SemaOverload.cpp revision 282e7e66748cc6dd14d6f7f2cb52e5373c531e61
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static ExprResult
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
41                      SourceLocation Loc = SourceLocation(),
42                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
43  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, Fn->getType(),
44                                                 VK_LValue, Loc, LocInfo);
45  if (HadMultipleCandidates)
46    DRE->setHadMultipleCandidates(true);
47  ExprResult E = S.Owned(DRE);
48  E = S.DefaultFunctionArrayConversion(E.take());
49  if (E.isInvalid())
50    return ExprError();
51  return move(E);
52}
53
54static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
55                                 bool InOverloadResolution,
56                                 StandardConversionSequence &SCS,
57                                 bool CStyle,
58                                 bool AllowObjCWritebackConversion);
59
60static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
61                                                 QualType &ToType,
62                                                 bool InOverloadResolution,
63                                                 StandardConversionSequence &SCS,
64                                                 bool CStyle);
65static OverloadingResult
66IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
67                        UserDefinedConversionSequence& User,
68                        OverloadCandidateSet& Conversions,
69                        bool AllowExplicit);
70
71
72static ImplicitConversionSequence::CompareKind
73CompareStandardConversionSequences(Sema &S,
74                                   const StandardConversionSequence& SCS1,
75                                   const StandardConversionSequence& SCS2);
76
77static ImplicitConversionSequence::CompareKind
78CompareQualificationConversions(Sema &S,
79                                const StandardConversionSequence& SCS1,
80                                const StandardConversionSequence& SCS2);
81
82static ImplicitConversionSequence::CompareKind
83CompareDerivedToBaseConversions(Sema &S,
84                                const StandardConversionSequence& SCS1,
85                                const StandardConversionSequence& SCS2);
86
87
88
89/// GetConversionCategory - Retrieve the implicit conversion
90/// category corresponding to the given implicit conversion kind.
91ImplicitConversionCategory
92GetConversionCategory(ImplicitConversionKind Kind) {
93  static const ImplicitConversionCategory
94    Category[(int)ICK_Num_Conversion_Kinds] = {
95    ICC_Identity,
96    ICC_Lvalue_Transformation,
97    ICC_Lvalue_Transformation,
98    ICC_Lvalue_Transformation,
99    ICC_Identity,
100    ICC_Qualification_Adjustment,
101    ICC_Promotion,
102    ICC_Promotion,
103    ICC_Promotion,
104    ICC_Conversion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion,
110    ICC_Conversion,
111    ICC_Conversion,
112    ICC_Conversion,
113    ICC_Conversion,
114    ICC_Conversion,
115    ICC_Conversion,
116    ICC_Conversion
117  };
118  return Category[(int)Kind];
119}
120
121/// GetConversionRank - Retrieve the implicit conversion rank
122/// corresponding to the given implicit conversion kind.
123ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
124  static const ImplicitConversionRank
125    Rank[(int)ICK_Num_Conversion_Kinds] = {
126    ICR_Exact_Match,
127    ICR_Exact_Match,
128    ICR_Exact_Match,
129    ICR_Exact_Match,
130    ICR_Exact_Match,
131    ICR_Exact_Match,
132    ICR_Promotion,
133    ICR_Promotion,
134    ICR_Promotion,
135    ICR_Conversion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Conversion,
140    ICR_Conversion,
141    ICR_Conversion,
142    ICR_Conversion,
143    ICR_Conversion,
144    ICR_Conversion,
145    ICR_Conversion,
146    ICR_Complex_Real_Conversion,
147    ICR_Conversion,
148    ICR_Conversion,
149    ICR_Writeback_Conversion
150  };
151  return Rank[(int)Kind];
152}
153
154/// GetImplicitConversionName - Return the name of this kind of
155/// implicit conversion.
156const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
157  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
158    "No conversion",
159    "Lvalue-to-rvalue",
160    "Array-to-pointer",
161    "Function-to-pointer",
162    "Noreturn adjustment",
163    "Qualification",
164    "Integral promotion",
165    "Floating point promotion",
166    "Complex promotion",
167    "Integral conversion",
168    "Floating conversion",
169    "Complex conversion",
170    "Floating-integral conversion",
171    "Pointer conversion",
172    "Pointer-to-member conversion",
173    "Boolean conversion",
174    "Compatible-types conversion",
175    "Derived-to-base conversion",
176    "Vector conversion",
177    "Vector splat",
178    "Complex-real conversion",
179    "Block Pointer conversion",
180    "Transparent Union Conversion"
181    "Writeback conversion"
182  };
183  return Name[Kind];
184}
185
186/// StandardConversionSequence - Set the standard conversion
187/// sequence to the identity conversion.
188void StandardConversionSequence::setAsIdentityConversion() {
189  First = ICK_Identity;
190  Second = ICK_Identity;
191  Third = ICK_Identity;
192  DeprecatedStringLiteralToCharPtr = false;
193  QualificationIncludesObjCLifetime = false;
194  ReferenceBinding = false;
195  DirectBinding = false;
196  IsLvalueReference = true;
197  BindsToFunctionLvalue = false;
198  BindsToRvalue = false;
199  BindsImplicitObjectArgumentWithoutRefQualifier = false;
200  ObjCLifetimeConversionBinding = false;
201  CopyConstructor = 0;
202}
203
204/// getRank - Retrieve the rank of this standard conversion sequence
205/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
206/// implicit conversions.
207ImplicitConversionRank StandardConversionSequence::getRank() const {
208  ImplicitConversionRank Rank = ICR_Exact_Match;
209  if  (GetConversionRank(First) > Rank)
210    Rank = GetConversionRank(First);
211  if  (GetConversionRank(Second) > Rank)
212    Rank = GetConversionRank(Second);
213  if  (GetConversionRank(Third) > Rank)
214    Rank = GetConversionRank(Third);
215  return Rank;
216}
217
218/// isPointerConversionToBool - Determines whether this conversion is
219/// a conversion of a pointer or pointer-to-member to bool. This is
220/// used as part of the ranking of standard conversion sequences
221/// (C++ 13.3.3.2p4).
222bool StandardConversionSequence::isPointerConversionToBool() const {
223  // Note that FromType has not necessarily been transformed by the
224  // array-to-pointer or function-to-pointer implicit conversions, so
225  // check for their presence as well as checking whether FromType is
226  // a pointer.
227  if (getToType(1)->isBooleanType() &&
228      (getFromType()->isPointerType() ||
229       getFromType()->isObjCObjectPointerType() ||
230       getFromType()->isBlockPointerType() ||
231       getFromType()->isNullPtrType() ||
232       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
233    return true;
234
235  return false;
236}
237
238/// isPointerConversionToVoidPointer - Determines whether this
239/// conversion is a conversion of a pointer to a void pointer. This is
240/// used as part of the ranking of standard conversion sequences (C++
241/// 13.3.3.2p4).
242bool
243StandardConversionSequence::
244isPointerConversionToVoidPointer(ASTContext& Context) const {
245  QualType FromType = getFromType();
246  QualType ToType = getToType(1);
247
248  // Note that FromType has not necessarily been transformed by the
249  // array-to-pointer implicit conversion, so check for its presence
250  // and redo the conversion to get a pointer.
251  if (First == ICK_Array_To_Pointer)
252    FromType = Context.getArrayDecayedType(FromType);
253
254  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
255    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
256      return ToPtrType->getPointeeType()->isVoidType();
257
258  return false;
259}
260
261/// Skip any implicit casts which could be either part of a narrowing conversion
262/// or after one in an implicit conversion.
263static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
264  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
265    switch (ICE->getCastKind()) {
266    case CK_NoOp:
267    case CK_IntegralCast:
268    case CK_IntegralToBoolean:
269    case CK_IntegralToFloating:
270    case CK_FloatingToIntegral:
271    case CK_FloatingToBoolean:
272    case CK_FloatingCast:
273      Converted = ICE->getSubExpr();
274      continue;
275
276    default:
277      return Converted;
278    }
279  }
280
281  return Converted;
282}
283
284/// Check if this standard conversion sequence represents a narrowing
285/// conversion, according to C++11 [dcl.init.list]p7.
286///
287/// \param Ctx  The AST context.
288/// \param Converted  The result of applying this standard conversion sequence.
289/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
290///        value of the expression prior to the narrowing conversion.
291NarrowingKind
292StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
293                                             const Expr *Converted,
294                                             APValue &ConstantValue) const {
295  assert(Ctx.getLangOptions().CPlusPlus && "narrowing check outside C++");
296
297  // C++11 [dcl.init.list]p7:
298  //   A narrowing conversion is an implicit conversion ...
299  QualType FromType = getToType(0);
300  QualType ToType = getToType(1);
301  switch (Second) {
302  // -- from a floating-point type to an integer type, or
303  //
304  // -- from an integer type or unscoped enumeration type to a floating-point
305  //    type, except where the source is a constant expression and the actual
306  //    value after conversion will fit into the target type and will produce
307  //    the original value when converted back to the original type, or
308  case ICK_Floating_Integral:
309    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
310      return NK_Type_Narrowing;
311    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
312      llvm::APSInt IntConstantValue;
313      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
314      if (Initializer &&
315          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
316        // Convert the integer to the floating type.
317        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
318        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
319                                llvm::APFloat::rmNearestTiesToEven);
320        // And back.
321        llvm::APSInt ConvertedValue = IntConstantValue;
322        bool ignored;
323        Result.convertToInteger(ConvertedValue,
324                                llvm::APFloat::rmTowardZero, &ignored);
325        // If the resulting value is different, this was a narrowing conversion.
326        if (IntConstantValue != ConvertedValue) {
327          ConstantValue = APValue(IntConstantValue);
328          return NK_Constant_Narrowing;
329        }
330      } else {
331        // Variables are always narrowings.
332        return NK_Variable_Narrowing;
333      }
334    }
335    return NK_Not_Narrowing;
336
337  // -- from long double to double or float, or from double to float, except
338  //    where the source is a constant expression and the actual value after
339  //    conversion is within the range of values that can be represented (even
340  //    if it cannot be represented exactly), or
341  case ICK_Floating_Conversion:
342    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
343        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
344      // FromType is larger than ToType.
345      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
346      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
347        // Constant!
348        assert(ConstantValue.isFloat());
349        llvm::APFloat FloatVal = ConstantValue.getFloat();
350        // Convert the source value into the target type.
351        bool ignored;
352        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
353          Ctx.getFloatTypeSemantics(ToType),
354          llvm::APFloat::rmNearestTiesToEven, &ignored);
355        // If there was no overflow, the source value is within the range of
356        // values that can be represented.
357        if (ConvertStatus & llvm::APFloat::opOverflow)
358          return NK_Constant_Narrowing;
359      } else {
360        return NK_Variable_Narrowing;
361      }
362    }
363    return NK_Not_Narrowing;
364
365  // -- from an integer type or unscoped enumeration type to an integer type
366  //    that cannot represent all the values of the original type, except where
367  //    the source is a constant expression and the actual value after
368  //    conversion will fit into the target type and will produce the original
369  //    value when converted back to the original type.
370  case ICK_Boolean_Conversion:  // Bools are integers too.
371    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
372      // Boolean conversions can be from pointers and pointers to members
373      // [conv.bool], and those aren't considered narrowing conversions.
374      return NK_Not_Narrowing;
375    }  // Otherwise, fall through to the integral case.
376  case ICK_Integral_Conversion: {
377    assert(FromType->isIntegralOrUnscopedEnumerationType());
378    assert(ToType->isIntegralOrUnscopedEnumerationType());
379    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
380    const unsigned FromWidth = Ctx.getIntWidth(FromType);
381    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
382    const unsigned ToWidth = Ctx.getIntWidth(ToType);
383
384    if (FromWidth > ToWidth ||
385        (FromWidth == ToWidth && FromSigned != ToSigned)) {
386      // Not all values of FromType can be represented in ToType.
387      llvm::APSInt InitializerValue;
388      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
389      if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
390        ConstantValue = APValue(InitializerValue);
391
392        // Add a bit to the InitializerValue so we don't have to worry about
393        // signed vs. unsigned comparisons.
394        InitializerValue = InitializerValue.extend(
395          InitializerValue.getBitWidth() + 1);
396        // Convert the initializer to and from the target width and signed-ness.
397        llvm::APSInt ConvertedValue = InitializerValue;
398        ConvertedValue = ConvertedValue.trunc(ToWidth);
399        ConvertedValue.setIsSigned(ToSigned);
400        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
401        ConvertedValue.setIsSigned(InitializerValue.isSigned());
402        // If the result is different, this was a narrowing conversion.
403        if (ConvertedValue != InitializerValue)
404          return NK_Constant_Narrowing;
405      } else {
406        // Variables are always narrowings.
407        return NK_Variable_Narrowing;
408      }
409    }
410    return NK_Not_Narrowing;
411  }
412
413  default:
414    // Other kinds of conversions are not narrowings.
415    return NK_Not_Narrowing;
416  }
417}
418
419/// DebugPrint - Print this standard conversion sequence to standard
420/// error. Useful for debugging overloading issues.
421void StandardConversionSequence::DebugPrint() const {
422  raw_ostream &OS = llvm::errs();
423  bool PrintedSomething = false;
424  if (First != ICK_Identity) {
425    OS << GetImplicitConversionName(First);
426    PrintedSomething = true;
427  }
428
429  if (Second != ICK_Identity) {
430    if (PrintedSomething) {
431      OS << " -> ";
432    }
433    OS << GetImplicitConversionName(Second);
434
435    if (CopyConstructor) {
436      OS << " (by copy constructor)";
437    } else if (DirectBinding) {
438      OS << " (direct reference binding)";
439    } else if (ReferenceBinding) {
440      OS << " (reference binding)";
441    }
442    PrintedSomething = true;
443  }
444
445  if (Third != ICK_Identity) {
446    if (PrintedSomething) {
447      OS << " -> ";
448    }
449    OS << GetImplicitConversionName(Third);
450    PrintedSomething = true;
451  }
452
453  if (!PrintedSomething) {
454    OS << "No conversions required";
455  }
456}
457
458/// DebugPrint - Print this user-defined conversion sequence to standard
459/// error. Useful for debugging overloading issues.
460void UserDefinedConversionSequence::DebugPrint() const {
461  raw_ostream &OS = llvm::errs();
462  if (Before.First || Before.Second || Before.Third) {
463    Before.DebugPrint();
464    OS << " -> ";
465  }
466  if (ConversionFunction)
467    OS << '\'' << *ConversionFunction << '\'';
468  else
469    OS << "aggregate initialization";
470  if (After.First || After.Second || After.Third) {
471    OS << " -> ";
472    After.DebugPrint();
473  }
474}
475
476/// DebugPrint - Print this implicit conversion sequence to standard
477/// error. Useful for debugging overloading issues.
478void ImplicitConversionSequence::DebugPrint() const {
479  raw_ostream &OS = llvm::errs();
480  switch (ConversionKind) {
481  case StandardConversion:
482    OS << "Standard conversion: ";
483    Standard.DebugPrint();
484    break;
485  case UserDefinedConversion:
486    OS << "User-defined conversion: ";
487    UserDefined.DebugPrint();
488    break;
489  case EllipsisConversion:
490    OS << "Ellipsis conversion";
491    break;
492  case AmbiguousConversion:
493    OS << "Ambiguous conversion";
494    break;
495  case BadConversion:
496    OS << "Bad conversion";
497    break;
498  }
499
500  OS << "\n";
501}
502
503void AmbiguousConversionSequence::construct() {
504  new (&conversions()) ConversionSet();
505}
506
507void AmbiguousConversionSequence::destruct() {
508  conversions().~ConversionSet();
509}
510
511void
512AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
513  FromTypePtr = O.FromTypePtr;
514  ToTypePtr = O.ToTypePtr;
515  new (&conversions()) ConversionSet(O.conversions());
516}
517
518namespace {
519  // Structure used by OverloadCandidate::DeductionFailureInfo to store
520  // template parameter and template argument information.
521  struct DFIParamWithArguments {
522    TemplateParameter Param;
523    TemplateArgument FirstArg;
524    TemplateArgument SecondArg;
525  };
526}
527
528/// \brief Convert from Sema's representation of template deduction information
529/// to the form used in overload-candidate information.
530OverloadCandidate::DeductionFailureInfo
531static MakeDeductionFailureInfo(ASTContext &Context,
532                                Sema::TemplateDeductionResult TDK,
533                                TemplateDeductionInfo &Info) {
534  OverloadCandidate::DeductionFailureInfo Result;
535  Result.Result = static_cast<unsigned>(TDK);
536  Result.Data = 0;
537  switch (TDK) {
538  case Sema::TDK_Success:
539  case Sema::TDK_InstantiationDepth:
540  case Sema::TDK_TooManyArguments:
541  case Sema::TDK_TooFewArguments:
542    break;
543
544  case Sema::TDK_Incomplete:
545  case Sema::TDK_InvalidExplicitArguments:
546    Result.Data = Info.Param.getOpaqueValue();
547    break;
548
549  case Sema::TDK_Inconsistent:
550  case Sema::TDK_Underqualified: {
551    // FIXME: Should allocate from normal heap so that we can free this later.
552    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
553    Saved->Param = Info.Param;
554    Saved->FirstArg = Info.FirstArg;
555    Saved->SecondArg = Info.SecondArg;
556    Result.Data = Saved;
557    break;
558  }
559
560  case Sema::TDK_SubstitutionFailure:
561    Result.Data = Info.take();
562    break;
563
564  case Sema::TDK_NonDeducedMismatch:
565  case Sema::TDK_FailedOverloadResolution:
566    break;
567  }
568
569  return Result;
570}
571
572void OverloadCandidate::DeductionFailureInfo::Destroy() {
573  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
574  case Sema::TDK_Success:
575  case Sema::TDK_InstantiationDepth:
576  case Sema::TDK_Incomplete:
577  case Sema::TDK_TooManyArguments:
578  case Sema::TDK_TooFewArguments:
579  case Sema::TDK_InvalidExplicitArguments:
580    break;
581
582  case Sema::TDK_Inconsistent:
583  case Sema::TDK_Underqualified:
584    // FIXME: Destroy the data?
585    Data = 0;
586    break;
587
588  case Sema::TDK_SubstitutionFailure:
589    // FIXME: Destroy the template arugment list?
590    Data = 0;
591    break;
592
593  // Unhandled
594  case Sema::TDK_NonDeducedMismatch:
595  case Sema::TDK_FailedOverloadResolution:
596    break;
597  }
598}
599
600TemplateParameter
601OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
602  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
603  case Sema::TDK_Success:
604  case Sema::TDK_InstantiationDepth:
605  case Sema::TDK_TooManyArguments:
606  case Sema::TDK_TooFewArguments:
607  case Sema::TDK_SubstitutionFailure:
608    return TemplateParameter();
609
610  case Sema::TDK_Incomplete:
611  case Sema::TDK_InvalidExplicitArguments:
612    return TemplateParameter::getFromOpaqueValue(Data);
613
614  case Sema::TDK_Inconsistent:
615  case Sema::TDK_Underqualified:
616    return static_cast<DFIParamWithArguments*>(Data)->Param;
617
618  // Unhandled
619  case Sema::TDK_NonDeducedMismatch:
620  case Sema::TDK_FailedOverloadResolution:
621    break;
622  }
623
624  return TemplateParameter();
625}
626
627TemplateArgumentList *
628OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
629  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
630    case Sema::TDK_Success:
631    case Sema::TDK_InstantiationDepth:
632    case Sema::TDK_TooManyArguments:
633    case Sema::TDK_TooFewArguments:
634    case Sema::TDK_Incomplete:
635    case Sema::TDK_InvalidExplicitArguments:
636    case Sema::TDK_Inconsistent:
637    case Sema::TDK_Underqualified:
638      return 0;
639
640    case Sema::TDK_SubstitutionFailure:
641      return static_cast<TemplateArgumentList*>(Data);
642
643    // Unhandled
644    case Sema::TDK_NonDeducedMismatch:
645    case Sema::TDK_FailedOverloadResolution:
646      break;
647  }
648
649  return 0;
650}
651
652const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
653  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
654  case Sema::TDK_Success:
655  case Sema::TDK_InstantiationDepth:
656  case Sema::TDK_Incomplete:
657  case Sema::TDK_TooManyArguments:
658  case Sema::TDK_TooFewArguments:
659  case Sema::TDK_InvalidExplicitArguments:
660  case Sema::TDK_SubstitutionFailure:
661    return 0;
662
663  case Sema::TDK_Inconsistent:
664  case Sema::TDK_Underqualified:
665    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
666
667  // Unhandled
668  case Sema::TDK_NonDeducedMismatch:
669  case Sema::TDK_FailedOverloadResolution:
670    break;
671  }
672
673  return 0;
674}
675
676const TemplateArgument *
677OverloadCandidate::DeductionFailureInfo::getSecondArg() {
678  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
679  case Sema::TDK_Success:
680  case Sema::TDK_InstantiationDepth:
681  case Sema::TDK_Incomplete:
682  case Sema::TDK_TooManyArguments:
683  case Sema::TDK_TooFewArguments:
684  case Sema::TDK_InvalidExplicitArguments:
685  case Sema::TDK_SubstitutionFailure:
686    return 0;
687
688  case Sema::TDK_Inconsistent:
689  case Sema::TDK_Underqualified:
690    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
691
692  // Unhandled
693  case Sema::TDK_NonDeducedMismatch:
694  case Sema::TDK_FailedOverloadResolution:
695    break;
696  }
697
698  return 0;
699}
700
701void OverloadCandidateSet::clear() {
702  for (iterator i = begin(), e = end(); i != e; ++i)
703    for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
704      i->Conversions[ii].~ImplicitConversionSequence();
705  NumInlineSequences = 0;
706  Candidates.clear();
707  Functions.clear();
708}
709
710namespace {
711  class UnbridgedCastsSet {
712    struct Entry {
713      Expr **Addr;
714      Expr *Saved;
715    };
716    SmallVector<Entry, 2> Entries;
717
718  public:
719    void save(Sema &S, Expr *&E) {
720      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
721      Entry entry = { &E, E };
722      Entries.push_back(entry);
723      E = S.stripARCUnbridgedCast(E);
724    }
725
726    void restore() {
727      for (SmallVectorImpl<Entry>::iterator
728             i = Entries.begin(), e = Entries.end(); i != e; ++i)
729        *i->Addr = i->Saved;
730    }
731  };
732}
733
734/// checkPlaceholderForOverload - Do any interesting placeholder-like
735/// preprocessing on the given expression.
736///
737/// \param unbridgedCasts a collection to which to add unbridged casts;
738///   without this, they will be immediately diagnosed as errors
739///
740/// Return true on unrecoverable error.
741static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
742                                        UnbridgedCastsSet *unbridgedCasts = 0) {
743  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
744    // We can't handle overloaded expressions here because overload
745    // resolution might reasonably tweak them.
746    if (placeholder->getKind() == BuiltinType::Overload) return false;
747
748    // If the context potentially accepts unbridged ARC casts, strip
749    // the unbridged cast and add it to the collection for later restoration.
750    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
751        unbridgedCasts) {
752      unbridgedCasts->save(S, E);
753      return false;
754    }
755
756    // Go ahead and check everything else.
757    ExprResult result = S.CheckPlaceholderExpr(E);
758    if (result.isInvalid())
759      return true;
760
761    E = result.take();
762    return false;
763  }
764
765  // Nothing to do.
766  return false;
767}
768
769/// checkArgPlaceholdersForOverload - Check a set of call operands for
770/// placeholders.
771static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
772                                            unsigned numArgs,
773                                            UnbridgedCastsSet &unbridged) {
774  for (unsigned i = 0; i != numArgs; ++i)
775    if (checkPlaceholderForOverload(S, args[i], &unbridged))
776      return true;
777
778  return false;
779}
780
781// IsOverload - Determine whether the given New declaration is an
782// overload of the declarations in Old. This routine returns false if
783// New and Old cannot be overloaded, e.g., if New has the same
784// signature as some function in Old (C++ 1.3.10) or if the Old
785// declarations aren't functions (or function templates) at all. When
786// it does return false, MatchedDecl will point to the decl that New
787// cannot be overloaded with.  This decl may be a UsingShadowDecl on
788// top of the underlying declaration.
789//
790// Example: Given the following input:
791//
792//   void f(int, float); // #1
793//   void f(int, int); // #2
794//   int f(int, int); // #3
795//
796// When we process #1, there is no previous declaration of "f",
797// so IsOverload will not be used.
798//
799// When we process #2, Old contains only the FunctionDecl for #1.  By
800// comparing the parameter types, we see that #1 and #2 are overloaded
801// (since they have different signatures), so this routine returns
802// false; MatchedDecl is unchanged.
803//
804// When we process #3, Old is an overload set containing #1 and #2. We
805// compare the signatures of #3 to #1 (they're overloaded, so we do
806// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
807// identical (return types of functions are not part of the
808// signature), IsOverload returns false and MatchedDecl will be set to
809// point to the FunctionDecl for #2.
810//
811// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
812// into a class by a using declaration.  The rules for whether to hide
813// shadow declarations ignore some properties which otherwise figure
814// into a function template's signature.
815Sema::OverloadKind
816Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
817                    NamedDecl *&Match, bool NewIsUsingDecl) {
818  for (LookupResult::iterator I = Old.begin(), E = Old.end();
819         I != E; ++I) {
820    NamedDecl *OldD = *I;
821
822    bool OldIsUsingDecl = false;
823    if (isa<UsingShadowDecl>(OldD)) {
824      OldIsUsingDecl = true;
825
826      // We can always introduce two using declarations into the same
827      // context, even if they have identical signatures.
828      if (NewIsUsingDecl) continue;
829
830      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
831    }
832
833    // If either declaration was introduced by a using declaration,
834    // we'll need to use slightly different rules for matching.
835    // Essentially, these rules are the normal rules, except that
836    // function templates hide function templates with different
837    // return types or template parameter lists.
838    bool UseMemberUsingDeclRules =
839      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
840
841    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
842      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
843        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
844          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
845          continue;
846        }
847
848        Match = *I;
849        return Ovl_Match;
850      }
851    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
852      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
853        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
854          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
855          continue;
856        }
857
858        Match = *I;
859        return Ovl_Match;
860      }
861    } else if (isa<UsingDecl>(OldD)) {
862      // We can overload with these, which can show up when doing
863      // redeclaration checks for UsingDecls.
864      assert(Old.getLookupKind() == LookupUsingDeclName);
865    } else if (isa<TagDecl>(OldD)) {
866      // We can always overload with tags by hiding them.
867    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
868      // Optimistically assume that an unresolved using decl will
869      // overload; if it doesn't, we'll have to diagnose during
870      // template instantiation.
871    } else {
872      // (C++ 13p1):
873      //   Only function declarations can be overloaded; object and type
874      //   declarations cannot be overloaded.
875      Match = *I;
876      return Ovl_NonFunction;
877    }
878  }
879
880  return Ovl_Overload;
881}
882
883bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
884                      bool UseUsingDeclRules) {
885  // If both of the functions are extern "C", then they are not
886  // overloads.
887  if (Old->isExternC() && New->isExternC())
888    return false;
889
890  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
891  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
892
893  // C++ [temp.fct]p2:
894  //   A function template can be overloaded with other function templates
895  //   and with normal (non-template) functions.
896  if ((OldTemplate == 0) != (NewTemplate == 0))
897    return true;
898
899  // Is the function New an overload of the function Old?
900  QualType OldQType = Context.getCanonicalType(Old->getType());
901  QualType NewQType = Context.getCanonicalType(New->getType());
902
903  // Compare the signatures (C++ 1.3.10) of the two functions to
904  // determine whether they are overloads. If we find any mismatch
905  // in the signature, they are overloads.
906
907  // If either of these functions is a K&R-style function (no
908  // prototype), then we consider them to have matching signatures.
909  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
910      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
911    return false;
912
913  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
914  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
915
916  // The signature of a function includes the types of its
917  // parameters (C++ 1.3.10), which includes the presence or absence
918  // of the ellipsis; see C++ DR 357).
919  if (OldQType != NewQType &&
920      (OldType->getNumArgs() != NewType->getNumArgs() ||
921       OldType->isVariadic() != NewType->isVariadic() ||
922       !FunctionArgTypesAreEqual(OldType, NewType)))
923    return true;
924
925  // C++ [temp.over.link]p4:
926  //   The signature of a function template consists of its function
927  //   signature, its return type and its template parameter list. The names
928  //   of the template parameters are significant only for establishing the
929  //   relationship between the template parameters and the rest of the
930  //   signature.
931  //
932  // We check the return type and template parameter lists for function
933  // templates first; the remaining checks follow.
934  //
935  // However, we don't consider either of these when deciding whether
936  // a member introduced by a shadow declaration is hidden.
937  if (!UseUsingDeclRules && NewTemplate &&
938      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
939                                       OldTemplate->getTemplateParameters(),
940                                       false, TPL_TemplateMatch) ||
941       OldType->getResultType() != NewType->getResultType()))
942    return true;
943
944  // If the function is a class member, its signature includes the
945  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
946  //
947  // As part of this, also check whether one of the member functions
948  // is static, in which case they are not overloads (C++
949  // 13.1p2). While not part of the definition of the signature,
950  // this check is important to determine whether these functions
951  // can be overloaded.
952  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
953  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
954  if (OldMethod && NewMethod &&
955      !OldMethod->isStatic() && !NewMethod->isStatic() &&
956      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
957       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
958    if (!UseUsingDeclRules &&
959        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
960        (OldMethod->getRefQualifier() == RQ_None ||
961         NewMethod->getRefQualifier() == RQ_None)) {
962      // C++0x [over.load]p2:
963      //   - Member function declarations with the same name and the same
964      //     parameter-type-list as well as member function template
965      //     declarations with the same name, the same parameter-type-list, and
966      //     the same template parameter lists cannot be overloaded if any of
967      //     them, but not all, have a ref-qualifier (8.3.5).
968      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
969        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
970      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
971    }
972
973    return true;
974  }
975
976  // The signatures match; this is not an overload.
977  return false;
978}
979
980/// \brief Checks availability of the function depending on the current
981/// function context. Inside an unavailable function, unavailability is ignored.
982///
983/// \returns true if \arg FD is unavailable and current context is inside
984/// an available function, false otherwise.
985bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
986  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
987}
988
989/// \brief Tries a user-defined conversion from From to ToType.
990///
991/// Produces an implicit conversion sequence for when a standard conversion
992/// is not an option. See TryImplicitConversion for more information.
993static ImplicitConversionSequence
994TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
995                         bool SuppressUserConversions,
996                         bool AllowExplicit,
997                         bool InOverloadResolution,
998                         bool CStyle,
999                         bool AllowObjCWritebackConversion) {
1000  ImplicitConversionSequence ICS;
1001
1002  if (SuppressUserConversions) {
1003    // We're not in the case above, so there is no conversion that
1004    // we can perform.
1005    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1006    return ICS;
1007  }
1008
1009  // Attempt user-defined conversion.
1010  OverloadCandidateSet Conversions(From->getExprLoc());
1011  OverloadingResult UserDefResult
1012    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1013                              AllowExplicit);
1014
1015  if (UserDefResult == OR_Success) {
1016    ICS.setUserDefined();
1017    // C++ [over.ics.user]p4:
1018    //   A conversion of an expression of class type to the same class
1019    //   type is given Exact Match rank, and a conversion of an
1020    //   expression of class type to a base class of that type is
1021    //   given Conversion rank, in spite of the fact that a copy
1022    //   constructor (i.e., a user-defined conversion function) is
1023    //   called for those cases.
1024    if (CXXConstructorDecl *Constructor
1025          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1026      QualType FromCanon
1027        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1028      QualType ToCanon
1029        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1030      if (Constructor->isCopyConstructor() &&
1031          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1032        // Turn this into a "standard" conversion sequence, so that it
1033        // gets ranked with standard conversion sequences.
1034        ICS.setStandard();
1035        ICS.Standard.setAsIdentityConversion();
1036        ICS.Standard.setFromType(From->getType());
1037        ICS.Standard.setAllToTypes(ToType);
1038        ICS.Standard.CopyConstructor = Constructor;
1039        if (ToCanon != FromCanon)
1040          ICS.Standard.Second = ICK_Derived_To_Base;
1041      }
1042    }
1043
1044    // C++ [over.best.ics]p4:
1045    //   However, when considering the argument of a user-defined
1046    //   conversion function that is a candidate by 13.3.1.3 when
1047    //   invoked for the copying of the temporary in the second step
1048    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1049    //   13.3.1.6 in all cases, only standard conversion sequences and
1050    //   ellipsis conversion sequences are allowed.
1051    if (SuppressUserConversions && ICS.isUserDefined()) {
1052      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1053    }
1054  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1055    ICS.setAmbiguous();
1056    ICS.Ambiguous.setFromType(From->getType());
1057    ICS.Ambiguous.setToType(ToType);
1058    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1059         Cand != Conversions.end(); ++Cand)
1060      if (Cand->Viable)
1061        ICS.Ambiguous.addConversion(Cand->Function);
1062  } else {
1063    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1064  }
1065
1066  return ICS;
1067}
1068
1069/// TryImplicitConversion - Attempt to perform an implicit conversion
1070/// from the given expression (Expr) to the given type (ToType). This
1071/// function returns an implicit conversion sequence that can be used
1072/// to perform the initialization. Given
1073///
1074///   void f(float f);
1075///   void g(int i) { f(i); }
1076///
1077/// this routine would produce an implicit conversion sequence to
1078/// describe the initialization of f from i, which will be a standard
1079/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1080/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1081//
1082/// Note that this routine only determines how the conversion can be
1083/// performed; it does not actually perform the conversion. As such,
1084/// it will not produce any diagnostics if no conversion is available,
1085/// but will instead return an implicit conversion sequence of kind
1086/// "BadConversion".
1087///
1088/// If @p SuppressUserConversions, then user-defined conversions are
1089/// not permitted.
1090/// If @p AllowExplicit, then explicit user-defined conversions are
1091/// permitted.
1092///
1093/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1094/// writeback conversion, which allows __autoreleasing id* parameters to
1095/// be initialized with __strong id* or __weak id* arguments.
1096static ImplicitConversionSequence
1097TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1098                      bool SuppressUserConversions,
1099                      bool AllowExplicit,
1100                      bool InOverloadResolution,
1101                      bool CStyle,
1102                      bool AllowObjCWritebackConversion) {
1103  ImplicitConversionSequence ICS;
1104  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1105                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1106    ICS.setStandard();
1107    return ICS;
1108  }
1109
1110  if (!S.getLangOptions().CPlusPlus) {
1111    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1112    return ICS;
1113  }
1114
1115  // C++ [over.ics.user]p4:
1116  //   A conversion of an expression of class type to the same class
1117  //   type is given Exact Match rank, and a conversion of an
1118  //   expression of class type to a base class of that type is
1119  //   given Conversion rank, in spite of the fact that a copy/move
1120  //   constructor (i.e., a user-defined conversion function) is
1121  //   called for those cases.
1122  QualType FromType = From->getType();
1123  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1124      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1125       S.IsDerivedFrom(FromType, ToType))) {
1126    ICS.setStandard();
1127    ICS.Standard.setAsIdentityConversion();
1128    ICS.Standard.setFromType(FromType);
1129    ICS.Standard.setAllToTypes(ToType);
1130
1131    // We don't actually check at this point whether there is a valid
1132    // copy/move constructor, since overloading just assumes that it
1133    // exists. When we actually perform initialization, we'll find the
1134    // appropriate constructor to copy the returned object, if needed.
1135    ICS.Standard.CopyConstructor = 0;
1136
1137    // Determine whether this is considered a derived-to-base conversion.
1138    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1139      ICS.Standard.Second = ICK_Derived_To_Base;
1140
1141    return ICS;
1142  }
1143
1144  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1145                                  AllowExplicit, InOverloadResolution, CStyle,
1146                                  AllowObjCWritebackConversion);
1147}
1148
1149ImplicitConversionSequence
1150Sema::TryImplicitConversion(Expr *From, QualType ToType,
1151                            bool SuppressUserConversions,
1152                            bool AllowExplicit,
1153                            bool InOverloadResolution,
1154                            bool CStyle,
1155                            bool AllowObjCWritebackConversion) {
1156  return clang::TryImplicitConversion(*this, From, ToType,
1157                                      SuppressUserConversions, AllowExplicit,
1158                                      InOverloadResolution, CStyle,
1159                                      AllowObjCWritebackConversion);
1160}
1161
1162/// PerformImplicitConversion - Perform an implicit conversion of the
1163/// expression From to the type ToType. Returns the
1164/// converted expression. Flavor is the kind of conversion we're
1165/// performing, used in the error message. If @p AllowExplicit,
1166/// explicit user-defined conversions are permitted.
1167ExprResult
1168Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1169                                AssignmentAction Action, bool AllowExplicit) {
1170  ImplicitConversionSequence ICS;
1171  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1172}
1173
1174ExprResult
1175Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1176                                AssignmentAction Action, bool AllowExplicit,
1177                                ImplicitConversionSequence& ICS) {
1178  if (checkPlaceholderForOverload(*this, From))
1179    return ExprError();
1180
1181  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1182  bool AllowObjCWritebackConversion
1183    = getLangOptions().ObjCAutoRefCount &&
1184      (Action == AA_Passing || Action == AA_Sending);
1185
1186  ICS = clang::TryImplicitConversion(*this, From, ToType,
1187                                     /*SuppressUserConversions=*/false,
1188                                     AllowExplicit,
1189                                     /*InOverloadResolution=*/false,
1190                                     /*CStyle=*/false,
1191                                     AllowObjCWritebackConversion);
1192  return PerformImplicitConversion(From, ToType, ICS, Action);
1193}
1194
1195/// \brief Determine whether the conversion from FromType to ToType is a valid
1196/// conversion that strips "noreturn" off the nested function type.
1197bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1198                                QualType &ResultTy) {
1199  if (Context.hasSameUnqualifiedType(FromType, ToType))
1200    return false;
1201
1202  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1203  // where F adds one of the following at most once:
1204  //   - a pointer
1205  //   - a member pointer
1206  //   - a block pointer
1207  CanQualType CanTo = Context.getCanonicalType(ToType);
1208  CanQualType CanFrom = Context.getCanonicalType(FromType);
1209  Type::TypeClass TyClass = CanTo->getTypeClass();
1210  if (TyClass != CanFrom->getTypeClass()) return false;
1211  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1212    if (TyClass == Type::Pointer) {
1213      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1214      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1215    } else if (TyClass == Type::BlockPointer) {
1216      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1217      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1218    } else if (TyClass == Type::MemberPointer) {
1219      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1220      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1221    } else {
1222      return false;
1223    }
1224
1225    TyClass = CanTo->getTypeClass();
1226    if (TyClass != CanFrom->getTypeClass()) return false;
1227    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1228      return false;
1229  }
1230
1231  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1232  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1233  if (!EInfo.getNoReturn()) return false;
1234
1235  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1236  assert(QualType(FromFn, 0).isCanonical());
1237  if (QualType(FromFn, 0) != CanTo) return false;
1238
1239  ResultTy = ToType;
1240  return true;
1241}
1242
1243/// \brief Determine whether the conversion from FromType to ToType is a valid
1244/// vector conversion.
1245///
1246/// \param ICK Will be set to the vector conversion kind, if this is a vector
1247/// conversion.
1248static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1249                               QualType ToType, ImplicitConversionKind &ICK) {
1250  // We need at least one of these types to be a vector type to have a vector
1251  // conversion.
1252  if (!ToType->isVectorType() && !FromType->isVectorType())
1253    return false;
1254
1255  // Identical types require no conversions.
1256  if (Context.hasSameUnqualifiedType(FromType, ToType))
1257    return false;
1258
1259  // There are no conversions between extended vector types, only identity.
1260  if (ToType->isExtVectorType()) {
1261    // There are no conversions between extended vector types other than the
1262    // identity conversion.
1263    if (FromType->isExtVectorType())
1264      return false;
1265
1266    // Vector splat from any arithmetic type to a vector.
1267    if (FromType->isArithmeticType()) {
1268      ICK = ICK_Vector_Splat;
1269      return true;
1270    }
1271  }
1272
1273  // We can perform the conversion between vector types in the following cases:
1274  // 1)vector types are equivalent AltiVec and GCC vector types
1275  // 2)lax vector conversions are permitted and the vector types are of the
1276  //   same size
1277  if (ToType->isVectorType() && FromType->isVectorType()) {
1278    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1279        (Context.getLangOptions().LaxVectorConversions &&
1280         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1281      ICK = ICK_Vector_Conversion;
1282      return true;
1283    }
1284  }
1285
1286  return false;
1287}
1288
1289/// IsStandardConversion - Determines whether there is a standard
1290/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1291/// expression From to the type ToType. Standard conversion sequences
1292/// only consider non-class types; for conversions that involve class
1293/// types, use TryImplicitConversion. If a conversion exists, SCS will
1294/// contain the standard conversion sequence required to perform this
1295/// conversion and this routine will return true. Otherwise, this
1296/// routine will return false and the value of SCS is unspecified.
1297static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1298                                 bool InOverloadResolution,
1299                                 StandardConversionSequence &SCS,
1300                                 bool CStyle,
1301                                 bool AllowObjCWritebackConversion) {
1302  QualType FromType = From->getType();
1303
1304  // Standard conversions (C++ [conv])
1305  SCS.setAsIdentityConversion();
1306  SCS.DeprecatedStringLiteralToCharPtr = false;
1307  SCS.IncompatibleObjC = false;
1308  SCS.setFromType(FromType);
1309  SCS.CopyConstructor = 0;
1310
1311  // There are no standard conversions for class types in C++, so
1312  // abort early. When overloading in C, however, we do permit
1313  if (FromType->isRecordType() || ToType->isRecordType()) {
1314    if (S.getLangOptions().CPlusPlus)
1315      return false;
1316
1317    // When we're overloading in C, we allow, as standard conversions,
1318  }
1319
1320  // The first conversion can be an lvalue-to-rvalue conversion,
1321  // array-to-pointer conversion, or function-to-pointer conversion
1322  // (C++ 4p1).
1323
1324  if (FromType == S.Context.OverloadTy) {
1325    DeclAccessPair AccessPair;
1326    if (FunctionDecl *Fn
1327          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1328                                                 AccessPair)) {
1329      // We were able to resolve the address of the overloaded function,
1330      // so we can convert to the type of that function.
1331      FromType = Fn->getType();
1332
1333      // we can sometimes resolve &foo<int> regardless of ToType, so check
1334      // if the type matches (identity) or we are converting to bool
1335      if (!S.Context.hasSameUnqualifiedType(
1336                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1337        QualType resultTy;
1338        // if the function type matches except for [[noreturn]], it's ok
1339        if (!S.IsNoReturnConversion(FromType,
1340              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1341          // otherwise, only a boolean conversion is standard
1342          if (!ToType->isBooleanType())
1343            return false;
1344      }
1345
1346      // Check if the "from" expression is taking the address of an overloaded
1347      // function and recompute the FromType accordingly. Take advantage of the
1348      // fact that non-static member functions *must* have such an address-of
1349      // expression.
1350      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1351      if (Method && !Method->isStatic()) {
1352        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1353               "Non-unary operator on non-static member address");
1354        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1355               == UO_AddrOf &&
1356               "Non-address-of operator on non-static member address");
1357        const Type *ClassType
1358          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1359        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1360      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1361        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1362               UO_AddrOf &&
1363               "Non-address-of operator for overloaded function expression");
1364        FromType = S.Context.getPointerType(FromType);
1365      }
1366
1367      // Check that we've computed the proper type after overload resolution.
1368      assert(S.Context.hasSameType(
1369        FromType,
1370        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1371    } else {
1372      return false;
1373    }
1374  }
1375  // Lvalue-to-rvalue conversion (C++11 4.1):
1376  //   A glvalue (3.10) of a non-function, non-array type T can
1377  //   be converted to a prvalue.
1378  bool argIsLValue = From->isGLValue();
1379  if (argIsLValue &&
1380      !FromType->isFunctionType() && !FromType->isArrayType() &&
1381      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1382    SCS.First = ICK_Lvalue_To_Rvalue;
1383
1384    // If T is a non-class type, the type of the rvalue is the
1385    // cv-unqualified version of T. Otherwise, the type of the rvalue
1386    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1387    // just strip the qualifiers because they don't matter.
1388    FromType = FromType.getUnqualifiedType();
1389  } else if (FromType->isArrayType()) {
1390    // Array-to-pointer conversion (C++ 4.2)
1391    SCS.First = ICK_Array_To_Pointer;
1392
1393    // An lvalue or rvalue of type "array of N T" or "array of unknown
1394    // bound of T" can be converted to an rvalue of type "pointer to
1395    // T" (C++ 4.2p1).
1396    FromType = S.Context.getArrayDecayedType(FromType);
1397
1398    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1399      // This conversion is deprecated. (C++ D.4).
1400      SCS.DeprecatedStringLiteralToCharPtr = true;
1401
1402      // For the purpose of ranking in overload resolution
1403      // (13.3.3.1.1), this conversion is considered an
1404      // array-to-pointer conversion followed by a qualification
1405      // conversion (4.4). (C++ 4.2p2)
1406      SCS.Second = ICK_Identity;
1407      SCS.Third = ICK_Qualification;
1408      SCS.QualificationIncludesObjCLifetime = false;
1409      SCS.setAllToTypes(FromType);
1410      return true;
1411    }
1412  } else if (FromType->isFunctionType() && argIsLValue) {
1413    // Function-to-pointer conversion (C++ 4.3).
1414    SCS.First = ICK_Function_To_Pointer;
1415
1416    // An lvalue of function type T can be converted to an rvalue of
1417    // type "pointer to T." The result is a pointer to the
1418    // function. (C++ 4.3p1).
1419    FromType = S.Context.getPointerType(FromType);
1420  } else {
1421    // We don't require any conversions for the first step.
1422    SCS.First = ICK_Identity;
1423  }
1424  SCS.setToType(0, FromType);
1425
1426  // The second conversion can be an integral promotion, floating
1427  // point promotion, integral conversion, floating point conversion,
1428  // floating-integral conversion, pointer conversion,
1429  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1430  // For overloading in C, this can also be a "compatible-type"
1431  // conversion.
1432  bool IncompatibleObjC = false;
1433  ImplicitConversionKind SecondICK = ICK_Identity;
1434  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1435    // The unqualified versions of the types are the same: there's no
1436    // conversion to do.
1437    SCS.Second = ICK_Identity;
1438  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1439    // Integral promotion (C++ 4.5).
1440    SCS.Second = ICK_Integral_Promotion;
1441    FromType = ToType.getUnqualifiedType();
1442  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1443    // Floating point promotion (C++ 4.6).
