SemaOverload.cpp revision 07ab20203fb4254f6152c9a7176732fe199adccd
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "clang/Basic/Diagnostic.h" 16#include "clang/Lex/Preprocessor.h" 17#include "clang/AST/ASTContext.h" 18#include "clang/AST/CXXInheritance.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/TypeOrdering.h" 22#include "clang/Basic/PartialDiagnostic.h" 23#include "llvm/ADT/SmallPtrSet.h" 24#include "llvm/ADT/STLExtras.h" 25#include "llvm/Support/Compiler.h" 26#include <algorithm> 27#include <cstdio> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Qualification_Adjustment, 42 ICC_Promotion, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Conversion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion 55 }; 56 return Category[(int)Kind]; 57} 58 59/// GetConversionRank - Retrieve the implicit conversion rank 60/// corresponding to the given implicit conversion kind. 61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 62 static const ImplicitConversionRank 63 Rank[(int)ICK_Num_Conversion_Kinds] = { 64 ICR_Exact_Match, 65 ICR_Exact_Match, 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Promotion, 70 ICR_Promotion, 71 ICR_Promotion, 72 ICR_Conversion, 73 ICR_Conversion, 74 ICR_Conversion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion 82 }; 83 return Rank[(int)Kind]; 84} 85 86/// GetImplicitConversionName - Return the name of this kind of 87/// implicit conversion. 88const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 89 static const char* Name[(int)ICK_Num_Conversion_Kinds] = { 90 "No conversion", 91 "Lvalue-to-rvalue", 92 "Array-to-pointer", 93 "Function-to-pointer", 94 "Qualification", 95 "Integral promotion", 96 "Floating point promotion", 97 "Complex promotion", 98 "Integral conversion", 99 "Floating conversion", 100 "Complex conversion", 101 "Floating-integral conversion", 102 "Complex-real conversion", 103 "Pointer conversion", 104 "Pointer-to-member conversion", 105 "Boolean conversion", 106 "Compatible-types conversion", 107 "Derived-to-base conversion" 108 }; 109 return Name[Kind]; 110} 111 112/// StandardConversionSequence - Set the standard conversion 113/// sequence to the identity conversion. 114void StandardConversionSequence::setAsIdentityConversion() { 115 First = ICK_Identity; 116 Second = ICK_Identity; 117 Third = ICK_Identity; 118 Deprecated = false; 119 ReferenceBinding = false; 120 DirectBinding = false; 121 RRefBinding = false; 122 CopyConstructor = 0; 123} 124 125/// getRank - Retrieve the rank of this standard conversion sequence 126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 127/// implicit conversions. 128ImplicitConversionRank StandardConversionSequence::getRank() const { 129 ImplicitConversionRank Rank = ICR_Exact_Match; 130 if (GetConversionRank(First) > Rank) 131 Rank = GetConversionRank(First); 132 if (GetConversionRank(Second) > Rank) 133 Rank = GetConversionRank(Second); 134 if (GetConversionRank(Third) > Rank) 135 Rank = GetConversionRank(Third); 136 return Rank; 137} 138 139/// isPointerConversionToBool - Determines whether this conversion is 140/// a conversion of a pointer or pointer-to-member to bool. This is 141/// used as part of the ranking of standard conversion sequences 142/// (C++ 13.3.3.2p4). 143bool StandardConversionSequence::isPointerConversionToBool() const { 144 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 145 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 146 147 // Note that FromType has not necessarily been transformed by the 148 // array-to-pointer or function-to-pointer implicit conversions, so 149 // check for their presence as well as checking whether FromType is 150 // a pointer. 151 if (ToType->isBooleanType() && 152 (FromType->isPointerType() || FromType->isBlockPointerType() || 153 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 154 return true; 155 156 return false; 157} 158 159/// isPointerConversionToVoidPointer - Determines whether this 160/// conversion is a conversion of a pointer to a void pointer. This is 161/// used as part of the ranking of standard conversion sequences (C++ 162/// 13.3.3.2p4). 163bool 164StandardConversionSequence:: 165isPointerConversionToVoidPointer(ASTContext& Context) const { 166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 168 169 // Note that FromType has not necessarily been transformed by the 170 // array-to-pointer implicit conversion, so check for its presence 171 // and redo the conversion to get a pointer. 172 if (First == ICK_Array_To_Pointer) 173 FromType = Context.getArrayDecayedType(FromType); 174 175 if (Second == ICK_Pointer_Conversion) 176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 177 return ToPtrType->getPointeeType()->isVoidType(); 178 179 return false; 180} 181 182/// DebugPrint - Print this standard conversion sequence to standard 183/// error. Useful for debugging overloading issues. 184void StandardConversionSequence::DebugPrint() const { 185 bool PrintedSomething = false; 186 if (First != ICK_Identity) { 187 fprintf(stderr, "%s", GetImplicitConversionName(First)); 188 PrintedSomething = true; 189 } 190 191 if (Second != ICK_Identity) { 192 if (PrintedSomething) { 193 fprintf(stderr, " -> "); 194 } 195 fprintf(stderr, "%s", GetImplicitConversionName(Second)); 196 197 if (CopyConstructor) { 198 fprintf(stderr, " (by copy constructor)"); 199 } else if (DirectBinding) { 200 fprintf(stderr, " (direct reference binding)"); 201 } else if (ReferenceBinding) { 202 fprintf(stderr, " (reference binding)"); 203 } 204 PrintedSomething = true; 205 } 206 207 if (Third != ICK_Identity) { 208 if (PrintedSomething) { 209 fprintf(stderr, " -> "); 210 } 211 fprintf(stderr, "%s", GetImplicitConversionName(Third)); 212 PrintedSomething = true; 213 } 214 215 if (!PrintedSomething) { 216 fprintf(stderr, "No conversions required"); 217 } 218} 219 220/// DebugPrint - Print this user-defined conversion sequence to standard 221/// error. Useful for debugging overloading issues. 222void UserDefinedConversionSequence::DebugPrint() const { 223 if (Before.First || Before.Second || Before.Third) { 224 Before.DebugPrint(); 225 fprintf(stderr, " -> "); 226 } 227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); 228 if (After.First || After.Second || After.Third) { 229 fprintf(stderr, " -> "); 230 After.DebugPrint(); 231 } 232} 233 234/// DebugPrint - Print this implicit conversion sequence to standard 235/// error. Useful for debugging overloading issues. 236void ImplicitConversionSequence::DebugPrint() const { 237 switch (ConversionKind) { 238 case StandardConversion: 239 fprintf(stderr, "Standard conversion: "); 240 Standard.DebugPrint(); 241 break; 242 case UserDefinedConversion: 243 fprintf(stderr, "User-defined conversion: "); 244 UserDefined.DebugPrint(); 245 break; 246 case EllipsisConversion: 247 fprintf(stderr, "Ellipsis conversion"); 248 break; 249 case BadConversion: 250 fprintf(stderr, "Bad conversion"); 251 break; 252 } 253 254 fprintf(stderr, "\n"); 255} 256 257// IsOverload - Determine whether the given New declaration is an 258// overload of the Old declaration. This routine returns false if New 259// and Old cannot be overloaded, e.g., if they are functions with the 260// same signature (C++ 1.3.10) or if the Old declaration isn't a 261// function (or overload set). When it does return false and Old is an 262// OverloadedFunctionDecl, MatchedDecl will be set to point to the 263// FunctionDecl that New cannot be overloaded with. 264// 265// Example: Given the following input: 266// 267// void f(int, float); // #1 268// void f(int, int); // #2 269// int f(int, int); // #3 270// 271// When we process #1, there is no previous declaration of "f", 272// so IsOverload will not be used. 273// 274// When we process #2, Old is a FunctionDecl for #1. By comparing the 275// parameter types, we see that #1 and #2 are overloaded (since they 276// have different signatures), so this routine returns false; 277// MatchedDecl is unchanged. 278// 279// When we process #3, Old is an OverloadedFunctionDecl containing #1 280// and #2. We compare the signatures of #3 to #1 (they're overloaded, 281// so we do nothing) and then #3 to #2. Since the signatures of #3 and 282// #2 are identical (return types of functions are not part of the 283// signature), IsOverload returns false and MatchedDecl will be set to 284// point to the FunctionDecl for #2. 285bool 286Sema::IsOverload(FunctionDecl *New, Decl* OldD, 287 OverloadedFunctionDecl::function_iterator& MatchedDecl) { 288 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) { 289 // Is this new function an overload of every function in the 290 // overload set? 291 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 292 FuncEnd = Ovl->function_end(); 293 for (; Func != FuncEnd; ++Func) { 294 if (!IsOverload(New, *Func, MatchedDecl)) { 295 MatchedDecl = Func; 296 return false; 297 } 298 } 299 300 // This function overloads every function in the overload set. 301 return true; 302 } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD)) 303 return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl); 304 else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) { 305 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 306 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 307 308 // C++ [temp.fct]p2: 309 // A function template can be overloaded with other function templates 310 // and with normal (non-template) functions. 311 if ((OldTemplate == 0) != (NewTemplate == 0)) 312 return true; 313 314 // Is the function New an overload of the function Old? 315 QualType OldQType = Context.getCanonicalType(Old->getType()); 316 QualType NewQType = Context.getCanonicalType(New->getType()); 317 318 // Compare the signatures (C++ 1.3.10) of the two functions to 319 // determine whether they are overloads. If we find any mismatch 320 // in the signature, they are overloads. 321 322 // If either of these functions is a K&R-style function (no 323 // prototype), then we consider them to have matching signatures. 324 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 325 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 326 return false; 327 328 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 329 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 330 331 // The signature of a function includes the types of its 332 // parameters (C++ 1.3.10), which includes the presence or absence 333 // of the ellipsis; see C++ DR 357). 334 if (OldQType != NewQType && 335 (OldType->getNumArgs() != NewType->getNumArgs() || 336 OldType->isVariadic() != NewType->isVariadic() || 337 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 338 NewType->arg_type_begin()))) 339 return true; 340 341 // C++ [temp.over.link]p4: 342 // The signature of a function template consists of its function 343 // signature, its return type and its template parameter list. The names 344 // of the template parameters are significant only for establishing the 345 // relationship between the template parameters and the rest of the 346 // signature. 347 // 348 // We check the return type and template parameter lists for function 349 // templates first; the remaining checks follow. 350 if (NewTemplate && 351 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 352 OldTemplate->getTemplateParameters(), 353 false, false, SourceLocation()) || 354 OldType->getResultType() != NewType->getResultType())) 355 return true; 356 357 // If the function is a class member, its signature includes the 358 // cv-qualifiers (if any) on the function itself. 359 // 360 // As part of this, also check whether one of the member functions 361 // is static, in which case they are not overloads (C++ 362 // 13.1p2). While not part of the definition of the signature, 363 // this check is important to determine whether these functions 364 // can be overloaded. 365 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 366 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 367 if (OldMethod && NewMethod && 368 !OldMethod->isStatic() && !NewMethod->isStatic() && 369 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 370 return true; 371 372 // The signatures match; this is not an overload. 373 return false; 374 } else { 375 // (C++ 13p1): 376 // Only function declarations can be overloaded; object and type 377 // declarations cannot be overloaded. 378 return false; 379 } 380} 381 382/// TryImplicitConversion - Attempt to perform an implicit conversion 383/// from the given expression (Expr) to the given type (ToType). This 384/// function returns an implicit conversion sequence that can be used 385/// to perform the initialization. Given 386/// 387/// void f(float f); 388/// void g(int i) { f(i); } 389/// 390/// this routine would produce an implicit conversion sequence to 391/// describe the initialization of f from i, which will be a standard 392/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 393/// 4.1) followed by a floating-integral conversion (C++ 4.9). 394// 395/// Note that this routine only determines how the conversion can be 396/// performed; it does not actually perform the conversion. As such, 397/// it will not produce any diagnostics if no conversion is available, 398/// but will instead return an implicit conversion sequence of kind 399/// "BadConversion". 400/// 401/// If @p SuppressUserConversions, then user-defined conversions are 402/// not permitted. 403/// If @p AllowExplicit, then explicit user-defined conversions are 404/// permitted. 405/// If @p ForceRValue, then overloading is performed as if From was an rvalue, 406/// no matter its actual lvalueness. 407/// If @p UserCast, the implicit conversion is being done for a user-specified 408/// cast. 409ImplicitConversionSequence 410Sema::TryImplicitConversion(Expr* From, QualType ToType, 411 bool SuppressUserConversions, 412 bool AllowExplicit, bool ForceRValue, 413 bool InOverloadResolution, 414 bool UserCast) { 415 ImplicitConversionSequence ICS; 416 OverloadCandidateSet Conversions; 417 OverloadingResult UserDefResult = OR_Success; 418 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) 419 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 420 else if (getLangOptions().CPlusPlus && 421 (UserDefResult = IsUserDefinedConversion(From, ToType, 422 ICS.UserDefined, 423 Conversions, 424 !SuppressUserConversions, AllowExplicit, 425 ForceRValue, UserCast)) == OR_Success) { 426 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; 427 // C++ [over.ics.user]p4: 428 // A conversion of an expression of class type to the same class 429 // type is given Exact Match rank, and a conversion of an 430 // expression of class type to a base class of that type is 431 // given Conversion rank, in spite of the fact that a copy 432 // constructor (i.e., a user-defined conversion function) is 433 // called for those cases. 434 if (CXXConstructorDecl *Constructor 435 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 436 QualType FromCanon 437 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 438 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 439 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 440 // Turn this into a "standard" conversion sequence, so that it 441 // gets ranked with standard conversion sequences. 442 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 443 ICS.Standard.setAsIdentityConversion(); 444 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); 445 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); 446 ICS.Standard.CopyConstructor = Constructor; 447 if (ToCanon != FromCanon) 448 ICS.Standard.Second = ICK_Derived_To_Base; 449 } 450 } 451 452 // C++ [over.best.ics]p4: 453 // However, when considering the argument of a user-defined 454 // conversion function that is a candidate by 13.3.1.3 when 455 // invoked for the copying of the temporary in the second step 456 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 457 // 13.3.1.6 in all cases, only standard conversion sequences and 458 // ellipsis conversion sequences are allowed. 459 if (SuppressUserConversions && 460 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) 461 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 462 } else { 463 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 464 if (UserDefResult == OR_Ambiguous) { 465 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 466 Cand != Conversions.end(); ++Cand) 467 if (Cand->Viable) 468 ICS.ConversionFunctionSet.push_back(Cand->Function); 469 } 470 } 471 472 return ICS; 473} 474 475/// IsStandardConversion - Determines whether there is a standard 476/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 477/// expression From to the type ToType. Standard conversion sequences 478/// only consider non-class types; for conversions that involve class 479/// types, use TryImplicitConversion. If a conversion exists, SCS will 480/// contain the standard conversion sequence required to perform this 481/// conversion and this routine will return true. Otherwise, this 482/// routine will return false and the value of SCS is unspecified. 483bool 484Sema::IsStandardConversion(Expr* From, QualType ToType, 485 bool InOverloadResolution, 486 StandardConversionSequence &SCS) { 487 QualType FromType = From->getType(); 488 489 // Standard conversions (C++ [conv]) 490 SCS.setAsIdentityConversion(); 491 SCS.Deprecated = false; 492 SCS.IncompatibleObjC = false; 493 SCS.FromTypePtr = FromType.getAsOpaquePtr(); 494 SCS.CopyConstructor = 0; 495 496 // There are no standard conversions for class types in C++, so 497 // abort early. When overloading in C, however, we do permit 498 if (FromType->isRecordType() || ToType->isRecordType()) { 499 if (getLangOptions().CPlusPlus) 500 return false; 501 502 // When we're overloading in C, we allow, as standard conversions, 503 } 504 505 // The first conversion can be an lvalue-to-rvalue conversion, 506 // array-to-pointer conversion, or function-to-pointer conversion 507 // (C++ 4p1). 508 509 // Lvalue-to-rvalue conversion (C++ 4.1): 510 // An lvalue (3.10) of a non-function, non-array type T can be 511 // converted to an rvalue. 512 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 513 if (argIsLvalue == Expr::LV_Valid && 514 !FromType->isFunctionType() && !FromType->isArrayType() && 515 Context.getCanonicalType(FromType) != Context.OverloadTy) { 516 SCS.First = ICK_Lvalue_To_Rvalue; 517 518 // If T is a non-class type, the type of the rvalue is the 519 // cv-unqualified version of T. Otherwise, the type of the rvalue 520 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 521 // just strip the qualifiers because they don't matter. 522 523 // FIXME: Doesn't see through to qualifiers behind a typedef! 524 FromType = FromType.getUnqualifiedType(); 525 } else if (FromType->isArrayType()) { 526 // Array-to-pointer conversion (C++ 4.2) 527 SCS.First = ICK_Array_To_Pointer; 528 529 // An lvalue or rvalue of type "array of N T" or "array of unknown 530 // bound of T" can be converted to an rvalue of type "pointer to 531 // T" (C++ 4.2p1). 532 FromType = Context.getArrayDecayedType(FromType); 533 534 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 535 // This conversion is deprecated. (C++ D.4). 536 SCS.Deprecated = true; 537 538 // For the purpose of ranking in overload resolution 539 // (13.3.3.1.1), this conversion is considered an 540 // array-to-pointer conversion followed by a qualification 541 // conversion (4.4). (C++ 4.2p2) 542 SCS.Second = ICK_Identity; 543 SCS.Third = ICK_Qualification; 544 SCS.ToTypePtr = ToType.getAsOpaquePtr(); 545 return true; 546 } 547 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 548 // Function-to-pointer conversion (C++ 4.3). 549 SCS.First = ICK_Function_To_Pointer; 550 551 // An lvalue of function type T can be converted to an rvalue of 552 // type "pointer to T." The result is a pointer to the 553 // function. (C++ 4.3p1). 554 FromType = Context.getPointerType(FromType); 555 } else if (FunctionDecl *Fn 556 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 557 // Address of overloaded function (C++ [over.over]). 558 SCS.First = ICK_Function_To_Pointer; 559 560 // We were able to resolve the address of the overloaded function, 561 // so we can convert to the type of that function. 562 FromType = Fn->getType(); 563 if (ToType->isLValueReferenceType()) 564 FromType = Context.getLValueReferenceType(FromType); 565 else if (ToType->isRValueReferenceType()) 566 FromType = Context.getRValueReferenceType(FromType); 567 else if (ToType->isMemberPointerType()) { 568 // Resolve address only succeeds if both sides are member pointers, 569 // but it doesn't have to be the same class. See DR 247. 570 // Note that this means that the type of &Derived::fn can be 571 // Ret (Base::*)(Args) if the fn overload actually found is from the 572 // base class, even if it was brought into the derived class via a 573 // using declaration. The standard isn't clear on this issue at all. 574 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 575 FromType = Context.getMemberPointerType(FromType, 576 Context.getTypeDeclType(M->getParent()).getTypePtr()); 577 } else 578 FromType = Context.getPointerType(FromType); 579 } else { 580 // We don't require any conversions for the first step. 581 SCS.First = ICK_Identity; 582 } 583 584 // The second conversion can be an integral promotion, floating 585 // point promotion, integral conversion, floating point conversion, 586 // floating-integral conversion, pointer conversion, 587 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 588 // For overloading in C, this can also be a "compatible-type" 589 // conversion. 590 bool IncompatibleObjC = false; 591 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 592 // The unqualified versions of the types are the same: there's no 593 // conversion to do. 594 SCS.Second = ICK_Identity; 595 } else if (IsIntegralPromotion(From, FromType, ToType)) { 596 // Integral promotion (C++ 4.5). 597 SCS.Second = ICK_Integral_Promotion; 598 FromType = ToType.getUnqualifiedType(); 599 } else if (IsFloatingPointPromotion(FromType, ToType)) { 600 // Floating point promotion (C++ 4.6). 601 SCS.Second = ICK_Floating_Promotion; 602 FromType = ToType.getUnqualifiedType(); 603 } else if (IsComplexPromotion(FromType, ToType)) { 604 // Complex promotion (Clang extension) 605 SCS.Second = ICK_Complex_Promotion; 606 FromType = ToType.getUnqualifiedType(); 607 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 608 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 609 // Integral conversions (C++ 4.7). 610 // FIXME: isIntegralType shouldn't be true for enums in C++. 611 SCS.Second = ICK_Integral_Conversion; 612 FromType = ToType.getUnqualifiedType(); 613 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 614 // Floating point conversions (C++ 4.8). 615 SCS.Second = ICK_Floating_Conversion; 616 FromType = ToType.getUnqualifiedType(); 617 } else if (FromType->isComplexType() && ToType->isComplexType()) { 618 // Complex conversions (C99 6.3.1.6) 619 SCS.Second = ICK_Complex_Conversion; 620 FromType = ToType.getUnqualifiedType(); 621 } else if ((FromType->isFloatingType() && 622 ToType->isIntegralType() && (!ToType->isBooleanType() && 623 !ToType->isEnumeralType())) || 624 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 625 ToType->isFloatingType())) { 626 // Floating-integral conversions (C++ 4.9). 627 // FIXME: isIntegralType shouldn't be true for enums in C++. 628 SCS.Second = ICK_Floating_Integral; 629 FromType = ToType.getUnqualifiedType(); 630 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 631 (ToType->isComplexType() && FromType->isArithmeticType())) { 632 // Complex-real conversions (C99 6.3.1.7) 633 SCS.Second = ICK_Complex_Real; 634 FromType = ToType.getUnqualifiedType(); 635 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 636 FromType, IncompatibleObjC)) { 637 // Pointer conversions (C++ 4.10). 638 SCS.Second = ICK_Pointer_Conversion; 639 SCS.IncompatibleObjC = IncompatibleObjC; 640 } else if (IsMemberPointerConversion(From, FromType, ToType, 641 InOverloadResolution, FromType)) { 642 // Pointer to member conversions (4.11). 643 SCS.Second = ICK_Pointer_Member; 644 } else if (ToType->isBooleanType() && 645 (FromType->isArithmeticType() || 646 FromType->isEnumeralType() || 647 FromType->isPointerType() || 648 FromType->isBlockPointerType() || 649 FromType->isMemberPointerType() || 650 FromType->isNullPtrType())) { 651 // Boolean conversions (C++ 4.12). 652 SCS.Second = ICK_Boolean_Conversion; 653 FromType = Context.BoolTy; 654 } else if (!getLangOptions().CPlusPlus && 655 Context.typesAreCompatible(ToType, FromType)) { 656 // Compatible conversions (Clang extension for C function overloading) 657 SCS.Second = ICK_Compatible_Conversion; 658 } else { 659 // No second conversion required. 660 SCS.Second = ICK_Identity; 661 } 662 663 QualType CanonFrom; 664 QualType CanonTo; 665 // The third conversion can be a qualification conversion (C++ 4p1). 666 if (IsQualificationConversion(FromType, ToType)) { 667 SCS.Third = ICK_Qualification; 668 FromType = ToType; 669 CanonFrom = Context.getCanonicalType(FromType); 670 CanonTo = Context.getCanonicalType(ToType); 671 } else { 672 // No conversion required 673 SCS.Third = ICK_Identity; 674 675 // C++ [over.best.ics]p6: 676 // [...] Any difference in top-level cv-qualification is 677 // subsumed by the initialization itself and does not constitute 678 // a conversion. [...] 679 CanonFrom = Context.getCanonicalType(FromType); 680 CanonTo = Context.getCanonicalType(ToType); 681 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() && 682 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) { 683 FromType = ToType; 684 CanonFrom = CanonTo; 685 } 686 } 687 688 // If we have not converted the argument type to the parameter type, 689 // this is a bad conversion sequence. 