SemaOverload.cpp revision 14d0aee957f11b9613fa4312919bec3cc5456a1c
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/Initialization.h" 17#include "clang/Sema/Template.h" 18#include "clang/Sema/TemplateDeduction.h" 19#include "clang/Basic/Diagnostic.h" 20#include "clang/Lex/Preprocessor.h" 21#include "clang/AST/ASTContext.h" 22#include "clang/AST/CXXInheritance.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/AST/Expr.h" 25#include "clang/AST/ExprCXX.h" 26#include "clang/AST/ExprObjC.h" 27#include "clang/AST/TypeOrdering.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/DenseSet.h" 30#include "llvm/ADT/SmallPtrSet.h" 31#include "llvm/ADT/STLExtras.h" 32#include <algorithm> 33 34namespace clang { 35using namespace sema; 36 37/// A convenience routine for creating a decayed reference to a 38/// function. 39static Expr * 40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, 41 SourceLocation Loc = SourceLocation()) { 42 Expr *E = new (S.Context) DeclRefExpr(Fn, Fn->getType(), VK_LValue, Loc); 43 S.DefaultFunctionArrayConversion(E); 44 return E; 45} 46 47static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 48 bool InOverloadResolution, 49 StandardConversionSequence &SCS, 50 bool CStyle); 51static OverloadingResult 52IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 53 UserDefinedConversionSequence& User, 54 OverloadCandidateSet& Conversions, 55 bool AllowExplicit); 56 57 58static ImplicitConversionSequence::CompareKind 59CompareStandardConversionSequences(Sema &S, 60 const StandardConversionSequence& SCS1, 61 const StandardConversionSequence& SCS2); 62 63static ImplicitConversionSequence::CompareKind 64CompareQualificationConversions(Sema &S, 65 const StandardConversionSequence& SCS1, 66 const StandardConversionSequence& SCS2); 67 68static ImplicitConversionSequence::CompareKind 69CompareDerivedToBaseConversions(Sema &S, 70 const StandardConversionSequence& SCS1, 71 const StandardConversionSequence& SCS2); 72 73 74 75/// GetConversionCategory - Retrieve the implicit conversion 76/// category corresponding to the given implicit conversion kind. 77ImplicitConversionCategory 78GetConversionCategory(ImplicitConversionKind Kind) { 79 static const ImplicitConversionCategory 80 Category[(int)ICK_Num_Conversion_Kinds] = { 81 ICC_Identity, 82 ICC_Lvalue_Transformation, 83 ICC_Lvalue_Transformation, 84 ICC_Lvalue_Transformation, 85 ICC_Identity, 86 ICC_Qualification_Adjustment, 87 ICC_Promotion, 88 ICC_Promotion, 89 ICC_Promotion, 90 ICC_Conversion, 91 ICC_Conversion, 92 ICC_Conversion, 93 ICC_Conversion, 94 ICC_Conversion, 95 ICC_Conversion, 96 ICC_Conversion, 97 ICC_Conversion, 98 ICC_Conversion, 99 ICC_Conversion, 100 ICC_Conversion, 101 ICC_Conversion 102 }; 103 return Category[(int)Kind]; 104} 105 106/// GetConversionRank - Retrieve the implicit conversion rank 107/// corresponding to the given implicit conversion kind. 108ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 109 static const ImplicitConversionRank 110 Rank[(int)ICK_Num_Conversion_Kinds] = { 111 ICR_Exact_Match, 112 ICR_Exact_Match, 113 ICR_Exact_Match, 114 ICR_Exact_Match, 115 ICR_Exact_Match, 116 ICR_Exact_Match, 117 ICR_Promotion, 118 ICR_Promotion, 119 ICR_Promotion, 120 ICR_Conversion, 121 ICR_Conversion, 122 ICR_Conversion, 123 ICR_Conversion, 124 ICR_Conversion, 125 ICR_Conversion, 126 ICR_Conversion, 127 ICR_Conversion, 128 ICR_Conversion, 129 ICR_Conversion, 130 ICR_Conversion, 131 ICR_Complex_Real_Conversion 132 }; 133 return Rank[(int)Kind]; 134} 135 136/// GetImplicitConversionName - Return the name of this kind of 137/// implicit conversion. 138const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 139 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 140 "No conversion", 141 "Lvalue-to-rvalue", 142 "Array-to-pointer", 143 "Function-to-pointer", 144 "Noreturn adjustment", 145 "Qualification", 146 "Integral promotion", 147 "Floating point promotion", 148 "Complex promotion", 149 "Integral conversion", 150 "Floating conversion", 151 "Complex conversion", 152 "Floating-integral conversion", 153 "Pointer conversion", 154 "Pointer-to-member conversion", 155 "Boolean conversion", 156 "Compatible-types conversion", 157 "Derived-to-base conversion", 158 "Vector conversion", 159 "Vector splat", 160 "Complex-real conversion" 161 }; 162 return Name[Kind]; 163} 164 165/// StandardConversionSequence - Set the standard conversion 166/// sequence to the identity conversion. 167void StandardConversionSequence::setAsIdentityConversion() { 168 First = ICK_Identity; 169 Second = ICK_Identity; 170 Third = ICK_Identity; 171 DeprecatedStringLiteralToCharPtr = false; 172 ReferenceBinding = false; 173 DirectBinding = false; 174 IsLvalueReference = true; 175 BindsToFunctionLvalue = false; 176 BindsToRvalue = false; 177 BindsImplicitObjectArgumentWithoutRefQualifier = false; 178 CopyConstructor = 0; 179} 180 181/// getRank - Retrieve the rank of this standard conversion sequence 182/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 183/// implicit conversions. 184ImplicitConversionRank StandardConversionSequence::getRank() const { 185 ImplicitConversionRank Rank = ICR_Exact_Match; 186 if (GetConversionRank(First) > Rank) 187 Rank = GetConversionRank(First); 188 if (GetConversionRank(Second) > Rank) 189 Rank = GetConversionRank(Second); 190 if (GetConversionRank(Third) > Rank) 191 Rank = GetConversionRank(Third); 192 return Rank; 193} 194 195/// isPointerConversionToBool - Determines whether this conversion is 196/// a conversion of a pointer or pointer-to-member to bool. This is 197/// used as part of the ranking of standard conversion sequences 198/// (C++ 13.3.3.2p4). 199bool StandardConversionSequence::isPointerConversionToBool() const { 200 // Note that FromType has not necessarily been transformed by the 201 // array-to-pointer or function-to-pointer implicit conversions, so 202 // check for their presence as well as checking whether FromType is 203 // a pointer. 204 if (getToType(1)->isBooleanType() && 205 (getFromType()->isPointerType() || 206 getFromType()->isObjCObjectPointerType() || 207 getFromType()->isBlockPointerType() || 208 getFromType()->isNullPtrType() || 209 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 210 return true; 211 212 return false; 213} 214 215/// isPointerConversionToVoidPointer - Determines whether this 216/// conversion is a conversion of a pointer to a void pointer. This is 217/// used as part of the ranking of standard conversion sequences (C++ 218/// 13.3.3.2p4). 219bool 220StandardConversionSequence:: 221isPointerConversionToVoidPointer(ASTContext& Context) const { 222 QualType FromType = getFromType(); 223 QualType ToType = getToType(1); 224 225 // Note that FromType has not necessarily been transformed by the 226 // array-to-pointer implicit conversion, so check for its presence 227 // and redo the conversion to get a pointer. 228 if (First == ICK_Array_To_Pointer) 229 FromType = Context.getArrayDecayedType(FromType); 230 231 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 232 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 233 return ToPtrType->getPointeeType()->isVoidType(); 234 235 return false; 236} 237 238/// DebugPrint - Print this standard conversion sequence to standard 239/// error. Useful for debugging overloading issues. 240void StandardConversionSequence::DebugPrint() const { 241 llvm::raw_ostream &OS = llvm::errs(); 242 bool PrintedSomething = false; 243 if (First != ICK_Identity) { 244 OS << GetImplicitConversionName(First); 245 PrintedSomething = true; 246 } 247 248 if (Second != ICK_Identity) { 249 if (PrintedSomething) { 250 OS << " -> "; 251 } 252 OS << GetImplicitConversionName(Second); 253 254 if (CopyConstructor) { 255 OS << " (by copy constructor)"; 256 } else if (DirectBinding) { 257 OS << " (direct reference binding)"; 258 } else if (ReferenceBinding) { 259 OS << " (reference binding)"; 260 } 261 PrintedSomething = true; 262 } 263 264 if (Third != ICK_Identity) { 265 if (PrintedSomething) { 266 OS << " -> "; 267 } 268 OS << GetImplicitConversionName(Third); 269 PrintedSomething = true; 270 } 271 272 if (!PrintedSomething) { 273 OS << "No conversions required"; 274 } 275} 276 277/// DebugPrint - Print this user-defined conversion sequence to standard 278/// error. Useful for debugging overloading issues. 279void UserDefinedConversionSequence::DebugPrint() const { 280 llvm::raw_ostream &OS = llvm::errs(); 281 if (Before.First || Before.Second || Before.Third) { 282 Before.DebugPrint(); 283 OS << " -> "; 284 } 285 OS << '\'' << ConversionFunction << '\''; 286 if (After.First || After.Second || After.Third) { 287 OS << " -> "; 288 After.DebugPrint(); 289 } 290} 291 292/// DebugPrint - Print this implicit conversion sequence to standard 293/// error. Useful for debugging overloading issues. 294void ImplicitConversionSequence::DebugPrint() const { 295 llvm::raw_ostream &OS = llvm::errs(); 296 switch (ConversionKind) { 297 case StandardConversion: 298 OS << "Standard conversion: "; 299 Standard.DebugPrint(); 300 break; 301 case UserDefinedConversion: 302 OS << "User-defined conversion: "; 303 UserDefined.DebugPrint(); 304 break; 305 case EllipsisConversion: 306 OS << "Ellipsis conversion"; 307 break; 308 case AmbiguousConversion: 309 OS << "Ambiguous conversion"; 310 break; 311 case BadConversion: 312 OS << "Bad conversion"; 313 break; 314 } 315 316 OS << "\n"; 317} 318 319void AmbiguousConversionSequence::construct() { 320 new (&conversions()) ConversionSet(); 321} 322 323void AmbiguousConversionSequence::destruct() { 324 conversions().~ConversionSet(); 325} 326 327void 328AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 329 FromTypePtr = O.FromTypePtr; 330 ToTypePtr = O.ToTypePtr; 331 new (&conversions()) ConversionSet(O.conversions()); 332} 333 334namespace { 335 // Structure used by OverloadCandidate::DeductionFailureInfo to store 336 // template parameter and template argument information. 337 struct DFIParamWithArguments { 338 TemplateParameter Param; 339 TemplateArgument FirstArg; 340 TemplateArgument SecondArg; 341 }; 342} 343 344/// \brief Convert from Sema's representation of template deduction information 345/// to the form used in overload-candidate information. 346OverloadCandidate::DeductionFailureInfo 347static MakeDeductionFailureInfo(ASTContext &Context, 348 Sema::TemplateDeductionResult TDK, 349 TemplateDeductionInfo &Info) { 350 OverloadCandidate::DeductionFailureInfo Result; 351 Result.Result = static_cast<unsigned>(TDK); 352 Result.Data = 0; 353 switch (TDK) { 354 case Sema::TDK_Success: 355 case Sema::TDK_InstantiationDepth: 356 case Sema::TDK_TooManyArguments: 357 case Sema::TDK_TooFewArguments: 358 break; 359 360 case Sema::TDK_Incomplete: 361 case Sema::TDK_InvalidExplicitArguments: 362 Result.Data = Info.Param.getOpaqueValue(); 363 break; 364 365 case Sema::TDK_Inconsistent: 366 case Sema::TDK_Underqualified: { 367 // FIXME: Should allocate from normal heap so that we can free this later. 368 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 369 Saved->Param = Info.Param; 370 Saved->FirstArg = Info.FirstArg; 371 Saved->SecondArg = Info.SecondArg; 372 Result.Data = Saved; 373 break; 374 } 375 376 case Sema::TDK_SubstitutionFailure: 377 Result.Data = Info.take(); 378 break; 379 380 case Sema::TDK_NonDeducedMismatch: 381 case Sema::TDK_FailedOverloadResolution: 382 break; 383 } 384 385 return Result; 386} 387 388void OverloadCandidate::DeductionFailureInfo::Destroy() { 389 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 390 case Sema::TDK_Success: 391 case Sema::TDK_InstantiationDepth: 392 case Sema::TDK_Incomplete: 393 case Sema::TDK_TooManyArguments: 394 case Sema::TDK_TooFewArguments: 395 case Sema::TDK_InvalidExplicitArguments: 396 break; 397 398 case Sema::TDK_Inconsistent: 399 case Sema::TDK_Underqualified: 400 // FIXME: Destroy the data? 401 Data = 0; 402 break; 403 404 case Sema::TDK_SubstitutionFailure: 405 // FIXME: Destroy the template arugment list? 406 Data = 0; 407 break; 408 409 // Unhandled 410 case Sema::TDK_NonDeducedMismatch: 411 case Sema::TDK_FailedOverloadResolution: 412 break; 413 } 414} 415 416TemplateParameter 417OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 418 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 419 case Sema::TDK_Success: 420 case Sema::TDK_InstantiationDepth: 421 case Sema::TDK_TooManyArguments: 422 case Sema::TDK_TooFewArguments: 423 case Sema::TDK_SubstitutionFailure: 424 return TemplateParameter(); 425 426 case Sema::TDK_Incomplete: 427 case Sema::TDK_InvalidExplicitArguments: 428 return TemplateParameter::getFromOpaqueValue(Data); 429 430 case Sema::TDK_Inconsistent: 431 case Sema::TDK_Underqualified: 432 return static_cast<DFIParamWithArguments*>(Data)->Param; 433 434 // Unhandled 435 case Sema::TDK_NonDeducedMismatch: 436 case Sema::TDK_FailedOverloadResolution: 437 break; 438 } 439 440 return TemplateParameter(); 441} 442 443TemplateArgumentList * 444OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 445 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 446 case Sema::TDK_Success: 447 case Sema::TDK_InstantiationDepth: 448 case Sema::TDK_TooManyArguments: 449 case Sema::TDK_TooFewArguments: 450 case Sema::TDK_Incomplete: 451 case Sema::TDK_InvalidExplicitArguments: 452 case Sema::TDK_Inconsistent: 453 case Sema::TDK_Underqualified: 454 return 0; 455 456 case Sema::TDK_SubstitutionFailure: 457 return static_cast<TemplateArgumentList*>(Data); 458 459 // Unhandled 460 case Sema::TDK_NonDeducedMismatch: 461 case Sema::TDK_FailedOverloadResolution: 462 break; 463 } 464 465 return 0; 466} 467 468const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 469 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 470 case Sema::TDK_Success: 471 case Sema::TDK_InstantiationDepth: 472 case Sema::TDK_Incomplete: 473 case Sema::TDK_TooManyArguments: 474 case Sema::TDK_TooFewArguments: 475 case Sema::TDK_InvalidExplicitArguments: 476 case Sema::TDK_SubstitutionFailure: 477 return 0; 478 479 case Sema::TDK_Inconsistent: 480 case Sema::TDK_Underqualified: 481 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 482 483 // Unhandled 484 case Sema::TDK_NonDeducedMismatch: 485 case Sema::TDK_FailedOverloadResolution: 486 break; 487 } 488 489 return 0; 490} 491 492const TemplateArgument * 493OverloadCandidate::DeductionFailureInfo::getSecondArg() { 494 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 495 case Sema::TDK_Success: 496 case Sema::TDK_InstantiationDepth: 497 case Sema::TDK_Incomplete: 498 case Sema::TDK_TooManyArguments: 499 case Sema::TDK_TooFewArguments: 500 case Sema::TDK_InvalidExplicitArguments: 501 case Sema::TDK_SubstitutionFailure: 502 return 0; 503 504 case Sema::TDK_Inconsistent: 505 case Sema::TDK_Underqualified: 506 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 507 508 // Unhandled 509 case Sema::TDK_NonDeducedMismatch: 510 case Sema::TDK_FailedOverloadResolution: 511 break; 512 } 513 514 return 0; 515} 516 517void OverloadCandidateSet::clear() { 518 inherited::clear(); 519 Functions.clear(); 520} 521 522// IsOverload - Determine whether the given New declaration is an 523// overload of the declarations in Old. This routine returns false if 524// New and Old cannot be overloaded, e.g., if New has the same 525// signature as some function in Old (C++ 1.3.10) or if the Old 526// declarations aren't functions (or function templates) at all. When 527// it does return false, MatchedDecl will point to the decl that New 528// cannot be overloaded with. This decl may be a UsingShadowDecl on 529// top of the underlying declaration. 530// 531// Example: Given the following input: 532// 533// void f(int, float); // #1 534// void f(int, int); // #2 535// int f(int, int); // #3 536// 537// When we process #1, there is no previous declaration of "f", 538// so IsOverload will not be used. 539// 540// When we process #2, Old contains only the FunctionDecl for #1. By 541// comparing the parameter types, we see that #1 and #2 are overloaded 542// (since they have different signatures), so this routine returns 543// false; MatchedDecl is unchanged. 544// 545// When we process #3, Old is an overload set containing #1 and #2. We 546// compare the signatures of #3 to #1 (they're overloaded, so we do 547// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 548// identical (return types of functions are not part of the 549// signature), IsOverload returns false and MatchedDecl will be set to 550// point to the FunctionDecl for #2. 551// 552// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 553// into a class by a using declaration. The rules for whether to hide 554// shadow declarations ignore some properties which otherwise figure 555// into a function template's signature. 556Sema::OverloadKind 557Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 558 NamedDecl *&Match, bool NewIsUsingDecl) { 559 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 560 I != E; ++I) { 561 NamedDecl *OldD = *I; 562 563 bool OldIsUsingDecl = false; 564 if (isa<UsingShadowDecl>(OldD)) { 565 OldIsUsingDecl = true; 566 567 // We can always introduce two using declarations into the same 568 // context, even if they have identical signatures. 569 if (NewIsUsingDecl) continue; 570 571 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 572 } 573 574 // If either declaration was introduced by a using declaration, 575 // we'll need to use slightly different rules for matching. 576 // Essentially, these rules are the normal rules, except that 577 // function templates hide function templates with different 578 // return types or template parameter lists. 579 bool UseMemberUsingDeclRules = 580 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 581 582 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 583 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 584 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 585 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 586 continue; 587 } 588 589 Match = *I; 590 return Ovl_Match; 591 } 592 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 593 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 594 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 595 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 596 continue; 597 } 598 599 Match = *I; 600 return Ovl_Match; 601 } 602 } else if (isa<UsingDecl>(OldD)) { 603 // We can overload with these, which can show up when doing 604 // redeclaration checks for UsingDecls. 605 assert(Old.getLookupKind() == LookupUsingDeclName); 606 } else if (isa<TagDecl>(OldD)) { 607 // We can always overload with tags by hiding them. 608 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 609 // Optimistically assume that an unresolved using decl will 610 // overload; if it doesn't, we'll have to diagnose during 611 // template instantiation. 612 } else { 613 // (C++ 13p1): 614 // Only function declarations can be overloaded; object and type 615 // declarations cannot be overloaded. 616 Match = *I; 617 return Ovl_NonFunction; 618 } 619 } 620 621 return Ovl_Overload; 622} 623 624bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 625 bool UseUsingDeclRules) { 626 // If both of the functions are extern "C", then they are not 627 // overloads. 628 if (Old->isExternC() && New->isExternC()) 629 return false; 630 631 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 632 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 633 634 // C++ [temp.fct]p2: 635 // A function template can be overloaded with other function templates 636 // and with normal (non-template) functions. 637 if ((OldTemplate == 0) != (NewTemplate == 0)) 638 return true; 639 640 // Is the function New an overload of the function Old? 641 QualType OldQType = Context.getCanonicalType(Old->getType()); 642 QualType NewQType = Context.getCanonicalType(New->getType()); 643 644 // Compare the signatures (C++ 1.3.10) of the two functions to 645 // determine whether they are overloads. If we find any mismatch 646 // in the signature, they are overloads. 647 648 // If either of these functions is a K&R-style function (no 649 // prototype), then we consider them to have matching signatures. 650 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 651 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 652 return false; 653 654 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 655 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 656 657 // The signature of a function includes the types of its 658 // parameters (C++ 1.3.10), which includes the presence or absence 659 // of the ellipsis; see C++ DR 357). 660 if (OldQType != NewQType && 661 (OldType->getNumArgs() != NewType->getNumArgs() || 662 OldType->isVariadic() != NewType->isVariadic() || 663 !FunctionArgTypesAreEqual(OldType, NewType))) 664 return true; 665 666 // C++ [temp.over.link]p4: 667 // The signature of a function template consists of its function 668 // signature, its return type and its template parameter list. The names 669 // of the template parameters are significant only for establishing the 670 // relationship between the template parameters and the rest of the 671 // signature. 672 // 673 // We check the return type and template parameter lists for function 674 // templates first; the remaining checks follow. 675 // 676 // However, we don't consider either of these when deciding whether 677 // a member introduced by a shadow declaration is hidden. 678 if (!UseUsingDeclRules && NewTemplate && 679 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 680 OldTemplate->getTemplateParameters(), 681 false, TPL_TemplateMatch) || 682 OldType->getResultType() != NewType->getResultType())) 683 return true; 684 685 // If the function is a class member, its signature includes the 686 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 687 // 688 // As part of this, also check whether one of the member functions 689 // is static, in which case they are not overloads (C++ 690 // 13.1p2). While not part of the definition of the signature, 691 // this check is important to determine whether these functions 692 // can be overloaded. 693 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 694 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 695 if (OldMethod && NewMethod && 696 !OldMethod->isStatic() && !NewMethod->isStatic() && 697 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() || 698 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) { 699 if (!UseUsingDeclRules && 700 OldMethod->getRefQualifier() != NewMethod->getRefQualifier() && 701 (OldMethod->getRefQualifier() == RQ_None || 702 NewMethod->getRefQualifier() == RQ_None)) { 703 // C++0x [over.load]p2: 704 // - Member function declarations with the same name and the same 705 // parameter-type-list as well as member function template 706 // declarations with the same name, the same parameter-type-list, and 707 // the same template parameter lists cannot be overloaded if any of 708 // them, but not all, have a ref-qualifier (8.3.5). 709 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 710 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 711 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 712 } 713 714 return true; 715 } 716 717 // The signatures match; this is not an overload. 718 return false; 719} 720 721/// TryImplicitConversion - Attempt to perform an implicit conversion 722/// from the given expression (Expr) to the given type (ToType). This 723/// function returns an implicit conversion sequence that can be used 724/// to perform the initialization. Given 725/// 726/// void f(float f); 727/// void g(int i) { f(i); } 728/// 729/// this routine would produce an implicit conversion sequence to 730/// describe the initialization of f from i, which will be a standard 731/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 732/// 4.1) followed by a floating-integral conversion (C++ 4.9). 733// 734/// Note that this routine only determines how the conversion can be 735/// performed; it does not actually perform the conversion. As such, 736/// it will not produce any diagnostics if no conversion is available, 737/// but will instead return an implicit conversion sequence of kind 738/// "BadConversion". 739/// 740/// If @p SuppressUserConversions, then user-defined conversions are 741/// not permitted. 742/// If @p AllowExplicit, then explicit user-defined conversions are 743/// permitted. 744static ImplicitConversionSequence 745TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 746 bool SuppressUserConversions, 747 bool AllowExplicit, 748 bool InOverloadResolution, 749 bool CStyle) { 750 ImplicitConversionSequence ICS; 751 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 752 ICS.Standard, CStyle)) { 753 ICS.setStandard(); 754 return ICS; 755 } 756 757 if (!S.getLangOptions().CPlusPlus) { 758 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 759 return ICS; 760 } 761 762 // C++ [over.ics.user]p4: 763 // A conversion of an expression of class type to the same class 764 // type is given Exact Match rank, and a conversion of an 765 // expression of class type to a base class of that type is 766 // given Conversion rank, in spite of the fact that a copy/move 767 // constructor (i.e., a user-defined conversion function) is 768 // called for those cases. 769 QualType FromType = From->getType(); 770 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 771 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 772 S.IsDerivedFrom(FromType, ToType))) { 773 ICS.setStandard(); 774 ICS.Standard.setAsIdentityConversion(); 775 ICS.Standard.setFromType(FromType); 776 ICS.Standard.setAllToTypes(ToType); 777 778 // We don't actually check at this point whether there is a valid 779 // copy/move constructor, since overloading just assumes that it 780 // exists. When we actually perform initialization, we'll find the 781 // appropriate constructor to copy the returned object, if needed. 782 ICS.Standard.CopyConstructor = 0; 783 784 // Determine whether this is considered a derived-to-base conversion. 785 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 786 ICS.Standard.Second = ICK_Derived_To_Base; 787 788 return ICS; 789 } 790 791 if (SuppressUserConversions) { 792 // We're not in the case above, so there is no conversion that 793 // we can perform. 794 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 795 return ICS; 796 } 797 798 // Attempt user-defined conversion. 799 OverloadCandidateSet Conversions(From->getExprLoc()); 800 OverloadingResult UserDefResult 801 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, 802 AllowExplicit); 803 804 if (UserDefResult == OR_Success) { 805 ICS.setUserDefined(); 806 // C++ [over.ics.user]p4: 807 // A conversion of an expression of class type to the same class 808 // type is given Exact Match rank, and a conversion of an 809 // expression of class type to a base class of that type is 810 // given Conversion rank, in spite of the fact that a copy 811 // constructor (i.e., a user-defined conversion function) is 812 // called for those cases. 813 if (CXXConstructorDecl *Constructor 814 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 815 QualType FromCanon 816 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 817 QualType ToCanon 818 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 819 if (Constructor->isCopyConstructor() && 820 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { 821 // Turn this into a "standard" conversion sequence, so that it 822 // gets ranked with standard conversion sequences. 823 ICS.setStandard(); 824 ICS.Standard.setAsIdentityConversion(); 825 ICS.Standard.setFromType(From->getType()); 826 ICS.Standard.setAllToTypes(ToType); 827 ICS.Standard.CopyConstructor = Constructor; 828 if (ToCanon != FromCanon) 829 ICS.Standard.Second = ICK_Derived_To_Base; 830 } 831 } 832 833 // C++ [over.best.ics]p4: 834 // However, when considering the argument of a user-defined 835 // conversion function that is a candidate by 13.3.1.3 when 836 // invoked for the copying of the temporary in the second step 837 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 838 // 13.3.1.6 in all cases, only standard conversion sequences and 839 // ellipsis conversion sequences are allowed. 840 if (SuppressUserConversions && ICS.isUserDefined()) { 841 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 842 } 843 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 844 ICS.setAmbiguous(); 845 ICS.Ambiguous.setFromType(From->getType()); 846 ICS.Ambiguous.setToType(ToType); 847 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 848 Cand != Conversions.end(); ++Cand) 849 if (Cand->Viable) 850 ICS.Ambiguous.addConversion(Cand->Function); 851 } else { 852 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 853 } 854 855 return ICS; 856} 857 858bool Sema::TryImplicitConversion(InitializationSequence &Sequence, 859 const InitializedEntity &Entity, 860 Expr *Initializer, 861 bool SuppressUserConversions, 862 bool AllowExplicitConversions, 863 bool InOverloadResolution, 864 bool CStyle) { 865 ImplicitConversionSequence ICS 866 = clang::TryImplicitConversion(*this, Initializer, Entity.getType(), 867 SuppressUserConversions, 868 AllowExplicitConversions, 869 InOverloadResolution, 870 CStyle); 871 if (ICS.isBad()) return true; 872 873 // Perform the actual conversion. 874 Sequence.AddConversionSequenceStep(ICS, Entity.getType()); 875 return false; 876} 877 878/// PerformImplicitConversion - Perform an implicit conversion of the 879/// expression From to the type ToType. Returns true if there was an 880/// error, false otherwise. The expression From is replaced with the 881/// converted expression. Flavor is the kind of conversion we're 882/// performing, used in the error message. If @p AllowExplicit, 883/// explicit user-defined conversions are permitted. 884bool 885Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 886 AssignmentAction Action, bool AllowExplicit) { 887 ImplicitConversionSequence ICS; 888 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 889} 890 891bool 892Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 893 AssignmentAction Action, bool AllowExplicit, 894 ImplicitConversionSequence& ICS) { 895 ICS = clang::TryImplicitConversion(*this, From, ToType, 896 /*SuppressUserConversions=*/false, 897 AllowExplicit, 898 /*InOverloadResolution=*/false, 899 /*CStyle=*/false); 900 return PerformImplicitConversion(From, ToType, ICS, Action); 901} 902 903/// \brief Determine whether the conversion from FromType to ToType is a valid 904/// conversion that strips "noreturn" off the nested function type. 905static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 906 QualType ToType, QualType &ResultTy) { 907 if (Context.hasSameUnqualifiedType(FromType, ToType)) 908 return false; 909 910 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 911 // where F adds one of the following at most once: 912 // - a pointer 913 // - a member pointer 914 // - a block pointer 915 CanQualType CanTo = Context.getCanonicalType(ToType); 916 CanQualType CanFrom = Context.getCanonicalType(FromType); 917 Type::TypeClass TyClass = CanTo->getTypeClass(); 918 if (TyClass != CanFrom->getTypeClass()) return false; 919 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 920 if (TyClass == Type::Pointer) { 921 CanTo = CanTo.getAs<PointerType>()->getPointeeType(); 922 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); 923 } else if (TyClass == Type::BlockPointer) { 924 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); 925 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); 926 } else if (TyClass == Type::MemberPointer) { 927 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType(); 928 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType(); 929 } else { 930 return false; 931 } 932 933 TyClass = CanTo->getTypeClass(); 934 if (TyClass != CanFrom->getTypeClass()) return false; 935 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 936 return false; 937 } 938 939 const FunctionType *FromFn = cast<FunctionType>(CanFrom); 940 FunctionType::ExtInfo EInfo = FromFn->getExtInfo(); 941 if (!EInfo.getNoReturn()) return false; 942 943 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false)); 944 assert(QualType(FromFn, 0).isCanonical()); 945 if (QualType(FromFn, 0) != CanTo) return false; 946 947 ResultTy = ToType; 948 return true; 949} 950 951/// \brief Determine whether the conversion from FromType to ToType is a valid 952/// vector conversion. 953/// 954/// \param ICK Will be set to the vector conversion kind, if this is a vector 955/// conversion. 956static bool IsVectorConversion(ASTContext &Context, QualType FromType, 957 QualType ToType, ImplicitConversionKind &ICK) { 958 // We need at least one of these types to be a vector type to have a vector 959 // conversion. 960 if (!ToType->isVectorType() && !FromType->isVectorType()) 961 return false; 962 963 // Identical types require no conversions. 964 if (Context.hasSameUnqualifiedType(FromType, ToType)) 965 return false; 966 967 // There are no conversions between extended vector types, only identity. 968 if (ToType->isExtVectorType()) { 969 // There are no conversions between extended vector types other than the 970 // identity conversion. 971 if (FromType->isExtVectorType()) 972 return false; 973 974 // Vector splat from any arithmetic type to a vector. 975 if (FromType->isArithmeticType()) { 976 ICK = ICK_Vector_Splat; 977 return true; 978 } 979 } 980 981 // We can perform the conversion between vector types in the following cases: 982 // 1)vector types are equivalent AltiVec and GCC vector types 983 // 2)lax vector conversions are permitted and the vector types are of the 984 // same size 985 if (ToType->isVectorType() && FromType->isVectorType()) { 986 if (Context.areCompatibleVectorTypes(FromType, ToType) || 987 (Context.getLangOptions().LaxVectorConversions && 988 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 989 ICK = ICK_Vector_Conversion; 990 return true; 991 } 992 } 993 994 return false; 995} 996 997/// IsStandardConversion - Determines whether there is a standard 998/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 999/// expression From to the type ToType. Standard conversion sequences 1000/// only consider non-class types; for conversions that involve class 1001/// types, use TryImplicitConversion. If a conversion exists, SCS will 1002/// contain the standard conversion sequence required to perform this 1003/// conversion and this routine will return true. Otherwise, this 1004/// routine will return false and the value of SCS is unspecified. 1005static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1006 bool InOverloadResolution, 1007 StandardConversionSequence &SCS, 1008 bool CStyle) { 1009 QualType FromType = From->getType(); 1010 1011 // Standard conversions (C++ [conv]) 1012 SCS.setAsIdentityConversion(); 1013 SCS.DeprecatedStringLiteralToCharPtr = false; 1014 SCS.IncompatibleObjC = false; 1015 SCS.setFromType(FromType); 1016 SCS.CopyConstructor = 0; 1017 1018 // There are no standard conversions for class types in C++, so 1019 // abort early. When overloading in C, however, we do permit 1020 if (FromType->isRecordType() || ToType->isRecordType()) { 1021 if (S.getLangOptions().CPlusPlus) 1022 return false; 1023 1024 // When we're overloading in C, we allow, as standard conversions, 1025 } 1026 1027 // The first conversion can be an lvalue-to-rvalue conversion, 1028 // array-to-pointer conversion, or function-to-pointer conversion 1029 // (C++ 4p1). 1030 1031 if (FromType == S.Context.OverloadTy) { 1032 DeclAccessPair AccessPair; 1033 if (FunctionDecl *Fn 1034 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1035 AccessPair)) { 1036 // We were able to resolve the address of the overloaded function, 1037 // so we can convert to the type of that function. 1038 FromType = Fn->getType(); 1039 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 1040 if (!Method->isStatic()) { 1041 const Type *ClassType 1042 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1043 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1044 } 1045 } 1046 1047 // If the "from" expression takes the address of the overloaded 1048 // function, update the type of the resulting expression accordingly. 1049 if (FromType->getAs<FunctionType>()) 1050 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) 1051 if (UnOp->getOpcode() == UO_AddrOf) 1052 FromType = S.Context.getPointerType(FromType); 1053 1054 // Check that we've computed the proper type after overload resolution. 1055 assert(S.Context.hasSameType(FromType, 1056 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1057 } else { 1058 return false; 1059 } 1060 } 1061 // Lvalue-to-rvalue conversion (C++ 4.1): 1062 // An lvalue (3.10) of a non-function, non-array type T can be 1063 // converted to an rvalue. 1064 bool argIsLValue = From->isLValue(); 1065 if (argIsLValue && 1066 !FromType->isFunctionType() && !FromType->isArrayType() && 1067 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1068 SCS.First = ICK_Lvalue_To_Rvalue; 1069 1070 // If T is a non-class type, the type of the rvalue is the 1071 // cv-unqualified version of T. Otherwise, the type of the rvalue 1072 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1073 // just strip the qualifiers because they don't matter. 1074 FromType = FromType.getUnqualifiedType(); 1075 } else if (FromType->isArrayType()) { 1076 // Array-to-pointer conversion (C++ 4.2) 1077 SCS.First = ICK_Array_To_Pointer; 1078 1079 // An lvalue or rvalue of type "array of N T" or "array of unknown 1080 // bound of T" can be converted to an rvalue of type "pointer to 1081 // T" (C++ 4.2p1). 1082 FromType = S.Context.getArrayDecayedType(FromType); 1083 1084 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1085 // This conversion is deprecated. (C++ D.4). 1086 SCS.DeprecatedStringLiteralToCharPtr = true; 1087 1088 // For the purpose of ranking in overload resolution 1089 // (13.3.3.1.1), this conversion is considered an 1090 // array-to-pointer conversion followed by a qualification 1091 // conversion (4.4). (C++ 4.2p2) 1092 SCS.Second = ICK_Identity; 1093 SCS.Third = ICK_Qualification; 1094 SCS.setAllToTypes(FromType); 1095 return true; 1096 } 1097 } else if (FromType->isFunctionType() && argIsLValue) { 1098 // Function-to-pointer conversion (C++ 4.3). 1099 SCS.First = ICK_Function_To_Pointer; 1100 1101 // An lvalue of function type T can be converted to an rvalue of 1102 // type "pointer to T." The result is a pointer to the 1103 // function. (C++ 4.3p1). 1104 FromType = S.Context.getPointerType(FromType); 1105 } else { 1106 // We don't require any conversions for the first step. 1107 SCS.First = ICK_Identity; 1108 } 1109 SCS.setToType(0, FromType); 1110 1111 // The second conversion can be an integral promotion, floating 1112 // point promotion, integral conversion, floating point conversion, 1113 // floating-integral conversion, pointer conversion, 1114 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1115 // For overloading in C, this can also be a "compatible-type" 1116 // conversion. 1117 bool IncompatibleObjC = false; 1118 ImplicitConversionKind SecondICK = ICK_Identity; 1119 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1120 // The unqualified versions of the types are the same: there's no 1121 // conversion to do. 1122 SCS.Second = ICK_Identity; 1123 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1124 // Integral promotion (C++ 4.5). 1125 SCS.Second = ICK_Integral_Promotion; 1126 FromType = ToType.getUnqualifiedType(); 1127 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1128 // Floating point promotion (C++ 4.6). 1129 SCS.Second = ICK_Floating_Promotion; 1130 FromType = ToType.getUnqualifiedType(); 1131 } else if (S.IsComplexPromotion(FromType, ToType)) { 1132 // Complex promotion (Clang extension) 1133 SCS.Second = ICK_Complex_Promotion; 1134 FromType = ToType.getUnqualifiedType(); 1135 } else if (ToType->isBooleanType() && 1136 (FromType->isArithmeticType() || 1137 FromType->isAnyPointerType() || 1138 FromType->isBlockPointerType() || 1139 FromType->isMemberPointerType() || 1140 FromType->isNullPtrType())) { 1141 // Boolean conversions (C++ 4.12). 1142 SCS.Second = ICK_Boolean_Conversion; 1143 FromType = S.Context.BoolTy; 1144 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1145 ToType->isIntegralType(S.Context)) { 1146 // Integral conversions (C++ 4.7). 1147 SCS.Second = ICK_Integral_Conversion; 1148 FromType = ToType.getUnqualifiedType(); 1149 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) { 1150 // Complex conversions (C99 6.3.1.6) 1151 SCS.Second = ICK_Complex_Conversion; 1152 FromType = ToType.getUnqualifiedType(); 1153 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1154 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1155 // Complex-real conversions (C99 6.3.1.7) 1156 SCS.Second = ICK_Complex_Real; 1157 FromType = ToType.getUnqualifiedType(); 1158 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1159 // Floating point conversions (C++ 4.8). 