SemaOverload.cpp revision 18fe56863be253a27b940022d27a3101778adaf6
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/Expr.h"
19#include "llvm/Support/Compiler.h"
20#include <algorithm>
21
22namespace clang {
23
24/// GetConversionCategory - Retrieve the implicit conversion
25/// category corresponding to the given implicit conversion kind.
26ImplicitConversionCategory
27GetConversionCategory(ImplicitConversionKind Kind) {
28  static const ImplicitConversionCategory
29    Category[(int)ICK_Num_Conversion_Kinds] = {
30    ICC_Identity,
31    ICC_Lvalue_Transformation,
32    ICC_Lvalue_Transformation,
33    ICC_Lvalue_Transformation,
34    ICC_Qualification_Adjustment,
35    ICC_Promotion,
36    ICC_Promotion,
37    ICC_Conversion,
38    ICC_Conversion,
39    ICC_Conversion,
40    ICC_Conversion,
41    ICC_Conversion,
42    ICC_Conversion,
43    ICC_Conversion
44  };
45  return Category[(int)Kind];
46}
47
48/// GetConversionRank - Retrieve the implicit conversion rank
49/// corresponding to the given implicit conversion kind.
50ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
51  static const ImplicitConversionRank
52    Rank[(int)ICK_Num_Conversion_Kinds] = {
53    ICR_Exact_Match,
54    ICR_Exact_Match,
55    ICR_Exact_Match,
56    ICR_Exact_Match,
57    ICR_Exact_Match,
58    ICR_Promotion,
59    ICR_Promotion,
60    ICR_Conversion,
61    ICR_Conversion,
62    ICR_Conversion,
63    ICR_Conversion,
64    ICR_Conversion,
65    ICR_Conversion,
66    ICR_Conversion
67  };
68  return Rank[(int)Kind];
69}
70
71/// GetImplicitConversionName - Return the name of this kind of
72/// implicit conversion.
73const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
74  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
75    "No conversion",
76    "Lvalue-to-rvalue",
77    "Array-to-pointer",
78    "Function-to-pointer",
79    "Qualification",
80    "Integral promotion",
81    "Floating point promotion",
82    "Integral conversion",
83    "Floating conversion",
84    "Floating-integral conversion",
85    "Pointer conversion",
86    "Pointer-to-member conversion",
87    "Boolean conversion",
88    "Derived-to-base conversion"
89  };
90  return Name[Kind];
91}
92
93/// StandardConversionSequence - Set the standard conversion
94/// sequence to the identity conversion.
95void StandardConversionSequence::setAsIdentityConversion() {
96  First = ICK_Identity;
97  Second = ICK_Identity;
98  Third = ICK_Identity;
99  Deprecated = false;
100  ReferenceBinding = false;
101  DirectBinding = false;
102  CopyConstructor = 0;
103}
104
105/// getRank - Retrieve the rank of this standard conversion sequence
106/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
107/// implicit conversions.
108ImplicitConversionRank StandardConversionSequence::getRank() const {
109  ImplicitConversionRank Rank = ICR_Exact_Match;
110  if  (GetConversionRank(First) > Rank)
111    Rank = GetConversionRank(First);
112  if  (GetConversionRank(Second) > Rank)
113    Rank = GetConversionRank(Second);
114  if  (GetConversionRank(Third) > Rank)
115    Rank = GetConversionRank(Third);
116  return Rank;
117}
118
119/// isPointerConversionToBool - Determines whether this conversion is
120/// a conversion of a pointer or pointer-to-member to bool. This is
121/// used as part of the ranking of standard conversion sequences
122/// (C++ 13.3.3.2p4).
123bool StandardConversionSequence::isPointerConversionToBool() const
124{
125  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
126  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
127
128  // Note that FromType has not necessarily been transformed by the
129  // array-to-pointer or function-to-pointer implicit conversions, so
130  // check for their presence as well as checking whether FromType is
131  // a pointer.
132  if (ToType->isBooleanType() &&
133      (FromType->isPointerType() ||
134       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
135    return true;
136
137  return false;
138}
139
140/// isPointerConversionToVoidPointer - Determines whether this
141/// conversion is a conversion of a pointer to a void pointer. This is
142/// used as part of the ranking of standard conversion sequences (C++
143/// 13.3.3.2p4).
144bool
145StandardConversionSequence::
146isPointerConversionToVoidPointer(ASTContext& Context) const
147{
148  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
149  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
150
151  // Note that FromType has not necessarily been transformed by the
152  // array-to-pointer implicit conversion, so check for its presence
153  // and redo the conversion to get a pointer.
154  if (First == ICK_Array_To_Pointer)
155    FromType = Context.getArrayDecayedType(FromType);
156
157  if (Second == ICK_Pointer_Conversion)
158    if (const PointerType* ToPtrType = ToType->getAsPointerType())
159      return ToPtrType->getPointeeType()->isVoidType();
160
161  return false;
162}
163
164/// DebugPrint - Print this standard conversion sequence to standard
165/// error. Useful for debugging overloading issues.
166void StandardConversionSequence::DebugPrint() const {
167  bool PrintedSomething = false;
168  if (First != ICK_Identity) {
169    fprintf(stderr, "%s", GetImplicitConversionName(First));
170    PrintedSomething = true;
171  }
172
173  if (Second != ICK_Identity) {
174    if (PrintedSomething) {
175      fprintf(stderr, " -> ");
176    }
177    fprintf(stderr, "%s", GetImplicitConversionName(Second));
178
179    if (CopyConstructor) {
180      fprintf(stderr, " (by copy constructor)");
181    } else if (DirectBinding) {
182      fprintf(stderr, " (direct reference binding)");
183    } else if (ReferenceBinding) {
184      fprintf(stderr, " (reference binding)");
185    }
186    PrintedSomething = true;
187  }
188
189  if (Third != ICK_Identity) {
190    if (PrintedSomething) {
191      fprintf(stderr, " -> ");
192    }
193    fprintf(stderr, "%s", GetImplicitConversionName(Third));
194    PrintedSomething = true;
195  }
196
197  if (!PrintedSomething) {
198    fprintf(stderr, "No conversions required");
199  }
200}
201
202/// DebugPrint - Print this user-defined conversion sequence to standard
203/// error. Useful for debugging overloading issues.
204void UserDefinedConversionSequence::DebugPrint() const {
205  if (Before.First || Before.Second || Before.Third) {
206    Before.DebugPrint();
207    fprintf(stderr, " -> ");
208  }
209  fprintf(stderr, "'%s'", ConversionFunction->getName());
210  if (After.First || After.Second || After.Third) {
211    fprintf(stderr, " -> ");
212    After.DebugPrint();
213  }
214}
215
216/// DebugPrint - Print this implicit conversion sequence to standard
217/// error. Useful for debugging overloading issues.