690 if (CanonFrom != CanonTo) 691 return false; 692 693 SCS.ToTypePtr = FromType.getAsOpaquePtr(); 694 return true; 695} 696 697/// IsIntegralPromotion - Determines whether the conversion from the 698/// expression From (whose potentially-adjusted type is FromType) to 699/// ToType is an integral promotion (C++ 4.5). If so, returns true and 700/// sets PromotedType to the promoted type. 701bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 702 const BuiltinType *To = ToType->getAs<BuiltinType>(); 703 // All integers are built-in. 704 if (!To) { 705 return false; 706 } 707 708 // An rvalue of type char, signed char, unsigned char, short int, or 709 // unsigned short int can be converted to an rvalue of type int if 710 // int can represent all the values of the source type; otherwise, 711 // the source rvalue can be converted to an rvalue of type unsigned 712 // int (C++ 4.5p1). 713 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { 714 if (// We can promote any signed, promotable integer type to an int 715 (FromType->isSignedIntegerType() || 716 // We can promote any unsigned integer type whose size is 717 // less than int to an int. 718 (!FromType->isSignedIntegerType() && 719 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 720 return To->getKind() == BuiltinType::Int; 721 } 722 723 return To->getKind() == BuiltinType::UInt; 724 } 725 726 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 727 // can be converted to an rvalue of the first of the following types 728 // that can represent all the values of its underlying type: int, 729 // unsigned int, long, or unsigned long (C++ 4.5p2). 730 if ((FromType->isEnumeralType() || FromType->isWideCharType()) 731 && ToType->isIntegerType()) { 732 // Determine whether the type we're converting from is signed or 733 // unsigned. 734 bool FromIsSigned; 735 uint64_t FromSize = Context.getTypeSize(FromType); 736 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 737 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType(); 738 FromIsSigned = UnderlyingType->isSignedIntegerType(); 739 } else { 740 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 741 FromIsSigned = true; 742 } 743 744 // The types we'll try to promote to, in the appropriate 745 // order. Try each of these types. 746 QualType PromoteTypes[6] = { 747 Context.IntTy, Context.UnsignedIntTy, 748 Context.LongTy, Context.UnsignedLongTy , 749 Context.LongLongTy, Context.UnsignedLongLongTy 750 }; 751 for (int Idx = 0; Idx < 6; ++Idx) { 752 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 753 if (FromSize < ToSize || 754 (FromSize == ToSize && 755 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 756 // We found the type that we can promote to. If this is the 757 // type we wanted, we have a promotion. Otherwise, no 758 // promotion. 759 return Context.getCanonicalType(ToType).getUnqualifiedType() 760 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType(); 761 } 762 } 763 } 764 765 // An rvalue for an integral bit-field (9.6) can be converted to an 766 // rvalue of type int if int can represent all the values of the 767 // bit-field; otherwise, it can be converted to unsigned int if 768 // unsigned int can represent all the values of the bit-field. If 769 // the bit-field is larger yet, no integral promotion applies to 770 // it. If the bit-field has an enumerated type, it is treated as any 771 // other value of that type for promotion purposes (C++ 4.5p3). 772 // FIXME: We should delay checking of bit-fields until we actually perform the 773 // conversion. 774 using llvm::APSInt; 775 if (From) 776 if (FieldDecl *MemberDecl = From->getBitField()) { 777 APSInt BitWidth; 778 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 779 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 780 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 781 ToSize = Context.getTypeSize(ToType); 782 783 // Are we promoting to an int from a bitfield that fits in an int? 784 if (BitWidth < ToSize || 785 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 786 return To->getKind() == BuiltinType::Int; 787 } 788 789 // Are we promoting to an unsigned int from an unsigned bitfield 790 // that fits into an unsigned int? 791 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 792 return To->getKind() == BuiltinType::UInt; 793 } 794 795 return false; 796 } 797 } 798 799 // An rvalue of type bool can be converted to an rvalue of type int, 800 // with false becoming zero and true becoming one (C++ 4.5p4). 801 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 802 return true; 803 } 804 805 return false; 806} 807 808/// IsFloatingPointPromotion - Determines whether the conversion from 809/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 810/// returns true and sets PromotedType to the promoted type. 811bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 812 /// An rvalue of type float can be converted to an rvalue of type 813 /// double. (C++ 4.6p1). 814 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 815 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 816 if (FromBuiltin->getKind() == BuiltinType::Float && 817 ToBuiltin->getKind() == BuiltinType::Double) 818 return true; 819 820 // C99 6.3.1.5p1: 821 // When a float is promoted to double or long double, or a 822 // double is promoted to long double [...]. 823 if (!getLangOptions().CPlusPlus && 824 (FromBuiltin->getKind() == BuiltinType::Float || 825 FromBuiltin->getKind() == BuiltinType::Double) && 826 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 827 return true; 828 } 829 830 return false; 831} 832 833/// \brief Determine if a conversion is a complex promotion. 834/// 835/// A complex promotion is defined as a complex -> complex conversion 836/// where the conversion between the underlying real types is a 837/// floating-point or integral promotion. 838bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 839 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 840 if (!FromComplex) 841 return false; 842 843 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 844 if (!ToComplex) 845 return false; 846 847 return IsFloatingPointPromotion(FromComplex->getElementType(), 848 ToComplex->getElementType()) || 849 IsIntegralPromotion(0, FromComplex->getElementType(), 850 ToComplex->getElementType()); 851} 852 853/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 854/// the pointer type FromPtr to a pointer to type ToPointee, with the 855/// same type qualifiers as FromPtr has on its pointee type. ToType, 856/// if non-empty, will be a pointer to ToType that may or may not have 857/// the right set of qualifiers on its pointee. 858static QualType 859BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 860 QualType ToPointee, QualType ToType, 861 ASTContext &Context) { 862 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 863 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 864 Qualifiers Quals = CanonFromPointee.getQualifiers(); 865 866 // Exact qualifier match -> return the pointer type we're converting to. 867 if (CanonToPointee.getQualifiers() == Quals) { 868 // ToType is exactly what we need. Return it. 869 if (!ToType.isNull()) 870 return ToType; 871 872 // Build a pointer to ToPointee. It has the right qualifiers 873 // already. 874 return Context.getPointerType(ToPointee); 875 } 876 877 // Just build a canonical type that has the right qualifiers. 878 return Context.getPointerType( 879 Context.getQualifiedType(CanonToPointee.getUnqualifiedType(), Quals)); 880} 881 882static bool isNullPointerConstantForConversion(Expr *Expr, 883 bool InOverloadResolution, 884 ASTContext &Context) { 885 // Handle value-dependent integral null pointer constants correctly. 886 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 887 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 888 Expr->getType()->isIntegralType()) 889 return !InOverloadResolution; 890 891 return Expr->isNullPointerConstant(Context, 892 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 893 : Expr::NPC_ValueDependentIsNull); 894} 895 896/// IsPointerConversion - Determines whether the conversion of the 897/// expression From, which has the (possibly adjusted) type FromType, 898/// can be converted to the type ToType via a pointer conversion (C++ 899/// 4.10). If so, returns true and places the converted type (that 900/// might differ from ToType in its cv-qualifiers at some level) into 901/// ConvertedType. 902/// 903/// This routine also supports conversions to and from block pointers 904/// and conversions with Objective-C's 'id', 'id<protocols...>', and 905/// pointers to interfaces. FIXME: Once we've determined the 906/// appropriate overloading rules for Objective-C, we may want to 907/// split the Objective-C checks into a different routine; however, 908/// GCC seems to consider all of these conversions to be pointer 909/// conversions, so for now they live here. IncompatibleObjC will be 910/// set if the conversion is an allowed Objective-C conversion that 911/// should result in a warning. 912bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 913 bool InOverloadResolution, 914 QualType& ConvertedType, 915 bool &IncompatibleObjC) { 916 IncompatibleObjC = false; 917 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 918 return true; 919 920 // Conversion from a null pointer constant to any Objective-C pointer type. 921 if (ToType->isObjCObjectPointerType() && 922 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 923 ConvertedType = ToType; 924 return true; 925 } 926 927 // Blocks: Block pointers can be converted to void*. 928 if (FromType->isBlockPointerType() && ToType->isPointerType() && 929 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 930 ConvertedType = ToType; 931 return true; 932 } 933 // Blocks: A null pointer constant can be converted to a block 934 // pointer type. 935 if (ToType->isBlockPointerType() && 936 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 937 ConvertedType = ToType; 938 return true; 939 } 940 941 // If the left-hand-side is nullptr_t, the right side can be a null 942 // pointer constant. 943 if (ToType->isNullPtrType() && 944 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 945 ConvertedType = ToType; 946 return true; 947 } 948 949 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 950 if (!ToTypePtr) 951 return false; 952 953 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 954 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 955 ConvertedType = ToType; 956 return true; 957 } 958 959 // Beyond this point, both types need to be pointers. 960 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 961 if (!FromTypePtr) 962 return false; 963 964 QualType FromPointeeType = FromTypePtr->getPointeeType(); 965 QualType ToPointeeType = ToTypePtr->getPointeeType(); 966 967 // An rvalue of type "pointer to cv T," where T is an object type, 968 // can be converted to an rvalue of type "pointer to cv void" (C++ 969 // 4.10p2). 970 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 971 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 972 ToPointeeType, 973 ToType, Context); 974 return true; 975 } 976 977 // When we're overloading in C, we allow a special kind of pointer 978 // conversion for compatible-but-not-identical pointee types. 979 if (!getLangOptions().CPlusPlus && 980 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 981 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 982 ToPointeeType, 983 ToType, Context); 984 return true; 985 } 986 987 // C++ [conv.ptr]p3: 988 // 989 // An rvalue of type "pointer to cv D," where D is a class type, 990 // can be converted to an rvalue of type "pointer to cv B," where 991 // B is a base class (clause 10) of D. If B is an inaccessible 992 // (clause 11) or ambiguous (10.2) base class of D, a program that 993 // necessitates this conversion is ill-formed. The result of the 994 // conversion is a pointer to the base class sub-object of the 995 // derived class object. The null pointer value is converted to 996 // the null pointer value of the destination type. 997 // 998 // Note that we do not check for ambiguity or inaccessibility 999 // here. That is handled by CheckPointerConversion. 1000 if (getLangOptions().CPlusPlus && 1001 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1002 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1003 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1004 ToPointeeType, 1005 ToType, Context); 1006 return true; 1007 } 1008 1009 return false; 1010} 1011 1012/// isObjCPointerConversion - Determines whether this is an 1013/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1014/// with the same arguments and return values. 1015bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1016 QualType& ConvertedType, 1017 bool &IncompatibleObjC) { 1018 if (!getLangOptions().ObjC1) 1019 return false; 1020 1021 // First, we handle all conversions on ObjC object pointer types. 1022 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1023 const ObjCObjectPointerType *FromObjCPtr = 1024 FromType->getAs<ObjCObjectPointerType>(); 1025 1026 if (ToObjCPtr && FromObjCPtr) { 1027 // Objective C++: We're able to convert between "id" or "Class" and a 1028 // pointer to any interface (in both directions). 1029 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1030 ConvertedType = ToType; 1031 return true; 1032 } 1033 // Conversions with Objective-C's id<...>. 1034 if ((FromObjCPtr->isObjCQualifiedIdType() || 1035 ToObjCPtr->isObjCQualifiedIdType()) && 1036 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1037 /*compare=*/false)) { 1038 ConvertedType = ToType; 1039 return true; 1040 } 1041 // Objective C++: We're able to convert from a pointer to an 1042 // interface to a pointer to a different interface. 1043 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1044 ConvertedType = ToType; 1045 return true; 1046 } 1047 1048 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1049 // Okay: this is some kind of implicit downcast of Objective-C 1050 // interfaces, which is permitted. However, we're going to 1051 // complain about it. 1052 IncompatibleObjC = true; 1053 ConvertedType = FromType; 1054 return true; 1055 } 1056 } 1057 // Beyond this point, both types need to be C pointers or block pointers. 1058 QualType ToPointeeType; 1059 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1060 ToPointeeType = ToCPtr->getPointeeType(); 1061 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>()) 1062 ToPointeeType = ToBlockPtr->getPointeeType(); 1063 else 1064 return false; 1065 1066 QualType FromPointeeType; 1067 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1068 FromPointeeType = FromCPtr->getPointeeType(); 1069 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1070 FromPointeeType = FromBlockPtr->getPointeeType(); 1071 else 1072 return false; 1073 1074 // If we have pointers to pointers, recursively check whether this 1075 // is an Objective-C conversion. 1076 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1077 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1078 IncompatibleObjC)) { 1079 // We always complain about this conversion. 1080 IncompatibleObjC = true; 1081 ConvertedType = ToType; 1082 return true; 1083 } 1084 // If we have pointers to functions or blocks, check whether the only 1085 // differences in the argument and result types are in Objective-C 1086 // pointer conversions. If so, we permit the conversion (but 1087 // complain about it). 1088 const FunctionProtoType *FromFunctionType 1089 = FromPointeeType->getAs<FunctionProtoType>(); 1090 const FunctionProtoType *ToFunctionType 1091 = ToPointeeType->getAs<FunctionProtoType>(); 1092 if (FromFunctionType && ToFunctionType) { 1093 // If the function types are exactly the same, this isn't an 1094 // Objective-C pointer conversion. 1095 if (Context.getCanonicalType(FromPointeeType) 1096 == Context.getCanonicalType(ToPointeeType)) 1097 return false; 1098 1099 // Perform the quick checks that will tell us whether these 1100 // function types are obviously different. 1101 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1102 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1103 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1104 return false; 1105 1106 bool HasObjCConversion = false; 1107 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1108 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1109 // Okay, the types match exactly. Nothing to do. 1110 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1111 ToFunctionType->getResultType(), 1112 ConvertedType, IncompatibleObjC)) { 1113 // Okay, we have an Objective-C pointer conversion. 1114 HasObjCConversion = true; 1115 } else { 1116 // Function types are too different. Abort. 1117 return false; 1118 } 1119 1120 // Check argument types. 1121 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1122 ArgIdx != NumArgs; ++ArgIdx) { 1123 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1124 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1125 if (Context.getCanonicalType(FromArgType) 1126 == Context.getCanonicalType(ToArgType)) { 1127 // Okay, the types match exactly. Nothing to do. 1128 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1129 ConvertedType, IncompatibleObjC)) { 1130 // Okay, we have an Objective-C pointer conversion. 1131 HasObjCConversion = true; 1132 } else { 1133 // Argument types are too different. Abort. 1134 return false; 1135 } 1136 } 1137 1138 if (HasObjCConversion) { 1139 // We had an Objective-C conversion. Allow this pointer 1140 // conversion, but complain about it. 1141 ConvertedType = ToType; 1142 IncompatibleObjC = true; 1143 return true; 1144 } 1145 } 1146 1147 return false; 1148} 1149 1150/// CheckPointerConversion - Check the pointer conversion from the 1151/// expression From to the type ToType. This routine checks for 1152/// ambiguous or inaccessible derived-to-base pointer 1153/// conversions for which IsPointerConversion has already returned 1154/// true. It returns true and produces a diagnostic if there was an 1155/// error, or returns false otherwise. 1156bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1157 CastExpr::CastKind &Kind) { 1158 QualType FromType = From->getType(); 1159 1160 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1161 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1162 QualType FromPointeeType = FromPtrType->getPointeeType(), 1163 ToPointeeType = ToPtrType->getPointeeType(); 1164 1165 if (FromPointeeType->isRecordType() && 1166 ToPointeeType->isRecordType()) { 1167 // We must have a derived-to-base conversion. Check an 1168 // ambiguous or inaccessible conversion. 1169 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1170 From->getExprLoc(), 1171 From->getSourceRange())) 1172 return true; 1173 1174 // The conversion was successful. 1175 Kind = CastExpr::CK_DerivedToBase; 1176 } 1177 } 1178 if (const ObjCObjectPointerType *FromPtrType = 1179 FromType->getAs<ObjCObjectPointerType>()) 1180 if (const ObjCObjectPointerType *ToPtrType = 1181 ToType->getAs<ObjCObjectPointerType>()) { 1182 // Objective-C++ conversions are always okay. 1183 // FIXME: We should have a different class of conversions for the 1184 // Objective-C++ implicit conversions. 1185 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1186 return false; 1187 1188 } 1189 return false; 1190} 1191 1192/// IsMemberPointerConversion - Determines whether the conversion of the 1193/// expression From, which has the (possibly adjusted) type FromType, can be 1194/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1195/// If so, returns true and places the converted type (that might differ from 1196/// ToType in its cv-qualifiers at some level) into ConvertedType. 1197bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1198 QualType ToType, 1199 bool InOverloadResolution, 1200 QualType &ConvertedType) { 1201 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1202 if (!ToTypePtr) 1203 return false; 1204 1205 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1206 if (From->isNullPointerConstant(Context, 1207 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1208 : Expr::NPC_ValueDependentIsNull)) { 1209 ConvertedType = ToType; 1210 return true; 1211 } 1212 1213 // Otherwise, both types have to be member pointers. 1214 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1215 if (!FromTypePtr) 1216 return false; 1217 1218 // A pointer to member of B can be converted to a pointer to member of D, 1219 // where D is derived from B (C++ 4.11p2). 1220 QualType FromClass(FromTypePtr->getClass(), 0); 1221 QualType ToClass(ToTypePtr->getClass(), 0); 1222 // FIXME: What happens when these are dependent? Is this function even called? 1223 1224 if (IsDerivedFrom(ToClass, FromClass)) { 1225 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1226 ToClass.getTypePtr()); 1227 return true; 1228 } 1229 1230 return false; 1231} 1232 1233/// CheckMemberPointerConversion - Check the member pointer conversion from the 1234/// expression From to the type ToType. This routine checks for ambiguous or 1235/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions 1236/// for which IsMemberPointerConversion has already returned true. It returns 1237/// true and produces a diagnostic if there was an error, or returns false 1238/// otherwise. 1239bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1240 CastExpr::CastKind &Kind) { 1241 QualType FromType = From->getType(); 1242 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1243 if (!FromPtrType) { 1244 // This must be a null pointer to member pointer conversion 1245 assert(From->isNullPointerConstant(Context, 1246 Expr::NPC_ValueDependentIsNull) && 1247 "Expr must be null pointer constant!"); 1248 Kind = CastExpr::CK_NullToMemberPointer; 1249 return false; 1250 } 1251 1252 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1253 assert(ToPtrType && "No member pointer cast has a target type " 1254 "that is not a member pointer."); 1255 1256 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1257 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1258 1259 // FIXME: What about dependent types? 1260 assert(FromClass->isRecordType() && "Pointer into non-class."); 1261 assert(ToClass->isRecordType() && "Pointer into non-class."); 1262 1263 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 1264 /*DetectVirtual=*/true); 1265 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1266 assert(DerivationOkay && 1267 "Should not have been called if derivation isn't OK."); 1268 (void)DerivationOkay; 1269 1270 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1271 getUnqualifiedType())) { 1272 // Derivation is ambiguous. Redo the check to find the exact paths. 1273 Paths.clear(); 1274 Paths.setRecordingPaths(true); 1275 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1276 assert(StillOkay && "Derivation changed due to quantum fluctuation."); 1277 (void)StillOkay; 1278 1279 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1280 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1281 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1282 return true; 1283 } 1284 1285 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1286 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1287 << FromClass << ToClass << QualType(VBase, 0) 1288 << From->getSourceRange(); 1289 return true; 1290 } 1291 1292 // Must be a base to derived member conversion. 1293 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1294 return false; 1295} 1296 1297/// IsQualificationConversion - Determines whether the conversion from 1298/// an rvalue of type FromType to ToType is a qualification conversion 1299/// (C++ 4.4). 1300bool 1301Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1302 FromType = Context.getCanonicalType(FromType); 1303 ToType = Context.getCanonicalType(ToType); 1304 1305 // If FromType and ToType are the same type, this is not a 1306 // qualification conversion. 1307 if (FromType == ToType) 1308 return false; 1309 1310 // (C++ 4.4p4): 1311 // A conversion can add cv-qualifiers at levels other than the first 1312 // in multi-level pointers, subject to the following rules: [...] 1313 bool PreviousToQualsIncludeConst = true; 1314 bool UnwrappedAnyPointer = false; 1315 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1316 // Within each iteration of the loop, we check the qualifiers to 1317 // determine if this still looks like a qualification 1318 // conversion. Then, if all is well, we unwrap one more level of 1319 // pointers or pointers-to-members and do it all again 1320 // until there are no more pointers or pointers-to-members left to 1321 // unwrap. 1322 UnwrappedAnyPointer = true; 1323 1324 // -- for every j > 0, if const is in cv 1,j then const is in cv 1325 // 2,j, and similarly for volatile. 1326 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1327 return false; 1328 1329 // -- if the cv 1,j and cv 2,j are different, then const is in 1330 // every cv for 0 < k < j. 1331 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1332 && !PreviousToQualsIncludeConst) 1333 return false; 1334 1335 // Keep track of whether all prior cv-qualifiers in the "to" type 1336 // include const. 1337 PreviousToQualsIncludeConst 1338 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1339 } 1340 1341 // We are left with FromType and ToType being the pointee types 1342 // after unwrapping the original FromType and ToType the same number 1343 // of types. If we unwrapped any pointers, and if FromType and 1344 // ToType have the same unqualified type (since we checked 1345 // qualifiers above), then this is a qualification conversion. 1346 return UnwrappedAnyPointer && 1347 FromType.getUnqualifiedType() == ToType.getUnqualifiedType(); 1348} 1349 1350/// \brief Given a function template or function, extract the function template 1351/// declaration (if any) and the underlying function declaration. 