SemaOverload.cpp revision 1eb3e1003d5cda4d47f54321d81d678c26981e7a
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "SemaInit.h" 17#include "clang/Basic/Diagnostic.h" 18#include "clang/Lex/Preprocessor.h" 19#include "clang/AST/ASTContext.h" 20#include "clang/AST/CXXInheritance.h" 21#include "clang/AST/Expr.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/TypeOrdering.h" 24#include "clang/Basic/PartialDiagnostic.h" 25#include "llvm/ADT/SmallPtrSet.h" 26#include "llvm/ADT/STLExtras.h" 27#include <algorithm> 28#include <cstdio> 29 30namespace clang { 31 32/// GetConversionCategory - Retrieve the implicit conversion 33/// category corresponding to the given implicit conversion kind. 34ImplicitConversionCategory 35GetConversionCategory(ImplicitConversionKind Kind) { 36 static const ImplicitConversionCategory 37 Category[(int)ICK_Num_Conversion_Kinds] = { 38 ICC_Identity, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Lvalue_Transformation, 42 ICC_Identity, 43 ICC_Qualification_Adjustment, 44 ICC_Promotion, 45 ICC_Promotion, 46 ICC_Promotion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion, 55 ICC_Conversion, 56 ICC_Conversion 57 }; 58 return Category[(int)Kind]; 59} 60 61/// GetConversionRank - Retrieve the implicit conversion rank 62/// corresponding to the given implicit conversion kind. 63ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 64 static const ImplicitConversionRank 65 Rank[(int)ICK_Num_Conversion_Kinds] = { 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Exact_Match, 70 ICR_Exact_Match, 71 ICR_Exact_Match, 72 ICR_Promotion, 73 ICR_Promotion, 74 ICR_Promotion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion, 82 ICR_Conversion, 83 ICR_Conversion, 84 ICR_Conversion 85 }; 86 return Rank[(int)Kind]; 87} 88 89/// GetImplicitConversionName - Return the name of this kind of 90/// implicit conversion. 91const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 92 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 93 "No conversion", 94 "Lvalue-to-rvalue", 95 "Array-to-pointer", 96 "Function-to-pointer", 97 "Noreturn adjustment", 98 "Qualification", 99 "Integral promotion", 100 "Floating point promotion", 101 "Complex promotion", 102 "Integral conversion", 103 "Floating conversion", 104 "Complex conversion", 105 "Floating-integral conversion", 106 "Complex-real conversion", 107 "Pointer conversion", 108 "Pointer-to-member conversion", 109 "Boolean conversion", 110 "Compatible-types conversion", 111 "Derived-to-base conversion" 112 }; 113 return Name[Kind]; 114} 115 116/// StandardConversionSequence - Set the standard conversion 117/// sequence to the identity conversion. 118void StandardConversionSequence::setAsIdentityConversion() { 119 First = ICK_Identity; 120 Second = ICK_Identity; 121 Third = ICK_Identity; 122 Deprecated = false; 123 ReferenceBinding = false; 124 DirectBinding = false; 125 RRefBinding = false; 126 CopyConstructor = 0; 127} 128 129/// getRank - Retrieve the rank of this standard conversion sequence 130/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 131/// implicit conversions. 132ImplicitConversionRank StandardConversionSequence::getRank() const { 133 ImplicitConversionRank Rank = ICR_Exact_Match; 134 if (GetConversionRank(First) > Rank) 135 Rank = GetConversionRank(First); 136 if (GetConversionRank(Second) > Rank) 137 Rank = GetConversionRank(Second); 138 if (GetConversionRank(Third) > Rank) 139 Rank = GetConversionRank(Third); 140 return Rank; 141} 142 143/// isPointerConversionToBool - Determines whether this conversion is 144/// a conversion of a pointer or pointer-to-member to bool. This is 145/// used as part of the ranking of standard conversion sequences 146/// (C++ 13.3.3.2p4). 147bool StandardConversionSequence::isPointerConversionToBool() const { 148 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 149 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 150 151 // Note that FromType has not necessarily been transformed by the 152 // array-to-pointer or function-to-pointer implicit conversions, so 153 // check for their presence as well as checking whether FromType is 154 // a pointer. 155 if (ToType->isBooleanType() && 156 (FromType->isPointerType() || FromType->isBlockPointerType() || 157 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 158 return true; 159 160 return false; 161} 162 163/// isPointerConversionToVoidPointer - Determines whether this 164/// conversion is a conversion of a pointer to a void pointer. This is 165/// used as part of the ranking of standard conversion sequences (C++ 166/// 13.3.3.2p4). 167bool 168StandardConversionSequence:: 169isPointerConversionToVoidPointer(ASTContext& Context) const { 170 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 171 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 172 173 // Note that FromType has not necessarily been transformed by the 174 // array-to-pointer implicit conversion, so check for its presence 175 // and redo the conversion to get a pointer. 176 if (First == ICK_Array_To_Pointer) 177 FromType = Context.getArrayDecayedType(FromType); 178 179 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 180 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 181 return ToPtrType->getPointeeType()->isVoidType(); 182 183 return false; 184} 185 186/// DebugPrint - Print this standard conversion sequence to standard 187/// error. Useful for debugging overloading issues. 188void StandardConversionSequence::DebugPrint() const { 189 bool PrintedSomething = false; 190 if (First != ICK_Identity) { 191 fprintf(stderr, "%s", GetImplicitConversionName(First)); 192 PrintedSomething = true; 193 } 194 195 if (Second != ICK_Identity) { 196 if (PrintedSomething) { 197 fprintf(stderr, " -> "); 198 } 199 fprintf(stderr, "%s", GetImplicitConversionName(Second)); 200 201 if (CopyConstructor) { 202 fprintf(stderr, " (by copy constructor)"); 203 } else if (DirectBinding) { 204 fprintf(stderr, " (direct reference binding)"); 205 } else if (ReferenceBinding) { 206 fprintf(stderr, " (reference binding)"); 207 } 208 PrintedSomething = true; 209 } 210 211 if (Third != ICK_Identity) { 212 if (PrintedSomething) { 213 fprintf(stderr, " -> "); 214 } 215 fprintf(stderr, "%s", GetImplicitConversionName(Third)); 216 PrintedSomething = true; 217 } 218 219 if (!PrintedSomething) { 220 fprintf(stderr, "No conversions required"); 221 } 222} 223 224/// DebugPrint - Print this user-defined conversion sequence to standard 225/// error. Useful for debugging overloading issues. 226void UserDefinedConversionSequence::DebugPrint() const { 227 if (Before.First || Before.Second || Before.Third) { 228 Before.DebugPrint(); 229 fprintf(stderr, " -> "); 230 } 231 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); 232 if (After.First || After.Second || After.Third) { 233 fprintf(stderr, " -> "); 234 After.DebugPrint(); 235 } 236} 237 238/// DebugPrint - Print this implicit conversion sequence to standard 239/// error. Useful for debugging overloading issues. 240void ImplicitConversionSequence::DebugPrint() const { 241 switch (ConversionKind) { 242 case StandardConversion: 243 fprintf(stderr, "Standard conversion: "); 244 Standard.DebugPrint(); 245 break; 246 case UserDefinedConversion: 247 fprintf(stderr, "User-defined conversion: "); 248 UserDefined.DebugPrint(); 249 break; 250 case EllipsisConversion: 251 fprintf(stderr, "Ellipsis conversion"); 252 break; 253 case BadConversion: 254 fprintf(stderr, "Bad conversion"); 255 break; 256 } 257 258 fprintf(stderr, "\n"); 259} 260 261// IsOverload - Determine whether the given New declaration is an 262// overload of the declarations in Old. This routine returns false if 263// New and Old cannot be overloaded, e.g., if New has the same 264// signature as some function in Old (C++ 1.3.10) or if the Old 265// declarations aren't functions (or function templates) at all. When 266// it does return false, MatchedDecl will point to the decl that New 267// cannot be overloaded with. This decl may be a UsingShadowDecl on 268// top of the underlying declaration. 269// 270// Example: Given the following input: 271// 272// void f(int, float); // #1 273// void f(int, int); // #2 274// int f(int, int); // #3 275// 276// When we process #1, there is no previous declaration of "f", 277// so IsOverload will not be used. 278// 279// When we process #2, Old contains only the FunctionDecl for #1. By 280// comparing the parameter types, we see that #1 and #2 are overloaded 281// (since they have different signatures), so this routine returns 282// false; MatchedDecl is unchanged. 283// 284// When we process #3, Old is an overload set containing #1 and #2. We 285// compare the signatures of #3 to #1 (they're overloaded, so we do 286// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 287// identical (return types of functions are not part of the 288// signature), IsOverload returns false and MatchedDecl will be set to 289// point to the FunctionDecl for #2. 290Sema::OverloadKind 291Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old, 292 NamedDecl *&Match) { 293 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 294 I != E; ++I) { 295 NamedDecl *OldD = (*I)->getUnderlyingDecl(); 296 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 297 if (!IsOverload(New, OldT->getTemplatedDecl())) { 298 Match = *I; 299 return Ovl_Match; 300 } 301 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 302 if (!IsOverload(New, OldF)) { 303 Match = *I; 304 return Ovl_Match; 305 } 306 } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { 307 // We can overload with these, which can show up when doing 308 // redeclaration checks for UsingDecls. 309 assert(Old.getLookupKind() == LookupUsingDeclName); 310 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 311 // Optimistically assume that an unresolved using decl will 312 // overload; if it doesn't, we'll have to diagnose during 313 // template instantiation. 314 } else { 315 // (C++ 13p1): 316 // Only function declarations can be overloaded; object and type 317 // declarations cannot be overloaded. 318 Match = *I; 319 return Ovl_NonFunction; 320 } 321 } 322 323 return Ovl_Overload; 324} 325 326bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) { 327 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 328 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 329 330 // C++ [temp.fct]p2: 331 // A function template can be overloaded with other function templates 332 // and with normal (non-template) functions. 333 if ((OldTemplate == 0) != (NewTemplate == 0)) 334 return true; 335 336 // Is the function New an overload of the function Old? 337 QualType OldQType = Context.getCanonicalType(Old->getType()); 338 QualType NewQType = Context.getCanonicalType(New->getType()); 339 340 // Compare the signatures (C++ 1.3.10) of the two functions to 341 // determine whether they are overloads. If we find any mismatch 342 // in the signature, they are overloads. 343 344 // If either of these functions is a K&R-style function (no 345 // prototype), then we consider them to have matching signatures. 346 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 347 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 348 return false; 349 350 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 351 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 352 353 // The signature of a function includes the types of its 354 // parameters (C++ 1.3.10), which includes the presence or absence 355 // of the ellipsis; see C++ DR 357). 356 if (OldQType != NewQType && 357 (OldType->getNumArgs() != NewType->getNumArgs() || 358 OldType->isVariadic() != NewType->isVariadic() || 359 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 360 NewType->arg_type_begin()))) 361 return true; 362 363 // C++ [temp.over.link]p4: 364 // The signature of a function template consists of its function 365 // signature, its return type and its template parameter list. The names 366 // of the template parameters are significant only for establishing the 367 // relationship between the template parameters and the rest of the 368 // signature. 369 // 370 // We check the return type and template parameter lists for function 371 // templates first; the remaining checks follow. 372 if (NewTemplate && 373 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 374 OldTemplate->getTemplateParameters(), 375 false, TPL_TemplateMatch) || 376 OldType->getResultType() != NewType->getResultType())) 377 return true; 378 379 // If the function is a class member, its signature includes the 380 // cv-qualifiers (if any) on the function itself. 381 // 382 // As part of this, also check whether one of the member functions 383 // is static, in which case they are not overloads (C++ 384 // 13.1p2). While not part of the definition of the signature, 385 // this check is important to determine whether these functions 386 // can be overloaded. 387 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 388 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 389 if (OldMethod && NewMethod && 390 !OldMethod->isStatic() && !NewMethod->isStatic() && 391 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 392 return true; 393 394 // The signatures match; this is not an overload. 395 return false; 396} 397 398/// TryImplicitConversion - Attempt to perform an implicit conversion 399/// from the given expression (Expr) to the given type (ToType). This 400/// function returns an implicit conversion sequence that can be used 401/// to perform the initialization. Given 402/// 403/// void f(float f); 404/// void g(int i) { f(i); } 405/// 406/// this routine would produce an implicit conversion sequence to 407/// describe the initialization of f from i, which will be a standard 408/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 409/// 4.1) followed by a floating-integral conversion (C++ 4.9). 410// 411/// Note that this routine only determines how the conversion can be 412/// performed; it does not actually perform the conversion. As such, 413/// it will not produce any diagnostics if no conversion is available, 414/// but will instead return an implicit conversion sequence of kind 415/// "BadConversion". 416/// 417/// If @p SuppressUserConversions, then user-defined conversions are 418/// not permitted. 419/// If @p AllowExplicit, then explicit user-defined conversions are 420/// permitted. 421/// If @p ForceRValue, then overloading is performed as if From was an rvalue, 422/// no matter its actual lvalueness. 423/// If @p UserCast, the implicit conversion is being done for a user-specified 424/// cast. 425ImplicitConversionSequence 426Sema::TryImplicitConversion(Expr* From, QualType ToType, 427 bool SuppressUserConversions, 428 bool AllowExplicit, bool ForceRValue, 429 bool InOverloadResolution, 430 bool UserCast) { 431 ImplicitConversionSequence ICS; 432 OverloadCandidateSet Conversions; 433 OverloadingResult UserDefResult = OR_Success; 434 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) 435 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 436 else if (getLangOptions().CPlusPlus && 437 (UserDefResult = IsUserDefinedConversion(From, ToType, 438 ICS.UserDefined, 439 Conversions, 440 !SuppressUserConversions, AllowExplicit, 441 ForceRValue, UserCast)) == OR_Success) { 442 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; 443 // C++ [over.ics.user]p4: 444 // A conversion of an expression of class type to the same class 445 // type is given Exact Match rank, and a conversion of an 446 // expression of class type to a base class of that type is 447 // given Conversion rank, in spite of the fact that a copy 448 // constructor (i.e., a user-defined conversion function) is 449 // called for those cases. 450 if (CXXConstructorDecl *Constructor 451 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 452 QualType FromCanon 453 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 454 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 455 if (Constructor->isCopyConstructor() && 456 (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) { 457 // Turn this into a "standard" conversion sequence, so that it 458 // gets ranked with standard conversion sequences. 459 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 460 ICS.Standard.setAsIdentityConversion(); 461 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); 462 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); 463 ICS.Standard.CopyConstructor = Constructor; 464 if (ToCanon != FromCanon) 465 ICS.Standard.Second = ICK_Derived_To_Base; 466 } 467 } 468 469 // C++ [over.best.ics]p4: 470 // However, when considering the argument of a user-defined 471 // conversion function that is a candidate by 13.3.1.3 when 472 // invoked for the copying of the temporary in the second step 473 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 474 // 13.3.1.6 in all cases, only standard conversion sequences and 475 // ellipsis conversion sequences are allowed. 476 if (SuppressUserConversions && 477 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) 478 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 479 } else { 480 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 481 if (UserDefResult == OR_Ambiguous) { 482 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 483 Cand != Conversions.end(); ++Cand) 484 if (Cand->Viable) 485 ICS.ConversionFunctionSet.push_back(Cand->Function); 486 } 487 } 488 489 return ICS; 490} 491 492/// \brief Determine whether the conversion from FromType to ToType is a valid 493/// conversion that strips "noreturn" off the nested function type. 494static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 495 QualType ToType, QualType &ResultTy) { 496 if (Context.hasSameUnqualifiedType(FromType, ToType)) 497 return false; 498 499 // Strip the noreturn off the type we're converting from; noreturn can 500 // safely be removed. 501 FromType = Context.getNoReturnType(FromType, false); 502 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 503 return false; 504 505 ResultTy = FromType; 506 return true; 507} 508 509/// IsStandardConversion - Determines whether there is a standard 510/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 511/// expression From to the type ToType. Standard conversion sequences 512/// only consider non-class types; for conversions that involve class 513/// types, use TryImplicitConversion. If a conversion exists, SCS will 514/// contain the standard conversion sequence required to perform this 515/// conversion and this routine will return true. Otherwise, this 516/// routine will return false and the value of SCS is unspecified. 517bool 518Sema::IsStandardConversion(Expr* From, QualType ToType, 519 bool InOverloadResolution, 520 StandardConversionSequence &SCS) { 521 QualType FromType = From->getType(); 522 523 // Standard conversions (C++ [conv]) 524 SCS.setAsIdentityConversion(); 525 SCS.Deprecated = false; 526 SCS.IncompatibleObjC = false; 527 SCS.FromTypePtr = FromType.getAsOpaquePtr(); 528 SCS.CopyConstructor = 0; 529 530 // There are no standard conversions for class types in C++, so 531 // abort early. When overloading in C, however, we do permit 532 if (FromType->isRecordType() || ToType->isRecordType()) { 533 if (getLangOptions().CPlusPlus) 534 return false; 535 536 // When we're overloading in C, we allow, as standard conversions, 537 } 538 539 // The first conversion can be an lvalue-to-rvalue conversion, 540 // array-to-pointer conversion, or function-to-pointer conversion 541 // (C++ 4p1). 542 543 // Lvalue-to-rvalue conversion (C++ 4.1): 544 // An lvalue (3.10) of a non-function, non-array type T can be 545 // converted to an rvalue. 546 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 547 if (argIsLvalue == Expr::LV_Valid && 548 !FromType->isFunctionType() && !FromType->isArrayType() && 549 Context.getCanonicalType(FromType) != Context.OverloadTy) { 550 SCS.First = ICK_Lvalue_To_Rvalue; 551 552 // If T is a non-class type, the type of the rvalue is the 553 // cv-unqualified version of T. Otherwise, the type of the rvalue 554 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 555 // just strip the qualifiers because they don't matter. 556 FromType = FromType.getUnqualifiedType(); 557 } else if (FromType->isArrayType()) { 558 // Array-to-pointer conversion (C++ 4.2) 559 SCS.First = ICK_Array_To_Pointer; 560 561 // An lvalue or rvalue of type "array of N T" or "array of unknown 562 // bound of T" can be converted to an rvalue of type "pointer to 563 // T" (C++ 4.2p1). 564 FromType = Context.getArrayDecayedType(FromType); 565 566 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 567 // This conversion is deprecated. (C++ D.4). 568 SCS.Deprecated = true; 569 570 // For the purpose of ranking in overload resolution 571 // (13.3.3.1.1), this conversion is considered an 572 // array-to-pointer conversion followed by a qualification 573 // conversion (4.4). (C++ 4.2p2) 574 SCS.Second = ICK_Identity; 575 SCS.Third = ICK_Qualification; 576 SCS.ToTypePtr = ToType.getAsOpaquePtr(); 577 return true; 578 } 579 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 580 // Function-to-pointer conversion (C++ 4.3). 581 SCS.First = ICK_Function_To_Pointer; 582 583 // An lvalue of function type T can be converted to an rvalue of 584 // type "pointer to T." The result is a pointer to the 585 // function. (C++ 4.3p1). 586 FromType = Context.getPointerType(FromType); 587 } else if (FunctionDecl *Fn 588 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 589 // Address of overloaded function (C++ [over.over]). 590 SCS.First = ICK_Function_To_Pointer; 591 592 // We were able to resolve the address of the overloaded function, 593 // so we can convert to the type of that function. 594 FromType = Fn->getType(); 595 if (ToType->isLValueReferenceType()) 596 FromType = Context.getLValueReferenceType(FromType); 597 else if (ToType->isRValueReferenceType()) 598 FromType = Context.getRValueReferenceType(FromType); 599 else if (ToType->isMemberPointerType()) { 600 // Resolve address only succeeds if both sides are member pointers, 601 // but it doesn't have to be the same class. See DR 247. 602 // Note that this means that the type of &Derived::fn can be 603 // Ret (Base::*)(Args) if the fn overload actually found is from the 604 // base class, even if it was brought into the derived class via a 605 // using declaration. The standard isn't clear on this issue at all. 606 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 607 FromType = Context.getMemberPointerType(FromType, 608 Context.getTypeDeclType(M->getParent()).getTypePtr()); 609 } else 610 FromType = Context.getPointerType(FromType); 611 } else { 612 // We don't require any conversions for the first step. 613 SCS.First = ICK_Identity; 614 } 615 616 // The second conversion can be an integral promotion, floating 617 // point promotion, integral conversion, floating point conversion, 618 // floating-integral conversion, pointer conversion, 619 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 620 // For overloading in C, this can also be a "compatible-type" 621 // conversion. 622 bool IncompatibleObjC = false; 623 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 624 // The unqualified versions of the types are the same: there's no 625 // conversion to do. 626 SCS.Second = ICK_Identity; 627 } else if (IsIntegralPromotion(From, FromType, ToType)) { 628 // Integral promotion (C++ 4.5). 629 SCS.Second = ICK_Integral_Promotion; 630 FromType = ToType.getUnqualifiedType(); 631 } else if (IsFloatingPointPromotion(FromType, ToType)) { 632 // Floating point promotion (C++ 4.6). 633 SCS.Second = ICK_Floating_Promotion; 634 FromType = ToType.getUnqualifiedType(); 635 } else if (IsComplexPromotion(FromType, ToType)) { 636 // Complex promotion (Clang extension) 637 SCS.Second = ICK_Complex_Promotion; 638 FromType = ToType.getUnqualifiedType(); 639 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 640 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 641 // Integral conversions (C++ 4.7). 642 // FIXME: isIntegralType shouldn't be true for enums in C++. 643 SCS.Second = ICK_Integral_Conversion; 644 FromType = ToType.getUnqualifiedType(); 645 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 646 // Floating point conversions (C++ 4.8). 647 SCS.Second = ICK_Floating_Conversion; 648 FromType = ToType.getUnqualifiedType(); 649 } else if (FromType->isComplexType() && ToType->isComplexType()) { 650 // Complex conversions (C99 6.3.1.6) 651 SCS.Second = ICK_Complex_Conversion; 652 FromType = ToType.getUnqualifiedType(); 653 } else if ((FromType->isFloatingType() && 654 ToType->isIntegralType() && (!ToType->isBooleanType() && 655 !ToType->isEnumeralType())) || 656 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 657 ToType->isFloatingType())) { 658 // Floating-integral conversions (C++ 4.9). 659 // FIXME: isIntegralType shouldn't be true for enums in C++. 660 SCS.Second = ICK_Floating_Integral; 661 FromType = ToType.getUnqualifiedType(); 662 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 663 (ToType->isComplexType() && FromType->isArithmeticType())) { 664 // Complex-real conversions (C99 6.3.1.7) 665 SCS.Second = ICK_Complex_Real; 666 FromType = ToType.getUnqualifiedType(); 667 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 668 FromType, IncompatibleObjC)) { 669 // Pointer conversions (C++ 4.10). 670 SCS.Second = ICK_Pointer_Conversion; 671 SCS.IncompatibleObjC = IncompatibleObjC; 672 } else if (IsMemberPointerConversion(From, FromType, ToType, 673 InOverloadResolution, FromType)) { 674 // Pointer to member conversions (4.11). 675 SCS.Second = ICK_Pointer_Member; 676 } else if (ToType->isBooleanType() && 677 (FromType->isArithmeticType() || 678 FromType->isEnumeralType() || 679 FromType->isAnyPointerType() || 680 FromType->isBlockPointerType() || 681 FromType->isMemberPointerType() || 682 FromType->isNullPtrType())) { 683 // Boolean conversions (C++ 4.12). 684 SCS.Second = ICK_Boolean_Conversion; 685 FromType = Context.BoolTy; 686 } else if (!getLangOptions().CPlusPlus && 687 Context.typesAreCompatible(ToType, FromType)) { 688 // Compatible conversions (Clang extension for C function overloading) 689 SCS.Second = ICK_Compatible_Conversion; 690 } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) { 691 // Treat a conversion that strips "noreturn" as an identity conversion. 692 SCS.Second = ICK_NoReturn_Adjustment; 693 } else { 694 // No second conversion required. 695 SCS.Second = ICK_Identity; 696 } 697 698 QualType CanonFrom; 699 QualType CanonTo; 700 // The third conversion can be a qualification conversion (C++ 4p1). 701 if (IsQualificationConversion(FromType, ToType)) { 702 SCS.Third = ICK_Qualification; 703 FromType = ToType; 704 CanonFrom = Context.getCanonicalType(FromType); 705 CanonTo = Context.getCanonicalType(ToType); 706 } else { 707 // No conversion required 708 SCS.Third = ICK_Identity; 709 710 // C++ [over.best.ics]p6: 711 // [...] Any difference in top-level cv-qualification is 712 // subsumed by the initialization itself and does not constitute 713 // a conversion. [...] 714 CanonFrom = Context.getCanonicalType(FromType); 715 CanonTo = Context.getCanonicalType(ToType); 716 if (CanonFrom.getLocalUnqualifiedType() 717 == CanonTo.getLocalUnqualifiedType() && 718 CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) { 719 FromType = ToType; 720 CanonFrom = CanonTo; 721 } 722 } 723 724 // If we have not converted the argument type to the parameter type, 725 // this is a bad conversion sequence. 726 if (CanonFrom != CanonTo) 727 return false; 728 729 SCS.ToTypePtr = FromType.getAsOpaquePtr(); 730 return true; 731} 732 733/// IsIntegralPromotion - Determines whether the conversion from the 734/// expression From (whose potentially-adjusted type is FromType) to 735/// ToType is an integral promotion (C++ 4.5). If so, returns true and 736/// sets PromotedType to the promoted type. 737bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 738 const BuiltinType *To = ToType->getAs<BuiltinType>(); 739 // All integers are built-in. 740 if (!To) { 741 return false; 742 } 743 744 // An rvalue of type char, signed char, unsigned char, short int, or 745 // unsigned short int can be converted to an rvalue of type int if 746 // int can represent all the values of the source type; otherwise, 747 // the source rvalue can be converted to an rvalue of type unsigned 748 // int (C++ 4.5p1). 749 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { 750 if (// We can promote any signed, promotable integer type to an int 751 (FromType->isSignedIntegerType() || 752 // We can promote any unsigned integer type whose size is 753 // less than int to an int. 754 (!FromType->isSignedIntegerType() && 755 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 756 return To->getKind() == BuiltinType::Int; 757 } 758 759 return To->getKind() == BuiltinType::UInt; 760 } 761 762 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 763 // can be converted to an rvalue of the first of the following types 764 // that can represent all the values of its underlying type: int, 765 // unsigned int, long, or unsigned long (C++ 4.5p2). 766 767 // We pre-calculate the promotion type for enum types. 