SemaOverload.cpp revision 282e7e66748cc6dd14d6f7f2cb52e5373c531e61
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/Initialization.h" 17#include "clang/Sema/Template.h" 18#include "clang/Sema/TemplateDeduction.h" 19#include "clang/Basic/Diagnostic.h" 20#include "clang/Lex/Preprocessor.h" 21#include "clang/AST/ASTContext.h" 22#include "clang/AST/CXXInheritance.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/AST/Expr.h" 25#include "clang/AST/ExprCXX.h" 26#include "clang/AST/ExprObjC.h" 27#include "clang/AST/TypeOrdering.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/DenseSet.h" 30#include "llvm/ADT/SmallPtrSet.h" 31#include "llvm/ADT/STLExtras.h" 32#include <algorithm> 33 34namespace clang { 35using namespace sema; 36 37/// A convenience routine for creating a decayed reference to a 38/// function. 39static ExprResult 40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates, 41 SourceLocation Loc = SourceLocation(), 42 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ 43 DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, Fn->getType(), 44 VK_LValue, Loc, LocInfo); 45 if (HadMultipleCandidates) 46 DRE->setHadMultipleCandidates(true); 47 ExprResult E = S.Owned(DRE); 48 E = S.DefaultFunctionArrayConversion(E.take()); 49 if (E.isInvalid()) 50 return ExprError(); 51 return move(E); 52} 53 54static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 55 bool InOverloadResolution, 56 StandardConversionSequence &SCS, 57 bool CStyle, 58 bool AllowObjCWritebackConversion); 59 60static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 61 QualType &ToType, 62 bool InOverloadResolution, 63 StandardConversionSequence &SCS, 64 bool CStyle); 65static OverloadingResult 66IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 67 UserDefinedConversionSequence& User, 68 OverloadCandidateSet& Conversions, 69 bool AllowExplicit); 70 71 72static ImplicitConversionSequence::CompareKind 73CompareStandardConversionSequences(Sema &S, 74 const StandardConversionSequence& SCS1, 75 const StandardConversionSequence& SCS2); 76 77static ImplicitConversionSequence::CompareKind 78CompareQualificationConversions(Sema &S, 79 const StandardConversionSequence& SCS1, 80 const StandardConversionSequence& SCS2); 81 82static ImplicitConversionSequence::CompareKind 83CompareDerivedToBaseConversions(Sema &S, 84 const StandardConversionSequence& SCS1, 85 const StandardConversionSequence& SCS2); 86 87 88 89/// GetConversionCategory - Retrieve the implicit conversion 90/// category corresponding to the given implicit conversion kind. 91ImplicitConversionCategory 92GetConversionCategory(ImplicitConversionKind Kind) { 93 static const ImplicitConversionCategory 94 Category[(int)ICK_Num_Conversion_Kinds] = { 95 ICC_Identity, 96 ICC_Lvalue_Transformation, 97 ICC_Lvalue_Transformation, 98 ICC_Lvalue_Transformation, 99 ICC_Identity, 100 ICC_Qualification_Adjustment, 101 ICC_Promotion, 102 ICC_Promotion, 103 ICC_Promotion, 104 ICC_Conversion, 105 ICC_Conversion, 106 ICC_Conversion, 107 ICC_Conversion, 108 ICC_Conversion, 109 ICC_Conversion, 110 ICC_Conversion, 111 ICC_Conversion, 112 ICC_Conversion, 113 ICC_Conversion, 114 ICC_Conversion, 115 ICC_Conversion, 116 ICC_Conversion 117 }; 118 return Category[(int)Kind]; 119} 120 121/// GetConversionRank - Retrieve the implicit conversion rank 122/// corresponding to the given implicit conversion kind. 123ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 124 static const ImplicitConversionRank 125 Rank[(int)ICK_Num_Conversion_Kinds] = { 126 ICR_Exact_Match, 127 ICR_Exact_Match, 128 ICR_Exact_Match, 129 ICR_Exact_Match, 130 ICR_Exact_Match, 131 ICR_Exact_Match, 132 ICR_Promotion, 133 ICR_Promotion, 134 ICR_Promotion, 135 ICR_Conversion, 136 ICR_Conversion, 137 ICR_Conversion, 138 ICR_Conversion, 139 ICR_Conversion, 140 ICR_Conversion, 141 ICR_Conversion, 142 ICR_Conversion, 143 ICR_Conversion, 144 ICR_Conversion, 145 ICR_Conversion, 146 ICR_Complex_Real_Conversion, 147 ICR_Conversion, 148 ICR_Conversion, 149 ICR_Writeback_Conversion 150 }; 151 return Rank[(int)Kind]; 152} 153 154/// GetImplicitConversionName - Return the name of this kind of 155/// implicit conversion. 156const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 157 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 158 "No conversion", 159 "Lvalue-to-rvalue", 160 "Array-to-pointer", 161 "Function-to-pointer", 162 "Noreturn adjustment", 163 "Qualification", 164 "Integral promotion", 165 "Floating point promotion", 166 "Complex promotion", 167 "Integral conversion", 168 "Floating conversion", 169 "Complex conversion", 170 "Floating-integral conversion", 171 "Pointer conversion", 172 "Pointer-to-member conversion", 173 "Boolean conversion", 174 "Compatible-types conversion", 175 "Derived-to-base conversion", 176 "Vector conversion", 177 "Vector splat", 178 "Complex-real conversion", 179 "Block Pointer conversion", 180 "Transparent Union Conversion" 181 "Writeback conversion" 182 }; 183 return Name[Kind]; 184} 185 186/// StandardConversionSequence - Set the standard conversion 187/// sequence to the identity conversion. 188void StandardConversionSequence::setAsIdentityConversion() { 189 First = ICK_Identity; 190 Second = ICK_Identity; 191 Third = ICK_Identity; 192 DeprecatedStringLiteralToCharPtr = false; 193 QualificationIncludesObjCLifetime = false; 194 ReferenceBinding = false; 195 DirectBinding = false; 196 IsLvalueReference = true; 197 BindsToFunctionLvalue = false; 198 BindsToRvalue = false; 199 BindsImplicitObjectArgumentWithoutRefQualifier = false; 200 ObjCLifetimeConversionBinding = false; 201 CopyConstructor = 0; 202} 203 204/// getRank - Retrieve the rank of this standard conversion sequence 205/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 206/// implicit conversions. 207ImplicitConversionRank StandardConversionSequence::getRank() const { 208 ImplicitConversionRank Rank = ICR_Exact_Match; 209 if (GetConversionRank(First) > Rank) 210 Rank = GetConversionRank(First); 211 if (GetConversionRank(Second) > Rank) 212 Rank = GetConversionRank(Second); 213 if (GetConversionRank(Third) > Rank) 214 Rank = GetConversionRank(Third); 215 return Rank; 216} 217 218/// isPointerConversionToBool - Determines whether this conversion is 219/// a conversion of a pointer or pointer-to-member to bool. This is 220/// used as part of the ranking of standard conversion sequences 221/// (C++ 13.3.3.2p4). 222bool StandardConversionSequence::isPointerConversionToBool() const { 223 // Note that FromType has not necessarily been transformed by the 224 // array-to-pointer or function-to-pointer implicit conversions, so 225 // check for their presence as well as checking whether FromType is 226 // a pointer. 227 if (getToType(1)->isBooleanType() && 228 (getFromType()->isPointerType() || 229 getFromType()->isObjCObjectPointerType() || 230 getFromType()->isBlockPointerType() || 231 getFromType()->isNullPtrType() || 232 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 233 return true; 234 235 return false; 236} 237 238/// isPointerConversionToVoidPointer - Determines whether this 239/// conversion is a conversion of a pointer to a void pointer. This is 240/// used as part of the ranking of standard conversion sequences (C++ 241/// 13.3.3.2p4). 242bool 243StandardConversionSequence:: 244isPointerConversionToVoidPointer(ASTContext& Context) const { 245 QualType FromType = getFromType(); 246 QualType ToType = getToType(1); 247 248 // Note that FromType has not necessarily been transformed by the 249 // array-to-pointer implicit conversion, so check for its presence 250 // and redo the conversion to get a pointer. 251 if (First == ICK_Array_To_Pointer) 252 FromType = Context.getArrayDecayedType(FromType); 253 254 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 255 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 256 return ToPtrType->getPointeeType()->isVoidType(); 257 258 return false; 259} 260 261/// Skip any implicit casts which could be either part of a narrowing conversion 262/// or after one in an implicit conversion. 263static const Expr *IgnoreNarrowingConversion(const Expr *Converted) { 264 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { 265 switch (ICE->getCastKind()) { 266 case CK_NoOp: 267 case CK_IntegralCast: 268 case CK_IntegralToBoolean: 269 case CK_IntegralToFloating: 270 case CK_FloatingToIntegral: 271 case CK_FloatingToBoolean: 272 case CK_FloatingCast: 273 Converted = ICE->getSubExpr(); 274 continue; 275 276 default: 277 return Converted; 278 } 279 } 280 281 return Converted; 282} 283 284/// Check if this standard conversion sequence represents a narrowing 285/// conversion, according to C++11 [dcl.init.list]p7. 286/// 287/// \param Ctx The AST context. 288/// \param Converted The result of applying this standard conversion sequence. 289/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the 290/// value of the expression prior to the narrowing conversion. 291NarrowingKind 292StandardConversionSequence::getNarrowingKind(ASTContext &Ctx, 293 const Expr *Converted, 294 APValue &ConstantValue) const { 295 assert(Ctx.getLangOptions().CPlusPlus && "narrowing check outside C++"); 296 297 // C++11 [dcl.init.list]p7: 298 // A narrowing conversion is an implicit conversion ... 299 QualType FromType = getToType(0); 300 QualType ToType = getToType(1); 301 switch (Second) { 302 // -- from a floating-point type to an integer type, or 303 // 304 // -- from an integer type or unscoped enumeration type to a floating-point 305 // type, except where the source is a constant expression and the actual 306 // value after conversion will fit into the target type and will produce 307 // the original value when converted back to the original type, or 308 case ICK_Floating_Integral: 309 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { 310 return NK_Type_Narrowing; 311 } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) { 312 llvm::APSInt IntConstantValue; 313 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 314 if (Initializer && 315 Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) { 316 // Convert the integer to the floating type. 317 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); 318 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(), 319 llvm::APFloat::rmNearestTiesToEven); 320 // And back. 321 llvm::APSInt ConvertedValue = IntConstantValue; 322 bool ignored; 323 Result.convertToInteger(ConvertedValue, 324 llvm::APFloat::rmTowardZero, &ignored); 325 // If the resulting value is different, this was a narrowing conversion. 326 if (IntConstantValue != ConvertedValue) { 327 ConstantValue = APValue(IntConstantValue); 328 return NK_Constant_Narrowing; 329 } 330 } else { 331 // Variables are always narrowings. 332 return NK_Variable_Narrowing; 333 } 334 } 335 return NK_Not_Narrowing; 336 337 // -- from long double to double or float, or from double to float, except 338 // where the source is a constant expression and the actual value after 339 // conversion is within the range of values that can be represented (even 340 // if it cannot be represented exactly), or 341 case ICK_Floating_Conversion: 342 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && 343 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { 344 // FromType is larger than ToType. 345 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 346 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { 347 // Constant! 348 assert(ConstantValue.isFloat()); 349 llvm::APFloat FloatVal = ConstantValue.getFloat(); 350 // Convert the source value into the target type. 351 bool ignored; 352 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( 353 Ctx.getFloatTypeSemantics(ToType), 354 llvm::APFloat::rmNearestTiesToEven, &ignored); 355 // If there was no overflow, the source value is within the range of 356 // values that can be represented. 357 if (ConvertStatus & llvm::APFloat::opOverflow) 358 return NK_Constant_Narrowing; 359 } else { 360 return NK_Variable_Narrowing; 361 } 362 } 363 return NK_Not_Narrowing; 364 365 // -- from an integer type or unscoped enumeration type to an integer type 366 // that cannot represent all the values of the original type, except where 367 // the source is a constant expression and the actual value after 368 // conversion will fit into the target type and will produce the original 369 // value when converted back to the original type. 370 case ICK_Boolean_Conversion: // Bools are integers too. 371 if (!FromType->isIntegralOrUnscopedEnumerationType()) { 372 // Boolean conversions can be from pointers and pointers to members 373 // [conv.bool], and those aren't considered narrowing conversions. 374 return NK_Not_Narrowing; 375 } // Otherwise, fall through to the integral case. 376 case ICK_Integral_Conversion: { 377 assert(FromType->isIntegralOrUnscopedEnumerationType()); 378 assert(ToType->isIntegralOrUnscopedEnumerationType()); 379 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); 380 const unsigned FromWidth = Ctx.getIntWidth(FromType); 381 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); 382 const unsigned ToWidth = Ctx.getIntWidth(ToType); 383 384 if (FromWidth > ToWidth || 385 (FromWidth == ToWidth && FromSigned != ToSigned)) { 386 // Not all values of FromType can be represented in ToType. 387 llvm::APSInt InitializerValue; 388 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 389 if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) { 390 ConstantValue = APValue(InitializerValue); 391 392 // Add a bit to the InitializerValue so we don't have to worry about 393 // signed vs. unsigned comparisons. 394 InitializerValue = InitializerValue.extend( 395 InitializerValue.getBitWidth() + 1); 396 // Convert the initializer to and from the target width and signed-ness. 397 llvm::APSInt ConvertedValue = InitializerValue; 398 ConvertedValue = ConvertedValue.trunc(ToWidth); 399 ConvertedValue.setIsSigned(ToSigned); 400 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); 401 ConvertedValue.setIsSigned(InitializerValue.isSigned()); 402 // If the result is different, this was a narrowing conversion. 403 if (ConvertedValue != InitializerValue) 404 return NK_Constant_Narrowing; 405 } else { 406 // Variables are always narrowings. 407 return NK_Variable_Narrowing; 408 } 409 } 410 return NK_Not_Narrowing; 411 } 412 413 default: 414 // Other kinds of conversions are not narrowings. 415 return NK_Not_Narrowing; 416 } 417} 418 419/// DebugPrint - Print this standard conversion sequence to standard 420/// error. Useful for debugging overloading issues. 421void StandardConversionSequence::DebugPrint() const { 422 raw_ostream &OS = llvm::errs(); 423 bool PrintedSomething = false; 424 if (First != ICK_Identity) { 425 OS << GetImplicitConversionName(First); 426 PrintedSomething = true; 427 } 428 429 if (Second != ICK_Identity) { 430 if (PrintedSomething) { 431 OS << " -> "; 432 } 433 OS << GetImplicitConversionName(Second); 434 435 if (CopyConstructor) { 436 OS << " (by copy constructor)"; 437 } else if (DirectBinding) { 438 OS << " (direct reference binding)"; 439 } else if (ReferenceBinding) { 440 OS << " (reference binding)"; 441 } 442 PrintedSomething = true; 443 } 444 445 if (Third != ICK_Identity) { 446 if (PrintedSomething) { 447 OS << " -> "; 448 } 449 OS << GetImplicitConversionName(Third); 450 PrintedSomething = true; 451 } 452 453 if (!PrintedSomething) { 454 OS << "No conversions required"; 455 } 456} 457 458/// DebugPrint - Print this user-defined conversion sequence to standard 459/// error. Useful for debugging overloading issues. 460void UserDefinedConversionSequence::DebugPrint() const { 461 raw_ostream &OS = llvm::errs(); 462 if (Before.First || Before.Second || Before.Third) { 463 Before.DebugPrint(); 464 OS << " -> "; 465 } 466 if (ConversionFunction) 467 OS << '\'' << *ConversionFunction << '\''; 468 else 469 OS << "aggregate initialization"; 470 if (After.First || After.Second || After.Third) { 471 OS << " -> "; 472 After.DebugPrint(); 473 } 474} 475 476/// DebugPrint - Print this implicit conversion sequence to standard 477/// error. Useful for debugging overloading issues. 478void ImplicitConversionSequence::DebugPrint() const { 479 raw_ostream &OS = llvm::errs(); 480 switch (ConversionKind) { 481 case StandardConversion: 482 OS << "Standard conversion: "; 483 Standard.DebugPrint(); 484 break; 485 case UserDefinedConversion: 486 OS << "User-defined conversion: "; 487 UserDefined.DebugPrint(); 488 break; 489 case EllipsisConversion: 490 OS << "Ellipsis conversion"; 491 break; 492 case AmbiguousConversion: 493 OS << "Ambiguous conversion"; 494 break; 495 case BadConversion: 496 OS << "Bad conversion"; 497 break; 498 } 499 500 OS << "\n"; 501} 502 503void AmbiguousConversionSequence::construct() { 504 new (&conversions()) ConversionSet(); 505} 506 507void AmbiguousConversionSequence::destruct() { 508 conversions().~ConversionSet(); 509} 510 511void 512AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 513 FromTypePtr = O.FromTypePtr; 514 ToTypePtr = O.ToTypePtr; 515 new (&conversions()) ConversionSet(O.conversions()); 516} 517 518namespace { 519 // Structure used by OverloadCandidate::DeductionFailureInfo to store 520 // template parameter and template argument information. 521 struct DFIParamWithArguments { 522 TemplateParameter Param; 523 TemplateArgument FirstArg; 524 TemplateArgument SecondArg; 525 }; 526} 527 528/// \brief Convert from Sema's representation of template deduction information 529/// to the form used in overload-candidate information. 530OverloadCandidate::DeductionFailureInfo 531static MakeDeductionFailureInfo(ASTContext &Context, 532 Sema::TemplateDeductionResult TDK, 533 TemplateDeductionInfo &Info) { 534 OverloadCandidate::DeductionFailureInfo Result; 535 Result.Result = static_cast<unsigned>(TDK); 536 Result.Data = 0; 537 switch (TDK) { 538 case Sema::TDK_Success: 539 case Sema::TDK_InstantiationDepth: 540 case Sema::TDK_TooManyArguments: 541 case Sema::TDK_TooFewArguments: 542 break; 543 544 case Sema::TDK_Incomplete: 545 case Sema::TDK_InvalidExplicitArguments: 546 Result.Data = Info.Param.getOpaqueValue(); 547 break; 548 549 case Sema::TDK_Inconsistent: 550 case Sema::TDK_Underqualified: { 551 // FIXME: Should allocate from normal heap so that we can free this later. 552 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 553 Saved->Param = Info.Param; 554 Saved->FirstArg = Info.FirstArg; 555 Saved->SecondArg = Info.SecondArg; 556 Result.Data = Saved; 557 break; 558 } 559 560 case Sema::TDK_SubstitutionFailure: 561 Result.Data = Info.take(); 562 break; 563 564 case Sema::TDK_NonDeducedMismatch: 565 case Sema::TDK_FailedOverloadResolution: 566 break; 567 } 568 569 return Result; 570} 571 572void OverloadCandidate::DeductionFailureInfo::Destroy() { 573 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 574 case Sema::TDK_Success: 575 case Sema::TDK_InstantiationDepth: 576 case Sema::TDK_Incomplete: 577 case Sema::TDK_TooManyArguments: 578 case Sema::TDK_TooFewArguments: 579 case Sema::TDK_InvalidExplicitArguments: 580 break; 581 582 case Sema::TDK_Inconsistent: 583 case Sema::TDK_Underqualified: 584 // FIXME: Destroy the data? 585 Data = 0; 586 break; 587 588 case Sema::TDK_SubstitutionFailure: 589 // FIXME: Destroy the template arugment list? 590 Data = 0; 591 break; 592 593 // Unhandled 594 case Sema::TDK_NonDeducedMismatch: 595 case Sema::TDK_FailedOverloadResolution: 596 break; 597 } 598} 599 600TemplateParameter 601OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 602 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 603 case Sema::TDK_Success: 604 case Sema::TDK_InstantiationDepth: 605 case Sema::TDK_TooManyArguments: 606 case Sema::TDK_TooFewArguments: 607 case Sema::TDK_SubstitutionFailure: 608 return TemplateParameter(); 609 610 case Sema::TDK_Incomplete: 611 case Sema::TDK_InvalidExplicitArguments: 612 return TemplateParameter::getFromOpaqueValue(Data); 613 614 case Sema::TDK_Inconsistent: 615 case Sema::TDK_Underqualified: 616 return static_cast<DFIParamWithArguments*>(Data)->Param; 617 618 // Unhandled 619 case Sema::TDK_NonDeducedMismatch: 620 case Sema::TDK_FailedOverloadResolution: 621 break; 622 } 623 624 return TemplateParameter(); 625} 626 627TemplateArgumentList * 628OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 629 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 630 case Sema::TDK_Success: 631 case Sema::TDK_InstantiationDepth: 632 case Sema::TDK_TooManyArguments: 633 case Sema::TDK_TooFewArguments: 634 case Sema::TDK_Incomplete: 635 case Sema::TDK_InvalidExplicitArguments: 636 case Sema::TDK_Inconsistent: 637 case Sema::TDK_Underqualified: 638 return 0; 639 640 case Sema::TDK_SubstitutionFailure: 641 return static_cast<TemplateArgumentList*>(Data); 642 643 // Unhandled 644 case Sema::TDK_NonDeducedMismatch: 645 case Sema::TDK_FailedOverloadResolution: 646 break; 647 } 648 649 return 0; 650} 651 652const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 653 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 654 case Sema::TDK_Success: 655 case Sema::TDK_InstantiationDepth: 656 case Sema::TDK_Incomplete: 657 case Sema::TDK_TooManyArguments: 658 case Sema::TDK_TooFewArguments: 659 case Sema::TDK_InvalidExplicitArguments: 660 case Sema::TDK_SubstitutionFailure: 661 return 0; 662 663 case Sema::TDK_Inconsistent: 664 case Sema::TDK_Underqualified: 665 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 666 667 // Unhandled 668 case Sema::TDK_NonDeducedMismatch: 669 case Sema::TDK_FailedOverloadResolution: 670 break; 671 } 672 673 return 0; 674} 675 676const TemplateArgument * 677OverloadCandidate::DeductionFailureInfo::getSecondArg() { 678 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 679 case Sema::TDK_Success: 680 case Sema::TDK_InstantiationDepth: 681 case Sema::TDK_Incomplete: 682 case Sema::TDK_TooManyArguments: 683 case Sema::TDK_TooFewArguments: 684 case Sema::TDK_InvalidExplicitArguments: 685 case Sema::TDK_SubstitutionFailure: 686 return 0; 687 688 case Sema::TDK_Inconsistent: 689 case Sema::TDK_Underqualified: 690 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 691 692 // Unhandled 693 case Sema::TDK_NonDeducedMismatch: 694 case Sema::TDK_FailedOverloadResolution: 695 break; 696 } 697 698 return 0; 699} 700 701void OverloadCandidateSet::clear() { 702 for (iterator i = begin(), e = end(); i != e; ++i) 703 for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii) 704 i->Conversions[ii].