SemaOverload.cpp revision 129e2df52ed7e0434b3f1cf1867fd6a5cb083ff6
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "clang/Basic/Diagnostic.h" 17#include "clang/Lex/Preprocessor.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/CXXInheritance.h" 20#include "clang/AST/Expr.h" 21#include "clang/AST/ExprCXX.h" 22#include "clang/AST/TypeOrdering.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/SmallPtrSet.h" 25#include "llvm/ADT/STLExtras.h" 26#include <algorithm> 27#include <cstdio> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Qualification_Adjustment, 42 ICC_Promotion, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Conversion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion 55 }; 56 return Category[(int)Kind]; 57} 58 59/// GetConversionRank - Retrieve the implicit conversion rank 60/// corresponding to the given implicit conversion kind. 61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 62 static const ImplicitConversionRank 63 Rank[(int)ICK_Num_Conversion_Kinds] = { 64 ICR_Exact_Match, 65 ICR_Exact_Match, 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Promotion, 70 ICR_Promotion, 71 ICR_Promotion, 72 ICR_Conversion, 73 ICR_Conversion, 74 ICR_Conversion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion 82 }; 83 return Rank[(int)Kind]; 84} 85 86/// GetImplicitConversionName - Return the name of this kind of 87/// implicit conversion. 88const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 89 static const char* Name[(int)ICK_Num_Conversion_Kinds] = { 90 "No conversion", 91 "Lvalue-to-rvalue", 92 "Array-to-pointer", 93 "Function-to-pointer", 94 "Qualification", 95 "Integral promotion", 96 "Floating point promotion", 97 "Complex promotion", 98 "Integral conversion", 99 "Floating conversion", 100 "Complex conversion", 101 "Floating-integral conversion", 102 "Complex-real conversion", 103 "Pointer conversion", 104 "Pointer-to-member conversion", 105 "Boolean conversion", 106 "Compatible-types conversion", 107 "Derived-to-base conversion" 108 }; 109 return Name[Kind]; 110} 111 112/// StandardConversionSequence - Set the standard conversion 113/// sequence to the identity conversion. 114void StandardConversionSequence::setAsIdentityConversion() { 115 First = ICK_Identity; 116 Second = ICK_Identity; 117 Third = ICK_Identity; 118 Deprecated = false; 119 ReferenceBinding = false; 120 DirectBinding = false; 121 RRefBinding = false; 122 CopyConstructor = 0; 123} 124 125/// getRank - Retrieve the rank of this standard conversion sequence 126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 127/// implicit conversions. 128ImplicitConversionRank StandardConversionSequence::getRank() const { 129 ImplicitConversionRank Rank = ICR_Exact_Match; 130 if (GetConversionRank(First) > Rank) 131 Rank = GetConversionRank(First); 132 if (GetConversionRank(Second) > Rank) 133 Rank = GetConversionRank(Second); 134 if (GetConversionRank(Third) > Rank) 135 Rank = GetConversionRank(Third); 136 return Rank; 137} 138 139/// isPointerConversionToBool - Determines whether this conversion is 140/// a conversion of a pointer or pointer-to-member to bool. This is 141/// used as part of the ranking of standard conversion sequences 142/// (C++ 13.3.3.2p4). 143bool StandardConversionSequence::isPointerConversionToBool() const { 144 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 145 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 146 147 // Note that FromType has not necessarily been transformed by the 148 // array-to-pointer or function-to-pointer implicit conversions, so 149 // check for their presence as well as checking whether FromType is 150 // a pointer. 151 if (ToType->isBooleanType() && 152 (FromType->isPointerType() || FromType->isBlockPointerType() || 153 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 154 return true; 155 156 return false; 157} 158 159/// isPointerConversionToVoidPointer - Determines whether this 160/// conversion is a conversion of a pointer to a void pointer. This is 161/// used as part of the ranking of standard conversion sequences (C++ 162/// 13.3.3.2p4). 163bool 164StandardConversionSequence:: 165isPointerConversionToVoidPointer(ASTContext& Context) const { 166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 168 169 // Note that FromType has not necessarily been transformed by the 170 // array-to-pointer implicit conversion, so check for its presence 171 // and redo the conversion to get a pointer. 172 if (First == ICK_Array_To_Pointer) 173 FromType = Context.getArrayDecayedType(FromType); 174 175 if (Second == ICK_Pointer_Conversion) 176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 177 return ToPtrType->getPointeeType()->isVoidType(); 178 179 return false; 180} 181 182/// DebugPrint - Print this standard conversion sequence to standard 183/// error. Useful for debugging overloading issues. 184void StandardConversionSequence::DebugPrint() const { 185 bool PrintedSomething = false; 186 if (First != ICK_Identity) { 187 fprintf(stderr, "%s", GetImplicitConversionName(First)); 188 PrintedSomething = true; 189 } 190 191 if (Second != ICK_Identity) { 192 if (PrintedSomething) { 193 fprintf(stderr, " -> "); 194 } 195 fprintf(stderr, "%s", GetImplicitConversionName(Second)); 196 197 if (CopyConstructor) { 198 fprintf(stderr, " (by copy constructor)"); 199 } else if (DirectBinding) { 200 fprintf(stderr, " (direct reference binding)"); 201 } else if (ReferenceBinding) { 202 fprintf(stderr, " (reference binding)"); 203 } 204 PrintedSomething = true; 205 } 206 207 if (Third != ICK_Identity) { 208 if (PrintedSomething) { 209 fprintf(stderr, " -> "); 210 } 211 fprintf(stderr, "%s", GetImplicitConversionName(Third)); 212 PrintedSomething = true; 213 } 214 215 if (!PrintedSomething) { 216 fprintf(stderr, "No conversions required"); 217 } 218} 219 220/// DebugPrint - Print this user-defined conversion sequence to standard 221/// error. Useful for debugging overloading issues. 222void UserDefinedConversionSequence::DebugPrint() const { 223 if (Before.First || Before.Second || Before.Third) { 224 Before.DebugPrint(); 225 fprintf(stderr, " -> "); 226 } 227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); 228 if (After.First || After.Second || After.Third) { 229 fprintf(stderr, " -> "); 230 After.DebugPrint(); 231 } 232} 233 234/// DebugPrint - Print this implicit conversion sequence to standard 235/// error. Useful for debugging overloading issues. 236void ImplicitConversionSequence::DebugPrint() const { 237 switch (ConversionKind) { 238 case StandardConversion: 239 fprintf(stderr, "Standard conversion: "); 240 Standard.DebugPrint(); 241 break; 242 case UserDefinedConversion: 243 fprintf(stderr, "User-defined conversion: "); 244 UserDefined.DebugPrint(); 245 break; 246 case EllipsisConversion: 247 fprintf(stderr, "Ellipsis conversion"); 248 break; 249 case BadConversion: 250 fprintf(stderr, "Bad conversion"); 251 break; 252 } 253 254 fprintf(stderr, "\n"); 255} 256 257// IsOverload - Determine whether the given New declaration is an 258// overload of the Old declaration. This routine returns false if New 259// and Old cannot be overloaded, e.g., if they are functions with the 260// same signature (C++ 1.3.10) or if the Old declaration isn't a 261// function (or overload set). When it does return false and Old is an 262// OverloadedFunctionDecl, MatchedDecl will be set to point to the 263// FunctionDecl that New cannot be overloaded with. 264// 265// Example: Given the following input: 266// 267// void f(int, float); // #1 268// void f(int, int); // #2 269// int f(int, int); // #3 270// 271// When we process #1, there is no previous declaration of "f", 272// so IsOverload will not be used. 273// 274// When we process #2, Old is a FunctionDecl for #1. By comparing the 275// parameter types, we see that #1 and #2 are overloaded (since they 276// have different signatures), so this routine returns false; 277// MatchedDecl is unchanged. 278// 279// When we process #3, Old is an OverloadedFunctionDecl containing #1 280// and #2. We compare the signatures of #3 to #1 (they're overloaded, 281// so we do nothing) and then #3 to #2. Since the signatures of #3 and 282// #2 are identical (return types of functions are not part of the 283// signature), IsOverload returns false and MatchedDecl will be set to 284// point to the FunctionDecl for #2. 285bool 286Sema::IsOverload(FunctionDecl *New, LookupResult &Previous, NamedDecl *&Match) { 287 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 288 I != E; ++I) { 289 NamedDecl *Old = (*I)->getUnderlyingDecl(); 290 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(Old)) { 291 if (!IsOverload(New, OldT->getTemplatedDecl())) { 292 Match = Old; 293 return false; 294 } 295 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(Old)) { 296 if (!IsOverload(New, OldF)) { 297 Match = Old; 298 return false; 299 } 300 } else { 301 // (C++ 13p1): 302 // Only function declarations can be overloaded; object and type 303 // declarations cannot be overloaded. 304 Match = Old; 305 return false; 306 } 307 } 308 309 return true; 310} 311 312bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) { 313 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 314 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 315 316 // C++ [temp.fct]p2: 317 // A function template can be overloaded with other function templates 318 // and with normal (non-template) functions. 319 if ((OldTemplate == 0) != (NewTemplate == 0)) 320 return true; 321 322 // Is the function New an overload of the function Old? 323 QualType OldQType = Context.getCanonicalType(Old->getType()); 324 QualType NewQType = Context.getCanonicalType(New->getType()); 325 326 // Compare the signatures (C++ 1.3.10) of the two functions to 327 // determine whether they are overloads. If we find any mismatch 328 // in the signature, they are overloads. 329 330 // If either of these functions is a K&R-style function (no 331 // prototype), then we consider them to have matching signatures. 332 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 333 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 334 return false; 335 336 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 337 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 338 339 // The signature of a function includes the types of its 340 // parameters (C++ 1.3.10), which includes the presence or absence 341 // of the ellipsis; see C++ DR 357). 342 if (OldQType != NewQType && 343 (OldType->getNumArgs() != NewType->getNumArgs() || 344 OldType->isVariadic() != NewType->isVariadic() || 345 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 346 NewType->arg_type_begin()))) 347 return true; 348 349 // C++ [temp.over.link]p4: 350 // The signature of a function template consists of its function 351 // signature, its return type and its template parameter list. The names 352 // of the template parameters are significant only for establishing the 353 // relationship between the template parameters and the rest of the 354 // signature. 355 // 356 // We check the return type and template parameter lists for function 357 // templates first; the remaining checks follow. 358 if (NewTemplate && 359 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 360 OldTemplate->getTemplateParameters(), 361 false, TPL_TemplateMatch) || 362 OldType->getResultType() != NewType->getResultType())) 363 return true; 364 365 // If the function is a class member, its signature includes the 366 // cv-qualifiers (if any) on the function itself. 367 // 368 // As part of this, also check whether one of the member functions 369 // is static, in which case they are not overloads (C++ 370 // 13.1p2). While not part of the definition of the signature, 371 // this check is important to determine whether these functions 372 // can be overloaded. 373 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 374 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 375 if (OldMethod && NewMethod && 376 !OldMethod->isStatic() && !NewMethod->isStatic() && 377 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 378 return true; 379 380 // The signatures match; this is not an overload. 381 return false; 382} 383 384/// TryImplicitConversion - Attempt to perform an implicit conversion 385/// from the given expression (Expr) to the given type (ToType). This 386/// function returns an implicit conversion sequence that can be used 387/// to perform the initialization. Given 388/// 389/// void f(float f); 390/// void g(int i) { f(i); } 391/// 392/// this routine would produce an implicit conversion sequence to 393/// describe the initialization of f from i, which will be a standard 394/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 395/// 4.1) followed by a floating-integral conversion (C++ 4.9). 396// 397/// Note that this routine only determines how the conversion can be 398/// performed; it does not actually perform the conversion. As such, 399/// it will not produce any diagnostics if no conversion is available, 400/// but will instead return an implicit conversion sequence of kind 401/// "BadConversion". 402/// 403/// If @p SuppressUserConversions, then user-defined conversions are 404/// not permitted. 405/// If @p AllowExplicit, then explicit user-defined conversions are 406/// permitted. 407/// If @p ForceRValue, then overloading is performed as if From was an rvalue, 408/// no matter its actual lvalueness. 409/// If @p UserCast, the implicit conversion is being done for a user-specified 410/// cast. 411ImplicitConversionSequence 412Sema::TryImplicitConversion(Expr* From, QualType ToType, 413 bool SuppressUserConversions, 414 bool AllowExplicit, bool ForceRValue, 415 bool InOverloadResolution, 416 bool UserCast) { 417 ImplicitConversionSequence ICS; 418 OverloadCandidateSet Conversions; 419 OverloadingResult UserDefResult = OR_Success; 420 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) 421 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 422 else if (getLangOptions().CPlusPlus && 423 (UserDefResult = IsUserDefinedConversion(From, ToType, 424 ICS.UserDefined, 425 Conversions, 426 !SuppressUserConversions, AllowExplicit, 427 ForceRValue, UserCast)) == OR_Success) { 428 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; 429 // C++ [over.ics.user]p4: 430 // A conversion of an expression of class type to the same class 431 // type is given Exact Match rank, and a conversion of an 432 // expression of class type to a base class of that type is 433 // given Conversion rank, in spite of the fact that a copy 434 // constructor (i.e., a user-defined conversion function) is 435 // called for those cases. 436 if (CXXConstructorDecl *Constructor 437 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 438 QualType FromCanon 439 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 440 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 441 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 442 // Turn this into a "standard" conversion sequence, so that it 443 // gets ranked with standard conversion sequences. 444 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 445 ICS.Standard.setAsIdentityConversion(); 446 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); 447 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); 448 ICS.Standard.CopyConstructor = Constructor; 449 if (ToCanon != FromCanon) 450 ICS.Standard.Second = ICK_Derived_To_Base; 451 } 452 } 453 454 // C++ [over.best.ics]p4: 455 // However, when considering the argument of a user-defined 456 // conversion function that is a candidate by 13.3.1.3 when 457 // invoked for the copying of the temporary in the second step 458 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 459 // 13.3.1.6 in all cases, only standard conversion sequences and 460 // ellipsis conversion sequences are allowed. 461 if (SuppressUserConversions && 462 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) 463 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 464 } else { 465 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 466 if (UserDefResult == OR_Ambiguous) { 467 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 468 Cand != Conversions.end(); ++Cand) 469 if (Cand->Viable) 470 ICS.ConversionFunctionSet.push_back(Cand->Function); 471 } 472 } 473 474 return ICS; 475} 476 477/// IsStandardConversion - Determines whether there is a standard 478/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 479/// expression From to the type ToType. Standard conversion sequences 480/// only consider non-class types; for conversions that involve class 481/// types, use TryImplicitConversion. If a conversion exists, SCS will 482/// contain the standard conversion sequence required to perform this 483/// conversion and this routine will return true. Otherwise, this 484/// routine will return false and the value of SCS is unspecified. 485bool 486Sema::IsStandardConversion(Expr* From, QualType ToType, 487 bool InOverloadResolution, 488 StandardConversionSequence &SCS) { 489 QualType FromType = From->getType(); 490 491 // Standard conversions (C++ [conv]) 492 SCS.setAsIdentityConversion(); 493 SCS.Deprecated = false; 494 SCS.IncompatibleObjC = false; 495 SCS.FromTypePtr = FromType.getAsOpaquePtr(); 496 SCS.CopyConstructor = 0; 497 498 // There are no standard conversions for class types in C++, so 499 // abort early. When overloading in C, however, we do permit 500 if (FromType->isRecordType() || ToType->isRecordType()) { 501 if (getLangOptions().CPlusPlus) 502 return false; 503 504 // When we're overloading in C, we allow, as standard conversions, 505 } 506 507 // The first conversion can be an lvalue-to-rvalue conversion, 508 // array-to-pointer conversion, or function-to-pointer conversion 509 // (C++ 4p1). 510 511 // Lvalue-to-rvalue conversion (C++ 4.1): 512 // An lvalue (3.10) of a non-function, non-array type T can be 513 // converted to an rvalue. 514 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 515 if (argIsLvalue == Expr::LV_Valid && 516 !FromType->isFunctionType() && !FromType->isArrayType() && 517 Context.getCanonicalType(FromType) != Context.OverloadTy) { 518 SCS.First = ICK_Lvalue_To_Rvalue; 519 520 // If T is a non-class type, the type of the rvalue is the 521 // cv-unqualified version of T. Otherwise, the type of the rvalue 522 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 523 // just strip the qualifiers because they don't matter. 524 FromType = FromType.getUnqualifiedType(); 525 } else if (FromType->isArrayType()) { 526 // Array-to-pointer conversion (C++ 4.2) 527 SCS.First = ICK_Array_To_Pointer; 528 529 // An lvalue or rvalue of type "array of N T" or "array of unknown 530 // bound of T" can be converted to an rvalue of type "pointer to 531 // T" (C++ 4.2p1). 532 FromType = Context.getArrayDecayedType(FromType); 533 534 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 535 // This conversion is deprecated. (C++ D.4). 536 SCS.Deprecated = true; 537 538 // For the purpose of ranking in overload resolution 539 // (13.3.3.1.1), this conversion is considered an 540 // array-to-pointer conversion followed by a qualification 541 // conversion (4.4). (C++ 4.2p2) 542 SCS.Second = ICK_Identity; 543 SCS.Third = ICK_Qualification; 544 SCS.ToTypePtr = ToType.getAsOpaquePtr(); 545 return true; 546 } 547 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 548 // Function-to-pointer conversion (C++ 4.3). 549 SCS.First = ICK_Function_To_Pointer; 550 551 // An lvalue of function type T can be converted to an rvalue of 552 // type "pointer to T." The result is a pointer to the 553 // function. (C++ 4.3p1). 554 FromType = Context.getPointerType(FromType); 555 } else if (FunctionDecl *Fn 556 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 557 // Address of overloaded function (C++ [over.over]). 558 SCS.First = ICK_Function_To_Pointer; 559 560 // We were able to resolve the address of the overloaded function, 561 // so we can convert to the type of that function. 562 FromType = Fn->getType(); 563 if (ToType->isLValueReferenceType()) 564 FromType = Context.getLValueReferenceType(FromType); 565 else if (ToType->isRValueReferenceType()) 566 FromType = Context.getRValueReferenceType(FromType); 567 else if (ToType->isMemberPointerType()) { 568 // Resolve address only succeeds if both sides are member pointers, 569 // but it doesn't have to be the same class. See DR 247. 570 // Note that this means that the type of &Derived::fn can be 571 // Ret (Base::*)(Args) if the fn overload actually found is from the 572 // base class, even if it was brought into the derived class via a 573 // using declaration. The standard isn't clear on this issue at all. 574 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 575 FromType = Context.getMemberPointerType(FromType, 576 Context.getTypeDeclType(M->getParent()).getTypePtr()); 577 } else 578 FromType = Context.getPointerType(FromType); 579 } else { 580 // We don't require any conversions for the first step. 581 SCS.First = ICK_Identity; 582 } 583 584 // The second conversion can be an integral promotion, floating 585 // point promotion, integral conversion, floating point conversion, 586 // floating-integral conversion, pointer conversion, 587 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 588 // For overloading in C, this can also be a "compatible-type" 589 // conversion. 590 bool IncompatibleObjC = false; 591 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 592 // The unqualified versions of the types are the same: there's no 593 // conversion to do. 594 SCS.Second = ICK_Identity; 595 } else if (IsIntegralPromotion(From, FromType, ToType)) { 596 // Integral promotion (C++ 4.5). 597 SCS.Second = ICK_Integral_Promotion; 598 FromType = ToType.getUnqualifiedType(); 599 } else if (IsFloatingPointPromotion(FromType, ToType)) { 600 // Floating point promotion (C++ 4.6). 601 SCS.Second = ICK_Floating_Promotion; 602 FromType = ToType.getUnqualifiedType(); 603 } else if (IsComplexPromotion(FromType, ToType)) { 604 // Complex promotion (Clang extension) 605 SCS.Second = ICK_Complex_Promotion; 606 FromType = ToType.getUnqualifiedType(); 607 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 608 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 609 // Integral conversions (C++ 4.7). 610 // FIXME: isIntegralType shouldn't be true for enums in C++. 611 SCS.Second = ICK_Integral_Conversion; 612 FromType = ToType.getUnqualifiedType(); 613 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 614 // Floating point conversions (C++ 4.8). 615 SCS.Second = ICK_Floating_Conversion; 616 FromType = ToType.getUnqualifiedType(); 617 } else if (FromType->isComplexType() && ToType->isComplexType()) { 618 // Complex conversions (C99 6.3.1.6) 619 SCS.Second = ICK_Complex_Conversion; 620 FromType = ToType.getUnqualifiedType(); 621 } else if ((FromType->isFloatingType() && 622 ToType->isIntegralType() && (!ToType->isBooleanType() && 623 !ToType->isEnumeralType())) || 624 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 625 ToType->isFloatingType())) { 626 // Floating-integral conversions (C++ 4.9). 627 // FIXME: isIntegralType shouldn't be true for enums in C++. 628 SCS.Second = ICK_Floating_Integral; 629 FromType = ToType.getUnqualifiedType(); 630 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 631 (ToType->isComplexType() && FromType->isArithmeticType())) { 632 // Complex-real conversions (C99 6.3.1.7) 633 SCS.Second = ICK_Complex_Real; 634 FromType = ToType.getUnqualifiedType(); 635 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 636 FromType, IncompatibleObjC)) { 637 // Pointer conversions (C++ 4.10). 638 SCS.Second = ICK_Pointer_Conversion; 639 SCS.IncompatibleObjC = IncompatibleObjC; 640 } else if (IsMemberPointerConversion(From, FromType, ToType, 641 InOverloadResolution, FromType)) { 642 // Pointer to member conversions (4.11). 643 SCS.Second = ICK_Pointer_Member; 644 } else if (ToType->isBooleanType() && 645 (FromType->isArithmeticType() || 646 FromType->isEnumeralType() || 647 FromType->isPointerType() || 648 FromType->isBlockPointerType() || 649 FromType->isMemberPointerType() || 650 FromType->isNullPtrType())) { 651 // Boolean conversions (C++ 4.12). 652 SCS.Second = ICK_Boolean_Conversion; 653 FromType = Context.BoolTy; 654 } else if (!getLangOptions().CPlusPlus && 655 Context.typesAreCompatible(ToType, FromType)) { 656 // Compatible conversions (Clang extension for C function overloading) 657 SCS.Second = ICK_Compatible_Conversion; 658 } else { 659 // No second conversion required. 660 SCS.Second = ICK_Identity; 661 } 662 663 QualType CanonFrom; 664 QualType CanonTo; 665 // The third conversion can be a qualification conversion (C++ 4p1). 666 if (IsQualificationConversion(FromType, ToType)) { 667 SCS.Third = ICK_Qualification; 668 FromType = ToType; 669 CanonFrom = Context.getCanonicalType(FromType); 670 CanonTo = Context.getCanonicalType(ToType); 671 } else { 672 // No conversion required 673 SCS.Third = ICK_Identity; 674 675 // C++ [over.best.ics]p6: 676 // [...] Any difference in top-level cv-qualification is 677 // subsumed by the initialization itself and does not constitute 678 // a conversion. [...] 679 CanonFrom = Context.getCanonicalType(FromType); 680 CanonTo = Context.getCanonicalType(ToType); 681 if (CanonFrom.getLocalUnqualifiedType() 682 == CanonTo.getLocalUnqualifiedType() && 683 CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) { 684 FromType = ToType; 685 CanonFrom = CanonTo; 686 } 687 } 688 689 // If we have not converted the argument type to the parameter type, 690 // this is a bad conversion sequence. 691 if (CanonFrom != CanonTo) 692 return false; 693 694 SCS.ToTypePtr = FromType.getAsOpaquePtr(); 695 return true; 696} 697 698/// IsIntegralPromotion - Determines whether the conversion from the 699/// expression From (whose potentially-adjusted type is FromType) to 700/// ToType is an integral promotion (C++ 4.5). If so, returns true and 701/// sets PromotedType to the promoted type. 702bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 703 const BuiltinType *To = ToType->getAs<BuiltinType>(); 704 // All integers are built-in. 705 if (!To) { 706 return false; 707 } 708 709 // An rvalue of type char, signed char, unsigned char, short int, or 710 // unsigned short int can be converted to an rvalue of type int if 711 // int can represent all the values of the source type; otherwise, 712 // the source rvalue can be converted to an rvalue of type unsigned 713 // int (C++ 4.5p1). 714 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { 715 if (// We can promote any signed, promotable integer type to an int 716 (FromType->isSignedIntegerType() || 717 // We can promote any unsigned integer type whose size is 718 // less than int to an int. 719 (!FromType->isSignedIntegerType() && 720 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 721 return To->getKind() == BuiltinType::Int; 722 } 723 724 return To->getKind() == BuiltinType::UInt; 725 } 726 727 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 728 // can be converted to an rvalue of the first of the following types 729 // that can represent all the values of its underlying type: int, 730 // unsigned int, long, or unsigned long (C++ 4.5p2). 