218void ImplicitConversionSequence::DebugPrint() const {
219  switch (ConversionKind) {
220  case StandardConversion:
221    fprintf(stderr, "Standard conversion: ");
222    Standard.DebugPrint();
223    break;
224  case UserDefinedConversion:
225    fprintf(stderr, "User-defined conversion: ");
226    UserDefined.DebugPrint();
227    break;
228  case EllipsisConversion:
229    fprintf(stderr, "Ellipsis conversion");
230    break;
231  case BadConversion:
232    fprintf(stderr, "Bad conversion");
233    break;
234  }
235
236  fprintf(stderr, "\n");
237}
238
239// IsOverload - Determine whether the given New declaration is an
240// overload of the Old declaration. This routine returns false if New
241// and Old cannot be overloaded, e.g., if they are functions with the
242// same signature (C++ 1.3.10) or if the Old declaration isn't a
243// function (or overload set). When it does return false and Old is an
244// OverloadedFunctionDecl, MatchedDecl will be set to point to the
245// FunctionDecl that New cannot be overloaded with.
246//
247// Example: Given the following input:
248//
249//   void f(int, float); // #1
250//   void f(int, int); // #2
251//   int f(int, int); // #3
252//
253// When we process #1, there is no previous declaration of "f",
254// so IsOverload will not be used.
255//
256// When we process #2, Old is a FunctionDecl for #1.  By comparing the
257// parameter types, we see that #1 and #2 are overloaded (since they
258// have different signatures), so this routine returns false;
259// MatchedDecl is unchanged.
260//
261// When we process #3, Old is an OverloadedFunctionDecl containing #1
262// and #2. We compare the signatures of #3 to #1 (they're overloaded,
263// so we do nothing) and then #3 to #2. Since the signatures of #3 and
264// #2 are identical (return types of functions are not part of the
265// signature), IsOverload returns false and MatchedDecl will be set to
266// point to the FunctionDecl for #2.
267bool
268Sema::IsOverload(FunctionDecl *New, Decl* OldD,
269                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
270{
271  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
272    // Is this new function an overload of every function in the
273    // overload set?
274    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
275                                           FuncEnd = Ovl->function_end();
276    for (; Func != FuncEnd; ++Func) {
277      if (!IsOverload(New, *Func, MatchedDecl)) {
278        MatchedDecl = Func;
279        return false;
280      }
281    }
282
283    // This function overloads every function in the overload set.
284    return true;
285  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
286    // Is the function New an overload of the function Old?
287    QualType OldQType = Context.getCanonicalType(Old->getType());
288    QualType NewQType = Context.getCanonicalType(New->getType());
289
290    // Compare the signatures (C++ 1.3.10) of the two functions to
291    // determine whether they are overloads. If we find any mismatch
292    // in the signature, they are overloads.
293
294    // If either of these functions is a K&R-style function (no
295    // prototype), then we consider them to have matching signatures.
296    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
297        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
298      return false;
299
300    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
301    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
302
303    // The signature of a function includes the types of its
304    // parameters (C++ 1.3.10), which includes the presence or absence
305    // of the ellipsis; see C++ DR 357).
306    if (OldQType != NewQType &&
307        (OldType->getNumArgs() != NewType->getNumArgs() ||
308         OldType->isVariadic() != NewType->isVariadic() ||
309         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
310                     NewType->arg_type_begin())))
311      return true;
312
313    // If the function is a class member, its signature includes the
314    // cv-qualifiers (if any) on the function itself.
315    //
316    // As part of this, also check whether one of the member functions
317    // is static, in which case they are not overloads (C++
318    // 13.1p2). While not part of the definition of the signature,
319    // this check is important to determine whether these functions
320    // can be overloaded.
321    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
322    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
323    if (OldMethod && NewMethod &&
324        !OldMethod->isStatic() && !NewMethod->isStatic() &&
325        OldQType.getCVRQualifiers() != NewQType.getCVRQualifiers())
326      return true;
327
328    // The signatures match; this is not an overload.
329    return false;
330  } else {
331    // (C++ 13p1):
332    //   Only function declarations can be overloaded; object and type
333    //   declarations cannot be overloaded.
334    return false;
335  }
336}
337
338/// TryImplicitConversion - Attempt to perform an implicit conversion
339/// from the given expression (Expr) to the given type (ToType). This
340/// function returns an implicit conversion sequence that can be used
341/// to perform the initialization. Given
342///
343///   void f(float f);
344///   void g(int i) { f(i); }
345///
346/// this routine would produce an implicit conversion sequence to
347/// describe the initialization of f from i, which will be a standard
348/// conversion sequence containing an lvalue-to-rvalue conversion (C++
349/// 4.1) followed by a floating-integral conversion (C++ 4.9).
350//
351/// Note that this routine only determines how the conversion can be
352/// performed; it does not actually perform the conversion. As such,
353/// it will not produce any diagnostics if no conversion is available,
354/// but will instead return an implicit conversion sequence of kind
355/// "BadConversion".
356///
357/// If @p SuppressUserConversions, then user-defined conversions are
358/// not permitted.
359ImplicitConversionSequence
360Sema::TryImplicitConversion(Expr* From, QualType ToType,
361                            bool SuppressUserConversions)
362{
363  ImplicitConversionSequence ICS;
364  if (IsStandardConversion(From, ToType, ICS.Standard))
365    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
366  else if (!SuppressUserConversions &&
367           IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
368    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
369    // C++ [over.ics.user]p4:
370    //   A conversion of an expression of class type to the same class
371    //   type is given Exact Match rank, and a conversion of an
372    //   expression of class type to a base class of that type is
373    //   given Conversion rank, in spite of the fact that a copy
374    //   constructor (i.e., a user-defined conversion function) is
375    //   called for those cases.
376    if (CXXConstructorDecl *Constructor
377          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
378      if (Constructor->isCopyConstructor(Context)) {
379        // Turn this into a "standard" conversion sequence, so that it
380        // gets ranked with standard conversion sequences.
381        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
382        ICS.Standard.setAsIdentityConversion();
383        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
384        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
385        ICS.Standard.CopyConstructor = Constructor;
386        if (IsDerivedFrom(From->getType().getUnqualifiedType(),
387                          ToType.getUnqualifiedType()))
388          ICS.Standard.Second = ICK_Derived_To_Base;
389      }
390    }
391  } else
392    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
393
394  return ICS;
395}
396
397/// IsStandardConversion - Determines whether there is a standard
398/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
399/// expression From to the type ToType. Standard conversion sequences
400/// only consider non-class types; for conversions that involve class
401/// types, use TryImplicitConversion. If a conversion exists, SCS will
402/// contain the standard conversion sequence required to perform this
403/// conversion and this routine will return true. Otherwise, this
404/// routine will return false and the value of SCS is unspecified.
405bool
406Sema::IsStandardConversion(Expr* From, QualType ToType,
407                           StandardConversionSequence &SCS)
408{
409  QualType FromType = From->getType();
410
411  // There are no standard conversions for class types, so abort early.
412  if (FromType->isRecordType() || ToType->isRecordType())
413    return false;
414
415  // Standard conversions (C++ [conv])
416  SCS.Deprecated = false;
417  SCS.FromTypePtr = FromType.getAsOpaquePtr();
418  SCS.CopyConstructor = 0;
419
420  // The first conversion can be an lvalue-to-rvalue conversion,
421  // array-to-pointer conversion, or function-to-pointer conversion
422  // (C++ 4p1).