~ImplicitConversionSequence(); 705 NumInlineSequences = 0; 706 Candidates.clear(); 707 Functions.clear(); 708} 709 710namespace { 711 class UnbridgedCastsSet { 712 struct Entry { 713 Expr **Addr; 714 Expr *Saved; 715 }; 716 SmallVector<Entry, 2> Entries; 717 718 public: 719 void save(Sema &S, Expr *&E) { 720 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 721 Entry entry = { &E, E }; 722 Entries.push_back(entry); 723 E = S.stripARCUnbridgedCast(E); 724 } 725 726 void restore() { 727 for (SmallVectorImpl<Entry>::iterator 728 i = Entries.begin(), e = Entries.end(); i != e; ++i) 729 *i->Addr = i->Saved; 730 } 731 }; 732} 733 734/// checkPlaceholderForOverload - Do any interesting placeholder-like 735/// preprocessing on the given expression. 736/// 737/// \param unbridgedCasts a collection to which to add unbridged casts; 738/// without this, they will be immediately diagnosed as errors 739/// 740/// Return true on unrecoverable error. 741static bool checkPlaceholderForOverload(Sema &S, Expr *&E, 742 UnbridgedCastsSet *unbridgedCasts = 0) { 743 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { 744 // We can't handle overloaded expressions here because overload 745 // resolution might reasonably tweak them. 746 if (placeholder->getKind() == BuiltinType::Overload) return false; 747 748 // If the context potentially accepts unbridged ARC casts, strip 749 // the unbridged cast and add it to the collection for later restoration. 750 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && 751 unbridgedCasts) { 752 unbridgedCasts->save(S, E); 753 return false; 754 } 755 756 // Go ahead and check everything else. 757 ExprResult result = S.CheckPlaceholderExpr(E); 758 if (result.isInvalid()) 759 return true; 760 761 E = result.take(); 762 return false; 763 } 764 765 // Nothing to do. 766 return false; 767} 768 769/// checkArgPlaceholdersForOverload - Check a set of call operands for 770/// placeholders. 771static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args, 772 unsigned numArgs, 773 UnbridgedCastsSet &unbridged) { 774 for (unsigned i = 0; i != numArgs; ++i) 775 if (checkPlaceholderForOverload(S, args[i], &unbridged)) 776 return true; 777 778 return false; 779} 780 781// IsOverload - Determine whether the given New declaration is an 782// overload of the declarations in Old. This routine returns false if 783// New and Old cannot be overloaded, e.g., if New has the same 784// signature as some function in Old (C++ 1.3.10) or if the Old 785// declarations aren't functions (or function templates) at all. When 786// it does return false, MatchedDecl will point to the decl that New 787// cannot be overloaded with. This decl may be a UsingShadowDecl on 788// top of the underlying declaration. 789// 790// Example: Given the following input: 791// 792// void f(int, float); // #1 793// void f(int, int); // #2 794// int f(int, int); // #3 795// 796// When we process #1, there is no previous declaration of "f", 797// so IsOverload will not be used. 798// 799// When we process #2, Old contains only the FunctionDecl for #1. By 800// comparing the parameter types, we see that #1 and #2 are overloaded 801// (since they have different signatures), so this routine returns 802// false; MatchedDecl is unchanged. 803// 804// When we process #3, Old is an overload set containing #1 and #2. We 805// compare the signatures of #3 to #1 (they're overloaded, so we do 806// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 807// identical (return types of functions are not part of the 808// signature), IsOverload returns false and MatchedDecl will be set to 809// point to the FunctionDecl for #2. 810// 811// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 812// into a class by a using declaration. The rules for whether to hide 813// shadow declarations ignore some properties which otherwise figure 814// into a function template's signature. 815Sema::OverloadKind 816Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 817 NamedDecl *&Match, bool NewIsUsingDecl) { 818 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 819 I != E; ++I) { 820 NamedDecl *OldD = *I; 821 822 bool OldIsUsingDecl = false; 823 if (isa<UsingShadowDecl>(OldD)) { 824 OldIsUsingDecl = true; 825 826 // We can always introduce two using declarations into the same 827 // context, even if they have identical signatures. 828 if (NewIsUsingDecl) continue; 829 830 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 831 } 832 833 // If either declaration was introduced by a using declaration, 834 // we'll need to use slightly different rules for matching. 835 // Essentially, these rules are the normal rules, except that 836 // function templates hide function templates with different 837 // return types or template parameter lists. 838 bool UseMemberUsingDeclRules = 839 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 840 841 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 842 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 843 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 844 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 845 continue; 846 } 847 848 Match = *I; 849 return Ovl_Match; 850 } 851 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 852 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 853 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 854 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 855 continue; 856 } 857 858 Match = *I; 859 return Ovl_Match; 860 } 861 } else if (isa<UsingDecl>(OldD)) { 862 // We can overload with these, which can show up when doing 863 // redeclaration checks for UsingDecls. 864 assert(Old.getLookupKind() == LookupUsingDeclName); 865 } else if (isa<TagDecl>(OldD)) { 866 // We can always overload with tags by hiding them. 867 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 868 // Optimistically assume that an unresolved using decl will 869 // overload; if it doesn't, we'll have to diagnose during 870 // template instantiation. 871 } else { 872 // (C++ 13p1): 873 // Only function declarations can be overloaded; object and type 874 // declarations cannot be overloaded. 875 Match = *I; 876 return Ovl_NonFunction; 877 } 878 } 879 880 return Ovl_Overload; 881} 882 883bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 884 bool UseUsingDeclRules) { 885 // If both of the functions are extern "C", then they are not 886 // overloads. 887 if (Old->isExternC() && New->isExternC()) 888 return false; 889 890 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 891 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 892 893 // C++ [temp.fct]p2: 894 // A function template can be overloaded with other function templates 895 // and with normal (non-template) functions. 896 if ((OldTemplate == 0) != (NewTemplate == 0)) 897 return true; 898 899 // Is the function New an overload of the function Old? 900 QualType OldQType = Context.getCanonicalType(Old->getType()); 901 QualType NewQType = Context.getCanonicalType(New->getType()); 902 903 // Compare the signatures (C++ 1.3.10) of the two functions to 904 // determine whether they are overloads. If we find any mismatch 905 // in the signature, they are overloads. 906 907 // If either of these functions is a K&R-style function (no 908 // prototype), then we consider them to have matching signatures. 909 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 910 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 911 return false; 912 913 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 914 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 915 916 // The signature of a function includes the types of its 917 // parameters (C++ 1.3.10), which includes the presence or absence 918 // of the ellipsis; see C++ DR 357). 919 if (OldQType != NewQType && 920 (OldType->getNumArgs() != NewType->getNumArgs() || 921 OldType->isVariadic() != NewType->isVariadic() || 922 !FunctionArgTypesAreEqual(OldType, NewType))) 923 return true; 924 925 // C++ [temp.over.link]p4: 926 // The signature of a function template consists of its function 927 // signature, its return type and its template parameter list. The names 928 // of the template parameters are significant only for establishing the 929 // relationship between the template parameters and the rest of the 930 // signature. 931 // 932 // We check the return type and template parameter lists for function 933 // templates first; the remaining checks follow. 934 // 935 // However, we don't consider either of these when deciding whether 936 // a member introduced by a shadow declaration is hidden. 937 if (!UseUsingDeclRules && NewTemplate && 938 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 939 OldTemplate->getTemplateParameters(), 940 false, TPL_TemplateMatch) || 941 OldType->getResultType() != NewType->getResultType())) 942 return true; 943 944 // If the function is a class member, its signature includes the 945 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 946 // 947 // As part of this, also check whether one of the member functions 948 // is static, in which case they are not overloads (C++ 949 // 13.1p2). While not part of the definition of the signature, 950 // this check is important to determine whether these functions 951 // can be overloaded. 952 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 953 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 954 if (OldMethod && NewMethod && 955 !OldMethod->isStatic() && !NewMethod->isStatic() && 956 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() || 957 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) { 958 if (!UseUsingDeclRules && 959 OldMethod->getRefQualifier() != NewMethod->getRefQualifier() && 960 (OldMethod->getRefQualifier() == RQ_None || 961 NewMethod->getRefQualifier() == RQ_None)) { 962 // C++0x [over.load]p2: 963 // - Member function declarations with the same name and the same 964 // parameter-type-list as well as member function template 965 // declarations with the same name, the same parameter-type-list, and 966 // the same template parameter lists cannot be overloaded if any of 967 // them, but not all, have a ref-qualifier (8.3.5). 968 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 969 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 970 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 971 } 972 973 return true; 974 } 975 976 // The signatures match; this is not an overload. 977 return false; 978} 979 980/// \brief Checks availability of the function depending on the current 981/// function context. Inside an unavailable function, unavailability is ignored. 982/// 983/// \returns true if \arg FD is unavailable and current context is inside 984/// an available function, false otherwise. 985bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) { 986 return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable(); 987} 988 989/// \brief Tries a user-defined conversion from From to ToType. 990/// 991/// Produces an implicit conversion sequence for when a standard conversion 992/// is not an option. See TryImplicitConversion for more information. 993static ImplicitConversionSequence 994TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 995 bool SuppressUserConversions, 996 bool AllowExplicit, 997 bool InOverloadResolution, 998 bool CStyle, 999 bool AllowObjCWritebackConversion) { 1000 ImplicitConversionSequence ICS; 1001 1002 if (SuppressUserConversions) { 1003 // We're not in the case above, so there is no conversion that 1004 // we can perform. 1005 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1006 return ICS; 1007 } 1008 1009 // Attempt user-defined conversion. 1010 OverloadCandidateSet Conversions(From->getExprLoc()); 1011 OverloadingResult UserDefResult 1012 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, 1013 AllowExplicit); 1014 1015 if (UserDefResult == OR_Success) { 1016 ICS.setUserDefined(); 1017 // C++ [over.ics.user]p4: 1018 // A conversion of an expression of class type to the same class 1019 // type is given Exact Match rank, and a conversion of an 1020 // expression of class type to a base class of that type is 1021 // given Conversion rank, in spite of the fact that a copy 1022 // constructor (i.e., a user-defined conversion function) is 1023 // called for those cases. 1024 if (CXXConstructorDecl *Constructor 1025 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 1026 QualType FromCanon 1027 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 1028 QualType ToCanon 1029 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 1030 if (Constructor->isCopyConstructor() && 1031 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { 1032 // Turn this into a "standard" conversion sequence, so that it 1033 // gets ranked with standard conversion sequences. 1034 ICS.setStandard(); 1035 ICS.Standard.setAsIdentityConversion(); 1036 ICS.Standard.setFromType(From->getType()); 1037 ICS.Standard.setAllToTypes(ToType); 1038 ICS.Standard.CopyConstructor = Constructor; 1039 if (ToCanon != FromCanon) 1040 ICS.Standard.Second = ICK_Derived_To_Base; 1041 } 1042 } 1043 1044 // C++ [over.best.ics]p4: 1045 // However, when considering the argument of a user-defined 1046 // conversion function that is a candidate by 13.3.1.3 when 1047 // invoked for the copying of the temporary in the second step 1048 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 1049 // 13.3.1.6 in all cases, only standard conversion sequences and 1050 // ellipsis conversion sequences are allowed. 1051 if (SuppressUserConversions && ICS.isUserDefined()) { 1052 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 1053 } 1054 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 1055 ICS.setAmbiguous(); 1056 ICS.Ambiguous.setFromType(From->getType()); 1057 ICS.Ambiguous.setToType(ToType); 1058 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 1059 Cand != Conversions.end(); ++Cand) 1060 if (Cand->Viable) 1061 ICS.Ambiguous.addConversion(Cand->Function); 1062 } else { 1063 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1064 } 1065 1066 return ICS; 1067} 1068 1069/// TryImplicitConversion - Attempt to perform an implicit conversion 1070/// from the given expression (Expr) to the given type (ToType). This 1071/// function returns an implicit conversion sequence that can be used 1072/// to perform the initialization. Given 1073/// 1074/// void f(float f); 1075/// void g(int i) { f(i); } 1076/// 1077/// this routine would produce an implicit conversion sequence to 1078/// describe the initialization of f from i, which will be a standard 1079/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 1080/// 4.1) followed by a floating-integral conversion (C++ 4.9). 1081// 1082/// Note that this routine only determines how the conversion can be 1083/// performed; it does not actually perform the conversion. As such, 1084/// it will not produce any diagnostics if no conversion is available, 1085/// but will instead return an implicit conversion sequence of kind 1086/// "BadConversion". 1087/// 1088/// If @p SuppressUserConversions, then user-defined conversions are 1089/// not permitted. 1090/// If @p AllowExplicit, then explicit user-defined conversions are 1091/// permitted. 1092/// 1093/// \param AllowObjCWritebackConversion Whether we allow the Objective-C 1094/// writeback conversion, which allows __autoreleasing id* parameters to 1095/// be initialized with __strong id* or __weak id* arguments. 1096static ImplicitConversionSequence 1097TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 1098 bool SuppressUserConversions, 1099 bool AllowExplicit, 1100 bool InOverloadResolution, 1101 bool CStyle, 1102 bool AllowObjCWritebackConversion) { 1103 ImplicitConversionSequence ICS; 1104 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 1105 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 1106 ICS.setStandard(); 1107 return ICS; 1108 } 1109 1110 if (!S.getLangOptions().CPlusPlus) { 1111 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1112 return ICS; 1113 } 1114 1115 // C++ [over.ics.user]p4: 1116 // A conversion of an expression of class type to the same class 1117 // type is given Exact Match rank, and a conversion of an 1118 // expression of class type to a base class of that type is 1119 // given Conversion rank, in spite of the fact that a copy/move 1120 // constructor (i.e., a user-defined conversion function) is 1121 // called for those cases. 1122 QualType FromType = From->getType(); 1123 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 1124 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 1125 S.IsDerivedFrom(FromType, ToType))) { 1126 ICS.setStandard(); 1127 ICS.Standard.setAsIdentityConversion(); 1128 ICS.Standard.setFromType(FromType); 1129 ICS.Standard.setAllToTypes(ToType); 1130 1131 // We don't actually check at this point whether there is a valid 1132 // copy/move constructor, since overloading just assumes that it 1133 // exists. When we actually perform initialization, we'll find the 1134 // appropriate constructor to copy the returned object, if needed. 1135 ICS.Standard.CopyConstructor = 0; 1136 1137 // Determine whether this is considered a derived-to-base conversion. 1138 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 1139 ICS.Standard.Second = ICK_Derived_To_Base; 1140 1141 return ICS; 1142 } 1143 1144 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 1145 AllowExplicit, InOverloadResolution, CStyle, 1146 AllowObjCWritebackConversion); 1147} 1148 1149ImplicitConversionSequence 1150Sema::TryImplicitConversion(Expr *From, QualType ToType, 1151 bool SuppressUserConversions, 1152 bool AllowExplicit, 1153 bool InOverloadResolution, 1154 bool CStyle, 1155 bool AllowObjCWritebackConversion) { 1156 return clang::TryImplicitConversion(*this, From, ToType, 1157 SuppressUserConversions, AllowExplicit, 1158 InOverloadResolution, CStyle, 1159 AllowObjCWritebackConversion); 1160} 1161 1162/// PerformImplicitConversion - Perform an implicit conversion of the 1163/// expression From to the type ToType. Returns the 1164/// converted expression. Flavor is the kind of conversion we're 1165/// performing, used in the error message. If @p AllowExplicit, 1166/// explicit user-defined conversions are permitted. 1167ExprResult 1168Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1169 AssignmentAction Action, bool AllowExplicit) { 1170 ImplicitConversionSequence ICS; 1171 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 1172} 1173 1174ExprResult 1175Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1176 AssignmentAction Action, bool AllowExplicit, 1177 ImplicitConversionSequence& ICS) { 1178 if (checkPlaceholderForOverload(*this, From)) 1179 return ExprError(); 1180 1181 // Objective-C ARC: Determine whether we will allow the writeback conversion. 1182 bool AllowObjCWritebackConversion 1183 = getLangOptions().ObjCAutoRefCount && 1184 (Action == AA_Passing || Action == AA_Sending); 1185 1186 ICS = clang::TryImplicitConversion(*this, From, ToType, 1187 /*SuppressUserConversions=*/false, 1188 AllowExplicit, 1189 /*InOverloadResolution=*/false, 1190 /*CStyle=*/false, 1191 AllowObjCWritebackConversion); 1192 return PerformImplicitConversion(From, ToType, ICS, Action); 1193} 1194 1195/// \brief Determine whether the conversion from FromType to ToType is a valid 1196/// conversion that strips "noreturn" off the nested function type. 1197bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType, 1198 QualType &ResultTy) { 1199 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1200 return false; 1201 1202 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 1203 // where F adds one of the following at most once: 1204 // - a pointer 1205 // - a member pointer 1206 // - a block pointer 1207 CanQualType CanTo = Context.getCanonicalType(ToType); 1208 CanQualType CanFrom = Context.getCanonicalType(FromType); 1209 Type::TypeClass TyClass = CanTo->getTypeClass(); 1210 if (TyClass != CanFrom->getTypeClass()) return false; 1211 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 1212 if (TyClass == Type::Pointer) { 1213 CanTo = CanTo.getAs<PointerType>()->getPointeeType(); 1214 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); 1215 } else if (TyClass == Type::BlockPointer) { 1216 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); 1217 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); 1218 } else if (TyClass == Type::MemberPointer) { 1219 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType(); 1220 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType(); 1221 } else { 1222 return false; 1223 } 1224 1225 TyClass = CanTo->getTypeClass(); 1226 if (TyClass != CanFrom->getTypeClass()) return false; 1227 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 1228 return false; 1229 } 1230 1231 const FunctionType *FromFn = cast<FunctionType>(CanFrom); 1232 FunctionType::ExtInfo EInfo = FromFn->getExtInfo(); 1233 if (!EInfo.getNoReturn()) return false; 1234 1235 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false)); 1236 assert(QualType(FromFn, 0).isCanonical()); 1237 if (QualType(FromFn, 0) != CanTo) return false; 1238 1239 ResultTy = ToType; 1240 return true; 1241} 1242 1243/// \brief Determine whether the conversion from FromType to ToType is a valid 1244/// vector conversion. 1245/// 1246/// \param ICK Will be set to the vector conversion kind, if this is a vector 1247/// conversion. 1248static bool IsVectorConversion(ASTContext &Context, QualType FromType, 1249 QualType ToType, ImplicitConversionKind &ICK) { 1250 // We need at least one of these types to be a vector type to have a vector 1251 // conversion. 1252 if (!ToType->isVectorType() && !FromType->isVectorType()) 1253 return false; 1254 1255 // Identical types require no conversions. 1256 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1257 return false; 1258 1259 // There are no conversions between extended vector types, only identity. 1260 if (ToType->isExtVectorType()) { 1261 // There are no conversions between extended vector types other than the 1262 // identity conversion. 1263 if (FromType->isExtVectorType()) 1264 return false; 1265 1266 // Vector splat from any arithmetic type to a vector. 