768 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) 769 if (ToType->isIntegerType()) 770 return Context.hasSameUnqualifiedType(ToType, 771 FromEnumType->getDecl()->getPromotionType()); 772 773 if (FromType->isWideCharType() && ToType->isIntegerType()) { 774 // Determine whether the type we're converting from is signed or 775 // unsigned. 776 bool FromIsSigned; 777 uint64_t FromSize = Context.getTypeSize(FromType); 778 779 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 780 FromIsSigned = true; 781 782 // The types we'll try to promote to, in the appropriate 783 // order. Try each of these types. 784 QualType PromoteTypes[6] = { 785 Context.IntTy, Context.UnsignedIntTy, 786 Context.LongTy, Context.UnsignedLongTy , 787 Context.LongLongTy, Context.UnsignedLongLongTy 788 }; 789 for (int Idx = 0; Idx < 6; ++Idx) { 790 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 791 if (FromSize < ToSize || 792 (FromSize == ToSize && 793 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 794 // We found the type that we can promote to. If this is the 795 // type we wanted, we have a promotion. Otherwise, no 796 // promotion. 797 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 798 } 799 } 800 } 801 802 // An rvalue for an integral bit-field (9.6) can be converted to an 803 // rvalue of type int if int can represent all the values of the 804 // bit-field; otherwise, it can be converted to unsigned int if 805 // unsigned int can represent all the values of the bit-field. If 806 // the bit-field is larger yet, no integral promotion applies to 807 // it. If the bit-field has an enumerated type, it is treated as any 808 // other value of that type for promotion purposes (C++ 4.5p3). 809 // FIXME: We should delay checking of bit-fields until we actually perform the 810 // conversion. 811 using llvm::APSInt; 812 if (From) 813 if (FieldDecl *MemberDecl = From->getBitField()) { 814 APSInt BitWidth; 815 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 816 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 817 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 818 ToSize = Context.getTypeSize(ToType); 819 820 // Are we promoting to an int from a bitfield that fits in an int? 821 if (BitWidth < ToSize || 822 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 823 return To->getKind() == BuiltinType::Int; 824 } 825 826 // Are we promoting to an unsigned int from an unsigned bitfield 827 // that fits into an unsigned int? 828 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 829 return To->getKind() == BuiltinType::UInt; 830 } 831 832 return false; 833 } 834 } 835 836 // An rvalue of type bool can be converted to an rvalue of type int, 837 // with false becoming zero and true becoming one (C++ 4.5p4). 838 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 839 return true; 840 } 841 842 return false; 843} 844 845/// IsFloatingPointPromotion - Determines whether the conversion from 846/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 847/// returns true and sets PromotedType to the promoted type. 848bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 849 /// An rvalue of type float can be converted to an rvalue of type 850 /// double. (C++ 4.6p1). 851 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 852 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 853 if (FromBuiltin->getKind() == BuiltinType::Float && 854 ToBuiltin->getKind() == BuiltinType::Double) 855 return true; 856 857 // C99 6.3.1.5p1: 858 // When a float is promoted to double or long double, or a 859 // double is promoted to long double [...]. 860 if (!getLangOptions().CPlusPlus && 861 (FromBuiltin->getKind() == BuiltinType::Float || 862 FromBuiltin->getKind() == BuiltinType::Double) && 863 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 864 return true; 865 } 866 867 return false; 868} 869 870/// \brief Determine if a conversion is a complex promotion. 871/// 872/// A complex promotion is defined as a complex -> complex conversion 873/// where the conversion between the underlying real types is a 874/// floating-point or integral promotion. 875bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 876 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 877 if (!FromComplex) 878 return false; 879 880 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 881 if (!ToComplex) 882 return false; 883 884 return IsFloatingPointPromotion(FromComplex->getElementType(), 885 ToComplex->getElementType()) || 886 IsIntegralPromotion(0, FromComplex->getElementType(), 887 ToComplex->getElementType()); 888} 889 890/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 891/// the pointer type FromPtr to a pointer to type ToPointee, with the 892/// same type qualifiers as FromPtr has on its pointee type. ToType, 893/// if non-empty, will be a pointer to ToType that may or may not have 894/// the right set of qualifiers on its pointee. 895static QualType 896BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 897 QualType ToPointee, QualType ToType, 898 ASTContext &Context) { 899 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 900 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 901 Qualifiers Quals = CanonFromPointee.getQualifiers(); 902 903 // Exact qualifier match -> return the pointer type we're converting to. 904 if (CanonToPointee.getLocalQualifiers() == Quals) { 905 // ToType is exactly what we need. Return it. 906 if (!ToType.isNull()) 907 return ToType; 908 909 // Build a pointer to ToPointee. It has the right qualifiers 910 // already. 911 return Context.getPointerType(ToPointee); 912 } 913 914 // Just build a canonical type that has the right qualifiers. 915 return Context.getPointerType( 916 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 917 Quals)); 918} 919 920/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from 921/// the FromType, which is an objective-c pointer, to ToType, which may or may 922/// not have the right set of qualifiers. 923static QualType 924BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, 925 QualType ToType, 926 ASTContext &Context) { 927 QualType CanonFromType = Context.getCanonicalType(FromType); 928 QualType CanonToType = Context.getCanonicalType(ToType); 929 Qualifiers Quals = CanonFromType.getQualifiers(); 930 931 // Exact qualifier match -> return the pointer type we're converting to. 932 if (CanonToType.getLocalQualifiers() == Quals) 933 return ToType; 934 935 // Just build a canonical type that has the right qualifiers. 936 return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); 937} 938 939static bool isNullPointerConstantForConversion(Expr *Expr, 940 bool InOverloadResolution, 941 ASTContext &Context) { 942 // Handle value-dependent integral null pointer constants correctly. 943 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 944 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 945 Expr->getType()->isIntegralType()) 946 return !InOverloadResolution; 947 948 return Expr->isNullPointerConstant(Context, 949 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 950 : Expr::NPC_ValueDependentIsNull); 951} 952 953/// IsPointerConversion - Determines whether the conversion of the 954/// expression From, which has the (possibly adjusted) type FromType, 955/// can be converted to the type ToType via a pointer conversion (C++ 956/// 4.10). If so, returns true and places the converted type (that 957/// might differ from ToType in its cv-qualifiers at some level) into 958/// ConvertedType. 959/// 960/// This routine also supports conversions to and from block pointers 961/// and conversions with Objective-C's 'id', 'id<protocols...>', and 962/// pointers to interfaces. FIXME: Once we've determined the 963/// appropriate overloading rules for Objective-C, we may want to 964/// split the Objective-C checks into a different routine; however, 965/// GCC seems to consider all of these conversions to be pointer 966/// conversions, so for now they live here. IncompatibleObjC will be 967/// set if the conversion is an allowed Objective-C conversion that 968/// should result in a warning. 969bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 970 bool InOverloadResolution, 971 QualType& ConvertedType, 972 bool &IncompatibleObjC) { 973 IncompatibleObjC = false; 974 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 975 return true; 976 977 // Conversion from a null pointer constant to any Objective-C pointer type. 978 if (ToType->isObjCObjectPointerType() && 979 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 980 ConvertedType = ToType; 981 return true; 982 } 983 984 // Blocks: Block pointers can be converted to void*. 985 if (FromType->isBlockPointerType() && ToType->isPointerType() && 986 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 987 ConvertedType = ToType; 988 return true; 989 } 990 // Blocks: A null pointer constant can be converted to a block 991 // pointer type. 992 if (ToType->isBlockPointerType() && 993 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 994 ConvertedType = ToType; 995 return true; 996 } 997 998 // If the left-hand-side is nullptr_t, the right side can be a null 999 // pointer constant. 1000 if (ToType->isNullPtrType() && 1001 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1002 ConvertedType = ToType; 1003 return true; 1004 } 1005 1006 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1007 if (!ToTypePtr) 1008 return false; 1009 1010 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1011 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1012 ConvertedType = ToType; 1013 return true; 1014 } 1015 1016 // Beyond this point, both types need to be pointers 1017 // , including objective-c pointers. 1018 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1019 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1020 ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, 1021 ToType, Context); 1022 return true; 1023 1024 } 1025 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1026 if (!FromTypePtr) 1027 return false; 1028 1029 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1030 1031 // An rvalue of type "pointer to cv T," where T is an object type, 1032 // can be converted to an rvalue of type "pointer to cv void" (C++ 1033 // 4.10p2). 1034 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 1035 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1036 ToPointeeType, 1037 ToType, Context); 1038 return true; 1039 } 1040 1041 // When we're overloading in C, we allow a special kind of pointer 1042 // conversion for compatible-but-not-identical pointee types. 1043 if (!getLangOptions().CPlusPlus && 1044 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1045 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1046 ToPointeeType, 1047 ToType, Context); 1048 return true; 1049 } 1050 1051 // C++ [conv.ptr]p3: 1052 // 1053 // An rvalue of type "pointer to cv D," where D is a class type, 1054 // can be converted to an rvalue of type "pointer to cv B," where 1055 // B is a base class (clause 10) of D. If B is an inaccessible 1056 // (clause 11) or ambiguous (10.2) base class of D, a program that 1057 // necessitates this conversion is ill-formed. The result of the 1058 // conversion is a pointer to the base class sub-object of the 1059 // derived class object. The null pointer value is converted to 1060 // the null pointer value of the destination type. 1061 // 1062 // Note that we do not check for ambiguity or inaccessibility 1063 // here. That is handled by CheckPointerConversion. 1064 if (getLangOptions().CPlusPlus && 1065 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1066 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1067 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1068 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1069 ToPointeeType, 1070 ToType, Context); 1071 return true; 1072 } 1073 1074 return false; 1075} 1076 1077/// isObjCPointerConversion - Determines whether this is an 1078/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1079/// with the same arguments and return values. 1080bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1081 QualType& ConvertedType, 1082 bool &IncompatibleObjC) { 1083 if (!getLangOptions().ObjC1) 1084 return false; 1085 1086 // First, we handle all conversions on ObjC object pointer types. 1087 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1088 const ObjCObjectPointerType *FromObjCPtr = 1089 FromType->getAs<ObjCObjectPointerType>(); 1090 1091 if (ToObjCPtr && FromObjCPtr) { 1092 // Objective C++: We're able to convert between "id" or "Class" and a 1093 // pointer to any interface (in both directions). 1094 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1095 ConvertedType = ToType; 1096 return true; 1097 } 1098 // Conversions with Objective-C's id<...>. 1099 if ((FromObjCPtr->isObjCQualifiedIdType() || 1100 ToObjCPtr->isObjCQualifiedIdType()) && 1101 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1102 /*compare=*/false)) { 1103 ConvertedType = ToType; 1104 return true; 1105 } 1106 // Objective C++: We're able to convert from a pointer to an 1107 // interface to a pointer to a different interface. 1108 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1109 ConvertedType = ToType; 1110 return true; 1111 } 1112 1113 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1114 // Okay: this is some kind of implicit downcast of Objective-C 1115 // interfaces, which is permitted. However, we're going to 1116 // complain about it. 1117 IncompatibleObjC = true; 1118 ConvertedType = FromType; 1119 return true; 1120 } 1121 } 1122 // Beyond this point, both types need to be C pointers or block pointers. 1123 QualType ToPointeeType; 1124 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1125 ToPointeeType = ToCPtr->getPointeeType(); 1126 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>()) 1127 ToPointeeType = ToBlockPtr->getPointeeType(); 1128 else 1129 return false; 1130 1131 QualType FromPointeeType; 1132 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1133 FromPointeeType = FromCPtr->getPointeeType(); 1134 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1135 FromPointeeType = FromBlockPtr->getPointeeType(); 1136 else 1137 return false; 1138 1139 // If we have pointers to pointers, recursively check whether this 1140 // is an Objective-C conversion. 1141 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1142 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1143 IncompatibleObjC)) { 1144 // We always complain about this conversion. 1145 IncompatibleObjC = true; 1146 ConvertedType = ToType; 1147 return true; 1148 } 1149 // If we have pointers to functions or blocks, check whether the only 1150 // differences in the argument and result types are in Objective-C 1151 // pointer conversions. If so, we permit the conversion (but 1152 // complain about it). 1153 const FunctionProtoType *FromFunctionType 1154 = FromPointeeType->getAs<FunctionProtoType>(); 1155 const FunctionProtoType *ToFunctionType 1156 = ToPointeeType->getAs<FunctionProtoType>(); 1157 if (FromFunctionType && ToFunctionType) { 1158 // If the function types are exactly the same, this isn't an 1159 // Objective-C pointer conversion. 1160 if (Context.getCanonicalType(FromPointeeType) 1161 == Context.getCanonicalType(ToPointeeType)) 1162 return false; 1163 1164 // Perform the quick checks that will tell us whether these 1165 // function types are obviously different. 1166 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1167 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1168 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1169 return false; 1170 1171 bool HasObjCConversion = false; 1172 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1173 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1174 // Okay, the types match exactly. Nothing to do. 1175 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1176 ToFunctionType->getResultType(), 1177 ConvertedType, IncompatibleObjC)) { 1178 // Okay, we have an Objective-C pointer conversion. 1179 HasObjCConversion = true; 1180 } else { 1181 // Function types are too different. Abort. 1182 return false; 1183 } 1184 1185 // Check argument types. 1186 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1187 ArgIdx != NumArgs; ++ArgIdx) { 1188 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1189 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1190 if (Context.getCanonicalType(FromArgType) 1191 == Context.getCanonicalType(ToArgType)) { 1192 // Okay, the types match exactly. Nothing to do. 1193 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1194 ConvertedType, IncompatibleObjC)) { 1195 // Okay, we have an Objective-C pointer conversion. 1196 HasObjCConversion = true; 1197 } else { 1198 // Argument types are too different. Abort. 1199 return false; 1200 } 1201 } 1202 1203 if (HasObjCConversion) { 1204 // We had an Objective-C conversion. Allow this pointer 1205 // conversion, but complain about it. 1206 ConvertedType = ToType; 1207 IncompatibleObjC = true; 1208 return true; 1209 } 1210 } 1211 1212 return false; 1213} 1214 1215/// CheckPointerConversion - Check the pointer conversion from the 1216/// expression From to the type ToType. This routine checks for 1217/// ambiguous or inaccessible derived-to-base pointer 1218/// conversions for which IsPointerConversion has already returned 1219/// true. It returns true and produces a diagnostic if there was an 1220/// error, or returns false otherwise. 1221bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1222 CastExpr::CastKind &Kind, 1223 bool IgnoreBaseAccess) { 1224 QualType FromType = From->getType(); 1225 1226 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1227 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1228 QualType FromPointeeType = FromPtrType->getPointeeType(), 1229 ToPointeeType = ToPtrType->getPointeeType(); 1230 1231 if (FromPointeeType->isRecordType() && 1232 ToPointeeType->isRecordType()) { 1233 // We must have a derived-to-base conversion. Check an 1234 // ambiguous or inaccessible conversion. 1235 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1236 From->getExprLoc(), 1237 From->getSourceRange(), 1238 IgnoreBaseAccess)) 1239 return true; 1240 1241 // The conversion was successful. 1242 Kind = CastExpr::CK_DerivedToBase; 1243 } 1244 } 1245 if (const ObjCObjectPointerType *FromPtrType = 1246 FromType->getAs<ObjCObjectPointerType>()) 1247 if (const ObjCObjectPointerType *ToPtrType = 1248 ToType->getAs<ObjCObjectPointerType>()) { 1249 // Objective-C++ conversions are always okay. 1250 // FIXME: We should have a different class of conversions for the 1251 // Objective-C++ implicit conversions. 1252 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1253 return false; 1254 1255 } 1256 return false; 1257} 1258 1259/// IsMemberPointerConversion - Determines whether the conversion of the 1260/// expression From, which has the (possibly adjusted) type FromType, can be 1261/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1262/// If so, returns true and places the converted type (that might differ from 1263/// ToType in its cv-qualifiers at some level) into ConvertedType. 1264bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1265 QualType ToType, 1266 bool InOverloadResolution, 1267 QualType &ConvertedType) { 1268 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1269 if (!ToTypePtr) 1270 return false; 1271 1272 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1273 if (From->isNullPointerConstant(Context, 1274 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1275 : Expr::NPC_ValueDependentIsNull)) { 1276 ConvertedType = ToType; 1277 return true; 1278 } 1279 1280 // Otherwise, both types have to be member pointers. 1281 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1282 if (!FromTypePtr) 1283 return false; 1284 1285 // A pointer to member of B can be converted to a pointer to member of D, 1286 // where D is derived from B (C++ 4.11p2). 1287 QualType FromClass(FromTypePtr->getClass(), 0); 1288 QualType ToClass(ToTypePtr->getClass(), 0); 1289 // FIXME: What happens when these are dependent? Is this function even called? 1290 1291 if (IsDerivedFrom(ToClass, FromClass)) { 1292 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1293 ToClass.getTypePtr()); 1294 return true; 1295 } 1296 1297 return false; 1298} 1299 1300/// CheckMemberPointerConversion - Check the member pointer conversion from the 1301/// expression From to the type ToType. This routine checks for ambiguous or 1302/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions 1303/// for which IsMemberPointerConversion has already returned true. It returns 1304/// true and produces a diagnostic if there was an error, or returns false 1305/// otherwise. 1306bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1307 CastExpr::CastKind &Kind, 1308 bool IgnoreBaseAccess) { 1309 (void)IgnoreBaseAccess; 1310 QualType FromType = From->getType(); 1311 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1312 if (!FromPtrType) { 1313 // This must be a null pointer to member pointer conversion 1314 assert(From->isNullPointerConstant(Context, 1315 Expr::NPC_ValueDependentIsNull) && 1316 "Expr must be null pointer constant!"); 1317 Kind = CastExpr::CK_NullToMemberPointer; 1318 return false; 1319 } 1320 1321 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1322 assert(ToPtrType && "No member pointer cast has a target type " 1323 "that is not a member pointer."); 1324 1325 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1326 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1327 1328 // FIXME: What about dependent types? 1329 assert(FromClass->isRecordType() && "Pointer into non-class."); 1330 assert(ToClass->isRecordType() && "Pointer into non-class."); 1331 1332 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 1333 /*DetectVirtual=*/true); 1334 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1335 assert(DerivationOkay && 1336 "Should not have been called if derivation isn't OK."); 1337 (void)DerivationOkay; 1338 1339 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1340 getUnqualifiedType())) { 1341 // Derivation is ambiguous. Redo the check to find the exact paths. 1342 Paths.clear(); 1343 Paths.setRecordingPaths(true); 1344 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1345 assert(StillOkay && "Derivation changed due to quantum fluctuation."); 1346 (void)StillOkay; 1347 1348 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1349 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1350 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1351 return true; 1352 } 1353 1354 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1355 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1356 << FromClass << ToClass << QualType(VBase, 0) 1357 << From->getSourceRange(); 1358 return true; 1359 } 1360 1361 // Must be a base to derived member conversion. 1362 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1363 return false; 1364} 1365 1366/// IsQualificationConversion - Determines whether the conversion from 1367/// an rvalue of type FromType to ToType is a qualification conversion 1368/// (C++ 4.4). 1369bool 1370Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1371 FromType = Context.getCanonicalType(FromType); 1372 ToType = Context.getCanonicalType(ToType); 1373 1374 // If FromType and ToType are the same type, this is not a 1375 // qualification conversion. 1376 if (FromType == ToType) 1377 return false; 1378 1379 // (C++ 4.4p4): 1380 // A conversion can add cv-qualifiers at levels other than the first 1381 // in multi-level pointers, subject to the following rules: [...] 1382 bool PreviousToQualsIncludeConst = true; 1383 bool UnwrappedAnyPointer = false; 1384 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1385 // Within each iteration of the loop, we check the qualifiers to 1386 // determine if this still looks like a qualification 1387 // conversion. Then, if all is well, we unwrap one more level of 1388 // pointers or pointers-to-members and do it all again 1389 // until there are no more pointers or pointers-to-members left to 1390 // unwrap. 1391 UnwrappedAnyPointer = true; 1392 1393 // -- for every j > 0, if const is in cv 1,j then const is in cv 1394 // 2,j, and similarly for volatile. 1395 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1396 return false; 1397 1398 // -- if the cv 1,j and cv 2,j are different, then const is in 1399 // every cv for 0 < k < j. 1400 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1401 && !PreviousToQualsIncludeConst) 1402 return false; 1403 1404 // Keep track of whether all prior cv-qualifiers in the "to" type 1405 // include const. 1406 PreviousToQualsIncludeConst 1407 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1408 } 1409 1410 // We are left with FromType and ToType being the pointee types 1411 // after unwrapping the original FromType and ToType the same number 1412 // of types. If we unwrapped any pointers, and if FromType and 1413 // ToType have the same unqualified type (since we checked 1414 // qualifiers above), then this is a qualification conversion. 1415 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1416} 1417 1418/// Determines whether there is a user-defined conversion sequence 1419/// (C++ [over.ics.user]) that converts expression From to the type 1420/// ToType. If such a conversion exists, User will contain the 1421/// user-defined conversion sequence that performs such a conversion 1422/// and this routine will return true. Otherwise, this routine returns 1423/// false and User is unspecified. 1424/// 1425/// \param AllowConversionFunctions true if the conversion should 1426/// consider conversion functions at all. If false, only constructors 1427/// will be considered. 1428/// 1429/// \param AllowExplicit true if the conversion should consider C++0x 1430/// "explicit" conversion functions as well as non-explicit conversion 1431/// functions (C++0x [class.conv.fct]p2). 1432/// 1433/// \param ForceRValue true if the expression should be treated as an rvalue 1434/// for overload resolution. 1435/// \param UserCast true if looking for user defined conversion for a static 1436/// cast. 1437OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 1438 UserDefinedConversionSequence& User, 1439 OverloadCandidateSet& CandidateSet, 1440 bool AllowConversionFunctions, 1441 bool AllowExplicit, 1442 bool ForceRValue, 1443 bool UserCast) { 1444 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1445 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1446 // We're not going to find any constructors. 1447 } else if (CXXRecordDecl *ToRecordDecl 1448 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1449 // C++ [over.match.ctor]p1: 1450 // When objects of class type are direct-initialized (8.5), or 1451 // copy-initialized from an expression of the same or a 1452 // derived class type (8.5), overload resolution selects the 1453 // constructor. [...] For copy-initialization, the candidate 1454 // functions are all the converting constructors (12.3.1) of 1455 // that class. The argument list is the expression-list within 1456 // the parentheses of the initializer. 1457 bool SuppressUserConversions = !UserCast; 1458 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1459 IsDerivedFrom(From->getType(), ToType)) { 1460 SuppressUserConversions = false; 1461 AllowConversionFunctions = false; 1462 } 1463 1464 DeclarationName ConstructorName 1465 = Context.DeclarationNames.getCXXConstructorName( 1466 Context.getCanonicalType(ToType).getUnqualifiedType()); 1467 DeclContext::lookup_iterator Con, ConEnd; 1468 for (llvm::tie(Con, ConEnd) 1469 = ToRecordDecl->lookup(ConstructorName); 1470 Con != ConEnd; ++Con) { 1471 // Find the constructor (which may be a template). 1472 CXXConstructorDecl *Constructor = 0; 1473 FunctionTemplateDecl *ConstructorTmpl 1474 = dyn_cast<FunctionTemplateDecl>(*Con); 1475 if (ConstructorTmpl) 1476 Constructor 1477 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1478 else 1479 Constructor = cast<CXXConstructorDecl>(*Con); 1480 1481 if (!Constructor->isInvalidDecl() && 1482 Constructor->isConvertingConstructor(AllowExplicit)) { 1483 if (ConstructorTmpl) 1484 AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0, 1485 &From, 1, CandidateSet, 1486 SuppressUserConversions, ForceRValue); 1487 else 1488 // Allow one user-defined conversion when user specifies a 1489 // From->ToType conversion via an static cast (c-style, etc). 1490 AddOverloadCandidate(Constructor, &From, 1, CandidateSet, 1491 SuppressUserConversions, ForceRValue); 1492 } 1493 } 1494 } 1495 } 1496 1497 if (!AllowConversionFunctions) { 1498 // Don't allow any conversion functions to enter the overload set. 1499 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1500 PDiag(0) 1501 << From->getSourceRange())) { 1502 // No conversion functions from incomplete types. 1503 } else if (const RecordType *FromRecordType 1504 = From->getType()->getAs<RecordType>()) { 1505 if (CXXRecordDecl *FromRecordDecl 1506 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1507 // Add all of the conversion functions as candidates. 