423
424  // Lvalue-to-rvalue conversion (C++ 4.1):
425  //   An lvalue (3.10) of a non-function, non-array type T can be
426  //   converted to an rvalue.
427  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
428  if (argIsLvalue == Expr::LV_Valid &&
429      !FromType->isFunctionType() && !FromType->isArrayType()) {
430    SCS.First = ICK_Lvalue_To_Rvalue;
431
432    // If T is a non-class type, the type of the rvalue is the
433    // cv-unqualified version of T. Otherwise, the type of the rvalue
434    // is T (C++ 4.1p1).
435    FromType = FromType.getUnqualifiedType();
436  }
437  // Array-to-pointer conversion (C++ 4.2)
438  else if (FromType->isArrayType()) {
439    SCS.First = ICK_Array_To_Pointer;
440
441    // An lvalue or rvalue of type "array of N T" or "array of unknown
442    // bound of T" can be converted to an rvalue of type "pointer to
443    // T" (C++ 4.2p1).
444    FromType = Context.getArrayDecayedType(FromType);
445
446    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
447      // This conversion is deprecated. (C++ D.4).
448      SCS.Deprecated = true;
449
450      // For the purpose of ranking in overload resolution
451      // (13.3.3.1.1), this conversion is considered an
452      // array-to-pointer conversion followed by a qualification
453      // conversion (4.4). (C++ 4.2p2)
454      SCS.Second = ICK_Identity;
455      SCS.Third = ICK_Qualification;
456      SCS.ToTypePtr = ToType.getAsOpaquePtr();
457      return true;
458    }
459  }
460  // Function-to-pointer conversion (C++ 4.3).
461  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
462    SCS.First = ICK_Function_To_Pointer;
463
464    // An lvalue of function type T can be converted to an rvalue of
465    // type "pointer to T." The result is a pointer to the
466    // function. (C++ 4.3p1).
467    FromType = Context.getPointerType(FromType);
468
469    // FIXME: Deal with overloaded functions here (C++ 4.3p2).
470  }
471  // We don't require any conversions for the first step.
472  else {
473    SCS.First = ICK_Identity;
474  }
475
476  // The second conversion can be an integral promotion, floating
477  // point promotion, integral conversion, floating point conversion,
478  // floating-integral conversion, pointer conversion,
479  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
480  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
481      Context.getCanonicalType(ToType).getUnqualifiedType()) {
482    // The unqualified versions of the types are the same: there's no
483    // conversion to do.
484    SCS.Second = ICK_Identity;
485  }
486  // Integral promotion (C++ 4.5).
487  else if (IsIntegralPromotion(From, FromType, ToType)) {
488    SCS.Second = ICK_Integral_Promotion;
489    FromType = ToType.getUnqualifiedType();
490  }
491  // Floating point promotion (C++ 4.6).
492  else if (IsFloatingPointPromotion(FromType, ToType)) {
493    SCS.Second = ICK_Floating_Promotion;
494    FromType = ToType.getUnqualifiedType();
495  }
496  // Integral conversions (C++ 4.7).
497  // FIXME: isIntegralType shouldn't be true for enums in C++.
498  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
499           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
500    SCS.Second = ICK_Integral_Conversion;
501    FromType = ToType.getUnqualifiedType();
502  }
503  // Floating point conversions (C++ 4.8).
504  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
505    SCS.Second = ICK_Floating_Conversion;
506    FromType = ToType.getUnqualifiedType();
507  }
508  // Floating-integral conversions (C++ 4.9).
509  // FIXME: isIntegralType shouldn't be true for enums in C++.
510  else if ((FromType->isFloatingType() &&
511            ToType->isIntegralType() && !ToType->isBooleanType() &&
512                                        !ToType->isEnumeralType()) ||
513           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
514            ToType->isFloatingType())) {
515    SCS.Second = ICK_Floating_Integral;
516    FromType = ToType.getUnqualifiedType();
517  }
518  // Pointer conversions (C++ 4.10).
519  else if (IsPointerConversion(From, FromType, ToType, FromType)) {
520    SCS.Second = ICK_Pointer_Conversion;
521  }
522  // FIXME: Pointer to member conversions (4.11).
523  // Boolean conversions (C++ 4.12).
524  // FIXME: pointer-to-member type
525  else if (ToType->isBooleanType() &&
526           (FromType->isArithmeticType() ||
527            FromType->isEnumeralType() ||
528            FromType->isPointerType())) {
529    SCS.Second = ICK_Boolean_Conversion;
530    FromType = Context.BoolTy;
531  } else {
532    // No second conversion required.
533    SCS.Second = ICK_Identity;
534  }
535
536  QualType CanonFrom;
537  QualType CanonTo;
538  // The third conversion can be a qualification conversion (C++ 4p1).
539  if (IsQualificationConversion(FromType, ToType)) {
540    SCS.Third = ICK_Qualification;
541    FromType = ToType;
542    CanonFrom = Context.getCanonicalType(FromType);
543    CanonTo = Context.getCanonicalType(ToType);
544  } else {
545    // No conversion required
546    SCS.Third = ICK_Identity;
547
548    // C++ [over.best.ics]p6:
549    //   [...] Any difference in top-level cv-qualification is
550    //   subsumed by the initialization itself and does not constitute
551    //   a conversion. [...]
552    CanonFrom = Context.getCanonicalType(FromType);
553    CanonTo = Context.getCanonicalType(ToType);
554    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
555        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
556      FromType = ToType;
557      CanonFrom = CanonTo;
558    }
559  }
560
561  // If we have not converted the argument type to the parameter type,
562  // this is a bad conversion sequence.
563  if (CanonFrom != CanonTo)
564    return false;
565
566  SCS.ToTypePtr = FromType.getAsOpaquePtr();
567  return true;
568}
569
570/// IsIntegralPromotion - Determines whether the conversion from the
571/// expression From (whose potentially-adjusted type is FromType) to
572/// ToType is an integral promotion (C++ 4.5). If so, returns true and
573/// sets PromotedType to the promoted type.
574bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
575{
576  const BuiltinType *To = ToType->getAsBuiltinType();
577  if (!To) {
578    return false;
579  }
580
581  // An rvalue of type char, signed char, unsigned char, short int, or
582  // unsigned short int can be converted to an rvalue of type int if
583  // int can represent all the values of the source type; otherwise,
584  // the source rvalue can be converted to an rvalue of type unsigned
585  // int (C++ 4.5p1).
586  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
587    if (// We can promote any signed, promotable integer type to an int
588        (FromType->isSignedIntegerType() ||
589         // We can promote any unsigned integer type whose size is
590         // less than int to an int.
591         (!FromType->isSignedIntegerType() &&
592          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
593      return To->getKind() == BuiltinType::Int;
594    }
595
596    return To->getKind() == BuiltinType::UInt;
597  }
598
599  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
600  // can be converted to an rvalue of the first of the following types
601  // that can represent all the values of its underlying type: int,
602  // unsigned int, long, or unsigned long (C++ 4.5p2).