1444    SCS.Second = ICK_Floating_Promotion;
1445    FromType = ToType.getUnqualifiedType();
1446  } else if (S.IsComplexPromotion(FromType, ToType)) {
1447    // Complex promotion (Clang extension)
1448    SCS.Second = ICK_Complex_Promotion;
1449    FromType = ToType.getUnqualifiedType();
1450  } else if (ToType->isBooleanType() &&
1451             (FromType->isArithmeticType() ||
1452              FromType->isAnyPointerType() ||
1453              FromType->isBlockPointerType() ||
1454              FromType->isMemberPointerType() ||
1455              FromType->isNullPtrType())) {
1456    // Boolean conversions (C++ 4.12).
1457    SCS.Second = ICK_Boolean_Conversion;
1458    FromType = S.Context.BoolTy;
1459  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1460             ToType->isIntegralType(S.Context)) {
1461    // Integral conversions (C++ 4.7).
1462    SCS.Second = ICK_Integral_Conversion;
1463    FromType = ToType.getUnqualifiedType();
1464  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1465    // Complex conversions (C99 6.3.1.6)
1466    SCS.Second = ICK_Complex_Conversion;
1467    FromType = ToType.getUnqualifiedType();
1468  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1469             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1470    // Complex-real conversions (C99 6.3.1.7)
1471    SCS.Second = ICK_Complex_Real;
1472    FromType = ToType.getUnqualifiedType();
1473  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1474    // Floating point conversions (C++ 4.8).
1475    SCS.Second = ICK_Floating_Conversion;
1476    FromType = ToType.getUnqualifiedType();
1477  } else if ((FromType->isRealFloatingType() &&
1478              ToType->isIntegralType(S.Context)) ||
1479             (FromType->isIntegralOrUnscopedEnumerationType() &&
1480              ToType->isRealFloatingType())) {
1481    // Floating-integral conversions (C++ 4.9).
1482    SCS.Second = ICK_Floating_Integral;
1483    FromType = ToType.getUnqualifiedType();
1484  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1485    SCS.Second = ICK_Block_Pointer_Conversion;
1486  } else if (AllowObjCWritebackConversion &&
1487             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1488    SCS.Second = ICK_Writeback_Conversion;
1489  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1490                                   FromType, IncompatibleObjC)) {
1491    // Pointer conversions (C++ 4.10).
1492    SCS.Second = ICK_Pointer_Conversion;
1493    SCS.IncompatibleObjC = IncompatibleObjC;
1494    FromType = FromType.getUnqualifiedType();
1495  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1496                                         InOverloadResolution, FromType)) {
1497    // Pointer to member conversions (4.11).
1498    SCS.Second = ICK_Pointer_Member;
1499  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1500    SCS.Second = SecondICK;
1501    FromType = ToType.getUnqualifiedType();
1502  } else if (!S.getLangOptions().CPlusPlus &&
1503             S.Context.typesAreCompatible(ToType, FromType)) {
1504    // Compatible conversions (Clang extension for C function overloading)
1505    SCS.Second = ICK_Compatible_Conversion;
1506    FromType = ToType.getUnqualifiedType();
1507  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1508    // Treat a conversion that strips "noreturn" as an identity conversion.
1509    SCS.Second = ICK_NoReturn_Adjustment;
1510  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1511                                             InOverloadResolution,
1512                                             SCS, CStyle)) {
1513    SCS.Second = ICK_TransparentUnionConversion;
1514    FromType = ToType;
1515  } else {
1516    // No second conversion required.
1517    SCS.Second = ICK_Identity;
1518  }
1519  SCS.setToType(1, FromType);
1520
1521  QualType CanonFrom;
1522  QualType CanonTo;
1523  // The third conversion can be a qualification conversion (C++ 4p1).
1524  bool ObjCLifetimeConversion;
1525  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1526                                  ObjCLifetimeConversion)) {
1527    SCS.Third = ICK_Qualification;
1528    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1529    FromType = ToType;
1530    CanonFrom = S.Context.getCanonicalType(FromType);
1531    CanonTo = S.Context.getCanonicalType(ToType);
1532  } else {
1533    // No conversion required
1534    SCS.Third = ICK_Identity;
1535
1536    // C++ [over.best.ics]p6:
1537    //   [...] Any difference in top-level cv-qualification is
1538    //   subsumed by the initialization itself and does not constitute
1539    //   a conversion. [...]
1540    CanonFrom = S.Context.getCanonicalType(FromType);
1541    CanonTo = S.Context.getCanonicalType(ToType);
1542    if (CanonFrom.getLocalUnqualifiedType()
1543                                       == CanonTo.getLocalUnqualifiedType() &&
1544        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1545         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1546         || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1547      FromType = ToType;
1548      CanonFrom = CanonTo;
1549    }
1550  }
1551  SCS.setToType(2, FromType);
1552
1553  // If we have not converted the argument type to the parameter type,
1554  // this is a bad conversion sequence.
1555  if (CanonFrom != CanonTo)
1556    return false;
1557
1558  return true;
1559}
1560
1561static bool
1562IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1563                                     QualType &ToType,
1564                                     bool InOverloadResolution,
1565                                     StandardConversionSequence &SCS,
1566                                     bool CStyle) {
1567
1568  const RecordType *UT = ToType->getAsUnionType();
1569  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1570    return false;
1571  // The field to initialize within the transparent union.
1572  RecordDecl *UD = UT->getDecl();
1573  // It's compatible if the expression matches any of the fields.
1574  for (RecordDecl::field_iterator it = UD->field_begin(),
1575       itend = UD->field_end();
1576       it != itend; ++it) {
1577    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1578                             CStyle, /*ObjCWritebackConversion=*/false)) {
1579      ToType = it->getType();
1580      return true;
1581    }
1582  }
1583  return false;
1584}
1585
1586/// IsIntegralPromotion - Determines whether the conversion from the
1587/// expression From (whose potentially-adjusted type is FromType) to
1588/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1589/// sets PromotedType to the promoted type.
1590bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1591  const BuiltinType *To = ToType->getAs<BuiltinType>();
1592  // All integers are built-in.
1593  if (!To) {
1594    return false;
1595  }
1596
1597  // An rvalue of type char, signed char, unsigned char, short int, or
1598  // unsigned short int can be converted to an rvalue of type int if
1599  // int can represent all the values of the source type; otherwise,
1600  // the source rvalue can be converted to an rvalue of type unsigned
1601  // int (C++ 4.5p1).
1602  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1603      !FromType->isEnumeralType()) {
1604    if (// We can promote any signed, promotable integer type to an int
1605        (FromType->isSignedIntegerType() ||
1606         // We can promote any unsigned integer type whose size is
1607         // less than int to an int.
1608         (!FromType->isSignedIntegerType() &&
1609          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1610      return To->getKind() == BuiltinType::Int;
1611    }
1612
1613    return To->getKind() == BuiltinType::UInt;
1614  }
1615
1616  // C++0x [conv.prom]p3:
1617  //   A prvalue of an unscoped enumeration type whose underlying type is not
1618  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1619  //   following types that can represent all the values of the enumeration
1620  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1621  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1622  //   long long int. If none of the types in that list can represent all the
1623  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1624  //   type can be converted to an rvalue a prvalue of the extended integer type
1625  //   with lowest integer conversion rank (4.13) greater than the rank of long
1626  //   long in which all the values of the enumeration can be represented. If
1627  //   there are two such extended types, the signed one is chosen.
1628  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1629    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1630    // provided for a scoped enumeration.
1631    if (FromEnumType->getDecl()->isScoped())
1632      return false;
1633
1634    // We have already pre-calculated the promotion type, so this is trivial.
1635    if (ToType->isIntegerType() &&
1636        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1637      return Context.hasSameUnqualifiedType(ToType,
1638                                FromEnumType->getDecl()->getPromotionType());
1639  }
1640
1641  // C++0x [conv.prom]p2:
1642  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1643  //   to an rvalue a prvalue of the first of the following types that can
1644  //   represent all the values of its underlying type: int, unsigned int,
1645  //   long int, unsigned long int, long long int, or unsigned long long int.
1646  //   If none of the types in that list can represent all the values of its
1647  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1648  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1649  //   type.
1650  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1651      ToType->isIntegerType()) {
1652    // Determine whether the type we're converting from is signed or
1653    // unsigned.
1654    bool FromIsSigned = FromType->isSignedIntegerType();
1655    uint64_t FromSize = Context.getTypeSize(FromType);
1656
1657    // The types we'll try to promote to, in the appropriate
1658    // order. Try each of these types.
1659    QualType PromoteTypes[6] = {
1660      Context.IntTy, Context.UnsignedIntTy,
1661      Context.LongTy, Context.UnsignedLongTy ,
1662      Context.LongLongTy, Context.UnsignedLongLongTy
1663    };
1664    for (int Idx = 0; Idx < 6; ++Idx) {
1665      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1666      if (FromSize < ToSize ||
1667          (FromSize == ToSize &&
1668           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1669        // We found the type that we can promote to. If this is the
1670        // type we wanted, we have a promotion. Otherwise, no
1671        // promotion.
1672        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1673      }
1674    }
1675  }
1676
1677  // An rvalue for an integral bit-field (9.6) can be converted to an
1678  // rvalue of type int if int can represent all the values of the
1679  // bit-field; otherwise, it can be converted to unsigned int if
1680  // unsigned int can represent all the values of the bit-field. If
1681  // the bit-field is larger yet, no integral promotion applies to
1682  // it. If the bit-field has an enumerated type, it is treated as any
1683  // other value of that type for promotion purposes (C++ 4.5p3).
1684  // FIXME: We should delay checking of bit-fields until we actually perform the
1685  // conversion.
1686  using llvm::APSInt;
1687  if (From)
1688    if (FieldDecl *MemberDecl = From->getBitField()) {
1689      APSInt BitWidth;
1690      if (FromType->isIntegralType(Context) &&
1691          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1692        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1693        ToSize = Context.getTypeSize(ToType);
1694
1695        // Are we promoting to an int from a bitfield that fits in an int?
1696        if (BitWidth < ToSize ||
1697            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1698          return To->getKind() == BuiltinType::Int;
1699        }
1700
1701        // Are we promoting to an unsigned int from an unsigned bitfield
1702        // that fits into an unsigned int?
1703        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1704          return To->getKind() == BuiltinType::UInt;
1705        }
1706
1707        return false;
1708      }
1709    }
1710
1711  // An rvalue of type bool can be converted to an rvalue of type int,
1712  // with false becoming zero and true becoming one (C++ 4.5p4).
1713  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1714    return true;
1715  }
1716
1717  return false;
1718}
1719
1720/// IsFloatingPointPromotion - Determines whether the conversion from
1721/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1722/// returns true and sets PromotedType to the promoted type.
1723bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1724  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1725    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1726      /// An rvalue of type float can be converted to an rvalue of type
1727      /// double. (C++ 4.6p1).
1728      if (FromBuiltin->getKind() == BuiltinType::Float &&
1729          ToBuiltin->getKind() == BuiltinType::Double)
1730        return true;
1731
1732      // C99 6.3.1.5p1:
1733      //   When a float is promoted to double or long double, or a
1734      //   double is promoted to long double [...].
1735      if (!getLangOptions().CPlusPlus &&
1736          (FromBuiltin->getKind() == BuiltinType::Float ||
1737           FromBuiltin->getKind() == BuiltinType::Double) &&
1738          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1739        return true;
1740
1741      // Half can be promoted to float.
1742      if (FromBuiltin->getKind() == BuiltinType::Half &&
1743          ToBuiltin->getKind() == BuiltinType::Float)
1744        return true;
1745    }
1746
1747  return false;
1748}
1749
1750/// \brief Determine if a conversion is a complex promotion.
1751///
1752/// A complex promotion is defined as a complex -> complex conversion
1753/// where the conversion between the underlying real types is a
1754/// floating-point or integral promotion.
1755bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1756  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1757  if (!FromComplex)
1758    return false;
1759
1760  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1761  if (!ToComplex)
1762    return false;
1763
1764  return IsFloatingPointPromotion(FromComplex->getElementType(),
1765                                  ToComplex->getElementType()) ||
1766    IsIntegralPromotion(0, FromComplex->getElementType(),
1767                        ToComplex->getElementType());
1768}
1769
1770/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1771/// the pointer type FromPtr to a pointer to type ToPointee, with the
1772/// same type qualifiers as FromPtr has on its pointee type. ToType,
1773/// if non-empty, will be a pointer to ToType that may or may not have
1774/// the right set of qualifiers on its pointee.
1775///
1776static QualType
1777BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1778                                   QualType ToPointee, QualType ToType,
1779                                   ASTContext &Context,
1780                                   bool StripObjCLifetime = false) {
1781  assert((FromPtr->getTypeClass() == Type::Pointer ||
1782          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1783         "Invalid similarly-qualified pointer type");
1784
1785  /// Conversions to 'id' subsume cv-qualifier conversions.
1786  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1787    return ToType.getUnqualifiedType();
1788
1789  QualType CanonFromPointee
1790    = Context.getCanonicalType(FromPtr->getPointeeType());
1791  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1792  Qualifiers Quals = CanonFromPointee.getQualifiers();
1793
1794  if (StripObjCLifetime)
1795    Quals.removeObjCLifetime();
1796
1797  // Exact qualifier match -> return the pointer type we're converting to.
1798  if (CanonToPointee.getLocalQualifiers() == Quals) {
1799    // ToType is exactly what we need. Return it.
1800    if (!ToType.isNull())
1801      return ToType.getUnqualifiedType();
1802
1803    // Build a pointer to ToPointee. It has the right qualifiers
1804    // already.
1805    if (isa<ObjCObjectPointerType>(ToType))
1806      return Context.getObjCObjectPointerType(ToPointee);
1807    return Context.getPointerType(ToPointee);
1808  }
1809
1810  // Just build a canonical type that has the right qualifiers.
1811  QualType QualifiedCanonToPointee
1812    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1813
1814  if (isa<ObjCObjectPointerType>(ToType))
1815    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1816  return Context.getPointerType(QualifiedCanonToPointee);
1817}
1818
1819static bool isNullPointerConstantForConversion(Expr *Expr,
1820                                               bool InOverloadResolution,
1821                                               ASTContext &Context) {
1822  // Handle value-dependent integral null pointer constants correctly.
1823  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1824  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1825      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1826    return !InOverloadResolution;
1827
1828  return Expr->isNullPointerConstant(Context,
1829                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1830                                        : Expr::NPC_ValueDependentIsNull);
1831}
1832
1833/// IsPointerConversion - Determines whether the conversion of the
1834/// expression From, which has the (possibly adjusted) type FromType,
1835/// can be converted to the type ToType via a pointer conversion (C++
1836/// 4.10). If so, returns true and places the converted type (that
1837/// might differ from ToType in its cv-qualifiers at some level) into
1838/// ConvertedType.
1839///
1840/// This routine also supports conversions to and from block pointers
1841/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1842/// pointers to interfaces. FIXME: Once we've determined the
1843/// appropriate overloading rules for Objective-C, we may want to
1844/// split the Objective-C checks into a different routine; however,
1845/// GCC seems to consider all of these conversions to be pointer
1846/// conversions, so for now they live here. IncompatibleObjC will be
1847/// set if the conversion is an allowed Objective-C conversion that
1848/// should result in a warning.
1849bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1850                               bool InOverloadResolution,
1851                               QualType& ConvertedType,
1852                               bool &IncompatibleObjC) {
1853  IncompatibleObjC = false;
1854  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1855                              IncompatibleObjC))
1856    return true;
1857
1858  // Conversion from a null pointer constant to any Objective-C pointer type.
1859  if (ToType->isObjCObjectPointerType() &&
1860      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1861    ConvertedType = ToType;
1862    return true;
1863  }
1864
1865  // Blocks: Block pointers can be converted to void*.
1866  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1867      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1868    ConvertedType = ToType;
1869    return true;
1870  }
1871  // Blocks: A null pointer constant can be converted to a block
1872  // pointer type.
1873  if (ToType->isBlockPointerType() &&
1874      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1875    ConvertedType = ToType;
1876    return true;
1877  }
1878
1879  // If the left-hand-side is nullptr_t, the right side can be a null
1880  // pointer constant.
1881  if (ToType->isNullPtrType() &&
1882      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1883    ConvertedType = ToType;
1884    return true;
1885  }
1886
1887  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1888  if (!ToTypePtr)
1889    return false;
1890
1891  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1892  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1893    ConvertedType = ToType;
1894    return true;
1895  }
1896
1897  // Beyond this point, both types need to be pointers
1898  // , including objective-c pointers.
1899  QualType ToPointeeType = ToTypePtr->getPointeeType();
1900  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1901      !getLangOptions().ObjCAutoRefCount) {
1902    ConvertedType = BuildSimilarlyQualifiedPointerType(
1903                                      FromType->getAs<ObjCObjectPointerType>(),
1904                                                       ToPointeeType,
1905                                                       ToType, Context);
1906    return true;
1907  }
1908  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1909  if (!FromTypePtr)
1910    return false;
1911
1912  QualType FromPointeeType = FromTypePtr->getPointeeType();
1913
1914  // If the unqualified pointee types are the same, this can't be a
1915  // pointer conversion, so don't do all of the work below.
1916  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1917    return false;
1918
1919  // An rvalue of type "pointer to cv T," where T is an object type,
1920  // can be converted to an rvalue of type "pointer to cv void" (C++
1921  // 4.10p2).
1922  if (FromPointeeType->isIncompleteOrObjectType() &&
1923      ToPointeeType->isVoidType()) {
1924    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1925                                                       ToPointeeType,
1926                                                       ToType, Context,
1927                                                   /*StripObjCLifetime=*/true);
1928    return true;
1929  }
1930
1931  // MSVC allows implicit function to void* type conversion.
1932  if (getLangOptions().MicrosoftExt && FromPointeeType->isFunctionType() &&
1933      ToPointeeType->isVoidType()) {
1934    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1935                                                       ToPointeeType,
1936                                                       ToType, Context);
1937    return true;
1938  }
1939
1940  // When we're overloading in C, we allow a special kind of pointer
1941  // conversion for compatible-but-not-identical pointee types.
1942  if (!getLangOptions().CPlusPlus &&
1943      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1944    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1945                                                       ToPointeeType,
1946                                                       ToType, Context);
1947    return true;
1948  }
1949
1950  // C++ [conv.ptr]p3:
1951  //
1952  //   An rvalue of type "pointer to cv D," where D is a class type,
1953  //   can be converted to an rvalue of type "pointer to cv B," where
1954  //   B is a base class (clause 10) of D. If B is an inaccessible
1955  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1956  //   necessitates this conversion is ill-formed. The result of the
1957  //   conversion is a pointer to the base class sub-object of the
1958  //   derived class object. The null pointer value is converted to
1959  //   the null pointer value of the destination type.
1960  //
1961  // Note that we do not check for ambiguity or inaccessibility
1962  // here. That is handled by CheckPointerConversion.
1963  if (getLangOptions().CPlusPlus &&
1964      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1965      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1966      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1967      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1968    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1969                                                       ToPointeeType,
1970                                                       ToType, Context);
1971    return true;
1972  }
1973
1974  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
1975      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
1976    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1977                                                       ToPointeeType,
1978                                                       ToType, Context);
1979    return true;
1980  }
1981
1982  return false;
1983}
1984
1985/// \brief Adopt the given qualifiers for the given type.
1986static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
1987  Qualifiers TQs = T.getQualifiers();
1988
1989  // Check whether qualifiers already match.
1990  if (TQs == Qs)
1991    return T;
1992
1993  if (Qs.compatiblyIncludes(TQs))
1994    return Context.getQualifiedType(T, Qs);
1995
1996  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
1997}
1998
1999/// isObjCPointerConversion - Determines whether this is an
2000/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2001/// with the same arguments and return values.
2002bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2003                                   QualType& ConvertedType,
2004                                   bool &IncompatibleObjC) {
2005  if (!getLangOptions().ObjC1)
2006    return false;
2007
2008  // The set of qualifiers on the type we're converting from.
2009  Qualifiers FromQualifiers = FromType.getQualifiers();
2010
2011  // First, we handle all conversions on ObjC object pointer types.
2012  const ObjCObjectPointerType* ToObjCPtr =
2013    ToType->getAs<ObjCObjectPointerType>();
2014  const ObjCObjectPointerType *FromObjCPtr =
2015    FromType->getAs<ObjCObjectPointerType>();
2016
2017  if (ToObjCPtr && FromObjCPtr) {
2018    // If the pointee types are the same (ignoring qualifications),
2019    // then this is not a pointer conversion.
2020    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2021                                       FromObjCPtr->getPointeeType()))
2022      return false;
2023
2024    // Check for compatible
2025    // Objective C++: We're able to convert between "id" or "Class" and a
2026    // pointer to any interface (in both directions).
2027    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2028      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2029      return true;
2030    }
2031    // Conversions with Objective-C's id<...>.
2032    if ((FromObjCPtr->isObjCQualifiedIdType() ||
2033         ToObjCPtr->isObjCQualifiedIdType()) &&
2034        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2035                                                  /*compare=*/false)) {
2036      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2037      return true;
2038    }
2039    // Objective C++: We're able to convert from a pointer to an
2040    // interface to a pointer to a different interface.
2041    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2042      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2043      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2044      if (getLangOptions().CPlusPlus && LHS && RHS &&
2045          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2046                                                FromObjCPtr->getPointeeType()))
2047        return false;
2048      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2049                                                   ToObjCPtr->getPointeeType(),
2050                                                         ToType, Context);
2051      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2052      return true;
2053    }
2054
2055    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2056      // Okay: this is some kind of implicit downcast of Objective-C
2057      // interfaces, which is permitted. However, we're going to
2058      // complain about it.
2059      IncompatibleObjC = true;
2060      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2061                                                   ToObjCPtr->getPointeeType(),
2062                                                         ToType, Context);
2063      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2064      return true;
2065    }
2066  }
2067  // Beyond this point, both types need to be C pointers or block pointers.
2068  QualType ToPointeeType;
2069  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2070    ToPointeeType = ToCPtr->getPointeeType();
2071  else if (const BlockPointerType *ToBlockPtr =
2072            ToType->getAs<BlockPointerType>()) {
2073    // Objective C++: We're able to convert from a pointer to any object
2074    // to a block pointer type.
2075    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2076      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2077      return true;
2078    }
2079    ToPointeeType = ToBlockPtr->getPointeeType();
2080  }
2081  else if (FromType->getAs<BlockPointerType>() &&
2082           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2083    // Objective C++: We're able to convert from a block pointer type to a
2084    // pointer to any object.
2085    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2086    return true;
2087  }
2088  else
2089    return false;
2090
2091  QualType FromPointeeType;
2092  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2093    FromPointeeType = FromCPtr->getPointeeType();
2094  else if (const BlockPointerType *FromBlockPtr =
2095           FromType->getAs<BlockPointerType>())
2096    FromPointeeType = FromBlockPtr->getPointeeType();
2097  else
2098    return false;
2099
2100  // If we have pointers to pointers, recursively check whether this
2101  // is an Objective-C conversion.
2102  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2103      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2104                              IncompatibleObjC)) {
2105    // We always complain about this conversion.
2106    IncompatibleObjC = true;
2107    ConvertedType = Context.getPointerType(ConvertedType);
2108    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2109    return true;
2110  }
2111  // Allow conversion of pointee being objective-c pointer to another one;
2112  // as in I* to id.
2113  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2114      ToPointeeType->getAs<ObjCObjectPointerType>() &&
2115      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2116                              IncompatibleObjC)) {
2117
2118    ConvertedType = Context.getPointerType(ConvertedType);
2119    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2120    return true;
2121  }
2122
2123  // If we have pointers to functions or blocks, check whether the only
2124  // differences in the argument and result types are in Objective-C
2125  // pointer conversions. If so, we permit the conversion (but
2126  // complain about it).
2127  const FunctionProtoType *FromFunctionType
2128    = FromPointeeType->getAs<FunctionProtoType>();
2129  const FunctionProtoType *ToFunctionType
2130    = ToPointeeType->getAs<FunctionProtoType>();
2131  if (FromFunctionType && ToFunctionType) {
2132    // If the function types are exactly the same, this isn't an
2133    // Objective-C pointer conversion.
2134    if (Context.getCanonicalType(FromPointeeType)
2135          == Context.getCanonicalType(ToPointeeType))
2136      return false;
2137
2138    // Perform the quick checks that will tell us whether these
2139    // function types are obviously different.
2140    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2141        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2142        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2143      return false;
2144
2145    bool HasObjCConversion = false;
2146    if (Context.getCanonicalType(FromFunctionType->getResultType())
2147          == Context.getCanonicalType(ToFunctionType->getResultType())) {
2148      // Okay, the types match exactly. Nothing to do.
2149    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2150                                       ToFunctionType->getResultType(),
2151                                       ConvertedType, IncompatibleObjC)) {
2152      // Okay, we have an Objective-C pointer conversion.
2153      HasObjCConversion = true;
2154    } else {
2155      // Function types are too different. Abort.
2156      return false;
2157    }
2158
2159    // Check argument types.
2160    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2161         ArgIdx != NumArgs; ++ArgIdx) {
2162      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2163      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2164      if (Context.getCanonicalType(FromArgType)
2165            == Context.getCanonicalType(ToArgType)) {
2166        // Okay, the types match exactly. Nothing to do.
2167      } else if (isObjCPointerConversion(FromArgType, ToArgType,
2168                                         ConvertedType, IncompatibleObjC)) {
2169        // Okay, we have an Objective-C pointer conversion.
2170        HasObjCConversion = true;
2171      } else {
2172        // Argument types are too different. Abort.
2173        return false;
2174      }
2175    }
2176
2177    if (HasObjCConversion) {
2178      // We had an Objective-C conversion. Allow this pointer
2179      // conversion, but complain about it.
2180      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2181      IncompatibleObjC = true;
2182      return true;
2183    }
2184  }
2185
2186  return false;
2187}
2188
2189/// \brief Determine whether this is an Objective-C writeback conversion,
2190/// used for parameter passing when performing automatic reference counting.
2191///
2192/// \param FromType The type we're converting form.
2193///
2194/// \param ToType The type we're converting to.
2195///
2196/// \param ConvertedType The type that will be produced after applying
2197/// this conversion.
2198bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2199                                     QualType &ConvertedType) {
2200  if (!getLangOptions().ObjCAutoRefCount ||
2201      Context.hasSameUnqualifiedType(FromType, ToType))
2202    return false;
2203
2204  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2205  QualType ToPointee;
2206  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2207    ToPointee = ToPointer->getPointeeType();
2208  else
2209    return false;
2210
2211  Qualifiers ToQuals = ToPointee.getQualifiers();
2212  if (!ToPointee->isObjCLifetimeType() ||
2213      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2214      !ToQuals.withoutObjCGLifetime().empty())
2215    return false;
2216
2217  // Argument must be a pointer to __strong to __weak.
2218  QualType FromPointee;
2219  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2220    FromPointee = FromPointer->getPointeeType();
2221  else
2222    return false;
2223
2224  Qualifiers FromQuals = FromPointee.getQualifiers();
2225  if (!FromPointee->isObjCLifetimeType() ||
2226      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2227       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2228    return false;
2229
2230  // Make sure that we have compatible qualifiers.
2231  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2232  if (!ToQuals.compatiblyIncludes(FromQuals))
2233    return false;
2234
2235  // Remove qualifiers from the pointee type we're converting from; they
2236  // aren't used in the compatibility check belong, and we'll be adding back
2237  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2238  FromPointee = FromPointee.getUnqualifiedType();
2239
2240  // The unqualified form of the pointee types must be compatible.
2241  ToPointee = ToPointee.getUnqualifiedType();
2242  bool IncompatibleObjC;
2243  if (Context.typesAreCompatible(FromPointee, ToPointee))
2244    FromPointee = ToPointee;
2245  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2246                                    IncompatibleObjC))
2247    return false;
2248
2249  /// \brief Construct the type we're converting to, which is a pointer to
2250  /// __autoreleasing pointee.
2251  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2252  ConvertedType = Context.getPointerType(FromPointee);
2253  return true;
2254}
2255
2256bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2257                                    QualType& ConvertedType) {
2258  QualType ToPointeeType;
2259  if (const BlockPointerType *ToBlockPtr =
2260        ToType->getAs<BlockPointerType>())
2261    ToPointeeType = ToBlockPtr->getPointeeType();
2262  else
2263    return false;
2264
2265  QualType FromPointeeType;
2266  if (const BlockPointerType *FromBlockPtr =
2267      FromType->getAs<BlockPointerType>())
2268    FromPointeeType = FromBlockPtr->getPointeeType();
2269  else
2270    return false;
2271  // We have pointer to blocks, check whether the only
2272  // differences in the argument and result types are in Objective-C
2273  // pointer conversions. If so, we permit the conversion.
2274
2275  const FunctionProtoType *FromFunctionType
2276    = FromPointeeType->getAs<FunctionProtoType>();
2277  const FunctionProtoType *ToFunctionType
2278    = ToPointeeType->getAs<FunctionProtoType>();
2279
2280  if (!FromFunctionType || !ToFunctionType)
2281    return false;
2282
2283  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2284    return true;
2285
2286  // Perform the quick checks that will tell us whether these
2287  // function types are obviously different.
2288  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2289      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2290    return false;
2291
2292  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2293  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2294  if (FromEInfo != ToEInfo)
2295    return false;
2296
2297  bool IncompatibleObjC = false;
2298  if (Context.hasSameType(FromFunctionType->getResultType(),
2299                          ToFunctionType->getResultType())) {
2300    // Okay, the types match exactly. Nothing to do.
2301  } else {
2302    QualType RHS = FromFunctionType->getResultType();
2303    QualType LHS = ToFunctionType->getResultType();
2304    if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) &&
2305        !RHS.hasQualifiers() && LHS.hasQualifiers())
2306       LHS = LHS.getUnqualifiedType();
2307
2308     if (Context.hasSameType(RHS,LHS)) {
2309       // OK exact match.
2310     } else if (isObjCPointerConversion(RHS, LHS,
2311                                        ConvertedType, IncompatibleObjC)) {
2312     if (IncompatibleObjC)
2313       return false;
2314     // Okay, we have an Objective-C pointer conversion.
2315     }
2316     else
2317       return false;
2318   }
2319
2320   // Check argument types.
2321   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2322        ArgIdx != NumArgs; ++ArgIdx) {
2323     IncompatibleObjC = false;
2324     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2325     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2326     if (Context.hasSameType(FromArgType, ToArgType)) {
2327       // Okay, the types match exactly. Nothing to do.
2328     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2329                                        ConvertedType, IncompatibleObjC)) {
2330       if (IncompatibleObjC)
2331         return false;
2332       // Okay, we have an Objective-C pointer conversion.
2333     } else
2334       // Argument types are too different. Abort.
2335       return false;
2336   }
2337   if (LangOpts.ObjCAutoRefCount &&
2338       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2339                                                    ToFunctionType))
2340     return false;
2341
2342   ConvertedType = ToType;
2343   return true;
2344}
2345
2346enum {
2347  ft_default,
2348  ft_different_class,
2349  ft_parameter_arity,
2350  ft_parameter_mismatch,
2351  ft_return_type,
2352  ft_qualifer_mismatch
2353};
2354
2355/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2356/// function types.  Catches different number of parameter, mismatch in
2357/// parameter types, and different return types.
2358void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2359                                      QualType FromType, QualType ToType) {
2360  // If either type is not valid, include no extra info.
2361  if (FromType.isNull() || ToType.isNull()) {
2362    PDiag << ft_default;
2363    return;
2364  }
2365
2366  // Get the function type from the pointers.
2367  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2368    const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2369                            *ToMember = ToType->getAs<MemberPointerType>();
2370    if (FromMember->getClass() != ToMember->getClass()) {
2371      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2372            << QualType(FromMember->getClass(), 0);
2373      return;
2374    }
2375    FromType = FromMember->getPointeeType();
2376    ToType = ToMember->getPointeeType();
2377  }
2378
2379  if (FromType->isPointerType())
2380    FromType = FromType->getPointeeType();
2381  if (ToType->isPointerType())
2382    ToType = ToType->getPointeeType();
2383
2384  // Remove references.
2385  FromType = FromType.getNonReferenceType();
2386  ToType = ToType.getNonReferenceType();
2387
2388  // Don't print extra info for non-specialized template functions.
2389  if (FromType->isInstantiationDependentType() &&
2390      !FromType->getAs<TemplateSpecializationType>()) {
2391    PDiag << ft_default;
2392    return;
2393  }
2394
2395  // No extra info for same types.
2396  if (Context.hasSameType(FromType, ToType)) {
2397    PDiag << ft_default;
2398    return;
2399  }
2400
2401  const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2402                          *ToFunction = ToType->getAs<FunctionProtoType>();
2403
2404  // Both types need to be function types.
2405  if (!FromFunction || !ToFunction) {
2406    PDiag << ft_default;
2407    return;
2408  }
2409
2410  if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2411    PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2412          << FromFunction->getNumArgs();
2413    return;
2414  }
2415
2416  // Handle different parameter types.
2417  unsigned ArgPos;
2418  if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2419    PDiag << ft_parameter_mismatch << ArgPos + 1
2420          << ToFunction->getArgType(ArgPos)
2421          << FromFunction->getArgType(ArgPos);
2422    return;
2423  }
2424
2425  // Handle different return type.
2426  if (!Context.hasSameType(FromFunction->getResultType(),
2427                           ToFunction->getResultType())) {
2428    PDiag << ft_return_type << ToFunction->getResultType()
2429          << FromFunction->getResultType();
2430    return;
2431  }
2432
2433  unsigned FromQuals = FromFunction->getTypeQuals(),
2434           ToQuals = ToFunction->getTypeQuals();
2435  if (FromQuals != ToQuals) {
2436    PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2437    return;
2438  }
2439
2440  // Unable to find a difference, so add no extra info.
2441  PDiag << ft_default;
2442}
2443
2444/// FunctionArgTypesAreEqual - This routine checks two function proto types
2445/// for equality of their argument types. Caller has already checked that
2446/// they have same number of arguments. This routine assumes that Objective-C
2447/// pointer types which only differ in their protocol qualifiers are equal.
2448/// If the parameters are different, ArgPos will have the the parameter index
2449/// of the first different parameter.
2450bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2451                                    const FunctionProtoType *NewType,
2452                                    unsigned *ArgPos) {
2453  if (!getLangOptions().ObjC1) {
2454    for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2455         N = NewType->arg_type_begin(),
2456         E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2457      if (!Context.hasSameType(*O, *N)) {
2458        if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2459        return false;
2460      }
2461    }
2462    return true;
2463  }
2464
2465  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2466       N = NewType->arg_type_begin(),
2467       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2468    QualType ToType = (*O);
2469    QualType FromType = (*N);
2470    if (!Context.hasSameType(ToType, FromType)) {
2471      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2472        if (const PointerType *PTFr = FromType->getAs<PointerType>())
2473          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2474               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2475              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2476               PTFr->getPointeeType()->isObjCQualifiedClassType()))
2477            continue;
2478      }
2479      else if (const ObjCObjectPointerType *PTTo =
2480                 ToType->getAs<ObjCObjectPointerType>()) {
2481        if (const ObjCObjectPointerType *PTFr =
2482              FromType->getAs<ObjCObjectPointerType>())
2483          if (Context.hasSameUnqualifiedType(
2484                PTTo->getObjectType()->getBaseType(),
2485                PTFr->getObjectType()->getBaseType()))
2486            continue;
2487      }
2488      if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2489      return false;
2490    }
2491  }
2492  return true;
2493}
2494
2495/// CheckPointerConversion - Check the pointer conversion from the
2496/// expression From to the type ToType. This routine checks for
2497/// ambiguous or inaccessible derived-to-base pointer
2498/// conversions for which IsPointerConversion has already returned
2499/// true. It returns true and produces a diagnostic if there was an
2500/// error, or returns false otherwise.
2501bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2502                                  CastKind &Kind,
2503                                  CXXCastPath& BasePath,
2504                                  bool IgnoreBaseAccess) {
2505  QualType FromType = From->getType();
2506  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2507
2508  Kind = CK_BitCast;
2509
2510  if (!IsCStyleOrFunctionalCast &&
2511      Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
2512      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2513    DiagRuntimeBehavior(From->getExprLoc(), From,
2514                        PDiag(diag::warn_impcast_bool_to_null_pointer)
2515                          << ToType << From->getSourceRange());
2516
2517  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2518    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2519      QualType FromPointeeType = FromPtrType->getPointeeType(),
2520               ToPointeeType   = ToPtrType->getPointeeType();
2521
2522      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2523          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2524        // We must have a derived-to-base conversion. Check an
2525        // ambiguous or inaccessible conversion.
2526        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2527                                         From->getExprLoc(),
2528                                         From->getSourceRange(), &BasePath,
2529                                         IgnoreBaseAccess))
2530          return true;
2531
2532        // The conversion was successful.
2533        Kind = CK_DerivedToBase;
2534      }
2535    }
2536  } else if (const ObjCObjectPointerType *ToPtrType =
2537               ToType->getAs<ObjCObjectPointerType>()) {
2538    if (const ObjCObjectPointerType *FromPtrType =
2539          FromType->getAs<ObjCObjectPointerType>()) {
2540      // Objective-C++ conversions are always okay.
2541      // FIXME: We should have a different class of conversions for the
2542      // Objective-C++ implicit conversions.
2543      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2544        return false;
2545    } else if (FromType->isBlockPointerType()) {
2546      Kind = CK_BlockPointerToObjCPointerCast;
2547    } else {
2548      Kind = CK_CPointerToObjCPointerCast;
2549    }
2550  } else if (ToType->isBlockPointerType()) {
2551    if (!FromType->isBlockPointerType())
2552      Kind = CK_AnyPointerToBlockPointerCast;
2553  }
2554
2555  // We shouldn't fall into this case unless it's valid for other
2556  // reasons.
2557  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2558    Kind = CK_NullToPointer;
2559
2560  return false;
2561}
2562
2563/// IsMemberPointerConversion - Determines whether the conversion of the
2564/// expression From, which has the (possibly adjusted) type FromType, can be
2565/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2566/// If so, returns true and places the converted type (that might differ from
2567/// ToType in its cv-qualifiers at some level) into ConvertedType.
2568bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2569                                     QualType ToType,
2570                                     bool InOverloadResolution,
2571                                     QualType &ConvertedType) {
2572  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2573  if (!ToTypePtr)
2574    return false;
2575
2576  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2577  if (From->isNullPointerConstant(Context,
2578                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2579                                        : Expr::NPC_ValueDependentIsNull)) {
2580    ConvertedType = ToType;
2581    return true;
2582  }
2583
2584  // Otherwise, both types have to be member pointers.
2585  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2586  if (!FromTypePtr)
2587    return false;
2588
2589  // A pointer to member of B can be converted to a pointer to member of D,
2590  // where D is derived from B (C++ 4.11p2).
2591  QualType FromClass(FromTypePtr->getClass(), 0);
2592  QualType ToClass(ToTypePtr->getClass(), 0);
2593
2594  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2595      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
2596      IsDerivedFrom(ToClass, FromClass)) {
2597    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2598                                                 ToClass.getTypePtr());
2599    return true;
2600  }
2601
2602  return false;
2603}
2604
2605/// CheckMemberPointerConversion - Check the member pointer conversion from the
2606/// expression From to the type ToType. This routine checks for ambiguous or
2607/// virtual or inaccessible base-to-derived member pointer conversions
2608/// for which IsMemberPointerConversion has already returned true. It returns
2609/// true and produces a diagnostic if there was an error, or returns false
2610/// otherwise.
2611bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2612                                        CastKind &Kind,
2613                                        CXXCastPath &BasePath,
2614                                        bool IgnoreBaseAccess) {
2615  QualType FromType = From->getType();
2616  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2617  if (!FromPtrType) {
2618    // This must be a null pointer to member pointer conversion
2619    assert(From->isNullPointerConstant(Context,
2620                                       Expr::NPC_ValueDependentIsNull) &&
2621           "Expr must be null pointer constant!");
2622    Kind = CK_NullToMemberPointer;
2623    return false;
2624  }
2625
2626  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2627  assert(ToPtrType && "No member pointer cast has a target type "
2628                      "that is not a member pointer.");
2629
2630  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2631  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2632
2633  // FIXME: What about dependent types?
2634  assert(FromClass->isRecordType() && "Pointer into non-class.");
2635  assert(ToClass->isRecordType() && "Pointer into non-class.");
2636
2637  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2638                     /*DetectVirtual=*/true);
2639  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2640  assert(DerivationOkay &&
2641         "Should not have been called if derivation isn't OK.");
2642  (void)DerivationOkay;
2643
2644  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2645                                  getUnqualifiedType())) {
2646    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2647    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2648      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2649    return true;
2650  }
2651
2652  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2653    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2654      << FromClass << ToClass << QualType(VBase, 0)
2655      << From->getSourceRange();
2656    return true;
2657  }
2658
2659  if (!IgnoreBaseAccess)
2660    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2661                         Paths.front(),
2662                         diag::err_downcast_from_inaccessible_base);
2663
2664  // Must be a base to derived member conversion.
2665  BuildBasePathArray(Paths, BasePath);
2666  Kind = CK_BaseToDerivedMemberPointer;
2667  return false;
2668}
2669
2670/// IsQualificationConversion - Determines whether the conversion from
2671/// an rvalue of type FromType to ToType is a qualification conversion
2672/// (C++ 4.4).
2673///
2674/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2675/// when the qualification conversion involves a change in the Objective-C
2676/// object lifetime.
2677bool
2678Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2679                                bool CStyle, bool &ObjCLifetimeConversion) {
2680  FromType = Context.getCanonicalType(FromType);
2681  ToType = Context.getCanonicalType(ToType);
2682  ObjCLifetimeConversion = false;
2683
2684  // If FromType and ToType are the same type, this is not a
2685  // qualification conversion.
2686  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2687    return false;
2688
2689  // (C++ 4.4p4):
2690  //   A conversion can add cv-qualifiers at levels other than the first
2691  //   in multi-level pointers, subject to the following rules: [...]
2692  bool PreviousToQualsIncludeConst = true;
2693  bool UnwrappedAnyPointer = false;
2694  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2695    // Within each iteration of the loop, we check the qualifiers to
2696    // determine if this still looks like a qualification
2697    // conversion. Then, if all is well, we unwrap one more level of
2698    // pointers or pointers-to-members and do it all again
2699    // until there are no more pointers or pointers-to-members left to
2700    // unwrap.
2701    UnwrappedAnyPointer = true;
2702
2703    Qualifiers FromQuals = FromType.getQualifiers();
2704    Qualifiers ToQuals = ToType.getQualifiers();
2705
2706    // Objective-C ARC:
2707    //   Check Objective-C lifetime conversions.
2708    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2709        UnwrappedAnyPointer) {
2710      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2711        ObjCLifetimeConversion = true;
2712        FromQuals.removeObjCLifetime();
2713        ToQuals.removeObjCLifetime();
2714      } else {
2715        // Qualification conversions cannot cast between different
2716        // Objective-C lifetime qualifiers.
2717        return false;
2718      }
2719    }
2720
2721    // Allow addition/removal of GC attributes but not changing GC attributes.
2722    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2723        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2724      FromQuals.removeObjCGCAttr();
2725      ToQuals.removeObjCGCAttr();
2726    }
2727
2728    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2729    //      2,j, and similarly for volatile.
2730    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2731      return false;
2732
2733    //   -- if the cv 1,j and cv 2,j are different, then const is in
2734    //      every cv for 0 < k < j.
2735    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2736        && !PreviousToQualsIncludeConst)
2737      return false;
2738
2739    // Keep track of whether all prior cv-qualifiers in the "to" type
2740    // include const.
2741    PreviousToQualsIncludeConst
2742      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2743  }
2744
2745  // We are left with FromType and ToType being the pointee types
2746  // after unwrapping the original FromType and ToType the same number
2747  // of types. If we unwrapped any pointers, and if FromType and
2748  // ToType have the same unqualified type (since we checked
2749  // qualifiers above), then this is a qualification conversion.
2750  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2751}
2752
2753/// Determines whether there is a user-defined conversion sequence
2754/// (C++ [over.ics.user]) that converts expression From to the type
2755/// ToType. If such a conversion exists, User will contain the
2756/// user-defined conversion sequence that performs such a conversion
2757/// and this routine will return true. Otherwise, this routine returns
2758/// false and User is unspecified.
2759///
2760/// \param AllowExplicit  true if the conversion should consider C++0x
2761/// "explicit" conversion functions as well as non-explicit conversion
2762/// functions (C++0x [class.conv.fct]p2).
2763static OverloadingResult
2764IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2765                        UserDefinedConversionSequence& User,
2766                        OverloadCandidateSet& CandidateSet,
2767                        bool AllowExplicit) {
2768  // Whether we will only visit constructors.
2769  bool ConstructorsOnly = false;
2770
2771  // If the type we are conversion to is a class type, enumerate its
2772  // constructors.
2773  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2774    // C++ [over.match.ctor]p1:
2775    //   When objects of class type are direct-initialized (8.5), or
2776    //   copy-initialized from an expression of the same or a
2777    //   derived class type (8.5), overload resolution selects the
2778    //   constructor. [...] For copy-initialization, the candidate
2779    //   functions are all the converting constructors (12.3.1) of
2780    //   that class. The argument list is the expression-list within
2781    //   the parentheses of the initializer.
2782    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2783        (From->getType()->getAs<RecordType>() &&
2784         S.IsDerivedFrom(From->getType(), ToType)))
2785      ConstructorsOnly = true;
2786
2787    S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
2788    // RequireCompleteType may have returned true due to some invalid decl
2789    // during template instantiation, but ToType may be complete enough now
2790    // to try to recover.
2791    if (ToType->isIncompleteType()) {
2792      // We're not going to find any constructors.
2793    } else if (CXXRecordDecl *ToRecordDecl
2794                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2795
2796      Expr **Args = &From;
2797      unsigned NumArgs = 1;
2798      bool ListInitializing = false;
2799      // If we're list-initializing, we pass the individual elements as
2800      // arguments, not the entire list.
2801      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
2802        Args = InitList->getInits();
2803        NumArgs = InitList->getNumInits();
2804        ListInitializing = true;
2805      }
2806
2807      DeclContext::lookup_iterator Con, ConEnd;
2808      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2809           Con != ConEnd; ++Con) {
2810        NamedDecl *D = *Con;
2811        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2812
2813        // Find the constructor (which may be a template).