1508 const UnresolvedSet *Conversions 1509 = FromRecordDecl->getVisibleConversionFunctions(); 1510 for (UnresolvedSet::iterator I = Conversions->begin(), 1511 E = Conversions->end(); I != E; ++I) { 1512 NamedDecl *D = *I; 1513 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 1514 if (isa<UsingShadowDecl>(D)) 1515 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1516 1517 CXXConversionDecl *Conv; 1518 FunctionTemplateDecl *ConvTemplate; 1519 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I))) 1520 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1521 else 1522 Conv = dyn_cast<CXXConversionDecl>(*I); 1523 1524 if (AllowExplicit || !Conv->isExplicit()) { 1525 if (ConvTemplate) 1526 AddTemplateConversionCandidate(ConvTemplate, ActingContext, 1527 From, ToType, CandidateSet); 1528 else 1529 AddConversionCandidate(Conv, ActingContext, From, ToType, 1530 CandidateSet); 1531 } 1532 } 1533 } 1534 } 1535 1536 OverloadCandidateSet::iterator Best; 1537 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1538 case OR_Success: 1539 // Record the standard conversion we used and the conversion function. 1540 if (CXXConstructorDecl *Constructor 1541 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1542 // C++ [over.ics.user]p1: 1543 // If the user-defined conversion is specified by a 1544 // constructor (12.3.1), the initial standard conversion 1545 // sequence converts the source type to the type required by 1546 // the argument of the constructor. 1547 // 1548 QualType ThisType = Constructor->getThisType(Context); 1549 if (Best->Conversions[0].ConversionKind == 1550 ImplicitConversionSequence::EllipsisConversion) 1551 User.EllipsisConversion = true; 1552 else { 1553 User.Before = Best->Conversions[0].Standard; 1554 User.EllipsisConversion = false; 1555 } 1556 User.ConversionFunction = Constructor; 1557 User.After.setAsIdentityConversion(); 1558 User.After.FromTypePtr 1559 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr(); 1560 User.After.ToTypePtr = ToType.getAsOpaquePtr(); 1561 return OR_Success; 1562 } else if (CXXConversionDecl *Conversion 1563 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1564 // C++ [over.ics.user]p1: 1565 // 1566 // [...] If the user-defined conversion is specified by a 1567 // conversion function (12.3.2), the initial standard 1568 // conversion sequence converts the source type to the 1569 // implicit object parameter of the conversion function. 1570 User.Before = Best->Conversions[0].Standard; 1571 User.ConversionFunction = Conversion; 1572 User.EllipsisConversion = false; 1573 1574 // C++ [over.ics.user]p2: 1575 // The second standard conversion sequence converts the 1576 // result of the user-defined conversion to the target type 1577 // for the sequence. Since an implicit conversion sequence 1578 // is an initialization, the special rules for 1579 // initialization by user-defined conversion apply when 1580 // selecting the best user-defined conversion for a 1581 // user-defined conversion sequence (see 13.3.3 and 1582 // 13.3.3.1). 1583 User.After = Best->FinalConversion; 1584 return OR_Success; 1585 } else { 1586 assert(false && "Not a constructor or conversion function?"); 1587 return OR_No_Viable_Function; 1588 } 1589 1590 case OR_No_Viable_Function: 1591 return OR_No_Viable_Function; 1592 case OR_Deleted: 1593 // No conversion here! We're done. 1594 return OR_Deleted; 1595 1596 case OR_Ambiguous: 1597 return OR_Ambiguous; 1598 } 1599 1600 return OR_No_Viable_Function; 1601} 1602 1603bool 1604Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 1605 ImplicitConversionSequence ICS; 1606 OverloadCandidateSet CandidateSet; 1607 OverloadingResult OvResult = 1608 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 1609 CandidateSet, true, false, false); 1610 if (OvResult == OR_Ambiguous) 1611 Diag(From->getSourceRange().getBegin(), 1612 diag::err_typecheck_ambiguous_condition) 1613 << From->getType() << ToType << From->getSourceRange(); 1614 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 1615 Diag(From->getSourceRange().getBegin(), 1616 diag::err_typecheck_nonviable_condition) 1617 << From->getType() << ToType << From->getSourceRange(); 1618 else 1619 return false; 1620 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 1621 return true; 1622} 1623 1624/// CompareImplicitConversionSequences - Compare two implicit 1625/// conversion sequences to determine whether one is better than the 1626/// other or if they are indistinguishable (C++ 13.3.3.2). 1627ImplicitConversionSequence::CompareKind 1628Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1629 const ImplicitConversionSequence& ICS2) 1630{ 1631 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1632 // conversion sequences (as defined in 13.3.3.1) 1633 // -- a standard conversion sequence (13.3.3.1.1) is a better 1634 // conversion sequence than a user-defined conversion sequence or 1635 // an ellipsis conversion sequence, and 1636 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1637 // conversion sequence than an ellipsis conversion sequence 1638 // (13.3.3.1.3). 1639 // 1640 if (ICS1.ConversionKind < ICS2.ConversionKind) 1641 return ImplicitConversionSequence::Better; 1642 else if (ICS2.ConversionKind < ICS1.ConversionKind) 1643 return ImplicitConversionSequence::Worse; 1644 1645 // Two implicit conversion sequences of the same form are 1646 // indistinguishable conversion sequences unless one of the 1647 // following rules apply: (C++ 13.3.3.2p3): 1648 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) 1649 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1650 else if (ICS1.ConversionKind == 1651 ImplicitConversionSequence::UserDefinedConversion) { 1652 // User-defined conversion sequence U1 is a better conversion 1653 // sequence than another user-defined conversion sequence U2 if 1654 // they contain the same user-defined conversion function or 1655 // constructor and if the second standard conversion sequence of 1656 // U1 is better than the second standard conversion sequence of 1657 // U2 (C++ 13.3.3.2p3). 1658 if (ICS1.UserDefined.ConversionFunction == 1659 ICS2.UserDefined.ConversionFunction) 1660 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1661 ICS2.UserDefined.After); 1662 } 1663 1664 return ImplicitConversionSequence::Indistinguishable; 1665} 1666 1667/// CompareStandardConversionSequences - Compare two standard 1668/// conversion sequences to determine whether one is better than the 1669/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1670ImplicitConversionSequence::CompareKind 1671Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1672 const StandardConversionSequence& SCS2) 1673{ 1674 // Standard conversion sequence S1 is a better conversion sequence 1675 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1676 1677 // -- S1 is a proper subsequence of S2 (comparing the conversion 1678 // sequences in the canonical form defined by 13.3.3.1.1, 1679 // excluding any Lvalue Transformation; the identity conversion 1680 // sequence is considered to be a subsequence of any 1681 // non-identity conversion sequence) or, if not that, 1682 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) 1683 // Neither is a proper subsequence of the other. Do nothing. 1684 ; 1685 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || 1686 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || 1687 (SCS1.Second == ICK_Identity && 1688 SCS1.Third == ICK_Identity)) 1689 // SCS1 is a proper subsequence of SCS2. 1690 return ImplicitConversionSequence::Better; 1691 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || 1692 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || 1693 (SCS2.Second == ICK_Identity && 1694 SCS2.Third == ICK_Identity)) 1695 // SCS2 is a proper subsequence of SCS1. 1696 return ImplicitConversionSequence::Worse; 1697 1698 // -- the rank of S1 is better than the rank of S2 (by the rules 1699 // defined below), or, if not that, 1700 ImplicitConversionRank Rank1 = SCS1.getRank(); 1701 ImplicitConversionRank Rank2 = SCS2.getRank(); 1702 if (Rank1 < Rank2) 1703 return ImplicitConversionSequence::Better; 1704 else if (Rank2 < Rank1) 1705 return ImplicitConversionSequence::Worse; 1706 1707 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1708 // are indistinguishable unless one of the following rules 1709 // applies: 1710 1711 // A conversion that is not a conversion of a pointer, or 1712 // pointer to member, to bool is better than another conversion 1713 // that is such a conversion. 1714 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1715 return SCS2.isPointerConversionToBool() 1716 ? ImplicitConversionSequence::Better 1717 : ImplicitConversionSequence::Worse; 1718 1719 // C++ [over.ics.rank]p4b2: 1720 // 1721 // If class B is derived directly or indirectly from class A, 1722 // conversion of B* to A* is better than conversion of B* to 1723 // void*, and conversion of A* to void* is better than conversion 1724 // of B* to void*. 1725 bool SCS1ConvertsToVoid 1726 = SCS1.isPointerConversionToVoidPointer(Context); 1727 bool SCS2ConvertsToVoid 1728 = SCS2.isPointerConversionToVoidPointer(Context); 1729 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1730 // Exactly one of the conversion sequences is a conversion to 1731 // a void pointer; it's the worse conversion. 1732 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1733 : ImplicitConversionSequence::Worse; 1734 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1735 // Neither conversion sequence converts to a void pointer; compare 1736 // their derived-to-base conversions. 1737 if (ImplicitConversionSequence::CompareKind DerivedCK 1738 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1739 return DerivedCK; 1740 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1741 // Both conversion sequences are conversions to void 1742 // pointers. Compare the source types to determine if there's an 1743 // inheritance relationship in their sources. 1744 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1745 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1746 1747 // Adjust the types we're converting from via the array-to-pointer 1748 // conversion, if we need to. 1749 if (SCS1.First == ICK_Array_To_Pointer) 1750 FromType1 = Context.getArrayDecayedType(FromType1); 1751 if (SCS2.First == ICK_Array_To_Pointer) 1752 FromType2 = Context.getArrayDecayedType(FromType2); 1753 1754 QualType FromPointee1 1755 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1756 QualType FromPointee2 1757 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1758 1759 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1760 return ImplicitConversionSequence::Better; 1761 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1762 return ImplicitConversionSequence::Worse; 1763 1764 // Objective-C++: If one interface is more specific than the 1765 // other, it is the better one. 1766 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1767 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1768 if (FromIface1 && FromIface1) { 1769 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1770 return ImplicitConversionSequence::Better; 1771 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1772 return ImplicitConversionSequence::Worse; 1773 } 1774 } 1775 1776 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1777 // bullet 3). 1778 if (ImplicitConversionSequence::CompareKind QualCK 1779 = CompareQualificationConversions(SCS1, SCS2)) 1780 return QualCK; 1781 1782 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1783 // C++0x [over.ics.rank]p3b4: 1784 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 1785 // implicit object parameter of a non-static member function declared 1786 // without a ref-qualifier, and S1 binds an rvalue reference to an 1787 // rvalue and S2 binds an lvalue reference. 1788 // FIXME: We don't know if we're dealing with the implicit object parameter, 1789 // or if the member function in this case has a ref qualifier. 1790 // (Of course, we don't have ref qualifiers yet.) 1791 if (SCS1.RRefBinding != SCS2.RRefBinding) 1792 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 1793 : ImplicitConversionSequence::Worse; 1794 1795 // C++ [over.ics.rank]p3b4: 1796 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1797 // which the references refer are the same type except for 1798 // top-level cv-qualifiers, and the type to which the reference 1799 // initialized by S2 refers is more cv-qualified than the type 1800 // to which the reference initialized by S1 refers. 1801 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1802 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1803 T1 = Context.getCanonicalType(T1); 1804 T2 = Context.getCanonicalType(T2); 1805 Qualifiers T1Quals, T2Quals; 1806 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 1807 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 1808 if (UnqualT1 == UnqualT2) { 1809 // If the type is an array type, promote the element qualifiers to the type 1810 // for comparison. 1811 if (isa<ArrayType>(T1) && T1Quals) 1812 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 1813 if (isa<ArrayType>(T2) && T2Quals) 1814 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 1815 if (T2.isMoreQualifiedThan(T1)) 1816 return ImplicitConversionSequence::Better; 1817 else if (T1.isMoreQualifiedThan(T2)) 1818 return ImplicitConversionSequence::Worse; 1819 } 1820 } 1821 1822 return ImplicitConversionSequence::Indistinguishable; 1823} 1824 1825/// CompareQualificationConversions - Compares two standard conversion 1826/// sequences to determine whether they can be ranked based on their 1827/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1828ImplicitConversionSequence::CompareKind 1829Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1830 const StandardConversionSequence& SCS2) { 1831 // C++ 13.3.3.2p3: 1832 // -- S1 and S2 differ only in their qualification conversion and 1833 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1834 // cv-qualification signature of type T1 is a proper subset of 1835 // the cv-qualification signature of type T2, and S1 is not the 1836 // deprecated string literal array-to-pointer conversion (4.2). 1837 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1838 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1839 return ImplicitConversionSequence::Indistinguishable; 1840 1841 // FIXME: the example in the standard doesn't use a qualification 1842 // conversion (!) 1843 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1844 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1845 T1 = Context.getCanonicalType(T1); 1846 T2 = Context.getCanonicalType(T2); 1847 Qualifiers T1Quals, T2Quals; 1848 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 1849 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 1850 1851 // If the types are the same, we won't learn anything by unwrapped 1852 // them. 1853 if (UnqualT1 == UnqualT2) 1854 return ImplicitConversionSequence::Indistinguishable; 1855 1856 // If the type is an array type, promote the element qualifiers to the type 1857 // for comparison. 1858 if (isa<ArrayType>(T1) && T1Quals) 1859 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 1860 if (isa<ArrayType>(T2) && T2Quals) 1861 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 1862 1863 ImplicitConversionSequence::CompareKind Result 1864 = ImplicitConversionSequence::Indistinguishable; 1865 while (UnwrapSimilarPointerTypes(T1, T2)) { 1866 // Within each iteration of the loop, we check the qualifiers to 1867 // determine if this still looks like a qualification 1868 // conversion. Then, if all is well, we unwrap one more level of 1869 // pointers or pointers-to-members and do it all again 1870 // until there are no more pointers or pointers-to-members left 1871 // to unwrap. This essentially mimics what 1872 // IsQualificationConversion does, but here we're checking for a 1873 // strict subset of qualifiers. 1874 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1875 // The qualifiers are the same, so this doesn't tell us anything 1876 // about how the sequences rank. 1877 ; 1878 else if (T2.isMoreQualifiedThan(T1)) { 1879 // T1 has fewer qualifiers, so it could be the better sequence. 1880 if (Result == ImplicitConversionSequence::Worse) 1881 // Neither has qualifiers that are a subset of the other's 1882 // qualifiers. 1883 return ImplicitConversionSequence::Indistinguishable; 1884 1885 Result = ImplicitConversionSequence::Better; 1886 } else if (T1.isMoreQualifiedThan(T2)) { 1887 // T2 has fewer qualifiers, so it could be the better sequence. 1888 if (Result == ImplicitConversionSequence::Better) 1889 // Neither has qualifiers that are a subset of the other's 1890 // qualifiers. 1891 return ImplicitConversionSequence::Indistinguishable; 1892 1893 Result = ImplicitConversionSequence::Worse; 1894 } else { 1895 // Qualifiers are disjoint. 1896 return ImplicitConversionSequence::Indistinguishable; 1897 } 1898 1899 // If the types after this point are equivalent, we're done. 1900 if (Context.hasSameUnqualifiedType(T1, T2)) 1901 break; 1902 } 1903 1904 // Check that the winning standard conversion sequence isn't using 1905 // the deprecated string literal array to pointer conversion. 1906 switch (Result) { 1907 case ImplicitConversionSequence::Better: 1908 if (SCS1.Deprecated) 1909 Result = ImplicitConversionSequence::Indistinguishable; 1910 break; 1911 1912 case ImplicitConversionSequence::Indistinguishable: 1913 break; 1914 1915 case ImplicitConversionSequence::Worse: 1916 if (SCS2.Deprecated) 1917 Result = ImplicitConversionSequence::Indistinguishable; 1918 break; 1919 } 1920 1921 return Result; 1922} 1923 1924/// CompareDerivedToBaseConversions - Compares two standard conversion 1925/// sequences to determine whether they can be ranked based on their 1926/// various kinds of derived-to-base conversions (C++ 1927/// [over.ics.rank]p4b3). As part of these checks, we also look at 1928/// conversions between Objective-C interface types. 1929ImplicitConversionSequence::CompareKind 1930Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 1931 const StandardConversionSequence& SCS2) { 1932 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1933 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1934 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1935 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1936 1937 // Adjust the types we're converting from via the array-to-pointer 1938 // conversion, if we need to. 1939 if (SCS1.First == ICK_Array_To_Pointer) 1940 FromType1 = Context.getArrayDecayedType(FromType1); 1941 if (SCS2.First == ICK_Array_To_Pointer) 1942 FromType2 = Context.getArrayDecayedType(FromType2); 1943 1944 // Canonicalize all of the types. 1945 FromType1 = Context.getCanonicalType(FromType1); 1946 ToType1 = Context.getCanonicalType(ToType1); 1947 FromType2 = Context.getCanonicalType(FromType2); 1948 ToType2 = Context.getCanonicalType(ToType2); 1949 1950 // C++ [over.ics.rank]p4b3: 1951 // 1952 // If class B is derived directly or indirectly from class A and 1953 // class C is derived directly or indirectly from B, 1954 // 1955 // For Objective-C, we let A, B, and C also be Objective-C 1956 // interfaces. 1957 1958 // Compare based on pointer conversions. 1959 if (SCS1.Second == ICK_Pointer_Conversion && 1960 SCS2.Second == ICK_Pointer_Conversion && 1961 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 1962 FromType1->isPointerType() && FromType2->isPointerType() && 1963 ToType1->isPointerType() && ToType2->isPointerType()) { 1964 QualType FromPointee1 1965 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1966 QualType ToPointee1 1967 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1968 QualType FromPointee2 1969 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1970 QualType ToPointee2 1971 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1972 1973 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1974 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1975 const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>(); 1976 const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>(); 1977 1978 // -- conversion of C* to B* is better than conversion of C* to A*, 1979 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1980 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1981 return ImplicitConversionSequence::Better; 1982 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1983 return ImplicitConversionSequence::Worse; 1984 1985 if (ToIface1 && ToIface2) { 1986 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 1987 return ImplicitConversionSequence::Better; 1988 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 1989 return ImplicitConversionSequence::Worse; 1990 } 1991 } 1992 1993 // -- conversion of B* to A* is better than conversion of C* to A*, 1994 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 1995 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1996 return ImplicitConversionSequence::Better; 1997 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1998 return ImplicitConversionSequence::Worse; 1999 2000 if (FromIface1 && FromIface2) { 2001 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2002 return ImplicitConversionSequence::Better; 2003 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2004 return ImplicitConversionSequence::Worse; 2005 } 2006 } 2007 } 2008 2009 // Compare based on reference bindings. 2010 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 2011 SCS1.Second == ICK_Derived_To_Base) { 2012 // -- binding of an expression of type C to a reference of type 2013 // B& is better than binding an expression of type C to a 2014 // reference of type A&, 2015 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2016 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2017 if (IsDerivedFrom(ToType1, ToType2)) 2018 return ImplicitConversionSequence::Better; 2019 else if (IsDerivedFrom(ToType2, ToType1)) 2020 return ImplicitConversionSequence::Worse; 2021 } 2022 2023 // -- binding of an expression of type B to a reference of type 2024 // A& is better than binding an expression of type C to a 2025 // reference of type A&, 2026 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2027 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2028 if (IsDerivedFrom(FromType2, FromType1)) 2029 return ImplicitConversionSequence::Better; 2030 else if (IsDerivedFrom(FromType1, FromType2)) 2031 return ImplicitConversionSequence::Worse; 2032 } 2033 } 2034 2035 // Ranking of member-pointer types. 2036 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2037 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2038 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2039 const MemberPointerType * FromMemPointer1 = 2040 FromType1->getAs<MemberPointerType>(); 2041 const MemberPointerType * ToMemPointer1 = 2042 ToType1->getAs<MemberPointerType>(); 2043 const MemberPointerType * FromMemPointer2 = 2044 FromType2->getAs<MemberPointerType>(); 2045 const MemberPointerType * ToMemPointer2 = 2046 ToType2->getAs<MemberPointerType>(); 2047 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2048 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2049 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2050 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2051 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2052 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2053 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2054 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2055 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2056 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2057 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2058 return ImplicitConversionSequence::Worse; 2059 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2060 return ImplicitConversionSequence::Better; 2061 } 2062 // conversion of B::* to C::* is better than conversion of A::* to C::* 2063 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2064 if (IsDerivedFrom(FromPointee1, FromPointee2)) 2065 return ImplicitConversionSequence::Better; 2066 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 2067 return ImplicitConversionSequence::Worse; 2068 } 2069 } 2070 2071 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 2072 SCS1.Second == ICK_Derived_To_Base) { 2073 // -- conversion of C to B is better than conversion of C to A, 2074 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2075 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2076 if (IsDerivedFrom(ToType1, ToType2)) 2077 return ImplicitConversionSequence::Better; 2078 else if (IsDerivedFrom(ToType2, ToType1)) 2079 return ImplicitConversionSequence::Worse; 2080 } 2081 2082 // -- conversion of B to A is better than conversion of C to A. 2083 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2084 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2085 if (IsDerivedFrom(FromType2, FromType1)) 2086 return ImplicitConversionSequence::Better; 2087 else if (IsDerivedFrom(FromType1, FromType2)) 2088 return ImplicitConversionSequence::Worse; 2089 } 2090 } 2091 2092 return ImplicitConversionSequence::Indistinguishable; 2093} 2094 2095/// TryCopyInitialization - Try to copy-initialize a value of type 2096/// ToType from the expression From. Return the implicit conversion 2097/// sequence required to pass this argument, which may be a bad 2098/// conversion sequence (meaning that the argument cannot be passed to 2099/// a parameter of this type). If @p SuppressUserConversions, then we 2100/// do not permit any user-defined conversion sequences. If @p ForceRValue, 2101/// then we treat @p From as an rvalue, even if it is an lvalue. 2102ImplicitConversionSequence 2103Sema::TryCopyInitialization(Expr *From, QualType ToType, 2104 bool SuppressUserConversions, bool ForceRValue, 2105 bool InOverloadResolution) { 2106 if (ToType->isReferenceType()) { 2107 ImplicitConversionSequence ICS; 2108 CheckReferenceInit(From, ToType, 2109 /*FIXME:*/From->getLocStart(), 2110 SuppressUserConversions, 2111 /*AllowExplicit=*/false, 2112 ForceRValue, 2113 &ICS); 2114 return ICS; 2115 } else { 2116 return TryImplicitConversion(From, ToType, 2117 SuppressUserConversions, 2118 /*AllowExplicit=*/false, 2119 ForceRValue, 2120 InOverloadResolution); 2121 } 2122} 2123 2124/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with 2125/// the expression @p From. Returns true (and emits a diagnostic) if there was 2126/// an error, returns false if the initialization succeeded. Elidable should 2127/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works 2128/// differently in C++0x for this case. 2129bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 2130 AssignmentAction Action, bool Elidable) { 2131 if (!getLangOptions().CPlusPlus) { 2132 // In C, argument passing is the same as performing an assignment. 2133 QualType FromType = From->getType(); 2134 2135 AssignConvertType ConvTy = 2136 CheckSingleAssignmentConstraints(ToType, From); 2137 if (ConvTy != Compatible && 2138 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) 2139 ConvTy = Compatible; 2140 2141 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 2142 FromType, From, Action); 2143 } 2144 2145 if (ToType->isReferenceType()) 2146 return CheckReferenceInit(From, ToType, 2147 /*FIXME:*/From->getLocStart(), 2148 /*SuppressUserConversions=*/false, 2149 /*AllowExplicit=*/false, 2150 /*ForceRValue=*/false); 2151 2152 if (!PerformImplicitConversion(From, ToType, Action, 2153 /*AllowExplicit=*/false, Elidable)) 2154 return false; 2155 if (!DiagnoseMultipleUserDefinedConversion(From, ToType)) 2156 return Diag(From->getSourceRange().getBegin(), 2157 diag::err_typecheck_convert_incompatible) 2158 << ToType << From->getType() << Action << From->getSourceRange(); 2159 return true; 2160} 2161 2162/// TryObjectArgumentInitialization - Try to initialize the object 2163/// parameter of the given member function (@c Method) from the 2164/// expression @p From. 2165ImplicitConversionSequence 2166Sema::TryObjectArgumentInitialization(QualType FromType, 2167 CXXMethodDecl *Method, 2168 CXXRecordDecl *ActingContext) { 2169 QualType ClassType = Context.getTypeDeclType(ActingContext); 2170 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 2171 // const volatile object. 2172 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 2173 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 2174 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); 2175 2176 // Set up the conversion sequence as a "bad" conversion, to allow us 2177 // to exit early. 2178 ImplicitConversionSequence ICS; 2179 ICS.Standard.setAsIdentityConversion(); 2180 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 2181 2182 // We need to have an object of class type. 2183 if (const PointerType *PT = FromType->getAs<PointerType>()) 2184 FromType = PT->getPointeeType(); 2185 2186 assert(FromType->isRecordType()); 2187 2188 // The implicit object parameter is has the type "reference to cv X", 2189 // where X is the class of which the function is a member 2190 // (C++ [over.match.funcs]p4). However, when finding an implicit 2191 // conversion sequence for the argument, we are not allowed to 2192 // create temporaries or perform user-defined conversions 2193 // (C++ [over.match.funcs]p5). We perform a simplified version of 2194 // reference binding here, that allows class rvalues to bind to 2195 // non-constant references. 