SemaOverload.cpp revision 2577743c5650c646fb705df01403707e94f2df04
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "SemaInit.h" 17#include "clang/Basic/Diagnostic.h" 18#include "clang/Lex/Preprocessor.h" 19#include "clang/AST/ASTContext.h" 20#include "clang/AST/CXXInheritance.h" 21#include "clang/AST/Expr.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/TypeOrdering.h" 24#include "clang/Basic/PartialDiagnostic.h" 25#include "llvm/ADT/SmallPtrSet.h" 26#include "llvm/ADT/STLExtras.h" 27#include <algorithm> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Identity, 42 ICC_Qualification_Adjustment, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Promotion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion, 55 ICC_Conversion, 56 ICC_Conversion, 57 ICC_Conversion 58 }; 59 return Category[(int)Kind]; 60} 61 62/// GetConversionRank - Retrieve the implicit conversion rank 63/// corresponding to the given implicit conversion kind. 64ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 65 static const ImplicitConversionRank 66 Rank[(int)ICK_Num_Conversion_Kinds] = { 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Exact_Match, 70 ICR_Exact_Match, 71 ICR_Exact_Match, 72 ICR_Exact_Match, 73 ICR_Promotion, 74 ICR_Promotion, 75 ICR_Promotion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion, 82 ICR_Conversion, 83 ICR_Conversion, 84 ICR_Conversion, 85 ICR_Conversion, 86 ICR_Conversion, 87 ICR_Complex_Real_Conversion 88 }; 89 return Rank[(int)Kind]; 90} 91 92/// GetImplicitConversionName - Return the name of this kind of 93/// implicit conversion. 94const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 95 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 96 "No conversion", 97 "Lvalue-to-rvalue", 98 "Array-to-pointer", 99 "Function-to-pointer", 100 "Noreturn adjustment", 101 "Qualification", 102 "Integral promotion", 103 "Floating point promotion", 104 "Complex promotion", 105 "Integral conversion", 106 "Floating conversion", 107 "Complex conversion", 108 "Floating-integral conversion", 109 "Pointer conversion", 110 "Pointer-to-member conversion", 111 "Boolean conversion", 112 "Compatible-types conversion", 113 "Derived-to-base conversion", 114 "Vector conversion", 115 "Vector splat", 116 "Complex-real conversion" 117 }; 118 return Name[Kind]; 119} 120 121/// StandardConversionSequence - Set the standard conversion 122/// sequence to the identity conversion. 123void StandardConversionSequence::setAsIdentityConversion() { 124 First = ICK_Identity; 125 Second = ICK_Identity; 126 Third = ICK_Identity; 127 DeprecatedStringLiteralToCharPtr = false; 128 ReferenceBinding = false; 129 DirectBinding = false; 130 RRefBinding = false; 131 CopyConstructor = 0; 132} 133 134/// getRank - Retrieve the rank of this standard conversion sequence 135/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 136/// implicit conversions. 137ImplicitConversionRank StandardConversionSequence::getRank() const { 138 ImplicitConversionRank Rank = ICR_Exact_Match; 139 if (GetConversionRank(First) > Rank) 140 Rank = GetConversionRank(First); 141 if (GetConversionRank(Second) > Rank) 142 Rank = GetConversionRank(Second); 143 if (GetConversionRank(Third) > Rank) 144 Rank = GetConversionRank(Third); 145 return Rank; 146} 147 148/// isPointerConversionToBool - Determines whether this conversion is 149/// a conversion of a pointer or pointer-to-member to bool. This is 150/// used as part of the ranking of standard conversion sequences 151/// (C++ 13.3.3.2p4). 152bool StandardConversionSequence::isPointerConversionToBool() const { 153 // Note that FromType has not necessarily been transformed by the 154 // array-to-pointer or function-to-pointer implicit conversions, so 155 // check for their presence as well as checking whether FromType is 156 // a pointer. 157 if (getToType(1)->isBooleanType() && 158 (getFromType()->isPointerType() || 159 getFromType()->isObjCObjectPointerType() || 160 getFromType()->isBlockPointerType() || 161 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 162 return true; 163 164 return false; 165} 166 167/// isPointerConversionToVoidPointer - Determines whether this 168/// conversion is a conversion of a pointer to a void pointer. This is 169/// used as part of the ranking of standard conversion sequences (C++ 170/// 13.3.3.2p4). 171bool 172StandardConversionSequence:: 173isPointerConversionToVoidPointer(ASTContext& Context) const { 174 QualType FromType = getFromType(); 175 QualType ToType = getToType(1); 176 177 // Note that FromType has not necessarily been transformed by the 178 // array-to-pointer implicit conversion, so check for its presence 179 // and redo the conversion to get a pointer. 180 if (First == ICK_Array_To_Pointer) 181 FromType = Context.getArrayDecayedType(FromType); 182 183 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 184 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 185 return ToPtrType->getPointeeType()->isVoidType(); 186 187 return false; 188} 189 190/// DebugPrint - Print this standard conversion sequence to standard 191/// error. Useful for debugging overloading issues. 192void StandardConversionSequence::DebugPrint() const { 193 llvm::raw_ostream &OS = llvm::errs(); 194 bool PrintedSomething = false; 195 if (First != ICK_Identity) { 196 OS << GetImplicitConversionName(First); 197 PrintedSomething = true; 198 } 199 200 if (Second != ICK_Identity) { 201 if (PrintedSomething) { 202 OS << " -> "; 203 } 204 OS << GetImplicitConversionName(Second); 205 206 if (CopyConstructor) { 207 OS << " (by copy constructor)"; 208 } else if (DirectBinding) { 209 OS << " (direct reference binding)"; 210 } else if (ReferenceBinding) { 211 OS << " (reference binding)"; 212 } 213 PrintedSomething = true; 214 } 215 216 if (Third != ICK_Identity) { 217 if (PrintedSomething) { 218 OS << " -> "; 219 } 220 OS << GetImplicitConversionName(Third); 221 PrintedSomething = true; 222 } 223 224 if (!PrintedSomething) { 225 OS << "No conversions required"; 226 } 227} 228 229/// DebugPrint - Print this user-defined conversion sequence to standard 230/// error. Useful for debugging overloading issues. 231void UserDefinedConversionSequence::DebugPrint() const { 232 llvm::raw_ostream &OS = llvm::errs(); 233 if (Before.First || Before.Second || Before.Third) { 234 Before.DebugPrint(); 235 OS << " -> "; 236 } 237 OS << '\'' << ConversionFunction << '\''; 238 if (After.First || After.Second || After.Third) { 239 OS << " -> "; 240 After.DebugPrint(); 241 } 242} 243 244/// DebugPrint - Print this implicit conversion sequence to standard 245/// error. Useful for debugging overloading issues. 246void ImplicitConversionSequence::DebugPrint() const { 247 llvm::raw_ostream &OS = llvm::errs(); 248 switch (ConversionKind) { 249 case StandardConversion: 250 OS << "Standard conversion: "; 251 Standard.DebugPrint(); 252 break; 253 case UserDefinedConversion: 254 OS << "User-defined conversion: "; 255 UserDefined.DebugPrint(); 256 break; 257 case EllipsisConversion: 258 OS << "Ellipsis conversion"; 259 break; 260 case AmbiguousConversion: 261 OS << "Ambiguous conversion"; 262 break; 263 case BadConversion: 264 OS << "Bad conversion"; 265 break; 266 } 267 268 OS << "\n"; 269} 270 271void AmbiguousConversionSequence::construct() { 272 new (&conversions()) ConversionSet(); 273} 274 275void AmbiguousConversionSequence::destruct() { 276 conversions().~ConversionSet(); 277} 278 279void 280AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 281 FromTypePtr = O.FromTypePtr; 282 ToTypePtr = O.ToTypePtr; 283 new (&conversions()) ConversionSet(O.conversions()); 284} 285 286namespace { 287 // Structure used by OverloadCandidate::DeductionFailureInfo to store 288 // template parameter and template argument information. 289 struct DFIParamWithArguments { 290 TemplateParameter Param; 291 TemplateArgument FirstArg; 292 TemplateArgument SecondArg; 293 }; 294} 295 296/// \brief Convert from Sema's representation of template deduction information 297/// to the form used in overload-candidate information. 298OverloadCandidate::DeductionFailureInfo 299static MakeDeductionFailureInfo(ASTContext &Context, 300 Sema::TemplateDeductionResult TDK, 301 Sema::TemplateDeductionInfo &Info) { 302 OverloadCandidate::DeductionFailureInfo Result; 303 Result.Result = static_cast<unsigned>(TDK); 304 Result.Data = 0; 305 switch (TDK) { 306 case Sema::TDK_Success: 307 case Sema::TDK_InstantiationDepth: 308 case Sema::TDK_TooManyArguments: 309 case Sema::TDK_TooFewArguments: 310 break; 311 312 case Sema::TDK_Incomplete: 313 case Sema::TDK_InvalidExplicitArguments: 314 Result.Data = Info.Param.getOpaqueValue(); 315 break; 316 317 case Sema::TDK_Inconsistent: 318 case Sema::TDK_Underqualified: { 319 // FIXME: Should allocate from normal heap so that we can free this later. 320 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 321 Saved->Param = Info.Param; 322 Saved->FirstArg = Info.FirstArg; 323 Saved->SecondArg = Info.SecondArg; 324 Result.Data = Saved; 325 break; 326 } 327 328 case Sema::TDK_SubstitutionFailure: 329 Result.Data = Info.take(); 330 break; 331 332 case Sema::TDK_NonDeducedMismatch: 333 case Sema::TDK_FailedOverloadResolution: 334 break; 335 } 336 337 return Result; 338} 339 340void OverloadCandidate::DeductionFailureInfo::Destroy() { 341 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 342 case Sema::TDK_Success: 343 case Sema::TDK_InstantiationDepth: 344 case Sema::TDK_Incomplete: 345 case Sema::TDK_TooManyArguments: 346 case Sema::TDK_TooFewArguments: 347 case Sema::TDK_InvalidExplicitArguments: 348 break; 349 350 case Sema::TDK_Inconsistent: 351 case Sema::TDK_Underqualified: 352 // FIXME: Destroy the data? 353 Data = 0; 354 break; 355 356 case Sema::TDK_SubstitutionFailure: 357 // FIXME: Destroy the template arugment list? 358 Data = 0; 359 break; 360 361 // Unhandled 362 case Sema::TDK_NonDeducedMismatch: 363 case Sema::TDK_FailedOverloadResolution: 364 break; 365 } 366} 367 368TemplateParameter 369OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 370 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 371 case Sema::TDK_Success: 372 case Sema::TDK_InstantiationDepth: 373 case Sema::TDK_TooManyArguments: 374 case Sema::TDK_TooFewArguments: 375 case Sema::TDK_SubstitutionFailure: 376 return TemplateParameter(); 377 378 case Sema::TDK_Incomplete: 379 case Sema::TDK_InvalidExplicitArguments: 380 return TemplateParameter::getFromOpaqueValue(Data); 381 382 case Sema::TDK_Inconsistent: 383 case Sema::TDK_Underqualified: 384 return static_cast<DFIParamWithArguments*>(Data)->Param; 385 386 // Unhandled 387 case Sema::TDK_NonDeducedMismatch: 388 case Sema::TDK_FailedOverloadResolution: 389 break; 390 } 391 392 return TemplateParameter(); 393} 394 395TemplateArgumentList * 396OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 397 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 398 case Sema::TDK_Success: 399 case Sema::TDK_InstantiationDepth: 400 case Sema::TDK_TooManyArguments: 401 case Sema::TDK_TooFewArguments: 402 case Sema::TDK_Incomplete: 403 case Sema::TDK_InvalidExplicitArguments: 404 case Sema::TDK_Inconsistent: 405 case Sema::TDK_Underqualified: 406 return 0; 407 408 case Sema::TDK_SubstitutionFailure: 409 return static_cast<TemplateArgumentList*>(Data); 410 411 // Unhandled 412 case Sema::TDK_NonDeducedMismatch: 413 case Sema::TDK_FailedOverloadResolution: 414 break; 415 } 416 417 return 0; 418} 419 420const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 421 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 422 case Sema::TDK_Success: 423 case Sema::TDK_InstantiationDepth: 424 case Sema::TDK_Incomplete: 425 case Sema::TDK_TooManyArguments: 426 case Sema::TDK_TooFewArguments: 427 case Sema::TDK_InvalidExplicitArguments: 428 case Sema::TDK_SubstitutionFailure: 429 return 0; 430 431 case Sema::TDK_Inconsistent: 432 case Sema::TDK_Underqualified: 433 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 434 435 // Unhandled 436 case Sema::TDK_NonDeducedMismatch: 437 case Sema::TDK_FailedOverloadResolution: 438 break; 439 } 440 441 return 0; 442} 443 444const TemplateArgument * 445OverloadCandidate::DeductionFailureInfo::getSecondArg() { 446 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 447 case Sema::TDK_Success: 448 case Sema::TDK_InstantiationDepth: 449 case Sema::TDK_Incomplete: 450 case Sema::TDK_TooManyArguments: 451 case Sema::TDK_TooFewArguments: 452 case Sema::TDK_InvalidExplicitArguments: 453 case Sema::TDK_SubstitutionFailure: 454 return 0; 455 456 case Sema::TDK_Inconsistent: 457 case Sema::TDK_Underqualified: 458 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 459 460 // Unhandled 461 case Sema::TDK_NonDeducedMismatch: 462 case Sema::TDK_FailedOverloadResolution: 463 break; 464 } 465 466 return 0; 467} 468 469void OverloadCandidateSet::clear() { 470 inherited::clear(); 471 Functions.clear(); 472} 473 474// IsOverload - Determine whether the given New declaration is an 475// overload of the declarations in Old. This routine returns false if 476// New and Old cannot be overloaded, e.g., if New has the same 477// signature as some function in Old (C++ 1.3.10) or if the Old 478// declarations aren't functions (or function templates) at all. When 479// it does return false, MatchedDecl will point to the decl that New 480// cannot be overloaded with. This decl may be a UsingShadowDecl on 481// top of the underlying declaration. 482// 483// Example: Given the following input: 484// 485// void f(int, float); // #1 486// void f(int, int); // #2 487// int f(int, int); // #3 488// 489// When we process #1, there is no previous declaration of "f", 490// so IsOverload will not be used. 491// 492// When we process #2, Old contains only the FunctionDecl for #1. By 493// comparing the parameter types, we see that #1 and #2 are overloaded 494// (since they have different signatures), so this routine returns 495// false; MatchedDecl is unchanged. 496// 497// When we process #3, Old is an overload set containing #1 and #2. We 498// compare the signatures of #3 to #1 (they're overloaded, so we do 499// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 500// identical (return types of functions are not part of the 501// signature), IsOverload returns false and MatchedDecl will be set to 502// point to the FunctionDecl for #2. 503// 504// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 505// into a class by a using declaration. The rules for whether to hide 506// shadow declarations ignore some properties which otherwise figure 507// into a function template's signature. 508Sema::OverloadKind 509Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 510 NamedDecl *&Match, bool NewIsUsingDecl) { 511 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 512 I != E; ++I) { 513 NamedDecl *OldD = *I; 514 515 bool OldIsUsingDecl = false; 516 if (isa<UsingShadowDecl>(OldD)) { 517 OldIsUsingDecl = true; 518 519 // We can always introduce two using declarations into the same 520 // context, even if they have identical signatures. 521 if (NewIsUsingDecl) continue; 522 523 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 524 } 525 526 // If either declaration was introduced by a using declaration, 527 // we'll need to use slightly different rules for matching. 528 // Essentially, these rules are the normal rules, except that 529 // function templates hide function templates with different 530 // return types or template parameter lists. 531 bool UseMemberUsingDeclRules = 532 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 533 534 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 535 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 536 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 537 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 538 continue; 539 } 540 541 Match = *I; 542 return Ovl_Match; 543 } 544 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 545 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 546 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 547 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 548 continue; 549 } 550 551 Match = *I; 552 return Ovl_Match; 553 } 554 } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { 555 // We can overload with these, which can show up when doing 556 // redeclaration checks for UsingDecls. 557 assert(Old.getLookupKind() == LookupUsingDeclName); 558 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 559 // Optimistically assume that an unresolved using decl will 560 // overload; if it doesn't, we'll have to diagnose during 561 // template instantiation. 562 } else { 563 // (C++ 13p1): 564 // Only function declarations can be overloaded; object and type 565 // declarations cannot be overloaded. 566 Match = *I; 567 return Ovl_NonFunction; 568 } 569 } 570 571 return Ovl_Overload; 572} 573 574bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 575 bool UseUsingDeclRules) { 576 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 577 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 578 579 // C++ [temp.fct]p2: 580 // A function template can be overloaded with other function templates 581 // and with normal (non-template) functions. 582 if ((OldTemplate == 0) != (NewTemplate == 0)) 583 return true; 584 585 // Is the function New an overload of the function Old? 586 QualType OldQType = Context.getCanonicalType(Old->getType()); 587 QualType NewQType = Context.getCanonicalType(New->getType()); 588 589 // Compare the signatures (C++ 1.3.10) of the two functions to 590 // determine whether they are overloads. If we find any mismatch 591 // in the signature, they are overloads. 592 593 // If either of these functions is a K&R-style function (no 594 // prototype), then we consider them to have matching signatures. 595 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 596 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 597 return false; 598 599 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 600 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 601 602 // The signature of a function includes the types of its 603 // parameters (C++ 1.3.10), which includes the presence or absence 604 // of the ellipsis; see C++ DR 357). 605 if (OldQType != NewQType && 606 (OldType->getNumArgs() != NewType->getNumArgs() || 607 OldType->isVariadic() != NewType->isVariadic() || 608 !FunctionArgTypesAreEqual(OldType, NewType))) 609 return true; 610 611 // C++ [temp.over.link]p4: 612 // The signature of a function template consists of its function 613 // signature, its return type and its template parameter list. The names 614 // of the template parameters are significant only for establishing the 615 // relationship between the template parameters and the rest of the 616 // signature. 617 // 618 // We check the return type and template parameter lists for function 619 // templates first; the remaining checks follow. 620 // 621 // However, we don't consider either of these when deciding whether 622 // a member introduced by a shadow declaration is hidden. 623 if (!UseUsingDeclRules && NewTemplate && 624 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 625 OldTemplate->getTemplateParameters(), 626 false, TPL_TemplateMatch) || 627 OldType->getResultType() != NewType->getResultType())) 628 return true; 629 630 // If the function is a class member, its signature includes the 631 // cv-qualifiers (if any) on the function itself. 632 // 633 // As part of this, also check whether one of the member functions 634 // is static, in which case they are not overloads (C++ 635 // 13.1p2). While not part of the definition of the signature, 636 // this check is important to determine whether these functions 637 // can be overloaded. 638 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 639 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 640 if (OldMethod && NewMethod && 641 !OldMethod->isStatic() && !NewMethod->isStatic() && 642 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 643 return true; 644 645 // The signatures match; this is not an overload. 646 return false; 647} 648 649/// TryImplicitConversion - Attempt to perform an implicit conversion 650/// from the given expression (Expr) to the given type (ToType). This 651/// function returns an implicit conversion sequence that can be used 652/// to perform the initialization. Given 653/// 654/// void f(float f); 655/// void g(int i) { f(i); } 656/// 657/// this routine would produce an implicit conversion sequence to 658/// describe the initialization of f from i, which will be a standard 659/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 660/// 4.1) followed by a floating-integral conversion (C++ 4.9). 661// 662/// Note that this routine only determines how the conversion can be 663/// performed; it does not actually perform the conversion. As such, 664/// it will not produce any diagnostics if no conversion is available, 665/// but will instead return an implicit conversion sequence of kind 666/// "BadConversion". 667/// 668/// If @p SuppressUserConversions, then user-defined conversions are 669/// not permitted. 670/// If @p AllowExplicit, then explicit user-defined conversions are 671/// permitted. 672ImplicitConversionSequence 673Sema::TryImplicitConversion(Expr* From, QualType ToType, 674 bool SuppressUserConversions, 675 bool AllowExplicit, 676 bool InOverloadResolution) { 677 ImplicitConversionSequence ICS; 678 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) { 679 ICS.setStandard(); 680 return ICS; 681 } 682 683 if (!getLangOptions().CPlusPlus) { 684 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 685 return ICS; 686 } 687 688 // C++ [over.ics.user]p4: 689 // A conversion of an expression of class type to the same class 690 // type is given Exact Match rank, and a conversion of an 691 // expression of class type to a base class of that type is 692 // given Conversion rank, in spite of the fact that a copy/move 693 // constructor (i.e., a user-defined conversion function) is 694 // called for those cases. 695 QualType FromType = From->getType(); 696 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 697 (Context.hasSameUnqualifiedType(FromType, ToType) || 698 IsDerivedFrom(FromType, ToType))) { 699 ICS.setStandard(); 700 ICS.Standard.setAsIdentityConversion(); 701 ICS.Standard.setFromType(FromType); 702 ICS.Standard.setAllToTypes(ToType); 703 704 // We don't actually check at this point whether there is a valid 705 // copy/move constructor, since overloading just assumes that it 706 // exists. When we actually perform initialization, we'll find the 707 // appropriate constructor to copy the returned object, if needed. 708 ICS.Standard.CopyConstructor = 0; 709 710 // Determine whether this is considered a derived-to-base conversion. 711 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 712 ICS.Standard.Second = ICK_Derived_To_Base; 713 714 return ICS; 715 } 716 717 if (SuppressUserConversions) { 718 // We're not in the case above, so there is no conversion that 719 // we can perform. 720 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 721 return ICS; 722 } 723 724 // Attempt user-defined conversion. 725 OverloadCandidateSet Conversions(From->getExprLoc()); 726 OverloadingResult UserDefResult 727 = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions, 728 AllowExplicit); 729 730 if (UserDefResult == OR_Success) { 731 ICS.setUserDefined(); 732 // C++ [over.ics.user]p4: 733 // A conversion of an expression of class type to the same class 734 // type is given Exact Match rank, and a conversion of an 735 // expression of class type to a base class of that type is 736 // given Conversion rank, in spite of the fact that a copy 737 // constructor (i.e., a user-defined conversion function) is 738 // called for those cases. 739 if (CXXConstructorDecl *Constructor 740 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 741 QualType FromCanon 742 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 743 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 744 if (Constructor->isCopyConstructor() && 745 (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) { 746 // Turn this into a "standard" conversion sequence, so that it 747 // gets ranked with standard conversion sequences. 748 ICS.setStandard(); 749 ICS.Standard.setAsIdentityConversion(); 750 ICS.Standard.setFromType(From->getType()); 751 ICS.Standard.setAllToTypes(ToType); 752 ICS.Standard.CopyConstructor = Constructor; 753 if (ToCanon != FromCanon) 754 ICS.Standard.Second = ICK_Derived_To_Base; 755 } 756 } 757 758 // C++ [over.best.ics]p4: 759 // However, when considering the argument of a user-defined 760 // conversion function that is a candidate by 13.3.1.3 when 761 // invoked for the copying of the temporary in the second step 762 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 763 // 13.3.1.6 in all cases, only standard conversion sequences and 764 // ellipsis conversion sequences are allowed. 765 if (SuppressUserConversions && ICS.isUserDefined()) { 766 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 767 } 768 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 769 ICS.setAmbiguous(); 770 ICS.Ambiguous.setFromType(From->getType()); 771 ICS.Ambiguous.setToType(ToType); 772 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 773 Cand != Conversions.end(); ++Cand) 774 if (Cand->Viable) 775 ICS.Ambiguous.addConversion(Cand->Function); 776 } else { 777 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 778 } 779 780 return ICS; 781} 782 783/// PerformImplicitConversion - Perform an implicit conversion of the 784/// expression From to the type ToType. Returns true if there was an 785/// error, false otherwise. The expression From is replaced with the 786/// converted expression. Flavor is the kind of conversion we're 787/// performing, used in the error message. If @p AllowExplicit, 788/// explicit user-defined conversions are permitted. 789bool 790Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 791 AssignmentAction Action, bool AllowExplicit) { 792 ImplicitConversionSequence ICS; 793 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 794} 795 796bool 797Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 798 AssignmentAction Action, bool AllowExplicit, 799 ImplicitConversionSequence& ICS) { 800 ICS = TryImplicitConversion(From, ToType, 801 /*SuppressUserConversions=*/false, 802 AllowExplicit, 803 /*InOverloadResolution=*/false); 804 return PerformImplicitConversion(From, ToType, ICS, Action); 805} 806 807/// \brief Determine whether the conversion from FromType to ToType is a valid 808/// conversion that strips "noreturn" off the nested function type. 809static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 810 QualType ToType, QualType &ResultTy) { 811 if (Context.hasSameUnqualifiedType(FromType, ToType)) 812 return false; 813 814 // Strip the noreturn off the type we're converting from; noreturn can 815 // safely be removed. 816 FromType = Context.getNoReturnType(FromType, false); 817 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 818 return false; 819 820 ResultTy = FromType; 821 return true; 822} 823 824/// \brief Determine whether the conversion from FromType to ToType is a valid 825/// vector conversion. 826/// 827/// \param ICK Will be set to the vector conversion kind, if this is a vector 828/// conversion. 829static bool IsVectorConversion(ASTContext &Context, QualType FromType, 830 QualType ToType, ImplicitConversionKind &ICK) { 831 // We need at least one of these types to be a vector type to have a vector 832 // conversion. 833 if (!ToType->isVectorType() && !FromType->isVectorType()) 834 return false; 835 836 // Identical types require no conversions. 837 if (Context.hasSameUnqualifiedType(FromType, ToType)) 838 return false; 839 840 // There are no conversions between extended vector types, only identity. 841 if (ToType->isExtVectorType()) { 842 // There are no conversions between extended vector types other than the 843 // identity conversion. 844 if (FromType->isExtVectorType()) 845 return false; 846 847 // Vector splat from any arithmetic type to a vector. 848 if (FromType->isArithmeticType()) { 849 ICK = ICK_Vector_Splat; 850 return true; 851 } 852 } 853 854 // We can perform the conversion between vector types in the following cases: 855 // 1)vector types are equivalent AltiVec and GCC vector types 856 // 2)lax vector conversions are permitted and the vector types are of the 857 // same size 858 if (ToType->isVectorType() && FromType->isVectorType()) { 859 if (Context.areCompatibleVectorTypes(FromType, ToType) || 860 (Context.getLangOptions().LaxVectorConversions && 861 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 862 ICK = ICK_Vector_Conversion; 863 return true; 864 } 865 } 866 867 return false; 868} 869 870/// IsStandardConversion - Determines whether there is a standard 871/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 872/// expression From to the type ToType. Standard conversion sequences 873/// only consider non-class types; for conversions that involve class 874/// types, use TryImplicitConversion. If a conversion exists, SCS will 875/// contain the standard conversion sequence required to perform this 876/// conversion and this routine will return true. Otherwise, this 877/// routine will return false and the value of SCS is unspecified. 878bool 879Sema::IsStandardConversion(Expr* From, QualType ToType, 880 bool InOverloadResolution, 881 StandardConversionSequence &SCS) { 882 QualType FromType = From->getType(); 883 884 // Standard conversions (C++ [conv]) 885 SCS.setAsIdentityConversion(); 886 SCS.DeprecatedStringLiteralToCharPtr = false; 887 SCS.IncompatibleObjC = false; 888 SCS.setFromType(FromType); 889 SCS.CopyConstructor = 0; 890 891 // There are no standard conversions for class types in C++, so 892 // abort early. When overloading in C, however, we do permit 893 if (FromType->isRecordType() || ToType->isRecordType()) { 894 if (getLangOptions().CPlusPlus) 895 return false; 896 897 // When we're overloading in C, we allow, as standard conversions, 898 } 899 900 // The first conversion can be an lvalue-to-rvalue conversion, 901 // array-to-pointer conversion, or function-to-pointer conversion 902 // (C++ 4p1). 903 904 if (FromType == Context.OverloadTy) { 905 DeclAccessPair AccessPair; 906 if (FunctionDecl *Fn 907 = ResolveAddressOfOverloadedFunction(From, ToType, false, 908 AccessPair)) { 909 // We were able to resolve the address of the overloaded function, 910 // so we can convert to the type of that function. 911 FromType = Fn->getType(); 912 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 913 if (!Method->isStatic()) { 914 Type *ClassType 915 = Context.getTypeDeclType(Method->getParent()).getTypePtr(); 916 FromType = Context.getMemberPointerType(FromType, ClassType); 917 } 918 } 919 920 // If the "from" expression takes the address of the overloaded 921 // function, update the type of the resulting expression accordingly. 922 if (FromType->getAs<FunctionType>()) 923 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) 924 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 925 FromType = Context.getPointerType(FromType); 926 927 // Check that we've computed the proper type after overload resolution. 928 assert(Context.hasSameType(FromType, 929 FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 930 } else { 931 return false; 932 } 933 } 934 // Lvalue-to-rvalue conversion (C++ 4.1): 935 // An lvalue (3.10) of a non-function, non-array type T can be 936 // converted to an rvalue. 937 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 938 if (argIsLvalue == Expr::LV_Valid && 939 !FromType->isFunctionType() && !FromType->isArrayType() && 940 Context.getCanonicalType(FromType) != Context.OverloadTy) { 941 SCS.First = ICK_Lvalue_To_Rvalue; 942 943 // If T is a non-class type, the type of the rvalue is the 944 // cv-unqualified version of T. Otherwise, the type of the rvalue 945 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 946 // just strip the qualifiers because they don't matter. 947 FromType = FromType.getUnqualifiedType(); 948 } else if (FromType->isArrayType()) { 949 // Array-to-pointer conversion (C++ 4.2) 950 SCS.First = ICK_Array_To_Pointer; 951 952 // An lvalue or rvalue of type "array of N T" or "array of unknown 953 // bound of T" can be converted to an rvalue of type "pointer to 954 // T" (C++ 4.2p1). 955 FromType = Context.getArrayDecayedType(FromType); 956 957 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 958 // This conversion is deprecated. (C++ D.4). 959 SCS.DeprecatedStringLiteralToCharPtr = true; 960 961 // For the purpose of ranking in overload resolution 962 // (13.3.3.1.1), this conversion is considered an 963 // array-to-pointer conversion followed by a qualification 964 // conversion (4.4). (C++ 4.2p2) 965 SCS.Second = ICK_Identity; 966 SCS.Third = ICK_Qualification; 967 SCS.setAllToTypes(FromType); 968 return true; 969 } 970 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 971 // Function-to-pointer conversion (C++ 4.3). 972 SCS.First = ICK_Function_To_Pointer; 973 974 // An lvalue of function type T can be converted to an rvalue of 975 // type "pointer to T." The result is a pointer to the 976 // function. (C++ 4.3p1). 977 FromType = Context.getPointerType(FromType); 978 } else { 979 // We don't require any conversions for the first step. 980 SCS.First = ICK_Identity; 981 } 982 SCS.setToType(0, FromType); 983 984 // The second conversion can be an integral promotion, floating 985 // point promotion, integral conversion, floating point conversion, 986 // floating-integral conversion, pointer conversion, 987 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 988 // For overloading in C, this can also be a "compatible-type" 989 // conversion. 990 bool IncompatibleObjC = false; 991 ImplicitConversionKind SecondICK = ICK_Identity; 992 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 993 // The unqualified versions of the types are the same: there's no 994 // conversion to do. 995 SCS.Second = ICK_Identity; 996 } else if (IsIntegralPromotion(From, FromType, ToType)) { 997 // Integral promotion (C++ 4.5). 998 SCS.Second = ICK_Integral_Promotion; 999 FromType = ToType.getUnqualifiedType(); 1000 } else if (IsFloatingPointPromotion(FromType, ToType)) { 1001 // Floating point promotion (C++ 4.6). 1002 SCS.Second = ICK_Floating_Promotion; 1003 FromType = ToType.getUnqualifiedType(); 1004 } else if (IsComplexPromotion(FromType, ToType)) { 1005 // Complex promotion (Clang extension) 1006 SCS.Second = ICK_Complex_Promotion; 1007 FromType = ToType.getUnqualifiedType(); 1008 } else if (FromType->isIntegralOrEnumerationType() && 1009 ToType->isIntegralType(Context)) { 1010 // Integral conversions (C++ 4.7). 1011 SCS.Second = ICK_Integral_Conversion; 1012 FromType = ToType.getUnqualifiedType(); 1013 } else if (FromType->isComplexType() && ToType->isComplexType()) { 1014 // Complex conversions (C99 6.3.1.6) 1015 SCS.Second = ICK_Complex_Conversion; 1016 FromType = ToType.getUnqualifiedType(); 1017 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 1018 (ToType->isComplexType() && FromType->isArithmeticType())) { 1019 // Complex-real conversions (C99 6.3.1.7) 1020 SCS.Second = ICK_Complex_Real; 1021 FromType = ToType.getUnqualifiedType(); 1022 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1023 // Floating point conversions (C++ 4.8). 1024 SCS.Second = ICK_Floating_Conversion; 1025 FromType = ToType.getUnqualifiedType(); 1026 } else if ((FromType->isRealFloatingType() && 1027 ToType->isIntegralType(Context) && !ToType->isBooleanType()) || 1028 (FromType->isIntegralOrEnumerationType() && 1029 ToType->isRealFloatingType())) { 1030 // Floating-integral conversions (C++ 4.9). 1031 SCS.Second = ICK_Floating_Integral; 1032 FromType = ToType.getUnqualifiedType(); 1033 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1034 FromType, IncompatibleObjC)) { 1035 // Pointer conversions (C++ 4.10). 1036 SCS.Second = ICK_Pointer_Conversion; 1037 SCS.IncompatibleObjC = IncompatibleObjC; 1038 } else if (IsMemberPointerConversion(From, FromType, ToType, 1039 InOverloadResolution, FromType)) { 1040 // Pointer to member conversions (4.11). 1041 SCS.Second = ICK_Pointer_Member; 1042 } else if (ToType->isBooleanType() && 1043 (FromType->isArithmeticType() || 1044 FromType->isEnumeralType() || 1045 FromType->isAnyPointerType() || 1046 FromType->isBlockPointerType() || 1047 FromType->isMemberPointerType() || 1048 FromType->isNullPtrType())) { 1049 // Boolean conversions (C++ 4.12). 1050 SCS.Second = ICK_Boolean_Conversion; 1051 FromType = Context.BoolTy; 1052 } else if (IsVectorConversion(Context, FromType, ToType, SecondICK)) { 1053 SCS.Second = SecondICK; 1054 FromType = ToType.getUnqualifiedType(); 1055 } else if (!getLangOptions().CPlusPlus && 1056 Context.typesAreCompatible(ToType, FromType)) { 1057 // Compatible conversions (Clang extension for C function overloading) 1058 SCS.Second = ICK_Compatible_Conversion; 1059 FromType = ToType.getUnqualifiedType(); 1060 } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) { 1061 // Treat a conversion that strips "noreturn" as an identity conversion. 