731 if ((FromType->isEnumeralType() || FromType->isWideCharType()) 732 && ToType->isIntegerType()) { 733 // Determine whether the type we're converting from is signed or 734 // unsigned. 735 bool FromIsSigned; 736 uint64_t FromSize = Context.getTypeSize(FromType); 737 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 738 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType(); 739 FromIsSigned = UnderlyingType->isSignedIntegerType(); 740 } else { 741 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 742 FromIsSigned = true; 743 } 744 745 // The types we'll try to promote to, in the appropriate 746 // order. Try each of these types. 747 QualType PromoteTypes[6] = { 748 Context.IntTy, Context.UnsignedIntTy, 749 Context.LongTy, Context.UnsignedLongTy , 750 Context.LongLongTy, Context.UnsignedLongLongTy 751 }; 752 for (int Idx = 0; Idx < 6; ++Idx) { 753 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 754 if (FromSize < ToSize || 755 (FromSize == ToSize && 756 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 757 // We found the type that we can promote to. If this is the 758 // type we wanted, we have a promotion. Otherwise, no 759 // promotion. 760 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 761 } 762 } 763 } 764 765 // An rvalue for an integral bit-field (9.6) can be converted to an 766 // rvalue of type int if int can represent all the values of the 767 // bit-field; otherwise, it can be converted to unsigned int if 768 // unsigned int can represent all the values of the bit-field. If 769 // the bit-field is larger yet, no integral promotion applies to 770 // it. If the bit-field has an enumerated type, it is treated as any 771 // other value of that type for promotion purposes (C++ 4.5p3). 772 // FIXME: We should delay checking of bit-fields until we actually perform the 773 // conversion. 774 using llvm::APSInt; 775 if (From) 776 if (FieldDecl *MemberDecl = From->getBitField()) { 777 APSInt BitWidth; 778 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 779 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 780 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 781 ToSize = Context.getTypeSize(ToType); 782 783 // Are we promoting to an int from a bitfield that fits in an int? 784 if (BitWidth < ToSize || 785 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 786 return To->getKind() == BuiltinType::Int; 787 } 788 789 // Are we promoting to an unsigned int from an unsigned bitfield 790 // that fits into an unsigned int? 791 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 792 return To->getKind() == BuiltinType::UInt; 793 } 794 795 return false; 796 } 797 } 798 799 // An rvalue of type bool can be converted to an rvalue of type int, 800 // with false becoming zero and true becoming one (C++ 4.5p4). 801 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 802 return true; 803 } 804 805 return false; 806} 807 808/// IsFloatingPointPromotion - Determines whether the conversion from 809/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 810/// returns true and sets PromotedType to the promoted type. 811bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 812 /// An rvalue of type float can be converted to an rvalue of type 813 /// double. (C++ 4.6p1). 814 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 815 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 816 if (FromBuiltin->getKind() == BuiltinType::Float && 817 ToBuiltin->getKind() == BuiltinType::Double) 818 return true; 819 820 // C99 6.3.1.5p1: 821 // When a float is promoted to double or long double, or a 822 // double is promoted to long double [...]. 823 if (!getLangOptions().CPlusPlus && 824 (FromBuiltin->getKind() == BuiltinType::Float || 825 FromBuiltin->getKind() == BuiltinType::Double) && 826 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 827 return true; 828 } 829 830 return false; 831} 832 833/// \brief Determine if a conversion is a complex promotion. 834/// 835/// A complex promotion is defined as a complex -> complex conversion 836/// where the conversion between the underlying real types is a 837/// floating-point or integral promotion. 838bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 839 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 840 if (!FromComplex) 841 return false; 842 843 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 844 if (!ToComplex) 845 return false; 846 847 return IsFloatingPointPromotion(FromComplex->getElementType(), 848 ToComplex->getElementType()) || 849 IsIntegralPromotion(0, FromComplex->getElementType(), 850 ToComplex->getElementType()); 851} 852 853/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 854/// the pointer type FromPtr to a pointer to type ToPointee, with the 855/// same type qualifiers as FromPtr has on its pointee type. ToType, 856/// if non-empty, will be a pointer to ToType that may or may not have 857/// the right set of qualifiers on its pointee. 858static QualType 859BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 860 QualType ToPointee, QualType ToType, 861 ASTContext &Context) { 862 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 863 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 864 Qualifiers Quals = CanonFromPointee.getQualifiers(); 865 866 // Exact qualifier match -> return the pointer type we're converting to. 867 if (CanonToPointee.getLocalQualifiers() == Quals) { 868 // ToType is exactly what we need. Return it. 869 if (!ToType.isNull()) 870 return ToType; 871 872 // Build a pointer to ToPointee. It has the right qualifiers 873 // already. 874 return Context.getPointerType(ToPointee); 875 } 876 877 // Just build a canonical type that has the right qualifiers. 878 return Context.getPointerType( 879 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 880 Quals)); 881} 882 883static bool isNullPointerConstantForConversion(Expr *Expr, 884 bool InOverloadResolution, 885 ASTContext &Context) { 886 // Handle value-dependent integral null pointer constants correctly. 887 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 888 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 889 Expr->getType()->isIntegralType()) 890 return !InOverloadResolution; 891 892 return Expr->isNullPointerConstant(Context, 893 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 894 : Expr::NPC_ValueDependentIsNull); 895} 896 897/// IsPointerConversion - Determines whether the conversion of the 898/// expression From, which has the (possibly adjusted) type FromType, 899/// can be converted to the type ToType via a pointer conversion (C++ 900/// 4.10). If so, returns true and places the converted type (that 901/// might differ from ToType in its cv-qualifiers at some level) into 902/// ConvertedType. 903/// 904/// This routine also supports conversions to and from block pointers 905/// and conversions with Objective-C's 'id', 'id<protocols...>', and 906/// pointers to interfaces. FIXME: Once we've determined the 907/// appropriate overloading rules for Objective-C, we may want to 908/// split the Objective-C checks into a different routine; however, 909/// GCC seems to consider all of these conversions to be pointer 910/// conversions, so for now they live here. IncompatibleObjC will be 911/// set if the conversion is an allowed Objective-C conversion that 912/// should result in a warning. 913bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 914 bool InOverloadResolution, 915 QualType& ConvertedType, 916 bool &IncompatibleObjC) { 917 IncompatibleObjC = false; 918 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 919 return true; 920 921 // Conversion from a null pointer constant to any Objective-C pointer type. 922 if (ToType->isObjCObjectPointerType() && 923 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 924 ConvertedType = ToType; 925 return true; 926 } 927 928 // Blocks: Block pointers can be converted to void*. 929 if (FromType->isBlockPointerType() && ToType->isPointerType() && 930 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 931 ConvertedType = ToType; 932 return true; 933 } 934 // Blocks: A null pointer constant can be converted to a block 935 // pointer type. 936 if (ToType->isBlockPointerType() && 937 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 938 ConvertedType = ToType; 939 return true; 940 } 941 942 // If the left-hand-side is nullptr_t, the right side can be a null 943 // pointer constant. 944 if (ToType->isNullPtrType() && 945 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 946 ConvertedType = ToType; 947 return true; 948 } 949 950 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 951 if (!ToTypePtr) 952 return false; 953 954 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 955 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 956 ConvertedType = ToType; 957 return true; 958 } 959 960 // Beyond this point, both types need to be pointers. 961 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 962 if (!FromTypePtr) 963 return false; 964 965 QualType FromPointeeType = FromTypePtr->getPointeeType(); 966 QualType ToPointeeType = ToTypePtr->getPointeeType(); 967 968 // An rvalue of type "pointer to cv T," where T is an object type, 969 // can be converted to an rvalue of type "pointer to cv void" (C++ 970 // 4.10p2). 971 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 972 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 973 ToPointeeType, 974 ToType, Context); 975 return true; 976 } 977 978 // When we're overloading in C, we allow a special kind of pointer 979 // conversion for compatible-but-not-identical pointee types. 980 if (!getLangOptions().CPlusPlus && 981 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 982 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 983 ToPointeeType, 984 ToType, Context); 985 return true; 986 } 987 988 // C++ [conv.ptr]p3: 989 // 990 // An rvalue of type "pointer to cv D," where D is a class type, 991 // can be converted to an rvalue of type "pointer to cv B," where 992 // B is a base class (clause 10) of D. If B is an inaccessible 993 // (clause 11) or ambiguous (10.2) base class of D, a program that 994 // necessitates this conversion is ill-formed. The result of the 995 // conversion is a pointer to the base class sub-object of the 996 // derived class object. The null pointer value is converted to 997 // the null pointer value of the destination type. 998 // 999 // Note that we do not check for ambiguity or inaccessibility 1000 // here. That is handled by CheckPointerConversion. 1001 if (getLangOptions().CPlusPlus && 1002 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1003 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1004 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1005 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1006 ToPointeeType, 1007 ToType, Context); 1008 return true; 1009 } 1010 1011 return false; 1012} 1013 1014/// isObjCPointerConversion - Determines whether this is an 1015/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1016/// with the same arguments and return values. 1017bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1018 QualType& ConvertedType, 1019 bool &IncompatibleObjC) { 1020 if (!getLangOptions().ObjC1) 1021 return false; 1022 1023 // First, we handle all conversions on ObjC object pointer types. 1024 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1025 const ObjCObjectPointerType *FromObjCPtr = 1026 FromType->getAs<ObjCObjectPointerType>(); 1027 1028 if (ToObjCPtr && FromObjCPtr) { 1029 // Objective C++: We're able to convert between "id" or "Class" and a 1030 // pointer to any interface (in both directions). 1031 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1032 ConvertedType = ToType; 1033 return true; 1034 } 1035 // Conversions with Objective-C's id<...>. 1036 if ((FromObjCPtr->isObjCQualifiedIdType() || 1037 ToObjCPtr->isObjCQualifiedIdType()) && 1038 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1039 /*compare=*/false)) { 1040 ConvertedType = ToType; 1041 return true; 1042 } 1043 // Objective C++: We're able to convert from a pointer to an 1044 // interface to a pointer to a different interface. 1045 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1046 ConvertedType = ToType; 1047 return true; 1048 } 1049 1050 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1051 // Okay: this is some kind of implicit downcast of Objective-C 1052 // interfaces, which is permitted. However, we're going to 1053 // complain about it. 1054 IncompatibleObjC = true; 1055 ConvertedType = FromType; 1056 return true; 1057 } 1058 } 1059 // Beyond this point, both types need to be C pointers or block pointers. 1060 QualType ToPointeeType; 1061 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1062 ToPointeeType = ToCPtr->getPointeeType(); 1063 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>()) 1064 ToPointeeType = ToBlockPtr->getPointeeType(); 1065 else 1066 return false; 1067 1068 QualType FromPointeeType; 1069 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1070 FromPointeeType = FromCPtr->getPointeeType(); 1071 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1072 FromPointeeType = FromBlockPtr->getPointeeType(); 1073 else 1074 return false; 1075 1076 // If we have pointers to pointers, recursively check whether this 1077 // is an Objective-C conversion. 1078 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1079 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1080 IncompatibleObjC)) { 1081 // We always complain about this conversion. 1082 IncompatibleObjC = true; 1083 ConvertedType = ToType; 1084 return true; 1085 } 1086 // If we have pointers to functions or blocks, check whether the only 1087 // differences in the argument and result types are in Objective-C 1088 // pointer conversions. If so, we permit the conversion (but 1089 // complain about it). 1090 const FunctionProtoType *FromFunctionType 1091 = FromPointeeType->getAs<FunctionProtoType>(); 1092 const FunctionProtoType *ToFunctionType 1093 = ToPointeeType->getAs<FunctionProtoType>(); 1094 if (FromFunctionType && ToFunctionType) { 1095 // If the function types are exactly the same, this isn't an 1096 // Objective-C pointer conversion. 1097 if (Context.getCanonicalType(FromPointeeType) 1098 == Context.getCanonicalType(ToPointeeType)) 1099 return false; 1100 1101 // Perform the quick checks that will tell us whether these 1102 // function types are obviously different. 1103 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1104 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1105 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1106 return false; 1107 1108 bool HasObjCConversion = false; 1109 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1110 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1111 // Okay, the types match exactly. Nothing to do. 1112 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1113 ToFunctionType->getResultType(), 1114 ConvertedType, IncompatibleObjC)) { 1115 // Okay, we have an Objective-C pointer conversion. 1116 HasObjCConversion = true; 1117 } else { 1118 // Function types are too different. Abort. 1119 return false; 1120 } 1121 1122 // Check argument types. 1123 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1124 ArgIdx != NumArgs; ++ArgIdx) { 1125 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1126 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1127 if (Context.getCanonicalType(FromArgType) 1128 == Context.getCanonicalType(ToArgType)) { 1129 // Okay, the types match exactly. Nothing to do. 1130 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1131 ConvertedType, IncompatibleObjC)) { 1132 // Okay, we have an Objective-C pointer conversion. 1133 HasObjCConversion = true; 1134 } else { 1135 // Argument types are too different. Abort. 1136 return false; 1137 } 1138 } 1139 1140 if (HasObjCConversion) { 1141 // We had an Objective-C conversion. Allow this pointer 1142 // conversion, but complain about it. 1143 ConvertedType = ToType; 1144 IncompatibleObjC = true; 1145 return true; 1146 } 1147 } 1148 1149 return false; 1150} 1151 1152/// CheckPointerConversion - Check the pointer conversion from the 1153/// expression From to the type ToType. This routine checks for 1154/// ambiguous or inaccessible derived-to-base pointer 1155/// conversions for which IsPointerConversion has already returned 1156/// true. It returns true and produces a diagnostic if there was an 1157/// error, or returns false otherwise. 1158bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1159 CastExpr::CastKind &Kind, 1160 bool IgnoreBaseAccess) { 1161 QualType FromType = From->getType(); 1162 1163 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1164 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1165 QualType FromPointeeType = FromPtrType->getPointeeType(), 1166 ToPointeeType = ToPtrType->getPointeeType(); 1167 1168 if (FromPointeeType->isRecordType() && 1169 ToPointeeType->isRecordType()) { 1170 // We must have a derived-to-base conversion. Check an 1171 // ambiguous or inaccessible conversion. 1172 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1173 From->getExprLoc(), 1174 From->getSourceRange(), 1175 IgnoreBaseAccess)) 1176 return true; 1177 1178 // The conversion was successful. 1179 Kind = CastExpr::CK_DerivedToBase; 1180 } 1181 } 1182 if (const ObjCObjectPointerType *FromPtrType = 1183 FromType->getAs<ObjCObjectPointerType>()) 1184 if (const ObjCObjectPointerType *ToPtrType = 1185 ToType->getAs<ObjCObjectPointerType>()) { 1186 // Objective-C++ conversions are always okay. 1187 // FIXME: We should have a different class of conversions for the 1188 // Objective-C++ implicit conversions. 1189 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1190 return false; 1191 1192 } 1193 return false; 1194} 1195 1196/// IsMemberPointerConversion - Determines whether the conversion of the 1197/// expression From, which has the (possibly adjusted) type FromType, can be 1198/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1199/// If so, returns true and places the converted type (that might differ from 1200/// ToType in its cv-qualifiers at some level) into ConvertedType. 1201bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1202 QualType ToType, 1203 bool InOverloadResolution, 1204 QualType &ConvertedType) { 1205 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1206 if (!ToTypePtr) 1207 return false; 1208 1209 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1210 if (From->isNullPointerConstant(Context, 1211 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1212 : Expr::NPC_ValueDependentIsNull)) { 1213 ConvertedType = ToType; 1214 return true; 1215 } 1216 1217 // Otherwise, both types have to be member pointers. 1218 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1219 if (!FromTypePtr) 1220 return false; 1221 1222 // A pointer to member of B can be converted to a pointer to member of D, 1223 // where D is derived from B (C++ 4.11p2). 1224 QualType FromClass(FromTypePtr->getClass(), 0); 1225 QualType ToClass(ToTypePtr->getClass(), 0); 1226 // FIXME: What happens when these are dependent? Is this function even called? 1227 1228 if (IsDerivedFrom(ToClass, FromClass)) { 1229 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1230 ToClass.getTypePtr()); 1231 return true; 1232 } 1233 1234 return false; 1235} 1236 1237/// CheckMemberPointerConversion - Check the member pointer conversion from the 1238/// expression From to the type ToType. This routine checks for ambiguous or 1239/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions 1240/// for which IsMemberPointerConversion has already returned true. It returns 1241/// true and produces a diagnostic if there was an error, or returns false 1242/// otherwise. 1243bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1244 CastExpr::CastKind &Kind, 1245 bool IgnoreBaseAccess) { 1246 (void)IgnoreBaseAccess; 1247 QualType FromType = From->getType(); 1248 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1249 if (!FromPtrType) { 1250 // This must be a null pointer to member pointer conversion 1251 assert(From->isNullPointerConstant(Context, 1252 Expr::NPC_ValueDependentIsNull) && 1253 "Expr must be null pointer constant!"); 1254 Kind = CastExpr::CK_NullToMemberPointer; 1255 return false; 1256 } 1257 1258 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1259 assert(ToPtrType && "No member pointer cast has a target type " 1260 "that is not a member pointer."); 1261 1262 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1263 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1264 1265 // FIXME: What about dependent types? 1266 assert(FromClass->isRecordType() && "Pointer into non-class."); 1267 assert(ToClass->isRecordType() && "Pointer into non-class."); 1268 1269 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 1270 /*DetectVirtual=*/true); 1271 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1272 assert(DerivationOkay && 1273 "Should not have been called if derivation isn't OK."); 1274 (void)DerivationOkay; 1275 1276 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1277 getUnqualifiedType())) { 1278 // Derivation is ambiguous. Redo the check to find the exact paths. 1279 Paths.clear(); 1280 Paths.setRecordingPaths(true); 1281 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1282 assert(StillOkay && "Derivation changed due to quantum fluctuation."); 1283 (void)StillOkay; 1284 1285 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1286 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1287 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1288 return true; 1289 } 1290 1291 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1292 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1293 << FromClass << ToClass << QualType(VBase, 0) 1294 << From->getSourceRange(); 1295 return true; 1296 } 1297 1298 // Must be a base to derived member conversion. 1299 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1300 return false; 1301} 1302 1303/// IsQualificationConversion - Determines whether the conversion from 1304/// an rvalue of type FromType to ToType is a qualification conversion 1305/// (C++ 4.4). 1306bool 1307Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1308 FromType = Context.getCanonicalType(FromType); 1309 ToType = Context.getCanonicalType(ToType); 1310 1311 // If FromType and ToType are the same type, this is not a 1312 // qualification conversion. 1313 if (FromType == ToType) 1314 return false; 1315 1316 // (C++ 4.4p4): 1317 // A conversion can add cv-qualifiers at levels other than the first 1318 // in multi-level pointers, subject to the following rules: [...] 1319 bool PreviousToQualsIncludeConst = true; 1320 bool UnwrappedAnyPointer = false; 1321 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1322 // Within each iteration of the loop, we check the qualifiers to 1323 // determine if this still looks like a qualification 1324 // conversion. Then, if all is well, we unwrap one more level of 1325 // pointers or pointers-to-members and do it all again 1326 // until there are no more pointers or pointers-to-members left to 1327 // unwrap. 1328 UnwrappedAnyPointer = true; 1329 1330 // -- for every j > 0, if const is in cv 1,j then const is in cv 1331 // 2,j, and similarly for volatile. 1332 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1333 return false; 1334 1335 // -- if the cv 1,j and cv 2,j are different, then const is in 1336 // every cv for 0 < k < j. 1337 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1338 && !PreviousToQualsIncludeConst) 1339 return false; 1340 1341 // Keep track of whether all prior cv-qualifiers in the "to" type 1342 // include const. 1343 PreviousToQualsIncludeConst 1344 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1345 } 1346 1347 // We are left with FromType and ToType being the pointee types 1348 // after unwrapping the original FromType and ToType the same number 1349 // of types. If we unwrapped any pointers, and if FromType and 1350 // ToType have the same unqualified type (since we checked 1351 // qualifiers above), then this is a qualification conversion. 1352 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1353} 1354 1355/// Determines whether there is a user-defined conversion sequence 1356/// (C++ [over.ics.user]) that converts expression From to the type 1357/// ToType. If such a conversion exists, User will contain the 1358/// user-defined conversion sequence that performs such a conversion 1359/// and this routine will return true. Otherwise, this routine returns 1360/// false and User is unspecified. 1361/// 1362/// \param AllowConversionFunctions true if the conversion should 1363/// consider conversion functions at all. If false, only constructors 1364/// will be considered. 1365/// 1366/// \param AllowExplicit true if the conversion should consider C++0x 1367/// "explicit" conversion functions as well as non-explicit conversion 1368/// functions (C++0x [class.conv.fct]p2). 1369/// 1370/// \param ForceRValue true if the expression should be treated as an rvalue 1371/// for overload resolution. 1372/// \param UserCast true if looking for user defined conversion for a static 1373/// cast. 1374Sema::OverloadingResult Sema::IsUserDefinedConversion( 1375 Expr *From, QualType ToType, 1376 UserDefinedConversionSequence& User, 1377 OverloadCandidateSet& CandidateSet, 1378 bool AllowConversionFunctions, 1379 bool AllowExplicit, bool ForceRValue, 1380 bool UserCast) { 1381 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1382 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1383 // We're not going to find any constructors. 1384 } else if (CXXRecordDecl *ToRecordDecl 1385 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1386 // C++ [over.match.ctor]p1: 1387 // When objects of class type are direct-initialized (8.5), or 1388 // copy-initialized from an expression of the same or a 1389 // derived class type (8.5), overload resolution selects the 1390 // constructor. [...] For copy-initialization, the candidate 1391 // functions are all the converting constructors (12.3.1) of 1392 // that class. The argument list is the expression-list within 1393 // the parentheses of the initializer. 1394 bool SuppressUserConversions = !UserCast; 1395 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1396 IsDerivedFrom(From->getType(), ToType)) { 1397 SuppressUserConversions = false; 1398 AllowConversionFunctions = false; 1399 } 1400 1401 DeclarationName ConstructorName 1402 = Context.DeclarationNames.getCXXConstructorName( 1403 Context.getCanonicalType(ToType).getUnqualifiedType()); 1404 DeclContext::lookup_iterator Con, ConEnd; 1405 for (llvm::tie(Con, ConEnd) 1406 = ToRecordDecl->lookup(ConstructorName); 1407 Con != ConEnd; ++Con) { 1408 // Find the constructor (which may be a template). 1409 CXXConstructorDecl *Constructor = 0; 1410 FunctionTemplateDecl *ConstructorTmpl 1411 = dyn_cast<FunctionTemplateDecl>(*Con); 1412 if (ConstructorTmpl) 1413 Constructor 1414 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1415 else 1416 Constructor = cast<CXXConstructorDecl>(*Con); 1417 1418 if (!Constructor->isInvalidDecl() && 1419 Constructor->isConvertingConstructor(AllowExplicit)) { 1420 if (ConstructorTmpl) 1421 AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0, 1422 &From, 1, CandidateSet, 1423 SuppressUserConversions, ForceRValue); 1424 else 1425 // Allow one user-defined conversion when user specifies a 1426 // From->ToType conversion via an static cast (c-style, etc). 