603  if ((FromType->isEnumeralType() || FromType->isWideCharType())
604      && ToType->isIntegerType()) {
605    // Determine whether the type we're converting from is signed or
606    // unsigned.
607    bool FromIsSigned;
608    uint64_t FromSize = Context.getTypeSize(FromType);
609    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
610      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
611      FromIsSigned = UnderlyingType->isSignedIntegerType();
612    } else {
613      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
614      FromIsSigned = true;
615    }
616
617    // The types we'll try to promote to, in the appropriate
618    // order. Try each of these types.
619    QualType PromoteTypes[4] = {
620      Context.IntTy, Context.UnsignedIntTy,
621      Context.LongTy, Context.UnsignedLongTy
622    };
623    for (int Idx = 0; Idx < 0; ++Idx) {
624      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
625      if (FromSize < ToSize ||
626          (FromSize == ToSize &&
627           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
628        // We found the type that we can promote to. If this is the
629        // type we wanted, we have a promotion. Otherwise, no
630        // promotion.
631        return Context.getCanonicalType(ToType).getUnqualifiedType()
632          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
633      }
634    }
635  }
636
637  // An rvalue for an integral bit-field (9.6) can be converted to an
638  // rvalue of type int if int can represent all the values of the
639  // bit-field; otherwise, it can be converted to unsigned int if
640  // unsigned int can represent all the values of the bit-field. If
641  // the bit-field is larger yet, no integral promotion applies to
642  // it. If the bit-field has an enumerated type, it is treated as any
643  // other value of that type for promotion purposes (C++ 4.5p3).
644  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
645    using llvm::APSInt;
646    FieldDecl *MemberDecl = MemRef->getMemberDecl();
647    APSInt BitWidth;
648    if (MemberDecl->isBitField() &&
649        FromType->isIntegralType() && !FromType->isEnumeralType() &&
650        From->isIntegerConstantExpr(BitWidth, Context)) {
651      APSInt ToSize(Context.getTypeSize(ToType));
652
653      // Are we promoting to an int from a bitfield that fits in an int?
654      if (BitWidth < ToSize ||
655          (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
656        return To->getKind() == BuiltinType::Int;
657      }
658
659      // Are we promoting to an unsigned int from an unsigned bitfield
660      // that fits into an unsigned int?
661      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
662        return To->getKind() == BuiltinType::UInt;
663      }
664
665      return false;
666    }
667  }
668
669  // An rvalue of type bool can be converted to an rvalue of type int,
670  // with false becoming zero and true becoming one (C++ 4.5p4).
671  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
672    return true;
673  }
674
675  return false;
676}
677
678/// IsFloatingPointPromotion - Determines whether the conversion from
679/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
680/// returns true and sets PromotedType to the promoted type.
681bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
682{
683  /// An rvalue of type float can be converted to an rvalue of type
684  /// double. (C++ 4.6p1).
685  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
686    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
687      if (FromBuiltin->getKind() == BuiltinType::Float &&
688          ToBuiltin->getKind() == BuiltinType::Double)
689        return true;
690
691  return false;
692}
693
694/// IsPointerConversion - Determines whether the conversion of the
695/// expression From, which has the (possibly adjusted) type FromType,
696/// can be converted to the type ToType via a pointer conversion (C++
697/// 4.10). If so, returns true and places the converted type (that
698/// might differ from ToType in its cv-qualifiers at some level) into
699/// ConvertedType.
700bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
701                               QualType& ConvertedType)
702{
703  const PointerType* ToTypePtr = ToType->getAsPointerType();
704  if (!ToTypePtr)
705    return false;
706
707  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
708  if (From->isNullPointerConstant(Context)) {
709    ConvertedType = ToType;
710    return true;
711  }
712
713  // An rvalue of type "pointer to cv T," where T is an object type,
714  // can be converted to an rvalue of type "pointer to cv void" (C++
715  // 4.10p2).
716  if (FromType->isPointerType() &&
717      FromType->getAsPointerType()->getPointeeType()->isObjectType() &&
718      ToTypePtr->getPointeeType()->isVoidType()) {
719    // We need to produce a pointer to cv void, where cv is the same
720    // set of cv-qualifiers as we had on the incoming pointee type.
721    QualType toPointee = ToTypePtr->getPointeeType();
722    unsigned Quals = Context.getCanonicalType(FromType)->getAsPointerType()
723                   ->getPointeeType().getCVRQualifiers();
724
725    if (Context.getCanonicalType(ToTypePtr->getPointeeType()).getCVRQualifiers()
726	  == Quals) {
727      // ToType is exactly the type we want. Use it.
728      ConvertedType = ToType;
729    } else {
730      // Build a new type with the right qualifiers.
731      ConvertedType
732	= Context.getPointerType(Context.VoidTy.getQualifiedType(Quals));
733    }
734    return true;
735  }
736
737  // C++ [conv.ptr]p3:
738  //
739  //   An rvalue of type "pointer to cv D," where D is a class type,
740  //   can be converted to an rvalue of type "pointer to cv B," where
741  //   B is a base class (clause 10) of D. If B is an inaccessible
742  //   (clause 11) or ambiguous (10.2) base class of D, a program that
743  //   necessitates this conversion is ill-formed. The result of the
744  //   conversion is a pointer to the base class sub-object of the
745  //   derived class object. The null pointer value is converted to
746  //   the null pointer value of the destination type.
747  //
748  // Note that we do not check for ambiguity or inaccessibility
749  // here. That is handled by CheckPointerConversion.
750  if (const PointerType *FromPtrType = FromType->getAsPointerType())
751    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
752      if (FromPtrType->getPointeeType()->isRecordType() &&
753          ToPtrType->getPointeeType()->isRecordType() &&
754          IsDerivedFrom(FromPtrType->getPointeeType(),
755                        ToPtrType->getPointeeType())) {
756        // The conversion is okay. Now, we need to produce the type
757        // that results from this conversion, which will have the same
758        // qualifiers as the incoming type.
759        QualType CanonFromPointee
760          = Context.getCanonicalType(FromPtrType->getPointeeType());
761        QualType ToPointee = ToPtrType->getPointeeType();
762        QualType CanonToPointee = Context.getCanonicalType(ToPointee);
763        unsigned Quals = CanonFromPointee.getCVRQualifiers();
764
765        if (CanonToPointee.getCVRQualifiers() == Quals) {
766          // ToType is exactly the type we want. Use it.
767          ConvertedType = ToType;
768        } else {
769          // Build a new type with the right qualifiers.
770          ConvertedType
771            = Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
772        }
773        return true;
774      }
775    }
776
777  return false;
778}
779
780/// CheckPointerConversion - Check the pointer conversion from the
781/// expression From to the type ToType. This routine checks for
782/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
783/// conversions for which IsPointerConversion has already returned
784/// true. It returns true and produces a diagnostic if there was an
785/// error, or returns false otherwise.
786bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
787  QualType FromType = From->getType();
788
789  if (const PointerType *FromPtrType = FromType->getAsPointerType())
790    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
791      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
792                      /*DetectVirtual=*/false);
793      QualType FromPointeeType = FromPtrType->getPointeeType(),
794               ToPointeeType   = ToPtrType->getPointeeType();
795      if (FromPointeeType->isRecordType() &&
796          ToPointeeType->isRecordType()) {
797        // We must have a derived-to-base conversion. Check an
798        // ambiguous or inaccessible conversion.
799        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
800                                            From->getExprLoc(),
801                                            From->getSourceRange());
802      }
803    }
804
805  return false;
806}
807
808/// IsQualificationConversion - Determines whether the conversion from
809/// an rvalue of type FromType to ToType is a qualification conversion
810/// (C++ 4.4).
811bool
812Sema::IsQualificationConversion(QualType FromType, QualType ToType)
813{
814  FromType = Context.getCanonicalType(FromType);
815  ToType = Context.getCanonicalType(ToType);
816
817  // If FromType and ToType are the same type, this is not a
818  // qualification conversion.
819  if (FromType == ToType)
820    return false;
821
822  // (C++ 4.4p4):
823  //   A conversion can add cv-qualifiers at levels other than the first
824  //   in multi-level pointers, subject to the following rules: [...]
825  bool PreviousToQualsIncludeConst = true;
826  bool UnwrappedAnyPointer = false;
827  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
828    // Within each iteration of the loop, we check the qualifiers to
829    // determine if this still looks like a qualification
830    // conversion. Then, if all is well, we unwrap one more level of
831    // pointers or pointers-to-members and do it all again
832    // until there are no more pointers or pointers-to-members left to
833    // unwrap.
834    UnwrappedAnyPointer = true;
835
836    //   -- for every j > 0, if const is in cv 1,j then const is in cv
837    //      2,j, and similarly for volatile.
838    if (!ToType.isAtLeastAsQualifiedAs(FromType))
839      return false;
840
841    //   -- if the cv 1,j and cv 2,j are different, then const is in
842    //      every cv for 0 < k < j.
843    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
844        && !PreviousToQualsIncludeConst)
845      return false;
846
847    // Keep track of whether all prior cv-qualifiers in the "to" type
848    // include const.
849    PreviousToQualsIncludeConst
850      = PreviousToQualsIncludeConst && ToType.isConstQualified();
851  }
852
853  // We are left with FromType and ToType being the pointee types
854  // after unwrapping the original FromType and ToType the same number
855  // of types. If we unwrapped any pointers, and if FromType and
856  // ToType have the same unqualified type (since we checked
857  // qualifiers above), then this is a qualification conversion.
858  return UnwrappedAnyPointer &&
859    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
860}
861
862/// IsUserDefinedConversion - Determines whether there is a
863/// user-defined conversion sequence (C++ [over.ics.user]) that
864/// converts expression From to the type ToType. If such a conversion
865/// exists, User will contain the user-defined conversion sequence
866/// that performs such a conversion and this routine will return
867/// true. Otherwise, this routine returns false and User is
868/// unspecified.
869bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
870                                   UserDefinedConversionSequence& User)
871{
872  OverloadCandidateSet CandidateSet;
873  if (const CXXRecordType *ToRecordType
874        = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
875    // C++ [over.match.ctor]p1:
876    //   When objects of class type are direct-initialized (8.5), or
877    //   copy-initialized from an expression of the same or a
878    //   derived class type (8.5), overload resolution selects the
879    //   constructor. [...] For copy-initialization, the candidate
880    //   functions are all the converting constructors (12.3.1) of
881    //   that class. The argument list is the expression-list within
882    //   the parentheses of the initializer.
883    CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
884    const OverloadedFunctionDecl *Constructors = ToRecordDecl->getConstructors();
885    for (OverloadedFunctionDecl::function_const_iterator func
886           = Constructors->function_begin();
887         func != Constructors->function_end(); ++func) {
888      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
889      if (Constructor->isConvertingConstructor())
890        AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
891                             /*SuppressUserConversions=*/true);
892    }
893  }
894
895  // FIXME: Implement support for user-defined conversion operators.
896
897  OverloadCandidateSet::iterator Best;
898  switch (BestViableFunction(CandidateSet, Best)) {
899    case OR_Success:
900      // Record the standard conversion we used and the conversion function.
901      // FIXME: Handle user-defined conversion operators.
902      if (CXXConstructorDecl *Constructor
903            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
904        // C++ [over.ics.user]p1:
905        //   If the user-defined conversion is specified by a
906        //   constructor (12.3.1), the initial standard conversion
907        //   sequence converts the source type to the type required by
908        //   the argument of the constructor.
909        //
910        // FIXME: What about ellipsis conversions?
911        QualType ThisType = Constructor->getThisType(Context);
912        User.Before = Best->Conversions[0].Standard;
913        User.ConversionFunction = Constructor;
914        User.After.setAsIdentityConversion();
915        User.After.FromTypePtr
916          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
917        User.After.ToTypePtr = ToType.getAsOpaquePtr();
918        return true;
919      } else {
920        assert(false &&
921               "Cannot perform user-defined conversion via a conversion operator");
922        return false;
923      }
924
925    case OR_No_Viable_Function:
926      // No conversion here! We're done.
927      return false;
928
929    case OR_Ambiguous:
930      // FIXME: See C++ [over.best.ics]p10 for the handling of
931      // ambiguous conversion sequences.
932      return false;
933    }
934
935  return false;
936}
937
938/// CompareImplicitConversionSequences - Compare two implicit
939/// conversion sequences to determine whether one is better than the
940/// other or if they are indistinguishable (C++ 13.3.3.2).
941ImplicitConversionSequence::CompareKind
942Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
943                                         const ImplicitConversionSequence& ICS2)
944{
945  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
946  // conversion sequences (as defined in 13.3.3.1)
947  //   -- a standard conversion sequence (13.3.3.1.1) is a better
948  //      conversion sequence than a user-defined conversion sequence or
949  //      an ellipsis conversion sequence, and
950  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
951  //      conversion sequence than an ellipsis conversion sequence
952  //      (13.3.3.1.3).
953  //
954  if (ICS1.ConversionKind < ICS2.ConversionKind)
955    return ImplicitConversionSequence::Better;
956  else if (ICS2.ConversionKind < ICS1.ConversionKind)
957    return ImplicitConversionSequence::Worse;
958
959  // Two implicit conversion sequences of the same form are
960  // indistinguishable conversion sequences unless one of the
961  // following rules apply: (C++ 13.3.3.2p3):
962  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
963    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
964  else if (ICS1.ConversionKind ==
965             ImplicitConversionSequence::UserDefinedConversion) {
966    // User-defined conversion sequence U1 is a better conversion
967    // sequence than another user-defined conversion sequence U2 if
968    // they contain the same user-defined conversion function or
969    // constructor and if the second standard conversion sequence of
970    // U1 is better than the second standard conversion sequence of
971    // U2 (C++ 13.3.3.2p3).
972    if (ICS1.UserDefined.ConversionFunction ==
973          ICS2.UserDefined.ConversionFunction)
974      return CompareStandardConversionSequences(ICS1.UserDefined.After,
975                                                ICS2.UserDefined.After);
976  }
977
978  return ImplicitConversionSequence::Indistinguishable;
979}
980
981/// CompareStandardConversionSequences - Compare two standard
982/// conversion sequences to determine whether one is better than the
983/// other or if they are indistinguishable (C++ 13.3.3.2p3).