1062 SCS.Second = ICK_NoReturn_Adjustment; 1063 } else { 1064 // No second conversion required. 1065 SCS.Second = ICK_Identity; 1066 } 1067 SCS.setToType(1, FromType); 1068 1069 QualType CanonFrom; 1070 QualType CanonTo; 1071 // The third conversion can be a qualification conversion (C++ 4p1). 1072 if (IsQualificationConversion(FromType, ToType)) { 1073 SCS.Third = ICK_Qualification; 1074 FromType = ToType; 1075 CanonFrom = Context.getCanonicalType(FromType); 1076 CanonTo = Context.getCanonicalType(ToType); 1077 } else { 1078 // No conversion required 1079 SCS.Third = ICK_Identity; 1080 1081 // C++ [over.best.ics]p6: 1082 // [...] Any difference in top-level cv-qualification is 1083 // subsumed by the initialization itself and does not constitute 1084 // a conversion. [...] 1085 CanonFrom = Context.getCanonicalType(FromType); 1086 CanonTo = Context.getCanonicalType(ToType); 1087 if (CanonFrom.getLocalUnqualifiedType() 1088 == CanonTo.getLocalUnqualifiedType() && 1089 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1090 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) { 1091 FromType = ToType; 1092 CanonFrom = CanonTo; 1093 } 1094 } 1095 SCS.setToType(2, FromType); 1096 1097 // If we have not converted the argument type to the parameter type, 1098 // this is a bad conversion sequence. 1099 if (CanonFrom != CanonTo) 1100 return false; 1101 1102 return true; 1103} 1104 1105/// IsIntegralPromotion - Determines whether the conversion from the 1106/// expression From (whose potentially-adjusted type is FromType) to 1107/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1108/// sets PromotedType to the promoted type. 1109bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1110 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1111 // All integers are built-in. 1112 if (!To) { 1113 return false; 1114 } 1115 1116 // An rvalue of type char, signed char, unsigned char, short int, or 1117 // unsigned short int can be converted to an rvalue of type int if 1118 // int can represent all the values of the source type; otherwise, 1119 // the source rvalue can be converted to an rvalue of type unsigned 1120 // int (C++ 4.5p1). 1121 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1122 !FromType->isEnumeralType()) { 1123 if (// We can promote any signed, promotable integer type to an int 1124 (FromType->isSignedIntegerType() || 1125 // We can promote any unsigned integer type whose size is 1126 // less than int to an int. 1127 (!FromType->isSignedIntegerType() && 1128 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1129 return To->getKind() == BuiltinType::Int; 1130 } 1131 1132 return To->getKind() == BuiltinType::UInt; 1133 } 1134 1135 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 1136 // can be converted to an rvalue of the first of the following types 1137 // that can represent all the values of its underlying type: int, 1138 // unsigned int, long, or unsigned long (C++ 4.5p2). 1139 1140 // We pre-calculate the promotion type for enum types. 1141 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) 1142 if (ToType->isIntegerType()) 1143 return Context.hasSameUnqualifiedType(ToType, 1144 FromEnumType->getDecl()->getPromotionType()); 1145 1146 if (FromType->isWideCharType() && ToType->isIntegerType()) { 1147 // Determine whether the type we're converting from is signed or 1148 // unsigned. 1149 bool FromIsSigned; 1150 uint64_t FromSize = Context.getTypeSize(FromType); 1151 1152 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 1153 FromIsSigned = true; 1154 1155 // The types we'll try to promote to, in the appropriate 1156 // order. Try each of these types. 1157 QualType PromoteTypes[6] = { 1158 Context.IntTy, Context.UnsignedIntTy, 1159 Context.LongTy, Context.UnsignedLongTy , 1160 Context.LongLongTy, Context.UnsignedLongLongTy 1161 }; 1162 for (int Idx = 0; Idx < 6; ++Idx) { 1163 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1164 if (FromSize < ToSize || 1165 (FromSize == ToSize && 1166 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1167 // We found the type that we can promote to. If this is the 1168 // type we wanted, we have a promotion. Otherwise, no 1169 // promotion. 1170 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1171 } 1172 } 1173 } 1174 1175 // An rvalue for an integral bit-field (9.6) can be converted to an 1176 // rvalue of type int if int can represent all the values of the 1177 // bit-field; otherwise, it can be converted to unsigned int if 1178 // unsigned int can represent all the values of the bit-field. If 1179 // the bit-field is larger yet, no integral promotion applies to 1180 // it. If the bit-field has an enumerated type, it is treated as any 1181 // other value of that type for promotion purposes (C++ 4.5p3). 1182 // FIXME: We should delay checking of bit-fields until we actually perform the 1183 // conversion. 1184 using llvm::APSInt; 1185 if (From) 1186 if (FieldDecl *MemberDecl = From->getBitField()) { 1187 APSInt BitWidth; 1188 if (FromType->isIntegralType(Context) && 1189 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1190 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1191 ToSize = Context.getTypeSize(ToType); 1192 1193 // Are we promoting to an int from a bitfield that fits in an int? 1194 if (BitWidth < ToSize || 1195 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1196 return To->getKind() == BuiltinType::Int; 1197 } 1198 1199 // Are we promoting to an unsigned int from an unsigned bitfield 1200 // that fits into an unsigned int? 1201 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1202 return To->getKind() == BuiltinType::UInt; 1203 } 1204 1205 return false; 1206 } 1207 } 1208 1209 // An rvalue of type bool can be converted to an rvalue of type int, 1210 // with false becoming zero and true becoming one (C++ 4.5p4). 1211 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1212 return true; 1213 } 1214 1215 return false; 1216} 1217 1218/// IsFloatingPointPromotion - Determines whether the conversion from 1219/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1220/// returns true and sets PromotedType to the promoted type. 1221bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1222 /// An rvalue of type float can be converted to an rvalue of type 1223 /// double. (C++ 4.6p1). 1224 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1225 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1226 if (FromBuiltin->getKind() == BuiltinType::Float && 1227 ToBuiltin->getKind() == BuiltinType::Double) 1228 return true; 1229 1230 // C99 6.3.1.5p1: 1231 // When a float is promoted to double or long double, or a 1232 // double is promoted to long double [...]. 1233 if (!getLangOptions().CPlusPlus && 1234 (FromBuiltin->getKind() == BuiltinType::Float || 1235 FromBuiltin->getKind() == BuiltinType::Double) && 1236 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1237 return true; 1238 } 1239 1240 return false; 1241} 1242 1243/// \brief Determine if a conversion is a complex promotion. 1244/// 1245/// A complex promotion is defined as a complex -> complex conversion 1246/// where the conversion between the underlying real types is a 1247/// floating-point or integral promotion. 1248bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1249 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1250 if (!FromComplex) 1251 return false; 1252 1253 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1254 if (!ToComplex) 1255 return false; 1256 1257 return IsFloatingPointPromotion(FromComplex->getElementType(), 1258 ToComplex->getElementType()) || 1259 IsIntegralPromotion(0, FromComplex->getElementType(), 1260 ToComplex->getElementType()); 1261} 1262 1263/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1264/// the pointer type FromPtr to a pointer to type ToPointee, with the 1265/// same type qualifiers as FromPtr has on its pointee type. ToType, 1266/// if non-empty, will be a pointer to ToType that may or may not have 1267/// the right set of qualifiers on its pointee. 1268static QualType 1269BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 1270 QualType ToPointee, QualType ToType, 1271 ASTContext &Context) { 1272 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 1273 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1274 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1275 1276 // Exact qualifier match -> return the pointer type we're converting to. 1277 if (CanonToPointee.getLocalQualifiers() == Quals) { 1278 // ToType is exactly what we need. Return it. 1279 if (!ToType.isNull()) 1280 return ToType.getUnqualifiedType(); 1281 1282 // Build a pointer to ToPointee. It has the right qualifiers 1283 // already. 1284 return Context.getPointerType(ToPointee); 1285 } 1286 1287 // Just build a canonical type that has the right qualifiers. 1288 return Context.getPointerType( 1289 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 1290 Quals)); 1291} 1292 1293/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from 1294/// the FromType, which is an objective-c pointer, to ToType, which may or may 1295/// not have the right set of qualifiers. 1296static QualType 1297BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, 1298 QualType ToType, 1299 ASTContext &Context) { 1300 QualType CanonFromType = Context.getCanonicalType(FromType); 1301 QualType CanonToType = Context.getCanonicalType(ToType); 1302 Qualifiers Quals = CanonFromType.getQualifiers(); 1303 1304 // Exact qualifier match -> return the pointer type we're converting to. 1305 if (CanonToType.getLocalQualifiers() == Quals) 1306 return ToType; 1307 1308 // Just build a canonical type that has the right qualifiers. 1309 return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); 1310} 1311 1312static bool isNullPointerConstantForConversion(Expr *Expr, 1313 bool InOverloadResolution, 1314 ASTContext &Context) { 1315 // Handle value-dependent integral null pointer constants correctly. 1316 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1317 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1318 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1319 return !InOverloadResolution; 1320 1321 return Expr->isNullPointerConstant(Context, 1322 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1323 : Expr::NPC_ValueDependentIsNull); 1324} 1325 1326/// IsPointerConversion - Determines whether the conversion of the 1327/// expression From, which has the (possibly adjusted) type FromType, 1328/// can be converted to the type ToType via a pointer conversion (C++ 1329/// 4.10). If so, returns true and places the converted type (that 1330/// might differ from ToType in its cv-qualifiers at some level) into 1331/// ConvertedType. 1332/// 1333/// This routine also supports conversions to and from block pointers 1334/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1335/// pointers to interfaces. FIXME: Once we've determined the 1336/// appropriate overloading rules for Objective-C, we may want to 1337/// split the Objective-C checks into a different routine; however, 1338/// GCC seems to consider all of these conversions to be pointer 1339/// conversions, so for now they live here. IncompatibleObjC will be 1340/// set if the conversion is an allowed Objective-C conversion that 1341/// should result in a warning. 1342bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1343 bool InOverloadResolution, 1344 QualType& ConvertedType, 1345 bool &IncompatibleObjC) { 1346 IncompatibleObjC = false; 1347 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 1348 return true; 1349 1350 // Conversion from a null pointer constant to any Objective-C pointer type. 1351 if (ToType->isObjCObjectPointerType() && 1352 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1353 ConvertedType = ToType; 1354 return true; 1355 } 1356 1357 // Blocks: Block pointers can be converted to void*. 1358 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1359 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1360 ConvertedType = ToType; 1361 return true; 1362 } 1363 // Blocks: A null pointer constant can be converted to a block 1364 // pointer type. 1365 if (ToType->isBlockPointerType() && 1366 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1367 ConvertedType = ToType; 1368 return true; 1369 } 1370 1371 // If the left-hand-side is nullptr_t, the right side can be a null 1372 // pointer constant. 1373 if (ToType->isNullPtrType() && 1374 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1375 ConvertedType = ToType; 1376 return true; 1377 } 1378 1379 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1380 if (!ToTypePtr) 1381 return false; 1382 1383 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1384 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1385 ConvertedType = ToType; 1386 return true; 1387 } 1388 1389 // Beyond this point, both types need to be pointers 1390 // , including objective-c pointers. 1391 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1392 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1393 ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, 1394 ToType, Context); 1395 return true; 1396 1397 } 1398 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1399 if (!FromTypePtr) 1400 return false; 1401 1402 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1403 1404 // An rvalue of type "pointer to cv T," where T is an object type, 1405 // can be converted to an rvalue of type "pointer to cv void" (C++ 1406 // 4.10p2). 1407 if (FromPointeeType->isIncompleteOrObjectType() && 1408 ToPointeeType->isVoidType()) { 1409 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1410 ToPointeeType, 1411 ToType, Context); 1412 return true; 1413 } 1414 1415 // When we're overloading in C, we allow a special kind of pointer 1416 // conversion for compatible-but-not-identical pointee types. 1417 if (!getLangOptions().CPlusPlus && 1418 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1419 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1420 ToPointeeType, 1421 ToType, Context); 1422 return true; 1423 } 1424 1425 // C++ [conv.ptr]p3: 1426 // 1427 // An rvalue of type "pointer to cv D," where D is a class type, 1428 // can be converted to an rvalue of type "pointer to cv B," where 1429 // B is a base class (clause 10) of D. If B is an inaccessible 1430 // (clause 11) or ambiguous (10.2) base class of D, a program that 1431 // necessitates this conversion is ill-formed. The result of the 1432 // conversion is a pointer to the base class sub-object of the 1433 // derived class object. The null pointer value is converted to 1434 // the null pointer value of the destination type. 1435 // 1436 // Note that we do not check for ambiguity or inaccessibility 1437 // here. That is handled by CheckPointerConversion. 1438 if (getLangOptions().CPlusPlus && 1439 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1440 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1441 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1442 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1443 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1444 ToPointeeType, 1445 ToType, Context); 1446 return true; 1447 } 1448 1449 return false; 1450} 1451 1452/// isObjCPointerConversion - Determines whether this is an 1453/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1454/// with the same arguments and return values. 1455bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1456 QualType& ConvertedType, 1457 bool &IncompatibleObjC) { 1458 if (!getLangOptions().ObjC1) 1459 return false; 1460 1461 // First, we handle all conversions on ObjC object pointer types. 1462 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1463 const ObjCObjectPointerType *FromObjCPtr = 1464 FromType->getAs<ObjCObjectPointerType>(); 1465 1466 if (ToObjCPtr && FromObjCPtr) { 1467 // Objective C++: We're able to convert between "id" or "Class" and a 1468 // pointer to any interface (in both directions). 1469 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1470 ConvertedType = ToType; 1471 return true; 1472 } 1473 // Conversions with Objective-C's id<...>. 1474 if ((FromObjCPtr->isObjCQualifiedIdType() || 1475 ToObjCPtr->isObjCQualifiedIdType()) && 1476 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1477 /*compare=*/false)) { 1478 ConvertedType = ToType; 1479 return true; 1480 } 1481 // Objective C++: We're able to convert from a pointer to an 1482 // interface to a pointer to a different interface. 1483 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1484 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1485 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1486 if (getLangOptions().CPlusPlus && LHS && RHS && 1487 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1488 FromObjCPtr->getPointeeType())) 1489 return false; 1490 ConvertedType = ToType; 1491 return true; 1492 } 1493 1494 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1495 // Okay: this is some kind of implicit downcast of Objective-C 1496 // interfaces, which is permitted. However, we're going to 1497 // complain about it. 1498 IncompatibleObjC = true; 1499 ConvertedType = FromType; 1500 return true; 1501 } 1502 } 1503 // Beyond this point, both types need to be C pointers or block pointers. 1504 QualType ToPointeeType; 1505 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1506 ToPointeeType = ToCPtr->getPointeeType(); 1507 else if (const BlockPointerType *ToBlockPtr = 1508 ToType->getAs<BlockPointerType>()) { 1509 // Objective C++: We're able to convert from a pointer to any object 1510 // to a block pointer type. 1511 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1512 ConvertedType = ToType; 1513 return true; 1514 } 1515 ToPointeeType = ToBlockPtr->getPointeeType(); 1516 } 1517 else if (FromType->getAs<BlockPointerType>() && 1518 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1519 // Objective C++: We're able to convert from a block pointer type to a 1520 // pointer to any object. 1521 ConvertedType = ToType; 1522 return true; 1523 } 1524 else 1525 return false; 1526 1527 QualType FromPointeeType; 1528 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1529 FromPointeeType = FromCPtr->getPointeeType(); 1530 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1531 FromPointeeType = FromBlockPtr->getPointeeType(); 1532 else 1533 return false; 1534 1535 // If we have pointers to pointers, recursively check whether this 1536 // is an Objective-C conversion. 1537 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1538 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1539 IncompatibleObjC)) { 1540 // We always complain about this conversion. 1541 IncompatibleObjC = true; 1542 ConvertedType = ToType; 1543 return true; 1544 } 1545 // Allow conversion of pointee being objective-c pointer to another one; 1546 // as in I* to id. 1547 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1548 ToPointeeType->getAs<ObjCObjectPointerType>() && 1549 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1550 IncompatibleObjC)) { 1551 ConvertedType = ToType; 1552 return true; 1553 } 1554 1555 // If we have pointers to functions or blocks, check whether the only 1556 // differences in the argument and result types are in Objective-C 1557 // pointer conversions. If so, we permit the conversion (but 1558 // complain about it). 1559 const FunctionProtoType *FromFunctionType 1560 = FromPointeeType->getAs<FunctionProtoType>(); 1561 const FunctionProtoType *ToFunctionType 1562 = ToPointeeType->getAs<FunctionProtoType>(); 1563 if (FromFunctionType && ToFunctionType) { 1564 // If the function types are exactly the same, this isn't an 1565 // Objective-C pointer conversion. 1566 if (Context.getCanonicalType(FromPointeeType) 1567 == Context.getCanonicalType(ToPointeeType)) 1568 return false; 1569 1570 // Perform the quick checks that will tell us whether these 1571 // function types are obviously different. 1572 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1573 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1574 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1575 return false; 1576 1577 bool HasObjCConversion = false; 1578 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1579 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1580 // Okay, the types match exactly. Nothing to do. 1581 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1582 ToFunctionType->getResultType(), 1583 ConvertedType, IncompatibleObjC)) { 1584 // Okay, we have an Objective-C pointer conversion. 1585 HasObjCConversion = true; 1586 } else { 1587 // Function types are too different. Abort. 1588 return false; 1589 } 1590 1591 // Check argument types. 1592 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1593 ArgIdx != NumArgs; ++ArgIdx) { 1594 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1595 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1596 if (Context.getCanonicalType(FromArgType) 1597 == Context.getCanonicalType(ToArgType)) { 1598 // Okay, the types match exactly. Nothing to do. 1599 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1600 ConvertedType, IncompatibleObjC)) { 1601 // Okay, we have an Objective-C pointer conversion. 1602 HasObjCConversion = true; 1603 } else { 1604 // Argument types are too different. Abort. 1605 return false; 1606 } 1607 } 1608 1609 if (HasObjCConversion) { 1610 // We had an Objective-C conversion. Allow this pointer 1611 // conversion, but complain about it. 1612 ConvertedType = ToType; 1613 IncompatibleObjC = true; 1614 return true; 1615 } 1616 } 1617 1618 return false; 1619} 1620 1621/// FunctionArgTypesAreEqual - This routine checks two function proto types 1622/// for equlity of their argument types. Caller has already checked that 1623/// they have same number of arguments. This routine assumes that Objective-C 1624/// pointer types which only differ in their protocol qualifiers are equal. 1625bool Sema::FunctionArgTypesAreEqual(FunctionProtoType* OldType, 1626 FunctionProtoType* NewType){ 1627 if (!getLangOptions().ObjC1) 1628 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 1629 NewType->arg_type_begin()); 1630 1631 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 1632 N = NewType->arg_type_begin(), 1633 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 1634 QualType ToType = (*O); 1635 QualType FromType = (*N); 1636 if (ToType != FromType) { 1637 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 1638 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 1639 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 1640 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 1641 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 1642 PTFr->getPointeeType()->isObjCQualifiedClassType())) 1643 continue; 1644 } 1645 else if (const ObjCObjectPointerType *PTTo = 1646 ToType->getAs<ObjCObjectPointerType>()) { 1647 if (const ObjCObjectPointerType *PTFr = 1648 FromType->getAs<ObjCObjectPointerType>()) 1649 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 1650 continue; 1651 } 1652 return false; 1653 } 1654 } 1655 return true; 1656} 1657 1658/// CheckPointerConversion - Check the pointer conversion from the 1659/// expression From to the type ToType. This routine checks for 1660/// ambiguous or inaccessible derived-to-base pointer 1661/// conversions for which IsPointerConversion has already returned 1662/// true. It returns true and produces a diagnostic if there was an 1663/// error, or returns false otherwise. 1664bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1665 CastExpr::CastKind &Kind, 1666 CXXCastPath& BasePath, 1667 bool IgnoreBaseAccess) { 1668 QualType FromType = From->getType(); 1669 1670 if (CXXBoolLiteralExpr* LitBool 1671 = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens())) 1672 if (LitBool->getValue() == false) 1673 Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false) 1674 << ToType; 1675 1676 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1677 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1678 QualType FromPointeeType = FromPtrType->getPointeeType(), 1679 ToPointeeType = ToPtrType->getPointeeType(); 1680 1681 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1682 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 1683 // We must have a derived-to-base conversion. Check an 1684 // ambiguous or inaccessible conversion. 1685 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1686 From->getExprLoc(), 1687 From->getSourceRange(), &BasePath, 1688 IgnoreBaseAccess)) 1689 return true; 1690 1691 // The conversion was successful. 1692 Kind = CastExpr::CK_DerivedToBase; 1693 } 1694 } 1695 if (const ObjCObjectPointerType *FromPtrType = 1696 FromType->getAs<ObjCObjectPointerType>()) 1697 if (const ObjCObjectPointerType *ToPtrType = 1698 ToType->getAs<ObjCObjectPointerType>()) { 1699 // Objective-C++ conversions are always okay. 1700 // FIXME: We should have a different class of conversions for the 1701 // Objective-C++ implicit conversions. 1702 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1703 return false; 1704 1705 } 1706 return false; 1707} 1708 1709/// IsMemberPointerConversion - Determines whether the conversion of the 1710/// expression From, which has the (possibly adjusted) type FromType, can be 1711/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1712/// If so, returns true and places the converted type (that might differ from 1713/// ToType in its cv-qualifiers at some level) into ConvertedType. 1714bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1715 QualType ToType, 1716 bool InOverloadResolution, 1717 QualType &ConvertedType) { 1718 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1719 if (!ToTypePtr) 1720 return false; 1721 1722 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1723 if (From->isNullPointerConstant(Context, 1724 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1725 : Expr::NPC_ValueDependentIsNull)) { 1726 ConvertedType = ToType; 1727 return true; 1728 } 1729 1730 // Otherwise, both types have to be member pointers. 1731 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1732 if (!FromTypePtr) 1733 return false; 1734 1735 // A pointer to member of B can be converted to a pointer to member of D, 1736 // where D is derived from B (C++ 4.11p2). 1737 QualType FromClass(FromTypePtr->getClass(), 0); 1738 QualType ToClass(ToTypePtr->getClass(), 0); 1739 // FIXME: What happens when these are dependent? Is this function even called? 1740 1741 if (IsDerivedFrom(ToClass, FromClass)) { 1742 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1743 ToClass.getTypePtr()); 1744 return true; 1745 } 1746 1747 return false; 1748} 1749 1750/// CheckMemberPointerConversion - Check the member pointer conversion from the 1751/// expression From to the type ToType. This routine checks for ambiguous or 1752/// virtual or inaccessible base-to-derived member pointer conversions 1753/// for which IsMemberPointerConversion has already returned true. It returns 1754/// true and produces a diagnostic if there was an error, or returns false 1755/// otherwise. 1756bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1757 CastExpr::CastKind &Kind, 1758 CXXCastPath &BasePath, 1759 bool IgnoreBaseAccess) { 1760 QualType FromType = From->getType(); 1761 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1762 if (!FromPtrType) { 1763 // This must be a null pointer to member pointer conversion 1764 assert(From->isNullPointerConstant(Context, 1765 Expr::NPC_ValueDependentIsNull) && 1766 "Expr must be null pointer constant!"); 1767 Kind = CastExpr::CK_NullToMemberPointer; 1768 return false; 1769 } 1770 1771 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1772 assert(ToPtrType && "No member pointer cast has a target type " 1773 "that is not a member pointer."); 1774 1775 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1776 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1777 1778 // FIXME: What about dependent types? 1779 assert(FromClass->isRecordType() && "Pointer into non-class."); 1780 assert(ToClass->isRecordType() && "Pointer into non-class."); 1781 1782 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1783 /*DetectVirtual=*/true); 1784 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1785 assert(DerivationOkay && 1786 "Should not have been called if derivation isn't OK."); 1787 (void)DerivationOkay; 1788 1789 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1790 getUnqualifiedType())) { 1791 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1792 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1793 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1794 return true; 1795 } 1796 1797 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1798 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1799 << FromClass << ToClass << QualType(VBase, 0) 1800 << From->getSourceRange(); 1801 return true; 1802 } 1803 1804 if (!IgnoreBaseAccess) 1805 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 1806 Paths.front(), 1807 diag::err_downcast_from_inaccessible_base); 1808 1809 // Must be a base to derived member conversion. 1810 BuildBasePathArray(Paths, BasePath); 1811 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1812 return false; 1813} 1814 1815/// IsQualificationConversion - Determines whether the conversion from 1816/// an rvalue of type FromType to ToType is a qualification conversion 1817/// (C++ 4.4). 1818bool 1819Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1820 FromType = Context.getCanonicalType(FromType); 1821 ToType = Context.getCanonicalType(ToType); 1822 1823 // If FromType and ToType are the same type, this is not a 1824 // qualification conversion. 1825 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 1826 return false; 1827 1828 // (C++ 4.4p4): 1829 // A conversion can add cv-qualifiers at levels other than the first 1830 // in multi-level pointers, subject to the following rules: [...] 1831 bool PreviousToQualsIncludeConst = true; 1832 bool UnwrappedAnyPointer = false; 1833 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 1834 // Within each iteration of the loop, we check the qualifiers to 1835 // determine if this still looks like a qualification 1836 // conversion. Then, if all is well, we unwrap one more level of 1837 // pointers or pointers-to-members and do it all again 1838 // until there are no more pointers or pointers-to-members left to 1839 // unwrap. 1840 UnwrappedAnyPointer = true; 1841 1842 // -- for every j > 0, if const is in cv 1,j then const is in cv 1843 // 2,j, and similarly for volatile. 1844 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1845 return false; 1846 1847 // -- if the cv 1,j and cv 2,j are different, then const is in 1848 // every cv for 0 < k < j. 1849 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1850 && !PreviousToQualsIncludeConst) 1851 return false; 1852 1853 // Keep track of whether all prior cv-qualifiers in the "to" type 1854 // include const. 1855 PreviousToQualsIncludeConst 1856 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1857 } 1858 1859 // We are left with FromType and ToType being the pointee types 1860 // after unwrapping the original FromType and ToType the same number 1861 // of types. If we unwrapped any pointers, and if FromType and 1862 // ToType have the same unqualified type (since we checked 1863 // qualifiers above), then this is a qualification conversion. 1864 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1865} 1866 1867/// Determines whether there is a user-defined conversion sequence 1868/// (C++ [over.ics.user]) that converts expression From to the type 1869/// ToType. If such a conversion exists, User will contain the 1870/// user-defined conversion sequence that performs such a conversion 1871/// and this routine will return true. Otherwise, this routine returns 1872/// false and User is unspecified. 1873/// 1874/// \param AllowExplicit true if the conversion should consider C++0x 1875/// "explicit" conversion functions as well as non-explicit conversion 1876/// functions (C++0x [class.conv.fct]p2). 1877OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 1878 UserDefinedConversionSequence& User, 1879 OverloadCandidateSet& CandidateSet, 1880 bool AllowExplicit) { 1881 // Whether we will only visit constructors. 1882 bool ConstructorsOnly = false; 1883 1884 // If the type we are conversion to is a class type, enumerate its 1885 // constructors. 1886 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1887 // C++ [over.match.ctor]p1: 1888 // When objects of class type are direct-initialized (8.5), or 1889 // copy-initialized from an expression of the same or a 1890 // derived class type (8.5), overload resolution selects the 1891 // constructor. [...] For copy-initialization, the candidate 1892 // functions are all the converting constructors (12.3.1) of 1893 // that class. The argument list is the expression-list within 1894 // the parentheses of the initializer. 1895 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1896 (From->getType()->getAs<RecordType>() && 1897 IsDerivedFrom(From->getType(), ToType))) 1898 ConstructorsOnly = true; 1899 1900 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1901 // We're not going to find any constructors. 1902 } else if (CXXRecordDecl *ToRecordDecl 1903 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1904 DeclContext::lookup_iterator Con, ConEnd; 1905 for (llvm::tie(Con, ConEnd) = LookupConstructors(ToRecordDecl); 1906 Con != ConEnd; ++Con) { 1907 NamedDecl *D = *Con; 1908 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 1909 1910 // Find the constructor (which may be a template). 1911 CXXConstructorDecl *Constructor = 0; 1912 FunctionTemplateDecl *ConstructorTmpl 1913 = dyn_cast<FunctionTemplateDecl>(D); 1914 if (ConstructorTmpl) 1915 Constructor 1916 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1917 else 1918 Constructor = cast<CXXConstructorDecl>(D); 1919 1920 if (!Constructor->isInvalidDecl() && 1921 Constructor->isConvertingConstructor(AllowExplicit)) { 1922 if (ConstructorTmpl) 1923 AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 1924 /*ExplicitArgs*/ 0, 1925 &From, 1, CandidateSet, 1926 /*SuppressUserConversions=*/!ConstructorsOnly); 1927 else 1928 // Allow one user-defined conversion when user specifies a 1929 // From->ToType conversion via an static cast (c-style, etc). 1930 AddOverloadCandidate(Constructor, FoundDecl, 1931 &From, 1, CandidateSet, 1932 /*SuppressUserConversions=*/!ConstructorsOnly); 1933 } 1934 } 1935 } 1936 } 1937 1938 // Enumerate conversion functions, if we're allowed to. 1939 if (ConstructorsOnly) { 1940 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1941 PDiag(0) << From->getSourceRange())) { 1942 // No conversion functions from incomplete types. 1943 } else if (const RecordType *FromRecordType 1944 = From->getType()->getAs<RecordType>()) { 1945 if (CXXRecordDecl *FromRecordDecl 1946 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1947 // Add all of the conversion functions as candidates. 1948 const UnresolvedSetImpl *Conversions 1949 = FromRecordDecl->getVisibleConversionFunctions(); 1950 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 1951 E = Conversions->end(); I != E; ++I) { 1952 DeclAccessPair FoundDecl = I.getPair(); 1953 NamedDecl *D = FoundDecl.getDecl(); 1954 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 1955 if (isa<UsingShadowDecl>(D)) 1956 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1957 1958 CXXConversionDecl *Conv; 1959 FunctionTemplateDecl *ConvTemplate; 1960 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 1961 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1962 else 1963 Conv = cast<CXXConversionDecl>(D); 1964 1965 if (AllowExplicit || !Conv->isExplicit()) { 1966 if (ConvTemplate) 1967 AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 1968 ActingContext, From, ToType, 1969 CandidateSet); 1970 else 1971 AddConversionCandidate(Conv, FoundDecl, ActingContext, 1972 From, ToType, CandidateSet); 1973 } 1974 } 1975 } 1976 } 1977 1978 OverloadCandidateSet::iterator Best; 1979 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1980 case OR_Success: 1981 // Record the standard conversion we used and the conversion function. 1982 if (CXXConstructorDecl *Constructor 1983 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1984 // C++ [over.ics.user]p1: 1985 // If the user-defined conversion is specified by a 1986 // constructor (12.3.1), the initial standard conversion 1987 // sequence converts the source type to the type required by 1988 // the argument of the constructor. 