1160 SCS.Second = ICK_Floating_Conversion; 1161 FromType = ToType.getUnqualifiedType(); 1162 } else if ((FromType->isRealFloatingType() && 1163 ToType->isIntegralType(S.Context)) || 1164 (FromType->isIntegralOrUnscopedEnumerationType() && 1165 ToType->isRealFloatingType())) { 1166 // Floating-integral conversions (C++ 4.9). 1167 SCS.Second = ICK_Floating_Integral; 1168 FromType = ToType.getUnqualifiedType(); 1169 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1170 FromType, IncompatibleObjC)) { 1171 // Pointer conversions (C++ 4.10). 1172 SCS.Second = ICK_Pointer_Conversion; 1173 SCS.IncompatibleObjC = IncompatibleObjC; 1174 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1175 InOverloadResolution, FromType)) { 1176 // Pointer to member conversions (4.11). 1177 SCS.Second = ICK_Pointer_Member; 1178 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { 1179 SCS.Second = SecondICK; 1180 FromType = ToType.getUnqualifiedType(); 1181 } else if (!S.getLangOptions().CPlusPlus && 1182 S.Context.typesAreCompatible(ToType, FromType)) { 1183 // Compatible conversions (Clang extension for C function overloading) 1184 SCS.Second = ICK_Compatible_Conversion; 1185 FromType = ToType.getUnqualifiedType(); 1186 } else if (IsNoReturnConversion(S.Context, FromType, ToType, FromType)) { 1187 // Treat a conversion that strips "noreturn" as an identity conversion. 1188 SCS.Second = ICK_NoReturn_Adjustment; 1189 } else { 1190 // No second conversion required. 1191 SCS.Second = ICK_Identity; 1192 } 1193 SCS.setToType(1, FromType); 1194 1195 QualType CanonFrom; 1196 QualType CanonTo; 1197 // The third conversion can be a qualification conversion (C++ 4p1). 1198 if (S.IsQualificationConversion(FromType, ToType, CStyle)) { 1199 SCS.Third = ICK_Qualification; 1200 FromType = ToType; 1201 CanonFrom = S.Context.getCanonicalType(FromType); 1202 CanonTo = S.Context.getCanonicalType(ToType); 1203 } else { 1204 // No conversion required 1205 SCS.Third = ICK_Identity; 1206 1207 // C++ [over.best.ics]p6: 1208 // [...] Any difference in top-level cv-qualification is 1209 // subsumed by the initialization itself and does not constitute 1210 // a conversion. [...] 1211 CanonFrom = S.Context.getCanonicalType(FromType); 1212 CanonTo = S.Context.getCanonicalType(ToType); 1213 if (CanonFrom.getLocalUnqualifiedType() 1214 == CanonTo.getLocalUnqualifiedType() && 1215 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1216 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) { 1217 FromType = ToType; 1218 CanonFrom = CanonTo; 1219 } 1220 } 1221 SCS.setToType(2, FromType); 1222 1223 // If we have not converted the argument type to the parameter type, 1224 // this is a bad conversion sequence. 1225 if (CanonFrom != CanonTo) 1226 return false; 1227 1228 return true; 1229} 1230 1231/// IsIntegralPromotion - Determines whether the conversion from the 1232/// expression From (whose potentially-adjusted type is FromType) to 1233/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1234/// sets PromotedType to the promoted type. 1235bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1236 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1237 // All integers are built-in. 1238 if (!To) { 1239 return false; 1240 } 1241 1242 // An rvalue of type char, signed char, unsigned char, short int, or 1243 // unsigned short int can be converted to an rvalue of type int if 1244 // int can represent all the values of the source type; otherwise, 1245 // the source rvalue can be converted to an rvalue of type unsigned 1246 // int (C++ 4.5p1). 1247 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1248 !FromType->isEnumeralType()) { 1249 if (// We can promote any signed, promotable integer type to an int 1250 (FromType->isSignedIntegerType() || 1251 // We can promote any unsigned integer type whose size is 1252 // less than int to an int. 1253 (!FromType->isSignedIntegerType() && 1254 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1255 return To->getKind() == BuiltinType::Int; 1256 } 1257 1258 return To->getKind() == BuiltinType::UInt; 1259 } 1260 1261 // C++0x [conv.prom]p3: 1262 // A prvalue of an unscoped enumeration type whose underlying type is not 1263 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 1264 // following types that can represent all the values of the enumeration 1265 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 1266 // unsigned int, long int, unsigned long int, long long int, or unsigned 1267 // long long int. If none of the types in that list can represent all the 1268 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 1269 // type can be converted to an rvalue a prvalue of the extended integer type 1270 // with lowest integer conversion rank (4.13) greater than the rank of long 1271 // long in which all the values of the enumeration can be represented. If 1272 // there are two such extended types, the signed one is chosen. 1273 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1274 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1275 // provided for a scoped enumeration. 1276 if (FromEnumType->getDecl()->isScoped()) 1277 return false; 1278 1279 // We have already pre-calculated the promotion type, so this is trivial. 1280 if (ToType->isIntegerType() && 1281 !RequireCompleteType(From->getLocStart(), FromType, PDiag())) 1282 return Context.hasSameUnqualifiedType(ToType, 1283 FromEnumType->getDecl()->getPromotionType()); 1284 } 1285 1286 // C++0x [conv.prom]p2: 1287 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 1288 // to an rvalue a prvalue of the first of the following types that can 1289 // represent all the values of its underlying type: int, unsigned int, 1290 // long int, unsigned long int, long long int, or unsigned long long int. 1291 // If none of the types in that list can represent all the values of its 1292 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 1293 // or wchar_t can be converted to an rvalue a prvalue of its underlying 1294 // type. 1295 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 1296 ToType->isIntegerType()) { 1297 // Determine whether the type we're converting from is signed or 1298 // unsigned. 1299 bool FromIsSigned; 1300 uint64_t FromSize = Context.getTypeSize(FromType); 1301 1302 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 1303 FromIsSigned = true; 1304 1305 // The types we'll try to promote to, in the appropriate 1306 // order. Try each of these types. 1307 QualType PromoteTypes[6] = { 1308 Context.IntTy, Context.UnsignedIntTy, 1309 Context.LongTy, Context.UnsignedLongTy , 1310 Context.LongLongTy, Context.UnsignedLongLongTy 1311 }; 1312 for (int Idx = 0; Idx < 6; ++Idx) { 1313 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1314 if (FromSize < ToSize || 1315 (FromSize == ToSize && 1316 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1317 // We found the type that we can promote to. If this is the 1318 // type we wanted, we have a promotion. Otherwise, no 1319 // promotion. 1320 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1321 } 1322 } 1323 } 1324 1325 // An rvalue for an integral bit-field (9.6) can be converted to an 1326 // rvalue of type int if int can represent all the values of the 1327 // bit-field; otherwise, it can be converted to unsigned int if 1328 // unsigned int can represent all the values of the bit-field. If 1329 // the bit-field is larger yet, no integral promotion applies to 1330 // it. If the bit-field has an enumerated type, it is treated as any 1331 // other value of that type for promotion purposes (C++ 4.5p3). 1332 // FIXME: We should delay checking of bit-fields until we actually perform the 1333 // conversion. 1334 using llvm::APSInt; 1335 if (From) 1336 if (FieldDecl *MemberDecl = From->getBitField()) { 1337 APSInt BitWidth; 1338 if (FromType->isIntegralType(Context) && 1339 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1340 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1341 ToSize = Context.getTypeSize(ToType); 1342 1343 // Are we promoting to an int from a bitfield that fits in an int? 1344 if (BitWidth < ToSize || 1345 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1346 return To->getKind() == BuiltinType::Int; 1347 } 1348 1349 // Are we promoting to an unsigned int from an unsigned bitfield 1350 // that fits into an unsigned int? 1351 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1352 return To->getKind() == BuiltinType::UInt; 1353 } 1354 1355 return false; 1356 } 1357 } 1358 1359 // An rvalue of type bool can be converted to an rvalue of type int, 1360 // with false becoming zero and true becoming one (C++ 4.5p4). 1361 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1362 return true; 1363 } 1364 1365 return false; 1366} 1367 1368/// IsFloatingPointPromotion - Determines whether the conversion from 1369/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1370/// returns true and sets PromotedType to the promoted type. 1371bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1372 /// An rvalue of type float can be converted to an rvalue of type 1373 /// double. (C++ 4.6p1). 1374 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1375 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1376 if (FromBuiltin->getKind() == BuiltinType::Float && 1377 ToBuiltin->getKind() == BuiltinType::Double) 1378 return true; 1379 1380 // C99 6.3.1.5p1: 1381 // When a float is promoted to double or long double, or a 1382 // double is promoted to long double [...]. 1383 if (!getLangOptions().CPlusPlus && 1384 (FromBuiltin->getKind() == BuiltinType::Float || 1385 FromBuiltin->getKind() == BuiltinType::Double) && 1386 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1387 return true; 1388 } 1389 1390 return false; 1391} 1392 1393/// \brief Determine if a conversion is a complex promotion. 1394/// 1395/// A complex promotion is defined as a complex -> complex conversion 1396/// where the conversion between the underlying real types is a 1397/// floating-point or integral promotion. 1398bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1399 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1400 if (!FromComplex) 1401 return false; 1402 1403 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1404 if (!ToComplex) 1405 return false; 1406 1407 return IsFloatingPointPromotion(FromComplex->getElementType(), 1408 ToComplex->getElementType()) || 1409 IsIntegralPromotion(0, FromComplex->getElementType(), 1410 ToComplex->getElementType()); 1411} 1412 1413/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1414/// the pointer type FromPtr to a pointer to type ToPointee, with the 1415/// same type qualifiers as FromPtr has on its pointee type. ToType, 1416/// if non-empty, will be a pointer to ToType that may or may not have 1417/// the right set of qualifiers on its pointee. 1418static QualType 1419BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 1420 QualType ToPointee, QualType ToType, 1421 ASTContext &Context) { 1422 assert((FromPtr->getTypeClass() == Type::Pointer || 1423 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 1424 "Invalid similarly-qualified pointer type"); 1425 1426 /// \brief Conversions to 'id' subsume cv-qualifier conversions. 1427 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 1428 return ToType.getUnqualifiedType(); 1429 1430 QualType CanonFromPointee 1431 = Context.getCanonicalType(FromPtr->getPointeeType()); 1432 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1433 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1434 1435 // Exact qualifier match -> return the pointer type we're converting to. 1436 if (CanonToPointee.getLocalQualifiers() == Quals) { 1437 // ToType is exactly what we need. Return it. 1438 if (!ToType.isNull()) 1439 return ToType.getUnqualifiedType(); 1440 1441 // Build a pointer to ToPointee. It has the right qualifiers 1442 // already. 1443 if (isa<ObjCObjectPointerType>(ToType)) 1444 return Context.getObjCObjectPointerType(ToPointee); 1445 return Context.getPointerType(ToPointee); 1446 } 1447 1448 // Just build a canonical type that has the right qualifiers. 1449 QualType QualifiedCanonToPointee 1450 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 1451 1452 if (isa<ObjCObjectPointerType>(ToType)) 1453 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 1454 return Context.getPointerType(QualifiedCanonToPointee); 1455} 1456 1457static bool isNullPointerConstantForConversion(Expr *Expr, 1458 bool InOverloadResolution, 1459 ASTContext &Context) { 1460 // Handle value-dependent integral null pointer constants correctly. 1461 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1462 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1463 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1464 return !InOverloadResolution; 1465 1466 return Expr->isNullPointerConstant(Context, 1467 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1468 : Expr::NPC_ValueDependentIsNull); 1469} 1470 1471/// IsPointerConversion - Determines whether the conversion of the 1472/// expression From, which has the (possibly adjusted) type FromType, 1473/// can be converted to the type ToType via a pointer conversion (C++ 1474/// 4.10). If so, returns true and places the converted type (that 1475/// might differ from ToType in its cv-qualifiers at some level) into 1476/// ConvertedType. 1477/// 1478/// This routine also supports conversions to and from block pointers 1479/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1480/// pointers to interfaces. FIXME: Once we've determined the 1481/// appropriate overloading rules for Objective-C, we may want to 1482/// split the Objective-C checks into a different routine; however, 1483/// GCC seems to consider all of these conversions to be pointer 1484/// conversions, so for now they live here. IncompatibleObjC will be 1485/// set if the conversion is an allowed Objective-C conversion that 1486/// should result in a warning. 1487bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1488 bool InOverloadResolution, 1489 QualType& ConvertedType, 1490 bool &IncompatibleObjC) { 1491 IncompatibleObjC = false; 1492 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 1493 IncompatibleObjC)) 1494 return true; 1495 1496 // Conversion from a null pointer constant to any Objective-C pointer type. 1497 if (ToType->isObjCObjectPointerType() && 1498 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1499 ConvertedType = ToType; 1500 return true; 1501 } 1502 1503 // Blocks: Block pointers can be converted to void*. 1504 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1505 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1506 ConvertedType = ToType; 1507 return true; 1508 } 1509 // Blocks: A null pointer constant can be converted to a block 1510 // pointer type. 1511 if (ToType->isBlockPointerType() && 1512 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1513 ConvertedType = ToType; 1514 return true; 1515 } 1516 1517 // If the left-hand-side is nullptr_t, the right side can be a null 1518 // pointer constant. 1519 if (ToType->isNullPtrType() && 1520 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1521 ConvertedType = ToType; 1522 return true; 1523 } 1524 1525 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1526 if (!ToTypePtr) 1527 return false; 1528 1529 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1530 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1531 ConvertedType = ToType; 1532 return true; 1533 } 1534 1535 // Beyond this point, both types need to be pointers 1536 // , including objective-c pointers. 1537 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1538 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1539 ConvertedType = BuildSimilarlyQualifiedPointerType( 1540 FromType->getAs<ObjCObjectPointerType>(), 1541 ToPointeeType, 1542 ToType, Context); 1543 return true; 1544 } 1545 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1546 if (!FromTypePtr) 1547 return false; 1548 1549 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1550 1551 // If the unqualified pointee types are the same, this can't be a 1552 // pointer conversion, so don't do all of the work below. 1553 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 1554 return false; 1555 1556 // An rvalue of type "pointer to cv T," where T is an object type, 1557 // can be converted to an rvalue of type "pointer to cv void" (C++ 1558 // 4.10p2). 1559 if (FromPointeeType->isIncompleteOrObjectType() && 1560 ToPointeeType->isVoidType()) { 1561 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1562 ToPointeeType, 1563 ToType, Context); 1564 return true; 1565 } 1566 1567 // When we're overloading in C, we allow a special kind of pointer 1568 // conversion for compatible-but-not-identical pointee types. 1569 if (!getLangOptions().CPlusPlus && 1570 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1571 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1572 ToPointeeType, 1573 ToType, Context); 1574 return true; 1575 } 1576 1577 // C++ [conv.ptr]p3: 1578 // 1579 // An rvalue of type "pointer to cv D," where D is a class type, 1580 // can be converted to an rvalue of type "pointer to cv B," where 1581 // B is a base class (clause 10) of D. If B is an inaccessible 1582 // (clause 11) or ambiguous (10.2) base class of D, a program that 1583 // necessitates this conversion is ill-formed. The result of the 1584 // conversion is a pointer to the base class sub-object of the 1585 // derived class object. The null pointer value is converted to 1586 // the null pointer value of the destination type. 1587 // 1588 // Note that we do not check for ambiguity or inaccessibility 1589 // here. That is handled by CheckPointerConversion. 1590 if (getLangOptions().CPlusPlus && 1591 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1592 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1593 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1594 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1595 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1596 ToPointeeType, 1597 ToType, Context); 1598 return true; 1599 } 1600 1601 return false; 1602} 1603 1604/// isObjCPointerConversion - Determines whether this is an 1605/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1606/// with the same arguments and return values. 1607bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1608 QualType& ConvertedType, 1609 bool &IncompatibleObjC) { 1610 if (!getLangOptions().ObjC1) 1611 return false; 1612 1613 // First, we handle all conversions on ObjC object pointer types. 1614 const ObjCObjectPointerType* ToObjCPtr = 1615 ToType->getAs<ObjCObjectPointerType>(); 1616 const ObjCObjectPointerType *FromObjCPtr = 1617 FromType->getAs<ObjCObjectPointerType>(); 1618 1619 if (ToObjCPtr && FromObjCPtr) { 1620 // If the pointee types are the same (ignoring qualifications), 1621 // then this is not a pointer conversion. 1622 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 1623 FromObjCPtr->getPointeeType())) 1624 return false; 1625 1626 // Objective C++: We're able to convert between "id" or "Class" and a 1627 // pointer to any interface (in both directions). 1628 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1629 ConvertedType = ToType; 1630 return true; 1631 } 1632 // Conversions with Objective-C's id<...>. 1633 if ((FromObjCPtr->isObjCQualifiedIdType() || 1634 ToObjCPtr->isObjCQualifiedIdType()) && 1635 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1636 /*compare=*/false)) { 1637 ConvertedType = ToType; 1638 return true; 1639 } 1640 // Objective C++: We're able to convert from a pointer to an 1641 // interface to a pointer to a different interface. 1642 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1643 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1644 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1645 if (getLangOptions().CPlusPlus && LHS && RHS && 1646 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1647 FromObjCPtr->getPointeeType())) 1648 return false; 1649 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1650 ToObjCPtr->getPointeeType(), 1651 ToType, Context); 1652 return true; 1653 } 1654 1655 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1656 // Okay: this is some kind of implicit downcast of Objective-C 1657 // interfaces, which is permitted. However, we're going to 1658 // complain about it. 1659 IncompatibleObjC = true; 1660 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1661 ToObjCPtr->getPointeeType(), 1662 ToType, Context); 1663 return true; 1664 } 1665 } 1666 // Beyond this point, both types need to be C pointers or block pointers. 1667 QualType ToPointeeType; 1668 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1669 ToPointeeType = ToCPtr->getPointeeType(); 1670 else if (const BlockPointerType *ToBlockPtr = 1671 ToType->getAs<BlockPointerType>()) { 1672 // Objective C++: We're able to convert from a pointer to any object 1673 // to a block pointer type. 1674 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1675 ConvertedType = ToType; 1676 return true; 1677 } 1678 ToPointeeType = ToBlockPtr->getPointeeType(); 1679 } 1680 else if (FromType->getAs<BlockPointerType>() && 1681 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1682 // Objective C++: We're able to convert from a block pointer type to a 1683 // pointer to any object. 1684 ConvertedType = ToType; 1685 return true; 1686 } 1687 else 1688 return false; 1689 1690 QualType FromPointeeType; 1691 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1692 FromPointeeType = FromCPtr->getPointeeType(); 1693 else if (const BlockPointerType *FromBlockPtr = 1694 FromType->getAs<BlockPointerType>()) 1695 FromPointeeType = FromBlockPtr->getPointeeType(); 1696 else 1697 return false; 1698 1699 // If we have pointers to pointers, recursively check whether this 1700 // is an Objective-C conversion. 1701 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1702 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1703 IncompatibleObjC)) { 1704 // We always complain about this conversion. 1705 IncompatibleObjC = true; 1706 ConvertedType = Context.getPointerType(ConvertedType); 1707 return true; 1708 } 1709 // Allow conversion of pointee being objective-c pointer to another one; 1710 // as in I* to id. 1711 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1712 ToPointeeType->getAs<ObjCObjectPointerType>() && 1713 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1714 IncompatibleObjC)) { 1715 ConvertedType = Context.getPointerType(ConvertedType); 1716 return true; 1717 } 1718 1719 // If we have pointers to functions or blocks, check whether the only 1720 // differences in the argument and result types are in Objective-C 1721 // pointer conversions. If so, we permit the conversion (but 1722 // complain about it). 1723 const FunctionProtoType *FromFunctionType 1724 = FromPointeeType->getAs<FunctionProtoType>(); 1725 const FunctionProtoType *ToFunctionType 1726 = ToPointeeType->getAs<FunctionProtoType>(); 1727 if (FromFunctionType && ToFunctionType) { 1728 // If the function types are exactly the same, this isn't an 1729 // Objective-C pointer conversion. 1730 if (Context.getCanonicalType(FromPointeeType) 1731 == Context.getCanonicalType(ToPointeeType)) 1732 return false; 1733 1734 // Perform the quick checks that will tell us whether these 1735 // function types are obviously different. 1736 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1737 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1738 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1739 return false; 1740 1741 bool HasObjCConversion = false; 1742 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1743 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1744 // Okay, the types match exactly. Nothing to do. 1745 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1746 ToFunctionType->getResultType(), 1747 ConvertedType, IncompatibleObjC)) { 1748 // Okay, we have an Objective-C pointer conversion. 1749 HasObjCConversion = true; 1750 } else { 1751 // Function types are too different. Abort. 1752 return false; 1753 } 1754 1755 // Check argument types. 1756 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1757 ArgIdx != NumArgs; ++ArgIdx) { 1758 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1759 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1760 if (Context.getCanonicalType(FromArgType) 1761 == Context.getCanonicalType(ToArgType)) { 1762 // Okay, the types match exactly. Nothing to do. 1763 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1764 ConvertedType, IncompatibleObjC)) { 1765 // Okay, we have an Objective-C pointer conversion. 1766 HasObjCConversion = true; 1767 } else { 1768 // Argument types are too different. Abort. 1769 return false; 1770 } 1771 } 1772 1773 if (HasObjCConversion) { 1774 // We had an Objective-C conversion. Allow this pointer 1775 // conversion, but complain about it. 1776 ConvertedType = ToType; 1777 IncompatibleObjC = true; 1778 return true; 1779 } 1780 } 1781 1782 return false; 1783} 1784 1785/// FunctionArgTypesAreEqual - This routine checks two function proto types 1786/// for equlity of their argument types. Caller has already checked that 1787/// they have same number of arguments. This routine assumes that Objective-C 1788/// pointer types which only differ in their protocol qualifiers are equal. 1789bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType, 1790 const FunctionProtoType *NewType) { 1791 if (!getLangOptions().ObjC1) 1792 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 1793 NewType->arg_type_begin()); 1794 1795 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 1796 N = NewType->arg_type_begin(), 1797 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 1798 QualType ToType = (*O); 1799 QualType FromType = (*N); 1800 if (ToType != FromType) { 1801 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 1802 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 1803 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 1804 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 1805 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 1806 PTFr->getPointeeType()->isObjCQualifiedClassType())) 1807 continue; 1808 } 1809 else if (const ObjCObjectPointerType *PTTo = 1810 ToType->getAs<ObjCObjectPointerType>()) { 1811 if (const ObjCObjectPointerType *PTFr = 1812 FromType->getAs<ObjCObjectPointerType>()) 1813 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 1814 continue; 1815 } 1816 return false; 1817 } 1818 } 1819 return true; 1820} 1821 1822/// CheckPointerConversion - Check the pointer conversion from the 1823/// expression From to the type ToType. This routine checks for 1824/// ambiguous or inaccessible derived-to-base pointer 1825/// conversions for which IsPointerConversion has already returned 1826/// true. It returns true and produces a diagnostic if there was an 1827/// error, or returns false otherwise. 1828bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1829 CastKind &Kind, 1830 CXXCastPath& BasePath, 1831 bool IgnoreBaseAccess) { 1832 QualType FromType = From->getType(); 1833 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 1834 1835 Kind = CK_BitCast; 1836 1837 if (CXXBoolLiteralExpr* LitBool 1838 = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens())) 1839 if (!IsCStyleOrFunctionalCast && LitBool->getValue() == false) 1840 Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false) 1841 << ToType; 1842 1843 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1844 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1845 QualType FromPointeeType = FromPtrType->getPointeeType(), 1846 ToPointeeType = ToPtrType->getPointeeType(); 1847 1848 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1849 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 1850 // We must have a derived-to-base conversion. Check an 1851 // ambiguous or inaccessible conversion. 1852 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1853 From->getExprLoc(), 1854 From->getSourceRange(), &BasePath, 1855 IgnoreBaseAccess)) 1856 return true; 1857 1858 // The conversion was successful. 1859 Kind = CK_DerivedToBase; 1860 } 1861 } 1862 if (const ObjCObjectPointerType *FromPtrType = 1863 FromType->getAs<ObjCObjectPointerType>()) { 1864 if (const ObjCObjectPointerType *ToPtrType = 1865 ToType->getAs<ObjCObjectPointerType>()) { 1866 // Objective-C++ conversions are always okay. 1867 // FIXME: We should have a different class of conversions for the 1868 // Objective-C++ implicit conversions. 1869 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1870 return false; 1871 } 1872 } 1873 1874 // We shouldn't fall into this case unless it's valid for other 1875 // reasons. 1876 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 1877 Kind = CK_NullToPointer; 1878 1879 return false; 1880} 1881 1882/// IsMemberPointerConversion - Determines whether the conversion of the 1883/// expression From, which has the (possibly adjusted) type FromType, can be 1884/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1885/// If so, returns true and places the converted type (that might differ from 1886/// ToType in its cv-qualifiers at some level) into ConvertedType. 1887bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1888 QualType ToType, 1889 bool InOverloadResolution, 1890 QualType &ConvertedType) { 1891 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1892 if (!ToTypePtr) 1893 return false; 1894 1895 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1896 if (From->isNullPointerConstant(Context, 1897 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1898 : Expr::NPC_ValueDependentIsNull)) { 1899 ConvertedType = ToType; 1900 return true; 1901 } 1902 1903 // Otherwise, both types have to be member pointers. 1904 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1905 if (!FromTypePtr) 1906 return false; 1907 1908 // A pointer to member of B can be converted to a pointer to member of D, 1909 // where D is derived from B (C++ 4.11p2). 1910 QualType FromClass(FromTypePtr->getClass(), 0); 1911 QualType ToClass(ToTypePtr->getClass(), 0); 1912 1913 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 1914 !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) && 1915 IsDerivedFrom(ToClass, FromClass)) { 1916 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1917 ToClass.getTypePtr()); 1918 return true; 1919 } 1920 1921 return false; 1922} 1923 1924/// CheckMemberPointerConversion - Check the member pointer conversion from the 1925/// expression From to the type ToType. This routine checks for ambiguous or 1926/// virtual or inaccessible base-to-derived member pointer conversions 1927/// for which IsMemberPointerConversion has already returned true. It returns 1928/// true and produces a diagnostic if there was an error, or returns false 1929/// otherwise. 1930bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1931 CastKind &Kind, 1932 CXXCastPath &BasePath, 1933 bool IgnoreBaseAccess) { 1934 QualType FromType = From->getType(); 1935 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1936 if (!FromPtrType) { 1937 // This must be a null pointer to member pointer conversion 1938 assert(From->isNullPointerConstant(Context, 1939 Expr::NPC_ValueDependentIsNull) && 1940 "Expr must be null pointer constant!"); 1941 Kind = CK_NullToMemberPointer; 1942 return false; 1943 } 1944 1945 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1946 assert(ToPtrType && "No member pointer cast has a target type " 1947 "that is not a member pointer."); 1948 1949 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1950 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1951 1952 // FIXME: What about dependent types? 1953 assert(FromClass->isRecordType() && "Pointer into non-class."); 1954 assert(ToClass->isRecordType() && "Pointer into non-class."); 1955 1956 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1957 /*DetectVirtual=*/true); 1958 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1959 assert(DerivationOkay && 1960 "Should not have been called if derivation isn't OK."); 1961 (void)DerivationOkay; 1962 1963 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1964 getUnqualifiedType())) { 1965 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1966 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1967 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1968 return true; 1969 } 1970 1971 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1972 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1973 << FromClass << ToClass << QualType(VBase, 0) 1974 << From->getSourceRange(); 1975 return true; 1976 } 1977 1978 if (!IgnoreBaseAccess) 1979 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 1980 Paths.front(), 1981 diag::err_downcast_from_inaccessible_base); 1982 1983 // Must be a base to derived member conversion. 1984 BuildBasePathArray(Paths, BasePath); 1985 Kind = CK_BaseToDerivedMemberPointer; 1986 return false; 1987} 1988 1989/// IsQualificationConversion - Determines whether the conversion from 1990/// an rvalue of type FromType to ToType is a qualification conversion 1991/// (C++ 4.4). 1992bool 1993Sema::IsQualificationConversion(QualType FromType, QualType ToType, 1994 bool CStyle) { 1995 FromType = Context.getCanonicalType(FromType); 1996 ToType = Context.getCanonicalType(ToType); 1997 1998 // If FromType and ToType are the same type, this is not a 1999 // qualification conversion. 2000 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 2001 return false; 2002 2003 // (C++ 4.4p4): 2004 // A conversion can add cv-qualifiers at levels other than the first 2005 // in multi-level pointers, subject to the following rules: [...] 2006 bool PreviousToQualsIncludeConst = true; 2007 bool UnwrappedAnyPointer = false; 2008 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 2009 // Within each iteration of the loop, we check the qualifiers to 2010 // determine if this still looks like a qualification 2011 // conversion. Then, if all is well, we unwrap one more level of 2012 // pointers or pointers-to-members and do it all again 2013 // until there are no more pointers or pointers-to-members left to 2014 // unwrap. 2015 UnwrappedAnyPointer = true; 2016 2017 // -- for every j > 0, if const is in cv 1,j then const is in cv 2018 // 2,j, and similarly for volatile. 2019 if (!CStyle && !ToType.isAtLeastAsQualifiedAs(FromType)) 2020 return false; 2021 2022 // -- if the cv 1,j and cv 2,j are different, then const is in 2023 // every cv for 0 < k < j. 2024 if (!CStyle && FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 2025 && !PreviousToQualsIncludeConst) 2026 return false; 2027 2028 // Keep track of whether all prior cv-qualifiers in the "to" type 2029 // include const. 2030 PreviousToQualsIncludeConst 2031 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 2032 } 2033 2034 // We are left with FromType and ToType being the pointee types 2035 // after unwrapping the original FromType and ToType the same number 2036 // of types. If we unwrapped any pointers, and if FromType and 2037 // ToType have the same unqualified type (since we checked 2038 // qualifiers above), then this is a qualification conversion. 2039 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 2040} 2041 2042/// Determines whether there is a user-defined conversion sequence 2043/// (C++ [over.ics.user]) that converts expression From to the type 2044/// ToType. If such a conversion exists, User will contain the 2045/// user-defined conversion sequence that performs such a conversion 2046/// and this routine will return true. Otherwise, this routine returns 2047/// false and User is unspecified. 2048/// 2049/// \param AllowExplicit true if the conversion should consider C++0x 2050/// "explicit" conversion functions as well as non-explicit conversion 2051/// functions (C++0x [class.conv.fct]p2). 2052static OverloadingResult 2053IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 2054 UserDefinedConversionSequence& User, 2055 OverloadCandidateSet& CandidateSet, 2056 bool AllowExplicit) { 2057 // Whether we will only visit constructors. 2058 bool ConstructorsOnly = false; 2059 2060 // If the type we are conversion to is a class type, enumerate its 2061 // constructors. 2062 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 2063 // C++ [over.match.ctor]p1: 2064 // When objects of class type are direct-initialized (8.5), or 2065 // copy-initialized from an expression of the same or a 2066 // derived class type (8.5), overload resolution selects the 2067 // constructor. [...] For copy-initialization, the candidate 2068 // functions are all the converting constructors (12.3.1) of 2069 // that class. The argument list is the expression-list within 2070 // the parentheses of the initializer. 2071 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 2072 (From->getType()->getAs<RecordType>() && 2073 S.IsDerivedFrom(From->getType(), ToType))) 2074 ConstructorsOnly = true; 2075 2076 if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) { 2077 // We're not going to find any constructors. 2078 } else if (CXXRecordDecl *ToRecordDecl 2079 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 2080 DeclContext::lookup_iterator Con, ConEnd; 2081 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); 2082 Con != ConEnd; ++Con) { 2083 NamedDecl *D = *Con; 2084 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2085 2086 // Find the constructor (which may be a template). 2087 CXXConstructorDecl *Constructor = 0; 2088 FunctionTemplateDecl *ConstructorTmpl 2089 = dyn_cast<FunctionTemplateDecl>(D); 2090 if (ConstructorTmpl) 2091 Constructor 2092 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 2093 else 2094 Constructor = cast<CXXConstructorDecl>(D); 2095 2096 if (!Constructor->isInvalidDecl() && 2097 Constructor->isConvertingConstructor(AllowExplicit)) { 2098 if (ConstructorTmpl) 2099 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2100 /*ExplicitArgs*/ 0, 2101 &From, 1, CandidateSet, 2102 /*SuppressUserConversions=*/ 2103 !ConstructorsOnly); 2104 else 2105 // Allow one user-defined conversion when user specifies a 2106 // From->ToType conversion via an static cast (c-style, etc). 2107 S.AddOverloadCandidate(Constructor, FoundDecl, 2108 &From, 1, CandidateSet, 2109 /*SuppressUserConversions=*/ 2110 !ConstructorsOnly); 2111 } 2112 } 2113 } 2114 } 2115 2116 // Enumerate conversion functions, if we're allowed to. 2117 if (ConstructorsOnly) { 2118 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 2119 S.PDiag(0) << From->getSourceRange())) { 2120 // No conversion functions from incomplete types. 2121 } else if (const RecordType *FromRecordType 2122 = From->getType()->getAs<RecordType>()) { 2123 if (CXXRecordDecl *FromRecordDecl 2124 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 2125 // Add all of the conversion functions as candidates. 2126 const UnresolvedSetImpl *Conversions 2127 = FromRecordDecl->getVisibleConversionFunctions(); 2128 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2129 E = Conversions->end(); I != E; ++I) { 2130 DeclAccessPair FoundDecl = I.getPair(); 2131 NamedDecl *D = FoundDecl.getDecl(); 2132 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 2133 if (isa<UsingShadowDecl>(D)) 2134 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2135 2136 CXXConversionDecl *Conv; 2137 FunctionTemplateDecl *ConvTemplate; 2138 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 2139 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2140 else 2141 Conv = cast<CXXConversionDecl>(D); 2142 2143 if (AllowExplicit || !Conv->isExplicit()) { 2144 if (ConvTemplate) 2145 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 2146 ActingContext, From, ToType, 2147 CandidateSet); 2148 else 2149 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 2150 From, ToType, CandidateSet); 2151 } 2152 } 2153 } 2154 } 2155 2156 OverloadCandidateSet::iterator Best; 2157 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2158 case OR_Success: 2159 // Record the standard conversion we used and the conversion function. 2160 if (CXXConstructorDecl *Constructor 2161 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 2162 // C++ [over.ics.user]p1: 2163 // If the user-defined conversion is specified by a 2164 // constructor (12.3.1), the initial standard conversion 2165 // sequence converts the source type to the type required by 2166 // the argument of the constructor. 2167 // 2168 QualType ThisType = Constructor->getThisType(S.Context); 2169 if (Best->Conversions[0].isEllipsis()) 2170 User.EllipsisConversion = true; 2171 else { 2172 User.Before = Best->Conversions[0].Standard; 2173 User.EllipsisConversion = false; 2174 } 2175 User.ConversionFunction = Constructor; 2176 User.FoundConversionFunction = Best->FoundDecl.getDecl(); 2177 User.After.setAsIdentityConversion(); 2178 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2179 User.After.setAllToTypes(ToType); 2180 return OR_Success; 2181 } else if (CXXConversionDecl *Conversion 2182 = dyn_cast<CXXConversionDecl>(Best->Function)) { 2183 // C++ [over.ics.user]p1: 2184 // 2185 // [...] If the user-defined conversion is specified by a 2186 // conversion function (12.3.2), the initial standard 2187 // conversion sequence converts the source type to the 2188 // implicit object parameter of the conversion function. 