984ImplicitConversionSequence::CompareKind
985Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
986                                         const StandardConversionSequence& SCS2)
987{
988  // Standard conversion sequence S1 is a better conversion sequence
989  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
990
991  //  -- S1 is a proper subsequence of S2 (comparing the conversion
992  //     sequences in the canonical form defined by 13.3.3.1.1,
993  //     excluding any Lvalue Transformation; the identity conversion
994  //     sequence is considered to be a subsequence of any
995  //     non-identity conversion sequence) or, if not that,
996  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
997    // Neither is a proper subsequence of the other. Do nothing.
998    ;
999  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1000           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1001           (SCS1.Second == ICK_Identity &&
1002            SCS1.Third == ICK_Identity))
1003    // SCS1 is a proper subsequence of SCS2.
1004    return ImplicitConversionSequence::Better;
1005  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1006           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1007           (SCS2.Second == ICK_Identity &&
1008            SCS2.Third == ICK_Identity))
1009    // SCS2 is a proper subsequence of SCS1.
1010    return ImplicitConversionSequence::Worse;
1011
1012  //  -- the rank of S1 is better than the rank of S2 (by the rules
1013  //     defined below), or, if not that,
1014  ImplicitConversionRank Rank1 = SCS1.getRank();
1015  ImplicitConversionRank Rank2 = SCS2.getRank();
1016  if (Rank1 < Rank2)
1017    return ImplicitConversionSequence::Better;
1018  else if (Rank2 < Rank1)
1019    return ImplicitConversionSequence::Worse;
1020
1021  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1022  // are indistinguishable unless one of the following rules
1023  // applies:
1024
1025  //   A conversion that is not a conversion of a pointer, or
1026  //   pointer to member, to bool is better than another conversion
1027  //   that is such a conversion.
1028  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1029    return SCS2.isPointerConversionToBool()
1030             ? ImplicitConversionSequence::Better
1031             : ImplicitConversionSequence::Worse;
1032
1033  // C++ [over.ics.rank]p4b2:
1034  //
1035  //   If class B is derived directly or indirectly from class A,
1036  //   conversion of B* to A* is better than conversion of B* to
1037  //   void*, and conversion of A* to void* is better than conversion
1038  //   of B* to void*.
1039  bool SCS1ConvertsToVoid
1040    = SCS1.isPointerConversionToVoidPointer(Context);
1041  bool SCS2ConvertsToVoid
1042    = SCS2.isPointerConversionToVoidPointer(Context);
1043  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1044    // Exactly one of the conversion sequences is a conversion to
1045    // a void pointer; it's the worse conversion.
1046    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1047                              : ImplicitConversionSequence::Worse;
1048  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1049    // Neither conversion sequence converts to a void pointer; compare
1050    // their derived-to-base conversions.
1051    if (ImplicitConversionSequence::CompareKind DerivedCK
1052          = CompareDerivedToBaseConversions(SCS1, SCS2))
1053      return DerivedCK;
1054  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1055    // Both conversion sequences are conversions to void
1056    // pointers. Compare the source types to determine if there's an
1057    // inheritance relationship in their sources.
1058    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1059    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1060
1061    // Adjust the types we're converting from via the array-to-pointer
1062    // conversion, if we need to.
1063    if (SCS1.First == ICK_Array_To_Pointer)
1064      FromType1 = Context.getArrayDecayedType(FromType1);
1065    if (SCS2.First == ICK_Array_To_Pointer)
1066      FromType2 = Context.getArrayDecayedType(FromType2);
1067
1068    QualType FromPointee1
1069      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1070    QualType FromPointee2
1071      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1072
1073    if (IsDerivedFrom(FromPointee2, FromPointee1))
1074      return ImplicitConversionSequence::Better;
1075    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1076      return ImplicitConversionSequence::Worse;
1077  }
1078
1079  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1080  // bullet 3).
1081  if (ImplicitConversionSequence::CompareKind QualCK
1082        = CompareQualificationConversions(SCS1, SCS2))
1083    return QualCK;
1084
1085  // C++ [over.ics.rank]p3b4:
1086  //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1087  //      which the references refer are the same type except for
1088  //      top-level cv-qualifiers, and the type to which the reference
1089  //      initialized by S2 refers is more cv-qualified than the type
1090  //      to which the reference initialized by S1 refers.
1091  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1092    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1093    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1094    T1 = Context.getCanonicalType(T1);
1095    T2 = Context.getCanonicalType(T2);
1096    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1097      if (T2.isMoreQualifiedThan(T1))
1098        return ImplicitConversionSequence::Better;
1099      else if (T1.isMoreQualifiedThan(T2))
1100        return ImplicitConversionSequence::Worse;
1101    }
1102  }
1103
1104  return ImplicitConversionSequence::Indistinguishable;
1105}
1106
1107/// CompareQualificationConversions - Compares two standard conversion
1108/// sequences to determine whether they can be ranked based on their
1109/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1110ImplicitConversionSequence::CompareKind
1111Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1112                                      const StandardConversionSequence& SCS2)
1113{
1114  // C++ 13.3.3.2p3:
1115  //  -- S1 and S2 differ only in their qualification conversion and
1116  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1117  //     cv-qualification signature of type T1 is a proper subset of
1118  //     the cv-qualification signature of type T2, and S1 is not the
1119  //     deprecated string literal array-to-pointer conversion (4.2).
1120  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1121      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1122    return ImplicitConversionSequence::Indistinguishable;
1123
1124  // FIXME: the example in the standard doesn't use a qualification
1125  // conversion (!)
1126  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1127  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1128  T1 = Context.getCanonicalType(T1);
1129  T2 = Context.getCanonicalType(T2);
1130
1131  // If the types are the same, we won't learn anything by unwrapped
1132  // them.
1133  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1134    return ImplicitConversionSequence::Indistinguishable;
1135
1136  ImplicitConversionSequence::CompareKind Result
1137    = ImplicitConversionSequence::Indistinguishable;
1138  while (UnwrapSimilarPointerTypes(T1, T2)) {
1139    // Within each iteration of the loop, we check the qualifiers to
1140    // determine if this still looks like a qualification
1141    // conversion. Then, if all is well, we unwrap one more level of
1142    // pointers or pointers-to-members and do it all again
1143    // until there are no more pointers or pointers-to-members left
1144    // to unwrap. This essentially mimics what
1145    // IsQualificationConversion does, but here we're checking for a
1146    // strict subset of qualifiers.
1147    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1148      // The qualifiers are the same, so this doesn't tell us anything
1149      // about how the sequences rank.
1150      ;
1151    else if (T2.isMoreQualifiedThan(T1)) {
1152      // T1 has fewer qualifiers, so it could be the better sequence.
1153      if (Result == ImplicitConversionSequence::Worse)
1154        // Neither has qualifiers that are a subset of the other's
1155        // qualifiers.