1989 // 1990 QualType ThisType = Constructor->getThisType(Context); 1991 if (Best->Conversions[0].isEllipsis()) 1992 User.EllipsisConversion = true; 1993 else { 1994 User.Before = Best->Conversions[0].Standard; 1995 User.EllipsisConversion = false; 1996 } 1997 User.ConversionFunction = Constructor; 1998 User.After.setAsIdentityConversion(); 1999 User.After.setFromType( 2000 ThisType->getAs<PointerType>()->getPointeeType()); 2001 User.After.setAllToTypes(ToType); 2002 return OR_Success; 2003 } else if (CXXConversionDecl *Conversion 2004 = dyn_cast<CXXConversionDecl>(Best->Function)) { 2005 // C++ [over.ics.user]p1: 2006 // 2007 // [...] If the user-defined conversion is specified by a 2008 // conversion function (12.3.2), the initial standard 2009 // conversion sequence converts the source type to the 2010 // implicit object parameter of the conversion function. 2011 User.Before = Best->Conversions[0].Standard; 2012 User.ConversionFunction = Conversion; 2013 User.EllipsisConversion = false; 2014 2015 // C++ [over.ics.user]p2: 2016 // The second standard conversion sequence converts the 2017 // result of the user-defined conversion to the target type 2018 // for the sequence. Since an implicit conversion sequence 2019 // is an initialization, the special rules for 2020 // initialization by user-defined conversion apply when 2021 // selecting the best user-defined conversion for a 2022 // user-defined conversion sequence (see 13.3.3 and 2023 // 13.3.3.1). 2024 User.After = Best->FinalConversion; 2025 return OR_Success; 2026 } else { 2027 assert(false && "Not a constructor or conversion function?"); 2028 return OR_No_Viable_Function; 2029 } 2030 2031 case OR_No_Viable_Function: 2032 return OR_No_Viable_Function; 2033 case OR_Deleted: 2034 // No conversion here! We're done. 2035 return OR_Deleted; 2036 2037 case OR_Ambiguous: 2038 return OR_Ambiguous; 2039 } 2040 2041 return OR_No_Viable_Function; 2042} 2043 2044bool 2045Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2046 ImplicitConversionSequence ICS; 2047 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2048 OverloadingResult OvResult = 2049 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 2050 CandidateSet, false); 2051 if (OvResult == OR_Ambiguous) 2052 Diag(From->getSourceRange().getBegin(), 2053 diag::err_typecheck_ambiguous_condition) 2054 << From->getType() << ToType << From->getSourceRange(); 2055 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2056 Diag(From->getSourceRange().getBegin(), 2057 diag::err_typecheck_nonviable_condition) 2058 << From->getType() << ToType << From->getSourceRange(); 2059 else 2060 return false; 2061 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1); 2062 return true; 2063} 2064 2065/// CompareImplicitConversionSequences - Compare two implicit 2066/// conversion sequences to determine whether one is better than the 2067/// other or if they are indistinguishable (C++ 13.3.3.2). 2068ImplicitConversionSequence::CompareKind 2069Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 2070 const ImplicitConversionSequence& ICS2) 2071{ 2072 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2073 // conversion sequences (as defined in 13.3.3.1) 2074 // -- a standard conversion sequence (13.3.3.1.1) is a better 2075 // conversion sequence than a user-defined conversion sequence or 2076 // an ellipsis conversion sequence, and 2077 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2078 // conversion sequence than an ellipsis conversion sequence 2079 // (13.3.3.1.3). 2080 // 2081 // C++0x [over.best.ics]p10: 2082 // For the purpose of ranking implicit conversion sequences as 2083 // described in 13.3.3.2, the ambiguous conversion sequence is 2084 // treated as a user-defined sequence that is indistinguishable 2085 // from any other user-defined conversion sequence. 2086 if (ICS1.getKindRank() < ICS2.getKindRank()) 2087 return ImplicitConversionSequence::Better; 2088 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2089 return ImplicitConversionSequence::Worse; 2090 2091 // The following checks require both conversion sequences to be of 2092 // the same kind. 2093 if (ICS1.getKind() != ICS2.getKind()) 2094 return ImplicitConversionSequence::Indistinguishable; 2095 2096 // Two implicit conversion sequences of the same form are 2097 // indistinguishable conversion sequences unless one of the 2098 // following rules apply: (C++ 13.3.3.2p3): 2099 if (ICS1.isStandard()) 2100 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 2101 else if (ICS1.isUserDefined()) { 2102 // User-defined conversion sequence U1 is a better conversion 2103 // sequence than another user-defined conversion sequence U2 if 2104 // they contain the same user-defined conversion function or 2105 // constructor and if the second standard conversion sequence of 2106 // U1 is better than the second standard conversion sequence of 2107 // U2 (C++ 13.3.3.2p3). 2108 if (ICS1.UserDefined.ConversionFunction == 2109 ICS2.UserDefined.ConversionFunction) 2110 return CompareStandardConversionSequences(ICS1.UserDefined.After, 2111 ICS2.UserDefined.After); 2112 } 2113 2114 return ImplicitConversionSequence::Indistinguishable; 2115} 2116 2117static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2118 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2119 Qualifiers Quals; 2120 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2121 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2122 } 2123 2124 return Context.hasSameUnqualifiedType(T1, T2); 2125} 2126 2127// Per 13.3.3.2p3, compare the given standard conversion sequences to 2128// determine if one is a proper subset of the other. 2129static ImplicitConversionSequence::CompareKind 2130compareStandardConversionSubsets(ASTContext &Context, 2131 const StandardConversionSequence& SCS1, 2132 const StandardConversionSequence& SCS2) { 2133 ImplicitConversionSequence::CompareKind Result 2134 = ImplicitConversionSequence::Indistinguishable; 2135 2136 // the identity conversion sequence is considered to be a subsequence of 2137 // any non-identity conversion sequence 2138 if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) { 2139 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2140 return ImplicitConversionSequence::Better; 2141 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2142 return ImplicitConversionSequence::Worse; 2143 } 2144 2145 if (SCS1.Second != SCS2.Second) { 2146 if (SCS1.Second == ICK_Identity) 2147 Result = ImplicitConversionSequence::Better; 2148 else if (SCS2.Second == ICK_Identity) 2149 Result = ImplicitConversionSequence::Worse; 2150 else 2151 return ImplicitConversionSequence::Indistinguishable; 2152 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2153 return ImplicitConversionSequence::Indistinguishable; 2154 2155 if (SCS1.Third == SCS2.Third) { 2156 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2157 : ImplicitConversionSequence::Indistinguishable; 2158 } 2159 2160 if (SCS1.Third == ICK_Identity) 2161 return Result == ImplicitConversionSequence::Worse 2162 ? ImplicitConversionSequence::Indistinguishable 2163 : ImplicitConversionSequence::Better; 2164 2165 if (SCS2.Third == ICK_Identity) 2166 return Result == ImplicitConversionSequence::Better 2167 ? ImplicitConversionSequence::Indistinguishable 2168 : ImplicitConversionSequence::Worse; 2169 2170 return ImplicitConversionSequence::Indistinguishable; 2171} 2172 2173/// CompareStandardConversionSequences - Compare two standard 2174/// conversion sequences to determine whether one is better than the 2175/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2176ImplicitConversionSequence::CompareKind 2177Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 2178 const StandardConversionSequence& SCS2) 2179{ 2180 // Standard conversion sequence S1 is a better conversion sequence 2181 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2182 2183 // -- S1 is a proper subsequence of S2 (comparing the conversion 2184 // sequences in the canonical form defined by 13.3.3.1.1, 2185 // excluding any Lvalue Transformation; the identity conversion 2186 // sequence is considered to be a subsequence of any 2187 // non-identity conversion sequence) or, if not that, 2188 if (ImplicitConversionSequence::CompareKind CK 2189 = compareStandardConversionSubsets(Context, SCS1, SCS2)) 2190 return CK; 2191 2192 // -- the rank of S1 is better than the rank of S2 (by the rules 2193 // defined below), or, if not that, 2194 ImplicitConversionRank Rank1 = SCS1.getRank(); 2195 ImplicitConversionRank Rank2 = SCS2.getRank(); 2196 if (Rank1 < Rank2) 2197 return ImplicitConversionSequence::Better; 2198 else if (Rank2 < Rank1) 2199 return ImplicitConversionSequence::Worse; 2200 2201 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2202 // are indistinguishable unless one of the following rules 2203 // applies: 2204 2205 // A conversion that is not a conversion of a pointer, or 2206 // pointer to member, to bool is better than another conversion 2207 // that is such a conversion. 2208 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2209 return SCS2.isPointerConversionToBool() 2210 ? ImplicitConversionSequence::Better 2211 : ImplicitConversionSequence::Worse; 2212 2213 // C++ [over.ics.rank]p4b2: 2214 // 2215 // If class B is derived directly or indirectly from class A, 2216 // conversion of B* to A* is better than conversion of B* to 2217 // void*, and conversion of A* to void* is better than conversion 2218 // of B* to void*. 2219 bool SCS1ConvertsToVoid 2220 = SCS1.isPointerConversionToVoidPointer(Context); 2221 bool SCS2ConvertsToVoid 2222 = SCS2.isPointerConversionToVoidPointer(Context); 2223 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2224 // Exactly one of the conversion sequences is a conversion to 2225 // a void pointer; it's the worse conversion. 2226 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2227 : ImplicitConversionSequence::Worse; 2228 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2229 // Neither conversion sequence converts to a void pointer; compare 2230 // their derived-to-base conversions. 2231 if (ImplicitConversionSequence::CompareKind DerivedCK 2232 = CompareDerivedToBaseConversions(SCS1, SCS2)) 2233 return DerivedCK; 2234 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 2235 // Both conversion sequences are conversions to void 2236 // pointers. Compare the source types to determine if there's an 2237 // inheritance relationship in their sources. 2238 QualType FromType1 = SCS1.getFromType(); 2239 QualType FromType2 = SCS2.getFromType(); 2240 2241 // Adjust the types we're converting from via the array-to-pointer 2242 // conversion, if we need to. 2243 if (SCS1.First == ICK_Array_To_Pointer) 2244 FromType1 = Context.getArrayDecayedType(FromType1); 2245 if (SCS2.First == ICK_Array_To_Pointer) 2246 FromType2 = Context.getArrayDecayedType(FromType2); 2247 2248 QualType FromPointee1 2249 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2250 QualType FromPointee2 2251 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2252 2253 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2254 return ImplicitConversionSequence::Better; 2255 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2256 return ImplicitConversionSequence::Worse; 2257 2258 // Objective-C++: If one interface is more specific than the 2259 // other, it is the better one. 2260 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2261 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2262 if (FromIface1 && FromIface1) { 2263 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2264 return ImplicitConversionSequence::Better; 2265 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2266 return ImplicitConversionSequence::Worse; 2267 } 2268 } 2269 2270 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2271 // bullet 3). 2272 if (ImplicitConversionSequence::CompareKind QualCK 2273 = CompareQualificationConversions(SCS1, SCS2)) 2274 return QualCK; 2275 2276 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2277 // C++0x [over.ics.rank]p3b4: 2278 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2279 // implicit object parameter of a non-static member function declared 2280 // without a ref-qualifier, and S1 binds an rvalue reference to an 2281 // rvalue and S2 binds an lvalue reference. 2282 // FIXME: We don't know if we're dealing with the implicit object parameter, 2283 // or if the member function in this case has a ref qualifier. 2284 // (Of course, we don't have ref qualifiers yet.) 2285 if (SCS1.RRefBinding != SCS2.RRefBinding) 2286 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 2287 : ImplicitConversionSequence::Worse; 2288 2289 // C++ [over.ics.rank]p3b4: 2290 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2291 // which the references refer are the same type except for 2292 // top-level cv-qualifiers, and the type to which the reference 2293 // initialized by S2 refers is more cv-qualified than the type 2294 // to which the reference initialized by S1 refers. 2295 QualType T1 = SCS1.getToType(2); 2296 QualType T2 = SCS2.getToType(2); 2297 T1 = Context.getCanonicalType(T1); 2298 T2 = Context.getCanonicalType(T2); 2299 Qualifiers T1Quals, T2Quals; 2300 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2301 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2302 if (UnqualT1 == UnqualT2) { 2303 // If the type is an array type, promote the element qualifiers to the type 2304 // for comparison. 2305 if (isa<ArrayType>(T1) && T1Quals) 2306 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2307 if (isa<ArrayType>(T2) && T2Quals) 2308 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2309 if (T2.isMoreQualifiedThan(T1)) 2310 return ImplicitConversionSequence::Better; 2311 else if (T1.isMoreQualifiedThan(T2)) 2312 return ImplicitConversionSequence::Worse; 2313 } 2314 } 2315 2316 return ImplicitConversionSequence::Indistinguishable; 2317} 2318 2319/// CompareQualificationConversions - Compares two standard conversion 2320/// sequences to determine whether they can be ranked based on their 2321/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2322ImplicitConversionSequence::CompareKind 2323Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 2324 const StandardConversionSequence& SCS2) { 2325 // C++ 13.3.3.2p3: 2326 // -- S1 and S2 differ only in their qualification conversion and 2327 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2328 // cv-qualification signature of type T1 is a proper subset of 2329 // the cv-qualification signature of type T2, and S1 is not the 2330 // deprecated string literal array-to-pointer conversion (4.2). 2331 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2332 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2333 return ImplicitConversionSequence::Indistinguishable; 2334 2335 // FIXME: the example in the standard doesn't use a qualification 2336 // conversion (!) 2337 QualType T1 = SCS1.getToType(2); 2338 QualType T2 = SCS2.getToType(2); 2339 T1 = Context.getCanonicalType(T1); 2340 T2 = Context.getCanonicalType(T2); 2341 Qualifiers T1Quals, T2Quals; 2342 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2343 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2344 2345 // If the types are the same, we won't learn anything by unwrapped 2346 // them. 2347 if (UnqualT1 == UnqualT2) 2348 return ImplicitConversionSequence::Indistinguishable; 2349 2350 // If the type is an array type, promote the element qualifiers to the type 2351 // for comparison. 2352 if (isa<ArrayType>(T1) && T1Quals) 2353 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2354 if (isa<ArrayType>(T2) && T2Quals) 2355 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2356 2357 ImplicitConversionSequence::CompareKind Result 2358 = ImplicitConversionSequence::Indistinguishable; 2359 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2360 // Within each iteration of the loop, we check the qualifiers to 2361 // determine if this still looks like a qualification 2362 // conversion. Then, if all is well, we unwrap one more level of 2363 // pointers or pointers-to-members and do it all again 2364 // until there are no more pointers or pointers-to-members left 2365 // to unwrap. This essentially mimics what 2366 // IsQualificationConversion does, but here we're checking for a 2367 // strict subset of qualifiers. 2368 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2369 // The qualifiers are the same, so this doesn't tell us anything 2370 // about how the sequences rank. 2371 ; 2372 else if (T2.isMoreQualifiedThan(T1)) { 2373 // T1 has fewer qualifiers, so it could be the better sequence. 2374 if (Result == ImplicitConversionSequence::Worse) 2375 // Neither has qualifiers that are a subset of the other's 2376 // qualifiers. 2377 return ImplicitConversionSequence::Indistinguishable; 2378 2379 Result = ImplicitConversionSequence::Better; 2380 } else if (T1.isMoreQualifiedThan(T2)) { 2381 // T2 has fewer qualifiers, so it could be the better sequence. 2382 if (Result == ImplicitConversionSequence::Better) 2383 // Neither has qualifiers that are a subset of the other's 2384 // qualifiers. 2385 return ImplicitConversionSequence::Indistinguishable; 2386 2387 Result = ImplicitConversionSequence::Worse; 2388 } else { 2389 // Qualifiers are disjoint. 2390 return ImplicitConversionSequence::Indistinguishable; 2391 } 2392 2393 // If the types after this point are equivalent, we're done. 2394 if (Context.hasSameUnqualifiedType(T1, T2)) 2395 break; 2396 } 2397 2398 // Check that the winning standard conversion sequence isn't using 2399 // the deprecated string literal array to pointer conversion. 2400 switch (Result) { 2401 case ImplicitConversionSequence::Better: 2402 if (SCS1.DeprecatedStringLiteralToCharPtr) 2403 Result = ImplicitConversionSequence::Indistinguishable; 2404 break; 2405 2406 case ImplicitConversionSequence::Indistinguishable: 2407 break; 2408 2409 case ImplicitConversionSequence::Worse: 2410 if (SCS2.DeprecatedStringLiteralToCharPtr) 2411 Result = ImplicitConversionSequence::Indistinguishable; 2412 break; 2413 } 2414 2415 return Result; 2416} 2417 2418/// CompareDerivedToBaseConversions - Compares two standard conversion 2419/// sequences to determine whether they can be ranked based on their 2420/// various kinds of derived-to-base conversions (C++ 2421/// [over.ics.rank]p4b3). As part of these checks, we also look at 2422/// conversions between Objective-C interface types. 2423ImplicitConversionSequence::CompareKind 2424Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 2425 const StandardConversionSequence& SCS2) { 2426 QualType FromType1 = SCS1.getFromType(); 2427 QualType ToType1 = SCS1.getToType(1); 2428 QualType FromType2 = SCS2.getFromType(); 2429 QualType ToType2 = SCS2.getToType(1); 2430 2431 // Adjust the types we're converting from via the array-to-pointer 2432 // conversion, if we need to. 2433 if (SCS1.First == ICK_Array_To_Pointer) 2434 FromType1 = Context.getArrayDecayedType(FromType1); 2435 if (SCS2.First == ICK_Array_To_Pointer) 2436 FromType2 = Context.getArrayDecayedType(FromType2); 2437 2438 // Canonicalize all of the types. 2439 FromType1 = Context.getCanonicalType(FromType1); 2440 ToType1 = Context.getCanonicalType(ToType1); 2441 FromType2 = Context.getCanonicalType(FromType2); 2442 ToType2 = Context.getCanonicalType(ToType2); 2443 2444 // C++ [over.ics.rank]p4b3: 2445 // 2446 // If class B is derived directly or indirectly from class A and 2447 // class C is derived directly or indirectly from B, 2448 // 2449 // For Objective-C, we let A, B, and C also be Objective-C 2450 // interfaces. 2451 2452 // Compare based on pointer conversions. 2453 if (SCS1.Second == ICK_Pointer_Conversion && 2454 SCS2.Second == ICK_Pointer_Conversion && 2455 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2456 FromType1->isPointerType() && FromType2->isPointerType() && 2457 ToType1->isPointerType() && ToType2->isPointerType()) { 2458 QualType FromPointee1 2459 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2460 QualType ToPointee1 2461 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2462 QualType FromPointee2 2463 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2464 QualType ToPointee2 2465 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2466 2467 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2468 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2469 const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>(); 2470 const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>(); 2471 2472 // -- conversion of C* to B* is better than conversion of C* to A*, 2473 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2474 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2475 return ImplicitConversionSequence::Better; 2476 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2477 return ImplicitConversionSequence::Worse; 2478 2479 if (ToIface1 && ToIface2) { 2480 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 2481 return ImplicitConversionSequence::Better; 2482 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 2483 return ImplicitConversionSequence::Worse; 2484 } 2485 } 2486 2487 // -- conversion of B* to A* is better than conversion of C* to A*, 2488 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2489 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2490 return ImplicitConversionSequence::Better; 2491 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2492 return ImplicitConversionSequence::Worse; 2493 2494 if (FromIface1 && FromIface2) { 2495 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2496 return ImplicitConversionSequence::Better; 2497 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2498 return ImplicitConversionSequence::Worse; 2499 } 2500 } 2501 } 2502 2503 // Ranking of member-pointer types. 2504 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2505 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2506 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2507 const MemberPointerType * FromMemPointer1 = 2508 FromType1->getAs<MemberPointerType>(); 2509 const MemberPointerType * ToMemPointer1 = 2510 ToType1->getAs<MemberPointerType>(); 2511 const MemberPointerType * FromMemPointer2 = 2512 FromType2->getAs<MemberPointerType>(); 2513 const MemberPointerType * ToMemPointer2 = 2514 ToType2->getAs<MemberPointerType>(); 2515 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2516 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2517 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2518 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2519 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2520 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2521 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2522 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2523 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2524 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2525 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2526 return ImplicitConversionSequence::Worse; 2527 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2528 return ImplicitConversionSequence::Better; 2529 } 2530 // conversion of B::* to C::* is better than conversion of A::* to C::* 2531 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2532 if (IsDerivedFrom(FromPointee1, FromPointee2)) 2533 return ImplicitConversionSequence::Better; 2534 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 2535 return ImplicitConversionSequence::Worse; 2536 } 2537 } 2538 2539 if (SCS1.Second == ICK_Derived_To_Base) { 2540 // -- conversion of C to B is better than conversion of C to A, 2541 // -- binding of an expression of type C to a reference of type 2542 // B& is better than binding an expression of type C to a 2543 // reference of type A&, 2544 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2545 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2546 if (IsDerivedFrom(ToType1, ToType2)) 2547 return ImplicitConversionSequence::Better; 2548 else if (IsDerivedFrom(ToType2, ToType1)) 2549 return ImplicitConversionSequence::Worse; 2550 } 2551 2552 // -- conversion of B to A is better than conversion of C to A. 2553 // -- binding of an expression of type B to a reference of type 2554 // A& is better than binding an expression of type C to a 2555 // reference of type A&, 2556 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2557 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2558 if (IsDerivedFrom(FromType2, FromType1)) 2559 return ImplicitConversionSequence::Better; 2560 else if (IsDerivedFrom(FromType1, FromType2)) 2561 return ImplicitConversionSequence::Worse; 2562 } 2563 } 2564 2565 return ImplicitConversionSequence::Indistinguishable; 2566} 2567 2568/// CompareReferenceRelationship - Compare the two types T1 and T2 to 2569/// determine whether they are reference-related, 2570/// reference-compatible, reference-compatible with added 2571/// qualification, or incompatible, for use in C++ initialization by 2572/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 2573/// type, and the first type (T1) is the pointee type of the reference 2574/// type being initialized. 2575Sema::ReferenceCompareResult 2576Sema::CompareReferenceRelationship(SourceLocation Loc, 2577 QualType OrigT1, QualType OrigT2, 2578 bool &DerivedToBase, 2579 bool &ObjCConversion) { 2580 assert(!OrigT1->isReferenceType() && 2581 "T1 must be the pointee type of the reference type"); 2582 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 2583 2584 QualType T1 = Context.getCanonicalType(OrigT1); 2585 QualType T2 = Context.getCanonicalType(OrigT2); 2586 Qualifiers T1Quals, T2Quals; 2587 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2588 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2589 2590 // C++ [dcl.init.ref]p4: 2591 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 2592 // reference-related to "cv2 T2" if T1 is the same type as T2, or 2593 // T1 is a base class of T2. 2594 DerivedToBase = false; 2595 ObjCConversion = false; 2596 if (UnqualT1 == UnqualT2) { 2597 // Nothing to do. 2598 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 2599 IsDerivedFrom(UnqualT2, UnqualT1)) 2600 DerivedToBase = true; 2601 else if (UnqualT1->isObjCObjectOrInterfaceType() && 2602 UnqualT2->isObjCObjectOrInterfaceType() && 2603 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 2604 ObjCConversion = true; 2605 else 2606 return Ref_Incompatible; 2607 2608 // At this point, we know that T1 and T2 are reference-related (at 2609 // least). 2610 2611 // If the type is an array type, promote the element qualifiers to the type 2612 // for comparison. 2613 if (isa<ArrayType>(T1) && T1Quals) 2614 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2615 if (isa<ArrayType>(T2) && T2Quals) 2616 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2617 2618 // C++ [dcl.init.ref]p4: 2619 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 2620 // reference-related to T2 and cv1 is the same cv-qualification 2621 // as, or greater cv-qualification than, cv2. For purposes of 2622 // overload resolution, cases for which cv1 is greater 2623 // cv-qualification than cv2 are identified as 2624 // reference-compatible with added qualification (see 13.3.3.2). 2625 if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) 2626 return Ref_Compatible; 2627 else if (T1.isMoreQualifiedThan(T2)) 2628 return Ref_Compatible_With_Added_Qualification; 2629 else 2630 return Ref_Related; 2631} 2632 2633/// \brief Look for a user-defined conversion to an value reference-compatible 2634/// with DeclType. Return true if something definite is found. 2635static bool 2636FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 2637 QualType DeclType, SourceLocation DeclLoc, 2638 Expr *Init, QualType T2, bool AllowRvalues, 2639 bool AllowExplicit) { 2640 assert(T2->isRecordType() && "Can only find conversions of record types."); 2641 CXXRecordDecl *T2RecordDecl 2642 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 2643 2644 QualType ToType 2645 = AllowRvalues? DeclType->getAs<ReferenceType>()->getPointeeType() 2646 : DeclType; 2647 2648 OverloadCandidateSet CandidateSet(DeclLoc); 2649 const UnresolvedSetImpl *Conversions 2650 = T2RecordDecl->getVisibleConversionFunctions(); 2651 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2652 E = Conversions->end(); I != E; ++I) { 2653 NamedDecl *D = *I; 2654 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 2655 if (isa<UsingShadowDecl>(D)) 2656 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2657 2658 FunctionTemplateDecl *ConvTemplate 2659 = dyn_cast<FunctionTemplateDecl>(D); 2660 CXXConversionDecl *Conv; 2661 if (ConvTemplate) 2662 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2663 else 2664 Conv = cast<CXXConversionDecl>(D); 2665 2666 // If this is an explicit conversion, and we're not allowed to consider 2667 // explicit conversions, skip it. 2668 if (!AllowExplicit && Conv->isExplicit()) 2669 continue; 2670 2671 if (AllowRvalues) { 2672 bool DerivedToBase = false; 2673 bool ObjCConversion = false; 2674 if (!ConvTemplate && 2675 S.CompareReferenceRelationship(DeclLoc, 2676 Conv->getConversionType().getNonReferenceType().getUnqualifiedType(), 2677 DeclType.getNonReferenceType().getUnqualifiedType(), 2678 DerivedToBase, ObjCConversion) 2679 == Sema::Ref_Incompatible) 2680 continue; 2681 } else { 2682 // If the conversion function doesn't return a reference type, 2683 // it can't be considered for this conversion. An rvalue reference 2684 // is only acceptable if its referencee is a function type. 2685 2686 const ReferenceType *RefType = 2687 Conv->getConversionType()->getAs<ReferenceType>(); 2688 if (!RefType || 2689 (!RefType->isLValueReferenceType() && 2690 !RefType->getPointeeType()->isFunctionType())) 2691 continue; 2692 } 2693 2694 if (ConvTemplate) 2695 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 2696 Init, ToType, CandidateSet); 2697 else 2698 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 2699 ToType, CandidateSet); 2700 } 2701 2702 OverloadCandidateSet::iterator Best; 2703 switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) { 2704 case OR_Success: 2705 // C++ [over.ics.ref]p1: 2706 // 2707 // [...] If the parameter binds directly to the result of 2708 // applying a conversion function to the argument 2709 // expression, the implicit conversion sequence is a 2710 // user-defined conversion sequence (13.3.3.1.2), with the 2711 // second standard conversion sequence either an identity 2712 // conversion or, if the conversion function returns an 2713 // entity of a type that is a derived class of the parameter 2714 // type, a derived-to-base Conversion. 2715 if (!Best->FinalConversion.DirectBinding) 2716 return false; 2717 2718 ICS.setUserDefined(); 2719 ICS.UserDefined.Before = Best->Conversions[0].Standard; 2720 ICS.UserDefined.After = Best->FinalConversion; 2721 ICS.UserDefined.ConversionFunction = Best->Function; 2722 ICS.UserDefined.EllipsisConversion = false; 2723 assert(ICS.UserDefined.After.ReferenceBinding && 2724 ICS.UserDefined.After.DirectBinding && 2725 "Expected a direct reference binding!"); 2726 return true; 2727 2728 case OR_Ambiguous: 2729 ICS.setAmbiguous(); 2730 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 2731 Cand != CandidateSet.end(); ++Cand) 2732 if (Cand->Viable) 2733 ICS.Ambiguous.addConversion(Cand->Function); 2734 return true; 2735 2736 case OR_No_Viable_Function: 2737 case OR_Deleted: 2738 // There was no suitable conversion, or we found a deleted 2739 // conversion; continue with other checks. 2740 return false; 2741 } 2742 2743 return false; 2744} 2745 2746/// \brief Compute an implicit conversion sequence for reference 2747/// initialization. 2748static ImplicitConversionSequence 2749TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 2750 SourceLocation DeclLoc, 2751 bool SuppressUserConversions, 2752 bool AllowExplicit) { 2753 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 2754 2755 // Most paths end in a failed conversion. 2756 ImplicitConversionSequence ICS; 2757 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 2758 2759 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 2760 QualType T2 = Init->getType(); 2761 2762 // If the initializer is the address of an overloaded function, try 2763 // to resolve the overloaded function. If all goes well, T2 is the 2764 // type of the resulting function. 2765 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 2766 DeclAccessPair Found; 2767 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 2768 false, Found)) 2769 T2 = Fn->getType(); 2770 } 2771 2772 // Compute some basic properties of the types and the initializer. 2773 bool isRValRef = DeclType->isRValueReferenceType(); 2774 bool DerivedToBase = false; 2775 bool ObjCConversion = false; 2776 Expr::Classification InitCategory = Init->Classify(S.Context); 2777 Sema::ReferenceCompareResult RefRelationship 2778 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 2779 ObjCConversion); 2780 2781 2782 // C++0x [dcl.init.ref]p5: 2783 // A reference to type "cv1 T1" is initialized by an expression 2784 // of type "cv2 T2" as follows: 2785 2786 // -- If reference is an lvalue reference and the initializer expression 2787 // The next bullet point (T1 is a function) is pretty much equivalent to this 2788 // one, so it's handled here. 2789 if (!isRValRef || T1->isFunctionType()) { 2790 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 2791 // reference-compatible with "cv2 T2," or 2792 // 2793 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 2794 if (InitCategory.isLValue() && 2795 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2796 // C++ [over.ics.ref]p1: 2797 // When a parameter of reference type binds directly (8.5.3) 2798 // to an argument expression, the implicit conversion sequence 2799 // is the identity conversion, unless the argument expression 2800 // has a type that is a derived class of the parameter type, 2801 // in which case the implicit conversion sequence is a 2802 // derived-to-base Conversion (13.3.3.1). 2803 ICS.setStandard(); 2804 ICS.Standard.First = ICK_Identity; 2805 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 2806 : ObjCConversion? ICK_Compatible_Conversion 2807 : ICK_Identity; 2808 ICS.Standard.Third = ICK_Identity; 2809 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2810 ICS.Standard.setToType(0, T2); 2811 ICS.Standard.setToType(1, T1); 2812 ICS.Standard.setToType(2, T1); 2813 ICS.Standard.ReferenceBinding = true; 2814 ICS.Standard.DirectBinding = true; 2815 ICS.Standard.RRefBinding = isRValRef; 2816 ICS.Standard.CopyConstructor = 0; 2817 2818 // Nothing more to do: the inaccessibility/ambiguity check for 2819 // derived-to-base conversions is suppressed when we're 2820 // computing the implicit conversion sequence (C++ 2821 // [over.best.ics]p2). 2822 return ICS; 2823 } 2824 2825 // -- has a class type (i.e., T2 is a class type), where T1 is 2826 // not reference-related to T2, and can be implicitly 2827 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 2828 // is reference-compatible with "cv3 T3" 92) (this 2829 // conversion is selected by enumerating the applicable 2830 // conversion functions (13.3.1.6) and choosing the best 2831 // one through overload resolution (13.3)), 2832 if (!SuppressUserConversions && T2->isRecordType() && 2833 !S.RequireCompleteType(DeclLoc, T2, 0) && 2834 RefRelationship == Sema::Ref_Incompatible) { 2835 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 2836 Init, T2, /*AllowRvalues=*/false, 2837 AllowExplicit)) 2838 return ICS; 2839 } 2840 } 2841 2842 // -- Otherwise, the reference shall be an lvalue reference to a 2843 // non-volatile const type (i.e., cv1 shall be const), or the reference 2844 // shall be an rvalue reference and the initializer expression shall be 2845 // an rvalue or have a function type. 2846 // 2847 // We actually handle one oddity of C++ [over.ics.ref] at this 2848 // point, which is that, due to p2 (which short-circuits reference 2849 // binding by only attempting a simple conversion for non-direct 2850 // bindings) and p3's strange wording, we allow a const volatile 2851 // reference to bind to an rvalue. Hence the check for the presence 2852 // of "const" rather than checking for "const" being the only 2853 // qualifier. 2854 // This is also the point where rvalue references and lvalue inits no longer 2855 // go together. 2856 if ((!isRValRef && !T1.isConstQualified()) || 2857 (isRValRef && InitCategory.isLValue())) 2858 return ICS; 2859 2860 // -- If T1 is a function type, then 2861 // -- if T2 is the same type as T1, the reference is bound to the 2862 // initializer expression lvalue; 2863 // -- if T2 is a class type and the initializer expression can be 2864 // implicitly converted to an lvalue of type T1 [...], the 2865 // reference is bound to the function lvalue that is the result 2866 // of the conversion; 2867 // This is the same as for the lvalue case above, so it was handled there. 