2189 User.Before = Best->Conversions[0].Standard; 2190 User.ConversionFunction = Conversion; 2191 User.FoundConversionFunction = Best->FoundDecl.getDecl(); 2192 User.EllipsisConversion = false; 2193 2194 // C++ [over.ics.user]p2: 2195 // The second standard conversion sequence converts the 2196 // result of the user-defined conversion to the target type 2197 // for the sequence. Since an implicit conversion sequence 2198 // is an initialization, the special rules for 2199 // initialization by user-defined conversion apply when 2200 // selecting the best user-defined conversion for a 2201 // user-defined conversion sequence (see 13.3.3 and 2202 // 13.3.3.1). 2203 User.After = Best->FinalConversion; 2204 return OR_Success; 2205 } else { 2206 llvm_unreachable("Not a constructor or conversion function?"); 2207 return OR_No_Viable_Function; 2208 } 2209 2210 case OR_No_Viable_Function: 2211 return OR_No_Viable_Function; 2212 case OR_Deleted: 2213 // No conversion here! We're done. 2214 return OR_Deleted; 2215 2216 case OR_Ambiguous: 2217 return OR_Ambiguous; 2218 } 2219 2220 return OR_No_Viable_Function; 2221} 2222 2223bool 2224Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2225 ImplicitConversionSequence ICS; 2226 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2227 OverloadingResult OvResult = 2228 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 2229 CandidateSet, false); 2230 if (OvResult == OR_Ambiguous) 2231 Diag(From->getSourceRange().getBegin(), 2232 diag::err_typecheck_ambiguous_condition) 2233 << From->getType() << ToType << From->getSourceRange(); 2234 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2235 Diag(From->getSourceRange().getBegin(), 2236 diag::err_typecheck_nonviable_condition) 2237 << From->getType() << ToType << From->getSourceRange(); 2238 else 2239 return false; 2240 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); 2241 return true; 2242} 2243 2244/// CompareImplicitConversionSequences - Compare two implicit 2245/// conversion sequences to determine whether one is better than the 2246/// other or if they are indistinguishable (C++ 13.3.3.2). 2247static ImplicitConversionSequence::CompareKind 2248CompareImplicitConversionSequences(Sema &S, 2249 const ImplicitConversionSequence& ICS1, 2250 const ImplicitConversionSequence& ICS2) 2251{ 2252 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2253 // conversion sequences (as defined in 13.3.3.1) 2254 // -- a standard conversion sequence (13.3.3.1.1) is a better 2255 // conversion sequence than a user-defined conversion sequence or 2256 // an ellipsis conversion sequence, and 2257 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2258 // conversion sequence than an ellipsis conversion sequence 2259 // (13.3.3.1.3). 2260 // 2261 // C++0x [over.best.ics]p10: 2262 // For the purpose of ranking implicit conversion sequences as 2263 // described in 13.3.3.2, the ambiguous conversion sequence is 2264 // treated as a user-defined sequence that is indistinguishable 2265 // from any other user-defined conversion sequence. 2266 if (ICS1.getKindRank() < ICS2.getKindRank()) 2267 return ImplicitConversionSequence::Better; 2268 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2269 return ImplicitConversionSequence::Worse; 2270 2271 // The following checks require both conversion sequences to be of 2272 // the same kind. 2273 if (ICS1.getKind() != ICS2.getKind()) 2274 return ImplicitConversionSequence::Indistinguishable; 2275 2276 // Two implicit conversion sequences of the same form are 2277 // indistinguishable conversion sequences unless one of the 2278 // following rules apply: (C++ 13.3.3.2p3): 2279 if (ICS1.isStandard()) 2280 return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard); 2281 else if (ICS1.isUserDefined()) { 2282 // User-defined conversion sequence U1 is a better conversion 2283 // sequence than another user-defined conversion sequence U2 if 2284 // they contain the same user-defined conversion function or 2285 // constructor and if the second standard conversion sequence of 2286 // U1 is better than the second standard conversion sequence of 2287 // U2 (C++ 13.3.3.2p3). 2288 if (ICS1.UserDefined.ConversionFunction == 2289 ICS2.UserDefined.ConversionFunction) 2290 return CompareStandardConversionSequences(S, 2291 ICS1.UserDefined.After, 2292 ICS2.UserDefined.After); 2293 } 2294 2295 return ImplicitConversionSequence::Indistinguishable; 2296} 2297 2298static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2299 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2300 Qualifiers Quals; 2301 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2302 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2303 } 2304 2305 return Context.hasSameUnqualifiedType(T1, T2); 2306} 2307 2308// Per 13.3.3.2p3, compare the given standard conversion sequences to 2309// determine if one is a proper subset of the other. 2310static ImplicitConversionSequence::CompareKind 2311compareStandardConversionSubsets(ASTContext &Context, 2312 const StandardConversionSequence& SCS1, 2313 const StandardConversionSequence& SCS2) { 2314 ImplicitConversionSequence::CompareKind Result 2315 = ImplicitConversionSequence::Indistinguishable; 2316 2317 // the identity conversion sequence is considered to be a subsequence of 2318 // any non-identity conversion sequence 2319 if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) { 2320 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2321 return ImplicitConversionSequence::Better; 2322 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2323 return ImplicitConversionSequence::Worse; 2324 } 2325 2326 if (SCS1.Second != SCS2.Second) { 2327 if (SCS1.Second == ICK_Identity) 2328 Result = ImplicitConversionSequence::Better; 2329 else if (SCS2.Second == ICK_Identity) 2330 Result = ImplicitConversionSequence::Worse; 2331 else 2332 return ImplicitConversionSequence::Indistinguishable; 2333 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2334 return ImplicitConversionSequence::Indistinguishable; 2335 2336 if (SCS1.Third == SCS2.Third) { 2337 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2338 : ImplicitConversionSequence::Indistinguishable; 2339 } 2340 2341 if (SCS1.Third == ICK_Identity) 2342 return Result == ImplicitConversionSequence::Worse 2343 ? ImplicitConversionSequence::Indistinguishable 2344 : ImplicitConversionSequence::Better; 2345 2346 if (SCS2.Third == ICK_Identity) 2347 return Result == ImplicitConversionSequence::Better 2348 ? ImplicitConversionSequence::Indistinguishable 2349 : ImplicitConversionSequence::Worse; 2350 2351 return ImplicitConversionSequence::Indistinguishable; 2352} 2353 2354/// \brief Determine whether one of the given reference bindings is better 2355/// than the other based on what kind of bindings they are. 2356static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 2357 const StandardConversionSequence &SCS2) { 2358 // C++0x [over.ics.rank]p3b4: 2359 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2360 // implicit object parameter of a non-static member function declared 2361 // without a ref-qualifier, and *either* S1 binds an rvalue reference 2362 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 2363 // lvalue reference to a function lvalue and S2 binds an rvalue 2364 // reference*. 2365 // 2366 // FIXME: Rvalue references. We're going rogue with the above edits, 2367 // because the semantics in the current C++0x working paper (N3225 at the 2368 // time of this writing) break the standard definition of std::forward 2369 // and std::reference_wrapper when dealing with references to functions. 2370 // Proposed wording changes submitted to CWG for consideration. 2371 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 2372 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 2373 return false; 2374 2375 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 2376 SCS2.IsLvalueReference) || 2377 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 2378 !SCS2.IsLvalueReference); 2379} 2380 2381/// CompareStandardConversionSequences - Compare two standard 2382/// conversion sequences to determine whether one is better than the 2383/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2384static ImplicitConversionSequence::CompareKind 2385CompareStandardConversionSequences(Sema &S, 2386 const StandardConversionSequence& SCS1, 2387 const StandardConversionSequence& SCS2) 2388{ 2389 // Standard conversion sequence S1 is a better conversion sequence 2390 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2391 2392 // -- S1 is a proper subsequence of S2 (comparing the conversion 2393 // sequences in the canonical form defined by 13.3.3.1.1, 2394 // excluding any Lvalue Transformation; the identity conversion 2395 // sequence is considered to be a subsequence of any 2396 // non-identity conversion sequence) or, if not that, 2397 if (ImplicitConversionSequence::CompareKind CK 2398 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 2399 return CK; 2400 2401 // -- the rank of S1 is better than the rank of S2 (by the rules 2402 // defined below), or, if not that, 2403 ImplicitConversionRank Rank1 = SCS1.getRank(); 2404 ImplicitConversionRank Rank2 = SCS2.getRank(); 2405 if (Rank1 < Rank2) 2406 return ImplicitConversionSequence::Better; 2407 else if (Rank2 < Rank1) 2408 return ImplicitConversionSequence::Worse; 2409 2410 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2411 // are indistinguishable unless one of the following rules 2412 // applies: 2413 2414 // A conversion that is not a conversion of a pointer, or 2415 // pointer to member, to bool is better than another conversion 2416 // that is such a conversion. 2417 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2418 return SCS2.isPointerConversionToBool() 2419 ? ImplicitConversionSequence::Better 2420 : ImplicitConversionSequence::Worse; 2421 2422 // C++ [over.ics.rank]p4b2: 2423 // 2424 // If class B is derived directly or indirectly from class A, 2425 // conversion of B* to A* is better than conversion of B* to 2426 // void*, and conversion of A* to void* is better than conversion 2427 // of B* to void*. 2428 bool SCS1ConvertsToVoid 2429 = SCS1.isPointerConversionToVoidPointer(S.Context); 2430 bool SCS2ConvertsToVoid 2431 = SCS2.isPointerConversionToVoidPointer(S.Context); 2432 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2433 // Exactly one of the conversion sequences is a conversion to 2434 // a void pointer; it's the worse conversion. 2435 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2436 : ImplicitConversionSequence::Worse; 2437 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2438 // Neither conversion sequence converts to a void pointer; compare 2439 // their derived-to-base conversions. 2440 if (ImplicitConversionSequence::CompareKind DerivedCK 2441 = CompareDerivedToBaseConversions(S, SCS1, SCS2)) 2442 return DerivedCK; 2443 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 2444 // Both conversion sequences are conversions to void 2445 // pointers. Compare the source types to determine if there's an 2446 // inheritance relationship in their sources. 2447 QualType FromType1 = SCS1.getFromType(); 2448 QualType FromType2 = SCS2.getFromType(); 2449 2450 // Adjust the types we're converting from via the array-to-pointer 2451 // conversion, if we need to. 2452 if (SCS1.First == ICK_Array_To_Pointer) 2453 FromType1 = S.Context.getArrayDecayedType(FromType1); 2454 if (SCS2.First == ICK_Array_To_Pointer) 2455 FromType2 = S.Context.getArrayDecayedType(FromType2); 2456 2457 QualType FromPointee1 2458 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2459 QualType FromPointee2 2460 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2461 2462 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2463 return ImplicitConversionSequence::Better; 2464 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2465 return ImplicitConversionSequence::Worse; 2466 2467 // Objective-C++: If one interface is more specific than the 2468 // other, it is the better one. 2469 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2470 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2471 if (FromIface1 && FromIface1) { 2472 if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2473 return ImplicitConversionSequence::Better; 2474 else if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2475 return ImplicitConversionSequence::Worse; 2476 } 2477 } 2478 2479 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2480 // bullet 3). 2481 if (ImplicitConversionSequence::CompareKind QualCK 2482 = CompareQualificationConversions(S, SCS1, SCS2)) 2483 return QualCK; 2484 2485 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2486 // Check for a better reference binding based on the kind of bindings. 2487 if (isBetterReferenceBindingKind(SCS1, SCS2)) 2488 return ImplicitConversionSequence::Better; 2489 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 2490 return ImplicitConversionSequence::Worse; 2491 2492 // C++ [over.ics.rank]p3b4: 2493 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2494 // which the references refer are the same type except for 2495 // top-level cv-qualifiers, and the type to which the reference 2496 // initialized by S2 refers is more cv-qualified than the type 2497 // to which the reference initialized by S1 refers. 2498 QualType T1 = SCS1.getToType(2); 2499 QualType T2 = SCS2.getToType(2); 2500 T1 = S.Context.getCanonicalType(T1); 2501 T2 = S.Context.getCanonicalType(T2); 2502 Qualifiers T1Quals, T2Quals; 2503 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2504 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2505 if (UnqualT1 == UnqualT2) { 2506 // If the type is an array type, promote the element qualifiers to the 2507 // type for comparison. 2508 if (isa<ArrayType>(T1) && T1Quals) 2509 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2510 if (isa<ArrayType>(T2) && T2Quals) 2511 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2512 if (T2.isMoreQualifiedThan(T1)) 2513 return ImplicitConversionSequence::Better; 2514 else if (T1.isMoreQualifiedThan(T2)) 2515 return ImplicitConversionSequence::Worse; 2516 } 2517 } 2518 2519 return ImplicitConversionSequence::Indistinguishable; 2520} 2521 2522/// CompareQualificationConversions - Compares two standard conversion 2523/// sequences to determine whether they can be ranked based on their 2524/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2525ImplicitConversionSequence::CompareKind 2526CompareQualificationConversions(Sema &S, 2527 const StandardConversionSequence& SCS1, 2528 const StandardConversionSequence& SCS2) { 2529 // C++ 13.3.3.2p3: 2530 // -- S1 and S2 differ only in their qualification conversion and 2531 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2532 // cv-qualification signature of type T1 is a proper subset of 2533 // the cv-qualification signature of type T2, and S1 is not the 2534 // deprecated string literal array-to-pointer conversion (4.2). 2535 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2536 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2537 return ImplicitConversionSequence::Indistinguishable; 2538 2539 // FIXME: the example in the standard doesn't use a qualification 2540 // conversion (!) 2541 QualType T1 = SCS1.getToType(2); 2542 QualType T2 = SCS2.getToType(2); 2543 T1 = S.Context.getCanonicalType(T1); 2544 T2 = S.Context.getCanonicalType(T2); 2545 Qualifiers T1Quals, T2Quals; 2546 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2547 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2548 2549 // If the types are the same, we won't learn anything by unwrapped 2550 // them. 2551 if (UnqualT1 == UnqualT2) 2552 return ImplicitConversionSequence::Indistinguishable; 2553 2554 // If the type is an array type, promote the element qualifiers to the type 2555 // for comparison. 2556 if (isa<ArrayType>(T1) && T1Quals) 2557 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2558 if (isa<ArrayType>(T2) && T2Quals) 2559 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2560 2561 ImplicitConversionSequence::CompareKind Result 2562 = ImplicitConversionSequence::Indistinguishable; 2563 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 2564 // Within each iteration of the loop, we check the qualifiers to 2565 // determine if this still looks like a qualification 2566 // conversion. Then, if all is well, we unwrap one more level of 2567 // pointers or pointers-to-members and do it all again 2568 // until there are no more pointers or pointers-to-members left 2569 // to unwrap. This essentially mimics what 2570 // IsQualificationConversion does, but here we're checking for a 2571 // strict subset of qualifiers. 2572 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2573 // The qualifiers are the same, so this doesn't tell us anything 2574 // about how the sequences rank. 2575 ; 2576 else if (T2.isMoreQualifiedThan(T1)) { 2577 // T1 has fewer qualifiers, so it could be the better sequence. 2578 if (Result == ImplicitConversionSequence::Worse) 2579 // Neither has qualifiers that are a subset of the other's 2580 // qualifiers. 2581 return ImplicitConversionSequence::Indistinguishable; 2582 2583 Result = ImplicitConversionSequence::Better; 2584 } else if (T1.isMoreQualifiedThan(T2)) { 2585 // T2 has fewer qualifiers, so it could be the better sequence. 2586 if (Result == ImplicitConversionSequence::Better) 2587 // Neither has qualifiers that are a subset of the other's 2588 // qualifiers. 2589 return ImplicitConversionSequence::Indistinguishable; 2590 2591 Result = ImplicitConversionSequence::Worse; 2592 } else { 2593 // Qualifiers are disjoint. 2594 return ImplicitConversionSequence::Indistinguishable; 2595 } 2596 2597 // If the types after this point are equivalent, we're done. 2598 if (S.Context.hasSameUnqualifiedType(T1, T2)) 2599 break; 2600 } 2601 2602 // Check that the winning standard conversion sequence isn't using 2603 // the deprecated string literal array to pointer conversion. 2604 switch (Result) { 2605 case ImplicitConversionSequence::Better: 2606 if (SCS1.DeprecatedStringLiteralToCharPtr) 2607 Result = ImplicitConversionSequence::Indistinguishable; 2608 break; 2609 2610 case ImplicitConversionSequence::Indistinguishable: 2611 break; 2612 2613 case ImplicitConversionSequence::Worse: 2614 if (SCS2.DeprecatedStringLiteralToCharPtr) 2615 Result = ImplicitConversionSequence::Indistinguishable; 2616 break; 2617 } 2618 2619 return Result; 2620} 2621 2622/// CompareDerivedToBaseConversions - Compares two standard conversion 2623/// sequences to determine whether they can be ranked based on their 2624/// various kinds of derived-to-base conversions (C++ 2625/// [over.ics.rank]p4b3). As part of these checks, we also look at 2626/// conversions between Objective-C interface types. 2627ImplicitConversionSequence::CompareKind 2628CompareDerivedToBaseConversions(Sema &S, 2629 const StandardConversionSequence& SCS1, 2630 const StandardConversionSequence& SCS2) { 2631 QualType FromType1 = SCS1.getFromType(); 2632 QualType ToType1 = SCS1.getToType(1); 2633 QualType FromType2 = SCS2.getFromType(); 2634 QualType ToType2 = SCS2.getToType(1); 2635 2636 // Adjust the types we're converting from via the array-to-pointer 2637 // conversion, if we need to. 2638 if (SCS1.First == ICK_Array_To_Pointer) 2639 FromType1 = S.Context.getArrayDecayedType(FromType1); 2640 if (SCS2.First == ICK_Array_To_Pointer) 2641 FromType2 = S.Context.getArrayDecayedType(FromType2); 2642 2643 // Canonicalize all of the types. 2644 FromType1 = S.Context.getCanonicalType(FromType1); 2645 ToType1 = S.Context.getCanonicalType(ToType1); 2646 FromType2 = S.Context.getCanonicalType(FromType2); 2647 ToType2 = S.Context.getCanonicalType(ToType2); 2648 2649 // C++ [over.ics.rank]p4b3: 2650 // 2651 // If class B is derived directly or indirectly from class A and 2652 // class C is derived directly or indirectly from B, 2653 // 2654 // For Objective-C, we let A, B, and C also be Objective-C 2655 // interfaces. 2656 2657 // Compare based on pointer conversions. 2658 if (SCS1.Second == ICK_Pointer_Conversion && 2659 SCS2.Second == ICK_Pointer_Conversion && 2660 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2661 FromType1->isPointerType() && FromType2->isPointerType() && 2662 ToType1->isPointerType() && ToType2->isPointerType()) { 2663 QualType FromPointee1 2664 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2665 QualType ToPointee1 2666 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2667 QualType FromPointee2 2668 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2669 QualType ToPointee2 2670 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2671 2672 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2673 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2674 const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>(); 2675 const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>(); 2676 2677 // -- conversion of C* to B* is better than conversion of C* to A*, 2678 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2679 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 2680 return ImplicitConversionSequence::Better; 2681 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 2682 return ImplicitConversionSequence::Worse; 2683 2684 if (ToIface1 && ToIface2) { 2685 if (S.Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 2686 return ImplicitConversionSequence::Better; 2687 else if (S.Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 2688 return ImplicitConversionSequence::Worse; 2689 } 2690 } 2691 2692 // -- conversion of B* to A* is better than conversion of C* to A*, 2693 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2694 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2695 return ImplicitConversionSequence::Better; 2696 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2697 return ImplicitConversionSequence::Worse; 2698 2699 if (FromIface1 && FromIface2) { 2700 if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2701 return ImplicitConversionSequence::Better; 2702 else if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2703 return ImplicitConversionSequence::Worse; 2704 } 2705 } 2706 } 2707 2708 // Ranking of member-pointer types. 2709 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2710 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2711 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2712 const MemberPointerType * FromMemPointer1 = 2713 FromType1->getAs<MemberPointerType>(); 2714 const MemberPointerType * ToMemPointer1 = 2715 ToType1->getAs<MemberPointerType>(); 2716 const MemberPointerType * FromMemPointer2 = 2717 FromType2->getAs<MemberPointerType>(); 2718 const MemberPointerType * ToMemPointer2 = 2719 ToType2->getAs<MemberPointerType>(); 2720 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2721 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2722 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2723 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2724 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2725 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2726 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2727 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2728 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2729 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2730 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 2731 return ImplicitConversionSequence::Worse; 2732 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 2733 return ImplicitConversionSequence::Better; 2734 } 2735 // conversion of B::* to C::* is better than conversion of A::* to C::* 2736 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2737 if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2738 return ImplicitConversionSequence::Better; 2739 else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2740 return ImplicitConversionSequence::Worse; 2741 } 2742 } 2743 2744 if (SCS1.Second == ICK_Derived_To_Base) { 2745 // -- conversion of C to B is better than conversion of C to A, 2746 // -- binding of an expression of type C to a reference of type 2747 // B& is better than binding an expression of type C to a 2748 // reference of type A&, 2749 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 2750 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2751 if (S.IsDerivedFrom(ToType1, ToType2)) 2752 return ImplicitConversionSequence::Better; 2753 else if (S.IsDerivedFrom(ToType2, ToType1)) 2754 return ImplicitConversionSequence::Worse; 2755 } 2756 2757 // -- conversion of B to A is better than conversion of C to A. 2758 // -- binding of an expression of type B to a reference of type 2759 // A& is better than binding an expression of type C to a 2760 // reference of type A&, 2761 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 2762 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2763 if (S.IsDerivedFrom(FromType2, FromType1)) 2764 return ImplicitConversionSequence::Better; 2765 else if (S.IsDerivedFrom(FromType1, FromType2)) 2766 return ImplicitConversionSequence::Worse; 2767 } 2768 } 2769 2770 return ImplicitConversionSequence::Indistinguishable; 2771} 2772 2773/// CompareReferenceRelationship - Compare the two types T1 and T2 to 2774/// determine whether they are reference-related, 2775/// reference-compatible, reference-compatible with added 2776/// qualification, or incompatible, for use in C++ initialization by 2777/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 2778/// type, and the first type (T1) is the pointee type of the reference 2779/// type being initialized. 2780Sema::ReferenceCompareResult 2781Sema::CompareReferenceRelationship(SourceLocation Loc, 2782 QualType OrigT1, QualType OrigT2, 2783 bool &DerivedToBase, 2784 bool &ObjCConversion) { 2785 assert(!OrigT1->isReferenceType() && 2786 "T1 must be the pointee type of the reference type"); 2787 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 2788 2789 QualType T1 = Context.getCanonicalType(OrigT1); 2790 QualType T2 = Context.getCanonicalType(OrigT2); 2791 Qualifiers T1Quals, T2Quals; 2792 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2793 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2794 2795 // C++ [dcl.init.ref]p4: 2796 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 2797 // reference-related to "cv2 T2" if T1 is the same type as T2, or 2798 // T1 is a base class of T2. 2799 DerivedToBase = false; 2800 ObjCConversion = false; 2801 if (UnqualT1 == UnqualT2) { 2802 // Nothing to do. 2803 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 2804 IsDerivedFrom(UnqualT2, UnqualT1)) 2805 DerivedToBase = true; 2806 else if (UnqualT1->isObjCObjectOrInterfaceType() && 2807 UnqualT2->isObjCObjectOrInterfaceType() && 2808 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 2809 ObjCConversion = true; 2810 else 2811 return Ref_Incompatible; 2812 2813 // At this point, we know that T1 and T2 are reference-related (at 2814 // least). 2815 2816 // If the type is an array type, promote the element qualifiers to the type 2817 // for comparison. 2818 if (isa<ArrayType>(T1) && T1Quals) 2819 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2820 if (isa<ArrayType>(T2) && T2Quals) 2821 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2822 2823 // C++ [dcl.init.ref]p4: 2824 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 2825 // reference-related to T2 and cv1 is the same cv-qualification 2826 // as, or greater cv-qualification than, cv2. For purposes of 2827 // overload resolution, cases for which cv1 is greater 2828 // cv-qualification than cv2 are identified as 2829 // reference-compatible with added qualification (see 13.3.3.2). 2830 if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) 2831 return Ref_Compatible; 2832 else if (T1.isMoreQualifiedThan(T2)) 2833 return Ref_Compatible_With_Added_Qualification; 2834 else 2835 return Ref_Related; 2836} 2837 2838/// \brief Look for a user-defined conversion to an value reference-compatible 2839/// with DeclType. Return true if something definite is found. 2840static bool 2841FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 2842 QualType DeclType, SourceLocation DeclLoc, 2843 Expr *Init, QualType T2, bool AllowRvalues, 2844 bool AllowExplicit) { 2845 assert(T2->isRecordType() && "Can only find conversions of record types."); 2846 CXXRecordDecl *T2RecordDecl 2847 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 2848 2849 OverloadCandidateSet CandidateSet(DeclLoc); 2850 const UnresolvedSetImpl *Conversions 2851 = T2RecordDecl->getVisibleConversionFunctions(); 2852 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2853 E = Conversions->end(); I != E; ++I) { 2854 NamedDecl *D = *I; 2855 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 2856 if (isa<UsingShadowDecl>(D)) 2857 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2858 2859 FunctionTemplateDecl *ConvTemplate 2860 = dyn_cast<FunctionTemplateDecl>(D); 2861 CXXConversionDecl *Conv; 2862 if (ConvTemplate) 2863 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2864 else 2865 Conv = cast<CXXConversionDecl>(D); 2866 2867 // If this is an explicit conversion, and we're not allowed to consider 2868 // explicit conversions, skip it. 2869 if (!AllowExplicit && Conv->isExplicit()) 2870 continue; 2871 2872 if (AllowRvalues) { 2873 bool DerivedToBase = false; 2874 bool ObjCConversion = false; 2875 if (!ConvTemplate && 2876 S.CompareReferenceRelationship( 2877 DeclLoc, 2878 Conv->getConversionType().getNonReferenceType() 2879 .getUnqualifiedType(), 2880 DeclType.getNonReferenceType().getUnqualifiedType(), 2881 DerivedToBase, ObjCConversion) == 2882 Sema::Ref_Incompatible) 2883 continue; 2884 } else { 2885 // If the conversion function doesn't return a reference type, 2886 // it can't be considered for this conversion. An rvalue reference 2887 // is only acceptable if its referencee is a function type. 2888 2889 const ReferenceType *RefType = 2890 Conv->getConversionType()->getAs<ReferenceType>(); 2891 if (!RefType || 2892 (!RefType->isLValueReferenceType() && 2893 !RefType->getPointeeType()->isFunctionType())) 2894 continue; 2895 } 2896 2897 if (ConvTemplate) 2898 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 2899 Init, DeclType, CandidateSet); 2900 else 2901 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 2902 DeclType, CandidateSet); 2903 } 2904 2905 OverloadCandidateSet::iterator Best; 2906 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 2907 case OR_Success: 2908 // C++ [over.ics.ref]p1: 2909 // 2910 // [...] If the parameter binds directly to the result of 2911 // applying a conversion function to the argument 2912 // expression, the implicit conversion sequence is a 2913 // user-defined conversion sequence (13.3.3.1.2), with the 2914 // second standard conversion sequence either an identity 2915 // conversion or, if the conversion function returns an 2916 // entity of a type that is a derived class of the parameter 2917 // type, a derived-to-base Conversion. 2918 if (!Best->FinalConversion.DirectBinding) 2919 return false; 2920 2921 ICS.setUserDefined(); 2922 ICS.UserDefined.Before = Best->Conversions[0].Standard; 2923 ICS.UserDefined.After = Best->FinalConversion; 2924 ICS.UserDefined.ConversionFunction = Best->Function; 2925 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl(); 2926 ICS.UserDefined.EllipsisConversion = false; 2927 assert(ICS.UserDefined.After.ReferenceBinding && 2928 ICS.UserDefined.After.DirectBinding && 2929 "Expected a direct reference binding!"); 2930 return true; 2931 2932 case OR_Ambiguous: 2933 ICS.setAmbiguous(); 2934 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 2935 Cand != CandidateSet.end(); ++Cand) 2936 if (Cand->Viable) 2937 ICS.Ambiguous.addConversion(Cand->Function); 2938 return true; 2939 2940 case OR_No_Viable_Function: 2941 case OR_Deleted: 2942 // There was no suitable conversion, or we found a deleted 2943 // conversion; continue with other checks. 2944 return false; 2945 } 2946 2947 return false; 2948} 2949 2950/// \brief Compute an implicit conversion sequence for reference 2951/// initialization. 2952static ImplicitConversionSequence 2953TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 2954 SourceLocation DeclLoc, 2955 bool SuppressUserConversions, 2956 bool AllowExplicit) { 2957 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 2958 2959 // Most paths end in a failed conversion. 2960 ImplicitConversionSequence ICS; 2961 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 2962 2963 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 2964 QualType T2 = Init->getType(); 2965 2966 // If the initializer is the address of an overloaded function, try 2967 // to resolve the overloaded function. If all goes well, T2 is the 2968 // type of the resulting function. 2969 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 2970 DeclAccessPair Found; 2971 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 2972 false, Found)) 2973 T2 = Fn->getType(); 2974 } 2975 2976 // Compute some basic properties of the types and the initializer. 2977 bool isRValRef = DeclType->isRValueReferenceType(); 2978 bool DerivedToBase = false; 2979 bool ObjCConversion = false; 2980 Expr::Classification InitCategory = Init->Classify(S.Context); 2981 Sema::ReferenceCompareResult RefRelationship 2982 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 2983 ObjCConversion); 2984 2985 2986 // C++0x [dcl.init.ref]p5: 2987 // A reference to type "cv1 T1" is initialized by an expression 2988 // of type "cv2 T2" as follows: 2989 2990 // -- If reference is an lvalue reference and the initializer expression 2991 if (!isRValRef) { 2992 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 2993 // reference-compatible with "cv2 T2," or 2994 // 2995 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 2996 if (InitCategory.isLValue() && 2997 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2998 // C++ [over.ics.ref]p1: 2999 // When a parameter of reference type binds directly (8.5.3) 3000 // to an argument expression, the implicit conversion sequence 3001 // is the identity conversion, unless the argument expression 3002 // has a type that is a derived class of the parameter type, 3003 // in which case the implicit conversion sequence is a 3004 // derived-to-base Conversion (13.3.3.1). 3005 ICS.setStandard(); 3006 ICS.Standard.First = ICK_Identity; 3007 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3008 : ObjCConversion? ICK_Compatible_Conversion 3009 : ICK_Identity; 3010 ICS.Standard.Third = ICK_Identity; 3011 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3012 ICS.Standard.setToType(0, T2); 3013 ICS.Standard.setToType(1, T1); 3014 ICS.Standard.setToType(2, T1); 3015 ICS.Standard.ReferenceBinding = true; 3016 ICS.Standard.DirectBinding = true; 3017 ICS.Standard.IsLvalueReference = !isRValRef; 3018 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3019 ICS.Standard.BindsToRvalue = false; 3020 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3021 ICS.Standard.CopyConstructor = 0; 3022 3023 // Nothing more to do: the inaccessibility/ambiguity check for 3024 // derived-to-base conversions is suppressed when we're 3025 // computing the implicit conversion sequence (C++ 3026 // [over.best.ics]p2). 3027 return ICS; 3028 } 3029 3030 // -- has a class type (i.e., T2 is a class type), where T1 is 3031 // not reference-related to T2, and can be implicitly 3032 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 3033 // is reference-compatible with "cv3 T3" 92) (this 3034 // conversion is selected by enumerating the applicable 3035 // conversion functions (13.3.1.6) and choosing the best 3036 // one through overload resolution (13.3)), 3037 if (!SuppressUserConversions && T2->isRecordType() && 3038 !S.RequireCompleteType(DeclLoc, T2, 0) && 3039 RefRelationship == Sema::Ref_Incompatible) { 3040 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3041 Init, T2, /*AllowRvalues=*/false, 3042 AllowExplicit)) 3043 return ICS; 3044 } 3045 } 3046 3047 // -- Otherwise, the reference shall be an lvalue reference to a 3048 // non-volatile const type (i.e., cv1 shall be const), or the reference 3049 // shall be an rvalue reference. 3050 // 3051 // We actually handle one oddity of C++ [over.ics.ref] at this 3052 // point, which is that, due to p2 (which short-circuits reference 3053 // binding by only attempting a simple conversion for non-direct 3054 // bindings) and p3's strange wording, we allow a const volatile 3055 // reference to bind to an rvalue. Hence the check for the presence 3056 // of "const" rather than checking for "const" being the only 3057 // qualifier. 3058 // This is also the point where rvalue references and lvalue inits no longer 3059 // go together. 3060 if (!isRValRef && !T1.isConstQualified()) 3061 return ICS; 3062 3063 // -- If the initializer expression 3064 // 3065 // -- is an xvalue, class prvalue, array prvalue or function 3066 // lvalue and "cv1T1" is reference-compatible with "cv2 T2", or 3067 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification && 3068 (InitCategory.isXValue() || 3069 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || 3070 (InitCategory.isLValue() && T2->isFunctionType()))) { 3071 ICS.setStandard(); 3072 ICS.Standard.First = ICK_Identity; 3073 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3074 : ObjCConversion? ICK_Compatible_Conversion 3075 : ICK_Identity; 3076 ICS.Standard.Third = ICK_Identity; 3077 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3078 ICS.Standard.setToType(0, T2); 3079 ICS.Standard.setToType(1, T1); 3080 ICS.Standard.setToType(2, T1); 3081 ICS.Standard.ReferenceBinding = true; 3082 // In C++0x, this is always a direct binding. In C++98/03, it's a direct 3083 // binding unless we're binding to a class prvalue. 3084 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 3085 // allow the use of rvalue references in C++98/03 for the benefit of 3086 // standard library implementors; therefore, we need the xvalue check here. 3087 ICS.Standard.DirectBinding = 3088 S.getLangOptions().CPlusPlus0x || 3089 (InitCategory.isPRValue() && !T2->isRecordType()); 3090 ICS.Standard.IsLvalueReference = !isRValRef; 3091 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3092 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 3093 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3094 ICS.Standard.CopyConstructor = 0; 3095 return ICS; 3096 } 3097 3098 // -- has a class type (i.e., T2 is a class type), where T1 is not 3099 // reference-related to T2, and can be implicitly converted to 3100 // an xvalue, class prvalue, or function lvalue of type 3101 // "cv3 T3", where "cv1 T1" is reference-compatible with 3102 // "cv3 T3", 3103 // 3104 // then the reference is bound to the value of the initializer 3105 // expression in the first case and to the result of the conversion 3106 // in the second case (or, in either case, to an appropriate base 3107 // class subobject). 3108 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3109 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && 3110 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3111 Init, T2, /*AllowRvalues=*/true, 3112 AllowExplicit)) { 3113 // In the second case, if the reference is an rvalue reference 3114 // and the second standard conversion sequence of the 3115 // user-defined conversion sequence includes an lvalue-to-rvalue 3116 // conversion, the program is ill-formed. 3117 if (ICS.isUserDefined() && isRValRef && 3118 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 3119 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3120 3121 return ICS; 3122 } 3123 3124 // -- Otherwise, a temporary of type "cv1 T1" is created and 3125 // initialized from the initializer expression using the 3126 // rules for a non-reference copy initialization (8.5). The 3127 // reference is then bound to the temporary. If T1 is 3128 // reference-related to T2, cv1 must be the same 3129 // cv-qualification as, or greater cv-qualification than, 3130 // cv2; otherwise, the program is ill-formed. 3131 if (RefRelationship == Sema::Ref_Related) { 3132 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 3133 // we would be reference-compatible or reference-compatible with 3134 // added qualification. But that wasn't the case, so the reference 3135 // initialization fails. 3136 return ICS; 3137 } 3138 3139 // If at least one of the types is a class type, the types are not 3140 // related, and we aren't allowed any user conversions, the 3141 // reference binding fails. This case is important for breaking 3142 // recursion, since TryImplicitConversion below will attempt to 3143 // create a temporary through the use of a copy constructor. 