1352template<typename T> 1353static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function, 1354 FunctionTemplateDecl *&FunctionTemplate) { 1355 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig); 1356 if (FunctionTemplate) 1357 Function = cast<T>(FunctionTemplate->getTemplatedDecl()); 1358 else 1359 Function = cast<T>(Orig); 1360} 1361 1362/// Determines whether there is a user-defined conversion sequence 1363/// (C++ [over.ics.user]) that converts expression From to the type 1364/// ToType. If such a conversion exists, User will contain the 1365/// user-defined conversion sequence that performs such a conversion 1366/// and this routine will return true. Otherwise, this routine returns 1367/// false and User is unspecified. 1368/// 1369/// \param AllowConversionFunctions true if the conversion should 1370/// consider conversion functions at all. If false, only constructors 1371/// will be considered. 1372/// 1373/// \param AllowExplicit true if the conversion should consider C++0x 1374/// "explicit" conversion functions as well as non-explicit conversion 1375/// functions (C++0x [class.conv.fct]p2). 1376/// 1377/// \param ForceRValue true if the expression should be treated as an rvalue 1378/// for overload resolution. 1379/// \param UserCast true if looking for user defined conversion for a static 1380/// cast. 1381Sema::OverloadingResult Sema::IsUserDefinedConversion( 1382 Expr *From, QualType ToType, 1383 UserDefinedConversionSequence& User, 1384 OverloadCandidateSet& CandidateSet, 1385 bool AllowConversionFunctions, 1386 bool AllowExplicit, bool ForceRValue, 1387 bool UserCast) { 1388 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1389 if (CXXRecordDecl *ToRecordDecl 1390 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1391 // C++ [over.match.ctor]p1: 1392 // When objects of class type are direct-initialized (8.5), or 1393 // copy-initialized from an expression of the same or a 1394 // derived class type (8.5), overload resolution selects the 1395 // constructor. [...] For copy-initialization, the candidate 1396 // functions are all the converting constructors (12.3.1) of 1397 // that class. The argument list is the expression-list within 1398 // the parentheses of the initializer. 1399 DeclarationName ConstructorName 1400 = Context.DeclarationNames.getCXXConstructorName( 1401 Context.getCanonicalType(ToType).getUnqualifiedType()); 1402 DeclContext::lookup_iterator Con, ConEnd; 1403 for (llvm::tie(Con, ConEnd) 1404 = ToRecordDecl->lookup(ConstructorName); 1405 Con != ConEnd; ++Con) { 1406 // Find the constructor (which may be a template). 1407 CXXConstructorDecl *Constructor = 0; 1408 FunctionTemplateDecl *ConstructorTmpl 1409 = dyn_cast<FunctionTemplateDecl>(*Con); 1410 if (ConstructorTmpl) 1411 Constructor 1412 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1413 else 1414 Constructor = cast<CXXConstructorDecl>(*Con); 1415 1416 if (!Constructor->isInvalidDecl() && 1417 Constructor->isConvertingConstructor(AllowExplicit)) { 1418 if (ConstructorTmpl) 1419 AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From, 1420 1, CandidateSet, 1421 /*SuppressUserConversions=*/!UserCast, 1422 ForceRValue); 1423 else 1424 // Allow one user-defined conversion when user specifies a 1425 // From->ToType conversion via an static cast (c-style, etc). 1426 AddOverloadCandidate(Constructor, &From, 1, CandidateSet, 1427 /*SuppressUserConversions=*/!UserCast, 1428 ForceRValue); 1429 } 1430 } 1431 } 1432 } 1433 1434 if (!AllowConversionFunctions) { 1435 // Don't allow any conversion functions to enter the overload set. 1436 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1437 PDiag(0) 1438 << From->getSourceRange())) { 1439 // No conversion functions from incomplete types. 1440 } else if (const RecordType *FromRecordType 1441 = From->getType()->getAs<RecordType>()) { 1442 if (CXXRecordDecl *FromRecordDecl 1443 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1444 // Add all of the conversion functions as candidates. 1445 OverloadedFunctionDecl *Conversions 1446 = FromRecordDecl->getVisibleConversionFunctions(); 1447 for (OverloadedFunctionDecl::function_iterator Func 1448 = Conversions->function_begin(); 1449 Func != Conversions->function_end(); ++Func) { 1450 CXXConversionDecl *Conv; 1451 FunctionTemplateDecl *ConvTemplate; 1452 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 1453 if (ConvTemplate) 1454 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1455 else 1456 Conv = dyn_cast<CXXConversionDecl>(*Func); 1457 1458 if (AllowExplicit || !Conv->isExplicit()) { 1459 if (ConvTemplate) 1460 AddTemplateConversionCandidate(ConvTemplate, From, ToType, 1461 CandidateSet); 1462 else 1463 AddConversionCandidate(Conv, From, ToType, CandidateSet); 1464 } 1465 } 1466 } 1467 } 1468 1469 OverloadCandidateSet::iterator Best; 1470 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1471 case OR_Success: 1472 // Record the standard conversion we used and the conversion function. 1473 if (CXXConstructorDecl *Constructor 1474 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1475 // C++ [over.ics.user]p1: 1476 // If the user-defined conversion is specified by a 1477 // constructor (12.3.1), the initial standard conversion 1478 // sequence converts the source type to the type required by 1479 // the argument of the constructor. 1480 // 1481 // FIXME: What about ellipsis conversions? 1482 QualType ThisType = Constructor->getThisType(Context); 1483 User.Before = Best->Conversions[0].Standard; 1484 User.ConversionFunction = Constructor; 1485 User.After.setAsIdentityConversion(); 1486 User.After.FromTypePtr 1487 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr(); 1488 User.After.ToTypePtr = ToType.getAsOpaquePtr(); 1489 return OR_Success; 1490 } else if (CXXConversionDecl *Conversion 1491 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1492 // C++ [over.ics.user]p1: 1493 // 1494 // [...] If the user-defined conversion is specified by a 1495 // conversion function (12.3.2), the initial standard 1496 // conversion sequence converts the source type to the 1497 // implicit object parameter of the conversion function. 1498 User.Before = Best->Conversions[0].Standard; 1499 User.ConversionFunction = Conversion; 1500 1501 // C++ [over.ics.user]p2: 1502 // The second standard conversion sequence converts the 1503 // result of the user-defined conversion to the target type 1504 // for the sequence. Since an implicit conversion sequence 1505 // is an initialization, the special rules for 1506 // initialization by user-defined conversion apply when 1507 // selecting the best user-defined conversion for a 1508 // user-defined conversion sequence (see 13.3.3 and 1509 // 13.3.3.1). 1510 User.After = Best->FinalConversion; 1511 return OR_Success; 1512 } else { 1513 assert(false && "Not a constructor or conversion function?"); 1514 return OR_No_Viable_Function; 1515 } 1516 1517 case OR_No_Viable_Function: 1518 return OR_No_Viable_Function; 1519 case OR_Deleted: 1520 // No conversion here! We're done. 1521 return OR_Deleted; 1522 1523 case OR_Ambiguous: 1524 return OR_Ambiguous; 1525 } 1526 1527 return OR_No_Viable_Function; 1528} 1529 1530bool 1531Sema::DiagnoseAmbiguousUserDefinedConversion(Expr *From, QualType ToType) { 1532 ImplicitConversionSequence ICS; 1533 OverloadCandidateSet CandidateSet; 1534 OverloadingResult OvResult = 1535 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 1536 CandidateSet, true, false, false); 1537 if (OvResult != OR_Ambiguous) 1538 return false; 1539 Diag(From->getSourceRange().getBegin(), 1540 diag::err_typecheck_ambiguous_condition) 1541 << From->getType() << ToType << From->getSourceRange(); 1542 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 1543 return true; 1544} 1545 1546/// CompareImplicitConversionSequences - Compare two implicit 1547/// conversion sequences to determine whether one is better than the 1548/// other or if they are indistinguishable (C++ 13.3.3.2). 1549ImplicitConversionSequence::CompareKind 1550Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1551 const ImplicitConversionSequence& ICS2) 1552{ 1553 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1554 // conversion sequences (as defined in 13.3.3.1) 1555 // -- a standard conversion sequence (13.3.3.1.1) is a better 1556 // conversion sequence than a user-defined conversion sequence or 1557 // an ellipsis conversion sequence, and 1558 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1559 // conversion sequence than an ellipsis conversion sequence 1560 // (13.3.3.1.3). 1561 // 1562 if (ICS1.ConversionKind < ICS2.ConversionKind) 1563 return ImplicitConversionSequence::Better; 1564 else if (ICS2.ConversionKind < ICS1.ConversionKind) 1565 return ImplicitConversionSequence::Worse; 1566 1567 // Two implicit conversion sequences of the same form are 1568 // indistinguishable conversion sequences unless one of the 1569 // following rules apply: (C++ 13.3.3.2p3): 1570 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) 1571 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1572 else if (ICS1.ConversionKind == 1573 ImplicitConversionSequence::UserDefinedConversion) { 1574 // User-defined conversion sequence U1 is a better conversion 1575 // sequence than another user-defined conversion sequence U2 if 1576 // they contain the same user-defined conversion function or 1577 // constructor and if the second standard conversion sequence of 1578 // U1 is better than the second standard conversion sequence of 1579 // U2 (C++ 13.3.3.2p3). 1580 if (ICS1.UserDefined.ConversionFunction == 1581 ICS2.UserDefined.ConversionFunction) 1582 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1583 ICS2.UserDefined.After); 1584 } 1585 1586 return ImplicitConversionSequence::Indistinguishable; 1587} 1588 1589/// CompareStandardConversionSequences - Compare two standard 1590/// conversion sequences to determine whether one is better than the 1591/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1592ImplicitConversionSequence::CompareKind 1593Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1594 const StandardConversionSequence& SCS2) 1595{ 1596 // Standard conversion sequence S1 is a better conversion sequence 1597 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1598 1599 // -- S1 is a proper subsequence of S2 (comparing the conversion 1600 // sequences in the canonical form defined by 13.3.3.1.1, 1601 // excluding any Lvalue Transformation; the identity conversion 1602 // sequence is considered to be a subsequence of any 1603 // non-identity conversion sequence) or, if not that, 1604 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) 1605 // Neither is a proper subsequence of the other. Do nothing. 1606 ; 1607 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || 1608 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || 1609 (SCS1.Second == ICK_Identity && 1610 SCS1.Third == ICK_Identity)) 1611 // SCS1 is a proper subsequence of SCS2. 1612 return ImplicitConversionSequence::Better; 1613 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || 1614 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || 1615 (SCS2.Second == ICK_Identity && 1616 SCS2.Third == ICK_Identity)) 1617 // SCS2 is a proper subsequence of SCS1. 1618 return ImplicitConversionSequence::Worse; 1619 1620 // -- the rank of S1 is better than the rank of S2 (by the rules 1621 // defined below), or, if not that, 1622 ImplicitConversionRank Rank1 = SCS1.getRank(); 1623 ImplicitConversionRank Rank2 = SCS2.getRank(); 1624 if (Rank1 < Rank2) 1625 return ImplicitConversionSequence::Better; 1626 else if (Rank2 < Rank1) 1627 return ImplicitConversionSequence::Worse; 1628 1629 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1630 // are indistinguishable unless one of the following rules 1631 // applies: 1632 1633 // A conversion that is not a conversion of a pointer, or 1634 // pointer to member, to bool is better than another conversion 1635 // that is such a conversion. 1636 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1637 return SCS2.isPointerConversionToBool() 1638 ? ImplicitConversionSequence::Better 1639 : ImplicitConversionSequence::Worse; 1640 1641 // C++ [over.ics.rank]p4b2: 1642 // 1643 // If class B is derived directly or indirectly from class A, 1644 // conversion of B* to A* is better than conversion of B* to 1645 // void*, and conversion of A* to void* is better than conversion 1646 // of B* to void*. 1647 bool SCS1ConvertsToVoid 1648 = SCS1.isPointerConversionToVoidPointer(Context); 1649 bool SCS2ConvertsToVoid 1650 = SCS2.isPointerConversionToVoidPointer(Context); 1651 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1652 // Exactly one of the conversion sequences is a conversion to 1653 // a void pointer; it's the worse conversion. 1654 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1655 : ImplicitConversionSequence::Worse; 1656 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1657 // Neither conversion sequence converts to a void pointer; compare 1658 // their derived-to-base conversions. 1659 if (ImplicitConversionSequence::CompareKind DerivedCK 1660 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1661 return DerivedCK; 1662 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1663 // Both conversion sequences are conversions to void 1664 // pointers. Compare the source types to determine if there's an 1665 // inheritance relationship in their sources. 1666 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1667 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1668 1669 // Adjust the types we're converting from via the array-to-pointer 1670 // conversion, if we need to. 1671 if (SCS1.First == ICK_Array_To_Pointer) 1672 FromType1 = Context.getArrayDecayedType(FromType1); 1673 if (SCS2.First == ICK_Array_To_Pointer) 1674 FromType2 = Context.getArrayDecayedType(FromType2); 1675 1676 QualType FromPointee1 1677 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1678 QualType FromPointee2 1679 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1680 1681 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1682 return ImplicitConversionSequence::Better; 1683 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1684 return ImplicitConversionSequence::Worse; 1685 1686 // Objective-C++: If one interface is more specific than the 1687 // other, it is the better one. 1688 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1689 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1690 if (FromIface1 && FromIface1) { 1691 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1692 return ImplicitConversionSequence::Better; 1693 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1694 return ImplicitConversionSequence::Worse; 1695 } 1696 } 1697 1698 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1699 // bullet 3). 1700 if (ImplicitConversionSequence::CompareKind QualCK 1701 = CompareQualificationConversions(SCS1, SCS2)) 1702 return QualCK; 1703 1704 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1705 // C++0x [over.ics.rank]p3b4: 1706 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 1707 // implicit object parameter of a non-static member function declared 1708 // without a ref-qualifier, and S1 binds an rvalue reference to an 1709 // rvalue and S2 binds an lvalue reference. 1710 // FIXME: We don't know if we're dealing with the implicit object parameter, 1711 // or if the member function in this case has a ref qualifier. 1712 // (Of course, we don't have ref qualifiers yet.) 1713 if (SCS1.RRefBinding != SCS2.RRefBinding) 1714 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 1715 : ImplicitConversionSequence::Worse; 1716 1717 // C++ [over.ics.rank]p3b4: 1718 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1719 // which the references refer are the same type except for 1720 // top-level cv-qualifiers, and the type to which the reference 1721 // initialized by S2 refers is more cv-qualified than the type 1722 // to which the reference initialized by S1 refers. 1723 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1724 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1725 T1 = Context.getCanonicalType(T1); 1726 T2 = Context.getCanonicalType(T2); 1727 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) { 1728 if (T2.isMoreQualifiedThan(T1)) 1729 return ImplicitConversionSequence::Better; 1730 else if (T1.isMoreQualifiedThan(T2)) 1731 return ImplicitConversionSequence::Worse; 1732 } 1733 } 1734 1735 return ImplicitConversionSequence::Indistinguishable; 1736} 1737 1738/// CompareQualificationConversions - Compares two standard conversion 1739/// sequences to determine whether they can be ranked based on their 1740/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1741ImplicitConversionSequence::CompareKind 1742Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1743 const StandardConversionSequence& SCS2) { 1744 // C++ 13.3.3.2p3: 1745 // -- S1 and S2 differ only in their qualification conversion and 1746 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1747 // cv-qualification signature of type T1 is a proper subset of 1748 // the cv-qualification signature of type T2, and S1 is not the 1749 // deprecated string literal array-to-pointer conversion (4.2). 1750 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1751 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1752 return ImplicitConversionSequence::Indistinguishable; 1753 1754 // FIXME: the example in the standard doesn't use a qualification 1755 // conversion (!) 1756 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1757 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1758 T1 = Context.getCanonicalType(T1); 1759 T2 = Context.getCanonicalType(T2); 1760 1761 // If the types are the same, we won't learn anything by unwrapped 1762 // them. 1763 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1764 return ImplicitConversionSequence::Indistinguishable; 1765 1766 ImplicitConversionSequence::CompareKind Result 1767 = ImplicitConversionSequence::Indistinguishable; 1768 while (UnwrapSimilarPointerTypes(T1, T2)) { 1769 // Within each iteration of the loop, we check the qualifiers to 1770 // determine if this still looks like a qualification 1771 // conversion. Then, if all is well, we unwrap one more level of 1772 // pointers or pointers-to-members and do it all again 1773 // until there are no more pointers or pointers-to-members left 1774 // to unwrap. This essentially mimics what 1775 // IsQualificationConversion does, but here we're checking for a 1776 // strict subset of qualifiers. 1777 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1778 // The qualifiers are the same, so this doesn't tell us anything 1779 // about how the sequences rank. 1780 ; 1781 else if (T2.isMoreQualifiedThan(T1)) { 1782 // T1 has fewer qualifiers, so it could be the better sequence. 1783 if (Result == ImplicitConversionSequence::Worse) 1784 // Neither has qualifiers that are a subset of the other's 1785 // qualifiers. 1786 return ImplicitConversionSequence::Indistinguishable; 1787 1788 Result = ImplicitConversionSequence::Better; 1789 } else if (T1.isMoreQualifiedThan(T2)) { 1790 // T2 has fewer qualifiers, so it could be the better sequence. 1791 if (Result == ImplicitConversionSequence::Better) 1792 // Neither has qualifiers that are a subset of the other's 1793 // qualifiers. 1794 return ImplicitConversionSequence::Indistinguishable; 1795 1796 Result = ImplicitConversionSequence::Worse; 1797 } else { 1798 // Qualifiers are disjoint. 1799 return ImplicitConversionSequence::Indistinguishable; 1800 } 1801 1802 // If the types after this point are equivalent, we're done. 1803 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1804 break; 1805 } 1806 1807 // Check that the winning standard conversion sequence isn't using 1808 // the deprecated string literal array to pointer conversion. 1809 switch (Result) { 1810 case ImplicitConversionSequence::Better: 1811 if (SCS1.Deprecated) 1812 Result = ImplicitConversionSequence::Indistinguishable; 1813 break; 1814 1815 case ImplicitConversionSequence::Indistinguishable: 1816 break; 1817 1818 case ImplicitConversionSequence::Worse: 1819 if (SCS2.Deprecated) 1820 Result = ImplicitConversionSequence::Indistinguishable; 1821 break; 1822 } 1823 1824 return Result; 1825} 1826 1827/// CompareDerivedToBaseConversions - Compares two standard conversion 1828/// sequences to determine whether they can be ranked based on their 1829/// various kinds of derived-to-base conversions (C++ 1830/// [over.ics.rank]p4b3). As part of these checks, we also look at 1831/// conversions between Objective-C interface types. 1832ImplicitConversionSequence::CompareKind 1833Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 1834 const StandardConversionSequence& SCS2) { 1835 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1836 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1837 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1838 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1839 1840 // Adjust the types we're converting from via the array-to-pointer 1841 // conversion, if we need to. 1842 if (SCS1.First == ICK_Array_To_Pointer) 1843 FromType1 = Context.getArrayDecayedType(FromType1); 1844 if (SCS2.First == ICK_Array_To_Pointer) 1845 FromType2 = Context.getArrayDecayedType(FromType2); 1846 1847 // Canonicalize all of the types. 1848 FromType1 = Context.getCanonicalType(FromType1); 1849 ToType1 = Context.getCanonicalType(ToType1); 1850 FromType2 = Context.getCanonicalType(FromType2); 1851 ToType2 = Context.getCanonicalType(ToType2); 1852 1853 // C++ [over.ics.rank]p4b3: 1854 // 1855 // If class B is derived directly or indirectly from class A and 1856 // class C is derived directly or indirectly from B, 1857 // 1858 // For Objective-C, we let A, B, and C also be Objective-C 1859 // interfaces. 1860 1861 // Compare based on pointer conversions. 1862 if (SCS1.Second == ICK_Pointer_Conversion && 1863 SCS2.Second == ICK_Pointer_Conversion && 1864 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 1865 FromType1->isPointerType() && FromType2->isPointerType() && 1866 ToType1->isPointerType() && ToType2->isPointerType()) { 1867 QualType FromPointee1 1868 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1869 QualType ToPointee1 1870 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1871 QualType FromPointee2 1872 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1873 QualType ToPointee2 1874 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1875 1876 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1877 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1878 const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>(); 1879 const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>(); 1880 1881 // -- conversion of C* to B* is better than conversion of C* to A*, 1882 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1883 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1884 return ImplicitConversionSequence::Better; 1885 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1886 return ImplicitConversionSequence::Worse; 1887 1888 if (ToIface1 && ToIface2) { 1889 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 1890 return ImplicitConversionSequence::Better; 1891 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 1892 return ImplicitConversionSequence::Worse; 1893 } 1894 } 1895 1896 // -- conversion of B* to A* is better than conversion of C* to A*, 1897 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 1898 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1899 return ImplicitConversionSequence::Better; 1900 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1901 return ImplicitConversionSequence::Worse; 1902 1903 if (FromIface1 && FromIface2) { 1904 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1905 return ImplicitConversionSequence::Better; 1906 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1907 return ImplicitConversionSequence::Worse; 1908 } 1909 } 1910 } 1911 1912 // Compare based on reference bindings. 1913 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 1914 SCS1.Second == ICK_Derived_To_Base) { 1915 // -- binding of an expression of type C to a reference of type 1916 // B& is better than binding an expression of type C to a 1917 // reference of type A&, 1918 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1919 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1920 if (IsDerivedFrom(ToType1, ToType2)) 1921 return ImplicitConversionSequence::Better; 1922 else if (IsDerivedFrom(ToType2, ToType1)) 1923 return ImplicitConversionSequence::Worse; 1924 } 1925 1926 // -- binding of an expression of type B to a reference of type 1927 // A& is better than binding an expression of type C to a 1928 // reference of type A&, 1929 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 1930 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 1931 if (IsDerivedFrom(FromType2, FromType1)) 1932 return ImplicitConversionSequence::Better; 1933 else if (IsDerivedFrom(FromType1, FromType2)) 1934 return ImplicitConversionSequence::Worse; 1935 } 1936 } 1937 1938 1939 // FIXME: conversion of A::* to B::* is better than conversion of 1940 // A::* to C::*, 1941 1942 // FIXME: conversion of B::* to C::* is better than conversion of 1943 // A::* to C::*, and 1944 1945 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 1946 SCS1.Second == ICK_Derived_To_Base) { 1947 // -- conversion of C to B is better than conversion of C to A, 1948 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1949 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1950 if (IsDerivedFrom(ToType1, ToType2)) 1951 return ImplicitConversionSequence::Better; 1952 else if (IsDerivedFrom(ToType2, ToType1)) 1953 return ImplicitConversionSequence::Worse; 1954 } 1955 1956 // -- conversion of B to A is better than conversion of C to A. 1957 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 1958 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 1959 if (IsDerivedFrom(FromType2, FromType1)) 1960 return ImplicitConversionSequence::Better; 1961 else if (IsDerivedFrom(FromType1, FromType2)) 1962 return ImplicitConversionSequence::Worse; 1963 } 1964 } 1965 1966 return ImplicitConversionSequence::Indistinguishable; 1967} 1968 1969/// TryCopyInitialization - Try to copy-initialize a value of type 1970/// ToType from the expression From. Return the implicit conversion 1971/// sequence required to pass this argument, which may be a bad 1972/// conversion sequence (meaning that the argument cannot be passed to 1973/// a parameter of this type). If @p SuppressUserConversions, then we 1974/// do not permit any user-defined conversion sequences. If @p ForceRValue, 1975/// then we treat @p From as an rvalue, even if it is an lvalue. 