2868 // -- otherwise, the program is ill-formed. 2869 // This is the one difference to the lvalue case. 2870 if (T1->isFunctionType()) 2871 return ICS; 2872 2873 // -- Otherwise, if T2 is a class type and 2874 // -- the initializer expression is an rvalue and "cv1 T1" 2875 // is reference-compatible with "cv2 T2," or 2876 // 2877 // -- T1 is not reference-related to T2 and the initializer 2878 // expression can be implicitly converted to an rvalue 2879 // of type "cv3 T3" (this conversion is selected by 2880 // enumerating the applicable conversion functions 2881 // (13.3.1.6) and choosing the best one through overload 2882 // resolution (13.3)), 2883 // 2884 // then the reference is bound to the initializer 2885 // expression rvalue in the first case and to the object 2886 // that is the result of the conversion in the second case 2887 // (or, in either case, to the appropriate base class 2888 // subobject of the object). 2889 if (T2->isRecordType()) { 2890 // First case: "cv1 T1" is reference-compatible with "cv2 T2". This is a 2891 // direct binding in C++0x but not in C++03. 2892 if (InitCategory.isRValue() && 2893 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2894 ICS.setStandard(); 2895 ICS.Standard.First = ICK_Identity; 2896 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 2897 : ObjCConversion? ICK_Compatible_Conversion 2898 : ICK_Identity; 2899 ICS.Standard.Third = ICK_Identity; 2900 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2901 ICS.Standard.setToType(0, T2); 2902 ICS.Standard.setToType(1, T1); 2903 ICS.Standard.setToType(2, T1); 2904 ICS.Standard.ReferenceBinding = true; 2905 ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x; 2906 ICS.Standard.RRefBinding = isRValRef; 2907 ICS.Standard.CopyConstructor = 0; 2908 return ICS; 2909 } 2910 2911 // Second case: not reference-related. 2912 if (RefRelationship == Sema::Ref_Incompatible && 2913 !S.RequireCompleteType(DeclLoc, T2, 0) && 2914 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 2915 Init, T2, /*AllowRvalues=*/true, 2916 AllowExplicit)) 2917 return ICS; 2918 } 2919 2920 // -- Otherwise, a temporary of type "cv1 T1" is created and 2921 // initialized from the initializer expression using the 2922 // rules for a non-reference copy initialization (8.5). The 2923 // reference is then bound to the temporary. If T1 is 2924 // reference-related to T2, cv1 must be the same 2925 // cv-qualification as, or greater cv-qualification than, 2926 // cv2; otherwise, the program is ill-formed. 2927 if (RefRelationship == Sema::Ref_Related) { 2928 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 2929 // we would be reference-compatible or reference-compatible with 2930 // added qualification. But that wasn't the case, so the reference 2931 // initialization fails. 2932 return ICS; 2933 } 2934 2935 // If at least one of the types is a class type, the types are not 2936 // related, and we aren't allowed any user conversions, the 2937 // reference binding fails. This case is important for breaking 2938 // recursion, since TryImplicitConversion below will attempt to 2939 // create a temporary through the use of a copy constructor. 2940 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 2941 (T1->isRecordType() || T2->isRecordType())) 2942 return ICS; 2943 2944 // C++ [over.ics.ref]p2: 2945 // When a parameter of reference type is not bound directly to 2946 // an argument expression, the conversion sequence is the one 2947 // required to convert the argument expression to the 2948 // underlying type of the reference according to 2949 // 13.3.3.1. Conceptually, this conversion sequence corresponds 2950 // to copy-initializing a temporary of the underlying type with 2951 // the argument expression. Any difference in top-level 2952 // cv-qualification is subsumed by the initialization itself 2953 // and does not constitute a conversion. 2954 ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions, 2955 /*AllowExplicit=*/false, 2956 /*InOverloadResolution=*/false); 2957 2958 // Of course, that's still a reference binding. 2959 if (ICS.isStandard()) { 2960 ICS.Standard.ReferenceBinding = true; 2961 ICS.Standard.RRefBinding = isRValRef; 2962 } else if (ICS.isUserDefined()) { 2963 ICS.UserDefined.After.ReferenceBinding = true; 2964 ICS.UserDefined.After.RRefBinding = isRValRef; 2965 } 2966 return ICS; 2967} 2968 2969/// TryCopyInitialization - Try to copy-initialize a value of type 2970/// ToType from the expression From. Return the implicit conversion 2971/// sequence required to pass this argument, which may be a bad 2972/// conversion sequence (meaning that the argument cannot be passed to 2973/// a parameter of this type). If @p SuppressUserConversions, then we 2974/// do not permit any user-defined conversion sequences. 2975static ImplicitConversionSequence 2976TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 2977 bool SuppressUserConversions, 2978 bool InOverloadResolution) { 2979 if (ToType->isReferenceType()) 2980 return TryReferenceInit(S, From, ToType, 2981 /*FIXME:*/From->getLocStart(), 2982 SuppressUserConversions, 2983 /*AllowExplicit=*/false); 2984 2985 return S.TryImplicitConversion(From, ToType, 2986 SuppressUserConversions, 2987 /*AllowExplicit=*/false, 2988 InOverloadResolution); 2989} 2990 2991/// TryObjectArgumentInitialization - Try to initialize the object 2992/// parameter of the given member function (@c Method) from the 2993/// expression @p From. 2994ImplicitConversionSequence 2995Sema::TryObjectArgumentInitialization(QualType OrigFromType, 2996 CXXMethodDecl *Method, 2997 CXXRecordDecl *ActingContext) { 2998 QualType ClassType = Context.getTypeDeclType(ActingContext); 2999 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 3000 // const volatile object. 3001 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 3002 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 3003 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); 3004 3005 // Set up the conversion sequence as a "bad" conversion, to allow us 3006 // to exit early. 3007 ImplicitConversionSequence ICS; 3008 3009 // We need to have an object of class type. 3010 QualType FromType = OrigFromType; 3011 if (const PointerType *PT = FromType->getAs<PointerType>()) 3012 FromType = PT->getPointeeType(); 3013 3014 assert(FromType->isRecordType()); 3015 3016 // The implicit object parameter is has the type "reference to cv X", 3017 // where X is the class of which the function is a member 3018 // (C++ [over.match.funcs]p4). However, when finding an implicit 3019 // conversion sequence for the argument, we are not allowed to 3020 // create temporaries or perform user-defined conversions 3021 // (C++ [over.match.funcs]p5). We perform a simplified version of 3022 // reference binding here, that allows class rvalues to bind to 3023 // non-constant references. 3024 3025 // First check the qualifiers. We don't care about lvalue-vs-rvalue 3026 // with the implicit object parameter (C++ [over.match.funcs]p5). 3027 QualType FromTypeCanon = Context.getCanonicalType(FromType); 3028 if (ImplicitParamType.getCVRQualifiers() 3029 != FromTypeCanon.getLocalCVRQualifiers() && 3030 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 3031 ICS.setBad(BadConversionSequence::bad_qualifiers, 3032 OrigFromType, ImplicitParamType); 3033 return ICS; 3034 } 3035 3036 // Check that we have either the same type or a derived type. It 3037 // affects the conversion rank. 3038 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 3039 ImplicitConversionKind SecondKind; 3040 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 3041 SecondKind = ICK_Identity; 3042 } else if (IsDerivedFrom(FromType, ClassType)) 3043 SecondKind = ICK_Derived_To_Base; 3044 else { 3045 ICS.setBad(BadConversionSequence::unrelated_class, 3046 FromType, ImplicitParamType); 3047 return ICS; 3048 } 3049 3050 // Success. Mark this as a reference binding. 3051 ICS.setStandard(); 3052 ICS.Standard.setAsIdentityConversion(); 3053 ICS.Standard.Second = SecondKind; 3054 ICS.Standard.setFromType(FromType); 3055 ICS.Standard.setAllToTypes(ImplicitParamType); 3056 ICS.Standard.ReferenceBinding = true; 3057 ICS.Standard.DirectBinding = true; 3058 ICS.Standard.RRefBinding = false; 3059 return ICS; 3060} 3061 3062/// PerformObjectArgumentInitialization - Perform initialization of 3063/// the implicit object parameter for the given Method with the given 3064/// expression. 3065bool 3066Sema::PerformObjectArgumentInitialization(Expr *&From, 3067 NestedNameSpecifier *Qualifier, 3068 NamedDecl *FoundDecl, 3069 CXXMethodDecl *Method) { 3070 QualType FromRecordType, DestType; 3071 QualType ImplicitParamRecordType = 3072 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 3073 3074 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 3075 FromRecordType = PT->getPointeeType(); 3076 DestType = Method->getThisType(Context); 3077 } else { 3078 FromRecordType = From->getType(); 3079 DestType = ImplicitParamRecordType; 3080 } 3081 3082 // Note that we always use the true parent context when performing 3083 // the actual argument initialization. 3084 ImplicitConversionSequence ICS 3085 = TryObjectArgumentInitialization(From->getType(), Method, 3086 Method->getParent()); 3087 if (ICS.isBad()) 3088 return Diag(From->getSourceRange().getBegin(), 3089 diag::err_implicit_object_parameter_init) 3090 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 3091 3092 if (ICS.Standard.Second == ICK_Derived_To_Base) 3093 return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 3094 3095 if (!Context.hasSameType(From->getType(), DestType)) 3096 ImpCastExprToType(From, DestType, CastExpr::CK_NoOp, 3097 From->getType()->isPointerType() ? 3098 ImplicitCastExpr::RValue : ImplicitCastExpr::LValue); 3099 return false; 3100} 3101 3102/// TryContextuallyConvertToBool - Attempt to contextually convert the 3103/// expression From to bool (C++0x [conv]p3). 3104ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 3105 // FIXME: This is pretty broken. 3106 return TryImplicitConversion(From, Context.BoolTy, 3107 // FIXME: Are these flags correct? 3108 /*SuppressUserConversions=*/false, 3109 /*AllowExplicit=*/true, 3110 /*InOverloadResolution=*/false); 3111} 3112 3113/// PerformContextuallyConvertToBool - Perform a contextual conversion 3114/// of the expression From to bool (C++0x [conv]p3). 3115bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 3116 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 3117 if (!ICS.isBad()) 3118 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 3119 3120 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 3121 return Diag(From->getSourceRange().getBegin(), 3122 diag::err_typecheck_bool_condition) 3123 << From->getType() << From->getSourceRange(); 3124 return true; 3125} 3126 3127/// TryContextuallyConvertToObjCId - Attempt to contextually convert the 3128/// expression From to 'id'. 3129ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) { 3130 QualType Ty = Context.getObjCIdType(); 3131 return TryImplicitConversion(From, Ty, 3132 // FIXME: Are these flags correct? 3133 /*SuppressUserConversions=*/false, 3134 /*AllowExplicit=*/true, 3135 /*InOverloadResolution=*/false); 3136} 3137 3138/// PerformContextuallyConvertToObjCId - Perform a contextual conversion 3139/// of the expression From to 'id'. 3140bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { 3141 QualType Ty = Context.getObjCIdType(); 3142 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From); 3143 if (!ICS.isBad()) 3144 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 3145 return true; 3146} 3147 3148/// \brief Attempt to convert the given expression to an integral or 3149/// enumeration type. 3150/// 3151/// This routine will attempt to convert an expression of class type to an 3152/// integral or enumeration type, if that class type only has a single 3153/// conversion to an integral or enumeration type. 3154/// 3155/// \param Loc The source location of the construct that requires the 3156/// conversion. 3157/// 3158/// \param FromE The expression we're converting from. 3159/// 3160/// \param NotIntDiag The diagnostic to be emitted if the expression does not 3161/// have integral or enumeration type. 3162/// 3163/// \param IncompleteDiag The diagnostic to be emitted if the expression has 3164/// incomplete class type. 3165/// 3166/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 3167/// explicit conversion function (because no implicit conversion functions 3168/// were available). This is a recovery mode. 3169/// 3170/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 3171/// showing which conversion was picked. 3172/// 3173/// \param AmbigDiag The diagnostic to be emitted if there is more than one 3174/// conversion function that could convert to integral or enumeration type. 3175/// 3176/// \param AmbigNote The note to be emitted with \p AmbigDiag for each 3177/// usable conversion function. 3178/// 3179/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 3180/// function, which may be an extension in this case. 3181/// 3182/// \returns The expression, converted to an integral or enumeration type if 3183/// successful. 3184Sema::OwningExprResult 3185Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, ExprArg FromE, 3186 const PartialDiagnostic &NotIntDiag, 3187 const PartialDiagnostic &IncompleteDiag, 3188 const PartialDiagnostic &ExplicitConvDiag, 3189 const PartialDiagnostic &ExplicitConvNote, 3190 const PartialDiagnostic &AmbigDiag, 3191 const PartialDiagnostic &AmbigNote, 3192 const PartialDiagnostic &ConvDiag) { 3193 Expr *From = static_cast<Expr *>(FromE.get()); 3194 3195 // We can't perform any more checking for type-dependent expressions. 3196 if (From->isTypeDependent()) 3197 return move(FromE); 3198 3199 // If the expression already has integral or enumeration type, we're golden. 3200 QualType T = From->getType(); 3201 if (T->isIntegralOrEnumerationType()) 3202 return move(FromE); 3203 3204 // FIXME: Check for missing '()' if T is a function type? 3205 3206 // If we don't have a class type in C++, there's no way we can get an 3207 // expression of integral or enumeration type. 3208 const RecordType *RecordTy = T->getAs<RecordType>(); 3209 if (!RecordTy || !getLangOptions().CPlusPlus) { 3210 Diag(Loc, NotIntDiag) 3211 << T << From->getSourceRange(); 3212 return move(FromE); 3213 } 3214 3215 // We must have a complete class type. 3216 if (RequireCompleteType(Loc, T, IncompleteDiag)) 3217 return move(FromE); 3218 3219 // Look for a conversion to an integral or enumeration type. 3220 UnresolvedSet<4> ViableConversions; 3221 UnresolvedSet<4> ExplicitConversions; 3222 const UnresolvedSetImpl *Conversions 3223 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 3224 3225 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3226 E = Conversions->end(); 3227 I != E; 3228 ++I) { 3229 if (CXXConversionDecl *Conversion 3230 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) 3231 if (Conversion->getConversionType().getNonReferenceType() 3232 ->isIntegralOrEnumerationType()) { 3233 if (Conversion->isExplicit()) 3234 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 3235 else 3236 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 3237 } 3238 } 3239 3240 switch (ViableConversions.size()) { 3241 case 0: 3242 if (ExplicitConversions.size() == 1) { 3243 DeclAccessPair Found = ExplicitConversions[0]; 3244 CXXConversionDecl *Conversion 3245 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3246 3247 // The user probably meant to invoke the given explicit 3248 // conversion; use it. 3249 QualType ConvTy 3250 = Conversion->getConversionType().getNonReferenceType(); 3251 std::string TypeStr; 3252 ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy); 3253 3254 Diag(Loc, ExplicitConvDiag) 3255 << T << ConvTy 3256 << FixItHint::CreateInsertion(From->getLocStart(), 3257 "static_cast<" + TypeStr + ">(") 3258 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 3259 ")"); 3260 Diag(Conversion->getLocation(), ExplicitConvNote) 3261 << ConvTy->isEnumeralType() << ConvTy; 3262 3263 // If we aren't in a SFINAE context, build a call to the 3264 // explicit conversion function. 3265 if (isSFINAEContext()) 3266 return ExprError(); 3267 3268 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3269 From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found, Conversion); 3270 FromE = Owned(From); 3271 } 3272 3273 // We'll complain below about a non-integral condition type. 3274 break; 3275 3276 case 1: { 3277 // Apply this conversion. 3278 DeclAccessPair Found = ViableConversions[0]; 3279 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3280 3281 CXXConversionDecl *Conversion 3282 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3283 QualType ConvTy 3284 = Conversion->getConversionType().getNonReferenceType(); 3285 if (ConvDiag.getDiagID()) { 3286 if (isSFINAEContext()) 3287 return ExprError(); 3288 3289 Diag(Loc, ConvDiag) 3290 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 3291 } 3292 3293 From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found, 3294 cast<CXXConversionDecl>(Found->getUnderlyingDecl())); 3295 FromE = Owned(From); 3296 break; 3297 } 3298 3299 default: 3300 Diag(Loc, AmbigDiag) 3301 << T << From->getSourceRange(); 3302 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 3303 CXXConversionDecl *Conv 3304 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 3305 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 3306 Diag(Conv->getLocation(), AmbigNote) 3307 << ConvTy->isEnumeralType() << ConvTy; 3308 } 3309 return move(FromE); 3310 } 3311 3312 if (!From->getType()->isIntegralOrEnumerationType()) 3313 Diag(Loc, NotIntDiag) 3314 << From->getType() << From->getSourceRange(); 3315 3316 return move(FromE); 3317} 3318 3319/// AddOverloadCandidate - Adds the given function to the set of 3320/// candidate functions, using the given function call arguments. If 3321/// @p SuppressUserConversions, then don't allow user-defined 3322/// conversions via constructors or conversion operators. 3323/// 3324/// \para PartialOverloading true if we are performing "partial" overloading 3325/// based on an incomplete set of function arguments. This feature is used by 3326/// code completion. 3327void 3328Sema::AddOverloadCandidate(FunctionDecl *Function, 3329 DeclAccessPair FoundDecl, 3330 Expr **Args, unsigned NumArgs, 3331 OverloadCandidateSet& CandidateSet, 3332 bool SuppressUserConversions, 3333 bool PartialOverloading) { 3334 const FunctionProtoType* Proto 3335 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 3336 assert(Proto && "Functions without a prototype cannot be overloaded"); 3337 assert(!Function->getDescribedFunctionTemplate() && 3338 "Use AddTemplateOverloadCandidate for function templates"); 3339 3340 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3341 if (!isa<CXXConstructorDecl>(Method)) { 3342 // If we get here, it's because we're calling a member function 3343 // that is named without a member access expression (e.g., 3344 // "this->f") that was either written explicitly or created 3345 // implicitly. This can happen with a qualified call to a member 3346 // function, e.g., X::f(). We use an empty type for the implied 3347 // object argument (C++ [over.call.func]p3), and the acting context 3348 // is irrelevant. 3349 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 3350 QualType(), Args, NumArgs, CandidateSet, 3351 SuppressUserConversions); 3352 return; 3353 } 3354 // We treat a constructor like a non-member function, since its object 3355 // argument doesn't participate in overload resolution. 3356 } 3357 3358 if (!CandidateSet.isNewCandidate(Function)) 3359 return; 3360 3361 // Overload resolution is always an unevaluated context. 3362 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3363 3364 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 3365 // C++ [class.copy]p3: 3366 // A member function template is never instantiated to perform the copy 3367 // of a class object to an object of its class type. 3368 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 3369 if (NumArgs == 1 && 3370 Constructor->isCopyConstructorLikeSpecialization() && 3371 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 3372 IsDerivedFrom(Args[0]->getType(), ClassType))) 3373 return; 3374 } 3375 3376 // Add this candidate 3377 CandidateSet.push_back(OverloadCandidate()); 3378 OverloadCandidate& Candidate = CandidateSet.back(); 3379 Candidate.FoundDecl = FoundDecl; 3380 Candidate.Function = Function; 3381 Candidate.Viable = true; 3382 Candidate.IsSurrogate = false; 3383 Candidate.IgnoreObjectArgument = false; 3384 3385 unsigned NumArgsInProto = Proto->getNumArgs(); 3386 3387 // (C++ 13.3.2p2): A candidate function having fewer than m 3388 // parameters is viable only if it has an ellipsis in its parameter 3389 // list (8.3.5). 3390 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 3391 !Proto->isVariadic()) { 3392 Candidate.Viable = false; 3393 Candidate.FailureKind = ovl_fail_too_many_arguments; 3394 return; 3395 } 3396 3397 // (C++ 13.3.2p2): A candidate function having more than m parameters 3398 // is viable only if the (m+1)st parameter has a default argument 3399 // (8.3.6). For the purposes of overload resolution, the 3400 // parameter list is truncated on the right, so that there are 3401 // exactly m parameters. 3402 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 3403 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 3404 // Not enough arguments. 3405 Candidate.Viable = false; 3406 Candidate.FailureKind = ovl_fail_too_few_arguments; 3407 return; 3408 } 3409 3410 // Determine the implicit conversion sequences for each of the 3411 // arguments. 3412 Candidate.Conversions.resize(NumArgs); 3413 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3414 if (ArgIdx < NumArgsInProto) { 3415 // (C++ 13.3.2p3): for F to be a viable function, there shall 3416 // exist for each argument an implicit conversion sequence 3417 // (13.3.3.1) that converts that argument to the corresponding 3418 // parameter of F. 3419 QualType ParamType = Proto->getArgType(ArgIdx); 3420 Candidate.Conversions[ArgIdx] 3421 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3422 SuppressUserConversions, 3423 /*InOverloadResolution=*/true); 3424 if (Candidate.Conversions[ArgIdx].isBad()) { 3425 Candidate.Viable = false; 3426 Candidate.FailureKind = ovl_fail_bad_conversion; 3427 break; 3428 } 3429 } else { 3430 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3431 // argument for which there is no corresponding parameter is 3432 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3433 Candidate.Conversions[ArgIdx].setEllipsis(); 3434 } 3435 } 3436} 3437 3438/// \brief Add all of the function declarations in the given function set to 3439/// the overload canddiate set. 3440void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 3441 Expr **Args, unsigned NumArgs, 3442 OverloadCandidateSet& CandidateSet, 3443 bool SuppressUserConversions) { 3444 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 3445 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 3446 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3447 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 3448 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 3449 cast<CXXMethodDecl>(FD)->getParent(), 3450 Args[0]->getType(), Args + 1, NumArgs - 1, 3451 CandidateSet, SuppressUserConversions); 3452 else 3453 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 3454 SuppressUserConversions); 3455 } else { 3456 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 3457 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 3458 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 3459 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 3460 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 3461 /*FIXME: explicit args */ 0, 3462 Args[0]->getType(), Args + 1, NumArgs - 1, 3463 CandidateSet, 3464 SuppressUserConversions); 3465 else 3466 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 3467 /*FIXME: explicit args */ 0, 3468 Args, NumArgs, CandidateSet, 3469 SuppressUserConversions); 3470 } 3471 } 3472} 3473 3474/// AddMethodCandidate - Adds a named decl (which is some kind of 3475/// method) as a method candidate to the given overload set. 3476void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 3477 QualType ObjectType, 3478 Expr **Args, unsigned NumArgs, 3479 OverloadCandidateSet& CandidateSet, 3480 bool SuppressUserConversions) { 3481 NamedDecl *Decl = FoundDecl.getDecl(); 3482 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 3483 3484 if (isa<UsingShadowDecl>(Decl)) 3485 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 3486 3487 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 3488 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 3489 "Expected a member function template"); 3490 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 3491 /*ExplicitArgs*/ 0, 3492 ObjectType, Args, NumArgs, 3493 CandidateSet, 3494 SuppressUserConversions); 3495 } else { 3496 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 3497 ObjectType, Args, NumArgs, 3498 CandidateSet, SuppressUserConversions); 3499 } 3500} 3501 3502/// AddMethodCandidate - Adds the given C++ member function to the set 3503/// of candidate functions, using the given function call arguments 3504/// and the object argument (@c Object). For example, in a call 3505/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 3506/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 3507/// allow user-defined conversions via constructors or conversion 3508/// operators. 3509void 3510Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 3511 CXXRecordDecl *ActingContext, QualType ObjectType, 3512 Expr **Args, unsigned NumArgs, 3513 OverloadCandidateSet& CandidateSet, 3514 bool SuppressUserConversions) { 3515 const FunctionProtoType* Proto 3516 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 3517 assert(Proto && "Methods without a prototype cannot be overloaded"); 3518 assert(!isa<CXXConstructorDecl>(Method) && 3519 "Use AddOverloadCandidate for constructors"); 3520 3521 if (!CandidateSet.isNewCandidate(Method)) 3522 return; 3523 3524 // Overload resolution is always an unevaluated context. 3525 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3526 3527 // Add this candidate 3528 CandidateSet.push_back(OverloadCandidate()); 3529 OverloadCandidate& Candidate = CandidateSet.back(); 3530 Candidate.FoundDecl = FoundDecl; 3531 Candidate.Function = Method; 3532 Candidate.IsSurrogate = false; 3533 Candidate.IgnoreObjectArgument = false; 3534 3535 unsigned NumArgsInProto = Proto->getNumArgs(); 3536 3537 // (C++ 13.3.2p2): A candidate function having fewer than m 3538 // parameters is viable only if it has an ellipsis in its parameter 3539 // list (8.3.5). 3540 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3541 Candidate.Viable = false; 3542 Candidate.FailureKind = ovl_fail_too_many_arguments; 3543 return; 3544 } 3545 3546 // (C++ 13.3.2p2): A candidate function having more than m parameters 3547 // is viable only if the (m+1)st parameter has a default argument 3548 // (8.3.6). For the purposes of overload resolution, the 3549 // parameter list is truncated on the right, so that there are 3550 // exactly m parameters. 3551 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 3552 if (NumArgs < MinRequiredArgs) { 3553 // Not enough arguments. 3554 Candidate.Viable = false; 3555 Candidate.FailureKind = ovl_fail_too_few_arguments; 3556 return; 3557 } 3558 3559 Candidate.Viable = true; 3560 Candidate.Conversions.resize(NumArgs + 1); 3561 3562 if (Method->isStatic() || ObjectType.isNull()) 3563 // The implicit object argument is ignored. 3564 Candidate.IgnoreObjectArgument = true; 3565 else { 3566 // Determine the implicit conversion sequence for the object 3567 // parameter. 3568 Candidate.Conversions[0] 3569 = TryObjectArgumentInitialization(ObjectType, Method, ActingContext); 3570 if (Candidate.Conversions[0].isBad()) { 3571 Candidate.Viable = false; 3572 Candidate.FailureKind = ovl_fail_bad_conversion; 3573 return; 3574 } 3575 } 3576 3577 // Determine the implicit conversion sequences for each of the 3578 // arguments. 3579 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3580 if (ArgIdx < NumArgsInProto) { 3581 // (C++ 13.3.2p3): for F to be a viable function, there shall 3582 // exist for each argument an implicit conversion sequence 3583 // (13.3.3.1) that converts that argument to the corresponding 3584 // parameter of F. 3585 QualType ParamType = Proto->getArgType(ArgIdx); 3586 Candidate.Conversions[ArgIdx + 1] 3587 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3588 SuppressUserConversions, 3589 /*InOverloadResolution=*/true); 3590 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3591 Candidate.Viable = false; 3592 Candidate.FailureKind = ovl_fail_bad_conversion; 3593 break; 3594 } 3595 } else { 3596 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3597 // argument for which there is no corresponding parameter is 3598 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3599 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3600 } 3601 } 3602} 3603 3604/// \brief Add a C++ member function template as a candidate to the candidate 3605/// set, using template argument deduction to produce an appropriate member 3606/// function template specialization. 3607void 3608Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 3609 DeclAccessPair FoundDecl, 3610 CXXRecordDecl *ActingContext, 3611 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3612 QualType ObjectType, 3613 Expr **Args, unsigned NumArgs, 3614 OverloadCandidateSet& CandidateSet, 3615 bool SuppressUserConversions) { 3616 if (!CandidateSet.isNewCandidate(MethodTmpl)) 3617 return; 3618 3619 // C++ [over.match.funcs]p7: 3620 // In each case where a candidate is a function template, candidate 3621 // function template specializations are generated using template argument 3622 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3623 // candidate functions in the usual way.113) A given name can refer to one 3624 // or more function templates and also to a set of overloaded non-template 3625 // functions. In such a case, the candidate functions generated from each 3626 // function template are combined with the set of non-template candidate 3627 // functions. 3628 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3629 FunctionDecl *Specialization = 0; 3630 if (TemplateDeductionResult Result 3631 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 3632 Args, NumArgs, Specialization, Info)) { 3633 CandidateSet.push_back(OverloadCandidate()); 3634 OverloadCandidate &Candidate = CandidateSet.back(); 3635 Candidate.FoundDecl = FoundDecl; 3636 Candidate.Function = MethodTmpl->getTemplatedDecl(); 3637 Candidate.Viable = false; 3638 Candidate.FailureKind = ovl_fail_bad_deduction; 3639 Candidate.IsSurrogate = false; 3640 Candidate.IgnoreObjectArgument = false; 3641 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3642 Info); 3643 return; 3644 } 3645 3646 // Add the function template specialization produced by template argument 3647 // deduction as a candidate. 3648 assert(Specialization && "Missing member function template specialization?"); 3649 assert(isa<CXXMethodDecl>(Specialization) && 3650 "Specialization is not a member function?"); 3651 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 3652 ActingContext, ObjectType, Args, NumArgs, 3653 CandidateSet, SuppressUserConversions); 3654} 3655 3656/// \brief Add a C++ function template specialization as a candidate 3657/// in the candidate set, using template argument deduction to produce 3658/// an appropriate function template specialization. 3659void 3660Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 3661 DeclAccessPair FoundDecl, 3662 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3663 Expr **Args, unsigned NumArgs, 3664 OverloadCandidateSet& CandidateSet, 3665 bool SuppressUserConversions) { 3666 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3667 return; 3668 3669 // C++ [over.match.funcs]p7: 3670 // In each case where a candidate is a function template, candidate 3671 // function template specializations are generated using template argument 3672 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3673 // candidate functions in the usual way.113) A given name can refer to one 3674 // or more function templates and also to a set of overloaded non-template 3675 // functions. In such a case, the candidate functions generated from each 3676 // function template are combined with the set of non-template candidate 3677 // functions. 3678 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3679 FunctionDecl *Specialization = 0; 3680 if (TemplateDeductionResult Result 3681 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 3682 Args, NumArgs, Specialization, Info)) { 3683 CandidateSet.push_back(OverloadCandidate()); 3684 OverloadCandidate &Candidate = CandidateSet.back(); 3685 Candidate.FoundDecl = FoundDecl; 3686 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3687 Candidate.Viable = false; 3688 Candidate.FailureKind = ovl_fail_bad_deduction; 3689 Candidate.IsSurrogate = false; 3690 Candidate.IgnoreObjectArgument = false; 3691 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3692 Info); 3693 return; 3694 } 3695 3696 // Add the function template specialization produced by template argument 3697 // deduction as a candidate. 3698 assert(Specialization && "Missing function template specialization?"); 3699 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 3700 SuppressUserConversions); 3701} 3702 3703/// AddConversionCandidate - Add a C++ conversion function as a 3704/// candidate in the candidate set (C++ [over.match.conv], 3705/// C++ [over.match.copy]). From is the expression we're converting from, 3706/// and ToType is the type that we're eventually trying to convert to 3707/// (which may or may not be the same type as the type that the 3708/// conversion function produces). 3709void 3710Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 3711 DeclAccessPair FoundDecl, 3712 CXXRecordDecl *ActingContext, 3713 Expr *From, QualType ToType, 3714 OverloadCandidateSet& CandidateSet) { 3715 assert(!Conversion->getDescribedFunctionTemplate() && 3716 "Conversion function templates use AddTemplateConversionCandidate"); 3717 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 3718 if (!CandidateSet.isNewCandidate(Conversion)) 3719 return; 3720 3721 // Overload resolution is always an unevaluated context. 3722 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3723 3724 // Add this candidate 3725 CandidateSet.push_back(OverloadCandidate()); 3726 OverloadCandidate& Candidate = CandidateSet.back(); 3727 Candidate.FoundDecl = FoundDecl; 3728 Candidate.Function = Conversion; 3729 Candidate.IsSurrogate = false; 3730 Candidate.IgnoreObjectArgument = false; 3731 Candidate.FinalConversion.setAsIdentityConversion(); 3732 Candidate.FinalConversion.setFromType(ConvType); 3733 Candidate.FinalConversion.setAllToTypes(ToType); 3734 3735 // Determine the implicit conversion sequence for the implicit 3736 // object parameter. 3737 Candidate.Viable = true; 3738 Candidate.Conversions.resize(1); 3739 Candidate.Conversions[0] 3740 = TryObjectArgumentInitialization(From->getType(), Conversion, 3741 ActingContext); 3742 // Conversion functions to a different type in the base class is visible in 3743 // the derived class. So, a derived to base conversion should not participate 3744 // in overload resolution. 3745 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 3746 Candidate.Conversions[0].Standard.Second = ICK_Identity; 3747 if (Candidate.Conversions[0].isBad()) { 3748 Candidate.Viable = false; 3749 Candidate.FailureKind = ovl_fail_bad_conversion; 3750 return; 3751 } 3752 3753 // We won't go through a user-define type conversion function to convert a 3754 // derived to base as such conversions are given Conversion Rank. They only 3755 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 3756 QualType FromCanon 3757 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 3758 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 3759 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 3760 Candidate.Viable = false; 3761 Candidate.FailureKind = ovl_fail_trivial_conversion; 3762 return; 3763 } 3764 3765 // To determine what the conversion from the result of calling the 3766 // conversion function to the type we're eventually trying to 3767 // convert to (ToType), we need to synthesize a call to the 3768 // conversion function and attempt copy initialization from it. This 3769 // makes sure that we get the right semantics with respect to 3770 // lvalues/rvalues and the type. Fortunately, we can allocate this 3771 // call on the stack and we don't need its arguments to be 3772 // well-formed. 