3144 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3145 (T1->isRecordType() || T2->isRecordType())) 3146 return ICS; 3147 3148 // If T1 is reference-related to T2 and the reference is an rvalue 3149 // reference, the initializer expression shall not be an lvalue. 3150 if (RefRelationship >= Sema::Ref_Related && 3151 isRValRef && Init->Classify(S.Context).isLValue()) 3152 return ICS; 3153 3154 // C++ [over.ics.ref]p2: 3155 // When a parameter of reference type is not bound directly to 3156 // an argument expression, the conversion sequence is the one 3157 // required to convert the argument expression to the 3158 // underlying type of the reference according to 3159 // 13.3.3.1. Conceptually, this conversion sequence corresponds 3160 // to copy-initializing a temporary of the underlying type with 3161 // the argument expression. Any difference in top-level 3162 // cv-qualification is subsumed by the initialization itself 3163 // and does not constitute a conversion. 3164 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 3165 /*AllowExplicit=*/false, 3166 /*InOverloadResolution=*/false, 3167 /*CStyle=*/false); 3168 3169 // Of course, that's still a reference binding. 3170 if (ICS.isStandard()) { 3171 ICS.Standard.ReferenceBinding = true; 3172 ICS.Standard.IsLvalueReference = !isRValRef; 3173 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3174 ICS.Standard.BindsToRvalue = true; 3175 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3176 } else if (ICS.isUserDefined()) { 3177 ICS.UserDefined.After.ReferenceBinding = true; 3178 ICS.Standard.IsLvalueReference = !isRValRef; 3179 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3180 ICS.Standard.BindsToRvalue = true; 3181 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3182 } 3183 3184 return ICS; 3185} 3186 3187/// TryCopyInitialization - Try to copy-initialize a value of type 3188/// ToType from the expression From. Return the implicit conversion 3189/// sequence required to pass this argument, which may be a bad 3190/// conversion sequence (meaning that the argument cannot be passed to 3191/// a parameter of this type). If @p SuppressUserConversions, then we 3192/// do not permit any user-defined conversion sequences. 3193static ImplicitConversionSequence 3194TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 3195 bool SuppressUserConversions, 3196 bool InOverloadResolution) { 3197 if (ToType->isReferenceType()) 3198 return TryReferenceInit(S, From, ToType, 3199 /*FIXME:*/From->getLocStart(), 3200 SuppressUserConversions, 3201 /*AllowExplicit=*/false); 3202 3203 return TryImplicitConversion(S, From, ToType, 3204 SuppressUserConversions, 3205 /*AllowExplicit=*/false, 3206 InOverloadResolution, 3207 /*CStyle=*/false); 3208} 3209 3210/// TryObjectArgumentInitialization - Try to initialize the object 3211/// parameter of the given member function (@c Method) from the 3212/// expression @p From. 3213static ImplicitConversionSequence 3214TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, 3215 Expr::Classification FromClassification, 3216 CXXMethodDecl *Method, 3217 CXXRecordDecl *ActingContext) { 3218 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 3219 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 3220 // const volatile object. 3221 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 3222 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 3223 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 3224 3225 // Set up the conversion sequence as a "bad" conversion, to allow us 3226 // to exit early. 3227 ImplicitConversionSequence ICS; 3228 3229 // We need to have an object of class type. 3230 QualType FromType = OrigFromType; 3231 if (const PointerType *PT = FromType->getAs<PointerType>()) { 3232 FromType = PT->getPointeeType(); 3233 3234 // When we had a pointer, it's implicitly dereferenced, so we 3235 // better have an lvalue. 3236 assert(FromClassification.isLValue()); 3237 } 3238 3239 assert(FromType->isRecordType()); 3240 3241 // C++0x [over.match.funcs]p4: 3242 // For non-static member functions, the type of the implicit object 3243 // parameter is 3244 // 3245 // — "lvalue reference to cv X" for functions declared without a 3246 // ref-qualifier or with the & ref-qualifier 3247 // — "rvalue reference to cv X" for functions declared with the && 3248 // ref-qualifier 3249 // 3250 // where X is the class of which the function is a member and cv is the 3251 // cv-qualification on the member function declaration. 3252 // 3253 // However, when finding an implicit conversion sequence for the argument, we 3254 // are not allowed to create temporaries or perform user-defined conversions 3255 // (C++ [over.match.funcs]p5). We perform a simplified version of 3256 // reference binding here, that allows class rvalues to bind to 3257 // non-constant references. 3258 3259 // First check the qualifiers. 3260 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 3261 if (ImplicitParamType.getCVRQualifiers() 3262 != FromTypeCanon.getLocalCVRQualifiers() && 3263 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 3264 ICS.setBad(BadConversionSequence::bad_qualifiers, 3265 OrigFromType, ImplicitParamType); 3266 return ICS; 3267 } 3268 3269 // Check that we have either the same type or a derived type. It 3270 // affects the conversion rank. 3271 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 3272 ImplicitConversionKind SecondKind; 3273 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 3274 SecondKind = ICK_Identity; 3275 } else if (S.IsDerivedFrom(FromType, ClassType)) 3276 SecondKind = ICK_Derived_To_Base; 3277 else { 3278 ICS.setBad(BadConversionSequence::unrelated_class, 3279 FromType, ImplicitParamType); 3280 return ICS; 3281 } 3282 3283 // Check the ref-qualifier. 3284 switch (Method->getRefQualifier()) { 3285 case RQ_None: 3286 // Do nothing; we don't care about lvalueness or rvalueness. 3287 break; 3288 3289 case RQ_LValue: 3290 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { 3291 // non-const lvalue reference cannot bind to an rvalue 3292 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 3293 ImplicitParamType); 3294 return ICS; 3295 } 3296 break; 3297 3298 case RQ_RValue: 3299 if (!FromClassification.isRValue()) { 3300 // rvalue reference cannot bind to an lvalue 3301 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 3302 ImplicitParamType); 3303 return ICS; 3304 } 3305 break; 3306 } 3307 3308 // Success. Mark this as a reference binding. 3309 ICS.setStandard(); 3310 ICS.Standard.setAsIdentityConversion(); 3311 ICS.Standard.Second = SecondKind; 3312 ICS.Standard.setFromType(FromType); 3313 ICS.Standard.setAllToTypes(ImplicitParamType); 3314 ICS.Standard.ReferenceBinding = true; 3315 ICS.Standard.DirectBinding = true; 3316 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 3317 ICS.Standard.BindsToFunctionLvalue = false; 3318 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 3319 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 3320 = (Method->getRefQualifier() == RQ_None); 3321 return ICS; 3322} 3323 3324/// PerformObjectArgumentInitialization - Perform initialization of 3325/// the implicit object parameter for the given Method with the given 3326/// expression. 3327bool 3328Sema::PerformObjectArgumentInitialization(Expr *&From, 3329 NestedNameSpecifier *Qualifier, 3330 NamedDecl *FoundDecl, 3331 CXXMethodDecl *Method) { 3332 QualType FromRecordType, DestType; 3333 QualType ImplicitParamRecordType = 3334 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 3335 3336 Expr::Classification FromClassification; 3337 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 3338 FromRecordType = PT->getPointeeType(); 3339 DestType = Method->getThisType(Context); 3340 FromClassification = Expr::Classification::makeSimpleLValue(); 3341 } else { 3342 FromRecordType = From->getType(); 3343 DestType = ImplicitParamRecordType; 3344 FromClassification = From->Classify(Context); 3345 } 3346 3347 // Note that we always use the true parent context when performing 3348 // the actual argument initialization. 3349 ImplicitConversionSequence ICS 3350 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification, 3351 Method, Method->getParent()); 3352 if (ICS.isBad()) { 3353 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { 3354 Qualifiers FromQs = FromRecordType.getQualifiers(); 3355 Qualifiers ToQs = DestType.getQualifiers(); 3356 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 3357 if (CVR) { 3358 Diag(From->getSourceRange().getBegin(), 3359 diag::err_member_function_call_bad_cvr) 3360 << Method->getDeclName() << FromRecordType << (CVR - 1) 3361 << From->getSourceRange(); 3362 Diag(Method->getLocation(), diag::note_previous_decl) 3363 << Method->getDeclName(); 3364 return true; 3365 } 3366 } 3367 3368 return Diag(From->getSourceRange().getBegin(), 3369 diag::err_implicit_object_parameter_init) 3370 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 3371 } 3372 3373 if (ICS.Standard.Second == ICK_Derived_To_Base) 3374 return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 3375 3376 if (!Context.hasSameType(From->getType(), DestType)) 3377 ImpCastExprToType(From, DestType, CK_NoOp, 3378 From->getType()->isPointerType() ? VK_RValue : VK_LValue); 3379 return false; 3380} 3381 3382/// TryContextuallyConvertToBool - Attempt to contextually convert the 3383/// expression From to bool (C++0x [conv]p3). 3384static ImplicitConversionSequence 3385TryContextuallyConvertToBool(Sema &S, Expr *From) { 3386 // FIXME: This is pretty broken. 3387 return TryImplicitConversion(S, From, S.Context.BoolTy, 3388 // FIXME: Are these flags correct? 3389 /*SuppressUserConversions=*/false, 3390 /*AllowExplicit=*/true, 3391 /*InOverloadResolution=*/false, 3392 /*CStyle=*/false); 3393} 3394 3395/// PerformContextuallyConvertToBool - Perform a contextual conversion 3396/// of the expression From to bool (C++0x [conv]p3). 3397bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 3398 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 3399 if (!ICS.isBad()) 3400 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 3401 3402 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 3403 return Diag(From->getSourceRange().getBegin(), 3404 diag::err_typecheck_bool_condition) 3405 << From->getType() << From->getSourceRange(); 3406 return true; 3407} 3408 3409/// TryContextuallyConvertToObjCId - Attempt to contextually convert the 3410/// expression From to 'id'. 3411static ImplicitConversionSequence 3412TryContextuallyConvertToObjCId(Sema &S, Expr *From) { 3413 QualType Ty = S.Context.getObjCIdType(); 3414 return TryImplicitConversion(S, From, Ty, 3415 // FIXME: Are these flags correct? 3416 /*SuppressUserConversions=*/false, 3417 /*AllowExplicit=*/true, 3418 /*InOverloadResolution=*/false, 3419 /*CStyle=*/false); 3420} 3421 3422/// PerformContextuallyConvertToObjCId - Perform a contextual conversion 3423/// of the expression From to 'id'. 3424bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { 3425 QualType Ty = Context.getObjCIdType(); 3426 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From); 3427 if (!ICS.isBad()) 3428 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 3429 return true; 3430} 3431 3432/// \brief Attempt to convert the given expression to an integral or 3433/// enumeration type. 3434/// 3435/// This routine will attempt to convert an expression of class type to an 3436/// integral or enumeration type, if that class type only has a single 3437/// conversion to an integral or enumeration type. 3438/// 3439/// \param Loc The source location of the construct that requires the 3440/// conversion. 3441/// 3442/// \param FromE The expression we're converting from. 3443/// 3444/// \param NotIntDiag The diagnostic to be emitted if the expression does not 3445/// have integral or enumeration type. 3446/// 3447/// \param IncompleteDiag The diagnostic to be emitted if the expression has 3448/// incomplete class type. 3449/// 3450/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 3451/// explicit conversion function (because no implicit conversion functions 3452/// were available). This is a recovery mode. 3453/// 3454/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 3455/// showing which conversion was picked. 3456/// 3457/// \param AmbigDiag The diagnostic to be emitted if there is more than one 3458/// conversion function that could convert to integral or enumeration type. 3459/// 3460/// \param AmbigNote The note to be emitted with \p AmbigDiag for each 3461/// usable conversion function. 3462/// 3463/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 3464/// function, which may be an extension in this case. 3465/// 3466/// \returns The expression, converted to an integral or enumeration type if 3467/// successful. 3468ExprResult 3469Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, 3470 const PartialDiagnostic &NotIntDiag, 3471 const PartialDiagnostic &IncompleteDiag, 3472 const PartialDiagnostic &ExplicitConvDiag, 3473 const PartialDiagnostic &ExplicitConvNote, 3474 const PartialDiagnostic &AmbigDiag, 3475 const PartialDiagnostic &AmbigNote, 3476 const PartialDiagnostic &ConvDiag) { 3477 // We can't perform any more checking for type-dependent expressions. 3478 if (From->isTypeDependent()) 3479 return Owned(From); 3480 3481 // If the expression already has integral or enumeration type, we're golden. 3482 QualType T = From->getType(); 3483 if (T->isIntegralOrEnumerationType()) 3484 return Owned(From); 3485 3486 // FIXME: Check for missing '()' if T is a function type? 3487 3488 // If we don't have a class type in C++, there's no way we can get an 3489 // expression of integral or enumeration type. 3490 const RecordType *RecordTy = T->getAs<RecordType>(); 3491 if (!RecordTy || !getLangOptions().CPlusPlus) { 3492 Diag(Loc, NotIntDiag) 3493 << T << From->getSourceRange(); 3494 return Owned(From); 3495 } 3496 3497 // We must have a complete class type. 3498 if (RequireCompleteType(Loc, T, IncompleteDiag)) 3499 return Owned(From); 3500 3501 // Look for a conversion to an integral or enumeration type. 3502 UnresolvedSet<4> ViableConversions; 3503 UnresolvedSet<4> ExplicitConversions; 3504 const UnresolvedSetImpl *Conversions 3505 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 3506 3507 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3508 E = Conversions->end(); 3509 I != E; 3510 ++I) { 3511 if (CXXConversionDecl *Conversion 3512 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) 3513 if (Conversion->getConversionType().getNonReferenceType() 3514 ->isIntegralOrEnumerationType()) { 3515 if (Conversion->isExplicit()) 3516 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 3517 else 3518 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 3519 } 3520 } 3521 3522 switch (ViableConversions.size()) { 3523 case 0: 3524 if (ExplicitConversions.size() == 1) { 3525 DeclAccessPair Found = ExplicitConversions[0]; 3526 CXXConversionDecl *Conversion 3527 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3528 3529 // The user probably meant to invoke the given explicit 3530 // conversion; use it. 3531 QualType ConvTy 3532 = Conversion->getConversionType().getNonReferenceType(); 3533 std::string TypeStr; 3534 ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy); 3535 3536 Diag(Loc, ExplicitConvDiag) 3537 << T << ConvTy 3538 << FixItHint::CreateInsertion(From->getLocStart(), 3539 "static_cast<" + TypeStr + ">(") 3540 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 3541 ")"); 3542 Diag(Conversion->getLocation(), ExplicitConvNote) 3543 << ConvTy->isEnumeralType() << ConvTy; 3544 3545 // If we aren't in a SFINAE context, build a call to the 3546 // explicit conversion function. 3547 if (isSFINAEContext()) 3548 return ExprError(); 3549 3550 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3551 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion); 3552 if (Result.isInvalid()) 3553 return ExprError(); 3554 3555 From = Result.get(); 3556 } 3557 3558 // We'll complain below about a non-integral condition type. 3559 break; 3560 3561 case 1: { 3562 // Apply this conversion. 3563 DeclAccessPair Found = ViableConversions[0]; 3564 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3565 3566 CXXConversionDecl *Conversion 3567 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3568 QualType ConvTy 3569 = Conversion->getConversionType().getNonReferenceType(); 3570 if (ConvDiag.getDiagID()) { 3571 if (isSFINAEContext()) 3572 return ExprError(); 3573 3574 Diag(Loc, ConvDiag) 3575 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 3576 } 3577 3578 ExprResult Result = BuildCXXMemberCallExpr(From, Found, 3579 cast<CXXConversionDecl>(Found->getUnderlyingDecl())); 3580 if (Result.isInvalid()) 3581 return ExprError(); 3582 3583 From = Result.get(); 3584 break; 3585 } 3586 3587 default: 3588 Diag(Loc, AmbigDiag) 3589 << T << From->getSourceRange(); 3590 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 3591 CXXConversionDecl *Conv 3592 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 3593 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 3594 Diag(Conv->getLocation(), AmbigNote) 3595 << ConvTy->isEnumeralType() << ConvTy; 3596 } 3597 return Owned(From); 3598 } 3599 3600 if (!From->getType()->isIntegralOrEnumerationType()) 3601 Diag(Loc, NotIntDiag) 3602 << From->getType() << From->getSourceRange(); 3603 3604 return Owned(From); 3605} 3606 3607/// AddOverloadCandidate - Adds the given function to the set of 3608/// candidate functions, using the given function call arguments. If 3609/// @p SuppressUserConversions, then don't allow user-defined 3610/// conversions via constructors or conversion operators. 3611/// 3612/// \para PartialOverloading true if we are performing "partial" overloading 3613/// based on an incomplete set of function arguments. This feature is used by 3614/// code completion. 3615void 3616Sema::AddOverloadCandidate(FunctionDecl *Function, 3617 DeclAccessPair FoundDecl, 3618 Expr **Args, unsigned NumArgs, 3619 OverloadCandidateSet& CandidateSet, 3620 bool SuppressUserConversions, 3621 bool PartialOverloading) { 3622 const FunctionProtoType* Proto 3623 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 3624 assert(Proto && "Functions without a prototype cannot be overloaded"); 3625 assert(!Function->getDescribedFunctionTemplate() && 3626 "Use AddTemp∫lateOverloadCandidate for function templates"); 3627 3628 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3629 if (!isa<CXXConstructorDecl>(Method)) { 3630 // If we get here, it's because we're calling a member function 3631 // that is named without a member access expression (e.g., 3632 // "this->f") that was either written explicitly or created 3633 // implicitly. This can happen with a qualified call to a member 3634 // function, e.g., X::f(). We use an empty type for the implied 3635 // object argument (C++ [over.call.func]p3), and the acting context 3636 // is irrelevant. 3637 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 3638 QualType(), Expr::Classification::makeSimpleLValue(), 3639 Args, NumArgs, CandidateSet, 3640 SuppressUserConversions); 3641 return; 3642 } 3643 // We treat a constructor like a non-member function, since its object 3644 // argument doesn't participate in overload resolution. 3645 } 3646 3647 if (!CandidateSet.isNewCandidate(Function)) 3648 return; 3649 3650 // Overload resolution is always an unevaluated context. 3651 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3652 3653 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 3654 // C++ [class.copy]p3: 3655 // A member function template is never instantiated to perform the copy 3656 // of a class object to an object of its class type. 3657 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 3658 if (NumArgs == 1 && 3659 Constructor->isSpecializationCopyingObject() && 3660 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 3661 IsDerivedFrom(Args[0]->getType(), ClassType))) 3662 return; 3663 } 3664 3665 // Add this candidate 3666 CandidateSet.push_back(OverloadCandidate()); 3667 OverloadCandidate& Candidate = CandidateSet.back(); 3668 Candidate.FoundDecl = FoundDecl; 3669 Candidate.Function = Function; 3670 Candidate.Viable = true; 3671 Candidate.IsSurrogate = false; 3672 Candidate.IgnoreObjectArgument = false; 3673 Candidate.ExplicitCallArguments = NumArgs; 3674 3675 unsigned NumArgsInProto = Proto->getNumArgs(); 3676 3677 // (C++ 13.3.2p2): A candidate function having fewer than m 3678 // parameters is viable only if it has an ellipsis in its parameter 3679 // list (8.3.5). 3680 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 3681 !Proto->isVariadic()) { 3682 Candidate.Viable = false; 3683 Candidate.FailureKind = ovl_fail_too_many_arguments; 3684 return; 3685 } 3686 3687 // (C++ 13.3.2p2): A candidate function having more than m parameters 3688 // is viable only if the (m+1)st parameter has a default argument 3689 // (8.3.6). For the purposes of overload resolution, the 3690 // parameter list is truncated on the right, so that there are 3691 // exactly m parameters. 3692 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 3693 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 3694 // Not enough arguments. 3695 Candidate.Viable = false; 3696 Candidate.FailureKind = ovl_fail_too_few_arguments; 3697 return; 3698 } 3699 3700 // Determine the implicit conversion sequences for each of the 3701 // arguments. 3702 Candidate.Conversions.resize(NumArgs); 3703 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3704 if (ArgIdx < NumArgsInProto) { 3705 // (C++ 13.3.2p3): for F to be a viable function, there shall 3706 // exist for each argument an implicit conversion sequence 3707 // (13.3.3.1) that converts that argument to the corresponding 3708 // parameter of F. 3709 QualType ParamType = Proto->getArgType(ArgIdx); 3710 Candidate.Conversions[ArgIdx] 3711 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3712 SuppressUserConversions, 3713 /*InOverloadResolution=*/true); 3714 if (Candidate.Conversions[ArgIdx].isBad()) { 3715 Candidate.Viable = false; 3716 Candidate.FailureKind = ovl_fail_bad_conversion; 3717 break; 3718 } 3719 } else { 3720 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3721 // argument for which there is no corresponding parameter is 3722 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3723 Candidate.Conversions[ArgIdx].setEllipsis(); 3724 } 3725 } 3726} 3727 3728/// \brief Add all of the function declarations in the given function set to 3729/// the overload canddiate set. 3730void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 3731 Expr **Args, unsigned NumArgs, 3732 OverloadCandidateSet& CandidateSet, 3733 bool SuppressUserConversions) { 3734 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 3735 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 3736 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3737 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 3738 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 3739 cast<CXXMethodDecl>(FD)->getParent(), 3740 Args[0]->getType(), Args[0]->Classify(Context), 3741 Args + 1, NumArgs - 1, 3742 CandidateSet, SuppressUserConversions); 3743 else 3744 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 3745 SuppressUserConversions); 3746 } else { 3747 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 3748 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 3749 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 3750 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 3751 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 3752 /*FIXME: explicit args */ 0, 3753 Args[0]->getType(), 3754 Args[0]->Classify(Context), 3755 Args + 1, NumArgs - 1, 3756 CandidateSet, 3757 SuppressUserConversions); 3758 else 3759 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 3760 /*FIXME: explicit args */ 0, 3761 Args, NumArgs, CandidateSet, 3762 SuppressUserConversions); 3763 } 3764 } 3765} 3766 3767/// AddMethodCandidate - Adds a named decl (which is some kind of 3768/// method) as a method candidate to the given overload set. 3769void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 3770 QualType ObjectType, 3771 Expr::Classification ObjectClassification, 3772 Expr **Args, unsigned NumArgs, 3773 OverloadCandidateSet& CandidateSet, 3774 bool SuppressUserConversions) { 3775 NamedDecl *Decl = FoundDecl.getDecl(); 3776 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 3777 3778 if (isa<UsingShadowDecl>(Decl)) 3779 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 3780 3781 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 3782 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 3783 "Expected a member function template"); 3784 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 3785 /*ExplicitArgs*/ 0, 3786 ObjectType, ObjectClassification, Args, NumArgs, 3787 CandidateSet, 3788 SuppressUserConversions); 3789 } else { 3790 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 3791 ObjectType, ObjectClassification, Args, NumArgs, 3792 CandidateSet, SuppressUserConversions); 3793 } 3794} 3795 3796/// AddMethodCandidate - Adds the given C++ member function to the set 3797/// of candidate functions, using the given function call arguments 3798/// and the object argument (@c Object). For example, in a call 3799/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 3800/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 3801/// allow user-defined conversions via constructors or conversion 3802/// operators. 3803void 3804Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 3805 CXXRecordDecl *ActingContext, QualType ObjectType, 3806 Expr::Classification ObjectClassification, 3807 Expr **Args, unsigned NumArgs, 3808 OverloadCandidateSet& CandidateSet, 3809 bool SuppressUserConversions) { 3810 const FunctionProtoType* Proto 3811 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 3812 assert(Proto && "Methods without a prototype cannot be overloaded"); 3813 assert(!isa<CXXConstructorDecl>(Method) && 3814 "Use AddOverloadCandidate for constructors"); 3815 3816 if (!CandidateSet.isNewCandidate(Method)) 3817 return; 3818 3819 // Overload resolution is always an unevaluated context. 3820 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3821 3822 // Add this candidate 3823 CandidateSet.push_back(OverloadCandidate()); 3824 OverloadCandidate& Candidate = CandidateSet.back(); 3825 Candidate.FoundDecl = FoundDecl; 3826 Candidate.Function = Method; 3827 Candidate.IsSurrogate = false; 3828 Candidate.IgnoreObjectArgument = false; 3829 Candidate.ExplicitCallArguments = NumArgs; 3830 3831 unsigned NumArgsInProto = Proto->getNumArgs(); 3832 3833 // (C++ 13.3.2p2): A candidate function having fewer than m 3834 // parameters is viable only if it has an ellipsis in its parameter 3835 // list (8.3.5). 3836 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3837 Candidate.Viable = false; 3838 Candidate.FailureKind = ovl_fail_too_many_arguments; 3839 return; 3840 } 3841 3842 // (C++ 13.3.2p2): A candidate function having more than m parameters 3843 // is viable only if the (m+1)st parameter has a default argument 3844 // (8.3.6). For the purposes of overload resolution, the 3845 // parameter list is truncated on the right, so that there are 3846 // exactly m parameters. 3847 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 3848 if (NumArgs < MinRequiredArgs) { 3849 // Not enough arguments. 3850 Candidate.Viable = false; 3851 Candidate.FailureKind = ovl_fail_too_few_arguments; 3852 return; 3853 } 3854 3855 Candidate.Viable = true; 3856 Candidate.Conversions.resize(NumArgs + 1); 3857 3858 if (Method->isStatic() || ObjectType.isNull()) 3859 // The implicit object argument is ignored. 3860 Candidate.IgnoreObjectArgument = true; 3861 else { 3862 // Determine the implicit conversion sequence for the object 3863 // parameter. 3864 Candidate.Conversions[0] 3865 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification, 3866 Method, ActingContext); 3867 if (Candidate.Conversions[0].isBad()) { 3868 Candidate.Viable = false; 3869 Candidate.FailureKind = ovl_fail_bad_conversion; 3870 return; 3871 } 3872 } 3873 3874 // Determine the implicit conversion sequences for each of the 3875 // arguments. 3876 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3877 if (ArgIdx < NumArgsInProto) { 3878 // (C++ 13.3.2p3): for F to be a viable function, there shall 3879 // exist for each argument an implicit conversion sequence 3880 // (13.3.3.1) that converts that argument to the corresponding 3881 // parameter of F. 3882 QualType ParamType = Proto->getArgType(ArgIdx); 3883 Candidate.Conversions[ArgIdx + 1] 3884 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3885 SuppressUserConversions, 3886 /*InOverloadResolution=*/true); 3887 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3888 Candidate.Viable = false; 3889 Candidate.FailureKind = ovl_fail_bad_conversion; 3890 break; 3891 } 3892 } else { 3893 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3894 // argument for which there is no corresponding parameter is 3895 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3896 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3897 } 3898 } 3899} 3900 3901/// \brief Add a C++ member function template as a candidate to the candidate 3902/// set, using template argument deduction to produce an appropriate member 3903/// function template specialization. 3904void 3905Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 3906 DeclAccessPair FoundDecl, 3907 CXXRecordDecl *ActingContext, 3908 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3909 QualType ObjectType, 3910 Expr::Classification ObjectClassification, 3911 Expr **Args, unsigned NumArgs, 3912 OverloadCandidateSet& CandidateSet, 3913 bool SuppressUserConversions) { 3914 if (!CandidateSet.isNewCandidate(MethodTmpl)) 3915 return; 3916 3917 // C++ [over.match.funcs]p7: 3918 // In each case where a candidate is a function template, candidate 3919 // function template specializations are generated using template argument 3920 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3921 // candidate functions in the usual way.113) A given name can refer to one 3922 // or more function templates and also to a set of overloaded non-template 3923 // functions. In such a case, the candidate functions generated from each 3924 // function template are combined with the set of non-template candidate 3925 // functions. 3926 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3927 FunctionDecl *Specialization = 0; 3928 if (TemplateDeductionResult Result 3929 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 3930 Args, NumArgs, Specialization, Info)) { 3931 CandidateSet.push_back(OverloadCandidate()); 3932 OverloadCandidate &Candidate = CandidateSet.back(); 3933 Candidate.FoundDecl = FoundDecl; 3934 Candidate.Function = MethodTmpl->getTemplatedDecl(); 3935 Candidate.Viable = false; 3936 Candidate.FailureKind = ovl_fail_bad_deduction; 3937 Candidate.IsSurrogate = false; 3938 Candidate.IgnoreObjectArgument = false; 3939 Candidate.ExplicitCallArguments = NumArgs; 3940 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3941 Info); 3942 return; 3943 } 3944 3945 // Add the function template specialization produced by template argument 3946 // deduction as a candidate. 3947 assert(Specialization && "Missing member function template specialization?"); 3948 assert(isa<CXXMethodDecl>(Specialization) && 3949 "Specialization is not a member function?"); 3950 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 3951 ActingContext, ObjectType, ObjectClassification, 3952 Args, NumArgs, CandidateSet, SuppressUserConversions); 3953} 3954 3955/// \brief Add a C++ function template specialization as a candidate 3956/// in the candidate set, using template argument deduction to produce 3957/// an appropriate function template specialization. 3958void 3959Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 3960 DeclAccessPair FoundDecl, 3961 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3962 Expr **Args, unsigned NumArgs, 3963 OverloadCandidateSet& CandidateSet, 3964 bool SuppressUserConversions) { 3965 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3966 return; 3967 3968 // C++ [over.match.funcs]p7: 3969 // In each case where a candidate is a function template, candidate 3970 // function template specializations are generated using template argument 3971 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3972 // candidate functions in the usual way.113) A given name can refer to one 3973 // or more function templates and also to a set of overloaded non-template 3974 // functions. In such a case, the candidate functions generated from each 3975 // function template are combined with the set of non-template candidate 3976 // functions. 3977 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3978 FunctionDecl *Specialization = 0; 3979 if (TemplateDeductionResult Result 3980 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 3981 Args, NumArgs, Specialization, Info)) { 3982 CandidateSet.push_back(OverloadCandidate()); 3983 OverloadCandidate &Candidate = CandidateSet.back(); 3984 Candidate.FoundDecl = FoundDecl; 3985 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3986 Candidate.Viable = false; 3987 Candidate.FailureKind = ovl_fail_bad_deduction; 3988 Candidate.IsSurrogate = false; 3989 Candidate.IgnoreObjectArgument = false; 3990 Candidate.ExplicitCallArguments = NumArgs; 3991 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3992 Info); 3993 return; 3994 } 3995 3996 // Add the function template specialization produced by template argument 3997 // deduction as a candidate. 3998 assert(Specialization && "Missing function template specialization?"); 3999 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 4000 SuppressUserConversions); 4001} 4002 4003/// AddConversionCandidate - Add a C++ conversion function as a 4004/// candidate in the candidate set (C++ [over.match.conv], 4005/// C++ [over.match.copy]). From is the expression we're converting from, 4006/// and ToType is the type that we're eventually trying to convert to 4007/// (which may or may not be the same type as the type that the 4008/// conversion function produces). 4009void 4010Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 4011 DeclAccessPair FoundDecl, 4012 CXXRecordDecl *ActingContext, 4013 Expr *From, QualType ToType, 4014 OverloadCandidateSet& CandidateSet) { 4015 assert(!Conversion->getDescribedFunctionTemplate() && 4016 "Conversion function templates use AddTemplateConversionCandidate"); 4017 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 4018 if (!CandidateSet.isNewCandidate(Conversion)) 4019 return; 4020 4021 // Overload resolution is always an unevaluated context. 4022 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4023 4024 // Add this candidate 4025 CandidateSet.push_back(OverloadCandidate()); 4026 OverloadCandidate& Candidate = CandidateSet.back(); 4027 Candidate.FoundDecl = FoundDecl; 4028 Candidate.Function = Conversion; 4029 Candidate.IsSurrogate = false; 4030 Candidate.IgnoreObjectArgument = false; 4031 Candidate.FinalConversion.setAsIdentityConversion(); 4032 Candidate.FinalConversion.setFromType(ConvType); 4033 Candidate.FinalConversion.setAllToTypes(ToType); 4034 Candidate.Viable = true; 4035 Candidate.Conversions.resize(1); 4036 Candidate.ExplicitCallArguments = 1; 4037 4038 // C++ [over.match.funcs]p4: 4039 // For conversion functions, the function is considered to be a member of 4040 // the class of the implicit implied object argument for the purpose of 4041 // defining the type of the implicit object parameter. 4042 // 4043 // Determine the implicit conversion sequence for the implicit 4044 // object parameter. 4045 QualType ImplicitParamType = From->getType(); 4046 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 4047 ImplicitParamType = FromPtrType->getPointeeType(); 4048 CXXRecordDecl *ConversionContext 4049 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 4050 4051 Candidate.Conversions[0] 4052 = TryObjectArgumentInitialization(*this, From->getType(), 4053 From->Classify(Context), 4054 Conversion, ConversionContext); 4055 4056 if (Candidate.Conversions[0].isBad()) { 4057 Candidate.Viable = false; 4058 Candidate.FailureKind = ovl_fail_bad_conversion; 4059 return; 4060 } 4061 4062 // We won't go through a user-define type conversion function to convert a 4063 // derived to base as such conversions are given Conversion Rank. They only 4064 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 4065 QualType FromCanon 4066 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 4067 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 4068 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 4069 Candidate.Viable = false; 4070 Candidate.FailureKind = ovl_fail_trivial_conversion; 4071 return; 4072 } 4073 4074 // To determine what the conversion from the result of calling the 4075 // conversion function to the type we're eventually trying to 4076 // convert to (ToType), we need to synthesize a call to the 4077 // conversion function and attempt copy initialization from it. This 4078 // makes sure that we get the right semantics with respect to 4079 // lvalues/rvalues and the type. Fortunately, we can allocate this 4080 // call on the stack and we don't need its arguments to be 4081 // well-formed. 4082 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 4083 VK_LValue, From->getLocStart()); 4084 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 4085 Context.getPointerType(Conversion->getType()), 4086 CK_FunctionToPointerDecay, 4087 &ConversionRef, VK_RValue); 4088 4089 QualType CallResultType 4090 = Conversion->getConversionType().getNonLValueExprType(Context); 4091 if (RequireCompleteType(From->getLocStart(), CallResultType, 0)) { 4092 Candidate.Viable = false; 4093 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4094 return; 4095 } 4096 4097 ExprValueKind VK = Expr::getValueKindForType(Conversion->getConversionType()); 4098 4099 // Note that it is safe to allocate CallExpr on the stack here because 4100 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 4101 // allocator). 4102 CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK, 4103 From->getLocStart()); 4104 ImplicitConversionSequence ICS = 4105 TryCopyInitialization(*this, &Call, ToType, 4106 /*SuppressUserConversions=*/true, 4107 /*InOverloadResolution=*/false); 4108 4109 switch (ICS.getKind()) { 4110 case ImplicitConversionSequence::StandardConversion: 4111 Candidate.FinalConversion = ICS.Standard; 4112 4113 // C++ [over.ics.user]p3: 4114 // If the user-defined conversion is specified by a specialization of a 4115 // conversion function template, the second standard conversion sequence 4116 // shall have exact match rank. 4117 if (Conversion->getPrimaryTemplate() && 4118 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 4119 Candidate.Viable = false; 4120 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 4121 } 4122 4123 // C++0x [dcl.init.ref]p5: 4124 // In the second case, if the reference is an rvalue reference and 4125 // the second standard conversion sequence of the user-defined 4126 // conversion sequence includes an lvalue-to-rvalue conversion, the 4127 // program is ill-formed. 4128 if (ToType->isRValueReferenceType() && 4129 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 4130 Candidate.Viable = false; 4131 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4132 } 4133 break; 4134 4135 case ImplicitConversionSequence::BadConversion: 4136 Candidate.Viable = false; 4137 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4138 break; 4139 4140 default: 4141 assert(false && 4142 "Can only end up with a standard conversion sequence or failure"); 4143 } 4144} 4145 4146/// \brief Adds a conversion function template specialization 4147/// candidate to the overload set, using template argument deduction 4148/// to deduce the template arguments of the conversion function 4149/// template from the type that we are converting to (C++ 4150/// [temp.deduct.conv]). 4151void 4152Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 4153 DeclAccessPair FoundDecl, 4154 CXXRecordDecl *ActingDC, 4155 Expr *From, QualType ToType, 4156 OverloadCandidateSet &CandidateSet) { 4157 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 4158 "Only conversion function templates permitted here"); 4159 4160 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 4161 return; 4162 4163 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4164 CXXConversionDecl *Specialization = 0; 4165 if (TemplateDeductionResult Result 4166 = DeduceTemplateArguments(FunctionTemplate, ToType, 4167 Specialization, Info)) { 4168 CandidateSet.push_back(OverloadCandidate()); 4169 OverloadCandidate &Candidate = CandidateSet.back(); 4170 Candidate.FoundDecl = FoundDecl; 4171 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 4172 Candidate.Viable = false; 4173 Candidate.FailureKind = ovl_fail_bad_deduction; 4174 Candidate.IsSurrogate = false; 4175 Candidate.IgnoreObjectArgument = false; 4176 Candidate.ExplicitCallArguments = 1; 4177 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4178 Info); 4179 return; 4180 } 4181 4182 // Add the conversion function template specialization produced by 4183 // template argument deduction as a candidate. 