1156        return ImplicitConversionSequence::Indistinguishable;
1157
1158      Result = ImplicitConversionSequence::Better;
1159    } else if (T1.isMoreQualifiedThan(T2)) {
1160      // T2 has fewer qualifiers, so it could be the better sequence.
1161      if (Result == ImplicitConversionSequence::Better)
1162        // Neither has qualifiers that are a subset of the other's
1163        // qualifiers.
1164        return ImplicitConversionSequence::Indistinguishable;
1165
1166      Result = ImplicitConversionSequence::Worse;
1167    } else {
1168      // Qualifiers are disjoint.
1169      return ImplicitConversionSequence::Indistinguishable;
1170    }
1171
1172    // If the types after this point are equivalent, we're done.
1173    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1174      break;
1175  }
1176
1177  // Check that the winning standard conversion sequence isn't using
1178  // the deprecated string literal array to pointer conversion.
1179  switch (Result) {
1180  case ImplicitConversionSequence::Better:
1181    if (SCS1.Deprecated)
1182      Result = ImplicitConversionSequence::Indistinguishable;
1183    break;
1184
1185  case ImplicitConversionSequence::Indistinguishable:
1186    break;
1187
1188  case ImplicitConversionSequence::Worse:
1189    if (SCS2.Deprecated)
1190      Result = ImplicitConversionSequence::Indistinguishable;
1191    break;
1192  }
1193
1194  return Result;
1195}
1196
1197/// CompareDerivedToBaseConversions - Compares two standard conversion
1198/// sequences to determine whether they can be ranked based on their
1199/// various kinds of derived-to-base conversions (C++ [over.ics.rank]p4b3).
1200ImplicitConversionSequence::CompareKind
1201Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1202                                      const StandardConversionSequence& SCS2) {
1203  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1204  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1205  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1206  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1207
1208  // Adjust the types we're converting from via the array-to-pointer
1209  // conversion, if we need to.
1210  if (SCS1.First == ICK_Array_To_Pointer)
1211    FromType1 = Context.getArrayDecayedType(FromType1);
1212  if (SCS2.First == ICK_Array_To_Pointer)
1213    FromType2 = Context.getArrayDecayedType(FromType2);
1214
1215  // Canonicalize all of the types.
1216  FromType1 = Context.getCanonicalType(FromType1);
1217  ToType1 = Context.getCanonicalType(ToType1);
1218  FromType2 = Context.getCanonicalType(FromType2);
1219  ToType2 = Context.getCanonicalType(ToType2);
1220
1221  // C++ [over.ics.rank]p4b3:
1222  //
1223  //   If class B is derived directly or indirectly from class A and
1224  //   class C is derived directly or indirectly from B,
1225
1226  // Compare based on pointer conversions.
1227  if (SCS1.Second == ICK_Pointer_Conversion &&
1228      SCS2.Second == ICK_Pointer_Conversion) {
1229    QualType FromPointee1
1230      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1231    QualType ToPointee1
1232      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1233    QualType FromPointee2
1234      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1235    QualType ToPointee2
1236      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1237    //   -- conversion of C* to B* is better than conversion of C* to A*,
1238    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1239      if (IsDerivedFrom(ToPointee1, ToPointee2))
1240        return ImplicitConversionSequence::Better;
1241      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1242        return ImplicitConversionSequence::Worse;
1243    }
1244
1245    //   -- conversion of B* to A* is better than conversion of C* to A*,
1246    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1247      if (IsDerivedFrom(FromPointee2, FromPointee1))
1248        return ImplicitConversionSequence::Better;
1249      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1250        return ImplicitConversionSequence::Worse;
1251    }
1252  }
1253
1254  // Compare based on reference bindings.
1255  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1256      SCS1.Second == ICK_Derived_To_Base) {
1257    //   -- binding of an expression of type C to a reference of type
1258    //      B& is better than binding an expression of type C to a
1259    //      reference of type A&,
1260    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1261        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1262      if (IsDerivedFrom(ToType1, ToType2))
1263        return ImplicitConversionSequence::Better;
1264      else if (IsDerivedFrom(ToType2, ToType1))
1265        return ImplicitConversionSequence::Worse;
1266    }
1267
1268    //   -- binding of an expression of type B to a reference of type
1269    //      A& is better than binding an expression of type C to a
1270    //      reference of type A&,
1271    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1272        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1273      if (IsDerivedFrom(FromType2, FromType1))
1274        return ImplicitConversionSequence::Better;
1275      else if (IsDerivedFrom(FromType1, FromType2))
1276        return ImplicitConversionSequence::Worse;
1277    }
1278  }
1279
1280
1281  // FIXME: conversion of A::* to B::* is better than conversion of
1282  // A::* to C::*,
1283
1284  // FIXME: conversion of B::* to C::* is better than conversion of
1285  // A::* to C::*, and
1286
1287  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1288      SCS1.Second == ICK_Derived_To_Base) {
1289    //   -- conversion of C to B is better than conversion of C to A,
1290    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1291        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1292      if (IsDerivedFrom(ToType1, ToType2))
1293        return ImplicitConversionSequence::Better;
1294      else if (IsDerivedFrom(ToType2, ToType1))
1295        return ImplicitConversionSequence::Worse;
1296    }
1297
1298    //   -- conversion of B to A is better than conversion of C to A.
1299    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1300        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1301      if (IsDerivedFrom(FromType2, FromType1))
1302        return ImplicitConversionSequence::Better;
1303      else if (IsDerivedFrom(FromType1, FromType2))
1304        return ImplicitConversionSequence::Worse;
1305    }
1306  }
1307
1308  return ImplicitConversionSequence::Indistinguishable;
1309}
1310
1311/// TryCopyInitialization - Try to copy-initialize a value of type
1312/// ToType from the expression From. Return the implicit conversion
1313/// sequence required to pass this argument, which may be a bad
1314/// conversion sequence (meaning that the argument cannot be passed to
1315/// a parameter of this type). If @p SuppressUserConversions, then we
1316/// do not permit any user-defined conversion sequences.
1317ImplicitConversionSequence
1318Sema::TryCopyInitialization(Expr *From, QualType ToType,
1319                            bool SuppressUserConversions) {
1320  if (!getLangOptions().CPlusPlus) {
1321    // In C, copy initialization is the same as performing an assignment.
1322    AssignConvertType ConvTy =
1323      CheckSingleAssignmentConstraints(ToType, From);
1324    ImplicitConversionSequence ICS;
1325    if (getLangOptions().NoExtensions? ConvTy != Compatible
1326                                     : ConvTy == Incompatible)
1327      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1328    else
1329      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1330    return ICS;
1331  } else if (ToType->isReferenceType()) {
1332    ImplicitConversionSequence ICS;
1333    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
1334    return ICS;
1335  } else {
1336    return TryImplicitConversion(From, ToType, SuppressUserConversions);
1337  }
1338}
1339
1340/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1341/// type ToType. Returns true (and emits a diagnostic) if there was
1342/// an error, returns false if the initialization succeeded.
1343bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1344                                     const char* Flavor) {
1345  if (!getLangOptions().CPlusPlus) {
1346    // In C, argument passing is the same as performing an assignment.