2814        CXXConstructorDecl *Constructor = 0;
2815        FunctionTemplateDecl *ConstructorTmpl
2816          = dyn_cast<FunctionTemplateDecl>(D);
2817        if (ConstructorTmpl)
2818          Constructor
2819            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2820        else
2821          Constructor = cast<CXXConstructorDecl>(D);
2822
2823        bool Usable = !Constructor->isInvalidDecl();
2824        if (ListInitializing)
2825          Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
2826        else
2827          Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
2828        if (Usable) {
2829          if (ConstructorTmpl)
2830            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2831                                           /*ExplicitArgs*/ 0,
2832                                           Args, NumArgs, CandidateSet,
2833                                           /*SuppressUserConversions=*/
2834                                           !ConstructorsOnly &&
2835                                             !ListInitializing);
2836          else
2837            // Allow one user-defined conversion when user specifies a
2838            // From->ToType conversion via an static cast (c-style, etc).
2839            S.AddOverloadCandidate(Constructor, FoundDecl,
2840                                   Args, NumArgs, CandidateSet,
2841                                   /*SuppressUserConversions=*/
2842                                   !ConstructorsOnly && !ListInitializing);
2843        }
2844      }
2845    }
2846  }
2847
2848  // Enumerate conversion functions, if we're allowed to.
2849  if (ConstructorsOnly || isa<InitListExpr>(From)) {
2850  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2851                                   S.PDiag(0) << From->getSourceRange())) {
2852    // No conversion functions from incomplete types.
2853  } else if (const RecordType *FromRecordType
2854                                   = From->getType()->getAs<RecordType>()) {
2855    if (CXXRecordDecl *FromRecordDecl
2856         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2857      // Add all of the conversion functions as candidates.
2858      const UnresolvedSetImpl *Conversions
2859        = FromRecordDecl->getVisibleConversionFunctions();
2860      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2861             E = Conversions->end(); I != E; ++I) {
2862        DeclAccessPair FoundDecl = I.getPair();
2863        NamedDecl *D = FoundDecl.getDecl();
2864        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2865        if (isa<UsingShadowDecl>(D))
2866          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2867
2868        CXXConversionDecl *Conv;
2869        FunctionTemplateDecl *ConvTemplate;
2870        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2871          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2872        else
2873          Conv = cast<CXXConversionDecl>(D);
2874
2875        if (AllowExplicit || !Conv->isExplicit()) {
2876          if (ConvTemplate)
2877            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2878                                             ActingContext, From, ToType,
2879                                             CandidateSet);
2880          else
2881            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2882                                     From, ToType, CandidateSet);
2883        }
2884      }
2885    }
2886  }
2887
2888  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2889
2890  OverloadCandidateSet::iterator Best;
2891  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2892  case OR_Success:
2893    // Record the standard conversion we used and the conversion function.
2894    if (CXXConstructorDecl *Constructor
2895          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2896      S.MarkFunctionReferenced(From->getLocStart(), Constructor);
2897
2898      // C++ [over.ics.user]p1:
2899      //   If the user-defined conversion is specified by a
2900      //   constructor (12.3.1), the initial standard conversion
2901      //   sequence converts the source type to the type required by
2902      //   the argument of the constructor.
2903      //
2904      QualType ThisType = Constructor->getThisType(S.Context);
2905      if (isa<InitListExpr>(From)) {
2906        // Initializer lists don't have conversions as such.
2907        User.Before.setAsIdentityConversion();
2908      } else {
2909        if (Best->Conversions[0].isEllipsis())
2910          User.EllipsisConversion = true;
2911        else {
2912          User.Before = Best->Conversions[0].Standard;
2913          User.EllipsisConversion = false;
2914        }
2915      }
2916      User.HadMultipleCandidates = HadMultipleCandidates;
2917      User.ConversionFunction = Constructor;
2918      User.FoundConversionFunction = Best->FoundDecl;
2919      User.After.setAsIdentityConversion();
2920      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2921      User.After.setAllToTypes(ToType);
2922      return OR_Success;
2923    }
2924    if (CXXConversionDecl *Conversion
2925                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2926      S.MarkFunctionReferenced(From->getLocStart(), Conversion);
2927
2928      // C++ [over.ics.user]p1:
2929      //
2930      //   [...] If the user-defined conversion is specified by a
2931      //   conversion function (12.3.2), the initial standard
2932      //   conversion sequence converts the source type to the
2933      //   implicit object parameter of the conversion function.
2934      User.Before = Best->Conversions[0].Standard;
2935      User.HadMultipleCandidates = HadMultipleCandidates;
2936      User.ConversionFunction = Conversion;
2937      User.FoundConversionFunction = Best->FoundDecl;
2938      User.EllipsisConversion = false;
2939
2940      // C++ [over.ics.user]p2:
2941      //   The second standard conversion sequence converts the
2942      //   result of the user-defined conversion to the target type
2943      //   for the sequence. Since an implicit conversion sequence
2944      //   is an initialization, the special rules for
2945      //   initialization by user-defined conversion apply when
2946      //   selecting the best user-defined conversion for a
2947      //   user-defined conversion sequence (see 13.3.3 and
2948      //   13.3.3.1).
2949      User.After = Best->FinalConversion;
2950      return OR_Success;
2951    }
2952    llvm_unreachable("Not a constructor or conversion function?");
2953
2954  case OR_No_Viable_Function:
2955    return OR_No_Viable_Function;
2956  case OR_Deleted:
2957    // No conversion here! We're done.
2958    return OR_Deleted;
2959
2960  case OR_Ambiguous:
2961    return OR_Ambiguous;
2962  }
2963
2964  llvm_unreachable("Invalid OverloadResult!");
2965}
2966
2967bool
2968Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2969  ImplicitConversionSequence ICS;
2970  OverloadCandidateSet CandidateSet(From->getExprLoc());
2971  OverloadingResult OvResult =
2972    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2973                            CandidateSet, false);
2974  if (OvResult == OR_Ambiguous)
2975    Diag(From->getSourceRange().getBegin(),
2976         diag::err_typecheck_ambiguous_condition)
2977          << From->getType() << ToType << From->getSourceRange();
2978  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2979    Diag(From->getSourceRange().getBegin(),
2980         diag::err_typecheck_nonviable_condition)
2981    << From->getType() << ToType << From->getSourceRange();
2982  else
2983    return false;
2984  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2985  return true;
2986}
2987
2988/// CompareImplicitConversionSequences - Compare two implicit
2989/// conversion sequences to determine whether one is better than the
2990/// other or if they are indistinguishable (C++ 13.3.3.2).
2991static ImplicitConversionSequence::CompareKind
2992CompareImplicitConversionSequences(Sema &S,
2993                                   const ImplicitConversionSequence& ICS1,
2994                                   const ImplicitConversionSequence& ICS2)
2995{
2996  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2997  // conversion sequences (as defined in 13.3.3.1)
2998  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2999  //      conversion sequence than a user-defined conversion sequence or
3000  //      an ellipsis conversion sequence, and
3001  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3002  //      conversion sequence than an ellipsis conversion sequence
3003  //      (13.3.3.1.3).
3004  //
3005  // C++0x [over.best.ics]p10:
3006  //   For the purpose of ranking implicit conversion sequences as
3007  //   described in 13.3.3.2, the ambiguous conversion sequence is
3008  //   treated as a user-defined sequence that is indistinguishable
3009  //   from any other user-defined conversion sequence.
3010  if (ICS1.getKindRank() < ICS2.getKindRank())
3011    return ImplicitConversionSequence::Better;
3012  if (ICS2.getKindRank() < ICS1.getKindRank())
3013    return ImplicitConversionSequence::Worse;
3014
3015  // The following checks require both conversion sequences to be of
3016  // the same kind.
3017  if (ICS1.getKind() != ICS2.getKind())
3018    return ImplicitConversionSequence::Indistinguishable;
3019
3020  ImplicitConversionSequence::CompareKind Result =
3021      ImplicitConversionSequence::Indistinguishable;
3022
3023  // Two implicit conversion sequences of the same form are
3024  // indistinguishable conversion sequences unless one of the
3025  // following rules apply: (C++ 13.3.3.2p3):
3026  if (ICS1.isStandard())
3027    Result = CompareStandardConversionSequences(S,
3028                                                ICS1.Standard, ICS2.Standard);
3029  else if (ICS1.isUserDefined()) {
3030    // User-defined conversion sequence U1 is a better conversion
3031    // sequence than another user-defined conversion sequence U2 if
3032    // they contain the same user-defined conversion function or
3033    // constructor and if the second standard conversion sequence of
3034    // U1 is better than the second standard conversion sequence of
3035    // U2 (C++ 13.3.3.2p3).
3036    if (ICS1.UserDefined.ConversionFunction ==
3037          ICS2.UserDefined.ConversionFunction)
3038      Result = CompareStandardConversionSequences(S,
3039                                                  ICS1.UserDefined.After,
3040                                                  ICS2.UserDefined.After);
3041  }
3042
3043  // List-initialization sequence L1 is a better conversion sequence than
3044  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3045  // for some X and L2 does not.
3046  if (Result == ImplicitConversionSequence::Indistinguishable &&
3047      ICS1.isListInitializationSequence() &&
3048      ICS2.isListInitializationSequence()) {
3049    // FIXME: Find out if ICS1 converts to initializer_list and ICS2 doesn't.
3050  }
3051
3052  return Result;
3053}
3054
3055static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3056  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3057    Qualifiers Quals;
3058    T1 = Context.getUnqualifiedArrayType(T1, Quals);
3059    T2 = Context.getUnqualifiedArrayType(T2, Quals);
3060  }
3061
3062  return Context.hasSameUnqualifiedType(T1, T2);
3063}
3064
3065// Per 13.3.3.2p3, compare the given standard conversion sequences to
3066// determine if one is a proper subset of the other.
3067static ImplicitConversionSequence::CompareKind
3068compareStandardConversionSubsets(ASTContext &Context,
3069                                 const StandardConversionSequence& SCS1,
3070                                 const StandardConversionSequence& SCS2) {
3071  ImplicitConversionSequence::CompareKind Result
3072    = ImplicitConversionSequence::Indistinguishable;
3073
3074  // the identity conversion sequence is considered to be a subsequence of
3075  // any non-identity conversion sequence
3076  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3077    return ImplicitConversionSequence::Better;
3078  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3079    return ImplicitConversionSequence::Worse;
3080
3081  if (SCS1.Second != SCS2.Second) {
3082    if (SCS1.Second == ICK_Identity)
3083      Result = ImplicitConversionSequence::Better;
3084    else if (SCS2.Second == ICK_Identity)
3085      Result = ImplicitConversionSequence::Worse;
3086    else
3087      return ImplicitConversionSequence::Indistinguishable;
3088  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3089    return ImplicitConversionSequence::Indistinguishable;
3090
3091  if (SCS1.Third == SCS2.Third) {
3092    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3093                             : ImplicitConversionSequence::Indistinguishable;
3094  }
3095
3096  if (SCS1.Third == ICK_Identity)
3097    return Result == ImplicitConversionSequence::Worse
3098             ? ImplicitConversionSequence::Indistinguishable
3099             : ImplicitConversionSequence::Better;
3100
3101  if (SCS2.Third == ICK_Identity)
3102    return Result == ImplicitConversionSequence::Better
3103             ? ImplicitConversionSequence::Indistinguishable
3104             : ImplicitConversionSequence::Worse;
3105
3106  return ImplicitConversionSequence::Indistinguishable;
3107}
3108
3109/// \brief Determine whether one of the given reference bindings is better
3110/// than the other based on what kind of bindings they are.
3111static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3112                                       const StandardConversionSequence &SCS2) {
3113  // C++0x [over.ics.rank]p3b4:
3114  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3115  //      implicit object parameter of a non-static member function declared
3116  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3117  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3118  //      lvalue reference to a function lvalue and S2 binds an rvalue
3119  //      reference*.
3120  //
3121  // FIXME: Rvalue references. We're going rogue with the above edits,
3122  // because the semantics in the current C++0x working paper (N3225 at the
3123  // time of this writing) break the standard definition of std::forward
3124  // and std::reference_wrapper when dealing with references to functions.
3125  // Proposed wording changes submitted to CWG for consideration.
3126  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3127      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3128    return false;
3129
3130  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3131          SCS2.IsLvalueReference) ||
3132         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3133          !SCS2.IsLvalueReference);
3134}
3135
3136/// CompareStandardConversionSequences - Compare two standard
3137/// conversion sequences to determine whether one is better than the
3138/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3139static ImplicitConversionSequence::CompareKind
3140CompareStandardConversionSequences(Sema &S,
3141                                   const StandardConversionSequence& SCS1,
3142                                   const StandardConversionSequence& SCS2)
3143{
3144  // Standard conversion sequence S1 is a better conversion sequence
3145  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3146
3147  //  -- S1 is a proper subsequence of S2 (comparing the conversion
3148  //     sequences in the canonical form defined by 13.3.3.1.1,
3149  //     excluding any Lvalue Transformation; the identity conversion
3150  //     sequence is considered to be a subsequence of any
3151  //     non-identity conversion sequence) or, if not that,
3152  if (ImplicitConversionSequence::CompareKind CK
3153        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3154    return CK;
3155
3156  //  -- the rank of S1 is better than the rank of S2 (by the rules
3157  //     defined below), or, if not that,
3158  ImplicitConversionRank Rank1 = SCS1.getRank();
3159  ImplicitConversionRank Rank2 = SCS2.getRank();
3160  if (Rank1 < Rank2)
3161    return ImplicitConversionSequence::Better;
3162  else if (Rank2 < Rank1)
3163    return ImplicitConversionSequence::Worse;
3164
3165  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3166  // are indistinguishable unless one of the following rules
3167  // applies:
3168
3169  //   A conversion that is not a conversion of a pointer, or
3170  //   pointer to member, to bool is better than another conversion
3171  //   that is such a conversion.
3172  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3173    return SCS2.isPointerConversionToBool()
3174             ? ImplicitConversionSequence::Better
3175             : ImplicitConversionSequence::Worse;
3176
3177  // C++ [over.ics.rank]p4b2:
3178  //
3179  //   If class B is derived directly or indirectly from class A,
3180  //   conversion of B* to A* is better than conversion of B* to
3181  //   void*, and conversion of A* to void* is better than conversion
3182  //   of B* to void*.
3183  bool SCS1ConvertsToVoid
3184    = SCS1.isPointerConversionToVoidPointer(S.Context);
3185  bool SCS2ConvertsToVoid
3186    = SCS2.isPointerConversionToVoidPointer(S.Context);
3187  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3188    // Exactly one of the conversion sequences is a conversion to
3189    // a void pointer; it's the worse conversion.
3190    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3191                              : ImplicitConversionSequence::Worse;
3192  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3193    // Neither conversion sequence converts to a void pointer; compare
3194    // their derived-to-base conversions.
3195    if (ImplicitConversionSequence::CompareKind DerivedCK
3196          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3197      return DerivedCK;
3198  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3199             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3200    // Both conversion sequences are conversions to void
3201    // pointers. Compare the source types to determine if there's an
3202    // inheritance relationship in their sources.
3203    QualType FromType1 = SCS1.getFromType();
3204    QualType FromType2 = SCS2.getFromType();
3205
3206    // Adjust the types we're converting from via the array-to-pointer
3207    // conversion, if we need to.
3208    if (SCS1.First == ICK_Array_To_Pointer)
3209      FromType1 = S.Context.getArrayDecayedType(FromType1);
3210    if (SCS2.First == ICK_Array_To_Pointer)
3211      FromType2 = S.Context.getArrayDecayedType(FromType2);
3212
3213    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3214    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3215
3216    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3217      return ImplicitConversionSequence::Better;
3218    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3219      return ImplicitConversionSequence::Worse;
3220
3221    // Objective-C++: If one interface is more specific than the
3222    // other, it is the better one.
3223    const ObjCObjectPointerType* FromObjCPtr1
3224      = FromType1->getAs<ObjCObjectPointerType>();
3225    const ObjCObjectPointerType* FromObjCPtr2
3226      = FromType2->getAs<ObjCObjectPointerType>();
3227    if (FromObjCPtr1 && FromObjCPtr2) {
3228      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3229                                                          FromObjCPtr2);
3230      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3231                                                           FromObjCPtr1);
3232      if (AssignLeft != AssignRight) {
3233        return AssignLeft? ImplicitConversionSequence::Better
3234                         : ImplicitConversionSequence::Worse;
3235      }
3236    }
3237  }
3238
3239  // Compare based on qualification conversions (C++ 13.3.3.2p3,
3240  // bullet 3).
3241  if (ImplicitConversionSequence::CompareKind QualCK
3242        = CompareQualificationConversions(S, SCS1, SCS2))
3243    return QualCK;
3244
3245  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3246    // Check for a better reference binding based on the kind of bindings.
3247    if (isBetterReferenceBindingKind(SCS1, SCS2))
3248      return ImplicitConversionSequence::Better;
3249    else if (isBetterReferenceBindingKind(SCS2, SCS1))
3250      return ImplicitConversionSequence::Worse;
3251
3252    // C++ [over.ics.rank]p3b4:
3253    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3254    //      which the references refer are the same type except for
3255    //      top-level cv-qualifiers, and the type to which the reference
3256    //      initialized by S2 refers is more cv-qualified than the type
3257    //      to which the reference initialized by S1 refers.
3258    QualType T1 = SCS1.getToType(2);
3259    QualType T2 = SCS2.getToType(2);
3260    T1 = S.Context.getCanonicalType(T1);
3261    T2 = S.Context.getCanonicalType(T2);
3262    Qualifiers T1Quals, T2Quals;
3263    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3264    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3265    if (UnqualT1 == UnqualT2) {
3266      // Objective-C++ ARC: If the references refer to objects with different
3267      // lifetimes, prefer bindings that don't change lifetime.
3268      if (SCS1.ObjCLifetimeConversionBinding !=
3269                                          SCS2.ObjCLifetimeConversionBinding) {
3270        return SCS1.ObjCLifetimeConversionBinding
3271                                           ? ImplicitConversionSequence::Worse
3272                                           : ImplicitConversionSequence::Better;
3273      }
3274
3275      // If the type is an array type, promote the element qualifiers to the
3276      // type for comparison.
3277      if (isa<ArrayType>(T1) && T1Quals)
3278        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3279      if (isa<ArrayType>(T2) && T2Quals)
3280        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3281      if (T2.isMoreQualifiedThan(T1))
3282        return ImplicitConversionSequence::Better;
3283      else if (T1.isMoreQualifiedThan(T2))
3284        return ImplicitConversionSequence::Worse;
3285    }
3286  }
3287
3288  // In Microsoft mode, prefer an integral conversion to a
3289  // floating-to-integral conversion if the integral conversion
3290  // is between types of the same size.
3291  // For example:
3292  // void f(float);
3293  // void f(int);
3294  // int main {
3295  //    long a;
3296  //    f(a);
3297  // }
3298  // Here, MSVC will call f(int) instead of generating a compile error
3299  // as clang will do in standard mode.
3300  if (S.getLangOptions().MicrosoftMode &&
3301      SCS1.Second == ICK_Integral_Conversion &&
3302      SCS2.Second == ICK_Floating_Integral &&
3303      S.Context.getTypeSize(SCS1.getFromType()) ==
3304      S.Context.getTypeSize(SCS1.getToType(2)))
3305    return ImplicitConversionSequence::Better;
3306
3307  return ImplicitConversionSequence::Indistinguishable;
3308}
3309
3310/// CompareQualificationConversions - Compares two standard conversion
3311/// sequences to determine whether they can be ranked based on their
3312/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3313ImplicitConversionSequence::CompareKind
3314CompareQualificationConversions(Sema &S,
3315                                const StandardConversionSequence& SCS1,
3316                                const StandardConversionSequence& SCS2) {
3317  // C++ 13.3.3.2p3:
3318  //  -- S1 and S2 differ only in their qualification conversion and
3319  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3320  //     cv-qualification signature of type T1 is a proper subset of
3321  //     the cv-qualification signature of type T2, and S1 is not the
3322  //     deprecated string literal array-to-pointer conversion (4.2).
3323  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3324      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3325    return ImplicitConversionSequence::Indistinguishable;
3326
3327  // FIXME: the example in the standard doesn't use a qualification
3328  // conversion (!)
3329  QualType T1 = SCS1.getToType(2);
3330  QualType T2 = SCS2.getToType(2);
3331  T1 = S.Context.getCanonicalType(T1);
3332  T2 = S.Context.getCanonicalType(T2);
3333  Qualifiers T1Quals, T2Quals;
3334  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3335  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3336
3337  // If the types are the same, we won't learn anything by unwrapped
3338  // them.
3339  if (UnqualT1 == UnqualT2)
3340    return ImplicitConversionSequence::Indistinguishable;
3341
3342  // If the type is an array type, promote the element qualifiers to the type
3343  // for comparison.
3344  if (isa<ArrayType>(T1) && T1Quals)
3345    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3346  if (isa<ArrayType>(T2) && T2Quals)
3347    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3348
3349  ImplicitConversionSequence::CompareKind Result
3350    = ImplicitConversionSequence::Indistinguishable;
3351
3352  // Objective-C++ ARC:
3353  //   Prefer qualification conversions not involving a change in lifetime
3354  //   to qualification conversions that do not change lifetime.
3355  if (SCS1.QualificationIncludesObjCLifetime !=
3356                                      SCS2.QualificationIncludesObjCLifetime) {
3357    Result = SCS1.QualificationIncludesObjCLifetime
3358               ? ImplicitConversionSequence::Worse
3359               : ImplicitConversionSequence::Better;
3360  }
3361
3362  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3363    // Within each iteration of the loop, we check the qualifiers to
3364    // determine if this still looks like a qualification
3365    // conversion. Then, if all is well, we unwrap one more level of
3366    // pointers or pointers-to-members and do it all again
3367    // until there are no more pointers or pointers-to-members left
3368    // to unwrap. This essentially mimics what
3369    // IsQualificationConversion does, but here we're checking for a
3370    // strict subset of qualifiers.
3371    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3372      // The qualifiers are the same, so this doesn't tell us anything
3373      // about how the sequences rank.
3374      ;
3375    else if (T2.isMoreQualifiedThan(T1)) {
3376      // T1 has fewer qualifiers, so it could be the better sequence.
3377      if (Result == ImplicitConversionSequence::Worse)
3378        // Neither has qualifiers that are a subset of the other's
3379        // qualifiers.
3380        return ImplicitConversionSequence::Indistinguishable;
3381
3382      Result = ImplicitConversionSequence::Better;
3383    } else if (T1.isMoreQualifiedThan(T2)) {
3384      // T2 has fewer qualifiers, so it could be the better sequence.
3385      if (Result == ImplicitConversionSequence::Better)
3386        // Neither has qualifiers that are a subset of the other's
3387        // qualifiers.
3388        return ImplicitConversionSequence::Indistinguishable;
3389
3390      Result = ImplicitConversionSequence::Worse;
3391    } else {
3392      // Qualifiers are disjoint.
3393      return ImplicitConversionSequence::Indistinguishable;
3394    }
3395
3396    // If the types after this point are equivalent, we're done.
3397    if (S.Context.hasSameUnqualifiedType(T1, T2))
3398      break;
3399  }
3400
3401  // Check that the winning standard conversion sequence isn't using
3402  // the deprecated string literal array to pointer conversion.
3403  switch (Result) {
3404  case ImplicitConversionSequence::Better:
3405    if (SCS1.DeprecatedStringLiteralToCharPtr)
3406      Result = ImplicitConversionSequence::Indistinguishable;
3407    break;
3408
3409  case ImplicitConversionSequence::Indistinguishable:
3410    break;
3411
3412  case ImplicitConversionSequence::Worse:
3413    if (SCS2.DeprecatedStringLiteralToCharPtr)
3414      Result = ImplicitConversionSequence::Indistinguishable;
3415    break;
3416  }
3417
3418  return Result;
3419}
3420
3421/// CompareDerivedToBaseConversions - Compares two standard conversion
3422/// sequences to determine whether they can be ranked based on their
3423/// various kinds of derived-to-base conversions (C++
3424/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3425/// conversions between Objective-C interface types.
3426ImplicitConversionSequence::CompareKind
3427CompareDerivedToBaseConversions(Sema &S,
3428                                const StandardConversionSequence& SCS1,
3429                                const StandardConversionSequence& SCS2) {
3430  QualType FromType1 = SCS1.getFromType();
3431  QualType ToType1 = SCS1.getToType(1);
3432  QualType FromType2 = SCS2.getFromType();
3433  QualType ToType2 = SCS2.getToType(1);
3434
3435  // Adjust the types we're converting from via the array-to-pointer
3436  // conversion, if we need to.
3437  if (SCS1.First == ICK_Array_To_Pointer)
3438    FromType1 = S.Context.getArrayDecayedType(FromType1);
3439  if (SCS2.First == ICK_Array_To_Pointer)
3440    FromType2 = S.Context.getArrayDecayedType(FromType2);
3441
3442  // Canonicalize all of the types.
3443  FromType1 = S.Context.getCanonicalType(FromType1);
3444  ToType1 = S.Context.getCanonicalType(ToType1);
3445  FromType2 = S.Context.getCanonicalType(FromType2);
3446  ToType2 = S.Context.getCanonicalType(ToType2);
3447
3448  // C++ [over.ics.rank]p4b3:
3449  //
3450  //   If class B is derived directly or indirectly from class A and
3451  //   class C is derived directly or indirectly from B,
3452  //
3453  // Compare based on pointer conversions.
3454  if (SCS1.Second == ICK_Pointer_Conversion &&
3455      SCS2.Second == ICK_Pointer_Conversion &&
3456      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3457      FromType1->isPointerType() && FromType2->isPointerType() &&
3458      ToType1->isPointerType() && ToType2->isPointerType()) {
3459    QualType FromPointee1
3460      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3461    QualType ToPointee1
3462      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3463    QualType FromPointee2
3464      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3465    QualType ToPointee2
3466      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3467
3468    //   -- conversion of C* to B* is better than conversion of C* to A*,
3469    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3470      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3471        return ImplicitConversionSequence::Better;
3472      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3473        return ImplicitConversionSequence::Worse;
3474    }
3475
3476    //   -- conversion of B* to A* is better than conversion of C* to A*,
3477    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3478      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3479        return ImplicitConversionSequence::Better;
3480      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3481        return ImplicitConversionSequence::Worse;
3482    }
3483  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3484             SCS2.Second == ICK_Pointer_Conversion) {
3485    const ObjCObjectPointerType *FromPtr1
3486      = FromType1->getAs<ObjCObjectPointerType>();
3487    const ObjCObjectPointerType *FromPtr2
3488      = FromType2->getAs<ObjCObjectPointerType>();
3489    const ObjCObjectPointerType *ToPtr1
3490      = ToType1->getAs<ObjCObjectPointerType>();
3491    const ObjCObjectPointerType *ToPtr2
3492      = ToType2->getAs<ObjCObjectPointerType>();
3493
3494    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3495      // Apply the same conversion ranking rules for Objective-C pointer types
3496      // that we do for C++ pointers to class types. However, we employ the
3497      // Objective-C pseudo-subtyping relationship used for assignment of
3498      // Objective-C pointer types.
3499      bool FromAssignLeft
3500        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3501      bool FromAssignRight
3502        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3503      bool ToAssignLeft
3504        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3505      bool ToAssignRight
3506        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3507
3508      // A conversion to an a non-id object pointer type or qualified 'id'
3509      // type is better than a conversion to 'id'.
3510      if (ToPtr1->isObjCIdType() &&
3511          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3512        return ImplicitConversionSequence::Worse;
3513      if (ToPtr2->isObjCIdType() &&
3514          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3515        return ImplicitConversionSequence::Better;
3516
3517      // A conversion to a non-id object pointer type is better than a
3518      // conversion to a qualified 'id' type
3519      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3520        return ImplicitConversionSequence::Worse;
3521      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3522        return ImplicitConversionSequence::Better;
3523
3524      // A conversion to an a non-Class object pointer type or qualified 'Class'
3525      // type is better than a conversion to 'Class'.
3526      if (ToPtr1->isObjCClassType() &&
3527          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3528        return ImplicitConversionSequence::Worse;
3529      if (ToPtr2->isObjCClassType() &&
3530          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3531        return ImplicitConversionSequence::Better;
3532
3533      // A conversion to a non-Class object pointer type is better than a
3534      // conversion to a qualified 'Class' type.
3535      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3536        return ImplicitConversionSequence::Worse;
3537      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3538        return ImplicitConversionSequence::Better;
3539
3540      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3541      if (S.Context.hasSameType(FromType1, FromType2) &&
3542          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3543          (ToAssignLeft != ToAssignRight))
3544        return ToAssignLeft? ImplicitConversionSequence::Worse
3545                           : ImplicitConversionSequence::Better;
3546
3547      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3548      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3549          (FromAssignLeft != FromAssignRight))
3550        return FromAssignLeft? ImplicitConversionSequence::Better
3551        : ImplicitConversionSequence::Worse;
3552    }
3553  }
3554
3555  // Ranking of member-pointer types.
3556  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3557      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3558      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3559    const MemberPointerType * FromMemPointer1 =
3560                                        FromType1->getAs<MemberPointerType>();
3561    const MemberPointerType * ToMemPointer1 =
3562                                          ToType1->getAs<MemberPointerType>();
3563    const MemberPointerType * FromMemPointer2 =
3564                                          FromType2->getAs<MemberPointerType>();
3565    const MemberPointerType * ToMemPointer2 =
3566                                          ToType2->getAs<MemberPointerType>();
3567    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3568    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3569    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3570    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3571    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3572    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3573    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3574    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3575    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3576    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3577      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3578        return ImplicitConversionSequence::Worse;
3579      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3580        return ImplicitConversionSequence::Better;
3581    }
3582    // conversion of B::* to C::* is better than conversion of A::* to C::*
3583    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3584      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3585        return ImplicitConversionSequence::Better;
3586      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3587        return ImplicitConversionSequence::Worse;
3588    }
3589  }
3590
3591  if (SCS1.Second == ICK_Derived_To_Base) {
3592    //   -- conversion of C to B is better than conversion of C to A,
3593    //   -- binding of an expression of type C to a reference of type
3594    //      B& is better than binding an expression of type C to a
3595    //      reference of type A&,
3596    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3597        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3598      if (S.IsDerivedFrom(ToType1, ToType2))
3599        return ImplicitConversionSequence::Better;
3600      else if (S.IsDerivedFrom(ToType2, ToType1))
3601        return ImplicitConversionSequence::Worse;
3602    }
3603
3604    //   -- conversion of B to A is better than conversion of C to A.
3605    //   -- binding of an expression of type B to a reference of type
3606    //      A& is better than binding an expression of type C to a
3607    //      reference of type A&,
3608    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3609        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3610      if (S.IsDerivedFrom(FromType2, FromType1))
3611        return ImplicitConversionSequence::Better;
3612      else if (S.IsDerivedFrom(FromType1, FromType2))
3613        return ImplicitConversionSequence::Worse;
3614    }
3615  }
3616
3617  return ImplicitConversionSequence::Indistinguishable;
3618}
3619
3620/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3621/// determine whether they are reference-related,
3622/// reference-compatible, reference-compatible with added
3623/// qualification, or incompatible, for use in C++ initialization by
3624/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3625/// type, and the first type (T1) is the pointee type of the reference
3626/// type being initialized.
3627Sema::ReferenceCompareResult
3628Sema::CompareReferenceRelationship(SourceLocation Loc,
3629                                   QualType OrigT1, QualType OrigT2,
3630                                   bool &DerivedToBase,
3631                                   bool &ObjCConversion,
3632                                   bool &ObjCLifetimeConversion) {
3633  assert(!OrigT1->isReferenceType() &&
3634    "T1 must be the pointee type of the reference type");
3635  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3636
3637  QualType T1 = Context.getCanonicalType(OrigT1);
3638  QualType T2 = Context.getCanonicalType(OrigT2);
3639  Qualifiers T1Quals, T2Quals;
3640  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3641  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3642
3643  // C++ [dcl.init.ref]p4:
3644  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3645  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3646  //   T1 is a base class of T2.
3647  DerivedToBase = false;
3648  ObjCConversion = false;
3649  ObjCLifetimeConversion = false;
3650  if (UnqualT1 == UnqualT2) {
3651    // Nothing to do.
3652  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
3653           IsDerivedFrom(UnqualT2, UnqualT1))
3654    DerivedToBase = true;
3655  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3656           UnqualT2->isObjCObjectOrInterfaceType() &&
3657           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3658    ObjCConversion = true;
3659  else
3660    return Ref_Incompatible;
3661
3662  // At this point, we know that T1 and T2 are reference-related (at
3663  // least).
3664
3665  // If the type is an array type, promote the element qualifiers to the type
3666  // for comparison.
3667  if (isa<ArrayType>(T1) && T1Quals)
3668    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3669  if (isa<ArrayType>(T2) && T2Quals)
3670    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3671
3672  // C++ [dcl.init.ref]p4:
3673  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3674  //   reference-related to T2 and cv1 is the same cv-qualification
3675  //   as, or greater cv-qualification than, cv2. For purposes of
3676  //   overload resolution, cases for which cv1 is greater
3677  //   cv-qualification than cv2 are identified as
3678  //   reference-compatible with added qualification (see 13.3.3.2).
3679  //
3680  // Note that we also require equivalence of Objective-C GC and address-space
3681  // qualifiers when performing these computations, so that e.g., an int in
3682  // address space 1 is not reference-compatible with an int in address
3683  // space 2.
3684  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3685      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3686    T1Quals.removeObjCLifetime();
3687    T2Quals.removeObjCLifetime();
3688    ObjCLifetimeConversion = true;
3689  }
3690
3691  if (T1Quals == T2Quals)
3692    return Ref_Compatible;
3693  else if (T1Quals.compatiblyIncludes(T2Quals))
3694    return Ref_Compatible_With_Added_Qualification;
3695  else
3696    return Ref_Related;
3697}
3698
3699/// \brief Look for a user-defined conversion to an value reference-compatible
3700///        with DeclType. Return true if something definite is found.
3701static bool
3702FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3703                         QualType DeclType, SourceLocation DeclLoc,
3704                         Expr *Init, QualType T2, bool AllowRvalues,
3705                         bool AllowExplicit) {
3706  assert(T2->isRecordType() && "Can only find conversions of record types.");
3707  CXXRecordDecl *T2RecordDecl
3708    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3709
3710  OverloadCandidateSet CandidateSet(DeclLoc);
3711  const UnresolvedSetImpl *Conversions
3712    = T2RecordDecl->getVisibleConversionFunctions();
3713  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3714         E = Conversions->end(); I != E; ++I) {
3715    NamedDecl *D = *I;
3716    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3717    if (isa<UsingShadowDecl>(D))
3718      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3719
3720    FunctionTemplateDecl *ConvTemplate
3721      = dyn_cast<FunctionTemplateDecl>(D);
3722    CXXConversionDecl *Conv;
3723    if (ConvTemplate)
3724      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3725    else
3726      Conv = cast<CXXConversionDecl>(D);
3727
3728    // If this is an explicit conversion, and we're not allowed to consider
3729    // explicit conversions, skip it.
3730    if (!AllowExplicit && Conv->isExplicit())
3731      continue;
3732
3733    if (AllowRvalues) {
3734      bool DerivedToBase = false;
3735      bool ObjCConversion = false;
3736      bool ObjCLifetimeConversion = false;
3737
3738      // If we are initializing an rvalue reference, don't permit conversion
3739      // functions that return lvalues.
3740      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
3741        const ReferenceType *RefType
3742          = Conv->getConversionType()->getAs<LValueReferenceType>();
3743        if (RefType && !RefType->getPointeeType()->isFunctionType())
3744          continue;
3745      }
3746
3747      if (!ConvTemplate &&
3748          S.CompareReferenceRelationship(
3749            DeclLoc,
3750            Conv->getConversionType().getNonReferenceType()
3751              .getUnqualifiedType(),
3752            DeclType.getNonReferenceType().getUnqualifiedType(),
3753            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
3754          Sema::Ref_Incompatible)
3755        continue;
3756    } else {
3757      // If the conversion function doesn't return a reference type,
3758      // it can't be considered for this conversion. An rvalue reference
3759      // is only acceptable if its referencee is a function type.
3760
3761      const ReferenceType *RefType =
3762        Conv->getConversionType()->getAs<ReferenceType>();
3763      if (!RefType ||
3764          (!RefType->isLValueReferenceType() &&
3765           !RefType->getPointeeType()->isFunctionType()))
3766        continue;
3767    }
3768
3769    if (ConvTemplate)
3770      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3771                                       Init, DeclType, CandidateSet);
3772    else
3773      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
3774                               DeclType, CandidateSet);
3775  }
3776
3777  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3778
3779  OverloadCandidateSet::iterator Best;
3780  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3781  case OR_Success:
3782    // C++ [over.ics.ref]p1:
3783    //
3784    //   [...] If the parameter binds directly to the result of
3785    //   applying a conversion function to the argument
3786    //   expression, the implicit conversion sequence is a
3787    //   user-defined conversion sequence (13.3.3.1.2), with the
3788    //   second standard conversion sequence either an identity
3789    //   conversion or, if the conversion function returns an
3790    //   entity of a type that is a derived class of the parameter
3791    //   type, a derived-to-base Conversion.
3792    if (!Best->FinalConversion.DirectBinding)
3793      return false;
3794
3795    if (Best->Function)
3796      S.MarkFunctionReferenced(DeclLoc, Best->Function);
3797    ICS.setUserDefined();
3798    ICS.UserDefined.Before = Best->Conversions[0].Standard;
3799    ICS.UserDefined.After = Best->FinalConversion;
3800    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
3801    ICS.UserDefined.ConversionFunction = Best->Function;
3802    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
3803    ICS.UserDefined.EllipsisConversion = false;
3804    assert(ICS.UserDefined.After.ReferenceBinding &&
3805           ICS.UserDefined.After.DirectBinding &&
3806           "Expected a direct reference binding!");
3807    return true;
3808
3809  case OR_Ambiguous:
3810    ICS.setAmbiguous();
3811    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3812         Cand != CandidateSet.end(); ++Cand)
3813      if (Cand->Viable)
3814        ICS.Ambiguous.addConversion(Cand->Function);
3815    return true;
3816
3817  case OR_No_Viable_Function:
3818  case OR_Deleted:
3819    // There was no suitable conversion, or we found a deleted
3820    // conversion; continue with other checks.
3821    return false;
3822  }
3823
3824  llvm_unreachable("Invalid OverloadResult!");
3825}
3826
3827/// \brief Compute an implicit conversion sequence for reference
3828/// initialization.
3829static ImplicitConversionSequence
3830TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
3831                 SourceLocation DeclLoc,
3832                 bool SuppressUserConversions,
3833                 bool AllowExplicit) {
3834  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3835
3836  // Most paths end in a failed conversion.
3837  ImplicitConversionSequence ICS;
3838  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3839
3840  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3841  QualType T2 = Init->getType();
3842
3843  // If the initializer is the address of an overloaded function, try
3844  // to resolve the overloaded function. If all goes well, T2 is the
3845  // type of the resulting function.
3846  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
3847    DeclAccessPair Found;
3848    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
3849                                                                false, Found))
3850      T2 = Fn->getType();
3851  }
3852
3853  // Compute some basic properties of the types and the initializer.
3854  bool isRValRef = DeclType->isRValueReferenceType();
3855  bool DerivedToBase = false;
3856  bool ObjCConversion = false;
3857  bool ObjCLifetimeConversion = false;
3858  Expr::Classification InitCategory = Init->Classify(S.Context);
3859  Sema::ReferenceCompareResult RefRelationship
3860    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
3861                                     ObjCConversion, ObjCLifetimeConversion);
3862
3863
3864  // C++0x [dcl.init.ref]p5:
3865  //   A reference to type "cv1 T1" is initialized by an expression
3866  //   of type "cv2 T2" as follows:
3867
3868  //     -- If reference is an lvalue reference and the initializer expression
3869  if (!isRValRef) {
3870    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3871    //        reference-compatible with "cv2 T2," or
3872    //
3873    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
3874    if (InitCategory.isLValue() &&
3875        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
3876      // C++ [over.ics.ref]p1:
3877      //   When a parameter of reference type binds directly (8.5.3)
3878      //   to an argument expression, the implicit conversion sequence
3879      //   is the identity conversion, unless the argument expression
3880      //   has a type that is a derived class of the parameter type,
3881      //   in which case the implicit conversion sequence is a
3882      //   derived-to-base Conversion (13.3.3.1).
3883      ICS.setStandard();
3884      ICS.Standard.First = ICK_Identity;
3885      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3886                         : ObjCConversion? ICK_Compatible_Conversion
3887                         : ICK_Identity;
3888      ICS.Standard.Third = ICK_Identity;
3889      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3890      ICS.Standard.setToType(0, T2);
3891      ICS.Standard.setToType(1, T1);
3892      ICS.Standard.setToType(2, T1);
3893      ICS.Standard.ReferenceBinding = true;
3894      ICS.Standard.DirectBinding = true;
3895      ICS.Standard.IsLvalueReference = !isRValRef;
3896      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3897      ICS.Standard.BindsToRvalue = false;
3898      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3899      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3900      ICS.Standard.CopyConstructor = 0;
3901
3902      // Nothing more to do: the inaccessibility/ambiguity check for
3903      // derived-to-base conversions is suppressed when we're
3904      // computing the implicit conversion sequence (C++
3905      // [over.best.ics]p2).
3906      return ICS;
3907    }
3908
3909    //       -- has a class type (i.e., T2 is a class type), where T1 is
3910    //          not reference-related to T2, and can be implicitly
3911    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
3912    //          is reference-compatible with "cv3 T3" 92) (this
3913    //          conversion is selected by enumerating the applicable
3914    //          conversion functions (13.3.1.6) and choosing the best
3915    //          one through overload resolution (13.3)),
3916    if (!SuppressUserConversions && T2->isRecordType() &&
3917        !S.RequireCompleteType(DeclLoc, T2, 0) &&
3918        RefRelationship == Sema::Ref_Incompatible) {
3919      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3920                                   Init, T2, /*AllowRvalues=*/false,
3921                                   AllowExplicit))
3922        return ICS;
3923    }
3924  }
3925
3926  //     -- Otherwise, the reference shall be an lvalue reference to a
3927  //        non-volatile const type (i.e., cv1 shall be const), or the reference
3928  //        shall be an rvalue reference.
3929  //
3930  // We actually handle one oddity of C++ [over.ics.ref] at this
3931  // point, which is that, due to p2 (which short-circuits reference
3932  // binding by only attempting a simple conversion for non-direct
3933  // bindings) and p3's strange wording, we allow a const volatile
3934  // reference to bind to an rvalue. Hence the check for the presence
3935  // of "const" rather than checking for "const" being the only
3936  // qualifier.
3937  // This is also the point where rvalue references and lvalue inits no longer
3938  // go together.
3939  if (!isRValRef && !T1.isConstQualified())
3940    return ICS;
3941
3942  //       -- If the initializer expression
3943  //
3944  //            -- is an xvalue, class prvalue, array prvalue or function
3945  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
3946  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
3947      (InitCategory.isXValue() ||
3948      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
3949      (InitCategory.isLValue() && T2->isFunctionType()))) {
3950    ICS.setStandard();
3951    ICS.Standard.First = ICK_Identity;
3952    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3953                      : ObjCConversion? ICK_Compatible_Conversion
3954                      : ICK_Identity;
3955    ICS.Standard.Third = ICK_Identity;
3956    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3957    ICS.Standard.setToType(0, T2);
3958    ICS.Standard.setToType(1, T1);
3959    ICS.Standard.setToType(2, T1);
3960    ICS.Standard.ReferenceBinding = true;
3961    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
3962    // binding unless we're binding to a class prvalue.
3963    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
3964    // allow the use of rvalue references in C++98/03 for the benefit of
3965    // standard library implementors; therefore, we need the xvalue check here.
3966    ICS.Standard.DirectBinding =
3967      S.getLangOptions().CPlusPlus0x ||
3968      (InitCategory.isPRValue() && !T2->isRecordType());
3969    ICS.Standard.IsLvalueReference = !isRValRef;
3970    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3971    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
3972    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3973    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3974    ICS.Standard.CopyConstructor = 0;
3975    return ICS;
3976  }
3977
3978  //            -- has a class type (i.e., T2 is a class type), where T1 is not
3979  //               reference-related to T2, and can be implicitly converted to
3980  //               an xvalue, class prvalue, or function lvalue of type
3981  //               "cv3 T3", where "cv1 T1" is reference-compatible with
3982  //               "cv3 T3",
3983  //
3984  //          then the reference is bound to the value of the initializer
3985  //          expression in the first case and to the result of the conversion
3986  //          in the second case (or, in either case, to an appropriate base
3987  //          class subobject).
3988  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3989      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
3990      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3991                               Init, T2, /*AllowRvalues=*/true,
3992                               AllowExplicit)) {
3993    // In the second case, if the reference is an rvalue reference
3994    // and the second standard conversion sequence of the
3995    // user-defined conversion sequence includes an lvalue-to-rvalue
3996    // conversion, the program is ill-formed.
3997    if (ICS.isUserDefined() && isRValRef &&
3998        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3999      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4000
4001    return ICS;
4002  }
4003
4004  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4005  //          initialized from the initializer expression using the
4006  //          rules for a non-reference copy initialization (8.5). The
4007  //          reference is then bound to the temporary. If T1 is
4008  //          reference-related to T2, cv1 must be the same
4009  //          cv-qualification as, or greater cv-qualification than,
4010  //          cv2; otherwise, the program is ill-formed.
4011  if (RefRelationship == Sema::Ref_Related) {
4012    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4013    // we would be reference-compatible or reference-compatible with
4014    // added qualification. But that wasn't the case, so the reference
4015    // initialization fails.
4016    //
4017    // Note that we only want to check address spaces and cvr-qualifiers here.
4018    // ObjC GC and lifetime qualifiers aren't important.
4019    Qualifiers T1Quals = T1.getQualifiers();
4020    Qualifiers T2Quals = T2.getQualifiers();
4021    T1Quals.removeObjCGCAttr();
4022    T1Quals.removeObjCLifetime();
4023    T2Quals.removeObjCGCAttr();
4024    T2Quals.removeObjCLifetime();
4025    if (!T1Quals.compatiblyIncludes(T2Quals))
4026      return ICS;
4027  }
4028
4029  // If at least one of the types is a class type, the types are not
4030  // related, and we aren't allowed any user conversions, the
4031  // reference binding fails. This case is important for breaking
4032  // recursion, since TryImplicitConversion below will attempt to
4033  // create a temporary through the use of a copy constructor.