1267 if (FromType->isArithmeticType()) { 1268 ICK = ICK_Vector_Splat; 1269 return true; 1270 } 1271 } 1272 1273 // We can perform the conversion between vector types in the following cases: 1274 // 1)vector types are equivalent AltiVec and GCC vector types 1275 // 2)lax vector conversions are permitted and the vector types are of the 1276 // same size 1277 if (ToType->isVectorType() && FromType->isVectorType()) { 1278 if (Context.areCompatibleVectorTypes(FromType, ToType) || 1279 (Context.getLangOptions().LaxVectorConversions && 1280 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 1281 ICK = ICK_Vector_Conversion; 1282 return true; 1283 } 1284 } 1285 1286 return false; 1287} 1288 1289/// IsStandardConversion - Determines whether there is a standard 1290/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1291/// expression From to the type ToType. Standard conversion sequences 1292/// only consider non-class types; for conversions that involve class 1293/// types, use TryImplicitConversion. If a conversion exists, SCS will 1294/// contain the standard conversion sequence required to perform this 1295/// conversion and this routine will return true. Otherwise, this 1296/// routine will return false and the value of SCS is unspecified. 1297static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1298 bool InOverloadResolution, 1299 StandardConversionSequence &SCS, 1300 bool CStyle, 1301 bool AllowObjCWritebackConversion) { 1302 QualType FromType = From->getType(); 1303 1304 // Standard conversions (C++ [conv]) 1305 SCS.setAsIdentityConversion(); 1306 SCS.DeprecatedStringLiteralToCharPtr = false; 1307 SCS.IncompatibleObjC = false; 1308 SCS.setFromType(FromType); 1309 SCS.CopyConstructor = 0; 1310 1311 // There are no standard conversions for class types in C++, so 1312 // abort early. When overloading in C, however, we do permit 1313 if (FromType->isRecordType() || ToType->isRecordType()) { 1314 if (S.getLangOptions().CPlusPlus) 1315 return false; 1316 1317 // When we're overloading in C, we allow, as standard conversions, 1318 } 1319 1320 // The first conversion can be an lvalue-to-rvalue conversion, 1321 // array-to-pointer conversion, or function-to-pointer conversion 1322 // (C++ 4p1). 1323 1324 if (FromType == S.Context.OverloadTy) { 1325 DeclAccessPair AccessPair; 1326 if (FunctionDecl *Fn 1327 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1328 AccessPair)) { 1329 // We were able to resolve the address of the overloaded function, 1330 // so we can convert to the type of that function. 1331 FromType = Fn->getType(); 1332 1333 // we can sometimes resolve &foo<int> regardless of ToType, so check 1334 // if the type matches (identity) or we are converting to bool 1335 if (!S.Context.hasSameUnqualifiedType( 1336 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1337 QualType resultTy; 1338 // if the function type matches except for [[noreturn]], it's ok 1339 if (!S.IsNoReturnConversion(FromType, 1340 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1341 // otherwise, only a boolean conversion is standard 1342 if (!ToType->isBooleanType()) 1343 return false; 1344 } 1345 1346 // Check if the "from" expression is taking the address of an overloaded 1347 // function and recompute the FromType accordingly. Take advantage of the 1348 // fact that non-static member functions *must* have such an address-of 1349 // expression. 1350 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1351 if (Method && !Method->isStatic()) { 1352 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1353 "Non-unary operator on non-static member address"); 1354 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1355 == UO_AddrOf && 1356 "Non-address-of operator on non-static member address"); 1357 const Type *ClassType 1358 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1359 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1360 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1361 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1362 UO_AddrOf && 1363 "Non-address-of operator for overloaded function expression"); 1364 FromType = S.Context.getPointerType(FromType); 1365 } 1366 1367 // Check that we've computed the proper type after overload resolution. 1368 assert(S.Context.hasSameType( 1369 FromType, 1370 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1371 } else { 1372 return false; 1373 } 1374 } 1375 // Lvalue-to-rvalue conversion (C++11 4.1): 1376 // A glvalue (3.10) of a non-function, non-array type T can 1377 // be converted to a prvalue. 1378 bool argIsLValue = From->isGLValue(); 1379 if (argIsLValue && 1380 !FromType->isFunctionType() && !FromType->isArrayType() && 1381 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1382 SCS.First = ICK_Lvalue_To_Rvalue; 1383 1384 // If T is a non-class type, the type of the rvalue is the 1385 // cv-unqualified version of T. Otherwise, the type of the rvalue 1386 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1387 // just strip the qualifiers because they don't matter. 1388 FromType = FromType.getUnqualifiedType(); 1389 } else if (FromType->isArrayType()) { 1390 // Array-to-pointer conversion (C++ 4.2) 1391 SCS.First = ICK_Array_To_Pointer; 1392 1393 // An lvalue or rvalue of type "array of N T" or "array of unknown 1394 // bound of T" can be converted to an rvalue of type "pointer to 1395 // T" (C++ 4.2p1). 1396 FromType = S.Context.getArrayDecayedType(FromType); 1397 1398 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1399 // This conversion is deprecated. (C++ D.4). 1400 SCS.DeprecatedStringLiteralToCharPtr = true; 1401 1402 // For the purpose of ranking in overload resolution 1403 // (13.3.3.1.1), this conversion is considered an 1404 // array-to-pointer conversion followed by a qualification 1405 // conversion (4.4). (C++ 4.2p2) 1406 SCS.Second = ICK_Identity; 1407 SCS.Third = ICK_Qualification; 1408 SCS.QualificationIncludesObjCLifetime = false; 1409 SCS.setAllToTypes(FromType); 1410 return true; 1411 } 1412 } else if (FromType->isFunctionType() && argIsLValue) { 1413 // Function-to-pointer conversion (C++ 4.3). 1414 SCS.First = ICK_Function_To_Pointer; 1415 1416 // An lvalue of function type T can be converted to an rvalue of 1417 // type "pointer to T." The result is a pointer to the 1418 // function. (C++ 4.3p1). 1419 FromType = S.Context.getPointerType(FromType); 1420 } else { 1421 // We don't require any conversions for the first step. 1422 SCS.First = ICK_Identity; 1423 } 1424 SCS.setToType(0, FromType); 1425 1426 // The second conversion can be an integral promotion, floating 1427 // point promotion, integral conversion, floating point conversion, 1428 // floating-integral conversion, pointer conversion, 1429 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1430 // For overloading in C, this can also be a "compatible-type" 1431 // conversion. 1432 bool IncompatibleObjC = false; 1433 ImplicitConversionKind SecondICK = ICK_Identity; 1434 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1435 // The unqualified versions of the types are the same: there's no 1436 // conversion to do. 1437 SCS.Second = ICK_Identity; 1438 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1439 // Integral promotion (C++ 4.5). 1440 SCS.Second = ICK_Integral_Promotion; 1441 FromType = ToType.getUnqualifiedType(); 1442 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1443 // Floating point promotion (C++ 4.6). 1444 SCS.Second = ICK_Floating_Promotion; 1445 FromType = ToType.getUnqualifiedType(); 1446 } else if (S.IsComplexPromotion(FromType, ToType)) { 1447 // Complex promotion (Clang extension) 1448 SCS.Second = ICK_Complex_Promotion; 1449 FromType = ToType.getUnqualifiedType(); 1450 } else if (ToType->isBooleanType() && 1451 (FromType->isArithmeticType() || 1452 FromType->isAnyPointerType() || 1453 FromType->isBlockPointerType() || 1454 FromType->isMemberPointerType() || 1455 FromType->isNullPtrType())) { 1456 // Boolean conversions (C++ 4.12). 1457 SCS.Second = ICK_Boolean_Conversion; 1458 FromType = S.Context.BoolTy; 1459 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1460 ToType->isIntegralType(S.Context)) { 1461 // Integral conversions (C++ 4.7). 1462 SCS.Second = ICK_Integral_Conversion; 1463 FromType = ToType.getUnqualifiedType(); 1464 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) { 1465 // Complex conversions (C99 6.3.1.6) 1466 SCS.Second = ICK_Complex_Conversion; 1467 FromType = ToType.getUnqualifiedType(); 1468 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1469 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1470 // Complex-real conversions (C99 6.3.1.7) 1471 SCS.Second = ICK_Complex_Real; 1472 FromType = ToType.getUnqualifiedType(); 1473 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1474 // Floating point conversions (C++ 4.8). 1475 SCS.Second = ICK_Floating_Conversion; 1476 FromType = ToType.getUnqualifiedType(); 1477 } else if ((FromType->isRealFloatingType() && 1478 ToType->isIntegralType(S.Context)) || 1479 (FromType->isIntegralOrUnscopedEnumerationType() && 1480 ToType->isRealFloatingType())) { 1481 // Floating-integral conversions (C++ 4.9). 1482 SCS.Second = ICK_Floating_Integral; 1483 FromType = ToType.getUnqualifiedType(); 1484 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1485 SCS.Second = ICK_Block_Pointer_Conversion; 1486 } else if (AllowObjCWritebackConversion && 1487 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 1488 SCS.Second = ICK_Writeback_Conversion; 1489 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1490 FromType, IncompatibleObjC)) { 1491 // Pointer conversions (C++ 4.10). 1492 SCS.Second = ICK_Pointer_Conversion; 1493 SCS.IncompatibleObjC = IncompatibleObjC; 1494 FromType = FromType.getUnqualifiedType(); 1495 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1496 InOverloadResolution, FromType)) { 1497 // Pointer to member conversions (4.11). 1498 SCS.Second = ICK_Pointer_Member; 1499 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { 1500 SCS.Second = SecondICK; 1501 FromType = ToType.getUnqualifiedType(); 1502 } else if (!S.getLangOptions().CPlusPlus && 1503 S.Context.typesAreCompatible(ToType, FromType)) { 1504 // Compatible conversions (Clang extension for C function overloading) 1505 SCS.Second = ICK_Compatible_Conversion; 1506 FromType = ToType.getUnqualifiedType(); 1507 } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) { 1508 // Treat a conversion that strips "noreturn" as an identity conversion. 1509 SCS.Second = ICK_NoReturn_Adjustment; 1510 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 1511 InOverloadResolution, 1512 SCS, CStyle)) { 1513 SCS.Second = ICK_TransparentUnionConversion; 1514 FromType = ToType; 1515 } else { 1516 // No second conversion required. 1517 SCS.Second = ICK_Identity; 1518 } 1519 SCS.setToType(1, FromType); 1520 1521 QualType CanonFrom; 1522 QualType CanonTo; 1523 // The third conversion can be a qualification conversion (C++ 4p1). 1524 bool ObjCLifetimeConversion; 1525 if (S.IsQualificationConversion(FromType, ToType, CStyle, 1526 ObjCLifetimeConversion)) { 1527 SCS.Third = ICK_Qualification; 1528 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 1529 FromType = ToType; 1530 CanonFrom = S.Context.getCanonicalType(FromType); 1531 CanonTo = S.Context.getCanonicalType(ToType); 1532 } else { 1533 // No conversion required 1534 SCS.Third = ICK_Identity; 1535 1536 // C++ [over.best.ics]p6: 1537 // [...] Any difference in top-level cv-qualification is 1538 // subsumed by the initialization itself and does not constitute 1539 // a conversion. [...] 1540 CanonFrom = S.Context.getCanonicalType(FromType); 1541 CanonTo = S.Context.getCanonicalType(ToType); 1542 if (CanonFrom.getLocalUnqualifiedType() 1543 == CanonTo.getLocalUnqualifiedType() && 1544 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1545 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr() 1546 || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) { 1547 FromType = ToType; 1548 CanonFrom = CanonTo; 1549 } 1550 } 1551 SCS.setToType(2, FromType); 1552 1553 // If we have not converted the argument type to the parameter type, 1554 // this is a bad conversion sequence. 1555 if (CanonFrom != CanonTo) 1556 return false; 1557 1558 return true; 1559} 1560 1561static bool 1562IsTransparentUnionStandardConversion(Sema &S, Expr* From, 1563 QualType &ToType, 1564 bool InOverloadResolution, 1565 StandardConversionSequence &SCS, 1566 bool CStyle) { 1567 1568 const RecordType *UT = ToType->getAsUnionType(); 1569 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 1570 return false; 1571 // The field to initialize within the transparent union. 1572 RecordDecl *UD = UT->getDecl(); 1573 // It's compatible if the expression matches any of the fields. 1574 for (RecordDecl::field_iterator it = UD->field_begin(), 1575 itend = UD->field_end(); 1576 it != itend; ++it) { 1577 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 1578 CStyle, /*ObjCWritebackConversion=*/false)) { 1579 ToType = it->getType(); 1580 return true; 1581 } 1582 } 1583 return false; 1584} 1585 1586/// IsIntegralPromotion - Determines whether the conversion from the 1587/// expression From (whose potentially-adjusted type is FromType) to 1588/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1589/// sets PromotedType to the promoted type. 1590bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1591 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1592 // All integers are built-in. 1593 if (!To) { 1594 return false; 1595 } 1596 1597 // An rvalue of type char, signed char, unsigned char, short int, or 1598 // unsigned short int can be converted to an rvalue of type int if 1599 // int can represent all the values of the source type; otherwise, 1600 // the source rvalue can be converted to an rvalue of type unsigned 1601 // int (C++ 4.5p1). 1602 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1603 !FromType->isEnumeralType()) { 1604 if (// We can promote any signed, promotable integer type to an int 1605 (FromType->isSignedIntegerType() || 1606 // We can promote any unsigned integer type whose size is 1607 // less than int to an int. 1608 (!FromType->isSignedIntegerType() && 1609 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1610 return To->getKind() == BuiltinType::Int; 1611 } 1612 1613 return To->getKind() == BuiltinType::UInt; 1614 } 1615 1616 // C++0x [conv.prom]p3: 1617 // A prvalue of an unscoped enumeration type whose underlying type is not 1618 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 1619 // following types that can represent all the values of the enumeration 1620 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 1621 // unsigned int, long int, unsigned long int, long long int, or unsigned 1622 // long long int. If none of the types in that list can represent all the 1623 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 1624 // type can be converted to an rvalue a prvalue of the extended integer type 1625 // with lowest integer conversion rank (4.13) greater than the rank of long 1626 // long in which all the values of the enumeration can be represented. If 1627 // there are two such extended types, the signed one is chosen. 1628 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1629 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1630 // provided for a scoped enumeration. 1631 if (FromEnumType->getDecl()->isScoped()) 1632 return false; 1633 1634 // We have already pre-calculated the promotion type, so this is trivial. 1635 if (ToType->isIntegerType() && 1636 !RequireCompleteType(From->getLocStart(), FromType, PDiag())) 1637 return Context.hasSameUnqualifiedType(ToType, 1638 FromEnumType->getDecl()->getPromotionType()); 1639 } 1640 1641 // C++0x [conv.prom]p2: 1642 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 1643 // to an rvalue a prvalue of the first of the following types that can 1644 // represent all the values of its underlying type: int, unsigned int, 1645 // long int, unsigned long int, long long int, or unsigned long long int. 1646 // If none of the types in that list can represent all the values of its 1647 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 1648 // or wchar_t can be converted to an rvalue a prvalue of its underlying 1649 // type. 1650 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 1651 ToType->isIntegerType()) { 1652 // Determine whether the type we're converting from is signed or 1653 // unsigned. 1654 bool FromIsSigned = FromType->isSignedIntegerType(); 1655 uint64_t FromSize = Context.getTypeSize(FromType); 1656 1657 // The types we'll try to promote to, in the appropriate 1658 // order. Try each of these types. 1659 QualType PromoteTypes[6] = { 1660 Context.IntTy, Context.UnsignedIntTy, 1661 Context.LongTy, Context.UnsignedLongTy , 1662 Context.LongLongTy, Context.UnsignedLongLongTy 1663 }; 1664 for (int Idx = 0; Idx < 6; ++Idx) { 1665 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1666 if (FromSize < ToSize || 1667 (FromSize == ToSize && 1668 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1669 // We found the type that we can promote to. If this is the 1670 // type we wanted, we have a promotion. Otherwise, no 1671 // promotion. 1672 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1673 } 1674 } 1675 } 1676 1677 // An rvalue for an integral bit-field (9.6) can be converted to an 1678 // rvalue of type int if int can represent all the values of the 1679 // bit-field; otherwise, it can be converted to unsigned int if 1680 // unsigned int can represent all the values of the bit-field. If 1681 // the bit-field is larger yet, no integral promotion applies to 1682 // it. If the bit-field has an enumerated type, it is treated as any 1683 // other value of that type for promotion purposes (C++ 4.5p3). 1684 // FIXME: We should delay checking of bit-fields until we actually perform the 1685 // conversion. 1686 using llvm::APSInt; 1687 if (From) 1688 if (FieldDecl *MemberDecl = From->getBitField()) { 1689 APSInt BitWidth; 1690 if (FromType->isIntegralType(Context) && 1691 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1692 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1693 ToSize = Context.getTypeSize(ToType); 1694 1695 // Are we promoting to an int from a bitfield that fits in an int? 1696 if (BitWidth < ToSize || 1697 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1698 return To->getKind() == BuiltinType::Int; 1699 } 1700 1701 // Are we promoting to an unsigned int from an unsigned bitfield 1702 // that fits into an unsigned int? 1703 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1704 return To->getKind() == BuiltinType::UInt; 1705 } 1706 1707 return false; 1708 } 1709 } 1710 1711 // An rvalue of type bool can be converted to an rvalue of type int, 1712 // with false becoming zero and true becoming one (C++ 4.5p4). 1713 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1714 return true; 1715 } 1716 1717 return false; 1718} 1719 1720/// IsFloatingPointPromotion - Determines whether the conversion from 1721/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1722/// returns true and sets PromotedType to the promoted type. 1723bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1724 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1725 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1726 /// An rvalue of type float can be converted to an rvalue of type 1727 /// double. (C++ 4.6p1). 1728 if (FromBuiltin->getKind() == BuiltinType::Float && 1729 ToBuiltin->getKind() == BuiltinType::Double) 1730 return true; 1731 1732 // C99 6.3.1.5p1: 1733 // When a float is promoted to double or long double, or a 1734 // double is promoted to long double [...]. 1735 if (!getLangOptions().CPlusPlus && 1736 (FromBuiltin->getKind() == BuiltinType::Float || 1737 FromBuiltin->getKind() == BuiltinType::Double) && 1738 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1739 return true; 1740 1741 // Half can be promoted to float. 1742 if (FromBuiltin->getKind() == BuiltinType::Half && 1743 ToBuiltin->getKind() == BuiltinType::Float) 1744 return true; 1745 } 1746 1747 return false; 1748} 1749 1750/// \brief Determine if a conversion is a complex promotion. 1751/// 1752/// A complex promotion is defined as a complex -> complex conversion 1753/// where the conversion between the underlying real types is a 1754/// floating-point or integral promotion. 1755bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1756 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1757 if (!FromComplex) 1758 return false; 1759 1760 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1761 if (!ToComplex) 1762 return false; 1763 1764 return IsFloatingPointPromotion(FromComplex->getElementType(), 1765 ToComplex->getElementType()) || 1766 IsIntegralPromotion(0, FromComplex->getElementType(), 1767 ToComplex->getElementType()); 1768} 1769 1770/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1771/// the pointer type FromPtr to a pointer to type ToPointee, with the 1772/// same type qualifiers as FromPtr has on its pointee type. ToType, 1773/// if non-empty, will be a pointer to ToType that may or may not have 1774/// the right set of qualifiers on its pointee. 1775/// 1776static QualType 1777BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 1778 QualType ToPointee, QualType ToType, 1779 ASTContext &Context, 1780 bool StripObjCLifetime = false) { 1781 assert((FromPtr->getTypeClass() == Type::Pointer || 1782 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 1783 "Invalid similarly-qualified pointer type"); 1784 1785 /// Conversions to 'id' subsume cv-qualifier conversions. 1786 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 1787 return ToType.getUnqualifiedType(); 1788 1789 QualType CanonFromPointee 1790 = Context.getCanonicalType(FromPtr->getPointeeType()); 1791 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1792 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1793 1794 if (StripObjCLifetime) 1795 Quals.removeObjCLifetime(); 1796 1797 // Exact qualifier match -> return the pointer type we're converting to. 1798 if (CanonToPointee.getLocalQualifiers() == Quals) { 1799 // ToType is exactly what we need. Return it. 1800 if (!ToType.isNull()) 1801 return ToType.getUnqualifiedType(); 1802 1803 // Build a pointer to ToPointee. It has the right qualifiers 1804 // already. 1805 if (isa<ObjCObjectPointerType>(ToType)) 1806 return Context.getObjCObjectPointerType(ToPointee); 1807 return Context.getPointerType(ToPointee); 1808 } 1809 1810 // Just build a canonical type that has the right qualifiers. 1811 QualType QualifiedCanonToPointee 1812 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 1813 1814 if (isa<ObjCObjectPointerType>(ToType)) 1815 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 1816 return Context.getPointerType(QualifiedCanonToPointee); 1817} 1818 1819static bool isNullPointerConstantForConversion(Expr *Expr, 1820 bool InOverloadResolution, 1821 ASTContext &Context) { 1822 // Handle value-dependent integral null pointer constants correctly. 