3773 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 3774 From->getLocStart()); 3775 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 3776 Context.getPointerType(Conversion->getType()), 3777 CastExpr::CK_FunctionToPointerDecay, 3778 &ConversionRef, ImplicitCastExpr::RValue); 3779 3780 // Note that it is safe to allocate CallExpr on the stack here because 3781 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 3782 // allocator). 3783 CallExpr Call(Context, &ConversionFn, 0, 0, 3784 Conversion->getConversionType().getNonLValueExprType(Context), 3785 From->getLocStart()); 3786 ImplicitConversionSequence ICS = 3787 TryCopyInitialization(*this, &Call, ToType, 3788 /*SuppressUserConversions=*/true, 3789 /*InOverloadResolution=*/false); 3790 3791 switch (ICS.getKind()) { 3792 case ImplicitConversionSequence::StandardConversion: 3793 Candidate.FinalConversion = ICS.Standard; 3794 3795 // C++ [over.ics.user]p3: 3796 // If the user-defined conversion is specified by a specialization of a 3797 // conversion function template, the second standard conversion sequence 3798 // shall have exact match rank. 3799 if (Conversion->getPrimaryTemplate() && 3800 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 3801 Candidate.Viable = false; 3802 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 3803 } 3804 3805 break; 3806 3807 case ImplicitConversionSequence::BadConversion: 3808 Candidate.Viable = false; 3809 Candidate.FailureKind = ovl_fail_bad_final_conversion; 3810 break; 3811 3812 default: 3813 assert(false && 3814 "Can only end up with a standard conversion sequence or failure"); 3815 } 3816} 3817 3818/// \brief Adds a conversion function template specialization 3819/// candidate to the overload set, using template argument deduction 3820/// to deduce the template arguments of the conversion function 3821/// template from the type that we are converting to (C++ 3822/// [temp.deduct.conv]). 3823void 3824Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 3825 DeclAccessPair FoundDecl, 3826 CXXRecordDecl *ActingDC, 3827 Expr *From, QualType ToType, 3828 OverloadCandidateSet &CandidateSet) { 3829 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 3830 "Only conversion function templates permitted here"); 3831 3832 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3833 return; 3834 3835 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3836 CXXConversionDecl *Specialization = 0; 3837 if (TemplateDeductionResult Result 3838 = DeduceTemplateArguments(FunctionTemplate, ToType, 3839 Specialization, Info)) { 3840 CandidateSet.push_back(OverloadCandidate()); 3841 OverloadCandidate &Candidate = CandidateSet.back(); 3842 Candidate.FoundDecl = FoundDecl; 3843 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3844 Candidate.Viable = false; 3845 Candidate.FailureKind = ovl_fail_bad_deduction; 3846 Candidate.IsSurrogate = false; 3847 Candidate.IgnoreObjectArgument = false; 3848 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3849 Info); 3850 return; 3851 } 3852 3853 // Add the conversion function template specialization produced by 3854 // template argument deduction as a candidate. 3855 assert(Specialization && "Missing function template specialization?"); 3856 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 3857 CandidateSet); 3858} 3859 3860/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 3861/// converts the given @c Object to a function pointer via the 3862/// conversion function @c Conversion, and then attempts to call it 3863/// with the given arguments (C++ [over.call.object]p2-4). Proto is 3864/// the type of function that we'll eventually be calling. 3865void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 3866 DeclAccessPair FoundDecl, 3867 CXXRecordDecl *ActingContext, 3868 const FunctionProtoType *Proto, 3869 QualType ObjectType, 3870 Expr **Args, unsigned NumArgs, 3871 OverloadCandidateSet& CandidateSet) { 3872 if (!CandidateSet.isNewCandidate(Conversion)) 3873 return; 3874 3875 // Overload resolution is always an unevaluated context. 3876 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3877 3878 CandidateSet.push_back(OverloadCandidate()); 3879 OverloadCandidate& Candidate = CandidateSet.back(); 3880 Candidate.FoundDecl = FoundDecl; 3881 Candidate.Function = 0; 3882 Candidate.Surrogate = Conversion; 3883 Candidate.Viable = true; 3884 Candidate.IsSurrogate = true; 3885 Candidate.IgnoreObjectArgument = false; 3886 Candidate.Conversions.resize(NumArgs + 1); 3887 3888 // Determine the implicit conversion sequence for the implicit 3889 // object parameter. 3890 ImplicitConversionSequence ObjectInit 3891 = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext); 3892 if (ObjectInit.isBad()) { 3893 Candidate.Viable = false; 3894 Candidate.FailureKind = ovl_fail_bad_conversion; 3895 Candidate.Conversions[0] = ObjectInit; 3896 return; 3897 } 3898 3899 // The first conversion is actually a user-defined conversion whose 3900 // first conversion is ObjectInit's standard conversion (which is 3901 // effectively a reference binding). Record it as such. 3902 Candidate.Conversions[0].setUserDefined(); 3903 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 3904 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 3905 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 3906 Candidate.Conversions[0].UserDefined.After 3907 = Candidate.Conversions[0].UserDefined.Before; 3908 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 3909 3910 // Find the 3911 unsigned NumArgsInProto = Proto->getNumArgs(); 3912 3913 // (C++ 13.3.2p2): A candidate function having fewer than m 3914 // parameters is viable only if it has an ellipsis in its parameter 3915 // list (8.3.5). 3916 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3917 Candidate.Viable = false; 3918 Candidate.FailureKind = ovl_fail_too_many_arguments; 3919 return; 3920 } 3921 3922 // Function types don't have any default arguments, so just check if 3923 // we have enough arguments. 3924 if (NumArgs < NumArgsInProto) { 3925 // Not enough arguments. 3926 Candidate.Viable = false; 3927 Candidate.FailureKind = ovl_fail_too_few_arguments; 3928 return; 3929 } 3930 3931 // Determine the implicit conversion sequences for each of the 3932 // arguments. 3933 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3934 if (ArgIdx < NumArgsInProto) { 3935 // (C++ 13.3.2p3): for F to be a viable function, there shall 3936 // exist for each argument an implicit conversion sequence 3937 // (13.3.3.1) that converts that argument to the corresponding 3938 // parameter of F. 3939 QualType ParamType = Proto->getArgType(ArgIdx); 3940 Candidate.Conversions[ArgIdx + 1] 3941 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3942 /*SuppressUserConversions=*/false, 3943 /*InOverloadResolution=*/false); 3944 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3945 Candidate.Viable = false; 3946 Candidate.FailureKind = ovl_fail_bad_conversion; 3947 break; 3948 } 3949 } else { 3950 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3951 // argument for which there is no corresponding parameter is 3952 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3953 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3954 } 3955 } 3956} 3957 3958/// \brief Add overload candidates for overloaded operators that are 3959/// member functions. 3960/// 3961/// Add the overloaded operator candidates that are member functions 3962/// for the operator Op that was used in an operator expression such 3963/// as "x Op y". , Args/NumArgs provides the operator arguments, and 3964/// CandidateSet will store the added overload candidates. (C++ 3965/// [over.match.oper]). 3966void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 3967 SourceLocation OpLoc, 3968 Expr **Args, unsigned NumArgs, 3969 OverloadCandidateSet& CandidateSet, 3970 SourceRange OpRange) { 3971 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3972 3973 // C++ [over.match.oper]p3: 3974 // For a unary operator @ with an operand of a type whose 3975 // cv-unqualified version is T1, and for a binary operator @ with 3976 // a left operand of a type whose cv-unqualified version is T1 and 3977 // a right operand of a type whose cv-unqualified version is T2, 3978 // three sets of candidate functions, designated member 3979 // candidates, non-member candidates and built-in candidates, are 3980 // constructed as follows: 3981 QualType T1 = Args[0]->getType(); 3982 QualType T2; 3983 if (NumArgs > 1) 3984 T2 = Args[1]->getType(); 3985 3986 // -- If T1 is a class type, the set of member candidates is the 3987 // result of the qualified lookup of T1::operator@ 3988 // (13.3.1.1.1); otherwise, the set of member candidates is 3989 // empty. 3990 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 3991 // Complete the type if it can be completed. Otherwise, we're done. 3992 if (RequireCompleteType(OpLoc, T1, PDiag())) 3993 return; 3994 3995 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 3996 LookupQualifiedName(Operators, T1Rec->getDecl()); 3997 Operators.suppressDiagnostics(); 3998 3999 for (LookupResult::iterator Oper = Operators.begin(), 4000 OperEnd = Operators.end(); 4001 Oper != OperEnd; 4002 ++Oper) 4003 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 4004 Args + 1, NumArgs - 1, CandidateSet, 4005 /* SuppressUserConversions = */ false); 4006 } 4007} 4008 4009/// AddBuiltinCandidate - Add a candidate for a built-in 4010/// operator. ResultTy and ParamTys are the result and parameter types 4011/// of the built-in candidate, respectively. Args and NumArgs are the 4012/// arguments being passed to the candidate. IsAssignmentOperator 4013/// should be true when this built-in candidate is an assignment 4014/// operator. NumContextualBoolArguments is the number of arguments 4015/// (at the beginning of the argument list) that will be contextually 4016/// converted to bool. 4017void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 4018 Expr **Args, unsigned NumArgs, 4019 OverloadCandidateSet& CandidateSet, 4020 bool IsAssignmentOperator, 4021 unsigned NumContextualBoolArguments) { 4022 // Overload resolution is always an unevaluated context. 4023 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 4024 4025 // Add this candidate 4026 CandidateSet.push_back(OverloadCandidate()); 4027 OverloadCandidate& Candidate = CandidateSet.back(); 4028 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 4029 Candidate.Function = 0; 4030 Candidate.IsSurrogate = false; 4031 Candidate.IgnoreObjectArgument = false; 4032 Candidate.BuiltinTypes.ResultTy = ResultTy; 4033 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4034 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 4035 4036 // Determine the implicit conversion sequences for each of the 4037 // arguments. 4038 Candidate.Viable = true; 4039 Candidate.Conversions.resize(NumArgs); 4040 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4041 // C++ [over.match.oper]p4: 4042 // For the built-in assignment operators, conversions of the 4043 // left operand are restricted as follows: 4044 // -- no temporaries are introduced to hold the left operand, and 4045 // -- no user-defined conversions are applied to the left 4046 // operand to achieve a type match with the left-most 4047 // parameter of a built-in candidate. 4048 // 4049 // We block these conversions by turning off user-defined 4050 // conversions, since that is the only way that initialization of 4051 // a reference to a non-class type can occur from something that 4052 // is not of the same type. 4053 if (ArgIdx < NumContextualBoolArguments) { 4054 assert(ParamTys[ArgIdx] == Context.BoolTy && 4055 "Contextual conversion to bool requires bool type"); 4056 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 4057 } else { 4058 Candidate.Conversions[ArgIdx] 4059 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 4060 ArgIdx == 0 && IsAssignmentOperator, 4061 /*InOverloadResolution=*/false); 4062 } 4063 if (Candidate.Conversions[ArgIdx].isBad()) { 4064 Candidate.Viable = false; 4065 Candidate.FailureKind = ovl_fail_bad_conversion; 4066 break; 4067 } 4068 } 4069} 4070 4071/// BuiltinCandidateTypeSet - A set of types that will be used for the 4072/// candidate operator functions for built-in operators (C++ 4073/// [over.built]). The types are separated into pointer types and 4074/// enumeration types. 4075class BuiltinCandidateTypeSet { 4076 /// TypeSet - A set of types. 4077 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 4078 4079 /// PointerTypes - The set of pointer types that will be used in the 4080 /// built-in candidates. 4081 TypeSet PointerTypes; 4082 4083 /// MemberPointerTypes - The set of member pointer types that will be 4084 /// used in the built-in candidates. 4085 TypeSet MemberPointerTypes; 4086 4087 /// EnumerationTypes - The set of enumeration types that will be 4088 /// used in the built-in candidates. 4089 TypeSet EnumerationTypes; 4090 4091 /// \brief The set of vector types that will be used in the built-in 4092 /// candidates. 4093 TypeSet VectorTypes; 4094 4095 /// Sema - The semantic analysis instance where we are building the 4096 /// candidate type set. 4097 Sema &SemaRef; 4098 4099 /// Context - The AST context in which we will build the type sets. 4100 ASTContext &Context; 4101 4102 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4103 const Qualifiers &VisibleQuals); 4104 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 4105 4106public: 4107 /// iterator - Iterates through the types that are part of the set. 4108 typedef TypeSet::iterator iterator; 4109 4110 BuiltinCandidateTypeSet(Sema &SemaRef) 4111 : SemaRef(SemaRef), Context(SemaRef.Context) { } 4112 4113 void AddTypesConvertedFrom(QualType Ty, 4114 SourceLocation Loc, 4115 bool AllowUserConversions, 4116 bool AllowExplicitConversions, 4117 const Qualifiers &VisibleTypeConversionsQuals); 4118 4119 /// pointer_begin - First pointer type found; 4120 iterator pointer_begin() { return PointerTypes.begin(); } 4121 4122 /// pointer_end - Past the last pointer type found; 4123 iterator pointer_end() { return PointerTypes.end(); } 4124 4125 /// member_pointer_begin - First member pointer type found; 4126 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 4127 4128 /// member_pointer_end - Past the last member pointer type found; 4129 iterator member_pointer_end() { return MemberPointerTypes.end(); } 4130 4131 /// enumeration_begin - First enumeration type found; 4132 iterator enumeration_begin() { return EnumerationTypes.begin(); } 4133 4134 /// enumeration_end - Past the last enumeration type found; 4135 iterator enumeration_end() { return EnumerationTypes.end(); } 4136 4137 iterator vector_begin() { return VectorTypes.begin(); } 4138 iterator vector_end() { return VectorTypes.end(); } 4139}; 4140 4141/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 4142/// the set of pointer types along with any more-qualified variants of 4143/// that type. For example, if @p Ty is "int const *", this routine 4144/// will add "int const *", "int const volatile *", "int const 4145/// restrict *", and "int const volatile restrict *" to the set of 4146/// pointer types. Returns true if the add of @p Ty itself succeeded, 4147/// false otherwise. 4148/// 4149/// FIXME: what to do about extended qualifiers? 4150bool 4151BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4152 const Qualifiers &VisibleQuals) { 4153 4154 // Insert this type. 4155 if (!PointerTypes.insert(Ty)) 4156 return false; 4157 4158 const PointerType *PointerTy = Ty->getAs<PointerType>(); 4159 assert(PointerTy && "type was not a pointer type!"); 4160 4161 QualType PointeeTy = PointerTy->getPointeeType(); 4162 // Don't add qualified variants of arrays. For one, they're not allowed 4163 // (the qualifier would sink to the element type), and for another, the 4164 // only overload situation where it matters is subscript or pointer +- int, 4165 // and those shouldn't have qualifier variants anyway. 4166 if (PointeeTy->isArrayType()) 4167 return true; 4168 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4169 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 4170 BaseCVR = Array->getElementType().getCVRQualifiers(); 4171 bool hasVolatile = VisibleQuals.hasVolatile(); 4172 bool hasRestrict = VisibleQuals.hasRestrict(); 4173 4174 // Iterate through all strict supersets of BaseCVR. 4175 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4176 if ((CVR | BaseCVR) != CVR) continue; 4177 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 4178 // in the types. 4179 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 4180 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 4181 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4182 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 4183 } 4184 4185 return true; 4186} 4187 4188/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 4189/// to the set of pointer types along with any more-qualified variants of 4190/// that type. For example, if @p Ty is "int const *", this routine 4191/// will add "int const *", "int const volatile *", "int const 4192/// restrict *", and "int const volatile restrict *" to the set of 4193/// pointer types. Returns true if the add of @p Ty itself succeeded, 4194/// false otherwise. 4195/// 4196/// FIXME: what to do about extended qualifiers? 4197bool 4198BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 4199 QualType Ty) { 4200 // Insert this type. 4201 if (!MemberPointerTypes.insert(Ty)) 4202 return false; 4203 4204 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 4205 assert(PointerTy && "type was not a member pointer type!"); 4206 4207 QualType PointeeTy = PointerTy->getPointeeType(); 4208 // Don't add qualified variants of arrays. For one, they're not allowed 4209 // (the qualifier would sink to the element type), and for another, the 4210 // only overload situation where it matters is subscript or pointer +- int, 4211 // and those shouldn't have qualifier variants anyway. 4212 if (PointeeTy->isArrayType()) 4213 return true; 4214 const Type *ClassTy = PointerTy->getClass(); 4215 4216 // Iterate through all strict supersets of the pointee type's CVR 4217 // qualifiers. 4218 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4219 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4220 if ((CVR | BaseCVR) != CVR) continue; 4221 4222 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4223 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 4224 } 4225 4226 return true; 4227} 4228 4229/// AddTypesConvertedFrom - Add each of the types to which the type @p 4230/// Ty can be implicit converted to the given set of @p Types. We're 4231/// primarily interested in pointer types and enumeration types. We also 4232/// take member pointer types, for the conditional operator. 4233/// AllowUserConversions is true if we should look at the conversion 4234/// functions of a class type, and AllowExplicitConversions if we 4235/// should also include the explicit conversion functions of a class 4236/// type. 4237void 4238BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 4239 SourceLocation Loc, 4240 bool AllowUserConversions, 4241 bool AllowExplicitConversions, 4242 const Qualifiers &VisibleQuals) { 4243 // Only deal with canonical types. 4244 Ty = Context.getCanonicalType(Ty); 4245 4246 // Look through reference types; they aren't part of the type of an 4247 // expression for the purposes of conversions. 4248 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 4249 Ty = RefTy->getPointeeType(); 4250 4251 // We don't care about qualifiers on the type. 4252 Ty = Ty.getLocalUnqualifiedType(); 4253 4254 // If we're dealing with an array type, decay to the pointer. 4255 if (Ty->isArrayType()) 4256 Ty = SemaRef.Context.getArrayDecayedType(Ty); 4257 4258 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 4259 QualType PointeeTy = PointerTy->getPointeeType(); 4260 4261 // Insert our type, and its more-qualified variants, into the set 4262 // of types. 4263 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 4264 return; 4265 } else if (Ty->isMemberPointerType()) { 4266 // Member pointers are far easier, since the pointee can't be converted. 4267 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 4268 return; 4269 } else if (Ty->isEnumeralType()) { 4270 EnumerationTypes.insert(Ty); 4271 } else if (Ty->isVectorType()) { 4272 VectorTypes.insert(Ty); 4273 } else if (AllowUserConversions) { 4274 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 4275 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 4276 // No conversion functions in incomplete types. 4277 return; 4278 } 4279 4280 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4281 const UnresolvedSetImpl *Conversions 4282 = ClassDecl->getVisibleConversionFunctions(); 4283 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4284 E = Conversions->end(); I != E; ++I) { 4285 NamedDecl *D = I.getDecl(); 4286 if (isa<UsingShadowDecl>(D)) 4287 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4288 4289 // Skip conversion function templates; they don't tell us anything 4290 // about which builtin types we can convert to. 4291 if (isa<FunctionTemplateDecl>(D)) 4292 continue; 4293 4294 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 4295 if (AllowExplicitConversions || !Conv->isExplicit()) { 4296 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 4297 VisibleQuals); 4298 } 4299 } 4300 } 4301 } 4302} 4303 4304/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 4305/// the volatile- and non-volatile-qualified assignment operators for the 4306/// given type to the candidate set. 4307static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 4308 QualType T, 4309 Expr **Args, 4310 unsigned NumArgs, 4311 OverloadCandidateSet &CandidateSet) { 4312 QualType ParamTypes[2]; 4313 4314 // T& operator=(T&, T) 4315 ParamTypes[0] = S.Context.getLValueReferenceType(T); 4316 ParamTypes[1] = T; 4317 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4318 /*IsAssignmentOperator=*/true); 4319 4320 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 4321 // volatile T& operator=(volatile T&, T) 4322 ParamTypes[0] 4323 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 4324 ParamTypes[1] = T; 4325 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4326 /*IsAssignmentOperator=*/true); 4327 } 4328} 4329 4330/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 4331/// if any, found in visible type conversion functions found in ArgExpr's type. 4332static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 4333 Qualifiers VRQuals; 4334 const RecordType *TyRec; 4335 if (const MemberPointerType *RHSMPType = 4336 ArgExpr->getType()->getAs<MemberPointerType>()) 4337 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 4338 else 4339 TyRec = ArgExpr->getType()->getAs<RecordType>(); 4340 if (!TyRec) { 4341 // Just to be safe, assume the worst case. 4342 VRQuals.addVolatile(); 4343 VRQuals.addRestrict(); 4344 return VRQuals; 4345 } 4346 4347 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4348 if (!ClassDecl->hasDefinition()) 4349 return VRQuals; 4350 4351 const UnresolvedSetImpl *Conversions = 4352 ClassDecl->getVisibleConversionFunctions(); 4353 4354 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4355 E = Conversions->end(); I != E; ++I) { 4356 NamedDecl *D = I.getDecl(); 4357 if (isa<UsingShadowDecl>(D)) 4358 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4359 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 4360 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 4361 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 4362 CanTy = ResTypeRef->getPointeeType(); 4363 // Need to go down the pointer/mempointer chain and add qualifiers 4364 // as see them. 4365 bool done = false; 4366 while (!done) { 4367 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 4368 CanTy = ResTypePtr->getPointeeType(); 4369 else if (const MemberPointerType *ResTypeMPtr = 4370 CanTy->getAs<MemberPointerType>()) 4371 CanTy = ResTypeMPtr->getPointeeType(); 4372 else 4373 done = true; 4374 if (CanTy.isVolatileQualified()) 4375 VRQuals.addVolatile(); 4376 if (CanTy.isRestrictQualified()) 4377 VRQuals.addRestrict(); 4378 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 4379 return VRQuals; 4380 } 4381 } 4382 } 4383 return VRQuals; 4384} 4385 4386/// AddBuiltinOperatorCandidates - Add the appropriate built-in 4387/// operator overloads to the candidate set (C++ [over.built]), based 4388/// on the operator @p Op and the arguments given. For example, if the 4389/// operator is a binary '+', this routine might add "int 4390/// operator+(int, int)" to cover integer addition. 4391void 4392Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 4393 SourceLocation OpLoc, 4394 Expr **Args, unsigned NumArgs, 4395 OverloadCandidateSet& CandidateSet) { 4396 // The set of "promoted arithmetic types", which are the arithmetic 4397 // types are that preserved by promotion (C++ [over.built]p2). Note 4398 // that the first few of these types are the promoted integral 4399 // types; these types need to be first. 4400 // FIXME: What about complex? 4401 const unsigned FirstIntegralType = 0; 4402 const unsigned LastIntegralType = 13; 4403 const unsigned FirstPromotedIntegralType = 7, 4404 LastPromotedIntegralType = 13; 4405 const unsigned FirstPromotedArithmeticType = 7, 4406 LastPromotedArithmeticType = 16; 4407 const unsigned NumArithmeticTypes = 16; 4408 QualType ArithmeticTypes[NumArithmeticTypes] = { 4409 Context.BoolTy, Context.CharTy, Context.WCharTy, 4410// FIXME: Context.Char16Ty, Context.Char32Ty, 4411 Context.SignedCharTy, Context.ShortTy, 4412 Context.UnsignedCharTy, Context.UnsignedShortTy, 4413 Context.IntTy, Context.LongTy, Context.LongLongTy, 4414 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 4415 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 4416 }; 4417 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 4418 "Invalid first promoted integral type"); 4419 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 4420 == Context.UnsignedLongLongTy && 4421 "Invalid last promoted integral type"); 4422 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 4423 "Invalid first promoted arithmetic type"); 4424 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 4425 == Context.LongDoubleTy && 4426 "Invalid last promoted arithmetic type"); 4427 4428 // Find all of the types that the arguments can convert to, but only 4429 // if the operator we're looking at has built-in operator candidates 4430 // that make use of these types. 4431 Qualifiers VisibleTypeConversionsQuals; 4432 VisibleTypeConversionsQuals.addConst(); 4433 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4434 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 4435 4436 BuiltinCandidateTypeSet CandidateTypes(*this); 4437 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4438 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 4439 OpLoc, 4440 true, 4441 (Op == OO_Exclaim || 4442 Op == OO_AmpAmp || 4443 Op == OO_PipePipe), 4444 VisibleTypeConversionsQuals); 4445 4446 bool isComparison = false; 4447 switch (Op) { 4448 case OO_None: 4449 case NUM_OVERLOADED_OPERATORS: 4450 assert(false && "Expected an overloaded operator"); 4451 break; 4452 4453 case OO_Star: // '*' is either unary or binary 4454 if (NumArgs == 1) 4455 goto UnaryStar; 4456 else 4457 goto BinaryStar; 4458 break; 4459 4460 case OO_Plus: // '+' is either unary or binary 4461 if (NumArgs == 1) 4462 goto UnaryPlus; 4463 else 4464 goto BinaryPlus; 4465 break; 4466 4467 case OO_Minus: // '-' is either unary or binary 4468 if (NumArgs == 1) 4469 goto UnaryMinus; 4470 else 4471 goto BinaryMinus; 4472 break; 4473 4474 case OO_Amp: // '&' is either unary or binary 4475 if (NumArgs == 1) 4476 goto UnaryAmp; 4477 else 4478 goto BinaryAmp; 4479 4480 case OO_PlusPlus: 4481 case OO_MinusMinus: 4482 // C++ [over.built]p3: 4483 // 4484 // For every pair (T, VQ), where T is an arithmetic type, and VQ 4485 // is either volatile or empty, there exist candidate operator 4486 // functions of the form 4487 // 4488 // VQ T& operator++(VQ T&); 4489 // T operator++(VQ T&, int); 4490 // 4491 // C++ [over.built]p4: 4492 // 4493 // For every pair (T, VQ), where T is an arithmetic type other 4494 // than bool, and VQ is either volatile or empty, there exist 4495 // candidate operator functions of the form 4496 // 4497 // VQ T& operator--(VQ T&); 4498 // T operator--(VQ T&, int); 4499 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 4500 Arith < NumArithmeticTypes; ++Arith) { 4501 QualType ArithTy = ArithmeticTypes[Arith]; 4502 QualType ParamTypes[2] 4503 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 4504 4505 // Non-volatile version. 4506 if (NumArgs == 1) 4507 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4508 else 4509 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4510 // heuristic to reduce number of builtin candidates in the set. 4511 // Add volatile version only if there are conversions to a volatile type. 4512 if (VisibleTypeConversionsQuals.hasVolatile()) { 4513 // Volatile version 4514 ParamTypes[0] 4515 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 4516 if (NumArgs == 1) 4517 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4518 else 4519 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4520 } 4521 } 4522 4523 // C++ [over.built]p5: 4524 // 4525 // For every pair (T, VQ), where T is a cv-qualified or 4526 // cv-unqualified object type, and VQ is either volatile or 4527 // empty, there exist candidate operator functions of the form 4528 // 4529 // T*VQ& operator++(T*VQ&); 4530 // T*VQ& operator--(T*VQ&); 4531 // T* operator++(T*VQ&, int); 4532 // T* operator--(T*VQ&, int); 4533 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4534 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4535 // Skip pointer types that aren't pointers to object types. 4536 if (!(*Ptr)->getPointeeType()->isIncompleteOrObjectType()) 4537 continue; 4538 4539 QualType ParamTypes[2] = { 4540 Context.getLValueReferenceType(*Ptr), Context.IntTy 4541 }; 4542 4543 // Without volatile 4544 if (NumArgs == 1) 4545 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4546 else 4547 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4548 4549 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4550 VisibleTypeConversionsQuals.hasVolatile()) { 4551 // With volatile 4552 ParamTypes[0] 4553 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4554 if (NumArgs == 1) 4555 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4556 else 4557 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4558 } 4559 } 4560 break; 4561 4562 UnaryStar: 4563 // C++ [over.built]p6: 4564 // For every cv-qualified or cv-unqualified object type T, there 4565 // exist candidate operator functions of the form 4566 // 4567 // T& operator*(T*); 4568 // 4569 // C++ [over.built]p7: 4570 // For every function type T, there exist candidate operator 4571 // functions of the form 4572 // T& operator*(T*); 4573 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4574 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4575 QualType ParamTy = *Ptr; 4576 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 4577 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 4578 &ParamTy, Args, 1, CandidateSet); 4579 } 4580 break; 4581 4582 UnaryPlus: 4583 // C++ [over.built]p8: 4584 // For every type T, there exist candidate operator functions of 4585 // the form 4586 // 4587 // T* operator+(T*); 4588 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4589 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4590 QualType ParamTy = *Ptr; 4591 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 4592 } 4593 4594 // Fall through 4595 4596 UnaryMinus: 4597 // C++ [over.built]p9: 4598 // For every promoted arithmetic type T, there exist candidate 4599 // operator functions of the form 4600 // 4601 // T operator+(T); 4602 // T operator-(T); 4603 for (unsigned Arith = FirstPromotedArithmeticType; 4604 Arith < LastPromotedArithmeticType; ++Arith) { 4605 QualType ArithTy = ArithmeticTypes[Arith]; 4606 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 4607 } 4608 4609 // Extension: We also add these operators for vector types. 4610 for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), 4611 VecEnd = CandidateTypes.vector_end(); 4612 Vec != VecEnd; ++Vec) { 4613 QualType VecTy = *Vec; 4614 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4615 } 4616 break; 4617 4618 case OO_Tilde: 4619 // C++ [over.built]p10: 4620 // For every promoted integral type T, there exist candidate 4621 // operator functions of the form 4622 // 4623 // T operator~(T); 4624 for (unsigned Int = FirstPromotedIntegralType; 4625 Int < LastPromotedIntegralType; ++Int) { 4626 QualType IntTy = ArithmeticTypes[Int]; 4627 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 4628 } 4629 4630 // Extension: We also add this operator for vector types. 4631 for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), 4632 VecEnd = CandidateTypes.vector_end(); 4633 Vec != VecEnd; ++Vec) { 4634 QualType VecTy = *Vec; 4635 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4636 } 4637 break; 4638 4639 case OO_New: 4640 case OO_Delete: 4641 case OO_Array_New: 4642 case OO_Array_Delete: 4643 case OO_Call: 4644 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 4645 break; 4646 4647 case OO_Comma: 4648 UnaryAmp: 4649 case OO_Arrow: 4650 // C++ [over.match.oper]p3: 4651 // -- For the operator ',', the unary operator '&', or the 4652 // operator '->', the built-in candidates set is empty. 4653 break; 4654 4655 case OO_EqualEqual: 4656 case OO_ExclaimEqual: 4657 // C++ [over.match.oper]p16: 4658 // For every pointer to member type T, there exist candidate operator 4659 // functions of the form 4660 // 4661 // bool operator==(T,T); 4662 // bool operator!=(T,T); 4663 for (BuiltinCandidateTypeSet::iterator 4664 MemPtr = CandidateTypes.member_pointer_begin(), 4665 MemPtrEnd = CandidateTypes.member_pointer_end(); 4666 MemPtr != MemPtrEnd; 4667 ++MemPtr) { 4668 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 4669 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4670 } 4671 4672 // Fall through 4673 4674 case OO_Less: 4675 case OO_Greater: 4676 case OO_LessEqual: 4677 case OO_GreaterEqual: 4678 // C++ [over.built]p15: 4679 // 4680 // For every pointer or enumeration type T, there exist 4681 // candidate operator functions of the form 4682 // 4683 // bool operator<(T, T); 4684 // bool operator>(T, T); 4685 // bool operator<=(T, T); 4686 // bool operator>=(T, T); 4687 // bool operator==(T, T); 4688 // bool operator!=(T, T); 4689 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4690 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4691 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4692 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4693 } 4694 for (BuiltinCandidateTypeSet::iterator Enum 4695 = CandidateTypes.enumeration_begin(); 4696 Enum != CandidateTypes.enumeration_end(); ++Enum) { 4697 QualType ParamTypes[2] = { *Enum, *Enum }; 4698 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4699 } 4700 4701 // Fall through. 4702 isComparison = true; 4703 4704 BinaryPlus: 4705 BinaryMinus: 4706 if (!isComparison) { 4707 // We didn't fall through, so we must have OO_Plus or OO_Minus. 4708 4709 // C++ [over.built]p13: 4710 // 4711 // For every cv-qualified or cv-unqualified object type T 4712 // there exist candidate operator functions of the form 4713 // 4714 // T* operator+(T*, ptrdiff_t); 4715 // T& operator[](T*, ptrdiff_t); [BELOW] 4716 // T* operator-(T*, ptrdiff_t); 4717 // T* operator+(ptrdiff_t, T*); 4718 // T& operator[](ptrdiff_t, T*); [BELOW] 4719 // 4720 // C++ [over.built]p14: 4721 // 4722 // For every T, where T is a pointer to object type, there 4723 // exist candidate operator functions of the form 4724 // 4725 // ptrdiff_t operator-(T, T); 4726 for (BuiltinCandidateTypeSet::iterator Ptr 4727 = CandidateTypes.pointer_begin(); 4728 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4729 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 4730 4731 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 4732 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4733 4734 if (Op == OO_Plus) { 4735 // T* operator+(ptrdiff_t, T*); 4736 ParamTypes[0] = ParamTypes[1]; 4737 ParamTypes[1] = *Ptr; 4738 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4739 } else { 4740 // ptrdiff_t operator-(T, T); 4741 ParamTypes[1] = *Ptr; 4742 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 4743 Args, 2, CandidateSet); 4744 } 4745 } 4746 } 4747 // Fall through 4748 4749 case OO_Slash: 4750 BinaryStar: 4751 Conditional: 4752 // C++ [over.built]p12: 4753 // 4754 // For every pair of promoted arithmetic types L and R, there 4755 // exist candidate operator functions of the form 4756 // 4757 // LR operator*(L, R); 4758 // LR operator/(L, R); 4759 // LR operator+(L, R); 4760 // LR operator-(L, R); 4761 // bool operator<(L, R); 4762 // bool operator>(L, R); 4763 // bool operator<=(L, R); 4764 // bool operator>=(L, R); 4765 // bool operator==(L, R); 4766 // bool operator!