 if (ExternalSource) { 3239 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 3240 ExternalSource->ReadReferencedSelectors(Sels); 3241 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 3242 ReferencedSelectors[Sels[I].first] = Sels[I].second; 3243 } 3244 3245 // Warning will be issued only when selector table is 3246 // generated (which means there is at lease one implementation 3247 // in the TU). This is to match gcc's behavior. 3248 if (ReferencedSelectors.empty() || 3249 !Context.AnyObjCImplementation()) 3250 return; 3251 for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 3252 ReferencedSelectors.begin(), 3253 E = ReferencedSelectors.end(); S != E; ++S) { 3254 Selector Sel = (*S).first; 3255 if (!LookupImplementedMethodInGlobalPool(Sel)) 3256 Diag((*S).second, diag::warn_unimplemented_selector) << Sel; 3257 } 3258 return; 3259} 3260