4034  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4035      (T1->isRecordType() || T2->isRecordType()))
4036    return ICS;
4037
4038  // If T1 is reference-related to T2 and the reference is an rvalue
4039  // reference, the initializer expression shall not be an lvalue.
4040  if (RefRelationship >= Sema::Ref_Related &&
4041      isRValRef && Init->Classify(S.Context).isLValue())
4042    return ICS;
4043
4044  // C++ [over.ics.ref]p2:
4045  //   When a parameter of reference type is not bound directly to
4046  //   an argument expression, the conversion sequence is the one
4047  //   required to convert the argument expression to the
4048  //   underlying type of the reference according to
4049  //   13.3.3.1. Conceptually, this conversion sequence corresponds
4050  //   to copy-initializing a temporary of the underlying type with
4051  //   the argument expression. Any difference in top-level
4052  //   cv-qualification is subsumed by the initialization itself
4053  //   and does not constitute a conversion.
4054  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4055                              /*AllowExplicit=*/false,
4056                              /*InOverloadResolution=*/false,
4057                              /*CStyle=*/false,
4058                              /*AllowObjCWritebackConversion=*/false);
4059
4060  // Of course, that's still a reference binding.
4061  if (ICS.isStandard()) {
4062    ICS.Standard.ReferenceBinding = true;
4063    ICS.Standard.IsLvalueReference = !isRValRef;
4064    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4065    ICS.Standard.BindsToRvalue = true;
4066    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4067    ICS.Standard.ObjCLifetimeConversionBinding = false;
4068  } else if (ICS.isUserDefined()) {
4069    // Don't allow rvalue references to bind to lvalues.
4070    if (DeclType->isRValueReferenceType()) {
4071      if (const ReferenceType *RefType
4072            = ICS.UserDefined.ConversionFunction->getResultType()
4073                ->getAs<LValueReferenceType>()) {
4074        if (!RefType->getPointeeType()->isFunctionType()) {
4075          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4076                     DeclType);
4077          return ICS;
4078        }
4079      }
4080    }
4081
4082    ICS.UserDefined.After.ReferenceBinding = true;
4083    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4084    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4085    ICS.UserDefined.After.BindsToRvalue = true;
4086    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4087    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4088  }
4089
4090  return ICS;
4091}
4092
4093static ImplicitConversionSequence
4094TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4095                      bool SuppressUserConversions,
4096                      bool InOverloadResolution,
4097                      bool AllowObjCWritebackConversion);
4098
4099/// TryListConversion - Try to copy-initialize a value of type ToType from the
4100/// initializer list From.
4101static ImplicitConversionSequence
4102TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4103                  bool SuppressUserConversions,
4104                  bool InOverloadResolution,
4105                  bool AllowObjCWritebackConversion) {
4106  // C++11 [over.ics.list]p1:
4107  //   When an argument is an initializer list, it is not an expression and
4108  //   special rules apply for converting it to a parameter type.
4109
4110  ImplicitConversionSequence Result;
4111  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4112  Result.setListInitializationSequence();
4113
4114  // We need a complete type for what follows. Incomplete types can never be
4115  // initialized from init lists.
4116  if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()))
4117    return Result;
4118
4119  // C++11 [over.ics.list]p2:
4120  //   If the parameter type is std::initializer_list<X> or "array of X" and
4121  //   all the elements can be implicitly converted to X, the implicit
4122  //   conversion sequence is the worst conversion necessary to convert an
4123  //   element of the list to X.
4124  QualType X;
4125  if (ToType->isArrayType())
4126    X = S.Context.getBaseElementType(ToType);
4127  else
4128    (void)S.isStdInitializerList(ToType, &X);
4129  if (!X.isNull()) {
4130    for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4131      Expr *Init = From->getInit(i);
4132      ImplicitConversionSequence ICS =
4133          TryCopyInitialization(S, Init, X, SuppressUserConversions,
4134                                InOverloadResolution,
4135                                AllowObjCWritebackConversion);
4136      // If a single element isn't convertible, fail.
4137      if (ICS.isBad()) {
4138        Result = ICS;
4139        break;
4140      }
4141      // Otherwise, look for the worst conversion.
4142      if (Result.isBad() ||
4143          CompareImplicitConversionSequences(S, ICS, Result) ==
4144              ImplicitConversionSequence::Worse)
4145        Result = ICS;
4146    }
4147    Result.setListInitializationSequence();
4148    return Result;
4149  }
4150
4151  // C++11 [over.ics.list]p3:
4152  //   Otherwise, if the parameter is a non-aggregate class X and overload
4153  //   resolution chooses a single best constructor [...] the implicit
4154  //   conversion sequence is a user-defined conversion sequence. If multiple
4155  //   constructors are viable but none is better than the others, the
4156  //   implicit conversion sequence is a user-defined conversion sequence.
4157  if (ToType->isRecordType() && !ToType->isAggregateType()) {
4158    // This function can deal with initializer lists.
4159    Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4160                                      /*AllowExplicit=*/false,
4161                                      InOverloadResolution, /*CStyle=*/false,
4162                                      AllowObjCWritebackConversion);
4163    Result.setListInitializationSequence();
4164    return Result;
4165  }
4166
4167  // C++11 [over.ics.list]p4:
4168  //   Otherwise, if the parameter has an aggregate type which can be
4169  //   initialized from the initializer list [...] the implicit conversion
4170  //   sequence is a user-defined conversion sequence.
4171  if (ToType->isAggregateType()) {
4172    // Type is an aggregate, argument is an init list. At this point it comes
4173    // down to checking whether the initialization works.
4174    // FIXME: Find out whether this parameter is consumed or not.
4175    InitializedEntity Entity =
4176        InitializedEntity::InitializeParameter(S.Context, ToType,
4177                                               /*Consumed=*/false);
4178    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4179      Result.setUserDefined();
4180      Result.UserDefined.Before.setAsIdentityConversion();
4181      // Initializer lists don't have a type.
4182      Result.UserDefined.Before.setFromType(QualType());
4183      Result.UserDefined.Before.setAllToTypes(QualType());
4184
4185      Result.UserDefined.After.setAsIdentityConversion();
4186      Result.UserDefined.After.setFromType(ToType);
4187      Result.UserDefined.After.setAllToTypes(ToType);
4188      Result.UserDefined.ConversionFunction = 0;
4189    }
4190    return Result;
4191  }
4192
4193  // C++11 [over.ics.list]p5:
4194  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4195  if (ToType->isReferenceType()) {
4196    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4197    // mention initializer lists in any way. So we go by what list-
4198    // initialization would do and try to extrapolate from that.
4199
4200    QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4201
4202    // If the initializer list has a single element that is reference-related
4203    // to the parameter type, we initialize the reference from that.
4204    if (From->getNumInits() == 1) {
4205      Expr *Init = From->getInit(0);
4206
4207      QualType T2 = Init->getType();
4208
4209      // If the initializer is the address of an overloaded function, try
4210      // to resolve the overloaded function. If all goes well, T2 is the
4211      // type of the resulting function.
4212      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4213        DeclAccessPair Found;
4214        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4215                                   Init, ToType, false, Found))
4216          T2 = Fn->getType();
4217      }
4218
4219      // Compute some basic properties of the types and the initializer.
4220      bool dummy1 = false;
4221      bool dummy2 = false;
4222      bool dummy3 = false;
4223      Sema::ReferenceCompareResult RefRelationship
4224        = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4225                                         dummy2, dummy3);
4226
4227      if (RefRelationship >= Sema::Ref_Related)
4228        return TryReferenceInit(S, Init, ToType,
4229                                /*FIXME:*/From->getLocStart(),
4230                                SuppressUserConversions,
4231                                /*AllowExplicit=*/false);
4232    }
4233
4234    // Otherwise, we bind the reference to a temporary created from the
4235    // initializer list.
4236    Result = TryListConversion(S, From, T1, SuppressUserConversions,
4237                               InOverloadResolution,
4238                               AllowObjCWritebackConversion);
4239    if (Result.isFailure())
4240      return Result;
4241    assert(!Result.isEllipsis() &&
4242           "Sub-initialization cannot result in ellipsis conversion.");
4243
4244    // Can we even bind to a temporary?
4245    if (ToType->isRValueReferenceType() ||
4246        (T1.isConstQualified() && !T1.isVolatileQualified())) {
4247      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4248                                            Result.UserDefined.After;
4249      SCS.ReferenceBinding = true;
4250      SCS.IsLvalueReference = ToType->isLValueReferenceType();
4251      SCS.BindsToRvalue = true;
4252      SCS.BindsToFunctionLvalue = false;
4253      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4254      SCS.ObjCLifetimeConversionBinding = false;
4255    } else
4256      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4257                    From, ToType);
4258    return Result;
4259  }
4260
4261  // C++11 [over.ics.list]p6:
4262  //   Otherwise, if the parameter type is not a class:
4263  if (!ToType->isRecordType()) {
4264    //    - if the initializer list has one element, the implicit conversion
4265    //      sequence is the one required to convert the element to the
4266    //      parameter type.
4267    unsigned NumInits = From->getNumInits();
4268    if (NumInits == 1)
4269      Result = TryCopyInitialization(S, From->getInit(0), ToType,
4270                                     SuppressUserConversions,
4271                                     InOverloadResolution,
4272                                     AllowObjCWritebackConversion);
4273    //    - if the initializer list has no elements, the implicit conversion
4274    //      sequence is the identity conversion.
4275    else if (NumInits == 0) {
4276      Result.setStandard();
4277      Result.Standard.setAsIdentityConversion();
4278    }
4279    return Result;
4280  }
4281
4282  // C++11 [over.ics.list]p7:
4283  //   In all cases other than those enumerated above, no conversion is possible
4284  return Result;
4285}
4286
4287/// TryCopyInitialization - Try to copy-initialize a value of type
4288/// ToType from the expression From. Return the implicit conversion
4289/// sequence required to pass this argument, which may be a bad
4290/// conversion sequence (meaning that the argument cannot be passed to
4291/// a parameter of this type). If @p SuppressUserConversions, then we
4292/// do not permit any user-defined conversion sequences.
4293static ImplicitConversionSequence
4294TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4295                      bool SuppressUserConversions,
4296                      bool InOverloadResolution,
4297                      bool AllowObjCWritebackConversion) {
4298  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4299    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4300                             InOverloadResolution,AllowObjCWritebackConversion);
4301
4302  if (ToType->isReferenceType())
4303    return TryReferenceInit(S, From, ToType,
4304                            /*FIXME:*/From->getLocStart(),
4305                            SuppressUserConversions,
4306                            /*AllowExplicit=*/false);
4307
4308  return TryImplicitConversion(S, From, ToType,
4309                               SuppressUserConversions,
4310                               /*AllowExplicit=*/false,
4311                               InOverloadResolution,
4312                               /*CStyle=*/false,
4313                               AllowObjCWritebackConversion);
4314}
4315
4316static bool TryCopyInitialization(const CanQualType FromQTy,
4317                                  const CanQualType ToQTy,
4318                                  Sema &S,
4319                                  SourceLocation Loc,
4320                                  ExprValueKind FromVK) {
4321  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4322  ImplicitConversionSequence ICS =
4323    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4324
4325  return !ICS.isBad();
4326}
4327
4328/// TryObjectArgumentInitialization - Try to initialize the object
4329/// parameter of the given member function (@c Method) from the
4330/// expression @p From.
4331static ImplicitConversionSequence
4332TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
4333                                Expr::Classification FromClassification,
4334                                CXXMethodDecl *Method,
4335                                CXXRecordDecl *ActingContext) {
4336  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4337  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4338  //                 const volatile object.
4339  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4340    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4341  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4342
4343  // Set up the conversion sequence as a "bad" conversion, to allow us
4344  // to exit early.
4345  ImplicitConversionSequence ICS;
4346
4347  // We need to have an object of class type.
4348  QualType FromType = OrigFromType;
4349  if (const PointerType *PT = FromType->getAs<PointerType>()) {
4350    FromType = PT->getPointeeType();
4351
4352    // When we had a pointer, it's implicitly dereferenced, so we
4353    // better have an lvalue.
4354    assert(FromClassification.isLValue());
4355  }
4356
4357  assert(FromType->isRecordType());
4358
4359  // C++0x [over.match.funcs]p4:
4360  //   For non-static member functions, the type of the implicit object
4361  //   parameter is
4362  //
4363  //     - "lvalue reference to cv X" for functions declared without a
4364  //        ref-qualifier or with the & ref-qualifier
4365  //     - "rvalue reference to cv X" for functions declared with the &&
4366  //        ref-qualifier
4367  //
4368  // where X is the class of which the function is a member and cv is the
4369  // cv-qualification on the member function declaration.
4370  //
4371  // However, when finding an implicit conversion sequence for the argument, we
4372  // are not allowed to create temporaries or perform user-defined conversions
4373  // (C++ [over.match.funcs]p5). We perform a simplified version of
4374  // reference binding here, that allows class rvalues to bind to
4375  // non-constant references.
4376
4377  // First check the qualifiers.
4378  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4379  if (ImplicitParamType.getCVRQualifiers()
4380                                    != FromTypeCanon.getLocalCVRQualifiers() &&
4381      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4382    ICS.setBad(BadConversionSequence::bad_qualifiers,
4383               OrigFromType, ImplicitParamType);
4384    return ICS;
4385  }
4386
4387  // Check that we have either the same type or a derived type. It
4388  // affects the conversion rank.
4389  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4390  ImplicitConversionKind SecondKind;
4391  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4392    SecondKind = ICK_Identity;
4393  } else if (S.IsDerivedFrom(FromType, ClassType))
4394    SecondKind = ICK_Derived_To_Base;
4395  else {
4396    ICS.setBad(BadConversionSequence::unrelated_class,
4397               FromType, ImplicitParamType);
4398    return ICS;
4399  }
4400
4401  // Check the ref-qualifier.
4402  switch (Method->getRefQualifier()) {
4403  case RQ_None:
4404    // Do nothing; we don't care about lvalueness or rvalueness.
4405    break;
4406
4407  case RQ_LValue:
4408    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4409      // non-const lvalue reference cannot bind to an rvalue
4410      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4411                 ImplicitParamType);
4412      return ICS;
4413    }
4414    break;
4415
4416  case RQ_RValue:
4417    if (!FromClassification.isRValue()) {
4418      // rvalue reference cannot bind to an lvalue
4419      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4420                 ImplicitParamType);
4421      return ICS;
4422    }
4423    break;
4424  }
4425
4426  // Success. Mark this as a reference binding.
4427  ICS.setStandard();
4428  ICS.Standard.setAsIdentityConversion();
4429  ICS.Standard.Second = SecondKind;
4430  ICS.Standard.setFromType(FromType);
4431  ICS.Standard.setAllToTypes(ImplicitParamType);
4432  ICS.Standard.ReferenceBinding = true;
4433  ICS.Standard.DirectBinding = true;
4434  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4435  ICS.Standard.BindsToFunctionLvalue = false;
4436  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4437  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4438    = (Method->getRefQualifier() == RQ_None);
4439  return ICS;
4440}
4441
4442/// PerformObjectArgumentInitialization - Perform initialization of
4443/// the implicit object parameter for the given Method with the given
4444/// expression.
4445ExprResult
4446Sema::PerformObjectArgumentInitialization(Expr *From,
4447                                          NestedNameSpecifier *Qualifier,
4448                                          NamedDecl *FoundDecl,
4449                                          CXXMethodDecl *Method) {
4450  QualType FromRecordType, DestType;
4451  QualType ImplicitParamRecordType  =
4452    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4453
4454  Expr::Classification FromClassification;
4455  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4456    FromRecordType = PT->getPointeeType();
4457    DestType = Method->getThisType(Context);
4458    FromClassification = Expr::Classification::makeSimpleLValue();
4459  } else {
4460    FromRecordType = From->getType();
4461    DestType = ImplicitParamRecordType;
4462    FromClassification = From->Classify(Context);
4463  }
4464
4465  // Note that we always use the true parent context when performing
4466  // the actual argument initialization.
4467  ImplicitConversionSequence ICS
4468    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4469                                      Method, Method->getParent());
4470  if (ICS.isBad()) {
4471    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4472      Qualifiers FromQs = FromRecordType.getQualifiers();
4473      Qualifiers ToQs = DestType.getQualifiers();
4474      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4475      if (CVR) {
4476        Diag(From->getSourceRange().getBegin(),
4477             diag::err_member_function_call_bad_cvr)
4478          << Method->getDeclName() << FromRecordType << (CVR - 1)
4479          << From->getSourceRange();
4480        Diag(Method->getLocation(), diag::note_previous_decl)
4481          << Method->getDeclName();
4482        return ExprError();
4483      }
4484    }
4485
4486    return Diag(From->getSourceRange().getBegin(),
4487                diag::err_implicit_object_parameter_init)
4488       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4489  }
4490
4491  if (ICS.Standard.Second == ICK_Derived_To_Base) {
4492    ExprResult FromRes =
4493      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4494    if (FromRes.isInvalid())
4495      return ExprError();
4496    From = FromRes.take();
4497  }
4498
4499  if (!Context.hasSameType(From->getType(), DestType))
4500    From = ImpCastExprToType(From, DestType, CK_NoOp,
4501                             From->getValueKind()).take();
4502  return Owned(From);
4503}
4504
4505/// TryContextuallyConvertToBool - Attempt to contextually convert the
4506/// expression From to bool (C++0x [conv]p3).
4507static ImplicitConversionSequence
4508TryContextuallyConvertToBool(Sema &S, Expr *From) {
4509  // FIXME: This is pretty broken.
4510  return TryImplicitConversion(S, From, S.Context.BoolTy,
4511                               // FIXME: Are these flags correct?
4512                               /*SuppressUserConversions=*/false,
4513                               /*AllowExplicit=*/true,
4514                               /*InOverloadResolution=*/false,
4515                               /*CStyle=*/false,
4516                               /*AllowObjCWritebackConversion=*/false);
4517}
4518
4519/// PerformContextuallyConvertToBool - Perform a contextual conversion
4520/// of the expression From to bool (C++0x [conv]p3).
4521ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4522  if (checkPlaceholderForOverload(*this, From))
4523    return ExprError();
4524
4525  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4526  if (!ICS.isBad())
4527    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4528
4529  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4530    return Diag(From->getSourceRange().getBegin(),
4531                diag::err_typecheck_bool_condition)
4532                  << From->getType() << From->getSourceRange();
4533  return ExprError();
4534}
4535
4536/// Check that the specified conversion is permitted in a converted constant
4537/// expression, according to C++11 [expr.const]p3. Return true if the conversion
4538/// is acceptable.
4539static bool CheckConvertedConstantConversions(Sema &S,
4540                                              StandardConversionSequence &SCS) {
4541  // Since we know that the target type is an integral or unscoped enumeration
4542  // type, most conversion kinds are impossible. All possible First and Third
4543  // conversions are fine.
4544  switch (SCS.Second) {
4545  case ICK_Identity:
4546  case ICK_Integral_Promotion:
4547  case ICK_Integral_Conversion:
4548    return true;
4549
4550  case ICK_Boolean_Conversion:
4551    // Conversion from an integral or unscoped enumeration type to bool is
4552    // classified as ICK_Boolean_Conversion, but it's also an integral
4553    // conversion, so it's permitted in a converted constant expression.
4554    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4555           SCS.getToType(2)->isBooleanType();
4556
4557  case ICK_Floating_Integral:
4558  case ICK_Complex_Real:
4559    return false;
4560
4561  case ICK_Lvalue_To_Rvalue:
4562  case ICK_Array_To_Pointer:
4563  case ICK_Function_To_Pointer:
4564  case ICK_NoReturn_Adjustment:
4565  case ICK_Qualification:
4566  case ICK_Compatible_Conversion:
4567  case ICK_Vector_Conversion:
4568  case ICK_Vector_Splat:
4569  case ICK_Derived_To_Base:
4570  case ICK_Pointer_Conversion:
4571  case ICK_Pointer_Member:
4572  case ICK_Block_Pointer_Conversion:
4573  case ICK_Writeback_Conversion:
4574  case ICK_Floating_Promotion:
4575  case ICK_Complex_Promotion:
4576  case ICK_Complex_Conversion:
4577  case ICK_Floating_Conversion:
4578  case ICK_TransparentUnionConversion:
4579    llvm_unreachable("unexpected second conversion kind");
4580
4581  case ICK_Num_Conversion_Kinds:
4582    break;
4583  }
4584
4585  llvm_unreachable("unknown conversion kind");
4586}
4587
4588/// CheckConvertedConstantExpression - Check that the expression From is a
4589/// converted constant expression of type T, perform the conversion and produce
4590/// the converted expression, per C++11 [expr.const]p3.
4591ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4592                                                  llvm::APSInt &Value,
4593                                                  CCEKind CCE) {
4594  assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11");
4595  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4596
4597  if (checkPlaceholderForOverload(*this, From))
4598    return ExprError();
4599
4600  // C++11 [expr.const]p3 with proposed wording fixes:
4601  //  A converted constant expression of type T is a core constant expression,
4602  //  implicitly converted to a prvalue of type T, where the converted
4603  //  expression is a literal constant expression and the implicit conversion
4604  //  sequence contains only user-defined conversions, lvalue-to-rvalue
4605  //  conversions, integral promotions, and integral conversions other than
4606  //  narrowing conversions.
4607  ImplicitConversionSequence ICS =
4608    TryImplicitConversion(From, T,
4609                          /*SuppressUserConversions=*/false,
4610                          /*AllowExplicit=*/false,
4611                          /*InOverloadResolution=*/false,
4612                          /*CStyle=*/false,
4613                          /*AllowObjcWritebackConversion=*/false);
4614  StandardConversionSequence *SCS = 0;
4615  switch (ICS.getKind()) {
4616  case ImplicitConversionSequence::StandardConversion:
4617    if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4618      return Diag(From->getSourceRange().getBegin(),
4619                  diag::err_typecheck_converted_constant_expression_disallowed)
4620               << From->getType() << From->getSourceRange() << T;
4621    SCS = &ICS.Standard;
4622    break;
4623  case ImplicitConversionSequence::UserDefinedConversion:
4624    // We are converting from class type to an integral or enumeration type, so
4625    // the Before sequence must be trivial.
4626    if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4627      return Diag(From->getSourceRange().getBegin(),
4628                  diag::err_typecheck_converted_constant_expression_disallowed)
4629               << From->getType() << From->getSourceRange() << T;
4630    SCS = &ICS.UserDefined.After;
4631    break;
4632  case ImplicitConversionSequence::AmbiguousConversion:
4633  case ImplicitConversionSequence::BadConversion:
4634    if (!DiagnoseMultipleUserDefinedConversion(From, T))
4635      return Diag(From->getSourceRange().getBegin(),
4636                  diag::err_typecheck_converted_constant_expression)
4637                    << From->getType() << From->getSourceRange() << T;
4638    return ExprError();
4639
4640  case ImplicitConversionSequence::EllipsisConversion:
4641    llvm_unreachable("ellipsis conversion in converted constant expression");
4642  }
4643
4644  ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4645  if (Result.isInvalid())
4646    return Result;
4647
4648  // Check for a narrowing implicit conversion.
4649  APValue PreNarrowingValue;
4650  bool Diagnosed = false;
4651  switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue)) {
4652  case NK_Variable_Narrowing:
4653    // Implicit conversion to a narrower type, and the value is not a constant
4654    // expression. We'll diagnose this in a moment.
4655  case NK_Not_Narrowing:
4656    break;
4657
4658  case NK_Constant_Narrowing:
4659    Diag(From->getSourceRange().getBegin(), diag::err_cce_narrowing)
4660      << CCE << /*Constant*/1
4661      << PreNarrowingValue.getAsString(Context, QualType()) << T;
4662    Diagnosed = true;
4663    break;
4664
4665  case NK_Type_Narrowing:
4666    Diag(From->getSourceRange().getBegin(), diag::err_cce_narrowing)
4667      << CCE << /*Constant*/0 << From->getType() << T;
4668    Diagnosed = true;
4669    break;
4670  }
4671
4672  // Check the expression is a constant expression.
4673  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
4674  Expr::EvalResult Eval;
4675  Eval.Diag = &Notes;
4676
4677  if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
4678    // The expression can't be folded, so we can't keep it at this position in
4679    // the AST.
4680    Result = ExprError();
4681  } else {
4682    Value = Eval.Val.getInt();
4683
4684    if (Notes.empty()) {
4685      // It's a constant expression.
4686      return Result;
4687    }
4688  }
4689
4690  // Only issue one narrowing diagnostic.
4691  if (Diagnosed)
4692    return Result;
4693
4694  // It's not a constant expression. Produce an appropriate diagnostic.
4695  if (Notes.size() == 1 &&
4696      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
4697    Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
4698  else {
4699    Diag(From->getSourceRange().getBegin(), diag::err_expr_not_cce)
4700      << CCE << From->getSourceRange();
4701    for (unsigned I = 0; I < Notes.size(); ++I)
4702      Diag(Notes[I].first, Notes[I].second);
4703  }
4704  return Result;
4705}
4706
4707/// dropPointerConversions - If the given standard conversion sequence
4708/// involves any pointer conversions, remove them.  This may change
4709/// the result type of the conversion sequence.
4710static void dropPointerConversion(StandardConversionSequence &SCS) {
4711  if (SCS.Second == ICK_Pointer_Conversion) {
4712    SCS.Second = ICK_Identity;
4713    SCS.Third = ICK_Identity;
4714    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
4715  }
4716}
4717
4718/// TryContextuallyConvertToObjCPointer - Attempt to contextually
4719/// convert the expression From to an Objective-C pointer type.
4720static ImplicitConversionSequence
4721TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
4722  // Do an implicit conversion to 'id'.
4723  QualType Ty = S.Context.getObjCIdType();
4724  ImplicitConversionSequence ICS
4725    = TryImplicitConversion(S, From, Ty,
4726                            // FIXME: Are these flags correct?
4727                            /*SuppressUserConversions=*/false,
4728                            /*AllowExplicit=*/true,
4729                            /*InOverloadResolution=*/false,
4730                            /*CStyle=*/false,
4731                            /*AllowObjCWritebackConversion=*/false);
4732
4733  // Strip off any final conversions to 'id'.
4734  switch (ICS.getKind()) {
4735  case ImplicitConversionSequence::BadConversion:
4736  case ImplicitConversionSequence::AmbiguousConversion:
4737  case ImplicitConversionSequence::EllipsisConversion:
4738    break;
4739
4740  case ImplicitConversionSequence::UserDefinedConversion:
4741    dropPointerConversion(ICS.UserDefined.After);
4742    break;
4743
4744  case ImplicitConversionSequence::StandardConversion:
4745    dropPointerConversion(ICS.Standard);
4746    break;
4747  }
4748
4749  return ICS;
4750}
4751
4752/// PerformContextuallyConvertToObjCPointer - Perform a contextual
4753/// conversion of the expression From to an Objective-C pointer type.
4754ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
4755  if (checkPlaceholderForOverload(*this, From))
4756    return ExprError();
4757
4758  QualType Ty = Context.getObjCIdType();
4759  ImplicitConversionSequence ICS =
4760    TryContextuallyConvertToObjCPointer(*this, From);
4761  if (!ICS.isBad())
4762    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
4763  return ExprError();
4764}
4765
4766/// Determine whether the provided type is an integral type, or an enumeration
4767/// type of a permitted flavor.
4768static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) {
4769  return AllowScopedEnum ? T->isIntegralOrEnumerationType()
4770                         : T->isIntegralOrUnscopedEnumerationType();
4771}
4772
4773/// \brief Attempt to convert the given expression to an integral or
4774/// enumeration type.
4775///
4776/// This routine will attempt to convert an expression of class type to an
4777/// integral or enumeration type, if that class type only has a single
4778/// conversion to an integral or enumeration type.
4779///
4780/// \param Loc The source location of the construct that requires the
4781/// conversion.
4782///
4783/// \param FromE The expression we're converting from.
4784///
4785/// \param NotIntDiag The diagnostic to be emitted if the expression does not
4786/// have integral or enumeration type.
4787///
4788/// \param IncompleteDiag The diagnostic to be emitted if the expression has
4789/// incomplete class type.
4790///
4791/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
4792/// explicit conversion function (because no implicit conversion functions
4793/// were available). This is a recovery mode.
4794///
4795/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
4796/// showing which conversion was picked.
4797///
4798/// \param AmbigDiag The diagnostic to be emitted if there is more than one
4799/// conversion function that could convert to integral or enumeration type.
4800///
4801/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
4802/// usable conversion function.
4803///
4804/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
4805/// function, which may be an extension in this case.
4806///
4807/// \param AllowScopedEnumerations Specifies whether conversions to scoped
4808/// enumerations should be considered.
4809///
4810/// \returns The expression, converted to an integral or enumeration type if
4811/// successful.
4812ExprResult
4813Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
4814                                         const PartialDiagnostic &NotIntDiag,
4815                                       const PartialDiagnostic &IncompleteDiag,
4816                                     const PartialDiagnostic &ExplicitConvDiag,
4817                                     const PartialDiagnostic &ExplicitConvNote,
4818                                         const PartialDiagnostic &AmbigDiag,
4819                                         const PartialDiagnostic &AmbigNote,
4820                                         const PartialDiagnostic &ConvDiag,
4821                                         bool AllowScopedEnumerations) {
4822  // We can't perform any more checking for type-dependent expressions.
4823  if (From->isTypeDependent())
4824    return Owned(From);
4825
4826  // Process placeholders immediately.
4827  if (From->hasPlaceholderType()) {
4828    ExprResult result = CheckPlaceholderExpr(From);
4829    if (result.isInvalid()) return result;
4830    From = result.take();
4831  }
4832
4833  // If the expression already has integral or enumeration type, we're golden.
4834  QualType T = From->getType();
4835  if (isIntegralOrEnumerationType(T, AllowScopedEnumerations))
4836    return DefaultLvalueConversion(From);
4837
4838  // FIXME: Check for missing '()' if T is a function type?
4839
4840  // If we don't have a class type in C++, there's no way we can get an
4841  // expression of integral or enumeration type.
4842  const RecordType *RecordTy = T->getAs<RecordType>();
4843  if (!RecordTy || !getLangOptions().CPlusPlus) {
4844    if (NotIntDiag.getDiagID())
4845      Diag(Loc, NotIntDiag) << T << From->getSourceRange();
4846    return Owned(From);
4847  }
4848
4849  // We must have a complete class type.
4850  if (RequireCompleteType(Loc, T, IncompleteDiag))
4851    return Owned(From);
4852
4853  // Look for a conversion to an integral or enumeration type.
4854  UnresolvedSet<4> ViableConversions;
4855  UnresolvedSet<4> ExplicitConversions;
4856  const UnresolvedSetImpl *Conversions
4857    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
4858
4859  bool HadMultipleCandidates = (Conversions->size() > 1);
4860
4861  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4862                                   E = Conversions->end();
4863       I != E;
4864       ++I) {
4865    if (CXXConversionDecl *Conversion
4866          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
4867      if (isIntegralOrEnumerationType(
4868            Conversion->getConversionType().getNonReferenceType(),
4869            AllowScopedEnumerations)) {
4870        if (Conversion->isExplicit())
4871          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
4872        else
4873          ViableConversions.addDecl(I.getDecl(), I.getAccess());
4874      }
4875    }
4876  }
4877
4878  switch (ViableConversions.size()) {
4879  case 0:
4880    if (ExplicitConversions.size() == 1 && ExplicitConvDiag.getDiagID()) {
4881      DeclAccessPair Found = ExplicitConversions[0];
4882      CXXConversionDecl *Conversion
4883        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
4884
4885      // The user probably meant to invoke the given explicit
4886      // conversion; use it.
4887      QualType ConvTy
4888        = Conversion->getConversionType().getNonReferenceType();
4889      std::string TypeStr;
4890      ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
4891
4892      Diag(Loc, ExplicitConvDiag)
4893        << T << ConvTy
4894        << FixItHint::CreateInsertion(From->getLocStart(),
4895                                      "static_cast<" + TypeStr + ">(")
4896        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
4897                                      ")");
4898      Diag(Conversion->getLocation(), ExplicitConvNote)
4899        << ConvTy->isEnumeralType() << ConvTy;
4900
4901      // If we aren't in a SFINAE context, build a call to the
4902      // explicit conversion function.
4903      if (isSFINAEContext())
4904        return ExprError();
4905
4906      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4907      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
4908                                                 HadMultipleCandidates);
4909      if (Result.isInvalid())
4910        return ExprError();
4911      // Record usage of conversion in an implicit cast.
4912      From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
4913                                      CK_UserDefinedConversion,
4914                                      Result.get(), 0,
4915                                      Result.get()->getValueKind());
4916    }
4917
4918    // We'll complain below about a non-integral condition type.
4919    break;
4920
4921  case 1: {
4922    // Apply this conversion.
4923    DeclAccessPair Found = ViableConversions[0];
4924    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4925
4926    CXXConversionDecl *Conversion
4927      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
4928    QualType ConvTy
4929      = Conversion->getConversionType().getNonReferenceType();
4930    if (ConvDiag.getDiagID()) {
4931      if (isSFINAEContext())
4932        return ExprError();
4933
4934      Diag(Loc, ConvDiag)
4935        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
4936    }
4937
4938    ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
4939                                               HadMultipleCandidates);
4940    if (Result.isInvalid())
4941      return ExprError();
4942    // Record usage of conversion in an implicit cast.
4943    From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
4944                                    CK_UserDefinedConversion,
4945                                    Result.get(), 0,
4946                                    Result.get()->getValueKind());
4947    break;
4948  }
4949
4950  default:
4951    if (!AmbigDiag.getDiagID())
4952      return Owned(From);
4953
4954    Diag(Loc, AmbigDiag)
4955      << T << From->getSourceRange();
4956    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
4957      CXXConversionDecl *Conv
4958        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
4959      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
4960      Diag(Conv->getLocation(), AmbigNote)
4961        << ConvTy->isEnumeralType() << ConvTy;
4962    }
4963    return Owned(From);
4964  }
4965
4966  if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) &&
4967      NotIntDiag.getDiagID())
4968    Diag(Loc, NotIntDiag) << From->getType() << From->getSourceRange();
4969
4970  return DefaultLvalueConversion(From);
4971}
4972
4973/// AddOverloadCandidate - Adds the given function to the set of
4974/// candidate functions, using the given function call arguments.  If
4975/// @p SuppressUserConversions, then don't allow user-defined
4976/// conversions via constructors or conversion operators.
4977///
4978/// \para PartialOverloading true if we are performing "partial" overloading
4979/// based on an incomplete set of function arguments. This feature is used by
4980/// code completion.
4981void
4982Sema::AddOverloadCandidate(FunctionDecl *Function,
4983                           DeclAccessPair FoundDecl,
4984                           Expr **Args, unsigned NumArgs,
4985                           OverloadCandidateSet& CandidateSet,
4986                           bool SuppressUserConversions,
4987                           bool PartialOverloading) {
4988  const FunctionProtoType* Proto
4989    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
4990  assert(Proto && "Functions without a prototype cannot be overloaded");
4991  assert(!Function->getDescribedFunctionTemplate() &&
4992         "Use AddTemplateOverloadCandidate for function templates");
4993
4994  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
4995    if (!isa<CXXConstructorDecl>(Method)) {
4996      // If we get here, it's because we're calling a member function
4997      // that is named without a member access expression (e.g.,
4998      // "this->f") that was either written explicitly or created
4999      // implicitly. This can happen with a qualified call to a member
5000      // function, e.g., X::f(). We use an empty type for the implied
5001      // object argument (C++ [over.call.func]p3), and the acting context
5002      // is irrelevant.
5003      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5004                         QualType(), Expr::Classification::makeSimpleLValue(),
5005                         Args, NumArgs, CandidateSet,
5006                         SuppressUserConversions);
5007      return;
5008    }
5009    // We treat a constructor like a non-member function, since its object
5010    // argument doesn't participate in overload resolution.
5011  }
5012
5013  if (!CandidateSet.isNewCandidate(Function))
5014    return;
5015
5016  // Overload resolution is always an unevaluated context.
5017  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5018
5019  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
5020    // C++ [class.copy]p3:
5021    //   A member function template is never instantiated to perform the copy
5022    //   of a class object to an object of its class type.
5023    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5024    if (NumArgs == 1 &&
5025        Constructor->isSpecializationCopyingObject() &&
5026        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5027         IsDerivedFrom(Args[0]->getType(), ClassType)))
5028      return;
5029  }
5030
5031  // Add this candidate
5032  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
5033  Candidate.FoundDecl = FoundDecl;
5034  Candidate.Function = Function;
5035  Candidate.Viable = true;
5036  Candidate.IsSurrogate = false;
5037  Candidate.IgnoreObjectArgument = false;
5038  Candidate.ExplicitCallArguments = NumArgs;
5039
5040  unsigned NumArgsInProto = Proto->getNumArgs();
5041
5042  // (C++ 13.3.2p2): A candidate function having fewer than m
5043  // parameters is viable only if it has an ellipsis in its parameter
5044  // list (8.3.5).
5045  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
5046      !Proto->isVariadic()) {
5047    Candidate.Viable = false;
5048    Candidate.FailureKind = ovl_fail_too_many_arguments;
5049    return;
5050  }
5051
5052  // (C++ 13.3.2p2): A candidate function having more than m parameters
5053  // is viable only if the (m+1)st parameter has a default argument
5054  // (8.3.6). For the purposes of overload resolution, the
5055  // parameter list is truncated on the right, so that there are
5056  // exactly m parameters.
5057  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5058  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
5059    // Not enough arguments.
5060    Candidate.Viable = false;
5061    Candidate.FailureKind = ovl_fail_too_few_arguments;
5062    return;
5063  }
5064
5065  // (CUDA B.1): Check for invalid calls between targets.
5066  if (getLangOptions().CUDA)
5067    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5068      if (CheckCUDATarget(Caller, Function)) {
5069        Candidate.Viable = false;
5070        Candidate.FailureKind = ovl_fail_bad_target;
5071        return;
5072      }
5073
5074  // Determine the implicit conversion sequences for each of the
5075  // arguments.
5076  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5077    if (ArgIdx < NumArgsInProto) {
5078      // (C++ 13.3.2p3): for F to be a viable function, there shall
5079      // exist for each argument an implicit conversion sequence
5080      // (13.3.3.1) that converts that argument to the corresponding
5081      // parameter of F.
5082      QualType ParamType = Proto->getArgType(ArgIdx);
5083      Candidate.Conversions[ArgIdx]
5084        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5085                                SuppressUserConversions,
5086                                /*InOverloadResolution=*/true,
5087                                /*AllowObjCWritebackConversion=*/
5088                                  getLangOptions().ObjCAutoRefCount);
5089      if (Candidate.Conversions[ArgIdx].isBad()) {
5090        Candidate.Viable = false;
5091        Candidate.FailureKind = ovl_fail_bad_conversion;
5092        break;
5093      }
5094    } else {
5095      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5096      // argument for which there is no corresponding parameter is
5097      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5098      Candidate.Conversions[ArgIdx].setEllipsis();
5099    }
5100  }
5101}
5102
5103/// \brief Add all of the function declarations in the given function set to
5104/// the overload canddiate set.
5105void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5106                                 Expr **Args, unsigned NumArgs,
5107                                 OverloadCandidateSet& CandidateSet,
5108                                 bool SuppressUserConversions) {
5109  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5110    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5111    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5112      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5113        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5114                           cast<CXXMethodDecl>(FD)->getParent(),
5115                           Args[0]->getType(), Args[0]->Classify(Context),
5116                           Args + 1, NumArgs - 1,
5117                           CandidateSet, SuppressUserConversions);
5118      else
5119        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
5120                             SuppressUserConversions);
5121    } else {
5122      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5123      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5124          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5125        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5126                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5127                                   /*FIXME: explicit args */ 0,
5128                                   Args[0]->getType(),
5129                                   Args[0]->Classify(Context),
5130                                   Args + 1, NumArgs - 1,
5131                                   CandidateSet,
5132                                   SuppressUserConversions);
5133      else
5134        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5135                                     /*FIXME: explicit args */ 0,
5136                                     Args, NumArgs, CandidateSet,
5137                                     SuppressUserConversions);
5138    }
5139  }
5140}
5141
5142/// AddMethodCandidate - Adds a named decl (which is some kind of
5143/// method) as a method candidate to the given overload set.
5144void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5145                              QualType ObjectType,
5146                              Expr::Classification ObjectClassification,
5147                              Expr **Args, unsigned NumArgs,
5148                              OverloadCandidateSet& CandidateSet,
5149                              bool SuppressUserConversions) {
5150  NamedDecl *Decl = FoundDecl.getDecl();
5151  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5152
5153  if (isa<UsingShadowDecl>(Decl))
5154    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5155
5156  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5157    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5158           "Expected a member function template");
5159    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5160                               /*ExplicitArgs*/ 0,
5161                               ObjectType, ObjectClassification, Args, NumArgs,
5162                               CandidateSet,
5163                               SuppressUserConversions);
5164  } else {
5165    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5166                       ObjectType, ObjectClassification, Args, NumArgs,
5167                       CandidateSet, SuppressUserConversions);
5168  }
5169}
5170
5171/// AddMethodCandidate - Adds the given C++ member function to the set
5172/// of candidate functions, using the given function call arguments
5173/// and the object argument (@c Object). For example, in a call
5174/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5175/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5176/// allow user-defined conversions via constructors or conversion
5177/// operators.
5178void
5179Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5180                         CXXRecordDecl *ActingContext, QualType ObjectType,
5181                         Expr::Classification ObjectClassification,
5182                         Expr **Args, unsigned NumArgs,
5183                         OverloadCandidateSet& CandidateSet,
5184                         bool SuppressUserConversions) {
5185  const FunctionProtoType* Proto
5186    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5187  assert(Proto && "Methods without a prototype cannot be overloaded");
5188  assert(!isa<CXXConstructorDecl>(Method) &&
5189         "Use AddOverloadCandidate for constructors");
5190
5191  if (!CandidateSet.isNewCandidate(Method))
5192    return;
5193
5194  // Overload resolution is always an unevaluated context.
5195  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5196
5197  // Add this candidate
5198  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs + 1);
5199  Candidate.FoundDecl = FoundDecl;
5200  Candidate.Function = Method;
5201  Candidate.IsSurrogate = false;
5202  Candidate.IgnoreObjectArgument = false;
5203  Candidate.ExplicitCallArguments = NumArgs;
5204
5205  unsigned NumArgsInProto = Proto->getNumArgs();
5206
5207  // (C++ 13.3.2p2): A candidate function having fewer than m
5208  // parameters is viable only if it has an ellipsis in its parameter
5209  // list (8.3.5).
5210  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
5211    Candidate.Viable = false;
5212    Candidate.FailureKind = ovl_fail_too_many_arguments;
5213    return;
5214  }
5215
5216  // (C++ 13.3.2p2): A candidate function having more than m parameters
5217  // is viable only if the (m+1)st parameter has a default argument
5218  // (8.3.6). For the purposes of overload resolution, the
5219  // parameter list is truncated on the right, so that there are
5220  // exactly m parameters.
5221  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5222  if (NumArgs < MinRequiredArgs) {
5223    // Not enough arguments.
5224    Candidate.Viable = false;
5225    Candidate.FailureKind = ovl_fail_too_few_arguments;
5226    return;
5227  }
5228
5229  Candidate.Viable = true;
5230
5231  if (Method->isStatic() || ObjectType.isNull())
5232    // The implicit object argument is ignored.
5233    Candidate.IgnoreObjectArgument = true;
5234  else {
5235    // Determine the implicit conversion sequence for the object
5236    // parameter.
5237    Candidate.Conversions[0]
5238      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5239                                        Method, ActingContext);
5240    if (Candidate.Conversions[0].isBad()) {
5241      Candidate.Viable = false;
5242      Candidate.FailureKind = ovl_fail_bad_conversion;
5243      return;
5244    }
5245  }
5246
5247  // Determine the implicit conversion sequences for each of the
5248  // arguments.
5249  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5250    if (ArgIdx < NumArgsInProto) {
5251      // (C++ 13.3.2p3): for F to be a viable function, there shall
5252      // exist for each argument an implicit conversion sequence
5253      // (13.3.3.1) that converts that argument to the corresponding
5254      // parameter of F.
5255      QualType ParamType = Proto->getArgType(ArgIdx);
5256      Candidate.Conversions[ArgIdx + 1]
5257        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5258                                SuppressUserConversions,
5259                                /*InOverloadResolution=*/true,
5260                                /*AllowObjCWritebackConversion=*/
5261                                  getLangOptions().ObjCAutoRefCount);
5262      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5263        Candidate.Viable = false;
5264        Candidate.FailureKind = ovl_fail_bad_conversion;
5265        break;
5266      }
5267    } else {
5268      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5269      // argument for which there is no corresponding parameter is
5270      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5271      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5272    }
5273  }
5274}
5275
5276/// \brief Add a C++ member function template as a candidate to the candidate
5277/// set, using template argument deduction to produce an appropriate member
5278/// function template specialization.
5279void
5280Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5281                                 DeclAccessPair FoundDecl,
5282                                 CXXRecordDecl *ActingContext,
5283                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5284                                 QualType ObjectType,
5285                                 Expr::Classification ObjectClassification,
5286                                 Expr **Args, unsigned NumArgs,
5287                                 OverloadCandidateSet& CandidateSet,
5288                                 bool SuppressUserConversions) {
5289  if (!CandidateSet.isNewCandidate(MethodTmpl))
5290    return;
5291
5292  // C++ [over.match.funcs]p7:
5293  //   In each case where a candidate is a function template, candidate
5294  //   function template specializations are generated using template argument
5295  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5296  //   candidate functions in the usual way.113) A given name can refer to one
5297  //   or more function templates and also to a set of overloaded non-template
5298  //   functions. In such a case, the candidate functions generated from each
5299  //   function template are combined with the set of non-template candidate
5300  //   functions.
5301  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5302  FunctionDecl *Specialization = 0;
5303  if (TemplateDeductionResult Result
5304      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
5305                                Args, NumArgs, Specialization, Info)) {
5306    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5307    Candidate.FoundDecl = FoundDecl;
5308    Candidate.Function = MethodTmpl->getTemplatedDecl();
5309    Candidate.Viable = false;
5310    Candidate.FailureKind = ovl_fail_bad_deduction;
5311    Candidate.IsSurrogate = false;
5312    Candidate.IgnoreObjectArgument = false;
5313    Candidate.ExplicitCallArguments = NumArgs;
5314    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5315                                                          Info);
5316    return;
5317  }
5318
5319  // Add the function template specialization produced by template argument
5320  // deduction as a candidate.