1823 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1824 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1825 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1826 return !InOverloadResolution; 1827 1828 return Expr->isNullPointerConstant(Context, 1829 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1830 : Expr::NPC_ValueDependentIsNull); 1831} 1832 1833/// IsPointerConversion - Determines whether the conversion of the 1834/// expression From, which has the (possibly adjusted) type FromType, 1835/// can be converted to the type ToType via a pointer conversion (C++ 1836/// 4.10). If so, returns true and places the converted type (that 1837/// might differ from ToType in its cv-qualifiers at some level) into 1838/// ConvertedType. 1839/// 1840/// This routine also supports conversions to and from block pointers 1841/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1842/// pointers to interfaces. FIXME: Once we've determined the 1843/// appropriate overloading rules for Objective-C, we may want to 1844/// split the Objective-C checks into a different routine; however, 1845/// GCC seems to consider all of these conversions to be pointer 1846/// conversions, so for now they live here. IncompatibleObjC will be 1847/// set if the conversion is an allowed Objective-C conversion that 1848/// should result in a warning. 1849bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1850 bool InOverloadResolution, 1851 QualType& ConvertedType, 1852 bool &IncompatibleObjC) { 1853 IncompatibleObjC = false; 1854 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 1855 IncompatibleObjC)) 1856 return true; 1857 1858 // Conversion from a null pointer constant to any Objective-C pointer type. 1859 if (ToType->isObjCObjectPointerType() && 1860 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1861 ConvertedType = ToType; 1862 return true; 1863 } 1864 1865 // Blocks: Block pointers can be converted to void*. 1866 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1867 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1868 ConvertedType = ToType; 1869 return true; 1870 } 1871 // Blocks: A null pointer constant can be converted to a block 1872 // pointer type. 1873 if (ToType->isBlockPointerType() && 1874 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1875 ConvertedType = ToType; 1876 return true; 1877 } 1878 1879 // If the left-hand-side is nullptr_t, the right side can be a null 1880 // pointer constant. 1881 if (ToType->isNullPtrType() && 1882 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1883 ConvertedType = ToType; 1884 return true; 1885 } 1886 1887 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1888 if (!ToTypePtr) 1889 return false; 1890 1891 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1892 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1893 ConvertedType = ToType; 1894 return true; 1895 } 1896 1897 // Beyond this point, both types need to be pointers 1898 // , including objective-c pointers. 1899 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1900 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 1901 !getLangOptions().ObjCAutoRefCount) { 1902 ConvertedType = BuildSimilarlyQualifiedPointerType( 1903 FromType->getAs<ObjCObjectPointerType>(), 1904 ToPointeeType, 1905 ToType, Context); 1906 return true; 1907 } 1908 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1909 if (!FromTypePtr) 1910 return false; 1911 1912 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1913 1914 // If the unqualified pointee types are the same, this can't be a 1915 // pointer conversion, so don't do all of the work below. 1916 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 1917 return false; 1918 1919 // An rvalue of type "pointer to cv T," where T is an object type, 1920 // can be converted to an rvalue of type "pointer to cv void" (C++ 1921 // 4.10p2). 1922 if (FromPointeeType->isIncompleteOrObjectType() && 1923 ToPointeeType->isVoidType()) { 1924 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1925 ToPointeeType, 1926 ToType, Context, 1927 /*StripObjCLifetime=*/true); 1928 return true; 1929 } 1930 1931 // MSVC allows implicit function to void* type conversion. 1932 if (getLangOptions().MicrosoftExt && FromPointeeType->isFunctionType() && 1933 ToPointeeType->isVoidType()) { 1934 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1935 ToPointeeType, 1936 ToType, Context); 1937 return true; 1938 } 1939 1940 // When we're overloading in C, we allow a special kind of pointer 1941 // conversion for compatible-but-not-identical pointee types. 1942 if (!getLangOptions().CPlusPlus && 1943 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1944 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1945 ToPointeeType, 1946 ToType, Context); 1947 return true; 1948 } 1949 1950 // C++ [conv.ptr]p3: 1951 // 1952 // An rvalue of type "pointer to cv D," where D is a class type, 1953 // can be converted to an rvalue of type "pointer to cv B," where 1954 // B is a base class (clause 10) of D. If B is an inaccessible 1955 // (clause 11) or ambiguous (10.2) base class of D, a program that 1956 // necessitates this conversion is ill-formed. The result of the 1957 // conversion is a pointer to the base class sub-object of the 1958 // derived class object. The null pointer value is converted to 1959 // the null pointer value of the destination type. 1960 // 1961 // Note that we do not check for ambiguity or inaccessibility 1962 // here. That is handled by CheckPointerConversion. 1963 if (getLangOptions().CPlusPlus && 1964 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1965 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1966 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1967 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1968 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1969 ToPointeeType, 1970 ToType, Context); 1971 return true; 1972 } 1973 1974 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 1975 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 1976 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1977 ToPointeeType, 1978 ToType, Context); 1979 return true; 1980 } 1981 1982 return false; 1983} 1984 1985/// \brief Adopt the given qualifiers for the given type. 1986static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 1987 Qualifiers TQs = T.getQualifiers(); 1988 1989 // Check whether qualifiers already match. 1990 if (TQs == Qs) 1991 return T; 1992 1993 if (Qs.compatiblyIncludes(TQs)) 1994 return Context.getQualifiedType(T, Qs); 1995 1996 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 1997} 1998 1999/// isObjCPointerConversion - Determines whether this is an 2000/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 2001/// with the same arguments and return values. 2002bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 2003 QualType& ConvertedType, 2004 bool &IncompatibleObjC) { 2005 if (!getLangOptions().ObjC1) 2006 return false; 2007 2008 // The set of qualifiers on the type we're converting from. 2009 Qualifiers FromQualifiers = FromType.getQualifiers(); 2010 2011 // First, we handle all conversions on ObjC object pointer types. 2012 const ObjCObjectPointerType* ToObjCPtr = 2013 ToType->getAs<ObjCObjectPointerType>(); 2014 const ObjCObjectPointerType *FromObjCPtr = 2015 FromType->getAs<ObjCObjectPointerType>(); 2016 2017 if (ToObjCPtr && FromObjCPtr) { 2018 // If the pointee types are the same (ignoring qualifications), 2019 // then this is not a pointer conversion. 2020 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 2021 FromObjCPtr->getPointeeType())) 2022 return false; 2023 2024 // Check for compatible 2025 // Objective C++: We're able to convert between "id" or "Class" and a 2026 // pointer to any interface (in both directions). 2027 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 2028 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2029 return true; 2030 } 2031 // Conversions with Objective-C's id<...>. 2032 if ((FromObjCPtr->isObjCQualifiedIdType() || 2033 ToObjCPtr->isObjCQualifiedIdType()) && 2034 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 2035 /*compare=*/false)) { 2036 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2037 return true; 2038 } 2039 // Objective C++: We're able to convert from a pointer to an 2040 // interface to a pointer to a different interface. 2041 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 2042 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 2043 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 2044 if (getLangOptions().CPlusPlus && LHS && RHS && 2045 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 2046 FromObjCPtr->getPointeeType())) 2047 return false; 2048 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2049 ToObjCPtr->getPointeeType(), 2050 ToType, Context); 2051 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2052 return true; 2053 } 2054 2055 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 2056 // Okay: this is some kind of implicit downcast of Objective-C 2057 // interfaces, which is permitted. However, we're going to 2058 // complain about it. 2059 IncompatibleObjC = true; 2060 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2061 ToObjCPtr->getPointeeType(), 2062 ToType, Context); 2063 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2064 return true; 2065 } 2066 } 2067 // Beyond this point, both types need to be C pointers or block pointers. 2068 QualType ToPointeeType; 2069 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 2070 ToPointeeType = ToCPtr->getPointeeType(); 2071 else if (const BlockPointerType *ToBlockPtr = 2072 ToType->getAs<BlockPointerType>()) { 2073 // Objective C++: We're able to convert from a pointer to any object 2074 // to a block pointer type. 2075 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 2076 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2077 return true; 2078 } 2079 ToPointeeType = ToBlockPtr->getPointeeType(); 2080 } 2081 else if (FromType->getAs<BlockPointerType>() && 2082 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 2083 // Objective C++: We're able to convert from a block pointer type to a 2084 // pointer to any object. 2085 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2086 return true; 2087 } 2088 else 2089 return false; 2090 2091 QualType FromPointeeType; 2092 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 2093 FromPointeeType = FromCPtr->getPointeeType(); 2094 else if (const BlockPointerType *FromBlockPtr = 2095 FromType->getAs<BlockPointerType>()) 2096 FromPointeeType = FromBlockPtr->getPointeeType(); 2097 else 2098 return false; 2099 2100 // If we have pointers to pointers, recursively check whether this 2101 // is an Objective-C conversion. 2102 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 2103 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2104 IncompatibleObjC)) { 2105 // We always complain about this conversion. 2106 IncompatibleObjC = true; 2107 ConvertedType = Context.getPointerType(ConvertedType); 2108 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2109 return true; 2110 } 2111 // Allow conversion of pointee being objective-c pointer to another one; 2112 // as in I* to id. 2113 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 2114 ToPointeeType->getAs<ObjCObjectPointerType>() && 2115 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2116 IncompatibleObjC)) { 2117 2118 ConvertedType = Context.getPointerType(ConvertedType); 2119 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2120 return true; 2121 } 2122 2123 // If we have pointers to functions or blocks, check whether the only 2124 // differences in the argument and result types are in Objective-C 2125 // pointer conversions. If so, we permit the conversion (but 2126 // complain about it). 2127 const FunctionProtoType *FromFunctionType 2128 = FromPointeeType->getAs<FunctionProtoType>(); 2129 const FunctionProtoType *ToFunctionType 2130 = ToPointeeType->getAs<FunctionProtoType>(); 2131 if (FromFunctionType && ToFunctionType) { 2132 // If the function types are exactly the same, this isn't an 2133 // Objective-C pointer conversion. 2134 if (Context.getCanonicalType(FromPointeeType) 2135 == Context.getCanonicalType(ToPointeeType)) 2136 return false; 2137 2138 // Perform the quick checks that will tell us whether these 2139 // function types are obviously different. 2140 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 2141 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 2142 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 2143 return false; 2144 2145 bool HasObjCConversion = false; 2146 if (Context.getCanonicalType(FromFunctionType->getResultType()) 2147 == Context.getCanonicalType(ToFunctionType->getResultType())) { 2148 // Okay, the types match exactly. Nothing to do. 2149 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 2150 ToFunctionType->getResultType(), 2151 ConvertedType, IncompatibleObjC)) { 2152 // Okay, we have an Objective-C pointer conversion. 2153 HasObjCConversion = true; 2154 } else { 2155 // Function types are too different. Abort. 2156 return false; 2157 } 2158 2159 // Check argument types. 2160 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 2161 ArgIdx != NumArgs; ++ArgIdx) { 2162 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 2163 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 2164 if (Context.getCanonicalType(FromArgType) 2165 == Context.getCanonicalType(ToArgType)) { 2166 // Okay, the types match exactly. Nothing to do. 2167 } else if (isObjCPointerConversion(FromArgType, ToArgType, 2168 ConvertedType, IncompatibleObjC)) { 2169 // Okay, we have an Objective-C pointer conversion. 2170 HasObjCConversion = true; 2171 } else { 2172 // Argument types are too different. Abort. 2173 return false; 2174 } 2175 } 2176 2177 if (HasObjCConversion) { 2178 // We had an Objective-C conversion. Allow this pointer 2179 // conversion, but complain about it. 2180 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2181 IncompatibleObjC = true; 2182 return true; 2183 } 2184 } 2185 2186 return false; 2187} 2188 2189/// \brief Determine whether this is an Objective-C writeback conversion, 2190/// used for parameter passing when performing automatic reference counting. 2191/// 2192/// \param FromType The type we're converting form. 2193/// 2194/// \param ToType The type we're converting to. 2195/// 2196/// \param ConvertedType The type that will be produced after applying 2197/// this conversion. 2198bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 2199 QualType &ConvertedType) { 2200 if (!getLangOptions().ObjCAutoRefCount || 2201 Context.hasSameUnqualifiedType(FromType, ToType)) 2202 return false; 2203 2204 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 2205 QualType ToPointee; 2206 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 2207 ToPointee = ToPointer->getPointeeType(); 2208 else 2209 return false; 2210 2211 Qualifiers ToQuals = ToPointee.getQualifiers(); 2212 if (!ToPointee->isObjCLifetimeType() || 2213 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 2214 !ToQuals.withoutObjCGLifetime().empty()) 2215 return false; 2216 2217 // Argument must be a pointer to __strong to __weak. 2218 QualType FromPointee; 2219 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 2220 FromPointee = FromPointer->getPointeeType(); 2221 else 2222 return false; 2223 2224 Qualifiers FromQuals = FromPointee.getQualifiers(); 2225 if (!FromPointee->isObjCLifetimeType() || 2226 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 2227 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 2228 return false; 2229 2230 // Make sure that we have compatible qualifiers. 2231 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 2232 if (!ToQuals.compatiblyIncludes(FromQuals)) 2233 return false; 2234 2235 // Remove qualifiers from the pointee type we're converting from; they 2236 // aren't used in the compatibility check belong, and we'll be adding back 2237 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 2238 FromPointee = FromPointee.getUnqualifiedType(); 2239 2240 // The unqualified form of the pointee types must be compatible. 2241 ToPointee = ToPointee.getUnqualifiedType(); 2242 bool IncompatibleObjC; 2243 if (Context.typesAreCompatible(FromPointee, ToPointee)) 2244 FromPointee = ToPointee; 2245 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 2246 IncompatibleObjC)) 2247 return false; 2248 2249 /// \brief Construct the type we're converting to, which is a pointer to 2250 /// __autoreleasing pointee. 2251 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 2252 ConvertedType = Context.getPointerType(FromPointee); 2253 return true; 2254} 2255 2256bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 2257 QualType& ConvertedType) { 2258 QualType ToPointeeType; 2259 if (const BlockPointerType *ToBlockPtr = 2260 ToType->getAs<BlockPointerType>()) 2261 ToPointeeType = ToBlockPtr->getPointeeType(); 2262 else 2263 return false; 2264 2265 QualType FromPointeeType; 2266 if (const BlockPointerType *FromBlockPtr = 2267 FromType->getAs<BlockPointerType>()) 2268 FromPointeeType = FromBlockPtr->getPointeeType(); 2269 else 2270 return false; 2271 // We have pointer to blocks, check whether the only 2272 // differences in the argument and result types are in Objective-C 2273 // pointer conversions. If so, we permit the conversion. 2274 2275 const FunctionProtoType *FromFunctionType 2276 = FromPointeeType->getAs<FunctionProtoType>(); 2277 const FunctionProtoType *ToFunctionType 2278 = ToPointeeType->getAs<FunctionProtoType>(); 2279 2280 if (!FromFunctionType || !ToFunctionType) 2281 return false; 2282 2283 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2284 return true; 2285 2286 // Perform the quick checks that will tell us whether these 2287 // function types are obviously different. 2288 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 2289 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2290 return false; 2291 2292 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2293 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2294 if (FromEInfo != ToEInfo) 2295 return false; 2296 2297 bool IncompatibleObjC = false; 2298 if (Context.hasSameType(FromFunctionType->getResultType(), 2299 ToFunctionType->getResultType())) { 2300 // Okay, the types match exactly. Nothing to do. 2301 } else { 2302 QualType RHS = FromFunctionType->getResultType(); 2303 QualType LHS = ToFunctionType->getResultType(); 2304 if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) && 2305 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2306 LHS = LHS.getUnqualifiedType(); 2307 2308 if (Context.hasSameType(RHS,LHS)) { 2309 // OK exact match. 2310 } else if (isObjCPointerConversion(RHS, LHS, 2311 ConvertedType, IncompatibleObjC)) { 2312 if (IncompatibleObjC) 2313 return false; 2314 // Okay, we have an Objective-C pointer conversion. 2315 } 2316 else 2317 return false; 2318 } 2319 2320 // Check argument types. 2321 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 2322 ArgIdx != NumArgs; ++ArgIdx) { 2323 IncompatibleObjC = false; 2324 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 2325 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 2326 if (Context.hasSameType(FromArgType, ToArgType)) { 2327 // Okay, the types match exactly. Nothing to do. 2328 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2329 ConvertedType, IncompatibleObjC)) { 2330 if (IncompatibleObjC) 2331 return false; 2332 // Okay, we have an Objective-C pointer conversion. 2333 } else 2334 // Argument types are too different. Abort. 2335 return false; 2336 } 2337 if (LangOpts.ObjCAutoRefCount && 2338 !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType, 2339 ToFunctionType)) 2340 return false; 2341 2342 ConvertedType = ToType; 2343 return true; 2344} 2345 2346enum { 2347 ft_default, 2348 ft_different_class, 2349 ft_parameter_arity, 2350 ft_parameter_mismatch, 2351 ft_return_type, 2352 ft_qualifer_mismatch 2353}; 2354 2355/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing 2356/// function types. Catches different number of parameter, mismatch in 2357/// parameter types, and different return types. 2358void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, 2359 QualType FromType, QualType ToType) { 2360 // If either type is not valid, include no extra info. 2361 if (FromType.isNull() || ToType.isNull()) { 2362 PDiag << ft_default; 2363 return; 2364 } 2365 2366 // Get the function type from the pointers. 2367 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { 2368 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(), 2369 *ToMember = ToType->getAs<MemberPointerType>(); 2370 if (FromMember->getClass() != ToMember->getClass()) { 2371 PDiag << ft_different_class << QualType(ToMember->getClass(), 0) 2372 << QualType(FromMember->getClass(), 0); 2373 return; 2374 } 2375 FromType = FromMember->getPointeeType(); 2376 ToType = ToMember->getPointeeType(); 2377 } 2378 2379 if (FromType->isPointerType()) 2380 FromType = FromType->getPointeeType(); 2381 if (ToType->isPointerType()) 2382 ToType = ToType->getPointeeType(); 2383 2384 // Remove references. 2385 FromType = FromType.getNonReferenceType(); 2386 ToType = ToType.getNonReferenceType(); 2387 2388 // Don't print extra info for non-specialized template functions. 2389 if (FromType->isInstantiationDependentType() && 2390 !FromType->getAs<TemplateSpecializationType>()) { 2391 PDiag << ft_default; 2392 return; 2393 } 2394 2395 // No extra info for same types. 2396 if (Context.hasSameType(FromType, ToType)) { 2397 PDiag << ft_default; 2398 return; 2399 } 2400 2401 const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(), 2402 *ToFunction = ToType->getAs<FunctionProtoType>(); 2403 2404 // Both types need to be function types. 2405 if (!FromFunction || !ToFunction) { 2406 PDiag << ft_default; 2407 return; 2408 } 2409 2410 if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) { 2411 PDiag << ft_parameter_arity << ToFunction->getNumArgs() 2412 << FromFunction->getNumArgs(); 2413 return; 2414 } 2415 2416 // Handle different parameter types. 