2196 2197 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2198 // with the implicit object parameter (C++ [over.match.funcs]p5). 2199 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2200 if (ImplicitParamType.getCVRQualifiers() 2201 != FromTypeCanon.getLocalCVRQualifiers() && 2202 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) 2203 return ICS; 2204 2205 // Check that we have either the same type or a derived type. It 2206 // affects the conversion rank. 2207 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2208 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) 2209 ICS.Standard.Second = ICK_Identity; 2210 else if (IsDerivedFrom(FromType, ClassType)) 2211 ICS.Standard.Second = ICK_Derived_To_Base; 2212 else 2213 return ICS; 2214 2215 // Success. Mark this as a reference binding. 2216 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 2217 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); 2218 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); 2219 ICS.Standard.ReferenceBinding = true; 2220 ICS.Standard.DirectBinding = true; 2221 ICS.Standard.RRefBinding = false; 2222 return ICS; 2223} 2224 2225/// PerformObjectArgumentInitialization - Perform initialization of 2226/// the implicit object parameter for the given Method with the given 2227/// expression. 2228bool 2229Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 2230 QualType FromRecordType, DestType; 2231 QualType ImplicitParamRecordType = 2232 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2233 2234 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2235 FromRecordType = PT->getPointeeType(); 2236 DestType = Method->getThisType(Context); 2237 } else { 2238 FromRecordType = From->getType(); 2239 DestType = ImplicitParamRecordType; 2240 } 2241 2242 // Note that we always use the true parent context when performing 2243 // the actual argument initialization. 2244 ImplicitConversionSequence ICS 2245 = TryObjectArgumentInitialization(From->getType(), Method, 2246 Method->getParent()); 2247 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) 2248 return Diag(From->getSourceRange().getBegin(), 2249 diag::err_implicit_object_parameter_init) 2250 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2251 2252 if (ICS.Standard.Second == ICK_Derived_To_Base && 2253 CheckDerivedToBaseConversion(FromRecordType, 2254 ImplicitParamRecordType, 2255 From->getSourceRange().getBegin(), 2256 From->getSourceRange())) 2257 return true; 2258 2259 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, 2260 /*isLvalue=*/true); 2261 return false; 2262} 2263 2264/// TryContextuallyConvertToBool - Attempt to contextually convert the 2265/// expression From to bool (C++0x [conv]p3). 2266ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2267 return TryImplicitConversion(From, Context.BoolTy, 2268 // FIXME: Are these flags correct? 2269 /*SuppressUserConversions=*/false, 2270 /*AllowExplicit=*/true, 2271 /*ForceRValue=*/false, 2272 /*InOverloadResolution=*/false); 2273} 2274 2275/// PerformContextuallyConvertToBool - Perform a contextual conversion 2276/// of the expression From to bool (C++0x [conv]p3). 2277bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2278 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2279 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting)) 2280 return false; 2281 2282 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 2283 return Diag(From->getSourceRange().getBegin(), 2284 diag::err_typecheck_bool_condition) 2285 << From->getType() << From->getSourceRange(); 2286 return true; 2287} 2288 2289/// AddOverloadCandidate - Adds the given function to the set of 2290/// candidate functions, using the given function call arguments. If 2291/// @p SuppressUserConversions, then don't allow user-defined 2292/// conversions via constructors or conversion operators. 2293/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly 2294/// hacky way to implement the overloading rules for elidable copy 2295/// initialization in C++0x (C++0x 12.8p15). 2296/// 2297/// \para PartialOverloading true if we are performing "partial" overloading 2298/// based on an incomplete set of function arguments. This feature is used by 2299/// code completion. 2300void 2301Sema::AddOverloadCandidate(FunctionDecl *Function, 2302 Expr **Args, unsigned NumArgs, 2303 OverloadCandidateSet& CandidateSet, 2304 bool SuppressUserConversions, 2305 bool ForceRValue, 2306 bool PartialOverloading) { 2307 const FunctionProtoType* Proto 2308 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 2309 assert(Proto && "Functions without a prototype cannot be overloaded"); 2310 assert(!isa<CXXConversionDecl>(Function) && 2311 "Use AddConversionCandidate for conversion functions"); 2312 assert(!Function->getDescribedFunctionTemplate() && 2313 "Use AddTemplateOverloadCandidate for function templates"); 2314 2315 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2316 if (!isa<CXXConstructorDecl>(Method)) { 2317 // If we get here, it's because we're calling a member function 2318 // that is named without a member access expression (e.g., 2319 // "this->f") that was either written explicitly or created 2320 // implicitly. This can happen with a qualified call to a member 2321 // function, e.g., X::f(). We use an empty type for the implied 2322 // object argument (C++ [over.call.func]p3), and the acting context 2323 // is irrelevant. 2324 AddMethodCandidate(Method, Method->getParent(), 2325 QualType(), Args, NumArgs, CandidateSet, 2326 SuppressUserConversions, ForceRValue); 2327 return; 2328 } 2329 // We treat a constructor like a non-member function, since its object 2330 // argument doesn't participate in overload resolution. 2331 } 2332 2333 if (!CandidateSet.isNewCandidate(Function)) 2334 return; 2335 2336 // Overload resolution is always an unevaluated context. 2337 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2338 2339 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 2340 // C++ [class.copy]p3: 2341 // A member function template is never instantiated to perform the copy 2342 // of a class object to an object of its class type. 2343 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 2344 if (NumArgs == 1 && 2345 Constructor->isCopyConstructorLikeSpecialization() && 2346 Context.hasSameUnqualifiedType(ClassType, Args[0]->getType())) 2347 return; 2348 } 2349 2350 // Add this candidate 2351 CandidateSet.push_back(OverloadCandidate()); 2352 OverloadCandidate& Candidate = CandidateSet.back(); 2353 Candidate.Function = Function; 2354 Candidate.Viable = true; 2355 Candidate.IsSurrogate = false; 2356 Candidate.IgnoreObjectArgument = false; 2357 2358 unsigned NumArgsInProto = Proto->getNumArgs(); 2359 2360 // (C++ 13.3.2p2): A candidate function having fewer than m 2361 // parameters is viable only if it has an ellipsis in its parameter 2362 // list (8.3.5). 2363 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 2364 !Proto->isVariadic()) { 2365 Candidate.Viable = false; 2366 return; 2367 } 2368 2369 // (C++ 13.3.2p2): A candidate function having more than m parameters 2370 // is viable only if the (m+1)st parameter has a default argument 2371 // (8.3.6). For the purposes of overload resolution, the 2372 // parameter list is truncated on the right, so that there are 2373 // exactly m parameters. 2374 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 2375 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 2376 // Not enough arguments. 2377 Candidate.Viable = false; 2378 return; 2379 } 2380 2381 // Determine the implicit conversion sequences for each of the 2382 // arguments. 2383 Candidate.Conversions.resize(NumArgs); 2384 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2385 if (ArgIdx < NumArgsInProto) { 2386 // (C++ 13.3.2p3): for F to be a viable function, there shall 2387 // exist for each argument an implicit conversion sequence 2388 // (13.3.3.1) that converts that argument to the corresponding 2389 // parameter of F. 2390 QualType ParamType = Proto->getArgType(ArgIdx); 2391 Candidate.Conversions[ArgIdx] 2392 = TryCopyInitialization(Args[ArgIdx], ParamType, 2393 SuppressUserConversions, ForceRValue, 2394 /*InOverloadResolution=*/true); 2395 if (Candidate.Conversions[ArgIdx].ConversionKind 2396 == ImplicitConversionSequence::BadConversion) { 2397 // 13.3.3.1-p10 If several different sequences of conversions exist that 2398 // each convert the argument to the parameter type, the implicit conversion 2399 // sequence associated with the parameter is defined to be the unique conversion 2400 // sequence designated the ambiguous conversion sequence. For the purpose of 2401 // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous 2402 // conversion sequence is treated as a user-defined sequence that is 2403 // indistinguishable from any other user-defined conversion sequence 2404 if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) { 2405 Candidate.Conversions[ArgIdx].ConversionKind = 2406 ImplicitConversionSequence::UserDefinedConversion; 2407 // Set the conversion function to one of them. As due to ambiguity, 2408 // they carry the same weight and is needed for overload resolution 2409 // later. 2410 Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction = 2411 Candidate.Conversions[ArgIdx].ConversionFunctionSet[0]; 2412 } 2413 else { 2414 Candidate.Viable = false; 2415 break; 2416 } 2417 } 2418 } else { 2419 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2420 // argument for which there is no corresponding parameter is 2421 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2422 Candidate.Conversions[ArgIdx].ConversionKind 2423 = ImplicitConversionSequence::EllipsisConversion; 2424 } 2425 } 2426} 2427 2428/// \brief Add all of the function declarations in the given function set to 2429/// the overload canddiate set. 2430void Sema::AddFunctionCandidates(const FunctionSet &Functions, 2431 Expr **Args, unsigned NumArgs, 2432 OverloadCandidateSet& CandidateSet, 2433 bool SuppressUserConversions) { 2434 for (FunctionSet::const_iterator F = Functions.begin(), 2435 FEnd = Functions.end(); 2436 F != FEnd; ++F) { 2437 // FIXME: using declarations 2438 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) { 2439 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2440 AddMethodCandidate(cast<CXXMethodDecl>(FD), 2441 cast<CXXMethodDecl>(FD)->getParent(), 2442 Args[0]->getType(), Args + 1, NumArgs - 1, 2443 CandidateSet, SuppressUserConversions); 2444 else 2445 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 2446 SuppressUserConversions); 2447 } else { 2448 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F); 2449 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 2450 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 2451 AddMethodTemplateCandidate(FunTmpl, 2452 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 2453 /*FIXME: explicit args */ 0, 2454 Args[0]->getType(), Args + 1, NumArgs - 1, 2455 CandidateSet, 2456 SuppressUserConversions); 2457 else 2458 AddTemplateOverloadCandidate(FunTmpl, 2459 /*FIXME: explicit args */ 0, 2460 Args, NumArgs, CandidateSet, 2461 SuppressUserConversions); 2462 } 2463 } 2464} 2465 2466/// AddMethodCandidate - Adds a named decl (which is some kind of 2467/// method) as a method candidate to the given overload set. 2468void Sema::AddMethodCandidate(NamedDecl *Decl, 2469 QualType ObjectType, 2470 Expr **Args, unsigned NumArgs, 2471 OverloadCandidateSet& CandidateSet, 2472 bool SuppressUserConversions, bool ForceRValue) { 2473 2474 // FIXME: use this 2475 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 2476 2477 if (isa<UsingShadowDecl>(Decl)) 2478 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 2479 2480 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 2481 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 2482 "Expected a member function template"); 2483 AddMethodTemplateCandidate(TD, ActingContext, /*ExplicitArgs*/ 0, 2484 ObjectType, Args, NumArgs, 2485 CandidateSet, 2486 SuppressUserConversions, 2487 ForceRValue); 2488 } else { 2489 AddMethodCandidate(cast<CXXMethodDecl>(Decl), ActingContext, 2490 ObjectType, Args, NumArgs, 2491 CandidateSet, SuppressUserConversions, ForceRValue); 2492 } 2493} 2494 2495/// AddMethodCandidate - Adds the given C++ member function to the set 2496/// of candidate functions, using the given function call arguments 2497/// and the object argument (@c Object). For example, in a call 2498/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 2499/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 2500/// allow user-defined conversions via constructors or conversion 2501/// operators. If @p ForceRValue, treat all arguments as rvalues. This is 2502/// a slightly hacky way to implement the overloading rules for elidable copy 2503/// initialization in C++0x (C++0x 12.8p15). 2504void 2505Sema::AddMethodCandidate(CXXMethodDecl *Method, CXXRecordDecl *ActingContext, 2506 QualType ObjectType, Expr **Args, unsigned NumArgs, 2507 OverloadCandidateSet& CandidateSet, 2508 bool SuppressUserConversions, bool ForceRValue) { 2509 const FunctionProtoType* Proto 2510 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 2511 assert(Proto && "Methods without a prototype cannot be overloaded"); 2512 assert(!isa<CXXConversionDecl>(Method) && 2513 "Use AddConversionCandidate for conversion functions"); 2514 assert(!isa<CXXConstructorDecl>(Method) && 2515 "Use AddOverloadCandidate for constructors"); 2516 2517 if (!CandidateSet.isNewCandidate(Method)) 2518 return; 2519 2520 // Overload resolution is always an unevaluated context. 2521 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2522 2523 // Add this candidate 2524 CandidateSet.push_back(OverloadCandidate()); 2525 OverloadCandidate& Candidate = CandidateSet.back(); 2526 Candidate.Function = Method; 2527 Candidate.IsSurrogate = false; 2528 Candidate.IgnoreObjectArgument = false; 2529 2530 unsigned NumArgsInProto = Proto->getNumArgs(); 2531 2532 // (C++ 13.3.2p2): A candidate function having fewer than m 2533 // parameters is viable only if it has an ellipsis in its parameter 2534 // list (8.3.5). 2535 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2536 Candidate.Viable = false; 2537 return; 2538 } 2539 2540 // (C++ 13.3.2p2): A candidate function having more than m parameters 2541 // is viable only if the (m+1)st parameter has a default argument 2542 // (8.3.6). For the purposes of overload resolution, the 2543 // parameter list is truncated on the right, so that there are 2544 // exactly m parameters. 2545 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2546 if (NumArgs < MinRequiredArgs) { 2547 // Not enough arguments. 2548 Candidate.Viable = false; 2549 return; 2550 } 2551 2552 Candidate.Viable = true; 2553 Candidate.Conversions.resize(NumArgs + 1); 2554 2555 if (Method->isStatic() || ObjectType.isNull()) 2556 // The implicit object argument is ignored. 2557 Candidate.IgnoreObjectArgument = true; 2558 else { 2559 // Determine the implicit conversion sequence for the object 2560 // parameter. 2561 Candidate.Conversions[0] 2562 = TryObjectArgumentInitialization(ObjectType, Method, ActingContext); 2563 if (Candidate.Conversions[0].ConversionKind 2564 == ImplicitConversionSequence::BadConversion) { 2565 Candidate.Viable = false; 2566 return; 2567 } 2568 } 2569 2570 // Determine the implicit conversion sequences for each of the 2571 // arguments. 2572 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2573 if (ArgIdx < NumArgsInProto) { 2574 // (C++ 13.3.2p3): for F to be a viable function, there shall 2575 // exist for each argument an implicit conversion sequence 2576 // (13.3.3.1) that converts that argument to the corresponding 2577 // parameter of F. 2578 QualType ParamType = Proto->getArgType(ArgIdx); 2579 Candidate.Conversions[ArgIdx + 1] 2580 = TryCopyInitialization(Args[ArgIdx], ParamType, 2581 SuppressUserConversions, ForceRValue, 2582 /*InOverloadResolution=*/true); 2583 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2584 == ImplicitConversionSequence::BadConversion) { 2585 Candidate.Viable = false; 2586 break; 2587 } 2588 } else { 2589 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2590 // argument for which there is no corresponding parameter is 2591 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2592 Candidate.Conversions[ArgIdx + 1].ConversionKind 2593 = ImplicitConversionSequence::EllipsisConversion; 2594 } 2595 } 2596} 2597 2598/// \brief Add a C++ member function template as a candidate to the candidate 2599/// set, using template argument deduction to produce an appropriate member 2600/// function template specialization. 2601void 2602Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 2603 CXXRecordDecl *ActingContext, 2604 const TemplateArgumentListInfo *ExplicitTemplateArgs, 2605 QualType ObjectType, 2606 Expr **Args, unsigned NumArgs, 2607 OverloadCandidateSet& CandidateSet, 2608 bool SuppressUserConversions, 2609 bool ForceRValue) { 2610 if (!CandidateSet.isNewCandidate(MethodTmpl)) 2611 return; 2612 2613 // C++ [over.match.funcs]p7: 2614 // In each case where a candidate is a function template, candidate 2615 // function template specializations are generated using template argument 2616 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2617 // candidate functions in the usual way.113) A given name can refer to one 2618 // or more function templates and also to a set of overloaded non-template 2619 // functions. In such a case, the candidate functions generated from each 2620 // function template are combined with the set of non-template candidate 2621 // functions. 2622 TemplateDeductionInfo Info(Context); 2623 FunctionDecl *Specialization = 0; 2624 if (TemplateDeductionResult Result 2625 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 2626 Args, NumArgs, Specialization, Info)) { 2627 // FIXME: Record what happened with template argument deduction, so 2628 // that we can give the user a beautiful diagnostic. 2629 (void)Result; 2630 return; 2631 } 2632 2633 // Add the function template specialization produced by template argument 2634 // deduction as a candidate. 2635 assert(Specialization && "Missing member function template specialization?"); 2636 assert(isa<CXXMethodDecl>(Specialization) && 2637 "Specialization is not a member function?"); 2638 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), ActingContext, 2639 ObjectType, Args, NumArgs, 2640 CandidateSet, SuppressUserConversions, ForceRValue); 2641} 2642 2643/// \brief Add a C++ function template specialization as a candidate 2644/// in the candidate set, using template argument deduction to produce 2645/// an appropriate function template specialization. 2646void 2647Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 2648 const TemplateArgumentListInfo *ExplicitTemplateArgs, 2649 Expr **Args, unsigned NumArgs, 2650 OverloadCandidateSet& CandidateSet, 2651 bool SuppressUserConversions, 2652 bool ForceRValue) { 2653 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2654 return; 2655 2656 // C++ [over.match.funcs]p7: 2657 // In each case where a candidate is a function template, candidate 2658 // function template specializations are generated using template argument 2659 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2660 // candidate functions in the usual way.113) A given name can refer to one 2661 // or more function templates and also to a set of overloaded non-template 2662 // functions. In such a case, the candidate functions generated from each 2663 // function template are combined with the set of non-template candidate 2664 // functions. 2665 TemplateDeductionInfo Info(Context); 2666 FunctionDecl *Specialization = 0; 2667 if (TemplateDeductionResult Result 2668 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 2669 Args, NumArgs, Specialization, Info)) { 2670 // FIXME: Record what happened with template argument deduction, so 2671 // that we can give the user a beautiful diagnostic. 2672 (void) Result; 2673 2674 CandidateSet.push_back(OverloadCandidate()); 2675 OverloadCandidate &Candidate = CandidateSet.back(); 2676 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 2677 Candidate.Viable = false; 2678 Candidate.IsSurrogate = false; 2679 Candidate.IgnoreObjectArgument = false; 2680 return; 2681 } 2682 2683 // Add the function template specialization produced by template argument 2684 // deduction as a candidate. 2685 assert(Specialization && "Missing function template specialization?"); 2686 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet, 2687 SuppressUserConversions, ForceRValue); 2688} 2689 2690/// AddConversionCandidate - Add a C++ conversion function as a 2691/// candidate in the candidate set (C++ [over.match.conv], 2692/// C++ [over.match.copy]). From is the expression we're converting from, 2693/// and ToType is the type that we're eventually trying to convert to 2694/// (which may or may not be the same type as the type that the 2695/// conversion function produces). 2696void 2697Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2698 CXXRecordDecl *ActingContext, 2699 Expr *From, QualType ToType, 2700 OverloadCandidateSet& CandidateSet) { 2701 assert(!Conversion->getDescribedFunctionTemplate() && 2702 "Conversion function templates use AddTemplateConversionCandidate"); 2703 2704 if (!CandidateSet.isNewCandidate(Conversion)) 2705 return; 2706 2707 // Overload resolution is always an unevaluated context. 2708 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2709 2710 // Add this candidate 2711 CandidateSet.push_back(OverloadCandidate()); 2712 OverloadCandidate& Candidate = CandidateSet.back(); 2713 Candidate.Function = Conversion; 2714 Candidate.IsSurrogate = false; 2715 Candidate.IgnoreObjectArgument = false; 2716 Candidate.FinalConversion.setAsIdentityConversion(); 2717 Candidate.FinalConversion.FromTypePtr 2718 = Conversion->getConversionType().getAsOpaquePtr(); 2719 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); 2720 2721 // Determine the implicit conversion sequence for the implicit 2722 // object parameter. 2723 Candidate.Viable = true; 2724 Candidate.Conversions.resize(1); 2725 Candidate.Conversions[0] 2726 = TryObjectArgumentInitialization(From->getType(), Conversion, 2727 ActingContext); 2728 // Conversion functions to a different type in the base class is visible in 2729 // the derived class. So, a derived to base conversion should not participate 2730 // in overload resolution. 2731 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 2732 Candidate.Conversions[0].Standard.Second = ICK_Identity; 2733 if (Candidate.Conversions[0].ConversionKind 2734 == ImplicitConversionSequence::BadConversion) { 2735 Candidate.Viable = false; 2736 return; 2737 } 2738 2739 // We won't go through a user-define type conversion function to convert a 2740 // derived to base as such conversions are given Conversion Rank. They only 2741 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 2742 QualType FromCanon 2743 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 2744 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 2745 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 2746 Candidate.Viable = false; 2747 return; 2748 } 2749 2750 2751 // To determine what the conversion from the result of calling the 2752 // conversion function to the type we're eventually trying to 2753 // convert to (ToType), we need to synthesize a call to the 2754 // conversion function and attempt copy initialization from it. This 2755 // makes sure that we get the right semantics with respect to 2756 // lvalues/rvalues and the type. Fortunately, we can allocate this 2757 // call on the stack and we don't need its arguments to be 2758 // well-formed. 2759 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2760 From->getLocStart()); 2761 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2762 CastExpr::CK_FunctionToPointerDecay, 2763 &ConversionRef, false); 2764 2765 // Note that it is safe to allocate CallExpr on the stack here because 2766 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 2767 // allocator). 2768 CallExpr Call(Context, &ConversionFn, 0, 0, 2769 Conversion->getConversionType().getNonReferenceType(), 2770 From->getLocStart()); 2771 ImplicitConversionSequence ICS = 2772 TryCopyInitialization(&Call, ToType, 2773 /*SuppressUserConversions=*/true, 2774 /*ForceRValue=*/false, 2775 /*InOverloadResolution=*/false); 2776 2777 switch (ICS.ConversionKind) { 2778 case ImplicitConversionSequence::StandardConversion: 2779 Candidate.FinalConversion = ICS.Standard; 2780 break; 2781 2782 case ImplicitConversionSequence::BadConversion: 2783 Candidate.Viable = false; 2784 break; 2785 2786 default: 2787 assert(false && 2788 "Can only end up with a standard conversion sequence or failure"); 2789 } 2790} 2791 2792/// \brief Adds a conversion function template specialization 2793/// candidate to the overload set, using template argument deduction 2794/// to deduce the template arguments of the conversion function 2795/// template from the type that we are converting to (C++ 2796/// [temp.deduct.conv]). 2797void 2798Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 2799 CXXRecordDecl *ActingDC, 2800 Expr *From, QualType ToType, 2801 OverloadCandidateSet &CandidateSet) { 2802 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 2803 "Only conversion function templates permitted here"); 2804 2805 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2806 return; 2807 2808 TemplateDeductionInfo Info(Context); 2809 CXXConversionDecl *Specialization = 0; 2810 if (TemplateDeductionResult Result 2811 = DeduceTemplateArguments(FunctionTemplate, ToType, 2812 Specialization, Info)) { 2813 // FIXME: Record what happened with template argument deduction, so 2814 // that we can give the user a beautiful diagnostic. 2815 (void)Result; 2816 return; 2817 } 2818 2819 // Add the conversion function template specialization produced by 2820 // template argument deduction as a candidate. 2821 assert(Specialization && "Missing function template specialization?"); 2822 AddConversionCandidate(Specialization, ActingDC, From, ToType, CandidateSet); 2823} 2824 2825/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2826/// converts the given @c Object to a function pointer via the 2827/// conversion function @c Conversion, and then attempts to call it 2828/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2829/// the type of function that we'll eventually be calling. 2830void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2831 CXXRecordDecl *ActingContext, 2832 const FunctionProtoType *Proto, 2833 QualType ObjectType, 2834 Expr **Args, unsigned NumArgs, 2835 OverloadCandidateSet& CandidateSet) { 2836 if (!CandidateSet.isNewCandidate(Conversion)) 2837 return; 2838 2839 // Overload resolution is always an unevaluated context. 2840 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2841 2842 CandidateSet.push_back(OverloadCandidate()); 2843 OverloadCandidate& Candidate = CandidateSet.back(); 2844 Candidate.Function = 0; 2845 Candidate.Surrogate = Conversion; 2846 Candidate.Viable = true; 2847 Candidate.IsSurrogate = true; 2848 Candidate.IgnoreObjectArgument = false; 2849 Candidate.Conversions.resize(NumArgs + 1); 2850 2851 // Determine the implicit conversion sequence for the implicit 2852 // object parameter. 2853 ImplicitConversionSequence ObjectInit 2854 = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext); 2855 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { 2856 Candidate.Viable = false; 2857 return; 2858 } 2859 2860 // The first conversion is actually a user-defined conversion whose 2861 // first conversion is ObjectInit's standard conversion (which is 2862 // effectively a reference binding). Record it as such. 2863 Candidate.Conversions[0].ConversionKind 2864 = ImplicitConversionSequence::UserDefinedConversion; 2865 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2866 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 2867 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2868 Candidate.Conversions[0].UserDefined.After 2869 = Candidate.Conversions[0].UserDefined.Before; 2870 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2871 2872 // Find the 2873 unsigned NumArgsInProto = Proto->getNumArgs(); 2874 2875 // (C++ 13.3.2p2): A candidate function having fewer than m 2876 // parameters is viable only if it has an ellipsis in its parameter 2877 // list (8.3.5). 2878 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2879 Candidate.Viable = false; 2880 return; 2881 } 2882 2883 // Function types don't have any default arguments, so just check if 2884 // we have enough arguments. 2885 if (NumArgs < NumArgsInProto) { 2886 // Not enough arguments. 2887 Candidate.Viable = false; 2888 return; 2889 } 2890 2891 // Determine the implicit conversion sequences for each of the 2892 // arguments. 