1976ImplicitConversionSequence 1977Sema::TryCopyInitialization(Expr *From, QualType ToType, 1978 bool SuppressUserConversions, bool ForceRValue, 1979 bool InOverloadResolution) { 1980 if (ToType->isReferenceType()) { 1981 ImplicitConversionSequence ICS; 1982 CheckReferenceInit(From, ToType, 1983 /*FIXME:*/From->getLocStart(), 1984 SuppressUserConversions, 1985 /*AllowExplicit=*/false, 1986 ForceRValue, 1987 &ICS); 1988 return ICS; 1989 } else { 1990 return TryImplicitConversion(From, ToType, 1991 SuppressUserConversions, 1992 /*AllowExplicit=*/false, 1993 ForceRValue, 1994 InOverloadResolution); 1995 } 1996} 1997 1998/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with 1999/// the expression @p From. Returns true (and emits a diagnostic) if there was 2000/// an error, returns false if the initialization succeeded. Elidable should 2001/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works 2002/// differently in C++0x for this case. 2003bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 2004 const char* Flavor, bool Elidable) { 2005 if (!getLangOptions().CPlusPlus) { 2006 // In C, argument passing is the same as performing an assignment. 2007 QualType FromType = From->getType(); 2008 2009 AssignConvertType ConvTy = 2010 CheckSingleAssignmentConstraints(ToType, From); 2011 if (ConvTy != Compatible && 2012 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) 2013 ConvTy = Compatible; 2014 2015 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 2016 FromType, From, Flavor); 2017 } 2018 2019 if (ToType->isReferenceType()) 2020 return CheckReferenceInit(From, ToType, 2021 /*FIXME:*/From->getLocStart(), 2022 /*SuppressUserConversions=*/false, 2023 /*AllowExplicit=*/false, 2024 /*ForceRValue=*/false); 2025 2026 if (!PerformImplicitConversion(From, ToType, Flavor, 2027 /*AllowExplicit=*/false, Elidable)) 2028 return false; 2029 if (!DiagnoseAmbiguousUserDefinedConversion(From, ToType)) 2030 return Diag(From->getSourceRange().getBegin(), 2031 diag::err_typecheck_convert_incompatible) 2032 << ToType << From->getType() << Flavor << From->getSourceRange(); 2033 return true; 2034} 2035 2036/// TryObjectArgumentInitialization - Try to initialize the object 2037/// parameter of the given member function (@c Method) from the 2038/// expression @p From. 2039ImplicitConversionSequence 2040Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) { 2041 QualType ClassType = Context.getTypeDeclType(Method->getParent()); 2042 QualType ImplicitParamType 2043 = Context.getCVRQualifiedType(ClassType, Method->getTypeQualifiers()); 2044 2045 // Set up the conversion sequence as a "bad" conversion, to allow us 2046 // to exit early. 2047 ImplicitConversionSequence ICS; 2048 ICS.Standard.setAsIdentityConversion(); 2049 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 2050 2051 // We need to have an object of class type. 2052 QualType FromType = From->getType(); 2053 if (const PointerType *PT = FromType->getAs<PointerType>()) 2054 FromType = PT->getPointeeType(); 2055 2056 assert(FromType->isRecordType()); 2057 2058 // The implicit object parmeter is has the type "reference to cv X", 2059 // where X is the class of which the function is a member 2060 // (C++ [over.match.funcs]p4). However, when finding an implicit 2061 // conversion sequence for the argument, we are not allowed to 2062 // create temporaries or perform user-defined conversions 2063 // (C++ [over.match.funcs]p5). We perform a simplified version of 2064 // reference binding here, that allows class rvalues to bind to 2065 // non-constant references. 2066 2067 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2068 // with the implicit object parameter (C++ [over.match.funcs]p5). 2069 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2070 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() && 2071 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType)) 2072 return ICS; 2073 2074 // Check that we have either the same type or a derived type. It 2075 // affects the conversion rank. 2076 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2077 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType()) 2078 ICS.Standard.Second = ICK_Identity; 2079 else if (IsDerivedFrom(FromType, ClassType)) 2080 ICS.Standard.Second = ICK_Derived_To_Base; 2081 else 2082 return ICS; 2083 2084 // Success. Mark this as a reference binding. 2085 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 2086 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); 2087 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); 2088 ICS.Standard.ReferenceBinding = true; 2089 ICS.Standard.DirectBinding = true; 2090 ICS.Standard.RRefBinding = false; 2091 return ICS; 2092} 2093 2094/// PerformObjectArgumentInitialization - Perform initialization of 2095/// the implicit object parameter for the given Method with the given 2096/// expression. 2097bool 2098Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 2099 QualType FromRecordType, DestType; 2100 QualType ImplicitParamRecordType = 2101 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2102 2103 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2104 FromRecordType = PT->getPointeeType(); 2105 DestType = Method->getThisType(Context); 2106 } else { 2107 FromRecordType = From->getType(); 2108 DestType = ImplicitParamRecordType; 2109 } 2110 2111 ImplicitConversionSequence ICS 2112 = TryObjectArgumentInitialization(From, Method); 2113 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) 2114 return Diag(From->getSourceRange().getBegin(), 2115 diag::err_implicit_object_parameter_init) 2116 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2117 2118 if (ICS.Standard.Second == ICK_Derived_To_Base && 2119 CheckDerivedToBaseConversion(FromRecordType, 2120 ImplicitParamRecordType, 2121 From->getSourceRange().getBegin(), 2122 From->getSourceRange())) 2123 return true; 2124 2125 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, 2126 /*isLvalue=*/true); 2127 return false; 2128} 2129 2130/// TryContextuallyConvertToBool - Attempt to contextually convert the 2131/// expression From to bool (C++0x [conv]p3). 2132ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2133 return TryImplicitConversion(From, Context.BoolTy, 2134 // FIXME: Are these flags correct? 2135 /*SuppressUserConversions=*/false, 2136 /*AllowExplicit=*/true, 2137 /*ForceRValue=*/false, 2138 /*InOverloadResolution=*/false); 2139} 2140 2141/// PerformContextuallyConvertToBool - Perform a contextual conversion 2142/// of the expression From to bool (C++0x [conv]p3). 2143bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2144 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2145 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting")) 2146 return false; 2147 2148 if (!DiagnoseAmbiguousUserDefinedConversion(From, Context.BoolTy)) 2149 return Diag(From->getSourceRange().getBegin(), 2150 diag::err_typecheck_bool_condition) 2151 << From->getType() << From->getSourceRange(); 2152 return true; 2153} 2154 2155/// AddOverloadCandidate - Adds the given function to the set of 2156/// candidate functions, using the given function call arguments. If 2157/// @p SuppressUserConversions, then don't allow user-defined 2158/// conversions via constructors or conversion operators. 2159/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly 2160/// hacky way to implement the overloading rules for elidable copy 2161/// initialization in C++0x (C++0x 12.8p15). 2162/// 2163/// \para PartialOverloading true if we are performing "partial" overloading 2164/// based on an incomplete set of function arguments. This feature is used by 2165/// code completion. 2166void 2167Sema::AddOverloadCandidate(FunctionDecl *Function, 2168 Expr **Args, unsigned NumArgs, 2169 OverloadCandidateSet& CandidateSet, 2170 bool SuppressUserConversions, 2171 bool ForceRValue, 2172 bool PartialOverloading) { 2173 const FunctionProtoType* Proto 2174 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 2175 assert(Proto && "Functions without a prototype cannot be overloaded"); 2176 assert(!isa<CXXConversionDecl>(Function) && 2177 "Use AddConversionCandidate for conversion functions"); 2178 assert(!Function->getDescribedFunctionTemplate() && 2179 "Use AddTemplateOverloadCandidate for function templates"); 2180 2181 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2182 if (!isa<CXXConstructorDecl>(Method)) { 2183 // If we get here, it's because we're calling a member function 2184 // that is named without a member access expression (e.g., 2185 // "this->f") that was either written explicitly or created 2186 // implicitly. This can happen with a qualified call to a member 2187 // function, e.g., X::f(). We use a NULL object as the implied 2188 // object argument (C++ [over.call.func]p3). 2189 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet, 2190 SuppressUserConversions, ForceRValue); 2191 return; 2192 } 2193 // We treat a constructor like a non-member function, since its object 2194 // argument doesn't participate in overload resolution. 2195 } 2196 2197 if (!CandidateSet.isNewCandidate(Function)) 2198 return; 2199 2200 // Add this candidate 2201 CandidateSet.push_back(OverloadCandidate()); 2202 OverloadCandidate& Candidate = CandidateSet.back(); 2203 Candidate.Function = Function; 2204 Candidate.Viable = true; 2205 Candidate.IsSurrogate = false; 2206 Candidate.IgnoreObjectArgument = false; 2207 2208 unsigned NumArgsInProto = Proto->getNumArgs(); 2209 2210 // (C++ 13.3.2p2): A candidate function having fewer than m 2211 // parameters is viable only if it has an ellipsis in its parameter 2212 // list (8.3.5). 2213 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 2214 !Proto->isVariadic()) { 2215 Candidate.Viable = false; 2216 return; 2217 } 2218 2219 // (C++ 13.3.2p2): A candidate function having more than m parameters 2220 // is viable only if the (m+1)st parameter has a default argument 2221 // (8.3.6). For the purposes of overload resolution, the 2222 // parameter list is truncated on the right, so that there are 2223 // exactly m parameters. 2224 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 2225 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 2226 // Not enough arguments. 2227 Candidate.Viable = false; 2228 return; 2229 } 2230 2231 // Determine the implicit conversion sequences for each of the 2232 // arguments. 2233 Candidate.Conversions.resize(NumArgs); 2234 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2235 if (ArgIdx < NumArgsInProto) { 2236 // (C++ 13.3.2p3): for F to be a viable function, there shall 2237 // exist for each argument an implicit conversion sequence 2238 // (13.3.3.1) that converts that argument to the corresponding 2239 // parameter of F. 2240 QualType ParamType = Proto->getArgType(ArgIdx); 2241 Candidate.Conversions[ArgIdx] 2242 = TryCopyInitialization(Args[ArgIdx], ParamType, 2243 SuppressUserConversions, ForceRValue, 2244 /*InOverloadResolution=*/true); 2245 if (Candidate.Conversions[ArgIdx].ConversionKind 2246 == ImplicitConversionSequence::BadConversion) { 2247 // 13.3.3.1-p10 If several different sequences of conversions exist that 2248 // each convert the argument to the parameter type, the implicit conversion 2249 // sequence associated with the parameter is defined to be the unique conversion 2250 // sequence designated the ambiguous conversion sequence. For the purpose of 2251 // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous 2252 // conversion sequence is treated as a user-defined sequence that is 2253 // indistinguishable from any other user-defined conversion sequence 2254 if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) { 2255 Candidate.Conversions[ArgIdx].ConversionKind = 2256 ImplicitConversionSequence::UserDefinedConversion; 2257 // Set the conversion function to one of them. As due to ambiguity, 2258 // they carry the same weight and is needed for overload resolution 2259 // later. 2260 Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction = 2261 Candidate.Conversions[ArgIdx].ConversionFunctionSet[0]; 2262 } 2263 else { 2264 Candidate.Viable = false; 2265 break; 2266 } 2267 } 2268 } else { 2269 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2270 // argument for which there is no corresponding parameter is 2271 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2272 Candidate.Conversions[ArgIdx].ConversionKind 2273 = ImplicitConversionSequence::EllipsisConversion; 2274 } 2275 } 2276} 2277 2278/// \brief Add all of the function declarations in the given function set to 2279/// the overload canddiate set. 2280void Sema::AddFunctionCandidates(const FunctionSet &Functions, 2281 Expr **Args, unsigned NumArgs, 2282 OverloadCandidateSet& CandidateSet, 2283 bool SuppressUserConversions) { 2284 for (FunctionSet::const_iterator F = Functions.begin(), 2285 FEnd = Functions.end(); 2286 F != FEnd; ++F) { 2287 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) { 2288 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2289 AddMethodCandidate(cast<CXXMethodDecl>(FD), 2290 Args[0], Args + 1, NumArgs - 1, 2291 CandidateSet, SuppressUserConversions); 2292 else 2293 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 2294 SuppressUserConversions); 2295 } else { 2296 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F); 2297 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 2298 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 2299 AddMethodTemplateCandidate(FunTmpl, 2300 /*FIXME: explicit args */false, 0, 0, 2301 Args[0], Args + 1, NumArgs - 1, 2302 CandidateSet, 2303 SuppressUserConversions); 2304 else 2305 AddTemplateOverloadCandidate(FunTmpl, 2306 /*FIXME: explicit args */false, 0, 0, 2307 Args, NumArgs, CandidateSet, 2308 SuppressUserConversions); 2309 } 2310 } 2311} 2312 2313/// AddMethodCandidate - Adds the given C++ member function to the set 2314/// of candidate functions, using the given function call arguments 2315/// and the object argument (@c Object). For example, in a call 2316/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 2317/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 2318/// allow user-defined conversions via constructors or conversion 2319/// operators. If @p ForceRValue, treat all arguments as rvalues. This is 2320/// a slightly hacky way to implement the overloading rules for elidable copy 2321/// initialization in C++0x (C++0x 12.8p15). 2322void 2323Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, 2324 Expr **Args, unsigned NumArgs, 2325 OverloadCandidateSet& CandidateSet, 2326 bool SuppressUserConversions, bool ForceRValue) { 2327 const FunctionProtoType* Proto 2328 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 2329 assert(Proto && "Methods without a prototype cannot be overloaded"); 2330 assert(!isa<CXXConversionDecl>(Method) && 2331 "Use AddConversionCandidate for conversion functions"); 2332 assert(!isa<CXXConstructorDecl>(Method) && 2333 "Use AddOverloadCandidate for constructors"); 2334 2335 if (!CandidateSet.isNewCandidate(Method)) 2336 return; 2337 2338 // Add this candidate 2339 CandidateSet.push_back(OverloadCandidate()); 2340 OverloadCandidate& Candidate = CandidateSet.back(); 2341 Candidate.Function = Method; 2342 Candidate.IsSurrogate = false; 2343 Candidate.IgnoreObjectArgument = false; 2344 2345 unsigned NumArgsInProto = Proto->getNumArgs(); 2346 2347 // (C++ 13.3.2p2): A candidate function having fewer than m 2348 // parameters is viable only if it has an ellipsis in its parameter 2349 // list (8.3.5). 2350 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2351 Candidate.Viable = false; 2352 return; 2353 } 2354 2355 // (C++ 13.3.2p2): A candidate function having more than m parameters 2356 // is viable only if the (m+1)st parameter has a default argument 2357 // (8.3.6). For the purposes of overload resolution, the 2358 // parameter list is truncated on the right, so that there are 2359 // exactly m parameters. 2360 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2361 if (NumArgs < MinRequiredArgs) { 2362 // Not enough arguments. 2363 Candidate.Viable = false; 2364 return; 2365 } 2366 2367 Candidate.Viable = true; 2368 Candidate.Conversions.resize(NumArgs + 1); 2369 2370 if (Method->isStatic() || !Object) 2371 // The implicit object argument is ignored. 2372 Candidate.IgnoreObjectArgument = true; 2373 else { 2374 // Determine the implicit conversion sequence for the object 2375 // parameter. 2376 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method); 2377 if (Candidate.Conversions[0].ConversionKind 2378 == ImplicitConversionSequence::BadConversion) { 2379 Candidate.Viable = false; 2380 return; 2381 } 2382 } 2383 2384 // Determine the implicit conversion sequences for each of the 2385 // arguments. 2386 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2387 if (ArgIdx < NumArgsInProto) { 2388 // (C++ 13.3.2p3): for F to be a viable function, there shall 2389 // exist for each argument an implicit conversion sequence 2390 // (13.3.3.1) that converts that argument to the corresponding 2391 // parameter of F. 2392 QualType ParamType = Proto->getArgType(ArgIdx); 2393 Candidate.Conversions[ArgIdx + 1] 2394 = TryCopyInitialization(Args[ArgIdx], ParamType, 2395 SuppressUserConversions, ForceRValue, 2396 /*InOverloadResolution=*/true); 2397 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2398 == ImplicitConversionSequence::BadConversion) { 2399 Candidate.Viable = false; 2400 break; 2401 } 2402 } else { 2403 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2404 // argument for which there is no corresponding parameter is 2405 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2406 Candidate.Conversions[ArgIdx + 1].ConversionKind 2407 = ImplicitConversionSequence::EllipsisConversion; 2408 } 2409 } 2410} 2411 2412/// \brief Add a C++ member function template as a candidate to the candidate 2413/// set, using template argument deduction to produce an appropriate member 2414/// function template specialization. 2415void 2416Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 2417 bool HasExplicitTemplateArgs, 2418 const TemplateArgument *ExplicitTemplateArgs, 2419 unsigned NumExplicitTemplateArgs, 2420 Expr *Object, Expr **Args, unsigned NumArgs, 2421 OverloadCandidateSet& CandidateSet, 2422 bool SuppressUserConversions, 2423 bool ForceRValue) { 2424 if (!CandidateSet.isNewCandidate(MethodTmpl)) 2425 return; 2426 2427 // C++ [over.match.funcs]p7: 2428 // In each case where a candidate is a function template, candidate 2429 // function template specializations are generated using template argument 2430 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2431 // candidate functions in the usual way.113) A given name can refer to one 2432 // or more function templates and also to a set of overloaded non-template 2433 // functions. In such a case, the candidate functions generated from each 2434 // function template are combined with the set of non-template candidate 2435 // functions. 2436 TemplateDeductionInfo Info(Context); 2437 FunctionDecl *Specialization = 0; 2438 if (TemplateDeductionResult Result 2439 = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs, 2440 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2441 Args, NumArgs, Specialization, Info)) { 2442 // FIXME: Record what happened with template argument deduction, so 2443 // that we can give the user a beautiful diagnostic. 2444 (void)Result; 2445 return; 2446 } 2447 2448 // Add the function template specialization produced by template argument 2449 // deduction as a candidate. 2450 assert(Specialization && "Missing member function template specialization?"); 2451 assert(isa<CXXMethodDecl>(Specialization) && 2452 "Specialization is not a member function?"); 2453 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs, 2454 CandidateSet, SuppressUserConversions, ForceRValue); 2455} 2456 2457/// \brief Add a C++ function template specialization as a candidate 2458/// in the candidate set, using template argument deduction to produce 2459/// an appropriate function template specialization. 2460void 2461Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 2462 bool HasExplicitTemplateArgs, 2463 const TemplateArgument *ExplicitTemplateArgs, 2464 unsigned NumExplicitTemplateArgs, 2465 Expr **Args, unsigned NumArgs, 2466 OverloadCandidateSet& CandidateSet, 2467 bool SuppressUserConversions, 2468 bool ForceRValue) { 2469 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2470 return; 2471 2472 // C++ [over.match.funcs]p7: 2473 // In each case where a candidate is a function template, candidate 2474 // function template specializations are generated using template argument 2475 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2476 // candidate functions in the usual way.113) A given name can refer to one 2477 // or more function templates and also to a set of overloaded non-template 2478 // functions. In such a case, the candidate functions generated from each 2479 // function template are combined with the set of non-template candidate 2480 // functions. 2481 TemplateDeductionInfo Info(Context); 2482 FunctionDecl *Specialization = 0; 2483 if (TemplateDeductionResult Result 2484 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs, 2485 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2486 Args, NumArgs, Specialization, Info)) { 2487 // FIXME: Record what happened with template argument deduction, so 2488 // that we can give the user a beautiful diagnostic. 2489 (void)Result; 2490 return; 2491 } 2492 2493 // Add the function template specialization produced by template argument 2494 // deduction as a candidate. 2495 assert(Specialization && "Missing function template specialization?"); 2496 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet, 2497 SuppressUserConversions, ForceRValue); 2498} 2499 2500/// AddConversionCandidate - Add a C++ conversion function as a 2501/// candidate in the candidate set (C++ [over.match.conv], 2502/// C++ [over.match.copy]). From is the expression we're converting from, 2503/// and ToType is the type that we're eventually trying to convert to 2504/// (which may or may not be the same type as the type that the 2505/// conversion function produces). 2506void 2507Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2508 Expr *From, QualType ToType, 2509 OverloadCandidateSet& CandidateSet) { 2510 assert(!Conversion->getDescribedFunctionTemplate() && 2511 "Conversion function templates use AddTemplateConversionCandidate"); 2512 2513 if (!CandidateSet.isNewCandidate(Conversion)) 2514 return; 2515 2516 // Add this candidate 2517 CandidateSet.push_back(OverloadCandidate()); 2518 OverloadCandidate& Candidate = CandidateSet.back(); 2519 Candidate.Function = Conversion; 2520 Candidate.IsSurrogate = false; 2521 Candidate.IgnoreObjectArgument = false; 2522 Candidate.FinalConversion.setAsIdentityConversion(); 2523 Candidate.FinalConversion.FromTypePtr 2524 = Conversion->getConversionType().getAsOpaquePtr(); 2525 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); 2526 2527 // Determine the implicit conversion sequence for the implicit 2528 // object parameter. 2529 Candidate.Viable = true; 2530 Candidate.Conversions.resize(1); 2531 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion); 2532 // Conversion functions to a different type in the base class is visible in 2533 // the derived class. So, a derived to base conversion should not participate 2534 // in overload resolution. 2535 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 2536 Candidate.Conversions[0].Standard.Second = ICK_Identity; 2537 if (Candidate.Conversions[0].ConversionKind 2538 == ImplicitConversionSequence::BadConversion) { 2539 Candidate.Viable = false; 2540 return; 2541 } 2542 2543 // To determine what the conversion from the result of calling the 2544 // conversion function to the type we're eventually trying to 2545 // convert to (ToType), we need to synthesize a call to the 2546 // conversion function and attempt copy initialization from it. This 2547 // makes sure that we get the right semantics with respect to 2548 // lvalues/rvalues and the type. Fortunately, we can allocate this 2549 // call on the stack and we don't need its arguments to be 2550 // well-formed. 2551 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2552 SourceLocation()); 2553 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2554 CastExpr::CK_Unknown, 2555 &ConversionRef, false); 2556 2557 // Note that it is safe to allocate CallExpr on the stack here because 2558 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 2559 // allocator). 2560 CallExpr Call(Context, &ConversionFn, 0, 0, 2561 Conversion->getConversionType().getNonReferenceType(), 2562 SourceLocation()); 2563 ImplicitConversionSequence ICS = 2564 TryCopyInitialization(&Call, ToType, 2565 /*SuppressUserConversions=*/true, 2566 /*ForceRValue=*/false, 2567 /*InOverloadResolution=*/false); 2568 2569 switch (ICS.ConversionKind) { 2570 case ImplicitConversionSequence::StandardConversion: 2571 Candidate.FinalConversion = ICS.Standard; 2572 break; 2573 2574 case ImplicitConversionSequence::BadConversion: 2575 Candidate.Viable = false; 2576 break; 2577 2578 default: 2579 assert(false && 2580 "Can only end up with a standard conversion sequence or failure"); 2581 } 2582} 2583 2584/// \brief Adds a conversion function template specialization 2585/// candidate to the overload set, using template argument deduction 2586/// to deduce the template arguments of the conversion function 2587/// template from the type that we are converting to (C++ 2588/// [temp.deduct.conv]). 