4184 assert(Specialization && "Missing function template specialization?"); 4185 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 4186 CandidateSet); 4187} 4188 4189/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 4190/// converts the given @c Object to a function pointer via the 4191/// conversion function @c Conversion, and then attempts to call it 4192/// with the given arguments (C++ [over.call.object]p2-4). Proto is 4193/// the type of function that we'll eventually be calling. 4194void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 4195 DeclAccessPair FoundDecl, 4196 CXXRecordDecl *ActingContext, 4197 const FunctionProtoType *Proto, 4198 Expr *Object, 4199 Expr **Args, unsigned NumArgs, 4200 OverloadCandidateSet& CandidateSet) { 4201 if (!CandidateSet.isNewCandidate(Conversion)) 4202 return; 4203 4204 // Overload resolution is always an unevaluated context. 4205 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4206 4207 CandidateSet.push_back(OverloadCandidate()); 4208 OverloadCandidate& Candidate = CandidateSet.back(); 4209 Candidate.FoundDecl = FoundDecl; 4210 Candidate.Function = 0; 4211 Candidate.Surrogate = Conversion; 4212 Candidate.Viable = true; 4213 Candidate.IsSurrogate = true; 4214 Candidate.IgnoreObjectArgument = false; 4215 Candidate.Conversions.resize(NumArgs + 1); 4216 Candidate.ExplicitCallArguments = NumArgs; 4217 4218 // Determine the implicit conversion sequence for the implicit 4219 // object parameter. 4220 ImplicitConversionSequence ObjectInit 4221 = TryObjectArgumentInitialization(*this, Object->getType(), 4222 Object->Classify(Context), 4223 Conversion, ActingContext); 4224 if (ObjectInit.isBad()) { 4225 Candidate.Viable = false; 4226 Candidate.FailureKind = ovl_fail_bad_conversion; 4227 Candidate.Conversions[0] = ObjectInit; 4228 return; 4229 } 4230 4231 // The first conversion is actually a user-defined conversion whose 4232 // first conversion is ObjectInit's standard conversion (which is 4233 // effectively a reference binding). Record it as such. 4234 Candidate.Conversions[0].setUserDefined(); 4235 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 4236 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 4237 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 4238 Candidate.Conversions[0].UserDefined.FoundConversionFunction 4239 = FoundDecl.getDecl(); 4240 Candidate.Conversions[0].UserDefined.After 4241 = Candidate.Conversions[0].UserDefined.Before; 4242 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 4243 4244 // Find the 4245 unsigned NumArgsInProto = Proto->getNumArgs(); 4246 4247 // (C++ 13.3.2p2): A candidate function having fewer than m 4248 // parameters is viable only if it has an ellipsis in its parameter 4249 // list (8.3.5). 4250 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 4251 Candidate.Viable = false; 4252 Candidate.FailureKind = ovl_fail_too_many_arguments; 4253 return; 4254 } 4255 4256 // Function types don't have any default arguments, so just check if 4257 // we have enough arguments. 4258 if (NumArgs < NumArgsInProto) { 4259 // Not enough arguments. 4260 Candidate.Viable = false; 4261 Candidate.FailureKind = ovl_fail_too_few_arguments; 4262 return; 4263 } 4264 4265 // Determine the implicit conversion sequences for each of the 4266 // arguments. 4267 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4268 if (ArgIdx < NumArgsInProto) { 4269 // (C++ 13.3.2p3): for F to be a viable function, there shall 4270 // exist for each argument an implicit conversion sequence 4271 // (13.3.3.1) that converts that argument to the corresponding 4272 // parameter of F. 4273 QualType ParamType = Proto->getArgType(ArgIdx); 4274 Candidate.Conversions[ArgIdx + 1] 4275 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4276 /*SuppressUserConversions=*/false, 4277 /*InOverloadResolution=*/false); 4278 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 4279 Candidate.Viable = false; 4280 Candidate.FailureKind = ovl_fail_bad_conversion; 4281 break; 4282 } 4283 } else { 4284 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4285 // argument for which there is no corresponding parameter is 4286 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4287 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 4288 } 4289 } 4290} 4291 4292/// \brief Add overload candidates for overloaded operators that are 4293/// member functions. 4294/// 4295/// Add the overloaded operator candidates that are member functions 4296/// for the operator Op that was used in an operator expression such 4297/// as "x Op y". , Args/NumArgs provides the operator arguments, and 4298/// CandidateSet will store the added overload candidates. (C++ 4299/// [over.match.oper]). 4300void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 4301 SourceLocation OpLoc, 4302 Expr **Args, unsigned NumArgs, 4303 OverloadCandidateSet& CandidateSet, 4304 SourceRange OpRange) { 4305 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4306 4307 // C++ [over.match.oper]p3: 4308 // For a unary operator @ with an operand of a type whose 4309 // cv-unqualified version is T1, and for a binary operator @ with 4310 // a left operand of a type whose cv-unqualified version is T1 and 4311 // a right operand of a type whose cv-unqualified version is T2, 4312 // three sets of candidate functions, designated member 4313 // candidates, non-member candidates and built-in candidates, are 4314 // constructed as follows: 4315 QualType T1 = Args[0]->getType(); 4316 4317 // -- If T1 is a class type, the set of member candidates is the 4318 // result of the qualified lookup of T1::operator@ 4319 // (13.3.1.1.1); otherwise, the set of member candidates is 4320 // empty. 4321 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 4322 // Complete the type if it can be completed. Otherwise, we're done. 4323 if (RequireCompleteType(OpLoc, T1, PDiag())) 4324 return; 4325 4326 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 4327 LookupQualifiedName(Operators, T1Rec->getDecl()); 4328 Operators.suppressDiagnostics(); 4329 4330 for (LookupResult::iterator Oper = Operators.begin(), 4331 OperEnd = Operators.end(); 4332 Oper != OperEnd; 4333 ++Oper) 4334 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 4335 Args[0]->Classify(Context), Args + 1, NumArgs - 1, 4336 CandidateSet, 4337 /* SuppressUserConversions = */ false); 4338 } 4339} 4340 4341/// AddBuiltinCandidate - Add a candidate for a built-in 4342/// operator. ResultTy and ParamTys are the result and parameter types 4343/// of the built-in candidate, respectively. Args and NumArgs are the 4344/// arguments being passed to the candidate. IsAssignmentOperator 4345/// should be true when this built-in candidate is an assignment 4346/// operator. NumContextualBoolArguments is the number of arguments 4347/// (at the beginning of the argument list) that will be contextually 4348/// converted to bool. 4349void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 4350 Expr **Args, unsigned NumArgs, 4351 OverloadCandidateSet& CandidateSet, 4352 bool IsAssignmentOperator, 4353 unsigned NumContextualBoolArguments) { 4354 // Overload resolution is always an unevaluated context. 4355 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4356 4357 // Add this candidate 4358 CandidateSet.push_back(OverloadCandidate()); 4359 OverloadCandidate& Candidate = CandidateSet.back(); 4360 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 4361 Candidate.Function = 0; 4362 Candidate.IsSurrogate = false; 4363 Candidate.IgnoreObjectArgument = false; 4364 Candidate.BuiltinTypes.ResultTy = ResultTy; 4365 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4366 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 4367 4368 // Determine the implicit conversion sequences for each of the 4369 // arguments. 4370 Candidate.Viable = true; 4371 Candidate.Conversions.resize(NumArgs); 4372 Candidate.ExplicitCallArguments = NumArgs; 4373 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4374 // C++ [over.match.oper]p4: 4375 // For the built-in assignment operators, conversions of the 4376 // left operand are restricted as follows: 4377 // -- no temporaries are introduced to hold the left operand, and 4378 // -- no user-defined conversions are applied to the left 4379 // operand to achieve a type match with the left-most 4380 // parameter of a built-in candidate. 4381 // 4382 // We block these conversions by turning off user-defined 4383 // conversions, since that is the only way that initialization of 4384 // a reference to a non-class type can occur from something that 4385 // is not of the same type. 4386 if (ArgIdx < NumContextualBoolArguments) { 4387 assert(ParamTys[ArgIdx] == Context.BoolTy && 4388 "Contextual conversion to bool requires bool type"); 4389 Candidate.Conversions[ArgIdx] 4390 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 4391 } else { 4392 Candidate.Conversions[ArgIdx] 4393 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 4394 ArgIdx == 0 && IsAssignmentOperator, 4395 /*InOverloadResolution=*/false); 4396 } 4397 if (Candidate.Conversions[ArgIdx].isBad()) { 4398 Candidate.Viable = false; 4399 Candidate.FailureKind = ovl_fail_bad_conversion; 4400 break; 4401 } 4402 } 4403} 4404 4405/// BuiltinCandidateTypeSet - A set of types that will be used for the 4406/// candidate operator functions for built-in operators (C++ 4407/// [over.built]). The types are separated into pointer types and 4408/// enumeration types. 4409class BuiltinCandidateTypeSet { 4410 /// TypeSet - A set of types. 4411 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 4412 4413 /// PointerTypes - The set of pointer types that will be used in the 4414 /// built-in candidates. 4415 TypeSet PointerTypes; 4416 4417 /// MemberPointerTypes - The set of member pointer types that will be 4418 /// used in the built-in candidates. 4419 TypeSet MemberPointerTypes; 4420 4421 /// EnumerationTypes - The set of enumeration types that will be 4422 /// used in the built-in candidates. 4423 TypeSet EnumerationTypes; 4424 4425 /// \brief The set of vector types that will be used in the built-in 4426 /// candidates. 4427 TypeSet VectorTypes; 4428 4429 /// \brief A flag indicating non-record types are viable candidates 4430 bool HasNonRecordTypes; 4431 4432 /// \brief A flag indicating whether either arithmetic or enumeration types 4433 /// were present in the candidate set. 4434 bool HasArithmeticOrEnumeralTypes; 4435 4436 /// Sema - The semantic analysis instance where we are building the 4437 /// candidate type set. 4438 Sema &SemaRef; 4439 4440 /// Context - The AST context in which we will build the type sets. 4441 ASTContext &Context; 4442 4443 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4444 const Qualifiers &VisibleQuals); 4445 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 4446 4447public: 4448 /// iterator - Iterates through the types that are part of the set. 4449 typedef TypeSet::iterator iterator; 4450 4451 BuiltinCandidateTypeSet(Sema &SemaRef) 4452 : HasNonRecordTypes(false), 4453 HasArithmeticOrEnumeralTypes(false), 4454 SemaRef(SemaRef), 4455 Context(SemaRef.Context) { } 4456 4457 void AddTypesConvertedFrom(QualType Ty, 4458 SourceLocation Loc, 4459 bool AllowUserConversions, 4460 bool AllowExplicitConversions, 4461 const Qualifiers &VisibleTypeConversionsQuals); 4462 4463 /// pointer_begin - First pointer type found; 4464 iterator pointer_begin() { return PointerTypes.begin(); } 4465 4466 /// pointer_end - Past the last pointer type found; 4467 iterator pointer_end() { return PointerTypes.end(); } 4468 4469 /// member_pointer_begin - First member pointer type found; 4470 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 4471 4472 /// member_pointer_end - Past the last member pointer type found; 4473 iterator member_pointer_end() { return MemberPointerTypes.end(); } 4474 4475 /// enumeration_begin - First enumeration type found; 4476 iterator enumeration_begin() { return EnumerationTypes.begin(); } 4477 4478 /// enumeration_end - Past the last enumeration type found; 4479 iterator enumeration_end() { return EnumerationTypes.end(); } 4480 4481 iterator vector_begin() { return VectorTypes.begin(); } 4482 iterator vector_end() { return VectorTypes.end(); } 4483 4484 bool hasNonRecordTypes() { return HasNonRecordTypes; } 4485 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 4486}; 4487 4488/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 4489/// the set of pointer types along with any more-qualified variants of 4490/// that type. For example, if @p Ty is "int const *", this routine 4491/// will add "int const *", "int const volatile *", "int const 4492/// restrict *", and "int const volatile restrict *" to the set of 4493/// pointer types. Returns true if the add of @p Ty itself succeeded, 4494/// false otherwise. 4495/// 4496/// FIXME: what to do about extended qualifiers? 4497bool 4498BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4499 const Qualifiers &VisibleQuals) { 4500 4501 // Insert this type. 4502 if (!PointerTypes.insert(Ty)) 4503 return false; 4504 4505 QualType PointeeTy; 4506 const PointerType *PointerTy = Ty->getAs<PointerType>(); 4507 bool buildObjCPtr = false; 4508 if (!PointerTy) { 4509 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) { 4510 PointeeTy = PTy->getPointeeType(); 4511 buildObjCPtr = true; 4512 } 4513 else 4514 assert(false && "type was not a pointer type!"); 4515 } 4516 else 4517 PointeeTy = PointerTy->getPointeeType(); 4518 4519 // Don't add qualified variants of arrays. For one, they're not allowed 4520 // (the qualifier would sink to the element type), and for another, the 4521 // only overload situation where it matters is subscript or pointer +- int, 4522 // and those shouldn't have qualifier variants anyway. 4523 if (PointeeTy->isArrayType()) 4524 return true; 4525 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4526 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 4527 BaseCVR = Array->getElementType().getCVRQualifiers(); 4528 bool hasVolatile = VisibleQuals.hasVolatile(); 4529 bool hasRestrict = VisibleQuals.hasRestrict(); 4530 4531 // Iterate through all strict supersets of BaseCVR. 4532 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4533 if ((CVR | BaseCVR) != CVR) continue; 4534 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 4535 // in the types. 4536 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 4537 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 4538 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4539 if (!buildObjCPtr) 4540 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 4541 else 4542 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); 4543 } 4544 4545 return true; 4546} 4547 4548/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 4549/// to the set of pointer types along with any more-qualified variants of 4550/// that type. For example, if @p Ty is "int const *", this routine 4551/// will add "int const *", "int const volatile *", "int const 4552/// restrict *", and "int const volatile restrict *" to the set of 4553/// pointer types. Returns true if the add of @p Ty itself succeeded, 4554/// false otherwise. 4555/// 4556/// FIXME: what to do about extended qualifiers? 4557bool 4558BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 4559 QualType Ty) { 4560 // Insert this type. 4561 if (!MemberPointerTypes.insert(Ty)) 4562 return false; 4563 4564 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 4565 assert(PointerTy && "type was not a member pointer type!"); 4566 4567 QualType PointeeTy = PointerTy->getPointeeType(); 4568 // Don't add qualified variants of arrays. For one, they're not allowed 4569 // (the qualifier would sink to the element type), and for another, the 4570 // only overload situation where it matters is subscript or pointer +- int, 4571 // and those shouldn't have qualifier variants anyway. 4572 if (PointeeTy->isArrayType()) 4573 return true; 4574 const Type *ClassTy = PointerTy->getClass(); 4575 4576 // Iterate through all strict supersets of the pointee type's CVR 4577 // qualifiers. 4578 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4579 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4580 if ((CVR | BaseCVR) != CVR) continue; 4581 4582 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4583 MemberPointerTypes.insert( 4584 Context.getMemberPointerType(QPointeeTy, ClassTy)); 4585 } 4586 4587 return true; 4588} 4589 4590/// AddTypesConvertedFrom - Add each of the types to which the type @p 4591/// Ty can be implicit converted to the given set of @p Types. We're 4592/// primarily interested in pointer types and enumeration types. We also 4593/// take member pointer types, for the conditional operator. 4594/// AllowUserConversions is true if we should look at the conversion 4595/// functions of a class type, and AllowExplicitConversions if we 4596/// should also include the explicit conversion functions of a class 4597/// type. 4598void 4599BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 4600 SourceLocation Loc, 4601 bool AllowUserConversions, 4602 bool AllowExplicitConversions, 4603 const Qualifiers &VisibleQuals) { 4604 // Only deal with canonical types. 4605 Ty = Context.getCanonicalType(Ty); 4606 4607 // Look through reference types; they aren't part of the type of an 4608 // expression for the purposes of conversions. 4609 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 4610 Ty = RefTy->getPointeeType(); 4611 4612 // If we're dealing with an array type, decay to the pointer. 4613 if (Ty->isArrayType()) 4614 Ty = SemaRef.Context.getArrayDecayedType(Ty); 4615 4616 // Otherwise, we don't care about qualifiers on the type. 4617 Ty = Ty.getLocalUnqualifiedType(); 4618 4619 // Flag if we ever add a non-record type. 4620 const RecordType *TyRec = Ty->getAs<RecordType>(); 4621 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 4622 4623 // Flag if we encounter an arithmetic type. 4624 HasArithmeticOrEnumeralTypes = 4625 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 4626 4627 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 4628 PointerTypes.insert(Ty); 4629 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 4630 // Insert our type, and its more-qualified variants, into the set 4631 // of types. 4632 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 4633 return; 4634 } else if (Ty->isMemberPointerType()) { 4635 // Member pointers are far easier, since the pointee can't be converted. 4636 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 4637 return; 4638 } else if (Ty->isEnumeralType()) { 4639 HasArithmeticOrEnumeralTypes = true; 4640 EnumerationTypes.insert(Ty); 4641 } else if (Ty->isVectorType()) { 4642 // We treat vector types as arithmetic types in many contexts as an 4643 // extension. 4644 HasArithmeticOrEnumeralTypes = true; 4645 VectorTypes.insert(Ty); 4646 } else if (AllowUserConversions && TyRec) { 4647 // No conversion functions in incomplete types. 4648 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) 4649 return; 4650 4651 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4652 const UnresolvedSetImpl *Conversions 4653 = ClassDecl->getVisibleConversionFunctions(); 4654 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4655 E = Conversions->end(); I != E; ++I) { 4656 NamedDecl *D = I.getDecl(); 4657 if (isa<UsingShadowDecl>(D)) 4658 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4659 4660 // Skip conversion function templates; they don't tell us anything 4661 // about which builtin types we can convert to. 4662 if (isa<FunctionTemplateDecl>(D)) 4663 continue; 4664 4665 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 4666 if (AllowExplicitConversions || !Conv->isExplicit()) { 4667 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 4668 VisibleQuals); 4669 } 4670 } 4671 } 4672} 4673 4674/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 4675/// the volatile- and non-volatile-qualified assignment operators for the 4676/// given type to the candidate set. 4677static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 4678 QualType T, 4679 Expr **Args, 4680 unsigned NumArgs, 4681 OverloadCandidateSet &CandidateSet) { 4682 QualType ParamTypes[2]; 4683 4684 // T& operator=(T&, T) 4685 ParamTypes[0] = S.Context.getLValueReferenceType(T); 4686 ParamTypes[1] = T; 4687 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4688 /*IsAssignmentOperator=*/true); 4689 4690 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 4691 // volatile T& operator=(volatile T&, T) 4692 ParamTypes[0] 4693 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 4694 ParamTypes[1] = T; 4695 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4696 /*IsAssignmentOperator=*/true); 4697 } 4698} 4699 4700/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 4701/// if any, found in visible type conversion functions found in ArgExpr's type. 4702static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 4703 Qualifiers VRQuals; 4704 const RecordType *TyRec; 4705 if (const MemberPointerType *RHSMPType = 4706 ArgExpr->getType()->getAs<MemberPointerType>()) 4707 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 4708 else 4709 TyRec = ArgExpr->getType()->getAs<RecordType>(); 4710 if (!TyRec) { 4711 // Just to be safe, assume the worst case. 4712 VRQuals.addVolatile(); 4713 VRQuals.addRestrict(); 4714 return VRQuals; 4715 } 4716 4717 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4718 if (!ClassDecl->hasDefinition()) 4719 return VRQuals; 4720 4721 const UnresolvedSetImpl *Conversions = 4722 ClassDecl->getVisibleConversionFunctions(); 4723 4724 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4725 E = Conversions->end(); I != E; ++I) { 4726 NamedDecl *D = I.getDecl(); 4727 if (isa<UsingShadowDecl>(D)) 4728 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4729 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 4730 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 4731 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 4732 CanTy = ResTypeRef->getPointeeType(); 4733 // Need to go down the pointer/mempointer chain and add qualifiers 4734 // as see them. 4735 bool done = false; 4736 while (!done) { 4737 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 4738 CanTy = ResTypePtr->getPointeeType(); 4739 else if (const MemberPointerType *ResTypeMPtr = 4740 CanTy->getAs<MemberPointerType>()) 4741 CanTy = ResTypeMPtr->getPointeeType(); 4742 else 4743 done = true; 4744 if (CanTy.isVolatileQualified()) 4745 VRQuals.addVolatile(); 4746 if (CanTy.isRestrictQualified()) 4747 VRQuals.addRestrict(); 4748 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 4749 return VRQuals; 4750 } 4751 } 4752 } 4753 return VRQuals; 4754} 4755 4756namespace { 4757 4758/// \brief Helper class to manage the addition of builtin operator overload 4759/// candidates. It provides shared state and utility methods used throughout 4760/// the process, as well as a helper method to add each group of builtin 4761/// operator overloads from the standard to a candidate set. 4762class BuiltinOperatorOverloadBuilder { 4763 // Common instance state available to all overload candidate addition methods. 4764 Sema &S; 4765 Expr **Args; 4766 unsigned NumArgs; 4767 Qualifiers VisibleTypeConversionsQuals; 4768 bool HasArithmeticOrEnumeralCandidateType; 4769 llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 4770 OverloadCandidateSet &CandidateSet; 4771 4772 // Define some constants used to index and iterate over the arithemetic types 4773 // provided via the getArithmeticType() method below. 4774 // The "promoted arithmetic types" are the arithmetic 4775 // types are that preserved by promotion (C++ [over.built]p2). 4776 static const unsigned FirstIntegralType = 3; 4777 static const unsigned LastIntegralType = 18; 4778 static const unsigned FirstPromotedIntegralType = 3, 4779 LastPromotedIntegralType = 9; 4780 static const unsigned FirstPromotedArithmeticType = 0, 4781 LastPromotedArithmeticType = 9; 4782 static const unsigned NumArithmeticTypes = 18; 4783 4784 /// \brief Get the canonical type for a given arithmetic type index. 4785 CanQualType getArithmeticType(unsigned index) { 4786 assert(index < NumArithmeticTypes); 4787 static CanQualType ASTContext::* const 4788 ArithmeticTypes[NumArithmeticTypes] = { 4789 // Start of promoted types. 4790 &ASTContext::FloatTy, 4791 &ASTContext::DoubleTy, 4792 &ASTContext::LongDoubleTy, 4793 4794 // Start of integral types. 4795 &ASTContext::IntTy, 4796 &ASTContext::LongTy, 4797 &ASTContext::LongLongTy, 4798 &ASTContext::UnsignedIntTy, 4799 &ASTContext::UnsignedLongTy, 4800 &ASTContext::UnsignedLongLongTy, 4801 // End of promoted types. 4802 4803 &ASTContext::BoolTy, 4804 &ASTContext::CharTy, 4805 &ASTContext::WCharTy, 4806 &ASTContext::Char16Ty, 4807 &ASTContext::Char32Ty, 4808 &ASTContext::SignedCharTy, 4809 &ASTContext::ShortTy, 4810 &ASTContext::UnsignedCharTy, 4811 &ASTContext::UnsignedShortTy, 4812 // End of integral types. 4813 // FIXME: What about complex? 4814 }; 4815 return S.Context.*ArithmeticTypes[index]; 4816 } 4817 4818 /// \brief Gets the canonical type resulting from the usual arithemetic 4819 /// converions for the given arithmetic types. 4820 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) { 4821 // Accelerator table for performing the usual arithmetic conversions. 4822 // The rules are basically: 4823 // - if either is floating-point, use the wider floating-point 4824 // - if same signedness, use the higher rank 4825 // - if same size, use unsigned of the higher rank 4826 // - use the larger type 4827 // These rules, together with the axiom that higher ranks are 4828 // never smaller, are sufficient to precompute all of these results 4829 // *except* when dealing with signed types of higher rank. 4830 // (we could precompute SLL x UI for all known platforms, but it's 4831 // better not to make any assumptions). 4832 enum PromotedType { 4833 Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1 4834 }; 4835 static PromotedType ConversionsTable[LastPromotedArithmeticType] 4836 [LastPromotedArithmeticType] = { 4837 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt }, 4838 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl }, 4839 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, 4840 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL }, 4841 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL }, 4842 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL }, 4843 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL }, 4844 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL }, 4845 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL }, 4846 }; 4847 4848 assert(L < LastPromotedArithmeticType); 4849 assert(R < LastPromotedArithmeticType); 4850 int Idx = ConversionsTable[L][R]; 4851 4852 // Fast path: the table gives us a concrete answer. 4853 if (Idx != Dep) return getArithmeticType(Idx); 4854 4855 // Slow path: we need to compare widths. 4856 // An invariant is that the signed type has higher rank. 4857 CanQualType LT = getArithmeticType(L), 4858 RT = getArithmeticType(R); 4859 unsigned LW = S.Context.getIntWidth(LT), 4860 RW = S.Context.getIntWidth(RT); 4861 4862 // If they're different widths, use the signed type. 4863 if (LW > RW) return LT; 4864 else if (LW < RW) return RT; 4865 4866 // Otherwise, use the unsigned type of the signed type's rank. 4867 if (L == SL || R == SL) return S.Context.UnsignedLongTy; 4868 assert(L == SLL || R == SLL); 4869 return S.Context.UnsignedLongLongTy; 4870 } 4871 4872 /// \brief Helper method to factor out the common pattern of adding overloads 4873 /// for '++' and '--' builtin operators. 4874 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 4875 bool HasVolatile) { 4876 QualType ParamTypes[2] = { 4877 S.Context.getLValueReferenceType(CandidateTy), 4878 S.Context.IntTy 4879 }; 4880 4881 // Non-volatile version. 4882 if (NumArgs == 1) 4883 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4884 else 4885 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 4886 4887 // Use a heuristic to reduce number of builtin candidates in the set: 4888 // add volatile version only if there are conversions to a volatile type. 4889 if (HasVolatile) { 4890 ParamTypes[0] = 4891 S.Context.getLValueReferenceType( 4892 S.Context.getVolatileType(CandidateTy)); 4893 if (NumArgs == 1) 4894 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4895 else 4896 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 4897 } 4898 } 4899 4900public: 4901 BuiltinOperatorOverloadBuilder( 4902 Sema &S, Expr **Args, unsigned NumArgs, 4903 Qualifiers VisibleTypeConversionsQuals, 4904 bool HasArithmeticOrEnumeralCandidateType, 4905 llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 4906 OverloadCandidateSet &CandidateSet) 4907 : S(S), Args(Args), NumArgs(NumArgs), 4908 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 4909 HasArithmeticOrEnumeralCandidateType( 4910 HasArithmeticOrEnumeralCandidateType), 4911 CandidateTypes(CandidateTypes), 4912 CandidateSet(CandidateSet) { 4913 // Validate some of our static helper constants in debug builds. 4914 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy && 4915 "Invalid first promoted integral type"); 4916 assert(getArithmeticType(LastPromotedIntegralType - 1) 4917 == S.Context.UnsignedLongLongTy && 4918 "Invalid last promoted integral type"); 4919 assert(getArithmeticType(FirstPromotedArithmeticType) 4920 == S.Context.FloatTy && 4921 "Invalid first promoted arithmetic type"); 4922 assert(getArithmeticType(LastPromotedArithmeticType - 1) 4923 == S.Context.UnsignedLongLongTy && 4924 "Invalid last promoted arithmetic type"); 4925 } 4926 4927 // C++ [over.built]p3: 4928 // 4929 // For every pair (T, VQ), where T is an arithmetic type, and VQ 4930 // is either volatile or empty, there exist candidate operator 4931 // functions of the form 4932 // 4933 // VQ T& operator++(VQ T&); 4934 // T operator++(VQ T&, int); 4935 // 4936 // C++ [over.built]p4: 4937 // 4938 // For every pair (T, VQ), where T is an arithmetic type other 4939 // than bool, and VQ is either volatile or empty, there exist 4940 // candidate operator functions of the form 4941 // 4942 // VQ T& operator--(VQ T&); 4943 // T operator--(VQ T&, int); 4944 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 4945 if (!HasArithmeticOrEnumeralCandidateType) 4946 return; 4947 4948 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 4949 Arith < NumArithmeticTypes; ++Arith) { 4950 addPlusPlusMinusMinusStyleOverloads( 4951 getArithmeticType(Arith), 4952 VisibleTypeConversionsQuals.hasVolatile()); 4953 } 4954 } 4955 4956 // C++ [over.built]p5: 4957 // 4958 // For every pair (T, VQ), where T is a cv-qualified or 4959 // cv-unqualified object type, and VQ is either volatile or 4960 // empty, there exist candidate operator functions of the form 4961 // 4962 // T*VQ& operator++(T*VQ&); 4963 // T*VQ& operator--(T*VQ&); 4964 // T* operator++(T*VQ&, int); 4965 // T* operator--(T*VQ&, int); 4966 void addPlusPlusMinusMinusPointerOverloads() { 4967 for (BuiltinCandidateTypeSet::iterator 4968 Ptr = CandidateTypes[0].pointer_begin(), 4969 PtrEnd = CandidateTypes[0].pointer_end(); 4970 Ptr != PtrEnd; ++Ptr) { 4971 // Skip pointer types that aren't pointers to object types. 4972 if (!(*Ptr)->getPointeeType()->isObjectType()) 4973 continue; 4974 4975 addPlusPlusMinusMinusStyleOverloads(*Ptr, 4976 (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 4977 VisibleTypeConversionsQuals.hasVolatile())); 4978 } 4979 } 4980 4981 // C++ [over.built]p6: 4982 // For every cv-qualified or cv-unqualified object type T, there 4983 // exist candidate operator functions of the form 4984 // 4985 // T& operator*(T*); 4986 // 4987 // C++ [over.built]p7: 4988 // For every function type T that does not have cv-qualifiers or a 4989 // ref-qualifier, there exist candidate operator functions of the form 4990 // T& operator*(T*); 4991 void addUnaryStarPointerOverloads() { 4992 for (BuiltinCandidateTypeSet::iterator 4993 Ptr = CandidateTypes[0].pointer_begin(), 4994 PtrEnd = CandidateTypes[0].pointer_end(); 4995 Ptr != PtrEnd; ++Ptr) { 4996 QualType ParamTy = *Ptr; 4997 QualType PointeeTy = ParamTy->getPointeeType(); 4998 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 4999 continue; 5000 5001 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 5002 if (Proto->getTypeQuals() || Proto->getRefQualifier()) 5003 continue; 5004 5005 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy), 5006 &ParamTy, Args, 1, CandidateSet); 5007 } 5008 } 5009 5010 // C++ [over.built]p9: 5011 // For every promoted arithmetic type T, there exist candidate 5012 // operator functions of the form 5013 // 5014 // T operator+(T); 5015 // T operator-(T); 5016 void addUnaryPlusOrMinusArithmeticOverloads() { 5017 if (!HasArithmeticOrEnumeralCandidateType) 5018 return; 5019 5020 for (unsigned Arith = FirstPromotedArithmeticType; 5021 Arith < LastPromotedArithmeticType; ++Arith) { 5022 QualType ArithTy = getArithmeticType(Arith); 5023 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 5024 } 5025 5026 // Extension: We also add these operators for vector types. 5027 for (BuiltinCandidateTypeSet::iterator 5028 Vec = CandidateTypes[0].vector_begin(), 5029 VecEnd = CandidateTypes[0].vector_end(); 5030 Vec != VecEnd; ++Vec) { 5031 QualType VecTy = *Vec; 5032 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 5033 } 5034 } 5035 5036 // C++ [over.built]p8: 5037 // For every type T, there exist candidate operator functions of 5038 // the form 5039 // 5040 // T* operator+(T*); 5041 void addUnaryPlusPointerOverloads() { 5042 for (BuiltinCandidateTypeSet::iterator 5043 Ptr = CandidateTypes[0].pointer_begin(), 5044 PtrEnd = CandidateTypes[0].pointer_end(); 5045 Ptr != PtrEnd; ++Ptr) { 5046 QualType ParamTy = *Ptr; 5047 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 5048 } 5049 } 5050 5051 // C++ [over.built]p10: 5052 // For every promoted integral type T, there exist candidate 5053 // operator functions of the form 5054 // 5055 // T operator~(T); 5056 void addUnaryTildePromotedIntegralOverloads() { 5057 if (!HasArithmeticOrEnumeralCandidateType) 5058 return; 5059 5060 for (unsigned Int = FirstPromotedIntegralType; 5061 Int < LastPromotedIntegralType; ++Int) { 5062 QualType IntTy = getArithmeticType(Int); 5063 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 5064 } 5065 5066 // Extension: We also add this operator for vector types. 5067 for (BuiltinCandidateTypeSet::iterator 5068 Vec = CandidateTypes[0].vector_begin(), 5069 VecEnd = CandidateTypes[0].vector_end(); 5070 Vec != VecEnd; ++Vec) { 5071 QualType VecTy = *Vec; 5072 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 5073 } 5074 } 5075 5076 // C++ [over.match.oper]p16: 5077 // For every pointer to member type T, there exist candidate operator 5078 // functions of the form 5079 // 5080 // bool operator==(T,T); 5081 // bool operator!=(T,T); 5082 void addEqualEqualOrNotEqualMemberPointerOverloads() { 5083 /// Set of (canonical) types that we've already handled. 5084 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5085 5086 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5087 for (BuiltinCandidateTypeSet::iterator 5088 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5089 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5090 MemPtr != MemPtrEnd; 5091 ++MemPtr) { 5092 // Don't add the same builtin candidate twice. 5093 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5094 continue; 5095 5096 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 5097 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5098 CandidateSet); 5099 } 5100 } 5101 } 5102 5103 // C++ [over.built]p15: 5104 // 5105 // For every pointer or enumeration type T, there exist 5106 // candidate operator functions of the form 5107 // 5108 // bool operator<(T, T); 5109 // bool operator>(T, T); 5110 // bool operator<=(T, T); 5111 // bool operator>=(T, T); 5112 // bool operator==(T, T); 5113 // bool operator!=(T, T); 5114 void addRelationalPointerOrEnumeralOverloads() { 5115 // C++ [over.built]p1: 5116 // If there is a user-written candidate with the same name and parameter 5117 // types as a built-in candidate operator function, the built-in operator 5118 // function is hidden and is not included in the set of candidate 5119 // functions. 5120 // 5121 // The text is actually in a note, but if we don't implement it then we end 5122 // up with ambiguities when the user provides an overloaded operator for 5123 // an enumeration type. Note that only enumeration types have this problem, 5124 // so we track which enumeration types we've seen operators for. Also, the 5125 // only other overloaded operator with enumeration argumenst, operator=, 5126 // cannot be overloaded for enumeration types, so this is the only place 5127 // where we must suppress candidates like this. 5128 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 5129 UserDefinedBinaryOperators; 5130 5131 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5132 if (CandidateTypes[ArgIdx].enumeration_begin() != 5133 CandidateTypes[ArgIdx].enumeration_end()) { 5134 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 5135 CEnd = CandidateSet.end(); 5136 C != CEnd; ++C) { 5137 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 5138 continue; 5139 5140 QualType FirstParamType = 5141 C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 5142 QualType SecondParamType = 5143 C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 5144 5145 // Skip if either parameter isn't of enumeral type. 5146 if (!FirstParamType->isEnumeralType() || 5147 !SecondParamType->isEnumeralType()) 5148 continue; 5149 5150 // Add this operator to the set of known user-defined operators. 5151 UserDefinedBinaryOperators.insert( 5152 std::make_pair(S.Context.getCanonicalType(FirstParamType), 5153 S.Context.getCanonicalType(SecondParamType))); 5154 } 5155 } 5156 } 5157 5158 /// Set of (canonical) types that we've already handled. 5159 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5160 5161 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5162 for (BuiltinCandidateTypeSet::iterator 5163 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 5164 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 5165 Ptr != PtrEnd; ++Ptr) { 5166 // Don't add the same builtin candidate twice. 5167 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5168 continue; 5169 5170 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5171 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5172 CandidateSet); 5173 } 5174 for (BuiltinCandidateTypeSet::iterator 5175 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5176 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5177 Enum != EnumEnd; ++Enum) { 5178 CanQualType CanonType = S.Context.getCanonicalType(*Enum); 5179 5180 // Don't add the same builtin candidate twice, or if a user defined 5181 // candidate exists. 5182 if (!AddedTypes.insert(CanonType) || 5183 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 5184 CanonType))) 5185 continue; 5186 5187 QualType ParamTypes[2] = { *Enum, *Enum }; 5188 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5189 CandidateSet); 5190 } 5191 } 5192 } 5193 5194 // C++ [over.built]p13: 5195 // 5196 // For every cv-qualified or cv-unqualified object type T 5197 // there exist candidate operator functions of the form 5198 // 5199 // T* operator+(T*, ptrdiff_t); 5200 // T& operator[](T*, ptrdiff_t); [BELOW] 5201 // T* operator-(T*, ptrdiff_t); 5202 // T* operator+(ptrdiff_t, T*); 5203 // T& operator[](ptrdiff_t, T*); [BELOW] 5204 // 5205 // C++ [over.built]p14: 5206 // 5207 // For every T, where T is a pointer to object type, there 5208 // exist candidate operator functions of the form 5209 // 5210 // ptrdiff_t operator-(T, T); 5211 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 5212 /// Set of (canonical) types that we've already handled. 5213 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5214 5215 for (int Arg = 0; Arg < 2; ++Arg) { 5216 QualType AsymetricParamTypes[2] = { 5217 S.Context.getPointerDiffType(), 5218 S.Context.getPointerDiffType(), 5219 }; 5220 for (BuiltinCandidateTypeSet::iterator 5221 Ptr = CandidateTypes[Arg].pointer_begin(), 5222 PtrEnd = CandidateTypes[Arg].pointer_end(); 5223 Ptr != PtrEnd; ++Ptr) { 5224 QualType PointeeTy = (*Ptr)->getPointeeType(); 5225 if (!PointeeTy->isObjectType()) 5226 continue; 5227 5228 AsymetricParamTypes[Arg] = *Ptr; 5229 if (Arg == 0 || Op == OO_Plus) { 5230 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 5231 // T* operator+(ptrdiff_t, T*); 5232 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2, 5233 CandidateSet); 5234 } 5235 if (Op == OO_Minus) { 5236 // ptrdiff_t operator-(T, T); 5237 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5238 continue; 5239 5240 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5241 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes, 5242 Args, 2, CandidateSet); 5243 } 5244 } 5245 } 5246 } 5247 5248 // C++ [over.built]p12: 5249 // 5250 // For every pair of promoted arithmetic types L and R, there 5251 // exist candidate operator functions of the form 5252 // 5253 // LR operator*(L, R); 5254 // LR operator/(L, R); 5255 // LR operator+(L, R); 5256 // LR operator-(L, R); 5257 // bool operator<(L, R); 5258 // bool operator>(L, R); 5259 // bool operator<=(L, R); 5260 // bool operator>=(L, R); 5261 // bool operator==(L, R); 5262 // bool operator!