5321  assert(Specialization && "Missing member function template specialization?");
5322  assert(isa<CXXMethodDecl>(Specialization) &&
5323         "Specialization is not a member function?");
5324  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5325                     ActingContext, ObjectType, ObjectClassification,
5326                     Args, NumArgs, CandidateSet, SuppressUserConversions);
5327}
5328
5329/// \brief Add a C++ function template specialization as a candidate
5330/// in the candidate set, using template argument deduction to produce
5331/// an appropriate function template specialization.
5332void
5333Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5334                                   DeclAccessPair FoundDecl,
5335                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5336                                   Expr **Args, unsigned NumArgs,
5337                                   OverloadCandidateSet& CandidateSet,
5338                                   bool SuppressUserConversions) {
5339  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5340    return;
5341
5342  // C++ [over.match.funcs]p7:
5343  //   In each case where a candidate is a function template, candidate
5344  //   function template specializations are generated using template argument
5345  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5346  //   candidate functions in the usual way.113) A given name can refer to one
5347  //   or more function templates and also to a set of overloaded non-template
5348  //   functions. In such a case, the candidate functions generated from each
5349  //   function template are combined with the set of non-template candidate
5350  //   functions.
5351  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5352  FunctionDecl *Specialization = 0;
5353  if (TemplateDeductionResult Result
5354        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5355                                  Args, NumArgs, Specialization, Info)) {
5356    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5357    Candidate.FoundDecl = FoundDecl;
5358    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5359    Candidate.Viable = false;
5360    Candidate.FailureKind = ovl_fail_bad_deduction;
5361    Candidate.IsSurrogate = false;
5362    Candidate.IgnoreObjectArgument = false;
5363    Candidate.ExplicitCallArguments = NumArgs;
5364    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5365                                                          Info);
5366    return;
5367  }
5368
5369  // Add the function template specialization produced by template argument
5370  // deduction as a candidate.
5371  assert(Specialization && "Missing function template specialization?");
5372  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
5373                       SuppressUserConversions);
5374}
5375
5376/// AddConversionCandidate - Add a C++ conversion function as a
5377/// candidate in the candidate set (C++ [over.match.conv],
5378/// C++ [over.match.copy]). From is the expression we're converting from,
5379/// and ToType is the type that we're eventually trying to convert to
5380/// (which may or may not be the same type as the type that the
5381/// conversion function produces).
5382void
5383Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5384                             DeclAccessPair FoundDecl,
5385                             CXXRecordDecl *ActingContext,
5386                             Expr *From, QualType ToType,
5387                             OverloadCandidateSet& CandidateSet) {
5388  assert(!Conversion->getDescribedFunctionTemplate() &&
5389         "Conversion function templates use AddTemplateConversionCandidate");
5390  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5391  if (!CandidateSet.isNewCandidate(Conversion))
5392    return;
5393
5394  // Overload resolution is always an unevaluated context.
5395  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5396
5397  // Add this candidate
5398  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5399  Candidate.FoundDecl = FoundDecl;
5400  Candidate.Function = Conversion;
5401  Candidate.IsSurrogate = false;
5402  Candidate.IgnoreObjectArgument = false;
5403  Candidate.FinalConversion.setAsIdentityConversion();
5404  Candidate.FinalConversion.setFromType(ConvType);
5405  Candidate.FinalConversion.setAllToTypes(ToType);
5406  Candidate.Viable = true;
5407  Candidate.ExplicitCallArguments = 1;
5408
5409  // C++ [over.match.funcs]p4:
5410  //   For conversion functions, the function is considered to be a member of
5411  //   the class of the implicit implied object argument for the purpose of
5412  //   defining the type of the implicit object parameter.
5413  //
5414  // Determine the implicit conversion sequence for the implicit
5415  // object parameter.
5416  QualType ImplicitParamType = From->getType();
5417  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5418    ImplicitParamType = FromPtrType->getPointeeType();
5419  CXXRecordDecl *ConversionContext
5420    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5421
5422  Candidate.Conversions[0]
5423    = TryObjectArgumentInitialization(*this, From->getType(),
5424                                      From->Classify(Context),
5425                                      Conversion, ConversionContext);
5426
5427  if (Candidate.Conversions[0].isBad()) {
5428    Candidate.Viable = false;
5429    Candidate.FailureKind = ovl_fail_bad_conversion;
5430    return;
5431  }
5432
5433  // We won't go through a user-define type conversion function to convert a
5434  // derived to base as such conversions are given Conversion Rank. They only
5435  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5436  QualType FromCanon
5437    = Context.getCanonicalType(From->getType().getUnqualifiedType());
5438  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5439  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5440    Candidate.Viable = false;
5441    Candidate.FailureKind = ovl_fail_trivial_conversion;
5442    return;
5443  }
5444
5445  // To determine what the conversion from the result of calling the
5446  // conversion function to the type we're eventually trying to
5447  // convert to (ToType), we need to synthesize a call to the
5448  // conversion function and attempt copy initialization from it. This
5449  // makes sure that we get the right semantics with respect to
5450  // lvalues/rvalues and the type. Fortunately, we can allocate this
5451  // call on the stack and we don't need its arguments to be
5452  // well-formed.
5453  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
5454                            VK_LValue, From->getLocStart());
5455  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5456                                Context.getPointerType(Conversion->getType()),
5457                                CK_FunctionToPointerDecay,
5458                                &ConversionRef, VK_RValue);
5459
5460  QualType ConversionType = Conversion->getConversionType();
5461  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5462    Candidate.Viable = false;
5463    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5464    return;
5465  }
5466
5467  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5468
5469  // Note that it is safe to allocate CallExpr on the stack here because
5470  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5471  // allocator).
5472  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
5473  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
5474                From->getLocStart());
5475  ImplicitConversionSequence ICS =
5476    TryCopyInitialization(*this, &Call, ToType,
5477                          /*SuppressUserConversions=*/true,
5478                          /*InOverloadResolution=*/false,
5479                          /*AllowObjCWritebackConversion=*/false);
5480
5481  switch (ICS.getKind()) {
5482  case ImplicitConversionSequence::StandardConversion:
5483    Candidate.FinalConversion = ICS.Standard;
5484
5485    // C++ [over.ics.user]p3:
5486    //   If the user-defined conversion is specified by a specialization of a
5487    //   conversion function template, the second standard conversion sequence
5488    //   shall have exact match rank.
5489    if (Conversion->getPrimaryTemplate() &&
5490        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
5491      Candidate.Viable = false;
5492      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
5493    }
5494
5495    // C++0x [dcl.init.ref]p5:
5496    //    In the second case, if the reference is an rvalue reference and
5497    //    the second standard conversion sequence of the user-defined
5498    //    conversion sequence includes an lvalue-to-rvalue conversion, the
5499    //    program is ill-formed.
5500    if (ToType->isRValueReferenceType() &&
5501        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5502      Candidate.Viable = false;
5503      Candidate.FailureKind = ovl_fail_bad_final_conversion;
5504    }
5505    break;
5506
5507  case ImplicitConversionSequence::BadConversion:
5508    Candidate.Viable = false;
5509    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5510    break;
5511
5512  default:
5513    llvm_unreachable(
5514           "Can only end up with a standard conversion sequence or failure");
5515  }
5516}
5517
5518/// \brief Adds a conversion function template specialization
5519/// candidate to the overload set, using template argument deduction
5520/// to deduce the template arguments of the conversion function
5521/// template from the type that we are converting to (C++
5522/// [temp.deduct.conv]).
5523void
5524Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
5525                                     DeclAccessPair FoundDecl,
5526                                     CXXRecordDecl *ActingDC,
5527                                     Expr *From, QualType ToType,
5528                                     OverloadCandidateSet &CandidateSet) {
5529  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
5530         "Only conversion function templates permitted here");
5531
5532  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5533    return;
5534
5535  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5536  CXXConversionDecl *Specialization = 0;
5537  if (TemplateDeductionResult Result
5538        = DeduceTemplateArguments(FunctionTemplate, ToType,
5539                                  Specialization, Info)) {
5540    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5541    Candidate.FoundDecl = FoundDecl;
5542    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5543    Candidate.Viable = false;
5544    Candidate.FailureKind = ovl_fail_bad_deduction;
5545    Candidate.IsSurrogate = false;
5546    Candidate.IgnoreObjectArgument = false;
5547    Candidate.ExplicitCallArguments = 1;
5548    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5549                                                          Info);
5550    return;
5551  }
5552
5553  // Add the conversion function template specialization produced by
5554  // template argument deduction as a candidate.
5555  assert(Specialization && "Missing function template specialization?");
5556  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
5557                         CandidateSet);
5558}
5559
5560/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
5561/// converts the given @c Object to a function pointer via the
5562/// conversion function @c Conversion, and then attempts to call it
5563/// with the given arguments (C++ [over.call.object]p2-4). Proto is
5564/// the type of function that we'll eventually be calling.
5565void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
5566                                 DeclAccessPair FoundDecl,
5567                                 CXXRecordDecl *ActingContext,
5568                                 const FunctionProtoType *Proto,
5569                                 Expr *Object,
5570                                 Expr **Args, unsigned NumArgs,
5571                                 OverloadCandidateSet& CandidateSet) {
5572  if (!CandidateSet.isNewCandidate(Conversion))
5573    return;
5574
5575  // Overload resolution is always an unevaluated context.
5576  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5577
5578  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs + 1);
5579  Candidate.FoundDecl = FoundDecl;
5580  Candidate.Function = 0;
5581  Candidate.Surrogate = Conversion;
5582  Candidate.Viable = true;
5583  Candidate.IsSurrogate = true;
5584  Candidate.IgnoreObjectArgument = false;
5585  Candidate.ExplicitCallArguments = NumArgs;
5586
5587  // Determine the implicit conversion sequence for the implicit
5588  // object parameter.
5589  ImplicitConversionSequence ObjectInit
5590    = TryObjectArgumentInitialization(*this, Object->getType(),
5591                                      Object->Classify(Context),
5592                                      Conversion, ActingContext);
5593  if (ObjectInit.isBad()) {
5594    Candidate.Viable = false;
5595    Candidate.FailureKind = ovl_fail_bad_conversion;
5596    Candidate.Conversions[0] = ObjectInit;
5597    return;
5598  }
5599
5600  // The first conversion is actually a user-defined conversion whose
5601  // first conversion is ObjectInit's standard conversion (which is
5602  // effectively a reference binding). Record it as such.
5603  Candidate.Conversions[0].setUserDefined();
5604  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
5605  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
5606  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
5607  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
5608  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
5609  Candidate.Conversions[0].UserDefined.After
5610    = Candidate.Conversions[0].UserDefined.Before;
5611  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
5612
5613  // Find the
5614  unsigned NumArgsInProto = Proto->getNumArgs();
5615
5616  // (C++ 13.3.2p2): A candidate function having fewer than m
5617  // parameters is viable only if it has an ellipsis in its parameter
5618  // list (8.3.5).
5619  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
5620    Candidate.Viable = false;
5621    Candidate.FailureKind = ovl_fail_too_many_arguments;
5622    return;
5623  }
5624
5625  // Function types don't have any default arguments, so just check if
5626  // we have enough arguments.
5627  if (NumArgs < NumArgsInProto) {
5628    // Not enough arguments.
5629    Candidate.Viable = false;
5630    Candidate.FailureKind = ovl_fail_too_few_arguments;
5631    return;
5632  }
5633
5634  // Determine the implicit conversion sequences for each of the
5635  // arguments.
5636  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5637    if (ArgIdx < NumArgsInProto) {
5638      // (C++ 13.3.2p3): for F to be a viable function, there shall
5639      // exist for each argument an implicit conversion sequence
5640      // (13.3.3.1) that converts that argument to the corresponding
5641      // parameter of F.
5642      QualType ParamType = Proto->getArgType(ArgIdx);
5643      Candidate.Conversions[ArgIdx + 1]
5644        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5645                                /*SuppressUserConversions=*/false,
5646                                /*InOverloadResolution=*/false,
5647                                /*AllowObjCWritebackConversion=*/
5648                                  getLangOptions().ObjCAutoRefCount);
5649      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5650        Candidate.Viable = false;
5651        Candidate.FailureKind = ovl_fail_bad_conversion;
5652        break;
5653      }
5654    } else {
5655      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5656      // argument for which there is no corresponding parameter is
5657      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5658      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5659    }
5660  }
5661}
5662
5663/// \brief Add overload candidates for overloaded operators that are
5664/// member functions.
5665///
5666/// Add the overloaded operator candidates that are member functions
5667/// for the operator Op that was used in an operator expression such
5668/// as "x Op y". , Args/NumArgs provides the operator arguments, and
5669/// CandidateSet will store the added overload candidates. (C++
5670/// [over.match.oper]).
5671void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
5672                                       SourceLocation OpLoc,
5673                                       Expr **Args, unsigned NumArgs,
5674                                       OverloadCandidateSet& CandidateSet,
5675                                       SourceRange OpRange) {
5676  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5677
5678  // C++ [over.match.oper]p3:
5679  //   For a unary operator @ with an operand of a type whose
5680  //   cv-unqualified version is T1, and for a binary operator @ with
5681  //   a left operand of a type whose cv-unqualified version is T1 and
5682  //   a right operand of a type whose cv-unqualified version is T2,
5683  //   three sets of candidate functions, designated member
5684  //   candidates, non-member candidates and built-in candidates, are
5685  //   constructed as follows:
5686  QualType T1 = Args[0]->getType();
5687
5688  //     -- If T1 is a class type, the set of member candidates is the
5689  //        result of the qualified lookup of T1::operator@
5690  //        (13.3.1.1.1); otherwise, the set of member candidates is
5691  //        empty.
5692  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
5693    // Complete the type if it can be completed. Otherwise, we're done.
5694    if (RequireCompleteType(OpLoc, T1, PDiag()))
5695      return;
5696
5697    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
5698    LookupQualifiedName(Operators, T1Rec->getDecl());
5699    Operators.suppressDiagnostics();
5700
5701    for (LookupResult::iterator Oper = Operators.begin(),
5702                             OperEnd = Operators.end();
5703         Oper != OperEnd;
5704         ++Oper)
5705      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
5706                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
5707                         CandidateSet,
5708                         /* SuppressUserConversions = */ false);
5709  }
5710}
5711
5712/// AddBuiltinCandidate - Add a candidate for a built-in
5713/// operator. ResultTy and ParamTys are the result and parameter types
5714/// of the built-in candidate, respectively. Args and NumArgs are the
5715/// arguments being passed to the candidate. IsAssignmentOperator
5716/// should be true when this built-in candidate is an assignment
5717/// operator. NumContextualBoolArguments is the number of arguments
5718/// (at the beginning of the argument list) that will be contextually
5719/// converted to bool.
5720void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
5721                               Expr **Args, unsigned NumArgs,
5722                               OverloadCandidateSet& CandidateSet,
5723                               bool IsAssignmentOperator,
5724                               unsigned NumContextualBoolArguments) {
5725  // Overload resolution is always an unevaluated context.
5726  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5727
5728  // Add this candidate
5729  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
5730  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
5731  Candidate.Function = 0;
5732  Candidate.IsSurrogate = false;
5733  Candidate.IgnoreObjectArgument = false;
5734  Candidate.BuiltinTypes.ResultTy = ResultTy;
5735  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5736    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
5737
5738  // Determine the implicit conversion sequences for each of the
5739  // arguments.
5740  Candidate.Viable = true;
5741  Candidate.ExplicitCallArguments = NumArgs;
5742  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5743    // C++ [over.match.oper]p4:
5744    //   For the built-in assignment operators, conversions of the
5745    //   left operand are restricted as follows:
5746    //     -- no temporaries are introduced to hold the left operand, and
5747    //     -- no user-defined conversions are applied to the left
5748    //        operand to achieve a type match with the left-most
5749    //        parameter of a built-in candidate.
5750    //
5751    // We block these conversions by turning off user-defined
5752    // conversions, since that is the only way that initialization of
5753    // a reference to a non-class type can occur from something that
5754    // is not of the same type.
5755    if (ArgIdx < NumContextualBoolArguments) {
5756      assert(ParamTys[ArgIdx] == Context.BoolTy &&
5757             "Contextual conversion to bool requires bool type");
5758      Candidate.Conversions[ArgIdx]
5759        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
5760    } else {
5761      Candidate.Conversions[ArgIdx]
5762        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
5763                                ArgIdx == 0 && IsAssignmentOperator,
5764                                /*InOverloadResolution=*/false,
5765                                /*AllowObjCWritebackConversion=*/
5766                                  getLangOptions().ObjCAutoRefCount);
5767    }
5768    if (Candidate.Conversions[ArgIdx].isBad()) {
5769      Candidate.Viable = false;
5770      Candidate.FailureKind = ovl_fail_bad_conversion;
5771      break;
5772    }
5773  }
5774}
5775
5776/// BuiltinCandidateTypeSet - A set of types that will be used for the
5777/// candidate operator functions for built-in operators (C++
5778/// [over.built]). The types are separated into pointer types and
5779/// enumeration types.
5780class BuiltinCandidateTypeSet  {
5781  /// TypeSet - A set of types.
5782  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
5783
5784  /// PointerTypes - The set of pointer types that will be used in the
5785  /// built-in candidates.
5786  TypeSet PointerTypes;
5787
5788  /// MemberPointerTypes - The set of member pointer types that will be
5789  /// used in the built-in candidates.
5790  TypeSet MemberPointerTypes;
5791
5792  /// EnumerationTypes - The set of enumeration types that will be
5793  /// used in the built-in candidates.
5794  TypeSet EnumerationTypes;
5795
5796  /// \brief The set of vector types that will be used in the built-in
5797  /// candidates.
5798  TypeSet VectorTypes;
5799
5800  /// \brief A flag indicating non-record types are viable candidates
5801  bool HasNonRecordTypes;
5802
5803  /// \brief A flag indicating whether either arithmetic or enumeration types
5804  /// were present in the candidate set.
5805  bool HasArithmeticOrEnumeralTypes;
5806
5807  /// \brief A flag indicating whether the nullptr type was present in the
5808  /// candidate set.
5809  bool HasNullPtrType;
5810
5811  /// Sema - The semantic analysis instance where we are building the
5812  /// candidate type set.
5813  Sema &SemaRef;
5814
5815  /// Context - The AST context in which we will build the type sets.
5816  ASTContext &Context;
5817
5818  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
5819                                               const Qualifiers &VisibleQuals);
5820  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
5821
5822public:
5823  /// iterator - Iterates through the types that are part of the set.
5824  typedef TypeSet::iterator iterator;
5825
5826  BuiltinCandidateTypeSet(Sema &SemaRef)
5827    : HasNonRecordTypes(false),
5828      HasArithmeticOrEnumeralTypes(false),
5829      HasNullPtrType(false),
5830      SemaRef(SemaRef),
5831      Context(SemaRef.Context) { }
5832
5833  void AddTypesConvertedFrom(QualType Ty,
5834                             SourceLocation Loc,
5835                             bool AllowUserConversions,
5836                             bool AllowExplicitConversions,
5837                             const Qualifiers &VisibleTypeConversionsQuals);
5838
5839  /// pointer_begin - First pointer type found;
5840  iterator pointer_begin() { return PointerTypes.begin(); }
5841
5842  /// pointer_end - Past the last pointer type found;
5843  iterator pointer_end() { return PointerTypes.end(); }
5844
5845  /// member_pointer_begin - First member pointer type found;
5846  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
5847
5848  /// member_pointer_end - Past the last member pointer type found;
5849  iterator member_pointer_end() { return MemberPointerTypes.end(); }
5850
5851  /// enumeration_begin - First enumeration type found;
5852  iterator enumeration_begin() { return EnumerationTypes.begin(); }
5853
5854  /// enumeration_end - Past the last enumeration type found;
5855  iterator enumeration_end() { return EnumerationTypes.end(); }
5856
5857  iterator vector_begin() { return VectorTypes.begin(); }
5858  iterator vector_end() { return VectorTypes.end(); }
5859
5860  bool hasNonRecordTypes() { return HasNonRecordTypes; }
5861  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
5862  bool hasNullPtrType() const { return HasNullPtrType; }
5863};
5864
5865/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
5866/// the set of pointer types along with any more-qualified variants of
5867/// that type. For example, if @p Ty is "int const *", this routine
5868/// will add "int const *", "int const volatile *", "int const
5869/// restrict *", and "int const volatile restrict *" to the set of
5870/// pointer types. Returns true if the add of @p Ty itself succeeded,
5871/// false otherwise.
5872///
5873/// FIXME: what to do about extended qualifiers?
5874bool
5875BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
5876                                             const Qualifiers &VisibleQuals) {
5877
5878  // Insert this type.
5879  if (!PointerTypes.insert(Ty))
5880    return false;
5881
5882  QualType PointeeTy;
5883  const PointerType *PointerTy = Ty->getAs<PointerType>();
5884  bool buildObjCPtr = false;
5885  if (!PointerTy) {
5886    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
5887      PointeeTy = PTy->getPointeeType();
5888      buildObjCPtr = true;
5889    }
5890    else
5891      llvm_unreachable("type was not a pointer type!");
5892  }
5893  else
5894    PointeeTy = PointerTy->getPointeeType();
5895
5896  // Don't add qualified variants of arrays. For one, they're not allowed
5897  // (the qualifier would sink to the element type), and for another, the
5898  // only overload situation where it matters is subscript or pointer +- int,
5899  // and those shouldn't have qualifier variants anyway.
5900  if (PointeeTy->isArrayType())
5901    return true;
5902  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
5903  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
5904    BaseCVR = Array->getElementType().getCVRQualifiers();
5905  bool hasVolatile = VisibleQuals.hasVolatile();
5906  bool hasRestrict = VisibleQuals.hasRestrict();
5907
5908  // Iterate through all strict supersets of BaseCVR.
5909  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5910    if ((CVR | BaseCVR) != CVR) continue;
5911    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
5912    // in the types.
5913    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
5914    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
5915    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5916    if (!buildObjCPtr)
5917      PointerTypes.insert(Context.getPointerType(QPointeeTy));
5918    else
5919      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
5920  }
5921
5922  return true;
5923}
5924
5925/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
5926/// to the set of pointer types along with any more-qualified variants of
5927/// that type. For example, if @p Ty is "int const *", this routine
5928/// will add "int const *", "int const volatile *", "int const
5929/// restrict *", and "int const volatile restrict *" to the set of
5930/// pointer types. Returns true if the add of @p Ty itself succeeded,
5931/// false otherwise.
5932///
5933/// FIXME: what to do about extended qualifiers?
5934bool
5935BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
5936    QualType Ty) {
5937  // Insert this type.
5938  if (!MemberPointerTypes.insert(Ty))
5939    return false;
5940
5941  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
5942  assert(PointerTy && "type was not a member pointer type!");
5943
5944  QualType PointeeTy = PointerTy->getPointeeType();
5945  // Don't add qualified variants of arrays. For one, they're not allowed
5946  // (the qualifier would sink to the element type), and for another, the
5947  // only overload situation where it matters is subscript or pointer +- int,
5948  // and those shouldn't have qualifier variants anyway.
5949  if (PointeeTy->isArrayType())
5950    return true;
5951  const Type *ClassTy = PointerTy->getClass();
5952
5953  // Iterate through all strict supersets of the pointee type's CVR
5954  // qualifiers.
5955  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
5956  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5957    if ((CVR | BaseCVR) != CVR) continue;
5958
5959    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5960    MemberPointerTypes.insert(
5961      Context.getMemberPointerType(QPointeeTy, ClassTy));
5962  }
5963
5964  return true;
5965}
5966
5967/// AddTypesConvertedFrom - Add each of the types to which the type @p
5968/// Ty can be implicit converted to the given set of @p Types. We're
5969/// primarily interested in pointer types and enumeration types. We also
5970/// take member pointer types, for the conditional operator.
5971/// AllowUserConversions is true if we should look at the conversion
5972/// functions of a class type, and AllowExplicitConversions if we
5973/// should also include the explicit conversion functions of a class
5974/// type.
5975void
5976BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
5977                                               SourceLocation Loc,
5978                                               bool AllowUserConversions,
5979                                               bool AllowExplicitConversions,
5980                                               const Qualifiers &VisibleQuals) {
5981  // Only deal with canonical types.
5982  Ty = Context.getCanonicalType(Ty);
5983
5984  // Look through reference types; they aren't part of the type of an
5985  // expression for the purposes of conversions.
5986  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
5987    Ty = RefTy->getPointeeType();
5988
5989  // If we're dealing with an array type, decay to the pointer.
5990  if (Ty->isArrayType())
5991    Ty = SemaRef.Context.getArrayDecayedType(Ty);
5992
5993  // Otherwise, we don't care about qualifiers on the type.
5994  Ty = Ty.getLocalUnqualifiedType();
5995
5996  // Flag if we ever add a non-record type.
5997  const RecordType *TyRec = Ty->getAs<RecordType>();
5998  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
5999
6000  // Flag if we encounter an arithmetic type.
6001  HasArithmeticOrEnumeralTypes =
6002    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6003
6004  if (Ty->isObjCIdType() || Ty->isObjCClassType())
6005    PointerTypes.insert(Ty);
6006  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6007    // Insert our type, and its more-qualified variants, into the set
6008    // of types.
6009    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6010      return;
6011  } else if (Ty->isMemberPointerType()) {
6012    // Member pointers are far easier, since the pointee can't be converted.
6013    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6014      return;
6015  } else if (Ty->isEnumeralType()) {
6016    HasArithmeticOrEnumeralTypes = true;
6017    EnumerationTypes.insert(Ty);
6018  } else if (Ty->isVectorType()) {
6019    // We treat vector types as arithmetic types in many contexts as an
6020    // extension.
6021    HasArithmeticOrEnumeralTypes = true;
6022    VectorTypes.insert(Ty);
6023  } else if (Ty->isNullPtrType()) {
6024    HasNullPtrType = true;
6025  } else if (AllowUserConversions && TyRec) {
6026    // No conversion functions in incomplete types.
6027    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6028      return;
6029
6030    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6031    const UnresolvedSetImpl *Conversions
6032      = ClassDecl->getVisibleConversionFunctions();
6033    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6034           E = Conversions->end(); I != E; ++I) {
6035      NamedDecl *D = I.getDecl();
6036      if (isa<UsingShadowDecl>(D))
6037        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6038
6039      // Skip conversion function templates; they don't tell us anything
6040      // about which builtin types we can convert to.
6041      if (isa<FunctionTemplateDecl>(D))
6042        continue;
6043
6044      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6045      if (AllowExplicitConversions || !Conv->isExplicit()) {
6046        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6047                              VisibleQuals);
6048      }
6049    }
6050  }
6051}
6052
6053/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6054/// the volatile- and non-volatile-qualified assignment operators for the
6055/// given type to the candidate set.
6056static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6057                                                   QualType T,
6058                                                   Expr **Args,
6059                                                   unsigned NumArgs,
6060                                    OverloadCandidateSet &CandidateSet) {
6061  QualType ParamTypes[2];
6062
6063  // T& operator=(T&, T)
6064  ParamTypes[0] = S.Context.getLValueReferenceType(T);
6065  ParamTypes[1] = T;
6066  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6067                        /*IsAssignmentOperator=*/true);
6068
6069  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6070    // volatile T& operator=(volatile T&, T)
6071    ParamTypes[0]
6072      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6073    ParamTypes[1] = T;
6074    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6075                          /*IsAssignmentOperator=*/true);
6076  }
6077}
6078
6079/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6080/// if any, found in visible type conversion functions found in ArgExpr's type.
6081static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6082    Qualifiers VRQuals;
6083    const RecordType *TyRec;
6084    if (const MemberPointerType *RHSMPType =
6085        ArgExpr->getType()->getAs<MemberPointerType>())
6086      TyRec = RHSMPType->getClass()->getAs<RecordType>();
6087    else
6088      TyRec = ArgExpr->getType()->getAs<RecordType>();
6089    if (!TyRec) {
6090      // Just to be safe, assume the worst case.
6091      VRQuals.addVolatile();
6092      VRQuals.addRestrict();
6093      return VRQuals;
6094    }
6095
6096    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6097    if (!ClassDecl->hasDefinition())
6098      return VRQuals;
6099
6100    const UnresolvedSetImpl *Conversions =
6101      ClassDecl->getVisibleConversionFunctions();
6102
6103    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6104           E = Conversions->end(); I != E; ++I) {
6105      NamedDecl *D = I.getDecl();
6106      if (isa<UsingShadowDecl>(D))
6107        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6108      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6109        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6110        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6111          CanTy = ResTypeRef->getPointeeType();
6112        // Need to go down the pointer/mempointer chain and add qualifiers
6113        // as see them.
6114        bool done = false;
6115        while (!done) {
6116          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6117            CanTy = ResTypePtr->getPointeeType();
6118          else if (const MemberPointerType *ResTypeMPtr =
6119                CanTy->getAs<MemberPointerType>())
6120            CanTy = ResTypeMPtr->getPointeeType();
6121          else
6122            done = true;
6123          if (CanTy.isVolatileQualified())
6124            VRQuals.addVolatile();
6125          if (CanTy.isRestrictQualified())
6126            VRQuals.addRestrict();
6127          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6128            return VRQuals;
6129        }
6130      }
6131    }
6132    return VRQuals;
6133}
6134
6135namespace {
6136
6137/// \brief Helper class to manage the addition of builtin operator overload
6138/// candidates. It provides shared state and utility methods used throughout
6139/// the process, as well as a helper method to add each group of builtin
6140/// operator overloads from the standard to a candidate set.
6141class BuiltinOperatorOverloadBuilder {
6142  // Common instance state available to all overload candidate addition methods.
6143  Sema &S;
6144  Expr **Args;
6145  unsigned NumArgs;
6146  Qualifiers VisibleTypeConversionsQuals;
6147  bool HasArithmeticOrEnumeralCandidateType;
6148  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6149  OverloadCandidateSet &CandidateSet;
6150
6151  // Define some constants used to index and iterate over the arithemetic types
6152  // provided via the getArithmeticType() method below.
6153  // The "promoted arithmetic types" are the arithmetic
6154  // types are that preserved by promotion (C++ [over.built]p2).
6155  static const unsigned FirstIntegralType = 3;
6156  static const unsigned LastIntegralType = 18;
6157  static const unsigned FirstPromotedIntegralType = 3,
6158                        LastPromotedIntegralType = 9;
6159  static const unsigned FirstPromotedArithmeticType = 0,
6160                        LastPromotedArithmeticType = 9;
6161  static const unsigned NumArithmeticTypes = 18;
6162
6163  /// \brief Get the canonical type for a given arithmetic type index.
6164  CanQualType getArithmeticType(unsigned index) {
6165    assert(index < NumArithmeticTypes);
6166    static CanQualType ASTContext::* const
6167      ArithmeticTypes[NumArithmeticTypes] = {
6168      // Start of promoted types.
6169      &ASTContext::FloatTy,
6170      &ASTContext::DoubleTy,
6171      &ASTContext::LongDoubleTy,
6172
6173      // Start of integral types.
6174      &ASTContext::IntTy,
6175      &ASTContext::LongTy,
6176      &ASTContext::LongLongTy,
6177      &ASTContext::UnsignedIntTy,
6178      &ASTContext::UnsignedLongTy,
6179      &ASTContext::UnsignedLongLongTy,
6180      // End of promoted types.
6181
6182      &ASTContext::BoolTy,
6183      &ASTContext::CharTy,
6184      &ASTContext::WCharTy,
6185      &ASTContext::Char16Ty,
6186      &ASTContext::Char32Ty,
6187      &ASTContext::SignedCharTy,
6188      &ASTContext::ShortTy,
6189      &ASTContext::UnsignedCharTy,
6190      &ASTContext::UnsignedShortTy,
6191      // End of integral types.
6192      // FIXME: What about complex?
6193    };
6194    return S.Context.*ArithmeticTypes[index];
6195  }
6196
6197  /// \brief Gets the canonical type resulting from the usual arithemetic
6198  /// converions for the given arithmetic types.
6199  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6200    // Accelerator table for performing the usual arithmetic conversions.
6201    // The rules are basically:
6202    //   - if either is floating-point, use the wider floating-point
6203    //   - if same signedness, use the higher rank
6204    //   - if same size, use unsigned of the higher rank
6205    //   - use the larger type
6206    // These rules, together with the axiom that higher ranks are
6207    // never smaller, are sufficient to precompute all of these results
6208    // *except* when dealing with signed types of higher rank.
6209    // (we could precompute SLL x UI for all known platforms, but it's
6210    // better not to make any assumptions).
6211    enum PromotedType {
6212                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
6213    };
6214    static PromotedType ConversionsTable[LastPromotedArithmeticType]
6215                                        [LastPromotedArithmeticType] = {
6216      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
6217      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
6218      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6219      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
6220      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
6221      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
6222      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
6223      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
6224      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
6225    };
6226
6227    assert(L < LastPromotedArithmeticType);
6228    assert(R < LastPromotedArithmeticType);
6229    int Idx = ConversionsTable[L][R];
6230
6231    // Fast path: the table gives us a concrete answer.
6232    if (Idx != Dep) return getArithmeticType(Idx);
6233
6234    // Slow path: we need to compare widths.
6235    // An invariant is that the signed type has higher rank.
6236    CanQualType LT = getArithmeticType(L),
6237                RT = getArithmeticType(R);
6238    unsigned LW = S.Context.getIntWidth(LT),
6239             RW = S.Context.getIntWidth(RT);
6240
6241    // If they're different widths, use the signed type.
6242    if (LW > RW) return LT;
6243    else if (LW < RW) return RT;
6244
6245    // Otherwise, use the unsigned type of the signed type's rank.
6246    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6247    assert(L == SLL || R == SLL);
6248    return S.Context.UnsignedLongLongTy;
6249  }
6250
6251  /// \brief Helper method to factor out the common pattern of adding overloads
6252  /// for '++' and '--' builtin operators.
6253  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6254                                           bool HasVolatile) {
6255    QualType ParamTypes[2] = {
6256      S.Context.getLValueReferenceType(CandidateTy),
6257      S.Context.IntTy
6258    };
6259
6260    // Non-volatile version.
6261    if (NumArgs == 1)
6262      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6263    else
6264      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6265
6266    // Use a heuristic to reduce number of builtin candidates in the set:
6267    // add volatile version only if there are conversions to a volatile type.
6268    if (HasVolatile) {
6269      ParamTypes[0] =
6270        S.Context.getLValueReferenceType(
6271          S.Context.getVolatileType(CandidateTy));
6272      if (NumArgs == 1)
6273        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6274      else
6275        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6276    }
6277  }
6278
6279public:
6280  BuiltinOperatorOverloadBuilder(
6281    Sema &S, Expr **Args, unsigned NumArgs,
6282    Qualifiers VisibleTypeConversionsQuals,
6283    bool HasArithmeticOrEnumeralCandidateType,
6284    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6285    OverloadCandidateSet &CandidateSet)
6286    : S(S), Args(Args), NumArgs(NumArgs),
6287      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6288      HasArithmeticOrEnumeralCandidateType(
6289        HasArithmeticOrEnumeralCandidateType),
6290      CandidateTypes(CandidateTypes),
6291      CandidateSet(CandidateSet) {
6292    // Validate some of our static helper constants in debug builds.
6293    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6294           "Invalid first promoted integral type");
6295    assert(getArithmeticType(LastPromotedIntegralType - 1)
6296             == S.Context.UnsignedLongLongTy &&
6297           "Invalid last promoted integral type");
6298    assert(getArithmeticType(FirstPromotedArithmeticType)
6299             == S.Context.FloatTy &&
6300           "Invalid first promoted arithmetic type");
6301    assert(getArithmeticType(LastPromotedArithmeticType - 1)
6302             == S.Context.UnsignedLongLongTy &&
6303           "Invalid last promoted arithmetic type");
6304  }
6305
6306  // C++ [over.built]p3:
6307  //
6308  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
6309  //   is either volatile or empty, there exist candidate operator
6310  //   functions of the form
6311  //
6312  //       VQ T&      operator++(VQ T&);
6313  //       T          operator++(VQ T&, int);
6314  //
6315  // C++ [over.built]p4:
6316  //
6317  //   For every pair (T, VQ), where T is an arithmetic type other
6318  //   than bool, and VQ is either volatile or empty, there exist
6319  //   candidate operator functions of the form
6320  //
6321  //       VQ T&      operator--(VQ T&);
6322  //       T          operator--(VQ T&, int);
6323  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6324    if (!HasArithmeticOrEnumeralCandidateType)
6325      return;
6326
6327    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6328         Arith < NumArithmeticTypes; ++Arith) {
6329      addPlusPlusMinusMinusStyleOverloads(
6330        getArithmeticType(Arith),
6331        VisibleTypeConversionsQuals.hasVolatile());
6332    }
6333  }
6334
6335  // C++ [over.built]p5:
6336  //
6337  //   For every pair (T, VQ), where T is a cv-qualified or
6338  //   cv-unqualified object type, and VQ is either volatile or
6339  //   empty, there exist candidate operator functions of the form
6340  //
6341  //       T*VQ&      operator++(T*VQ&);
6342  //       T*VQ&      operator--(T*VQ&);
6343  //       T*         operator++(T*VQ&, int);
6344  //       T*         operator--(T*VQ&, int);
6345  void addPlusPlusMinusMinusPointerOverloads() {
6346    for (BuiltinCandidateTypeSet::iterator
6347              Ptr = CandidateTypes[0].pointer_begin(),
6348           PtrEnd = CandidateTypes[0].pointer_end();
6349         Ptr != PtrEnd; ++Ptr) {
6350      // Skip pointer types that aren't pointers to object types.
6351      if (!(*Ptr)->getPointeeType()->isObjectType())
6352        continue;
6353
6354      addPlusPlusMinusMinusStyleOverloads(*Ptr,
6355        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6356         VisibleTypeConversionsQuals.hasVolatile()));
6357    }
6358  }
6359
6360  // C++ [over.built]p6:
6361  //   For every cv-qualified or cv-unqualified object type T, there
6362  //   exist candidate operator functions of the form
6363  //
6364  //       T&         operator*(T*);
6365  //
6366  // C++ [over.built]p7:
6367  //   For every function type T that does not have cv-qualifiers or a
6368  //   ref-qualifier, there exist candidate operator functions of the form
6369  //       T&         operator*(T*);
6370  void addUnaryStarPointerOverloads() {
6371    for (BuiltinCandidateTypeSet::iterator
6372              Ptr = CandidateTypes[0].pointer_begin(),
6373           PtrEnd = CandidateTypes[0].pointer_end();
6374         Ptr != PtrEnd; ++Ptr) {
6375      QualType ParamTy = *Ptr;
6376      QualType PointeeTy = ParamTy->getPointeeType();
6377      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6378        continue;
6379
6380      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6381        if (Proto->getTypeQuals() || Proto->getRefQualifier())
6382          continue;
6383
6384      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6385                            &ParamTy, Args, 1, CandidateSet);
6386    }
6387  }
6388
6389  // C++ [over.built]p9:
6390  //  For every promoted arithmetic type T, there exist candidate
6391  //  operator functions of the form
6392  //
6393  //       T         operator+(T);
6394  //       T         operator-(T);
6395  void addUnaryPlusOrMinusArithmeticOverloads() {
6396    if (!HasArithmeticOrEnumeralCandidateType)
6397      return;
6398
6399    for (unsigned Arith = FirstPromotedArithmeticType;
6400         Arith < LastPromotedArithmeticType; ++Arith) {
6401      QualType ArithTy = getArithmeticType(Arith);
6402      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
6403    }
6404
6405    // Extension: We also add these operators for vector types.
6406    for (BuiltinCandidateTypeSet::iterator
6407              Vec = CandidateTypes[0].vector_begin(),
6408           VecEnd = CandidateTypes[0].vector_end();
6409         Vec != VecEnd; ++Vec) {
6410      QualType VecTy = *Vec;
6411      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6412    }
6413  }
6414
6415  // C++ [over.built]p8:
6416  //   For every type T, there exist candidate operator functions of
6417  //   the form
6418  //
6419  //       T*         operator+(T*);
6420  void addUnaryPlusPointerOverloads() {
6421    for (BuiltinCandidateTypeSet::iterator
6422              Ptr = CandidateTypes[0].pointer_begin(),
6423           PtrEnd = CandidateTypes[0].pointer_end();
6424         Ptr != PtrEnd; ++Ptr) {
6425      QualType ParamTy = *Ptr;
6426      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
6427    }
6428  }
6429
6430  // C++ [over.built]p10:
6431  //   For every promoted integral type T, there exist candidate
6432  //   operator functions of the form
6433  //
6434  //        T         operator~(T);
6435  void addUnaryTildePromotedIntegralOverloads() {
6436    if (!HasArithmeticOrEnumeralCandidateType)
6437      return;
6438
6439    for (unsigned Int = FirstPromotedIntegralType;
6440         Int < LastPromotedIntegralType; ++Int) {
6441      QualType IntTy = getArithmeticType(Int);
6442      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
6443    }
6444
6445    // Extension: We also add this operator for vector types.
6446    for (BuiltinCandidateTypeSet::iterator
6447              Vec = CandidateTypes[0].vector_begin(),
6448           VecEnd = CandidateTypes[0].vector_end();
6449         Vec != VecEnd; ++Vec) {
6450      QualType VecTy = *Vec;
6451      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6452    }
6453  }
6454
6455  // C++ [over.match.oper]p16:
6456  //   For every pointer to member type T, there exist candidate operator
6457  //   functions of the form
6458  //
6459  //        bool operator==(T,T);
6460  //        bool operator!=(T,T);
6461  void addEqualEqualOrNotEqualMemberPointerOverloads() {
6462    /// Set of (canonical) types that we've already handled.
6463    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6464
6465    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6466      for (BuiltinCandidateTypeSet::iterator
6467                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6468             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6469           MemPtr != MemPtrEnd;
6470           ++MemPtr) {
6471        // Don't add the same builtin candidate twice.
6472        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6473          continue;
6474
6475        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6476        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6477                              CandidateSet);
6478      }
6479    }
6480  }
6481
6482  // C++ [over.built]p15:
6483  //
6484  //   For every T, where T is an enumeration type, a pointer type, or
6485  //   std::nullptr_t, there exist candidate operator functions of the form
6486  //
6487  //        bool       operator<(T, T);
6488  //        bool       operator>(T, T);
6489  //        bool       operator<=(T, T);
6490  //        bool       operator>=(T, T);
6491  //        bool       operator==(T, T);
6492  //        bool       operator!=(T, T);
6493  void addRelationalPointerOrEnumeralOverloads() {
6494    // C++ [over.built]p1:
6495    //   If there is a user-written candidate with the same name and parameter
6496    //   types as a built-in candidate operator function, the built-in operator
6497    //   function is hidden and is not included in the set of candidate
6498    //   functions.
6499    //
6500    // The text is actually in a note, but if we don't implement it then we end
6501    // up with ambiguities when the user provides an overloaded operator for
6502    // an enumeration type. Note that only enumeration types have this problem,
6503    // so we track which enumeration types we've seen operators for. Also, the
6504    // only other overloaded operator with enumeration argumenst, operator=,
6505    // cannot be overloaded for enumeration types, so this is the only place
6506    // where we must suppress candidates like this.
6507    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
6508      UserDefinedBinaryOperators;
6509
6510    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6511      if (CandidateTypes[ArgIdx].enumeration_begin() !=
6512          CandidateTypes[ArgIdx].enumeration_end()) {
6513        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
6514                                         CEnd = CandidateSet.end();
6515             C != CEnd; ++C) {
6516          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
6517            continue;
6518
6519          QualType FirstParamType =
6520            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
6521          QualType SecondParamType =
6522            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
6523
6524          // Skip if either parameter isn't of enumeral type.
6525          if (!FirstParamType->isEnumeralType() ||
6526              !SecondParamType->isEnumeralType())
6527            continue;
6528
6529          // Add this operator to the set of known user-defined operators.
6530          UserDefinedBinaryOperators.insert(
6531            std::make_pair(S.Context.getCanonicalType(FirstParamType),
6532                           S.Context.getCanonicalType(SecondParamType)));
6533        }
6534      }
6535    }
6536
6537    /// Set of (canonical) types that we've already handled.
6538    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6539
6540    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6541      for (BuiltinCandidateTypeSet::iterator
6542                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6543             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6544           Ptr != PtrEnd; ++Ptr) {
6545        // Don't add the same builtin candidate twice.
6546        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6547          continue;
6548
6549        QualType ParamTypes[2] = { *Ptr, *Ptr };
6550        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6551                              CandidateSet);
6552      }
6553      for (BuiltinCandidateTypeSet::iterator
6554                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6555             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6556           Enum != EnumEnd; ++Enum) {
6557        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
6558
6559        // Don't add the same builtin candidate twice, or if a user defined
6560        // candidate exists.
6561        if (!AddedTypes.insert(CanonType) ||
6562            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
6563                                                            CanonType)))
6564          continue;
6565
6566        QualType ParamTypes[2] = { *Enum, *Enum };
6567        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6568                              CandidateSet);
6569      }
6570
6571      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
6572        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
6573        if (AddedTypes.insert(NullPtrTy) &&
6574            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
6575                                                             NullPtrTy))) {
6576          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
6577          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6578                                CandidateSet);
6579        }
6580      }
6581    }
6582  }
6583
6584  // C++ [over.built]p13:
6585  //
6586  //   For every cv-qualified or cv-unqualified object type T
6587  //   there exist candidate operator functions of the form
6588  //
6589  //      T*         operator+(T*, ptrdiff_t);
6590  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
6591  //      T*         operator-(T*, ptrdiff_t);
6592  //      T*         operator+(ptrdiff_t, T*);
6593  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
6594  //
6595  // C++ [over.built]p14:
6596  //
6597  //   For every T, where T is a pointer to object type, there
6598  //   exist candidate operator functions of the form
6599  //
6600  //      ptrdiff_t  operator-(T, T);
6601  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
6602    /// Set of (canonical) types that we've already handled.