1427 AddOverloadCandidate(Constructor, &From, 1, CandidateSet, 1428 SuppressUserConversions, ForceRValue); 1429 } 1430 } 1431 } 1432 } 1433 1434 if (!AllowConversionFunctions) { 1435 // Don't allow any conversion functions to enter the overload set. 1436 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1437 PDiag(0) 1438 << From->getSourceRange())) { 1439 // No conversion functions from incomplete types. 1440 } else if (const RecordType *FromRecordType 1441 = From->getType()->getAs<RecordType>()) { 1442 if (CXXRecordDecl *FromRecordDecl 1443 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1444 // Add all of the conversion functions as candidates. 1445 const UnresolvedSet *Conversions 1446 = FromRecordDecl->getVisibleConversionFunctions(); 1447 for (UnresolvedSet::iterator I = Conversions->begin(), 1448 E = Conversions->end(); I != E; ++I) { 1449 CXXConversionDecl *Conv; 1450 FunctionTemplateDecl *ConvTemplate; 1451 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I))) 1452 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1453 else 1454 Conv = dyn_cast<CXXConversionDecl>(*I); 1455 1456 if (AllowExplicit || !Conv->isExplicit()) { 1457 if (ConvTemplate) 1458 AddTemplateConversionCandidate(ConvTemplate, From, ToType, 1459 CandidateSet); 1460 else 1461 AddConversionCandidate(Conv, From, ToType, CandidateSet); 1462 } 1463 } 1464 } 1465 } 1466 1467 OverloadCandidateSet::iterator Best; 1468 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1469 case OR_Success: 1470 // Record the standard conversion we used and the conversion function. 1471 if (CXXConstructorDecl *Constructor 1472 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1473 // C++ [over.ics.user]p1: 1474 // If the user-defined conversion is specified by a 1475 // constructor (12.3.1), the initial standard conversion 1476 // sequence converts the source type to the type required by 1477 // the argument of the constructor. 1478 // 1479 QualType ThisType = Constructor->getThisType(Context); 1480 if (Best->Conversions[0].ConversionKind == 1481 ImplicitConversionSequence::EllipsisConversion) 1482 User.EllipsisConversion = true; 1483 else { 1484 User.Before = Best->Conversions[0].Standard; 1485 User.EllipsisConversion = false; 1486 } 1487 User.ConversionFunction = Constructor; 1488 User.After.setAsIdentityConversion(); 1489 User.After.FromTypePtr 1490 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr(); 1491 User.After.ToTypePtr = ToType.getAsOpaquePtr(); 1492 return OR_Success; 1493 } else if (CXXConversionDecl *Conversion 1494 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1495 // C++ [over.ics.user]p1: 1496 // 1497 // [...] If the user-defined conversion is specified by a 1498 // conversion function (12.3.2), the initial standard 1499 // conversion sequence converts the source type to the 1500 // implicit object parameter of the conversion function. 1501 User.Before = Best->Conversions[0].Standard; 1502 User.ConversionFunction = Conversion; 1503 User.EllipsisConversion = false; 1504 1505 // C++ [over.ics.user]p2: 1506 // The second standard conversion sequence converts the 1507 // result of the user-defined conversion to the target type 1508 // for the sequence. Since an implicit conversion sequence 1509 // is an initialization, the special rules for 1510 // initialization by user-defined conversion apply when 1511 // selecting the best user-defined conversion for a 1512 // user-defined conversion sequence (see 13.3.3 and 1513 // 13.3.3.1). 1514 User.After = Best->FinalConversion; 1515 return OR_Success; 1516 } else { 1517 assert(false && "Not a constructor or conversion function?"); 1518 return OR_No_Viable_Function; 1519 } 1520 1521 case OR_No_Viable_Function: 1522 return OR_No_Viable_Function; 1523 case OR_Deleted: 1524 // No conversion here! We're done. 1525 return OR_Deleted; 1526 1527 case OR_Ambiguous: 1528 return OR_Ambiguous; 1529 } 1530 1531 return OR_No_Viable_Function; 1532} 1533 1534bool 1535Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 1536 ImplicitConversionSequence ICS; 1537 OverloadCandidateSet CandidateSet; 1538 OverloadingResult OvResult = 1539 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 1540 CandidateSet, true, false, false); 1541 if (OvResult == OR_Ambiguous) 1542 Diag(From->getSourceRange().getBegin(), 1543 diag::err_typecheck_ambiguous_condition) 1544 << From->getType() << ToType << From->getSourceRange(); 1545 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 1546 Diag(From->getSourceRange().getBegin(), 1547 diag::err_typecheck_nonviable_condition) 1548 << From->getType() << ToType << From->getSourceRange(); 1549 else 1550 return false; 1551 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 1552 return true; 1553} 1554 1555/// CompareImplicitConversionSequences - Compare two implicit 1556/// conversion sequences to determine whether one is better than the 1557/// other or if they are indistinguishable (C++ 13.3.3.2). 1558ImplicitConversionSequence::CompareKind 1559Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1560 const ImplicitConversionSequence& ICS2) 1561{ 1562 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1563 // conversion sequences (as defined in 13.3.3.1) 1564 // -- a standard conversion sequence (13.3.3.1.1) is a better 1565 // conversion sequence than a user-defined conversion sequence or 1566 // an ellipsis conversion sequence, and 1567 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1568 // conversion sequence than an ellipsis conversion sequence 1569 // (13.3.3.1.3). 1570 // 1571 if (ICS1.ConversionKind < ICS2.ConversionKind) 1572 return ImplicitConversionSequence::Better; 1573 else if (ICS2.ConversionKind < ICS1.ConversionKind) 1574 return ImplicitConversionSequence::Worse; 1575 1576 // Two implicit conversion sequences of the same form are 1577 // indistinguishable conversion sequences unless one of the 1578 // following rules apply: (C++ 13.3.3.2p3): 1579 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) 1580 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1581 else if (ICS1.ConversionKind == 1582 ImplicitConversionSequence::UserDefinedConversion) { 1583 // User-defined conversion sequence U1 is a better conversion 1584 // sequence than another user-defined conversion sequence U2 if 1585 // they contain the same user-defined conversion function or 1586 // constructor and if the second standard conversion sequence of 1587 // U1 is better than the second standard conversion sequence of 1588 // U2 (C++ 13.3.3.2p3). 1589 if (ICS1.UserDefined.ConversionFunction == 1590 ICS2.UserDefined.ConversionFunction) 1591 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1592 ICS2.UserDefined.After); 1593 } 1594 1595 return ImplicitConversionSequence::Indistinguishable; 1596} 1597 1598/// CompareStandardConversionSequences - Compare two standard 1599/// conversion sequences to determine whether one is better than the 1600/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1601ImplicitConversionSequence::CompareKind 1602Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1603 const StandardConversionSequence& SCS2) 1604{ 1605 // Standard conversion sequence S1 is a better conversion sequence 1606 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1607 1608 // -- S1 is a proper subsequence of S2 (comparing the conversion 1609 // sequences in the canonical form defined by 13.3.3.1.1, 1610 // excluding any Lvalue Transformation; the identity conversion 1611 // sequence is considered to be a subsequence of any 1612 // non-identity conversion sequence) or, if not that, 1613 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) 1614 // Neither is a proper subsequence of the other. Do nothing. 1615 ; 1616 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || 1617 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || 1618 (SCS1.Second == ICK_Identity && 1619 SCS1.Third == ICK_Identity)) 1620 // SCS1 is a proper subsequence of SCS2. 1621 return ImplicitConversionSequence::Better; 1622 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || 1623 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || 1624 (SCS2.Second == ICK_Identity && 1625 SCS2.Third == ICK_Identity)) 1626 // SCS2 is a proper subsequence of SCS1. 1627 return ImplicitConversionSequence::Worse; 1628 1629 // -- the rank of S1 is better than the rank of S2 (by the rules 1630 // defined below), or, if not that, 1631 ImplicitConversionRank Rank1 = SCS1.getRank(); 1632 ImplicitConversionRank Rank2 = SCS2.getRank(); 1633 if (Rank1 < Rank2) 1634 return ImplicitConversionSequence::Better; 1635 else if (Rank2 < Rank1) 1636 return ImplicitConversionSequence::Worse; 1637 1638 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1639 // are indistinguishable unless one of the following rules 1640 // applies: 1641 1642 // A conversion that is not a conversion of a pointer, or 1643 // pointer to member, to bool is better than another conversion 1644 // that is such a conversion. 1645 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1646 return SCS2.isPointerConversionToBool() 1647 ? ImplicitConversionSequence::Better 1648 : ImplicitConversionSequence::Worse; 1649 1650 // C++ [over.ics.rank]p4b2: 1651 // 1652 // If class B is derived directly or indirectly from class A, 1653 // conversion of B* to A* is better than conversion of B* to 1654 // void*, and conversion of A* to void* is better than conversion 1655 // of B* to void*. 1656 bool SCS1ConvertsToVoid 1657 = SCS1.isPointerConversionToVoidPointer(Context); 1658 bool SCS2ConvertsToVoid 1659 = SCS2.isPointerConversionToVoidPointer(Context); 1660 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1661 // Exactly one of the conversion sequences is a conversion to 1662 // a void pointer; it's the worse conversion. 1663 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1664 : ImplicitConversionSequence::Worse; 1665 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1666 // Neither conversion sequence converts to a void pointer; compare 1667 // their derived-to-base conversions. 1668 if (ImplicitConversionSequence::CompareKind DerivedCK 1669 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1670 return DerivedCK; 1671 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1672 // Both conversion sequences are conversions to void 1673 // pointers. Compare the source types to determine if there's an 1674 // inheritance relationship in their sources. 1675 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1676 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1677 1678 // Adjust the types we're converting from via the array-to-pointer 1679 // conversion, if we need to. 1680 if (SCS1.First == ICK_Array_To_Pointer) 1681 FromType1 = Context.getArrayDecayedType(FromType1); 1682 if (SCS2.First == ICK_Array_To_Pointer) 1683 FromType2 = Context.getArrayDecayedType(FromType2); 1684 1685 QualType FromPointee1 1686 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1687 QualType FromPointee2 1688 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1689 1690 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1691 return ImplicitConversionSequence::Better; 1692 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1693 return ImplicitConversionSequence::Worse; 1694 1695 // Objective-C++: If one interface is more specific than the 1696 // other, it is the better one. 1697 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1698 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1699 if (FromIface1 && FromIface1) { 1700 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1701 return ImplicitConversionSequence::Better; 1702 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1703 return ImplicitConversionSequence::Worse; 1704 } 1705 } 1706 1707 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1708 // bullet 3). 1709 if (ImplicitConversionSequence::CompareKind QualCK 1710 = CompareQualificationConversions(SCS1, SCS2)) 1711 return QualCK; 1712 1713 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1714 // C++0x [over.ics.rank]p3b4: 1715 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 1716 // implicit object parameter of a non-static member function declared 1717 // without a ref-qualifier, and S1 binds an rvalue reference to an 1718 // rvalue and S2 binds an lvalue reference. 1719 // FIXME: We don't know if we're dealing with the implicit object parameter, 1720 // or if the member function in this case has a ref qualifier. 1721 // (Of course, we don't have ref qualifiers yet.) 1722 if (SCS1.RRefBinding != SCS2.RRefBinding) 1723 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 1724 : ImplicitConversionSequence::Worse; 1725 1726 // C++ [over.ics.rank]p3b4: 1727 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1728 // which the references refer are the same type except for 1729 // top-level cv-qualifiers, and the type to which the reference 1730 // initialized by S2 refers is more cv-qualified than the type 1731 // to which the reference initialized by S1 refers. 1732 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1733 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1734 T1 = Context.getCanonicalType(T1); 1735 T2 = Context.getCanonicalType(T2); 1736 if (Context.hasSameUnqualifiedType(T1, T2)) { 1737 if (T2.isMoreQualifiedThan(T1)) 1738 return ImplicitConversionSequence::Better; 1739 else if (T1.isMoreQualifiedThan(T2)) 1740 return ImplicitConversionSequence::Worse; 1741 } 1742 } 1743 1744 return ImplicitConversionSequence::Indistinguishable; 1745} 1746 1747/// CompareQualificationConversions - Compares two standard conversion 1748/// sequences to determine whether they can be ranked based on their 1749/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1750ImplicitConversionSequence::CompareKind 1751Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1752 const StandardConversionSequence& SCS2) { 1753 // C++ 13.3.3.2p3: 1754 // -- S1 and S2 differ only in their qualification conversion and 1755 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1756 // cv-qualification signature of type T1 is a proper subset of 1757 // the cv-qualification signature of type T2, and S1 is not the 1758 // deprecated string literal array-to-pointer conversion (4.2). 1759 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1760 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1761 return ImplicitConversionSequence::Indistinguishable; 1762 1763 // FIXME: the example in the standard doesn't use a qualification 1764 // conversion (!) 1765 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1766 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1767 T1 = Context.getCanonicalType(T1); 1768 T2 = Context.getCanonicalType(T2); 1769 1770 // If the types are the same, we won't learn anything by unwrapped 1771 // them. 1772 if (Context.hasSameUnqualifiedType(T1, T2)) 1773 return ImplicitConversionSequence::Indistinguishable; 1774 1775 ImplicitConversionSequence::CompareKind Result 1776 = ImplicitConversionSequence::Indistinguishable; 1777 while (UnwrapSimilarPointerTypes(T1, T2)) { 1778 // Within each iteration of the loop, we check the qualifiers to 1779 // determine if this still looks like a qualification 1780 // conversion. Then, if all is well, we unwrap one more level of 1781 // pointers or pointers-to-members and do it all again 1782 // until there are no more pointers or pointers-to-members left 1783 // to unwrap. This essentially mimics what 1784 // IsQualificationConversion does, but here we're checking for a 1785 // strict subset of qualifiers. 1786 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1787 // The qualifiers are the same, so this doesn't tell us anything 1788 // about how the sequences rank. 1789 ; 1790 else if (T2.isMoreQualifiedThan(T1)) { 1791 // T1 has fewer qualifiers, so it could be the better sequence. 1792 if (Result == ImplicitConversionSequence::Worse) 1793 // Neither has qualifiers that are a subset of the other's 1794 // qualifiers. 1795 return ImplicitConversionSequence::Indistinguishable; 1796 1797 Result = ImplicitConversionSequence::Better; 1798 } else if (T1.isMoreQualifiedThan(T2)) { 1799 // T2 has fewer qualifiers, so it could be the better sequence. 1800 if (Result == ImplicitConversionSequence::Better) 1801 // Neither has qualifiers that are a subset of the other's 1802 // qualifiers. 1803 return ImplicitConversionSequence::Indistinguishable; 1804 1805 Result = ImplicitConversionSequence::Worse; 1806 } else { 1807 // Qualifiers are disjoint. 1808 return ImplicitConversionSequence::Indistinguishable; 1809 } 1810 1811 // If the types after this point are equivalent, we're done. 1812 if (Context.hasSameUnqualifiedType(T1, T2)) 1813 break; 1814 } 1815 1816 // Check that the winning standard conversion sequence isn't using 1817 // the deprecated string literal array to pointer conversion. 1818 switch (Result) { 1819 case ImplicitConversionSequence::Better: 1820 if (SCS1.Deprecated) 1821 Result = ImplicitConversionSequence::Indistinguishable; 1822 break; 1823 1824 case ImplicitConversionSequence::Indistinguishable: 1825 break; 1826 1827 case ImplicitConversionSequence::Worse: 1828 if (SCS2.Deprecated) 1829 Result = ImplicitConversionSequence::Indistinguishable; 1830 break; 1831 } 1832 1833 return Result; 1834} 1835 1836/// CompareDerivedToBaseConversions - Compares two standard conversion 1837/// sequences to determine whether they can be ranked based on their 1838/// various kinds of derived-to-base conversions (C++ 1839/// [over.ics.rank]p4b3). As part of these checks, we also look at 1840/// conversions between Objective-C interface types. 1841ImplicitConversionSequence::CompareKind 1842Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 1843 const StandardConversionSequence& SCS2) { 1844 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1845 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1846 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1847 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1848 1849 // Adjust the types we're converting from via the array-to-pointer 1850 // conversion, if we need to. 1851 if (SCS1.First == ICK_Array_To_Pointer) 1852 FromType1 = Context.getArrayDecayedType(FromType1); 1853 if (SCS2.First == ICK_Array_To_Pointer) 1854 FromType2 = Context.getArrayDecayedType(FromType2); 1855 1856 // Canonicalize all of the types. 1857 FromType1 = Context.getCanonicalType(FromType1); 1858 ToType1 = Context.getCanonicalType(ToType1); 1859 FromType2 = Context.getCanonicalType(FromType2); 1860 ToType2 = Context.getCanonicalType(ToType2); 1861 1862 // C++ [over.ics.rank]p4b3: 1863 // 1864 // If class B is derived directly or indirectly from class A and 1865 // class C is derived directly or indirectly from B, 1866 // 1867 // For Objective-C, we let A, B, and C also be Objective-C 1868 // interfaces. 1869 1870 // Compare based on pointer conversions. 1871 if (SCS1.Second == ICK_Pointer_Conversion && 1872 SCS2.Second == ICK_Pointer_Conversion && 1873 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 1874 FromType1->isPointerType() && FromType2->isPointerType() && 1875 ToType1->isPointerType() && ToType2->isPointerType()) { 1876 QualType FromPointee1 1877 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1878 QualType ToPointee1 1879 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1880 QualType FromPointee2 1881 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1882 QualType ToPointee2 1883 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1884 1885 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1886 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1887 const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>(); 1888 const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>(); 1889 1890 // -- conversion of C* to B* is better than conversion of C* to A*, 1891 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1892 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1893 return ImplicitConversionSequence::Better; 1894 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1895 return ImplicitConversionSequence::Worse; 1896 1897 if (ToIface1 && ToIface2) { 1898 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 1899 return ImplicitConversionSequence::Better; 1900 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 1901 return ImplicitConversionSequence::Worse; 1902 } 1903 } 1904 1905 // -- conversion of B* to A* is better than conversion of C* to A*, 1906 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 1907 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1908 return ImplicitConversionSequence::Better; 1909 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1910 return ImplicitConversionSequence::Worse; 1911 1912 if (FromIface1 && FromIface2) { 1913 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1914 return ImplicitConversionSequence::Better; 1915 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1916 return ImplicitConversionSequence::Worse; 1917 } 1918 } 1919 } 1920 1921 // Compare based on reference bindings. 1922 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 1923 SCS1.Second == ICK_Derived_To_Base) { 1924 // -- binding of an expression of type C to a reference of type 1925 // B& is better than binding an expression of type C to a 1926 // reference of type A&, 1927 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 1928 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 1929 if (IsDerivedFrom(ToType1, ToType2)) 1930 return ImplicitConversionSequence::Better; 1931 else if (IsDerivedFrom(ToType2, ToType1)) 1932 return ImplicitConversionSequence::Worse; 1933 } 1934 1935 // -- binding of an expression of type B to a reference of type 1936 // A& is better than binding an expression of type C to a 1937 // reference of type A&, 1938 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 1939 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 1940 if (IsDerivedFrom(FromType2, FromType1)) 1941 return ImplicitConversionSequence::Better; 1942 else if (IsDerivedFrom(FromType1, FromType2)) 1943 return ImplicitConversionSequence::Worse; 1944 } 1945 } 1946 1947 // Ranking of member-pointer types. 1948 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 1949 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 1950 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 1951 const MemberPointerType * FromMemPointer1 = 1952 FromType1->getAs<MemberPointerType>(); 1953 const MemberPointerType * ToMemPointer1 = 1954 ToType1->getAs<MemberPointerType>(); 1955 const MemberPointerType * FromMemPointer2 = 1956 FromType2->getAs<MemberPointerType>(); 1957 const MemberPointerType * ToMemPointer2 = 1958 ToType2->getAs<MemberPointerType>(); 1959 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 1960 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 1961 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 1962 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 1963 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 1964 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 1965 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 1966 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 1967 // conversion of A::* to B::* is better than conversion of A::* to C::*, 1968 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1969 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1970 return ImplicitConversionSequence::Worse; 1971 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1972 return ImplicitConversionSequence::Better; 1973 } 1974 // conversion of B::* to C::* is better than conversion of A::* to C::* 1975 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 1976 if (IsDerivedFrom(FromPointee1, FromPointee2)) 1977 return ImplicitConversionSequence::Better; 1978 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 1979 return ImplicitConversionSequence::Worse; 1980 } 1981 } 1982 1983 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 1984 SCS1.Second == ICK_Derived_To_Base) { 1985 // -- conversion of C to B is better than conversion of C to A, 1986 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 1987 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 1988 if (IsDerivedFrom(ToType1, ToType2)) 1989 return ImplicitConversionSequence::Better; 1990 else if (IsDerivedFrom(ToType2, ToType1)) 1991 return ImplicitConversionSequence::Worse; 1992 } 1993 1994 // -- conversion of B to A is better than conversion of C to A. 1995 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 1996 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 1997 if (IsDerivedFrom(FromType2, FromType1)) 1998 return ImplicitConversionSequence::Better; 1999 else if (IsDerivedFrom(FromType1, FromType2)) 2000 return ImplicitConversionSequence::Worse; 2001 } 2002 } 2003 2004 return ImplicitConversionSequence::Indistinguishable; 2005} 2006 2007/// TryCopyInitialization - Try to copy-initialize a value of type 2008/// ToType from the expression From. Return the implicit conversion 2009/// sequence required to pass this argument, which may be a bad 2010/// conversion sequence (meaning that the argument cannot be passed to 2011/// a parameter of this type). If @p SuppressUserConversions, then we 2012/// do not permit any user-defined conversion sequences. If @p ForceRValue, 2013/// then we treat @p From as an rvalue, even if it is an lvalue. 2014ImplicitConversionSequence 2015Sema::TryCopyInitialization(Expr *From, QualType ToType, 2016 bool SuppressUserConversions, bool ForceRValue, 2017 bool InOverloadResolution) { 2018 if (ToType->isReferenceType()) { 2019 ImplicitConversionSequence ICS; 2020 CheckReferenceInit(From, ToType, 2021 /*FIXME:*/From->getLocStart(), 2022 SuppressUserConversions, 2023 /*AllowExplicit=*/false, 2024 ForceRValue, 2025 &ICS); 2026 return ICS; 2027 } else { 2028 return TryImplicitConversion(From, ToType, 2029 SuppressUserConversions, 2030 /*AllowExplicit=*/false, 2031 ForceRValue, 2032 InOverloadResolution); 2033 } 2034} 2035 2036/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with 2037/// the expression @p From. Returns true (and emits a diagnostic) if there was 2038/// an error, returns false if the initialization succeeded. Elidable should 2039/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works 2040/// differently in C++0x for this case. 2041bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 2042 const char* Flavor, bool Elidable) { 2043 if (!getLangOptions().CPlusPlus) { 2044 // In C, argument passing is the same as performing an assignment. 2045 QualType FromType = From->getType(); 2046 2047 AssignConvertType ConvTy = 2048 CheckSingleAssignmentConstraints(ToType, From); 2049 if (ConvTy != Compatible && 2050 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) 2051 ConvTy = Compatible; 2052 2053 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 2054 FromType, From, Flavor); 2055 } 2056 2057 if (ToType->isReferenceType()) 2058 return CheckReferenceInit(From, ToType, 2059 /*FIXME:*/From->getLocStart(), 2060 /*SuppressUserConversions=*/false, 2061 /*AllowExplicit=*/false, 2062 /*ForceRValue=*/false); 2063 2064 if (!PerformImplicitConversion(From, ToType, Flavor, 2065 /*AllowExplicit=*/false, Elidable)) 2066 return false; 2067 if (!DiagnoseMultipleUserDefinedConversion(From, ToType)) 2068 return Diag(From->getSourceRange().getBegin(), 2069 diag::err_typecheck_convert_incompatible) 2070 << ToType << From->getType() << Flavor << From->getSourceRange(); 2071 return true; 2072} 2073 2074/// TryObjectArgumentInitialization - Try to initialize the object 2075/// parameter of the given member function (@c Method) from the 2076/// expression @p From. 2077ImplicitConversionSequence 2078Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) { 2079 QualType ClassType = Context.getTypeDeclType(Method->getParent()); 2080 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 2081 // const volatile object. 