=(L, R); 5263 // 5264 // where LR is the result of the usual arithmetic conversions 5265 // between types L and R. 5266 // 5267 // C++ [over.built]p24: 5268 // 5269 // For every pair of promoted arithmetic types L and R, there exist 5270 // candidate operator functions of the form 5271 // 5272 // LR operator?(bool, L, R); 5273 // 5274 // where LR is the result of the usual arithmetic conversions 5275 // between types L and R. 5276 // Our candidates ignore the first parameter. 5277 void addGenericBinaryArithmeticOverloads(bool isComparison) { 5278 if (!HasArithmeticOrEnumeralCandidateType) 5279 return; 5280 5281 for (unsigned Left = FirstPromotedArithmeticType; 5282 Left < LastPromotedArithmeticType; ++Left) { 5283 for (unsigned Right = FirstPromotedArithmeticType; 5284 Right < LastPromotedArithmeticType; ++Right) { 5285 QualType LandR[2] = { getArithmeticType(Left), 5286 getArithmeticType(Right) }; 5287 QualType Result = 5288 isComparison ? S.Context.BoolTy 5289 : getUsualArithmeticConversions(Left, Right); 5290 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5291 } 5292 } 5293 5294 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 5295 // conditional operator for vector types. 5296 for (BuiltinCandidateTypeSet::iterator 5297 Vec1 = CandidateTypes[0].vector_begin(), 5298 Vec1End = CandidateTypes[0].vector_end(); 5299 Vec1 != Vec1End; ++Vec1) { 5300 for (BuiltinCandidateTypeSet::iterator 5301 Vec2 = CandidateTypes[1].vector_begin(), 5302 Vec2End = CandidateTypes[1].vector_end(); 5303 Vec2 != Vec2End; ++Vec2) { 5304 QualType LandR[2] = { *Vec1, *Vec2 }; 5305 QualType Result = S.Context.BoolTy; 5306 if (!isComparison) { 5307 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 5308 Result = *Vec1; 5309 else 5310 Result = *Vec2; 5311 } 5312 5313 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5314 } 5315 } 5316 } 5317 5318 // C++ [over.built]p17: 5319 // 5320 // For every pair of promoted integral types L and R, there 5321 // exist candidate operator functions of the form 5322 // 5323 // LR operator%(L, R); 5324 // LR operator&(L, R); 5325 // LR operator^(L, R); 5326 // LR operator|(L, R); 5327 // L operator<<(L, R); 5328 // L operator>>(L, R); 5329 // 5330 // where LR is the result of the usual arithmetic conversions 5331 // between types L and R. 5332 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { 5333 if (!HasArithmeticOrEnumeralCandidateType) 5334 return; 5335 5336 for (unsigned Left = FirstPromotedIntegralType; 5337 Left < LastPromotedIntegralType; ++Left) { 5338 for (unsigned Right = FirstPromotedIntegralType; 5339 Right < LastPromotedIntegralType; ++Right) { 5340 QualType LandR[2] = { getArithmeticType(Left), 5341 getArithmeticType(Right) }; 5342 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 5343 ? LandR[0] 5344 : getUsualArithmeticConversions(Left, Right); 5345 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5346 } 5347 } 5348 } 5349 5350 // C++ [over.built]p20: 5351 // 5352 // For every pair (T, VQ), where T is an enumeration or 5353 // pointer to member type and VQ is either volatile or 5354 // empty, there exist candidate operator functions of the form 5355 // 5356 // VQ T& operator=(VQ T&, T); 5357 void addAssignmentMemberPointerOrEnumeralOverloads() { 5358 /// Set of (canonical) types that we've already handled. 5359 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5360 5361 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 5362 for (BuiltinCandidateTypeSet::iterator 5363 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5364 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5365 Enum != EnumEnd; ++Enum) { 5366 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 5367 continue; 5368 5369 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2, 5370 CandidateSet); 5371 } 5372 5373 for (BuiltinCandidateTypeSet::iterator 5374 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5375 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5376 MemPtr != MemPtrEnd; ++MemPtr) { 5377 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5378 continue; 5379 5380 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2, 5381 CandidateSet); 5382 } 5383 } 5384 } 5385 5386 // C++ [over.built]p19: 5387 // 5388 // For every pair (T, VQ), where T is any type and VQ is either 5389 // volatile or empty, there exist candidate operator functions 5390 // of the form 5391 // 5392 // T*VQ& operator=(T*VQ&, T*); 5393 // 5394 // C++ [over.built]p21: 5395 // 5396 // For every pair (T, VQ), where T is a cv-qualified or 5397 // cv-unqualified object type and VQ is either volatile or 5398 // empty, there exist candidate operator functions of the form 5399 // 5400 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 5401 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 5402 void addAssignmentPointerOverloads(bool isEqualOp) { 5403 /// Set of (canonical) types that we've already handled. 5404 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5405 5406 for (BuiltinCandidateTypeSet::iterator 5407 Ptr = CandidateTypes[0].pointer_begin(), 5408 PtrEnd = CandidateTypes[0].pointer_end(); 5409 Ptr != PtrEnd; ++Ptr) { 5410 // If this is operator=, keep track of the builtin candidates we added. 5411 if (isEqualOp) 5412 AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); 5413 else if (!(*Ptr)->getPointeeType()->isObjectType()) 5414 continue; 5415 5416 // non-volatile version 5417 QualType ParamTypes[2] = { 5418 S.Context.getLValueReferenceType(*Ptr), 5419 isEqualOp ? *Ptr : S.Context.getPointerDiffType(), 5420 }; 5421 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5422 /*IsAssigmentOperator=*/ isEqualOp); 5423 5424 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5425 VisibleTypeConversionsQuals.hasVolatile()) { 5426 // volatile version 5427 ParamTypes[0] = 5428 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 5429 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5430 /*IsAssigmentOperator=*/isEqualOp); 5431 } 5432 } 5433 5434 if (isEqualOp) { 5435 for (BuiltinCandidateTypeSet::iterator 5436 Ptr = CandidateTypes[1].pointer_begin(), 5437 PtrEnd = CandidateTypes[1].pointer_end(); 5438 Ptr != PtrEnd; ++Ptr) { 5439 // Make sure we don't add the same candidate twice. 5440 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5441 continue; 5442 5443 QualType ParamTypes[2] = { 5444 S.Context.getLValueReferenceType(*Ptr), 5445 *Ptr, 5446 }; 5447 5448 // non-volatile version 5449 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5450 /*IsAssigmentOperator=*/true); 5451 5452 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5453 VisibleTypeConversionsQuals.hasVolatile()) { 5454 // volatile version 5455 ParamTypes[0] = 5456 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 5457 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5458 CandidateSet, /*IsAssigmentOperator=*/true); 5459 } 5460 } 5461 } 5462 } 5463 5464 // C++ [over.built]p18: 5465 // 5466 // For every triple (L, VQ, R), where L is an arithmetic type, 5467 // VQ is either volatile or empty, and R is a promoted 5468 // arithmetic type, there exist candidate operator functions of 5469 // the form 5470 // 5471 // VQ L& operator=(VQ L&, R); 5472 // VQ L& operator*=(VQ L&, R); 5473 // VQ L& operator/=(VQ L&, R); 5474 // VQ L& operator+=(VQ L&, R); 5475 // VQ L& operator-=(VQ L&, R); 5476 void addAssignmentArithmeticOverloads(bool isEqualOp) { 5477 if (!HasArithmeticOrEnumeralCandidateType) 5478 return; 5479 5480 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 5481 for (unsigned Right = FirstPromotedArithmeticType; 5482 Right < LastPromotedArithmeticType; ++Right) { 5483 QualType ParamTypes[2]; 5484 ParamTypes[1] = getArithmeticType(Right); 5485 5486 // Add this built-in operator as a candidate (VQ is empty). 5487 ParamTypes[0] = 5488 S.Context.getLValueReferenceType(getArithmeticType(Left)); 5489 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5490 /*IsAssigmentOperator=*/isEqualOp); 5491 5492 // Add this built-in operator as a candidate (VQ is 'volatile'). 5493 if (VisibleTypeConversionsQuals.hasVolatile()) { 5494 ParamTypes[0] = 5495 S.Context.getVolatileType(getArithmeticType(Left)); 5496 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 5497 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5498 CandidateSet, 5499 /*IsAssigmentOperator=*/isEqualOp); 5500 } 5501 } 5502 } 5503 5504 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 5505 for (BuiltinCandidateTypeSet::iterator 5506 Vec1 = CandidateTypes[0].vector_begin(), 5507 Vec1End = CandidateTypes[0].vector_end(); 5508 Vec1 != Vec1End; ++Vec1) { 5509 for (BuiltinCandidateTypeSet::iterator 5510 Vec2 = CandidateTypes[1].vector_begin(), 5511 Vec2End = CandidateTypes[1].vector_end(); 5512 Vec2 != Vec2End; ++Vec2) { 5513 QualType ParamTypes[2]; 5514 ParamTypes[1] = *Vec2; 5515 // Add this built-in operator as a candidate (VQ is empty). 5516 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); 5517 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5518 /*IsAssigmentOperator=*/isEqualOp); 5519 5520 // Add this built-in operator as a candidate (VQ is 'volatile'). 5521 if (VisibleTypeConversionsQuals.hasVolatile()) { 5522 ParamTypes[0] = S.Context.getVolatileType(*Vec1); 5523 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 5524 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5525 CandidateSet, 5526 /*IsAssigmentOperator=*/isEqualOp); 5527 } 5528 } 5529 } 5530 } 5531 5532 // C++ [over.built]p22: 5533 // 5534 // For every triple (L, VQ, R), where L is an integral type, VQ 5535 // is either volatile or empty, and R is a promoted integral 5536 // type, there exist candidate operator functions of the form 5537 // 5538 // VQ L& operator%=(VQ L&, R); 5539 // VQ L& operator<<=(VQ L&, R); 5540 // VQ L& operator>>=(VQ L&, R); 5541 // VQ L& operator&=(VQ L&, R); 5542 // VQ L& operator^=(VQ L&, R); 5543 // VQ L& operator|=(VQ L&, R); 5544 void addAssignmentIntegralOverloads() { 5545 if (!HasArithmeticOrEnumeralCandidateType) 5546 return; 5547 5548 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 5549 for (unsigned Right = FirstPromotedIntegralType; 5550 Right < LastPromotedIntegralType; ++Right) { 5551 QualType ParamTypes[2]; 5552 ParamTypes[1] = getArithmeticType(Right); 5553 5554 // Add this built-in operator as a candidate (VQ is empty). 5555 ParamTypes[0] = 5556 S.Context.getLValueReferenceType(getArithmeticType(Left)); 5557 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 5558 if (VisibleTypeConversionsQuals.hasVolatile()) { 5559 // Add this built-in operator as a candidate (VQ is 'volatile'). 5560 ParamTypes[0] = getArithmeticType(Left); 5561 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 5562 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 5563 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5564 CandidateSet); 5565 } 5566 } 5567 } 5568 } 5569 5570 // C++ [over.operator]p23: 5571 // 5572 // There also exist candidate operator functions of the form 5573 // 5574 // bool operator!(bool); 5575 // bool operator&&(bool, bool); 5576 // bool operator||(bool, bool); 5577 void addExclaimOverload() { 5578 QualType ParamTy = S.Context.BoolTy; 5579 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 5580 /*IsAssignmentOperator=*/false, 5581 /*NumContextualBoolArguments=*/1); 5582 } 5583 void addAmpAmpOrPipePipeOverload() { 5584 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 5585 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 5586 /*IsAssignmentOperator=*/false, 5587 /*NumContextualBoolArguments=*/2); 5588 } 5589 5590 // C++ [over.built]p13: 5591 // 5592 // For every cv-qualified or cv-unqualified object type T there 5593 // exist candidate operator functions of the form 5594 // 5595 // T* operator+(T*, ptrdiff_t); [ABOVE] 5596 // T& operator[](T*, ptrdiff_t); 5597 // T* operator-(T*, ptrdiff_t); [ABOVE] 5598 // T* operator+(ptrdiff_t, T*); [ABOVE] 5599 // T& operator[](ptrdiff_t, T*); 5600 void addSubscriptOverloads() { 5601 for (BuiltinCandidateTypeSet::iterator 5602 Ptr = CandidateTypes[0].pointer_begin(), 5603 PtrEnd = CandidateTypes[0].pointer_end(); 5604 Ptr != PtrEnd; ++Ptr) { 5605 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; 5606 QualType PointeeType = (*Ptr)->getPointeeType(); 5607 if (!PointeeType->isObjectType()) 5608 continue; 5609 5610 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 5611 5612 // T& operator[](T*, ptrdiff_t) 5613 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5614 } 5615 5616 for (BuiltinCandidateTypeSet::iterator 5617 Ptr = CandidateTypes[1].pointer_begin(), 5618 PtrEnd = CandidateTypes[1].pointer_end(); 5619 Ptr != PtrEnd; ++Ptr) { 5620 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; 5621 QualType PointeeType = (*Ptr)->getPointeeType(); 5622 if (!PointeeType->isObjectType()) 5623 continue; 5624 5625 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 5626 5627 // T& operator[](ptrdiff_t, T*) 5628 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5629 } 5630 } 5631 5632 // C++ [over.built]p11: 5633 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 5634 // C1 is the same type as C2 or is a derived class of C2, T is an object 5635 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 5636 // there exist candidate operator functions of the form 5637 // 5638 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 5639 // 5640 // where CV12 is the union of CV1 and CV2. 5641 void addArrowStarOverloads() { 5642 for (BuiltinCandidateTypeSet::iterator 5643 Ptr = CandidateTypes[0].pointer_begin(), 5644 PtrEnd = CandidateTypes[0].pointer_end(); 5645 Ptr != PtrEnd; ++Ptr) { 5646 QualType C1Ty = (*Ptr); 5647 QualType C1; 5648 QualifierCollector Q1; 5649 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 5650 if (!isa<RecordType>(C1)) 5651 continue; 5652 // heuristic to reduce number of builtin candidates in the set. 5653 // Add volatile/restrict version only if there are conversions to a 5654 // volatile/restrict type. 5655 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 5656 continue; 5657 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 5658 continue; 5659 for (BuiltinCandidateTypeSet::iterator 5660 MemPtr = CandidateTypes[1].member_pointer_begin(), 5661 MemPtrEnd = CandidateTypes[1].member_pointer_end(); 5662 MemPtr != MemPtrEnd; ++MemPtr) { 5663 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 5664 QualType C2 = QualType(mptr->getClass(), 0); 5665 C2 = C2.getUnqualifiedType(); 5666 if (C1 != C2 && !S.IsDerivedFrom(C1, C2)) 5667 break; 5668 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 5669 // build CV12 T& 5670 QualType T = mptr->getPointeeType(); 5671 if (!VisibleTypeConversionsQuals.hasVolatile() && 5672 T.isVolatileQualified()) 5673 continue; 5674 if (!VisibleTypeConversionsQuals.hasRestrict() && 5675 T.isRestrictQualified()) 5676 continue; 5677 T = Q1.apply(S.Context, T); 5678 QualType ResultTy = S.Context.getLValueReferenceType(T); 5679 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5680 } 5681 } 5682 } 5683 5684 // Note that we don't consider the first argument, since it has been 5685 // contextually converted to bool long ago. The candidates below are 5686 // therefore added as binary. 5687 // 5688 // C++ [over.built]p25: 5689 // For every type T, where T is a pointer, pointer-to-member, or scoped 5690 // enumeration type, there exist candidate operator functions of the form 5691 // 5692 // T operator?(bool, T, T); 5693 // 5694 void addConditionalOperatorOverloads() { 5695 /// Set of (canonical) types that we've already handled. 5696 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5697 5698 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 5699 for (BuiltinCandidateTypeSet::iterator 5700 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 5701 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 5702 Ptr != PtrEnd; ++Ptr) { 5703 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5704 continue; 5705 5706 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5707 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5708 } 5709 5710 for (BuiltinCandidateTypeSet::iterator 5711 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5712 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5713 MemPtr != MemPtrEnd; ++MemPtr) { 5714 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5715 continue; 5716 5717 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 5718 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet); 5719 } 5720 5721 if (S.getLangOptions().CPlusPlus0x) { 5722 for (BuiltinCandidateTypeSet::iterator 5723 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5724 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5725 Enum != EnumEnd; ++Enum) { 5726 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 5727 continue; 5728 5729 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 5730 continue; 5731 5732 QualType ParamTypes[2] = { *Enum, *Enum }; 5733 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); 5734 } 5735 } 5736 } 5737 } 5738}; 5739 5740} // end anonymous namespace 5741 5742/// AddBuiltinOperatorCandidates - Add the appropriate built-in 5743/// operator overloads to the candidate set (C++ [over.built]), based 5744/// on the operator @p Op and the arguments given. For example, if the 5745/// operator is a binary '+', this routine might add "int 5746/// operator+(int, int)" to cover integer addition. 5747void 5748Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 5749 SourceLocation OpLoc, 5750 Expr **Args, unsigned NumArgs, 5751 OverloadCandidateSet& CandidateSet) { 5752 // Find all of the types that the arguments can convert to, but only 5753 // if the operator we're looking at has built-in operator candidates 5754 // that make use of these types. Also record whether we encounter non-record 5755 // candidate types or either arithmetic or enumeral candidate types. 5756 Qualifiers VisibleTypeConversionsQuals; 5757 VisibleTypeConversionsQuals.addConst(); 5758 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5759 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 5760 5761 bool HasNonRecordCandidateType = false; 5762 bool HasArithmeticOrEnumeralCandidateType = false; 5763 llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 5764 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5765 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); 5766 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 5767 OpLoc, 5768 true, 5769 (Op == OO_Exclaim || 5770 Op == OO_AmpAmp || 5771 Op == OO_PipePipe), 5772 VisibleTypeConversionsQuals); 5773 HasNonRecordCandidateType = HasNonRecordCandidateType || 5774 CandidateTypes[ArgIdx].hasNonRecordTypes(); 5775 HasArithmeticOrEnumeralCandidateType = 5776 HasArithmeticOrEnumeralCandidateType || 5777 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 5778 } 5779 5780 // Exit early when no non-record types have been added to the candidate set 5781 // for any of the arguments to the operator. 5782 if (!HasNonRecordCandidateType) 5783 return; 5784 5785 // Setup an object to manage the common state for building overloads. 5786 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs, 5787 VisibleTypeConversionsQuals, 5788 HasArithmeticOrEnumeralCandidateType, 5789 CandidateTypes, CandidateSet); 5790 5791 // Dispatch over the operation to add in only those overloads which apply. 5792 switch (Op) { 5793 case OO_None: 5794 case NUM_OVERLOADED_OPERATORS: 5795 assert(false && "Expected an overloaded operator"); 5796 break; 5797 5798 case OO_New: 5799 case OO_Delete: 5800 case OO_Array_New: 5801 case OO_Array_Delete: 5802 case OO_Call: 5803 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 5804 break; 5805 5806 case OO_Comma: 5807 case OO_Arrow: 5808 // C++ [over.match.oper]p3: 5809 // -- For the operator ',', the unary operator '&', or the 5810 // operator '->', the built-in candidates set is empty. 5811 break; 5812 5813 case OO_Plus: // '+' is either unary or binary 5814 if (NumArgs == 1) 5815 OpBuilder.addUnaryPlusPointerOverloads(); 5816 // Fall through. 5817 5818 case OO_Minus: // '-' is either unary or binary 5819 if (NumArgs == 1) { 5820 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 5821 } else { 5822 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 5823 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 5824 } 5825 break; 5826 5827 case OO_Star: // '*' is either unary or binary 5828 if (NumArgs == 1) 5829 OpBuilder.addUnaryStarPointerOverloads(); 5830 else 5831 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 5832 break; 5833 5834 case OO_Slash: 5835 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 5836 break; 5837 5838 case OO_PlusPlus: 5839 case OO_MinusMinus: 5840 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 5841 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 5842 break; 5843 5844 case OO_EqualEqual: 5845 case OO_ExclaimEqual: 5846 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads(); 5847 // Fall through. 5848 5849 case OO_Less: 5850 case OO_Greater: 5851 case OO_LessEqual: 5852 case OO_GreaterEqual: 5853 OpBuilder.addRelationalPointerOrEnumeralOverloads(); 5854 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true); 5855 break; 5856 5857 case OO_Percent: 5858 case OO_Caret: 5859 case OO_Pipe: 5860 case OO_LessLess: 5861 case OO_GreaterGreater: 5862 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 5863 break; 5864 5865 case OO_Amp: // '&' is either unary or binary 5866 if (NumArgs == 1) 5867 // C++ [over.match.oper]p3: 5868 // -- For the operator ',', the unary operator '&', or the 5869 // operator '->', the built-in candidates set is empty. 5870 break; 5871 5872 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 5873 break; 5874 5875 case OO_Tilde: 5876 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 5877 break; 5878 5879 case OO_Equal: 5880 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 5881 // Fall through. 5882 5883 case OO_PlusEqual: 5884 case OO_MinusEqual: 5885 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 5886 // Fall through. 5887 5888 case OO_StarEqual: 5889 case OO_SlashEqual: 5890 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 5891 break; 5892 5893 case OO_PercentEqual: 5894 case OO_LessLessEqual: 5895 case OO_GreaterGreaterEqual: 5896 case OO_AmpEqual: 5897 case OO_CaretEqual: 5898 case OO_PipeEqual: 5899 OpBuilder.addAssignmentIntegralOverloads(); 5900 break; 5901 5902 case OO_Exclaim: 5903 OpBuilder.addExclaimOverload(); 5904 break; 5905 5906 case OO_AmpAmp: 5907 case OO_PipePipe: 5908 OpBuilder.addAmpAmpOrPipePipeOverload(); 5909 break; 5910 5911 case OO_Subscript: 5912 OpBuilder.addSubscriptOverloads(); 5913 break; 5914 5915 case OO_ArrowStar: 5916 OpBuilder.addArrowStarOverloads(); 5917 break; 5918 5919 case OO_Conditional: 5920 OpBuilder.addConditionalOperatorOverloads(); 5921 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 5922 break; 5923 } 5924} 5925 5926/// \brief Add function candidates found via argument-dependent lookup 5927/// to the set of overloading candidates. 5928/// 5929/// This routine performs argument-dependent name lookup based on the 5930/// given function name (which may also be an operator name) and adds 5931/// all of the overload candidates found by ADL to the overload 5932/// candidate set (C++ [basic.lookup.argdep]). 5933void 5934Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 5935 bool Operator, 5936 Expr **Args, unsigned NumArgs, 5937 const TemplateArgumentListInfo *ExplicitTemplateArgs, 5938 OverloadCandidateSet& CandidateSet, 5939 bool PartialOverloading) { 5940 ADLResult Fns; 5941 5942 // FIXME: This approach for uniquing ADL results (and removing 5943 // redundant candidates from the set) relies on pointer-equality, 5944 // which means we need to key off the canonical decl. However, 5945 // always going back to the canonical decl might not get us the 5946 // right set of default arguments. What default arguments are 5947 // we supposed to consider on ADL candidates, anyway? 5948 5949 // FIXME: Pass in the explicit template arguments? 5950 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); 5951 5952 // Erase all of the candidates we already knew about. 5953 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 5954 CandEnd = CandidateSet.end(); 5955 Cand != CandEnd; ++Cand) 5956 if (Cand->Function) { 5957 Fns.erase(Cand->Function); 5958 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 5959 Fns.erase(FunTmpl); 5960 } 5961 5962 // For each of the ADL candidates we found, add it to the overload 5963 // set. 5964 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 5965 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 5966 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 5967 if (ExplicitTemplateArgs) 5968 continue; 5969 5970 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 5971 false, PartialOverloading); 5972 } else 5973 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 5974 FoundDecl, ExplicitTemplateArgs, 5975 Args, NumArgs, CandidateSet); 5976 } 5977} 5978 5979/// isBetterOverloadCandidate - Determines whether the first overload 5980/// candidate is a better candidate than the second (C++ 13.3.3p1). 5981bool 5982isBetterOverloadCandidate(Sema &S, 5983 const OverloadCandidate &Cand1, 5984 const OverloadCandidate &Cand2, 5985 SourceLocation Loc, 5986 bool UserDefinedConversion) { 5987 // Define viable functions to be better candidates than non-viable 5988 // functions. 5989 if (!Cand2.Viable) 5990 return Cand1.Viable; 5991 else if (!Cand1.Viable) 5992 return false; 5993 5994 // C++ [over.match.best]p1: 5995 // 5996 // -- if F is a static member function, ICS1(F) is defined such 5997 // that ICS1(F) is neither better nor worse than ICS1(G) for 5998 // any function G, and, symmetrically, ICS1(G) is neither 5999 // better nor worse than ICS1(F). 6000 unsigned StartArg = 0; 6001 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 6002 StartArg = 1; 6003 6004 // C++ [over.match.best]p1: 6005 // A viable function F1 is defined to be a better function than another 6006 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 6007 // conversion sequence than ICSi(F2), and then... 6008 unsigned NumArgs = Cand1.Conversions.size(); 6009 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 6010 bool HasBetterConversion = false; 6011 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 6012 switch (CompareImplicitConversionSequences(S, 6013 Cand1.Conversions[ArgIdx], 6014 Cand2.Conversions[ArgIdx])) { 6015 case ImplicitConversionSequence::Better: 6016 // Cand1 has a better conversion sequence. 6017 HasBetterConversion = true; 6018 break; 6019 6020 case ImplicitConversionSequence::Worse: 6021 // Cand1 can't be better than Cand2. 6022 return false; 6023 6024 case ImplicitConversionSequence::Indistinguishable: 6025 // Do nothing. 6026 break; 6027 } 6028 } 6029 6030 // -- for some argument j, ICSj(F1) is a better conversion sequence than 6031 // ICSj(F2), or, if not that, 6032 if (HasBetterConversion) 6033 return true; 6034 6035 // - F1 is a non-template function and F2 is a function template 6036 // specialization, or, if not that, 6037 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 6038 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 6039 return true; 6040 6041 // -- F1 and F2 are function template specializations, and the function 6042 // template for F1 is more specialized than the template for F2 6043 // according to the partial ordering rules described in 14.5.5.2, or, 6044 // if not that, 6045 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 6046 Cand2.Function && Cand2.Function->getPrimaryTemplate()) { 6047 if (FunctionTemplateDecl *BetterTemplate 6048 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 6049 Cand2.Function->getPrimaryTemplate(), 6050 Loc, 6051 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 6052 : TPOC_Call, 6053 Cand1.ExplicitCallArguments)) 6054 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 6055 } 6056 6057 // -- the context is an initialization by user-defined conversion 6058 // (see 8.5, 13.3.1.5) and the standard conversion sequence 6059 // from the return type of F1 to the destination type (i.e., 6060 // the type of the entity being initialized) is a better 6061 // conversion sequence than the standard conversion sequence 6062 // from the return type of F2 to the destination type. 6063 if (UserDefinedConversion && Cand1.Function && Cand2.Function && 6064 isa<CXXConversionDecl>(Cand1.Function) && 6065 isa<CXXConversionDecl>(Cand2.Function)) { 6066 switch (CompareStandardConversionSequences(S, 6067 Cand1.FinalConversion, 6068 Cand2.FinalConversion)) { 6069 case ImplicitConversionSequence::Better: 6070 // Cand1 has a better conversion sequence. 6071 return true; 6072 6073 case ImplicitConversionSequence::Worse: 6074 // Cand1 can't be better than Cand2. 6075 return false; 6076 6077 case ImplicitConversionSequence::Indistinguishable: 6078 // Do nothing 6079 break; 6080 } 6081 } 6082 6083 return false; 6084} 6085 6086/// \brief Computes the best viable function (C++ 13.3.3) 6087/// within an overload candidate set. 6088/// 6089/// \param CandidateSet the set of candidate functions. 6090/// 6091/// \param Loc the location of the function name (or operator symbol) for 6092/// which overload resolution occurs. 6093/// 6094/// \param Best f overload resolution was successful or found a deleted 6095/// function, Best points to the candidate function found. 6096/// 6097/// \returns The result of overload resolution. 6098OverloadingResult 6099OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 6100 iterator &Best, 6101 bool UserDefinedConversion) { 6102 // Find the best viable function. 6103 Best = end(); 6104 for (iterator Cand = begin(); Cand != end(); ++Cand) { 6105 if (Cand->Viable) 6106 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, 6107 UserDefinedConversion)) 6108 Best = Cand; 6109 } 6110 6111 // If we didn't find any viable functions, abort. 6112 if (Best == end()) 6113 return OR_No_Viable_Function; 6114 6115 // Make sure that this function is better than every other viable 6116 // function. If not, we have an ambiguity. 6117 for (iterator Cand = begin(); Cand != end(); ++Cand) { 6118 if (Cand->Viable && 6119 Cand != Best && 6120 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, 6121 UserDefinedConversion)) { 6122 Best = end(); 6123 return OR_Ambiguous; 6124 } 6125 } 6126 6127 // Best is the best viable function. 6128 if (Best->Function && 6129 (Best->Function->isDeleted() || 6130 Best->Function->getAttr<UnavailableAttr>())) 6131 return OR_Deleted; 6132 6133 // C++ [basic.def.odr]p2: 6134 // An overloaded function is used if it is selected by overload resolution 6135 // when referred to from a potentially-evaluated expression. [Note: this 6136 // covers calls to named functions (5.2.2), operator overloading 6137 // (clause 13), user-defined conversions (12.3.2), allocation function for 6138 // placement new (5.3.4), as well as non-default initialization (8.5). 6139 if (Best->Function) 6140 S.MarkDeclarationReferenced(Loc, Best->Function); 6141 6142 return OR_Success; 6143} 6144 6145namespace { 6146 6147enum OverloadCandidateKind { 6148 oc_function, 6149 oc_method, 6150 oc_constructor, 6151 oc_function_template, 6152 oc_method_template, 6153 oc_constructor_template, 6154 oc_implicit_default_constructor, 6155 oc_implicit_copy_constructor, 6156 oc_implicit_copy_assignment 6157}; 6158 6159OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 6160 FunctionDecl *Fn, 6161 std::string &Description) { 6162 bool isTemplate = false; 6163 6164 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 6165 isTemplate = true; 6166 Description = S.getTemplateArgumentBindingsText( 6167 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 6168 } 6169 6170 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 6171 if (!Ctor->isImplicit()) 6172 return isTemplate ? oc_constructor_template : oc_constructor; 6173 6174 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 6175 : oc_implicit_default_constructor; 6176 } 6177 6178 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 6179 // This actually gets spelled 'candidate function' for now, but 6180 // it doesn't hurt to split it out. 6181 if (!Meth->isImplicit()) 6182 return isTemplate ? oc_method_template : oc_method; 6183 6184 assert(Meth->isCopyAssignmentOperator() 6185 && "implicit method is not copy assignment operator?"); 6186 return oc_implicit_copy_assignment; 6187 } 6188 6189 return isTemplate ? oc_function_template : oc_function; 6190} 6191 6192} // end anonymous namespace 6193 6194// Notes the location of an overload candidate. 6195void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 6196 std::string FnDesc; 6197 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 6198 Diag(Fn->getLocation(), diag::note_ovl_candidate) 6199 << (unsigned) K << FnDesc; 6200} 6201 6202/// Diagnoses an ambiguous conversion. The partial diagnostic is the 6203/// "lead" diagnostic; it will be given two arguments, the source and 6204/// target types of the conversion. 6205void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 6206 Sema &S, 6207 SourceLocation CaretLoc, 6208 const PartialDiagnostic &PDiag) const { 6209 S.Diag(CaretLoc, PDiag) 6210 << Ambiguous.getFromType() << Ambiguous.getToType(); 6211 for (AmbiguousConversionSequence::const_iterator 6212 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 6213 S.NoteOverloadCandidate(*I); 6214 } 6215} 6216 6217namespace { 6218 6219void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 6220 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 6221 assert(Conv.isBad()); 6222 assert(Cand->Function && "for now, candidate must be a function"); 6223 FunctionDecl *Fn = Cand->Function; 6224 6225 // There's a conversion slot for the object argument if this is a 6226 // non-constructor method. Note that 'I' corresponds the 6227 // conversion-slot index. 6228 bool isObjectArgument = false; 6229 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 6230 if (I == 0) 6231 isObjectArgument = true; 6232 else 6233 I--; 6234 } 6235 6236 std::string FnDesc; 6237 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 6238 6239 Expr *FromExpr = Conv.Bad.FromExpr; 6240 QualType FromTy = Conv.Bad.getFromType(); 6241 QualType ToTy = Conv.Bad.getToType(); 6242 6243 if (FromTy == S.Context.OverloadTy) { 6244 assert(FromExpr && "overload set argument came from implicit argument?"); 6245 Expr *E = FromExpr->IgnoreParens(); 6246 if (isa<UnaryOperator>(E)) 6247 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 6248 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 6249 6250 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 6251 << (unsigned) FnKind << FnDesc 6252 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6253 << ToTy << Name << I+1; 6254 return; 6255 } 6256 6257 // Do some hand-waving analysis to see if the non-viability is due 6258 // to a qualifier mismatch. 6259 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 6260 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 6261 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 6262 CToTy = RT->getPointeeType(); 6263 else { 6264 // TODO: detect and diagnose the full richness of const mismatches. 6265 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 6266 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 6267 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 6268 } 6269 6270 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 6271 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 6272 // It is dumb that we have to do this here. 6273 while (isa<ArrayType>(CFromTy)) 6274 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 6275 while (isa<ArrayType>(CToTy)) 6276 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 6277 6278 Qualifiers FromQs = CFromTy.getQualifiers(); 6279 Qualifiers ToQs = CToTy.getQualifiers(); 6280 6281 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 6282 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 6283 << (unsigned) FnKind << FnDesc 6284 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6285 << FromTy 6286 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 6287 << (unsigned) isObjectArgument << I+1; 6288 return; 6289 } 6290 6291 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 6292 assert(CVR && "unexpected qualifiers mismatch"); 6293 6294 if (isObjectArgument) { 6295 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 6296 << (unsigned) FnKind << FnDesc 6297 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6298 << FromTy << (CVR - 1); 6299 } else { 6300 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 6301 << (unsigned) FnKind << FnDesc 6302 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6303 << FromTy << (CVR - 1) << I+1; 6304 } 6305 return; 6306 } 6307 6308 // Diagnose references or pointers to incomplete types differently, 6309 // since it's far from impossible that the incompleteness triggered 6310 // the failure. 6311 QualType TempFromTy = FromTy.getNonReferenceType(); 6312 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 6313 TempFromTy = PTy->getPointeeType(); 6314 if (TempFromTy->isIncompleteType()) { 6315 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 6316 << (unsigned) FnKind << FnDesc 6317 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6318 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 6319 return; 6320 } 6321 6322 // Diagnose base -> derived pointer conversions. 6323 unsigned BaseToDerivedConversion = 0; 6324 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 6325 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 6326 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 6327 FromPtrTy->getPointeeType()) && 6328 !FromPtrTy->getPointeeType()->isIncompleteType() && 6329 !ToPtrTy->getPointeeType()->isIncompleteType() && 6330 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 6331 FromPtrTy->getPointeeType())) 6332 BaseToDerivedConversion = 1; 6333 } 6334 } else if (const ObjCObjectPointerType *FromPtrTy 6335 = FromTy->getAs<ObjCObjectPointerType>()) { 6336 if (const ObjCObjectPointerType *ToPtrTy 6337 = ToTy->getAs<ObjCObjectPointerType>()) 6338 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 6339 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 6340 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 6341 FromPtrTy->getPointeeType()) && 6342 FromIface->isSuperClassOf(ToIface)) 6343 BaseToDerivedConversion = 2; 6344 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 6345 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 6346 !FromTy->isIncompleteType() && 6347 !ToRefTy->getPointeeType()->isIncompleteType() && 6348 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 6349 BaseToDerivedConversion = 3; 6350 } 6351 6352 if (BaseToDerivedConversion) { 6353 S.Diag(Fn->getLocation(), 6354 diag::note_ovl_candidate_bad_base_to_derived_conv) 6355 << (unsigned) FnKind << FnDesc 6356 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6357 << (BaseToDerivedConversion - 1) 6358 << FromTy << ToTy << I+1; 6359 return; 6360 } 6361 6362 // TODO: specialize more based on the kind of mismatch 6363 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 6364 << (unsigned) FnKind << FnDesc 6365 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6366 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 6367} 6368 6369void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 6370 unsigned NumFormalArgs) { 6371 // TODO: treat calls to a missing default constructor as a special case 6372 6373 FunctionDecl *Fn = Cand->Function; 6374 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 6375 6376 unsigned MinParams = Fn->getMinRequiredArguments(); 6377 6378 // at least / at most / exactly 6379 unsigned mode, modeCount; 6380 if (NumFormalArgs < MinParams) { 6381 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 6382 (Cand->FailureKind == ovl_fail_bad_deduction && 6383 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 6384 if (MinParams != FnTy->getNumArgs() || 6385 FnTy->isVariadic() || FnTy->isTemplateVariadic()) 6386 mode = 0; // "at least" 6387 else 6388 mode = 2; // "exactly" 6389 modeCount = MinParams; 6390 } else { 6391 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 6392 (Cand->FailureKind == ovl_fail_bad_deduction && 6393 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 6394 if (MinParams != FnTy->getNumArgs()) 6395 mode = 1; // "at most" 6396 else 6397 mode = 2; // "exactly" 6398 modeCount = FnTy->getNumArgs(); 6399 } 6400 6401 std::string Description; 6402 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 6403 6404 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 6405 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 6406 << modeCount << NumFormalArgs; 6407} 6408 6409/// Diagnose a failed template-argument deduction. 