6603    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6604
6605    for (int Arg = 0; Arg < 2; ++Arg) {
6606      QualType AsymetricParamTypes[2] = {
6607        S.Context.getPointerDiffType(),
6608        S.Context.getPointerDiffType(),
6609      };
6610      for (BuiltinCandidateTypeSet::iterator
6611                Ptr = CandidateTypes[Arg].pointer_begin(),
6612             PtrEnd = CandidateTypes[Arg].pointer_end();
6613           Ptr != PtrEnd; ++Ptr) {
6614        QualType PointeeTy = (*Ptr)->getPointeeType();
6615        if (!PointeeTy->isObjectType())
6616          continue;
6617
6618        AsymetricParamTypes[Arg] = *Ptr;
6619        if (Arg == 0 || Op == OO_Plus) {
6620          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
6621          // T* operator+(ptrdiff_t, T*);
6622          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
6623                                CandidateSet);
6624        }
6625        if (Op == OO_Minus) {
6626          // ptrdiff_t operator-(T, T);
6627          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6628            continue;
6629
6630          QualType ParamTypes[2] = { *Ptr, *Ptr };
6631          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
6632                                Args, 2, CandidateSet);
6633        }
6634      }
6635    }
6636  }
6637
6638  // C++ [over.built]p12:
6639  //
6640  //   For every pair of promoted arithmetic types L and R, there
6641  //   exist candidate operator functions of the form
6642  //
6643  //        LR         operator*(L, R);
6644  //        LR         operator/(L, R);
6645  //        LR         operator+(L, R);
6646  //        LR         operator-(L, R);
6647  //        bool       operator<(L, R);
6648  //        bool       operator>(L, R);
6649  //        bool       operator<=(L, R);
6650  //        bool       operator>=(L, R);
6651  //        bool       operator==(L, R);
6652  //        bool       operator!=(L, R);
6653  //
6654  //   where LR is the result of the usual arithmetic conversions
6655  //   between types L and R.
6656  //
6657  // C++ [over.built]p24:
6658  //
6659  //   For every pair of promoted arithmetic types L and R, there exist
6660  //   candidate operator functions of the form
6661  //
6662  //        LR       operator?(bool, L, R);
6663  //
6664  //   where LR is the result of the usual arithmetic conversions
6665  //   between types L and R.
6666  // Our candidates ignore the first parameter.
6667  void addGenericBinaryArithmeticOverloads(bool isComparison) {
6668    if (!HasArithmeticOrEnumeralCandidateType)
6669      return;
6670
6671    for (unsigned Left = FirstPromotedArithmeticType;
6672         Left < LastPromotedArithmeticType; ++Left) {
6673      for (unsigned Right = FirstPromotedArithmeticType;
6674           Right < LastPromotedArithmeticType; ++Right) {
6675        QualType LandR[2] = { getArithmeticType(Left),
6676                              getArithmeticType(Right) };
6677        QualType Result =
6678          isComparison ? S.Context.BoolTy
6679                       : getUsualArithmeticConversions(Left, Right);
6680        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6681      }
6682    }
6683
6684    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
6685    // conditional operator for vector types.
6686    for (BuiltinCandidateTypeSet::iterator
6687              Vec1 = CandidateTypes[0].vector_begin(),
6688           Vec1End = CandidateTypes[0].vector_end();
6689         Vec1 != Vec1End; ++Vec1) {
6690      for (BuiltinCandidateTypeSet::iterator
6691                Vec2 = CandidateTypes[1].vector_begin(),
6692             Vec2End = CandidateTypes[1].vector_end();
6693           Vec2 != Vec2End; ++Vec2) {
6694        QualType LandR[2] = { *Vec1, *Vec2 };
6695        QualType Result = S.Context.BoolTy;
6696        if (!isComparison) {
6697          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
6698            Result = *Vec1;
6699          else
6700            Result = *Vec2;
6701        }
6702
6703        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6704      }
6705    }
6706  }
6707
6708  // C++ [over.built]p17:
6709  //
6710  //   For every pair of promoted integral types L and R, there
6711  //   exist candidate operator functions of the form
6712  //
6713  //      LR         operator%(L, R);
6714  //      LR         operator&(L, R);
6715  //      LR         operator^(L, R);
6716  //      LR         operator|(L, R);
6717  //      L          operator<<(L, R);
6718  //      L          operator>>(L, R);
6719  //
6720  //   where LR is the result of the usual arithmetic conversions
6721  //   between types L and R.
6722  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
6723    if (!HasArithmeticOrEnumeralCandidateType)
6724      return;
6725
6726    for (unsigned Left = FirstPromotedIntegralType;
6727         Left < LastPromotedIntegralType; ++Left) {
6728      for (unsigned Right = FirstPromotedIntegralType;
6729           Right < LastPromotedIntegralType; ++Right) {
6730        QualType LandR[2] = { getArithmeticType(Left),
6731                              getArithmeticType(Right) };
6732        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
6733            ? LandR[0]
6734            : getUsualArithmeticConversions(Left, Right);
6735        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6736      }
6737    }
6738  }
6739
6740  // C++ [over.built]p20:
6741  //
6742  //   For every pair (T, VQ), where T is an enumeration or
6743  //   pointer to member type and VQ is either volatile or
6744  //   empty, there exist candidate operator functions of the form
6745  //
6746  //        VQ T&      operator=(VQ T&, T);
6747  void addAssignmentMemberPointerOrEnumeralOverloads() {
6748    /// Set of (canonical) types that we've already handled.
6749    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6750
6751    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
6752      for (BuiltinCandidateTypeSet::iterator
6753                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6754             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6755           Enum != EnumEnd; ++Enum) {
6756        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
6757          continue;
6758
6759        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
6760                                               CandidateSet);
6761      }
6762
6763      for (BuiltinCandidateTypeSet::iterator
6764                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6765             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6766           MemPtr != MemPtrEnd; ++MemPtr) {
6767        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6768          continue;
6769
6770        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
6771                                               CandidateSet);
6772      }
6773    }
6774  }
6775
6776  // C++ [over.built]p19:
6777  //
6778  //   For every pair (T, VQ), where T is any type and VQ is either
6779  //   volatile or empty, there exist candidate operator functions
6780  //   of the form
6781  //
6782  //        T*VQ&      operator=(T*VQ&, T*);
6783  //
6784  // C++ [over.built]p21:
6785  //
6786  //   For every pair (T, VQ), where T is a cv-qualified or
6787  //   cv-unqualified object type and VQ is either volatile or
6788  //   empty, there exist candidate operator functions of the form
6789  //
6790  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
6791  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
6792  void addAssignmentPointerOverloads(bool isEqualOp) {
6793    /// Set of (canonical) types that we've already handled.
6794    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6795
6796    for (BuiltinCandidateTypeSet::iterator
6797              Ptr = CandidateTypes[0].pointer_begin(),
6798           PtrEnd = CandidateTypes[0].pointer_end();
6799         Ptr != PtrEnd; ++Ptr) {
6800      // If this is operator=, keep track of the builtin candidates we added.
6801      if (isEqualOp)
6802        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
6803      else if (!(*Ptr)->getPointeeType()->isObjectType())
6804        continue;
6805
6806      // non-volatile version
6807      QualType ParamTypes[2] = {
6808        S.Context.getLValueReferenceType(*Ptr),
6809        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
6810      };
6811      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6812                            /*IsAssigmentOperator=*/ isEqualOp);
6813
6814      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6815          VisibleTypeConversionsQuals.hasVolatile()) {
6816        // volatile version
6817        ParamTypes[0] =
6818          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
6819        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6820                              /*IsAssigmentOperator=*/isEqualOp);
6821      }
6822    }
6823
6824    if (isEqualOp) {
6825      for (BuiltinCandidateTypeSet::iterator
6826                Ptr = CandidateTypes[1].pointer_begin(),
6827             PtrEnd = CandidateTypes[1].pointer_end();
6828           Ptr != PtrEnd; ++Ptr) {
6829        // Make sure we don't add the same candidate twice.
6830        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6831          continue;
6832
6833        QualType ParamTypes[2] = {
6834          S.Context.getLValueReferenceType(*Ptr),
6835          *Ptr,
6836        };
6837
6838        // non-volatile version
6839        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6840                              /*IsAssigmentOperator=*/true);
6841
6842        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6843            VisibleTypeConversionsQuals.hasVolatile()) {
6844          // volatile version
6845          ParamTypes[0] =
6846            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
6847          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6848                                CandidateSet, /*IsAssigmentOperator=*/true);
6849        }
6850      }
6851    }
6852  }
6853
6854  // C++ [over.built]p18:
6855  //
6856  //   For every triple (L, VQ, R), where L is an arithmetic type,
6857  //   VQ is either volatile or empty, and R is a promoted
6858  //   arithmetic type, there exist candidate operator functions of
6859  //   the form
6860  //
6861  //        VQ L&      operator=(VQ L&, R);
6862  //        VQ L&      operator*=(VQ L&, R);
6863  //        VQ L&      operator/=(VQ L&, R);
6864  //        VQ L&      operator+=(VQ L&, R);
6865  //        VQ L&      operator-=(VQ L&, R);
6866  void addAssignmentArithmeticOverloads(bool isEqualOp) {
6867    if (!HasArithmeticOrEnumeralCandidateType)
6868      return;
6869
6870    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
6871      for (unsigned Right = FirstPromotedArithmeticType;
6872           Right < LastPromotedArithmeticType; ++Right) {
6873        QualType ParamTypes[2];
6874        ParamTypes[1] = getArithmeticType(Right);
6875
6876        // Add this built-in operator as a candidate (VQ is empty).
6877        ParamTypes[0] =
6878          S.Context.getLValueReferenceType(getArithmeticType(Left));
6879        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6880                              /*IsAssigmentOperator=*/isEqualOp);
6881
6882        // Add this built-in operator as a candidate (VQ is 'volatile').
6883        if (VisibleTypeConversionsQuals.hasVolatile()) {
6884          ParamTypes[0] =
6885            S.Context.getVolatileType(getArithmeticType(Left));
6886          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6887          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6888                                CandidateSet,
6889                                /*IsAssigmentOperator=*/isEqualOp);
6890        }
6891      }
6892    }
6893
6894    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
6895    for (BuiltinCandidateTypeSet::iterator
6896              Vec1 = CandidateTypes[0].vector_begin(),
6897           Vec1End = CandidateTypes[0].vector_end();
6898         Vec1 != Vec1End; ++Vec1) {
6899      for (BuiltinCandidateTypeSet::iterator
6900                Vec2 = CandidateTypes[1].vector_begin(),
6901             Vec2End = CandidateTypes[1].vector_end();
6902           Vec2 != Vec2End; ++Vec2) {
6903        QualType ParamTypes[2];
6904        ParamTypes[1] = *Vec2;
6905        // Add this built-in operator as a candidate (VQ is empty).
6906        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
6907        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6908                              /*IsAssigmentOperator=*/isEqualOp);
6909
6910        // Add this built-in operator as a candidate (VQ is 'volatile').
6911        if (VisibleTypeConversionsQuals.hasVolatile()) {
6912          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
6913          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6914          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6915                                CandidateSet,
6916                                /*IsAssigmentOperator=*/isEqualOp);
6917        }
6918      }
6919    }
6920  }
6921
6922  // C++ [over.built]p22:
6923  //
6924  //   For every triple (L, VQ, R), where L is an integral type, VQ
6925  //   is either volatile or empty, and R is a promoted integral
6926  //   type, there exist candidate operator functions of the form
6927  //
6928  //        VQ L&       operator%=(VQ L&, R);
6929  //        VQ L&       operator<<=(VQ L&, R);
6930  //        VQ L&       operator>>=(VQ L&, R);
6931  //        VQ L&       operator&=(VQ L&, R);
6932  //        VQ L&       operator^=(VQ L&, R);
6933  //        VQ L&       operator|=(VQ L&, R);
6934  void addAssignmentIntegralOverloads() {
6935    if (!HasArithmeticOrEnumeralCandidateType)
6936      return;
6937
6938    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
6939      for (unsigned Right = FirstPromotedIntegralType;
6940           Right < LastPromotedIntegralType; ++Right) {
6941        QualType ParamTypes[2];
6942        ParamTypes[1] = getArithmeticType(Right);
6943
6944        // Add this built-in operator as a candidate (VQ is empty).
6945        ParamTypes[0] =
6946          S.Context.getLValueReferenceType(getArithmeticType(Left));
6947        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
6948        if (VisibleTypeConversionsQuals.hasVolatile()) {
6949          // Add this built-in operator as a candidate (VQ is 'volatile').
6950          ParamTypes[0] = getArithmeticType(Left);
6951          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
6952          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6953          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6954                                CandidateSet);
6955        }
6956      }
6957    }
6958  }
6959
6960  // C++ [over.operator]p23:
6961  //
6962  //   There also exist candidate operator functions of the form
6963  //
6964  //        bool        operator!(bool);
6965  //        bool        operator&&(bool, bool);
6966  //        bool        operator||(bool, bool);
6967  void addExclaimOverload() {
6968    QualType ParamTy = S.Context.BoolTy;
6969    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
6970                          /*IsAssignmentOperator=*/false,
6971                          /*NumContextualBoolArguments=*/1);
6972  }
6973  void addAmpAmpOrPipePipeOverload() {
6974    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
6975    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
6976                          /*IsAssignmentOperator=*/false,
6977                          /*NumContextualBoolArguments=*/2);
6978  }
6979
6980  // C++ [over.built]p13:
6981  //
6982  //   For every cv-qualified or cv-unqualified object type T there
6983  //   exist candidate operator functions of the form
6984  //
6985  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
6986  //        T&         operator[](T*, ptrdiff_t);
6987  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
6988  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
6989  //        T&         operator[](ptrdiff_t, T*);
6990  void addSubscriptOverloads() {
6991    for (BuiltinCandidateTypeSet::iterator
6992              Ptr = CandidateTypes[0].pointer_begin(),
6993           PtrEnd = CandidateTypes[0].pointer_end();
6994         Ptr != PtrEnd; ++Ptr) {
6995      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
6996      QualType PointeeType = (*Ptr)->getPointeeType();
6997      if (!PointeeType->isObjectType())
6998        continue;
6999
7000      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7001
7002      // T& operator[](T*, ptrdiff_t)
7003      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7004    }
7005
7006    for (BuiltinCandidateTypeSet::iterator
7007              Ptr = CandidateTypes[1].pointer_begin(),
7008           PtrEnd = CandidateTypes[1].pointer_end();
7009         Ptr != PtrEnd; ++Ptr) {
7010      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7011      QualType PointeeType = (*Ptr)->getPointeeType();
7012      if (!PointeeType->isObjectType())
7013        continue;
7014
7015      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7016
7017      // T& operator[](ptrdiff_t, T*)
7018      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7019    }
7020  }
7021
7022  // C++ [over.built]p11:
7023  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7024  //    C1 is the same type as C2 or is a derived class of C2, T is an object
7025  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7026  //    there exist candidate operator functions of the form
7027  //
7028  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7029  //
7030  //    where CV12 is the union of CV1 and CV2.
7031  void addArrowStarOverloads() {
7032    for (BuiltinCandidateTypeSet::iterator
7033             Ptr = CandidateTypes[0].pointer_begin(),
7034           PtrEnd = CandidateTypes[0].pointer_end();
7035         Ptr != PtrEnd; ++Ptr) {
7036      QualType C1Ty = (*Ptr);
7037      QualType C1;
7038      QualifierCollector Q1;
7039      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7040      if (!isa<RecordType>(C1))
7041        continue;
7042      // heuristic to reduce number of builtin candidates in the set.
7043      // Add volatile/restrict version only if there are conversions to a
7044      // volatile/restrict type.
7045      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7046        continue;
7047      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7048        continue;
7049      for (BuiltinCandidateTypeSet::iterator
7050                MemPtr = CandidateTypes[1].member_pointer_begin(),
7051             MemPtrEnd = CandidateTypes[1].member_pointer_end();
7052           MemPtr != MemPtrEnd; ++MemPtr) {
7053        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7054        QualType C2 = QualType(mptr->getClass(), 0);
7055        C2 = C2.getUnqualifiedType();
7056        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7057          break;
7058        QualType ParamTypes[2] = { *Ptr, *MemPtr };
7059        // build CV12 T&
7060        QualType T = mptr->getPointeeType();
7061        if (!VisibleTypeConversionsQuals.hasVolatile() &&
7062            T.isVolatileQualified())
7063          continue;
7064        if (!VisibleTypeConversionsQuals.hasRestrict() &&
7065            T.isRestrictQualified())
7066          continue;
7067        T = Q1.apply(S.Context, T);
7068        QualType ResultTy = S.Context.getLValueReferenceType(T);
7069        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7070      }
7071    }
7072  }
7073
7074  // Note that we don't consider the first argument, since it has been
7075  // contextually converted to bool long ago. The candidates below are
7076  // therefore added as binary.
7077  //
7078  // C++ [over.built]p25:
7079  //   For every type T, where T is a pointer, pointer-to-member, or scoped
7080  //   enumeration type, there exist candidate operator functions of the form
7081  //
7082  //        T        operator?(bool, T, T);
7083  //
7084  void addConditionalOperatorOverloads() {
7085    /// Set of (canonical) types that we've already handled.
7086    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7087
7088    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7089      for (BuiltinCandidateTypeSet::iterator
7090                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7091             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7092           Ptr != PtrEnd; ++Ptr) {
7093        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7094          continue;
7095
7096        QualType ParamTypes[2] = { *Ptr, *Ptr };
7097        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
7098      }
7099
7100      for (BuiltinCandidateTypeSet::iterator
7101                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7102             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7103           MemPtr != MemPtrEnd; ++MemPtr) {
7104        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7105          continue;
7106
7107        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7108        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
7109      }
7110
7111      if (S.getLangOptions().CPlusPlus0x) {
7112        for (BuiltinCandidateTypeSet::iterator
7113                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7114               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7115             Enum != EnumEnd; ++Enum) {
7116          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7117            continue;
7118
7119          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7120            continue;
7121
7122          QualType ParamTypes[2] = { *Enum, *Enum };
7123          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
7124        }
7125      }
7126    }
7127  }
7128};
7129
7130} // end anonymous namespace
7131
7132/// AddBuiltinOperatorCandidates - Add the appropriate built-in
7133/// operator overloads to the candidate set (C++ [over.built]), based
7134/// on the operator @p Op and the arguments given. For example, if the
7135/// operator is a binary '+', this routine might add "int
7136/// operator+(int, int)" to cover integer addition.
7137void
7138Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7139                                   SourceLocation OpLoc,
7140                                   Expr **Args, unsigned NumArgs,
7141                                   OverloadCandidateSet& CandidateSet) {
7142  // Find all of the types that the arguments can convert to, but only
7143  // if the operator we're looking at has built-in operator candidates
7144  // that make use of these types. Also record whether we encounter non-record
7145  // candidate types or either arithmetic or enumeral candidate types.
7146  Qualifiers VisibleTypeConversionsQuals;
7147  VisibleTypeConversionsQuals.addConst();
7148  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7149    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7150
7151  bool HasNonRecordCandidateType = false;
7152  bool HasArithmeticOrEnumeralCandidateType = false;
7153  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7154  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
7155    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7156    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7157                                                 OpLoc,
7158                                                 true,
7159                                                 (Op == OO_Exclaim ||
7160                                                  Op == OO_AmpAmp ||
7161                                                  Op == OO_PipePipe),
7162                                                 VisibleTypeConversionsQuals);
7163    HasNonRecordCandidateType = HasNonRecordCandidateType ||
7164        CandidateTypes[ArgIdx].hasNonRecordTypes();
7165    HasArithmeticOrEnumeralCandidateType =
7166        HasArithmeticOrEnumeralCandidateType ||
7167        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7168  }
7169
7170  // Exit early when no non-record types have been added to the candidate set
7171  // for any of the arguments to the operator.
7172  //
7173  // We can't exit early for !, ||, or &&, since there we have always have
7174  // 'bool' overloads.
7175  if (!HasNonRecordCandidateType &&
7176      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7177    return;
7178
7179  // Setup an object to manage the common state for building overloads.
7180  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
7181                                           VisibleTypeConversionsQuals,
7182                                           HasArithmeticOrEnumeralCandidateType,
7183                                           CandidateTypes, CandidateSet);
7184
7185  // Dispatch over the operation to add in only those overloads which apply.
7186  switch (Op) {
7187  case OO_None:
7188  case NUM_OVERLOADED_OPERATORS:
7189    llvm_unreachable("Expected an overloaded operator");
7190
7191  case OO_New:
7192  case OO_Delete:
7193  case OO_Array_New:
7194  case OO_Array_Delete:
7195  case OO_Call:
7196    llvm_unreachable(
7197                    "Special operators don't use AddBuiltinOperatorCandidates");
7198
7199  case OO_Comma:
7200  case OO_Arrow:
7201    // C++ [over.match.oper]p3:
7202    //   -- For the operator ',', the unary operator '&', or the
7203    //      operator '->', the built-in candidates set is empty.
7204    break;
7205
7206  case OO_Plus: // '+' is either unary or binary
7207    if (NumArgs == 1)
7208      OpBuilder.addUnaryPlusPointerOverloads();
7209    // Fall through.
7210
7211  case OO_Minus: // '-' is either unary or binary
7212    if (NumArgs == 1) {
7213      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7214    } else {
7215      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7216      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7217    }
7218    break;
7219
7220  case OO_Star: // '*' is either unary or binary
7221    if (NumArgs == 1)
7222      OpBuilder.addUnaryStarPointerOverloads();
7223    else
7224      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7225    break;
7226
7227  case OO_Slash:
7228    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7229    break;
7230
7231  case OO_PlusPlus:
7232  case OO_MinusMinus:
7233    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7234    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7235    break;
7236
7237  case OO_EqualEqual:
7238  case OO_ExclaimEqual:
7239    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7240    // Fall through.
7241
7242  case OO_Less:
7243  case OO_Greater:
7244  case OO_LessEqual:
7245  case OO_GreaterEqual:
7246    OpBuilder.addRelationalPointerOrEnumeralOverloads();
7247    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7248    break;
7249
7250  case OO_Percent:
7251  case OO_Caret:
7252  case OO_Pipe:
7253  case OO_LessLess:
7254  case OO_GreaterGreater:
7255    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7256    break;
7257
7258  case OO_Amp: // '&' is either unary or binary
7259    if (NumArgs == 1)
7260      // C++ [over.match.oper]p3:
7261      //   -- For the operator ',', the unary operator '&', or the
7262      //      operator '->', the built-in candidates set is empty.
7263      break;
7264
7265    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7266    break;
7267
7268  case OO_Tilde:
7269    OpBuilder.addUnaryTildePromotedIntegralOverloads();
7270    break;
7271
7272  case OO_Equal:
7273    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7274    // Fall through.
7275
7276  case OO_PlusEqual:
7277  case OO_MinusEqual:
7278    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7279    // Fall through.
7280
7281  case OO_StarEqual:
7282  case OO_SlashEqual:
7283    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7284    break;
7285
7286  case OO_PercentEqual:
7287  case OO_LessLessEqual:
7288  case OO_GreaterGreaterEqual:
7289  case OO_AmpEqual:
7290  case OO_CaretEqual:
7291  case OO_PipeEqual:
7292    OpBuilder.addAssignmentIntegralOverloads();
7293    break;
7294
7295  case OO_Exclaim:
7296    OpBuilder.addExclaimOverload();
7297    break;
7298
7299  case OO_AmpAmp:
7300  case OO_PipePipe:
7301    OpBuilder.addAmpAmpOrPipePipeOverload();
7302    break;
7303
7304  case OO_Subscript:
7305    OpBuilder.addSubscriptOverloads();
7306    break;
7307
7308  case OO_ArrowStar:
7309    OpBuilder.addArrowStarOverloads();
7310    break;
7311
7312  case OO_Conditional:
7313    OpBuilder.addConditionalOperatorOverloads();
7314    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7315    break;
7316  }
7317}
7318
7319/// \brief Add function candidates found via argument-dependent lookup
7320/// to the set of overloading candidates.
7321///
7322/// This routine performs argument-dependent name lookup based on the
7323/// given function name (which may also be an operator name) and adds
7324/// all of the overload candidates found by ADL to the overload
7325/// candidate set (C++ [basic.lookup.argdep]).
7326void
7327Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7328                                           bool Operator,
7329                                           Expr **Args, unsigned NumArgs,
7330                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7331                                           OverloadCandidateSet& CandidateSet,
7332                                           bool PartialOverloading,
7333                                           bool StdNamespaceIsAssociated) {
7334  ADLResult Fns;
7335
7336  // FIXME: This approach for uniquing ADL results (and removing
7337  // redundant candidates from the set) relies on pointer-equality,
7338  // which means we need to key off the canonical decl.  However,
7339  // always going back to the canonical decl might not get us the
7340  // right set of default arguments.  What default arguments are
7341  // we supposed to consider on ADL candidates, anyway?
7342
7343  // FIXME: Pass in the explicit template arguments?
7344  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns,
7345                          StdNamespaceIsAssociated);
7346
7347  // Erase all of the candidates we already knew about.
7348  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7349                                   CandEnd = CandidateSet.end();
7350       Cand != CandEnd; ++Cand)
7351    if (Cand->Function) {
7352      Fns.erase(Cand->Function);
7353      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7354        Fns.erase(FunTmpl);
7355    }
7356
7357  // For each of the ADL candidates we found, add it to the overload
7358  // set.
7359  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7360    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7361    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7362      if (ExplicitTemplateArgs)
7363        continue;
7364
7365      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
7366                           false, PartialOverloading);
7367    } else
7368      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7369                                   FoundDecl, ExplicitTemplateArgs,
7370                                   Args, NumArgs, CandidateSet);
7371  }
7372}
7373
7374/// isBetterOverloadCandidate - Determines whether the first overload
7375/// candidate is a better candidate than the second (C++ 13.3.3p1).
7376bool
7377isBetterOverloadCandidate(Sema &S,
7378                          const OverloadCandidate &Cand1,
7379                          const OverloadCandidate &Cand2,
7380                          SourceLocation Loc,
7381                          bool UserDefinedConversion) {
7382  // Define viable functions to be better candidates than non-viable
7383  // functions.
7384  if (!Cand2.Viable)
7385    return Cand1.Viable;
7386  else if (!Cand1.Viable)
7387    return false;
7388
7389  // C++ [over.match.best]p1:
7390  //
7391  //   -- if F is a static member function, ICS1(F) is defined such
7392  //      that ICS1(F) is neither better nor worse than ICS1(G) for
7393  //      any function G, and, symmetrically, ICS1(G) is neither
7394  //      better nor worse than ICS1(F).
7395  unsigned StartArg = 0;
7396  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
7397    StartArg = 1;
7398
7399  // C++ [over.match.best]p1:
7400  //   A viable function F1 is defined to be a better function than another
7401  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
7402  //   conversion sequence than ICSi(F2), and then...
7403  unsigned NumArgs = Cand1.NumConversions;
7404  assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
7405  bool HasBetterConversion = false;
7406  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
7407    switch (CompareImplicitConversionSequences(S,
7408                                               Cand1.Conversions[ArgIdx],
7409                                               Cand2.Conversions[ArgIdx])) {
7410    case ImplicitConversionSequence::Better:
7411      // Cand1 has a better conversion sequence.
7412      HasBetterConversion = true;
7413      break;
7414
7415    case ImplicitConversionSequence::Worse:
7416      // Cand1 can't be better than Cand2.
7417      return false;
7418
7419    case ImplicitConversionSequence::Indistinguishable:
7420      // Do nothing.
7421      break;
7422    }
7423  }
7424
7425  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
7426  //       ICSj(F2), or, if not that,
7427  if (HasBetterConversion)
7428    return true;
7429
7430  //     - F1 is a non-template function and F2 is a function template
7431  //       specialization, or, if not that,
7432  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
7433      Cand2.Function && Cand2.Function->getPrimaryTemplate())
7434    return true;
7435
7436  //   -- F1 and F2 are function template specializations, and the function
7437  //      template for F1 is more specialized than the template for F2
7438  //      according to the partial ordering rules described in 14.5.5.2, or,
7439  //      if not that,
7440  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
7441      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
7442    if (FunctionTemplateDecl *BetterTemplate
7443          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
7444                                         Cand2.Function->getPrimaryTemplate(),
7445                                         Loc,
7446                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
7447                                                             : TPOC_Call,
7448                                         Cand1.ExplicitCallArguments))
7449      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
7450  }
7451
7452  //   -- the context is an initialization by user-defined conversion
7453  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
7454  //      from the return type of F1 to the destination type (i.e.,
7455  //      the type of the entity being initialized) is a better
7456  //      conversion sequence than the standard conversion sequence
7457  //      from the return type of F2 to the destination type.
7458  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
7459      isa<CXXConversionDecl>(Cand1.Function) &&
7460      isa<CXXConversionDecl>(Cand2.Function)) {
7461    switch (CompareStandardConversionSequences(S,
7462                                               Cand1.FinalConversion,
7463                                               Cand2.FinalConversion)) {
7464    case ImplicitConversionSequence::Better:
7465      // Cand1 has a better conversion sequence.
7466      return true;
7467
7468    case ImplicitConversionSequence::Worse:
7469      // Cand1 can't be better than Cand2.
7470      return false;
7471
7472    case ImplicitConversionSequence::Indistinguishable:
7473      // Do nothing
7474      break;
7475    }
7476  }
7477
7478  return false;
7479}
7480
7481/// \brief Computes the best viable function (C++ 13.3.3)
7482/// within an overload candidate set.
7483///
7484/// \param CandidateSet the set of candidate functions.
7485///
7486/// \param Loc the location of the function name (or operator symbol) for
7487/// which overload resolution occurs.
7488///
7489/// \param Best f overload resolution was successful or found a deleted
7490/// function, Best points to the candidate function found.
7491///
7492/// \returns The result of overload resolution.
7493OverloadingResult
7494OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
7495                                         iterator &Best,
7496                                         bool UserDefinedConversion) {
7497  // Find the best viable function.
7498  Best = end();
7499  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7500    if (Cand->Viable)
7501      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
7502                                                     UserDefinedConversion))
7503        Best = Cand;
7504  }
7505
7506  // If we didn't find any viable functions, abort.
7507  if (Best == end())
7508    return OR_No_Viable_Function;
7509
7510  // Make sure that this function is better than every other viable
7511  // function. If not, we have an ambiguity.
7512  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7513    if (Cand->Viable &&
7514        Cand != Best &&
7515        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
7516                                   UserDefinedConversion)) {
7517      Best = end();
7518      return OR_Ambiguous;
7519    }
7520  }
7521
7522  // Best is the best viable function.
7523  if (Best->Function &&
7524      (Best->Function->isDeleted() ||
7525       S.isFunctionConsideredUnavailable(Best->Function)))
7526    return OR_Deleted;
7527
7528  return OR_Success;
7529}
7530
7531namespace {
7532
7533enum OverloadCandidateKind {
7534  oc_function,
7535  oc_method,
7536  oc_constructor,
7537  oc_function_template,
7538  oc_method_template,
7539  oc_constructor_template,
7540  oc_implicit_default_constructor,
7541  oc_implicit_copy_constructor,
7542  oc_implicit_move_constructor,
7543  oc_implicit_copy_assignment,
7544  oc_implicit_move_assignment,
7545  oc_implicit_inherited_constructor
7546};
7547
7548OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
7549                                                FunctionDecl *Fn,
7550                                                std::string &Description) {
7551  bool isTemplate = false;
7552
7553  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
7554    isTemplate = true;
7555    Description = S.getTemplateArgumentBindingsText(
7556      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
7557  }
7558
7559  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
7560    if (!Ctor->isImplicit())
7561      return isTemplate ? oc_constructor_template : oc_constructor;
7562
7563    if (Ctor->getInheritedConstructor())
7564      return oc_implicit_inherited_constructor;
7565
7566    if (Ctor->isDefaultConstructor())
7567      return oc_implicit_default_constructor;
7568
7569    if (Ctor->isMoveConstructor())
7570      return oc_implicit_move_constructor;
7571
7572    assert(Ctor->isCopyConstructor() &&
7573           "unexpected sort of implicit constructor");
7574    return oc_implicit_copy_constructor;
7575  }
7576
7577  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
7578    // This actually gets spelled 'candidate function' for now, but
7579    // it doesn't hurt to split it out.
7580    if (!Meth->isImplicit())
7581      return isTemplate ? oc_method_template : oc_method;
7582
7583    if (Meth->isMoveAssignmentOperator())
7584      return oc_implicit_move_assignment;
7585
7586    assert(Meth->isCopyAssignmentOperator()
7587           && "implicit method is not copy assignment operator?");
7588    return oc_implicit_copy_assignment;
7589  }
7590
7591  return isTemplate ? oc_function_template : oc_function;
7592}
7593
7594void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
7595  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
7596  if (!Ctor) return;
7597
7598  Ctor = Ctor->getInheritedConstructor();
7599  if (!Ctor) return;
7600
7601  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
7602}
7603
7604} // end anonymous namespace
7605
7606// Notes the location of an overload candidate.
7607void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
7608  std::string FnDesc;
7609  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
7610  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
7611                             << (unsigned) K << FnDesc;
7612  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
7613  Diag(Fn->getLocation(), PD);
7614  MaybeEmitInheritedConstructorNote(*this, Fn);
7615}
7616
7617//Notes the location of all overload candidates designated through
7618// OverloadedExpr
7619void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
7620  assert(OverloadedExpr->getType() == Context.OverloadTy);
7621
7622  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
7623  OverloadExpr *OvlExpr = Ovl.Expression;
7624
7625  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7626                            IEnd = OvlExpr->decls_end();
7627       I != IEnd; ++I) {
7628    if (FunctionTemplateDecl *FunTmpl =
7629                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
7630      NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
7631    } else if (FunctionDecl *Fun
7632                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
7633      NoteOverloadCandidate(Fun, DestType);
7634    }
7635  }
7636}
7637
7638/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
7639/// "lead" diagnostic; it will be given two arguments, the source and
7640/// target types of the conversion.
7641void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
7642                                 Sema &S,
7643                                 SourceLocation CaretLoc,
7644                                 const PartialDiagnostic &PDiag) const {
7645  S.Diag(CaretLoc, PDiag)
7646    << Ambiguous.getFromType() << Ambiguous.getToType();
7647  for (AmbiguousConversionSequence::const_iterator
7648         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
7649    S.NoteOverloadCandidate(*I);
7650  }
7651}
7652
7653namespace {
7654
7655void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
7656  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
7657  assert(Conv.isBad());
7658  assert(Cand->Function && "for now, candidate must be a function");
7659  FunctionDecl *Fn = Cand->Function;
7660
7661  // There's a conversion slot for the object argument if this is a
7662  // non-constructor method.  Note that 'I' corresponds the
7663  // conversion-slot index.
7664  bool isObjectArgument = false;
7665  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
7666    if (I == 0)
7667      isObjectArgument = true;
7668    else
7669      I--;
7670  }
7671
7672  std::string FnDesc;
7673  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
7674
7675  Expr *FromExpr = Conv.Bad.FromExpr;
7676  QualType FromTy = Conv.Bad.getFromType();
7677  QualType ToTy = Conv.Bad.getToType();
7678
7679  if (FromTy == S.Context.OverloadTy) {
7680    assert(FromExpr && "overload set argument came from implicit argument?");
7681    Expr *E = FromExpr->IgnoreParens();
7682    if (isa<UnaryOperator>(E))
7683      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
7684    DeclarationName Name = cast<OverloadExpr>(E)->getName();
7685
7686    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
7687      << (unsigned) FnKind << FnDesc
7688      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7689      << ToTy << Name << I+1;
7690    MaybeEmitInheritedConstructorNote(S, Fn);
7691    return;
7692  }
7693
7694  // Do some hand-waving analysis to see if the non-viability is due
7695  // to a qualifier mismatch.
7696  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
7697  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
7698  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
7699    CToTy = RT->getPointeeType();
7700  else {
7701    // TODO: detect and diagnose the full richness of const mismatches.
7702    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
7703      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
7704        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
7705  }
7706
7707  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
7708      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
7709    // It is dumb that we have to do this here.
7710    while (isa<ArrayType>(CFromTy))
7711      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
7712    while (isa<ArrayType>(CToTy))
7713      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
7714
7715    Qualifiers FromQs = CFromTy.getQualifiers();
7716    Qualifiers ToQs = CToTy.getQualifiers();
7717
7718    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
7719      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
7720        << (unsigned) FnKind << FnDesc
7721        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7722        << FromTy
7723        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
7724        << (unsigned) isObjectArgument << I+1;
7725      MaybeEmitInheritedConstructorNote(S, Fn);
7726      return;
7727    }
7728
7729    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
7730      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
7731        << (unsigned) FnKind << FnDesc
7732        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7733        << FromTy
7734        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
7735        << (unsigned) isObjectArgument << I+1;
7736      MaybeEmitInheritedConstructorNote(S, Fn);
7737      return;
7738    }
7739
7740    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
7741      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
7742      << (unsigned) FnKind << FnDesc
7743      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7744      << FromTy
7745      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
7746      << (unsigned) isObjectArgument << I+1;
7747      MaybeEmitInheritedConstructorNote(S, Fn);
7748      return;
7749    }
7750
7751    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
7752    assert(CVR && "unexpected qualifiers mismatch");
7753
7754    if (isObjectArgument) {
7755      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
7756        << (unsigned) FnKind << FnDesc
7757        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7758        << FromTy << (CVR - 1);
7759    } else {
7760      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
7761        << (unsigned) FnKind << FnDesc
7762        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7763        << FromTy << (CVR - 1) << I+1;
7764    }
7765    MaybeEmitInheritedConstructorNote(S, Fn);
7766    return;
7767  }
7768
7769  // Special diagnostic for failure to convert an initializer list, since
7770  // telling the user that it has type void is not useful.
7771  if (FromExpr && isa<InitListExpr>(FromExpr)) {
7772    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
7773      << (unsigned) FnKind << FnDesc
7774      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7775      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7776    MaybeEmitInheritedConstructorNote(S, Fn);
7777    return;
7778  }
7779
7780  // Diagnose references or pointers to incomplete types differently,
7781  // since it's far from impossible that the incompleteness triggered
7782  // the failure.
7783  QualType TempFromTy = FromTy.getNonReferenceType();
7784  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
7785    TempFromTy = PTy->getPointeeType();
7786  if (TempFromTy->isIncompleteType()) {
7787    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
7788      << (unsigned) FnKind << FnDesc
7789      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7790      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7791    MaybeEmitInheritedConstructorNote(S, Fn);
7792    return;
7793  }
7794
7795  // Diagnose base -> derived pointer conversions.
7796  unsigned BaseToDerivedConversion = 0;
7797  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
7798    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
7799      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
7800                                               FromPtrTy->getPointeeType()) &&
7801          !FromPtrTy->getPointeeType()->isIncompleteType() &&
7802          !ToPtrTy->getPointeeType()->isIncompleteType() &&
7803          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
7804                          FromPtrTy->getPointeeType()))
7805        BaseToDerivedConversion = 1;
7806    }
7807  } else if (const ObjCObjectPointerType *FromPtrTy
7808                                    = FromTy->getAs<ObjCObjectPointerType>()) {
7809    if (const ObjCObjectPointerType *ToPtrTy
7810                                        = ToTy->getAs<ObjCObjectPointerType>())
7811      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
7812        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
7813          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
7814                                                FromPtrTy->getPointeeType()) &&
7815              FromIface->isSuperClassOf(ToIface))
7816            BaseToDerivedConversion = 2;
7817  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
7818      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
7819          !FromTy->isIncompleteType() &&
7820          !ToRefTy->getPointeeType()->isIncompleteType() &&
7821          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
7822        BaseToDerivedConversion = 3;
7823    }
7824
7825  if (BaseToDerivedConversion) {
7826    S.Diag(Fn->getLocation(),
7827           diag::note_ovl_candidate_bad_base_to_derived_conv)
7828      << (unsigned) FnKind << FnDesc
7829      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7830      << (BaseToDerivedConversion - 1)
7831      << FromTy << ToTy << I+1;
7832    MaybeEmitInheritedConstructorNote(S, Fn);
7833    return;
7834  }
7835
7836  if (isa<ObjCObjectPointerType>(CFromTy) &&
7837      isa<PointerType>(CToTy)) {
7838      Qualifiers FromQs = CFromTy.getQualifiers();
7839      Qualifiers ToQs = CToTy.getQualifiers();
7840      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
7841        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
7842        << (unsigned) FnKind << FnDesc
7843        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7844        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7845        MaybeEmitInheritedConstructorNote(S, Fn);
7846        return;
7847      }
7848  }
7849
7850  // Emit the generic diagnostic and, optionally, add the hints to it.
7851  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
7852  FDiag << (unsigned) FnKind << FnDesc
7853    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7854    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
7855    << (unsigned) (Cand->Fix.Kind);
7856
7857  // If we can fix the conversion, suggest the FixIts.
7858  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
7859       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
7860    FDiag << *HI;
7861  S.Diag(Fn->getLocation(), FDiag);
7862
7863  MaybeEmitInheritedConstructorNote(S, Fn);
7864}
7865
7866void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
7867                           unsigned NumFormalArgs) {
7868  // TODO: treat calls to a missing default constructor as a special case
7869
7870  FunctionDecl *Fn = Cand->Function;
7871  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
7872
7873  unsigned MinParams = Fn->getMinRequiredArguments();
7874
7875  // With invalid overloaded operators, it's possible that we think we
7876  // have an arity mismatch when it fact it looks like we have the
7877  // right number of arguments, because only overloaded operators have
7878  // the weird behavior of overloading member and non-member functions.
7879  // Just don't report anything.
7880  if (Fn->isInvalidDecl() &&
7881      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
7882    return;
7883
7884  // at least / at most / exactly
7885  unsigned mode, modeCount;
7886  if (NumFormalArgs < MinParams) {
7887    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
7888           (Cand->FailureKind == ovl_fail_bad_deduction &&
7889            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
7890    if (MinParams != FnTy->getNumArgs() ||
7891        FnTy->isVariadic() || FnTy->isTemplateVariadic())
7892      mode = 0; // "at least"
7893    else
7894      mode = 2; // "exactly"
7895    modeCount = MinParams;
7896  } else {
7897    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
7898           (Cand->FailureKind == ovl_fail_bad_deduction &&
7899            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
7900    if (MinParams != FnTy->getNumArgs())
7901      mode = 1; // "at most"
7902    else
7903      mode = 2; // "exactly"
7904    modeCount = FnTy->getNumArgs();
7905  }
7906
7907  std::string Description;
7908  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
7909
7910  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
7911    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
7912    << modeCount << NumFormalArgs;
7913  MaybeEmitInheritedConstructorNote(S, Fn);
7914}
7915
7916/// Diagnose a failed template-argument deduction.
7917void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
7918                          Expr **Args, unsigned NumArgs) {
7919  FunctionDecl *Fn = Cand->Function; // pattern
7920
7921  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
7922  NamedDecl *ParamD;
7923  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
7924  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
7925  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
7926  switch (Cand->DeductionFailure.Result) {
7927  case Sema::TDK_Success:
7928    llvm_unreachable("TDK_success while diagnosing bad deduction");
7929
7930  case Sema::TDK_Incomplete: {
7931    assert(ParamD && "no parameter found for incomplete deduction result");
7932    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
7933      << ParamD->getDeclName();
7934    MaybeEmitInheritedConstructorNote(S, Fn);
7935    return;
7936  }
7937
7938  case Sema::TDK_Underqualified: {
7939    assert(ParamD && "no parameter found for bad qualifiers deduction result");
7940    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
7941
7942    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
7943
7944    // Param will have been canonicalized, but it should just be a
7945    // qualified version of ParamD, so move the qualifiers to that.
7946    QualifierCollector Qs;
7947    Qs.strip(Param);
7948    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
7949    assert(S.Context.hasSameType(Param, NonCanonParam));
7950
7951    // Arg has also been canonicalized, but there's nothing we can do
7952    // about that.  It also doesn't matter as much, because it won't
7953    // have any template parameters in it (because deduction isn't
7954    // done on dependent types).
7955    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
7956
7957    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
7958      << ParamD->getDeclName() << Arg << NonCanonParam;
7959    MaybeEmitInheritedConstructorNote(S, Fn);
7960    return;
7961  }
7962
7963  case Sema::TDK_Inconsistent: {
7964    assert(ParamD && "no parameter found for inconsistent deduction result");
7965    int which = 0;
7966    if (isa<TemplateTypeParmDecl>(ParamD))
7967      which = 0;
7968    else if (isa<NonTypeTemplateParmDecl>(ParamD))
7969      which = 1;
7970    else {
7971      which = 2;
7972    }
7973
7974    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
7975      << which << ParamD->getDeclName()
7976      << *Cand->DeductionFailure.getFirstArg()
7977      << *Cand->DeductionFailure.getSecondArg();
7978    MaybeEmitInheritedConstructorNote(S, Fn);
7979    return;
7980  }
7981
7982  case Sema::TDK_InvalidExplicitArguments:
7983    assert(ParamD && "no parameter found for invalid explicit arguments");
7984    if (ParamD->getDeclName())
7985      S.Diag(Fn->getLocation(),
7986             diag::note_ovl_candidate_explicit_arg_mismatch_named)
7987        << ParamD->getDeclName();
7988    else {
7989      int index = 0;
7990      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
7991        index = TTP->getIndex();
7992      else if (NonTypeTemplateParmDecl *NTTP
7993                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
7994        index = NTTP->getIndex();
7995      else
7996        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
7997      S.Diag(Fn->getLocation(),
7998             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
7999        << (index + 1);
8000    }
8001    MaybeEmitInheritedConstructorNote(S, Fn);
8002    return;
8003
8004  case Sema::TDK_TooManyArguments:
8005  case Sema::TDK_TooFewArguments:
8006    DiagnoseArityMismatch(S, Cand, NumArgs);
8007    return;
8008
8009  case Sema::TDK_InstantiationDepth:
8010    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
8011    MaybeEmitInheritedConstructorNote(S, Fn);
8012    return;
8013
8014  case Sema::TDK_SubstitutionFailure: {
8015    std::string ArgString;
8016    if (TemplateArgumentList *Args
8017                            = Cand->DeductionFailure.getTemplateArgumentList())
8018      ArgString = S.getTemplateArgumentBindingsText(
8019                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
8020                                                    *Args);
8021    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
8022      << ArgString;
8023    MaybeEmitInheritedConstructorNote(S, Fn);
8024    return;
8025  }
8026
8027  // TODO: diagnose these individually, then kill off
8028  // note_ovl_candidate_bad_deduction, which is uselessly vague.
8029  case Sema::TDK_NonDeducedMismatch:
8030  case Sema::TDK_FailedOverloadResolution:
8031    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
8032    MaybeEmitInheritedConstructorNote(S, Fn);
8033    return;
8034  }
8035}
8036
8037/// CUDA: diagnose an invalid call across targets.
8038void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8039  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8040  FunctionDecl *Callee = Cand->Function;
8041
8042  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8043                           CalleeTarget = S.IdentifyCUDATarget(Callee);
8044
8045  std::string FnDesc;
8046  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8047
8048  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8049      << (unsigned) FnKind << CalleeTarget << CallerTarget;
8050}
8051
8052/// Generates a 'note' diagnostic for an overload candidate.  We've
8053/// already generated a primary error at the call site.