2893 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2894 if (ArgIdx < NumArgsInProto) { 2895 // (C++ 13.3.2p3): for F to be a viable function, there shall 2896 // exist for each argument an implicit conversion sequence 2897 // (13.3.3.1) that converts that argument to the corresponding 2898 // parameter of F. 2899 QualType ParamType = Proto->getArgType(ArgIdx); 2900 Candidate.Conversions[ArgIdx + 1] 2901 = TryCopyInitialization(Args[ArgIdx], ParamType, 2902 /*SuppressUserConversions=*/false, 2903 /*ForceRValue=*/false, 2904 /*InOverloadResolution=*/false); 2905 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2906 == ImplicitConversionSequence::BadConversion) { 2907 Candidate.Viable = false; 2908 break; 2909 } 2910 } else { 2911 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2912 // argument for which there is no corresponding parameter is 2913 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2914 Candidate.Conversions[ArgIdx + 1].ConversionKind 2915 = ImplicitConversionSequence::EllipsisConversion; 2916 } 2917 } 2918} 2919 2920// FIXME: This will eventually be removed, once we've migrated all of the 2921// operator overloading logic over to the scheme used by binary operators, which 2922// works for template instantiation. 2923void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 2924 SourceLocation OpLoc, 2925 Expr **Args, unsigned NumArgs, 2926 OverloadCandidateSet& CandidateSet, 2927 SourceRange OpRange) { 2928 FunctionSet Functions; 2929 2930 QualType T1 = Args[0]->getType(); 2931 QualType T2; 2932 if (NumArgs > 1) 2933 T2 = Args[1]->getType(); 2934 2935 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2936 if (S) 2937 LookupOverloadedOperatorName(Op, S, T1, T2, Functions); 2938 ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions); 2939 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); 2940 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); 2941 AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet); 2942} 2943 2944/// \brief Add overload candidates for overloaded operators that are 2945/// member functions. 2946/// 2947/// Add the overloaded operator candidates that are member functions 2948/// for the operator Op that was used in an operator expression such 2949/// as "x Op y". , Args/NumArgs provides the operator arguments, and 2950/// CandidateSet will store the added overload candidates. (C++ 2951/// [over.match.oper]). 2952void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 2953 SourceLocation OpLoc, 2954 Expr **Args, unsigned NumArgs, 2955 OverloadCandidateSet& CandidateSet, 2956 SourceRange OpRange) { 2957 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2958 2959 // C++ [over.match.oper]p3: 2960 // For a unary operator @ with an operand of a type whose 2961 // cv-unqualified version is T1, and for a binary operator @ with 2962 // a left operand of a type whose cv-unqualified version is T1 and 2963 // a right operand of a type whose cv-unqualified version is T2, 2964 // three sets of candidate functions, designated member 2965 // candidates, non-member candidates and built-in candidates, are 2966 // constructed as follows: 2967 QualType T1 = Args[0]->getType(); 2968 QualType T2; 2969 if (NumArgs > 1) 2970 T2 = Args[1]->getType(); 2971 2972 // -- If T1 is a class type, the set of member candidates is the 2973 // result of the qualified lookup of T1::operator@ 2974 // (13.3.1.1.1); otherwise, the set of member candidates is 2975 // empty. 2976 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 2977 // Complete the type if it can be completed. Otherwise, we're done. 2978 if (RequireCompleteType(OpLoc, T1, PDiag())) 2979 return; 2980 2981 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 2982 LookupQualifiedName(Operators, T1Rec->getDecl()); 2983 Operators.suppressDiagnostics(); 2984 2985 for (LookupResult::iterator Oper = Operators.begin(), 2986 OperEnd = Operators.end(); 2987 Oper != OperEnd; 2988 ++Oper) 2989 AddMethodCandidate(*Oper, Args[0]->getType(), 2990 Args + 1, NumArgs - 1, CandidateSet, 2991 /* SuppressUserConversions = */ false); 2992 } 2993} 2994 2995/// AddBuiltinCandidate - Add a candidate for a built-in 2996/// operator. ResultTy and ParamTys are the result and parameter types 2997/// of the built-in candidate, respectively. Args and NumArgs are the 2998/// arguments being passed to the candidate. IsAssignmentOperator 2999/// should be true when this built-in candidate is an assignment 3000/// operator. NumContextualBoolArguments is the number of arguments 3001/// (at the beginning of the argument list) that will be contextually 3002/// converted to bool. 3003void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 3004 Expr **Args, unsigned NumArgs, 3005 OverloadCandidateSet& CandidateSet, 3006 bool IsAssignmentOperator, 3007 unsigned NumContextualBoolArguments) { 3008 // Overload resolution is always an unevaluated context. 3009 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3010 3011 // Add this candidate 3012 CandidateSet.push_back(OverloadCandidate()); 3013 OverloadCandidate& Candidate = CandidateSet.back(); 3014 Candidate.Function = 0; 3015 Candidate.IsSurrogate = false; 3016 Candidate.IgnoreObjectArgument = false; 3017 Candidate.BuiltinTypes.ResultTy = ResultTy; 3018 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3019 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 3020 3021 // Determine the implicit conversion sequences for each of the 3022 // arguments. 3023 Candidate.Viable = true; 3024 Candidate.Conversions.resize(NumArgs); 3025 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3026 // C++ [over.match.oper]p4: 3027 // For the built-in assignment operators, conversions of the 3028 // left operand are restricted as follows: 3029 // -- no temporaries are introduced to hold the left operand, and 3030 // -- no user-defined conversions are applied to the left 3031 // operand to achieve a type match with the left-most 3032 // parameter of a built-in candidate. 3033 // 3034 // We block these conversions by turning off user-defined 3035 // conversions, since that is the only way that initialization of 3036 // a reference to a non-class type can occur from something that 3037 // is not of the same type. 3038 if (ArgIdx < NumContextualBoolArguments) { 3039 assert(ParamTys[ArgIdx] == Context.BoolTy && 3040 "Contextual conversion to bool requires bool type"); 3041 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 3042 } else { 3043 Candidate.Conversions[ArgIdx] 3044 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 3045 ArgIdx == 0 && IsAssignmentOperator, 3046 /*ForceRValue=*/false, 3047 /*InOverloadResolution=*/false); 3048 } 3049 if (Candidate.Conversions[ArgIdx].ConversionKind 3050 == ImplicitConversionSequence::BadConversion) { 3051 Candidate.Viable = false; 3052 break; 3053 } 3054 } 3055} 3056 3057/// BuiltinCandidateTypeSet - A set of types that will be used for the 3058/// candidate operator functions for built-in operators (C++ 3059/// [over.built]). The types are separated into pointer types and 3060/// enumeration types. 3061class BuiltinCandidateTypeSet { 3062 /// TypeSet - A set of types. 3063 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 3064 3065 /// PointerTypes - The set of pointer types that will be used in the 3066 /// built-in candidates. 3067 TypeSet PointerTypes; 3068 3069 /// MemberPointerTypes - The set of member pointer types that will be 3070 /// used in the built-in candidates. 3071 TypeSet MemberPointerTypes; 3072 3073 /// EnumerationTypes - The set of enumeration types that will be 3074 /// used in the built-in candidates. 3075 TypeSet EnumerationTypes; 3076 3077 /// Sema - The semantic analysis instance where we are building the 3078 /// candidate type set. 3079 Sema &SemaRef; 3080 3081 /// Context - The AST context in which we will build the type sets. 3082 ASTContext &Context; 3083 3084 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3085 const Qualifiers &VisibleQuals); 3086 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 3087 3088public: 3089 /// iterator - Iterates through the types that are part of the set. 3090 typedef TypeSet::iterator iterator; 3091 3092 BuiltinCandidateTypeSet(Sema &SemaRef) 3093 : SemaRef(SemaRef), Context(SemaRef.Context) { } 3094 3095 void AddTypesConvertedFrom(QualType Ty, 3096 SourceLocation Loc, 3097 bool AllowUserConversions, 3098 bool AllowExplicitConversions, 3099 const Qualifiers &VisibleTypeConversionsQuals); 3100 3101 /// pointer_begin - First pointer type found; 3102 iterator pointer_begin() { return PointerTypes.begin(); } 3103 3104 /// pointer_end - Past the last pointer type found; 3105 iterator pointer_end() { return PointerTypes.end(); } 3106 3107 /// member_pointer_begin - First member pointer type found; 3108 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 3109 3110 /// member_pointer_end - Past the last member pointer type found; 3111 iterator member_pointer_end() { return MemberPointerTypes.end(); } 3112 3113 /// enumeration_begin - First enumeration type found; 3114 iterator enumeration_begin() { return EnumerationTypes.begin(); } 3115 3116 /// enumeration_end - Past the last enumeration type found; 3117 iterator enumeration_end() { return EnumerationTypes.end(); } 3118}; 3119 3120/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 3121/// the set of pointer types along with any more-qualified variants of 3122/// that type. For example, if @p Ty is "int const *", this routine 3123/// will add "int const *", "int const volatile *", "int const 3124/// restrict *", and "int const volatile restrict *" to the set of 3125/// pointer types. Returns true if the add of @p Ty itself succeeded, 3126/// false otherwise. 3127/// 3128/// FIXME: what to do about extended qualifiers? 3129bool 3130BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3131 const Qualifiers &VisibleQuals) { 3132 3133 // Insert this type. 3134 if (!PointerTypes.insert(Ty)) 3135 return false; 3136 3137 const PointerType *PointerTy = Ty->getAs<PointerType>(); 3138 assert(PointerTy && "type was not a pointer type!"); 3139 3140 QualType PointeeTy = PointerTy->getPointeeType(); 3141 // Don't add qualified variants of arrays. For one, they're not allowed 3142 // (the qualifier would sink to the element type), and for another, the 3143 // only overload situation where it matters is subscript or pointer +- int, 3144 // and those shouldn't have qualifier variants anyway. 3145 if (PointeeTy->isArrayType()) 3146 return true; 3147 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3148 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 3149 BaseCVR = Array->getElementType().getCVRQualifiers(); 3150 bool hasVolatile = VisibleQuals.hasVolatile(); 3151 bool hasRestrict = VisibleQuals.hasRestrict(); 3152 3153 // Iterate through all strict supersets of BaseCVR. 3154 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3155 if ((CVR | BaseCVR) != CVR) continue; 3156 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 3157 // in the types. 3158 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 3159 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 3160 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3161 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 3162 } 3163 3164 return true; 3165} 3166 3167/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 3168/// to the set of pointer types along with any more-qualified variants of 3169/// that type. For example, if @p Ty is "int const *", this routine 3170/// will add "int const *", "int const volatile *", "int const 3171/// restrict *", and "int const volatile restrict *" to the set of 3172/// pointer types. Returns true if the add of @p Ty itself succeeded, 3173/// false otherwise. 3174/// 3175/// FIXME: what to do about extended qualifiers? 3176bool 3177BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 3178 QualType Ty) { 3179 // Insert this type. 3180 if (!MemberPointerTypes.insert(Ty)) 3181 return false; 3182 3183 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 3184 assert(PointerTy && "type was not a member pointer type!"); 3185 3186 QualType PointeeTy = PointerTy->getPointeeType(); 3187 // Don't add qualified variants of arrays. For one, they're not allowed 3188 // (the qualifier would sink to the element type), and for another, the 3189 // only overload situation where it matters is subscript or pointer +- int, 3190 // and those shouldn't have qualifier variants anyway. 3191 if (PointeeTy->isArrayType()) 3192 return true; 3193 const Type *ClassTy = PointerTy->getClass(); 3194 3195 // Iterate through all strict supersets of the pointee type's CVR 3196 // qualifiers. 3197 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3198 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3199 if ((CVR | BaseCVR) != CVR) continue; 3200 3201 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3202 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 3203 } 3204 3205 return true; 3206} 3207 3208/// AddTypesConvertedFrom - Add each of the types to which the type @p 3209/// Ty can be implicit converted to the given set of @p Types. We're 3210/// primarily interested in pointer types and enumeration types. We also 3211/// take member pointer types, for the conditional operator. 3212/// AllowUserConversions is true if we should look at the conversion 3213/// functions of a class type, and AllowExplicitConversions if we 3214/// should also include the explicit conversion functions of a class 3215/// type. 3216void 3217BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 3218 SourceLocation Loc, 3219 bool AllowUserConversions, 3220 bool AllowExplicitConversions, 3221 const Qualifiers &VisibleQuals) { 3222 // Only deal with canonical types. 3223 Ty = Context.getCanonicalType(Ty); 3224 3225 // Look through reference types; they aren't part of the type of an 3226 // expression for the purposes of conversions. 3227 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3228 Ty = RefTy->getPointeeType(); 3229 3230 // We don't care about qualifiers on the type. 3231 Ty = Ty.getLocalUnqualifiedType(); 3232 3233 // If we're dealing with an array type, decay to the pointer. 3234 if (Ty->isArrayType()) 3235 Ty = SemaRef.Context.getArrayDecayedType(Ty); 3236 3237 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3238 QualType PointeeTy = PointerTy->getPointeeType(); 3239 3240 // Insert our type, and its more-qualified variants, into the set 3241 // of types. 3242 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3243 return; 3244 } else if (Ty->isMemberPointerType()) { 3245 // Member pointers are far easier, since the pointee can't be converted. 3246 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3247 return; 3248 } else if (Ty->isEnumeralType()) { 3249 EnumerationTypes.insert(Ty); 3250 } else if (AllowUserConversions) { 3251 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3252 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 3253 // No conversion functions in incomplete types. 3254 return; 3255 } 3256 3257 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3258 const UnresolvedSet *Conversions 3259 = ClassDecl->getVisibleConversionFunctions(); 3260 for (UnresolvedSet::iterator I = Conversions->begin(), 3261 E = Conversions->end(); I != E; ++I) { 3262 3263 // Skip conversion function templates; they don't tell us anything 3264 // about which builtin types we can convert to. 3265 if (isa<FunctionTemplateDecl>(*I)) 3266 continue; 3267 3268 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I); 3269 if (AllowExplicitConversions || !Conv->isExplicit()) { 3270 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 3271 VisibleQuals); 3272 } 3273 } 3274 } 3275 } 3276} 3277 3278/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 3279/// the volatile- and non-volatile-qualified assignment operators for the 3280/// given type to the candidate set. 3281static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 3282 QualType T, 3283 Expr **Args, 3284 unsigned NumArgs, 3285 OverloadCandidateSet &CandidateSet) { 3286 QualType ParamTypes[2]; 3287 3288 // T& operator=(T&, T) 3289 ParamTypes[0] = S.Context.getLValueReferenceType(T); 3290 ParamTypes[1] = T; 3291 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3292 /*IsAssignmentOperator=*/true); 3293 3294 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 3295 // volatile T& operator=(volatile T&, T) 3296 ParamTypes[0] 3297 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 3298 ParamTypes[1] = T; 3299 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3300 /*IsAssignmentOperator=*/true); 3301 } 3302} 3303 3304/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 3305/// if any, found in visible type conversion functions found in ArgExpr's type. 3306static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 3307 Qualifiers VRQuals; 3308 const RecordType *TyRec; 3309 if (const MemberPointerType *RHSMPType = 3310 ArgExpr->getType()->getAs<MemberPointerType>()) 3311 TyRec = cast<RecordType>(RHSMPType->getClass()); 3312 else 3313 TyRec = ArgExpr->getType()->getAs<RecordType>(); 3314 if (!TyRec) { 3315 // Just to be safe, assume the worst case. 3316 VRQuals.addVolatile(); 3317 VRQuals.addRestrict(); 3318 return VRQuals; 3319 } 3320 3321 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3322 const UnresolvedSet *Conversions = 3323 ClassDecl->getVisibleConversionFunctions(); 3324 3325 for (UnresolvedSet::iterator I = Conversions->begin(), 3326 E = Conversions->end(); I != E; ++I) { 3327 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) { 3328 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 3329 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 3330 CanTy = ResTypeRef->getPointeeType(); 3331 // Need to go down the pointer/mempointer chain and add qualifiers 3332 // as see them. 3333 bool done = false; 3334 while (!done) { 3335 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 3336 CanTy = ResTypePtr->getPointeeType(); 3337 else if (const MemberPointerType *ResTypeMPtr = 3338 CanTy->getAs<MemberPointerType>()) 3339 CanTy = ResTypeMPtr->getPointeeType(); 3340 else 3341 done = true; 3342 if (CanTy.isVolatileQualified()) 3343 VRQuals.addVolatile(); 3344 if (CanTy.isRestrictQualified()) 3345 VRQuals.addRestrict(); 3346 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 3347 return VRQuals; 3348 } 3349 } 3350 } 3351 return VRQuals; 3352} 3353 3354/// AddBuiltinOperatorCandidates - Add the appropriate built-in 3355/// operator overloads to the candidate set (C++ [over.built]), based 3356/// on the operator @p Op and the arguments given. For example, if the 3357/// operator is a binary '+', this routine might add "int 3358/// operator+(int, int)" to cover integer addition. 3359void 3360Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 3361 SourceLocation OpLoc, 3362 Expr **Args, unsigned NumArgs, 3363 OverloadCandidateSet& CandidateSet) { 3364 // The set of "promoted arithmetic types", which are the arithmetic 3365 // types are that preserved by promotion (C++ [over.built]p2). Note 3366 // that the first few of these types are the promoted integral 3367 // types; these types need to be first. 3368 // FIXME: What about complex? 3369 const unsigned FirstIntegralType = 0; 3370 const unsigned LastIntegralType = 13; 3371 const unsigned FirstPromotedIntegralType = 7, 3372 LastPromotedIntegralType = 13; 3373 const unsigned FirstPromotedArithmeticType = 7, 3374 LastPromotedArithmeticType = 16; 3375 const unsigned NumArithmeticTypes = 16; 3376 QualType ArithmeticTypes[NumArithmeticTypes] = { 3377 Context.BoolTy, Context.CharTy, Context.WCharTy, 3378// FIXME: Context.Char16Ty, Context.Char32Ty, 3379 Context.SignedCharTy, Context.ShortTy, 3380 Context.UnsignedCharTy, Context.UnsignedShortTy, 3381 Context.IntTy, Context.LongTy, Context.LongLongTy, 3382 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 3383 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 3384 }; 3385 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 3386 "Invalid first promoted integral type"); 3387 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 3388 == Context.UnsignedLongLongTy && 3389 "Invalid last promoted integral type"); 3390 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 3391 "Invalid first promoted arithmetic type"); 3392 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 3393 == Context.LongDoubleTy && 3394 "Invalid last promoted arithmetic type"); 3395 3396 // Find all of the types that the arguments can convert to, but only 3397 // if the operator we're looking at has built-in operator candidates 3398 // that make use of these types. 3399 Qualifiers VisibleTypeConversionsQuals; 3400 VisibleTypeConversionsQuals.addConst(); 3401 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3402 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 3403 3404 BuiltinCandidateTypeSet CandidateTypes(*this); 3405 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 3406 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 3407 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 3408 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 3409 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 3410 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 3411 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3412 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 3413 OpLoc, 3414 true, 3415 (Op == OO_Exclaim || 3416 Op == OO_AmpAmp || 3417 Op == OO_PipePipe), 3418 VisibleTypeConversionsQuals); 3419 } 3420 3421 bool isComparison = false; 3422 switch (Op) { 3423 case OO_None: 3424 case NUM_OVERLOADED_OPERATORS: 3425 assert(false && "Expected an overloaded operator"); 3426 break; 3427 3428 case OO_Star: // '*' is either unary or binary 3429 if (NumArgs == 1) 3430 goto UnaryStar; 3431 else 3432 goto BinaryStar; 3433 break; 3434 3435 case OO_Plus: // '+' is either unary or binary 3436 if (NumArgs == 1) 3437 goto UnaryPlus; 3438 else 3439 goto BinaryPlus; 3440 break; 3441 3442 case OO_Minus: // '-' is either unary or binary 3443 if (NumArgs == 1) 3444 goto UnaryMinus; 3445 else 3446 goto BinaryMinus; 3447 break; 3448 3449 case OO_Amp: // '&' is either unary or binary 3450 if (NumArgs == 1) 3451 goto UnaryAmp; 3452 else 3453 goto BinaryAmp; 3454 3455 case OO_PlusPlus: 3456 case OO_MinusMinus: 3457 // C++ [over.built]p3: 3458 // 3459 // For every pair (T, VQ), where T is an arithmetic type, and VQ 3460 // is either volatile or empty, there exist candidate operator 3461 // functions of the form 3462 // 3463 // VQ T& operator++(VQ T&); 3464 // T operator++(VQ T&, int); 3465 // 3466 // C++ [over.built]p4: 3467 // 3468 // For every pair (T, VQ), where T is an arithmetic type other 3469 // than bool, and VQ is either volatile or empty, there exist 3470 // candidate operator functions of the form 3471 // 3472 // VQ T& operator--(VQ T&); 3473 // T operator--(VQ T&, int); 3474 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 3475 Arith < NumArithmeticTypes; ++Arith) { 3476 QualType ArithTy = ArithmeticTypes[Arith]; 3477 QualType ParamTypes[2] 3478 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 3479 3480 // Non-volatile version. 3481 if (NumArgs == 1) 3482 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3483 else 3484 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3485 // heuristic to reduce number of builtin candidates in the set. 3486 // Add volatile version only if there are conversions to a volatile type. 3487 if (VisibleTypeConversionsQuals.hasVolatile()) { 3488 // Volatile version 3489 ParamTypes[0] 3490 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 3491 if (NumArgs == 1) 3492 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3493 else 3494 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3495 } 3496 } 3497 3498 // C++ [over.built]p5: 3499 // 3500 // For every pair (T, VQ), where T is a cv-qualified or 3501 // cv-unqualified object type, and VQ is either volatile or 3502 // empty, there exist candidate operator functions of the form 3503 // 3504 // T*VQ& operator++(T*VQ&); 3505 // T*VQ& operator--(T*VQ&); 3506 // T* operator++(T*VQ&, int); 3507 // T* operator--(T*VQ&, int); 3508 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3509 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3510 // Skip pointer types that aren't pointers to object types. 3511 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 3512 continue; 3513 3514 QualType ParamTypes[2] = { 3515 Context.getLValueReferenceType(*Ptr), Context.IntTy 3516 }; 3517 3518 // Without volatile 3519 if (NumArgs == 1) 3520 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3521 else 3522 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3523 3524 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3525 VisibleTypeConversionsQuals.hasVolatile()) { 3526 // With volatile 3527 ParamTypes[0] 3528 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3529 if (NumArgs == 1) 3530 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3531 else 3532 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3533 } 3534 } 3535 break; 3536 3537 UnaryStar: 3538 // C++ [over.built]p6: 3539 // For every cv-qualified or cv-unqualified object type T, there 3540 // exist candidate operator functions of the form 3541 // 3542 // T& operator*(T*); 3543 // 3544 // C++ [over.built]p7: 3545 // For every function type T, there exist candidate operator 3546 // functions of the form 3547 // T& operator*(T*); 3548 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3549 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3550 QualType ParamTy = *Ptr; 3551 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 3552 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 3553 &ParamTy, Args, 1, CandidateSet); 3554 } 3555 break; 3556 3557 UnaryPlus: 3558 // C++ [over.built]p8: 3559 // For every type T, there exist candidate operator functions of 3560 // the form 3561 // 3562 // T* operator+(T*); 3563 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3564 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3565 QualType ParamTy = *Ptr; 3566 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 3567 } 3568 3569 // Fall through 3570 3571 UnaryMinus: 3572 // C++ [over.built]p9: 3573 // For every promoted arithmetic type T, there exist candidate 3574 // operator functions of the form 3575 // 3576 // T operator+(T); 3577 // T operator-(T); 3578 for (unsigned Arith = FirstPromotedArithmeticType; 3579 Arith < LastPromotedArithmeticType; ++Arith) { 3580 QualType ArithTy = ArithmeticTypes[Arith]; 3581 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 3582 } 3583 break; 3584 3585 case OO_Tilde: 3586 // C++ [over.built]p10: 3587 // For every promoted integral type T, there exist candidate 3588 // operator functions of the form 3589 // 3590 // T operator~(T); 3591 for (unsigned Int = FirstPromotedIntegralType; 3592 Int < LastPromotedIntegralType; ++Int) { 3593 QualType IntTy = ArithmeticTypes[Int]; 3594 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 3595 } 3596 break; 3597 3598 case OO_New: 3599 case OO_Delete: 3600 case OO_Array_New: 3601 case OO_Array_Delete: 3602 case OO_Call: 3603 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 3604 break; 3605 3606 case OO_Comma: 3607 UnaryAmp: 3608 case OO_Arrow: 3609 // C++ [over.match.oper]p3: 3610 // -- For the operator ',', the unary operator '&', or the 3611 // operator '->', the built-in candidates set is empty. 3612 break; 3613 3614 case OO_EqualEqual: 3615 case OO_ExclaimEqual: 3616 // C++ [over.match.oper]p16: 3617 // For every pointer to member type T, there exist candidate operator 3618 // functions of the form 3619 // 3620 // bool operator==(T,T); 3621 // bool operator!=(T,T); 3622 for (BuiltinCandidateTypeSet::iterator 3623 MemPtr = CandidateTypes.member_pointer_begin(), 3624 MemPtrEnd = CandidateTypes.member_pointer_end(); 3625 MemPtr != MemPtrEnd; 3626 ++MemPtr) { 3627 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 3628 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3629 } 3630 3631 // Fall through 3632 3633 case OO_Less: 3634 case OO_Greater: 3635 case OO_LessEqual: 3636 case OO_GreaterEqual: 3637 // C++ [over.built]p15: 3638 // 3639 // For every pointer or enumeration type T, there exist 3640 // candidate operator functions of the form 3641 // 3642 // bool operator<(T, T); 3643 // bool operator>(T, T); 3644 // bool operator<=(T, T); 3645 // bool operator>=(T, T); 3646 // bool operator==(T, T); 3647 // bool operator!=(T, T); 3648 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3649 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3650 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3651 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3652 } 3653 for (BuiltinCandidateTypeSet::iterator Enum 3654 = CandidateTypes.enumeration_begin(); 3655 Enum != CandidateTypes.enumeration_end(); ++Enum) { 3656 QualType ParamTypes[2] = { *Enum, *Enum }; 3657 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3658 } 3659 3660 // Fall through. 3661 isComparison = true; 3662 3663 BinaryPlus: 3664 BinaryMinus: 3665 if (!isComparison) { 3666 // We didn't fall through, so we must have OO_Plus or OO_Minus. 