2589void 2590Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 2591 Expr *From, QualType ToType, 2592 OverloadCandidateSet &CandidateSet) { 2593 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 2594 "Only conversion function templates permitted here"); 2595 2596 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2597 return; 2598 2599 TemplateDeductionInfo Info(Context); 2600 CXXConversionDecl *Specialization = 0; 2601 if (TemplateDeductionResult Result 2602 = DeduceTemplateArguments(FunctionTemplate, ToType, 2603 Specialization, Info)) { 2604 // FIXME: Record what happened with template argument deduction, so 2605 // that we can give the user a beautiful diagnostic. 2606 (void)Result; 2607 return; 2608 } 2609 2610 // Add the conversion function template specialization produced by 2611 // template argument deduction as a candidate. 2612 assert(Specialization && "Missing function template specialization?"); 2613 AddConversionCandidate(Specialization, From, ToType, CandidateSet); 2614} 2615 2616/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2617/// converts the given @c Object to a function pointer via the 2618/// conversion function @c Conversion, and then attempts to call it 2619/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2620/// the type of function that we'll eventually be calling. 2621void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2622 const FunctionProtoType *Proto, 2623 Expr *Object, Expr **Args, unsigned NumArgs, 2624 OverloadCandidateSet& CandidateSet) { 2625 if (!CandidateSet.isNewCandidate(Conversion)) 2626 return; 2627 2628 CandidateSet.push_back(OverloadCandidate()); 2629 OverloadCandidate& Candidate = CandidateSet.back(); 2630 Candidate.Function = 0; 2631 Candidate.Surrogate = Conversion; 2632 Candidate.Viable = true; 2633 Candidate.IsSurrogate = true; 2634 Candidate.IgnoreObjectArgument = false; 2635 Candidate.Conversions.resize(NumArgs + 1); 2636 2637 // Determine the implicit conversion sequence for the implicit 2638 // object parameter. 2639 ImplicitConversionSequence ObjectInit 2640 = TryObjectArgumentInitialization(Object, Conversion); 2641 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { 2642 Candidate.Viable = false; 2643 return; 2644 } 2645 2646 // The first conversion is actually a user-defined conversion whose 2647 // first conversion is ObjectInit's standard conversion (which is 2648 // effectively a reference binding). Record it as such. 2649 Candidate.Conversions[0].ConversionKind 2650 = ImplicitConversionSequence::UserDefinedConversion; 2651 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2652 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2653 Candidate.Conversions[0].UserDefined.After 2654 = Candidate.Conversions[0].UserDefined.Before; 2655 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2656 2657 // Find the 2658 unsigned NumArgsInProto = Proto->getNumArgs(); 2659 2660 // (C++ 13.3.2p2): A candidate function having fewer than m 2661 // parameters is viable only if it has an ellipsis in its parameter 2662 // list (8.3.5). 2663 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2664 Candidate.Viable = false; 2665 return; 2666 } 2667 2668 // Function types don't have any default arguments, so just check if 2669 // we have enough arguments. 2670 if (NumArgs < NumArgsInProto) { 2671 // Not enough arguments. 2672 Candidate.Viable = false; 2673 return; 2674 } 2675 2676 // Determine the implicit conversion sequences for each of the 2677 // arguments. 2678 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2679 if (ArgIdx < NumArgsInProto) { 2680 // (C++ 13.3.2p3): for F to be a viable function, there shall 2681 // exist for each argument an implicit conversion sequence 2682 // (13.3.3.1) that converts that argument to the corresponding 2683 // parameter of F. 2684 QualType ParamType = Proto->getArgType(ArgIdx); 2685 Candidate.Conversions[ArgIdx + 1] 2686 = TryCopyInitialization(Args[ArgIdx], ParamType, 2687 /*SuppressUserConversions=*/false, 2688 /*ForceRValue=*/false, 2689 /*InOverloadResolution=*/false); 2690 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2691 == ImplicitConversionSequence::BadConversion) { 2692 Candidate.Viable = false; 2693 break; 2694 } 2695 } else { 2696 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2697 // argument for which there is no corresponding parameter is 2698 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2699 Candidate.Conversions[ArgIdx + 1].ConversionKind 2700 = ImplicitConversionSequence::EllipsisConversion; 2701 } 2702 } 2703} 2704 2705// FIXME: This will eventually be removed, once we've migrated all of the 2706// operator overloading logic over to the scheme used by binary operators, which 2707// works for template instantiation. 2708void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 2709 SourceLocation OpLoc, 2710 Expr **Args, unsigned NumArgs, 2711 OverloadCandidateSet& CandidateSet, 2712 SourceRange OpRange) { 2713 FunctionSet Functions; 2714 2715 QualType T1 = Args[0]->getType(); 2716 QualType T2; 2717 if (NumArgs > 1) 2718 T2 = Args[1]->getType(); 2719 2720 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2721 if (S) 2722 LookupOverloadedOperatorName(Op, S, T1, T2, Functions); 2723 ArgumentDependentLookup(OpName, Args, NumArgs, Functions); 2724 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); 2725 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); 2726 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet); 2727} 2728 2729/// \brief Add overload candidates for overloaded operators that are 2730/// member functions. 2731/// 2732/// Add the overloaded operator candidates that are member functions 2733/// for the operator Op that was used in an operator expression such 2734/// as "x Op y". , Args/NumArgs provides the operator arguments, and 2735/// CandidateSet will store the added overload candidates. (C++ 2736/// [over.match.oper]). 2737void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 2738 SourceLocation OpLoc, 2739 Expr **Args, unsigned NumArgs, 2740 OverloadCandidateSet& CandidateSet, 2741 SourceRange OpRange) { 2742 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2743 2744 // C++ [over.match.oper]p3: 2745 // For a unary operator @ with an operand of a type whose 2746 // cv-unqualified version is T1, and for a binary operator @ with 2747 // a left operand of a type whose cv-unqualified version is T1 and 2748 // a right operand of a type whose cv-unqualified version is T2, 2749 // three sets of candidate functions, designated member 2750 // candidates, non-member candidates and built-in candidates, are 2751 // constructed as follows: 2752 QualType T1 = Args[0]->getType(); 2753 QualType T2; 2754 if (NumArgs > 1) 2755 T2 = Args[1]->getType(); 2756 2757 // -- If T1 is a class type, the set of member candidates is the 2758 // result of the qualified lookup of T1::operator@ 2759 // (13.3.1.1.1); otherwise, the set of member candidates is 2760 // empty. 2761 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 2762 // Complete the type if it can be completed. Otherwise, we're done. 2763 if (RequireCompleteType(OpLoc, T1, PDiag())) 2764 return; 2765 2766 LookupResult Operators; 2767 LookupQualifiedName(Operators, T1Rec->getDecl(), OpName, 2768 LookupOrdinaryName, false); 2769 for (LookupResult::iterator Oper = Operators.begin(), 2770 OperEnd = Operators.end(); 2771 Oper != OperEnd; 2772 ++Oper) { 2773 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Oper)) { 2774 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet, 2775 /*SuppressUserConversions=*/false); 2776 continue; 2777 } 2778 2779 assert(isa<FunctionTemplateDecl>(*Oper) && 2780 isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(*Oper) 2781 ->getTemplatedDecl()) && 2782 "Expected a member function template"); 2783 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Oper), false, 0, 0, 2784 Args[0], Args+1, NumArgs - 1, CandidateSet, 2785 /*SuppressUserConversions=*/false); 2786 } 2787 } 2788} 2789 2790/// AddBuiltinCandidate - Add a candidate for a built-in 2791/// operator. ResultTy and ParamTys are the result and parameter types 2792/// of the built-in candidate, respectively. Args and NumArgs are the 2793/// arguments being passed to the candidate. IsAssignmentOperator 2794/// should be true when this built-in candidate is an assignment 2795/// operator. NumContextualBoolArguments is the number of arguments 2796/// (at the beginning of the argument list) that will be contextually 2797/// converted to bool. 2798void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 2799 Expr **Args, unsigned NumArgs, 2800 OverloadCandidateSet& CandidateSet, 2801 bool IsAssignmentOperator, 2802 unsigned NumContextualBoolArguments) { 2803 // Add this candidate 2804 CandidateSet.push_back(OverloadCandidate()); 2805 OverloadCandidate& Candidate = CandidateSet.back(); 2806 Candidate.Function = 0; 2807 Candidate.IsSurrogate = false; 2808 Candidate.IgnoreObjectArgument = false; 2809 Candidate.BuiltinTypes.ResultTy = ResultTy; 2810 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 2811 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 2812 2813 // Determine the implicit conversion sequences for each of the 2814 // arguments. 2815 Candidate.Viable = true; 2816 Candidate.Conversions.resize(NumArgs); 2817 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2818 // C++ [over.match.oper]p4: 2819 // For the built-in assignment operators, conversions of the 2820 // left operand are restricted as follows: 2821 // -- no temporaries are introduced to hold the left operand, and 2822 // -- no user-defined conversions are applied to the left 2823 // operand to achieve a type match with the left-most 2824 // parameter of a built-in candidate. 2825 // 2826 // We block these conversions by turning off user-defined 2827 // conversions, since that is the only way that initialization of 2828 // a reference to a non-class type can occur from something that 2829 // is not of the same type. 2830 if (ArgIdx < NumContextualBoolArguments) { 2831 assert(ParamTys[ArgIdx] == Context.BoolTy && 2832 "Contextual conversion to bool requires bool type"); 2833 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 2834 } else { 2835 Candidate.Conversions[ArgIdx] 2836 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 2837 ArgIdx == 0 && IsAssignmentOperator, 2838 /*ForceRValue=*/false, 2839 /*InOverloadResolution=*/false); 2840 } 2841 if (Candidate.Conversions[ArgIdx].ConversionKind 2842 == ImplicitConversionSequence::BadConversion) { 2843 Candidate.Viable = false; 2844 break; 2845 } 2846 } 2847} 2848 2849/// BuiltinCandidateTypeSet - A set of types that will be used for the 2850/// candidate operator functions for built-in operators (C++ 2851/// [over.built]). The types are separated into pointer types and 2852/// enumeration types. 2853class BuiltinCandidateTypeSet { 2854 /// TypeSet - A set of types. 2855 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 2856 2857 /// PointerTypes - The set of pointer types that will be used in the 2858 /// built-in candidates. 2859 TypeSet PointerTypes; 2860 2861 /// MemberPointerTypes - The set of member pointer types that will be 2862 /// used in the built-in candidates. 2863 TypeSet MemberPointerTypes; 2864 2865 /// EnumerationTypes - The set of enumeration types that will be 2866 /// used in the built-in candidates. 2867 TypeSet EnumerationTypes; 2868 2869 /// Sema - The semantic analysis instance where we are building the 2870 /// candidate type set. 2871 Sema &SemaRef; 2872 2873 /// Context - The AST context in which we will build the type sets. 2874 ASTContext &Context; 2875 2876 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 2877 const Qualifiers &VisibleQuals); 2878 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 2879 2880public: 2881 /// iterator - Iterates through the types that are part of the set. 2882 typedef TypeSet::iterator iterator; 2883 2884 BuiltinCandidateTypeSet(Sema &SemaRef) 2885 : SemaRef(SemaRef), Context(SemaRef.Context) { } 2886 2887 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions, 2888 bool AllowExplicitConversions, 2889 const Qualifiers &VisibleTypeConversionsQuals); 2890 2891 /// pointer_begin - First pointer type found; 2892 iterator pointer_begin() { return PointerTypes.begin(); } 2893 2894 /// pointer_end - Past the last pointer type found; 2895 iterator pointer_end() { return PointerTypes.end(); } 2896 2897 /// member_pointer_begin - First member pointer type found; 2898 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 2899 2900 /// member_pointer_end - Past the last member pointer type found; 2901 iterator member_pointer_end() { return MemberPointerTypes.end(); } 2902 2903 /// enumeration_begin - First enumeration type found; 2904 iterator enumeration_begin() { return EnumerationTypes.begin(); } 2905 2906 /// enumeration_end - Past the last enumeration type found; 2907 iterator enumeration_end() { return EnumerationTypes.end(); } 2908}; 2909 2910/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 2911/// the set of pointer types along with any more-qualified variants of 2912/// that type. For example, if @p Ty is "int const *", this routine 2913/// will add "int const *", "int const volatile *", "int const 2914/// restrict *", and "int const volatile restrict *" to the set of 2915/// pointer types. Returns true if the add of @p Ty itself succeeded, 2916/// false otherwise. 2917/// 2918/// FIXME: what to do about extended qualifiers? 2919bool 2920BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty 2921 ,const Qualifiers &VisibleQuals) { 2922 2923 // Insert this type. 2924 if (!PointerTypes.insert(Ty)) 2925 return false; 2926 2927 const PointerType *PointerTy = Ty->getAs<PointerType>(); 2928 assert(PointerTy && "type was not a pointer type!"); 2929 2930 QualType PointeeTy = PointerTy->getPointeeType(); 2931 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 2932 bool hasVolatile = VisibleQuals.hasVolatile(); 2933 bool hasRestrict = VisibleQuals.hasRestrict(); 2934 2935 // Iterate through all strict supersets of BaseCVR. 2936 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 2937 if ((CVR | BaseCVR) != CVR) continue; 2938 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 2939 // in the types. 2940 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 2941 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 2942 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 2943 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 2944 } 2945 2946 return true; 2947} 2948 2949/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 2950/// to the set of pointer types along with any more-qualified variants of 2951/// that type. For example, if @p Ty is "int const *", this routine 2952/// will add "int const *", "int const volatile *", "int const 2953/// restrict *", and "int const volatile restrict *" to the set of 2954/// pointer types. Returns true if the add of @p Ty itself succeeded, 2955/// false otherwise. 2956/// 2957/// FIXME: what to do about extended qualifiers? 2958bool 2959BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 2960 QualType Ty) { 2961 // Insert this type. 2962 if (!MemberPointerTypes.insert(Ty)) 2963 return false; 2964 2965 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 2966 assert(PointerTy && "type was not a member pointer type!"); 2967 2968 QualType PointeeTy = PointerTy->getPointeeType(); 2969 const Type *ClassTy = PointerTy->getClass(); 2970 2971 // Iterate through all strict supersets of the pointee type's CVR 2972 // qualifiers. 2973 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 2974 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 2975 if ((CVR | BaseCVR) != CVR) continue; 2976 2977 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 2978 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 2979 } 2980 2981 return true; 2982} 2983 2984/// AddTypesConvertedFrom - Add each of the types to which the type @p 2985/// Ty can be implicit converted to the given set of @p Types. We're 2986/// primarily interested in pointer types and enumeration types. We also 2987/// take member pointer types, for the conditional operator. 2988/// AllowUserConversions is true if we should look at the conversion 2989/// functions of a class type, and AllowExplicitConversions if we 2990/// should also include the explicit conversion functions of a class 2991/// type. 2992void 2993BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 2994 bool AllowUserConversions, 2995 bool AllowExplicitConversions, 2996 const Qualifiers &VisibleQuals) { 2997 // Only deal with canonical types. 2998 Ty = Context.getCanonicalType(Ty); 2999 3000 // Look through reference types; they aren't part of the type of an 3001 // expression for the purposes of conversions. 3002 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3003 Ty = RefTy->getPointeeType(); 3004 3005 // We don't care about qualifiers on the type. 3006 Ty = Ty.getUnqualifiedType(); 3007 3008 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3009 QualType PointeeTy = PointerTy->getPointeeType(); 3010 3011 // Insert our type, and its more-qualified variants, into the set 3012 // of types. 3013 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3014 return; 3015 3016 // Add 'cv void*' to our set of types. 3017 if (!Ty->isVoidType()) { 3018 QualType QualVoid 3019 = Context.getCVRQualifiedType(Context.VoidTy, 3020 PointeeTy.getCVRQualifiers()); 3021 AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid), 3022 VisibleQuals); 3023 } 3024 3025 // If this is a pointer to a class type, add pointers to its bases 3026 // (with the same level of cv-qualification as the original 3027 // derived class, of course). 3028 if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) { 3029 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl()); 3030 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); 3031 Base != ClassDecl->bases_end(); ++Base) { 3032 QualType BaseTy = Context.getCanonicalType(Base->getType()); 3033 BaseTy = Context.getCVRQualifiedType(BaseTy.getUnqualifiedType(), 3034 PointeeTy.getCVRQualifiers()); 3035 // Add the pointer type, recursively, so that we get all of 3036 // the indirect base classes, too. 3037 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false, 3038 VisibleQuals); 3039 } 3040 } 3041 } else if (Ty->isMemberPointerType()) { 3042 // Member pointers are far easier, since the pointee can't be converted. 3043 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3044 return; 3045 } else if (Ty->isEnumeralType()) { 3046 EnumerationTypes.insert(Ty); 3047 } else if (AllowUserConversions) { 3048 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3049 if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) { 3050 // No conversion functions in incomplete types. 3051 return; 3052 } 3053 3054 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3055 OverloadedFunctionDecl *Conversions 3056 = ClassDecl->getVisibleConversionFunctions(); 3057 for (OverloadedFunctionDecl::function_iterator Func 3058 = Conversions->function_begin(); 3059 Func != Conversions->function_end(); ++Func) { 3060 CXXConversionDecl *Conv; 3061 FunctionTemplateDecl *ConvTemplate; 3062 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 3063 3064 // Skip conversion function templates; they don't tell us anything 3065 // about which builtin types we can convert to. 3066 if (ConvTemplate) 3067 continue; 3068 3069 if (AllowExplicitConversions || !Conv->isExplicit()) { 3070 AddTypesConvertedFrom(Conv->getConversionType(), false, false, 3071 VisibleQuals); 3072 } 3073 } 3074 } 3075 } 3076} 3077 3078/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 3079/// the volatile- and non-volatile-qualified assignment operators for the 3080/// given type to the candidate set. 3081static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 3082 QualType T, 3083 Expr **Args, 3084 unsigned NumArgs, 3085 OverloadCandidateSet &CandidateSet) { 3086 QualType ParamTypes[2]; 3087 3088 // T& operator=(T&, T) 3089 ParamTypes[0] = S.Context.getLValueReferenceType(T); 3090 ParamTypes[1] = T; 3091 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3092 /*IsAssignmentOperator=*/true); 3093 3094 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 3095 // volatile T& operator=(volatile T&, T) 3096 ParamTypes[0] 3097 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 3098 ParamTypes[1] = T; 3099 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3100 /*IsAssignmentOperator=*/true); 3101 } 3102} 3103 3104/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers 3105/// , if any, found in visible type conversion functions found in ArgExpr's 3106/// type. 3107static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 3108 Qualifiers VRQuals; 3109 const RecordType *TyRec; 3110 if (const MemberPointerType *RHSMPType = 3111 ArgExpr->getType()->getAs<MemberPointerType>()) 3112 TyRec = cast<RecordType>(RHSMPType->getClass()); 3113 else 3114 TyRec = ArgExpr->getType()->getAs<RecordType>(); 3115 if (!TyRec) { 3116 // Just to be safe, assume the worst case. 3117 VRQuals.addVolatile(); 3118 VRQuals.addRestrict(); 3119 return VRQuals; 3120 } 3121 3122 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3123 OverloadedFunctionDecl *Conversions = 3124 ClassDecl->getVisibleConversionFunctions(); 3125 3126 for (OverloadedFunctionDecl::function_iterator Func 3127 = Conversions->function_begin(); 3128 Func != Conversions->function_end(); ++Func) { 3129 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*Func)) { 3130 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 3131 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 3132 CanTy = ResTypeRef->getPointeeType(); 3133 // Need to go down the pointer/mempointer chain and add qualifiers 3134 // as see them. 3135 bool done = false; 3136 while (!done) { 3137 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 3138 CanTy = ResTypePtr->getPointeeType(); 3139 else if (const MemberPointerType *ResTypeMPtr = 3140 CanTy->getAs<MemberPointerType>()) 3141 CanTy = ResTypeMPtr->getPointeeType(); 3142 else 3143 done = true; 3144 if (CanTy.isVolatileQualified()) 3145 VRQuals.addVolatile(); 3146 if (CanTy.isRestrictQualified()) 3147 VRQuals.addRestrict(); 3148 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 3149 return VRQuals; 3150 } 3151 } 3152 } 3153 return VRQuals; 3154} 3155 3156/// AddBuiltinOperatorCandidates - Add the appropriate built-in 3157/// operator overloads to the candidate set (C++ [over.built]), based 3158/// on the operator @p Op and the arguments given. For example, if the 3159/// operator is a binary '+', this routine might add "int 3160/// operator+(int, int)" to cover integer addition. 3161void 3162Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 3163 Expr **Args, unsigned NumArgs, 3164 OverloadCandidateSet& CandidateSet) { 3165 // The set of "promoted arithmetic types", which are the arithmetic 3166 // types are that preserved by promotion (C++ [over.built]p2). Note 3167 // that the first few of these types are the promoted integral 3168 // types; these types need to be first. 3169 // FIXME: What about complex? 3170 const unsigned FirstIntegralType = 0; 3171 const unsigned LastIntegralType = 13; 3172 const unsigned FirstPromotedIntegralType = 7, 3173 LastPromotedIntegralType = 13; 3174 const unsigned FirstPromotedArithmeticType = 7, 3175 LastPromotedArithmeticType = 16; 3176 const unsigned NumArithmeticTypes = 16; 3177 QualType ArithmeticTypes[NumArithmeticTypes] = { 3178 Context.BoolTy, Context.CharTy, Context.WCharTy, 3179// FIXME: Context.Char16Ty, Context.Char32Ty, 3180 Context.SignedCharTy, Context.ShortTy, 3181 Context.UnsignedCharTy, Context.UnsignedShortTy, 3182 Context.IntTy, Context.LongTy, Context.LongLongTy, 3183 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 3184 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 3185 }; 3186 3187 // Find all of the types that the arguments can convert to, but only 3188 // if the operator we're looking at has built-in operator candidates 3189 // that make use of these types. 3190 Qualifiers VisibleTypeConversionsQuals; 3191 VisibleTypeConversionsQuals.addConst(); 3192 BuiltinCandidateTypeSet CandidateTypes(*this); 3193 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 3194 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 3195 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 3196 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 3197 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 3198 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 3199 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3200 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 3201 3202 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3203 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 3204 true, 3205 (Op == OO_Exclaim || 3206 Op == OO_AmpAmp || 3207 Op == OO_PipePipe), 3208 VisibleTypeConversionsQuals); 3209 } 3210 3211 bool isComparison = false; 3212 switch (Op) { 3213 case OO_None: 3214 case NUM_OVERLOADED_OPERATORS: 3215 assert(false && "Expected an overloaded operator"); 3216 break; 3217 3218 case OO_Star: // '*' is either unary or binary 3219 if (NumArgs == 1) 3220 goto UnaryStar; 3221 else 3222 goto BinaryStar; 3223 break; 3224 3225 case OO_Plus: // '+' is either unary or binary 3226 if (NumArgs == 1) 3227 goto UnaryPlus; 3228 else 3229 goto BinaryPlus; 3230 break; 3231 3232 case OO_Minus: // '-' is either unary or binary 3233 if (NumArgs == 1) 3234 goto UnaryMinus; 3235 else 3236 goto BinaryMinus; 3237 break; 3238 3239 case OO_Amp: // '&' is either unary or binary 3240 if (NumArgs == 1) 3241 goto UnaryAmp; 3242 else 3243 goto BinaryAmp; 3244 3245 case OO_PlusPlus: 3246 case OO_MinusMinus: 3247 // C++ [over.built]p3: 3248 // 3249 // For every pair (T, VQ), where T is an arithmetic type, and VQ 3250 // is either volatile or empty, there exist candidate operator 3251 // functions of the form 3252 // 3253 // VQ T& operator++(VQ T&); 3254 // T operator++(VQ T&, int); 3255 // 3256 // C++ [over.built]p4: 3257 // 3258 // For every pair (T, VQ), where T is an arithmetic type other 3259 // than bool, and VQ is either volatile or empty, there exist 3260 // candidate operator functions of the form 3261 // 3262 // VQ T& operator--(VQ T&); 3263 // T operator--(VQ T&, int); 3264 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 3265 Arith < NumArithmeticTypes; ++Arith) { 3266 QualType ArithTy = ArithmeticTypes[Arith]; 3267 QualType ParamTypes[2] 3268 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 3269 3270 // Non-volatile version. 