2082 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 2083 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 2084 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); 2085 2086 // Set up the conversion sequence as a "bad" conversion, to allow us 2087 // to exit early. 2088 ImplicitConversionSequence ICS; 2089 ICS.Standard.setAsIdentityConversion(); 2090 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 2091 2092 // We need to have an object of class type. 2093 QualType FromType = From->getType(); 2094 if (const PointerType *PT = FromType->getAs<PointerType>()) 2095 FromType = PT->getPointeeType(); 2096 2097 assert(FromType->isRecordType()); 2098 2099 // The implicit object parameter is has the type "reference to cv X", 2100 // where X is the class of which the function is a member 2101 // (C++ [over.match.funcs]p4). However, when finding an implicit 2102 // conversion sequence for the argument, we are not allowed to 2103 // create temporaries or perform user-defined conversions 2104 // (C++ [over.match.funcs]p5). We perform a simplified version of 2105 // reference binding here, that allows class rvalues to bind to 2106 // non-constant references. 2107 2108 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2109 // with the implicit object parameter (C++ [over.match.funcs]p5). 2110 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2111 if (ImplicitParamType.getCVRQualifiers() 2112 != FromTypeCanon.getLocalCVRQualifiers() && 2113 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) 2114 return ICS; 2115 2116 // Check that we have either the same type or a derived type. It 2117 // affects the conversion rank. 2118 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2119 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) 2120 ICS.Standard.Second = ICK_Identity; 2121 else if (IsDerivedFrom(FromType, ClassType)) 2122 ICS.Standard.Second = ICK_Derived_To_Base; 2123 else 2124 return ICS; 2125 2126 // Success. Mark this as a reference binding. 2127 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 2128 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); 2129 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); 2130 ICS.Standard.ReferenceBinding = true; 2131 ICS.Standard.DirectBinding = true; 2132 ICS.Standard.RRefBinding = false; 2133 return ICS; 2134} 2135 2136/// PerformObjectArgumentInitialization - Perform initialization of 2137/// the implicit object parameter for the given Method with the given 2138/// expression. 2139bool 2140Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 2141 QualType FromRecordType, DestType; 2142 QualType ImplicitParamRecordType = 2143 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2144 2145 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2146 FromRecordType = PT->getPointeeType(); 2147 DestType = Method->getThisType(Context); 2148 } else { 2149 FromRecordType = From->getType(); 2150 DestType = ImplicitParamRecordType; 2151 } 2152 2153 ImplicitConversionSequence ICS 2154 = TryObjectArgumentInitialization(From, Method); 2155 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) 2156 return Diag(From->getSourceRange().getBegin(), 2157 diag::err_implicit_object_parameter_init) 2158 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2159 2160 if (ICS.Standard.Second == ICK_Derived_To_Base && 2161 CheckDerivedToBaseConversion(FromRecordType, 2162 ImplicitParamRecordType, 2163 From->getSourceRange().getBegin(), 2164 From->getSourceRange())) 2165 return true; 2166 2167 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, 2168 /*isLvalue=*/true); 2169 return false; 2170} 2171 2172/// TryContextuallyConvertToBool - Attempt to contextually convert the 2173/// expression From to bool (C++0x [conv]p3). 2174ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2175 return TryImplicitConversion(From, Context.BoolTy, 2176 // FIXME: Are these flags correct? 2177 /*SuppressUserConversions=*/false, 2178 /*AllowExplicit=*/true, 2179 /*ForceRValue=*/false, 2180 /*InOverloadResolution=*/false); 2181} 2182 2183/// PerformContextuallyConvertToBool - Perform a contextual conversion 2184/// of the expression From to bool (C++0x [conv]p3). 2185bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2186 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2187 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting")) 2188 return false; 2189 2190 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 2191 return Diag(From->getSourceRange().getBegin(), 2192 diag::err_typecheck_bool_condition) 2193 << From->getType() << From->getSourceRange(); 2194 return true; 2195} 2196 2197/// AddOverloadCandidate - Adds the given function to the set of 2198/// candidate functions, using the given function call arguments. If 2199/// @p SuppressUserConversions, then don't allow user-defined 2200/// conversions via constructors or conversion operators. 2201/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly 2202/// hacky way to implement the overloading rules for elidable copy 2203/// initialization in C++0x (C++0x 12.8p15). 2204/// 2205/// \para PartialOverloading true if we are performing "partial" overloading 2206/// based on an incomplete set of function arguments. This feature is used by 2207/// code completion. 2208void 2209Sema::AddOverloadCandidate(FunctionDecl *Function, 2210 Expr **Args, unsigned NumArgs, 2211 OverloadCandidateSet& CandidateSet, 2212 bool SuppressUserConversions, 2213 bool ForceRValue, 2214 bool PartialOverloading) { 2215 const FunctionProtoType* Proto 2216 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 2217 assert(Proto && "Functions without a prototype cannot be overloaded"); 2218 assert(!isa<CXXConversionDecl>(Function) && 2219 "Use AddConversionCandidate for conversion functions"); 2220 assert(!Function->getDescribedFunctionTemplate() && 2221 "Use AddTemplateOverloadCandidate for function templates"); 2222 2223 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2224 if (!isa<CXXConstructorDecl>(Method)) { 2225 // If we get here, it's because we're calling a member function 2226 // that is named without a member access expression (e.g., 2227 // "this->f") that was either written explicitly or created 2228 // implicitly. This can happen with a qualified call to a member 2229 // function, e.g., X::f(). We use a NULL object as the implied 2230 // object argument (C++ [over.call.func]p3). 2231 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet, 2232 SuppressUserConversions, ForceRValue); 2233 return; 2234 } 2235 // We treat a constructor like a non-member function, since its object 2236 // argument doesn't participate in overload resolution. 2237 } 2238 2239 if (!CandidateSet.isNewCandidate(Function)) 2240 return; 2241 2242 // Overload resolution is always an unevaluated context. 2243 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2244 2245 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 2246 // C++ [class.copy]p3: 2247 // A member function template is never instantiated to perform the copy 2248 // of a class object to an object of its class type. 2249 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 2250 if (NumArgs == 1 && 2251 Constructor->isCopyConstructorLikeSpecialization() && 2252 Context.hasSameUnqualifiedType(ClassType, Args[0]->getType())) 2253 return; 2254 } 2255 2256 // Add this candidate 2257 CandidateSet.push_back(OverloadCandidate()); 2258 OverloadCandidate& Candidate = CandidateSet.back(); 2259 Candidate.Function = Function; 2260 Candidate.Viable = true; 2261 Candidate.IsSurrogate = false; 2262 Candidate.IgnoreObjectArgument = false; 2263 2264 unsigned NumArgsInProto = Proto->getNumArgs(); 2265 2266 // (C++ 13.3.2p2): A candidate function having fewer than m 2267 // parameters is viable only if it has an ellipsis in its parameter 2268 // list (8.3.5). 2269 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 2270 !Proto->isVariadic()) { 2271 Candidate.Viable = false; 2272 return; 2273 } 2274 2275 // (C++ 13.3.2p2): A candidate function having more than m parameters 2276 // is viable only if the (m+1)st parameter has a default argument 2277 // (8.3.6). For the purposes of overload resolution, the 2278 // parameter list is truncated on the right, so that there are 2279 // exactly m parameters. 2280 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 2281 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 2282 // Not enough arguments. 2283 Candidate.Viable = false; 2284 return; 2285 } 2286 2287 // Determine the implicit conversion sequences for each of the 2288 // arguments. 2289 Candidate.Conversions.resize(NumArgs); 2290 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2291 if (ArgIdx < NumArgsInProto) { 2292 // (C++ 13.3.2p3): for F to be a viable function, there shall 2293 // exist for each argument an implicit conversion sequence 2294 // (13.3.3.1) that converts that argument to the corresponding 2295 // parameter of F. 2296 QualType ParamType = Proto->getArgType(ArgIdx); 2297 Candidate.Conversions[ArgIdx] 2298 = TryCopyInitialization(Args[ArgIdx], ParamType, 2299 SuppressUserConversions, ForceRValue, 2300 /*InOverloadResolution=*/true); 2301 if (Candidate.Conversions[ArgIdx].ConversionKind 2302 == ImplicitConversionSequence::BadConversion) { 2303 // 13.3.3.1-p10 If several different sequences of conversions exist that 2304 // each convert the argument to the parameter type, the implicit conversion 2305 // sequence associated with the parameter is defined to be the unique conversion 2306 // sequence designated the ambiguous conversion sequence. For the purpose of 2307 // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous 2308 // conversion sequence is treated as a user-defined sequence that is 2309 // indistinguishable from any other user-defined conversion sequence 2310 if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) { 2311 Candidate.Conversions[ArgIdx].ConversionKind = 2312 ImplicitConversionSequence::UserDefinedConversion; 2313 // Set the conversion function to one of them. As due to ambiguity, 2314 // they carry the same weight and is needed for overload resolution 2315 // later. 2316 Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction = 2317 Candidate.Conversions[ArgIdx].ConversionFunctionSet[0]; 2318 } 2319 else { 2320 Candidate.Viable = false; 2321 break; 2322 } 2323 } 2324 } else { 2325 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2326 // argument for which there is no corresponding parameter is 2327 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2328 Candidate.Conversions[ArgIdx].ConversionKind 2329 = ImplicitConversionSequence::EllipsisConversion; 2330 } 2331 } 2332} 2333 2334/// \brief Add all of the function declarations in the given function set to 2335/// the overload canddiate set. 2336void Sema::AddFunctionCandidates(const FunctionSet &Functions, 2337 Expr **Args, unsigned NumArgs, 2338 OverloadCandidateSet& CandidateSet, 2339 bool SuppressUserConversions) { 2340 for (FunctionSet::const_iterator F = Functions.begin(), 2341 FEnd = Functions.end(); 2342 F != FEnd; ++F) { 2343 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) { 2344 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2345 AddMethodCandidate(cast<CXXMethodDecl>(FD), 2346 Args[0], Args + 1, NumArgs - 1, 2347 CandidateSet, SuppressUserConversions); 2348 else 2349 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 2350 SuppressUserConversions); 2351 } else { 2352 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F); 2353 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 2354 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 2355 AddMethodTemplateCandidate(FunTmpl, 2356 /*FIXME: explicit args */ 0, 2357 Args[0], Args + 1, NumArgs - 1, 2358 CandidateSet, 2359 SuppressUserConversions); 2360 else 2361 AddTemplateOverloadCandidate(FunTmpl, 2362 /*FIXME: explicit args */ 0, 2363 Args, NumArgs, CandidateSet, 2364 SuppressUserConversions); 2365 } 2366 } 2367} 2368 2369/// AddMethodCandidate - Adds a named decl (which is some kind of 2370/// method) as a method candidate to the given overload set. 2371void Sema::AddMethodCandidate(NamedDecl *Decl, Expr *Object, 2372 Expr **Args, unsigned NumArgs, 2373 OverloadCandidateSet& CandidateSet, 2374 bool SuppressUserConversions, bool ForceRValue) { 2375 2376 // FIXME: use this 2377 //DeclContext *ActingContext = Decl->getDeclContext(); 2378 2379 if (isa<UsingShadowDecl>(Decl)) 2380 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 2381 2382 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 2383 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 2384 "Expected a member function template"); 2385 AddMethodTemplateCandidate(TD, /*ExplicitArgs*/ 0, 2386 Object, Args, NumArgs, 2387 CandidateSet, 2388 SuppressUserConversions, 2389 ForceRValue); 2390 } else { 2391 AddMethodCandidate(cast<CXXMethodDecl>(Decl), Object, Args, NumArgs, 2392 CandidateSet, SuppressUserConversions, ForceRValue); 2393 } 2394} 2395 2396/// AddMethodCandidate - Adds the given C++ member function to the set 2397/// of candidate functions, using the given function call arguments 2398/// and the object argument (@c Object). For example, in a call 2399/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 2400/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 2401/// allow user-defined conversions via constructors or conversion 2402/// operators. If @p ForceRValue, treat all arguments as rvalues. This is 2403/// a slightly hacky way to implement the overloading rules for elidable copy 2404/// initialization in C++0x (C++0x 12.8p15). 2405void 2406Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, 2407 Expr **Args, unsigned NumArgs, 2408 OverloadCandidateSet& CandidateSet, 2409 bool SuppressUserConversions, bool ForceRValue) { 2410 const FunctionProtoType* Proto 2411 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 2412 assert(Proto && "Methods without a prototype cannot be overloaded"); 2413 assert(!isa<CXXConversionDecl>(Method) && 2414 "Use AddConversionCandidate for conversion functions"); 2415 assert(!isa<CXXConstructorDecl>(Method) && 2416 "Use AddOverloadCandidate for constructors"); 2417 2418 if (!CandidateSet.isNewCandidate(Method)) 2419 return; 2420 2421 // Overload resolution is always an unevaluated context. 2422 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2423 2424 // Add this candidate 2425 CandidateSet.push_back(OverloadCandidate()); 2426 OverloadCandidate& Candidate = CandidateSet.back(); 2427 Candidate.Function = Method; 2428 Candidate.IsSurrogate = false; 2429 Candidate.IgnoreObjectArgument = false; 2430 2431 unsigned NumArgsInProto = Proto->getNumArgs(); 2432 2433 // (C++ 13.3.2p2): A candidate function having fewer than m 2434 // parameters is viable only if it has an ellipsis in its parameter 2435 // list (8.3.5). 2436 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2437 Candidate.Viable = false; 2438 return; 2439 } 2440 2441 // (C++ 13.3.2p2): A candidate function having more than m parameters 2442 // is viable only if the (m+1)st parameter has a default argument 2443 // (8.3.6). For the purposes of overload resolution, the 2444 // parameter list is truncated on the right, so that there are 2445 // exactly m parameters. 2446 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2447 if (NumArgs < MinRequiredArgs) { 2448 // Not enough arguments. 2449 Candidate.Viable = false; 2450 return; 2451 } 2452 2453 Candidate.Viable = true; 2454 Candidate.Conversions.resize(NumArgs + 1); 2455 2456 if (Method->isStatic() || !Object) 2457 // The implicit object argument is ignored. 2458 Candidate.IgnoreObjectArgument = true; 2459 else { 2460 // Determine the implicit conversion sequence for the object 2461 // parameter. 2462 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method); 2463 if (Candidate.Conversions[0].ConversionKind 2464 == ImplicitConversionSequence::BadConversion) { 2465 Candidate.Viable = false; 2466 return; 2467 } 2468 } 2469 2470 // Determine the implicit conversion sequences for each of the 2471 // arguments. 2472 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2473 if (ArgIdx < NumArgsInProto) { 2474 // (C++ 13.3.2p3): for F to be a viable function, there shall 2475 // exist for each argument an implicit conversion sequence 2476 // (13.3.3.1) that converts that argument to the corresponding 2477 // parameter of F. 2478 QualType ParamType = Proto->getArgType(ArgIdx); 2479 Candidate.Conversions[ArgIdx + 1] 2480 = TryCopyInitialization(Args[ArgIdx], ParamType, 2481 SuppressUserConversions, ForceRValue, 2482 /*InOverloadResolution=*/true); 2483 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2484 == ImplicitConversionSequence::BadConversion) { 2485 Candidate.Viable = false; 2486 break; 2487 } 2488 } else { 2489 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2490 // argument for which there is no corresponding parameter is 2491 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2492 Candidate.Conversions[ArgIdx + 1].ConversionKind 2493 = ImplicitConversionSequence::EllipsisConversion; 2494 } 2495 } 2496} 2497 2498/// \brief Add a C++ member function template as a candidate to the candidate 2499/// set, using template argument deduction to produce an appropriate member 2500/// function template specialization. 2501void 2502Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 2503 const TemplateArgumentListInfo *ExplicitTemplateArgs, 2504 Expr *Object, Expr **Args, unsigned NumArgs, 2505 OverloadCandidateSet& CandidateSet, 2506 bool SuppressUserConversions, 2507 bool ForceRValue) { 2508 if (!CandidateSet.isNewCandidate(MethodTmpl)) 2509 return; 2510 2511 // C++ [over.match.funcs]p7: 2512 // In each case where a candidate is a function template, candidate 2513 // function template specializations are generated using template argument 2514 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2515 // candidate functions in the usual way.113) A given name can refer to one 2516 // or more function templates and also to a set of overloaded non-template 2517 // functions. In such a case, the candidate functions generated from each 2518 // function template are combined with the set of non-template candidate 2519 // functions. 2520 TemplateDeductionInfo Info(Context); 2521 FunctionDecl *Specialization = 0; 2522 if (TemplateDeductionResult Result 2523 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 2524 Args, NumArgs, Specialization, Info)) { 2525 // FIXME: Record what happened with template argument deduction, so 2526 // that we can give the user a beautiful diagnostic. 2527 (void)Result; 2528 return; 2529 } 2530 2531 // Add the function template specialization produced by template argument 2532 // deduction as a candidate. 2533 assert(Specialization && "Missing member function template specialization?"); 2534 assert(isa<CXXMethodDecl>(Specialization) && 2535 "Specialization is not a member function?"); 2536 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs, 2537 CandidateSet, SuppressUserConversions, ForceRValue); 2538} 2539 2540/// \brief Add a C++ function template specialization as a candidate 2541/// in the candidate set, using template argument deduction to produce 2542/// an appropriate function template specialization. 2543void 2544Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 2545 const TemplateArgumentListInfo *ExplicitTemplateArgs, 2546 Expr **Args, unsigned NumArgs, 2547 OverloadCandidateSet& CandidateSet, 2548 bool SuppressUserConversions, 2549 bool ForceRValue) { 2550 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2551 return; 2552 2553 // C++ [over.match.funcs]p7: 2554 // In each case where a candidate is a function template, candidate 2555 // function template specializations are generated using template argument 2556 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2557 // candidate functions in the usual way.113) A given name can refer to one 2558 // or more function templates and also to a set of overloaded non-template 2559 // functions. In such a case, the candidate functions generated from each 2560 // function template are combined with the set of non-template candidate 2561 // functions. 2562 TemplateDeductionInfo Info(Context); 2563 FunctionDecl *Specialization = 0; 2564 if (TemplateDeductionResult Result 2565 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 2566 Args, NumArgs, Specialization, Info)) { 2567 // FIXME: Record what happened with template argument deduction, so 2568 // that we can give the user a beautiful diagnostic. 2569 (void)Result; 2570 return; 2571 } 2572 2573 // Add the function template specialization produced by template argument 2574 // deduction as a candidate. 2575 assert(Specialization && "Missing function template specialization?"); 2576 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet, 2577 SuppressUserConversions, ForceRValue); 2578} 2579 2580/// AddConversionCandidate - Add a C++ conversion function as a 2581/// candidate in the candidate set (C++ [over.match.conv], 2582/// C++ [over.match.copy]). From is the expression we're converting from, 2583/// and ToType is the type that we're eventually trying to convert to 2584/// (which may or may not be the same type as the type that the 2585/// conversion function produces). 2586void 2587Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2588 Expr *From, QualType ToType, 2589 OverloadCandidateSet& CandidateSet) { 2590 assert(!Conversion->getDescribedFunctionTemplate() && 2591 "Conversion function templates use AddTemplateConversionCandidate"); 2592 2593 if (!CandidateSet.isNewCandidate(Conversion)) 2594 return; 2595 2596 // Overload resolution is always an unevaluated context. 2597 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2598 2599 // Add this candidate 2600 CandidateSet.push_back(OverloadCandidate()); 2601 OverloadCandidate& Candidate = CandidateSet.back(); 2602 Candidate.Function = Conversion; 2603 Candidate.IsSurrogate = false; 2604 Candidate.IgnoreObjectArgument = false; 2605 Candidate.FinalConversion.setAsIdentityConversion(); 2606 Candidate.FinalConversion.FromTypePtr 2607 = Conversion->getConversionType().getAsOpaquePtr(); 2608 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); 2609 2610 // Determine the implicit conversion sequence for the implicit 2611 // object parameter. 2612 Candidate.Viable = true; 2613 Candidate.Conversions.resize(1); 2614 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion); 2615 // Conversion functions to a different type in the base class is visible in 2616 // the derived class. So, a derived to base conversion should not participate 2617 // in overload resolution. 2618 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 2619 Candidate.Conversions[0].Standard.Second = ICK_Identity; 2620 if (Candidate.Conversions[0].ConversionKind 2621 == ImplicitConversionSequence::BadConversion) { 2622 Candidate.Viable = false; 2623 return; 2624 } 2625 2626 // We won't go through a user-define type conversion function to convert a 2627 // derived to base as such conversions are given Conversion Rank. They only 2628 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 2629 QualType FromCanon 2630 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 2631 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 2632 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 2633 Candidate.Viable = false; 2634 return; 2635 } 2636 2637 2638 // To determine what the conversion from the result of calling the 2639 // conversion function to the type we're eventually trying to 2640 // convert to (ToType), we need to synthesize a call to the 2641 // conversion function and attempt copy initialization from it. This 2642 // makes sure that we get the right semantics with respect to 2643 // lvalues/rvalues and the type. Fortunately, we can allocate this 2644 // call on the stack and we don't need its arguments to be 2645 // well-formed. 2646 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2647 From->getLocStart()); 2648 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2649 CastExpr::CK_FunctionToPointerDecay, 2650 &ConversionRef, false); 2651 2652 // Note that it is safe to allocate CallExpr on the stack here because 2653 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 2654 // allocator). 2655 CallExpr Call(Context, &ConversionFn, 0, 0, 2656 Conversion->getConversionType().getNonReferenceType(), 2657 From->getLocStart()); 2658 ImplicitConversionSequence ICS = 2659 TryCopyInitialization(&Call, ToType, 2660 /*SuppressUserConversions=*/true, 2661 /*ForceRValue=*/false, 2662 /*InOverloadResolution=*/false); 2663 2664 switch (ICS.ConversionKind) { 2665 case ImplicitConversionSequence::StandardConversion: 2666 Candidate.FinalConversion = ICS.Standard; 2667 break; 2668 2669 case ImplicitConversionSequence::BadConversion: 2670 Candidate.Viable = false; 2671 break; 2672 2673 default: 2674 assert(false && 2675 "Can only end up with a standard conversion sequence or failure"); 2676 } 2677} 2678 2679/// \brief Adds a conversion function template specialization 2680/// candidate to the overload set, using template argument deduction 2681/// to deduce the template arguments of the conversion function 2682/// template from the type that we are converting to (C++ 2683/// [temp.deduct.conv]). 2684void 2685Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 2686 Expr *From, QualType ToType, 2687 OverloadCandidateSet &CandidateSet) { 2688 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 2689 "Only conversion function templates permitted here"); 2690 2691 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2692 return; 2693 2694 TemplateDeductionInfo Info(Context); 2695 CXXConversionDecl *Specialization = 0; 2696 if (TemplateDeductionResult Result 2697 = DeduceTemplateArguments(FunctionTemplate, ToType, 2698 Specialization, Info)) { 2699 // FIXME: Record what happened with template argument deduction, so 2700 // that we can give the user a beautiful diagnostic. 2701 (void)Result; 2702 return; 2703 } 2704 2705 // Add the conversion function template specialization produced by 2706 // template argument deduction as a candidate. 2707 assert(Specialization && "Missing function template specialization?"); 2708 AddConversionCandidate(Specialization, From, ToType, CandidateSet); 2709} 2710 2711/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2712/// converts the given @c Object to a function pointer via the 2713/// conversion function @c Conversion, and then attempts to call it 2714/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2715/// the type of function that we'll eventually be calling. 