2417 unsigned ArgPos; 2418 if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { 2419 PDiag << ft_parameter_mismatch << ArgPos + 1 2420 << ToFunction->getArgType(ArgPos) 2421 << FromFunction->getArgType(ArgPos); 2422 return; 2423 } 2424 2425 // Handle different return type. 2426 if (!Context.hasSameType(FromFunction->getResultType(), 2427 ToFunction->getResultType())) { 2428 PDiag << ft_return_type << ToFunction->getResultType() 2429 << FromFunction->getResultType(); 2430 return; 2431 } 2432 2433 unsigned FromQuals = FromFunction->getTypeQuals(), 2434 ToQuals = ToFunction->getTypeQuals(); 2435 if (FromQuals != ToQuals) { 2436 PDiag << ft_qualifer_mismatch << ToQuals << FromQuals; 2437 return; 2438 } 2439 2440 // Unable to find a difference, so add no extra info. 2441 PDiag << ft_default; 2442} 2443 2444/// FunctionArgTypesAreEqual - This routine checks two function proto types 2445/// for equality of their argument types. Caller has already checked that 2446/// they have same number of arguments. This routine assumes that Objective-C 2447/// pointer types which only differ in their protocol qualifiers are equal. 2448/// If the parameters are different, ArgPos will have the the parameter index 2449/// of the first different parameter. 2450bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType, 2451 const FunctionProtoType *NewType, 2452 unsigned *ArgPos) { 2453 if (!getLangOptions().ObjC1) { 2454 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 2455 N = NewType->arg_type_begin(), 2456 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 2457 if (!Context.hasSameType(*O, *N)) { 2458 if (ArgPos) *ArgPos = O - OldType->arg_type_begin(); 2459 return false; 2460 } 2461 } 2462 return true; 2463 } 2464 2465 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 2466 N = NewType->arg_type_begin(), 2467 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 2468 QualType ToType = (*O); 2469 QualType FromType = (*N); 2470 if (!Context.hasSameType(ToType, FromType)) { 2471 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 2472 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 2473 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 2474 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 2475 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 2476 PTFr->getPointeeType()->isObjCQualifiedClassType())) 2477 continue; 2478 } 2479 else if (const ObjCObjectPointerType *PTTo = 2480 ToType->getAs<ObjCObjectPointerType>()) { 2481 if (const ObjCObjectPointerType *PTFr = 2482 FromType->getAs<ObjCObjectPointerType>()) 2483 if (Context.hasSameUnqualifiedType( 2484 PTTo->getObjectType()->getBaseType(), 2485 PTFr->getObjectType()->getBaseType())) 2486 continue; 2487 } 2488 if (ArgPos) *ArgPos = O - OldType->arg_type_begin(); 2489 return false; 2490 } 2491 } 2492 return true; 2493} 2494 2495/// CheckPointerConversion - Check the pointer conversion from the 2496/// expression From to the type ToType. This routine checks for 2497/// ambiguous or inaccessible derived-to-base pointer 2498/// conversions for which IsPointerConversion has already returned 2499/// true. It returns true and produces a diagnostic if there was an 2500/// error, or returns false otherwise. 2501bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 2502 CastKind &Kind, 2503 CXXCastPath& BasePath, 2504 bool IgnoreBaseAccess) { 2505 QualType FromType = From->getType(); 2506 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 2507 2508 Kind = CK_BitCast; 2509 2510 if (!IsCStyleOrFunctionalCast && 2511 Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) && 2512 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 2513 DiagRuntimeBehavior(From->getExprLoc(), From, 2514 PDiag(diag::warn_impcast_bool_to_null_pointer) 2515 << ToType << From->getSourceRange()); 2516 2517 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 2518 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { 2519 QualType FromPointeeType = FromPtrType->getPointeeType(), 2520 ToPointeeType = ToPtrType->getPointeeType(); 2521 2522 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 2523 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 2524 // We must have a derived-to-base conversion. Check an 2525 // ambiguous or inaccessible conversion. 2526 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 2527 From->getExprLoc(), 2528 From->getSourceRange(), &BasePath, 2529 IgnoreBaseAccess)) 2530 return true; 2531 2532 // The conversion was successful. 2533 Kind = CK_DerivedToBase; 2534 } 2535 } 2536 } else if (const ObjCObjectPointerType *ToPtrType = 2537 ToType->getAs<ObjCObjectPointerType>()) { 2538 if (const ObjCObjectPointerType *FromPtrType = 2539 FromType->getAs<ObjCObjectPointerType>()) { 2540 // Objective-C++ conversions are always okay. 2541 // FIXME: We should have a different class of conversions for the 2542 // Objective-C++ implicit conversions. 2543 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 2544 return false; 2545 } else if (FromType->isBlockPointerType()) { 2546 Kind = CK_BlockPointerToObjCPointerCast; 2547 } else { 2548 Kind = CK_CPointerToObjCPointerCast; 2549 } 2550 } else if (ToType->isBlockPointerType()) { 2551 if (!FromType->isBlockPointerType()) 2552 Kind = CK_AnyPointerToBlockPointerCast; 2553 } 2554 2555 // We shouldn't fall into this case unless it's valid for other 2556 // reasons. 2557 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 2558 Kind = CK_NullToPointer; 2559 2560 return false; 2561} 2562 2563/// IsMemberPointerConversion - Determines whether the conversion of the 2564/// expression From, which has the (possibly adjusted) type FromType, can be 2565/// converted to the type ToType via a member pointer conversion (C++ 4.11). 2566/// If so, returns true and places the converted type (that might differ from 2567/// ToType in its cv-qualifiers at some level) into ConvertedType. 2568bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 2569 QualType ToType, 2570 bool InOverloadResolution, 2571 QualType &ConvertedType) { 2572 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 2573 if (!ToTypePtr) 2574 return false; 2575 2576 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 2577 if (From->isNullPointerConstant(Context, 2578 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2579 : Expr::NPC_ValueDependentIsNull)) { 2580 ConvertedType = ToType; 2581 return true; 2582 } 2583 2584 // Otherwise, both types have to be member pointers. 2585 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 2586 if (!FromTypePtr) 2587 return false; 2588 2589 // A pointer to member of B can be converted to a pointer to member of D, 2590 // where D is derived from B (C++ 4.11p2). 2591 QualType FromClass(FromTypePtr->getClass(), 0); 2592 QualType ToClass(ToTypePtr->getClass(), 0); 2593 2594 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 2595 !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) && 2596 IsDerivedFrom(ToClass, FromClass)) { 2597 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 2598 ToClass.getTypePtr()); 2599 return true; 2600 } 2601 2602 return false; 2603} 2604 2605/// CheckMemberPointerConversion - Check the member pointer conversion from the 2606/// expression From to the type ToType. This routine checks for ambiguous or 2607/// virtual or inaccessible base-to-derived member pointer conversions 2608/// for which IsMemberPointerConversion has already returned true. It returns 2609/// true and produces a diagnostic if there was an error, or returns false 2610/// otherwise. 2611bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 2612 CastKind &Kind, 2613 CXXCastPath &BasePath, 2614 bool IgnoreBaseAccess) { 2615 QualType FromType = From->getType(); 2616 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 2617 if (!FromPtrType) { 2618 // This must be a null pointer to member pointer conversion 2619 assert(From->isNullPointerConstant(Context, 2620 Expr::NPC_ValueDependentIsNull) && 2621 "Expr must be null pointer constant!"); 2622 Kind = CK_NullToMemberPointer; 2623 return false; 2624 } 2625 2626 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 2627 assert(ToPtrType && "No member pointer cast has a target type " 2628 "that is not a member pointer."); 2629 2630 QualType FromClass = QualType(FromPtrType->getClass(), 0); 2631 QualType ToClass = QualType(ToPtrType->getClass(), 0); 2632 2633 // FIXME: What about dependent types? 2634 assert(FromClass->isRecordType() && "Pointer into non-class."); 2635 assert(ToClass->isRecordType() && "Pointer into non-class."); 2636 2637 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2638 /*DetectVirtual=*/true); 2639 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 2640 assert(DerivationOkay && 2641 "Should not have been called if derivation isn't OK."); 2642 (void)DerivationOkay; 2643 2644 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 2645 getUnqualifiedType())) { 2646 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2647 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 2648 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 2649 return true; 2650 } 2651 2652 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 2653 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 2654 << FromClass << ToClass << QualType(VBase, 0) 2655 << From->getSourceRange(); 2656 return true; 2657 } 2658 2659 if (!IgnoreBaseAccess) 2660 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 2661 Paths.front(), 2662 diag::err_downcast_from_inaccessible_base); 2663 2664 // Must be a base to derived member conversion. 2665 BuildBasePathArray(Paths, BasePath); 2666 Kind = CK_BaseToDerivedMemberPointer; 2667 return false; 2668} 2669 2670/// IsQualificationConversion - Determines whether the conversion from 2671/// an rvalue of type FromType to ToType is a qualification conversion 2672/// (C++ 4.4). 2673/// 2674/// \param ObjCLifetimeConversion Output parameter that will be set to indicate 2675/// when the qualification conversion involves a change in the Objective-C 2676/// object lifetime. 2677bool 2678Sema::IsQualificationConversion(QualType FromType, QualType ToType, 2679 bool CStyle, bool &ObjCLifetimeConversion) { 2680 FromType = Context.getCanonicalType(FromType); 2681 ToType = Context.getCanonicalType(ToType); 2682 ObjCLifetimeConversion = false; 2683 2684 // If FromType and ToType are the same type, this is not a 2685 // qualification conversion. 2686 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 2687 return false; 2688 2689 // (C++ 4.4p4): 2690 // A conversion can add cv-qualifiers at levels other than the first 2691 // in multi-level pointers, subject to the following rules: [...] 2692 bool PreviousToQualsIncludeConst = true; 2693 bool UnwrappedAnyPointer = false; 2694 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 2695 // Within each iteration of the loop, we check the qualifiers to 2696 // determine if this still looks like a qualification 2697 // conversion. Then, if all is well, we unwrap one more level of 2698 // pointers or pointers-to-members and do it all again 2699 // until there are no more pointers or pointers-to-members left to 2700 // unwrap. 2701 UnwrappedAnyPointer = true; 2702 2703 Qualifiers FromQuals = FromType.getQualifiers(); 2704 Qualifiers ToQuals = ToType.getQualifiers(); 2705 2706 // Objective-C ARC: 2707 // Check Objective-C lifetime conversions. 2708 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() && 2709 UnwrappedAnyPointer) { 2710 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 2711 ObjCLifetimeConversion = true; 2712 FromQuals.removeObjCLifetime(); 2713 ToQuals.removeObjCLifetime(); 2714 } else { 2715 // Qualification conversions cannot cast between different 2716 // Objective-C lifetime qualifiers. 2717 return false; 2718 } 2719 } 2720 2721 // Allow addition/removal of GC attributes but not changing GC attributes. 2722 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 2723 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 2724 FromQuals.removeObjCGCAttr(); 2725 ToQuals.removeObjCGCAttr(); 2726 } 2727 2728 // -- for every j > 0, if const is in cv 1,j then const is in cv 2729 // 2,j, and similarly for volatile. 2730 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 2731 return false; 2732 2733 // -- if the cv 1,j and cv 2,j are different, then const is in 2734 // every cv for 0 < k < j. 2735 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() 2736 && !PreviousToQualsIncludeConst) 2737 return false; 2738 2739 // Keep track of whether all prior cv-qualifiers in the "to" type 2740 // include const. 2741 PreviousToQualsIncludeConst 2742 = PreviousToQualsIncludeConst && ToQuals.hasConst(); 2743 } 2744 2745 // We are left with FromType and ToType being the pointee types 2746 // after unwrapping the original FromType and ToType the same number 2747 // of types. If we unwrapped any pointers, and if FromType and 2748 // ToType have the same unqualified type (since we checked 2749 // qualifiers above), then this is a qualification conversion. 2750 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 2751} 2752 2753/// Determines whether there is a user-defined conversion sequence 2754/// (C++ [over.ics.user]) that converts expression From to the type 2755/// ToType. If such a conversion exists, User will contain the 2756/// user-defined conversion sequence that performs such a conversion 2757/// and this routine will return true. Otherwise, this routine returns 2758/// false and User is unspecified. 2759/// 2760/// \param AllowExplicit true if the conversion should consider C++0x 2761/// "explicit" conversion functions as well as non-explicit conversion 2762/// functions (C++0x [class.conv.fct]p2). 2763static OverloadingResult 2764IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 2765 UserDefinedConversionSequence& User, 2766 OverloadCandidateSet& CandidateSet, 2767 bool AllowExplicit) { 2768 // Whether we will only visit constructors. 2769 bool ConstructorsOnly = false; 2770 2771 // If the type we are conversion to is a class type, enumerate its 2772 // constructors. 2773 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 2774 // C++ [over.match.ctor]p1: 2775 // When objects of class type are direct-initialized (8.5), or 2776 // copy-initialized from an expression of the same or a 2777 // derived class type (8.5), overload resolution selects the 2778 // constructor. [...] For copy-initialization, the candidate 2779 // functions are all the converting constructors (12.3.1) of 2780 // that class. The argument list is the expression-list within 2781 // the parentheses of the initializer. 2782 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 2783 (From->getType()->getAs<RecordType>() && 2784 S.IsDerivedFrom(From->getType(), ToType))) 2785 ConstructorsOnly = true; 2786 2787 S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()); 2788 // RequireCompleteType may have returned true due to some invalid decl 2789 // during template instantiation, but ToType may be complete enough now 2790 // to try to recover. 2791 if (ToType->isIncompleteType()) { 2792 // We're not going to find any constructors. 2793 } else if (CXXRecordDecl *ToRecordDecl 2794 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 2795 2796 Expr **Args = &From; 2797 unsigned NumArgs = 1; 2798 bool ListInitializing = false; 2799 // If we're list-initializing, we pass the individual elements as 2800 // arguments, not the entire list. 2801 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { 2802 Args = InitList->getInits(); 2803 NumArgs = InitList->getNumInits(); 2804 ListInitializing = true; 2805 } 2806 2807 DeclContext::lookup_iterator Con, ConEnd; 2808 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); 2809 Con != ConEnd; ++Con) { 2810 NamedDecl *D = *Con; 2811 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2812 2813 // Find the constructor (which may be a template). 2814 CXXConstructorDecl *Constructor = 0; 2815 FunctionTemplateDecl *ConstructorTmpl 2816 = dyn_cast<FunctionTemplateDecl>(D); 2817 if (ConstructorTmpl) 2818 Constructor 2819 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 2820 else 2821 Constructor = cast<CXXConstructorDecl>(D); 2822 2823 bool Usable = !Constructor->isInvalidDecl(); 2824 if (ListInitializing) 2825 Usable = Usable && (AllowExplicit || !Constructor->isExplicit()); 2826 else 2827 Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit); 2828 if (Usable) { 2829 if (ConstructorTmpl) 2830 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2831 /*ExplicitArgs*/ 0, 2832 Args, NumArgs, CandidateSet, 2833 /*SuppressUserConversions=*/ 2834 !ConstructorsOnly && 2835 !ListInitializing); 2836 else 2837 // Allow one user-defined conversion when user specifies a 2838 // From->ToType conversion via an static cast (c-style, etc). 2839 S.AddOverloadCandidate(Constructor, FoundDecl, 2840 Args, NumArgs, CandidateSet, 2841 /*SuppressUserConversions=*/ 2842 !ConstructorsOnly && !ListInitializing); 2843 } 2844 } 2845 } 2846 } 2847 2848 // Enumerate conversion functions, if we're allowed to. 2849 if (ConstructorsOnly || isa<InitListExpr>(From)) { 2850 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 2851 S.PDiag(0) << From->getSourceRange())) { 2852 // No conversion functions from incomplete types. 2853 } else if (const RecordType *FromRecordType 2854 = From->getType()->getAs<RecordType>()) { 2855 if (CXXRecordDecl *FromRecordDecl 2856 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 2857 // Add all of the conversion functions as candidates. 2858 const UnresolvedSetImpl *Conversions 2859 = FromRecordDecl->getVisibleConversionFunctions(); 2860 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2861 E = Conversions->end(); I != E; ++I) { 2862 DeclAccessPair FoundDecl = I.getPair(); 2863 NamedDecl *D = FoundDecl.getDecl(); 2864 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 2865 if (isa<UsingShadowDecl>(D)) 2866 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2867 2868 CXXConversionDecl *Conv; 2869 FunctionTemplateDecl *ConvTemplate; 2870 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 2871 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2872 else 2873 Conv = cast<CXXConversionDecl>(D); 2874 2875 if (AllowExplicit || !Conv->isExplicit()) { 2876 if (ConvTemplate) 2877 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 2878 ActingContext, From, ToType, 2879 CandidateSet); 2880 else 2881 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 2882 From, ToType, CandidateSet); 2883 } 2884 } 2885 } 2886 } 2887 2888 bool HadMultipleCandidates = (CandidateSet.size() > 1); 2889 2890 OverloadCandidateSet::iterator Best; 2891 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2892 case OR_Success: 2893 // Record the standard conversion we used and the conversion function. 2894 if (CXXConstructorDecl *Constructor 2895 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 2896 S.MarkFunctionReferenced(From->getLocStart(), Constructor); 2897 2898 // C++ [over.ics.user]p1: 2899 // If the user-defined conversion is specified by a 2900 // constructor (12.3.1), the initial standard conversion 2901 // sequence converts the source type to the type required by 2902 // the argument of the constructor. 2903 // 2904 QualType ThisType = Constructor->getThisType(S.Context); 2905 if (isa<InitListExpr>(From)) { 2906 // Initializer lists don't have conversions as such. 2907 User.Before.setAsIdentityConversion(); 2908 } else { 2909 if (Best->Conversions[0].isEllipsis()) 2910 User.EllipsisConversion = true; 2911 else { 2912 User.Before = Best->Conversions[0].Standard; 2913 User.EllipsisConversion = false; 2914 } 2915 } 2916 User.HadMultipleCandidates = HadMultipleCandidates; 2917 User.ConversionFunction = Constructor; 2918 User.FoundConversionFunction = Best->FoundDecl; 2919 User.After.setAsIdentityConversion(); 2920 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2921 User.After.setAllToTypes(ToType); 2922 return OR_Success; 2923 } 2924 if (CXXConversionDecl *Conversion 2925 = dyn_cast<CXXConversionDecl>(Best->Function)) { 2926 S.MarkFunctionReferenced(From->getLocStart(), Conversion); 2927 2928 // C++ [over.ics.user]p1: 2929 // 2930 // [...] If the user-defined conversion is specified by a 2931 // conversion function (12.3.2), the initial standard 2932 // conversion sequence converts the source type to the 2933 // implicit object parameter of the conversion function. 2934 User.Before = Best->Conversions[0].Standard; 2935 User.HadMultipleCandidates = HadMultipleCandidates; 2936 User.ConversionFunction = Conversion; 2937 User.FoundConversionFunction = Best->FoundDecl; 2938 User.EllipsisConversion = false; 2939 2940 // C++ [over.ics.user]p2: 2941 // The second standard conversion sequence converts the 2942 // result of the user-defined conversion to the target type 2943 // for the sequence. Since an implicit conversion sequence 2944 // is an initialization, the special rules for 2945 // initialization by user-defined conversion apply when 2946 // selecting the best user-defined conversion for a 2947 // user-defined conversion sequence (see 13.3.3 and 2948 // 13.3.3.1). 2949 User.After = Best->FinalConversion; 2950 return OR_Success; 2951 } 2952 llvm_unreachable("Not a constructor or conversion function?"); 2953 2954 case OR_No_Viable_Function: 2955 return OR_No_Viable_Function; 2956 case OR_Deleted: 2957 // No conversion here! We're done. 2958 return OR_Deleted; 2959 2960 case OR_Ambiguous: 2961 return OR_Ambiguous; 2962 } 2963 2964 llvm_unreachable("Invalid OverloadResult!"); 2965} 2966 2967bool 2968Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2969 ImplicitConversionSequence ICS; 2970 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2971 OverloadingResult OvResult = 2972 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 2973 CandidateSet, false); 2974 if (OvResult == OR_Ambiguous) 2975 Diag(From->getSourceRange().getBegin(), 2976 diag::err_typecheck_ambiguous_condition) 2977 << From->getType() << ToType << From->getSourceRange(); 2978 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2979 Diag(From->getSourceRange().getBegin(), 2980 diag::err_typecheck_nonviable_condition) 2981 << From->getType() << ToType << From->getSourceRange(); 2982 else 2983 return false; 2984 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); 2985 return true; 2986} 2987 2988/// CompareImplicitConversionSequences - Compare two implicit 2989/// conversion sequences to determine whether one is better than the 2990/// other or if they are indistinguishable (C++ 13.3.3.2). 2991static ImplicitConversionSequence::CompareKind 2992CompareImplicitConversionSequences(Sema &S, 2993 const ImplicitConversionSequence& ICS1, 2994 const ImplicitConversionSequence& ICS2) 2995{ 2996 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2997 // conversion sequences (as defined in 13.3.3.1) 2998 // -- a standard conversion sequence (13.3.3.1.1) is a better 2999 // conversion sequence than a user-defined conversion sequence or 3000 // an ellipsis conversion sequence, and 3001 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 3002 // conversion sequence than an ellipsis conversion sequence 3003 // (13.3.3.1.3). 