1347    QualType FromType = From->getType();
1348    AssignConvertType ConvTy =
1349      CheckSingleAssignmentConstraints(ToType, From);
1350
1351    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1352                                    FromType, From, Flavor);
1353  } else if (ToType->isReferenceType()) {
1354    return CheckReferenceInit(From, ToType);
1355  } else {
1356    if (PerformImplicitConversion(From, ToType))
1357      return Diag(From->getSourceRange().getBegin(),
1358                  diag::err_typecheck_convert_incompatible,
1359                  ToType.getAsString(), From->getType().getAsString(),
1360                  Flavor,
1361                  From->getSourceRange());
1362    else
1363      return false;
1364  }
1365}
1366
1367/// AddOverloadCandidate - Adds the given function to the set of
1368/// candidate functions, using the given function call arguments.  If
1369/// @p SuppressUserConversions, then don't allow user-defined
1370/// conversions via constructors or conversion operators.
1371void
1372Sema::AddOverloadCandidate(FunctionDecl *Function,
1373                           Expr **Args, unsigned NumArgs,
1374                           OverloadCandidateSet& CandidateSet,
1375                           bool SuppressUserConversions)
1376{
1377  const FunctionTypeProto* Proto
1378    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1379  assert(Proto && "Functions without a prototype cannot be overloaded");
1380
1381  // Add this candidate
1382  CandidateSet.push_back(OverloadCandidate());
1383  OverloadCandidate& Candidate = CandidateSet.back();
1384  Candidate.Function = Function;
1385
1386  unsigned NumArgsInProto = Proto->getNumArgs();
1387
1388  // (C++ 13.3.2p2): A candidate function having fewer than m
1389  // parameters is viable only if it has an ellipsis in its parameter
1390  // list (8.3.5).
1391  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1392    Candidate.Viable = false;
1393    return;
1394  }
1395
1396  // (C++ 13.3.2p2): A candidate function having more than m parameters
1397  // is viable only if the (m+1)st parameter has a default argument
1398  // (8.3.6). For the purposes of overload resolution, the
1399  // parameter list is truncated on the right, so that there are
1400  // exactly m parameters.
1401  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1402  if (NumArgs < MinRequiredArgs) {
1403    // Not enough arguments.
1404    Candidate.Viable = false;
1405    return;
1406  }
1407
1408  // Determine the implicit conversion sequences for each of the
1409  // arguments.
1410  Candidate.Viable = true;
1411  Candidate.Conversions.resize(NumArgs);
1412  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1413    if (ArgIdx < NumArgsInProto) {
1414      // (C++ 13.3.2p3): for F to be a viable function, there shall
1415      // exist for each argument an implicit conversion sequence
1416      // (13.3.3.1) that converts that argument to the corresponding
1417      // parameter of F.
1418      QualType ParamType = Proto->getArgType(ArgIdx);
1419      Candidate.Conversions[ArgIdx]
1420        = TryCopyInitialization(Args[ArgIdx], ParamType,
1421                                SuppressUserConversions);
1422      if (Candidate.Conversions[ArgIdx].ConversionKind
1423            == ImplicitConversionSequence::BadConversion)
1424        Candidate.Viable = false;
1425    } else {
1426      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1427      // argument for which there is no corresponding parameter is
1428      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1429      Candidate.Conversions[ArgIdx].ConversionKind
1430        = ImplicitConversionSequence::EllipsisConversion;
1431    }
1432  }
1433}
1434
1435/// AddOverloadCandidates - Add all of the function overloads in Ovl
1436/// to the candidate set.
1437void
1438Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
1439                            Expr **Args, unsigned NumArgs,
1440                            OverloadCandidateSet& CandidateSet,
1441                            bool SuppressUserConversions)
1442{
1443  for (OverloadedFunctionDecl::function_const_iterator Func
1444         = Ovl->function_begin();
1445       Func != Ovl->function_end(); ++Func)
1446    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
1447                         SuppressUserConversions);
1448}
1449
1450/// isBetterOverloadCandidate - Determines whether the first overload
1451/// candidate is a better candidate than the second (C++ 13.3.3p1).
1452bool
1453Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
1454                                const OverloadCandidate& Cand2)
1455{
1456  // Define viable functions to be better candidates than non-viable
1457  // functions.
1458  if (!Cand2.Viable)
1459    return Cand1.Viable;
1460  else if (!Cand1.Viable)
1461    return false;
1462
1463  // FIXME: Deal with the implicit object parameter for static member
1464  // functions. (C++ 13.3.3p1).
1465
1466  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
1467  // function than another viable function F2 if for all arguments i,
1468  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
1469  // then...
1470  unsigned NumArgs = Cand1.Conversions.size();
1471  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
1472  bool HasBetterConversion = false;
1473  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1474    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
1475                                               Cand2.Conversions[ArgIdx])) {
1476    case ImplicitConversionSequence::Better:
1477      // Cand1 has a better conversion sequence.
1478      HasBetterConversion = true;
1479      break;
1480
1481    case ImplicitConversionSequence::Worse:
1482      // Cand1 can't be better than Cand2.
1483      return false;
1484
1485    case ImplicitConversionSequence::Indistinguishable:
1486      // Do nothing.
1487      break;
1488    }
1489  }
1490
1491  if (HasBetterConversion)
1492    return true;
1493
1494  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be implemented.
1495
1496  return false;
1497}
1498
1499/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
1500/// within an overload candidate set. If overloading is successful,
1501/// the result will be OR_Success and Best will be set to point to the
1502/// best viable function within the candidate set. Otherwise, one of
1503/// several kinds of errors will be returned; see
1504/// Sema::OverloadingResult.
1505Sema::OverloadingResult
1506Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
1507                         OverloadCandidateSet::iterator& Best)
1508{
1509  // Find the best viable function.
1510  Best = CandidateSet.end();
1511  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1512       Cand != CandidateSet.end(); ++Cand) {
1513    if (Cand->Viable) {
1514      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
1515        Best = Cand;
1516    }
1517  }
1518
1519  // If we didn't find any viable functions, abort.
1520  if (Best == CandidateSet.end())
1521    return OR_No_Viable_Function;
1522
1523  // Make sure that this function is better than every other viable
1524  // function. If not, we have an ambiguity.
1525  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1526       Cand != CandidateSet.end(); ++Cand) {
1527    if (Cand->Viable &&
1528        Cand != Best &&
1529        !isBetterOverloadCandidate(*Best, *Cand))
1530      return OR_Ambiguous;
1531  }
1532
1533  // Best is the best viable function.
1534  return OR_Success;
1535}
1536
1537/// PrintOverloadCandidates - When overload resolution fails, prints
1538/// diagnostic messages containing the candidates in the candidate
1539/// set. If OnlyViable is true, only viable candidates will be printed.
1540void
1541Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
1542                              bool OnlyViable)
1543{
1544  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
1545                             LastCand = CandidateSet.end();
1546  for (; Cand != LastCand; ++Cand) {
1547    if (Cand->Viable ||!OnlyViable)
1548      Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
1549  }
1550}
1551
1552} // end namespace clang
1553