2716void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2717 const FunctionProtoType *Proto, 2718 Expr *Object, Expr **Args, unsigned NumArgs, 2719 OverloadCandidateSet& CandidateSet) { 2720 if (!CandidateSet.isNewCandidate(Conversion)) 2721 return; 2722 2723 // Overload resolution is always an unevaluated context. 2724 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2725 2726 CandidateSet.push_back(OverloadCandidate()); 2727 OverloadCandidate& Candidate = CandidateSet.back(); 2728 Candidate.Function = 0; 2729 Candidate.Surrogate = Conversion; 2730 Candidate.Viable = true; 2731 Candidate.IsSurrogate = true; 2732 Candidate.IgnoreObjectArgument = false; 2733 Candidate.Conversions.resize(NumArgs + 1); 2734 2735 // Determine the implicit conversion sequence for the implicit 2736 // object parameter. 2737 ImplicitConversionSequence ObjectInit 2738 = TryObjectArgumentInitialization(Object, Conversion); 2739 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { 2740 Candidate.Viable = false; 2741 return; 2742 } 2743 2744 // The first conversion is actually a user-defined conversion whose 2745 // first conversion is ObjectInit's standard conversion (which is 2746 // effectively a reference binding). Record it as such. 2747 Candidate.Conversions[0].ConversionKind 2748 = ImplicitConversionSequence::UserDefinedConversion; 2749 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2750 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 2751 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2752 Candidate.Conversions[0].UserDefined.After 2753 = Candidate.Conversions[0].UserDefined.Before; 2754 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2755 2756 // Find the 2757 unsigned NumArgsInProto = Proto->getNumArgs(); 2758 2759 // (C++ 13.3.2p2): A candidate function having fewer than m 2760 // parameters is viable only if it has an ellipsis in its parameter 2761 // list (8.3.5). 2762 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2763 Candidate.Viable = false; 2764 return; 2765 } 2766 2767 // Function types don't have any default arguments, so just check if 2768 // we have enough arguments. 2769 if (NumArgs < NumArgsInProto) { 2770 // Not enough arguments. 2771 Candidate.Viable = false; 2772 return; 2773 } 2774 2775 // Determine the implicit conversion sequences for each of the 2776 // arguments. 2777 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2778 if (ArgIdx < NumArgsInProto) { 2779 // (C++ 13.3.2p3): for F to be a viable function, there shall 2780 // exist for each argument an implicit conversion sequence 2781 // (13.3.3.1) that converts that argument to the corresponding 2782 // parameter of F. 2783 QualType ParamType = Proto->getArgType(ArgIdx); 2784 Candidate.Conversions[ArgIdx + 1] 2785 = TryCopyInitialization(Args[ArgIdx], ParamType, 2786 /*SuppressUserConversions=*/false, 2787 /*ForceRValue=*/false, 2788 /*InOverloadResolution=*/false); 2789 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2790 == ImplicitConversionSequence::BadConversion) { 2791 Candidate.Viable = false; 2792 break; 2793 } 2794 } else { 2795 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2796 // argument for which there is no corresponding parameter is 2797 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2798 Candidate.Conversions[ArgIdx + 1].ConversionKind 2799 = ImplicitConversionSequence::EllipsisConversion; 2800 } 2801 } 2802} 2803 2804// FIXME: This will eventually be removed, once we've migrated all of the 2805// operator overloading logic over to the scheme used by binary operators, which 2806// works for template instantiation. 2807void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 2808 SourceLocation OpLoc, 2809 Expr **Args, unsigned NumArgs, 2810 OverloadCandidateSet& CandidateSet, 2811 SourceRange OpRange) { 2812 FunctionSet Functions; 2813 2814 QualType T1 = Args[0]->getType(); 2815 QualType T2; 2816 if (NumArgs > 1) 2817 T2 = Args[1]->getType(); 2818 2819 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2820 if (S) 2821 LookupOverloadedOperatorName(Op, S, T1, T2, Functions); 2822 ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions); 2823 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); 2824 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); 2825 AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet); 2826} 2827 2828/// \brief Add overload candidates for overloaded operators that are 2829/// member functions. 2830/// 2831/// Add the overloaded operator candidates that are member functions 2832/// for the operator Op that was used in an operator expression such 2833/// as "x Op y". , Args/NumArgs provides the operator arguments, and 2834/// CandidateSet will store the added overload candidates. (C++ 2835/// [over.match.oper]). 2836void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 2837 SourceLocation OpLoc, 2838 Expr **Args, unsigned NumArgs, 2839 OverloadCandidateSet& CandidateSet, 2840 SourceRange OpRange) { 2841 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2842 2843 // C++ [over.match.oper]p3: 2844 // For a unary operator @ with an operand of a type whose 2845 // cv-unqualified version is T1, and for a binary operator @ with 2846 // a left operand of a type whose cv-unqualified version is T1 and 2847 // a right operand of a type whose cv-unqualified version is T2, 2848 // three sets of candidate functions, designated member 2849 // candidates, non-member candidates and built-in candidates, are 2850 // constructed as follows: 2851 QualType T1 = Args[0]->getType(); 2852 QualType T2; 2853 if (NumArgs > 1) 2854 T2 = Args[1]->getType(); 2855 2856 // -- If T1 is a class type, the set of member candidates is the 2857 // result of the qualified lookup of T1::operator@ 2858 // (13.3.1.1.1); otherwise, the set of member candidates is 2859 // empty. 2860 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 2861 // Complete the type if it can be completed. Otherwise, we're done. 2862 if (RequireCompleteType(OpLoc, T1, PDiag())) 2863 return; 2864 2865 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 2866 LookupQualifiedName(Operators, T1Rec->getDecl()); 2867 Operators.suppressDiagnostics(); 2868 2869 for (LookupResult::iterator Oper = Operators.begin(), 2870 OperEnd = Operators.end(); 2871 Oper != OperEnd; 2872 ++Oper) 2873 AddMethodCandidate(*Oper, Args[0], Args + 1, NumArgs - 1, CandidateSet, 2874 /* SuppressUserConversions = */ false); 2875 } 2876} 2877 2878/// AddBuiltinCandidate - Add a candidate for a built-in 2879/// operator. ResultTy and ParamTys are the result and parameter types 2880/// of the built-in candidate, respectively. Args and NumArgs are the 2881/// arguments being passed to the candidate. IsAssignmentOperator 2882/// should be true when this built-in candidate is an assignment 2883/// operator. NumContextualBoolArguments is the number of arguments 2884/// (at the beginning of the argument list) that will be contextually 2885/// converted to bool. 2886void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 2887 Expr **Args, unsigned NumArgs, 2888 OverloadCandidateSet& CandidateSet, 2889 bool IsAssignmentOperator, 2890 unsigned NumContextualBoolArguments) { 2891 // Overload resolution is always an unevaluated context. 2892 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2893 2894 // Add this candidate 2895 CandidateSet.push_back(OverloadCandidate()); 2896 OverloadCandidate& Candidate = CandidateSet.back(); 2897 Candidate.Function = 0; 2898 Candidate.IsSurrogate = false; 2899 Candidate.IgnoreObjectArgument = false; 2900 Candidate.BuiltinTypes.ResultTy = ResultTy; 2901 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 2902 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 2903 2904 // Determine the implicit conversion sequences for each of the 2905 // arguments. 2906 Candidate.Viable = true; 2907 Candidate.Conversions.resize(NumArgs); 2908 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2909 // C++ [over.match.oper]p4: 2910 // For the built-in assignment operators, conversions of the 2911 // left operand are restricted as follows: 2912 // -- no temporaries are introduced to hold the left operand, and 2913 // -- no user-defined conversions are applied to the left 2914 // operand to achieve a type match with the left-most 2915 // parameter of a built-in candidate. 2916 // 2917 // We block these conversions by turning off user-defined 2918 // conversions, since that is the only way that initialization of 2919 // a reference to a non-class type can occur from something that 2920 // is not of the same type. 2921 if (ArgIdx < NumContextualBoolArguments) { 2922 assert(ParamTys[ArgIdx] == Context.BoolTy && 2923 "Contextual conversion to bool requires bool type"); 2924 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 2925 } else { 2926 Candidate.Conversions[ArgIdx] 2927 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 2928 ArgIdx == 0 && IsAssignmentOperator, 2929 /*ForceRValue=*/false, 2930 /*InOverloadResolution=*/false); 2931 } 2932 if (Candidate.Conversions[ArgIdx].ConversionKind 2933 == ImplicitConversionSequence::BadConversion) { 2934 Candidate.Viable = false; 2935 break; 2936 } 2937 } 2938} 2939 2940/// BuiltinCandidateTypeSet - A set of types that will be used for the 2941/// candidate operator functions for built-in operators (C++ 2942/// [over.built]). The types are separated into pointer types and 2943/// enumeration types. 2944class BuiltinCandidateTypeSet { 2945 /// TypeSet - A set of types. 2946 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 2947 2948 /// PointerTypes - The set of pointer types that will be used in the 2949 /// built-in candidates. 2950 TypeSet PointerTypes; 2951 2952 /// MemberPointerTypes - The set of member pointer types that will be 2953 /// used in the built-in candidates. 2954 TypeSet MemberPointerTypes; 2955 2956 /// EnumerationTypes - The set of enumeration types that will be 2957 /// used in the built-in candidates. 2958 TypeSet EnumerationTypes; 2959 2960 /// Sema - The semantic analysis instance where we are building the 2961 /// candidate type set. 2962 Sema &SemaRef; 2963 2964 /// Context - The AST context in which we will build the type sets. 2965 ASTContext &Context; 2966 2967 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 2968 const Qualifiers &VisibleQuals); 2969 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 2970 2971public: 2972 /// iterator - Iterates through the types that are part of the set. 2973 typedef TypeSet::iterator iterator; 2974 2975 BuiltinCandidateTypeSet(Sema &SemaRef) 2976 : SemaRef(SemaRef), Context(SemaRef.Context) { } 2977 2978 void AddTypesConvertedFrom(QualType Ty, 2979 SourceLocation Loc, 2980 bool AllowUserConversions, 2981 bool AllowExplicitConversions, 2982 const Qualifiers &VisibleTypeConversionsQuals); 2983 2984 /// pointer_begin - First pointer type found; 2985 iterator pointer_begin() { return PointerTypes.begin(); } 2986 2987 /// pointer_end - Past the last pointer type found; 2988 iterator pointer_end() { return PointerTypes.end(); } 2989 2990 /// member_pointer_begin - First member pointer type found; 2991 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 2992 2993 /// member_pointer_end - Past the last member pointer type found; 2994 iterator member_pointer_end() { return MemberPointerTypes.end(); } 2995 2996 /// enumeration_begin - First enumeration type found; 2997 iterator enumeration_begin() { return EnumerationTypes.begin(); } 2998 2999 /// enumeration_end - Past the last enumeration type found; 3000 iterator enumeration_end() { return EnumerationTypes.end(); } 3001}; 3002 3003/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 3004/// the set of pointer types along with any more-qualified variants of 3005/// that type. For example, if @p Ty is "int const *", this routine 3006/// will add "int const *", "int const volatile *", "int const 3007/// restrict *", and "int const volatile restrict *" to the set of 3008/// pointer types. Returns true if the add of @p Ty itself succeeded, 3009/// false otherwise. 3010/// 3011/// FIXME: what to do about extended qualifiers? 3012bool 3013BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3014 const Qualifiers &VisibleQuals) { 3015 3016 // Insert this type. 3017 if (!PointerTypes.insert(Ty)) 3018 return false; 3019 3020 const PointerType *PointerTy = Ty->getAs<PointerType>(); 3021 assert(PointerTy && "type was not a pointer type!"); 3022 3023 QualType PointeeTy = PointerTy->getPointeeType(); 3024 // Don't add qualified variants of arrays. For one, they're not allowed 3025 // (the qualifier would sink to the element type), and for another, the 3026 // only overload situation where it matters is subscript or pointer +- int, 3027 // and those shouldn't have qualifier variants anyway. 3028 if (PointeeTy->isArrayType()) 3029 return true; 3030 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3031 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 3032 BaseCVR = Array->getElementType().getCVRQualifiers(); 3033 bool hasVolatile = VisibleQuals.hasVolatile(); 3034 bool hasRestrict = VisibleQuals.hasRestrict(); 3035 3036 // Iterate through all strict supersets of BaseCVR. 3037 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3038 if ((CVR | BaseCVR) != CVR) continue; 3039 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 3040 // in the types. 3041 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 3042 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 3043 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3044 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 3045 } 3046 3047 return true; 3048} 3049 3050/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 3051/// to the set of pointer types along with any more-qualified variants of 3052/// that type. For example, if @p Ty is "int const *", this routine 3053/// will add "int const *", "int const volatile *", "int const 3054/// restrict *", and "int const volatile restrict *" to the set of 3055/// pointer types. Returns true if the add of @p Ty itself succeeded, 3056/// false otherwise. 3057/// 3058/// FIXME: what to do about extended qualifiers? 3059bool 3060BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 3061 QualType Ty) { 3062 // Insert this type. 3063 if (!MemberPointerTypes.insert(Ty)) 3064 return false; 3065 3066 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 3067 assert(PointerTy && "type was not a member pointer type!"); 3068 3069 QualType PointeeTy = PointerTy->getPointeeType(); 3070 // Don't add qualified variants of arrays. For one, they're not allowed 3071 // (the qualifier would sink to the element type), and for another, the 3072 // only overload situation where it matters is subscript or pointer +- int, 3073 // and those shouldn't have qualifier variants anyway. 3074 if (PointeeTy->isArrayType()) 3075 return true; 3076 const Type *ClassTy = PointerTy->getClass(); 3077 3078 // Iterate through all strict supersets of the pointee type's CVR 3079 // qualifiers. 3080 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3081 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3082 if ((CVR | BaseCVR) != CVR) continue; 3083 3084 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3085 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 3086 } 3087 3088 return true; 3089} 3090 3091/// AddTypesConvertedFrom - Add each of the types to which the type @p 3092/// Ty can be implicit converted to the given set of @p Types. We're 3093/// primarily interested in pointer types and enumeration types. We also 3094/// take member pointer types, for the conditional operator. 3095/// AllowUserConversions is true if we should look at the conversion 3096/// functions of a class type, and AllowExplicitConversions if we 3097/// should also include the explicit conversion functions of a class 3098/// type. 3099void 3100BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 3101 SourceLocation Loc, 3102 bool AllowUserConversions, 3103 bool AllowExplicitConversions, 3104 const Qualifiers &VisibleQuals) { 3105 // Only deal with canonical types. 3106 Ty = Context.getCanonicalType(Ty); 3107 3108 // Look through reference types; they aren't part of the type of an 3109 // expression for the purposes of conversions. 3110 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3111 Ty = RefTy->getPointeeType(); 3112 3113 // We don't care about qualifiers on the type. 3114 Ty = Ty.getLocalUnqualifiedType(); 3115 3116 // If we're dealing with an array type, decay to the pointer. 3117 if (Ty->isArrayType()) 3118 Ty = SemaRef.Context.getArrayDecayedType(Ty); 3119 3120 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3121 QualType PointeeTy = PointerTy->getPointeeType(); 3122 3123 // Insert our type, and its more-qualified variants, into the set 3124 // of types. 3125 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3126 return; 3127 } else if (Ty->isMemberPointerType()) { 3128 // Member pointers are far easier, since the pointee can't be converted. 3129 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3130 return; 3131 } else if (Ty->isEnumeralType()) { 3132 EnumerationTypes.insert(Ty); 3133 } else if (AllowUserConversions) { 3134 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3135 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 3136 // No conversion functions in incomplete types. 3137 return; 3138 } 3139 3140 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3141 const UnresolvedSet *Conversions 3142 = ClassDecl->getVisibleConversionFunctions(); 3143 for (UnresolvedSet::iterator I = Conversions->begin(), 3144 E = Conversions->end(); I != E; ++I) { 3145 3146 // Skip conversion function templates; they don't tell us anything 3147 // about which builtin types we can convert to. 3148 if (isa<FunctionTemplateDecl>(*I)) 3149 continue; 3150 3151 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I); 3152 if (AllowExplicitConversions || !Conv->isExplicit()) { 3153 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 3154 VisibleQuals); 3155 } 3156 } 3157 } 3158 } 3159} 3160 3161/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 3162/// the volatile- and non-volatile-qualified assignment operators for the 3163/// given type to the candidate set. 3164static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 3165 QualType T, 3166 Expr **Args, 3167 unsigned NumArgs, 3168 OverloadCandidateSet &CandidateSet) { 3169 QualType ParamTypes[2]; 3170 3171 // T& operator=(T&, T) 3172 ParamTypes[0] = S.Context.getLValueReferenceType(T); 3173 ParamTypes[1] = T; 3174 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3175 /*IsAssignmentOperator=*/true); 3176 3177 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 3178 // volatile T& operator=(volatile T&, T) 3179 ParamTypes[0] 3180 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 3181 ParamTypes[1] = T; 3182 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3183 /*IsAssignmentOperator=*/true); 3184 } 3185} 3186 3187/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 3188/// if any, found in visible type conversion functions found in ArgExpr's type. 3189static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 3190 Qualifiers VRQuals; 3191 const RecordType *TyRec; 3192 if (const MemberPointerType *RHSMPType = 3193 ArgExpr->getType()->getAs<MemberPointerType>()) 3194 TyRec = cast<RecordType>(RHSMPType->getClass()); 3195 else 3196 TyRec = ArgExpr->getType()->getAs<RecordType>(); 3197 if (!TyRec) { 3198 // Just to be safe, assume the worst case. 3199 VRQuals.addVolatile(); 3200 VRQuals.addRestrict(); 3201 return VRQuals; 3202 } 3203 3204 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3205 const UnresolvedSet *Conversions = 3206 ClassDecl->getVisibleConversionFunctions(); 3207 3208 for (UnresolvedSet::iterator I = Conversions->begin(), 3209 E = Conversions->end(); I != E; ++I) { 3210 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) { 3211 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 3212 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 3213 CanTy = ResTypeRef->getPointeeType(); 3214 // Need to go down the pointer/mempointer chain and add qualifiers 3215 // as see them. 3216 bool done = false; 3217 while (!done) { 3218 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 3219 CanTy = ResTypePtr->getPointeeType(); 3220 else if (const MemberPointerType *ResTypeMPtr = 3221 CanTy->getAs<MemberPointerType>()) 3222 CanTy = ResTypeMPtr->getPointeeType(); 3223 else 3224 done = true; 3225 if (CanTy.isVolatileQualified()) 3226 VRQuals.addVolatile(); 3227 if (CanTy.isRestrictQualified()) 3228 VRQuals.addRestrict(); 3229 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 3230 return VRQuals; 3231 } 3232 } 3233 } 3234 return VRQuals; 3235} 3236 3237/// AddBuiltinOperatorCandidates - Add the appropriate built-in 3238/// operator overloads to the candidate set (C++ [over.built]), based 3239/// on the operator @p Op and the arguments given. For example, if the 3240/// operator is a binary '+', this routine might add "int 3241/// operator+(int, int)" to cover integer addition. 3242void 3243Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 3244 SourceLocation OpLoc, 3245 Expr **Args, unsigned NumArgs, 3246 OverloadCandidateSet& CandidateSet) { 3247 // The set of "promoted arithmetic types", which are the arithmetic 3248 // types are that preserved by promotion (C++ [over.built]p2). Note 3249 // that the first few of these types are the promoted integral 3250 // types; these types need to be first. 3251 // FIXME: What about complex? 3252 const unsigned FirstIntegralType = 0; 3253 const unsigned LastIntegralType = 13; 3254 const unsigned FirstPromotedIntegralType = 7, 3255 LastPromotedIntegralType = 13; 3256 const unsigned FirstPromotedArithmeticType = 7, 3257 LastPromotedArithmeticType = 16; 3258 const unsigned NumArithmeticTypes = 16; 3259 QualType ArithmeticTypes[NumArithmeticTypes] = { 3260 Context.BoolTy, Context.CharTy, Context.WCharTy, 3261// FIXME: Context.Char16Ty, Context.Char32Ty, 3262 Context.SignedCharTy, Context.ShortTy, 3263 Context.UnsignedCharTy, Context.UnsignedShortTy, 3264 Context.IntTy, Context.LongTy, Context.LongLongTy, 3265 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 3266 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 3267 }; 3268 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 3269 "Invalid first promoted integral type"); 3270 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 3271 == Context.UnsignedLongLongTy && 3272 "Invalid last promoted integral type"); 3273 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 3274 "Invalid first promoted arithmetic type"); 3275 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 3276 == Context.LongDoubleTy && 3277 "Invalid last promoted arithmetic type"); 3278 3279 // Find all of the types that the arguments can convert to, but only 3280 // if the operator we're looking at has built-in operator candidates 3281 // that make use of these types. 3282 Qualifiers VisibleTypeConversionsQuals; 3283 VisibleTypeConversionsQuals.addConst(); 3284 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3285 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 3286 3287 BuiltinCandidateTypeSet CandidateTypes(*this); 3288 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 3289 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 3290 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 3291 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 3292 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 3293 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 3294 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3295 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 3296 OpLoc, 3297 true, 3298 (Op == OO_Exclaim || 3299 Op == OO_AmpAmp || 3300 Op == OO_PipePipe), 3301 VisibleTypeConversionsQuals); 3302 } 3303 3304 bool isComparison = false; 3305 switch (Op) { 3306 case OO_None: 3307 case NUM_OVERLOADED_OPERATORS: 3308 assert(false && "Expected an overloaded operator"); 3309 break; 3310 3311 case OO_Star: // '*' is either unary or binary 3312 if (NumArgs == 1) 3313 goto UnaryStar; 3314 else 3315 goto BinaryStar; 3316 break; 3317 3318 case OO_Plus: // '+' is either unary or binary 3319 if (NumArgs == 1) 3320 goto UnaryPlus; 3321 else 3322 goto BinaryPlus; 3323 break; 3324 3325 case OO_Minus: // '-' is either unary or binary 3326 if (NumArgs == 1) 3327 goto UnaryMinus; 3328 else 3329 goto BinaryMinus; 3330 break; 3331 3332 case OO_Amp: // '&' is either unary or binary 3333 if (NumArgs == 1) 3334 goto UnaryAmp; 3335 else 3336 goto BinaryAmp; 3337 3338 case OO_PlusPlus: 3339 case OO_MinusMinus: 3340 // C++ [over.built]p3: 3341 // 3342 // For every pair (T, VQ), where T is an arithmetic type, and VQ 3343 // is either volatile or empty, there exist candidate operator 3344 // functions of the form 3345 // 3346 // VQ T& operator++(VQ T&); 3347 // T operator++(VQ T&, int); 3348 // 3349 // C++ [over.built]p4: 3350 // 3351 // For every pair (T, VQ), where T is an arithmetic type other 3352 // than bool, and VQ is either volatile or empty, there exist 3353 // candidate operator functions of the form 3354 // 3355 // VQ T& operator--(VQ T&); 3356 // T operator--(VQ T&, int); 3357 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 3358 Arith < NumArithmeticTypes; ++Arith) { 3359 QualType ArithTy = ArithmeticTypes[Arith]; 3360 QualType ParamTypes[2] 3361 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 3362 3363 // Non-volatile version. 3364 if (NumArgs == 1) 3365 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3366 else 3367 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3368 // heuristic to reduce number of builtin candidates in the set. 3369 // Add volatile version only if there are conversions to a volatile type. 3370 if (VisibleTypeConversionsQuals.hasVolatile()) { 3371 // Volatile version 3372 ParamTypes[0] 3373 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 3374 if (NumArgs == 1) 3375 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3376 else 3377 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3378 } 3379 } 3380 3381 // C++ [over.built]p5: 3382 // 3383 // For every pair (T, VQ), where T is a cv-qualified or 3384 // cv-unqualified object type, and VQ is either volatile or 3385 // empty, there exist candidate operator functions of the form 3386 // 3387 // T*VQ& operator++(T*VQ&); 3388 // T*VQ& operator--(T*VQ&); 3389 // T* operator++(T*VQ&, int); 3390 // T* operator--(T*VQ&, int); 3391 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3392 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3393 // Skip pointer types that aren't pointers to object types. 