=(L, R); 4767 // 4768 // where LR is the result of the usual arithmetic conversions 4769 // between types L and R. 4770 // 4771 // C++ [over.built]p24: 4772 // 4773 // For every pair of promoted arithmetic types L and R, there exist 4774 // candidate operator functions of the form 4775 // 4776 // LR operator?(bool, L, R); 4777 // 4778 // where LR is the result of the usual arithmetic conversions 4779 // between types L and R. 4780 // Our candidates ignore the first parameter. 4781 for (unsigned Left = FirstPromotedArithmeticType; 4782 Left < LastPromotedArithmeticType; ++Left) { 4783 for (unsigned Right = FirstPromotedArithmeticType; 4784 Right < LastPromotedArithmeticType; ++Right) { 4785 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4786 QualType Result 4787 = isComparison 4788 ? Context.BoolTy 4789 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4790 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4791 } 4792 } 4793 4794 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 4795 // conditional operator for vector types. 4796 for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), 4797 Vec1End = CandidateTypes.vector_end(); 4798 Vec1 != Vec1End; ++Vec1) 4799 for (BuiltinCandidateTypeSet::iterator 4800 Vec2 = CandidateTypes.vector_begin(), 4801 Vec2End = CandidateTypes.vector_end(); 4802 Vec2 != Vec2End; ++Vec2) { 4803 QualType LandR[2] = { *Vec1, *Vec2 }; 4804 QualType Result; 4805 if (isComparison) 4806 Result = Context.BoolTy; 4807 else { 4808 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 4809 Result = *Vec1; 4810 else 4811 Result = *Vec2; 4812 } 4813 4814 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4815 } 4816 4817 break; 4818 4819 case OO_Percent: 4820 BinaryAmp: 4821 case OO_Caret: 4822 case OO_Pipe: 4823 case OO_LessLess: 4824 case OO_GreaterGreater: 4825 // C++ [over.built]p17: 4826 // 4827 // For every pair of promoted integral types L and R, there 4828 // exist candidate operator functions of the form 4829 // 4830 // LR operator%(L, R); 4831 // LR operator&(L, R); 4832 // LR operator^(L, R); 4833 // LR operator|(L, R); 4834 // L operator<<(L, R); 4835 // L operator>>(L, R); 4836 // 4837 // where LR is the result of the usual arithmetic conversions 4838 // between types L and R. 4839 for (unsigned Left = FirstPromotedIntegralType; 4840 Left < LastPromotedIntegralType; ++Left) { 4841 for (unsigned Right = FirstPromotedIntegralType; 4842 Right < LastPromotedIntegralType; ++Right) { 4843 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4844 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 4845 ? LandR[0] 4846 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4847 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4848 } 4849 } 4850 break; 4851 4852 case OO_Equal: 4853 // C++ [over.built]p20: 4854 // 4855 // For every pair (T, VQ), where T is an enumeration or 4856 // pointer to member type and VQ is either volatile or 4857 // empty, there exist candidate operator functions of the form 4858 // 4859 // VQ T& operator=(VQ T&, T); 4860 for (BuiltinCandidateTypeSet::iterator 4861 Enum = CandidateTypes.enumeration_begin(), 4862 EnumEnd = CandidateTypes.enumeration_end(); 4863 Enum != EnumEnd; ++Enum) 4864 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 4865 CandidateSet); 4866 for (BuiltinCandidateTypeSet::iterator 4867 MemPtr = CandidateTypes.member_pointer_begin(), 4868 MemPtrEnd = CandidateTypes.member_pointer_end(); 4869 MemPtr != MemPtrEnd; ++MemPtr) 4870 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 4871 CandidateSet); 4872 4873 // Fall through. 4874 4875 case OO_PlusEqual: 4876 case OO_MinusEqual: 4877 // C++ [over.built]p19: 4878 // 4879 // For every pair (T, VQ), where T is any type and VQ is either 4880 // volatile or empty, there exist candidate operator functions 4881 // of the form 4882 // 4883 // T*VQ& operator=(T*VQ&, T*); 4884 // 4885 // C++ [over.built]p21: 4886 // 4887 // For every pair (T, VQ), where T is a cv-qualified or 4888 // cv-unqualified object type and VQ is either volatile or 4889 // empty, there exist candidate operator functions of the form 4890 // 4891 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 4892 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 4893 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4894 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4895 QualType ParamTypes[2]; 4896 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 4897 4898 // non-volatile version 4899 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 4900 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4901 /*IsAssigmentOperator=*/Op == OO_Equal); 4902 4903 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4904 VisibleTypeConversionsQuals.hasVolatile()) { 4905 // volatile version 4906 ParamTypes[0] 4907 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4908 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4909 /*IsAssigmentOperator=*/Op == OO_Equal); 4910 } 4911 } 4912 // Fall through. 4913 4914 case OO_StarEqual: 4915 case OO_SlashEqual: 4916 // C++ [over.built]p18: 4917 // 4918 // For every triple (L, VQ, R), where L is an arithmetic type, 4919 // VQ is either volatile or empty, and R is a promoted 4920 // arithmetic type, there exist candidate operator functions of 4921 // the form 4922 // 4923 // VQ L& operator=(VQ L&, R); 4924 // VQ L& operator*=(VQ L&, R); 4925 // VQ L& operator/=(VQ L&, R); 4926 // VQ L& operator+=(VQ L&, R); 4927 // VQ L& operator-=(VQ L&, R); 4928 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 4929 for (unsigned Right = FirstPromotedArithmeticType; 4930 Right < LastPromotedArithmeticType; ++Right) { 4931 QualType ParamTypes[2]; 4932 ParamTypes[1] = ArithmeticTypes[Right]; 4933 4934 // Add this built-in operator as a candidate (VQ is empty). 4935 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 4936 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4937 /*IsAssigmentOperator=*/Op == OO_Equal); 4938 4939 // Add this built-in operator as a candidate (VQ is 'volatile'). 4940 if (VisibleTypeConversionsQuals.hasVolatile()) { 4941 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 4942 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4943 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4944 /*IsAssigmentOperator=*/Op == OO_Equal); 4945 } 4946 } 4947 } 4948 4949 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 4950 for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), 4951 Vec1End = CandidateTypes.vector_end(); 4952 Vec1 != Vec1End; ++Vec1) 4953 for (BuiltinCandidateTypeSet::iterator 4954 Vec2 = CandidateTypes.vector_begin(), 4955 Vec2End = CandidateTypes.vector_end(); 4956 Vec2 != Vec2End; ++Vec2) { 4957 QualType ParamTypes[2]; 4958 ParamTypes[1] = *Vec2; 4959 // Add this built-in operator as a candidate (VQ is empty). 4960 ParamTypes[0] = Context.getLValueReferenceType(*Vec1); 4961 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4962 /*IsAssigmentOperator=*/Op == OO_Equal); 4963 4964 // Add this built-in operator as a candidate (VQ is 'volatile'). 4965 if (VisibleTypeConversionsQuals.hasVolatile()) { 4966 ParamTypes[0] = Context.getVolatileType(*Vec1); 4967 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4968 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4969 /*IsAssigmentOperator=*/Op == OO_Equal); 4970 } 4971 } 4972 break; 4973 4974 case OO_PercentEqual: 4975 case OO_LessLessEqual: 4976 case OO_GreaterGreaterEqual: 4977 case OO_AmpEqual: 4978 case OO_CaretEqual: 4979 case OO_PipeEqual: 4980 // C++ [over.built]p22: 4981 // 4982 // For every triple (L, VQ, R), where L is an integral type, VQ 4983 // is either volatile or empty, and R is a promoted integral 4984 // type, there exist candidate operator functions of the form 4985 // 4986 // VQ L& operator%=(VQ L&, R); 4987 // VQ L& operator<<=(VQ L&, R); 4988 // VQ L& operator>>=(VQ L&, R); 4989 // VQ L& operator&=(VQ L&, R); 4990 // VQ L& operator^=(VQ L&, R); 4991 // VQ L& operator|=(VQ L&, R); 4992 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 4993 for (unsigned Right = FirstPromotedIntegralType; 4994 Right < LastPromotedIntegralType; ++Right) { 4995 QualType ParamTypes[2]; 4996 ParamTypes[1] = ArithmeticTypes[Right]; 4997 4998 // Add this built-in operator as a candidate (VQ is empty). 4999 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 5000 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 5001 if (VisibleTypeConversionsQuals.hasVolatile()) { 5002 // Add this built-in operator as a candidate (VQ is 'volatile'). 5003 ParamTypes[0] = ArithmeticTypes[Left]; 5004 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 5005 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 5006 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 5007 } 5008 } 5009 } 5010 break; 5011 5012 case OO_Exclaim: { 5013 // C++ [over.operator]p23: 5014 // 5015 // There also exist candidate operator functions of the form 5016 // 5017 // bool operator!(bool); 5018 // bool operator&&(bool, bool); [BELOW] 5019 // bool operator||(bool, bool); [BELOW] 5020 QualType ParamTy = Context.BoolTy; 5021 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 5022 /*IsAssignmentOperator=*/false, 5023 /*NumContextualBoolArguments=*/1); 5024 break; 5025 } 5026 5027 case OO_AmpAmp: 5028 case OO_PipePipe: { 5029 // C++ [over.operator]p23: 5030 // 5031 // There also exist candidate operator functions of the form 5032 // 5033 // bool operator!(bool); [ABOVE] 5034 // bool operator&&(bool, bool); 5035 // bool operator||(bool, bool); 5036 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 5037 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 5038 /*IsAssignmentOperator=*/false, 5039 /*NumContextualBoolArguments=*/2); 5040 break; 5041 } 5042 5043 case OO_Subscript: 5044 // C++ [over.built]p13: 5045 // 5046 // For every cv-qualified or cv-unqualified object type T there 5047 // exist candidate operator functions of the form 5048 // 5049 // T* operator+(T*, ptrdiff_t); [ABOVE] 5050 // T& operator[](T*, ptrdiff_t); 5051 // T* operator-(T*, ptrdiff_t); [ABOVE] 5052 // T* operator+(ptrdiff_t, T*); [ABOVE] 5053 // T& operator[](ptrdiff_t, T*); 5054 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 5055 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 5056 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 5057 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 5058 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 5059 5060 // T& operator[](T*, ptrdiff_t) 5061 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5062 5063 // T& operator[](ptrdiff_t, T*); 5064 ParamTypes[0] = ParamTypes[1]; 5065 ParamTypes[1] = *Ptr; 5066 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5067 } 5068 break; 5069 5070 case OO_ArrowStar: 5071 // C++ [over.built]p11: 5072 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 5073 // C1 is the same type as C2 or is a derived class of C2, T is an object 5074 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 5075 // there exist candidate operator functions of the form 5076 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 5077 // where CV12 is the union of CV1 and CV2. 5078 { 5079 for (BuiltinCandidateTypeSet::iterator Ptr = 5080 CandidateTypes.pointer_begin(); 5081 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 5082 QualType C1Ty = (*Ptr); 5083 QualType C1; 5084 QualifierCollector Q1; 5085 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 5086 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 5087 if (!isa<RecordType>(C1)) 5088 continue; 5089 // heuristic to reduce number of builtin candidates in the set. 5090 // Add volatile/restrict version only if there are conversions to a 5091 // volatile/restrict type. 5092 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 5093 continue; 5094 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 5095 continue; 5096 } 5097 for (BuiltinCandidateTypeSet::iterator 5098 MemPtr = CandidateTypes.member_pointer_begin(), 5099 MemPtrEnd = CandidateTypes.member_pointer_end(); 5100 MemPtr != MemPtrEnd; ++MemPtr) { 5101 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 5102 QualType C2 = QualType(mptr->getClass(), 0); 5103 C2 = C2.getUnqualifiedType(); 5104 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 5105 break; 5106 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 5107 // build CV12 T& 5108 QualType T = mptr->getPointeeType(); 5109 if (!VisibleTypeConversionsQuals.hasVolatile() && 5110 T.isVolatileQualified()) 5111 continue; 5112 if (!VisibleTypeConversionsQuals.hasRestrict() && 5113 T.isRestrictQualified()) 5114 continue; 5115 T = Q1.apply(T); 5116 QualType ResultTy = Context.getLValueReferenceType(T); 5117 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5118 } 5119 } 5120 } 5121 break; 5122 5123 case OO_Conditional: 5124 // Note that we don't consider the first argument, since it has been 5125 // contextually converted to bool long ago. The candidates below are 5126 // therefore added as binary. 5127 // 5128 // C++ [over.built]p24: 5129 // For every type T, where T is a pointer or pointer-to-member type, 5130 // there exist candidate operator functions of the form 5131 // 5132 // T operator?(bool, T, T); 5133 // 5134 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 5135 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 5136 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5137 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5138 } 5139 for (BuiltinCandidateTypeSet::iterator Ptr = 5140 CandidateTypes.member_pointer_begin(), 5141 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 5142 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5143 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5144 } 5145 goto Conditional; 5146 } 5147} 5148 5149/// \brief Add function candidates found via argument-dependent lookup 5150/// to the set of overloading candidates. 5151/// 5152/// This routine performs argument-dependent name lookup based on the 5153/// given function name (which may also be an operator name) and adds 5154/// all of the overload candidates found by ADL to the overload 5155/// candidate set (C++ [basic.lookup.argdep]). 5156void 5157Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 5158 bool Operator, 5159 Expr **Args, unsigned NumArgs, 5160 const TemplateArgumentListInfo *ExplicitTemplateArgs, 5161 OverloadCandidateSet& CandidateSet, 5162 bool PartialOverloading) { 5163 ADLResult Fns; 5164 5165 // FIXME: This approach for uniquing ADL results (and removing 5166 // redundant candidates from the set) relies on pointer-equality, 5167 // which means we need to key off the canonical decl. However, 5168 // always going back to the canonical decl might not get us the 5169 // right set of default arguments. What default arguments are 5170 // we supposed to consider on ADL candidates, anyway? 5171 5172 // FIXME: Pass in the explicit template arguments? 5173 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); 5174 5175 // Erase all of the candidates we already knew about. 5176 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 5177 CandEnd = CandidateSet.end(); 5178 Cand != CandEnd; ++Cand) 5179 if (Cand->Function) { 5180 Fns.erase(Cand->Function); 5181 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 5182 Fns.erase(FunTmpl); 5183 } 5184 5185 // For each of the ADL candidates we found, add it to the overload 5186 // set. 5187 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 5188 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 5189 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 5190 if (ExplicitTemplateArgs) 5191 continue; 5192 5193 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 5194 false, PartialOverloading); 5195 } else 5196 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 5197 FoundDecl, ExplicitTemplateArgs, 5198 Args, NumArgs, CandidateSet); 5199 } 5200} 5201 5202/// isBetterOverloadCandidate - Determines whether the first overload 5203/// candidate is a better candidate than the second (C++ 13.3.3p1). 5204bool 5205Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 5206 const OverloadCandidate& Cand2, 5207 SourceLocation Loc) { 5208 // Define viable functions to be better candidates than non-viable 5209 // functions. 5210 if (!Cand2.Viable) 5211 return Cand1.Viable; 5212 else if (!Cand1.Viable) 5213 return false; 5214 5215 // C++ [over.match.best]p1: 5216 // 5217 // -- if F is a static member function, ICS1(F) is defined such 5218 // that ICS1(F) is neither better nor worse than ICS1(G) for 5219 // any function G, and, symmetrically, ICS1(G) is neither 5220 // better nor worse than ICS1(F). 5221 unsigned StartArg = 0; 5222 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 5223 StartArg = 1; 5224 5225 // C++ [over.match.best]p1: 5226 // A viable function F1 is defined to be a better function than another 5227 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 5228 // conversion sequence than ICSi(F2), and then... 5229 unsigned NumArgs = Cand1.Conversions.size(); 5230 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 5231 bool HasBetterConversion = false; 5232 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 5233 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 5234 Cand2.Conversions[ArgIdx])) { 5235 case ImplicitConversionSequence::Better: 5236 // Cand1 has a better conversion sequence. 5237 HasBetterConversion = true; 5238 break; 5239 5240 case ImplicitConversionSequence::Worse: 5241 // Cand1 can't be better than Cand2. 5242 return false; 5243 5244 case ImplicitConversionSequence::Indistinguishable: 5245 // Do nothing. 5246 break; 5247 } 5248 } 5249 5250 // -- for some argument j, ICSj(F1) is a better conversion sequence than 5251 // ICSj(F2), or, if not that, 5252 if (HasBetterConversion) 5253 return true; 5254 5255 // - F1 is a non-template function and F2 is a function template 5256 // specialization, or, if not that, 5257 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 5258 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 5259 return true; 5260 5261 // -- F1 and F2 are function template specializations, and the function 5262 // template for F1 is more specialized than the template for F2 5263 // according to the partial ordering rules described in 14.5.5.2, or, 5264 // if not that, 5265 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 5266 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 5267 if (FunctionTemplateDecl *BetterTemplate 5268 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 5269 Cand2.Function->getPrimaryTemplate(), 5270 Loc, 5271 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 5272 : TPOC_Call)) 5273 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 5274 5275 // -- the context is an initialization by user-defined conversion 5276 // (see 8.5, 13.3.1.5) and the standard conversion sequence 5277 // from the return type of F1 to the destination type (i.e., 5278 // the type of the entity being initialized) is a better 5279 // conversion sequence than the standard conversion sequence 5280 // from the return type of F2 to the destination type. 5281 if (Cand1.Function && Cand2.Function && 5282 isa<CXXConversionDecl>(Cand1.Function) && 5283 isa<CXXConversionDecl>(Cand2.Function)) { 5284 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 5285 Cand2.FinalConversion)) { 5286 case ImplicitConversionSequence::Better: 5287 // Cand1 has a better conversion sequence. 5288 return true; 5289 5290 case ImplicitConversionSequence::Worse: 5291 // Cand1 can't be better than Cand2. 5292 return false; 5293 5294 case ImplicitConversionSequence::Indistinguishable: 5295 // Do nothing 5296 break; 5297 } 5298 } 5299 5300 return false; 5301} 5302 5303/// \brief Computes the best viable function (C++ 13.3.3) 5304/// within an overload candidate set. 5305/// 5306/// \param CandidateSet the set of candidate functions. 5307/// 5308/// \param Loc the location of the function name (or operator symbol) for 5309/// which overload resolution occurs. 5310/// 5311/// \param Best f overload resolution was successful or found a deleted 5312/// function, Best points to the candidate function found. 5313/// 5314/// \returns The result of overload resolution. 5315OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 5316 SourceLocation Loc, 5317 OverloadCandidateSet::iterator& Best) { 5318 // Find the best viable function. 5319 Best = CandidateSet.end(); 5320 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 5321 Cand != CandidateSet.end(); ++Cand) { 5322 if (Cand->Viable) { 5323 if (Best == CandidateSet.end() || 5324 isBetterOverloadCandidate(*Cand, *Best, Loc)) 5325 Best = Cand; 5326 } 5327 } 5328 5329 // If we didn't find any viable functions, abort. 5330 if (Best == CandidateSet.end()) 5331 return OR_No_Viable_Function; 5332 5333 // Make sure that this function is better than every other viable 5334 // function. If not, we have an ambiguity. 5335 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 5336 Cand != CandidateSet.end(); ++Cand) { 5337 if (Cand->Viable && 5338 Cand != Best && 5339 !isBetterOverloadCandidate(*Best, *Cand, Loc)) { 5340 Best = CandidateSet.end(); 5341 return OR_Ambiguous; 5342 } 5343 } 5344 5345 // Best is the best viable function. 5346 if (Best->Function && 5347 (Best->Function->isDeleted() || 5348 Best->Function->getAttr<UnavailableAttr>())) 5349 return OR_Deleted; 5350 5351 // C++ [basic.def.odr]p2: 5352 // An overloaded function is used if it is selected by overload resolution 5353 // when referred to from a potentially-evaluated expression. [Note: this 5354 // covers calls to named functions (5.2.2), operator overloading 5355 // (clause 13), user-defined conversions (12.3.2), allocation function for 5356 // placement new (5.3.4), as well as non-default initialization (8.5). 5357 if (Best->Function) 5358 MarkDeclarationReferenced(Loc, Best->Function); 5359 return OR_Success; 5360} 5361 5362namespace { 5363 5364enum OverloadCandidateKind { 5365 oc_function, 5366 oc_method, 5367 oc_constructor, 5368 oc_function_template, 5369 oc_method_template, 5370 oc_constructor_template, 5371 oc_implicit_default_constructor, 5372 oc_implicit_copy_constructor, 5373 oc_implicit_copy_assignment 5374}; 5375 5376OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 5377 FunctionDecl *Fn, 5378 std::string &Description) { 5379 bool isTemplate = false; 5380 5381 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 5382 isTemplate = true; 5383 Description = S.getTemplateArgumentBindingsText( 5384 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 5385 } 5386 5387 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 5388 if (!Ctor->isImplicit()) 5389 return isTemplate ? oc_constructor_template : oc_constructor; 5390 5391 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 5392 : oc_implicit_default_constructor; 5393 } 5394 5395 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 5396 // This actually gets spelled 'candidate function' for now, but 5397 // it doesn't hurt to split it out. 5398 if (!Meth->isImplicit()) 5399 return isTemplate ? oc_method_template : oc_method; 5400 5401 assert(Meth->isCopyAssignment() 5402 && "implicit method is not copy assignment operator?"); 5403 return oc_implicit_copy_assignment; 5404 } 5405 5406 return isTemplate ? oc_function_template : oc_function; 5407} 5408 5409} // end anonymous namespace 5410 5411// Notes the location of an overload candidate. 5412void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 5413 std::string FnDesc; 5414 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 5415 Diag(Fn->getLocation(), diag::note_ovl_candidate) 5416 << (unsigned) K << FnDesc; 5417} 5418 5419/// Diagnoses an ambiguous conversion. The partial diagnostic is the 5420/// "lead" diagnostic; it will be given two arguments, the source and 5421/// target types of the conversion. 5422void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS, 5423 SourceLocation CaretLoc, 5424 const PartialDiagnostic &PDiag) { 5425 Diag(CaretLoc, PDiag) 5426 << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType(); 5427 for (AmbiguousConversionSequence::const_iterator 5428 I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) { 5429 NoteOverloadCandidate(*I); 5430 } 5431} 5432 5433namespace { 5434 5435void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 5436 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 5437 assert(Conv.isBad()); 5438 assert(Cand->Function && "for now, candidate must be a function"); 5439 FunctionDecl *Fn = Cand->Function; 5440 5441 // There's a conversion slot for the object argument if this is a 5442 // non-constructor method. Note that 'I' corresponds the 5443 // conversion-slot index. 5444 bool isObjectArgument = false; 5445 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 5446 if (I == 0) 5447 isObjectArgument = true; 5448 else 5449 I--; 5450 } 5451 5452 std::string FnDesc; 5453 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5454 5455 Expr *FromExpr = Conv.Bad.FromExpr; 5456 QualType FromTy = Conv.Bad.getFromType(); 5457 QualType ToTy = Conv.Bad.getToType(); 5458 5459 if (FromTy == S.Context.OverloadTy) { 5460 assert(FromExpr && "overload set argument came from implicit argument?"); 5461 Expr *E = FromExpr->IgnoreParens(); 5462 if (isa<UnaryOperator>(E)) 5463 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 5464 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 5465 5466 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 5467 << (unsigned) FnKind << FnDesc 5468 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5469 << ToTy << Name << I+1; 5470 return; 5471 } 5472 5473 // Do some hand-waving analysis to see if the non-viability is due 5474 // to a qualifier mismatch. 5475 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 5476 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 5477 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 5478 CToTy = RT->getPointeeType(); 5479 else { 5480 // TODO: detect and diagnose the full richness of const mismatches. 5481 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 5482 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 5483 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 5484 } 5485 5486 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 5487 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 5488 // It is dumb that we have to do this here. 5489 while (isa<ArrayType>(CFromTy)) 5490 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 5491 while (isa<ArrayType>(CToTy)) 5492 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 5493 5494 Qualifiers FromQs = CFromTy.getQualifiers(); 5495 Qualifiers ToQs = CToTy.getQualifiers(); 5496 5497 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 5498 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 5499 << (unsigned) FnKind << FnDesc 5500 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5501 << FromTy 5502 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 5503 << (unsigned) isObjectArgument << I+1; 5504 return; 5505 } 5506 5507 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5508 assert(CVR && "unexpected qualifiers mismatch"); 5509 5510 if (isObjectArgument) { 5511 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 5512 << (unsigned) FnKind << FnDesc 5513 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5514 << FromTy << (CVR - 1); 5515 } else { 5516 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 5517 << (unsigned) FnKind << FnDesc 5518 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5519 << FromTy << (CVR - 1) << I+1; 5520 } 5521 return; 5522 } 5523 5524 // Diagnose references or pointers to incomplete types differently, 5525 // since it's far from impossible that the incompleteness triggered 5526 // the failure. 5527 QualType TempFromTy = FromTy.getNonReferenceType(); 5528 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 5529 TempFromTy = PTy->getPointeeType(); 5530 if (TempFromTy->isIncompleteType()) { 5531 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 5532 << (unsigned) FnKind << FnDesc 5533 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5534 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5535 return; 5536 } 5537 5538 // Diagnose base -> derived pointer conversions. 5539 unsigned BaseToDerivedConversion = 0; 5540 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 5541 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 5542 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 5543 FromPtrTy->getPointeeType()) && 5544 !FromPtrTy->getPointeeType()->isIncompleteType() && 5545 !ToPtrTy->getPointeeType()->isIncompleteType() && 5546 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 5547 FromPtrTy->getPointeeType())) 5548 BaseToDerivedConversion = 1; 5549 } 5550 } else if (const ObjCObjectPointerType *FromPtrTy 5551 = FromTy->getAs<ObjCObjectPointerType>()) { 5552 if (const ObjCObjectPointerType *ToPtrTy 5553 = ToTy->getAs<ObjCObjectPointerType>()) 5554 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 5555 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 5556 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 5557 FromPtrTy->getPointeeType()) && 5558 FromIface->isSuperClassOf(ToIface)) 5559 BaseToDerivedConversion = 2; 5560 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 5561 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 5562 !FromTy->isIncompleteType() && 5563 !ToRefTy->getPointeeType()->isIncompleteType() && 5564 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 5565 BaseToDerivedConversion = 3; 5566 } 5567 5568 if (BaseToDerivedConversion) { 5569 S.Diag(Fn->getLocation(), 5570 diag::note_ovl_candidate_bad_base_to_derived_conv) 5571 << (unsigned) FnKind << FnDesc 5572 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5573 << (BaseToDerivedConversion - 1) 5574 << FromTy << ToTy << I+1; 5575 return; 5576 } 5577 5578 // TODO: specialize more based on the kind of mismatch 5579 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 5580 << (unsigned) FnKind << FnDesc 5581 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5582 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5583} 5584 5585void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 5586 unsigned NumFormalArgs) { 5587 // TODO: treat calls to a missing default constructor as a special case 5588 5589 FunctionDecl *Fn = Cand->Function; 5590 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 5591 5592 unsigned MinParams = Fn->getMinRequiredArguments(); 5593 5594 // at least / at most / exactly 5595 // FIXME: variadic templates "at most" should account for parameter packs 5596 unsigned mode, modeCount; 5597 if (NumFormalArgs < MinParams) { 5598 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 5599 (Cand->FailureKind == ovl_fail_bad_deduction && 5600 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 5601 if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) 5602 mode = 0; // "at least" 5603 else 5604 mode = 2; // "exactly" 5605 modeCount = MinParams; 5606 } else { 5607 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 5608 (Cand->FailureKind == ovl_fail_bad_deduction && 5609 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 5610 if (MinParams != FnTy->getNumArgs()) 5611 mode = 1; // "at most" 5612 else 5613 mode = 2; // "exactly" 5614 modeCount = FnTy->getNumArgs(); 5615 } 5616 5617 std::string Description; 5618 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 5619 5620 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 5621 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 5622 << modeCount << NumFormalArgs; 5623} 5624 5625/// Diagnose a failed template-argument deduction. 5626void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 5627 Expr **Args, unsigned NumArgs) { 5628 FunctionDecl *Fn = Cand->Function; // pattern 5629 5630 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 5631 NamedDecl *ParamD; 5632 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 5633 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 5634 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 5635 switch (Cand->DeductionFailure.Result) { 5636 case Sema::TDK_Success: 5637 llvm_unreachable("TDK_success while diagnosing bad deduction"); 5638 5639 case Sema::TDK_Incomplete: { 5640 assert(ParamD && "no parameter found for incomplete deduction result"); 5641 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 5642 << ParamD->getDeclName(); 5643 return; 5644 } 5645 5646 case Sema::TDK_Underqualified: { 5647 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 5648 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 5649 5650 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 5651 5652 // Param will have been canonicalized, but it should just be a 5653 // qualified version of ParamD, so move the qualifiers to that. 5654 QualifierCollector Qs(S.Context); 5655 Qs.strip(Param); 5656 QualType NonCanonParam = Qs.apply(TParam->getTypeForDecl()); 5657 assert(S.Context.hasSameType(Param, NonCanonParam)); 5658 5659 // Arg has also been canonicalized, but there's nothing we can do 5660 // about that. It also doesn't matter as much, because it won't 5661 // have any template parameters in it (because deduction isn't 5662 // done on dependent types). 5663 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 5664 5665 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 5666 << ParamD->getDeclName() << Arg << NonCanonParam; 5667 return; 5668 } 5669 5670 case Sema::TDK_Inconsistent: { 5671 assert(ParamD && "no parameter found for inconsistent deduction result"); 5672 int which = 0; 5673 if (isa<TemplateTypeParmDecl>(ParamD)) 5674 which = 0; 5675 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 5676 which = 1; 5677 else { 5678 which = 2; 5679 } 5680 5681 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 5682 << which << ParamD->getDeclName() 5683 << *Cand->DeductionFailure.getFirstArg() 5684 << *Cand->DeductionFailure.getSecondArg(); 5685 return; 5686 } 5687 5688 case Sema::TDK_InvalidExplicitArguments: 5689 assert(ParamD && "no parameter found for invalid explicit arguments"); 5690 if (ParamD->getDeclName()) 5691 S.Diag(Fn->getLocation(), 5692 diag::note_ovl_candidate_explicit_arg_mismatch_named) 5693 << ParamD->getDeclName(); 5694 else { 5695 int index = 0; 5696 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 5697 index = TTP->getIndex(); 5698 else if (NonTypeTemplateParmDecl *NTTP 5699 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 5700 index = NTTP->getIndex(); 5701 else 5702 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 5703 S.Diag(Fn->getLocation(), 5704 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 5705 << (index + 1); 5706 } 5707 return; 5708 5709 case Sema::TDK_TooManyArguments: 5710 case Sema::TDK_TooFewArguments: 5711 DiagnoseArityMismatch(S, Cand, NumArgs); 5712 return; 5713 5714 case Sema::TDK_InstantiationDepth: 5715 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 5716 return; 5717 5718 case Sema::TDK_SubstitutionFailure: { 5719 std::string ArgString; 5720 if (TemplateArgumentList *Args 5721 = Cand->DeductionFailure.getTemplateArgumentList()) 5722 ArgString = S.getTemplateArgumentBindingsText( 5723 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 5724 *Args); 5725 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 5726 << ArgString; 5727 return; 5728 } 5729 5730 // TODO: diagnose these individually, then kill off 5731 // note_ovl_candidate_bad_deduction, which is uselessly vague. 5732 case Sema::TDK_NonDeducedMismatch: 5733 case Sema::TDK_FailedOverloadResolution: 5734 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 5735 return; 5736 } 5737} 5738 5739/// Generates a 'note' diagnostic for an overload candidate. We've 5740/// already generated a primary error at the call site. 5741/// 5742/// It really does need to be a single diagnostic with its caret 5743/// pointed at the candidate declaration. Yes, this creates some 5744/// major challenges of technical writing. Yes, this makes pointing 5745/// out problems with specific arguments quite awkward. It's still 5746/// better than generating twenty screens of text for every failed 5747/// overload. 5748/// 5749/// It would be great to be able to express per-candidate problems 5750/// more richly for those diagnostic clients that cared, but we'd 5751/// still have to be just as careful with the default diagnostics. 5752void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 5753 Expr **Args, unsigned NumArgs) { 5754 FunctionDecl *Fn = Cand->Function; 5755 5756 // Note deleted candidates, but only if they're viable. 