3667 3668 // C++ [over.built]p13: 3669 // 3670 // For every cv-qualified or cv-unqualified object type T 3671 // there exist candidate operator functions of the form 3672 // 3673 // T* operator+(T*, ptrdiff_t); 3674 // T& operator[](T*, ptrdiff_t); [BELOW] 3675 // T* operator-(T*, ptrdiff_t); 3676 // T* operator+(ptrdiff_t, T*); 3677 // T& operator[](ptrdiff_t, T*); [BELOW] 3678 // 3679 // C++ [over.built]p14: 3680 // 3681 // For every T, where T is a pointer to object type, there 3682 // exist candidate operator functions of the form 3683 // 3684 // ptrdiff_t operator-(T, T); 3685 for (BuiltinCandidateTypeSet::iterator Ptr 3686 = CandidateTypes.pointer_begin(); 3687 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3688 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3689 3690 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 3691 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3692 3693 if (Op == OO_Plus) { 3694 // T* operator+(ptrdiff_t, T*); 3695 ParamTypes[0] = ParamTypes[1]; 3696 ParamTypes[1] = *Ptr; 3697 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3698 } else { 3699 // ptrdiff_t operator-(T, T); 3700 ParamTypes[1] = *Ptr; 3701 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 3702 Args, 2, CandidateSet); 3703 } 3704 } 3705 } 3706 // Fall through 3707 3708 case OO_Slash: 3709 BinaryStar: 3710 Conditional: 3711 // C++ [over.built]p12: 3712 // 3713 // For every pair of promoted arithmetic types L and R, there 3714 // exist candidate operator functions of the form 3715 // 3716 // LR operator*(L, R); 3717 // LR operator/(L, R); 3718 // LR operator+(L, R); 3719 // LR operator-(L, R); 3720 // bool operator<(L, R); 3721 // bool operator>(L, R); 3722 // bool operator<=(L, R); 3723 // bool operator>=(L, R); 3724 // bool operator==(L, R); 3725 // bool operator!=(L, R); 3726 // 3727 // where LR is the result of the usual arithmetic conversions 3728 // between types L and R. 3729 // 3730 // C++ [over.built]p24: 3731 // 3732 // For every pair of promoted arithmetic types L and R, there exist 3733 // candidate operator functions of the form 3734 // 3735 // LR operator?(bool, L, R); 3736 // 3737 // where LR is the result of the usual arithmetic conversions 3738 // between types L and R. 3739 // Our candidates ignore the first parameter. 3740 for (unsigned Left = FirstPromotedArithmeticType; 3741 Left < LastPromotedArithmeticType; ++Left) { 3742 for (unsigned Right = FirstPromotedArithmeticType; 3743 Right < LastPromotedArithmeticType; ++Right) { 3744 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3745 QualType Result 3746 = isComparison 3747 ? Context.BoolTy 3748 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3749 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3750 } 3751 } 3752 break; 3753 3754 case OO_Percent: 3755 BinaryAmp: 3756 case OO_Caret: 3757 case OO_Pipe: 3758 case OO_LessLess: 3759 case OO_GreaterGreater: 3760 // C++ [over.built]p17: 3761 // 3762 // For every pair of promoted integral types L and R, there 3763 // exist candidate operator functions of the form 3764 // 3765 // LR operator%(L, R); 3766 // LR operator&(L, R); 3767 // LR operator^(L, R); 3768 // LR operator|(L, R); 3769 // L operator<<(L, R); 3770 // L operator>>(L, R); 3771 // 3772 // where LR is the result of the usual arithmetic conversions 3773 // between types L and R. 3774 for (unsigned Left = FirstPromotedIntegralType; 3775 Left < LastPromotedIntegralType; ++Left) { 3776 for (unsigned Right = FirstPromotedIntegralType; 3777 Right < LastPromotedIntegralType; ++Right) { 3778 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3779 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 3780 ? LandR[0] 3781 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3782 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3783 } 3784 } 3785 break; 3786 3787 case OO_Equal: 3788 // C++ [over.built]p20: 3789 // 3790 // For every pair (T, VQ), where T is an enumeration or 3791 // pointer to member type and VQ is either volatile or 3792 // empty, there exist candidate operator functions of the form 3793 // 3794 // VQ T& operator=(VQ T&, T); 3795 for (BuiltinCandidateTypeSet::iterator 3796 Enum = CandidateTypes.enumeration_begin(), 3797 EnumEnd = CandidateTypes.enumeration_end(); 3798 Enum != EnumEnd; ++Enum) 3799 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 3800 CandidateSet); 3801 for (BuiltinCandidateTypeSet::iterator 3802 MemPtr = CandidateTypes.member_pointer_begin(), 3803 MemPtrEnd = CandidateTypes.member_pointer_end(); 3804 MemPtr != MemPtrEnd; ++MemPtr) 3805 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 3806 CandidateSet); 3807 // Fall through. 3808 3809 case OO_PlusEqual: 3810 case OO_MinusEqual: 3811 // C++ [over.built]p19: 3812 // 3813 // For every pair (T, VQ), where T is any type and VQ is either 3814 // volatile or empty, there exist candidate operator functions 3815 // of the form 3816 // 3817 // T*VQ& operator=(T*VQ&, T*); 3818 // 3819 // C++ [over.built]p21: 3820 // 3821 // For every pair (T, VQ), where T is a cv-qualified or 3822 // cv-unqualified object type and VQ is either volatile or 3823 // empty, there exist candidate operator functions of the form 3824 // 3825 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 3826 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 3827 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3828 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3829 QualType ParamTypes[2]; 3830 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 3831 3832 // non-volatile version 3833 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 3834 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3835 /*IsAssigmentOperator=*/Op == OO_Equal); 3836 3837 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3838 VisibleTypeConversionsQuals.hasVolatile()) { 3839 // volatile version 3840 ParamTypes[0] 3841 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3842 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3843 /*IsAssigmentOperator=*/Op == OO_Equal); 3844 } 3845 } 3846 // Fall through. 3847 3848 case OO_StarEqual: 3849 case OO_SlashEqual: 3850 // C++ [over.built]p18: 3851 // 3852 // For every triple (L, VQ, R), where L is an arithmetic type, 3853 // VQ is either volatile or empty, and R is a promoted 3854 // arithmetic type, there exist candidate operator functions of 3855 // the form 3856 // 3857 // VQ L& operator=(VQ L&, R); 3858 // VQ L& operator*=(VQ L&, R); 3859 // VQ L& operator/=(VQ L&, R); 3860 // VQ L& operator+=(VQ L&, R); 3861 // VQ L& operator-=(VQ L&, R); 3862 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3863 for (unsigned Right = FirstPromotedArithmeticType; 3864 Right < LastPromotedArithmeticType; ++Right) { 3865 QualType ParamTypes[2]; 3866 ParamTypes[1] = ArithmeticTypes[Right]; 3867 3868 // Add this built-in operator as a candidate (VQ is empty). 3869 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3870 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3871 /*IsAssigmentOperator=*/Op == OO_Equal); 3872 3873 // Add this built-in operator as a candidate (VQ is 'volatile'). 3874 if (VisibleTypeConversionsQuals.hasVolatile()) { 3875 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 3876 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3877 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3878 /*IsAssigmentOperator=*/Op == OO_Equal); 3879 } 3880 } 3881 } 3882 break; 3883 3884 case OO_PercentEqual: 3885 case OO_LessLessEqual: 3886 case OO_GreaterGreaterEqual: 3887 case OO_AmpEqual: 3888 case OO_CaretEqual: 3889 case OO_PipeEqual: 3890 // C++ [over.built]p22: 3891 // 3892 // For every triple (L, VQ, R), where L is an integral type, VQ 3893 // is either volatile or empty, and R is a promoted integral 3894 // type, there exist candidate operator functions of the form 3895 // 3896 // VQ L& operator%=(VQ L&, R); 3897 // VQ L& operator<<=(VQ L&, R); 3898 // VQ L& operator>>=(VQ L&, R); 3899 // VQ L& operator&=(VQ L&, R); 3900 // VQ L& operator^=(VQ L&, R); 3901 // VQ L& operator|=(VQ L&, R); 3902 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 3903 for (unsigned Right = FirstPromotedIntegralType; 3904 Right < LastPromotedIntegralType; ++Right) { 3905 QualType ParamTypes[2]; 3906 ParamTypes[1] = ArithmeticTypes[Right]; 3907 3908 // Add this built-in operator as a candidate (VQ is empty). 3909 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3910 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3911 if (VisibleTypeConversionsQuals.hasVolatile()) { 3912 // Add this built-in operator as a candidate (VQ is 'volatile'). 3913 ParamTypes[0] = ArithmeticTypes[Left]; 3914 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 3915 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3916 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3917 } 3918 } 3919 } 3920 break; 3921 3922 case OO_Exclaim: { 3923 // C++ [over.operator]p23: 3924 // 3925 // There also exist candidate operator functions of the form 3926 // 3927 // bool operator!(bool); 3928 // bool operator&&(bool, bool); [BELOW] 3929 // bool operator||(bool, bool); [BELOW] 3930 QualType ParamTy = Context.BoolTy; 3931 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 3932 /*IsAssignmentOperator=*/false, 3933 /*NumContextualBoolArguments=*/1); 3934 break; 3935 } 3936 3937 case OO_AmpAmp: 3938 case OO_PipePipe: { 3939 // C++ [over.operator]p23: 3940 // 3941 // There also exist candidate operator functions of the form 3942 // 3943 // bool operator!(bool); [ABOVE] 3944 // bool operator&&(bool, bool); 3945 // bool operator||(bool, bool); 3946 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 3947 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 3948 /*IsAssignmentOperator=*/false, 3949 /*NumContextualBoolArguments=*/2); 3950 break; 3951 } 3952 3953 case OO_Subscript: 3954 // C++ [over.built]p13: 3955 // 3956 // For every cv-qualified or cv-unqualified object type T there 3957 // exist candidate operator functions of the form 3958 // 3959 // T* operator+(T*, ptrdiff_t); [ABOVE] 3960 // T& operator[](T*, ptrdiff_t); 3961 // T* operator-(T*, ptrdiff_t); [ABOVE] 3962 // T* operator+(ptrdiff_t, T*); [ABOVE] 3963 // T& operator[](ptrdiff_t, T*); 3964 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3965 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3966 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3967 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 3968 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 3969 3970 // T& operator[](T*, ptrdiff_t) 3971 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3972 3973 // T& operator[](ptrdiff_t, T*); 3974 ParamTypes[0] = ParamTypes[1]; 3975 ParamTypes[1] = *Ptr; 3976 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3977 } 3978 break; 3979 3980 case OO_ArrowStar: 3981 // C++ [over.built]p11: 3982 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 3983 // C1 is the same type as C2 or is a derived class of C2, T is an object 3984 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 3985 // there exist candidate operator functions of the form 3986 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 3987 // where CV12 is the union of CV1 and CV2. 3988 { 3989 for (BuiltinCandidateTypeSet::iterator Ptr = 3990 CandidateTypes.pointer_begin(); 3991 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3992 QualType C1Ty = (*Ptr); 3993 QualType C1; 3994 QualifierCollector Q1; 3995 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 3996 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 3997 if (!isa<RecordType>(C1)) 3998 continue; 3999 // heuristic to reduce number of builtin candidates in the set. 4000 // Add volatile/restrict version only if there are conversions to a 4001 // volatile/restrict type. 4002 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 4003 continue; 4004 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 4005 continue; 4006 } 4007 for (BuiltinCandidateTypeSet::iterator 4008 MemPtr = CandidateTypes.member_pointer_begin(), 4009 MemPtrEnd = CandidateTypes.member_pointer_end(); 4010 MemPtr != MemPtrEnd; ++MemPtr) { 4011 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 4012 QualType C2 = QualType(mptr->getClass(), 0); 4013 C2 = C2.getUnqualifiedType(); 4014 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 4015 break; 4016 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 4017 // build CV12 T& 4018 QualType T = mptr->getPointeeType(); 4019 if (!VisibleTypeConversionsQuals.hasVolatile() && 4020 T.isVolatileQualified()) 4021 continue; 4022 if (!VisibleTypeConversionsQuals.hasRestrict() && 4023 T.isRestrictQualified()) 4024 continue; 4025 T = Q1.apply(T); 4026 QualType ResultTy = Context.getLValueReferenceType(T); 4027 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4028 } 4029 } 4030 } 4031 break; 4032 4033 case OO_Conditional: 4034 // Note that we don't consider the first argument, since it has been 4035 // contextually converted to bool long ago. The candidates below are 4036 // therefore added as binary. 4037 // 4038 // C++ [over.built]p24: 4039 // For every type T, where T is a pointer or pointer-to-member type, 4040 // there exist candidate operator functions of the form 4041 // 4042 // T operator?(bool, T, T); 4043 // 4044 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 4045 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 4046 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4047 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4048 } 4049 for (BuiltinCandidateTypeSet::iterator Ptr = 4050 CandidateTypes.member_pointer_begin(), 4051 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 4052 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4053 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4054 } 4055 goto Conditional; 4056 } 4057} 4058 4059/// \brief Add function candidates found via argument-dependent lookup 4060/// to the set of overloading candidates. 4061/// 4062/// This routine performs argument-dependent name lookup based on the 4063/// given function name (which may also be an operator name) and adds 4064/// all of the overload candidates found by ADL to the overload 4065/// candidate set (C++ [basic.lookup.argdep]). 4066void 4067Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 4068 Expr **Args, unsigned NumArgs, 4069 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4070 OverloadCandidateSet& CandidateSet, 4071 bool PartialOverloading) { 4072 FunctionSet Functions; 4073 4074 // FIXME: Should we be trafficking in canonical function decls throughout? 4075 4076 // Record all of the function candidates that we've already 4077 // added to the overload set, so that we don't add those same 4078 // candidates a second time. 4079 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4080 CandEnd = CandidateSet.end(); 4081 Cand != CandEnd; ++Cand) 4082 if (Cand->Function) { 4083 Functions.insert(Cand->Function); 4084 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 4085 Functions.insert(FunTmpl); 4086 } 4087 4088 // FIXME: Pass in the explicit template arguments? 4089 ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions); 4090 4091 // Erase all of the candidates we already knew about. 4092 // FIXME: This is suboptimal. Is there a better way? 4093 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4094 CandEnd = CandidateSet.end(); 4095 Cand != CandEnd; ++Cand) 4096 if (Cand->Function) { 4097 Functions.erase(Cand->Function); 4098 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 4099 Functions.erase(FunTmpl); 4100 } 4101 4102 // For each of the ADL candidates we found, add it to the overload 4103 // set. 4104 for (FunctionSet::iterator Func = Functions.begin(), 4105 FuncEnd = Functions.end(); 4106 Func != FuncEnd; ++Func) { 4107 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) { 4108 if (ExplicitTemplateArgs) 4109 continue; 4110 4111 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 4112 false, false, PartialOverloading); 4113 } else 4114 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func), 4115 ExplicitTemplateArgs, 4116 Args, NumArgs, CandidateSet); 4117 } 4118} 4119 4120/// isBetterOverloadCandidate - Determines whether the first overload 4121/// candidate is a better candidate than the second (C++ 13.3.3p1). 4122bool 4123Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 4124 const OverloadCandidate& Cand2) { 4125 // Define viable functions to be better candidates than non-viable 4126 // functions. 4127 if (!Cand2.Viable) 4128 return Cand1.Viable; 4129 else if (!Cand1.Viable) 4130 return false; 4131 4132 // C++ [over.match.best]p1: 4133 // 4134 // -- if F is a static member function, ICS1(F) is defined such 4135 // that ICS1(F) is neither better nor worse than ICS1(G) for 4136 // any function G, and, symmetrically, ICS1(G) is neither 4137 // better nor worse than ICS1(F). 4138 unsigned StartArg = 0; 4139 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 4140 StartArg = 1; 4141 4142 // C++ [over.match.best]p1: 4143 // A viable function F1 is defined to be a better function than another 4144 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 4145 // conversion sequence than ICSi(F2), and then... 4146 unsigned NumArgs = Cand1.Conversions.size(); 4147 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 4148 bool HasBetterConversion = false; 4149 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 4150 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 4151 Cand2.Conversions[ArgIdx])) { 4152 case ImplicitConversionSequence::Better: 4153 // Cand1 has a better conversion sequence. 4154 HasBetterConversion = true; 4155 break; 4156 4157 case ImplicitConversionSequence::Worse: 4158 // Cand1 can't be better than Cand2. 4159 return false; 4160 4161 case ImplicitConversionSequence::Indistinguishable: 4162 // Do nothing. 4163 break; 4164 } 4165 } 4166 4167 // -- for some argument j, ICSj(F1) is a better conversion sequence than 4168 // ICSj(F2), or, if not that, 4169 if (HasBetterConversion) 4170 return true; 4171 4172 // - F1 is a non-template function and F2 is a function template 4173 // specialization, or, if not that, 4174 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 4175 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4176 return true; 4177 4178 // -- F1 and F2 are function template specializations, and the function 4179 // template for F1 is more specialized than the template for F2 4180 // according to the partial ordering rules described in 14.5.5.2, or, 4181 // if not that, 4182 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 4183 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4184 if (FunctionTemplateDecl *BetterTemplate 4185 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 4186 Cand2.Function->getPrimaryTemplate(), 4187 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 4188 : TPOC_Call)) 4189 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 4190 4191 // -- the context is an initialization by user-defined conversion 4192 // (see 8.5, 13.3.1.5) and the standard conversion sequence 4193 // from the return type of F1 to the destination type (i.e., 4194 // the type of the entity being initialized) is a better 4195 // conversion sequence than the standard conversion sequence 4196 // from the return type of F2 to the destination type. 4197 if (Cand1.Function && Cand2.Function && 4198 isa<CXXConversionDecl>(Cand1.Function) && 4199 isa<CXXConversionDecl>(Cand2.Function)) { 4200 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 4201 Cand2.FinalConversion)) { 4202 case ImplicitConversionSequence::Better: 4203 // Cand1 has a better conversion sequence. 4204 return true; 4205 4206 case ImplicitConversionSequence::Worse: 4207 // Cand1 can't be better than Cand2. 4208 return false; 4209 4210 case ImplicitConversionSequence::Indistinguishable: 4211 // Do nothing 4212 break; 4213 } 4214 } 4215 4216 return false; 4217} 4218 4219/// \brief Computes the best viable function (C++ 13.3.3) 4220/// within an overload candidate set. 4221/// 4222/// \param CandidateSet the set of candidate functions. 4223/// 4224/// \param Loc the location of the function name (or operator symbol) for 4225/// which overload resolution occurs. 4226/// 4227/// \param Best f overload resolution was successful or found a deleted 4228/// function, Best points to the candidate function found. 4229/// 4230/// \returns The result of overload resolution. 4231OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 4232 SourceLocation Loc, 4233 OverloadCandidateSet::iterator& Best) { 4234 // Find the best viable function. 4235 Best = CandidateSet.end(); 4236 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4237 Cand != CandidateSet.end(); ++Cand) { 4238 if (Cand->Viable) { 4239 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) 4240 Best = Cand; 4241 } 4242 } 4243 4244 // If we didn't find any viable functions, abort. 4245 if (Best == CandidateSet.end()) 4246 return OR_No_Viable_Function; 4247 4248 // Make sure that this function is better than every other viable 4249 // function. If not, we have an ambiguity. 4250 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4251 Cand != CandidateSet.end(); ++Cand) { 4252 if (Cand->Viable && 4253 Cand != Best && 4254 !isBetterOverloadCandidate(*Best, *Cand)) { 4255 Best = CandidateSet.end(); 4256 return OR_Ambiguous; 4257 } 4258 } 4259 4260 // Best is the best viable function. 4261 if (Best->Function && 4262 (Best->Function->isDeleted() || 4263 Best->Function->getAttr<UnavailableAttr>())) 4264 return OR_Deleted; 4265 4266 // C++ [basic.def.odr]p2: 4267 // An overloaded function is used if it is selected by overload resolution 4268 // when referred to from a potentially-evaluated expression. [Note: this 4269 // covers calls to named functions (5.2.2), operator overloading 4270 // (clause 13), user-defined conversions (12.3.2), allocation function for 4271 // placement new (5.3.4), as well as non-default initialization (8.5). 4272 if (Best->Function) 4273 MarkDeclarationReferenced(Loc, Best->Function); 4274 return OR_Success; 4275} 4276 4277/// Notes the location of an overload candidate. 4278void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 4279 4280 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 4281 // At least call it a 'constructor'. 4282 if (!Ctor->isImplicit()) { 4283 Diag(Ctor->getLocation(), diag::note_ovl_candidate_ctor); 4284 return; 4285 } 4286 4287 CXXRecordDecl *Record = Ctor->getParent(); 4288 if (Ctor->isCopyConstructor()) { 4289 Diag(Record->getLocation(), diag::note_ovl_candidate_implicit_copy_ctor); 4290 return; 4291 } 4292 4293 Diag(Record->getLocation(), diag::note_ovl_candidate_implicit_default_ctor); 4294 return; 4295 } 4296 4297 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 4298 // This actually gets spelled 'candidate function' for now, but 4299 // it doesn't hurt to split it out. 4300 if (!Meth->isImplicit()) { 4301 Diag(Meth->getLocation(), diag::note_ovl_candidate_meth); 4302 return; 4303 } 4304 4305 assert(Meth->isCopyAssignment() 4306 && "implicit method is not copy assignment operator?"); 4307 Diag(Meth->getParent()->getLocation(), 4308 diag::note_ovl_candidate_implicit_copy_assign); 4309 return; 4310 } 4311 4312 Diag(Fn->getLocation(), diag::note_ovl_candidate); 4313} 4314 4315/// PrintOverloadCandidates - When overload resolution fails, prints 4316/// diagnostic messages containing the candidates in the candidate 4317/// set. If OnlyViable is true, only viable candidates will be printed. 4318void 4319Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 4320 bool OnlyViable, 4321 const char *Opc, 4322 SourceLocation OpLoc) { 4323 OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4324 LastCand = CandidateSet.end(); 4325 bool Reported = false; 4326 for (; Cand != LastCand; ++Cand) { 4327 if (Cand->Viable || !OnlyViable) { 4328 if (Cand->Function) { 4329 if (Cand->Function->isDeleted() || 4330 Cand->Function->getAttr<UnavailableAttr>()) { 4331 // Deleted or "unavailable" function. 4332 Diag(Cand->Function->getLocation(), diag::note_ovl_candidate_deleted) 4333 << Cand->Function->isDeleted(); 4334 } else if (FunctionTemplateDecl *FunTmpl 4335 = Cand->Function->getPrimaryTemplate()) { 4336 // Function template specialization 4337 // FIXME: Give a better reason! 4338 Diag(Cand->Function->getLocation(), diag::note_ovl_template_candidate) 4339 << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(), 4340 *Cand->Function->getTemplateSpecializationArgs()); 4341 } else { 4342 // Normal function 4343 bool errReported = false; 4344 if (!Cand->Viable && Cand->Conversions.size() > 0) { 4345 for (int i = Cand->Conversions.size()-1; i >= 0; i--) { 4346 const ImplicitConversionSequence &Conversion = 4347 Cand->Conversions[i]; 4348 if ((Conversion.ConversionKind != 4349 ImplicitConversionSequence::BadConversion) || 4350 Conversion.ConversionFunctionSet.size() == 0) 4351 continue; 4352 Diag(Cand->Function->getLocation(), 4353 diag::note_ovl_candidate_not_viable) << (i+1); 4354 errReported = true; 4355 for (int j = Conversion.ConversionFunctionSet.size()-1; 4356 j >= 0; j--) { 4357 FunctionDecl *Func = Conversion.ConversionFunctionSet[j]; 4358 NoteOverloadCandidate(Func); 4359 } 4360 } 4361 } 4362 if (!errReported) 4363 NoteOverloadCandidate(Cand->Function); 4364 } 4365 } else if (Cand->IsSurrogate) { 4366 // Desugar the type of the surrogate down to a function type, 4367 // retaining as many typedefs as possible while still showing 4368 // the function type (and, therefore, its parameter types). 4369 QualType FnType = Cand->Surrogate->getConversionType(); 4370 bool isLValueReference = false; 4371 bool isRValueReference = false; 4372 bool isPointer = false; 4373 if (const LValueReferenceType *FnTypeRef = 4374 FnType->getAs<LValueReferenceType>()) { 4375 FnType = FnTypeRef->getPointeeType(); 4376 isLValueReference = true; 4377 } else if (const RValueReferenceType *FnTypeRef = 4378 FnType->getAs<RValueReferenceType>()) { 4379 FnType = FnTypeRef->getPointeeType(); 4380 isRValueReference = true; 4381 } 4382 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 4383 FnType = FnTypePtr->getPointeeType(); 4384 isPointer = true; 4385 } 4386 // Desugar down to a function type. 4387 FnType = QualType(FnType->getAs<FunctionType>(), 0); 4388 // Reconstruct the pointer/reference as appropriate. 4389 if (isPointer) FnType = Context.getPointerType(FnType); 4390 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType); 4391 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType); 4392 4393 Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 4394 << FnType; 4395 } else if (OnlyViable) { 4396 assert(Cand->Conversions.size() <= 2 && 4397 "builtin-binary-operator-not-binary"); 4398 std::string TypeStr("operator"); 4399 TypeStr += Opc; 4400 TypeStr += "("; 4401 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 4402 if (Cand->Conversions.size() == 1) { 4403 TypeStr += ")"; 4404 Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 4405 } 4406 else { 4407 TypeStr += ", "; 4408 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 4409 TypeStr += ")"; 4410 Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 4411 } 4412 } 4413 else if (!Cand->Viable && !Reported) { 4414 // Non-viability might be due to ambiguous user-defined conversions, 4415 // needed for built-in operators. Report them as well, but only once 4416 // as we have typically many built-in candidates. 4417 unsigned NoOperands = Cand->Conversions.size(); 4418 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 4419 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 4420 if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion || 4421 ICS.ConversionFunctionSet.empty()) 4422 continue; 4423 if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>( 4424 Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) { 4425 QualType FromTy = 4426 QualType( 4427 static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0); 4428 Diag(OpLoc,diag::note_ambiguous_type_conversion) 4429 << FromTy << Func->getConversionType(); 4430 } 4431 for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) { 4432 FunctionDecl *Func = 4433 Cand->Conversions[ArgIdx].ConversionFunctionSet[j]; 4434 NoteOverloadCandidate(Func); 4435 } 4436 } 4437 Reported = true; 4438 } 4439 } 4440 } 4441} 4442 4443/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 4444/// an overloaded function (C++ [over.over]), where @p From is an 4445/// expression with overloaded function type and @p ToType is the type 4446/// we're trying to resolve to. For example: 4447/// 4448/// @code 4449/// int f(double); 4450/// int f(int); 4451/// 4452/// int (*pfd)(double) = f; // selects f(double) 4453/// @endcode 4454/// 4455/// This routine returns the resulting FunctionDecl if it could be 4456/// resolved, and NULL otherwise. When @p Complain is true, this 4457/// routine will emit diagnostics if there is an error. 4458FunctionDecl * 4459Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 4460 bool Complain) { 4461 QualType FunctionType = ToType; 4462 bool IsMember = false; 4463 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 4464 FunctionType = ToTypePtr->getPointeeType(); 4465 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 4466 FunctionType = ToTypeRef->getPointeeType(); 4467 else if (const MemberPointerType *MemTypePtr = 4468 ToType->getAs<MemberPointerType>()) { 4469 FunctionType = MemTypePtr->getPointeeType(); 4470 IsMember = true; 4471 } 4472 4473 // We only look at pointers or references to functions. 4474 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 4475 if (!FunctionType->isFunctionType()) 4476 return 0; 4477 4478 // Find the actual overloaded function declaration. 