3004 // 3005 // C++0x [over.best.ics]p10: 3006 // For the purpose of ranking implicit conversion sequences as 3007 // described in 13.3.3.2, the ambiguous conversion sequence is 3008 // treated as a user-defined sequence that is indistinguishable 3009 // from any other user-defined conversion sequence. 3010 if (ICS1.getKindRank() < ICS2.getKindRank()) 3011 return ImplicitConversionSequence::Better; 3012 if (ICS2.getKindRank() < ICS1.getKindRank()) 3013 return ImplicitConversionSequence::Worse; 3014 3015 // The following checks require both conversion sequences to be of 3016 // the same kind. 3017 if (ICS1.getKind() != ICS2.getKind()) 3018 return ImplicitConversionSequence::Indistinguishable; 3019 3020 ImplicitConversionSequence::CompareKind Result = 3021 ImplicitConversionSequence::Indistinguishable; 3022 3023 // Two implicit conversion sequences of the same form are 3024 // indistinguishable conversion sequences unless one of the 3025 // following rules apply: (C++ 13.3.3.2p3): 3026 if (ICS1.isStandard()) 3027 Result = CompareStandardConversionSequences(S, 3028 ICS1.Standard, ICS2.Standard); 3029 else if (ICS1.isUserDefined()) { 3030 // User-defined conversion sequence U1 is a better conversion 3031 // sequence than another user-defined conversion sequence U2 if 3032 // they contain the same user-defined conversion function or 3033 // constructor and if the second standard conversion sequence of 3034 // U1 is better than the second standard conversion sequence of 3035 // U2 (C++ 13.3.3.2p3). 3036 if (ICS1.UserDefined.ConversionFunction == 3037 ICS2.UserDefined.ConversionFunction) 3038 Result = CompareStandardConversionSequences(S, 3039 ICS1.UserDefined.After, 3040 ICS2.UserDefined.After); 3041 } 3042 3043 // List-initialization sequence L1 is a better conversion sequence than 3044 // list-initialization sequence L2 if L1 converts to std::initializer_list<X> 3045 // for some X and L2 does not. 3046 if (Result == ImplicitConversionSequence::Indistinguishable && 3047 ICS1.isListInitializationSequence() && 3048 ICS2.isListInitializationSequence()) { 3049 // FIXME: Find out if ICS1 converts to initializer_list and ICS2 doesn't. 3050 } 3051 3052 return Result; 3053} 3054 3055static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 3056 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 3057 Qualifiers Quals; 3058 T1 = Context.getUnqualifiedArrayType(T1, Quals); 3059 T2 = Context.getUnqualifiedArrayType(T2, Quals); 3060 } 3061 3062 return Context.hasSameUnqualifiedType(T1, T2); 3063} 3064 3065// Per 13.3.3.2p3, compare the given standard conversion sequences to 3066// determine if one is a proper subset of the other. 3067static ImplicitConversionSequence::CompareKind 3068compareStandardConversionSubsets(ASTContext &Context, 3069 const StandardConversionSequence& SCS1, 3070 const StandardConversionSequence& SCS2) { 3071 ImplicitConversionSequence::CompareKind Result 3072 = ImplicitConversionSequence::Indistinguishable; 3073 3074 // the identity conversion sequence is considered to be a subsequence of 3075 // any non-identity conversion sequence 3076 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 3077 return ImplicitConversionSequence::Better; 3078 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 3079 return ImplicitConversionSequence::Worse; 3080 3081 if (SCS1.Second != SCS2.Second) { 3082 if (SCS1.Second == ICK_Identity) 3083 Result = ImplicitConversionSequence::Better; 3084 else if (SCS2.Second == ICK_Identity) 3085 Result = ImplicitConversionSequence::Worse; 3086 else 3087 return ImplicitConversionSequence::Indistinguishable; 3088 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 3089 return ImplicitConversionSequence::Indistinguishable; 3090 3091 if (SCS1.Third == SCS2.Third) { 3092 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 3093 : ImplicitConversionSequence::Indistinguishable; 3094 } 3095 3096 if (SCS1.Third == ICK_Identity) 3097 return Result == ImplicitConversionSequence::Worse 3098 ? ImplicitConversionSequence::Indistinguishable 3099 : ImplicitConversionSequence::Better; 3100 3101 if (SCS2.Third == ICK_Identity) 3102 return Result == ImplicitConversionSequence::Better 3103 ? ImplicitConversionSequence::Indistinguishable 3104 : ImplicitConversionSequence::Worse; 3105 3106 return ImplicitConversionSequence::Indistinguishable; 3107} 3108 3109/// \brief Determine whether one of the given reference bindings is better 3110/// than the other based on what kind of bindings they are. 3111static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 3112 const StandardConversionSequence &SCS2) { 3113 // C++0x [over.ics.rank]p3b4: 3114 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 3115 // implicit object parameter of a non-static member function declared 3116 // without a ref-qualifier, and *either* S1 binds an rvalue reference 3117 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 3118 // lvalue reference to a function lvalue and S2 binds an rvalue 3119 // reference*. 3120 // 3121 // FIXME: Rvalue references. We're going rogue with the above edits, 3122 // because the semantics in the current C++0x working paper (N3225 at the 3123 // time of this writing) break the standard definition of std::forward 3124 // and std::reference_wrapper when dealing with references to functions. 3125 // Proposed wording changes submitted to CWG for consideration. 3126 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 3127 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 3128 return false; 3129 3130 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 3131 SCS2.IsLvalueReference) || 3132 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 3133 !SCS2.IsLvalueReference); 3134} 3135 3136/// CompareStandardConversionSequences - Compare two standard 3137/// conversion sequences to determine whether one is better than the 3138/// other or if they are indistinguishable (C++ 13.3.3.2p3). 3139static ImplicitConversionSequence::CompareKind 3140CompareStandardConversionSequences(Sema &S, 3141 const StandardConversionSequence& SCS1, 3142 const StandardConversionSequence& SCS2) 3143{ 3144 // Standard conversion sequence S1 is a better conversion sequence 3145 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 3146 3147 // -- S1 is a proper subsequence of S2 (comparing the conversion 3148 // sequences in the canonical form defined by 13.3.3.1.1, 3149 // excluding any Lvalue Transformation; the identity conversion 3150 // sequence is considered to be a subsequence of any 3151 // non-identity conversion sequence) or, if not that, 3152 if (ImplicitConversionSequence::CompareKind CK 3153 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 3154 return CK; 3155 3156 // -- the rank of S1 is better than the rank of S2 (by the rules 3157 // defined below), or, if not that, 3158 ImplicitConversionRank Rank1 = SCS1.getRank(); 3159 ImplicitConversionRank Rank2 = SCS2.getRank(); 3160 if (Rank1 < Rank2) 3161 return ImplicitConversionSequence::Better; 3162 else if (Rank2 < Rank1) 3163 return ImplicitConversionSequence::Worse; 3164 3165 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 3166 // are indistinguishable unless one of the following rules 3167 // applies: 3168 3169 // A conversion that is not a conversion of a pointer, or 3170 // pointer to member, to bool is better than another conversion 3171 // that is such a conversion. 3172 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 3173 return SCS2.isPointerConversionToBool() 3174 ? ImplicitConversionSequence::Better 3175 : ImplicitConversionSequence::Worse; 3176 3177 // C++ [over.ics.rank]p4b2: 3178 // 3179 // If class B is derived directly or indirectly from class A, 3180 // conversion of B* to A* is better than conversion of B* to 3181 // void*, and conversion of A* to void* is better than conversion 3182 // of B* to void*. 3183 bool SCS1ConvertsToVoid 3184 = SCS1.isPointerConversionToVoidPointer(S.Context); 3185 bool SCS2ConvertsToVoid 3186 = SCS2.isPointerConversionToVoidPointer(S.Context); 3187 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 3188 // Exactly one of the conversion sequences is a conversion to 3189 // a void pointer; it's the worse conversion. 3190 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 3191 : ImplicitConversionSequence::Worse; 3192 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 3193 // Neither conversion sequence converts to a void pointer; compare 3194 // their derived-to-base conversions. 3195 if (ImplicitConversionSequence::CompareKind DerivedCK 3196 = CompareDerivedToBaseConversions(S, SCS1, SCS2)) 3197 return DerivedCK; 3198 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 3199 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 3200 // Both conversion sequences are conversions to void 3201 // pointers. Compare the source types to determine if there's an 3202 // inheritance relationship in their sources. 3203 QualType FromType1 = SCS1.getFromType(); 3204 QualType FromType2 = SCS2.getFromType(); 3205 3206 // Adjust the types we're converting from via the array-to-pointer 3207 // conversion, if we need to. 3208 if (SCS1.First == ICK_Array_To_Pointer) 3209 FromType1 = S.Context.getArrayDecayedType(FromType1); 3210 if (SCS2.First == ICK_Array_To_Pointer) 3211 FromType2 = S.Context.getArrayDecayedType(FromType2); 3212 3213 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 3214 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 3215 3216 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3217 return ImplicitConversionSequence::Better; 3218 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3219 return ImplicitConversionSequence::Worse; 3220 3221 // Objective-C++: If one interface is more specific than the 3222 // other, it is the better one. 3223 const ObjCObjectPointerType* FromObjCPtr1 3224 = FromType1->getAs<ObjCObjectPointerType>(); 3225 const ObjCObjectPointerType* FromObjCPtr2 3226 = FromType2->getAs<ObjCObjectPointerType>(); 3227 if (FromObjCPtr1 && FromObjCPtr2) { 3228 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 3229 FromObjCPtr2); 3230 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 3231 FromObjCPtr1); 3232 if (AssignLeft != AssignRight) { 3233 return AssignLeft? ImplicitConversionSequence::Better 3234 : ImplicitConversionSequence::Worse; 3235 } 3236 } 3237 } 3238 3239 // Compare based on qualification conversions (C++ 13.3.3.2p3, 3240 // bullet 3). 3241 if (ImplicitConversionSequence::CompareKind QualCK 3242 = CompareQualificationConversions(S, SCS1, SCS2)) 3243 return QualCK; 3244 3245 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 3246 // Check for a better reference binding based on the kind of bindings. 3247 if (isBetterReferenceBindingKind(SCS1, SCS2)) 3248 return ImplicitConversionSequence::Better; 3249 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 3250 return ImplicitConversionSequence::Worse; 3251 3252 // C++ [over.ics.rank]p3b4: 3253 // -- S1 and S2 are reference bindings (8.5.3), and the types to 3254 // which the references refer are the same type except for 3255 // top-level cv-qualifiers, and the type to which the reference 3256 // initialized by S2 refers is more cv-qualified than the type 3257 // to which the reference initialized by S1 refers. 3258 QualType T1 = SCS1.getToType(2); 3259 QualType T2 = SCS2.getToType(2); 3260 T1 = S.Context.getCanonicalType(T1); 3261 T2 = S.Context.getCanonicalType(T2); 3262 Qualifiers T1Quals, T2Quals; 3263 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 3264 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 3265 if (UnqualT1 == UnqualT2) { 3266 // Objective-C++ ARC: If the references refer to objects with different 3267 // lifetimes, prefer bindings that don't change lifetime. 3268 if (SCS1.ObjCLifetimeConversionBinding != 3269 SCS2.ObjCLifetimeConversionBinding) { 3270 return SCS1.ObjCLifetimeConversionBinding 3271 ? ImplicitConversionSequence::Worse 3272 : ImplicitConversionSequence::Better; 3273 } 3274 3275 // If the type is an array type, promote the element qualifiers to the 3276 // type for comparison. 3277 if (isa<ArrayType>(T1) && T1Quals) 3278 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 3279 if (isa<ArrayType>(T2) && T2Quals) 3280 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 3281 if (T2.isMoreQualifiedThan(T1)) 3282 return ImplicitConversionSequence::Better; 3283 else if (T1.isMoreQualifiedThan(T2)) 3284 return ImplicitConversionSequence::Worse; 3285 } 3286 } 3287 3288 // In Microsoft mode, prefer an integral conversion to a 3289 // floating-to-integral conversion if the integral conversion 3290 // is between types of the same size. 3291 // For example: 3292 // void f(float); 3293 // void f(int); 3294 // int main { 3295 // long a; 3296 // f(a); 3297 // } 3298 // Here, MSVC will call f(int) instead of generating a compile error 3299 // as clang will do in standard mode. 3300 if (S.getLangOptions().MicrosoftMode && 3301 SCS1.Second == ICK_Integral_Conversion && 3302 SCS2.Second == ICK_Floating_Integral && 3303 S.Context.getTypeSize(SCS1.getFromType()) == 3304 S.Context.getTypeSize(SCS1.getToType(2))) 3305 return ImplicitConversionSequence::Better; 3306 3307 return ImplicitConversionSequence::Indistinguishable; 3308} 3309 3310/// CompareQualificationConversions - Compares two standard conversion 3311/// sequences to determine whether they can be ranked based on their 3312/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 3313ImplicitConversionSequence::CompareKind 3314CompareQualificationConversions(Sema &S, 3315 const StandardConversionSequence& SCS1, 3316 const StandardConversionSequence& SCS2) { 3317 // C++ 13.3.3.2p3: 3318 // -- S1 and S2 differ only in their qualification conversion and 3319 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 3320 // cv-qualification signature of type T1 is a proper subset of 3321 // the cv-qualification signature of type T2, and S1 is not the 3322 // deprecated string literal array-to-pointer conversion (4.2). 3323 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 3324 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 3325 return ImplicitConversionSequence::Indistinguishable; 3326 3327 // FIXME: the example in the standard doesn't use a qualification 3328 // conversion (!) 3329 QualType T1 = SCS1.getToType(2); 3330 QualType T2 = SCS2.getToType(2); 3331 T1 = S.Context.getCanonicalType(T1); 3332 T2 = S.Context.getCanonicalType(T2); 3333 Qualifiers T1Quals, T2Quals; 3334 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 3335 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 3336 3337 // If the types are the same, we won't learn anything by unwrapped 3338 // them. 3339 if (UnqualT1 == UnqualT2) 3340 return ImplicitConversionSequence::Indistinguishable; 3341 3342 // If the type is an array type, promote the element qualifiers to the type 3343 // for comparison. 3344 if (isa<ArrayType>(T1) && T1Quals) 3345 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 3346 if (isa<ArrayType>(T2) && T2Quals) 3347 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 3348 3349 ImplicitConversionSequence::CompareKind Result 3350 = ImplicitConversionSequence::Indistinguishable; 3351 3352 // Objective-C++ ARC: 3353 // Prefer qualification conversions not involving a change in lifetime 3354 // to qualification conversions that do not change lifetime. 3355 if (SCS1.QualificationIncludesObjCLifetime != 3356 SCS2.QualificationIncludesObjCLifetime) { 3357 Result = SCS1.QualificationIncludesObjCLifetime 3358 ? ImplicitConversionSequence::Worse 3359 : ImplicitConversionSequence::Better; 3360 } 3361 3362 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 3363 // Within each iteration of the loop, we check the qualifiers to 3364 // determine if this still looks like a qualification 3365 // conversion. Then, if all is well, we unwrap one more level of 3366 // pointers or pointers-to-members and do it all again 3367 // until there are no more pointers or pointers-to-members left 3368 // to unwrap. This essentially mimics what 3369 // IsQualificationConversion does, but here we're checking for a 3370 // strict subset of qualifiers. 3371 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 3372 // The qualifiers are the same, so this doesn't tell us anything 3373 // about how the sequences rank. 3374 ; 3375 else if (T2.isMoreQualifiedThan(T1)) { 3376 // T1 has fewer qualifiers, so it could be the better sequence. 3377 if (Result == ImplicitConversionSequence::Worse) 3378 // Neither has qualifiers that are a subset of the other's 3379 // qualifiers. 3380 return ImplicitConversionSequence::Indistinguishable; 3381 3382 Result = ImplicitConversionSequence::Better; 3383 } else if (T1.isMoreQualifiedThan(T2)) { 3384 // T2 has fewer qualifiers, so it could be the better sequence. 3385 if (Result == ImplicitConversionSequence::Better) 3386 // Neither has qualifiers that are a subset of the other's 3387 // qualifiers. 3388 return ImplicitConversionSequence::Indistinguishable; 3389 3390 Result = ImplicitConversionSequence::Worse; 3391 } else { 3392 // Qualifiers are disjoint. 3393 return ImplicitConversionSequence::Indistinguishable; 3394 } 3395 3396 // If the types after this point are equivalent, we're done. 3397 if (S.Context.hasSameUnqualifiedType(T1, T2)) 3398 break; 3399 } 3400 3401 // Check that the winning standard conversion sequence isn't using 3402 // the deprecated string literal array to pointer conversion. 3403 switch (Result) { 3404 case ImplicitConversionSequence::Better: 3405 if (SCS1.DeprecatedStringLiteralToCharPtr) 3406 Result = ImplicitConversionSequence::Indistinguishable; 3407 break; 3408 3409 case ImplicitConversionSequence::Indistinguishable: 3410 break; 3411 3412 case ImplicitConversionSequence::Worse: 3413 if (SCS2.DeprecatedStringLiteralToCharPtr) 3414 Result = ImplicitConversionSequence::Indistinguishable; 3415 break; 3416 } 3417 3418 return Result; 3419} 3420 3421/// CompareDerivedToBaseConversions - Compares two standard conversion 3422/// sequences to determine whether they can be ranked based on their 3423/// various kinds of derived-to-base conversions (C++ 3424/// [over.ics.rank]p4b3). As part of these checks, we also look at 3425/// conversions between Objective-C interface types. 3426ImplicitConversionSequence::CompareKind 3427CompareDerivedToBaseConversions(Sema &S, 3428 const StandardConversionSequence& SCS1, 3429 const StandardConversionSequence& SCS2) { 3430 QualType FromType1 = SCS1.getFromType(); 3431 QualType ToType1 = SCS1.getToType(1); 3432 QualType FromType2 = SCS2.getFromType(); 3433 QualType ToType2 = SCS2.getToType(1); 3434 3435 // Adjust the types we're converting from via the array-to-pointer 3436 // conversion, if we need to. 3437 if (SCS1.First == ICK_Array_To_Pointer) 3438 FromType1 = S.Context.getArrayDecayedType(FromType1); 3439 if (SCS2.First == ICK_Array_To_Pointer) 3440 FromType2 = S.Context.getArrayDecayedType(FromType2); 3441 3442 // Canonicalize all of the types. 3443 FromType1 = S.Context.getCanonicalType(FromType1); 3444 ToType1 = S.Context.getCanonicalType(ToType1); 3445 FromType2 = S.Context.getCanonicalType(FromType2); 3446 ToType2 = S.Context.getCanonicalType(ToType2); 3447 3448 // C++ [over.ics.rank]p4b3: 3449 // 3450 // If class B is derived directly or indirectly from class A and 3451 // class C is derived directly or indirectly from B, 3452 // 3453 // Compare based on pointer conversions. 3454 if (SCS1.Second == ICK_Pointer_Conversion && 3455 SCS2.Second == ICK_Pointer_Conversion && 3456 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 3457 FromType1->isPointerType() && FromType2->isPointerType() && 3458 ToType1->isPointerType() && ToType2->isPointerType()) { 3459 QualType FromPointee1 3460 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3461 QualType ToPointee1 3462 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3463 QualType FromPointee2 3464 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3465 QualType ToPointee2 3466 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3467 3468 // -- conversion of C* to B* is better than conversion of C* to A*, 3469 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3470 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3471 return ImplicitConversionSequence::Better; 3472 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3473 return ImplicitConversionSequence::Worse; 3474 } 3475 3476 // -- conversion of B* to A* is better than conversion of C* to A*, 3477 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 3478 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3479 return ImplicitConversionSequence::Better; 3480 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3481 return ImplicitConversionSequence::Worse; 3482 } 3483 } else if (SCS1.Second == ICK_Pointer_Conversion && 3484 SCS2.Second == ICK_Pointer_Conversion) { 3485 const ObjCObjectPointerType *FromPtr1 3486 = FromType1->getAs<ObjCObjectPointerType>(); 3487 const ObjCObjectPointerType *FromPtr2 3488 = FromType2->getAs<ObjCObjectPointerType>(); 3489 const ObjCObjectPointerType *ToPtr1 3490 = ToType1->getAs<ObjCObjectPointerType>(); 3491 const ObjCObjectPointerType *ToPtr2 3492 = ToType2->getAs<ObjCObjectPointerType>(); 3493 3494 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 3495 // Apply the same conversion ranking rules for Objective-C pointer types 3496 // that we do for C++ pointers to class types. However, we employ the 3497 // Objective-C pseudo-subtyping relationship used for assignment of 3498 // Objective-C pointer types. 3499 bool FromAssignLeft 3500 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 3501 bool FromAssignRight 3502 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 3503 bool ToAssignLeft 3504 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 3505 bool ToAssignRight 3506 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 3507 3508 // A conversion to an a non-id object pointer type or qualified 'id' 3509 // type is better than a conversion to 'id'. 3510 if (ToPtr1->isObjCIdType() && 3511 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 3512 return ImplicitConversionSequence::Worse; 3513 if (ToPtr2->isObjCIdType() && 3514 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 3515 return ImplicitConversionSequence::Better; 3516 3517 // A conversion to a non-id object pointer type is better than a 3518 // conversion to a qualified 'id' type 3519 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 3520 return ImplicitConversionSequence::Worse; 3521 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 3522 return ImplicitConversionSequence::Better; 3523 3524 // A conversion to an a non-Class object pointer type or qualified 'Class' 3525 // type is better than a conversion to 'Class'. 