5757 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 5758 std::string FnDesc; 5759 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5760 5761 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 5762 << FnKind << FnDesc << Fn->isDeleted(); 5763 return; 5764 } 5765 5766 // We don't really have anything else to say about viable candidates. 5767 if (Cand->Viable) { 5768 S.NoteOverloadCandidate(Fn); 5769 return; 5770 } 5771 5772 switch (Cand->FailureKind) { 5773 case ovl_fail_too_many_arguments: 5774 case ovl_fail_too_few_arguments: 5775 return DiagnoseArityMismatch(S, Cand, NumArgs); 5776 5777 case ovl_fail_bad_deduction: 5778 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 5779 5780 case ovl_fail_trivial_conversion: 5781 case ovl_fail_bad_final_conversion: 5782 case ovl_fail_final_conversion_not_exact: 5783 return S.NoteOverloadCandidate(Fn); 5784 5785 case ovl_fail_bad_conversion: { 5786 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 5787 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 5788 if (Cand->Conversions[I].isBad()) 5789 return DiagnoseBadConversion(S, Cand, I); 5790 5791 // FIXME: this currently happens when we're called from SemaInit 5792 // when user-conversion overload fails. Figure out how to handle 5793 // those conditions and diagnose them well. 5794 return S.NoteOverloadCandidate(Fn); 5795 } 5796 } 5797} 5798 5799void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 5800 // Desugar the type of the surrogate down to a function type, 5801 // retaining as many typedefs as possible while still showing 5802 // the function type (and, therefore, its parameter types). 5803 QualType FnType = Cand->Surrogate->getConversionType(); 5804 bool isLValueReference = false; 5805 bool isRValueReference = false; 5806 bool isPointer = false; 5807 if (const LValueReferenceType *FnTypeRef = 5808 FnType->getAs<LValueReferenceType>()) { 5809 FnType = FnTypeRef->getPointeeType(); 5810 isLValueReference = true; 5811 } else if (const RValueReferenceType *FnTypeRef = 5812 FnType->getAs<RValueReferenceType>()) { 5813 FnType = FnTypeRef->getPointeeType(); 5814 isRValueReference = true; 5815 } 5816 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 5817 FnType = FnTypePtr->getPointeeType(); 5818 isPointer = true; 5819 } 5820 // Desugar down to a function type. 5821 FnType = QualType(FnType->getAs<FunctionType>(), 0); 5822 // Reconstruct the pointer/reference as appropriate. 5823 if (isPointer) FnType = S.Context.getPointerType(FnType); 5824 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 5825 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 5826 5827 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 5828 << FnType; 5829} 5830 5831void NoteBuiltinOperatorCandidate(Sema &S, 5832 const char *Opc, 5833 SourceLocation OpLoc, 5834 OverloadCandidate *Cand) { 5835 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 5836 std::string TypeStr("operator"); 5837 TypeStr += Opc; 5838 TypeStr += "("; 5839 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 5840 if (Cand->Conversions.size() == 1) { 5841 TypeStr += ")"; 5842 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 5843 } else { 5844 TypeStr += ", "; 5845 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 5846 TypeStr += ")"; 5847 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 5848 } 5849} 5850 5851void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 5852 OverloadCandidate *Cand) { 5853 unsigned NoOperands = Cand->Conversions.size(); 5854 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 5855 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 5856 if (ICS.isBad()) break; // all meaningless after first invalid 5857 if (!ICS.isAmbiguous()) continue; 5858 5859 S.DiagnoseAmbiguousConversion(ICS, OpLoc, 5860 S.PDiag(diag::note_ambiguous_type_conversion)); 5861 } 5862} 5863 5864SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 5865 if (Cand->Function) 5866 return Cand->Function->getLocation(); 5867 if (Cand->IsSurrogate) 5868 return Cand->Surrogate->getLocation(); 5869 return SourceLocation(); 5870} 5871 5872struct CompareOverloadCandidatesForDisplay { 5873 Sema &S; 5874 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 5875 5876 bool operator()(const OverloadCandidate *L, 5877 const OverloadCandidate *R) { 5878 // Fast-path this check. 5879 if (L == R) return false; 5880 5881 // Order first by viability. 5882 if (L->Viable) { 5883 if (!R->Viable) return true; 5884 5885 // TODO: introduce a tri-valued comparison for overload 5886 // candidates. Would be more worthwhile if we had a sort 5887 // that could exploit it. 5888 if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true; 5889 if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false; 5890 } else if (R->Viable) 5891 return false; 5892 5893 assert(L->Viable == R->Viable); 5894 5895 // Criteria by which we can sort non-viable candidates: 5896 if (!L->Viable) { 5897 // 1. Arity mismatches come after other candidates. 5898 if (L->FailureKind == ovl_fail_too_many_arguments || 5899 L->FailureKind == ovl_fail_too_few_arguments) 5900 return false; 5901 if (R->FailureKind == ovl_fail_too_many_arguments || 5902 R->FailureKind == ovl_fail_too_few_arguments) 5903 return true; 5904 5905 // 2. Bad conversions come first and are ordered by the number 5906 // of bad conversions and quality of good conversions. 5907 if (L->FailureKind == ovl_fail_bad_conversion) { 5908 if (R->FailureKind != ovl_fail_bad_conversion) 5909 return true; 5910 5911 // If there's any ordering between the defined conversions... 5912 // FIXME: this might not be transitive. 5913 assert(L->Conversions.size() == R->Conversions.size()); 5914 5915 int leftBetter = 0; 5916 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 5917 for (unsigned E = L->Conversions.size(); I != E; ++I) { 5918 switch (S.CompareImplicitConversionSequences(L->Conversions[I], 5919 R->Conversions[I])) { 5920 case ImplicitConversionSequence::Better: 5921 leftBetter++; 5922 break; 5923 5924 case ImplicitConversionSequence::Worse: 5925 leftBetter--; 5926 break; 5927 5928 case ImplicitConversionSequence::Indistinguishable: 5929 break; 5930 } 5931 } 5932 if (leftBetter > 0) return true; 5933 if (leftBetter < 0) return false; 5934 5935 } else if (R->FailureKind == ovl_fail_bad_conversion) 5936 return false; 5937 5938 // TODO: others? 5939 } 5940 5941 // Sort everything else by location. 5942 SourceLocation LLoc = GetLocationForCandidate(L); 5943 SourceLocation RLoc = GetLocationForCandidate(R); 5944 5945 // Put candidates without locations (e.g. builtins) at the end. 5946 if (LLoc.isInvalid()) return false; 5947 if (RLoc.isInvalid()) return true; 5948 5949 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 5950 } 5951}; 5952 5953/// CompleteNonViableCandidate - Normally, overload resolution only 5954/// computes up to the first 5955void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 5956 Expr **Args, unsigned NumArgs) { 5957 assert(!Cand->Viable); 5958 5959 // Don't do anything on failures other than bad conversion. 5960 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 5961 5962 // Skip forward to the first bad conversion. 5963 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 5964 unsigned ConvCount = Cand->Conversions.size(); 5965 while (true) { 5966 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 5967 ConvIdx++; 5968 if (Cand->Conversions[ConvIdx - 1].isBad()) 5969 break; 5970 } 5971 5972 if (ConvIdx == ConvCount) 5973 return; 5974 5975 assert(!Cand->Conversions[ConvIdx].isInitialized() && 5976 "remaining conversion is initialized?"); 5977 5978 // FIXME: this should probably be preserved from the overload 5979 // operation somehow. 5980 bool SuppressUserConversions = false; 5981 5982 const FunctionProtoType* Proto; 5983 unsigned ArgIdx = ConvIdx; 5984 5985 if (Cand->IsSurrogate) { 5986 QualType ConvType 5987 = Cand->Surrogate->getConversionType().getNonReferenceType(); 5988 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5989 ConvType = ConvPtrType->getPointeeType(); 5990 Proto = ConvType->getAs<FunctionProtoType>(); 5991 ArgIdx--; 5992 } else if (Cand->Function) { 5993 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 5994 if (isa<CXXMethodDecl>(Cand->Function) && 5995 !isa<CXXConstructorDecl>(Cand->Function)) 5996 ArgIdx--; 5997 } else { 5998 // Builtin binary operator with a bad first conversion. 5999 assert(ConvCount <= 3); 6000 for (; ConvIdx != ConvCount; ++ConvIdx) 6001 Cand->Conversions[ConvIdx] 6002 = TryCopyInitialization(S, Args[ConvIdx], 6003 Cand->BuiltinTypes.ParamTypes[ConvIdx], 6004 SuppressUserConversions, 6005 /*InOverloadResolution*/ true); 6006 return; 6007 } 6008 6009 // Fill in the rest of the conversions. 6010 unsigned NumArgsInProto = Proto->getNumArgs(); 6011 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 6012 if (ArgIdx < NumArgsInProto) 6013 Cand->Conversions[ConvIdx] 6014 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 6015 SuppressUserConversions, 6016 /*InOverloadResolution=*/true); 6017 else 6018 Cand->Conversions[ConvIdx].setEllipsis(); 6019 } 6020} 6021 6022} // end anonymous namespace 6023 6024/// PrintOverloadCandidates - When overload resolution fails, prints 6025/// diagnostic messages containing the candidates in the candidate 6026/// set. 6027void 6028Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 6029 OverloadCandidateDisplayKind OCD, 6030 Expr **Args, unsigned NumArgs, 6031 const char *Opc, 6032 SourceLocation OpLoc) { 6033 // Sort the candidates by viability and position. Sorting directly would 6034 // be prohibitive, so we make a set of pointers and sort those. 6035 llvm::SmallVector<OverloadCandidate*, 32> Cands; 6036 if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size()); 6037 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 6038 LastCand = CandidateSet.end(); 6039 Cand != LastCand; ++Cand) { 6040 if (Cand->Viable) 6041 Cands.push_back(Cand); 6042 else if (OCD == OCD_AllCandidates) { 6043 CompleteNonViableCandidate(*this, Cand, Args, NumArgs); 6044 if (Cand->Function || Cand->IsSurrogate) 6045 Cands.push_back(Cand); 6046 // Otherwise, this a non-viable builtin candidate. We do not, in general, 6047 // want to list every possible builtin candidate. 6048 } 6049 } 6050 6051 std::sort(Cands.begin(), Cands.end(), 6052 CompareOverloadCandidatesForDisplay(*this)); 6053 6054 bool ReportedAmbiguousConversions = false; 6055 6056 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 6057 const Diagnostic::OverloadsShown ShowOverloads = Diags.getShowOverloads(); 6058 unsigned CandsShown = 0; 6059 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 6060 OverloadCandidate *Cand = *I; 6061 6062 // Set an arbitrary limit on the number of candidate functions we'll spam 6063 // the user with. FIXME: This limit should depend on details of the 6064 // candidate list. 6065 if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { 6066 break; 6067 } 6068 ++CandsShown; 6069 6070 if (Cand->Function) 6071 NoteFunctionCandidate(*this, Cand, Args, NumArgs); 6072 else if (Cand->IsSurrogate) 6073 NoteSurrogateCandidate(*this, Cand); 6074 else { 6075 assert(Cand->Viable && 6076 "Non-viable built-in candidates are not added to Cands."); 6077 // Generally we only see ambiguities including viable builtin 6078 // operators if overload resolution got screwed up by an 6079 // ambiguous user-defined conversion. 6080 // 6081 // FIXME: It's quite possible for different conversions to see 6082 // different ambiguities, though. 6083 if (!ReportedAmbiguousConversions) { 6084 NoteAmbiguousUserConversions(*this, OpLoc, Cand); 6085 ReportedAmbiguousConversions = true; 6086 } 6087 6088 // If this is a viable builtin, print it. 6089 NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand); 6090 } 6091 } 6092 6093 if (I != E) 6094 Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 6095} 6096 6097static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { 6098 if (isa<UnresolvedLookupExpr>(E)) 6099 return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D); 6100 6101 return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D); 6102} 6103 6104/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 6105/// an overloaded function (C++ [over.over]), where @p From is an 6106/// expression with overloaded function type and @p ToType is the type 6107/// we're trying to resolve to. For example: 6108/// 6109/// @code 6110/// int f(double); 6111/// int f(int); 6112/// 6113/// int (*pfd)(double) = f; // selects f(double) 6114/// @endcode 6115/// 6116/// This routine returns the resulting FunctionDecl if it could be 6117/// resolved, and NULL otherwise. When @p Complain is true, this 6118/// routine will emit diagnostics if there is an error. 6119FunctionDecl * 6120Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 6121 bool Complain, 6122 DeclAccessPair &FoundResult) { 6123 QualType FunctionType = ToType; 6124 bool IsMember = false; 6125 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 6126 FunctionType = ToTypePtr->getPointeeType(); 6127 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 6128 FunctionType = ToTypeRef->getPointeeType(); 6129 else if (const MemberPointerType *MemTypePtr = 6130 ToType->getAs<MemberPointerType>()) { 6131 FunctionType = MemTypePtr->getPointeeType(); 6132 IsMember = true; 6133 } 6134 6135 // C++ [over.over]p1: 6136 // [...] [Note: any redundant set of parentheses surrounding the 6137 // overloaded function name is ignored (5.1). ] 6138 // C++ [over.over]p1: 6139 // [...] The overloaded function name can be preceded by the & 6140 // operator. 6141 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 6142 TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; 6143 if (OvlExpr->hasExplicitTemplateArgs()) { 6144 OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); 6145 ExplicitTemplateArgs = &ETABuffer; 6146 } 6147 6148 // We expect a pointer or reference to function, or a function pointer. 6149 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 6150 if (!FunctionType->isFunctionType()) { 6151 if (Complain) 6152 Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 6153 << OvlExpr->getName() << ToType; 6154 6155 return 0; 6156 } 6157 6158 assert(From->getType() == Context.OverloadTy); 6159 6160 // Look through all of the overloaded functions, searching for one 6161 // whose type matches exactly. 6162 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 6163 llvm::SmallVector<FunctionDecl *, 4> NonMatches; 6164 6165 bool FoundNonTemplateFunction = false; 6166 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6167 E = OvlExpr->decls_end(); I != E; ++I) { 6168 // Look through any using declarations to find the underlying function. 6169 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 6170 6171 // C++ [over.over]p3: 6172 // Non-member functions and static member functions match 6173 // targets of type "pointer-to-function" or "reference-to-function." 6174 // Nonstatic member functions match targets of 6175 // type "pointer-to-member-function." 6176 // Note that according to DR 247, the containing class does not matter. 6177 6178 if (FunctionTemplateDecl *FunctionTemplate 6179 = dyn_cast<FunctionTemplateDecl>(Fn)) { 6180 if (CXXMethodDecl *Method 6181 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 6182 // Skip non-static function templates when converting to pointer, and 6183 // static when converting to member pointer. 6184 if (Method->isStatic() == IsMember) 6185 continue; 6186 } else if (IsMember) 6187 continue; 6188 6189 // C++ [over.over]p2: 6190 // If the name is a function template, template argument deduction is 6191 // done (14.8.2.2), and if the argument deduction succeeds, the 6192 // resulting template argument list is used to generate a single 6193 // function template specialization, which is added to the set of 6194 // overloaded functions considered. 6195 // FIXME: We don't really want to build the specialization here, do we? 6196 FunctionDecl *Specialization = 0; 6197 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6198 if (TemplateDeductionResult Result 6199 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 6200 FunctionType, Specialization, Info)) { 6201 // FIXME: make a note of the failed deduction for diagnostics. 6202 (void)Result; 6203 } else { 6204 // FIXME: If the match isn't exact, shouldn't we just drop this as 6205 // a candidate? Find a testcase before changing the code. 6206 assert(FunctionType 6207 == Context.getCanonicalType(Specialization->getType())); 6208 Matches.push_back(std::make_pair(I.getPair(), 6209 cast<FunctionDecl>(Specialization->getCanonicalDecl()))); 6210 } 6211 6212 continue; 6213 } 6214 6215 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 6216 // Skip non-static functions when converting to pointer, and static 6217 // when converting to member pointer. 6218 if (Method->isStatic() == IsMember) 6219 continue; 6220 6221 // If we have explicit template arguments, skip non-templates. 6222 if (OvlExpr->hasExplicitTemplateArgs()) 6223 continue; 6224 } else if (IsMember) 6225 continue; 6226 6227 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 6228 QualType ResultTy; 6229 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 6230 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 6231 ResultTy)) { 6232 Matches.push_back(std::make_pair(I.getPair(), 6233 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 6234 FoundNonTemplateFunction = true; 6235 } 6236 } 6237 } 6238 6239 // If there were 0 or 1 matches, we're done. 6240 if (Matches.empty()) { 6241 if (Complain) { 6242 Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) 6243 << OvlExpr->getName() << FunctionType; 6244 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6245 E = OvlExpr->decls_end(); 6246 I != E; ++I) 6247 if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 6248 NoteOverloadCandidate(F); 6249 } 6250 6251 return 0; 6252 } else if (Matches.size() == 1) { 6253 FunctionDecl *Result = Matches[0].second; 6254 FoundResult = Matches[0].first; 6255 MarkDeclarationReferenced(From->getLocStart(), Result); 6256 if (Complain) 6257 CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); 6258 return Result; 6259 } 6260 6261 // C++ [over.over]p4: 6262 // If more than one function is selected, [...] 6263 if (!FoundNonTemplateFunction) { 6264 // [...] and any given function template specialization F1 is 6265 // eliminated if the set contains a second function template 6266 // specialization whose function template is more specialized 6267 // than the function template of F1 according to the partial 6268 // ordering rules of 14.5.5.2. 6269 6270 // The algorithm specified above is quadratic. We instead use a 6271 // two-pass algorithm (similar to the one used to identify the 6272 // best viable function in an overload set) that identifies the 6273 // best function template (if it exists). 6274 6275 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 6276 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 6277 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 6278 6279 UnresolvedSetIterator Result = 6280 getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 6281 TPOC_Other, From->getLocStart(), 6282 PDiag(), 6283 PDiag(diag::err_addr_ovl_ambiguous) 6284 << Matches[0].second->getDeclName(), 6285 PDiag(diag::note_ovl_candidate) 6286 << (unsigned) oc_function_template); 6287 assert(Result != MatchesCopy.end() && "no most-specialized template"); 6288 MarkDeclarationReferenced(From->getLocStart(), *Result); 6289 FoundResult = Matches[Result - MatchesCopy.begin()].first; 6290 if (Complain) { 6291 CheckUnresolvedAccess(*this, OvlExpr, FoundResult); 6292 DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc()); 6293 } 6294 return cast<FunctionDecl>(*Result); 6295 } 6296 6297 // [...] any function template specializations in the set are 6298 // eliminated if the set also contains a non-template function, [...] 6299 for (unsigned I = 0, N = Matches.size(); I != N; ) { 6300 if (Matches[I].second->getPrimaryTemplate() == 0) 6301 ++I; 6302 else { 6303 Matches[I] = Matches[--N]; 6304 Matches.set_size(N); 6305 } 6306 } 6307 6308 // [...] After such eliminations, if any, there shall remain exactly one 6309 // selected function. 6310 if (Matches.size() == 1) { 6311 MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); 6312 FoundResult = Matches[0].first; 6313 if (Complain) { 6314 CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); 6315 DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc()); 6316 } 6317 return cast<FunctionDecl>(Matches[0].second); 6318 } 6319 6320 // FIXME: We should probably return the same thing that BestViableFunction 6321 // returns (even if we issue the diagnostics here). 6322 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 6323 << Matches[0].second->getDeclName(); 6324 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 6325 NoteOverloadCandidate(Matches[I].second); 6326 return 0; 6327} 6328 6329/// \brief Given an expression that refers to an overloaded function, try to 6330/// resolve that overloaded function expression down to a single function. 6331/// 6332/// This routine can only resolve template-ids that refer to a single function 6333/// template, where that template-id refers to a single template whose template 6334/// arguments are either provided by the template-id or have defaults, 6335/// as described in C++0x [temp.arg.explicit]p3. 6336FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 6337 // C++ [over.over]p1: 6338 // [...] [Note: any redundant set of parentheses surrounding the 6339 // overloaded function name is ignored (5.1). ] 6340 // C++ [over.over]p1: 6341 // [...] The overloaded function name can be preceded by the & 6342 // operator. 6343 6344 if (From->getType() != Context.OverloadTy) 6345 return 0; 6346 6347 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 6348 6349 // If we didn't actually find any template-ids, we're done. 6350 if (!OvlExpr->hasExplicitTemplateArgs()) 6351 return 0; 6352 6353 TemplateArgumentListInfo ExplicitTemplateArgs; 6354 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 6355 6356 // Look through all of the overloaded functions, searching for one 6357 // whose type matches exactly. 6358 FunctionDecl *Matched = 0; 6359 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6360 E = OvlExpr->decls_end(); I != E; ++I) { 6361 // C++0x [temp.arg.explicit]p3: 6362 // [...] In contexts where deduction is done and fails, or in contexts 6363 // where deduction is not done, if a template argument list is 6364 // specified and it, along with any default template arguments, 6365 // identifies a single function template specialization, then the 6366 // template-id is an lvalue for the function template specialization. 6367 FunctionTemplateDecl *FunctionTemplate 6368 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 6369 6370 // C++ [over.over]p2: 6371 // If the name is a function template, template argument deduction is 6372 // done (14.8.2.2), and if the argument deduction succeeds, the 6373 // resulting template argument list is used to generate a single 6374 // function template specialization, which is added to the set of 6375 // overloaded functions considered. 6376 FunctionDecl *Specialization = 0; 6377 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6378 if (TemplateDeductionResult Result 6379 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 6380 Specialization, Info)) { 6381 // FIXME: make a note of the failed deduction for diagnostics. 6382 (void)Result; 6383 continue; 6384 } 6385 6386 // Multiple matches; we can't resolve to a single declaration. 6387 if (Matched) 6388 return 0; 6389 6390 Matched = Specialization; 6391 } 6392 6393 return Matched; 6394} 6395 6396/// \brief Add a single candidate to the overload set. 6397static void AddOverloadedCallCandidate(Sema &S, 6398 DeclAccessPair FoundDecl, 6399 const TemplateArgumentListInfo *ExplicitTemplateArgs, 6400 Expr **Args, unsigned NumArgs, 6401 OverloadCandidateSet &CandidateSet, 6402 bool PartialOverloading) { 6403 NamedDecl *Callee = FoundDecl.getDecl(); 6404 if (isa<UsingShadowDecl>(Callee)) 6405 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 6406 6407 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 6408 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 6409 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 6410 false, PartialOverloading); 6411 return; 6412 } 6413 6414 if (FunctionTemplateDecl *FuncTemplate 6415 = dyn_cast<FunctionTemplateDecl>(Callee)) { 6416 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 6417 ExplicitTemplateArgs, 6418 Args, NumArgs, CandidateSet); 6419 return; 6420 } 6421 6422 assert(false && "unhandled case in overloaded call candidate"); 6423 6424 // do nothing? 6425} 6426 6427/// \brief Add the overload candidates named by callee and/or found by argument 6428/// dependent lookup to the given overload set. 6429void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 6430 Expr **Args, unsigned NumArgs, 6431 OverloadCandidateSet &CandidateSet, 6432 bool PartialOverloading) { 6433 6434#ifndef NDEBUG 6435 // Verify that ArgumentDependentLookup is consistent with the rules 6436 // in C++0x [basic.lookup.argdep]p3: 6437 // 6438 // Let X be the lookup set produced by unqualified lookup (3.4.1) 6439 // and let Y be the lookup set produced by argument dependent 6440 // lookup (defined as follows). If X contains 6441 // 6442 // -- a declaration of a class member, or 6443 // 6444 // -- a block-scope function declaration that is not a 6445 // using-declaration, or 6446 // 6447 // -- a declaration that is neither a function or a function 6448 // template 6449 // 6450 // then Y is empty. 6451 6452 if (ULE->requiresADL()) { 6453 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6454 E = ULE->decls_end(); I != E; ++I) { 6455 assert(!(*I)->getDeclContext()->isRecord()); 6456 assert(isa<UsingShadowDecl>(*I) || 6457 !(*I)->getDeclContext()->isFunctionOrMethod()); 6458 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 6459 } 6460 } 6461#endif 6462 6463 // It would be nice to avoid this copy. 6464 TemplateArgumentListInfo TABuffer; 6465 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6466 if (ULE->hasExplicitTemplateArgs()) { 6467 ULE->copyTemplateArgumentsInto(TABuffer); 6468 ExplicitTemplateArgs = &TABuffer; 6469 } 6470 6471 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6472 E = ULE->decls_end(); I != E; ++I) 6473 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 6474 Args, NumArgs, CandidateSet, 6475 PartialOverloading); 6476 6477 if (ULE->requiresADL()) 6478 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 6479 Args, NumArgs, 6480 ExplicitTemplateArgs, 6481 CandidateSet, 6482 PartialOverloading); 6483} 6484 6485/// Attempts to recover from a call where no functions were found. 6486/// 6487/// Returns true if new candidates were found. 6488static Sema::OwningExprResult 6489BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 6490 UnresolvedLookupExpr *ULE, 6491 SourceLocation LParenLoc, 6492 Expr **Args, unsigned NumArgs, 6493 SourceLocation *CommaLocs, 6494 SourceLocation RParenLoc) { 6495 6496 CXXScopeSpec SS; 6497 if (ULE->getQualifier()) { 6498 SS.setScopeRep(ULE->getQualifier()); 6499 SS.setRange(ULE->getQualifierRange()); 6500 } 6501 6502 TemplateArgumentListInfo TABuffer; 6503 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6504 if (ULE->hasExplicitTemplateArgs()) { 6505 ULE->copyTemplateArgumentsInto(TABuffer); 6506 ExplicitTemplateArgs = &TABuffer; 6507 } 6508 6509 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 6510 Sema::LookupOrdinaryName); 6511 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)) 6512 return SemaRef.ExprError(); 6513 6514 assert(!R.empty() && "lookup results empty despite recovery"); 6515 6516 // Build an implicit member call if appropriate. Just drop the 6517 // casts and such from the call, we don't really care. 6518 Sema::OwningExprResult NewFn = SemaRef.ExprError(); 6519 if ((*R.begin())->isCXXClassMember()) 6520 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); 6521 else if (ExplicitTemplateArgs) 6522 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 6523 else 6524 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 6525 6526 if (NewFn.isInvalid()) 6527 return SemaRef.ExprError(); 6528 6529 // This shouldn't cause an infinite loop because we're giving it 6530 // an expression with non-empty lookup results, which should never 6531 // end up here. 6532 return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc, 6533 Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs), 6534 CommaLocs, RParenLoc); 6535} 6536 6537/// ResolveOverloadedCallFn - Given the call expression that calls Fn 6538/// (which eventually refers to the declaration Func) and the call 6539/// arguments Args/NumArgs, attempt to resolve the function call down 6540/// to a specific function. If overload resolution succeeds, returns 6541/// the function declaration produced by overload 6542/// resolution. Otherwise, emits diagnostics, deletes all of the 6543/// arguments and Fn, and returns NULL. 6544Sema::OwningExprResult 6545Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 6546 SourceLocation LParenLoc, 6547 Expr **Args, unsigned NumArgs, 6548 SourceLocation *CommaLocs, 6549 SourceLocation RParenLoc) { 6550#ifndef NDEBUG 6551 if (ULE->requiresADL()) { 6552 // To do ADL, we must have found an unqualified name. 6553 assert(!ULE->getQualifier() && "qualified name with ADL"); 6554 6555 // We don't perform ADL for implicit declarations of builtins. 6556 // Verify that this was correctly set up. 6557 FunctionDecl *F; 6558 if (ULE->decls_begin() + 1 == ULE->decls_end() && 6559 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 6560 F->getBuiltinID() && F->isImplicit()) 6561 assert(0 && "performing ADL for builtin"); 6562 6563 // We don't perform ADL in C. 6564 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 6565 } 6566#endif 6567 6568 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 6569 6570 // Add the functions denoted by the callee to the set of candidate 6571 // functions, including those from argument-dependent lookup. 6572 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 6573 6574 // If we found nothing, try to recover. 6575 // AddRecoveryCallCandidates diagnoses the error itself, so we just 6576 // bailout out if it fails. 6577 if (CandidateSet.empty()) 6578 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 6579 CommaLocs, RParenLoc); 6580 6581 OverloadCandidateSet::iterator Best; 6582 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 6583 case OR_Success: { 6584 FunctionDecl *FDecl = Best->Function; 6585 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 6586 DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc()); 6587 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 6588 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); 6589 } 6590 6591 case OR_No_Viable_Function: 6592 Diag(Fn->getSourceRange().getBegin(), 6593 diag::err_ovl_no_viable_function_in_call) 6594 << ULE->getName() << Fn->getSourceRange(); 6595 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6596 break; 6597 6598 case OR_Ambiguous: 6599 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 6600 << ULE->getName() << Fn->getSourceRange(); 6601 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 6602 break; 6603 6604 case OR_Deleted: 6605 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 6606 << Best->Function->isDeleted() 6607 << ULE->getName() 6608 << Fn->getSourceRange(); 6609 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6610 break; 6611 } 6612 6613 // Overload resolution failed. 6614 return ExprError(); 6615} 6616 6617static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 6618 return Functions.size() > 1 || 6619 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 6620} 6621 6622/// \brief Create a unary operation that may resolve to an overloaded 6623/// operator. 6624/// 6625/// \param OpLoc The location of the operator itself (e.g., '*'). 6626/// 6627/// \param OpcIn The UnaryOperator::Opcode that describes this 6628/// operator. 6629/// 6630/// \param Functions The set of non-member functions that will be 6631/// considered by overload resolution. The caller needs to build this 6632/// set based on the context using, e.g., 6633/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6634/// set should not contain any member functions; those will be added 6635/// by CreateOverloadedUnaryOp(). 6636/// 6637/// \param input The input argument. 6638Sema::OwningExprResult 6639Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 6640 const UnresolvedSetImpl &Fns, 6641 ExprArg input) { 6642 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 6643 Expr *Input = (Expr *)input.get(); 6644 6645 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 6646 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 6647 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6648 // TODO: provide better source location info. 6649 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 6650 6651 Expr *Args[2] = { Input, 0 }; 6652 unsigned NumArgs = 1; 6653 6654 // For post-increment and post-decrement, add the implicit '0' as 6655 // the second argument, so that we know this is a post-increment or 6656 // post-decrement. 6657 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 6658 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 6659 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 6660 SourceLocation()); 6661 NumArgs = 2; 6662 } 6663 6664 if (Input->isTypeDependent()) { 6665 if (Fns.empty()) 6666 return Owned(new (Context) UnaryOperator(input.takeAs<Expr>(), 6667 Opc, 6668 Context.DependentTy, 6669 OpLoc)); 6670 6671 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6672 UnresolvedLookupExpr *Fn 6673 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6674 0, SourceRange(), OpNameInfo, 6675 /*ADL*/ true, IsOverloaded(Fns), 6676 Fns.begin(), Fns.end()); 6677 input.release(); 6678 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 6679 &Args[0], NumArgs, 6680 Context.DependentTy, 6681 OpLoc)); 6682 } 6683 6684 // Build an empty overload set. 6685 OverloadCandidateSet CandidateSet(OpLoc); 6686 6687 // Add the candidates from the given function set. 6688 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 6689 6690 // Add operator candidates that are member functions. 6691 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6692 6693 // Add candidates from ADL. 6694 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 6695 Args, NumArgs, 6696 /*ExplicitTemplateArgs*/ 0, 6697 CandidateSet); 6698 6699 // Add builtin operator candidates. 6700 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6701 6702 // Perform overload resolution. 6703 OverloadCandidateSet::iterator Best; 6704 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6705 case OR_Success: { 6706 // We found a built-in operator or an overloaded operator. 6707 FunctionDecl *FnDecl = Best->Function; 6708 6709 if (FnDecl) { 6710 // We matched an overloaded operator. Build a call to that 6711 // operator. 6712 6713 // Convert the arguments. 6714 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 6715 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 6716 6717 if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 6718 Best->FoundDecl, Method)) 6719 return ExprError(); 6720 } else { 6721 // Convert the arguments. 6722 OwningExprResult InputInit 6723 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 6724 FnDecl->getParamDecl(0)), 6725 SourceLocation(), 6726 move(input)); 6727 if (InputInit.isInvalid()) 6728 return ExprError(); 6729 6730 input = move(InputInit); 6731 Input = (Expr *)input.get(); 6732 } 6733 6734 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 6735 6736 // Determine the result type 6737 QualType ResultTy = FnDecl->getCallResultType(); 6738 6739 // Build the actual expression node. 6740 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6741 SourceLocation()); 6742 UsualUnaryConversions(FnExpr); 6743 6744 input.release(); 6745 Args[0] = Input; 6746 ExprOwningPtr<CallExpr> TheCall(this, 6747 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 6748 Args, NumArgs, ResultTy, OpLoc)); 6749 6750 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 6751 FnDecl)) 6752 return ExprError(); 6753 6754 return MaybeBindToTemporary(TheCall.release()); 6755 } else { 6756 // We matched a built-in operator. Convert the arguments, then 6757 // break out so that we will build the appropriate built-in 6758 // operator node. 6759 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 6760 Best->Conversions[0], AA_Passing)) 6761 return ExprError(); 6762 6763 break; 6764 } 6765 } 6766 6767 case OR_No_Viable_Function: 6768 // No viable function; fall through to handling this as a 6769 // built-in operator, which will produce an error message for us. 6770 break; 6771 6772 case OR_Ambiguous: 6773 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6774 << UnaryOperator::getOpcodeStr(Opc) 6775 << Input->getSourceRange(); 6776 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs, 6777 UnaryOperator::getOpcodeStr(Opc), OpLoc); 6778 return ExprError(); 6779 6780 case OR_Deleted: 6781 Diag(OpLoc, diag::err_ovl_deleted_oper) 6782 << Best->Function->isDeleted() 6783 << UnaryOperator::getOpcodeStr(Opc) 6784 << Input->getSourceRange(); 6785 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6786 return ExprError(); 6787 } 6788 6789 // Either we found no viable overloaded operator or we matched a 6790 // built-in operator. In either case, fall through to trying to 6791 // build a built-in operation. 