4479 4480 // C++ [over.over]p1: 4481 // [...] [Note: any redundant set of parentheses surrounding the 4482 // overloaded function name is ignored (5.1). ] 4483 Expr *OvlExpr = From->IgnoreParens(); 4484 4485 // C++ [over.over]p1: 4486 // [...] The overloaded function name can be preceded by the & 4487 // operator. 4488 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 4489 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 4490 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 4491 } 4492 4493 bool HasExplicitTemplateArgs = false; 4494 TemplateArgumentListInfo ExplicitTemplateArgs; 4495 4496 llvm::SmallVector<NamedDecl*,8> Fns; 4497 4498 // Look into the overloaded expression. 4499 if (UnresolvedLookupExpr *UL 4500 = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) { 4501 Fns.append(UL->decls_begin(), UL->decls_end()); 4502 if (UL->hasExplicitTemplateArgs()) { 4503 HasExplicitTemplateArgs = true; 4504 UL->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4505 } 4506 } else if (UnresolvedMemberExpr *ME 4507 = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) { 4508 Fns.append(ME->decls_begin(), ME->decls_end()); 4509 if (ME->hasExplicitTemplateArgs()) { 4510 HasExplicitTemplateArgs = true; 4511 ME->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4512 } 4513 } 4514 4515 // If we didn't actually find anything, we're done. 4516 if (Fns.empty()) 4517 return 0; 4518 4519 // Look through all of the overloaded functions, searching for one 4520 // whose type matches exactly. 4521 llvm::SmallPtrSet<FunctionDecl *, 4> Matches; 4522 bool FoundNonTemplateFunction = false; 4523 for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(), 4524 E = Fns.end(); I != E; ++I) { 4525 // Look through any using declarations to find the underlying function. 4526 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 4527 4528 // C++ [over.over]p3: 4529 // Non-member functions and static member functions match 4530 // targets of type "pointer-to-function" or "reference-to-function." 4531 // Nonstatic member functions match targets of 4532 // type "pointer-to-member-function." 4533 // Note that according to DR 247, the containing class does not matter. 4534 4535 if (FunctionTemplateDecl *FunctionTemplate 4536 = dyn_cast<FunctionTemplateDecl>(Fn)) { 4537 if (CXXMethodDecl *Method 4538 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 4539 // Skip non-static function templates when converting to pointer, and 4540 // static when converting to member pointer. 4541 if (Method->isStatic() == IsMember) 4542 continue; 4543 } else if (IsMember) 4544 continue; 4545 4546 // C++ [over.over]p2: 4547 // If the name is a function template, template argument deduction is 4548 // done (14.8.2.2), and if the argument deduction succeeds, the 4549 // resulting template argument list is used to generate a single 4550 // function template specialization, which is added to the set of 4551 // overloaded functions considered. 4552 // FIXME: We don't really want to build the specialization here, do we? 4553 FunctionDecl *Specialization = 0; 4554 TemplateDeductionInfo Info(Context); 4555 if (TemplateDeductionResult Result 4556 = DeduceTemplateArguments(FunctionTemplate, 4557 (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0), 4558 FunctionType, Specialization, Info)) { 4559 // FIXME: make a note of the failed deduction for diagnostics. 4560 (void)Result; 4561 } else { 4562 // FIXME: If the match isn't exact, shouldn't we just drop this as 4563 // a candidate? Find a testcase before changing the code. 4564 assert(FunctionType 4565 == Context.getCanonicalType(Specialization->getType())); 4566 Matches.insert( 4567 cast<FunctionDecl>(Specialization->getCanonicalDecl())); 4568 } 4569 4570 continue; 4571 } 4572 4573 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 4574 // Skip non-static functions when converting to pointer, and static 4575 // when converting to member pointer. 4576 if (Method->isStatic() == IsMember) 4577 continue; 4578 4579 // If we have explicit template arguments, skip non-templates. 4580 if (HasExplicitTemplateArgs) 4581 continue; 4582 } else if (IsMember) 4583 continue; 4584 4585 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 4586 QualType ResultTy; 4587 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 4588 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 4589 ResultTy)) { 4590 Matches.insert(cast<FunctionDecl>(FunDecl->getCanonicalDecl())); 4591 FoundNonTemplateFunction = true; 4592 } 4593 } 4594 } 4595 4596 // If there were 0 or 1 matches, we're done. 4597 if (Matches.empty()) 4598 return 0; 4599 else if (Matches.size() == 1) { 4600 FunctionDecl *Result = *Matches.begin(); 4601 MarkDeclarationReferenced(From->getLocStart(), Result); 4602 return Result; 4603 } 4604 4605 // C++ [over.over]p4: 4606 // If more than one function is selected, [...] 4607 typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter; 4608 if (!FoundNonTemplateFunction) { 4609 // [...] and any given function template specialization F1 is 4610 // eliminated if the set contains a second function template 4611 // specialization whose function template is more specialized 4612 // than the function template of F1 according to the partial 4613 // ordering rules of 14.5.5.2. 4614 4615 // The algorithm specified above is quadratic. We instead use a 4616 // two-pass algorithm (similar to the one used to identify the 4617 // best viable function in an overload set) that identifies the 4618 // best function template (if it exists). 4619 llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(), 4620 Matches.end()); 4621 FunctionDecl *Result = 4622 getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(), 4623 TPOC_Other, From->getLocStart(), 4624 PDiag(), 4625 PDiag(diag::err_addr_ovl_ambiguous) 4626 << TemplateMatches[0]->getDeclName(), 4627 PDiag(diag::note_ovl_template_candidate)); 4628 MarkDeclarationReferenced(From->getLocStart(), Result); 4629 return Result; 4630 } 4631 4632 // [...] any function template specializations in the set are 4633 // eliminated if the set also contains a non-template function, [...] 4634 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches; 4635 for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M) 4636 if ((*M)->getPrimaryTemplate() == 0) 4637 RemainingMatches.push_back(*M); 4638 4639 // [...] After such eliminations, if any, there shall remain exactly one 4640 // selected function. 4641 if (RemainingMatches.size() == 1) { 4642 FunctionDecl *Result = RemainingMatches.front(); 4643 MarkDeclarationReferenced(From->getLocStart(), Result); 4644 return Result; 4645 } 4646 4647 // FIXME: We should probably return the same thing that BestViableFunction 4648 // returns (even if we issue the diagnostics here). 4649 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 4650 << RemainingMatches[0]->getDeclName(); 4651 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I) 4652 NoteOverloadCandidate(RemainingMatches[I]); 4653 return 0; 4654} 4655 4656/// \brief Given an expression that refers to an overloaded function, try to 4657/// resolve that overloaded function expression down to a single function. 4658/// 4659/// This routine can only resolve template-ids that refer to a single function 4660/// template, where that template-id refers to a single template whose template 4661/// arguments are either provided by the template-id or have defaults, 4662/// as described in C++0x [temp.arg.explicit]p3. 4663FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 4664 // C++ [over.over]p1: 4665 // [...] [Note: any redundant set of parentheses surrounding the 4666 // overloaded function name is ignored (5.1). ] 4667 Expr *OvlExpr = From->IgnoreParens(); 4668 4669 // C++ [over.over]p1: 4670 // [...] The overloaded function name can be preceded by the & 4671 // operator. 4672 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 4673 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 4674 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 4675 } 4676 4677 bool HasExplicitTemplateArgs = false; 4678 TemplateArgumentListInfo ExplicitTemplateArgs; 4679 4680 llvm::SmallVector<NamedDecl*,8> Fns; 4681 4682 // Look into the overloaded expression. 4683 if (UnresolvedLookupExpr *UL 4684 = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) { 4685 Fns.append(UL->decls_begin(), UL->decls_end()); 4686 if (UL->hasExplicitTemplateArgs()) { 4687 HasExplicitTemplateArgs = true; 4688 UL->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4689 } 4690 } else if (UnresolvedMemberExpr *ME 4691 = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) { 4692 Fns.append(ME->decls_begin(), ME->decls_end()); 4693 if (ME->hasExplicitTemplateArgs()) { 4694 HasExplicitTemplateArgs = true; 4695 ME->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4696 } 4697 } 4698 4699 // If we didn't actually find any template-ids, we're done. 4700 if (Fns.empty() || !HasExplicitTemplateArgs) 4701 return 0; 4702 4703 // Look through all of the overloaded functions, searching for one 4704 // whose type matches exactly. 4705 FunctionDecl *Matched = 0; 4706 for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(), 4707 E = Fns.end(); I != E; ++I) { 4708 // C++0x [temp.arg.explicit]p3: 4709 // [...] In contexts where deduction is done and fails, or in contexts 4710 // where deduction is not done, if a template argument list is 4711 // specified and it, along with any default template arguments, 4712 // identifies a single function template specialization, then the 4713 // template-id is an lvalue for the function template specialization. 4714 FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I); 4715 4716 // C++ [over.over]p2: 4717 // If the name is a function template, template argument deduction is 4718 // done (14.8.2.2), and if the argument deduction succeeds, the 4719 // resulting template argument list is used to generate a single 4720 // function template specialization, which is added to the set of 4721 // overloaded functions considered. 4722 // FIXME: We don't really want to build the specialization here, do we? 4723 FunctionDecl *Specialization = 0; 4724 TemplateDeductionInfo Info(Context); 4725 if (TemplateDeductionResult Result 4726 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 4727 Specialization, Info)) { 4728 // FIXME: make a note of the failed deduction for diagnostics. 4729 (void)Result; 4730 continue; 4731 } 4732 4733 // Multiple matches; we can't resolve to a single declaration. 4734 if (Matched) 4735 return 0; 4736 4737 Matched = Specialization; 4738 } 4739 4740 return Matched; 4741} 4742 4743/// \brief Add a single candidate to the overload set. 4744static void AddOverloadedCallCandidate(Sema &S, 4745 NamedDecl *Callee, 4746 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4747 Expr **Args, unsigned NumArgs, 4748 OverloadCandidateSet &CandidateSet, 4749 bool PartialOverloading) { 4750 if (isa<UsingShadowDecl>(Callee)) 4751 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 4752 4753 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 4754 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 4755 S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false, 4756 PartialOverloading); 4757 return; 4758 } 4759 4760 if (FunctionTemplateDecl *FuncTemplate 4761 = dyn_cast<FunctionTemplateDecl>(Callee)) { 4762 S.AddTemplateOverloadCandidate(FuncTemplate, ExplicitTemplateArgs, 4763 Args, NumArgs, CandidateSet); 4764 return; 4765 } 4766 4767 assert(false && "unhandled case in overloaded call candidate"); 4768 4769 // do nothing? 4770} 4771 4772/// \brief Add the overload candidates named by callee and/or found by argument 4773/// dependent lookup to the given overload set. 4774void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 4775 Expr **Args, unsigned NumArgs, 4776 OverloadCandidateSet &CandidateSet, 4777 bool PartialOverloading) { 4778 4779#ifndef NDEBUG 4780 // Verify that ArgumentDependentLookup is consistent with the rules 4781 // in C++0x [basic.lookup.argdep]p3: 4782 // 4783 // Let X be the lookup set produced by unqualified lookup (3.4.1) 4784 // and let Y be the lookup set produced by argument dependent 4785 // lookup (defined as follows). If X contains 4786 // 4787 // -- a declaration of a class member, or 4788 // 4789 // -- a block-scope function declaration that is not a 4790 // using-declaration, or 4791 // 4792 // -- a declaration that is neither a function or a function 4793 // template 4794 // 4795 // then Y is empty. 4796 4797 if (ULE->requiresADL()) { 4798 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 4799 E = ULE->decls_end(); I != E; ++I) { 4800 assert(!(*I)->getDeclContext()->isRecord()); 4801 assert(isa<UsingShadowDecl>(*I) || 4802 !(*I)->getDeclContext()->isFunctionOrMethod()); 4803 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 4804 } 4805 } 4806#endif 4807 4808 // It would be nice to avoid this copy. 4809 TemplateArgumentListInfo TABuffer; 4810 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 4811 if (ULE->hasExplicitTemplateArgs()) { 4812 ULE->copyTemplateArgumentsInto(TABuffer); 4813 ExplicitTemplateArgs = &TABuffer; 4814 } 4815 4816 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 4817 E = ULE->decls_end(); I != E; ++I) 4818 AddOverloadedCallCandidate(*this, *I, ExplicitTemplateArgs, 4819 Args, NumArgs, CandidateSet, 4820 PartialOverloading); 4821 4822 if (ULE->requiresADL()) 4823 AddArgumentDependentLookupCandidates(ULE->getName(), Args, NumArgs, 4824 ExplicitTemplateArgs, 4825 CandidateSet, 4826 PartialOverloading); 4827} 4828 4829static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn, 4830 Expr **Args, unsigned NumArgs) { 4831 Fn->Destroy(SemaRef.Context); 4832 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 4833 Args[Arg]->Destroy(SemaRef.Context); 4834 return SemaRef.ExprError(); 4835} 4836 4837/// Attempts to recover from a call where no functions were found. 4838/// 4839/// Returns true if new candidates were found. 4840static Sema::OwningExprResult 4841BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn, 4842 UnresolvedLookupExpr *ULE, 4843 SourceLocation LParenLoc, 4844 Expr **Args, unsigned NumArgs, 4845 SourceLocation *CommaLocs, 4846 SourceLocation RParenLoc) { 4847 4848 CXXScopeSpec SS; 4849 if (ULE->getQualifier()) { 4850 SS.setScopeRep(ULE->getQualifier()); 4851 SS.setRange(ULE->getQualifierRange()); 4852 } 4853 4854 TemplateArgumentListInfo TABuffer; 4855 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 4856 if (ULE->hasExplicitTemplateArgs()) { 4857 ULE->copyTemplateArgumentsInto(TABuffer); 4858 ExplicitTemplateArgs = &TABuffer; 4859 } 4860 4861 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 4862 Sema::LookupOrdinaryName); 4863 if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R)) 4864 return Destroy(SemaRef, Fn, Args, NumArgs); 4865 4866 assert(!R.empty() && "lookup results empty despite recovery"); 4867 4868 // Build an implicit member call if appropriate. Just drop the 4869 // casts and such from the call, we don't really care. 4870 Sema::OwningExprResult NewFn = SemaRef.ExprError(); 4871 if ((*R.begin())->isCXXClassMember()) 4872 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); 4873 else if (ExplicitTemplateArgs) 4874 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 4875 else 4876 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 4877 4878 if (NewFn.isInvalid()) 4879 return Destroy(SemaRef, Fn, Args, NumArgs); 4880 4881 Fn->Destroy(SemaRef.Context); 4882 4883 // This shouldn't cause an infinite loop because we're giving it 4884 // an expression with non-empty lookup results, which should never 4885 // end up here. 4886 return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc, 4887 Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs), 4888 CommaLocs, RParenLoc); 4889} 4890 4891/// ResolveOverloadedCallFn - Given the call expression that calls Fn 4892/// (which eventually refers to the declaration Func) and the call 4893/// arguments Args/NumArgs, attempt to resolve the function call down 4894/// to a specific function. If overload resolution succeeds, returns 4895/// the function declaration produced by overload 4896/// resolution. Otherwise, emits diagnostics, deletes all of the 4897/// arguments and Fn, and returns NULL. 4898Sema::OwningExprResult 4899Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE, 4900 SourceLocation LParenLoc, 4901 Expr **Args, unsigned NumArgs, 4902 SourceLocation *CommaLocs, 4903 SourceLocation RParenLoc) { 4904#ifndef NDEBUG 4905 if (ULE->requiresADL()) { 4906 // To do ADL, we must have found an unqualified name. 4907 assert(!ULE->getQualifier() && "qualified name with ADL"); 4908 4909 // We don't perform ADL for implicit declarations of builtins. 4910 // Verify that this was correctly set up. 4911 FunctionDecl *F; 4912 if (ULE->decls_begin() + 1 == ULE->decls_end() && 4913 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 4914 F->getBuiltinID() && F->isImplicit()) 4915 assert(0 && "performing ADL for builtin"); 4916 4917 // We don't perform ADL in C. 4918 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 4919 } 4920#endif 4921 4922 OverloadCandidateSet CandidateSet; 4923 4924 // Add the functions denoted by the callee to the set of candidate 4925 // functions, including those from argument-dependent lookup. 4926 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 4927 4928 // If we found nothing, try to recover. 4929 // AddRecoveryCallCandidates diagnoses the error itself, so we just 4930 // bailout out if it fails. 4931 if (CandidateSet.empty()) 4932 return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs, 4933 CommaLocs, RParenLoc); 4934 4935 OverloadCandidateSet::iterator Best; 4936 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 4937 case OR_Success: { 4938 FunctionDecl *FDecl = Best->Function; 4939 Fn = FixOverloadedFunctionReference(Fn, FDecl); 4940 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); 4941 } 4942 4943 case OR_No_Viable_Function: 4944 Diag(Fn->getSourceRange().getBegin(), 4945 diag::err_ovl_no_viable_function_in_call) 4946 << ULE->getName() << Fn->getSourceRange(); 4947 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4948 break; 4949 4950 case OR_Ambiguous: 4951 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 4952 << ULE->getName() << Fn->getSourceRange(); 4953 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4954 break; 4955 4956 case OR_Deleted: 4957 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 4958 << Best->Function->isDeleted() 4959 << ULE->getName() 4960 << Fn->getSourceRange(); 4961 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4962 break; 4963 } 4964 4965 // Overload resolution failed. Destroy all of the subexpressions and 4966 // return NULL. 4967 Fn->Destroy(Context); 4968 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 4969 Args[Arg]->Destroy(Context); 4970 return ExprError(); 4971} 4972 4973static bool IsOverloaded(const Sema::FunctionSet &Functions) { 4974 return Functions.size() > 1 || 4975 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 4976} 4977 4978/// \brief Create a unary operation that may resolve to an overloaded 4979/// operator. 4980/// 4981/// \param OpLoc The location of the operator itself (e.g., '*'). 4982/// 4983/// \param OpcIn The UnaryOperator::Opcode that describes this 4984/// operator. 4985/// 4986/// \param Functions The set of non-member functions that will be 4987/// considered by overload resolution. The caller needs to build this 4988/// set based on the context using, e.g., 4989/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4990/// set should not contain any member functions; those will be added 4991/// by CreateOverloadedUnaryOp(). 4992/// 4993/// \param input The input argument. 4994Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, 4995 unsigned OpcIn, 4996 FunctionSet &Functions, 4997 ExprArg input) { 4998 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 4999 Expr *Input = (Expr *)input.get(); 5000 5001 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 5002 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 5003 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 5004 5005 Expr *Args[2] = { Input, 0 }; 5006 unsigned NumArgs = 1; 5007 5008 // For post-increment and post-decrement, add the implicit '0' as 5009 // the second argument, so that we know this is a post-increment or 5010 // post-decrement. 5011 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 5012 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 5013 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 5014 SourceLocation()); 5015 NumArgs = 2; 5016 } 5017 5018 if (Input->isTypeDependent()) { 5019 UnresolvedLookupExpr *Fn 5020 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 5021 0, SourceRange(), OpName, OpLoc, 5022 /*ADL*/ true, IsOverloaded(Functions)); 5023 for (FunctionSet::iterator Func = Functions.begin(), 5024 FuncEnd = Functions.end(); 5025 Func != FuncEnd; ++Func) 5026 Fn->addDecl(*Func); 5027 5028 input.release(); 5029 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 5030 &Args[0], NumArgs, 5031 Context.DependentTy, 5032 OpLoc)); 5033 } 5034 5035 // Build an empty overload set. 5036 OverloadCandidateSet CandidateSet; 5037 5038 // Add the candidates from the given function set. 5039 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); 5040 5041 // Add operator candidates that are member functions. 5042 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 5043 5044 // Add builtin operator candidates. 5045 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 5046 5047 // Perform overload resolution. 5048 OverloadCandidateSet::iterator Best; 5049 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5050 case OR_Success: { 5051 // We found a built-in operator or an overloaded operator. 5052 FunctionDecl *FnDecl = Best->Function; 5053 5054 if (FnDecl) { 5055 // We matched an overloaded operator. Build a call to that 5056 // operator. 5057 5058 // Convert the arguments. 5059 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 5060 if (PerformObjectArgumentInitialization(Input, Method)) 5061 return ExprError(); 5062 } else { 5063 // Convert the arguments. 5064 OwningExprResult InputInit 5065 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 5066 FnDecl->getParamDecl(0)), 5067 SourceLocation(), 5068 move(input)); 5069 if (InputInit.isInvalid()) 5070 return ExprError(); 5071 5072 input = move(InputInit); 5073 Input = (Expr *)input.get(); 5074 } 5075 5076 // Determine the result type 5077 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 5078 5079 // Build the actual expression node. 5080 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5081 SourceLocation()); 5082 UsualUnaryConversions(FnExpr); 5083 5084 input.release(); 5085 Args[0] = Input; 5086 ExprOwningPtr<CallExpr> TheCall(this, 5087 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 5088 Args, NumArgs, ResultTy, OpLoc)); 5089 5090 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 5091 FnDecl)) 5092 return ExprError(); 5093 5094 return MaybeBindToTemporary(TheCall.release()); 5095 } else { 5096 // We matched a built-in operator. Convert the arguments, then 5097 // break out so that we will build the appropriate built-in 5098 // operator node. 5099 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 5100 Best->Conversions[0], AA_Passing)) 5101 return ExprError(); 5102 5103 break; 5104 } 5105 } 5106 5107 case OR_No_Viable_Function: 5108 // No viable function; fall through to handling this as a 5109 // built-in operator, which will produce an error message for us. 5110 break; 5111 5112 case OR_Ambiguous: 5113 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5114 << UnaryOperator::getOpcodeStr(Opc) 5115 << Input->getSourceRange(); 5116 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 5117 UnaryOperator::getOpcodeStr(Opc), OpLoc); 5118 return ExprError(); 5119 5120 case OR_Deleted: 5121 Diag(OpLoc, diag::err_ovl_deleted_oper) 5122 << Best->Function->isDeleted() 5123 << UnaryOperator::getOpcodeStr(Opc) 5124 << Input->getSourceRange(); 5125 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5126 return ExprError(); 5127 } 5128 5129 // Either we found no viable overloaded operator or we matched a 5130 // built-in operator. In either case, fall through to trying to 5131 // build a built-in operation. 5132 input.release(); 5133 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 5134} 5135 5136/// \brief Create a binary operation that may resolve to an overloaded 5137/// operator. 5138/// 5139/// \param OpLoc The location of the operator itself (e.g., '+'). 5140/// 5141/// \param OpcIn The BinaryOperator::Opcode that describes this 5142/// operator. 5143/// 5144/// \param Functions The set of non-member functions that will be 5145/// considered by overload resolution. The caller needs to build this 5146/// set based on the context using, e.g., 5147/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 5148/// set should not contain any member functions; those will be added 5149/// by CreateOverloadedBinOp(). 5150/// 5151/// \param LHS Left-hand argument. 5152/// \param RHS Right-hand argument. 5153Sema::OwningExprResult 5154Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 5155 unsigned OpcIn, 5156 FunctionSet &Functions, 5157 Expr *LHS, Expr *RHS) { 5158 Expr *Args[2] = { LHS, RHS }; 5159 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 5160 5161 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 5162 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 5163 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 5164 5165 // If either side is type-dependent, create an appropriate dependent 5166 // expression. 5167 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 5168 if (Functions.empty()) { 5169 // If there are no functions to store, just build a dependent 5170 // BinaryOperator or CompoundAssignment. 5171 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 5172 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 5173 Context.DependentTy, OpLoc)); 5174 5175 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 5176 Context.DependentTy, 5177 Context.DependentTy, 5178 Context.DependentTy, 5179 OpLoc)); 5180 } 5181 5182 UnresolvedLookupExpr *Fn 5183 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 5184 0, SourceRange(), OpName, OpLoc, 5185 /* ADL */ true, IsOverloaded(Functions)); 5186 5187 for (FunctionSet::iterator Func = Functions.begin(), 5188 FuncEnd = Functions.end(); 5189 Func != FuncEnd; ++Func) 5190 Fn->addDecl(*Func); 5191 5192 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 5193 Args, 2, 5194 Context.DependentTy, 5195 OpLoc)); 5196 } 5197 5198 // If this is the .* operator, which is not overloadable, just 5199 // create a built-in binary operator. 5200 if (Opc == BinaryOperator::PtrMemD) 5201 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5202 5203 // If this is the assignment operator, we only perform overload resolution 5204 // if the left-hand side is a class or enumeration type. This is actually 5205 // a hack. The standard requires that we do overload resolution between the 5206 // various built-in candidates, but as DR507 points out, this can lead to 5207 // problems. So we do it this way, which pretty much follows what GCC does. 5208 // Note that we go the traditional code path for compound assignment forms. 5209 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) 5210 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5211 5212 // Build an empty overload set. 5213 OverloadCandidateSet CandidateSet; 5214 5215 // Add the candidates from the given function set. 5216 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); 5217 5218 // Add operator candidates that are member functions. 5219 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 5220 5221 // Add builtin operator candidates. 5222 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 5223 5224 // Perform overload resolution. 5225 OverloadCandidateSet::iterator Best; 5226 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5227 case OR_Success: { 5228 // We found a built-in operator or an overloaded operator. 5229 FunctionDecl *FnDecl = Best->Function; 5230 5231 if (FnDecl) { 5232 // We matched an overloaded operator. Build a call to that 5233 // operator. 5234 5235 // Convert the arguments. 5236 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 5237 OwningExprResult Arg1 5238 = PerformCopyInitialization( 5239 InitializedEntity::InitializeParameter( 5240 FnDecl->getParamDecl(0)), 5241 SourceLocation(), 5242 Owned(Args[1])); 5243 if (Arg1.isInvalid()) 5244 return ExprError(); 5245 5246 if (PerformObjectArgumentInitialization(Args[0], Method)) 5247 return ExprError(); 5248 5249 Args[1] = RHS = Arg1.takeAs<Expr>(); 5250 } else { 5251 // Convert the arguments. 