6410void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 6411 Expr **Args, unsigned NumArgs) { 6412 FunctionDecl *Fn = Cand->Function; // pattern 6413 6414 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 6415 NamedDecl *ParamD; 6416 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 6417 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 6418 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 6419 switch (Cand->DeductionFailure.Result) { 6420 case Sema::TDK_Success: 6421 llvm_unreachable("TDK_success while diagnosing bad deduction"); 6422 6423 case Sema::TDK_Incomplete: { 6424 assert(ParamD && "no parameter found for incomplete deduction result"); 6425 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 6426 << ParamD->getDeclName(); 6427 return; 6428 } 6429 6430 case Sema::TDK_Underqualified: { 6431 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 6432 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 6433 6434 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 6435 6436 // Param will have been canonicalized, but it should just be a 6437 // qualified version of ParamD, so move the qualifiers to that. 6438 QualifierCollector Qs; 6439 Qs.strip(Param); 6440 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 6441 assert(S.Context.hasSameType(Param, NonCanonParam)); 6442 6443 // Arg has also been canonicalized, but there's nothing we can do 6444 // about that. It also doesn't matter as much, because it won't 6445 // have any template parameters in it (because deduction isn't 6446 // done on dependent types). 6447 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 6448 6449 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 6450 << ParamD->getDeclName() << Arg << NonCanonParam; 6451 return; 6452 } 6453 6454 case Sema::TDK_Inconsistent: { 6455 assert(ParamD && "no parameter found for inconsistent deduction result"); 6456 int which = 0; 6457 if (isa<TemplateTypeParmDecl>(ParamD)) 6458 which = 0; 6459 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 6460 which = 1; 6461 else { 6462 which = 2; 6463 } 6464 6465 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 6466 << which << ParamD->getDeclName() 6467 << *Cand->DeductionFailure.getFirstArg() 6468 << *Cand->DeductionFailure.getSecondArg(); 6469 return; 6470 } 6471 6472 case Sema::TDK_InvalidExplicitArguments: 6473 assert(ParamD && "no parameter found for invalid explicit arguments"); 6474 if (ParamD->getDeclName()) 6475 S.Diag(Fn->getLocation(), 6476 diag::note_ovl_candidate_explicit_arg_mismatch_named) 6477 << ParamD->getDeclName(); 6478 else { 6479 int index = 0; 6480 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 6481 index = TTP->getIndex(); 6482 else if (NonTypeTemplateParmDecl *NTTP 6483 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 6484 index = NTTP->getIndex(); 6485 else 6486 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 6487 S.Diag(Fn->getLocation(), 6488 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 6489 << (index + 1); 6490 } 6491 return; 6492 6493 case Sema::TDK_TooManyArguments: 6494 case Sema::TDK_TooFewArguments: 6495 DiagnoseArityMismatch(S, Cand, NumArgs); 6496 return; 6497 6498 case Sema::TDK_InstantiationDepth: 6499 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 6500 return; 6501 6502 case Sema::TDK_SubstitutionFailure: { 6503 std::string ArgString; 6504 if (TemplateArgumentList *Args 6505 = Cand->DeductionFailure.getTemplateArgumentList()) 6506 ArgString = S.getTemplateArgumentBindingsText( 6507 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 6508 *Args); 6509 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 6510 << ArgString; 6511 return; 6512 } 6513 6514 // TODO: diagnose these individually, then kill off 6515 // note_ovl_candidate_bad_deduction, which is uselessly vague. 6516 case Sema::TDK_NonDeducedMismatch: 6517 case Sema::TDK_FailedOverloadResolution: 6518 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 6519 return; 6520 } 6521} 6522 6523/// Generates a 'note' diagnostic for an overload candidate. We've 6524/// already generated a primary error at the call site. 6525/// 6526/// It really does need to be a single diagnostic with its caret 6527/// pointed at the candidate declaration. Yes, this creates some 6528/// major challenges of technical writing. Yes, this makes pointing 6529/// out problems with specific arguments quite awkward. It's still 6530/// better than generating twenty screens of text for every failed 6531/// overload. 6532/// 6533/// It would be great to be able to express per-candidate problems 6534/// more richly for those diagnostic clients that cared, but we'd 6535/// still have to be just as careful with the default diagnostics. 6536void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 6537 Expr **Args, unsigned NumArgs) { 6538 FunctionDecl *Fn = Cand->Function; 6539 6540 // Note deleted candidates, but only if they're viable. 6541 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 6542 std::string FnDesc; 6543 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 6544 6545 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 6546 << FnKind << FnDesc << Fn->isDeleted(); 6547 return; 6548 } 6549 6550 // We don't really have anything else to say about viable candidates. 6551 if (Cand->Viable) { 6552 S.NoteOverloadCandidate(Fn); 6553 return; 6554 } 6555 6556 switch (Cand->FailureKind) { 6557 case ovl_fail_too_many_arguments: 6558 case ovl_fail_too_few_arguments: 6559 return DiagnoseArityMismatch(S, Cand, NumArgs); 6560 6561 case ovl_fail_bad_deduction: 6562 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 6563 6564 case ovl_fail_trivial_conversion: 6565 case ovl_fail_bad_final_conversion: 6566 case ovl_fail_final_conversion_not_exact: 6567 return S.NoteOverloadCandidate(Fn); 6568 6569 case ovl_fail_bad_conversion: { 6570 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 6571 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 6572 if (Cand->Conversions[I].isBad()) 6573 return DiagnoseBadConversion(S, Cand, I); 6574 6575 // FIXME: this currently happens when we're called from SemaInit 6576 // when user-conversion overload fails. Figure out how to handle 6577 // those conditions and diagnose them well. 6578 return S.NoteOverloadCandidate(Fn); 6579 } 6580 } 6581} 6582 6583void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 6584 // Desugar the type of the surrogate down to a function type, 6585 // retaining as many typedefs as possible while still showing 6586 // the function type (and, therefore, its parameter types). 6587 QualType FnType = Cand->Surrogate->getConversionType(); 6588 bool isLValueReference = false; 6589 bool isRValueReference = false; 6590 bool isPointer = false; 6591 if (const LValueReferenceType *FnTypeRef = 6592 FnType->getAs<LValueReferenceType>()) { 6593 FnType = FnTypeRef->getPointeeType(); 6594 isLValueReference = true; 6595 } else if (const RValueReferenceType *FnTypeRef = 6596 FnType->getAs<RValueReferenceType>()) { 6597 FnType = FnTypeRef->getPointeeType(); 6598 isRValueReference = true; 6599 } 6600 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 6601 FnType = FnTypePtr->getPointeeType(); 6602 isPointer = true; 6603 } 6604 // Desugar down to a function type. 6605 FnType = QualType(FnType->getAs<FunctionType>(), 0); 6606 // Reconstruct the pointer/reference as appropriate. 6607 if (isPointer) FnType = S.Context.getPointerType(FnType); 6608 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 6609 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 6610 6611 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 6612 << FnType; 6613} 6614 6615void NoteBuiltinOperatorCandidate(Sema &S, 6616 const char *Opc, 6617 SourceLocation OpLoc, 6618 OverloadCandidate *Cand) { 6619 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 6620 std::string TypeStr("operator"); 6621 TypeStr += Opc; 6622 TypeStr += "("; 6623 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 6624 if (Cand->Conversions.size() == 1) { 6625 TypeStr += ")"; 6626 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 6627 } else { 6628 TypeStr += ", "; 6629 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 6630 TypeStr += ")"; 6631 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 6632 } 6633} 6634 6635void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 6636 OverloadCandidate *Cand) { 6637 unsigned NoOperands = Cand->Conversions.size(); 6638 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 6639 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 6640 if (ICS.isBad()) break; // all meaningless after first invalid 6641 if (!ICS.isAmbiguous()) continue; 6642 6643 ICS.DiagnoseAmbiguousConversion(S, OpLoc, 6644 S.PDiag(diag::note_ambiguous_type_conversion)); 6645 } 6646} 6647 6648SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 6649 if (Cand->Function) 6650 return Cand->Function->getLocation(); 6651 if (Cand->IsSurrogate) 6652 return Cand->Surrogate->getLocation(); 6653 return SourceLocation(); 6654} 6655 6656struct CompareOverloadCandidatesForDisplay { 6657 Sema &S; 6658 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 6659 6660 bool operator()(const OverloadCandidate *L, 6661 const OverloadCandidate *R) { 6662 // Fast-path this check. 6663 if (L == R) return false; 6664 6665 // Order first by viability. 6666 if (L->Viable) { 6667 if (!R->Viable) return true; 6668 6669 // TODO: introduce a tri-valued comparison for overload 6670 // candidates. Would be more worthwhile if we had a sort 6671 // that could exploit it. 6672 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; 6673 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; 6674 } else if (R->Viable) 6675 return false; 6676 6677 assert(L->Viable == R->Viable); 6678 6679 // Criteria by which we can sort non-viable candidates: 6680 if (!L->Viable) { 6681 // 1. Arity mismatches come after other candidates. 6682 if (L->FailureKind == ovl_fail_too_many_arguments || 6683 L->FailureKind == ovl_fail_too_few_arguments) 6684 return false; 6685 if (R->FailureKind == ovl_fail_too_many_arguments || 6686 R->FailureKind == ovl_fail_too_few_arguments) 6687 return true; 6688 6689 // 2. Bad conversions come first and are ordered by the number 6690 // of bad conversions and quality of good conversions. 6691 if (L->FailureKind == ovl_fail_bad_conversion) { 6692 if (R->FailureKind != ovl_fail_bad_conversion) 6693 return true; 6694 6695 // If there's any ordering between the defined conversions... 6696 // FIXME: this might not be transitive. 6697 assert(L->Conversions.size() == R->Conversions.size()); 6698 6699 int leftBetter = 0; 6700 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 6701 for (unsigned E = L->Conversions.size(); I != E; ++I) { 6702 switch (CompareImplicitConversionSequences(S, 6703 L->Conversions[I], 6704 R->Conversions[I])) { 6705 case ImplicitConversionSequence::Better: 6706 leftBetter++; 6707 break; 6708 6709 case ImplicitConversionSequence::Worse: 6710 leftBetter--; 6711 break; 6712 6713 case ImplicitConversionSequence::Indistinguishable: 6714 break; 6715 } 6716 } 6717 if (leftBetter > 0) return true; 6718 if (leftBetter < 0) return false; 6719 6720 } else if (R->FailureKind == ovl_fail_bad_conversion) 6721 return false; 6722 6723 // TODO: others? 6724 } 6725 6726 // Sort everything else by location. 6727 SourceLocation LLoc = GetLocationForCandidate(L); 6728 SourceLocation RLoc = GetLocationForCandidate(R); 6729 6730 // Put candidates without locations (e.g. builtins) at the end. 6731 if (LLoc.isInvalid()) return false; 6732 if (RLoc.isInvalid()) return true; 6733 6734 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 6735 } 6736}; 6737 6738/// CompleteNonViableCandidate - Normally, overload resolution only 6739/// computes up to the first 6740void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 6741 Expr **Args, unsigned NumArgs) { 6742 assert(!Cand->Viable); 6743 6744 // Don't do anything on failures other than bad conversion. 6745 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 6746 6747 // Skip forward to the first bad conversion. 6748 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 6749 unsigned ConvCount = Cand->Conversions.size(); 6750 while (true) { 6751 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 6752 ConvIdx++; 6753 if (Cand->Conversions[ConvIdx - 1].isBad()) 6754 break; 6755 } 6756 6757 if (ConvIdx == ConvCount) 6758 return; 6759 6760 assert(!Cand->Conversions[ConvIdx].isInitialized() && 6761 "remaining conversion is initialized?"); 6762 6763 // FIXME: this should probably be preserved from the overload 6764 // operation somehow. 6765 bool SuppressUserConversions = false; 6766 6767 const FunctionProtoType* Proto; 6768 unsigned ArgIdx = ConvIdx; 6769 6770 if (Cand->IsSurrogate) { 6771 QualType ConvType 6772 = Cand->Surrogate->getConversionType().getNonReferenceType(); 6773 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 6774 ConvType = ConvPtrType->getPointeeType(); 6775 Proto = ConvType->getAs<FunctionProtoType>(); 6776 ArgIdx--; 6777 } else if (Cand->Function) { 6778 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 6779 if (isa<CXXMethodDecl>(Cand->Function) && 6780 !isa<CXXConstructorDecl>(Cand->Function)) 6781 ArgIdx--; 6782 } else { 6783 // Builtin binary operator with a bad first conversion. 6784 assert(ConvCount <= 3); 6785 for (; ConvIdx != ConvCount; ++ConvIdx) 6786 Cand->Conversions[ConvIdx] 6787 = TryCopyInitialization(S, Args[ConvIdx], 6788 Cand->BuiltinTypes.ParamTypes[ConvIdx], 6789 SuppressUserConversions, 6790 /*InOverloadResolution*/ true); 6791 return; 6792 } 6793 6794 // Fill in the rest of the conversions. 6795 unsigned NumArgsInProto = Proto->getNumArgs(); 6796 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 6797 if (ArgIdx < NumArgsInProto) 6798 Cand->Conversions[ConvIdx] 6799 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 6800 SuppressUserConversions, 6801 /*InOverloadResolution=*/true); 6802 else 6803 Cand->Conversions[ConvIdx].setEllipsis(); 6804 } 6805} 6806 6807} // end anonymous namespace 6808 6809/// PrintOverloadCandidates - When overload resolution fails, prints 6810/// diagnostic messages containing the candidates in the candidate 6811/// set. 6812void OverloadCandidateSet::NoteCandidates(Sema &S, 6813 OverloadCandidateDisplayKind OCD, 6814 Expr **Args, unsigned NumArgs, 6815 const char *Opc, 6816 SourceLocation OpLoc) { 6817 // Sort the candidates by viability and position. Sorting directly would 6818 // be prohibitive, so we make a set of pointers and sort those. 6819 llvm::SmallVector<OverloadCandidate*, 32> Cands; 6820 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 6821 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 6822 if (Cand->Viable) 6823 Cands.push_back(Cand); 6824 else if (OCD == OCD_AllCandidates) { 6825 CompleteNonViableCandidate(S, Cand, Args, NumArgs); 6826 if (Cand->Function || Cand->IsSurrogate) 6827 Cands.push_back(Cand); 6828 // Otherwise, this a non-viable builtin candidate. We do not, in general, 6829 // want to list every possible builtin candidate. 6830 } 6831 } 6832 6833 std::sort(Cands.begin(), Cands.end(), 6834 CompareOverloadCandidatesForDisplay(S)); 6835 6836 bool ReportedAmbiguousConversions = false; 6837 6838 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 6839 const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 6840 unsigned CandsShown = 0; 6841 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 6842 OverloadCandidate *Cand = *I; 6843 6844 // Set an arbitrary limit on the number of candidate functions we'll spam 6845 // the user with. FIXME: This limit should depend on details of the 6846 // candidate list. 6847 if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { 6848 break; 6849 } 6850 ++CandsShown; 6851 6852 if (Cand->Function) 6853 NoteFunctionCandidate(S, Cand, Args, NumArgs); 6854 else if (Cand->IsSurrogate) 6855 NoteSurrogateCandidate(S, Cand); 6856 else { 6857 assert(Cand->Viable && 6858 "Non-viable built-in candidates are not added to Cands."); 6859 // Generally we only see ambiguities including viable builtin 6860 // operators if overload resolution got screwed up by an 6861 // ambiguous user-defined conversion. 6862 // 6863 // FIXME: It's quite possible for different conversions to see 6864 // different ambiguities, though. 6865 if (!ReportedAmbiguousConversions) { 6866 NoteAmbiguousUserConversions(S, OpLoc, Cand); 6867 ReportedAmbiguousConversions = true; 6868 } 6869 6870 // If this is a viable builtin, print it. 6871 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 6872 } 6873 } 6874 6875 if (I != E) 6876 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 6877} 6878 6879static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { 6880 if (isa<UnresolvedLookupExpr>(E)) 6881 return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D); 6882 6883 return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D); 6884} 6885 6886/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 6887/// an overloaded function (C++ [over.over]), where @p From is an 6888/// expression with overloaded function type and @p ToType is the type 6889/// we're trying to resolve to. For example: 6890/// 6891/// @code 6892/// int f(double); 6893/// int f(int); 6894/// 6895/// int (*pfd)(double) = f; // selects f(double) 6896/// @endcode 6897/// 6898/// This routine returns the resulting FunctionDecl if it could be 6899/// resolved, and NULL otherwise. When @p Complain is true, this 6900/// routine will emit diagnostics if there is an error. 6901FunctionDecl * 6902Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 6903 bool Complain, 6904 DeclAccessPair &FoundResult) { 6905 QualType FunctionType = ToType; 6906 bool IsMember = false; 6907 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 6908 FunctionType = ToTypePtr->getPointeeType(); 6909 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 6910 FunctionType = ToTypeRef->getPointeeType(); 6911 else if (const MemberPointerType *MemTypePtr = 6912 ToType->getAs<MemberPointerType>()) { 6913 FunctionType = MemTypePtr->getPointeeType(); 6914 IsMember = true; 6915 } 6916 6917 // C++ [over.over]p1: 6918 // [...] [Note: any redundant set of parentheses surrounding the 6919 // overloaded function name is ignored (5.1). ] 6920 // C++ [over.over]p1: 6921 // [...] The overloaded function name can be preceded by the & 6922 // operator. 6923 // However, remember whether the expression has member-pointer form: 6924 // C++ [expr.unary.op]p4: 6925 // A pointer to member is only formed when an explicit & is used 6926 // and its operand is a qualified-id not enclosed in 6927 // parentheses. 6928 OverloadExpr::FindResult Ovl = OverloadExpr::find(From); 6929 OverloadExpr *OvlExpr = Ovl.Expression; 6930 6931 // We expect a pointer or reference to function, or a function pointer. 6932 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 6933 if (!FunctionType->isFunctionType()) { 6934 if (Complain) 6935 Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 6936 << OvlExpr->getName() << ToType; 6937 6938 return 0; 6939 } 6940 6941 // If the overload expression doesn't have the form of a pointer to 6942 // member, don't try to convert it to a pointer-to-member type. 6943 if (IsMember && !Ovl.HasFormOfMemberPointer) { 6944 if (!Complain) return 0; 6945 6946 // TODO: Should we condition this on whether any functions might 6947 // have matched, or is it more appropriate to do that in callers? 6948 // TODO: a fixit wouldn't hurt. 6949 Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 6950 << ToType << OvlExpr->getSourceRange(); 6951 return 0; 6952 } 6953 6954 TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; 6955 if (OvlExpr->hasExplicitTemplateArgs()) { 6956 OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); 6957 ExplicitTemplateArgs = &ETABuffer; 6958 } 6959 6960 assert(From->getType() == Context.OverloadTy); 6961 6962 // Look through all of the overloaded functions, searching for one 6963 // whose type matches exactly. 6964 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 6965 llvm::SmallVector<FunctionDecl *, 4> NonMatches; 6966 6967 bool FoundNonTemplateFunction = false; 6968 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6969 E = OvlExpr->decls_end(); I != E; ++I) { 6970 // Look through any using declarations to find the underlying function. 6971 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 6972 6973 // C++ [over.over]p3: 6974 // Non-member functions and static member functions match 6975 // targets of type "pointer-to-function" or "reference-to-function." 6976 // Nonstatic member functions match targets of 6977 // type "pointer-to-member-function." 6978 // Note that according to DR 247, the containing class does not matter. 6979 6980 if (FunctionTemplateDecl *FunctionTemplate 6981 = dyn_cast<FunctionTemplateDecl>(Fn)) { 6982 if (CXXMethodDecl *Method 6983 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 6984 // Skip non-static function templates when converting to pointer, and 6985 // static when converting to member pointer. 6986 if (Method->isStatic() == IsMember) 6987 continue; 6988 } else if (IsMember) 6989 continue; 6990 6991 // C++ [over.over]p2: 6992 // If the name is a function template, template argument deduction is 6993 // done (14.8.2.2), and if the argument deduction succeeds, the 6994 // resulting template argument list is used to generate a single 6995 // function template specialization, which is added to the set of 6996 // overloaded functions considered. 6997 FunctionDecl *Specialization = 0; 6998 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6999 if (TemplateDeductionResult Result 7000 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 7001 FunctionType, Specialization, Info)) { 7002 // FIXME: make a note of the failed deduction for diagnostics. 7003 (void)Result; 7004 } else { 7005 // Template argument deduction ensures that we have an exact match. 7006 // This function template specicalization works. 7007 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); 7008 assert(FunctionType 7009 == Context.getCanonicalType(Specialization->getType())); 7010 Matches.push_back(std::make_pair(I.getPair(), Specialization)); 7011 } 7012 7013 continue; 7014 } 7015 7016 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7017 // Skip non-static functions when converting to pointer, and static 7018 // when converting to member pointer. 7019 if (Method->isStatic() == IsMember) 7020 continue; 7021 7022 // If we have explicit template arguments, skip non-templates. 7023 if (OvlExpr->hasExplicitTemplateArgs()) 7024 continue; 7025 } else if (IsMember) 7026 continue; 7027 7028 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 7029 QualType ResultTy; 7030 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 7031 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 7032 ResultTy)) { 7033 Matches.push_back(std::make_pair(I.getPair(), 7034 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 7035 FoundNonTemplateFunction = true; 7036 } 7037 } 7038 } 7039 7040 // If there were 0 or 1 matches, we're done. 7041 if (Matches.empty()) { 7042 if (Complain) { 7043 Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) 7044 << OvlExpr->getName() << FunctionType; 7045 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7046 E = OvlExpr->decls_end(); 7047 I != E; ++I) 7048 if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 7049 NoteOverloadCandidate(F); 7050 } 7051 7052 return 0; 7053 } else if (Matches.size() == 1) { 7054 FunctionDecl *Result = Matches[0].second; 7055 FoundResult = Matches[0].first; 7056 MarkDeclarationReferenced(From->getLocStart(), Result); 7057 if (Complain) { 7058 CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); 7059 } 7060 return Result; 7061 } 7062 7063 // C++ [over.over]p4: 7064 // If more than one function is selected, [...] 7065 if (!FoundNonTemplateFunction) { 7066 // [...] and any given function template specialization F1 is 7067 // eliminated if the set contains a second function template 7068 // specialization whose function template is more specialized 7069 // than the function template of F1 according to the partial 7070 // ordering rules of 14.5.5.2. 7071 7072 // The algorithm specified above is quadratic. We instead use a 7073 // two-pass algorithm (similar to the one used to identify the 7074 // best viable function in an overload set) that identifies the 7075 // best function template (if it exists). 7076 7077 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 7078 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 7079 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 7080 7081 UnresolvedSetIterator Result = 7082 getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 7083 TPOC_Other, 0, From->getLocStart(), 7084 PDiag(), 7085 PDiag(diag::err_addr_ovl_ambiguous) 7086 << Matches[0].second->getDeclName(), 7087 PDiag(diag::note_ovl_candidate) 7088 << (unsigned) oc_function_template); 7089 if (Result == MatchesCopy.end()) 7090 return 0; 7091 7092 MarkDeclarationReferenced(From->getLocStart(), *Result); 7093 FoundResult = Matches[Result - MatchesCopy.begin()].first; 7094 if (Complain) 7095 CheckUnresolvedAccess(*this, OvlExpr, FoundResult); 7096 return cast<FunctionDecl>(*Result); 7097 } 7098 7099 // [...] any function template specializations in the set are 7100 // eliminated if the set also contains a non-template function, [...] 7101 for (unsigned I = 0, N = Matches.size(); I != N; ) { 7102 if (Matches[I].second->getPrimaryTemplate() == 0) 7103 ++I; 7104 else { 7105 Matches[I] = Matches[--N]; 7106 Matches.set_size(N); 7107 } 7108 } 7109 7110 // [...] After such eliminations, if any, there shall remain exactly one 7111 // selected function. 7112 if (Matches.size() == 1) { 7113 MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); 7114 FoundResult = Matches[0].first; 7115 if (Complain) 7116 CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); 7117 return cast<FunctionDecl>(Matches[0].second); 7118 } 7119 7120 // FIXME: We should probably return the same thing that BestViableFunction 7121 // returns (even if we issue the diagnostics here). 7122 if (Complain) { 7123 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 7124 << Matches[0].second->getDeclName(); 7125 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 7126 NoteOverloadCandidate(Matches[I].second); 7127 } 7128 7129 return 0; 7130} 7131 7132/// \brief Given an expression that refers to an overloaded function, try to 7133/// resolve that overloaded function expression down to a single function. 7134/// 7135/// This routine can only resolve template-ids that refer to a single function 7136/// template, where that template-id refers to a single template whose template 7137/// arguments are either provided by the template-id or have defaults, 7138/// as described in C++0x [temp.arg.explicit]p3. 7139FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 7140 // C++ [over.over]p1: 7141 // [...] [Note: any redundant set of parentheses surrounding the 7142 // overloaded function name is ignored (5.1). ] 7143 // C++ [over.over]p1: 7144 // [...] The overloaded function name can be preceded by the & 7145 // operator. 7146 7147 if (From->getType() != Context.OverloadTy) 7148 return 0; 7149 7150 OverloadExpr *OvlExpr = OverloadExpr::find(From).Expression; 7151 7152 // If we didn't actually find any template-ids, we're done. 7153 if (!OvlExpr->hasExplicitTemplateArgs()) 7154 return 0; 7155 7156 TemplateArgumentListInfo ExplicitTemplateArgs; 7157 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 7158 7159 // Look through all of the overloaded functions, searching for one 7160 // whose type matches exactly. 7161 FunctionDecl *Matched = 0; 7162 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7163 E = OvlExpr->decls_end(); I != E; ++I) { 7164 // C++0x [temp.arg.explicit]p3: 7165 // [...] In contexts where deduction is done and fails, or in contexts 7166 // where deduction is not done, if a template argument list is 7167 // specified and it, along with any default template arguments, 7168 // identifies a single function template specialization, then the 7169 // template-id is an lvalue for the function template specialization. 7170 FunctionTemplateDecl *FunctionTemplate 7171 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 7172 7173 // C++ [over.over]p2: 7174 // If the name is a function template, template argument deduction is 7175 // done (14.8.2.2), and if the argument deduction succeeds, the 7176 // resulting template argument list is used to generate a single 7177 // function template specialization, which is added to the set of 7178 // overloaded functions considered. 7179 FunctionDecl *Specialization = 0; 7180 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 7181 if (TemplateDeductionResult Result 7182 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 7183 Specialization, Info)) { 7184 // FIXME: make a note of the failed deduction for diagnostics. 7185 (void)Result; 7186 continue; 7187 } 7188 7189 // Multiple matches; we can't resolve to a single declaration. 7190 if (Matched) 7191 return 0; 7192 7193 Matched = Specialization; 7194 } 7195 7196 return Matched; 7197} 7198 7199/// \brief Add a single candidate to the overload set. 7200static void AddOverloadedCallCandidate(Sema &S, 7201 DeclAccessPair FoundDecl, 7202 const TemplateArgumentListInfo *ExplicitTemplateArgs, 7203 Expr **Args, unsigned NumArgs, 7204 OverloadCandidateSet &CandidateSet, 7205 bool PartialOverloading) { 7206 NamedDecl *Callee = FoundDecl.getDecl(); 7207 if (isa<UsingShadowDecl>(Callee)) 7208 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 7209 7210 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 7211 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 7212 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 7213 false, PartialOverloading); 7214 return; 7215 } 7216 7217 if (FunctionTemplateDecl *FuncTemplate 7218 = dyn_cast<FunctionTemplateDecl>(Callee)) { 7219 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 7220 ExplicitTemplateArgs, 7221 Args, NumArgs, CandidateSet); 7222 return; 7223 } 7224 7225 assert(false && "unhandled case in overloaded call candidate"); 7226 7227 // do nothing? 7228} 7229 7230/// \brief Add the overload candidates named by callee and/or found by argument 7231/// dependent lookup to the given overload set. 7232void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 7233 Expr **Args, unsigned NumArgs, 7234 OverloadCandidateSet &CandidateSet, 7235 bool PartialOverloading) { 7236 7237#ifndef NDEBUG 7238 // Verify that ArgumentDependentLookup is consistent with the rules 7239 // in C++0x [basic.lookup.argdep]p3: 7240 // 7241 // Let X be the lookup set produced by unqualified lookup (3.4.1) 7242 // and let Y be the lookup set produced by argument dependent 7243 // lookup (defined as follows). If X contains 7244 // 7245 // -- a declaration of a class member, or 7246 // 7247 // -- a block-scope function declaration that is not a 7248 // using-declaration, or 7249 // 7250 // -- a declaration that is neither a function or a function 7251 // template 7252 // 7253 // then Y is empty. 7254 7255 if (ULE->requiresADL()) { 7256 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 7257 E = ULE->decls_end(); I != E; ++I) { 7258 assert(!(*I)->getDeclContext()->isRecord()); 7259 assert(isa<UsingShadowDecl>(*I) || 7260 !(*I)->getDeclContext()->isFunctionOrMethod()); 7261 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 7262 } 7263 } 7264#endif 7265 7266 // It would be nice to avoid this copy. 7267 TemplateArgumentListInfo TABuffer; 7268 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 7269 if (ULE->hasExplicitTemplateArgs()) { 7270 ULE->copyTemplateArgumentsInto(TABuffer); 7271 ExplicitTemplateArgs = &TABuffer; 7272 } 7273 7274 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 7275 E = ULE->decls_end(); I != E; ++I) 7276 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 7277 Args, NumArgs, CandidateSet, 7278 PartialOverloading); 7279 7280 if (ULE->requiresADL()) 7281 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 7282 Args, NumArgs, 7283 ExplicitTemplateArgs, 7284 CandidateSet, 7285 PartialOverloading); 7286} 7287 7288/// Attempts to recover from a call where no functions were found. 7289/// 7290/// Returns true if new candidates were found. 7291static ExprResult 7292BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 7293 UnresolvedLookupExpr *ULE, 7294 SourceLocation LParenLoc, 7295 Expr **Args, unsigned NumArgs, 7296 SourceLocation RParenLoc) { 7297 7298 CXXScopeSpec SS; 7299 if (ULE->getQualifier()) { 7300 SS.setScopeRep(ULE->getQualifier()); 7301 SS.setRange(ULE->getQualifierRange()); 7302 } 7303 7304 TemplateArgumentListInfo TABuffer; 7305 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 7306 if (ULE->hasExplicitTemplateArgs()) { 7307 ULE->copyTemplateArgumentsInto(TABuffer); 7308 ExplicitTemplateArgs = &TABuffer; 7309 } 7310 7311 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 7312 Sema::LookupOrdinaryName); 7313 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)) 7314 return ExprError(); 7315 7316 assert(!R.empty() && "lookup results empty despite recovery"); 7317 7318 // Build an implicit member call if appropriate. Just drop the 7319 // casts and such from the call, we don't really care. 7320 ExprResult NewFn = ExprError(); 7321 if ((*R.begin())->isCXXClassMember()) 7322 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, 7323 ExplicitTemplateArgs); 7324 else if (ExplicitTemplateArgs) 7325 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 7326 else 7327 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 7328 7329 if (NewFn.isInvalid()) 7330 return ExprError(); 7331 7332 // This shouldn't cause an infinite loop because we're giving it 7333 // an expression with non-empty lookup results, which should never 7334 // end up here. 7335 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, 7336 MultiExprArg(Args, NumArgs), RParenLoc); 7337} 7338 7339/// ResolveOverloadedCallFn - Given the call expression that calls Fn 7340/// (which eventually refers to the declaration Func) and the call 7341/// arguments Args/NumArgs, attempt to resolve the function call down 7342/// to a specific function. If overload resolution succeeds, returns 7343/// the function declaration produced by overload 7344/// resolution. Otherwise, emits diagnostics, deletes all of the 7345/// arguments and Fn, and returns NULL. 7346ExprResult 7347Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 7348 SourceLocation LParenLoc, 7349 Expr **Args, unsigned NumArgs, 7350 SourceLocation RParenLoc) { 7351#ifndef NDEBUG 7352 if (ULE->requiresADL()) { 7353 // To do ADL, we must have found an unqualified name. 7354 assert(!ULE->getQualifier() && "qualified name with ADL"); 7355 7356 // We don't perform ADL for implicit declarations of builtins. 7357 // Verify that this was correctly set up. 7358 FunctionDecl *F; 7359 if (ULE->decls_begin() + 1 == ULE->decls_end() && 7360 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 7361 F->getBuiltinID() && F->isImplicit()) 7362 assert(0 && "performing ADL for builtin"); 7363 7364 // We don't perform ADL in C. 7365 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 7366 } 7367#endif 7368 7369 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 7370 7371 // Add the functions denoted by the callee to the set of candidate 7372 // functions, including those from argument-dependent lookup. 7373 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 7374 7375 // If we found nothing, try to recover. 7376 // AddRecoveryCallCandidates diagnoses the error itself, so we just 7377 // bailout out if it fails. 7378 if (CandidateSet.empty()) 7379 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 7380 RParenLoc); 7381 7382 OverloadCandidateSet::iterator Best; 7383 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { 7384 case OR_Success: { 7385 FunctionDecl *FDecl = Best->Function; 7386 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 7387 DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(), 7388 ULE->getNameLoc()); 7389 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 7390 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, 7391 RParenLoc); 7392 } 7393 7394 case OR_No_Viable_Function: 7395 Diag(Fn->getSourceRange().getBegin(), 7396 diag::err_ovl_no_viable_function_in_call) 7397 << ULE->getName() << Fn->getSourceRange(); 7398 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7399 break; 7400 7401 case OR_Ambiguous: 7402 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 7403 << ULE->getName() << Fn->getSourceRange(); 7404 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 7405 break; 7406 7407 case OR_Deleted: 7408 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 7409 << Best->Function->isDeleted() 7410 << ULE->getName() 7411 << Fn->getSourceRange(); 7412 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7413 break; 7414 } 7415 7416 // Overload resolution failed. 7417 return ExprError(); 7418} 7419 7420static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 7421 return Functions.size() > 1 || 7422 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 7423} 7424 7425/// \brief Create a unary operation that may resolve to an overloaded 7426/// operator. 7427/// 7428/// \param OpLoc The location of the operator itself (e.g., '*'). 7429/// 7430/// \param OpcIn The UnaryOperator::Opcode that describes this 7431/// operator. 7432/// 7433/// \param Functions The set of non-member functions that will be 7434/// considered by overload resolution. The caller needs to build this 7435/// set based on the context using, e.g., 7436/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 7437/// set should not contain any member functions; those will be added 7438/// by CreateOverloadedUnaryOp(). 7439/// 7440/// \param input The input argument. 7441ExprResult 7442Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 7443 const UnresolvedSetImpl &Fns, 7444 Expr *Input) { 7445 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 7446 7447 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 7448 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 7449 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7450 // TODO: provide better source location info. 7451 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 7452 7453 if (Input->getObjectKind() == OK_ObjCProperty) 7454 ConvertPropertyForRValue(Input); 7455 7456 Expr *Args[2] = { Input, 0 }; 7457 unsigned NumArgs = 1; 7458 7459 // For post-increment and post-decrement, add the implicit '0' as 7460 // the second argument, so that we know this is a post-increment or 7461 // post-decrement. 7462 if (Opc == UO_PostInc || Opc == UO_PostDec) { 7463 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 7464 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 7465 SourceLocation()); 7466 NumArgs = 2; 7467 } 7468 7469 if (Input->isTypeDependent()) { 7470 if (Fns.empty()) 7471 return Owned(new (Context) UnaryOperator(Input, 7472 Opc, 7473 Context.DependentTy, 7474 VK_RValue, OK_Ordinary, 7475 OpLoc)); 7476 7477 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7478 UnresolvedLookupExpr *Fn 7479 = UnresolvedLookupExpr::Create(Context, NamingClass, 7480 0, SourceRange(), OpNameInfo, 7481 /*ADL*/ true, IsOverloaded(Fns), 7482 Fns.begin(), Fns.end()); 7483 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 7484 &Args[0], NumArgs, 7485 Context.DependentTy, 7486 VK_RValue, 7487 OpLoc)); 7488 } 7489 7490 // Build an empty overload set. 7491 OverloadCandidateSet CandidateSet(OpLoc); 7492 7493 // Add the candidates from the given function set. 7494 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 7495 7496 // Add operator candidates that are member functions. 7497 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 7498 7499 // Add candidates from ADL. 7500 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 7501 Args, NumArgs, 7502 /*ExplicitTemplateArgs*/ 0, 7503 CandidateSet); 7504 7505 // Add builtin operator candidates. 7506 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 7507 7508 // Perform overload resolution. 7509 OverloadCandidateSet::iterator Best; 7510 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 7511 case OR_Success: { 7512 // We found a built-in operator or an overloaded operator. 7513 FunctionDecl *FnDecl = Best->Function; 7514 7515 if (FnDecl) { 7516 // We matched an overloaded operator. Build a call to that 7517 // operator. 7518 7519 // Convert the arguments. 7520 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 7521 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 7522 7523 if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 7524 Best->FoundDecl, Method)) 7525 return ExprError(); 7526 } else { 7527 // Convert the arguments. 