3394 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 3395 continue; 3396 3397 QualType ParamTypes[2] = { 3398 Context.getLValueReferenceType(*Ptr), Context.IntTy 3399 }; 3400 3401 // Without volatile 3402 if (NumArgs == 1) 3403 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3404 else 3405 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3406 3407 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3408 VisibleTypeConversionsQuals.hasVolatile()) { 3409 // With volatile 3410 ParamTypes[0] 3411 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3412 if (NumArgs == 1) 3413 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3414 else 3415 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3416 } 3417 } 3418 break; 3419 3420 UnaryStar: 3421 // C++ [over.built]p6: 3422 // For every cv-qualified or cv-unqualified object type T, there 3423 // exist candidate operator functions of the form 3424 // 3425 // T& operator*(T*); 3426 // 3427 // C++ [over.built]p7: 3428 // For every function type T, there exist candidate operator 3429 // functions of the form 3430 // T& operator*(T*); 3431 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3432 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3433 QualType ParamTy = *Ptr; 3434 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 3435 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 3436 &ParamTy, Args, 1, CandidateSet); 3437 } 3438 break; 3439 3440 UnaryPlus: 3441 // C++ [over.built]p8: 3442 // For every type T, there exist candidate operator functions of 3443 // the form 3444 // 3445 // T* operator+(T*); 3446 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3447 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3448 QualType ParamTy = *Ptr; 3449 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 3450 } 3451 3452 // Fall through 3453 3454 UnaryMinus: 3455 // C++ [over.built]p9: 3456 // For every promoted arithmetic type T, there exist candidate 3457 // operator functions of the form 3458 // 3459 // T operator+(T); 3460 // T operator-(T); 3461 for (unsigned Arith = FirstPromotedArithmeticType; 3462 Arith < LastPromotedArithmeticType; ++Arith) { 3463 QualType ArithTy = ArithmeticTypes[Arith]; 3464 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 3465 } 3466 break; 3467 3468 case OO_Tilde: 3469 // C++ [over.built]p10: 3470 // For every promoted integral type T, there exist candidate 3471 // operator functions of the form 3472 // 3473 // T operator~(T); 3474 for (unsigned Int = FirstPromotedIntegralType; 3475 Int < LastPromotedIntegralType; ++Int) { 3476 QualType IntTy = ArithmeticTypes[Int]; 3477 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 3478 } 3479 break; 3480 3481 case OO_New: 3482 case OO_Delete: 3483 case OO_Array_New: 3484 case OO_Array_Delete: 3485 case OO_Call: 3486 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 3487 break; 3488 3489 case OO_Comma: 3490 UnaryAmp: 3491 case OO_Arrow: 3492 // C++ [over.match.oper]p3: 3493 // -- For the operator ',', the unary operator '&', or the 3494 // operator '->', the built-in candidates set is empty. 3495 break; 3496 3497 case OO_EqualEqual: 3498 case OO_ExclaimEqual: 3499 // C++ [over.match.oper]p16: 3500 // For every pointer to member type T, there exist candidate operator 3501 // functions of the form 3502 // 3503 // bool operator==(T,T); 3504 // bool operator!=(T,T); 3505 for (BuiltinCandidateTypeSet::iterator 3506 MemPtr = CandidateTypes.member_pointer_begin(), 3507 MemPtrEnd = CandidateTypes.member_pointer_end(); 3508 MemPtr != MemPtrEnd; 3509 ++MemPtr) { 3510 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 3511 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3512 } 3513 3514 // Fall through 3515 3516 case OO_Less: 3517 case OO_Greater: 3518 case OO_LessEqual: 3519 case OO_GreaterEqual: 3520 // C++ [over.built]p15: 3521 // 3522 // For every pointer or enumeration type T, there exist 3523 // candidate operator functions of the form 3524 // 3525 // bool operator<(T, T); 3526 // bool operator>(T, T); 3527 // bool operator<=(T, T); 3528 // bool operator>=(T, T); 3529 // bool operator==(T, T); 3530 // bool operator!=(T, T); 3531 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3532 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3533 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3534 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3535 } 3536 for (BuiltinCandidateTypeSet::iterator Enum 3537 = CandidateTypes.enumeration_begin(); 3538 Enum != CandidateTypes.enumeration_end(); ++Enum) { 3539 QualType ParamTypes[2] = { *Enum, *Enum }; 3540 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3541 } 3542 3543 // Fall through. 3544 isComparison = true; 3545 3546 BinaryPlus: 3547 BinaryMinus: 3548 if (!isComparison) { 3549 // We didn't fall through, so we must have OO_Plus or OO_Minus. 3550 3551 // C++ [over.built]p13: 3552 // 3553 // For every cv-qualified or cv-unqualified object type T 3554 // there exist candidate operator functions of the form 3555 // 3556 // T* operator+(T*, ptrdiff_t); 3557 // T& operator[](T*, ptrdiff_t); [BELOW] 3558 // T* operator-(T*, ptrdiff_t); 3559 // T* operator+(ptrdiff_t, T*); 3560 // T& operator[](ptrdiff_t, T*); [BELOW] 3561 // 3562 // C++ [over.built]p14: 3563 // 3564 // For every T, where T is a pointer to object type, there 3565 // exist candidate operator functions of the form 3566 // 3567 // ptrdiff_t operator-(T, T); 3568 for (BuiltinCandidateTypeSet::iterator Ptr 3569 = CandidateTypes.pointer_begin(); 3570 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3571 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3572 3573 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 3574 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3575 3576 if (Op == OO_Plus) { 3577 // T* operator+(ptrdiff_t, T*); 3578 ParamTypes[0] = ParamTypes[1]; 3579 ParamTypes[1] = *Ptr; 3580 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3581 } else { 3582 // ptrdiff_t operator-(T, T); 3583 ParamTypes[1] = *Ptr; 3584 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 3585 Args, 2, CandidateSet); 3586 } 3587 } 3588 } 3589 // Fall through 3590 3591 case OO_Slash: 3592 BinaryStar: 3593 Conditional: 3594 // C++ [over.built]p12: 3595 // 3596 // For every pair of promoted arithmetic types L and R, there 3597 // exist candidate operator functions of the form 3598 // 3599 // LR operator*(L, R); 3600 // LR operator/(L, R); 3601 // LR operator+(L, R); 3602 // LR operator-(L, R); 3603 // bool operator<(L, R); 3604 // bool operator>(L, R); 3605 // bool operator<=(L, R); 3606 // bool operator>=(L, R); 3607 // bool operator==(L, R); 3608 // bool operator!=(L, R); 3609 // 3610 // where LR is the result of the usual arithmetic conversions 3611 // between types L and R. 3612 // 3613 // C++ [over.built]p24: 3614 // 3615 // For every pair of promoted arithmetic types L and R, there exist 3616 // candidate operator functions of the form 3617 // 3618 // LR operator?(bool, L, R); 3619 // 3620 // where LR is the result of the usual arithmetic conversions 3621 // between types L and R. 3622 // Our candidates ignore the first parameter. 3623 for (unsigned Left = FirstPromotedArithmeticType; 3624 Left < LastPromotedArithmeticType; ++Left) { 3625 for (unsigned Right = FirstPromotedArithmeticType; 3626 Right < LastPromotedArithmeticType; ++Right) { 3627 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3628 QualType Result 3629 = isComparison 3630 ? Context.BoolTy 3631 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3632 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3633 } 3634 } 3635 break; 3636 3637 case OO_Percent: 3638 BinaryAmp: 3639 case OO_Caret: 3640 case OO_Pipe: 3641 case OO_LessLess: 3642 case OO_GreaterGreater: 3643 // C++ [over.built]p17: 3644 // 3645 // For every pair of promoted integral types L and R, there 3646 // exist candidate operator functions of the form 3647 // 3648 // LR operator%(L, R); 3649 // LR operator&(L, R); 3650 // LR operator^(L, R); 3651 // LR operator|(L, R); 3652 // L operator<<(L, R); 3653 // L operator>>(L, R); 3654 // 3655 // where LR is the result of the usual arithmetic conversions 3656 // between types L and R. 3657 for (unsigned Left = FirstPromotedIntegralType; 3658 Left < LastPromotedIntegralType; ++Left) { 3659 for (unsigned Right = FirstPromotedIntegralType; 3660 Right < LastPromotedIntegralType; ++Right) { 3661 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3662 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 3663 ? LandR[0] 3664 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3665 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3666 } 3667 } 3668 break; 3669 3670 case OO_Equal: 3671 // C++ [over.built]p20: 3672 // 3673 // For every pair (T, VQ), where T is an enumeration or 3674 // pointer to member type and VQ is either volatile or 3675 // empty, there exist candidate operator functions of the form 3676 // 3677 // VQ T& operator=(VQ T&, T); 3678 for (BuiltinCandidateTypeSet::iterator 3679 Enum = CandidateTypes.enumeration_begin(), 3680 EnumEnd = CandidateTypes.enumeration_end(); 3681 Enum != EnumEnd; ++Enum) 3682 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 3683 CandidateSet); 3684 for (BuiltinCandidateTypeSet::iterator 3685 MemPtr = CandidateTypes.member_pointer_begin(), 3686 MemPtrEnd = CandidateTypes.member_pointer_end(); 3687 MemPtr != MemPtrEnd; ++MemPtr) 3688 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 3689 CandidateSet); 3690 // Fall through. 3691 3692 case OO_PlusEqual: 3693 case OO_MinusEqual: 3694 // C++ [over.built]p19: 3695 // 3696 // For every pair (T, VQ), where T is any type and VQ is either 3697 // volatile or empty, there exist candidate operator functions 3698 // of the form 3699 // 3700 // T*VQ& operator=(T*VQ&, T*); 3701 // 3702 // C++ [over.built]p21: 3703 // 3704 // For every pair (T, VQ), where T is a cv-qualified or 3705 // cv-unqualified object type and VQ is either volatile or 3706 // empty, there exist candidate operator functions of the form 3707 // 3708 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 3709 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 3710 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3711 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3712 QualType ParamTypes[2]; 3713 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 3714 3715 // non-volatile version 3716 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 3717 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3718 /*IsAssigmentOperator=*/Op == OO_Equal); 3719 3720 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3721 VisibleTypeConversionsQuals.hasVolatile()) { 3722 // volatile version 3723 ParamTypes[0] 3724 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3725 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3726 /*IsAssigmentOperator=*/Op == OO_Equal); 3727 } 3728 } 3729 // Fall through. 3730 3731 case OO_StarEqual: 3732 case OO_SlashEqual: 3733 // C++ [over.built]p18: 3734 // 3735 // For every triple (L, VQ, R), where L is an arithmetic type, 3736 // VQ is either volatile or empty, and R is a promoted 3737 // arithmetic type, there exist candidate operator functions of 3738 // the form 3739 // 3740 // VQ L& operator=(VQ L&, R); 3741 // VQ L& operator*=(VQ L&, R); 3742 // VQ L& operator/=(VQ L&, R); 3743 // VQ L& operator+=(VQ L&, R); 3744 // VQ L& operator-=(VQ L&, R); 3745 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3746 for (unsigned Right = FirstPromotedArithmeticType; 3747 Right < LastPromotedArithmeticType; ++Right) { 3748 QualType ParamTypes[2]; 3749 ParamTypes[1] = ArithmeticTypes[Right]; 3750 3751 // Add this built-in operator as a candidate (VQ is empty). 3752 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3753 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3754 /*IsAssigmentOperator=*/Op == OO_Equal); 3755 3756 // Add this built-in operator as a candidate (VQ is 'volatile'). 3757 if (VisibleTypeConversionsQuals.hasVolatile()) { 3758 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 3759 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3760 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3761 /*IsAssigmentOperator=*/Op == OO_Equal); 3762 } 3763 } 3764 } 3765 break; 3766 3767 case OO_PercentEqual: 3768 case OO_LessLessEqual: 3769 case OO_GreaterGreaterEqual: 3770 case OO_AmpEqual: 3771 case OO_CaretEqual: 3772 case OO_PipeEqual: 3773 // C++ [over.built]p22: 3774 // 3775 // For every triple (L, VQ, R), where L is an integral type, VQ 3776 // is either volatile or empty, and R is a promoted integral 3777 // type, there exist candidate operator functions of the form 3778 // 3779 // VQ L& operator%=(VQ L&, R); 3780 // VQ L& operator<<=(VQ L&, R); 3781 // VQ L& operator>>=(VQ L&, R); 3782 // VQ L& operator&=(VQ L&, R); 3783 // VQ L& operator^=(VQ L&, R); 3784 // VQ L& operator|=(VQ L&, R); 3785 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 3786 for (unsigned Right = FirstPromotedIntegralType; 3787 Right < LastPromotedIntegralType; ++Right) { 3788 QualType ParamTypes[2]; 3789 ParamTypes[1] = ArithmeticTypes[Right]; 3790 3791 // Add this built-in operator as a candidate (VQ is empty). 3792 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3793 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3794 if (VisibleTypeConversionsQuals.hasVolatile()) { 3795 // Add this built-in operator as a candidate (VQ is 'volatile'). 3796 ParamTypes[0] = ArithmeticTypes[Left]; 3797 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 3798 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3799 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3800 } 3801 } 3802 } 3803 break; 3804 3805 case OO_Exclaim: { 3806 // C++ [over.operator]p23: 3807 // 3808 // There also exist candidate operator functions of the form 3809 // 3810 // bool operator!(bool); 3811 // bool operator&&(bool, bool); [BELOW] 3812 // bool operator||(bool, bool); [BELOW] 3813 QualType ParamTy = Context.BoolTy; 3814 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 3815 /*IsAssignmentOperator=*/false, 3816 /*NumContextualBoolArguments=*/1); 3817 break; 3818 } 3819 3820 case OO_AmpAmp: 3821 case OO_PipePipe: { 3822 // C++ [over.operator]p23: 3823 // 3824 // There also exist candidate operator functions of the form 3825 // 3826 // bool operator!(bool); [ABOVE] 3827 // bool operator&&(bool, bool); 3828 // bool operator||(bool, bool); 3829 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 3830 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 3831 /*IsAssignmentOperator=*/false, 3832 /*NumContextualBoolArguments=*/2); 3833 break; 3834 } 3835 3836 case OO_Subscript: 3837 // C++ [over.built]p13: 3838 // 3839 // For every cv-qualified or cv-unqualified object type T there 3840 // exist candidate operator functions of the form 3841 // 3842 // T* operator+(T*, ptrdiff_t); [ABOVE] 3843 // T& operator[](T*, ptrdiff_t); 3844 // T* operator-(T*, ptrdiff_t); [ABOVE] 3845 // T* operator+(ptrdiff_t, T*); [ABOVE] 3846 // T& operator[](ptrdiff_t, T*); 3847 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3848 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3849 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3850 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 3851 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 3852 3853 // T& operator[](T*, ptrdiff_t) 3854 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3855 3856 // T& operator[](ptrdiff_t, T*); 3857 ParamTypes[0] = ParamTypes[1]; 3858 ParamTypes[1] = *Ptr; 3859 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3860 } 3861 break; 3862 3863 case OO_ArrowStar: 3864 // C++ [over.built]p11: 3865 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 3866 // C1 is the same type as C2 or is a derived class of C2, T is an object 3867 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 3868 // there exist candidate operator functions of the form 3869 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 3870 // where CV12 is the union of CV1 and CV2. 3871 { 3872 for (BuiltinCandidateTypeSet::iterator Ptr = 3873 CandidateTypes.pointer_begin(); 3874 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3875 QualType C1Ty = (*Ptr); 3876 QualType C1; 3877 QualifierCollector Q1; 3878 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 3879 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 3880 if (!isa<RecordType>(C1)) 3881 continue; 3882 // heuristic to reduce number of builtin candidates in the set. 3883 // Add volatile/restrict version only if there are conversions to a 3884 // volatile/restrict type. 3885 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 3886 continue; 3887 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 3888 continue; 3889 } 3890 for (BuiltinCandidateTypeSet::iterator 3891 MemPtr = CandidateTypes.member_pointer_begin(), 3892 MemPtrEnd = CandidateTypes.member_pointer_end(); 3893 MemPtr != MemPtrEnd; ++MemPtr) { 3894 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 3895 QualType C2 = QualType(mptr->getClass(), 0); 3896 C2 = C2.getUnqualifiedType(); 3897 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 3898 break; 3899 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 3900 // build CV12 T& 3901 QualType T = mptr->getPointeeType(); 3902 if (!VisibleTypeConversionsQuals.hasVolatile() && 3903 T.isVolatileQualified()) 3904 continue; 3905 if (!VisibleTypeConversionsQuals.hasRestrict() && 3906 T.isRestrictQualified()) 3907 continue; 3908 T = Q1.apply(T); 3909 QualType ResultTy = Context.getLValueReferenceType(T); 3910 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3911 } 3912 } 3913 } 3914 break; 3915 3916 case OO_Conditional: 3917 // Note that we don't consider the first argument, since it has been 3918 // contextually converted to bool long ago. The candidates below are 3919 // therefore added as binary. 3920 // 3921 // C++ [over.built]p24: 3922 // For every type T, where T is a pointer or pointer-to-member type, 3923 // there exist candidate operator functions of the form 3924 // 3925 // T operator?(bool, T, T); 3926 // 3927 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 3928 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 3929 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3930 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3931 } 3932 for (BuiltinCandidateTypeSet::iterator Ptr = 3933 CandidateTypes.member_pointer_begin(), 3934 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 3935 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3936 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3937 } 3938 goto Conditional; 3939 } 3940} 3941 3942/// \brief Add function candidates found via argument-dependent lookup 3943/// to the set of overloading candidates. 3944/// 3945/// This routine performs argument-dependent name lookup based on the 3946/// given function name (which may also be an operator name) and adds 3947/// all of the overload candidates found by ADL to the overload 3948/// candidate set (C++ [basic.lookup.argdep]). 3949void 3950Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 3951 Expr **Args, unsigned NumArgs, 3952 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3953 OverloadCandidateSet& CandidateSet, 3954 bool PartialOverloading) { 3955 FunctionSet Functions; 3956 3957 // FIXME: Should we be trafficking in canonical function decls throughout? 3958 3959 // Record all of the function candidates that we've already 3960 // added to the overload set, so that we don't add those same 3961 // candidates a second time. 3962 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3963 CandEnd = CandidateSet.end(); 3964 Cand != CandEnd; ++Cand) 3965 if (Cand->Function) { 3966 Functions.insert(Cand->Function); 3967 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3968 Functions.insert(FunTmpl); 3969 } 3970 3971 // FIXME: Pass in the explicit template arguments? 3972 ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions); 3973 3974 // Erase all of the candidates we already knew about. 3975 // FIXME: This is suboptimal. Is there a better way? 3976 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3977 CandEnd = CandidateSet.end(); 3978 Cand != CandEnd; ++Cand) 3979 if (Cand->Function) { 3980 Functions.erase(Cand->Function); 3981 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3982 Functions.erase(FunTmpl); 3983 } 3984 3985 // For each of the ADL candidates we found, add it to the overload 3986 // set. 3987 for (FunctionSet::iterator Func = Functions.begin(), 3988 FuncEnd = Functions.end(); 3989 Func != FuncEnd; ++Func) { 3990 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) { 3991 if (ExplicitTemplateArgs) 3992 continue; 3993 3994 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 3995 false, false, PartialOverloading); 3996 } else 3997 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func), 3998 ExplicitTemplateArgs, 3999 Args, NumArgs, CandidateSet); 4000 } 4001} 4002 4003/// isBetterOverloadCandidate - Determines whether the first overload 4004/// candidate is a better candidate than the second (C++ 13.3.3p1). 4005bool 4006Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 4007 const OverloadCandidate& Cand2) { 4008 // Define viable functions to be better candidates than non-viable 4009 // functions. 4010 if (!Cand2.Viable) 4011 return Cand1.Viable; 4012 else if (!Cand1.Viable) 4013 return false; 4014 4015 // C++ [over.match.best]p1: 4016 // 4017 // -- if F is a static member function, ICS1(F) is defined such 4018 // that ICS1(F) is neither better nor worse than ICS1(G) for 4019 // any function G, and, symmetrically, ICS1(G) is neither 4020 // better nor worse than ICS1(F). 4021 unsigned StartArg = 0; 4022 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 4023 StartArg = 1; 4024 4025 // C++ [over.match.best]p1: 4026 // A viable function F1 is defined to be a better function than another 4027 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 4028 // conversion sequence than ICSi(F2), and then... 4029 unsigned NumArgs = Cand1.Conversions.size(); 4030 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 4031 bool HasBetterConversion = false; 4032 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 4033 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 4034 Cand2.Conversions[ArgIdx])) { 4035 case ImplicitConversionSequence::Better: 4036 // Cand1 has a better conversion sequence. 4037 HasBetterConversion = true; 4038 break; 4039 4040 case ImplicitConversionSequence::Worse: 4041 // Cand1 can't be better than Cand2. 4042 return false; 4043 4044 case ImplicitConversionSequence::Indistinguishable: 4045 // Do nothing. 4046 break; 4047 } 4048 } 4049 4050 // -- for some argument j, ICSj(F1) is a better conversion sequence than 4051 // ICSj(F2), or, if not that, 4052 if (HasBetterConversion) 4053 return true; 4054 4055 // - F1 is a non-template function and F2 is a function template 4056 // specialization, or, if not that, 4057 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 4058 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4059 return true; 4060 4061 // -- F1 and F2 are function template specializations, and the function 4062 // template for F1 is more specialized than the template for F2 4063 // according to the partial ordering rules described in 14.5.5.2, or, 4064 // if not that, 4065 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 4066 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4067 if (FunctionTemplateDecl *BetterTemplate 4068 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 4069 Cand2.Function->getPrimaryTemplate(), 4070 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 4071 : TPOC_Call)) 4072 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 4073 4074 // -- the context is an initialization by user-defined conversion 4075 // (see 8.5, 13.3.1.5) and the standard conversion sequence 4076 // from the return type of F1 to the destination type (i.e., 4077 // the type of the entity being initialized) is a better 4078 // conversion sequence than the standard conversion sequence 4079 // from the return type of F2 to the destination type. 4080 if (Cand1.Function && Cand2.Function && 4081 isa<CXXConversionDecl>(Cand1.Function) && 4082 isa<CXXConversionDecl>(Cand2.Function)) { 4083 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 4084 Cand2.FinalConversion)) { 4085 case ImplicitConversionSequence::Better: 4086 // Cand1 has a better conversion sequence. 4087 return true; 4088 4089 case ImplicitConversionSequence::Worse: 4090 // Cand1 can't be better than Cand2. 4091 return false; 4092 4093 case ImplicitConversionSequence::Indistinguishable: 4094 // Do nothing 4095 break; 4096 } 4097 } 4098 4099 return false; 4100} 4101 4102/// \brief Computes the best viable function (C++ 13.3.3) 4103/// within an overload candidate set. 4104/// 4105/// \param CandidateSet the set of candidate functions. 4106/// 4107/// \param Loc the location of the function name (or operator symbol) for 4108/// which overload resolution occurs. 4109/// 4110/// \param Best f overload resolution was successful or found a deleted 4111/// function, Best points to the candidate function found. 4112/// 4113/// \returns The result of overload resolution. 4114Sema::OverloadingResult 4115Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 4116 SourceLocation Loc, 4117 OverloadCandidateSet::iterator& Best) { 4118 // Find the best viable function. 4119 Best = CandidateSet.end(); 4120 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4121 Cand != CandidateSet.end(); ++Cand) { 4122 if (Cand->Viable) { 4123 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) 4124 Best = Cand; 4125 } 4126 } 4127 4128 // If we didn't find any viable functions, abort. 4129 if (Best == CandidateSet.end()) 4130 return OR_No_Viable_Function; 4131 4132 // Make sure that this function is better than every other viable 4133 // function. If not, we have an ambiguity. 4134 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4135 Cand != CandidateSet.end(); ++Cand) { 4136 if (Cand->Viable && 4137 Cand != Best && 4138 !isBetterOverloadCandidate(*Best, *Cand)) { 4139 Best = CandidateSet.end(); 4140 return OR_Ambiguous; 4141 } 4142 } 4143 4144 // Best is the best viable function. 4145 if (Best->Function && 4146 (Best->Function->isDeleted() || 4147 Best->Function->getAttr<UnavailableAttr>())) 4148 return OR_Deleted; 4149 4150 // C++ [basic.def.odr]p2: 4151 // An overloaded function is used if it is selected by overload resolution 4152 // when referred to from a potentially-evaluated expression. [Note: this 4153 // covers calls to named functions (5.2.2), operator overloading 4154 // (clause 13), user-defined conversions (12.3.2), allocation function for 4155 // placement new (5.3.4), as well as non-default initialization (8.5). 4156 if (Best->Function) 4157 MarkDeclarationReferenced(Loc, Best->Function); 4158 return OR_Success; 4159} 4160 4161/// PrintOverloadCandidates - When overload resolution fails, prints 4162/// diagnostic messages containing the candidates in the candidate 4163/// set. If OnlyViable is true, only viable candidates will be printed. 4164void 4165Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 4166 bool OnlyViable, 4167 const char *Opc, 4168 SourceLocation OpLoc) { 4169 OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4170 LastCand = CandidateSet.end(); 4171 bool Reported = false; 4172 for (; Cand != LastCand; ++Cand) { 4173 if (Cand->Viable || !OnlyViable) { 4174 if (Cand->Function) { 4175 if (Cand->Function->isDeleted() || 4176 Cand->Function->getAttr<UnavailableAttr>()) { 4177 // Deleted or "unavailable" function. 4178 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted) 4179 << Cand->Function->isDeleted(); 4180 } else if (FunctionTemplateDecl *FunTmpl 4181 = Cand->Function->getPrimaryTemplate()) { 4182 // Function template specialization 4183 // FIXME: Give a better reason! 