3526 if (ToPtr1->isObjCClassType() && 3527 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 3528 return ImplicitConversionSequence::Worse; 3529 if (ToPtr2->isObjCClassType() && 3530 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 3531 return ImplicitConversionSequence::Better; 3532 3533 // A conversion to a non-Class object pointer type is better than a 3534 // conversion to a qualified 'Class' type. 3535 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 3536 return ImplicitConversionSequence::Worse; 3537 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 3538 return ImplicitConversionSequence::Better; 3539 3540 // -- "conversion of C* to B* is better than conversion of C* to A*," 3541 if (S.Context.hasSameType(FromType1, FromType2) && 3542 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 3543 (ToAssignLeft != ToAssignRight)) 3544 return ToAssignLeft? ImplicitConversionSequence::Worse 3545 : ImplicitConversionSequence::Better; 3546 3547 // -- "conversion of B* to A* is better than conversion of C* to A*," 3548 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 3549 (FromAssignLeft != FromAssignRight)) 3550 return FromAssignLeft? ImplicitConversionSequence::Better 3551 : ImplicitConversionSequence::Worse; 3552 } 3553 } 3554 3555 // Ranking of member-pointer types. 3556 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 3557 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 3558 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 3559 const MemberPointerType * FromMemPointer1 = 3560 FromType1->getAs<MemberPointerType>(); 3561 const MemberPointerType * ToMemPointer1 = 3562 ToType1->getAs<MemberPointerType>(); 3563 const MemberPointerType * FromMemPointer2 = 3564 FromType2->getAs<MemberPointerType>(); 3565 const MemberPointerType * ToMemPointer2 = 3566 ToType2->getAs<MemberPointerType>(); 3567 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 3568 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 3569 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 3570 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 3571 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 3572 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 3573 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 3574 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 3575 // conversion of A::* to B::* is better than conversion of A::* to C::*, 3576 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3577 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3578 return ImplicitConversionSequence::Worse; 3579 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3580 return ImplicitConversionSequence::Better; 3581 } 3582 // conversion of B::* to C::* is better than conversion of A::* to C::* 3583 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 3584 if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3585 return ImplicitConversionSequence::Better; 3586 else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3587 return ImplicitConversionSequence::Worse; 3588 } 3589 } 3590 3591 if (SCS1.Second == ICK_Derived_To_Base) { 3592 // -- conversion of C to B is better than conversion of C to A, 3593 // -- binding of an expression of type C to a reference of type 3594 // B& is better than binding an expression of type C to a 3595 // reference of type A&, 3596 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3597 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3598 if (S.IsDerivedFrom(ToType1, ToType2)) 3599 return ImplicitConversionSequence::Better; 3600 else if (S.IsDerivedFrom(ToType2, ToType1)) 3601 return ImplicitConversionSequence::Worse; 3602 } 3603 3604 // -- conversion of B to A is better than conversion of C to A. 3605 // -- binding of an expression of type B to a reference of type 3606 // A& is better than binding an expression of type C to a 3607 // reference of type A&, 3608 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3609 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3610 if (S.IsDerivedFrom(FromType2, FromType1)) 3611 return ImplicitConversionSequence::Better; 3612 else if (S.IsDerivedFrom(FromType1, FromType2)) 3613 return ImplicitConversionSequence::Worse; 3614 } 3615 } 3616 3617 return ImplicitConversionSequence::Indistinguishable; 3618} 3619 3620/// CompareReferenceRelationship - Compare the two types T1 and T2 to 3621/// determine whether they are reference-related, 3622/// reference-compatible, reference-compatible with added 3623/// qualification, or incompatible, for use in C++ initialization by 3624/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 3625/// type, and the first type (T1) is the pointee type of the reference 3626/// type being initialized. 3627Sema::ReferenceCompareResult 3628Sema::CompareReferenceRelationship(SourceLocation Loc, 3629 QualType OrigT1, QualType OrigT2, 3630 bool &DerivedToBase, 3631 bool &ObjCConversion, 3632 bool &ObjCLifetimeConversion) { 3633 assert(!OrigT1->isReferenceType() && 3634 "T1 must be the pointee type of the reference type"); 3635 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 3636 3637 QualType T1 = Context.getCanonicalType(OrigT1); 3638 QualType T2 = Context.getCanonicalType(OrigT2); 3639 Qualifiers T1Quals, T2Quals; 3640 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 3641 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 3642 3643 // C++ [dcl.init.ref]p4: 3644 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 3645 // reference-related to "cv2 T2" if T1 is the same type as T2, or 3646 // T1 is a base class of T2. 3647 DerivedToBase = false; 3648 ObjCConversion = false; 3649 ObjCLifetimeConversion = false; 3650 if (UnqualT1 == UnqualT2) { 3651 // Nothing to do. 3652 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 3653 IsDerivedFrom(UnqualT2, UnqualT1)) 3654 DerivedToBase = true; 3655 else if (UnqualT1->isObjCObjectOrInterfaceType() && 3656 UnqualT2->isObjCObjectOrInterfaceType() && 3657 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 3658 ObjCConversion = true; 3659 else 3660 return Ref_Incompatible; 3661 3662 // At this point, we know that T1 and T2 are reference-related (at 3663 // least). 3664 3665 // If the type is an array type, promote the element qualifiers to the type 3666 // for comparison. 3667 if (isa<ArrayType>(T1) && T1Quals) 3668 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 3669 if (isa<ArrayType>(T2) && T2Quals) 3670 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 3671 3672 // C++ [dcl.init.ref]p4: 3673 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 3674 // reference-related to T2 and cv1 is the same cv-qualification 3675 // as, or greater cv-qualification than, cv2. For purposes of 3676 // overload resolution, cases for which cv1 is greater 3677 // cv-qualification than cv2 are identified as 3678 // reference-compatible with added qualification (see 13.3.3.2). 3679 // 3680 // Note that we also require equivalence of Objective-C GC and address-space 3681 // qualifiers when performing these computations, so that e.g., an int in 3682 // address space 1 is not reference-compatible with an int in address 3683 // space 2. 3684 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() && 3685 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) { 3686 T1Quals.removeObjCLifetime(); 3687 T2Quals.removeObjCLifetime(); 3688 ObjCLifetimeConversion = true; 3689 } 3690 3691 if (T1Quals == T2Quals) 3692 return Ref_Compatible; 3693 else if (T1Quals.compatiblyIncludes(T2Quals)) 3694 return Ref_Compatible_With_Added_Qualification; 3695 else 3696 return Ref_Related; 3697} 3698 3699/// \brief Look for a user-defined conversion to an value reference-compatible 3700/// with DeclType. Return true if something definite is found. 3701static bool 3702FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 3703 QualType DeclType, SourceLocation DeclLoc, 3704 Expr *Init, QualType T2, bool AllowRvalues, 3705 bool AllowExplicit) { 3706 assert(T2->isRecordType() && "Can only find conversions of record types."); 3707 CXXRecordDecl *T2RecordDecl 3708 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 3709 3710 OverloadCandidateSet CandidateSet(DeclLoc); 3711 const UnresolvedSetImpl *Conversions 3712 = T2RecordDecl->getVisibleConversionFunctions(); 3713 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3714 E = Conversions->end(); I != E; ++I) { 3715 NamedDecl *D = *I; 3716 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3717 if (isa<UsingShadowDecl>(D)) 3718 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3719 3720 FunctionTemplateDecl *ConvTemplate 3721 = dyn_cast<FunctionTemplateDecl>(D); 3722 CXXConversionDecl *Conv; 3723 if (ConvTemplate) 3724 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3725 else 3726 Conv = cast<CXXConversionDecl>(D); 3727 3728 // If this is an explicit conversion, and we're not allowed to consider 3729 // explicit conversions, skip it. 3730 if (!AllowExplicit && Conv->isExplicit()) 3731 continue; 3732 3733 if (AllowRvalues) { 3734 bool DerivedToBase = false; 3735 bool ObjCConversion = false; 3736 bool ObjCLifetimeConversion = false; 3737 3738 // If we are initializing an rvalue reference, don't permit conversion 3739 // functions that return lvalues. 3740 if (!ConvTemplate && DeclType->isRValueReferenceType()) { 3741 const ReferenceType *RefType 3742 = Conv->getConversionType()->getAs<LValueReferenceType>(); 3743 if (RefType && !RefType->getPointeeType()->isFunctionType()) 3744 continue; 3745 } 3746 3747 if (!ConvTemplate && 3748 S.CompareReferenceRelationship( 3749 DeclLoc, 3750 Conv->getConversionType().getNonReferenceType() 3751 .getUnqualifiedType(), 3752 DeclType.getNonReferenceType().getUnqualifiedType(), 3753 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) == 3754 Sema::Ref_Incompatible) 3755 continue; 3756 } else { 3757 // If the conversion function doesn't return a reference type, 3758 // it can't be considered for this conversion. An rvalue reference 3759 // is only acceptable if its referencee is a function type. 3760 3761 const ReferenceType *RefType = 3762 Conv->getConversionType()->getAs<ReferenceType>(); 3763 if (!RefType || 3764 (!RefType->isLValueReferenceType() && 3765 !RefType->getPointeeType()->isFunctionType())) 3766 continue; 3767 } 3768 3769 if (ConvTemplate) 3770 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 3771 Init, DeclType, CandidateSet); 3772 else 3773 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 3774 DeclType, CandidateSet); 3775 } 3776 3777 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3778 3779 OverloadCandidateSet::iterator Best; 3780 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 3781 case OR_Success: 3782 // C++ [over.ics.ref]p1: 3783 // 3784 // [...] If the parameter binds directly to the result of 3785 // applying a conversion function to the argument 3786 // expression, the implicit conversion sequence is a 3787 // user-defined conversion sequence (13.3.3.1.2), with the 3788 // second standard conversion sequence either an identity 3789 // conversion or, if the conversion function returns an 3790 // entity of a type that is a derived class of the parameter 3791 // type, a derived-to-base Conversion. 3792 if (!Best->FinalConversion.DirectBinding) 3793 return false; 3794 3795 if (Best->Function) 3796 S.MarkFunctionReferenced(DeclLoc, Best->Function); 3797 ICS.setUserDefined(); 3798 ICS.UserDefined.Before = Best->Conversions[0].Standard; 3799 ICS.UserDefined.After = Best->FinalConversion; 3800 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; 3801 ICS.UserDefined.ConversionFunction = Best->Function; 3802 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 3803 ICS.UserDefined.EllipsisConversion = false; 3804 assert(ICS.UserDefined.After.ReferenceBinding && 3805 ICS.UserDefined.After.DirectBinding && 3806 "Expected a direct reference binding!"); 3807 return true; 3808 3809 case OR_Ambiguous: 3810 ICS.setAmbiguous(); 3811 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3812 Cand != CandidateSet.end(); ++Cand) 3813 if (Cand->Viable) 3814 ICS.Ambiguous.addConversion(Cand->Function); 3815 return true; 3816 3817 case OR_No_Viable_Function: 3818 case OR_Deleted: 3819 // There was no suitable conversion, or we found a deleted 3820 // conversion; continue with other checks. 3821 return false; 3822 } 3823 3824 llvm_unreachable("Invalid OverloadResult!"); 3825} 3826 3827/// \brief Compute an implicit conversion sequence for reference 3828/// initialization. 3829static ImplicitConversionSequence 3830TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, 3831 SourceLocation DeclLoc, 3832 bool SuppressUserConversions, 3833 bool AllowExplicit) { 3834 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 3835 3836 // Most paths end in a failed conversion. 3837 ImplicitConversionSequence ICS; 3838 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3839 3840 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 3841 QualType T2 = Init->getType(); 3842 3843 // If the initializer is the address of an overloaded function, try 3844 // to resolve the overloaded function. If all goes well, T2 is the 3845 // type of the resulting function. 3846 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 3847 DeclAccessPair Found; 3848 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 3849 false, Found)) 3850 T2 = Fn->getType(); 3851 } 3852 3853 // Compute some basic properties of the types and the initializer. 3854 bool isRValRef = DeclType->isRValueReferenceType(); 3855 bool DerivedToBase = false; 3856 bool ObjCConversion = false; 3857 bool ObjCLifetimeConversion = false; 3858 Expr::Classification InitCategory = Init->Classify(S.Context); 3859 Sema::ReferenceCompareResult RefRelationship 3860 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 3861 ObjCConversion, ObjCLifetimeConversion); 3862 3863 3864 // C++0x [dcl.init.ref]p5: 3865 // A reference to type "cv1 T1" is initialized by an expression 3866 // of type "cv2 T2" as follows: 3867 3868 // -- If reference is an lvalue reference and the initializer expression 3869 if (!isRValRef) { 3870 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 3871 // reference-compatible with "cv2 T2," or 3872 // 3873 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 3874 if (InitCategory.isLValue() && 3875 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 3876 // C++ [over.ics.ref]p1: 3877 // When a parameter of reference type binds directly (8.5.3) 3878 // to an argument expression, the implicit conversion sequence 3879 // is the identity conversion, unless the argument expression 3880 // has a type that is a derived class of the parameter type, 3881 // in which case the implicit conversion sequence is a 3882 // derived-to-base Conversion (13.3.3.1). 3883 ICS.setStandard(); 3884 ICS.Standard.First = ICK_Identity; 3885 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3886 : ObjCConversion? ICK_Compatible_Conversion 3887 : ICK_Identity; 3888 ICS.Standard.Third = ICK_Identity; 3889 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3890 ICS.Standard.setToType(0, T2); 3891 ICS.Standard.setToType(1, T1); 3892 ICS.Standard.setToType(2, T1); 3893 ICS.Standard.ReferenceBinding = true; 3894 ICS.Standard.DirectBinding = true; 3895 ICS.Standard.IsLvalueReference = !isRValRef; 3896 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3897 ICS.Standard.BindsToRvalue = false; 3898 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3899 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 3900 ICS.Standard.CopyConstructor = 0; 3901 3902 // Nothing more to do: the inaccessibility/ambiguity check for 3903 // derived-to-base conversions is suppressed when we're 3904 // computing the implicit conversion sequence (C++ 3905 // [over.best.ics]p2). 3906 return ICS; 3907 } 3908 3909 // -- has a class type (i.e., T2 is a class type), where T1 is 3910 // not reference-related to T2, and can be implicitly 3911 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 3912 // is reference-compatible with "cv3 T3" 92) (this 3913 // conversion is selected by enumerating the applicable 3914 // conversion functions (13.3.1.6) and choosing the best 3915 // one through overload resolution (13.3)), 3916 if (!SuppressUserConversions && T2->isRecordType() && 3917 !S.RequireCompleteType(DeclLoc, T2, 0) && 3918 RefRelationship == Sema::Ref_Incompatible) { 3919 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3920 Init, T2, /*AllowRvalues=*/false, 3921 AllowExplicit)) 3922 return ICS; 3923 } 3924 } 3925 3926 // -- Otherwise, the reference shall be an lvalue reference to a 3927 // non-volatile const type (i.e., cv1 shall be const), or the reference 3928 // shall be an rvalue reference. 3929 // 3930 // We actually handle one oddity of C++ [over.ics.ref] at this 3931 // point, which is that, due to p2 (which short-circuits reference 3932 // binding by only attempting a simple conversion for non-direct 3933 // bindings) and p3's strange wording, we allow a const volatile 3934 // reference to bind to an rvalue. Hence the check for the presence 3935 // of "const" rather than checking for "const" being the only 3936 // qualifier. 3937 // This is also the point where rvalue references and lvalue inits no longer 3938 // go together. 3939 if (!isRValRef && !T1.isConstQualified()) 3940 return ICS; 3941 3942 // -- If the initializer expression 3943 // 3944 // -- is an xvalue, class prvalue, array prvalue or function 3945 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 3946 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification && 3947 (InitCategory.isXValue() || 3948 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || 3949 (InitCategory.isLValue() && T2->isFunctionType()))) { 3950 ICS.setStandard(); 3951 ICS.Standard.First = ICK_Identity; 3952 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3953 : ObjCConversion? ICK_Compatible_Conversion 3954 : ICK_Identity; 3955 ICS.Standard.Third = ICK_Identity; 3956 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3957 ICS.Standard.setToType(0, T2); 3958 ICS.Standard.setToType(1, T1); 3959 ICS.Standard.setToType(2, T1); 3960 ICS.Standard.ReferenceBinding = true; 3961 // In C++0x, this is always a direct binding. In C++98/03, it's a direct 3962 // binding unless we're binding to a class prvalue. 3963 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 3964 // allow the use of rvalue references in C++98/03 for the benefit of 3965 // standard library implementors; therefore, we need the xvalue check here. 3966 ICS.Standard.DirectBinding = 3967 S.getLangOptions().CPlusPlus0x || 3968 (InitCategory.isPRValue() && !T2->isRecordType()); 3969 ICS.Standard.IsLvalueReference = !isRValRef; 3970 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3971 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 3972 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3973 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 3974 ICS.Standard.CopyConstructor = 0; 3975 return ICS; 3976 } 3977 3978 // -- has a class type (i.e., T2 is a class type), where T1 is not 3979 // reference-related to T2, and can be implicitly converted to 3980 // an xvalue, class prvalue, or function lvalue of type 3981 // "cv3 T3", where "cv1 T1" is reference-compatible with 3982 // "cv3 T3", 3983 // 3984 // then the reference is bound to the value of the initializer 3985 // expression in the first case and to the result of the conversion 3986 // in the second case (or, in either case, to an appropriate base 3987 // class subobject). 3988 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3989 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && 3990 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3991 Init, T2, /*AllowRvalues=*/true, 3992 AllowExplicit)) { 3993 // In the second case, if the reference is an rvalue reference 3994 // and the second standard conversion sequence of the 3995 // user-defined conversion sequence includes an lvalue-to-rvalue 3996 // conversion, the program is ill-formed. 3997 if (ICS.isUserDefined() && isRValRef && 3998 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 3999 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4000 4001 return ICS; 4002 } 4003 4004 // -- Otherwise, a temporary of type "cv1 T1" is created and 4005 // initialized from the initializer expression using the 4006 // rules for a non-reference copy initialization (8.5). The 4007 // reference is then bound to the temporary. If T1 is 4008 // reference-related to T2, cv1 must be the same 4009 // cv-qualification as, or greater cv-qualification than, 4010 // cv2; otherwise, the program is ill-formed. 4011 if (RefRelationship == Sema::Ref_Related) { 4012 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 4013 // we would be reference-compatible or reference-compatible with 4014 // added qualification. But that wasn't the case, so the reference 4015 // initialization fails. 4016 // 4017 // Note that we only want to check address spaces and cvr-qualifiers here. 4018 // ObjC GC and lifetime qualifiers aren't important. 4019 Qualifiers T1Quals = T1.getQualifiers(); 4020 Qualifiers T2Quals = T2.getQualifiers(); 4021 T1Quals.removeObjCGCAttr(); 4022 T1Quals.removeObjCLifetime(); 4023 T2Quals.removeObjCGCAttr(); 4024 T2Quals.removeObjCLifetime(); 4025 if (!T1Quals.compatiblyIncludes(T2Quals)) 4026 return ICS; 4027 } 4028 4029 // If at least one of the types is a class type, the types are not 4030 // related, and we aren't allowed any user conversions, the 4031 // reference binding fails. This case is important for breaking 4032 // recursion, since TryImplicitConversion below will attempt to 4033 // create a temporary through the use of a copy constructor. 4034 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4035 (T1->isRecordType() || T2->isRecordType())) 4036 return ICS; 4037 4038 // If T1 is reference-related to T2 and the reference is an rvalue 4039 // reference, the initializer expression shall not be an lvalue. 