7528 ExprResult InputInit 7529 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7530 Context, 7531 FnDecl->getParamDecl(0)), 7532 SourceLocation(), 7533 Input); 7534 if (InputInit.isInvalid()) 7535 return ExprError(); 7536 Input = InputInit.take(); 7537 } 7538 7539 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7540 7541 // Determine the result type. 7542 QualType ResultTy = FnDecl->getResultType(); 7543 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 7544 ResultTy = ResultTy.getNonLValueExprType(Context); 7545 7546 // Build the actual expression node. 7547 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl); 7548 7549 Args[0] = Input; 7550 CallExpr *TheCall = 7551 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 7552 Args, NumArgs, ResultTy, VK, OpLoc); 7553 7554 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 7555 FnDecl)) 7556 return ExprError(); 7557 7558 return MaybeBindToTemporary(TheCall); 7559 } else { 7560 // We matched a built-in operator. Convert the arguments, then 7561 // break out so that we will build the appropriate built-in 7562 // operator node. 7563 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 7564 Best->Conversions[0], AA_Passing)) 7565 return ExprError(); 7566 7567 break; 7568 } 7569 } 7570 7571 case OR_No_Viable_Function: 7572 // No viable function; fall through to handling this as a 7573 // built-in operator, which will produce an error message for us. 7574 break; 7575 7576 case OR_Ambiguous: 7577 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 7578 << UnaryOperator::getOpcodeStr(Opc) 7579 << Input->getType() 7580 << Input->getSourceRange(); 7581 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, 7582 Args, NumArgs, 7583 UnaryOperator::getOpcodeStr(Opc), OpLoc); 7584 return ExprError(); 7585 7586 case OR_Deleted: 7587 Diag(OpLoc, diag::err_ovl_deleted_oper) 7588 << Best->Function->isDeleted() 7589 << UnaryOperator::getOpcodeStr(Opc) 7590 << Input->getSourceRange(); 7591 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7592 return ExprError(); 7593 } 7594 7595 // Either we found no viable overloaded operator or we matched a 7596 // built-in operator. In either case, fall through to trying to 7597 // build a built-in operation. 7598 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 7599} 7600 7601/// \brief Create a binary operation that may resolve to an overloaded 7602/// operator. 7603/// 7604/// \param OpLoc The location of the operator itself (e.g., '+'). 7605/// 7606/// \param OpcIn The BinaryOperator::Opcode that describes this 7607/// operator. 7608/// 7609/// \param Functions The set of non-member functions that will be 7610/// considered by overload resolution. The caller needs to build this 7611/// set based on the context using, e.g., 7612/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 7613/// set should not contain any member functions; those will be added 7614/// by CreateOverloadedBinOp(). 7615/// 7616/// \param LHS Left-hand argument. 7617/// \param RHS Right-hand argument. 7618ExprResult 7619Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 7620 unsigned OpcIn, 7621 const UnresolvedSetImpl &Fns, 7622 Expr *LHS, Expr *RHS) { 7623 Expr *Args[2] = { LHS, RHS }; 7624 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 7625 7626 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 7627 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 7628 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7629 7630 // If either side is type-dependent, create an appropriate dependent 7631 // expression. 7632 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 7633 if (Fns.empty()) { 7634 // If there are no functions to store, just build a dependent 7635 // BinaryOperator or CompoundAssignment. 7636 if (Opc <= BO_Assign || Opc > BO_OrAssign) 7637 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 7638 Context.DependentTy, 7639 VK_RValue, OK_Ordinary, 7640 OpLoc)); 7641 7642 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 7643 Context.DependentTy, 7644 VK_LValue, 7645 OK_Ordinary, 7646 Context.DependentTy, 7647 Context.DependentTy, 7648 OpLoc)); 7649 } 7650 7651 // FIXME: save results of ADL from here? 7652 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7653 // TODO: provide better source location info in DNLoc component. 7654 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 7655 UnresolvedLookupExpr *Fn 7656 = UnresolvedLookupExpr::Create(Context, NamingClass, 0, SourceRange(), 7657 OpNameInfo, /*ADL*/ true, IsOverloaded(Fns), 7658 Fns.begin(), Fns.end()); 7659 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 7660 Args, 2, 7661 Context.DependentTy, 7662 VK_RValue, 7663 OpLoc)); 7664 } 7665 7666 // Always do property rvalue conversions on the RHS. 7667 if (Args[1]->getObjectKind() == OK_ObjCProperty) 7668 ConvertPropertyForRValue(Args[1]); 7669 7670 // The LHS is more complicated. 7671 if (Args[0]->getObjectKind() == OK_ObjCProperty) { 7672 7673 // There's a tension for assignment operators between primitive 7674 // property assignment and the overloaded operators. 7675 if (BinaryOperator::isAssignmentOp(Opc)) { 7676 const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty(); 7677 7678 // Is the property "logically" settable? 7679 bool Settable = (PRE->isExplicitProperty() || 7680 PRE->getImplicitPropertySetter()); 7681 7682 // To avoid gratuitously inventing semantics, use the primitive 7683 // unless it isn't. Thoughts in case we ever really care: 7684 // - If the property isn't logically settable, we have to 7685 // load and hope. 7686 // - If the property is settable and this is simple assignment, 7687 // we really should use the primitive. 7688 // - If the property is settable, then we could try overloading 7689 // on a generic lvalue of the appropriate type; if it works 7690 // out to a builtin candidate, we would do that same operation 7691 // on the property, and otherwise just error. 7692 if (Settable) 7693 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7694 } 7695 7696 ConvertPropertyForRValue(Args[0]); 7697 } 7698 7699 // If this is the assignment operator, we only perform overload resolution 7700 // if the left-hand side is a class or enumeration type. This is actually 7701 // a hack. The standard requires that we do overload resolution between the 7702 // various built-in candidates, but as DR507 points out, this can lead to 7703 // problems. So we do it this way, which pretty much follows what GCC does. 7704 // Note that we go the traditional code path for compound assignment forms. 7705 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 7706 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7707 7708 // If this is the .* operator, which is not overloadable, just 7709 // create a built-in binary operator. 7710 if (Opc == BO_PtrMemD) 7711 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7712 7713 // Build an empty overload set. 7714 OverloadCandidateSet CandidateSet(OpLoc); 7715 7716 // Add the candidates from the given function set. 7717 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 7718 7719 // Add operator candidates that are member functions. 7720 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 7721 7722 // Add candidates from ADL. 7723 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 7724 Args, 2, 7725 /*ExplicitTemplateArgs*/ 0, 7726 CandidateSet); 7727 7728 // Add builtin operator candidates. 7729 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 7730 7731 // Perform overload resolution. 7732 OverloadCandidateSet::iterator Best; 7733 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 7734 case OR_Success: { 7735 // We found a built-in operator or an overloaded operator. 7736 FunctionDecl *FnDecl = Best->Function; 7737 7738 if (FnDecl) { 7739 // We matched an overloaded operator. Build a call to that 7740 // operator. 7741 7742 // Convert the arguments. 7743 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 7744 // Best->Access is only meaningful for class members. 7745 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 7746 7747 ExprResult Arg1 = 7748 PerformCopyInitialization( 7749 InitializedEntity::InitializeParameter(Context, 7750 FnDecl->getParamDecl(0)), 7751 SourceLocation(), Owned(Args[1])); 7752 if (Arg1.isInvalid()) 7753 return ExprError(); 7754 7755 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 7756 Best->FoundDecl, Method)) 7757 return ExprError(); 7758 7759 Args[1] = RHS = Arg1.takeAs<Expr>(); 7760 } else { 7761 // Convert the arguments. 7762 ExprResult Arg0 = PerformCopyInitialization( 7763 InitializedEntity::InitializeParameter(Context, 7764 FnDecl->getParamDecl(0)), 7765 SourceLocation(), Owned(Args[0])); 7766 if (Arg0.isInvalid()) 7767 return ExprError(); 7768 7769 ExprResult Arg1 = 7770 PerformCopyInitialization( 7771 InitializedEntity::InitializeParameter(Context, 7772 FnDecl->getParamDecl(1)), 7773 SourceLocation(), Owned(Args[1])); 7774 if (Arg1.isInvalid()) 7775 return ExprError(); 7776 Args[0] = LHS = Arg0.takeAs<Expr>(); 7777 Args[1] = RHS = Arg1.takeAs<Expr>(); 7778 } 7779 7780 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7781 7782 // Determine the result type. 7783 QualType ResultTy = FnDecl->getResultType(); 7784 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 7785 ResultTy = ResultTy.getNonLValueExprType(Context); 7786 7787 // Build the actual expression node. 7788 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc); 7789 7790 CXXOperatorCallExpr *TheCall = 7791 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 7792 Args, 2, ResultTy, VK, OpLoc); 7793 7794 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 7795 FnDecl)) 7796 return ExprError(); 7797 7798 return MaybeBindToTemporary(TheCall); 7799 } else { 7800 // We matched a built-in operator. Convert the arguments, then 7801 // break out so that we will build the appropriate built-in 7802 // operator node. 7803 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 7804 Best->Conversions[0], AA_Passing) || 7805 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 7806 Best->Conversions[1], AA_Passing)) 7807 return ExprError(); 7808 7809 break; 7810 } 7811 } 7812 7813 case OR_No_Viable_Function: { 7814 // C++ [over.match.oper]p9: 7815 // If the operator is the operator , [...] and there are no 7816 // viable functions, then the operator is assumed to be the 7817 // built-in operator and interpreted according to clause 5. 7818 if (Opc == BO_Comma) 7819 break; 7820 7821 // For class as left operand for assignment or compound assigment 7822 // operator do not fall through to handling in built-in, but report that 7823 // no overloaded assignment operator found 7824 ExprResult Result = ExprError(); 7825 if (Args[0]->getType()->isRecordType() && 7826 Opc >= BO_Assign && Opc <= BO_OrAssign) { 7827 Diag(OpLoc, diag::err_ovl_no_viable_oper) 7828 << BinaryOperator::getOpcodeStr(Opc) 7829 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7830 } else { 7831 // No viable function; try to create a built-in operation, which will 7832 // produce an error. Then, show the non-viable candidates. 7833 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7834 } 7835 assert(Result.isInvalid() && 7836 "C++ binary operator overloading is missing candidates!"); 7837 if (Result.isInvalid()) 7838 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 7839 BinaryOperator::getOpcodeStr(Opc), OpLoc); 7840 return move(Result); 7841 } 7842 7843 case OR_Ambiguous: 7844 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) 7845 << BinaryOperator::getOpcodeStr(Opc) 7846 << Args[0]->getType() << Args[1]->getType() 7847 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7848 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 7849 BinaryOperator::getOpcodeStr(Opc), OpLoc); 7850 return ExprError(); 7851 7852 case OR_Deleted: 7853 Diag(OpLoc, diag::err_ovl_deleted_oper) 7854 << Best->Function->isDeleted() 7855 << BinaryOperator::getOpcodeStr(Opc) 7856 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7857 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2); 7858 return ExprError(); 7859 } 7860 7861 // We matched a built-in operator; build it. 7862 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7863} 7864 7865ExprResult 7866Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 7867 SourceLocation RLoc, 7868 Expr *Base, Expr *Idx) { 7869 Expr *Args[2] = { Base, Idx }; 7870 DeclarationName OpName = 7871 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 7872 7873 // If either side is type-dependent, create an appropriate dependent 7874 // expression. 7875 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 7876 7877 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7878 // CHECKME: no 'operator' keyword? 7879 DeclarationNameInfo OpNameInfo(OpName, LLoc); 7880 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 7881 UnresolvedLookupExpr *Fn 7882 = UnresolvedLookupExpr::Create(Context, NamingClass, 7883 0, SourceRange(), OpNameInfo, 7884 /*ADL*/ true, /*Overloaded*/ false, 7885 UnresolvedSetIterator(), 7886 UnresolvedSetIterator()); 7887 // Can't add any actual overloads yet 7888 7889 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 7890 Args, 2, 7891 Context.DependentTy, 7892 VK_RValue, 7893 RLoc)); 7894 } 7895 7896 if (Args[0]->getObjectKind() == OK_ObjCProperty) 7897 ConvertPropertyForRValue(Args[0]); 7898 if (Args[1]->getObjectKind() == OK_ObjCProperty) 7899 ConvertPropertyForRValue(Args[1]); 7900 7901 // Build an empty overload set. 7902 OverloadCandidateSet CandidateSet(LLoc); 7903 7904 // Subscript can only be overloaded as a member function. 7905 7906 // Add operator candidates that are member functions. 7907 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 7908 7909 // Add builtin operator candidates. 7910 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 7911 7912 // Perform overload resolution. 7913 OverloadCandidateSet::iterator Best; 7914 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 7915 case OR_Success: { 7916 // We found a built-in operator or an overloaded operator. 7917 FunctionDecl *FnDecl = Best->Function; 7918 7919 if (FnDecl) { 7920 // We matched an overloaded operator. Build a call to that 7921 // operator. 7922 7923 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 7924 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 7925 7926 // Convert the arguments. 7927 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 7928 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 7929 Best->FoundDecl, Method)) 7930 return ExprError(); 7931 7932 // Convert the arguments. 7933 ExprResult InputInit 7934 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7935 Context, 7936 FnDecl->getParamDecl(0)), 7937 SourceLocation(), 7938 Owned(Args[1])); 7939 if (InputInit.isInvalid()) 7940 return ExprError(); 7941 7942 Args[1] = InputInit.takeAs<Expr>(); 7943 7944 // Determine the result type 7945 QualType ResultTy = FnDecl->getResultType(); 7946 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 7947 ResultTy = ResultTy.getNonLValueExprType(Context); 7948 7949 // Build the actual expression node. 7950 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc); 7951 7952 CXXOperatorCallExpr *TheCall = 7953 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 7954 FnExpr, Args, 2, 7955 ResultTy, VK, RLoc); 7956 7957 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, 7958 FnDecl)) 7959 return ExprError(); 7960 7961 return MaybeBindToTemporary(TheCall); 7962 } else { 7963 // We matched a built-in operator. Convert the arguments, then 7964 // break out so that we will build the appropriate built-in 7965 // operator node. 7966 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 7967 Best->Conversions[0], AA_Passing) || 7968 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 7969 Best->Conversions[1], AA_Passing)) 7970 return ExprError(); 7971 7972 break; 7973 } 7974 } 7975 7976 case OR_No_Viable_Function: { 7977 if (CandidateSet.empty()) 7978 Diag(LLoc, diag::err_ovl_no_oper) 7979 << Args[0]->getType() << /*subscript*/ 0 7980 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7981 else 7982 Diag(LLoc, diag::err_ovl_no_viable_subscript) 7983 << Args[0]->getType() 7984 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7985 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 7986 "[]", LLoc); 7987 return ExprError(); 7988 } 7989 7990 case OR_Ambiguous: 7991 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) 7992 << "[]" 7993 << Args[0]->getType() << Args[1]->getType() 7994 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7995 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 7996 "[]", LLoc); 7997 return ExprError(); 7998 7999 case OR_Deleted: 8000 Diag(LLoc, diag::err_ovl_deleted_oper) 8001 << Best->Function->isDeleted() << "[]" 8002 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8003 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 8004 "[]", LLoc); 8005 return ExprError(); 8006 } 8007 8008 // We matched a built-in operator; build it. 8009 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 8010} 8011 8012/// BuildCallToMemberFunction - Build a call to a member 8013/// function. MemExpr is the expression that refers to the member 8014/// function (and includes the object parameter), Args/NumArgs are the 8015/// arguments to the function call (not including the object 8016/// parameter). The caller needs to validate that the member 8017/// expression refers to a member function or an overloaded member 8018/// function. 8019ExprResult 8020Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 8021 SourceLocation LParenLoc, Expr **Args, 8022 unsigned NumArgs, SourceLocation RParenLoc) { 8023 // Dig out the member expression. This holds both the object 8024 // argument and the member function we're referring to. 8025 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 8026 8027 MemberExpr *MemExpr; 8028 CXXMethodDecl *Method = 0; 8029 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 8030 NestedNameSpecifier *Qualifier = 0; 8031 if (isa<MemberExpr>(NakedMemExpr)) { 8032 MemExpr = cast<MemberExpr>(NakedMemExpr); 8033 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 8034 FoundDecl = MemExpr->getFoundDecl(); 8035 Qualifier = MemExpr->getQualifier(); 8036 } else { 8037 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 8038 Qualifier = UnresExpr->getQualifier(); 8039 8040 QualType ObjectType = UnresExpr->getBaseType(); 8041 Expr::Classification ObjectClassification 8042 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 8043 : UnresExpr->getBase()->Classify(Context); 8044 8045 // Add overload candidates 8046 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 8047 8048 // FIXME: avoid copy. 8049 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 8050 if (UnresExpr->hasExplicitTemplateArgs()) { 8051 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 8052 TemplateArgs = &TemplateArgsBuffer; 8053 } 8054 8055 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 8056 E = UnresExpr->decls_end(); I != E; ++I) { 8057 8058 NamedDecl *Func = *I; 8059 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 8060 if (isa<UsingShadowDecl>(Func)) 8061 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 8062 8063 8064 // Microsoft supports direct constructor calls. 8065 if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) { 8066 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs, 8067 CandidateSet); 8068 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 8069 // If explicit template arguments were provided, we can't call a 8070 // non-template member function. 8071 if (TemplateArgs) 8072 continue; 8073 8074 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 8075 ObjectClassification, 8076 Args, NumArgs, CandidateSet, 8077 /*SuppressUserConversions=*/false); 8078 } else { 8079 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 8080 I.getPair(), ActingDC, TemplateArgs, 8081 ObjectType, ObjectClassification, 8082 Args, NumArgs, CandidateSet, 8083 /*SuppressUsedConversions=*/false); 8084 } 8085 } 8086 8087 DeclarationName DeclName = UnresExpr->getMemberName(); 8088 8089 OverloadCandidateSet::iterator Best; 8090 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 8091 Best)) { 8092 case OR_Success: 8093 Method = cast<CXXMethodDecl>(Best->Function); 8094 FoundDecl = Best->FoundDecl; 8095 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 8096 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 8097 break; 8098 8099 case OR_No_Viable_Function: 8100 Diag(UnresExpr->getMemberLoc(), 8101 diag::err_ovl_no_viable_member_function_in_call) 8102 << DeclName << MemExprE->getSourceRange(); 8103 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8104 // FIXME: Leaking incoming expressions! 8105 return ExprError(); 8106 8107 case OR_Ambiguous: 8108 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 8109 << DeclName << MemExprE->getSourceRange(); 8110 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8111 // FIXME: Leaking incoming expressions! 8112 return ExprError(); 8113 8114 case OR_Deleted: 8115 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 8116 << Best->Function->isDeleted() 8117 << DeclName << MemExprE->getSourceRange(); 8118 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8119 // FIXME: Leaking incoming expressions! 8120 return ExprError(); 8121 } 8122 8123 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 8124 8125 // If overload resolution picked a static member, build a 8126 // non-member call based on that function. 8127 if (Method->isStatic()) { 8128 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 8129 Args, NumArgs, RParenLoc); 8130 } 8131 8132 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 8133 } 8134 8135 QualType ResultType = Method->getResultType(); 8136 ExprValueKind VK = Expr::getValueKindForType(ResultType); 8137 ResultType = ResultType.getNonLValueExprType(Context); 8138 8139 assert(Method && "Member call to something that isn't a method?"); 8140 CXXMemberCallExpr *TheCall = 8141 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 8142 ResultType, VK, RParenLoc); 8143 8144 // Check for a valid return type. 8145 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 8146 TheCall, Method)) 8147 return ExprError(); 8148 8149 // Convert the object argument (for a non-static member function call). 8150 // We only need to do this if there was actually an overload; otherwise 8151 // it was done at lookup. 8152 Expr *ObjectArg = MemExpr->getBase(); 8153 if (!Method->isStatic() && 8154 PerformObjectArgumentInitialization(ObjectArg, Qualifier, 8155 FoundDecl, Method)) 8156 return ExprError(); 8157 MemExpr->setBase(ObjectArg); 8158 8159 // Convert the rest of the arguments 8160 const FunctionProtoType *Proto = 8161 Method->getType()->getAs<FunctionProtoType>(); 8162 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, 8163 RParenLoc)) 8164 return ExprError(); 8165 8166 if (CheckFunctionCall(Method, TheCall)) 8167 return ExprError(); 8168 8169 return MaybeBindToTemporary(TheCall); 8170} 8171 8172/// BuildCallToObjectOfClassType - Build a call to an object of class 8173/// type (C++ [over.call.object]), which can end up invoking an 8174/// overloaded function call operator (@c operator()) or performing a 8175/// user-defined conversion on the object argument. 8176ExprResult 8177Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 8178 SourceLocation LParenLoc, 8179 Expr **Args, unsigned NumArgs, 8180 SourceLocation RParenLoc) { 8181 if (Object->getObjectKind() == OK_ObjCProperty) 8182 ConvertPropertyForRValue(Object); 8183 8184 assert(Object->getType()->isRecordType() && "Requires object type argument"); 8185 const RecordType *Record = Object->getType()->getAs<RecordType>(); 8186 8187 // C++ [over.call.object]p1: 8188 // If the primary-expression E in the function call syntax 8189 // evaluates to a class object of type "cv T", then the set of 8190 // candidate functions includes at least the function call 8191 // operators of T. The function call operators of T are obtained by 8192 // ordinary lookup of the name operator() in the context of 8193 // (E).operator(). 8194 OverloadCandidateSet CandidateSet(LParenLoc); 8195 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 8196 8197 if (RequireCompleteType(LParenLoc, Object->getType(), 8198 PDiag(diag::err_incomplete_object_call) 8199 << Object->getSourceRange())) 8200 return true; 8201 8202 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 8203 LookupQualifiedName(R, Record->getDecl()); 8204 R.suppressDiagnostics(); 8205 8206 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 8207 Oper != OperEnd; ++Oper) { 8208 AddMethodCandidate(Oper.getPair(), Object->getType(), 8209 Object->Classify(Context), Args, NumArgs, CandidateSet, 8210 /*SuppressUserConversions=*/ false); 8211 } 8212 8213 // C++ [over.call.object]p2: 8214 // In addition, for each conversion function declared in T of the 8215 // form 8216 // 8217 // operator conversion-type-id () cv-qualifier; 8218 // 8219 // where cv-qualifier is the same cv-qualification as, or a 8220 // greater cv-qualification than, cv, and where conversion-type-id 8221 // denotes the type "pointer to function of (P1,...,Pn) returning 8222 // R", or the type "reference to pointer to function of 8223 // (P1,...,Pn) returning R", or the type "reference to function 8224 // of (P1,...,Pn) returning R", a surrogate call function [...] 8225 // is also considered as a candidate function. Similarly, 8226 // surrogate call functions are added to the set of candidate 8227 // functions for each conversion function declared in an 8228 // accessible base class provided the function is not hidden 8229 // within T by another intervening declaration. 8230 const UnresolvedSetImpl *Conversions 8231 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 8232 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 8233 E = Conversions->end(); I != E; ++I) { 8234 NamedDecl *D = *I; 8235 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 8236 if (isa<UsingShadowDecl>(D)) 8237 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8238 8239 // Skip over templated conversion functions; they aren't 8240 // surrogates. 8241 if (isa<FunctionTemplateDecl>(D)) 8242 continue; 8243 8244 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 8245 8246 // Strip the reference type (if any) and then the pointer type (if 8247 // any) to get down to what might be a function type. 8248 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 8249 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 8250 ConvType = ConvPtrType->getPointeeType(); 8251 8252 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 8253 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 8254 Object, Args, NumArgs, CandidateSet); 8255 } 8256 8257 // Perform overload resolution. 8258 OverloadCandidateSet::iterator Best; 8259 switch (CandidateSet.BestViableFunction(*this, Object->getLocStart(), 8260 Best)) { 8261 case OR_Success: 8262 // Overload resolution succeeded; we'll build the appropriate call 8263 // below. 8264 break; 8265 8266 case OR_No_Viable_Function: 8267 if (CandidateSet.empty()) 8268 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 8269 << Object->getType() << /*call*/ 1 8270 << Object->getSourceRange(); 8271 else 8272 Diag(Object->getSourceRange().getBegin(), 8273 diag::err_ovl_no_viable_object_call) 8274 << Object->getType() << Object->getSourceRange(); 8275 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8276 break; 8277 8278 case OR_Ambiguous: 8279 Diag(Object->getSourceRange().getBegin(), 8280 diag::err_ovl_ambiguous_object_call) 8281 << Object->getType() << Object->getSourceRange(); 8282 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 8283 break; 8284 8285 case OR_Deleted: 8286 Diag(Object->getSourceRange().getBegin(), 8287 diag::err_ovl_deleted_object_call) 8288 << Best->Function->isDeleted() 8289 << Object->getType() << Object->getSourceRange(); 8290 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8291 break; 8292 } 8293 8294 if (Best == CandidateSet.end()) 8295 return true; 8296 8297 if (Best->Function == 0) { 8298 // Since there is no function declaration, this is one of the 8299 // surrogate candidates. Dig out the conversion function. 8300 CXXConversionDecl *Conv 8301 = cast<CXXConversionDecl>( 8302 Best->Conversions[0].UserDefined.ConversionFunction); 8303 8304 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 8305 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 8306 8307 // We selected one of the surrogate functions that converts the 8308 // object parameter to a function pointer. Perform the conversion 8309 // on the object argument, then let ActOnCallExpr finish the job. 8310 8311 // Create an implicit member expr to refer to the conversion operator. 8312 // and then call it. 8313 ExprResult Call = BuildCXXMemberCallExpr(Object, Best->FoundDecl, Conv); 8314 if (Call.isInvalid()) 8315 return ExprError(); 8316 8317 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs), 8318 RParenLoc); 8319 } 8320 8321 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 8322 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 8323 8324 // We found an overloaded operator(). Build a CXXOperatorCallExpr 8325 // that calls this method, using Object for the implicit object 8326 // parameter and passing along the remaining arguments. 8327 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 8328 const FunctionProtoType *Proto = 8329 Method->getType()->getAs<FunctionProtoType>(); 8330 8331 unsigned NumArgsInProto = Proto->getNumArgs(); 8332 unsigned NumArgsToCheck = NumArgs; 8333 8334 // Build the full argument list for the method call (the 8335 // implicit object parameter is placed at the beginning of the 8336 // list). 8337 Expr **MethodArgs; 8338 if (NumArgs < NumArgsInProto) { 8339 NumArgsToCheck = NumArgsInProto; 8340 MethodArgs = new Expr*[NumArgsInProto + 1]; 8341 } else { 8342 MethodArgs = new Expr*[NumArgs + 1]; 8343 } 8344 MethodArgs[0] = Object; 8345 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 8346 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 8347 8348 Expr *NewFn = CreateFunctionRefExpr(*this, Method); 8349 8350 // Once we've built TheCall, all of the expressions are properly 8351 // owned. 8352 QualType ResultTy = Method->getResultType(); 8353 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8354 ResultTy = ResultTy.getNonLValueExprType(Context); 8355 8356 CXXOperatorCallExpr *TheCall = 8357 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 8358 MethodArgs, NumArgs + 1, 8359 ResultTy, VK, RParenLoc); 8360 delete [] MethodArgs; 8361 8362 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, 8363 Method)) 8364 return true; 8365 8366 // We may have default arguments. If so, we need to allocate more 8367 // slots in the call for them. 8368 if (NumArgs < NumArgsInProto) 8369 TheCall->setNumArgs(Context, NumArgsInProto + 1); 8370 else if (NumArgs > NumArgsInProto) 8371 NumArgsToCheck = NumArgsInProto; 8372 8373 bool IsError = false; 8374 8375 // Initialize the implicit object parameter. 8376 IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, 8377 Best->FoundDecl, Method); 8378 TheCall->setArg(0, Object); 8379 8380 8381 // Check the argument types. 8382 for (unsigned i = 0; i != NumArgsToCheck; i++) { 8383 Expr *Arg; 8384 if (i < NumArgs) { 8385 Arg = Args[i]; 8386 8387 // Pass the argument. 8388 8389 ExprResult InputInit 8390 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 8391 Context, 8392 Method->getParamDecl(i)), 8393 SourceLocation(), Arg); 8394 8395 IsError |= InputInit.isInvalid(); 8396 Arg = InputInit.takeAs<Expr>(); 8397 } else { 8398 ExprResult DefArg 8399 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 8400 if (DefArg.isInvalid()) { 8401 IsError = true; 8402 break; 8403 } 8404 8405 Arg = DefArg.takeAs<Expr>(); 8406 } 8407 8408 TheCall->setArg(i + 1, Arg); 8409 } 8410 8411 // If this is a variadic call, handle args passed through "...". 8412 if (Proto->isVariadic()) { 8413 // Promote the arguments (C99 6.5.2.2p7). 8414 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 8415 Expr *Arg = Args[i]; 8416 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0); 8417 TheCall->setArg(i + 1, Arg); 8418 } 8419 } 8420 8421 if (IsError) return true; 8422 8423 if (CheckFunctionCall(Method, TheCall)) 8424 return true; 8425 8426 return MaybeBindToTemporary(TheCall); 8427} 8428 8429/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 8430/// (if one exists), where @c Base is an expression of class type and 8431/// @c Member is the name of the member we're trying to find. 8432ExprResult 8433Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { 8434 assert(Base->getType()->isRecordType() && 8435 "left-hand side must have class type"); 8436 8437 if (Base->getObjectKind() == OK_ObjCProperty) 8438 ConvertPropertyForRValue(Base); 8439 8440 SourceLocation Loc = Base->getExprLoc(); 8441 8442 // C++ [over.ref]p1: 8443 // 8444 // [...] An expression x->m is interpreted as (x.operator->())->m 8445 // for a class object x of type T if T::operator->() exists and if 8446 // the operator is selected as the best match function by the 8447 // overload resolution mechanism (13.3). 8448 DeclarationName OpName = 8449 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 8450 OverloadCandidateSet CandidateSet(Loc); 8451 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 8452 8453 if (RequireCompleteType(Loc, Base->getType(), 8454 PDiag(diag::err_typecheck_incomplete_tag) 8455 << Base->getSourceRange())) 8456 return ExprError(); 8457 8458 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 8459 LookupQualifiedName(R, BaseRecord->getDecl()); 8460 R.suppressDiagnostics(); 8461 8462 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 8463 Oper != OperEnd; ++Oper) { 8464 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 8465 0, 0, CandidateSet, /*SuppressUserConversions=*/false); 8466 } 8467 8468 // Perform overload resolution. 8469 OverloadCandidateSet::iterator Best; 8470 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 8471 case OR_Success: 8472 // Overload resolution succeeded; we'll build the call below. 8473 break; 8474 8475 case OR_No_Viable_Function: 8476 if (CandidateSet.empty()) 8477 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 8478 << Base->getType() << Base->getSourceRange(); 8479 else 8480 Diag(OpLoc, diag::err_ovl_no_viable_oper) 8481 << "operator->" << Base->getSourceRange(); 8482 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 8483 return ExprError(); 8484 8485 case OR_Ambiguous: 8486 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 8487 << "->" << Base->getType() << Base->getSourceRange(); 8488 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); 8489 return ExprError(); 8490 8491 case OR_Deleted: 8492 Diag(OpLoc, diag::err_ovl_deleted_oper) 8493 << Best->Function->isDeleted() 8494 << "->" << Base->getSourceRange(); 8495 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 8496 return ExprError(); 8497 } 8498 8499 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 8500 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 8501 8502 // Convert the object parameter. 8503 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 8504 if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 8505 Best->FoundDecl, Method)) 8506 return ExprError(); 8507 8508 // Build the operator call. 8509 Expr *FnExpr = CreateFunctionRefExpr(*this, Method); 8510 8511 QualType ResultTy = Method->getResultType(); 8512 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8513 ResultTy = ResultTy.getNonLValueExprType(Context); 8514 CXXOperatorCallExpr *TheCall = 8515 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 8516 &Base, 1, ResultTy, VK, OpLoc); 8517 8518 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, 8519 Method)) 8520 return ExprError(); 8521 return Owned(TheCall); 8522} 8523 8524/// FixOverloadedFunctionReference - E is an expression that refers to 8525/// a C++ overloaded function (possibly with some parentheses and 8526/// perhaps a '&' around it). We have resolved the overloaded function 8527/// to the function declaration Fn, so patch up the expression E to 8528/// refer (possibly indirectly) to Fn. Returns the new expr. 8529Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 8530 FunctionDecl *Fn) { 8531 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 8532 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 8533 Found, Fn); 8534 if (SubExpr == PE->getSubExpr()) 8535 return PE; 8536 8537 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 8538 } 8539 8540 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8541 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 8542 Found, Fn); 8543 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 8544 SubExpr->getType()) && 8545 "Implicit cast type cannot be determined from overload"); 8546 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 8547 if (SubExpr == ICE->getSubExpr()) 8548 return ICE; 8549 8550 return ImplicitCastExpr::Create(Context, ICE->getType(), 8551 ICE->getCastKind(), 8552 SubExpr, 0, 8553 ICE->getValueKind()); 8554 } 8555 8556 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 8557 assert(UnOp->getOpcode() == UO_AddrOf && 8558 "Can only take the address of an overloaded function"); 8559 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 8560 if (Method->isStatic()) { 8561 // Do nothing: static member functions aren't any different 8562 // from non-member functions. 8563 } else { 8564 // Fix the sub expression, which really has to be an 8565 // UnresolvedLookupExpr holding an overloaded member function 8566 // or template. 8567 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 8568 Found, Fn); 8569 if (SubExpr == UnOp->getSubExpr()) 8570 return UnOp; 8571 8572 assert(isa<DeclRefExpr>(SubExpr) 8573 && "fixed to something other than a decl ref"); 8574 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 8575 && "fixed to a member ref with no nested name qualifier"); 8576 8577 // We have taken the address of a pointer to member 8578 // function. Perform the computation here so that we get the 8579 // appropriate pointer to member type. 8580 QualType ClassType 8581 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 8582 QualType MemPtrType 8583 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 8584 8585 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, 8586 VK_RValue, OK_Ordinary, 8587 UnOp->getOperatorLoc()); 8588 } 8589 } 8590 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 8591 Found, Fn); 8592 if (SubExpr == UnOp->getSubExpr()) 8593 return UnOp; 8594 8595 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 8596 Context.getPointerType(SubExpr->getType()), 8597 VK_RValue, OK_Ordinary, 8598 UnOp->getOperatorLoc()); 8599 } 8600 8601 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 8602 // FIXME: avoid copy. 8603 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 8604 if (ULE->hasExplicitTemplateArgs()) { 8605 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 8606 TemplateArgs = &TemplateArgsBuffer; 8607 } 8608 8609 return DeclRefExpr::Create(Context, 8610 ULE->getQualifier(), 8611 ULE->getQualifierRange(), 8612 Fn, 8613 ULE->getNameLoc(), 8614 Fn->getType(), 8615 VK_LValue, 8616 TemplateArgs); 8617 } 8618 8619 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 8620 // FIXME: avoid copy. 8621 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 8622 if (MemExpr->hasExplicitTemplateArgs()) { 8623 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 8624 TemplateArgs = &TemplateArgsBuffer; 8625 } 8626 8627 Expr *Base; 8628 8629 // If we're filling in a static method where we used to have an 8630 // implicit member access, rewrite to a simple decl ref. 8631 if (MemExpr->isImplicitAccess()) { 8632 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 8633 return DeclRefExpr::Create(Context, 8634 MemExpr->getQualifier(), 8635 MemExpr->getQualifierRange(), 8636 Fn, 8637 MemExpr->getMemberLoc(), 8638 Fn->getType(), 8639 VK_LValue, 8640 TemplateArgs); 8641 } else { 8642 SourceLocation Loc = MemExpr->getMemberLoc(); 8643 if (MemExpr->getQualifier()) 8644 Loc = MemExpr->getQualifierRange().getBegin(); 8645 Base = new (Context) CXXThisExpr(Loc, 8646 MemExpr->getBaseType(), 8647 /*isImplicit=*/true); 8648 } 8649 } else 8650 Base = MemExpr->getBase(); 8651 8652 return MemberExpr::Create(Context, Base, 8653 MemExpr->isArrow(), 8654 MemExpr->getQualifier(), 8655 MemExpr->getQualifierRange(), 8656 Fn, 8657 Found, 8658 MemExpr->getMemberNameInfo(), 8659 TemplateArgs, 8660 Fn->getType(), 8661 cast<CXXMethodDecl>(Fn)->isStatic() 8662 ? VK_LValue : VK_RValue, 8663 OK_Ordinary); 8664 } 8665 8666 llvm_unreachable("Invalid reference to overloaded function"); 8667 return E; 8668} 8669 8670ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 8671 DeclAccessPair Found, 8672 FunctionDecl *Fn) { 8673 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 8674} 8675 8676} // end namespace clang 8677