3271 if (NumArgs == 1) 3272 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3273 else 3274 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3275 // heuristic to reduce number of builtin candidates in the set. 3276 // Add volatile version only if there are conversions to a volatile type. 3277 if (VisibleTypeConversionsQuals.hasVolatile()) { 3278 // Volatile version 3279 ParamTypes[0] 3280 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 3281 if (NumArgs == 1) 3282 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3283 else 3284 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3285 } 3286 } 3287 3288 // C++ [over.built]p5: 3289 // 3290 // For every pair (T, VQ), where T is a cv-qualified or 3291 // cv-unqualified object type, and VQ is either volatile or 3292 // empty, there exist candidate operator functions of the form 3293 // 3294 // T*VQ& operator++(T*VQ&); 3295 // T*VQ& operator--(T*VQ&); 3296 // T* operator++(T*VQ&, int); 3297 // T* operator--(T*VQ&, int); 3298 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3299 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3300 // Skip pointer types that aren't pointers to object types. 3301 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 3302 continue; 3303 3304 QualType ParamTypes[2] = { 3305 Context.getLValueReferenceType(*Ptr), Context.IntTy 3306 }; 3307 3308 // Without volatile 3309 if (NumArgs == 1) 3310 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3311 else 3312 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3313 3314 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3315 VisibleTypeConversionsQuals.hasVolatile()) { 3316 // With volatile 3317 ParamTypes[0] 3318 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3319 if (NumArgs == 1) 3320 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3321 else 3322 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3323 } 3324 } 3325 break; 3326 3327 UnaryStar: 3328 // C++ [over.built]p6: 3329 // For every cv-qualified or cv-unqualified object type T, there 3330 // exist candidate operator functions of the form 3331 // 3332 // T& operator*(T*); 3333 // 3334 // C++ [over.built]p7: 3335 // For every function type T, there exist candidate operator 3336 // functions of the form 3337 // T& operator*(T*); 3338 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3339 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3340 QualType ParamTy = *Ptr; 3341 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 3342 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 3343 &ParamTy, Args, 1, CandidateSet); 3344 } 3345 break; 3346 3347 UnaryPlus: 3348 // C++ [over.built]p8: 3349 // For every type T, there exist candidate operator functions of 3350 // the form 3351 // 3352 // T* operator+(T*); 3353 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3354 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3355 QualType ParamTy = *Ptr; 3356 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 3357 } 3358 3359 // Fall through 3360 3361 UnaryMinus: 3362 // C++ [over.built]p9: 3363 // For every promoted arithmetic type T, there exist candidate 3364 // operator functions of the form 3365 // 3366 // T operator+(T); 3367 // T operator-(T); 3368 for (unsigned Arith = FirstPromotedArithmeticType; 3369 Arith < LastPromotedArithmeticType; ++Arith) { 3370 QualType ArithTy = ArithmeticTypes[Arith]; 3371 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 3372 } 3373 break; 3374 3375 case OO_Tilde: 3376 // C++ [over.built]p10: 3377 // For every promoted integral type T, there exist candidate 3378 // operator functions of the form 3379 // 3380 // T operator~(T); 3381 for (unsigned Int = FirstPromotedIntegralType; 3382 Int < LastPromotedIntegralType; ++Int) { 3383 QualType IntTy = ArithmeticTypes[Int]; 3384 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 3385 } 3386 break; 3387 3388 case OO_New: 3389 case OO_Delete: 3390 case OO_Array_New: 3391 case OO_Array_Delete: 3392 case OO_Call: 3393 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 3394 break; 3395 3396 case OO_Comma: 3397 UnaryAmp: 3398 case OO_Arrow: 3399 // C++ [over.match.oper]p3: 3400 // -- For the operator ',', the unary operator '&', or the 3401 // operator '->', the built-in candidates set is empty. 3402 break; 3403 3404 case OO_EqualEqual: 3405 case OO_ExclaimEqual: 3406 // C++ [over.match.oper]p16: 3407 // For every pointer to member type T, there exist candidate operator 3408 // functions of the form 3409 // 3410 // bool operator==(T,T); 3411 // bool operator!=(T,T); 3412 for (BuiltinCandidateTypeSet::iterator 3413 MemPtr = CandidateTypes.member_pointer_begin(), 3414 MemPtrEnd = CandidateTypes.member_pointer_end(); 3415 MemPtr != MemPtrEnd; 3416 ++MemPtr) { 3417 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 3418 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3419 } 3420 3421 // Fall through 3422 3423 case OO_Less: 3424 case OO_Greater: 3425 case OO_LessEqual: 3426 case OO_GreaterEqual: 3427 // C++ [over.built]p15: 3428 // 3429 // For every pointer or enumeration type T, there exist 3430 // candidate operator functions of the form 3431 // 3432 // bool operator<(T, T); 3433 // bool operator>(T, T); 3434 // bool operator<=(T, T); 3435 // bool operator>=(T, T); 3436 // bool operator==(T, T); 3437 // bool operator!=(T, T); 3438 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3439 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3440 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3441 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3442 } 3443 for (BuiltinCandidateTypeSet::iterator Enum 3444 = CandidateTypes.enumeration_begin(); 3445 Enum != CandidateTypes.enumeration_end(); ++Enum) { 3446 QualType ParamTypes[2] = { *Enum, *Enum }; 3447 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3448 } 3449 3450 // Fall through. 3451 isComparison = true; 3452 3453 BinaryPlus: 3454 BinaryMinus: 3455 if (!isComparison) { 3456 // We didn't fall through, so we must have OO_Plus or OO_Minus. 3457 3458 // C++ [over.built]p13: 3459 // 3460 // For every cv-qualified or cv-unqualified object type T 3461 // there exist candidate operator functions of the form 3462 // 3463 // T* operator+(T*, ptrdiff_t); 3464 // T& operator[](T*, ptrdiff_t); [BELOW] 3465 // T* operator-(T*, ptrdiff_t); 3466 // T* operator+(ptrdiff_t, T*); 3467 // T& operator[](ptrdiff_t, T*); [BELOW] 3468 // 3469 // C++ [over.built]p14: 3470 // 3471 // For every T, where T is a pointer to object type, there 3472 // exist candidate operator functions of the form 3473 // 3474 // ptrdiff_t operator-(T, T); 3475 for (BuiltinCandidateTypeSet::iterator Ptr 3476 = CandidateTypes.pointer_begin(); 3477 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3478 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3479 3480 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 3481 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3482 3483 if (Op == OO_Plus) { 3484 // T* operator+(ptrdiff_t, T*); 3485 ParamTypes[0] = ParamTypes[1]; 3486 ParamTypes[1] = *Ptr; 3487 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3488 } else { 3489 // ptrdiff_t operator-(T, T); 3490 ParamTypes[1] = *Ptr; 3491 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 3492 Args, 2, CandidateSet); 3493 } 3494 } 3495 } 3496 // Fall through 3497 3498 case OO_Slash: 3499 BinaryStar: 3500 Conditional: 3501 // C++ [over.built]p12: 3502 // 3503 // For every pair of promoted arithmetic types L and R, there 3504 // exist candidate operator functions of the form 3505 // 3506 // LR operator*(L, R); 3507 // LR operator/(L, R); 3508 // LR operator+(L, R); 3509 // LR operator-(L, R); 3510 // bool operator<(L, R); 3511 // bool operator>(L, R); 3512 // bool operator<=(L, R); 3513 // bool operator>=(L, R); 3514 // bool operator==(L, R); 3515 // bool operator!=(L, R); 3516 // 3517 // where LR is the result of the usual arithmetic conversions 3518 // between types L and R. 3519 // 3520 // C++ [over.built]p24: 3521 // 3522 // For every pair of promoted arithmetic types L and R, there exist 3523 // candidate operator functions of the form 3524 // 3525 // LR operator?(bool, L, R); 3526 // 3527 // where LR is the result of the usual arithmetic conversions 3528 // between types L and R. 3529 // Our candidates ignore the first parameter. 3530 for (unsigned Left = FirstPromotedArithmeticType; 3531 Left < LastPromotedArithmeticType; ++Left) { 3532 for (unsigned Right = FirstPromotedArithmeticType; 3533 Right < LastPromotedArithmeticType; ++Right) { 3534 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3535 QualType Result 3536 = isComparison 3537 ? Context.BoolTy 3538 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3539 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3540 } 3541 } 3542 break; 3543 3544 case OO_Percent: 3545 BinaryAmp: 3546 case OO_Caret: 3547 case OO_Pipe: 3548 case OO_LessLess: 3549 case OO_GreaterGreater: 3550 // C++ [over.built]p17: 3551 // 3552 // For every pair of promoted integral types L and R, there 3553 // exist candidate operator functions of the form 3554 // 3555 // LR operator%(L, R); 3556 // LR operator&(L, R); 3557 // LR operator^(L, R); 3558 // LR operator|(L, R); 3559 // L operator<<(L, R); 3560 // L operator>>(L, R); 3561 // 3562 // where LR is the result of the usual arithmetic conversions 3563 // between types L and R. 3564 for (unsigned Left = FirstPromotedIntegralType; 3565 Left < LastPromotedIntegralType; ++Left) { 3566 for (unsigned Right = FirstPromotedIntegralType; 3567 Right < LastPromotedIntegralType; ++Right) { 3568 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3569 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 3570 ? LandR[0] 3571 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3572 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3573 } 3574 } 3575 break; 3576 3577 case OO_Equal: 3578 // C++ [over.built]p20: 3579 // 3580 // For every pair (T, VQ), where T is an enumeration or 3581 // pointer to member type and VQ is either volatile or 3582 // empty, there exist candidate operator functions of the form 3583 // 3584 // VQ T& operator=(VQ T&, T); 3585 for (BuiltinCandidateTypeSet::iterator 3586 Enum = CandidateTypes.enumeration_begin(), 3587 EnumEnd = CandidateTypes.enumeration_end(); 3588 Enum != EnumEnd; ++Enum) 3589 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 3590 CandidateSet); 3591 for (BuiltinCandidateTypeSet::iterator 3592 MemPtr = CandidateTypes.member_pointer_begin(), 3593 MemPtrEnd = CandidateTypes.member_pointer_end(); 3594 MemPtr != MemPtrEnd; ++MemPtr) 3595 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 3596 CandidateSet); 3597 // Fall through. 3598 3599 case OO_PlusEqual: 3600 case OO_MinusEqual: 3601 // C++ [over.built]p19: 3602 // 3603 // For every pair (T, VQ), where T is any type and VQ is either 3604 // volatile or empty, there exist candidate operator functions 3605 // of the form 3606 // 3607 // T*VQ& operator=(T*VQ&, T*); 3608 // 3609 // C++ [over.built]p21: 3610 // 3611 // For every pair (T, VQ), where T is a cv-qualified or 3612 // cv-unqualified object type and VQ is either volatile or 3613 // empty, there exist candidate operator functions of the form 3614 // 3615 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 3616 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 3617 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3618 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3619 QualType ParamTypes[2]; 3620 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 3621 3622 // non-volatile version 3623 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 3624 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3625 /*IsAssigmentOperator=*/Op == OO_Equal); 3626 3627 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) { 3628 // volatile version 3629 ParamTypes[0] 3630 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3631 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3632 /*IsAssigmentOperator=*/Op == OO_Equal); 3633 } 3634 } 3635 // Fall through. 3636 3637 case OO_StarEqual: 3638 case OO_SlashEqual: 3639 // C++ [over.built]p18: 3640 // 3641 // For every triple (L, VQ, R), where L is an arithmetic type, 3642 // VQ is either volatile or empty, and R is a promoted 3643 // arithmetic type, there exist candidate operator functions of 3644 // the form 3645 // 3646 // VQ L& operator=(VQ L&, R); 3647 // VQ L& operator*=(VQ L&, R); 3648 // VQ L& operator/=(VQ L&, R); 3649 // VQ L& operator+=(VQ L&, R); 3650 // VQ L& operator-=(VQ L&, R); 3651 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3652 for (unsigned Right = FirstPromotedArithmeticType; 3653 Right < LastPromotedArithmeticType; ++Right) { 3654 QualType ParamTypes[2]; 3655 ParamTypes[1] = ArithmeticTypes[Right]; 3656 3657 // Add this built-in operator as a candidate (VQ is empty). 3658 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3659 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3660 /*IsAssigmentOperator=*/Op == OO_Equal); 3661 3662 // Add this built-in operator as a candidate (VQ is 'volatile'). 3663 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 3664 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3665 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3666 /*IsAssigmentOperator=*/Op == OO_Equal); 3667 } 3668 } 3669 break; 3670 3671 case OO_PercentEqual: 3672 case OO_LessLessEqual: 3673 case OO_GreaterGreaterEqual: 3674 case OO_AmpEqual: 3675 case OO_CaretEqual: 3676 case OO_PipeEqual: 3677 // C++ [over.built]p22: 3678 // 3679 // For every triple (L, VQ, R), where L is an integral type, VQ 3680 // is either volatile or empty, and R is a promoted integral 3681 // type, there exist candidate operator functions of the form 3682 // 3683 // VQ L& operator%=(VQ L&, R); 3684 // VQ L& operator<<=(VQ L&, R); 3685 // VQ L& operator>>=(VQ L&, R); 3686 // VQ L& operator&=(VQ L&, R); 3687 // VQ L& operator^=(VQ L&, R); 3688 // VQ L& operator|=(VQ L&, R); 3689 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 3690 for (unsigned Right = FirstPromotedIntegralType; 3691 Right < LastPromotedIntegralType; ++Right) { 3692 QualType ParamTypes[2]; 3693 ParamTypes[1] = ArithmeticTypes[Right]; 3694 3695 // Add this built-in operator as a candidate (VQ is empty). 3696 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3697 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3698 3699 // Add this built-in operator as a candidate (VQ is 'volatile'). 3700 ParamTypes[0] = ArithmeticTypes[Left]; 3701 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 3702 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3703 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3704 } 3705 } 3706 break; 3707 3708 case OO_Exclaim: { 3709 // C++ [over.operator]p23: 3710 // 3711 // There also exist candidate operator functions of the form 3712 // 3713 // bool operator!(bool); 3714 // bool operator&&(bool, bool); [BELOW] 3715 // bool operator||(bool, bool); [BELOW] 3716 QualType ParamTy = Context.BoolTy; 3717 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 3718 /*IsAssignmentOperator=*/false, 3719 /*NumContextualBoolArguments=*/1); 3720 break; 3721 } 3722 3723 case OO_AmpAmp: 3724 case OO_PipePipe: { 3725 // C++ [over.operator]p23: 3726 // 3727 // There also exist candidate operator functions of the form 3728 // 3729 // bool operator!(bool); [ABOVE] 3730 // bool operator&&(bool, bool); 3731 // bool operator||(bool, bool); 3732 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 3733 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 3734 /*IsAssignmentOperator=*/false, 3735 /*NumContextualBoolArguments=*/2); 3736 break; 3737 } 3738 3739 case OO_Subscript: 3740 // C++ [over.built]p13: 3741 // 3742 // For every cv-qualified or cv-unqualified object type T there 3743 // exist candidate operator functions of the form 3744 // 3745 // T* operator+(T*, ptrdiff_t); [ABOVE] 3746 // T& operator[](T*, ptrdiff_t); 3747 // T* operator-(T*, ptrdiff_t); [ABOVE] 3748 // T* operator+(ptrdiff_t, T*); [ABOVE] 3749 // T& operator[](ptrdiff_t, T*); 3750 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3751 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3752 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3753 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 3754 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 3755 3756 // T& operator[](T*, ptrdiff_t) 3757 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3758 3759 // T& operator[](ptrdiff_t, T*); 3760 ParamTypes[0] = ParamTypes[1]; 3761 ParamTypes[1] = *Ptr; 3762 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3763 } 3764 break; 3765 3766 case OO_ArrowStar: 3767 // C++ [over.built]p11: 3768 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 3769 // C1 is the same type as C2 or is a derived class of C2, T is an object 3770 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 3771 // there exist candidate operator functions of the form 3772 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 3773 // where CV12 is the union of CV1 and CV2. 3774 { 3775 for (BuiltinCandidateTypeSet::iterator Ptr = 3776 CandidateTypes.pointer_begin(); 3777 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3778 QualType C1Ty = (*Ptr); 3779 QualType C1; 3780 QualifierCollector Q1; 3781 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 3782 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 3783 if (!isa<RecordType>(C1)) 3784 continue; 3785 // heuristic to reduce number of builtin candidates in the set. 3786 // Add volatile/restrict version only if there are conversions to a 3787 // volatile/restrict type. 3788 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 3789 continue; 3790 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 3791 continue; 3792 } 3793 for (BuiltinCandidateTypeSet::iterator 3794 MemPtr = CandidateTypes.member_pointer_begin(), 3795 MemPtrEnd = CandidateTypes.member_pointer_end(); 3796 MemPtr != MemPtrEnd; ++MemPtr) { 3797 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 3798 QualType C2 = QualType(mptr->getClass(), 0); 3799 C2 = C2.getUnqualifiedType(); 3800 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 3801 break; 3802 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 3803 // build CV12 T& 3804 QualType T = mptr->getPointeeType(); 3805 if (!VisibleTypeConversionsQuals.hasVolatile() && 3806 T.isVolatileQualified()) 3807 continue; 3808 if (!VisibleTypeConversionsQuals.hasRestrict() && 3809 T.isRestrictQualified()) 3810 continue; 3811 T = Q1.apply(T); 3812 QualType ResultTy = Context.getLValueReferenceType(T); 3813 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3814 } 3815 } 3816 } 3817 break; 3818 3819 case OO_Conditional: 3820 // Note that we don't consider the first argument, since it has been 3821 // contextually converted to bool long ago. The candidates below are 3822 // therefore added as binary. 3823 // 3824 // C++ [over.built]p24: 3825 // For every type T, where T is a pointer or pointer-to-member type, 3826 // there exist candidate operator functions of the form 3827 // 3828 // T operator?(bool, T, T); 3829 // 3830 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 3831 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 3832 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3833 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3834 } 3835 for (BuiltinCandidateTypeSet::iterator Ptr = 3836 CandidateTypes.member_pointer_begin(), 3837 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 3838 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3839 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3840 } 3841 goto Conditional; 3842 } 3843} 3844 3845/// \brief Add function candidates found via argument-dependent lookup 3846/// to the set of overloading candidates. 3847/// 3848/// This routine performs argument-dependent name lookup based on the 3849/// given function name (which may also be an operator name) and adds 3850/// all of the overload candidates found by ADL to the overload 3851/// candidate set (C++ [basic.lookup.argdep]). 3852void 3853Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 3854 Expr **Args, unsigned NumArgs, 3855 bool HasExplicitTemplateArgs, 3856 const TemplateArgument *ExplicitTemplateArgs, 3857 unsigned NumExplicitTemplateArgs, 3858 OverloadCandidateSet& CandidateSet, 3859 bool PartialOverloading) { 3860 FunctionSet Functions; 3861 3862 // FIXME: Should we be trafficking in canonical function decls throughout? 3863 3864 // Record all of the function candidates that we've already 3865 // added to the overload set, so that we don't add those same 3866 // candidates a second time. 3867 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3868 CandEnd = CandidateSet.end(); 3869 Cand != CandEnd; ++Cand) 3870 if (Cand->Function) { 3871 Functions.insert(Cand->Function); 3872 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3873 Functions.insert(FunTmpl); 3874 } 3875 3876 // FIXME: Pass in the explicit template arguments? 3877 ArgumentDependentLookup(Name, Args, NumArgs, Functions); 3878 3879 // Erase all of the candidates we already knew about. 3880 // FIXME: This is suboptimal. Is there a better way? 3881 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3882 CandEnd = CandidateSet.end(); 3883 Cand != CandEnd; ++Cand) 3884 if (Cand->Function) { 3885 Functions.erase(Cand->Function); 3886 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3887 Functions.erase(FunTmpl); 3888 } 3889 3890 // For each of the ADL candidates we found, add it to the overload 3891 // set. 3892 for (FunctionSet::iterator Func = Functions.begin(), 3893 FuncEnd = Functions.end(); 3894 Func != FuncEnd; ++Func) { 3895 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) { 3896 if (HasExplicitTemplateArgs) 3897 continue; 3898 3899 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 3900 false, false, PartialOverloading); 3901 } else 3902 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func), 3903 HasExplicitTemplateArgs, 3904 ExplicitTemplateArgs, 3905 NumExplicitTemplateArgs, 3906 Args, NumArgs, CandidateSet); 3907 } 3908} 3909 3910/// isBetterOverloadCandidate - Determines whether the first overload 3911/// candidate is a better candidate than the second (C++ 13.3.3p1). 3912bool 3913Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 3914 const OverloadCandidate& Cand2) { 3915 // Define viable functions to be better candidates than non-viable 3916 // functions. 3917 if (!Cand2.Viable) 3918 return Cand1.Viable; 3919 else if (!Cand1.Viable) 3920 return false; 3921 3922 // C++ [over.match.best]p1: 3923 // 3924 // -- if F is a static member function, ICS1(F) is defined such 3925 // that ICS1(F) is neither better nor worse than ICS1(G) for 3926 // any function G, and, symmetrically, ICS1(G) is neither 3927 // better nor worse than ICS1(F). 3928 unsigned StartArg = 0; 3929 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 3930 StartArg = 1; 3931 3932 // C++ [over.match.best]p1: 3933 // A viable function F1 is defined to be a better function than another 3934 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 3935 // conversion sequence than ICSi(F2), and then... 3936 unsigned NumArgs = Cand1.Conversions.size(); 3937 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 3938 bool HasBetterConversion = false; 3939 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 3940 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 3941 Cand2.Conversions[ArgIdx])) { 3942 case ImplicitConversionSequence::Better: 3943 // Cand1 has a better conversion sequence. 3944 HasBetterConversion = true; 3945 break; 3946 3947 case ImplicitConversionSequence::Worse: 3948 // Cand1 can't be better than Cand2. 3949 return false; 3950 3951 case ImplicitConversionSequence::Indistinguishable: 3952 // Do nothing. 3953 break; 3954 } 3955 } 3956 3957 // -- for some argument j, ICSj(F1) is a better conversion sequence than 3958 // ICSj(F2), or, if not that, 3959 if (HasBetterConversion) 3960 return true; 3961 3962 // - F1 is a non-template function and F2 is a function template 3963 // specialization, or, if not that, 3964 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 3965 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 3966 return true; 3967 3968 // -- F1 and F2 are function template specializations, and the function 3969 // template for F1 is more specialized than the template for F2 3970 // according to the partial ordering rules described in 14.5.5.2, or, 3971 // if not that, 3972 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 3973 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 3974 if (FunctionTemplateDecl *BetterTemplate 3975 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 3976 Cand2.Function->getPrimaryTemplate(), 3977 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 3978 : TPOC_Call)) 3979 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 3980 3981 // -- the context is an initialization by user-defined conversion 3982 // (see 8.5, 13.3.1.5) and the standard conversion sequence 3983 // from the return type of F1 to the destination type (i.e., 3984 // the type of the entity being initialized) is a better 3985 // conversion sequence than the standard conversion sequence 3986 // from the return type of F2 to the destination type. 3987 if (Cand1.Function && Cand2.Function && 3988 isa<CXXConversionDecl>(Cand1.Function) && 3989 isa<CXXConversionDecl>(Cand2.Function)) { 3990 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 3991 Cand2.FinalConversion)) { 3992 case ImplicitConversionSequence::Better: 3993 // Cand1 has a better conversion sequence. 