6792 input.release(); 6793 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 6794} 6795 6796/// \brief Create a binary operation that may resolve to an overloaded 6797/// operator. 6798/// 6799/// \param OpLoc The location of the operator itself (e.g., '+'). 6800/// 6801/// \param OpcIn The BinaryOperator::Opcode that describes this 6802/// operator. 6803/// 6804/// \param Functions The set of non-member functions that will be 6805/// considered by overload resolution. The caller needs to build this 6806/// set based on the context using, e.g., 6807/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6808/// set should not contain any member functions; those will be added 6809/// by CreateOverloadedBinOp(). 6810/// 6811/// \param LHS Left-hand argument. 6812/// \param RHS Right-hand argument. 6813Sema::OwningExprResult 6814Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 6815 unsigned OpcIn, 6816 const UnresolvedSetImpl &Fns, 6817 Expr *LHS, Expr *RHS) { 6818 Expr *Args[2] = { LHS, RHS }; 6819 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 6820 6821 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 6822 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 6823 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6824 6825 // If either side is type-dependent, create an appropriate dependent 6826 // expression. 6827 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 6828 if (Fns.empty()) { 6829 // If there are no functions to store, just build a dependent 6830 // BinaryOperator or CompoundAssignment. 6831 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 6832 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 6833 Context.DependentTy, OpLoc)); 6834 6835 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 6836 Context.DependentTy, 6837 Context.DependentTy, 6838 Context.DependentTy, 6839 OpLoc)); 6840 } 6841 6842 // FIXME: save results of ADL from here? 6843 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6844 // TODO: provide better source location info in DNLoc component. 6845 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 6846 UnresolvedLookupExpr *Fn 6847 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6848 0, SourceRange(), OpNameInfo, 6849 /*ADL*/ true, IsOverloaded(Fns), 6850 Fns.begin(), Fns.end()); 6851 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 6852 Args, 2, 6853 Context.DependentTy, 6854 OpLoc)); 6855 } 6856 6857 // If this is the .* operator, which is not overloadable, just 6858 // create a built-in binary operator. 6859 if (Opc == BinaryOperator::PtrMemD) 6860 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6861 6862 // If this is the assignment operator, we only perform overload resolution 6863 // if the left-hand side is a class or enumeration type. This is actually 6864 // a hack. The standard requires that we do overload resolution between the 6865 // various built-in candidates, but as DR507 points out, this can lead to 6866 // problems. So we do it this way, which pretty much follows what GCC does. 6867 // Note that we go the traditional code path for compound assignment forms. 6868 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) 6869 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6870 6871 // Build an empty overload set. 6872 OverloadCandidateSet CandidateSet(OpLoc); 6873 6874 // Add the candidates from the given function set. 6875 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 6876 6877 // Add operator candidates that are member functions. 6878 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 6879 6880 // Add candidates from ADL. 6881 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 6882 Args, 2, 6883 /*ExplicitTemplateArgs*/ 0, 6884 CandidateSet); 6885 6886 // Add builtin operator candidates. 6887 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 6888 6889 // Perform overload resolution. 6890 OverloadCandidateSet::iterator Best; 6891 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6892 case OR_Success: { 6893 // We found a built-in operator or an overloaded operator. 6894 FunctionDecl *FnDecl = Best->Function; 6895 6896 if (FnDecl) { 6897 // We matched an overloaded operator. Build a call to that 6898 // operator. 6899 6900 // Convert the arguments. 6901 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 6902 // Best->Access is only meaningful for class members. 6903 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 6904 6905 OwningExprResult Arg1 6906 = PerformCopyInitialization( 6907 InitializedEntity::InitializeParameter( 6908 FnDecl->getParamDecl(0)), 6909 SourceLocation(), 6910 Owned(Args[1])); 6911 if (Arg1.isInvalid()) 6912 return ExprError(); 6913 6914 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 6915 Best->FoundDecl, Method)) 6916 return ExprError(); 6917 6918 Args[1] = RHS = Arg1.takeAs<Expr>(); 6919 } else { 6920 // Convert the arguments. 6921 OwningExprResult Arg0 6922 = PerformCopyInitialization( 6923 InitializedEntity::InitializeParameter( 6924 FnDecl->getParamDecl(0)), 6925 SourceLocation(), 6926 Owned(Args[0])); 6927 if (Arg0.isInvalid()) 6928 return ExprError(); 6929 6930 OwningExprResult Arg1 6931 = PerformCopyInitialization( 6932 InitializedEntity::InitializeParameter( 6933 FnDecl->getParamDecl(1)), 6934 SourceLocation(), 6935 Owned(Args[1])); 6936 if (Arg1.isInvalid()) 6937 return ExprError(); 6938 Args[0] = LHS = Arg0.takeAs<Expr>(); 6939 Args[1] = RHS = Arg1.takeAs<Expr>(); 6940 } 6941 6942 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 6943 6944 // Determine the result type 6945 QualType ResultTy 6946 = FnDecl->getType()->getAs<FunctionType>() 6947 ->getCallResultType(Context); 6948 6949 // Build the actual expression node. 6950 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6951 OpLoc); 6952 UsualUnaryConversions(FnExpr); 6953 6954 ExprOwningPtr<CXXOperatorCallExpr> 6955 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 6956 Args, 2, ResultTy, 6957 OpLoc)); 6958 6959 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 6960 FnDecl)) 6961 return ExprError(); 6962 6963 return MaybeBindToTemporary(TheCall.release()); 6964 } else { 6965 // We matched a built-in operator. Convert the arguments, then 6966 // break out so that we will build the appropriate built-in 6967 // operator node. 6968 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 6969 Best->Conversions[0], AA_Passing) || 6970 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 6971 Best->Conversions[1], AA_Passing)) 6972 return ExprError(); 6973 6974 break; 6975 } 6976 } 6977 6978 case OR_No_Viable_Function: { 6979 // C++ [over.match.oper]p9: 6980 // If the operator is the operator , [...] and there are no 6981 // viable functions, then the operator is assumed to be the 6982 // built-in operator and interpreted according to clause 5. 6983 if (Opc == BinaryOperator::Comma) 6984 break; 6985 6986 // For class as left operand for assignment or compound assigment operator 6987 // do not fall through to handling in built-in, but report that no overloaded 6988 // assignment operator found 6989 OwningExprResult Result = ExprError(); 6990 if (Args[0]->getType()->isRecordType() && 6991 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 6992 Diag(OpLoc, diag::err_ovl_no_viable_oper) 6993 << BinaryOperator::getOpcodeStr(Opc) 6994 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6995 } else { 6996 // No viable function; try to create a built-in operation, which will 6997 // produce an error. Then, show the non-viable candidates. 6998 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6999 } 7000 assert(Result.isInvalid() && 7001 "C++ binary operator overloading is missing candidates!"); 7002 if (Result.isInvalid()) 7003 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 7004 BinaryOperator::getOpcodeStr(Opc), OpLoc); 7005 return move(Result); 7006 } 7007 7008 case OR_Ambiguous: 7009 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 7010 << BinaryOperator::getOpcodeStr(Opc) 7011 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7012 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 7013 BinaryOperator::getOpcodeStr(Opc), OpLoc); 7014 return ExprError(); 7015 7016 case OR_Deleted: 7017 Diag(OpLoc, diag::err_ovl_deleted_oper) 7018 << Best->Function->isDeleted() 7019 << BinaryOperator::getOpcodeStr(Opc) 7020 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7021 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2); 7022 return ExprError(); 7023 } 7024 7025 // We matched a built-in operator; build it. 7026 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7027} 7028 7029Action::OwningExprResult 7030Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 7031 SourceLocation RLoc, 7032 ExprArg Base, ExprArg Idx) { 7033 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 7034 static_cast<Expr*>(Idx.get()) }; 7035 DeclarationName OpName = 7036 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 7037 7038 // If either side is type-dependent, create an appropriate dependent 7039 // expression. 7040 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 7041 7042 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7043 // CHECKME: no 'operator' keyword? 7044 DeclarationNameInfo OpNameInfo(OpName, LLoc); 7045 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 7046 UnresolvedLookupExpr *Fn 7047 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 7048 0, SourceRange(), OpNameInfo, 7049 /*ADL*/ true, /*Overloaded*/ false, 7050 UnresolvedSetIterator(), 7051 UnresolvedSetIterator()); 7052 // Can't add any actual overloads yet 7053 7054 Base.release(); 7055 Idx.release(); 7056 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 7057 Args, 2, 7058 Context.DependentTy, 7059 RLoc)); 7060 } 7061 7062 // Build an empty overload set. 7063 OverloadCandidateSet CandidateSet(LLoc); 7064 7065 // Subscript can only be overloaded as a member function. 7066 7067 // Add operator candidates that are member functions. 7068 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 7069 7070 // Add builtin operator candidates. 7071 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 7072 7073 // Perform overload resolution. 7074 OverloadCandidateSet::iterator Best; 7075 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 7076 case OR_Success: { 7077 // We found a built-in operator or an overloaded operator. 7078 FunctionDecl *FnDecl = Best->Function; 7079 7080 if (FnDecl) { 7081 // We matched an overloaded operator. Build a call to that 7082 // operator. 7083 7084 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 7085 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 7086 7087 // Convert the arguments. 7088 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 7089 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 7090 Best->FoundDecl, Method)) 7091 return ExprError(); 7092 7093 // Convert the arguments. 7094 OwningExprResult InputInit 7095 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7096 FnDecl->getParamDecl(0)), 7097 SourceLocation(), 7098 Owned(Args[1])); 7099 if (InputInit.isInvalid()) 7100 return ExprError(); 7101 7102 Args[1] = InputInit.takeAs<Expr>(); 7103 7104 // Determine the result type 7105 QualType ResultTy 7106 = FnDecl->getType()->getAs<FunctionType>() 7107 ->getCallResultType(Context); 7108 7109 // Build the actual expression node. 7110 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 7111 LLoc); 7112 UsualUnaryConversions(FnExpr); 7113 7114 Base.release(); 7115 Idx.release(); 7116 ExprOwningPtr<CXXOperatorCallExpr> 7117 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 7118 FnExpr, Args, 2, 7119 ResultTy, RLoc)); 7120 7121 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 7122 FnDecl)) 7123 return ExprError(); 7124 7125 return MaybeBindToTemporary(TheCall.release()); 7126 } else { 7127 // We matched a built-in operator. Convert the arguments, then 7128 // break out so that we will build the appropriate built-in 7129 // operator node. 7130 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 7131 Best->Conversions[0], AA_Passing) || 7132 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 7133 Best->Conversions[1], AA_Passing)) 7134 return ExprError(); 7135 7136 break; 7137 } 7138 } 7139 7140 case OR_No_Viable_Function: { 7141 if (CandidateSet.empty()) 7142 Diag(LLoc, diag::err_ovl_no_oper) 7143 << Args[0]->getType() << /*subscript*/ 0 7144 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7145 else 7146 Diag(LLoc, diag::err_ovl_no_viable_subscript) 7147 << Args[0]->getType() 7148 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7149 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 7150 "[]", LLoc); 7151 return ExprError(); 7152 } 7153 7154 case OR_Ambiguous: 7155 Diag(LLoc, diag::err_ovl_ambiguous_oper) 7156 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7157 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 7158 "[]", LLoc); 7159 return ExprError(); 7160 7161 case OR_Deleted: 7162 Diag(LLoc, diag::err_ovl_deleted_oper) 7163 << Best->Function->isDeleted() << "[]" 7164 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7165 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 7166 "[]", LLoc); 7167 return ExprError(); 7168 } 7169 7170 // We matched a built-in operator; build it. 7171 Base.release(); 7172 Idx.release(); 7173 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 7174 Owned(Args[1]), RLoc); 7175} 7176 7177/// BuildCallToMemberFunction - Build a call to a member 7178/// function. MemExpr is the expression that refers to the member 7179/// function (and includes the object parameter), Args/NumArgs are the 7180/// arguments to the function call (not including the object 7181/// parameter). The caller needs to validate that the member 7182/// expression refers to a member function or an overloaded member 7183/// function. 7184Sema::OwningExprResult 7185Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 7186 SourceLocation LParenLoc, Expr **Args, 7187 unsigned NumArgs, SourceLocation *CommaLocs, 7188 SourceLocation RParenLoc) { 7189 // Dig out the member expression. This holds both the object 7190 // argument and the member function we're referring to. 7191 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 7192 7193 MemberExpr *MemExpr; 7194 CXXMethodDecl *Method = 0; 7195 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 7196 NestedNameSpecifier *Qualifier = 0; 7197 if (isa<MemberExpr>(NakedMemExpr)) { 7198 MemExpr = cast<MemberExpr>(NakedMemExpr); 7199 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 7200 FoundDecl = MemExpr->getFoundDecl(); 7201 Qualifier = MemExpr->getQualifier(); 7202 } else { 7203 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 7204 Qualifier = UnresExpr->getQualifier(); 7205 7206 QualType ObjectType = UnresExpr->getBaseType(); 7207 7208 // Add overload candidates 7209 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 7210 7211 // FIXME: avoid copy. 7212 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7213 if (UnresExpr->hasExplicitTemplateArgs()) { 7214 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 7215 TemplateArgs = &TemplateArgsBuffer; 7216 } 7217 7218 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 7219 E = UnresExpr->decls_end(); I != E; ++I) { 7220 7221 NamedDecl *Func = *I; 7222 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 7223 if (isa<UsingShadowDecl>(Func)) 7224 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 7225 7226 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 7227 // If explicit template arguments were provided, we can't call a 7228 // non-template member function. 7229 if (TemplateArgs) 7230 continue; 7231 7232 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 7233 Args, NumArgs, 7234 CandidateSet, /*SuppressUserConversions=*/false); 7235 } else { 7236 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 7237 I.getPair(), ActingDC, TemplateArgs, 7238 ObjectType, Args, NumArgs, 7239 CandidateSet, 7240 /*SuppressUsedConversions=*/false); 7241 } 7242 } 7243 7244 DeclarationName DeclName = UnresExpr->getMemberName(); 7245 7246 OverloadCandidateSet::iterator Best; 7247 switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { 7248 case OR_Success: 7249 Method = cast<CXXMethodDecl>(Best->Function); 7250 FoundDecl = Best->FoundDecl; 7251 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 7252 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 7253 break; 7254 7255 case OR_No_Viable_Function: 7256 Diag(UnresExpr->getMemberLoc(), 7257 diag::err_ovl_no_viable_member_function_in_call) 7258 << DeclName << MemExprE->getSourceRange(); 7259 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7260 // FIXME: Leaking incoming expressions! 7261 return ExprError(); 7262 7263 case OR_Ambiguous: 7264 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 7265 << DeclName << MemExprE->getSourceRange(); 7266 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7267 // FIXME: Leaking incoming expressions! 7268 return ExprError(); 7269 7270 case OR_Deleted: 7271 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 7272 << Best->Function->isDeleted() 7273 << DeclName << MemExprE->getSourceRange(); 7274 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7275 // FIXME: Leaking incoming expressions! 7276 return ExprError(); 7277 } 7278 7279 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 7280 7281 // If overload resolution picked a static member, build a 7282 // non-member call based on that function. 7283 if (Method->isStatic()) { 7284 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 7285 Args, NumArgs, RParenLoc); 7286 } 7287 7288 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 7289 } 7290 7291 assert(Method && "Member call to something that isn't a method?"); 7292 ExprOwningPtr<CXXMemberCallExpr> 7293 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args, 7294 NumArgs, 7295 Method->getCallResultType(), 7296 RParenLoc)); 7297 7298 // Check for a valid return type. 7299 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 7300 TheCall.get(), Method)) 7301 return ExprError(); 7302 7303 // Convert the object argument (for a non-static member function call). 7304 // We only need to do this if there was actually an overload; otherwise 7305 // it was done at lookup. 7306 Expr *ObjectArg = MemExpr->getBase(); 7307 if (!Method->isStatic() && 7308 PerformObjectArgumentInitialization(ObjectArg, Qualifier, 7309 FoundDecl, Method)) 7310 return ExprError(); 7311 MemExpr->setBase(ObjectArg); 7312 7313 // Convert the rest of the arguments 7314 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 7315 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 7316 RParenLoc)) 7317 return ExprError(); 7318 7319 if (CheckFunctionCall(Method, TheCall.get())) 7320 return ExprError(); 7321 7322 return MaybeBindToTemporary(TheCall.release()); 7323} 7324 7325/// BuildCallToObjectOfClassType - Build a call to an object of class 7326/// type (C++ [over.call.object]), which can end up invoking an 7327/// overloaded function call operator (@c operator()) or performing a 7328/// user-defined conversion on the object argument. 7329Sema::ExprResult 7330Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 7331 SourceLocation LParenLoc, 7332 Expr **Args, unsigned NumArgs, 7333 SourceLocation *CommaLocs, 7334 SourceLocation RParenLoc) { 7335 assert(Object->getType()->isRecordType() && "Requires object type argument"); 7336 const RecordType *Record = Object->getType()->getAs<RecordType>(); 7337 7338 // C++ [over.call.object]p1: 7339 // If the primary-expression E in the function call syntax 7340 // evaluates to a class object of type "cv T", then the set of 7341 // candidate functions includes at least the function call 7342 // operators of T. The function call operators of T are obtained by 7343 // ordinary lookup of the name operator() in the context of 7344 // (E).operator(). 7345 OverloadCandidateSet CandidateSet(LParenLoc); 7346 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 7347 7348 if (RequireCompleteType(LParenLoc, Object->getType(), 7349 PDiag(diag::err_incomplete_object_call) 7350 << Object->getSourceRange())) 7351 return true; 7352 7353 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 7354 LookupQualifiedName(R, Record->getDecl()); 7355 R.suppressDiagnostics(); 7356 7357 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7358 Oper != OperEnd; ++Oper) { 7359 AddMethodCandidate(Oper.getPair(), Object->getType(), 7360 Args, NumArgs, CandidateSet, 7361 /*SuppressUserConversions=*/ false); 7362 } 7363 7364 // C++ [over.call.object]p2: 7365 // In addition, for each conversion function declared in T of the 7366 // form 7367 // 7368 // operator conversion-type-id () cv-qualifier; 7369 // 7370 // where cv-qualifier is the same cv-qualification as, or a 7371 // greater cv-qualification than, cv, and where conversion-type-id 7372 // denotes the type "pointer to function of (P1,...,Pn) returning 7373 // R", or the type "reference to pointer to function of 7374 // (P1,...,Pn) returning R", or the type "reference to function 7375 // of (P1,...,Pn) returning R", a surrogate call function [...] 7376 // is also considered as a candidate function. Similarly, 7377 // surrogate call functions are added to the set of candidate 7378 // functions for each conversion function declared in an 7379 // accessible base class provided the function is not hidden 7380 // within T by another intervening declaration. 7381 const UnresolvedSetImpl *Conversions 7382 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 7383 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 7384 E = Conversions->end(); I != E; ++I) { 7385 NamedDecl *D = *I; 7386 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 7387 if (isa<UsingShadowDecl>(D)) 7388 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 7389 7390 // Skip over templated conversion functions; they aren't 7391 // surrogates. 7392 if (isa<FunctionTemplateDecl>(D)) 7393 continue; 7394 7395 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 7396 7397 // Strip the reference type (if any) and then the pointer type (if 7398 // any) to get down to what might be a function type. 7399 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 7400 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 7401 ConvType = ConvPtrType->getPointeeType(); 7402 7403 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 7404 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 7405 Object->getType(), Args, NumArgs, 7406 CandidateSet); 7407 } 7408 7409 // Perform overload resolution. 7410 OverloadCandidateSet::iterator Best; 7411 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 7412 case OR_Success: 7413 // Overload resolution succeeded; we'll build the appropriate call 7414 // below. 7415 break; 7416 7417 case OR_No_Viable_Function: 7418 if (CandidateSet.empty()) 7419 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 7420 << Object->getType() << /*call*/ 1 7421 << Object->getSourceRange(); 7422 else 7423 Diag(Object->getSourceRange().getBegin(), 7424 diag::err_ovl_no_viable_object_call) 7425 << Object->getType() << Object->getSourceRange(); 7426 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7427 break; 7428 7429 case OR_Ambiguous: 7430 Diag(Object->getSourceRange().getBegin(), 7431 diag::err_ovl_ambiguous_object_call) 7432 << Object->getType() << Object->getSourceRange(); 7433 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 7434 break; 7435 7436 case OR_Deleted: 7437 Diag(Object->getSourceRange().getBegin(), 7438 diag::err_ovl_deleted_object_call) 7439 << Best->Function->isDeleted() 7440 << Object->getType() << Object->getSourceRange(); 7441 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7442 break; 7443 } 7444 7445 if (Best == CandidateSet.end()) 7446 return true; 7447 7448 if (Best->Function == 0) { 7449 // Since there is no function declaration, this is one of the 7450 // surrogate candidates. Dig out the conversion function. 7451 CXXConversionDecl *Conv 7452 = cast<CXXConversionDecl>( 7453 Best->Conversions[0].UserDefined.ConversionFunction); 7454 7455 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7456 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7457 7458 // We selected one of the surrogate functions that converts the 7459 // object parameter to a function pointer. Perform the conversion 7460 // on the object argument, then let ActOnCallExpr finish the job. 7461 7462 // Create an implicit member expr to refer to the conversion operator. 7463 // and then call it. 7464 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl, 7465 Conv); 7466 7467 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 7468 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 7469 CommaLocs, RParenLoc).result(); 7470 } 7471 7472 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7473 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7474 7475 // We found an overloaded operator(). Build a CXXOperatorCallExpr 7476 // that calls this method, using Object for the implicit object 7477 // parameter and passing along the remaining arguments. 7478 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7479 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 7480 7481 unsigned NumArgsInProto = Proto->getNumArgs(); 7482 unsigned NumArgsToCheck = NumArgs; 7483 7484 // Build the full argument list for the method call (the 7485 // implicit object parameter is placed at the beginning of the 7486 // list). 7487 Expr **MethodArgs; 7488 if (NumArgs < NumArgsInProto) { 7489 NumArgsToCheck = NumArgsInProto; 7490 MethodArgs = new Expr*[NumArgsInProto + 1]; 7491 } else { 7492 MethodArgs = new Expr*[NumArgs + 1]; 7493 } 7494 MethodArgs[0] = Object; 7495 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7496 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 7497 7498 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 7499 SourceLocation()); 7500 UsualUnaryConversions(NewFn); 7501 7502 // Once we've built TheCall, all of the expressions are properly 7503 // owned. 7504 QualType ResultTy = Method->getCallResultType(); 7505 ExprOwningPtr<CXXOperatorCallExpr> 7506 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 7507 MethodArgs, NumArgs + 1, 7508 ResultTy, RParenLoc)); 7509 delete [] MethodArgs; 7510 7511 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 7512 Method)) 7513 return true; 7514 7515 // We may have default arguments. If so, we need to allocate more 7516 // slots in the call for them. 7517 if (NumArgs < NumArgsInProto) 7518 TheCall->setNumArgs(Context, NumArgsInProto + 1); 7519 else if (NumArgs > NumArgsInProto) 7520 NumArgsToCheck = NumArgsInProto; 7521 7522 bool IsError = false; 7523 7524 // Initialize the implicit object parameter. 7525 IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, 7526 Best->FoundDecl, Method); 7527 TheCall->setArg(0, Object); 7528 7529 7530 // Check the argument types. 7531 for (unsigned i = 0; i != NumArgsToCheck; i++) { 7532 Expr *Arg; 7533 if (i < NumArgs) { 7534 Arg = Args[i]; 7535 7536 // Pass the argument. 7537 7538 OwningExprResult InputInit 7539 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7540 Method->getParamDecl(i)), 7541 SourceLocation(), Owned(Arg)); 7542 7543 IsError |= InputInit.isInvalid(); 7544 Arg = InputInit.takeAs<Expr>(); 7545 } else { 7546 OwningExprResult DefArg 7547 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 7548 if (DefArg.isInvalid()) { 7549 IsError = true; 7550 break; 7551 } 7552 7553 Arg = DefArg.takeAs<Expr>(); 7554 } 7555 7556 TheCall->setArg(i + 1, Arg); 7557 } 7558 7559 // If this is a variadic call, handle args passed through "...". 7560 if (Proto->isVariadic()) { 7561 // Promote the arguments (C99 6.5.2.2p7). 7562 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 7563 Expr *Arg = Args[i]; 7564 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0); 7565 TheCall->setArg(i + 1, Arg); 7566 } 7567 } 7568 7569 if (IsError) return true; 7570 7571 if (CheckFunctionCall(Method, TheCall.get())) 7572 return true; 7573 7574 return MaybeBindToTemporary(TheCall.release()).result(); 7575} 7576 7577/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 7578/// (if one exists), where @c Base is an expression of class type and 7579/// @c Member is the name of the member we're trying to find. 7580Sema::OwningExprResult 7581Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 7582 Expr *Base = static_cast<Expr *>(BaseIn.get()); 7583 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 7584 7585 SourceLocation Loc = Base->getExprLoc(); 7586 7587 // C++ [over.ref]p1: 7588 // 7589 // [...] An expression x->m is interpreted as (x.operator->())->m 7590 // for a class object x of type T if T::operator->() exists and if 7591 // the operator is selected as the best match function by the 7592 // overload resolution mechanism (13.3). 7593 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 7594 OverloadCandidateSet CandidateSet(Loc); 7595 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 7596 7597 if (RequireCompleteType(Loc, Base->getType(), 7598 PDiag(diag::err_typecheck_incomplete_tag) 7599 << Base->getSourceRange())) 7600 return ExprError(); 7601 7602 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 7603 LookupQualifiedName(R, BaseRecord->getDecl()); 7604 R.suppressDiagnostics(); 7605 7606 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7607 Oper != OperEnd; ++Oper) { 7608 AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet, 7609 /*SuppressUserConversions=*/false); 7610 } 7611 7612 // Perform overload resolution. 7613 OverloadCandidateSet::iterator Best; 7614 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 7615 case OR_Success: 7616 // Overload resolution succeeded; we'll build the call below. 7617 break; 7618 7619 case OR_No_Viable_Function: 7620 if (CandidateSet.empty()) 7621 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7622 << Base->getType() << Base->getSourceRange(); 7623 else 7624 Diag(OpLoc, diag::err_ovl_no_viable_oper) 7625 << "operator->" << Base->getSourceRange(); 7626 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 7627 return ExprError(); 7628 7629 case OR_Ambiguous: 7630 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 7631 << "->" << Base->getSourceRange(); 7632 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1); 7633 return ExprError(); 7634 7635 case OR_Deleted: 7636 Diag(OpLoc, diag::err_ovl_deleted_oper) 7637 << Best->Function->isDeleted() 7638 << "->" << Base->getSourceRange(); 7639 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 7640 return ExprError(); 7641 } 7642 7643 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 7644 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7645 7646 // Convert the object parameter. 7647 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7648 if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 7649 Best->FoundDecl, Method)) 7650 return ExprError(); 7651 7652 // No concerns about early exits now. 7653 BaseIn.release(); 7654 7655 // Build the operator call. 7656 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 7657 SourceLocation()); 7658 UsualUnaryConversions(FnExpr); 7659 7660 QualType ResultTy = Method->getCallResultType(); 7661 ExprOwningPtr<CXXOperatorCallExpr> 7662 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 7663 &Base, 1, ResultTy, OpLoc)); 7664 7665 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 7666 Method)) 7667 return ExprError(); 7668 return move(TheCall); 7669} 7670 7671/// FixOverloadedFunctionReference - E is an expression that refers to 7672/// a C++ overloaded function (possibly with some parentheses and 7673/// perhaps a '&' around it). We have resolved the overloaded function 7674/// to the function declaration Fn, so patch up the expression E to 7675/// refer (possibly indirectly) to Fn. Returns the new expr. 7676Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 7677 FunctionDecl *Fn) { 7678 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7679 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 7680 Found, Fn); 7681 if (SubExpr == PE->getSubExpr()) 7682 return PE->Retain(); 7683 7684 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 7685 } 7686 7687 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 7688 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 7689 Found, Fn); 7690 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 7691 SubExpr->getType()) && 7692 "Implicit cast type cannot be determined from overload"); 7693 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 7694 if (SubExpr == ICE->getSubExpr()) 7695 return ICE->Retain(); 7696 7697 return ImplicitCastExpr::Create(Context, ICE->getType(), 7698 ICE->getCastKind(), 7699 SubExpr, 0, 7700 ICE->getCategory()); 7701 } 7702 7703 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 7704 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 7705 "Can only take the address of an overloaded function"); 7706 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7707 if (Method->isStatic()) { 7708 // Do nothing: static member functions aren't any different 7709 // from non-member functions. 7710 } else { 7711 // Fix the sub expression, which really has to be an 7712 // UnresolvedLookupExpr holding an overloaded member function 7713 // or template. 7714 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7715 Found, Fn); 7716 if (SubExpr == UnOp->getSubExpr()) 7717 return UnOp->Retain(); 7718 7719 assert(isa<DeclRefExpr>(SubExpr) 7720 && "fixed to something other than a decl ref"); 7721 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 7722 && "fixed to a member ref with no nested name qualifier"); 7723 7724 // We have taken the address of a pointer to member 7725 // function. Perform the computation here so that we get the 7726 // appropriate pointer to member type. 7727 QualType ClassType 7728 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 7729 QualType MemPtrType 7730 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 7731 7732 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 7733 MemPtrType, UnOp->getOperatorLoc()); 7734 } 7735 } 7736 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7737 Found, Fn); 7738 if (SubExpr == UnOp->getSubExpr()) 7739 return UnOp->Retain(); 7740 7741 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 7742 Context.getPointerType(SubExpr->getType()), 7743 UnOp->getOperatorLoc()); 7744 } 7745 7746 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 7747 // FIXME: avoid copy. 7748 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7749 if (ULE->hasExplicitTemplateArgs()) { 7750 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 7751 TemplateArgs = &TemplateArgsBuffer; 7752 } 7753 7754 return DeclRefExpr::Create(Context, 7755 ULE->getQualifier(), 7756 ULE->getQualifierRange(), 7757 Fn, 7758 ULE->getNameLoc(), 7759 Fn->getType(), 7760 TemplateArgs); 7761 } 7762 7763 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 7764 // FIXME: avoid copy. 7765 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7766 if (MemExpr->hasExplicitTemplateArgs()) { 7767 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 7768 TemplateArgs = &TemplateArgsBuffer; 7769 } 7770 7771 Expr *Base; 7772 7773 // If we're filling in 7774 if (MemExpr->isImplicitAccess()) { 7775 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 7776 return DeclRefExpr::Create(Context, 7777 MemExpr->getQualifier(), 7778 MemExpr->getQualifierRange(), 7779 Fn, 7780 MemExpr->getMemberLoc(), 7781 Fn->getType(), 7782 TemplateArgs); 7783 } else { 7784 SourceLocation Loc = MemExpr->getMemberLoc(); 7785 if (MemExpr->getQualifier()) 7786 Loc = MemExpr->getQualifierRange().getBegin(); 7787 Base = new (Context) CXXThisExpr(Loc, 7788 MemExpr->getBaseType(), 7789 /*isImplicit=*/true); 7790 } 7791 } else 7792 Base = MemExpr->getBase()->Retain(); 7793 7794 return MemberExpr::Create(Context, Base, 7795 MemExpr->isArrow(), 7796 MemExpr->getQualifier(), 7797 MemExpr->getQualifierRange(), 7798 Fn, 7799 Found, 7800 MemExpr->getMemberNameInfo(), 7801 TemplateArgs, 7802 Fn->getType()); 7803 } 7804 7805 assert(false && "Invalid reference to overloaded function"); 7806 return E->Retain(); 7807} 7808 7809Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E, 7810 DeclAccessPair Found, 7811 FunctionDecl *Fn) { 7812 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 7813} 7814 7815} // end namespace clang 7816