4184 Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate) 4185 << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(), 4186 *Cand->Function->getTemplateSpecializationArgs()); 4187 } else { 4188 // Normal function 4189 bool errReported = false; 4190 if (!Cand->Viable && Cand->Conversions.size() > 0) { 4191 for (int i = Cand->Conversions.size()-1; i >= 0; i--) { 4192 const ImplicitConversionSequence &Conversion = 4193 Cand->Conversions[i]; 4194 if ((Conversion.ConversionKind != 4195 ImplicitConversionSequence::BadConversion) || 4196 Conversion.ConversionFunctionSet.size() == 0) 4197 continue; 4198 Diag(Cand->Function->getLocation(), 4199 diag::err_ovl_candidate_not_viable) << (i+1); 4200 errReported = true; 4201 for (int j = Conversion.ConversionFunctionSet.size()-1; 4202 j >= 0; j--) { 4203 FunctionDecl *Func = Conversion.ConversionFunctionSet[j]; 4204 Diag(Func->getLocation(), diag::err_ovl_candidate); 4205 } 4206 } 4207 } 4208 if (!errReported) 4209 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate); 4210 } 4211 } else if (Cand->IsSurrogate) { 4212 // Desugar the type of the surrogate down to a function type, 4213 // retaining as many typedefs as possible while still showing 4214 // the function type (and, therefore, its parameter types). 4215 QualType FnType = Cand->Surrogate->getConversionType(); 4216 bool isLValueReference = false; 4217 bool isRValueReference = false; 4218 bool isPointer = false; 4219 if (const LValueReferenceType *FnTypeRef = 4220 FnType->getAs<LValueReferenceType>()) { 4221 FnType = FnTypeRef->getPointeeType(); 4222 isLValueReference = true; 4223 } else if (const RValueReferenceType *FnTypeRef = 4224 FnType->getAs<RValueReferenceType>()) { 4225 FnType = FnTypeRef->getPointeeType(); 4226 isRValueReference = true; 4227 } 4228 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 4229 FnType = FnTypePtr->getPointeeType(); 4230 isPointer = true; 4231 } 4232 // Desugar down to a function type. 4233 FnType = QualType(FnType->getAs<FunctionType>(), 0); 4234 // Reconstruct the pointer/reference as appropriate. 4235 if (isPointer) FnType = Context.getPointerType(FnType); 4236 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType); 4237 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType); 4238 4239 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand) 4240 << FnType; 4241 } else if (OnlyViable) { 4242 assert(Cand->Conversions.size() <= 2 && 4243 "builtin-binary-operator-not-binary"); 4244 std::string TypeStr("operator"); 4245 TypeStr += Opc; 4246 TypeStr += "("; 4247 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 4248 if (Cand->Conversions.size() == 1) { 4249 TypeStr += ")"; 4250 Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr; 4251 } 4252 else { 4253 TypeStr += ", "; 4254 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 4255 TypeStr += ")"; 4256 Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr; 4257 } 4258 } 4259 else if (!Cand->Viable && !Reported) { 4260 // Non-viability might be due to ambiguous user-defined conversions, 4261 // needed for built-in operators. Report them as well, but only once 4262 // as we have typically many built-in candidates. 4263 unsigned NoOperands = Cand->Conversions.size(); 4264 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 4265 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 4266 if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion || 4267 ICS.ConversionFunctionSet.empty()) 4268 continue; 4269 if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>( 4270 Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) { 4271 QualType FromTy = 4272 QualType( 4273 static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0); 4274 Diag(OpLoc,diag::note_ambiguous_type_conversion) 4275 << FromTy << Func->getConversionType(); 4276 } 4277 for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) { 4278 FunctionDecl *Func = 4279 Cand->Conversions[ArgIdx].ConversionFunctionSet[j]; 4280 Diag(Func->getLocation(),diag::err_ovl_candidate); 4281 } 4282 } 4283 Reported = true; 4284 } 4285 } 4286 } 4287} 4288 4289/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 4290/// an overloaded function (C++ [over.over]), where @p From is an 4291/// expression with overloaded function type and @p ToType is the type 4292/// we're trying to resolve to. For example: 4293/// 4294/// @code 4295/// int f(double); 4296/// int f(int); 4297/// 4298/// int (*pfd)(double) = f; // selects f(double) 4299/// @endcode 4300/// 4301/// This routine returns the resulting FunctionDecl if it could be 4302/// resolved, and NULL otherwise. When @p Complain is true, this 4303/// routine will emit diagnostics if there is an error. 4304FunctionDecl * 4305Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 4306 bool Complain) { 4307 QualType FunctionType = ToType; 4308 bool IsMember = false; 4309 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 4310 FunctionType = ToTypePtr->getPointeeType(); 4311 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 4312 FunctionType = ToTypeRef->getPointeeType(); 4313 else if (const MemberPointerType *MemTypePtr = 4314 ToType->getAs<MemberPointerType>()) { 4315 FunctionType = MemTypePtr->getPointeeType(); 4316 IsMember = true; 4317 } 4318 4319 // We only look at pointers or references to functions. 4320 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 4321 if (!FunctionType->isFunctionType()) 4322 return 0; 4323 4324 // Find the actual overloaded function declaration. 4325 4326 // C++ [over.over]p1: 4327 // [...] [Note: any redundant set of parentheses surrounding the 4328 // overloaded function name is ignored (5.1). ] 4329 Expr *OvlExpr = From->IgnoreParens(); 4330 4331 // C++ [over.over]p1: 4332 // [...] The overloaded function name can be preceded by the & 4333 // operator. 4334 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 4335 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 4336 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 4337 } 4338 4339 bool HasExplicitTemplateArgs = false; 4340 TemplateArgumentListInfo ExplicitTemplateArgs; 4341 4342 llvm::SmallVector<NamedDecl*,8> Fns; 4343 4344 // Look into the overloaded expression. 4345 if (UnresolvedLookupExpr *UL 4346 = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) { 4347 Fns.append(UL->decls_begin(), UL->decls_end()); 4348 if (UL->hasExplicitTemplateArgs()) { 4349 HasExplicitTemplateArgs = true; 4350 UL->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4351 } 4352 } else if (UnresolvedMemberExpr *ME 4353 = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) { 4354 Fns.append(ME->decls_begin(), ME->decls_end()); 4355 if (ME->hasExplicitTemplateArgs()) { 4356 HasExplicitTemplateArgs = true; 4357 ME->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4358 } 4359 } 4360 4361 // If we didn't actually find anything, we're done. 4362 if (Fns.empty()) 4363 return 0; 4364 4365 // Look through all of the overloaded functions, searching for one 4366 // whose type matches exactly. 4367 llvm::SmallPtrSet<FunctionDecl *, 4> Matches; 4368 bool FoundNonTemplateFunction = false; 4369 for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(), 4370 E = Fns.end(); I != E; ++I) { 4371 // C++ [over.over]p3: 4372 // Non-member functions and static member functions match 4373 // targets of type "pointer-to-function" or "reference-to-function." 4374 // Nonstatic member functions match targets of 4375 // type "pointer-to-member-function." 4376 // Note that according to DR 247, the containing class does not matter. 4377 4378 if (FunctionTemplateDecl *FunctionTemplate 4379 = dyn_cast<FunctionTemplateDecl>(*I)) { 4380 if (CXXMethodDecl *Method 4381 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 4382 // Skip non-static function templates when converting to pointer, and 4383 // static when converting to member pointer. 4384 if (Method->isStatic() == IsMember) 4385 continue; 4386 } else if (IsMember) 4387 continue; 4388 4389 // C++ [over.over]p2: 4390 // If the name is a function template, template argument deduction is 4391 // done (14.8.2.2), and if the argument deduction succeeds, the 4392 // resulting template argument list is used to generate a single 4393 // function template specialization, which is added to the set of 4394 // overloaded functions considered. 4395 // FIXME: We don't really want to build the specialization here, do we? 4396 FunctionDecl *Specialization = 0; 4397 TemplateDeductionInfo Info(Context); 4398 if (TemplateDeductionResult Result 4399 = DeduceTemplateArguments(FunctionTemplate, 4400 (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0), 4401 FunctionType, Specialization, Info)) { 4402 // FIXME: make a note of the failed deduction for diagnostics. 4403 (void)Result; 4404 } else { 4405 // FIXME: If the match isn't exact, shouldn't we just drop this as 4406 // a candidate? Find a testcase before changing the code. 4407 assert(FunctionType 4408 == Context.getCanonicalType(Specialization->getType())); 4409 Matches.insert( 4410 cast<FunctionDecl>(Specialization->getCanonicalDecl())); 4411 } 4412 4413 continue; 4414 } 4415 4416 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*I)) { 4417 // Skip non-static functions when converting to pointer, and static 4418 // when converting to member pointer. 4419 if (Method->isStatic() == IsMember) 4420 continue; 4421 4422 // If we have explicit template arguments, skip non-templates. 4423 if (HasExplicitTemplateArgs) 4424 continue; 4425 } else if (IsMember) 4426 continue; 4427 4428 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*I)) { 4429 if (FunctionType == Context.getCanonicalType(FunDecl->getType())) { 4430 Matches.insert(cast<FunctionDecl>(FunDecl->getCanonicalDecl())); 4431 FoundNonTemplateFunction = true; 4432 } 4433 } 4434 } 4435 4436 // If there were 0 or 1 matches, we're done. 4437 if (Matches.empty()) 4438 return 0; 4439 else if (Matches.size() == 1) { 4440 FunctionDecl *Result = *Matches.begin(); 4441 MarkDeclarationReferenced(From->getLocStart(), Result); 4442 return Result; 4443 } 4444 4445 // C++ [over.over]p4: 4446 // If more than one function is selected, [...] 4447 typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter; 4448 if (!FoundNonTemplateFunction) { 4449 // [...] and any given function template specialization F1 is 4450 // eliminated if the set contains a second function template 4451 // specialization whose function template is more specialized 4452 // than the function template of F1 according to the partial 4453 // ordering rules of 14.5.5.2. 4454 4455 // The algorithm specified above is quadratic. We instead use a 4456 // two-pass algorithm (similar to the one used to identify the 4457 // best viable function in an overload set) that identifies the 4458 // best function template (if it exists). 4459 llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(), 4460 Matches.end()); 4461 FunctionDecl *Result = 4462 getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(), 4463 TPOC_Other, From->getLocStart(), 4464 PDiag(), 4465 PDiag(diag::err_addr_ovl_ambiguous) 4466 << TemplateMatches[0]->getDeclName(), 4467 PDiag(diag::err_ovl_template_candidate)); 4468 MarkDeclarationReferenced(From->getLocStart(), Result); 4469 return Result; 4470 } 4471 4472 // [...] any function template specializations in the set are 4473 // eliminated if the set also contains a non-template function, [...] 4474 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches; 4475 for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M) 4476 if ((*M)->getPrimaryTemplate() == 0) 4477 RemainingMatches.push_back(*M); 4478 4479 // [...] After such eliminations, if any, there shall remain exactly one 4480 // selected function. 4481 if (RemainingMatches.size() == 1) { 4482 FunctionDecl *Result = RemainingMatches.front(); 4483 MarkDeclarationReferenced(From->getLocStart(), Result); 4484 return Result; 4485 } 4486 4487 // FIXME: We should probably return the same thing that BestViableFunction 4488 // returns (even if we issue the diagnostics here). 4489 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 4490 << RemainingMatches[0]->getDeclName(); 4491 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I) 4492 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate); 4493 return 0; 4494} 4495 4496/// \brief Add a single candidate to the overload set. 4497static void AddOverloadedCallCandidate(Sema &S, 4498 NamedDecl *Callee, 4499 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4500 Expr **Args, unsigned NumArgs, 4501 OverloadCandidateSet &CandidateSet, 4502 bool PartialOverloading) { 4503 if (isa<UsingShadowDecl>(Callee)) 4504 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 4505 4506 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 4507 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 4508 S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false, 4509 PartialOverloading); 4510 return; 4511 } 4512 4513 if (FunctionTemplateDecl *FuncTemplate 4514 = dyn_cast<FunctionTemplateDecl>(Callee)) { 4515 S.AddTemplateOverloadCandidate(FuncTemplate, ExplicitTemplateArgs, 4516 Args, NumArgs, CandidateSet); 4517 return; 4518 } 4519 4520 assert(false && "unhandled case in overloaded call candidate"); 4521 4522 // do nothing? 4523} 4524 4525/// \brief Add the overload candidates named by callee and/or found by argument 4526/// dependent lookup to the given overload set. 4527void Sema::AddOverloadedCallCandidates(llvm::SmallVectorImpl<NamedDecl*> &Fns, 4528 DeclarationName &UnqualifiedName, 4529 bool ArgumentDependentLookup, 4530 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4531 Expr **Args, unsigned NumArgs, 4532 OverloadCandidateSet &CandidateSet, 4533 bool PartialOverloading) { 4534 4535#ifndef NDEBUG 4536 // Verify that ArgumentDependentLookup is consistent with the rules 4537 // in C++0x [basic.lookup.argdep]p3: 4538 // 4539 // Let X be the lookup set produced by unqualified lookup (3.4.1) 4540 // and let Y be the lookup set produced by argument dependent 4541 // lookup (defined as follows). If X contains 4542 // 4543 // -- a declaration of a class member, or 4544 // 4545 // -- a block-scope function declaration that is not a 4546 // using-declaration, or 4547 // 4548 // -- a declaration that is neither a function or a function 4549 // template 4550 // 4551 // then Y is empty. 4552 4553 if (ArgumentDependentLookup) { 4554 for (unsigned I = 0; I < Fns.size(); ++I) { 4555 assert(!Fns[I]->getDeclContext()->isRecord()); 4556 assert(isa<UsingShadowDecl>(Fns[I]) || 4557 !Fns[I]->getDeclContext()->isFunctionOrMethod()); 4558 assert(Fns[I]->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 4559 } 4560 } 4561#endif 4562 4563 for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(), 4564 E = Fns.end(); I != E; ++I) 4565 AddOverloadedCallCandidate(*this, *I, ExplicitTemplateArgs, 4566 Args, NumArgs, CandidateSet, 4567 PartialOverloading); 4568 4569 if (ArgumentDependentLookup) 4570 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs, 4571 ExplicitTemplateArgs, 4572 CandidateSet, 4573 PartialOverloading); 4574} 4575 4576/// ResolveOverloadedCallFn - Given the call expression that calls Fn 4577/// (which eventually refers to the declaration Func) and the call 4578/// arguments Args/NumArgs, attempt to resolve the function call down 4579/// to a specific function. If overload resolution succeeds, returns 4580/// the function declaration produced by overload 4581/// resolution. Otherwise, emits diagnostics, deletes all of the 4582/// arguments and Fn, and returns NULL. 4583FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, 4584 llvm::SmallVectorImpl<NamedDecl*> &Fns, 4585 DeclarationName UnqualifiedName, 4586 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4587 SourceLocation LParenLoc, 4588 Expr **Args, unsigned NumArgs, 4589 SourceLocation *CommaLocs, 4590 SourceLocation RParenLoc, 4591 bool ArgumentDependentLookup) { 4592 OverloadCandidateSet CandidateSet; 4593 4594 // Add the functions denoted by Callee to the set of candidate 4595 // functions. 4596 AddOverloadedCallCandidates(Fns, UnqualifiedName, ArgumentDependentLookup, 4597 ExplicitTemplateArgs, Args, NumArgs, 4598 CandidateSet); 4599 OverloadCandidateSet::iterator Best; 4600 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 4601 case OR_Success: 4602 return Best->Function; 4603 4604 case OR_No_Viable_Function: 4605 Diag(Fn->getSourceRange().getBegin(), 4606 diag::err_ovl_no_viable_function_in_call) 4607 << UnqualifiedName << Fn->getSourceRange(); 4608 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4609 break; 4610 4611 case OR_Ambiguous: 4612 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 4613 << UnqualifiedName << Fn->getSourceRange(); 4614 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4615 break; 4616 4617 case OR_Deleted: 4618 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 4619 << Best->Function->isDeleted() 4620 << UnqualifiedName 4621 << Fn->getSourceRange(); 4622 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4623 break; 4624 } 4625 4626 // Overload resolution failed. Destroy all of the subexpressions and 4627 // return NULL. 4628 Fn->Destroy(Context); 4629 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 4630 Args[Arg]->Destroy(Context); 4631 return 0; 4632} 4633 4634static bool IsOverloaded(const Sema::FunctionSet &Functions) { 4635 return Functions.size() > 1 || 4636 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 4637} 4638 4639/// \brief Create a unary operation that may resolve to an overloaded 4640/// operator. 4641/// 4642/// \param OpLoc The location of the operator itself (e.g., '*'). 4643/// 4644/// \param OpcIn The UnaryOperator::Opcode that describes this 4645/// operator. 4646/// 4647/// \param Functions The set of non-member functions that will be 4648/// considered by overload resolution. The caller needs to build this 4649/// set based on the context using, e.g., 4650/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4651/// set should not contain any member functions; those will be added 4652/// by CreateOverloadedUnaryOp(). 4653/// 4654/// \param input The input argument. 4655Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, 4656 unsigned OpcIn, 4657 FunctionSet &Functions, 4658 ExprArg input) { 4659 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 4660 Expr *Input = (Expr *)input.get(); 4661 4662 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 4663 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 4664 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4665 4666 Expr *Args[2] = { Input, 0 }; 4667 unsigned NumArgs = 1; 4668 4669 // For post-increment and post-decrement, add the implicit '0' as 4670 // the second argument, so that we know this is a post-increment or 4671 // post-decrement. 4672 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 4673 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 4674 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 4675 SourceLocation()); 4676 NumArgs = 2; 4677 } 4678 4679 if (Input->isTypeDependent()) { 4680 UnresolvedLookupExpr *Fn 4681 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 4682 0, SourceRange(), OpName, OpLoc, 4683 /*ADL*/ true, IsOverloaded(Functions)); 4684 for (FunctionSet::iterator Func = Functions.begin(), 4685 FuncEnd = Functions.end(); 4686 Func != FuncEnd; ++Func) 4687 Fn->addDecl(*Func); 4688 4689 input.release(); 4690 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4691 &Args[0], NumArgs, 4692 Context.DependentTy, 4693 OpLoc)); 4694 } 4695 4696 // Build an empty overload set. 4697 OverloadCandidateSet CandidateSet; 4698 4699 // Add the candidates from the given function set. 4700 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); 4701 4702 // Add operator candidates that are member functions. 4703 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4704 4705 // Add builtin operator candidates. 4706 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4707 4708 // Perform overload resolution. 4709 OverloadCandidateSet::iterator Best; 4710 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4711 case OR_Success: { 4712 // We found a built-in operator or an overloaded operator. 4713 FunctionDecl *FnDecl = Best->Function; 4714 4715 if (FnDecl) { 4716 // We matched an overloaded operator. Build a call to that 4717 // operator. 4718 4719 // Convert the arguments. 4720 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4721 if (PerformObjectArgumentInitialization(Input, Method)) 4722 return ExprError(); 4723 } else { 4724 // Convert the arguments. 4725 if (PerformCopyInitialization(Input, 4726 FnDecl->getParamDecl(0)->getType(), 4727 "passing")) 4728 return ExprError(); 4729 } 4730 4731 // Determine the result type 4732 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 4733 4734 // Build the actual expression node. 4735 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4736 SourceLocation()); 4737 UsualUnaryConversions(FnExpr); 4738 4739 input.release(); 4740 Args[0] = Input; 4741 ExprOwningPtr<CallExpr> TheCall(this, 4742 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4743 Args, NumArgs, ResultTy, OpLoc)); 4744 4745 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 4746 FnDecl)) 4747 return ExprError(); 4748 4749 return MaybeBindToTemporary(TheCall.release()); 4750 } else { 4751 // We matched a built-in operator. Convert the arguments, then 4752 // break out so that we will build the appropriate built-in 4753 // operator node. 4754 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 4755 Best->Conversions[0], "passing")) 4756 return ExprError(); 4757 4758 break; 4759 } 4760 } 4761 4762 case OR_No_Viable_Function: 4763 // No viable function; fall through to handling this as a 4764 // built-in operator, which will produce an error message for us. 4765 break; 4766 4767 case OR_Ambiguous: 4768 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4769 << UnaryOperator::getOpcodeStr(Opc) 4770 << Input->getSourceRange(); 4771 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 4772 UnaryOperator::getOpcodeStr(Opc), OpLoc); 4773 return ExprError(); 4774 4775 case OR_Deleted: 4776 Diag(OpLoc, diag::err_ovl_deleted_oper) 4777 << Best->Function->isDeleted() 4778 << UnaryOperator::getOpcodeStr(Opc) 4779 << Input->getSourceRange(); 4780 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4781 return ExprError(); 4782 } 4783 4784 // Either we found no viable overloaded operator or we matched a 4785 // built-in operator. In either case, fall through to trying to 4786 // build a built-in operation. 4787 input.release(); 4788 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 4789} 4790 4791/// \brief Create a binary operation that may resolve to an overloaded 4792/// operator. 4793/// 4794/// \param OpLoc The location of the operator itself (e.g., '+'). 4795/// 4796/// \param OpcIn The BinaryOperator::Opcode that describes this 4797/// operator. 4798/// 4799/// \param Functions The set of non-member functions that will be 4800/// considered by overload resolution. The caller needs to build this 4801/// set based on the context using, e.g., 4802/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4803/// set should not contain any member functions; those will be added 4804/// by CreateOverloadedBinOp(). 4805/// 4806/// \param LHS Left-hand argument. 4807/// \param RHS Right-hand argument. 4808Sema::OwningExprResult 4809Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 4810 unsigned OpcIn, 4811 FunctionSet &Functions, 4812 Expr *LHS, Expr *RHS) { 4813 Expr *Args[2] = { LHS, RHS }; 4814 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 4815 4816 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 4817 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 4818 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4819 4820 // If either side is type-dependent, create an appropriate dependent 4821 // expression. 4822 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 4823 if (Functions.empty()) { 4824 // If there are no functions to store, just build a dependent 4825 // BinaryOperator or CompoundAssignment. 4826 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 4827 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 4828 Context.DependentTy, OpLoc)); 4829 4830 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 4831 Context.DependentTy, 4832 Context.DependentTy, 4833 Context.DependentTy, 4834 OpLoc)); 4835 } 4836 4837 UnresolvedLookupExpr *Fn 4838 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 4839 0, SourceRange(), OpName, OpLoc, 4840 /* ADL */ true, IsOverloaded(Functions)); 4841 4842 for (FunctionSet::iterator Func = Functions.begin(), 4843 FuncEnd = Functions.end(); 4844 Func != FuncEnd; ++Func) 4845 Fn->addDecl(*Func); 4846 4847 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4848 Args, 2, 4849 Context.DependentTy, 4850 OpLoc)); 4851 } 4852 4853 // If this is the .* operator, which is not overloadable, just 4854 // create a built-in binary operator. 4855 if (Opc == BinaryOperator::PtrMemD) 4856 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4857 4858 // If this is the assignment operator, we only perform overload resolution 4859 // if the left-hand side is a class or enumeration type. This is actually 4860 // a hack. The standard requires that we do overload resolution between the 4861 // various built-in candidates, but as DR507 points out, this can lead to 4862 // problems. So we do it this way, which pretty much follows what GCC does. 4863 // Note that we go the traditional code path for compound assignment forms. 4864 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) 4865 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4866 4867 // Build an empty overload set. 4868 OverloadCandidateSet CandidateSet; 4869 4870 // Add the candidates from the given function set. 4871 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); 4872 4873 // Add operator candidates that are member functions. 4874 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4875 4876 // Add builtin operator candidates. 4877 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4878 4879 // Perform overload resolution. 4880 OverloadCandidateSet::iterator Best; 4881 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4882 case OR_Success: { 4883 // We found a built-in operator or an overloaded operator. 4884 FunctionDecl *FnDecl = Best->Function; 4885 4886 if (FnDecl) { 4887 // We matched an overloaded operator. Build a call to that 4888 // operator. 4889 4890 // Convert the arguments. 4891 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4892 if (PerformObjectArgumentInitialization(Args[0], Method) || 4893 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(), 4894 "passing")) 4895 return ExprError(); 4896 } else { 4897 // Convert the arguments. 