5252 OwningExprResult Arg0 5253 = PerformCopyInitialization( 5254 InitializedEntity::InitializeParameter( 5255 FnDecl->getParamDecl(0)), 5256 SourceLocation(), 5257 Owned(Args[0])); 5258 if (Arg0.isInvalid()) 5259 return ExprError(); 5260 5261 OwningExprResult Arg1 5262 = PerformCopyInitialization( 5263 InitializedEntity::InitializeParameter( 5264 FnDecl->getParamDecl(1)), 5265 SourceLocation(), 5266 Owned(Args[1])); 5267 if (Arg1.isInvalid()) 5268 return ExprError(); 5269 Args[0] = LHS = Arg0.takeAs<Expr>(); 5270 Args[1] = RHS = Arg1.takeAs<Expr>(); 5271 } 5272 5273 // Determine the result type 5274 QualType ResultTy 5275 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5276 ResultTy = ResultTy.getNonReferenceType(); 5277 5278 // Build the actual expression node. 5279 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5280 OpLoc); 5281 UsualUnaryConversions(FnExpr); 5282 5283 ExprOwningPtr<CXXOperatorCallExpr> 5284 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 5285 Args, 2, ResultTy, 5286 OpLoc)); 5287 5288 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 5289 FnDecl)) 5290 return ExprError(); 5291 5292 return MaybeBindToTemporary(TheCall.release()); 5293 } else { 5294 // We matched a built-in operator. Convert the arguments, then 5295 // break out so that we will build the appropriate built-in 5296 // operator node. 5297 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5298 Best->Conversions[0], AA_Passing) || 5299 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5300 Best->Conversions[1], AA_Passing)) 5301 return ExprError(); 5302 5303 break; 5304 } 5305 } 5306 5307 case OR_No_Viable_Function: { 5308 // C++ [over.match.oper]p9: 5309 // If the operator is the operator , [...] and there are no 5310 // viable functions, then the operator is assumed to be the 5311 // built-in operator and interpreted according to clause 5. 5312 if (Opc == BinaryOperator::Comma) 5313 break; 5314 5315 // For class as left operand for assignment or compound assigment operator 5316 // do not fall through to handling in built-in, but report that no overloaded 5317 // assignment operator found 5318 OwningExprResult Result = ExprError(); 5319 if (Args[0]->getType()->isRecordType() && 5320 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 5321 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5322 << BinaryOperator::getOpcodeStr(Opc) 5323 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5324 } else { 5325 // No viable function; try to create a built-in operation, which will 5326 // produce an error. Then, show the non-viable candidates. 5327 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5328 } 5329 assert(Result.isInvalid() && 5330 "C++ binary operator overloading is missing candidates!"); 5331 if (Result.isInvalid()) 5332 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 5333 BinaryOperator::getOpcodeStr(Opc), OpLoc); 5334 return move(Result); 5335 } 5336 5337 case OR_Ambiguous: 5338 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5339 << BinaryOperator::getOpcodeStr(Opc) 5340 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5341 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 5342 BinaryOperator::getOpcodeStr(Opc), OpLoc); 5343 return ExprError(); 5344 5345 case OR_Deleted: 5346 Diag(OpLoc, diag::err_ovl_deleted_oper) 5347 << Best->Function->isDeleted() 5348 << BinaryOperator::getOpcodeStr(Opc) 5349 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5350 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5351 return ExprError(); 5352 } 5353 5354 // We matched a built-in operator; build it. 5355 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5356} 5357 5358Action::OwningExprResult 5359Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 5360 SourceLocation RLoc, 5361 ExprArg Base, ExprArg Idx) { 5362 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 5363 static_cast<Expr*>(Idx.get()) }; 5364 DeclarationName OpName = 5365 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 5366 5367 // If either side is type-dependent, create an appropriate dependent 5368 // expression. 5369 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 5370 5371 UnresolvedLookupExpr *Fn 5372 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 5373 0, SourceRange(), OpName, LLoc, 5374 /*ADL*/ true, /*Overloaded*/ false); 5375 // Can't add any actual overloads yet 5376 5377 Base.release(); 5378 Idx.release(); 5379 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 5380 Args, 2, 5381 Context.DependentTy, 5382 RLoc)); 5383 } 5384 5385 // Build an empty overload set. 5386 OverloadCandidateSet CandidateSet; 5387 5388 // Subscript can only be overloaded as a member function. 5389 5390 // Add operator candidates that are member functions. 5391 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5392 5393 // Add builtin operator candidates. 5394 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5395 5396 // Perform overload resolution. 5397 OverloadCandidateSet::iterator Best; 5398 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 5399 case OR_Success: { 5400 // We found a built-in operator or an overloaded operator. 5401 FunctionDecl *FnDecl = Best->Function; 5402 5403 if (FnDecl) { 5404 // We matched an overloaded operator. Build a call to that 5405 // operator. 5406 5407 // Convert the arguments. 5408 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 5409 if (PerformObjectArgumentInitialization(Args[0], Method) || 5410 PerformCopyInitialization(Args[1], 5411 FnDecl->getParamDecl(0)->getType(), 5412 AA_Passing)) 5413 return ExprError(); 5414 5415 // Determine the result type 5416 QualType ResultTy 5417 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5418 ResultTy = ResultTy.getNonReferenceType(); 5419 5420 // Build the actual expression node. 5421 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5422 LLoc); 5423 UsualUnaryConversions(FnExpr); 5424 5425 Base.release(); 5426 Idx.release(); 5427 ExprOwningPtr<CXXOperatorCallExpr> 5428 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 5429 FnExpr, Args, 2, 5430 ResultTy, RLoc)); 5431 5432 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 5433 FnDecl)) 5434 return ExprError(); 5435 5436 return MaybeBindToTemporary(TheCall.release()); 5437 } else { 5438 // We matched a built-in operator. Convert the arguments, then 5439 // break out so that we will build the appropriate built-in 5440 // operator node. 5441 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5442 Best->Conversions[0], AA_Passing) || 5443 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5444 Best->Conversions[1], AA_Passing)) 5445 return ExprError(); 5446 5447 break; 5448 } 5449 } 5450 5451 case OR_No_Viable_Function: { 5452 if (CandidateSet.empty()) 5453 Diag(LLoc, diag::err_ovl_no_oper) 5454 << Args[0]->getType() << /*subscript*/ 0 5455 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5456 else 5457 Diag(LLoc, diag::err_ovl_no_viable_subscript) 5458 << Args[0]->getType() 5459 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5460 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 5461 "[]", LLoc); 5462 return ExprError(); 5463 } 5464 5465 case OR_Ambiguous: 5466 Diag(LLoc, diag::err_ovl_ambiguous_oper) 5467 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5468 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 5469 "[]", LLoc); 5470 return ExprError(); 5471 5472 case OR_Deleted: 5473 Diag(LLoc, diag::err_ovl_deleted_oper) 5474 << Best->Function->isDeleted() << "[]" 5475 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5476 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5477 return ExprError(); 5478 } 5479 5480 // We matched a built-in operator; build it. 5481 Base.release(); 5482 Idx.release(); 5483 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 5484 Owned(Args[1]), RLoc); 5485} 5486 5487/// BuildCallToMemberFunction - Build a call to a member 5488/// function. MemExpr is the expression that refers to the member 5489/// function (and includes the object parameter), Args/NumArgs are the 5490/// arguments to the function call (not including the object 5491/// parameter). The caller needs to validate that the member 5492/// expression refers to a member function or an overloaded member 5493/// function. 5494Sema::OwningExprResult 5495Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 5496 SourceLocation LParenLoc, Expr **Args, 5497 unsigned NumArgs, SourceLocation *CommaLocs, 5498 SourceLocation RParenLoc) { 5499 // Dig out the member expression. This holds both the object 5500 // argument and the member function we're referring to. 5501 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 5502 5503 MemberExpr *MemExpr; 5504 CXXMethodDecl *Method = 0; 5505 if (isa<MemberExpr>(NakedMemExpr)) { 5506 MemExpr = cast<MemberExpr>(NakedMemExpr); 5507 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 5508 } else { 5509 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 5510 5511 QualType ObjectType = UnresExpr->getBaseType(); 5512 5513 // Add overload candidates 5514 OverloadCandidateSet CandidateSet; 5515 5516 // FIXME: avoid copy. 5517 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 5518 if (UnresExpr->hasExplicitTemplateArgs()) { 5519 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 5520 TemplateArgs = &TemplateArgsBuffer; 5521 } 5522 5523 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 5524 E = UnresExpr->decls_end(); I != E; ++I) { 5525 5526 NamedDecl *Func = *I; 5527 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 5528 if (isa<UsingShadowDecl>(Func)) 5529 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 5530 5531 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 5532 // If explicit template arguments were provided, we can't call a 5533 // non-template member function. 5534 if (TemplateArgs) 5535 continue; 5536 5537 AddMethodCandidate(Method, ActingDC, ObjectType, Args, NumArgs, 5538 CandidateSet, /*SuppressUserConversions=*/false); 5539 } else { 5540 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 5541 ActingDC, TemplateArgs, 5542 ObjectType, Args, NumArgs, 5543 CandidateSet, 5544 /*SuppressUsedConversions=*/false); 5545 } 5546 } 5547 5548 DeclarationName DeclName = UnresExpr->getMemberName(); 5549 5550 OverloadCandidateSet::iterator Best; 5551 switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { 5552 case OR_Success: 5553 Method = cast<CXXMethodDecl>(Best->Function); 5554 break; 5555 5556 case OR_No_Viable_Function: 5557 Diag(UnresExpr->getMemberLoc(), 5558 diag::err_ovl_no_viable_member_function_in_call) 5559 << DeclName << MemExprE->getSourceRange(); 5560 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5561 // FIXME: Leaking incoming expressions! 5562 return ExprError(); 5563 5564 case OR_Ambiguous: 5565 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 5566 << DeclName << MemExprE->getSourceRange(); 5567 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5568 // FIXME: Leaking incoming expressions! 5569 return ExprError(); 5570 5571 case OR_Deleted: 5572 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 5573 << Best->Function->isDeleted() 5574 << DeclName << MemExprE->getSourceRange(); 5575 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5576 // FIXME: Leaking incoming expressions! 5577 return ExprError(); 5578 } 5579 5580 MemExprE = FixOverloadedFunctionReference(MemExprE, Method); 5581 5582 // If overload resolution picked a static member, build a 5583 // non-member call based on that function. 5584 if (Method->isStatic()) { 5585 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 5586 Args, NumArgs, RParenLoc); 5587 } 5588 5589 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 5590 } 5591 5592 assert(Method && "Member call to something that isn't a method?"); 5593 ExprOwningPtr<CXXMemberCallExpr> 5594 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args, 5595 NumArgs, 5596 Method->getResultType().getNonReferenceType(), 5597 RParenLoc)); 5598 5599 // Check for a valid return type. 5600 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 5601 TheCall.get(), Method)) 5602 return ExprError(); 5603 5604 // Convert the object argument (for a non-static member function call). 5605 Expr *ObjectArg = MemExpr->getBase(); 5606 if (!Method->isStatic() && 5607 PerformObjectArgumentInitialization(ObjectArg, Method)) 5608 return ExprError(); 5609 MemExpr->setBase(ObjectArg); 5610 5611 // Convert the rest of the arguments 5612 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); 5613 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 5614 RParenLoc)) 5615 return ExprError(); 5616 5617 if (CheckFunctionCall(Method, TheCall.get())) 5618 return ExprError(); 5619 5620 return MaybeBindToTemporary(TheCall.release()); 5621} 5622 5623/// BuildCallToObjectOfClassType - Build a call to an object of class 5624/// type (C++ [over.call.object]), which can end up invoking an 5625/// overloaded function call operator (@c operator()) or performing a 5626/// user-defined conversion on the object argument. 5627Sema::ExprResult 5628Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 5629 SourceLocation LParenLoc, 5630 Expr **Args, unsigned NumArgs, 5631 SourceLocation *CommaLocs, 5632 SourceLocation RParenLoc) { 5633 assert(Object->getType()->isRecordType() && "Requires object type argument"); 5634 const RecordType *Record = Object->getType()->getAs<RecordType>(); 5635 5636 // C++ [over.call.object]p1: 5637 // If the primary-expression E in the function call syntax 5638 // evaluates to a class object of type "cv T", then the set of 5639 // candidate functions includes at least the function call 5640 // operators of T. The function call operators of T are obtained by 5641 // ordinary lookup of the name operator() in the context of 5642 // (E).operator(). 5643 OverloadCandidateSet CandidateSet; 5644 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 5645 5646 if (RequireCompleteType(LParenLoc, Object->getType(), 5647 PartialDiagnostic(diag::err_incomplete_object_call) 5648 << Object->getSourceRange())) 5649 return true; 5650 5651 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 5652 LookupQualifiedName(R, Record->getDecl()); 5653 R.suppressDiagnostics(); 5654 5655 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5656 Oper != OperEnd; ++Oper) { 5657 AddMethodCandidate(*Oper, Object->getType(), Args, NumArgs, CandidateSet, 5658 /*SuppressUserConversions=*/ false); 5659 } 5660 5661 // C++ [over.call.object]p2: 5662 // In addition, for each conversion function declared in T of the 5663 // form 5664 // 5665 // operator conversion-type-id () cv-qualifier; 5666 // 5667 // where cv-qualifier is the same cv-qualification as, or a 5668 // greater cv-qualification than, cv, and where conversion-type-id 5669 // denotes the type "pointer to function of (P1,...,Pn) returning 5670 // R", or the type "reference to pointer to function of 5671 // (P1,...,Pn) returning R", or the type "reference to function 5672 // of (P1,...,Pn) returning R", a surrogate call function [...] 5673 // is also considered as a candidate function. Similarly, 5674 // surrogate call functions are added to the set of candidate 5675 // functions for each conversion function declared in an 5676 // accessible base class provided the function is not hidden 5677 // within T by another intervening declaration. 5678 // FIXME: Look in base classes for more conversion operators! 5679 const UnresolvedSet *Conversions 5680 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); 5681 for (UnresolvedSet::iterator I = Conversions->begin(), 5682 E = Conversions->end(); I != E; ++I) { 5683 NamedDecl *D = *I; 5684 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 5685 if (isa<UsingShadowDecl>(D)) 5686 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5687 5688 // Skip over templated conversion functions; they aren't 5689 // surrogates. 5690 if (isa<FunctionTemplateDecl>(D)) 5691 continue; 5692 5693 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 5694 5695 // Strip the reference type (if any) and then the pointer type (if 5696 // any) to get down to what might be a function type. 5697 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 5698 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5699 ConvType = ConvPtrType->getPointeeType(); 5700 5701 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 5702 AddSurrogateCandidate(Conv, ActingContext, Proto, 5703 Object->getType(), Args, NumArgs, 5704 CandidateSet); 5705 } 5706 5707 // Perform overload resolution. 5708 OverloadCandidateSet::iterator Best; 5709 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 5710 case OR_Success: 5711 // Overload resolution succeeded; we'll build the appropriate call 5712 // below. 5713 break; 5714 5715 case OR_No_Viable_Function: 5716 if (CandidateSet.empty()) 5717 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 5718 << Object->getType() << /*call*/ 1 5719 << Object->getSourceRange(); 5720 else 5721 Diag(Object->getSourceRange().getBegin(), 5722 diag::err_ovl_no_viable_object_call) 5723 << Object->getType() << Object->getSourceRange(); 5724 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5725 break; 5726 5727 case OR_Ambiguous: 5728 Diag(Object->getSourceRange().getBegin(), 5729 diag::err_ovl_ambiguous_object_call) 5730 << Object->getType() << Object->getSourceRange(); 5731 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5732 break; 5733 5734 case OR_Deleted: 5735 Diag(Object->getSourceRange().getBegin(), 5736 diag::err_ovl_deleted_object_call) 5737 << Best->Function->isDeleted() 5738 << Object->getType() << Object->getSourceRange(); 5739 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5740 break; 5741 } 5742 5743 if (Best == CandidateSet.end()) { 5744 // We had an error; delete all of the subexpressions and return 5745 // the error. 5746 Object->Destroy(Context); 5747 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5748 Args[ArgIdx]->Destroy(Context); 5749 return true; 5750 } 5751 5752 if (Best->Function == 0) { 5753 // Since there is no function declaration, this is one of the 5754 // surrogate candidates. Dig out the conversion function. 5755 CXXConversionDecl *Conv 5756 = cast<CXXConversionDecl>( 5757 Best->Conversions[0].UserDefined.ConversionFunction); 5758 5759 // We selected one of the surrogate functions that converts the 5760 // object parameter to a function pointer. Perform the conversion 5761 // on the object argument, then let ActOnCallExpr finish the job. 5762 5763 // Create an implicit member expr to refer to the conversion operator. 5764 // and then call it. 5765 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv); 5766 5767 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 5768 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 5769 CommaLocs, RParenLoc).release(); 5770 } 5771 5772 // We found an overloaded operator(). Build a CXXOperatorCallExpr 5773 // that calls this method, using Object for the implicit object 5774 // parameter and passing along the remaining arguments. 5775 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5776 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 5777 5778 unsigned NumArgsInProto = Proto->getNumArgs(); 5779 unsigned NumArgsToCheck = NumArgs; 5780 5781 // Build the full argument list for the method call (the 5782 // implicit object parameter is placed at the beginning of the 5783 // list). 5784 Expr **MethodArgs; 5785 if (NumArgs < NumArgsInProto) { 5786 NumArgsToCheck = NumArgsInProto; 5787 MethodArgs = new Expr*[NumArgsInProto + 1]; 5788 } else { 5789 MethodArgs = new Expr*[NumArgs + 1]; 5790 } 5791 MethodArgs[0] = Object; 5792 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5793 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 5794 5795 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 5796 SourceLocation()); 5797 UsualUnaryConversions(NewFn); 5798 5799 // Once we've built TheCall, all of the expressions are properly 5800 // owned. 5801 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5802 ExprOwningPtr<CXXOperatorCallExpr> 5803 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 5804 MethodArgs, NumArgs + 1, 5805 ResultTy, RParenLoc)); 5806 delete [] MethodArgs; 5807 5808 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 5809 Method)) 5810 return true; 5811 5812 // We may have default arguments. If so, we need to allocate more 5813 // slots in the call for them. 5814 if (NumArgs < NumArgsInProto) 5815 TheCall->setNumArgs(Context, NumArgsInProto + 1); 5816 else if (NumArgs > NumArgsInProto) 5817 NumArgsToCheck = NumArgsInProto; 5818 5819 bool IsError = false; 5820 5821 // Initialize the implicit object parameter. 5822 IsError |= PerformObjectArgumentInitialization(Object, Method); 5823 TheCall->setArg(0, Object); 5824 5825 5826 // Check the argument types. 5827 for (unsigned i = 0; i != NumArgsToCheck; i++) { 5828 Expr *Arg; 5829 if (i < NumArgs) { 5830 Arg = Args[i]; 5831 5832 // Pass the argument. 5833 QualType ProtoArgType = Proto->getArgType(i); 5834 IsError |= PerformCopyInitialization(Arg, ProtoArgType, AA_Passing); 5835 } else { 5836 OwningExprResult DefArg 5837 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 5838 if (DefArg.isInvalid()) { 5839 IsError = true; 5840 break; 5841 } 5842 5843 Arg = DefArg.takeAs<Expr>(); 5844 } 5845 5846 TheCall->setArg(i + 1, Arg); 5847 } 5848 5849 // If this is a variadic call, handle args passed through "...". 5850 if (Proto->isVariadic()) { 5851 // Promote the arguments (C99 6.5.2.2p7). 5852 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 5853 Expr *Arg = Args[i]; 5854 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 5855 TheCall->setArg(i + 1, Arg); 5856 } 5857 } 5858 5859 if (IsError) return true; 5860 5861 if (CheckFunctionCall(Method, TheCall.get())) 5862 return true; 5863 5864 return MaybeBindToTemporary(TheCall.release()).release(); 5865} 5866 5867/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 5868/// (if one exists), where @c Base is an expression of class type and 5869/// @c Member is the name of the member we're trying to find. 5870Sema::OwningExprResult 5871Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 5872 Expr *Base = static_cast<Expr *>(BaseIn.get()); 5873 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 5874 5875 // C++ [over.ref]p1: 5876 // 5877 // [...] An expression x->m is interpreted as (x.operator->())->m 5878 // for a class object x of type T if T::operator->() exists and if 5879 // the operator is selected as the best match function by the 5880 // overload resolution mechanism (13.3). 5881 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 5882 OverloadCandidateSet CandidateSet; 5883 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 5884 5885 if (RequireCompleteType(Base->getLocStart(), Base->getType(), 5886 PDiag(diag::err_typecheck_incomplete_tag) 5887 << Base->getSourceRange())) 5888 return ExprError(); 5889 5890 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 5891 LookupQualifiedName(R, BaseRecord->getDecl()); 5892 R.suppressDiagnostics(); 5893 5894 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5895 Oper != OperEnd; ++Oper) { 5896 NamedDecl *D = *Oper; 5897 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 5898 if (isa<UsingShadowDecl>(D)) 5899 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5900 5901 AddMethodCandidate(cast<CXXMethodDecl>(D), ActingContext, 5902 Base->getType(), 0, 0, CandidateSet, 5903 /*SuppressUserConversions=*/false); 5904 } 5905 5906 // Perform overload resolution. 5907 OverloadCandidateSet::iterator Best; 5908 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5909 case OR_Success: 5910 // Overload resolution succeeded; we'll build the call below. 5911 break; 5912 5913 case OR_No_Viable_Function: 5914 if (CandidateSet.empty()) 5915 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 5916 << Base->getType() << Base->getSourceRange(); 5917 else 5918 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5919 << "operator->" << Base->getSourceRange(); 5920 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5921 return ExprError(); 5922 5923 case OR_Ambiguous: 5924 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5925 << "->" << Base->getSourceRange(); 5926 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5927 return ExprError(); 5928 5929 case OR_Deleted: 5930 Diag(OpLoc, diag::err_ovl_deleted_oper) 5931 << Best->Function->isDeleted() 5932 << "->" << Base->getSourceRange(); 5933 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5934 return ExprError(); 5935 } 5936 5937 // Convert the object parameter. 5938 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5939 if (PerformObjectArgumentInitialization(Base, Method)) 5940 return ExprError(); 5941 5942 // No concerns about early exits now. 5943 BaseIn.release(); 5944 5945 // Build the operator call. 5946 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 5947 SourceLocation()); 5948 UsualUnaryConversions(FnExpr); 5949 5950 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5951 ExprOwningPtr<CXXOperatorCallExpr> 5952 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 5953 &Base, 1, ResultTy, OpLoc)); 5954 5955 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 5956 Method)) 5957 return ExprError(); 5958 return move(TheCall); 5959} 5960 5961/// FixOverloadedFunctionReference - E is an expression that refers to 5962/// a C++ overloaded function (possibly with some parentheses and 5963/// perhaps a '&' around it). We have resolved the overloaded function 5964/// to the function declaration Fn, so patch up the expression E to 5965/// refer (possibly indirectly) to Fn. Returns the new expr. 5966Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 5967 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 5968 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 5969 if (SubExpr == PE->getSubExpr()) 5970 return PE->Retain(); 5971 5972 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 5973 } 5974 5975 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 5976 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn); 5977 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 5978 SubExpr->getType()) && 5979 "Implicit cast type cannot be determined from overload"); 5980 if (SubExpr == ICE->getSubExpr()) 5981 return ICE->Retain(); 5982 5983 return new (Context) ImplicitCastExpr(ICE->getType(), 5984 ICE->getCastKind(), 5985 SubExpr, 5986 ICE->isLvalueCast()); 5987 } 5988 5989 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 5990 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 5991 "Can only take the address of an overloaded function"); 5992 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5993 if (Method->isStatic()) { 5994 // Do nothing: static member functions aren't any different 5995 // from non-member functions. 5996 } else { 5997 // Fix the sub expression, which really has to be an 5998 // UnresolvedLookupExpr holding an overloaded member function 5999 // or template. 6000 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 6001 if (SubExpr == UnOp->getSubExpr()) 6002 return UnOp->Retain(); 6003 6004 assert(isa<DeclRefExpr>(SubExpr) 6005 && "fixed to something other than a decl ref"); 6006 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 6007 && "fixed to a member ref with no nested name qualifier"); 6008 6009 // We have taken the address of a pointer to member 6010 // function. Perform the computation here so that we get the 6011 // appropriate pointer to member type. 6012 QualType ClassType 6013 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 6014 QualType MemPtrType 6015 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 6016 6017 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 6018 MemPtrType, UnOp->getOperatorLoc()); 6019 } 6020 } 6021 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 6022 if (SubExpr == UnOp->getSubExpr()) 6023 return UnOp->Retain(); 6024 6025 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 6026 Context.getPointerType(SubExpr->getType()), 6027 UnOp->getOperatorLoc()); 6028 } 6029 6030 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 6031 // FIXME: avoid copy. 6032 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 6033 if (ULE->hasExplicitTemplateArgs()) { 6034 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 6035 TemplateArgs = &TemplateArgsBuffer; 6036 } 6037 6038 return DeclRefExpr::Create(Context, 6039 ULE->getQualifier(), 6040 ULE->getQualifierRange(), 6041 Fn, 6042 ULE->getNameLoc(), 6043 Fn->getType(), 6044 TemplateArgs); 6045 } 6046 6047 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 6048 // FIXME: avoid copy. 6049 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 6050 if (MemExpr->hasExplicitTemplateArgs()) { 6051 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 6052 TemplateArgs = &TemplateArgsBuffer; 6053 } 6054 6055 Expr *Base; 6056 6057 // If we're filling in 6058 if (MemExpr->isImplicitAccess()) { 6059 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 6060 return DeclRefExpr::Create(Context, 6061 MemExpr->getQualifier(), 6062 MemExpr->getQualifierRange(), 6063 Fn, 6064 MemExpr->getMemberLoc(), 6065 Fn->getType(), 6066 TemplateArgs); 6067 } else 6068 Base = new (Context) CXXThisExpr(SourceLocation(), 6069 MemExpr->getBaseType()); 6070 } else 6071 Base = MemExpr->getBase()->Retain(); 6072 6073 return MemberExpr::Create(Context, Base, 6074 MemExpr->isArrow(), 6075 MemExpr->getQualifier(), 6076 MemExpr->getQualifierRange(), 6077 Fn, 6078 MemExpr->getMemberLoc(), 6079 TemplateArgs, 6080 Fn->getType()); 6081 } 6082 6083 assert(false && "Invalid reference to overloaded function"); 6084 return E->Retain(); 6085} 6086 6087Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E, 6088 FunctionDecl *Fn) { 6089 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn)); 6090} 6091 6092} // end namespace clang 6093