8054///
8055/// It really does need to be a single diagnostic with its caret
8056/// pointed at the candidate declaration.  Yes, this creates some
8057/// major challenges of technical writing.  Yes, this makes pointing
8058/// out problems with specific arguments quite awkward.  It's still
8059/// better than generating twenty screens of text for every failed
8060/// overload.
8061///
8062/// It would be great to be able to express per-candidate problems
8063/// more richly for those diagnostic clients that cared, but we'd
8064/// still have to be just as careful with the default diagnostics.
8065void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8066                           Expr **Args, unsigned NumArgs) {
8067  FunctionDecl *Fn = Cand->Function;
8068
8069  // Note deleted candidates, but only if they're viable.
8070  if (Cand->Viable && (Fn->isDeleted() ||
8071      S.isFunctionConsideredUnavailable(Fn))) {
8072    std::string FnDesc;
8073    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8074
8075    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8076      << FnKind << FnDesc << Fn->isDeleted();
8077    MaybeEmitInheritedConstructorNote(S, Fn);
8078    return;
8079  }
8080
8081  // We don't really have anything else to say about viable candidates.
8082  if (Cand->Viable) {
8083    S.NoteOverloadCandidate(Fn);
8084    return;
8085  }
8086
8087  switch (Cand->FailureKind) {
8088  case ovl_fail_too_many_arguments:
8089  case ovl_fail_too_few_arguments:
8090    return DiagnoseArityMismatch(S, Cand, NumArgs);
8091
8092  case ovl_fail_bad_deduction:
8093    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
8094
8095  case ovl_fail_trivial_conversion:
8096  case ovl_fail_bad_final_conversion:
8097  case ovl_fail_final_conversion_not_exact:
8098    return S.NoteOverloadCandidate(Fn);
8099
8100  case ovl_fail_bad_conversion: {
8101    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8102    for (unsigned N = Cand->NumConversions; I != N; ++I)
8103      if (Cand->Conversions[I].isBad())
8104        return DiagnoseBadConversion(S, Cand, I);
8105
8106    // FIXME: this currently happens when we're called from SemaInit
8107    // when user-conversion overload fails.  Figure out how to handle
8108    // those conditions and diagnose them well.
8109    return S.NoteOverloadCandidate(Fn);
8110  }
8111
8112  case ovl_fail_bad_target:
8113    return DiagnoseBadTarget(S, Cand);
8114  }
8115}
8116
8117void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8118  // Desugar the type of the surrogate down to a function type,
8119  // retaining as many typedefs as possible while still showing
8120  // the function type (and, therefore, its parameter types).
8121  QualType FnType = Cand->Surrogate->getConversionType();
8122  bool isLValueReference = false;
8123  bool isRValueReference = false;
8124  bool isPointer = false;
8125  if (const LValueReferenceType *FnTypeRef =
8126        FnType->getAs<LValueReferenceType>()) {
8127    FnType = FnTypeRef->getPointeeType();
8128    isLValueReference = true;
8129  } else if (const RValueReferenceType *FnTypeRef =
8130               FnType->getAs<RValueReferenceType>()) {
8131    FnType = FnTypeRef->getPointeeType();
8132    isRValueReference = true;
8133  }
8134  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8135    FnType = FnTypePtr->getPointeeType();
8136    isPointer = true;
8137  }
8138  // Desugar down to a function type.
8139  FnType = QualType(FnType->getAs<FunctionType>(), 0);
8140  // Reconstruct the pointer/reference as appropriate.
8141  if (isPointer) FnType = S.Context.getPointerType(FnType);
8142  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8143  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8144
8145  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8146    << FnType;
8147  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8148}
8149
8150void NoteBuiltinOperatorCandidate(Sema &S,
8151                                  const char *Opc,
8152                                  SourceLocation OpLoc,
8153                                  OverloadCandidate *Cand) {
8154  assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8155  std::string TypeStr("operator");
8156  TypeStr += Opc;
8157  TypeStr += "(";
8158  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8159  if (Cand->NumConversions == 1) {
8160    TypeStr += ")";
8161    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8162  } else {
8163    TypeStr += ", ";
8164    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8165    TypeStr += ")";
8166    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8167  }
8168}
8169
8170void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8171                                  OverloadCandidate *Cand) {
8172  unsigned NoOperands = Cand->NumConversions;
8173  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8174    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8175    if (ICS.isBad()) break; // all meaningless after first invalid
8176    if (!ICS.isAmbiguous()) continue;
8177
8178    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8179                              S.PDiag(diag::note_ambiguous_type_conversion));
8180  }
8181}
8182
8183SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8184  if (Cand->Function)
8185    return Cand->Function->getLocation();
8186  if (Cand->IsSurrogate)
8187    return Cand->Surrogate->getLocation();
8188  return SourceLocation();
8189}
8190
8191static unsigned
8192RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
8193  switch ((Sema::TemplateDeductionResult)DFI.Result) {
8194  case Sema::TDK_Success:
8195    llvm_unreachable("TDK_success while diagnosing bad deduction");
8196
8197  case Sema::TDK_Incomplete:
8198    return 1;
8199
8200  case Sema::TDK_Underqualified:
8201  case Sema::TDK_Inconsistent:
8202    return 2;
8203
8204  case Sema::TDK_SubstitutionFailure:
8205  case Sema::TDK_NonDeducedMismatch:
8206    return 3;
8207
8208  case Sema::TDK_InstantiationDepth:
8209  case Sema::TDK_FailedOverloadResolution:
8210    return 4;
8211
8212  case Sema::TDK_InvalidExplicitArguments:
8213    return 5;
8214
8215  case Sema::TDK_TooManyArguments:
8216  case Sema::TDK_TooFewArguments:
8217    return 6;
8218  }
8219  llvm_unreachable("Unhandled deduction result");
8220}
8221
8222struct CompareOverloadCandidatesForDisplay {
8223  Sema &S;
8224  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8225
8226  bool operator()(const OverloadCandidate *L,
8227                  const OverloadCandidate *R) {
8228    // Fast-path this check.
8229    if (L == R) return false;
8230
8231    // Order first by viability.
8232    if (L->Viable) {
8233      if (!R->Viable) return true;
8234
8235      // TODO: introduce a tri-valued comparison for overload
8236      // candidates.  Would be more worthwhile if we had a sort
8237      // that could exploit it.
8238      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8239      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8240    } else if (R->Viable)
8241      return false;
8242
8243    assert(L->Viable == R->Viable);
8244
8245    // Criteria by which we can sort non-viable candidates:
8246    if (!L->Viable) {
8247      // 1. Arity mismatches come after other candidates.
8248      if (L->FailureKind == ovl_fail_too_many_arguments ||
8249          L->FailureKind == ovl_fail_too_few_arguments)
8250        return false;
8251      if (R->FailureKind == ovl_fail_too_many_arguments ||
8252          R->FailureKind == ovl_fail_too_few_arguments)
8253        return true;
8254
8255      // 2. Bad conversions come first and are ordered by the number
8256      // of bad conversions and quality of good conversions.
8257      if (L->FailureKind == ovl_fail_bad_conversion) {
8258        if (R->FailureKind != ovl_fail_bad_conversion)
8259          return true;
8260
8261        // The conversion that can be fixed with a smaller number of changes,
8262        // comes first.
8263        unsigned numLFixes = L->Fix.NumConversionsFixed;
8264        unsigned numRFixes = R->Fix.NumConversionsFixed;
8265        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
8266        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
8267        if (numLFixes != numRFixes) {
8268          if (numLFixes < numRFixes)
8269            return true;
8270          else
8271            return false;
8272        }
8273
8274        // If there's any ordering between the defined conversions...
8275        // FIXME: this might not be transitive.
8276        assert(L->NumConversions == R->NumConversions);
8277
8278        int leftBetter = 0;
8279        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
8280        for (unsigned E = L->NumConversions; I != E; ++I) {
8281          switch (CompareImplicitConversionSequences(S,
8282                                                     L->Conversions[I],
8283                                                     R->Conversions[I])) {
8284          case ImplicitConversionSequence::Better:
8285            leftBetter++;
8286            break;
8287
8288          case ImplicitConversionSequence::Worse:
8289            leftBetter--;
8290            break;
8291
8292          case ImplicitConversionSequence::Indistinguishable:
8293            break;
8294          }
8295        }
8296        if (leftBetter > 0) return true;
8297        if (leftBetter < 0) return false;
8298
8299      } else if (R->FailureKind == ovl_fail_bad_conversion)
8300        return false;
8301
8302      if (L->FailureKind == ovl_fail_bad_deduction) {
8303        if (R->FailureKind != ovl_fail_bad_deduction)
8304          return true;
8305
8306        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
8307          return RankDeductionFailure(L->DeductionFailure)
8308               < RankDeductionFailure(R->DeductionFailure);
8309      } else if (R->FailureKind == ovl_fail_bad_deduction)
8310        return false;
8311
8312      // TODO: others?
8313    }
8314
8315    // Sort everything else by location.
8316    SourceLocation LLoc = GetLocationForCandidate(L);
8317    SourceLocation RLoc = GetLocationForCandidate(R);
8318
8319    // Put candidates without locations (e.g. builtins) at the end.
8320    if (LLoc.isInvalid()) return false;
8321    if (RLoc.isInvalid()) return true;
8322
8323    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
8324  }
8325};
8326
8327/// CompleteNonViableCandidate - Normally, overload resolution only
8328/// computes up to the first. Produces the FixIt set if possible.
8329void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
8330                                Expr **Args, unsigned NumArgs) {
8331  assert(!Cand->Viable);
8332
8333  // Don't do anything on failures other than bad conversion.
8334  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
8335
8336  // We only want the FixIts if all the arguments can be corrected.
8337  bool Unfixable = false;
8338  // Use a implicit copy initialization to check conversion fixes.
8339  Cand->Fix.setConversionChecker(TryCopyInitialization);
8340
8341  // Skip forward to the first bad conversion.
8342  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
8343  unsigned ConvCount = Cand->NumConversions;
8344  while (true) {
8345    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
8346    ConvIdx++;
8347    if (Cand->Conversions[ConvIdx - 1].isBad()) {
8348      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
8349      break;
8350    }
8351  }
8352
8353  if (ConvIdx == ConvCount)
8354    return;
8355
8356  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
8357         "remaining conversion is initialized?");
8358
8359  // FIXME: this should probably be preserved from the overload
8360  // operation somehow.
8361  bool SuppressUserConversions = false;
8362
8363  const FunctionProtoType* Proto;
8364  unsigned ArgIdx = ConvIdx;
8365
8366  if (Cand->IsSurrogate) {
8367    QualType ConvType
8368      = Cand->Surrogate->getConversionType().getNonReferenceType();
8369    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8370      ConvType = ConvPtrType->getPointeeType();
8371    Proto = ConvType->getAs<FunctionProtoType>();
8372    ArgIdx--;
8373  } else if (Cand->Function) {
8374    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
8375    if (isa<CXXMethodDecl>(Cand->Function) &&
8376        !isa<CXXConstructorDecl>(Cand->Function))
8377      ArgIdx--;
8378  } else {
8379    // Builtin binary operator with a bad first conversion.
8380    assert(ConvCount <= 3);
8381    for (; ConvIdx != ConvCount; ++ConvIdx)
8382      Cand->Conversions[ConvIdx]
8383        = TryCopyInitialization(S, Args[ConvIdx],
8384                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
8385                                SuppressUserConversions,
8386                                /*InOverloadResolution*/ true,
8387                                /*AllowObjCWritebackConversion=*/
8388                                  S.getLangOptions().ObjCAutoRefCount);
8389    return;
8390  }
8391
8392  // Fill in the rest of the conversions.
8393  unsigned NumArgsInProto = Proto->getNumArgs();
8394  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
8395    if (ArgIdx < NumArgsInProto) {
8396      Cand->Conversions[ConvIdx]
8397        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
8398                                SuppressUserConversions,
8399                                /*InOverloadResolution=*/true,
8400                                /*AllowObjCWritebackConversion=*/
8401                                  S.getLangOptions().ObjCAutoRefCount);
8402      // Store the FixIt in the candidate if it exists.
8403      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
8404        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
8405    }
8406    else
8407      Cand->Conversions[ConvIdx].setEllipsis();
8408  }
8409}
8410
8411} // end anonymous namespace
8412
8413/// PrintOverloadCandidates - When overload resolution fails, prints
8414/// diagnostic messages containing the candidates in the candidate
8415/// set.
8416void OverloadCandidateSet::NoteCandidates(Sema &S,
8417                                          OverloadCandidateDisplayKind OCD,
8418                                          Expr **Args, unsigned NumArgs,
8419                                          const char *Opc,
8420                                          SourceLocation OpLoc) {
8421  // Sort the candidates by viability and position.  Sorting directly would
8422  // be prohibitive, so we make a set of pointers and sort those.
8423  SmallVector<OverloadCandidate*, 32> Cands;
8424  if (OCD == OCD_AllCandidates) Cands.reserve(size());
8425  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
8426    if (Cand->Viable)
8427      Cands.push_back(Cand);
8428    else if (OCD == OCD_AllCandidates) {
8429      CompleteNonViableCandidate(S, Cand, Args, NumArgs);
8430      if (Cand->Function || Cand->IsSurrogate)
8431        Cands.push_back(Cand);
8432      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
8433      // want to list every possible builtin candidate.
8434    }
8435  }
8436
8437  std::sort(Cands.begin(), Cands.end(),
8438            CompareOverloadCandidatesForDisplay(S));
8439
8440  bool ReportedAmbiguousConversions = false;
8441
8442  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
8443  const DiagnosticsEngine::OverloadsShown ShowOverloads =
8444      S.Diags.getShowOverloads();
8445  unsigned CandsShown = 0;
8446  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
8447    OverloadCandidate *Cand = *I;
8448
8449    // Set an arbitrary limit on the number of candidate functions we'll spam
8450    // the user with.  FIXME: This limit should depend on details of the
8451    // candidate list.
8452    if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) {
8453      break;
8454    }
8455    ++CandsShown;
8456
8457    if (Cand->Function)
8458      NoteFunctionCandidate(S, Cand, Args, NumArgs);
8459    else if (Cand->IsSurrogate)
8460      NoteSurrogateCandidate(S, Cand);
8461    else {
8462      assert(Cand->Viable &&
8463             "Non-viable built-in candidates are not added to Cands.");
8464      // Generally we only see ambiguities including viable builtin
8465      // operators if overload resolution got screwed up by an
8466      // ambiguous user-defined conversion.
8467      //
8468      // FIXME: It's quite possible for different conversions to see
8469      // different ambiguities, though.
8470      if (!ReportedAmbiguousConversions) {
8471        NoteAmbiguousUserConversions(S, OpLoc, Cand);
8472        ReportedAmbiguousConversions = true;
8473      }
8474
8475      // If this is a viable builtin, print it.
8476      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
8477    }
8478  }
8479
8480  if (I != E)
8481    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
8482}
8483
8484// [PossiblyAFunctionType]  -->   [Return]
8485// NonFunctionType --> NonFunctionType
8486// R (A) --> R(A)
8487// R (*)(A) --> R (A)
8488// R (&)(A) --> R (A)
8489// R (S::*)(A) --> R (A)
8490QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
8491  QualType Ret = PossiblyAFunctionType;
8492  if (const PointerType *ToTypePtr =
8493    PossiblyAFunctionType->getAs<PointerType>())
8494    Ret = ToTypePtr->getPointeeType();
8495  else if (const ReferenceType *ToTypeRef =
8496    PossiblyAFunctionType->getAs<ReferenceType>())
8497    Ret = ToTypeRef->getPointeeType();
8498  else if (const MemberPointerType *MemTypePtr =
8499    PossiblyAFunctionType->getAs<MemberPointerType>())
8500    Ret = MemTypePtr->getPointeeType();
8501  Ret =
8502    Context.getCanonicalType(Ret).getUnqualifiedType();
8503  return Ret;
8504}
8505
8506// A helper class to help with address of function resolution
8507// - allows us to avoid passing around all those ugly parameters
8508class AddressOfFunctionResolver
8509{
8510  Sema& S;
8511  Expr* SourceExpr;
8512  const QualType& TargetType;
8513  QualType TargetFunctionType; // Extracted function type from target type
8514
8515  bool Complain;
8516  //DeclAccessPair& ResultFunctionAccessPair;
8517  ASTContext& Context;
8518
8519  bool TargetTypeIsNonStaticMemberFunction;
8520  bool FoundNonTemplateFunction;
8521
8522  OverloadExpr::FindResult OvlExprInfo;
8523  OverloadExpr *OvlExpr;
8524  TemplateArgumentListInfo OvlExplicitTemplateArgs;
8525  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
8526
8527public:
8528  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
8529                            const QualType& TargetType, bool Complain)
8530    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
8531      Complain(Complain), Context(S.getASTContext()),
8532      TargetTypeIsNonStaticMemberFunction(
8533                                    !!TargetType->getAs<MemberPointerType>()),
8534      FoundNonTemplateFunction(false),
8535      OvlExprInfo(OverloadExpr::find(SourceExpr)),
8536      OvlExpr(OvlExprInfo.Expression)
8537  {
8538    ExtractUnqualifiedFunctionTypeFromTargetType();
8539
8540    if (!TargetFunctionType->isFunctionType()) {
8541      if (OvlExpr->hasExplicitTemplateArgs()) {
8542        DeclAccessPair dap;
8543        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
8544                                            OvlExpr, false, &dap) ) {
8545
8546          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8547            if (!Method->isStatic()) {
8548              // If the target type is a non-function type and the function
8549              // found is a non-static member function, pretend as if that was
8550              // the target, it's the only possible type to end up with.
8551              TargetTypeIsNonStaticMemberFunction = true;
8552
8553              // And skip adding the function if its not in the proper form.
8554              // We'll diagnose this due to an empty set of functions.
8555              if (!OvlExprInfo.HasFormOfMemberPointer)
8556                return;
8557            }
8558          }
8559
8560          Matches.push_back(std::make_pair(dap,Fn));
8561        }
8562      }
8563      return;
8564    }
8565
8566    if (OvlExpr->hasExplicitTemplateArgs())
8567      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
8568
8569    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
8570      // C++ [over.over]p4:
8571      //   If more than one function is selected, [...]
8572      if (Matches.size() > 1) {
8573        if (FoundNonTemplateFunction)
8574          EliminateAllTemplateMatches();
8575        else
8576          EliminateAllExceptMostSpecializedTemplate();
8577      }
8578    }
8579  }
8580
8581private:
8582  bool isTargetTypeAFunction() const {
8583    return TargetFunctionType->isFunctionType();
8584  }
8585
8586  // [ToType]     [Return]
8587
8588  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
8589  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
8590  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
8591  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
8592    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
8593  }
8594
8595  // return true if any matching specializations were found
8596  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
8597                                   const DeclAccessPair& CurAccessFunPair) {
8598    if (CXXMethodDecl *Method
8599              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
8600      // Skip non-static function templates when converting to pointer, and
8601      // static when converting to member pointer.
8602      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8603        return false;
8604    }
8605    else if (TargetTypeIsNonStaticMemberFunction)
8606      return false;
8607
8608    // C++ [over.over]p2:
8609    //   If the name is a function template, template argument deduction is
8610    //   done (14.8.2.2), and if the argument deduction succeeds, the
8611    //   resulting template argument list is used to generate a single
8612    //   function template specialization, which is added to the set of
8613    //   overloaded functions considered.
8614    FunctionDecl *Specialization = 0;
8615    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
8616    if (Sema::TemplateDeductionResult Result
8617          = S.DeduceTemplateArguments(FunctionTemplate,
8618                                      &OvlExplicitTemplateArgs,
8619                                      TargetFunctionType, Specialization,
8620                                      Info)) {
8621      // FIXME: make a note of the failed deduction for diagnostics.
8622      (void)Result;
8623      return false;
8624    }
8625
8626    // Template argument deduction ensures that we have an exact match.
8627    // This function template specicalization works.
8628    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
8629    assert(TargetFunctionType
8630                      == Context.getCanonicalType(Specialization->getType()));
8631    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
8632    return true;
8633  }
8634
8635  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
8636                                      const DeclAccessPair& CurAccessFunPair) {
8637    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8638      // Skip non-static functions when converting to pointer, and static
8639      // when converting to member pointer.
8640      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8641        return false;
8642    }
8643    else if (TargetTypeIsNonStaticMemberFunction)
8644      return false;
8645
8646    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
8647      if (S.getLangOptions().CUDA)
8648        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
8649          if (S.CheckCUDATarget(Caller, FunDecl))
8650            return false;
8651
8652      QualType ResultTy;
8653      if (Context.hasSameUnqualifiedType(TargetFunctionType,
8654                                         FunDecl->getType()) ||
8655          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
8656                                 ResultTy)) {
8657        Matches.push_back(std::make_pair(CurAccessFunPair,
8658          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
8659        FoundNonTemplateFunction = true;
8660        return true;
8661      }
8662    }
8663
8664    return false;
8665  }
8666
8667  bool FindAllFunctionsThatMatchTargetTypeExactly() {
8668    bool Ret = false;
8669
8670    // If the overload expression doesn't have the form of a pointer to
8671    // member, don't try to convert it to a pointer-to-member type.
8672    if (IsInvalidFormOfPointerToMemberFunction())
8673      return false;
8674
8675    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8676                               E = OvlExpr->decls_end();
8677         I != E; ++I) {
8678      // Look through any using declarations to find the underlying function.
8679      NamedDecl *Fn = (*I)->getUnderlyingDecl();
8680
8681      // C++ [over.over]p3:
8682      //   Non-member functions and static member functions match
8683      //   targets of type "pointer-to-function" or "reference-to-function."
8684      //   Nonstatic member functions match targets of
8685      //   type "pointer-to-member-function."
8686      // Note that according to DR 247, the containing class does not matter.
8687      if (FunctionTemplateDecl *FunctionTemplate
8688                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
8689        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
8690          Ret = true;
8691      }
8692      // If we have explicit template arguments supplied, skip non-templates.
8693      else if (!OvlExpr->hasExplicitTemplateArgs() &&
8694               AddMatchingNonTemplateFunction(Fn, I.getPair()))
8695        Ret = true;
8696    }
8697    assert(Ret || Matches.empty());
8698    return Ret;
8699  }
8700
8701  void EliminateAllExceptMostSpecializedTemplate() {
8702    //   [...] and any given function template specialization F1 is
8703    //   eliminated if the set contains a second function template
8704    //   specialization whose function template is more specialized
8705    //   than the function template of F1 according to the partial
8706    //   ordering rules of 14.5.5.2.
8707
8708    // The algorithm specified above is quadratic. We instead use a
8709    // two-pass algorithm (similar to the one used to identify the
8710    // best viable function in an overload set) that identifies the
8711    // best function template (if it exists).
8712
8713    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
8714    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
8715      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
8716
8717    UnresolvedSetIterator Result =
8718      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
8719                           TPOC_Other, 0, SourceExpr->getLocStart(),
8720                           S.PDiag(),
8721                           S.PDiag(diag::err_addr_ovl_ambiguous)
8722                             << Matches[0].second->getDeclName(),
8723                           S.PDiag(diag::note_ovl_candidate)
8724                             << (unsigned) oc_function_template,
8725                           Complain, TargetFunctionType);
8726
8727    if (Result != MatchesCopy.end()) {
8728      // Make it the first and only element
8729      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
8730      Matches[0].second = cast<FunctionDecl>(*Result);
8731      Matches.resize(1);
8732    }
8733  }
8734
8735  void EliminateAllTemplateMatches() {
8736    //   [...] any function template specializations in the set are
8737    //   eliminated if the set also contains a non-template function, [...]
8738    for (unsigned I = 0, N = Matches.size(); I != N; ) {
8739      if (Matches[I].second->getPrimaryTemplate() == 0)
8740        ++I;
8741      else {
8742        Matches[I] = Matches[--N];
8743        Matches.set_size(N);
8744      }
8745    }
8746  }
8747
8748public:
8749  void ComplainNoMatchesFound() const {
8750    assert(Matches.empty());
8751    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
8752        << OvlExpr->getName() << TargetFunctionType
8753        << OvlExpr->getSourceRange();
8754    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
8755  }
8756
8757  bool IsInvalidFormOfPointerToMemberFunction() const {
8758    return TargetTypeIsNonStaticMemberFunction &&
8759      !OvlExprInfo.HasFormOfMemberPointer;
8760  }
8761
8762  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
8763      // TODO: Should we condition this on whether any functions might
8764      // have matched, or is it more appropriate to do that in callers?
8765      // TODO: a fixit wouldn't hurt.
8766      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
8767        << TargetType << OvlExpr->getSourceRange();
8768  }
8769
8770  void ComplainOfInvalidConversion() const {
8771    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
8772      << OvlExpr->getName() << TargetType;
8773  }
8774
8775  void ComplainMultipleMatchesFound() const {
8776    assert(Matches.size() > 1);
8777    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
8778      << OvlExpr->getName()
8779      << OvlExpr->getSourceRange();
8780    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
8781  }
8782
8783  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
8784
8785  int getNumMatches() const { return Matches.size(); }
8786
8787  FunctionDecl* getMatchingFunctionDecl() const {
8788    if (Matches.size() != 1) return 0;
8789    return Matches[0].second;
8790  }
8791
8792  const DeclAccessPair* getMatchingFunctionAccessPair() const {
8793    if (Matches.size() != 1) return 0;
8794    return &Matches[0].first;
8795  }
8796};
8797
8798/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
8799/// an overloaded function (C++ [over.over]), where @p From is an
8800/// expression with overloaded function type and @p ToType is the type
8801/// we're trying to resolve to. For example:
8802///
8803/// @code
8804/// int f(double);
8805/// int f(int);
8806///
8807/// int (*pfd)(double) = f; // selects f(double)
8808/// @endcode
8809///
8810/// This routine returns the resulting FunctionDecl if it could be
8811/// resolved, and NULL otherwise. When @p Complain is true, this
8812/// routine will emit diagnostics if there is an error.
8813FunctionDecl *
8814Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
8815                                         QualType TargetType,
8816                                         bool Complain,
8817                                         DeclAccessPair &FoundResult,
8818                                         bool *pHadMultipleCandidates) {
8819  assert(AddressOfExpr->getType() == Context.OverloadTy);
8820
8821  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
8822                                     Complain);
8823  int NumMatches = Resolver.getNumMatches();
8824  FunctionDecl* Fn = 0;
8825  if (NumMatches == 0 && Complain) {
8826    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
8827      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
8828    else
8829      Resolver.ComplainNoMatchesFound();
8830  }
8831  else if (NumMatches > 1 && Complain)
8832    Resolver.ComplainMultipleMatchesFound();
8833  else if (NumMatches == 1) {
8834    Fn = Resolver.getMatchingFunctionDecl();
8835    assert(Fn);
8836    FoundResult = *Resolver.getMatchingFunctionAccessPair();
8837    MarkFunctionReferenced(AddressOfExpr->getLocStart(), Fn);
8838    if (Complain)
8839      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
8840  }
8841
8842  if (pHadMultipleCandidates)
8843    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
8844  return Fn;
8845}
8846
8847/// \brief Given an expression that refers to an overloaded function, try to
8848/// resolve that overloaded function expression down to a single function.
8849///
8850/// This routine can only resolve template-ids that refer to a single function
8851/// template, where that template-id refers to a single template whose template
8852/// arguments are either provided by the template-id or have defaults,
8853/// as described in C++0x [temp.arg.explicit]p3.
8854FunctionDecl *
8855Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
8856                                                  bool Complain,
8857                                                  DeclAccessPair *FoundResult) {
8858  // C++ [over.over]p1:
8859  //   [...] [Note: any redundant set of parentheses surrounding the
8860  //   overloaded function name is ignored (5.1). ]
8861  // C++ [over.over]p1:
8862  //   [...] The overloaded function name can be preceded by the &
8863  //   operator.
8864
8865  // If we didn't actually find any template-ids, we're done.
8866  if (!ovl->hasExplicitTemplateArgs())
8867    return 0;
8868
8869  TemplateArgumentListInfo ExplicitTemplateArgs;
8870  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
8871
8872  // Look through all of the overloaded functions, searching for one
8873  // whose type matches exactly.
8874  FunctionDecl *Matched = 0;
8875  for (UnresolvedSetIterator I = ovl->decls_begin(),
8876         E = ovl->decls_end(); I != E; ++I) {
8877    // C++0x [temp.arg.explicit]p3:
8878    //   [...] In contexts where deduction is done and fails, or in contexts
8879    //   where deduction is not done, if a template argument list is
8880    //   specified and it, along with any default template arguments,
8881    //   identifies a single function template specialization, then the
8882    //   template-id is an lvalue for the function template specialization.
8883    FunctionTemplateDecl *FunctionTemplate
8884      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
8885
8886    // C++ [over.over]p2:
8887    //   If the name is a function template, template argument deduction is
8888    //   done (14.8.2.2), and if the argument deduction succeeds, the
8889    //   resulting template argument list is used to generate a single
8890    //   function template specialization, which is added to the set of
8891    //   overloaded functions considered.
8892    FunctionDecl *Specialization = 0;
8893    TemplateDeductionInfo Info(Context, ovl->getNameLoc());
8894    if (TemplateDeductionResult Result
8895          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
8896                                    Specialization, Info)) {
8897      // FIXME: make a note of the failed deduction for diagnostics.
8898      (void)Result;
8899      continue;
8900    }
8901
8902    assert(Specialization && "no specialization and no error?");
8903
8904    // Multiple matches; we can't resolve to a single declaration.
8905    if (Matched) {
8906      if (Complain) {
8907        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
8908          << ovl->getName();
8909        NoteAllOverloadCandidates(ovl);
8910      }
8911      return 0;
8912    }
8913
8914    Matched = Specialization;
8915    if (FoundResult) *FoundResult = I.getPair();
8916  }
8917
8918  return Matched;
8919}
8920
8921
8922
8923
8924// Resolve and fix an overloaded expression that can be resolved
8925// because it identifies a single function template specialization.
8926//
8927// Last three arguments should only be supplied if Complain = true
8928//
8929// Return true if it was logically possible to so resolve the
8930// expression, regardless of whether or not it succeeded.  Always
8931// returns true if 'complain' is set.
8932bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
8933                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
8934                   bool complain, const SourceRange& OpRangeForComplaining,
8935                                           QualType DestTypeForComplaining,
8936                                            unsigned DiagIDForComplaining) {
8937  assert(SrcExpr.get()->getType() == Context.OverloadTy);
8938
8939  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
8940
8941  DeclAccessPair found;
8942  ExprResult SingleFunctionExpression;
8943  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
8944                           ovl.Expression, /*complain*/ false, &found)) {
8945    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getSourceRange().getBegin())) {
8946      SrcExpr = ExprError();
8947      return true;
8948    }
8949
8950    // It is only correct to resolve to an instance method if we're
8951    // resolving a form that's permitted to be a pointer to member.
8952    // Otherwise we'll end up making a bound member expression, which
8953    // is illegal in all the contexts we resolve like this.
8954    if (!ovl.HasFormOfMemberPointer &&
8955        isa<CXXMethodDecl>(fn) &&
8956        cast<CXXMethodDecl>(fn)->isInstance()) {
8957      if (!complain) return false;
8958
8959      Diag(ovl.Expression->getExprLoc(),
8960           diag::err_bound_member_function)
8961        << 0 << ovl.Expression->getSourceRange();
8962
8963      // TODO: I believe we only end up here if there's a mix of
8964      // static and non-static candidates (otherwise the expression
8965      // would have 'bound member' type, not 'overload' type).
8966      // Ideally we would note which candidate was chosen and why
8967      // the static candidates were rejected.
8968      SrcExpr = ExprError();
8969      return true;
8970    }
8971
8972    // Fix the expresion to refer to 'fn'.
8973    SingleFunctionExpression =
8974      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
8975
8976    // If desired, do function-to-pointer decay.
8977    if (doFunctionPointerConverion) {
8978      SingleFunctionExpression =
8979        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
8980      if (SingleFunctionExpression.isInvalid()) {
8981        SrcExpr = ExprError();
8982        return true;
8983      }
8984    }
8985  }
8986
8987  if (!SingleFunctionExpression.isUsable()) {
8988    if (complain) {
8989      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
8990        << ovl.Expression->getName()
8991        << DestTypeForComplaining
8992        << OpRangeForComplaining
8993        << ovl.Expression->getQualifierLoc().getSourceRange();
8994      NoteAllOverloadCandidates(SrcExpr.get());
8995
8996      SrcExpr = ExprError();
8997      return true;
8998    }
8999
9000    return false;
9001  }
9002
9003  SrcExpr = SingleFunctionExpression;
9004  return true;
9005}
9006
9007/// \brief Add a single candidate to the overload set.
9008static void AddOverloadedCallCandidate(Sema &S,
9009                                       DeclAccessPair FoundDecl,
9010                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
9011                                       Expr **Args, unsigned NumArgs,
9012                                       OverloadCandidateSet &CandidateSet,
9013                                       bool PartialOverloading,
9014                                       bool KnownValid) {
9015  NamedDecl *Callee = FoundDecl.getDecl();
9016  if (isa<UsingShadowDecl>(Callee))
9017    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
9018
9019  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
9020    if (ExplicitTemplateArgs) {
9021      assert(!KnownValid && "Explicit template arguments?");
9022      return;
9023    }
9024    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
9025                           false, PartialOverloading);
9026    return;
9027  }
9028
9029  if (FunctionTemplateDecl *FuncTemplate
9030      = dyn_cast<FunctionTemplateDecl>(Callee)) {
9031    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9032                                   ExplicitTemplateArgs,
9033                                   Args, NumArgs, CandidateSet);
9034    return;
9035  }
9036
9037  assert(!KnownValid && "unhandled case in overloaded call candidate");
9038}
9039
9040/// \brief Add the overload candidates named by callee and/or found by argument
9041/// dependent lookup to the given overload set.
9042void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9043                                       Expr **Args, unsigned NumArgs,
9044                                       OverloadCandidateSet &CandidateSet,
9045                                       bool PartialOverloading) {
9046
9047#ifndef NDEBUG
9048  // Verify that ArgumentDependentLookup is consistent with the rules
9049  // in C++0x [basic.lookup.argdep]p3:
9050  //
9051  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
9052  //   and let Y be the lookup set produced by argument dependent
9053  //   lookup (defined as follows). If X contains
9054  //
9055  //     -- a declaration of a class member, or
9056  //
9057  //     -- a block-scope function declaration that is not a
9058  //        using-declaration, or
9059  //
9060  //     -- a declaration that is neither a function or a function
9061  //        template
9062  //
9063  //   then Y is empty.
9064
9065  if (ULE->requiresADL()) {
9066    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9067           E = ULE->decls_end(); I != E; ++I) {
9068      assert(!(*I)->getDeclContext()->isRecord());
9069      assert(isa<UsingShadowDecl>(*I) ||
9070             !(*I)->getDeclContext()->isFunctionOrMethod());
9071      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9072    }
9073  }
9074#endif
9075
9076  // It would be nice to avoid this copy.
9077  TemplateArgumentListInfo TABuffer;
9078  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9079  if (ULE->hasExplicitTemplateArgs()) {
9080    ULE->copyTemplateArgumentsInto(TABuffer);
9081    ExplicitTemplateArgs = &TABuffer;
9082  }
9083
9084  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9085         E = ULE->decls_end(); I != E; ++I)
9086    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
9087                               Args, NumArgs, CandidateSet,
9088                               PartialOverloading, /*KnownValid*/ true);
9089
9090  if (ULE->requiresADL())
9091    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
9092                                         Args, NumArgs,
9093                                         ExplicitTemplateArgs,
9094                                         CandidateSet,
9095                                         PartialOverloading,
9096                                         ULE->isStdAssociatedNamespace());
9097}
9098
9099/// Attempt to recover from an ill-formed use of a non-dependent name in a
9100/// template, where the non-dependent name was declared after the template
9101/// was defined. This is common in code written for a compilers which do not
9102/// correctly implement two-stage name lookup.
9103///
9104/// Returns true if a viable candidate was found and a diagnostic was issued.
9105static bool
9106DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
9107                       const CXXScopeSpec &SS, LookupResult &R,
9108                       TemplateArgumentListInfo *ExplicitTemplateArgs,
9109                       Expr **Args, unsigned NumArgs) {
9110  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
9111    return false;
9112
9113  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
9114    SemaRef.LookupQualifiedName(R, DC);
9115
9116    if (!R.empty()) {
9117      R.suppressDiagnostics();
9118
9119      if (isa<CXXRecordDecl>(DC)) {
9120        // Don't diagnose names we find in classes; we get much better
9121        // diagnostics for these from DiagnoseEmptyLookup.
9122        R.clear();
9123        return false;
9124      }
9125
9126      OverloadCandidateSet Candidates(FnLoc);
9127      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
9128        AddOverloadedCallCandidate(SemaRef, I.getPair(),
9129                                   ExplicitTemplateArgs, Args, NumArgs,
9130                                   Candidates, false, /*KnownValid*/ false);
9131
9132      OverloadCandidateSet::iterator Best;
9133      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
9134        // No viable functions. Don't bother the user with notes for functions
9135        // which don't work and shouldn't be found anyway.
9136        R.clear();
9137        return false;
9138      }
9139
9140      // Find the namespaces where ADL would have looked, and suggest
9141      // declaring the function there instead.
9142      Sema::AssociatedNamespaceSet AssociatedNamespaces;
9143      Sema::AssociatedClassSet AssociatedClasses;
9144      SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs,
9145                                                 AssociatedNamespaces,
9146                                                 AssociatedClasses);
9147      // Never suggest declaring a function within namespace 'std'.
9148      Sema::AssociatedNamespaceSet SuggestedNamespaces;
9149      if (DeclContext *Std = SemaRef.getStdNamespace()) {
9150        for (Sema::AssociatedNamespaceSet::iterator
9151               it = AssociatedNamespaces.begin(),
9152               end = AssociatedNamespaces.end(); it != end; ++it) {
9153          if (!Std->Encloses(*it))
9154            SuggestedNamespaces.insert(*it);
9155        }
9156      } else {
9157        // Lacking the 'std::' namespace, use all of the associated namespaces.
9158        SuggestedNamespaces = AssociatedNamespaces;
9159      }
9160
9161      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
9162        << R.getLookupName();
9163      if (SuggestedNamespaces.empty()) {
9164        SemaRef.Diag(Best->Function->getLocation(),
9165                     diag::note_not_found_by_two_phase_lookup)
9166          << R.getLookupName() << 0;
9167      } else if (SuggestedNamespaces.size() == 1) {
9168        SemaRef.Diag(Best->Function->getLocation(),
9169                     diag::note_not_found_by_two_phase_lookup)
9170          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
9171      } else {
9172        // FIXME: It would be useful to list the associated namespaces here,
9173        // but the diagnostics infrastructure doesn't provide a way to produce
9174        // a localized representation of a list of items.
9175        SemaRef.Diag(Best->Function->getLocation(),
9176                     diag::note_not_found_by_two_phase_lookup)
9177          << R.getLookupName() << 2;
9178      }
9179
9180      // Try to recover by calling this function.
9181      return true;
9182    }
9183
9184    R.clear();
9185  }
9186
9187  return false;
9188}
9189
9190/// Attempt to recover from ill-formed use of a non-dependent operator in a
9191/// template, where the non-dependent operator was declared after the template
9192/// was defined.
9193///
9194/// Returns true if a viable candidate was found and a diagnostic was issued.
9195static bool
9196DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
9197                               SourceLocation OpLoc,
9198                               Expr **Args, unsigned NumArgs) {
9199  DeclarationName OpName =
9200    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
9201  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
9202  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
9203                                /*ExplicitTemplateArgs=*/0, Args, NumArgs);
9204}
9205
9206namespace {
9207// Callback to limit the allowed keywords and to only accept typo corrections
9208// that are keywords or whose decls refer to functions (or template functions)
9209// that accept the given number of arguments.
9210class RecoveryCallCCC : public CorrectionCandidateCallback {
9211 public:
9212  RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
9213      : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
9214    WantTypeSpecifiers = SemaRef.getLangOptions().CPlusPlus;
9215    WantRemainingKeywords = false;
9216  }
9217
9218  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9219    if (!candidate.getCorrectionDecl())
9220      return candidate.isKeyword();
9221
9222    for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
9223           DIEnd = candidate.end(); DI != DIEnd; ++DI) {
9224      FunctionDecl *FD = 0;
9225      NamedDecl *ND = (*DI)->getUnderlyingDecl();
9226      if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
9227        FD = FTD->getTemplatedDecl();
9228      if (!HasExplicitTemplateArgs && !FD) {
9229        if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
9230          // If the Decl is neither a function nor a template function,
9231          // determine if it is a pointer or reference to a function. If so,
9232          // check against the number of arguments expected for the pointee.
9233          QualType ValType = cast<ValueDecl>(ND)->getType();
9234          if (ValType->isAnyPointerType() || ValType->isReferenceType())
9235            ValType = ValType->getPointeeType();
9236          if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
9237            if (FPT->getNumArgs() == NumArgs)
9238              return true;
9239        }
9240      }
9241      if (FD && FD->getNumParams() >= NumArgs &&
9242          FD->getMinRequiredArguments() <= NumArgs)
9243        return true;
9244    }
9245    return false;
9246  }
9247
9248 private:
9249  unsigned NumArgs;
9250  bool HasExplicitTemplateArgs;
9251};
9252
9253// Callback that effectively disabled typo correction
9254class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
9255 public:
9256  NoTypoCorrectionCCC() {
9257    WantTypeSpecifiers = false;
9258    WantExpressionKeywords = false;
9259    WantCXXNamedCasts = false;
9260    WantRemainingKeywords = false;
9261  }
9262
9263  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9264    return false;
9265  }
9266};
9267}
9268
9269/// Attempts to recover from a call where no functions were found.
9270///
9271/// Returns true if new candidates were found.
9272static ExprResult
9273BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9274                      UnresolvedLookupExpr *ULE,
9275                      SourceLocation LParenLoc,
9276                      Expr **Args, unsigned NumArgs,
9277                      SourceLocation RParenLoc,
9278                      bool EmptyLookup, bool AllowTypoCorrection) {
9279
9280  CXXScopeSpec SS;
9281  SS.Adopt(ULE->getQualifierLoc());
9282  SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
9283
9284  TemplateArgumentListInfo TABuffer;
9285  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9286  if (ULE->hasExplicitTemplateArgs()) {
9287    ULE->copyTemplateArgumentsInto(TABuffer);
9288    ExplicitTemplateArgs = &TABuffer;
9289  }
9290
9291  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
9292                 Sema::LookupOrdinaryName);
9293  RecoveryCallCCC Validator(SemaRef, NumArgs, ExplicitTemplateArgs != 0);
9294  NoTypoCorrectionCCC RejectAll;
9295  CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
9296      (CorrectionCandidateCallback*)&Validator :
9297      (CorrectionCandidateCallback*)&RejectAll;
9298  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
9299                              ExplicitTemplateArgs, Args, NumArgs) &&
9300      (!EmptyLookup ||
9301       SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
9302                                   ExplicitTemplateArgs, Args, NumArgs)))
9303    return ExprError();
9304
9305  assert(!R.empty() && "lookup results empty despite recovery");
9306
9307  // Build an implicit member call if appropriate.  Just drop the
9308  // casts and such from the call, we don't really care.
9309  ExprResult NewFn = ExprError();
9310  if ((*R.begin())->isCXXClassMember())
9311    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
9312                                                    R, ExplicitTemplateArgs);
9313  else if (ExplicitTemplateArgs)
9314    NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
9315                                        *ExplicitTemplateArgs);
9316  else
9317    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
9318
9319  if (NewFn.isInvalid())
9320    return ExprError();
9321
9322  // This shouldn't cause an infinite loop because we're giving it
9323  // an expression with viable lookup results, which should never
9324  // end up here.
9325  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
9326                               MultiExprArg(Args, NumArgs), RParenLoc);
9327}
9328
9329/// ResolveOverloadedCallFn - Given the call expression that calls Fn
9330/// (which eventually refers to the declaration Func) and the call
9331/// arguments Args/NumArgs, attempt to resolve the function call down
9332/// to a specific function. If overload resolution succeeds, returns
9333/// the function declaration produced by overload
9334/// resolution. Otherwise, emits diagnostics, deletes all of the
9335/// arguments and Fn, and returns NULL.
9336ExprResult
9337Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
9338                              SourceLocation LParenLoc,
9339                              Expr **Args, unsigned NumArgs,
9340                              SourceLocation RParenLoc,
9341                              Expr *ExecConfig,
9342                              bool AllowTypoCorrection) {
9343#ifndef NDEBUG
9344  if (ULE->requiresADL()) {
9345    // To do ADL, we must have found an unqualified name.
9346    assert(!ULE->getQualifier() && "qualified name with ADL");
9347
9348    // We don't perform ADL for implicit declarations of builtins.
9349    // Verify that this was correctly set up.
9350    FunctionDecl *F;
9351    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
9352        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
9353        F->getBuiltinID() && F->isImplicit())
9354      llvm_unreachable("performing ADL for builtin");
9355
9356    // We don't perform ADL in C.
9357    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
9358  } else
9359    assert(!ULE->isStdAssociatedNamespace() &&
9360           "std is associated namespace but not doing ADL");
9361#endif
9362
9363  UnbridgedCastsSet UnbridgedCasts;
9364  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
9365    return ExprError();
9366
9367  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
9368
9369  // Add the functions denoted by the callee to the set of candidate
9370  // functions, including those from argument-dependent lookup.
9371  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
9372
9373  // If we found nothing, try to recover.
9374  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
9375  // out if it fails.
9376  if (CandidateSet.empty()) {
9377    // In Microsoft mode, if we are inside a template class member function then
9378    // create a type dependent CallExpr. The goal is to postpone name lookup
9379    // to instantiation time to be able to search into type dependent base
9380    // classes.
9381    if (getLangOptions().MicrosoftMode && CurContext->isDependentContext() &&
9382        (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
9383      CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs,
9384                                          Context.DependentTy, VK_RValue,
9385                                          RParenLoc);
9386      CE->setTypeDependent(true);
9387      return Owned(CE);
9388    }
9389    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
9390                                 RParenLoc, /*EmptyLookup=*/true,
9391                                 AllowTypoCorrection);
9392  }
9393
9394  UnbridgedCasts.restore();
9395
9396  OverloadCandidateSet::iterator Best;
9397  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
9398  case OR_Success: {
9399    FunctionDecl *FDecl = Best->Function;
9400    MarkFunctionReferenced(Fn->getExprLoc(), FDecl);
9401    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
9402    DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
9403    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
9404    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
9405                                 ExecConfig);
9406  }
9407
9408  case OR_No_Viable_Function: {
9409    // Try to recover by looking for viable functions which the user might
9410    // have meant to call.