4898 if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(), 4899 "passing") || 4900 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(), 4901 "passing")) 4902 return ExprError(); 4903 } 4904 4905 // Determine the result type 4906 QualType ResultTy 4907 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 4908 ResultTy = ResultTy.getNonReferenceType(); 4909 4910 // Build the actual expression node. 4911 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4912 OpLoc); 4913 UsualUnaryConversions(FnExpr); 4914 4915 ExprOwningPtr<CXXOperatorCallExpr> 4916 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4917 Args, 2, ResultTy, 4918 OpLoc)); 4919 4920 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 4921 FnDecl)) 4922 return ExprError(); 4923 4924 return MaybeBindToTemporary(TheCall.release()); 4925 } else { 4926 // We matched a built-in operator. Convert the arguments, then 4927 // break out so that we will build the appropriate built-in 4928 // operator node. 4929 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 4930 Best->Conversions[0], "passing") || 4931 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 4932 Best->Conversions[1], "passing")) 4933 return ExprError(); 4934 4935 break; 4936 } 4937 } 4938 4939 case OR_No_Viable_Function: { 4940 // C++ [over.match.oper]p9: 4941 // If the operator is the operator , [...] and there are no 4942 // viable functions, then the operator is assumed to be the 4943 // built-in operator and interpreted according to clause 5. 4944 if (Opc == BinaryOperator::Comma) 4945 break; 4946 4947 // For class as left operand for assignment or compound assigment operator 4948 // do not fall through to handling in built-in, but report that no overloaded 4949 // assignment operator found 4950 OwningExprResult Result = ExprError(); 4951 if (Args[0]->getType()->isRecordType() && 4952 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 4953 Diag(OpLoc, diag::err_ovl_no_viable_oper) 4954 << BinaryOperator::getOpcodeStr(Opc) 4955 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4956 } else { 4957 // No viable function; try to create a built-in operation, which will 4958 // produce an error. Then, show the non-viable candidates. 4959 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4960 } 4961 assert(Result.isInvalid() && 4962 "C++ binary operator overloading is missing candidates!"); 4963 if (Result.isInvalid()) 4964 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 4965 BinaryOperator::getOpcodeStr(Opc), OpLoc); 4966 return move(Result); 4967 } 4968 4969 case OR_Ambiguous: 4970 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4971 << BinaryOperator::getOpcodeStr(Opc) 4972 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4973 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 4974 BinaryOperator::getOpcodeStr(Opc), OpLoc); 4975 return ExprError(); 4976 4977 case OR_Deleted: 4978 Diag(OpLoc, diag::err_ovl_deleted_oper) 4979 << Best->Function->isDeleted() 4980 << BinaryOperator::getOpcodeStr(Opc) 4981 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4982 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4983 return ExprError(); 4984 } 4985 4986 // We matched a built-in operator; build it. 4987 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4988} 4989 4990Action::OwningExprResult 4991Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 4992 SourceLocation RLoc, 4993 ExprArg Base, ExprArg Idx) { 4994 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 4995 static_cast<Expr*>(Idx.get()) }; 4996 DeclarationName OpName = 4997 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 4998 4999 // If either side is type-dependent, create an appropriate dependent 5000 // expression. 5001 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 5002 5003 UnresolvedLookupExpr *Fn 5004 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 5005 0, SourceRange(), OpName, LLoc, 5006 /*ADL*/ true, /*Overloaded*/ false); 5007 // Can't add any actual overloads yet 5008 5009 Base.release(); 5010 Idx.release(); 5011 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 5012 Args, 2, 5013 Context.DependentTy, 5014 RLoc)); 5015 } 5016 5017 // Build an empty overload set. 5018 OverloadCandidateSet CandidateSet; 5019 5020 // Subscript can only be overloaded as a member function. 5021 5022 // Add operator candidates that are member functions. 5023 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5024 5025 // Add builtin operator candidates. 5026 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5027 5028 // Perform overload resolution. 5029 OverloadCandidateSet::iterator Best; 5030 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 5031 case OR_Success: { 5032 // We found a built-in operator or an overloaded operator. 5033 FunctionDecl *FnDecl = Best->Function; 5034 5035 if (FnDecl) { 5036 // We matched an overloaded operator. Build a call to that 5037 // operator. 5038 5039 // Convert the arguments. 5040 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 5041 if (PerformObjectArgumentInitialization(Args[0], Method) || 5042 PerformCopyInitialization(Args[1], 5043 FnDecl->getParamDecl(0)->getType(), 5044 "passing")) 5045 return ExprError(); 5046 5047 // Determine the result type 5048 QualType ResultTy 5049 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5050 ResultTy = ResultTy.getNonReferenceType(); 5051 5052 // Build the actual expression node. 5053 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5054 LLoc); 5055 UsualUnaryConversions(FnExpr); 5056 5057 Base.release(); 5058 Idx.release(); 5059 ExprOwningPtr<CXXOperatorCallExpr> 5060 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 5061 FnExpr, Args, 2, 5062 ResultTy, RLoc)); 5063 5064 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 5065 FnDecl)) 5066 return ExprError(); 5067 5068 return MaybeBindToTemporary(TheCall.release()); 5069 } else { 5070 // We matched a built-in operator. Convert the arguments, then 5071 // break out so that we will build the appropriate built-in 5072 // operator node. 5073 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5074 Best->Conversions[0], "passing") || 5075 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5076 Best->Conversions[1], "passing")) 5077 return ExprError(); 5078 5079 break; 5080 } 5081 } 5082 5083 case OR_No_Viable_Function: { 5084 // No viable function; try to create a built-in operation, which will 5085 // produce an error. Then, show the non-viable candidates. 5086 OwningExprResult Result = 5087 CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc); 5088 assert(Result.isInvalid() && 5089 "C++ subscript operator overloading is missing candidates!"); 5090 if (Result.isInvalid()) 5091 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 5092 "[]", LLoc); 5093 return move(Result); 5094 } 5095 5096 case OR_Ambiguous: 5097 Diag(LLoc, diag::err_ovl_ambiguous_oper) 5098 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5099 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 5100 "[]", LLoc); 5101 return ExprError(); 5102 5103 case OR_Deleted: 5104 Diag(LLoc, diag::err_ovl_deleted_oper) 5105 << Best->Function->isDeleted() << "[]" 5106 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5107 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5108 return ExprError(); 5109 } 5110 5111 // We matched a built-in operator; build it. 5112 Base.release(); 5113 Idx.release(); 5114 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 5115 Owned(Args[1]), RLoc); 5116} 5117 5118/// BuildCallToMemberFunction - Build a call to a member 5119/// function. MemExpr is the expression that refers to the member 5120/// function (and includes the object parameter), Args/NumArgs are the 5121/// arguments to the function call (not including the object 5122/// parameter). The caller needs to validate that the member 5123/// expression refers to a member function or an overloaded member 5124/// function. 5125Sema::ExprResult 5126Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 5127 SourceLocation LParenLoc, Expr **Args, 5128 unsigned NumArgs, SourceLocation *CommaLocs, 5129 SourceLocation RParenLoc) { 5130 // Dig out the member expression. This holds both the object 5131 // argument and the member function we're referring to. 5132 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 5133 5134 // Extract the object argument. 5135 Expr *ObjectArg; 5136 5137 MemberExpr *MemExpr; 5138 CXXMethodDecl *Method = 0; 5139 if (isa<MemberExpr>(NakedMemExpr)) { 5140 MemExpr = cast<MemberExpr>(NakedMemExpr); 5141 ObjectArg = MemExpr->getBase(); 5142 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 5143 } else { 5144 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 5145 ObjectArg = UnresExpr->getBase(); 5146 5147 // Add overload candidates 5148 OverloadCandidateSet CandidateSet; 5149 5150 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 5151 E = UnresExpr->decls_end(); I != E; ++I) { 5152 5153 // TODO: note if we found something through a using declaration 5154 NamedDecl *Func = (*I)->getUnderlyingDecl(); 5155 5156 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 5157 // If explicit template arguments were provided, we can't call a 5158 // non-template member function. 5159 if (UnresExpr->hasExplicitTemplateArgs()) 5160 continue; 5161 5162 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet, 5163 /*SuppressUserConversions=*/false); 5164 } else { 5165 // FIXME: avoid copy. 5166 TemplateArgumentListInfo TemplateArgs; 5167 if (UnresExpr->hasExplicitTemplateArgs()) 5168 UnresExpr->copyTemplateArgumentsInto(TemplateArgs); 5169 5170 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 5171 (UnresExpr->hasExplicitTemplateArgs() 5172 ? &TemplateArgs : 0), 5173 ObjectArg, Args, NumArgs, 5174 CandidateSet, 5175 /*SuppressUsedConversions=*/false); 5176 } 5177 } 5178 5179 DeclarationName DeclName = UnresExpr->getMemberName(); 5180 5181 OverloadCandidateSet::iterator Best; 5182 switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { 5183 case OR_Success: 5184 Method = cast<CXXMethodDecl>(Best->Function); 5185 break; 5186 5187 case OR_No_Viable_Function: 5188 Diag(UnresExpr->getMemberLoc(), 5189 diag::err_ovl_no_viable_member_function_in_call) 5190 << DeclName << MemExprE->getSourceRange(); 5191 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5192 // FIXME: Leaking incoming expressions! 5193 return true; 5194 5195 case OR_Ambiguous: 5196 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 5197 << DeclName << MemExprE->getSourceRange(); 5198 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5199 // FIXME: Leaking incoming expressions! 5200 return true; 5201 5202 case OR_Deleted: 5203 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 5204 << Best->Function->isDeleted() 5205 << DeclName << MemExprE->getSourceRange(); 5206 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5207 // FIXME: Leaking incoming expressions! 5208 return true; 5209 } 5210 5211 MemExprE = FixOverloadedFunctionReference(MemExprE, Method); 5212 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 5213 } 5214 5215 assert(Method && "Member call to something that isn't a method?"); 5216 ExprOwningPtr<CXXMemberCallExpr> 5217 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args, 5218 NumArgs, 5219 Method->getResultType().getNonReferenceType(), 5220 RParenLoc)); 5221 5222 // Check for a valid return type. 5223 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 5224 TheCall.get(), Method)) 5225 return true; 5226 5227 // Convert the object argument (for a non-static member function call). 5228 if (!Method->isStatic() && 5229 PerformObjectArgumentInitialization(ObjectArg, Method)) 5230 return true; 5231 MemExpr->setBase(ObjectArg); 5232 5233 // Convert the rest of the arguments 5234 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); 5235 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 5236 RParenLoc)) 5237 return true; 5238 5239 if (CheckFunctionCall(Method, TheCall.get())) 5240 return true; 5241 5242 return MaybeBindToTemporary(TheCall.release()).release(); 5243} 5244 5245/// BuildCallToObjectOfClassType - Build a call to an object of class 5246/// type (C++ [over.call.object]), which can end up invoking an 5247/// overloaded function call operator (@c operator()) or performing a 5248/// user-defined conversion on the object argument. 5249Sema::ExprResult 5250Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 5251 SourceLocation LParenLoc, 5252 Expr **Args, unsigned NumArgs, 5253 SourceLocation *CommaLocs, 5254 SourceLocation RParenLoc) { 5255 assert(Object->getType()->isRecordType() && "Requires object type argument"); 5256 const RecordType *Record = Object->getType()->getAs<RecordType>(); 5257 5258 // C++ [over.call.object]p1: 5259 // If the primary-expression E in the function call syntax 5260 // evaluates to a class object of type "cv T", then the set of 5261 // candidate functions includes at least the function call 5262 // operators of T. The function call operators of T are obtained by 5263 // ordinary lookup of the name operator() in the context of 5264 // (E).operator(). 5265 OverloadCandidateSet CandidateSet; 5266 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 5267 5268 if (RequireCompleteType(LParenLoc, Object->getType(), 5269 PartialDiagnostic(diag::err_incomplete_object_call) 5270 << Object->getSourceRange())) 5271 return true; 5272 5273 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 5274 LookupQualifiedName(R, Record->getDecl()); 5275 R.suppressDiagnostics(); 5276 5277 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5278 Oper != OperEnd; ++Oper) { 5279 AddMethodCandidate(*Oper, Object, Args, NumArgs, CandidateSet, 5280 /*SuppressUserConversions=*/ false); 5281 } 5282 5283 // C++ [over.call.object]p2: 5284 // In addition, for each conversion function declared in T of the 5285 // form 5286 // 5287 // operator conversion-type-id () cv-qualifier; 5288 // 5289 // where cv-qualifier is the same cv-qualification as, or a 5290 // greater cv-qualification than, cv, and where conversion-type-id 5291 // denotes the type "pointer to function of (P1,...,Pn) returning 5292 // R", or the type "reference to pointer to function of 5293 // (P1,...,Pn) returning R", or the type "reference to function 5294 // of (P1,...,Pn) returning R", a surrogate call function [...] 5295 // is also considered as a candidate function. Similarly, 5296 // surrogate call functions are added to the set of candidate 5297 // functions for each conversion function declared in an 5298 // accessible base class provided the function is not hidden 5299 // within T by another intervening declaration. 5300 // FIXME: Look in base classes for more conversion operators! 5301 const UnresolvedSet *Conversions 5302 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); 5303 for (UnresolvedSet::iterator I = Conversions->begin(), 5304 E = Conversions->end(); I != E; ++I) { 5305 // Skip over templated conversion functions; they aren't 5306 // surrogates. 5307 if (isa<FunctionTemplateDecl>(*I)) 5308 continue; 5309 5310 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I); 5311 5312 // Strip the reference type (if any) and then the pointer type (if 5313 // any) to get down to what might be a function type. 5314 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 5315 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5316 ConvType = ConvPtrType->getPointeeType(); 5317 5318 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 5319 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet); 5320 } 5321 5322 // Perform overload resolution. 5323 OverloadCandidateSet::iterator Best; 5324 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 5325 case OR_Success: 5326 // Overload resolution succeeded; we'll build the appropriate call 5327 // below. 5328 break; 5329 5330 case OR_No_Viable_Function: 5331 Diag(Object->getSourceRange().getBegin(), 5332 diag::err_ovl_no_viable_object_call) 5333 << Object->getType() << Object->getSourceRange(); 5334 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5335 break; 5336 5337 case OR_Ambiguous: 5338 Diag(Object->getSourceRange().getBegin(), 5339 diag::err_ovl_ambiguous_object_call) 5340 << Object->getType() << Object->getSourceRange(); 5341 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5342 break; 5343 5344 case OR_Deleted: 5345 Diag(Object->getSourceRange().getBegin(), 5346 diag::err_ovl_deleted_object_call) 5347 << Best->Function->isDeleted() 5348 << Object->getType() << Object->getSourceRange(); 5349 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5350 break; 5351 } 5352 5353 if (Best == CandidateSet.end()) { 5354 // We had an error; delete all of the subexpressions and return 5355 // the error. 5356 Object->Destroy(Context); 5357 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5358 Args[ArgIdx]->Destroy(Context); 5359 return true; 5360 } 5361 5362 if (Best->Function == 0) { 5363 // Since there is no function declaration, this is one of the 5364 // surrogate candidates. Dig out the conversion function. 5365 CXXConversionDecl *Conv 5366 = cast<CXXConversionDecl>( 5367 Best->Conversions[0].UserDefined.ConversionFunction); 5368 5369 // We selected one of the surrogate functions that converts the 5370 // object parameter to a function pointer. Perform the conversion 5371 // on the object argument, then let ActOnCallExpr finish the job. 5372 5373 // Create an implicit member expr to refer to the conversion operator. 5374 // and then call it. 5375 CXXMemberCallExpr *CE = 5376 BuildCXXMemberCallExpr(Object, Conv); 5377 5378 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 5379 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 5380 CommaLocs, RParenLoc).release(); 5381 } 5382 5383 // We found an overloaded operator(). Build a CXXOperatorCallExpr 5384 // that calls this method, using Object for the implicit object 5385 // parameter and passing along the remaining arguments. 5386 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5387 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 5388 5389 unsigned NumArgsInProto = Proto->getNumArgs(); 5390 unsigned NumArgsToCheck = NumArgs; 5391 5392 // Build the full argument list for the method call (the 5393 // implicit object parameter is placed at the beginning of the 5394 // list). 5395 Expr **MethodArgs; 5396 if (NumArgs < NumArgsInProto) { 5397 NumArgsToCheck = NumArgsInProto; 5398 MethodArgs = new Expr*[NumArgsInProto + 1]; 5399 } else { 5400 MethodArgs = new Expr*[NumArgs + 1]; 5401 } 5402 MethodArgs[0] = Object; 5403 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5404 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 5405 5406 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 5407 SourceLocation()); 5408 UsualUnaryConversions(NewFn); 5409 5410 // Once we've built TheCall, all of the expressions are properly 5411 // owned. 5412 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5413 ExprOwningPtr<CXXOperatorCallExpr> 5414 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 5415 MethodArgs, NumArgs + 1, 5416 ResultTy, RParenLoc)); 5417 delete [] MethodArgs; 5418 5419 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 5420 Method)) 5421 return true; 5422 5423 // We may have default arguments. If so, we need to allocate more 5424 // slots in the call for them. 5425 if (NumArgs < NumArgsInProto) 5426 TheCall->setNumArgs(Context, NumArgsInProto + 1); 5427 else if (NumArgs > NumArgsInProto) 5428 NumArgsToCheck = NumArgsInProto; 5429 5430 bool IsError = false; 5431 5432 // Initialize the implicit object parameter. 5433 IsError |= PerformObjectArgumentInitialization(Object, Method); 5434 TheCall->setArg(0, Object); 5435 5436 5437 // Check the argument types. 5438 for (unsigned i = 0; i != NumArgsToCheck; i++) { 5439 Expr *Arg; 5440 if (i < NumArgs) { 5441 Arg = Args[i]; 5442 5443 // Pass the argument. 5444 QualType ProtoArgType = Proto->getArgType(i); 5445 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing"); 5446 } else { 5447 OwningExprResult DefArg 5448 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 5449 if (DefArg.isInvalid()) { 5450 IsError = true; 5451 break; 5452 } 5453 5454 Arg = DefArg.takeAs<Expr>(); 5455 } 5456 5457 TheCall->setArg(i + 1, Arg); 5458 } 5459 5460 // If this is a variadic call, handle args passed through "...". 5461 if (Proto->isVariadic()) { 5462 // Promote the arguments (C99 6.5.2.2p7). 5463 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 5464 Expr *Arg = Args[i]; 5465 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 5466 TheCall->setArg(i + 1, Arg); 5467 } 5468 } 5469 5470 if (IsError) return true; 5471 5472 if (CheckFunctionCall(Method, TheCall.get())) 5473 return true; 5474 5475 return MaybeBindToTemporary(TheCall.release()).release(); 5476} 5477 5478/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 5479/// (if one exists), where @c Base is an expression of class type and 5480/// @c Member is the name of the member we're trying to find. 5481Sema::OwningExprResult 5482Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 5483 Expr *Base = static_cast<Expr *>(BaseIn.get()); 5484 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 5485 5486 // C++ [over.ref]p1: 5487 // 5488 // [...] An expression x->m is interpreted as (x.operator->())->m 5489 // for a class object x of type T if T::operator->() exists and if 5490 // the operator is selected as the best match function by the 5491 // overload resolution mechanism (13.3). 5492 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 5493 OverloadCandidateSet CandidateSet; 5494 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 5495 5496 if (RequireCompleteType(Base->getLocStart(), Base->getType(), 5497 PDiag(diag::err_typecheck_incomplete_tag) 5498 << Base->getSourceRange())) 5499 return ExprError(); 5500 5501 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 5502 LookupQualifiedName(R, BaseRecord->getDecl()); 5503 R.suppressDiagnostics(); 5504 5505 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5506 Oper != OperEnd; ++Oper) 5507 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet, 5508 /*SuppressUserConversions=*/false); 5509 5510 // Perform overload resolution. 5511 OverloadCandidateSet::iterator Best; 5512 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5513 case OR_Success: 5514 // Overload resolution succeeded; we'll build the call below. 5515 break; 5516 5517 case OR_No_Viable_Function: 5518 if (CandidateSet.empty()) 5519 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 5520 << Base->getType() << Base->getSourceRange(); 5521 else 5522 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5523 << "operator->" << Base->getSourceRange(); 5524 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5525 return ExprError(); 5526 5527 case OR_Ambiguous: 5528 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5529 << "->" << Base->getSourceRange(); 5530 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5531 return ExprError(); 5532 5533 case OR_Deleted: 5534 Diag(OpLoc, diag::err_ovl_deleted_oper) 5535 << Best->Function->isDeleted() 5536 << "->" << Base->getSourceRange(); 5537 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5538 return ExprError(); 5539 } 5540 5541 // Convert the object parameter. 5542 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5543 if (PerformObjectArgumentInitialization(Base, Method)) 5544 return ExprError(); 5545 5546 // No concerns about early exits now. 5547 BaseIn.release(); 5548 5549 // Build the operator call. 5550 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 5551 SourceLocation()); 5552 UsualUnaryConversions(FnExpr); 5553 5554 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5555 ExprOwningPtr<CXXOperatorCallExpr> 5556 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 5557 &Base, 1, ResultTy, OpLoc)); 5558 5559 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 5560 Method)) 5561 return ExprError(); 5562 return move(TheCall); 5563} 5564 5565/// FixOverloadedFunctionReference - E is an expression that refers to 5566/// a C++ overloaded function (possibly with some parentheses and 5567/// perhaps a '&' around it). We have resolved the overloaded function 5568/// to the function declaration Fn, so patch up the expression E to 5569/// refer (possibly indirectly) to Fn. Returns the new expr. 5570Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 5571 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 5572 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 5573 if (SubExpr == PE->getSubExpr()) 5574 return PE->Retain(); 5575 5576 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 5577 } 5578 5579 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 5580 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn); 5581 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 5582 SubExpr->getType()) && 5583 "Implicit cast type cannot be determined from overload"); 5584 if (SubExpr == ICE->getSubExpr()) 5585 return ICE->Retain(); 5586 5587 return new (Context) ImplicitCastExpr(ICE->getType(), 5588 ICE->getCastKind(), 5589 SubExpr, 5590 ICE->isLvalueCast()); 5591 } 5592 5593 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 5594 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 5595 "Can only take the address of an overloaded function"); 5596 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5597 if (Method->isStatic()) { 5598 // Do nothing: static member functions aren't any different 5599 // from non-member functions. 5600 } else { 5601 // Fix the sub expression, which really has to be an 5602 // UnresolvedLookupExpr holding an overloaded member function 5603 // or template. 5604 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 5605 if (SubExpr == UnOp->getSubExpr()) 5606 return UnOp->Retain(); 5607 5608 assert(isa<DeclRefExpr>(SubExpr) 5609 && "fixed to something other than a decl ref"); 5610 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 5611 && "fixed to a member ref with no nested name qualifier"); 5612 5613 // We have taken the address of a pointer to member 5614 // function. Perform the computation here so that we get the 5615 // appropriate pointer to member type. 5616 QualType ClassType 5617 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 5618 QualType MemPtrType 5619 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 5620 5621 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 5622 MemPtrType, UnOp->getOperatorLoc()); 5623 } 5624 } 5625 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 5626 if (SubExpr == UnOp->getSubExpr()) 5627 return UnOp->Retain(); 5628 5629 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 5630 Context.getPointerType(SubExpr->getType()), 5631 UnOp->getOperatorLoc()); 5632 } 5633 5634 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 5635 if (ULE->hasExplicitTemplateArgs()) { 5636 // FIXME: avoid copy. 5637 TemplateArgumentListInfo TemplateArgs; 5638 if (ULE->hasExplicitTemplateArgs()) 5639 ULE->copyTemplateArgumentsInto(TemplateArgs); 5640 5641 return DeclRefExpr::Create(Context, 5642 ULE->getQualifier(), 5643 ULE->getQualifierRange(), 5644 Fn, 5645 ULE->getNameLoc(), 5646 Fn->getType(), 5647 &TemplateArgs); 5648 } 5649 5650 return DeclRefExpr::Create(Context, 5651 ULE->getQualifier(), 5652 ULE->getQualifierRange(), 5653 Fn, 5654 ULE->getNameLoc(), 5655 Fn->getType()); 5656 } 5657 5658 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 5659 // FIXME: avoid copy. 5660 TemplateArgumentListInfo TemplateArgs; 5661 if (MemExpr->hasExplicitTemplateArgs()) 5662 MemExpr->copyTemplateArgumentsInto(TemplateArgs); 5663 5664 return MemberExpr::Create(Context, MemExpr->getBase()->Retain(), 5665 MemExpr->isArrow(), 5666 MemExpr->getQualifier(), 5667 MemExpr->getQualifierRange(), 5668 Fn, 5669 MemExpr->getMemberLoc(), 5670 (MemExpr->hasExplicitTemplateArgs() 5671 ? &TemplateArgs : 0), 5672 Fn->getType()); 5673 } 5674 5675 assert(false && "Invalid reference to overloaded function"); 5676 return E->Retain(); 5677} 5678 5679} // end namespace clang 5680