3994 return true; 3995 3996 case ImplicitConversionSequence::Worse: 3997 // Cand1 can't be better than Cand2. 3998 return false; 3999 4000 case ImplicitConversionSequence::Indistinguishable: 4001 // Do nothing 4002 break; 4003 } 4004 } 4005 4006 return false; 4007} 4008 4009/// \brief Computes the best viable function (C++ 13.3.3) 4010/// within an overload candidate set. 4011/// 4012/// \param CandidateSet the set of candidate functions. 4013/// 4014/// \param Loc the location of the function name (or operator symbol) for 4015/// which overload resolution occurs. 4016/// 4017/// \param Best f overload resolution was successful or found a deleted 4018/// function, Best points to the candidate function found. 4019/// 4020/// \returns The result of overload resolution. 4021Sema::OverloadingResult 4022Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 4023 SourceLocation Loc, 4024 OverloadCandidateSet::iterator& Best) { 4025 // Find the best viable function. 4026 Best = CandidateSet.end(); 4027 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4028 Cand != CandidateSet.end(); ++Cand) { 4029 if (Cand->Viable) { 4030 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) 4031 Best = Cand; 4032 } 4033 } 4034 4035 // If we didn't find any viable functions, abort. 4036 if (Best == CandidateSet.end()) 4037 return OR_No_Viable_Function; 4038 4039 // Make sure that this function is better than every other viable 4040 // function. If not, we have an ambiguity. 4041 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4042 Cand != CandidateSet.end(); ++Cand) { 4043 if (Cand->Viable && 4044 Cand != Best && 4045 !isBetterOverloadCandidate(*Best, *Cand)) { 4046 Best = CandidateSet.end(); 4047 return OR_Ambiguous; 4048 } 4049 } 4050 4051 // Best is the best viable function. 4052 if (Best->Function && 4053 (Best->Function->isDeleted() || 4054 Best->Function->getAttr<UnavailableAttr>())) 4055 return OR_Deleted; 4056 4057 // C++ [basic.def.odr]p2: 4058 // An overloaded function is used if it is selected by overload resolution 4059 // when referred to from a potentially-evaluated expression. [Note: this 4060 // covers calls to named functions (5.2.2), operator overloading 4061 // (clause 13), user-defined conversions (12.3.2), allocation function for 4062 // placement new (5.3.4), as well as non-default initialization (8.5). 4063 if (Best->Function) 4064 MarkDeclarationReferenced(Loc, Best->Function); 4065 return OR_Success; 4066} 4067 4068/// PrintOverloadCandidates - When overload resolution fails, prints 4069/// diagnostic messages containing the candidates in the candidate 4070/// set. If OnlyViable is true, only viable candidates will be printed. 4071void 4072Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 4073 bool OnlyViable, 4074 const char *Opc, 4075 SourceLocation OpLoc) { 4076 OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4077 LastCand = CandidateSet.end(); 4078 bool Reported = false; 4079 for (; Cand != LastCand; ++Cand) { 4080 if (Cand->Viable || !OnlyViable) { 4081 if (Cand->Function) { 4082 if (Cand->Function->isDeleted() || 4083 Cand->Function->getAttr<UnavailableAttr>()) { 4084 // Deleted or "unavailable" function. 4085 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted) 4086 << Cand->Function->isDeleted(); 4087 } else if (FunctionTemplateDecl *FunTmpl 4088 = Cand->Function->getPrimaryTemplate()) { 4089 // Function template specialization 4090 // FIXME: Give a better reason! 4091 Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate) 4092 << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(), 4093 *Cand->Function->getTemplateSpecializationArgs()); 4094 } else { 4095 // Normal function 4096 bool errReported = false; 4097 if (!Cand->Viable && Cand->Conversions.size() > 0) { 4098 for (int i = Cand->Conversions.size()-1; i >= 0; i--) { 4099 const ImplicitConversionSequence &Conversion = 4100 Cand->Conversions[i]; 4101 if ((Conversion.ConversionKind != 4102 ImplicitConversionSequence::BadConversion) || 4103 Conversion.ConversionFunctionSet.size() == 0) 4104 continue; 4105 Diag(Cand->Function->getLocation(), 4106 diag::err_ovl_candidate_not_viable) << (i+1); 4107 errReported = true; 4108 for (int j = Conversion.ConversionFunctionSet.size()-1; 4109 j >= 0; j--) { 4110 FunctionDecl *Func = Conversion.ConversionFunctionSet[j]; 4111 Diag(Func->getLocation(), diag::err_ovl_candidate); 4112 } 4113 } 4114 } 4115 if (!errReported) 4116 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate); 4117 } 4118 } else if (Cand->IsSurrogate) { 4119 // Desugar the type of the surrogate down to a function type, 4120 // retaining as many typedefs as possible while still showing 4121 // the function type (and, therefore, its parameter types). 4122 QualType FnType = Cand->Surrogate->getConversionType(); 4123 bool isLValueReference = false; 4124 bool isRValueReference = false; 4125 bool isPointer = false; 4126 if (const LValueReferenceType *FnTypeRef = 4127 FnType->getAs<LValueReferenceType>()) { 4128 FnType = FnTypeRef->getPointeeType(); 4129 isLValueReference = true; 4130 } else if (const RValueReferenceType *FnTypeRef = 4131 FnType->getAs<RValueReferenceType>()) { 4132 FnType = FnTypeRef->getPointeeType(); 4133 isRValueReference = true; 4134 } 4135 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 4136 FnType = FnTypePtr->getPointeeType(); 4137 isPointer = true; 4138 } 4139 // Desugar down to a function type. 4140 FnType = QualType(FnType->getAs<FunctionType>(), 0); 4141 // Reconstruct the pointer/reference as appropriate. 4142 if (isPointer) FnType = Context.getPointerType(FnType); 4143 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType); 4144 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType); 4145 4146 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand) 4147 << FnType; 4148 } else if (OnlyViable) { 4149 assert(Cand->Conversions.size() <= 2 && 4150 "builtin-binary-operator-not-binary"); 4151 std::string TypeStr("operator"); 4152 TypeStr += Opc; 4153 TypeStr += "("; 4154 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 4155 if (Cand->Conversions.size() == 1) { 4156 TypeStr += ")"; 4157 Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr; 4158 } 4159 else { 4160 TypeStr += ", "; 4161 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 4162 TypeStr += ")"; 4163 Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr; 4164 } 4165 } 4166 else if (!Cand->Viable && !Reported) { 4167 // Non-viability might be due to ambiguous user-defined conversions, 4168 // needed for built-in operators. Report them as well, but only once 4169 // as we have typically many built-in candidates. 4170 unsigned NoOperands = Cand->Conversions.size(); 4171 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 4172 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 4173 if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion || 4174 ICS.ConversionFunctionSet.empty()) 4175 continue; 4176 if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>( 4177 Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) { 4178 QualType FromTy = 4179 QualType( 4180 static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0); 4181 Diag(OpLoc,diag::note_ambiguous_type_conversion) 4182 << FromTy << Func->getConversionType(); 4183 } 4184 for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) { 4185 FunctionDecl *Func = 4186 Cand->Conversions[ArgIdx].ConversionFunctionSet[j]; 4187 Diag(Func->getLocation(),diag::err_ovl_candidate); 4188 } 4189 } 4190 Reported = true; 4191 } 4192 } 4193 } 4194} 4195 4196/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 4197/// an overloaded function (C++ [over.over]), where @p From is an 4198/// expression with overloaded function type and @p ToType is the type 4199/// we're trying to resolve to. For example: 4200/// 4201/// @code 4202/// int f(double); 4203/// int f(int); 4204/// 4205/// int (*pfd)(double) = f; // selects f(double) 4206/// @endcode 4207/// 4208/// This routine returns the resulting FunctionDecl if it could be 4209/// resolved, and NULL otherwise. When @p Complain is true, this 4210/// routine will emit diagnostics if there is an error. 4211FunctionDecl * 4212Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 4213 bool Complain) { 4214 QualType FunctionType = ToType; 4215 bool IsMember = false; 4216 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 4217 FunctionType = ToTypePtr->getPointeeType(); 4218 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 4219 FunctionType = ToTypeRef->getPointeeType(); 4220 else if (const MemberPointerType *MemTypePtr = 4221 ToType->getAs<MemberPointerType>()) { 4222 FunctionType = MemTypePtr->getPointeeType(); 4223 IsMember = true; 4224 } 4225 4226 // We only look at pointers or references to functions. 4227 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 4228 if (!FunctionType->isFunctionType()) 4229 return 0; 4230 4231 // Find the actual overloaded function declaration. 4232 OverloadedFunctionDecl *Ovl = 0; 4233 4234 // C++ [over.over]p1: 4235 // [...] [Note: any redundant set of parentheses surrounding the 4236 // overloaded function name is ignored (5.1). ] 4237 Expr *OvlExpr = From->IgnoreParens(); 4238 4239 // C++ [over.over]p1: 4240 // [...] The overloaded function name can be preceded by the & 4241 // operator. 4242 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 4243 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 4244 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 4245 } 4246 4247 // Try to dig out the overloaded function. 4248 FunctionTemplateDecl *FunctionTemplate = 0; 4249 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) { 4250 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl()); 4251 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl()); 4252 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) { 4253 Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl()); 4254 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl()); 4255 // FIXME: Explicit template arguments 4256 } 4257 // FIXME: TemplateIdRefExpr? 4258 4259 // If there's no overloaded function declaration or function template, 4260 // we're done. 4261 if (!Ovl && !FunctionTemplate) 4262 return 0; 4263 4264 OverloadIterator Fun; 4265 if (Ovl) 4266 Fun = Ovl; 4267 else 4268 Fun = FunctionTemplate; 4269 4270 // Look through all of the overloaded functions, searching for one 4271 // whose type matches exactly. 4272 llvm::SmallPtrSet<FunctionDecl *, 4> Matches; 4273 bool FoundNonTemplateFunction = false; 4274 for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) { 4275 // C++ [over.over]p3: 4276 // Non-member functions and static member functions match 4277 // targets of type "pointer-to-function" or "reference-to-function." 4278 // Nonstatic member functions match targets of 4279 // type "pointer-to-member-function." 4280 // Note that according to DR 247, the containing class does not matter. 4281 4282 if (FunctionTemplateDecl *FunctionTemplate 4283 = dyn_cast<FunctionTemplateDecl>(*Fun)) { 4284 if (CXXMethodDecl *Method 4285 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 4286 // Skip non-static function templates when converting to pointer, and 4287 // static when converting to member pointer. 4288 if (Method->isStatic() == IsMember) 4289 continue; 4290 } else if (IsMember) 4291 continue; 4292 4293 // C++ [over.over]p2: 4294 // If the name is a function template, template argument deduction is 4295 // done (14.8.2.2), and if the argument deduction succeeds, the 4296 // resulting template argument list is used to generate a single 4297 // function template specialization, which is added to the set of 4298 // overloaded functions considered. 4299 // FIXME: We don't really want to build the specialization here, do we? 4300 FunctionDecl *Specialization = 0; 4301 TemplateDeductionInfo Info(Context); 4302 if (TemplateDeductionResult Result 4303 = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false, 4304 /*FIXME:*/0, /*FIXME:*/0, 4305 FunctionType, Specialization, Info)) { 4306 // FIXME: make a note of the failed deduction for diagnostics. 4307 (void)Result; 4308 } else { 4309 // FIXME: If the match isn't exact, shouldn't we just drop this as 4310 // a candidate? Find a testcase before changing the code. 4311 assert(FunctionType 4312 == Context.getCanonicalType(Specialization->getType())); 4313 Matches.insert( 4314 cast<FunctionDecl>(Specialization->getCanonicalDecl())); 4315 } 4316 } 4317 4318 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) { 4319 // Skip non-static functions when converting to pointer, and static 4320 // when converting to member pointer. 4321 if (Method->isStatic() == IsMember) 4322 continue; 4323 } else if (IsMember) 4324 continue; 4325 4326 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) { 4327 if (FunctionType == Context.getCanonicalType(FunDecl->getType())) { 4328 Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl())); 4329 FoundNonTemplateFunction = true; 4330 } 4331 } 4332 } 4333 4334 // If there were 0 or 1 matches, we're done. 4335 if (Matches.empty()) 4336 return 0; 4337 else if (Matches.size() == 1) { 4338 FunctionDecl *Result = *Matches.begin(); 4339 MarkDeclarationReferenced(From->getLocStart(), Result); 4340 return Result; 4341 } 4342 4343 // C++ [over.over]p4: 4344 // If more than one function is selected, [...] 4345 typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter; 4346 if (!FoundNonTemplateFunction) { 4347 // [...] and any given function template specialization F1 is 4348 // eliminated if the set contains a second function template 4349 // specialization whose function template is more specialized 4350 // than the function template of F1 according to the partial 4351 // ordering rules of 14.5.5.2. 4352 4353 // The algorithm specified above is quadratic. We instead use a 4354 // two-pass algorithm (similar to the one used to identify the 4355 // best viable function in an overload set) that identifies the 4356 // best function template (if it exists). 4357 llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(), 4358 Matches.end()); 4359 FunctionDecl *Result = 4360 getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(), 4361 TPOC_Other, From->getLocStart(), 4362 PDiag(), 4363 PDiag(diag::err_addr_ovl_ambiguous) 4364 << TemplateMatches[0]->getDeclName(), 4365 PDiag(diag::err_ovl_template_candidate)); 4366 MarkDeclarationReferenced(From->getLocStart(), Result); 4367 return Result; 4368 } 4369 4370 // [...] any function template specializations in the set are 4371 // eliminated if the set also contains a non-template function, [...] 4372 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches; 4373 for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M) 4374 if ((*M)->getPrimaryTemplate() == 0) 4375 RemainingMatches.push_back(*M); 4376 4377 // [...] After such eliminations, if any, there shall remain exactly one 4378 // selected function. 4379 if (RemainingMatches.size() == 1) { 4380 FunctionDecl *Result = RemainingMatches.front(); 4381 MarkDeclarationReferenced(From->getLocStart(), Result); 4382 return Result; 4383 } 4384 4385 // FIXME: We should probably return the same thing that BestViableFunction 4386 // returns (even if we issue the diagnostics here). 4387 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 4388 << RemainingMatches[0]->getDeclName(); 4389 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I) 4390 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate); 4391 return 0; 4392} 4393 4394/// \brief Add a single candidate to the overload set. 4395static void AddOverloadedCallCandidate(Sema &S, 4396 AnyFunctionDecl Callee, 4397 bool &ArgumentDependentLookup, 4398 bool HasExplicitTemplateArgs, 4399 const TemplateArgument *ExplicitTemplateArgs, 4400 unsigned NumExplicitTemplateArgs, 4401 Expr **Args, unsigned NumArgs, 4402 OverloadCandidateSet &CandidateSet, 4403 bool PartialOverloading) { 4404 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 4405 assert(!HasExplicitTemplateArgs && "Explicit template arguments?"); 4406 S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false, 4407 PartialOverloading); 4408 4409 if (Func->getDeclContext()->isRecord() || 4410 Func->getDeclContext()->isFunctionOrMethod()) 4411 ArgumentDependentLookup = false; 4412 return; 4413 } 4414 4415 FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee); 4416 S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs, 4417 ExplicitTemplateArgs, 4418 NumExplicitTemplateArgs, 4419 Args, NumArgs, CandidateSet); 4420 4421 if (FuncTemplate->getDeclContext()->isRecord()) 4422 ArgumentDependentLookup = false; 4423} 4424 4425/// \brief Add the overload candidates named by callee and/or found by argument 4426/// dependent lookup to the given overload set. 4427void Sema::AddOverloadedCallCandidates(NamedDecl *Callee, 4428 DeclarationName &UnqualifiedName, 4429 bool &ArgumentDependentLookup, 4430 bool HasExplicitTemplateArgs, 4431 const TemplateArgument *ExplicitTemplateArgs, 4432 unsigned NumExplicitTemplateArgs, 4433 Expr **Args, unsigned NumArgs, 4434 OverloadCandidateSet &CandidateSet, 4435 bool PartialOverloading) { 4436 // Add the functions denoted by Callee to the set of candidate 4437 // functions. While we're doing so, track whether argument-dependent 4438 // lookup still applies, per: 4439 // 4440 // C++0x [basic.lookup.argdep]p3: 4441 // Let X be the lookup set produced by unqualified lookup (3.4.1) 4442 // and let Y be the lookup set produced by argument dependent 4443 // lookup (defined as follows). If X contains 4444 // 4445 // -- a declaration of a class member, or 4446 // 4447 // -- a block-scope function declaration that is not a 4448 // using-declaration (FIXME: check for using declaration), or 4449 // 4450 // -- a declaration that is neither a function or a function 4451 // template 4452 // 4453 // then Y is empty. 4454 if (!Callee) { 4455 // Nothing to do. 4456 } else if (OverloadedFunctionDecl *Ovl 4457 = dyn_cast<OverloadedFunctionDecl>(Callee)) { 4458 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 4459 FuncEnd = Ovl->function_end(); 4460 Func != FuncEnd; ++Func) 4461 AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup, 4462 HasExplicitTemplateArgs, 4463 ExplicitTemplateArgs, NumExplicitTemplateArgs, 4464 Args, NumArgs, CandidateSet, 4465 PartialOverloading); 4466 } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee)) 4467 AddOverloadedCallCandidate(*this, 4468 AnyFunctionDecl::getFromNamedDecl(Callee), 4469 ArgumentDependentLookup, 4470 HasExplicitTemplateArgs, 4471 ExplicitTemplateArgs, NumExplicitTemplateArgs, 4472 Args, NumArgs, CandidateSet, 4473 PartialOverloading); 4474 // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than 4475 // checking dynamically. 4476 4477 if (Callee) 4478 UnqualifiedName = Callee->getDeclName(); 4479 4480 if (ArgumentDependentLookup) 4481 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs, 4482 HasExplicitTemplateArgs, 4483 ExplicitTemplateArgs, 4484 NumExplicitTemplateArgs, 4485 CandidateSet, 4486 PartialOverloading); 4487} 4488 4489/// ResolveOverloadedCallFn - Given the call expression that calls Fn 4490/// (which eventually refers to the declaration Func) and the call 4491/// arguments Args/NumArgs, attempt to resolve the function call down 4492/// to a specific function. If overload resolution succeeds, returns 4493/// the function declaration produced by overload 4494/// resolution. Otherwise, emits diagnostics, deletes all of the 4495/// arguments and Fn, and returns NULL. 4496FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee, 4497 DeclarationName UnqualifiedName, 4498 bool HasExplicitTemplateArgs, 4499 const TemplateArgument *ExplicitTemplateArgs, 4500 unsigned NumExplicitTemplateArgs, 4501 SourceLocation LParenLoc, 4502 Expr **Args, unsigned NumArgs, 4503 SourceLocation *CommaLocs, 4504 SourceLocation RParenLoc, 4505 bool &ArgumentDependentLookup) { 4506 OverloadCandidateSet CandidateSet; 4507 4508 // Add the functions denoted by Callee to the set of candidate 4509 // functions. 4510 AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup, 4511 HasExplicitTemplateArgs, ExplicitTemplateArgs, 4512 NumExplicitTemplateArgs, Args, NumArgs, 4513 CandidateSet); 4514 OverloadCandidateSet::iterator Best; 4515 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 4516 case OR_Success: 4517 return Best->Function; 4518 4519 case OR_No_Viable_Function: 4520 Diag(Fn->getSourceRange().getBegin(), 4521 diag::err_ovl_no_viable_function_in_call) 4522 << UnqualifiedName << Fn->getSourceRange(); 4523 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4524 break; 4525 4526 case OR_Ambiguous: 4527 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 4528 << UnqualifiedName << Fn->getSourceRange(); 4529 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4530 break; 4531 4532 case OR_Deleted: 4533 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 4534 << Best->Function->isDeleted() 4535 << UnqualifiedName 4536 << Fn->getSourceRange(); 4537 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4538 break; 4539 } 4540 4541 // Overload resolution failed. Destroy all of the subexpressions and 4542 // return NULL. 4543 Fn->Destroy(Context); 4544 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 4545 Args[Arg]->Destroy(Context); 4546 return 0; 4547} 4548 4549/// \brief Create a unary operation that may resolve to an overloaded 4550/// operator. 4551/// 4552/// \param OpLoc The location of the operator itself (e.g., '*'). 4553/// 4554/// \param OpcIn The UnaryOperator::Opcode that describes this 4555/// operator. 4556/// 4557/// \param Functions The set of non-member functions that will be 4558/// considered by overload resolution. The caller needs to build this 4559/// set based on the context using, e.g., 4560/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4561/// set should not contain any member functions; those will be added 4562/// by CreateOverloadedUnaryOp(). 4563/// 4564/// \param input The input argument. 4565Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, 4566 unsigned OpcIn, 4567 FunctionSet &Functions, 4568 ExprArg input) { 4569 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 4570 Expr *Input = (Expr *)input.get(); 4571 4572 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 4573 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 4574 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4575 4576 Expr *Args[2] = { Input, 0 }; 4577 unsigned NumArgs = 1; 4578 4579 // For post-increment and post-decrement, add the implicit '0' as 4580 // the second argument, so that we know this is a post-increment or 4581 // post-decrement. 4582 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 4583 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 4584 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 4585 SourceLocation()); 4586 NumArgs = 2; 4587 } 4588 4589 if (Input->isTypeDependent()) { 4590 OverloadedFunctionDecl *Overloads 4591 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4592 for (FunctionSet::iterator Func = Functions.begin(), 4593 FuncEnd = Functions.end(); 4594 Func != FuncEnd; ++Func) 4595 Overloads->addOverload(*Func); 4596 4597 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4598 OpLoc, false, false); 4599 4600 input.release(); 4601 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4602 &Args[0], NumArgs, 4603 Context.DependentTy, 4604 OpLoc)); 4605 } 4606 4607 // Build an empty overload set. 4608 OverloadCandidateSet CandidateSet; 4609 4610 // Add the candidates from the given function set. 4611 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); 4612 4613 // Add operator candidates that are member functions. 4614 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4615 4616 // Add builtin operator candidates. 4617 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet); 4618 4619 // Perform overload resolution. 4620 OverloadCandidateSet::iterator Best; 4621 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4622 case OR_Success: { 4623 // We found a built-in operator or an overloaded operator. 4624 FunctionDecl *FnDecl = Best->Function; 4625 4626 if (FnDecl) { 4627 // We matched an overloaded operator. Build a call to that 4628 // operator. 4629 4630 // Convert the arguments. 4631 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4632 if (PerformObjectArgumentInitialization(Input, Method)) 4633 return ExprError(); 4634 } else { 4635 // Convert the arguments. 4636 if (PerformCopyInitialization(Input, 4637 FnDecl->getParamDecl(0)->getType(), 4638 "passing")) 4639 return ExprError(); 4640 } 4641 4642 // Determine the result type 4643 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 4644 4645 // Build the actual expression node. 4646 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4647 SourceLocation()); 4648 UsualUnaryConversions(FnExpr); 4649 4650 input.release(); 4651 4652 ExprOwningPtr<CallExpr> TheCall(this, 4653 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4654 &Input, 1, ResultTy, OpLoc)); 4655 4656 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 4657 FnDecl)) 4658 return ExprError(); 4659 4660 return MaybeBindToTemporary(TheCall.release()); 4661 } else { 4662 // We matched a built-in operator. Convert the arguments, then 4663 // break out so that we will build the appropriate built-in 4664 // operator node. 4665 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 4666 Best->Conversions[0], "passing")) 4667 return ExprError(); 4668 4669 break; 4670 } 4671 } 4672 4673 case OR_No_Viable_Function: 4674 // No viable function; fall through to handling this as a 4675 // built-in operator, which will produce an error message for us. 4676 break; 4677 4678 case OR_Ambiguous: 4679 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4680 << UnaryOperator::getOpcodeStr(Opc) 4681 << Input->getSourceRange(); 4682 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 4683 UnaryOperator::getOpcodeStr(Opc), OpLoc); 4684 return ExprError(); 4685 4686 case OR_Deleted: 4687 Diag(OpLoc, diag::err_ovl_deleted_oper) 4688 << Best->Function->isDeleted() 4689 << UnaryOperator::getOpcodeStr(Opc) 4690 << Input->getSourceRange(); 4691 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4692 return ExprError(); 4693 } 4694 4695 // Either we found no viable overloaded operator or we matched a 4696 // built-in operator. In either case, fall through to trying to 4697 // build a built-in operation. 