9411    ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
9412                                                Args, NumArgs, RParenLoc,
9413                                                /*EmptyLookup=*/false,
9414                                                AllowTypoCorrection);
9415    if (!Recovery.isInvalid())
9416      return Recovery;
9417
9418    Diag(Fn->getSourceRange().getBegin(),
9419         diag::err_ovl_no_viable_function_in_call)
9420      << ULE->getName() << Fn->getSourceRange();
9421    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9422    break;
9423  }
9424
9425  case OR_Ambiguous:
9426    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
9427      << ULE->getName() << Fn->getSourceRange();
9428    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
9429    break;
9430
9431  case OR_Deleted:
9432    {
9433      Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
9434        << Best->Function->isDeleted()
9435        << ULE->getName()
9436        << getDeletedOrUnavailableSuffix(Best->Function)
9437        << Fn->getSourceRange();
9438      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9439
9440      // We emitted an error for the unvailable/deleted function call but keep
9441      // the call in the AST.
9442      FunctionDecl *FDecl = Best->Function;
9443      Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
9444      return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
9445                                   RParenLoc, ExecConfig);
9446    }
9447  }
9448
9449  // Overload resolution failed.
9450  return ExprError();
9451}
9452
9453static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
9454  return Functions.size() > 1 ||
9455    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
9456}
9457
9458/// \brief Create a unary operation that may resolve to an overloaded
9459/// operator.
9460///
9461/// \param OpLoc The location of the operator itself (e.g., '*').
9462///
9463/// \param OpcIn The UnaryOperator::Opcode that describes this
9464/// operator.
9465///
9466/// \param Functions The set of non-member functions that will be
9467/// considered by overload resolution. The caller needs to build this
9468/// set based on the context using, e.g.,
9469/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9470/// set should not contain any member functions; those will be added
9471/// by CreateOverloadedUnaryOp().
9472///
9473/// \param input The input argument.
9474ExprResult
9475Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
9476                              const UnresolvedSetImpl &Fns,
9477                              Expr *Input) {
9478  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
9479
9480  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
9481  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
9482  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9483  // TODO: provide better source location info.
9484  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9485
9486  if (checkPlaceholderForOverload(*this, Input))
9487    return ExprError();
9488
9489  Expr *Args[2] = { Input, 0 };
9490  unsigned NumArgs = 1;
9491
9492  // For post-increment and post-decrement, add the implicit '0' as
9493  // the second argument, so that we know this is a post-increment or
9494  // post-decrement.
9495  if (Opc == UO_PostInc || Opc == UO_PostDec) {
9496    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
9497    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
9498                                     SourceLocation());
9499    NumArgs = 2;
9500  }
9501
9502  if (Input->isTypeDependent()) {
9503    if (Fns.empty())
9504      return Owned(new (Context) UnaryOperator(Input,
9505                                               Opc,
9506                                               Context.DependentTy,
9507                                               VK_RValue, OK_Ordinary,
9508                                               OpLoc));
9509
9510    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9511    UnresolvedLookupExpr *Fn
9512      = UnresolvedLookupExpr::Create(Context, NamingClass,
9513                                     NestedNameSpecifierLoc(), OpNameInfo,
9514                                     /*ADL*/ true, IsOverloaded(Fns),
9515                                     Fns.begin(), Fns.end());
9516    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9517                                                  &Args[0], NumArgs,
9518                                                   Context.DependentTy,
9519                                                   VK_RValue,
9520                                                   OpLoc));
9521  }
9522
9523  // Build an empty overload set.
9524  OverloadCandidateSet CandidateSet(OpLoc);
9525
9526  // Add the candidates from the given function set.
9527  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
9528
9529  // Add operator candidates that are member functions.
9530  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9531
9532  // Add candidates from ADL.
9533  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9534                                       Args, NumArgs,
9535                                       /*ExplicitTemplateArgs*/ 0,
9536                                       CandidateSet);
9537
9538  // Add builtin operator candidates.
9539  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9540
9541  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9542
9543  // Perform overload resolution.
9544  OverloadCandidateSet::iterator Best;
9545  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9546  case OR_Success: {
9547    // We found a built-in operator or an overloaded operator.
9548    FunctionDecl *FnDecl = Best->Function;
9549
9550    if (FnDecl) {
9551      // We matched an overloaded operator. Build a call to that
9552      // operator.
9553
9554      MarkFunctionReferenced(OpLoc, FnDecl);
9555
9556      // Convert the arguments.
9557      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
9558        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
9559
9560        ExprResult InputRes =
9561          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
9562                                              Best->FoundDecl, Method);
9563        if (InputRes.isInvalid())
9564          return ExprError();
9565        Input = InputRes.take();
9566      } else {
9567        // Convert the arguments.
9568        ExprResult InputInit
9569          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9570                                                      Context,
9571                                                      FnDecl->getParamDecl(0)),
9572                                      SourceLocation(),
9573                                      Input);
9574        if (InputInit.isInvalid())
9575          return ExprError();
9576        Input = InputInit.take();
9577      }
9578
9579      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9580
9581      // Determine the result type.
9582      QualType ResultTy = FnDecl->getResultType();
9583      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9584      ResultTy = ResultTy.getNonLValueExprType(Context);
9585
9586      // Build the actual expression node.
9587      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
9588                                                HadMultipleCandidates);
9589      if (FnExpr.isInvalid())
9590        return ExprError();
9591
9592      Args[0] = Input;
9593      CallExpr *TheCall =
9594        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
9595                                          Args, NumArgs, ResultTy, VK, OpLoc);
9596
9597      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
9598                              FnDecl))
9599        return ExprError();
9600
9601      return MaybeBindToTemporary(TheCall);
9602    } else {
9603      // We matched a built-in operator. Convert the arguments, then
9604      // break out so that we will build the appropriate built-in
9605      // operator node.
9606      ExprResult InputRes =
9607        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
9608                                  Best->Conversions[0], AA_Passing);
9609      if (InputRes.isInvalid())
9610        return ExprError();
9611      Input = InputRes.take();
9612      break;
9613    }
9614  }
9615
9616  case OR_No_Viable_Function:
9617    // This is an erroneous use of an operator which can be overloaded by
9618    // a non-member function. Check for non-member operators which were
9619    // defined too late to be candidates.
9620    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs))
9621      // FIXME: Recover by calling the found function.
9622      return ExprError();
9623
9624    // No viable function; fall through to handling this as a
9625    // built-in operator, which will produce an error message for us.
9626    break;
9627
9628  case OR_Ambiguous:
9629    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
9630        << UnaryOperator::getOpcodeStr(Opc)
9631        << Input->getType()
9632        << Input->getSourceRange();
9633    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs,
9634                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
9635    return ExprError();
9636
9637  case OR_Deleted:
9638    Diag(OpLoc, diag::err_ovl_deleted_oper)
9639      << Best->Function->isDeleted()
9640      << UnaryOperator::getOpcodeStr(Opc)
9641      << getDeletedOrUnavailableSuffix(Best->Function)
9642      << Input->getSourceRange();
9643    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs,
9644                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
9645    return ExprError();
9646  }
9647
9648  // Either we found no viable overloaded operator or we matched a
9649  // built-in operator. In either case, fall through to trying to
9650  // build a built-in operation.
9651  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9652}
9653
9654/// \brief Create a binary operation that may resolve to an overloaded
9655/// operator.
9656///
9657/// \param OpLoc The location of the operator itself (e.g., '+').
9658///
9659/// \param OpcIn The BinaryOperator::Opcode that describes this
9660/// operator.
9661///
9662/// \param Functions The set of non-member functions that will be
9663/// considered by overload resolution. The caller needs to build this
9664/// set based on the context using, e.g.,
9665/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9666/// set should not contain any member functions; those will be added
9667/// by CreateOverloadedBinOp().
9668///
9669/// \param LHS Left-hand argument.
9670/// \param RHS Right-hand argument.
9671ExprResult
9672Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
9673                            unsigned OpcIn,
9674                            const UnresolvedSetImpl &Fns,
9675                            Expr *LHS, Expr *RHS) {
9676  Expr *Args[2] = { LHS, RHS };
9677  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
9678
9679  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
9680  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
9681  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9682
9683  // If either side is type-dependent, create an appropriate dependent
9684  // expression.
9685  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
9686    if (Fns.empty()) {
9687      // If there are no functions to store, just build a dependent
9688      // BinaryOperator or CompoundAssignment.
9689      if (Opc <= BO_Assign || Opc > BO_OrAssign)
9690        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
9691                                                  Context.DependentTy,
9692                                                  VK_RValue, OK_Ordinary,
9693                                                  OpLoc));
9694
9695      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
9696                                                        Context.DependentTy,
9697                                                        VK_LValue,
9698                                                        OK_Ordinary,
9699                                                        Context.DependentTy,
9700                                                        Context.DependentTy,
9701                                                        OpLoc));
9702    }
9703
9704    // FIXME: save results of ADL from here?
9705    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9706    // TODO: provide better source location info in DNLoc component.
9707    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9708    UnresolvedLookupExpr *Fn
9709      = UnresolvedLookupExpr::Create(Context, NamingClass,
9710                                     NestedNameSpecifierLoc(), OpNameInfo,
9711                                     /*ADL*/ true, IsOverloaded(Fns),
9712                                     Fns.begin(), Fns.end());
9713    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9714                                                   Args, 2,
9715                                                   Context.DependentTy,
9716                                                   VK_RValue,
9717                                                   OpLoc));
9718  }
9719
9720  // Always do placeholder-like conversions on the RHS.
9721  if (checkPlaceholderForOverload(*this, Args[1]))
9722    return ExprError();
9723
9724  // Do placeholder-like conversion on the LHS; note that we should
9725  // not get here with a PseudoObject LHS.
9726  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
9727  if (checkPlaceholderForOverload(*this, Args[0]))
9728    return ExprError();
9729
9730  // If this is the assignment operator, we only perform overload resolution
9731  // if the left-hand side is a class or enumeration type. This is actually
9732  // a hack. The standard requires that we do overload resolution between the
9733  // various built-in candidates, but as DR507 points out, this can lead to
9734  // problems. So we do it this way, which pretty much follows what GCC does.
9735  // Note that we go the traditional code path for compound assignment forms.
9736  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
9737    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9738
9739  // If this is the .* operator, which is not overloadable, just
9740  // create a built-in binary operator.
9741  if (Opc == BO_PtrMemD)
9742    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9743
9744  // Build an empty overload set.
9745  OverloadCandidateSet CandidateSet(OpLoc);
9746
9747  // Add the candidates from the given function set.
9748  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
9749
9750  // Add operator candidates that are member functions.
9751  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
9752
9753  // Add candidates from ADL.
9754  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9755                                       Args, 2,
9756                                       /*ExplicitTemplateArgs*/ 0,
9757                                       CandidateSet);
9758
9759  // Add builtin operator candidates.
9760  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
9761
9762  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9763
9764  // Perform overload resolution.
9765  OverloadCandidateSet::iterator Best;
9766  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9767    case OR_Success: {
9768      // We found a built-in operator or an overloaded operator.
9769      FunctionDecl *FnDecl = Best->Function;
9770
9771      if (FnDecl) {
9772        // We matched an overloaded operator. Build a call to that
9773        // operator.
9774
9775        MarkFunctionReferenced(OpLoc, FnDecl);
9776
9777        // Convert the arguments.
9778        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
9779          // Best->Access is only meaningful for class members.
9780          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
9781
9782          ExprResult Arg1 =
9783            PerformCopyInitialization(
9784              InitializedEntity::InitializeParameter(Context,
9785                                                     FnDecl->getParamDecl(0)),
9786              SourceLocation(), Owned(Args[1]));
9787          if (Arg1.isInvalid())
9788            return ExprError();
9789
9790          ExprResult Arg0 =
9791            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
9792                                                Best->FoundDecl, Method);
9793          if (Arg0.isInvalid())
9794            return ExprError();
9795          Args[0] = Arg0.takeAs<Expr>();
9796          Args[1] = RHS = Arg1.takeAs<Expr>();
9797        } else {
9798          // Convert the arguments.
9799          ExprResult Arg0 = PerformCopyInitialization(
9800            InitializedEntity::InitializeParameter(Context,
9801                                                   FnDecl->getParamDecl(0)),
9802            SourceLocation(), Owned(Args[0]));
9803          if (Arg0.isInvalid())
9804            return ExprError();
9805
9806          ExprResult Arg1 =
9807            PerformCopyInitialization(
9808              InitializedEntity::InitializeParameter(Context,
9809                                                     FnDecl->getParamDecl(1)),
9810              SourceLocation(), Owned(Args[1]));
9811          if (Arg1.isInvalid())
9812            return ExprError();
9813          Args[0] = LHS = Arg0.takeAs<Expr>();
9814          Args[1] = RHS = Arg1.takeAs<Expr>();
9815        }
9816
9817        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9818
9819        // Determine the result type.
9820        QualType ResultTy = FnDecl->getResultType();
9821        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9822        ResultTy = ResultTy.getNonLValueExprType(Context);
9823
9824        // Build the actual expression node.
9825        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
9826                                                  HadMultipleCandidates, OpLoc);
9827        if (FnExpr.isInvalid())
9828          return ExprError();
9829
9830        CXXOperatorCallExpr *TheCall =
9831          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
9832                                            Args, 2, ResultTy, VK, OpLoc);
9833
9834        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
9835                                FnDecl))
9836          return ExprError();
9837
9838        return MaybeBindToTemporary(TheCall);
9839      } else {
9840        // We matched a built-in operator. Convert the arguments, then
9841        // break out so that we will build the appropriate built-in
9842        // operator node.
9843        ExprResult ArgsRes0 =
9844          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
9845                                    Best->Conversions[0], AA_Passing);
9846        if (ArgsRes0.isInvalid())
9847          return ExprError();
9848        Args[0] = ArgsRes0.take();
9849
9850        ExprResult ArgsRes1 =
9851          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
9852                                    Best->Conversions[1], AA_Passing);
9853        if (ArgsRes1.isInvalid())
9854          return ExprError();
9855        Args[1] = ArgsRes1.take();
9856        break;
9857      }
9858    }
9859
9860    case OR_No_Viable_Function: {
9861      // C++ [over.match.oper]p9:
9862      //   If the operator is the operator , [...] and there are no
9863      //   viable functions, then the operator is assumed to be the
9864      //   built-in operator and interpreted according to clause 5.
9865      if (Opc == BO_Comma)
9866        break;
9867
9868      // For class as left operand for assignment or compound assigment
9869      // operator do not fall through to handling in built-in, but report that
9870      // no overloaded assignment operator found
9871      ExprResult Result = ExprError();
9872      if (Args[0]->getType()->isRecordType() &&
9873          Opc >= BO_Assign && Opc <= BO_OrAssign) {
9874        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
9875             << BinaryOperator::getOpcodeStr(Opc)
9876             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9877      } else {
9878        // This is an erroneous use of an operator which can be overloaded by
9879        // a non-member function. Check for non-member operators which were
9880        // defined too late to be candidates.
9881        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2))
9882          // FIXME: Recover by calling the found function.
9883          return ExprError();
9884
9885        // No viable function; try to create a built-in operation, which will
9886        // produce an error. Then, show the non-viable candidates.
9887        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9888      }
9889      assert(Result.isInvalid() &&
9890             "C++ binary operator overloading is missing candidates!");
9891      if (Result.isInvalid())
9892        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9893                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
9894      return move(Result);
9895    }
9896
9897    case OR_Ambiguous:
9898      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
9899          << BinaryOperator::getOpcodeStr(Opc)
9900          << Args[0]->getType() << Args[1]->getType()
9901          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9902      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
9903                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
9904      return ExprError();
9905
9906    case OR_Deleted:
9907      Diag(OpLoc, diag::err_ovl_deleted_oper)
9908        << Best->Function->isDeleted()
9909        << BinaryOperator::getOpcodeStr(Opc)
9910        << getDeletedOrUnavailableSuffix(Best->Function)
9911        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9912      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9913                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
9914      return ExprError();
9915  }
9916
9917  // We matched a built-in operator; build it.
9918  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9919}
9920
9921ExprResult
9922Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
9923                                         SourceLocation RLoc,
9924                                         Expr *Base, Expr *Idx) {
9925  Expr *Args[2] = { Base, Idx };
9926  DeclarationName OpName =
9927      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
9928
9929  // If either side is type-dependent, create an appropriate dependent
9930  // expression.
9931  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
9932
9933    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9934    // CHECKME: no 'operator' keyword?
9935    DeclarationNameInfo OpNameInfo(OpName, LLoc);
9936    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
9937    UnresolvedLookupExpr *Fn
9938      = UnresolvedLookupExpr::Create(Context, NamingClass,
9939                                     NestedNameSpecifierLoc(), OpNameInfo,
9940                                     /*ADL*/ true, /*Overloaded*/ false,
9941                                     UnresolvedSetIterator(),
9942                                     UnresolvedSetIterator());
9943    // Can't add any actual overloads yet
9944
9945    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
9946                                                   Args, 2,
9947                                                   Context.DependentTy,
9948                                                   VK_RValue,
9949                                                   RLoc));
9950  }
9951
9952  // Handle placeholders on both operands.
9953  if (checkPlaceholderForOverload(*this, Args[0]))
9954    return ExprError();
9955  if (checkPlaceholderForOverload(*this, Args[1]))
9956    return ExprError();
9957
9958  // Build an empty overload set.
9959  OverloadCandidateSet CandidateSet(LLoc);
9960
9961  // Subscript can only be overloaded as a member function.
9962
9963  // Add operator candidates that are member functions.
9964  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
9965
9966  // Add builtin operator candidates.
9967  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
9968
9969  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9970
9971  // Perform overload resolution.
9972  OverloadCandidateSet::iterator Best;
9973  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
9974    case OR_Success: {
9975      // We found a built-in operator or an overloaded operator.
9976      FunctionDecl *FnDecl = Best->Function;
9977
9978      if (FnDecl) {
9979        // We matched an overloaded operator. Build a call to that
9980        // operator.
9981
9982        MarkFunctionReferenced(LLoc, FnDecl);
9983
9984        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
9985        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
9986
9987        // Convert the arguments.
9988        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
9989        ExprResult Arg0 =
9990          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
9991                                              Best->FoundDecl, Method);
9992        if (Arg0.isInvalid())
9993          return ExprError();
9994        Args[0] = Arg0.take();
9995
9996        // Convert the arguments.
9997        ExprResult InputInit
9998          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9999                                                      Context,
10000                                                      FnDecl->getParamDecl(0)),
10001                                      SourceLocation(),
10002                                      Owned(Args[1]));
10003        if (InputInit.isInvalid())
10004          return ExprError();
10005
10006        Args[1] = InputInit.takeAs<Expr>();
10007
10008        // Determine the result type
10009        QualType ResultTy = FnDecl->getResultType();
10010        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10011        ResultTy = ResultTy.getNonLValueExprType(Context);
10012
10013        // Build the actual expression node.
10014        DeclarationNameLoc LocInfo;
10015        LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding();
10016        LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding();
10017        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10018                                                  HadMultipleCandidates,
10019                                                  LLoc, LocInfo);
10020        if (FnExpr.isInvalid())
10021          return ExprError();
10022
10023        CXXOperatorCallExpr *TheCall =
10024          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
10025                                            FnExpr.take(), Args, 2,
10026                                            ResultTy, VK, RLoc);
10027
10028        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10029                                FnDecl))
10030          return ExprError();
10031
10032        return MaybeBindToTemporary(TheCall);
10033      } else {
10034        // We matched a built-in operator. Convert the arguments, then
10035        // break out so that we will build the appropriate built-in
10036        // operator node.
10037        ExprResult ArgsRes0 =
10038          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10039                                    Best->Conversions[0], AA_Passing);
10040        if (ArgsRes0.isInvalid())
10041          return ExprError();
10042        Args[0] = ArgsRes0.take();
10043
10044        ExprResult ArgsRes1 =
10045          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10046                                    Best->Conversions[1], AA_Passing);
10047        if (ArgsRes1.isInvalid())
10048          return ExprError();
10049        Args[1] = ArgsRes1.take();
10050
10051        break;
10052      }
10053    }
10054
10055    case OR_No_Viable_Function: {
10056      if (CandidateSet.empty())
10057        Diag(LLoc, diag::err_ovl_no_oper)
10058          << Args[0]->getType() << /*subscript*/ 0
10059          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10060      else
10061        Diag(LLoc, diag::err_ovl_no_viable_subscript)
10062          << Args[0]->getType()
10063          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10064      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
10065                                  "[]", LLoc);
10066      return ExprError();
10067    }
10068
10069    case OR_Ambiguous:
10070      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
10071          << "[]"
10072          << Args[0]->getType() << Args[1]->getType()
10073          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10074      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
10075                                  "[]", LLoc);
10076      return ExprError();
10077
10078    case OR_Deleted:
10079      Diag(LLoc, diag::err_ovl_deleted_oper)
10080        << Best->Function->isDeleted() << "[]"
10081        << getDeletedOrUnavailableSuffix(Best->Function)
10082        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10083      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
10084                                  "[]", LLoc);
10085      return ExprError();
10086    }
10087
10088  // We matched a built-in operator; build it.
10089  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
10090}
10091
10092/// BuildCallToMemberFunction - Build a call to a member
10093/// function. MemExpr is the expression that refers to the member
10094/// function (and includes the object parameter), Args/NumArgs are the
10095/// arguments to the function call (not including the object
10096/// parameter). The caller needs to validate that the member
10097/// expression refers to a non-static member function or an overloaded
10098/// member function.
10099ExprResult
10100Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
10101                                SourceLocation LParenLoc, Expr **Args,
10102                                unsigned NumArgs, SourceLocation RParenLoc) {
10103  assert(MemExprE->getType() == Context.BoundMemberTy ||
10104         MemExprE->getType() == Context.OverloadTy);
10105
10106  // Dig out the member expression. This holds both the object
10107  // argument and the member function we're referring to.
10108  Expr *NakedMemExpr = MemExprE->IgnoreParens();
10109
10110  // Determine whether this is a call to a pointer-to-member function.
10111  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
10112    assert(op->getType() == Context.BoundMemberTy);
10113    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
10114
10115    QualType fnType =
10116      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
10117
10118    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
10119    QualType resultType = proto->getCallResultType(Context);
10120    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
10121
10122    // Check that the object type isn't more qualified than the
10123    // member function we're calling.
10124    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
10125
10126    QualType objectType = op->getLHS()->getType();
10127    if (op->getOpcode() == BO_PtrMemI)
10128      objectType = objectType->castAs<PointerType>()->getPointeeType();
10129    Qualifiers objectQuals = objectType.getQualifiers();
10130
10131    Qualifiers difference = objectQuals - funcQuals;
10132    difference.removeObjCGCAttr();
10133    difference.removeAddressSpace();
10134    if (difference) {
10135      std::string qualsString = difference.getAsString();
10136      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
10137        << fnType.getUnqualifiedType()
10138        << qualsString
10139        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
10140    }
10141
10142    CXXMemberCallExpr *call
10143      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
10144                                        resultType, valueKind, RParenLoc);
10145
10146    if (CheckCallReturnType(proto->getResultType(),
10147                            op->getRHS()->getSourceRange().getBegin(),
10148                            call, 0))
10149      return ExprError();
10150
10151    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
10152      return ExprError();
10153
10154    return MaybeBindToTemporary(call);
10155  }
10156
10157  UnbridgedCastsSet UnbridgedCasts;
10158  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10159    return ExprError();
10160
10161  MemberExpr *MemExpr;
10162  CXXMethodDecl *Method = 0;
10163  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
10164  NestedNameSpecifier *Qualifier = 0;
10165  if (isa<MemberExpr>(NakedMemExpr)) {
10166    MemExpr = cast<MemberExpr>(NakedMemExpr);
10167    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
10168    FoundDecl = MemExpr->getFoundDecl();
10169    Qualifier = MemExpr->getQualifier();
10170    UnbridgedCasts.restore();
10171  } else {
10172    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
10173    Qualifier = UnresExpr->getQualifier();
10174
10175    QualType ObjectType = UnresExpr->getBaseType();
10176    Expr::Classification ObjectClassification
10177      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
10178                            : UnresExpr->getBase()->Classify(Context);
10179
10180    // Add overload candidates
10181    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
10182
10183    // FIXME: avoid copy.
10184    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10185    if (UnresExpr->hasExplicitTemplateArgs()) {
10186      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10187      TemplateArgs = &TemplateArgsBuffer;
10188    }
10189
10190    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
10191           E = UnresExpr->decls_end(); I != E; ++I) {
10192
10193      NamedDecl *Func = *I;
10194      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
10195      if (isa<UsingShadowDecl>(Func))
10196        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
10197
10198
10199      // Microsoft supports direct constructor calls.
10200      if (getLangOptions().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
10201        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
10202                             CandidateSet);
10203      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
10204        // If explicit template arguments were provided, we can't call a
10205        // non-template member function.
10206        if (TemplateArgs)
10207          continue;
10208
10209        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
10210                           ObjectClassification,
10211                           Args, NumArgs, CandidateSet,
10212                           /*SuppressUserConversions=*/false);
10213      } else {
10214        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
10215                                   I.getPair(), ActingDC, TemplateArgs,
10216                                   ObjectType,  ObjectClassification,
10217                                   Args, NumArgs, CandidateSet,
10218                                   /*SuppressUsedConversions=*/false);
10219      }
10220    }
10221
10222    DeclarationName DeclName = UnresExpr->getMemberName();
10223
10224    UnbridgedCasts.restore();
10225
10226    OverloadCandidateSet::iterator Best;
10227    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
10228                                            Best)) {
10229    case OR_Success:
10230      Method = cast<CXXMethodDecl>(Best->Function);
10231      MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method);
10232      FoundDecl = Best->FoundDecl;
10233      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
10234      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
10235      break;
10236
10237    case OR_No_Viable_Function:
10238      Diag(UnresExpr->getMemberLoc(),
10239           diag::err_ovl_no_viable_member_function_in_call)
10240        << DeclName << MemExprE->getSourceRange();
10241      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
10242      // FIXME: Leaking incoming expressions!
10243      return ExprError();
10244
10245    case OR_Ambiguous:
10246      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
10247        << DeclName << MemExprE->getSourceRange();
10248      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
10249      // FIXME: Leaking incoming expressions!
10250      return ExprError();
10251
10252    case OR_Deleted:
10253      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
10254        << Best->Function->isDeleted()
10255        << DeclName
10256        << getDeletedOrUnavailableSuffix(Best->Function)
10257        << MemExprE->getSourceRange();
10258      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
10259      // FIXME: Leaking incoming expressions!
10260      return ExprError();
10261    }
10262
10263    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
10264
10265    // If overload resolution picked a static member, build a
10266    // non-member call based on that function.
10267    if (Method->isStatic()) {
10268      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
10269                                   Args, NumArgs, RParenLoc);
10270    }
10271
10272    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
10273  }
10274
10275  QualType ResultType = Method->getResultType();
10276  ExprValueKind VK = Expr::getValueKindForType(ResultType);
10277  ResultType = ResultType.getNonLValueExprType(Context);
10278
10279  assert(Method && "Member call to something that isn't a method?");
10280  CXXMemberCallExpr *TheCall =
10281    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
10282                                    ResultType, VK, RParenLoc);
10283
10284  // Check for a valid return type.
10285  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
10286                          TheCall, Method))
10287    return ExprError();
10288
10289  // Convert the object argument (for a non-static member function call).
10290  // We only need to do this if there was actually an overload; otherwise
10291  // it was done at lookup.
10292  if (!Method->isStatic()) {
10293    ExprResult ObjectArg =
10294      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
10295                                          FoundDecl, Method);
10296    if (ObjectArg.isInvalid())
10297      return ExprError();
10298    MemExpr->setBase(ObjectArg.take());
10299  }
10300
10301  // Convert the rest of the arguments
10302  const FunctionProtoType *Proto =
10303    Method->getType()->getAs<FunctionProtoType>();
10304  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
10305                              RParenLoc))
10306    return ExprError();
10307
10308  if (CheckFunctionCall(Method, TheCall))
10309    return ExprError();
10310
10311  if ((isa<CXXConstructorDecl>(CurContext) ||
10312       isa<CXXDestructorDecl>(CurContext)) &&
10313      TheCall->getMethodDecl()->isPure()) {
10314    const CXXMethodDecl *MD = TheCall->getMethodDecl();
10315
10316    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
10317      Diag(MemExpr->getLocStart(),
10318           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
10319        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
10320        << MD->getParent()->getDeclName();
10321
10322      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
10323    }
10324  }
10325  return MaybeBindToTemporary(TheCall);
10326}
10327
10328/// BuildCallToObjectOfClassType - Build a call to an object of class
10329/// type (C++ [over.call.object]), which can end up invoking an
10330/// overloaded function call operator (@c operator()) or performing a
10331/// user-defined conversion on the object argument.
10332ExprResult
10333Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
10334                                   SourceLocation LParenLoc,
10335                                   Expr **Args, unsigned NumArgs,
10336                                   SourceLocation RParenLoc) {
10337  if (checkPlaceholderForOverload(*this, Obj))
10338    return ExprError();
10339  ExprResult Object = Owned(Obj);
10340
10341  UnbridgedCastsSet UnbridgedCasts;
10342  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10343    return ExprError();
10344
10345  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
10346  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
10347
10348  // C++ [over.call.object]p1:
10349  //  If the primary-expression E in the function call syntax
10350  //  evaluates to a class object of type "cv T", then the set of
10351  //  candidate functions includes at least the function call
10352  //  operators of T. The function call operators of T are obtained by
10353  //  ordinary lookup of the name operator() in the context of
10354  //  (E).operator().
10355  OverloadCandidateSet CandidateSet(LParenLoc);
10356  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
10357
10358  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
10359                          PDiag(diag::err_incomplete_object_call)
10360                          << Object.get()->getSourceRange()))
10361    return true;
10362
10363  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
10364  LookupQualifiedName(R, Record->getDecl());
10365  R.suppressDiagnostics();
10366
10367  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10368       Oper != OperEnd; ++Oper) {
10369    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
10370                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
10371                       /*SuppressUserConversions=*/ false);
10372  }
10373
10374  // C++ [over.call.object]p2:
10375  //   In addition, for each (non-explicit in C++0x) conversion function
10376  //   declared in T of the form
10377  //
10378  //        operator conversion-type-id () cv-qualifier;
10379  //
10380  //   where cv-qualifier is the same cv-qualification as, or a
10381  //   greater cv-qualification than, cv, and where conversion-type-id
10382  //   denotes the type "pointer to function of (P1,...,Pn) returning
10383  //   R", or the type "reference to pointer to function of
10384  //   (P1,...,Pn) returning R", or the type "reference to function
10385  //   of (P1,...,Pn) returning R", a surrogate call function [...]
10386  //   is also considered as a candidate function. Similarly,
10387  //   surrogate call functions are added to the set of candidate
10388  //   functions for each conversion function declared in an
10389  //   accessible base class provided the function is not hidden
10390  //   within T by another intervening declaration.
10391  const UnresolvedSetImpl *Conversions
10392    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
10393  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
10394         E = Conversions->end(); I != E; ++I) {
10395    NamedDecl *D = *I;
10396    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
10397    if (isa<UsingShadowDecl>(D))
10398      D = cast<UsingShadowDecl>(D)->getTargetDecl();
10399
10400    // Skip over templated conversion functions; they aren't
10401    // surrogates.
10402    if (isa<FunctionTemplateDecl>(D))
10403      continue;
10404
10405    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
10406    if (!Conv->isExplicit()) {
10407      // Strip the reference type (if any) and then the pointer type (if
10408      // any) to get down to what might be a function type.
10409      QualType ConvType = Conv->getConversionType().getNonReferenceType();
10410      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10411        ConvType = ConvPtrType->getPointeeType();
10412
10413      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
10414      {
10415        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
10416                              Object.get(), Args, NumArgs, CandidateSet);
10417      }
10418    }
10419  }
10420
10421  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10422
10423  // Perform overload resolution.
10424  OverloadCandidateSet::iterator Best;
10425  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
10426                             Best)) {
10427  case OR_Success:
10428    // Overload resolution succeeded; we'll build the appropriate call
10429    // below.
10430    break;
10431
10432  case OR_No_Viable_Function:
10433    if (CandidateSet.empty())
10434      Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper)
10435        << Object.get()->getType() << /*call*/ 1
10436        << Object.get()->getSourceRange();
10437    else
10438      Diag(Object.get()->getSourceRange().getBegin(),
10439           diag::err_ovl_no_viable_object_call)
10440        << Object.get()->getType() << Object.get()->getSourceRange();
10441    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
10442    break;
10443
10444  case OR_Ambiguous:
10445    Diag(Object.get()->getSourceRange().getBegin(),
10446         diag::err_ovl_ambiguous_object_call)
10447      << Object.get()->getType() << Object.get()->getSourceRange();
10448    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
10449    break;
10450
10451  case OR_Deleted:
10452    Diag(Object.get()->getSourceRange().getBegin(),
10453         diag::err_ovl_deleted_object_call)
10454      << Best->Function->isDeleted()
10455      << Object.get()->getType()
10456      << getDeletedOrUnavailableSuffix(Best->Function)
10457      << Object.get()->getSourceRange();
10458    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
10459    break;
10460  }
10461
10462  if (Best == CandidateSet.end())
10463    return true;
10464
10465  UnbridgedCasts.restore();
10466
10467  if (Best->Function == 0) {
10468    // Since there is no function declaration, this is one of the
10469    // surrogate candidates. Dig out the conversion function.
10470    CXXConversionDecl *Conv
10471      = cast<CXXConversionDecl>(
10472                         Best->Conversions[0].UserDefined.ConversionFunction);
10473
10474    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10475    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10476
10477    // We selected one of the surrogate functions that converts the
10478    // object parameter to a function pointer. Perform the conversion
10479    // on the object argument, then let ActOnCallExpr finish the job.
10480
10481    // Create an implicit member expr to refer to the conversion operator.
10482    // and then call it.
10483    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
10484                                             Conv, HadMultipleCandidates);
10485    if (Call.isInvalid())
10486      return ExprError();
10487    // Record usage of conversion in an implicit cast.
10488    Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
10489                                          CK_UserDefinedConversion,
10490                                          Call.get(), 0, VK_RValue));
10491
10492    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
10493                         RParenLoc);
10494  }
10495
10496  MarkFunctionReferenced(LParenLoc, Best->Function);
10497  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10498  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10499
10500  // We found an overloaded operator(). Build a CXXOperatorCallExpr
10501  // that calls this method, using Object for the implicit object
10502  // parameter and passing along the remaining arguments.
10503  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10504  const FunctionProtoType *Proto =
10505    Method->getType()->getAs<FunctionProtoType>();
10506
10507  unsigned NumArgsInProto = Proto->getNumArgs();
10508  unsigned NumArgsToCheck = NumArgs;
10509
10510  // Build the full argument list for the method call (the
10511  // implicit object parameter is placed at the beginning of the
10512  // list).
10513  Expr **MethodArgs;
10514  if (NumArgs < NumArgsInProto) {
10515    NumArgsToCheck = NumArgsInProto;
10516    MethodArgs = new Expr*[NumArgsInProto + 1];
10517  } else {
10518    MethodArgs = new Expr*[NumArgs + 1];
10519  }
10520  MethodArgs[0] = Object.get();
10521  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
10522    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
10523
10524  ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
10525                                           HadMultipleCandidates);
10526  if (NewFn.isInvalid())
10527    return true;
10528
10529  // Once we've built TheCall, all of the expressions are properly
10530  // owned.
10531  QualType ResultTy = Method->getResultType();
10532  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10533  ResultTy = ResultTy.getNonLValueExprType(Context);
10534
10535  CXXOperatorCallExpr *TheCall =
10536    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
10537                                      MethodArgs, NumArgs + 1,
10538                                      ResultTy, VK, RParenLoc);
10539  delete [] MethodArgs;
10540
10541  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
10542                          Method))
10543    return true;
10544
10545  // We may have default arguments. If so, we need to allocate more
10546  // slots in the call for them.
10547  if (NumArgs < NumArgsInProto)
10548    TheCall->setNumArgs(Context, NumArgsInProto + 1);
10549  else if (NumArgs > NumArgsInProto)
10550    NumArgsToCheck = NumArgsInProto;
10551
10552  bool IsError = false;
10553
10554  // Initialize the implicit object parameter.
10555  ExprResult ObjRes =
10556    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
10557                                        Best->FoundDecl, Method);
10558  if (ObjRes.isInvalid())
10559    IsError = true;
10560  else
10561    Object = move(ObjRes);
10562  TheCall->setArg(0, Object.take());
10563
10564  // Check the argument types.
10565  for (unsigned i = 0; i != NumArgsToCheck; i++) {
10566    Expr *Arg;
10567    if (i < NumArgs) {
10568      Arg = Args[i];
10569
10570      // Pass the argument.
10571
10572      ExprResult InputInit
10573        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10574                                                    Context,
10575                                                    Method->getParamDecl(i)),
10576                                    SourceLocation(), Arg);
10577
10578      IsError |= InputInit.isInvalid();
10579      Arg = InputInit.takeAs<Expr>();
10580    } else {
10581      ExprResult DefArg
10582        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
10583      if (DefArg.isInvalid()) {
10584        IsError = true;
10585        break;
10586      }
10587
10588      Arg = DefArg.takeAs<Expr>();
10589    }
10590
10591    TheCall->setArg(i + 1, Arg);
10592  }
10593
10594  // If this is a variadic call, handle args passed through "...".
10595  if (Proto->isVariadic()) {
10596    // Promote the arguments (C99 6.5.2.2p7).
10597    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
10598      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
10599      IsError |= Arg.isInvalid();
10600      TheCall->setArg(i + 1, Arg.take());
10601    }
10602  }
10603
10604  if (IsError) return true;
10605
10606  if (CheckFunctionCall(Method, TheCall))
10607    return true;
10608
10609  return MaybeBindToTemporary(TheCall);
10610}
10611
10612/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
10613///  (if one exists), where @c Base is an expression of class type and
10614/// @c Member is the name of the member we're trying to find.
10615ExprResult
10616Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
10617  assert(Base->getType()->isRecordType() &&
10618         "left-hand side must have class type");
10619
10620  if (checkPlaceholderForOverload(*this, Base))
10621    return ExprError();
10622
10623  SourceLocation Loc = Base->getExprLoc();
10624
10625  // C++ [over.ref]p1:
10626  //
10627  //   [...] An expression x->m is interpreted as (x.operator->())->m
10628  //   for a class object x of type T if T::operator->() exists and if
10629  //   the operator is selected as the best match function by the
10630  //   overload resolution mechanism (13.3).
10631  DeclarationName OpName =
10632    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
10633  OverloadCandidateSet CandidateSet(Loc);
10634  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
10635
10636  if (RequireCompleteType(Loc, Base->getType(),
10637                          PDiag(diag::err_typecheck_incomplete_tag)
10638                            << Base->getSourceRange()))
10639    return ExprError();
10640
10641  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
10642  LookupQualifiedName(R, BaseRecord->getDecl());
10643  R.suppressDiagnostics();
10644
10645  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10646       Oper != OperEnd; ++Oper) {
10647    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
10648                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
10649  }
10650
10651  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10652
10653  // Perform overload resolution.
10654  OverloadCandidateSet::iterator Best;
10655  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10656  case OR_Success:
10657    // Overload resolution succeeded; we'll build the call below.
10658    break;
10659
10660  case OR_No_Viable_Function:
10661    if (CandidateSet.empty())
10662      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
10663        << Base->getType() << Base->getSourceRange();
10664    else
10665      Diag(OpLoc, diag::err_ovl_no_viable_oper)
10666        << "operator->" << Base->getSourceRange();
10667    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
10668    return ExprError();
10669
10670  case OR_Ambiguous:
10671    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
10672      << "->" << Base->getType() << Base->getSourceRange();
10673    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
10674    return ExprError();
10675
10676  case OR_Deleted:
10677    Diag(OpLoc,  diag::err_ovl_deleted_oper)
10678      << Best->Function->isDeleted()
10679      << "->"
10680      << getDeletedOrUnavailableSuffix(Best->Function)
10681      << Base->getSourceRange();
10682    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
10683    return ExprError();
10684  }
10685
10686  MarkFunctionReferenced(OpLoc, Best->Function);
10687  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
10688  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10689
10690  // Convert the object parameter.
10691  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10692  ExprResult BaseResult =
10693    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
10694                                        Best->FoundDecl, Method);
10695  if (BaseResult.isInvalid())
10696    return ExprError();
10697  Base = BaseResult.take();
10698
10699  // Build the operator call.
10700  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
10701                                            HadMultipleCandidates);
10702  if (FnExpr.isInvalid())
10703    return ExprError();
10704
10705  QualType ResultTy = Method->getResultType();
10706  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10707  ResultTy = ResultTy.getNonLValueExprType(Context);
10708  CXXOperatorCallExpr *TheCall =
10709    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
10710                                      &Base, 1, ResultTy, VK, OpLoc);
10711
10712  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
10713                          Method))
10714          return ExprError();
10715
10716  return MaybeBindToTemporary(TheCall);
10717}
10718
10719/// FixOverloadedFunctionReference - E is an expression that refers to
10720/// a C++ overloaded function (possibly with some parentheses and
10721/// perhaps a '&' around it). We have resolved the overloaded function
10722/// to the function declaration Fn, so patch up the expression E to
10723/// refer (possibly indirectly) to Fn. Returns the new expr.
10724Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
10725                                           FunctionDecl *Fn) {
10726  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
10727    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
10728                                                   Found, Fn);
10729    if (SubExpr == PE->getSubExpr())
10730      return PE;
10731
10732    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
10733  }
10734
10735  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10736    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
10737                                                   Found, Fn);
10738    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
10739                               SubExpr->getType()) &&
10740           "Implicit cast type cannot be determined from overload");
10741    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
10742    if (SubExpr == ICE->getSubExpr())
10743      return ICE;
10744
10745    return ImplicitCastExpr::Create(Context, ICE->getType(),
10746                                    ICE->getCastKind(),
10747                                    SubExpr, 0,
10748                                    ICE->getValueKind());
10749  }
10750
10751  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
10752    assert(UnOp->getOpcode() == UO_AddrOf &&
10753           "Can only take the address of an overloaded function");
10754    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
10755      if (Method->isStatic()) {
10756        // Do nothing: static member functions aren't any different
10757        // from non-member functions.
10758      } else {
10759        // Fix the sub expression, which really has to be an
10760        // UnresolvedLookupExpr holding an overloaded member function
10761        // or template.
10762        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
10763                                                       Found, Fn);
10764        if (SubExpr == UnOp->getSubExpr())
10765          return UnOp;
10766
10767        assert(isa<DeclRefExpr>(SubExpr)
10768               && "fixed to something other than a decl ref");
10769        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
10770               && "fixed to a member ref with no nested name qualifier");
10771
10772        // We have taken the address of a pointer to member
10773        // function. Perform the computation here so that we get the
10774        // appropriate pointer to member type.
10775        QualType ClassType
10776          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
10777        QualType MemPtrType
10778          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
10779
10780        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
10781                                           VK_RValue, OK_Ordinary,
10782                                           UnOp->getOperatorLoc());
10783      }
10784    }
10785    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
10786                                                   Found, Fn);
10787    if (SubExpr == UnOp->getSubExpr())
10788      return UnOp;
10789
10790    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
10791                                     Context.getPointerType(SubExpr->getType()),
10792                                       VK_RValue, OK_Ordinary,
10793                                       UnOp->getOperatorLoc());
10794  }
10795
10796  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
10797    // FIXME: avoid copy.
10798    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10799    if (ULE->hasExplicitTemplateArgs()) {
10800      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
10801      TemplateArgs = &TemplateArgsBuffer;
10802    }
10803
10804    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
10805                                           ULE->getQualifierLoc(),
10806                                           ULE->getTemplateKeywordLoc(),
10807                                           Fn,
10808                                           ULE->getNameLoc(),
10809                                           Fn->getType(),
10810                                           VK_LValue,
10811                                           Found.getDecl(),
10812                                           TemplateArgs);
10813    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
10814    return DRE;
10815  }
10816
10817  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
10818    // FIXME: avoid copy.
10819    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10820    if (MemExpr->hasExplicitTemplateArgs()) {
10821      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10822      TemplateArgs = &TemplateArgsBuffer;
10823    }
10824
10825    Expr *Base;
10826
10827    // If we're filling in a static method where we used to have an
10828    // implicit member access, rewrite to a simple decl ref.
10829    if (MemExpr->isImplicitAccess()) {
10830      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
10831        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
10832                                               MemExpr->getQualifierLoc(),
10833                                               MemExpr->getTemplateKeywordLoc(),
10834                                               Fn,
10835                                               MemExpr->getMemberLoc(),
10836                                               Fn->getType(),
10837                                               VK_LValue,
10838                                               Found.getDecl(),
10839                                               TemplateArgs);
10840        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
10841        return DRE;
10842      } else {
10843        SourceLocation Loc = MemExpr->getMemberLoc();
10844        if (MemExpr->getQualifier())
10845          Loc = MemExpr->getQualifierLoc().getBeginLoc();
10846        CheckCXXThisCapture(Loc);
10847        Base = new (Context) CXXThisExpr(Loc,
10848                                         MemExpr->getBaseType(),
10849                                         /*isImplicit=*/true);
10850      }
10851    } else
10852      Base = MemExpr->getBase();
10853
10854    ExprValueKind valueKind;
10855    QualType type;
10856    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
10857      valueKind = VK_LValue;
10858      type = Fn->getType();
10859    } else {
10860      valueKind = VK_RValue;
10861      type = Context.BoundMemberTy;
10862    }
10863
10864    MemberExpr *ME = MemberExpr::Create(Context, Base,
10865                                        MemExpr->isArrow(),
10866                                        MemExpr->getQualifierLoc(),
10867                                        MemExpr->getTemplateKeywordLoc(),
10868                                        Fn,
10869                                        Found,
10870                                        MemExpr->getMemberNameInfo(),
10871                                        TemplateArgs,
10872                                        type, valueKind, OK_Ordinary);
10873    ME->setHadMultipleCandidates(true);
10874    return ME;
10875  }
10876
10877  llvm_unreachable("Invalid reference to overloaded function");
10878}
10879
10880ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
10881                                                DeclAccessPair Found,
10882                                                FunctionDecl *Fn) {
10883  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
10884}
10885
10886} // end namespace clang
10887