4698 input.release(); 4699 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 4700} 4701 4702/// \brief Create a binary operation that may resolve to an overloaded 4703/// operator. 4704/// 4705/// \param OpLoc The location of the operator itself (e.g., '+'). 4706/// 4707/// \param OpcIn The BinaryOperator::Opcode that describes this 4708/// operator. 4709/// 4710/// \param Functions The set of non-member functions that will be 4711/// considered by overload resolution. The caller needs to build this 4712/// set based on the context using, e.g., 4713/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4714/// set should not contain any member functions; those will be added 4715/// by CreateOverloadedBinOp(). 4716/// 4717/// \param LHS Left-hand argument. 4718/// \param RHS Right-hand argument. 4719Sema::OwningExprResult 4720Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 4721 unsigned OpcIn, 4722 FunctionSet &Functions, 4723 Expr *LHS, Expr *RHS) { 4724 Expr *Args[2] = { LHS, RHS }; 4725 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 4726 4727 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 4728 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 4729 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4730 4731 // If either side is type-dependent, create an appropriate dependent 4732 // expression. 4733 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 4734 // .* cannot be overloaded. 4735 if (Opc == BinaryOperator::PtrMemD) 4736 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 4737 Context.DependentTy, OpLoc)); 4738 4739 OverloadedFunctionDecl *Overloads 4740 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4741 for (FunctionSet::iterator Func = Functions.begin(), 4742 FuncEnd = Functions.end(); 4743 Func != FuncEnd; ++Func) 4744 Overloads->addOverload(*Func); 4745 4746 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4747 OpLoc, false, false); 4748 4749 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4750 Args, 2, 4751 Context.DependentTy, 4752 OpLoc)); 4753 } 4754 4755 // If this is the .* operator, which is not overloadable, just 4756 // create a built-in binary operator. 4757 if (Opc == BinaryOperator::PtrMemD) 4758 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4759 4760 // If this is one of the assignment operators, we only perform 4761 // overload resolution if the left-hand side is a class or 4762 // enumeration type (C++ [expr.ass]p3). 4763 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign && 4764 !Args[0]->getType()->isOverloadableType()) 4765 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4766 4767 // Build an empty overload set. 4768 OverloadCandidateSet CandidateSet; 4769 4770 // Add the candidates from the given function set. 4771 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); 4772 4773 // Add operator candidates that are member functions. 4774 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4775 4776 // Add builtin operator candidates. 4777 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet); 4778 4779 // Perform overload resolution. 4780 OverloadCandidateSet::iterator Best; 4781 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4782 case OR_Success: { 4783 // We found a built-in operator or an overloaded operator. 4784 FunctionDecl *FnDecl = Best->Function; 4785 4786 if (FnDecl) { 4787 // We matched an overloaded operator. Build a call to that 4788 // operator. 4789 4790 // Convert the arguments. 4791 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4792 if (PerformObjectArgumentInitialization(Args[0], Method) || 4793 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(), 4794 "passing")) 4795 return ExprError(); 4796 } else { 4797 // Convert the arguments. 4798 if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(), 4799 "passing") || 4800 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(), 4801 "passing")) 4802 return ExprError(); 4803 } 4804 4805 // Determine the result type 4806 QualType ResultTy 4807 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 4808 ResultTy = ResultTy.getNonReferenceType(); 4809 4810 // Build the actual expression node. 4811 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4812 OpLoc); 4813 UsualUnaryConversions(FnExpr); 4814 4815 ExprOwningPtr<CXXOperatorCallExpr> 4816 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4817 Args, 2, ResultTy, 4818 OpLoc)); 4819 4820 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 4821 FnDecl)) 4822 return ExprError(); 4823 4824 return MaybeBindToTemporary(TheCall.release()); 4825 } else { 4826 // We matched a built-in operator. Convert the arguments, then 4827 // break out so that we will build the appropriate built-in 4828 // operator node. 4829 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 4830 Best->Conversions[0], "passing") || 4831 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 4832 Best->Conversions[1], "passing")) 4833 return ExprError(); 4834 4835 break; 4836 } 4837 } 4838 4839 case OR_No_Viable_Function: { 4840 // C++ [over.match.oper]p9: 4841 // If the operator is the operator , [...] and there are no 4842 // viable functions, then the operator is assumed to be the 4843 // built-in operator and interpreted according to clause 5. 4844 if (Opc == BinaryOperator::Comma) 4845 break; 4846 4847 // For class as left operand for assignment or compound assigment operator 4848 // do not fall through to handling in built-in, but report that no overloaded 4849 // assignment operator found 4850 OwningExprResult Result = ExprError(); 4851 if (Args[0]->getType()->isRecordType() && 4852 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 4853 Diag(OpLoc, diag::err_ovl_no_viable_oper) 4854 << BinaryOperator::getOpcodeStr(Opc) 4855 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4856 } else { 4857 // No viable function; try to create a built-in operation, which will 4858 // produce an error. Then, show the non-viable candidates. 4859 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4860 } 4861 assert(Result.isInvalid() && 4862 "C++ binary operator overloading is missing candidates!"); 4863 if (Result.isInvalid()) 4864 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 4865 BinaryOperator::getOpcodeStr(Opc), OpLoc); 4866 return move(Result); 4867 } 4868 4869 case OR_Ambiguous: 4870 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4871 << BinaryOperator::getOpcodeStr(Opc) 4872 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4873 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 4874 BinaryOperator::getOpcodeStr(Opc), OpLoc); 4875 return ExprError(); 4876 4877 case OR_Deleted: 4878 Diag(OpLoc, diag::err_ovl_deleted_oper) 4879 << Best->Function->isDeleted() 4880 << BinaryOperator::getOpcodeStr(Opc) 4881 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4882 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4883 return ExprError(); 4884 } 4885 4886 // We matched a built-in operator; build it. 4887 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4888} 4889 4890/// BuildCallToMemberFunction - Build a call to a member 4891/// function. MemExpr is the expression that refers to the member 4892/// function (and includes the object parameter), Args/NumArgs are the 4893/// arguments to the function call (not including the object 4894/// parameter). The caller needs to validate that the member 4895/// expression refers to a member function or an overloaded member 4896/// function. 4897Sema::ExprResult 4898Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 4899 SourceLocation LParenLoc, Expr **Args, 4900 unsigned NumArgs, SourceLocation *CommaLocs, 4901 SourceLocation RParenLoc) { 4902 // Dig out the member expression. This holds both the object 4903 // argument and the member function we're referring to. 4904 MemberExpr *MemExpr = 0; 4905 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE)) 4906 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr()); 4907 else 4908 MemExpr = dyn_cast<MemberExpr>(MemExprE); 4909 assert(MemExpr && "Building member call without member expression"); 4910 4911 // Extract the object argument. 4912 Expr *ObjectArg = MemExpr->getBase(); 4913 4914 CXXMethodDecl *Method = 0; 4915 if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) || 4916 isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) { 4917 // Add overload candidates 4918 OverloadCandidateSet CandidateSet; 4919 DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName(); 4920 4921 for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd; 4922 Func != FuncEnd; ++Func) { 4923 if ((Method = dyn_cast<CXXMethodDecl>(*Func))) 4924 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet, 4925 /*SuppressUserConversions=*/false); 4926 else 4927 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func), 4928 MemExpr->hasExplicitTemplateArgumentList(), 4929 MemExpr->getTemplateArgs(), 4930 MemExpr->getNumTemplateArgs(), 4931 ObjectArg, Args, NumArgs, 4932 CandidateSet, 4933 /*SuppressUsedConversions=*/false); 4934 } 4935 4936 OverloadCandidateSet::iterator Best; 4937 switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) { 4938 case OR_Success: 4939 Method = cast<CXXMethodDecl>(Best->Function); 4940 break; 4941 4942 case OR_No_Viable_Function: 4943 Diag(MemExpr->getSourceRange().getBegin(), 4944 diag::err_ovl_no_viable_member_function_in_call) 4945 << DeclName << MemExprE->getSourceRange(); 4946 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4947 // FIXME: Leaking incoming expressions! 4948 return true; 4949 4950 case OR_Ambiguous: 4951 Diag(MemExpr->getSourceRange().getBegin(), 4952 diag::err_ovl_ambiguous_member_call) 4953 << DeclName << MemExprE->getSourceRange(); 4954 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4955 // FIXME: Leaking incoming expressions! 4956 return true; 4957 4958 case OR_Deleted: 4959 Diag(MemExpr->getSourceRange().getBegin(), 4960 diag::err_ovl_deleted_member_call) 4961 << Best->Function->isDeleted() 4962 << DeclName << MemExprE->getSourceRange(); 4963 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4964 // FIXME: Leaking incoming expressions! 4965 return true; 4966 } 4967 4968 FixOverloadedFunctionReference(MemExpr, Method); 4969 } else { 4970 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 4971 } 4972 4973 assert(Method && "Member call to something that isn't a method?"); 4974 ExprOwningPtr<CXXMemberCallExpr> 4975 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args, 4976 NumArgs, 4977 Method->getResultType().getNonReferenceType(), 4978 RParenLoc)); 4979 4980 // Check for a valid return type. 4981 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 4982 TheCall.get(), Method)) 4983 return true; 4984 4985 // Convert the object argument (for a non-static member function call). 4986 if (!Method->isStatic() && 4987 PerformObjectArgumentInitialization(ObjectArg, Method)) 4988 return true; 4989 MemExpr->setBase(ObjectArg); 4990 4991 // Convert the rest of the arguments 4992 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); 4993 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 4994 RParenLoc)) 4995 return true; 4996 4997 if (CheckFunctionCall(Method, TheCall.get())) 4998 return true; 4999 5000 return MaybeBindToTemporary(TheCall.release()).release(); 5001} 5002 5003/// BuildCallToObjectOfClassType - Build a call to an object of class 5004/// type (C++ [over.call.object]), which can end up invoking an 5005/// overloaded function call operator (@c operator()) or performing a 5006/// user-defined conversion on the object argument. 5007Sema::ExprResult 5008Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 5009 SourceLocation LParenLoc, 5010 Expr **Args, unsigned NumArgs, 5011 SourceLocation *CommaLocs, 5012 SourceLocation RParenLoc) { 5013 assert(Object->getType()->isRecordType() && "Requires object type argument"); 5014 const RecordType *Record = Object->getType()->getAs<RecordType>(); 5015 5016 // C++ [over.call.object]p1: 5017 // If the primary-expression E in the function call syntax 5018 // evaluates to a class object of type "cv T", then the set of 5019 // candidate functions includes at least the function call 5020 // operators of T. The function call operators of T are obtained by 5021 // ordinary lookup of the name operator() in the context of 5022 // (E).operator(). 5023 OverloadCandidateSet CandidateSet; 5024 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 5025 DeclContext::lookup_const_iterator Oper, OperEnd; 5026 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName); 5027 Oper != OperEnd; ++Oper) 5028 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs, 5029 CandidateSet, /*SuppressUserConversions=*/false); 5030 5031 // C++ [over.call.object]p2: 5032 // In addition, for each conversion function declared in T of the 5033 // form 5034 // 5035 // operator conversion-type-id () cv-qualifier; 5036 // 5037 // where cv-qualifier is the same cv-qualification as, or a 5038 // greater cv-qualification than, cv, and where conversion-type-id 5039 // denotes the type "pointer to function of (P1,...,Pn) returning 5040 // R", or the type "reference to pointer to function of 5041 // (P1,...,Pn) returning R", or the type "reference to function 5042 // of (P1,...,Pn) returning R", a surrogate call function [...] 5043 // is also considered as a candidate function. Similarly, 5044 // surrogate call functions are added to the set of candidate 5045 // functions for each conversion function declared in an 5046 // accessible base class provided the function is not hidden 5047 // within T by another intervening declaration. 5048 5049 if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) { 5050 // FIXME: Look in base classes for more conversion operators! 5051 OverloadedFunctionDecl *Conversions 5052 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); 5053 for (OverloadedFunctionDecl::function_iterator 5054 Func = Conversions->function_begin(), 5055 FuncEnd = Conversions->function_end(); 5056 Func != FuncEnd; ++Func) { 5057 CXXConversionDecl *Conv; 5058 FunctionTemplateDecl *ConvTemplate; 5059 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 5060 5061 // Skip over templated conversion functions; they aren't 5062 // surrogates. 5063 if (ConvTemplate) 5064 continue; 5065 5066 // Strip the reference type (if any) and then the pointer type (if 5067 // any) to get down to what might be a function type. 5068 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 5069 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5070 ConvType = ConvPtrType->getPointeeType(); 5071 5072 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 5073 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet); 5074 } 5075 } 5076 5077 // Perform overload resolution. 5078 OverloadCandidateSet::iterator Best; 5079 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 5080 case OR_Success: 5081 // Overload resolution succeeded; we'll build the appropriate call 5082 // below. 5083 break; 5084 5085 case OR_No_Viable_Function: 5086 Diag(Object->getSourceRange().getBegin(), 5087 diag::err_ovl_no_viable_object_call) 5088 << Object->getType() << Object->getSourceRange(); 5089 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5090 break; 5091 5092 case OR_Ambiguous: 5093 Diag(Object->getSourceRange().getBegin(), 5094 diag::err_ovl_ambiguous_object_call) 5095 << Object->getType() << Object->getSourceRange(); 5096 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5097 break; 5098 5099 case OR_Deleted: 5100 Diag(Object->getSourceRange().getBegin(), 5101 diag::err_ovl_deleted_object_call) 5102 << Best->Function->isDeleted() 5103 << Object->getType() << Object->getSourceRange(); 5104 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5105 break; 5106 } 5107 5108 if (Best == CandidateSet.end()) { 5109 // We had an error; delete all of the subexpressions and return 5110 // the error. 5111 Object->Destroy(Context); 5112 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5113 Args[ArgIdx]->Destroy(Context); 5114 return true; 5115 } 5116 5117 if (Best->Function == 0) { 5118 // Since there is no function declaration, this is one of the 5119 // surrogate candidates. Dig out the conversion function. 5120 CXXConversionDecl *Conv 5121 = cast<CXXConversionDecl>( 5122 Best->Conversions[0].UserDefined.ConversionFunction); 5123 5124 // We selected one of the surrogate functions that converts the 5125 // object parameter to a function pointer. Perform the conversion 5126 // on the object argument, then let ActOnCallExpr finish the job. 5127 5128 // Create an implicit member expr to refer to the conversion operator. 5129 // and then call it. 5130 CXXMemberCallExpr *CE = 5131 BuildCXXMemberCallExpr(Object, Conv); 5132 5133 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 5134 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 5135 CommaLocs, RParenLoc).release(); 5136 } 5137 5138 // We found an overloaded operator(). Build a CXXOperatorCallExpr 5139 // that calls this method, using Object for the implicit object 5140 // parameter and passing along the remaining arguments. 5141 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5142 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 5143 5144 unsigned NumArgsInProto = Proto->getNumArgs(); 5145 unsigned NumArgsToCheck = NumArgs; 5146 5147 // Build the full argument list for the method call (the 5148 // implicit object parameter is placed at the beginning of the 5149 // list). 5150 Expr **MethodArgs; 5151 if (NumArgs < NumArgsInProto) { 5152 NumArgsToCheck = NumArgsInProto; 5153 MethodArgs = new Expr*[NumArgsInProto + 1]; 5154 } else { 5155 MethodArgs = new Expr*[NumArgs + 1]; 5156 } 5157 MethodArgs[0] = Object; 5158 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5159 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 5160 5161 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 5162 SourceLocation()); 5163 UsualUnaryConversions(NewFn); 5164 5165 // Once we've built TheCall, all of the expressions are properly 5166 // owned. 5167 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5168 ExprOwningPtr<CXXOperatorCallExpr> 5169 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 5170 MethodArgs, NumArgs + 1, 5171 ResultTy, RParenLoc)); 5172 delete [] MethodArgs; 5173 5174 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 5175 Method)) 5176 return true; 5177 5178 // We may have default arguments. If so, we need to allocate more 5179 // slots in the call for them. 5180 if (NumArgs < NumArgsInProto) 5181 TheCall->setNumArgs(Context, NumArgsInProto + 1); 5182 else if (NumArgs > NumArgsInProto) 5183 NumArgsToCheck = NumArgsInProto; 5184 5185 bool IsError = false; 5186 5187 // Initialize the implicit object parameter. 5188 IsError |= PerformObjectArgumentInitialization(Object, Method); 5189 TheCall->setArg(0, Object); 5190 5191 5192 // Check the argument types. 5193 for (unsigned i = 0; i != NumArgsToCheck; i++) { 5194 Expr *Arg; 5195 if (i < NumArgs) { 5196 Arg = Args[i]; 5197 5198 // Pass the argument. 5199 QualType ProtoArgType = Proto->getArgType(i); 5200 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing"); 5201 } else { 5202 Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i)); 5203 } 5204 5205 TheCall->setArg(i + 1, Arg); 5206 } 5207 5208 // If this is a variadic call, handle args passed through "...". 5209 if (Proto->isVariadic()) { 5210 // Promote the arguments (C99 6.5.2.2p7). 5211 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 5212 Expr *Arg = Args[i]; 5213 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 5214 TheCall->setArg(i + 1, Arg); 5215 } 5216 } 5217 5218 if (IsError) return true; 5219 5220 if (CheckFunctionCall(Method, TheCall.get())) 5221 return true; 5222 5223 return MaybeBindToTemporary(TheCall.release()).release(); 5224} 5225 5226/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 5227/// (if one exists), where @c Base is an expression of class type and 5228/// @c Member is the name of the member we're trying to find. 5229Sema::OwningExprResult 5230Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 5231 Expr *Base = static_cast<Expr *>(BaseIn.get()); 5232 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 5233 5234 // C++ [over.ref]p1: 5235 // 5236 // [...] An expression x->m is interpreted as (x.operator->())->m 5237 // for a class object x of type T if T::operator->() exists and if 5238 // the operator is selected as the best match function by the 5239 // overload resolution mechanism (13.3). 5240 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 5241 OverloadCandidateSet CandidateSet; 5242 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 5243 5244 LookupResult R; 5245 LookupQualifiedName(R, BaseRecord->getDecl(), OpName, LookupOrdinaryName); 5246 5247 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5248 Oper != OperEnd; ++Oper) 5249 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet, 5250 /*SuppressUserConversions=*/false); 5251 5252 // Perform overload resolution. 5253 OverloadCandidateSet::iterator Best; 5254 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5255 case OR_Success: 5256 // Overload resolution succeeded; we'll build the call below. 5257 break; 5258 5259 case OR_No_Viable_Function: 5260 if (CandidateSet.empty()) 5261 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 5262 << Base->getType() << Base->getSourceRange(); 5263 else 5264 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5265 << "operator->" << Base->getSourceRange(); 5266 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5267 return ExprError(); 5268 5269 case OR_Ambiguous: 5270 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5271 << "->" << Base->getSourceRange(); 5272 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5273 return ExprError(); 5274 5275 case OR_Deleted: 5276 Diag(OpLoc, diag::err_ovl_deleted_oper) 5277 << Best->Function->isDeleted() 5278 << "->" << Base->getSourceRange(); 5279 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5280 return ExprError(); 5281 } 5282 5283 // Convert the object parameter. 5284 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5285 if (PerformObjectArgumentInitialization(Base, Method)) 5286 return ExprError(); 5287 5288 // No concerns about early exits now. 5289 BaseIn.release(); 5290 5291 // Build the operator call. 5292 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 5293 SourceLocation()); 5294 UsualUnaryConversions(FnExpr); 5295 5296 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5297 ExprOwningPtr<CXXOperatorCallExpr> 5298 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 5299 &Base, 1, ResultTy, OpLoc)); 5300 5301 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 5302 Method)) 5303 return ExprError(); 5304 return move(TheCall); 5305} 5306 5307/// FixOverloadedFunctionReference - E is an expression that refers to 5308/// a C++ overloaded function (possibly with some parentheses and 5309/// perhaps a '&' around it). We have resolved the overloaded function 5310/// to the function declaration Fn, so patch up the expression E to 5311/// refer (possibly indirectly) to Fn. 5312/// Returns true if the function reference used an explicit address-of operator. 5313bool Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 5314 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 5315 bool ret = FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 5316 E->setType(PE->getSubExpr()->getType()); 5317 return ret; 5318 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 5319 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 5320 "Can only take the address of an overloaded function"); 5321 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5322 if (Method->isStatic()) { 5323 // Do nothing: static member functions aren't any different 5324 // from non-member functions. 5325 } else if (QualifiedDeclRefExpr *DRE 5326 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) { 5327 // We have taken the address of a pointer to member 5328 // function. Perform the computation here so that we get the 5329 // appropriate pointer to member type. 5330 DRE->setDecl(Fn); 5331 DRE->setType(Fn->getType()); 5332 QualType ClassType 5333 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 5334 E->setType(Context.getMemberPointerType(Fn->getType(), 5335 ClassType.getTypePtr())); 5336 return true; 5337 } 5338 } 5339 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 5340 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType())); 5341 return true; 5342 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) { 5343 assert((isa<OverloadedFunctionDecl>(DR->getDecl()) || 5344 isa<FunctionTemplateDecl>(DR->getDecl())) && 5345 "Expected overloaded function or function template"); 5346 DR->setDecl(Fn); 5347 E->setType(Fn->getType()); 5348 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) { 5349 MemExpr->setMemberDecl(Fn); 5350 E->setType(Fn->getType()); 5351 } else { 5352 assert(false && "Invalid reference to overloaded function"); 5353 } 5354 return false; 5355} 5356 5357} // end namespace clang 5358