4040 if (RefRelationship >= Sema::Ref_Related && 4041 isRValRef && Init->Classify(S.Context).isLValue()) 4042 return ICS; 4043 4044 // C++ [over.ics.ref]p2: 4045 // When a parameter of reference type is not bound directly to 4046 // an argument expression, the conversion sequence is the one 4047 // required to convert the argument expression to the 4048 // underlying type of the reference according to 4049 // 13.3.3.1. Conceptually, this conversion sequence corresponds 4050 // to copy-initializing a temporary of the underlying type with 4051 // the argument expression. Any difference in top-level 4052 // cv-qualification is subsumed by the initialization itself 4053 // and does not constitute a conversion. 4054 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 4055 /*AllowExplicit=*/false, 4056 /*InOverloadResolution=*/false, 4057 /*CStyle=*/false, 4058 /*AllowObjCWritebackConversion=*/false); 4059 4060 // Of course, that's still a reference binding. 4061 if (ICS.isStandard()) { 4062 ICS.Standard.ReferenceBinding = true; 4063 ICS.Standard.IsLvalueReference = !isRValRef; 4064 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4065 ICS.Standard.BindsToRvalue = true; 4066 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4067 ICS.Standard.ObjCLifetimeConversionBinding = false; 4068 } else if (ICS.isUserDefined()) { 4069 // Don't allow rvalue references to bind to lvalues. 4070 if (DeclType->isRValueReferenceType()) { 4071 if (const ReferenceType *RefType 4072 = ICS.UserDefined.ConversionFunction->getResultType() 4073 ->getAs<LValueReferenceType>()) { 4074 if (!RefType->getPointeeType()->isFunctionType()) { 4075 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, 4076 DeclType); 4077 return ICS; 4078 } 4079 } 4080 } 4081 4082 ICS.UserDefined.After.ReferenceBinding = true; 4083 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 4084 ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType(); 4085 ICS.UserDefined.After.BindsToRvalue = true; 4086 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4087 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 4088 } 4089 4090 return ICS; 4091} 4092 4093static ImplicitConversionSequence 4094TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4095 bool SuppressUserConversions, 4096 bool InOverloadResolution, 4097 bool AllowObjCWritebackConversion); 4098 4099/// TryListConversion - Try to copy-initialize a value of type ToType from the 4100/// initializer list From. 4101static ImplicitConversionSequence 4102TryListConversion(Sema &S, InitListExpr *From, QualType ToType, 4103 bool SuppressUserConversions, 4104 bool InOverloadResolution, 4105 bool AllowObjCWritebackConversion) { 4106 // C++11 [over.ics.list]p1: 4107 // When an argument is an initializer list, it is not an expression and 4108 // special rules apply for converting it to a parameter type. 4109 4110 ImplicitConversionSequence Result; 4111 Result.setBad(BadConversionSequence::no_conversion, From, ToType); 4112 Result.setListInitializationSequence(); 4113 4114 // We need a complete type for what follows. Incomplete types can never be 4115 // initialized from init lists. 4116 if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) 4117 return Result; 4118 4119 // C++11 [over.ics.list]p2: 4120 // If the parameter type is std::initializer_list<X> or "array of X" and 4121 // all the elements can be implicitly converted to X, the implicit 4122 // conversion sequence is the worst conversion necessary to convert an 4123 // element of the list to X. 4124 QualType X; 4125 if (ToType->isArrayType()) 4126 X = S.Context.getBaseElementType(ToType); 4127 else 4128 (void)S.isStdInitializerList(ToType, &X); 4129 if (!X.isNull()) { 4130 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { 4131 Expr *Init = From->getInit(i); 4132 ImplicitConversionSequence ICS = 4133 TryCopyInitialization(S, Init, X, SuppressUserConversions, 4134 InOverloadResolution, 4135 AllowObjCWritebackConversion); 4136 // If a single element isn't convertible, fail. 4137 if (ICS.isBad()) { 4138 Result = ICS; 4139 break; 4140 } 4141 // Otherwise, look for the worst conversion. 4142 if (Result.isBad() || 4143 CompareImplicitConversionSequences(S, ICS, Result) == 4144 ImplicitConversionSequence::Worse) 4145 Result = ICS; 4146 } 4147 Result.setListInitializationSequence(); 4148 return Result; 4149 } 4150 4151 // C++11 [over.ics.list]p3: 4152 // Otherwise, if the parameter is a non-aggregate class X and overload 4153 // resolution chooses a single best constructor [...] the implicit 4154 // conversion sequence is a user-defined conversion sequence. If multiple 4155 // constructors are viable but none is better than the others, the 4156 // implicit conversion sequence is a user-defined conversion sequence. 4157 if (ToType->isRecordType() && !ToType->isAggregateType()) { 4158 // This function can deal with initializer lists. 4159 Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 4160 /*AllowExplicit=*/false, 4161 InOverloadResolution, /*CStyle=*/false, 4162 AllowObjCWritebackConversion); 4163 Result.setListInitializationSequence(); 4164 return Result; 4165 } 4166 4167 // C++11 [over.ics.list]p4: 4168 // Otherwise, if the parameter has an aggregate type which can be 4169 // initialized from the initializer list [...] the implicit conversion 4170 // sequence is a user-defined conversion sequence. 4171 if (ToType->isAggregateType()) { 4172 // Type is an aggregate, argument is an init list. At this point it comes 4173 // down to checking whether the initialization works. 4174 // FIXME: Find out whether this parameter is consumed or not. 4175 InitializedEntity Entity = 4176 InitializedEntity::InitializeParameter(S.Context, ToType, 4177 /*Consumed=*/false); 4178 if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) { 4179 Result.setUserDefined(); 4180 Result.UserDefined.Before.setAsIdentityConversion(); 4181 // Initializer lists don't have a type. 4182 Result.UserDefined.Before.setFromType(QualType()); 4183 Result.UserDefined.Before.setAllToTypes(QualType()); 4184 4185 Result.UserDefined.After.setAsIdentityConversion(); 4186 Result.UserDefined.After.setFromType(ToType); 4187 Result.UserDefined.After.setAllToTypes(ToType); 4188 Result.UserDefined.ConversionFunction = 0; 4189 } 4190 return Result; 4191 } 4192 4193 // C++11 [over.ics.list]p5: 4194 // Otherwise, if the parameter is a reference, see 13.3.3.1.4. 4195 if (ToType->isReferenceType()) { 4196 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't 4197 // mention initializer lists in any way. So we go by what list- 4198 // initialization would do and try to extrapolate from that. 4199 4200 QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType(); 4201 4202 // If the initializer list has a single element that is reference-related 4203 // to the parameter type, we initialize the reference from that. 4204 if (From->getNumInits() == 1) { 4205 Expr *Init = From->getInit(0); 4206 4207 QualType T2 = Init->getType(); 4208 4209 // If the initializer is the address of an overloaded function, try 4210 // to resolve the overloaded function. If all goes well, T2 is the 4211 // type of the resulting function. 4212 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4213 DeclAccessPair Found; 4214 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( 4215 Init, ToType, false, Found)) 4216 T2 = Fn->getType(); 4217 } 4218 4219 // Compute some basic properties of the types and the initializer. 4220 bool dummy1 = false; 4221 bool dummy2 = false; 4222 bool dummy3 = false; 4223 Sema::ReferenceCompareResult RefRelationship 4224 = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1, 4225 dummy2, dummy3); 4226 4227 if (RefRelationship >= Sema::Ref_Related) 4228 return TryReferenceInit(S, Init, ToType, 4229 /*FIXME:*/From->getLocStart(), 4230 SuppressUserConversions, 4231 /*AllowExplicit=*/false); 4232 } 4233 4234 // Otherwise, we bind the reference to a temporary created from the 4235 // initializer list. 4236 Result = TryListConversion(S, From, T1, SuppressUserConversions, 4237 InOverloadResolution, 4238 AllowObjCWritebackConversion); 4239 if (Result.isFailure()) 4240 return Result; 4241 assert(!Result.isEllipsis() && 4242 "Sub-initialization cannot result in ellipsis conversion."); 4243 4244 // Can we even bind to a temporary? 4245 if (ToType->isRValueReferenceType() || 4246 (T1.isConstQualified() && !T1.isVolatileQualified())) { 4247 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : 4248 Result.UserDefined.After; 4249 SCS.ReferenceBinding = true; 4250 SCS.IsLvalueReference = ToType->isLValueReferenceType(); 4251 SCS.BindsToRvalue = true; 4252 SCS.BindsToFunctionLvalue = false; 4253 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4254 SCS.ObjCLifetimeConversionBinding = false; 4255 } else 4256 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, 4257 From, ToType); 4258 return Result; 4259 } 4260 4261 // C++11 [over.ics.list]p6: 4262 // Otherwise, if the parameter type is not a class: 4263 if (!ToType->isRecordType()) { 4264 // - if the initializer list has one element, the implicit conversion 4265 // sequence is the one required to convert the element to the 4266 // parameter type. 4267 unsigned NumInits = From->getNumInits(); 4268 if (NumInits == 1) 4269 Result = TryCopyInitialization(S, From->getInit(0), ToType, 4270 SuppressUserConversions, 4271 InOverloadResolution, 4272 AllowObjCWritebackConversion); 4273 // - if the initializer list has no elements, the implicit conversion 4274 // sequence is the identity conversion. 4275 else if (NumInits == 0) { 4276 Result.setStandard(); 4277 Result.Standard.setAsIdentityConversion(); 4278 } 4279 return Result; 4280 } 4281 4282 // C++11 [over.ics.list]p7: 4283 // In all cases other than those enumerated above, no conversion is possible 4284 return Result; 4285} 4286 4287/// TryCopyInitialization - Try to copy-initialize a value of type 4288/// ToType from the expression From. Return the implicit conversion 4289/// sequence required to pass this argument, which may be a bad 4290/// conversion sequence (meaning that the argument cannot be passed to 4291/// a parameter of this type). If @p SuppressUserConversions, then we 4292/// do not permit any user-defined conversion sequences. 4293static ImplicitConversionSequence 4294TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4295 bool SuppressUserConversions, 4296 bool InOverloadResolution, 4297 bool AllowObjCWritebackConversion) { 4298 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) 4299 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, 4300 InOverloadResolution,AllowObjCWritebackConversion); 4301 4302 if (ToType->isReferenceType()) 4303 return TryReferenceInit(S, From, ToType, 4304 /*FIXME:*/From->getLocStart(), 4305 SuppressUserConversions, 4306 /*AllowExplicit=*/false); 4307 4308 return TryImplicitConversion(S, From, ToType, 4309 SuppressUserConversions, 4310 /*AllowExplicit=*/false, 4311 InOverloadResolution, 4312 /*CStyle=*/false, 4313 AllowObjCWritebackConversion); 4314} 4315 4316static bool TryCopyInitialization(const CanQualType FromQTy, 4317 const CanQualType ToQTy, 4318 Sema &S, 4319 SourceLocation Loc, 4320 ExprValueKind FromVK) { 4321 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 4322 ImplicitConversionSequence ICS = 4323 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 4324 4325 return !ICS.isBad(); 4326} 4327 4328/// TryObjectArgumentInitialization - Try to initialize the object 4329/// parameter of the given member function (@c Method) from the 4330/// expression @p From. 4331static ImplicitConversionSequence 4332TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, 4333 Expr::Classification FromClassification, 4334 CXXMethodDecl *Method, 4335 CXXRecordDecl *ActingContext) { 4336 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 4337 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 4338 // const volatile object. 4339 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 4340 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 4341 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 4342 4343 // Set up the conversion sequence as a "bad" conversion, to allow us 4344 // to exit early. 4345 ImplicitConversionSequence ICS; 4346 4347 // We need to have an object of class type. 4348 QualType FromType = OrigFromType; 4349 if (const PointerType *PT = FromType->getAs<PointerType>()) { 4350 FromType = PT->getPointeeType(); 4351 4352 // When we had a pointer, it's implicitly dereferenced, so we 4353 // better have an lvalue. 4354 assert(FromClassification.isLValue()); 4355 } 4356 4357 assert(FromType->isRecordType()); 4358 4359 // C++0x [over.match.funcs]p4: 4360 // For non-static member functions, the type of the implicit object 4361 // parameter is 4362 // 4363 // - "lvalue reference to cv X" for functions declared without a 4364 // ref-qualifier or with the & ref-qualifier 4365 // - "rvalue reference to cv X" for functions declared with the && 4366 // ref-qualifier 4367 // 4368 // where X is the class of which the function is a member and cv is the 4369 // cv-qualification on the member function declaration. 4370 // 4371 // However, when finding an implicit conversion sequence for the argument, we 4372 // are not allowed to create temporaries or perform user-defined conversions 4373 // (C++ [over.match.funcs]p5). We perform a simplified version of 4374 // reference binding here, that allows class rvalues to bind to 4375 // non-constant references. 4376 4377 // First check the qualifiers. 4378 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 4379 if (ImplicitParamType.getCVRQualifiers() 4380 != FromTypeCanon.getLocalCVRQualifiers() && 4381 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 4382 ICS.setBad(BadConversionSequence::bad_qualifiers, 4383 OrigFromType, ImplicitParamType); 4384 return ICS; 4385 } 4386 4387 // Check that we have either the same type or a derived type. It 4388 // affects the conversion rank. 4389 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 4390 ImplicitConversionKind SecondKind; 4391 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 4392 SecondKind = ICK_Identity; 4393 } else if (S.IsDerivedFrom(FromType, ClassType)) 4394 SecondKind = ICK_Derived_To_Base; 4395 else { 4396 ICS.setBad(BadConversionSequence::unrelated_class, 4397 FromType, ImplicitParamType); 4398 return ICS; 4399 } 4400 4401 // Check the ref-qualifier. 4402 switch (Method->getRefQualifier()) { 4403 case RQ_None: 4404 // Do nothing; we don't care about lvalueness or rvalueness. 4405 break; 4406 4407 case RQ_LValue: 4408 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { 4409 // non-const lvalue reference cannot bind to an rvalue 4410 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 4411 ImplicitParamType); 4412 return ICS; 4413 } 4414 break; 4415 4416 case RQ_RValue: 4417 if (!FromClassification.isRValue()) { 4418 // rvalue reference cannot bind to an lvalue 4419 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 4420 ImplicitParamType); 4421 return ICS; 4422 } 4423 break; 4424 } 4425 4426 // Success. Mark this as a reference binding. 4427 ICS.setStandard(); 4428 ICS.Standard.setAsIdentityConversion(); 4429 ICS.Standard.Second = SecondKind; 4430 ICS.Standard.setFromType(FromType); 4431 ICS.Standard.setAllToTypes(ImplicitParamType); 4432 ICS.Standard.ReferenceBinding = true; 4433 ICS.Standard.DirectBinding = true; 4434 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 4435 ICS.Standard.BindsToFunctionLvalue = false; 4436 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 4437 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 4438 = (Method->getRefQualifier() == RQ_None); 4439 return ICS; 4440} 4441 4442/// PerformObjectArgumentInitialization - Perform initialization of 4443/// the implicit object parameter for the given Method with the given 4444/// expression. 4445ExprResult 4446Sema::PerformObjectArgumentInitialization(Expr *From, 4447 NestedNameSpecifier *Qualifier, 4448 NamedDecl *FoundDecl, 4449 CXXMethodDecl *Method) { 4450 QualType FromRecordType, DestType; 4451 QualType ImplicitParamRecordType = 4452 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 4453 4454 Expr::Classification FromClassification; 4455 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 4456 FromRecordType = PT->getPointeeType(); 4457 DestType = Method->getThisType(Context); 4458 FromClassification = Expr::Classification::makeSimpleLValue(); 4459 } else { 4460 FromRecordType = From->getType(); 4461 DestType = ImplicitParamRecordType; 4462 FromClassification = From->Classify(Context); 4463 } 4464 4465 // Note that we always use the true parent context when performing 4466 // the actual argument initialization. 4467 ImplicitConversionSequence ICS 4468 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification, 4469 Method, Method->getParent()); 4470 if (ICS.isBad()) { 4471 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { 4472 Qualifiers FromQs = FromRecordType.getQualifiers(); 4473 Qualifiers ToQs = DestType.getQualifiers(); 4474 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 4475 if (CVR) { 4476 Diag(From->getSourceRange().getBegin(), 4477 diag::err_member_function_call_bad_cvr) 4478 << Method->getDeclName() << FromRecordType << (CVR - 1) 4479 << From->getSourceRange(); 4480 Diag(Method->getLocation(), diag::note_previous_decl) 4481 << Method->getDeclName(); 4482 return ExprError(); 4483 } 4484 } 4485 4486 return Diag(From->getSourceRange().getBegin(), 4487 diag::err_implicit_object_parameter_init) 4488 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 4489 } 4490 4491 if (ICS.Standard.Second == ICK_Derived_To_Base) { 4492 ExprResult FromRes = 4493 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 4494 if (FromRes.isInvalid()) 4495 return ExprError(); 4496 From = FromRes.take(); 4497 } 4498 4499 if (!Context.hasSameType(From->getType(), DestType)) 4500 From = ImpCastExprToType(From, DestType, CK_NoOp, 4501 From->getValueKind()).take(); 4502 return Owned(From); 4503} 4504 4505/// TryContextuallyConvertToBool - Attempt to contextually convert the 4506/// expression From to bool (C++0x [conv]p3). 4507static ImplicitConversionSequence 4508TryContextuallyConvertToBool(Sema &S, Expr *From) { 4509 // FIXME: This is pretty broken. 4510 return TryImplicitConversion(S, From, S.Context.BoolTy, 4511 // FIXME: Are these flags correct? 4512 /*SuppressUserConversions=*/false, 4513 /*AllowExplicit=*/true, 4514 /*InOverloadResolution=*/false, 4515 /*CStyle=*/false, 4516 /*AllowObjCWritebackConversion=*/false); 4517} 4518 4519/// PerformContextuallyConvertToBool - Perform a contextual conversion 4520/// of the expression From to bool (C++0x [conv]p3). 4521ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 4522 if (checkPlaceholderForOverload(*this, From)) 4523 return ExprError(); 4524 4525 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 4526 if (!ICS.isBad()) 4527 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 4528 4529 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 4530 return Diag(From->getSourceRange().getBegin(), 4531 diag::err_typecheck_bool_condition) 4532 << From->getType() << From->getSourceRange(); 4533 return ExprError(); 4534} 4535 4536/// Check that the specified conversion is permitted in a converted constant 4537/// expression, according to C++11 [expr.const]p3. Return true if the conversion 4538/// is acceptable. 4539static bool CheckConvertedConstantConversions(Sema &S, 4540 StandardConversionSequence &SCS) { 4541 // Since we know that the target type is an integral or unscoped enumeration 4542 // type, most conversion kinds are impossible. All possible First and Third 4543 // conversions are fine. 4544 switch (SCS.Second) { 4545 case ICK_Identity: 4546 case ICK_Integral_Promotion: 4547 case ICK_Integral_Conversion: 4548 return true; 4549 4550 case ICK_Boolean_Conversion: 4551 // Conversion from an integral or unscoped enumeration type to bool is 4552 // classified as ICK_Boolean_Conversion, but it's also an integral 4553 // conversion, so it's permitted in a converted constant expression. 4554 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && 4555 SCS.getToType(2)->isBooleanType(); 4556 4557 case ICK_Floating_Integral: 4558 case ICK_Complex_Real: 4559 return false; 4560 4561 case ICK_Lvalue_To_Rvalue: 4562 case ICK_Array_To_Pointer: 4563 case ICK_Function_To_Pointer: 4564 case ICK_NoReturn_Adjustment: 4565 case ICK_Qualification: 4566 case ICK_Compatible_Conversion: 4567 case ICK_Vector_Conversion: 4568 case ICK_Vector_Splat: 4569 case ICK_Derived_To_Base: 4570 case ICK_Pointer_Conversion: 4571 case ICK_Pointer_Member: 4572 case ICK_Block_Pointer_Conversion: 4573 case ICK_Writeback_Conversion: 4574 case ICK_Floating_Promotion: 4575 case ICK_Complex_Promotion: 4576 case ICK_Complex_Conversion: 4577 case ICK_Floating_Conversion: 4578 case ICK_TransparentUnionConversion: 4579 llvm_unreachable("unexpected second conversion kind"); 4580 4581 case ICK_Num_Conversion_Kinds: 4582 break; 4583 } 4584 4585 llvm_unreachable("unknown conversion kind"); 4586} 4587 4588/// CheckConvertedConstantExpression - Check that the expression From is a 4589/// converted constant expression of type T, perform the conversion and produce 4590/// the converted expression, per C++11 [expr.const]p3. 4591ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 4592 llvm::APSInt &Value, 4593 CCEKind CCE) { 4594 assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11"); 4595 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); 4596 4597 if (checkPlaceholderForOverload(*this, From)) 4598 return ExprError(); 4599 4600 // C++11 [expr.const]p3 with proposed wording fixes: 4601 // A converted constant expression of type T is a core constant expression, 4602 // implicitly converted to a prvalue of type T, where the converted 4603 // expression is a literal constant expression and the implicit conversion 4604 // sequence contains only user-defined conversions, lvalue-to-rvalue 4605 // conversions, integral promotions, and integral conversions other than 4606 // narrowing conversions. 4607 ImplicitConversionSequence ICS = 4608 TryImplicitConversion(From, T, 4609 /*SuppressUserConversions=*/false, 4610 /*AllowExplicit=*/false, 4611 /*InOverloadResolution=*/false, 4612 /*CStyle=*/false, 4613 /*AllowObjcWritebackConversion=*/false); 4614 StandardConversionSequence *SCS = 0; 4615 switch (ICS.getKind()) { 4616 case ImplicitConversionSequence::StandardConversion: 4617 if (!CheckConvertedConstantConversions(*this, ICS.Standard)) 4618 return Diag(From->getSourceRange().getBegin(), 4619 diag::err_typecheck_converted_constant_expression_disallowed) 4620 << From->getType() << From->getSourceRange() << T; 4621 SCS = &ICS.Standard; 4622 break; 4623 case ImplicitConversionSequence::UserDefinedConversion: 4624 // We are converting from class type to an integral or enumeration type, so 4625 // the Before sequence must be trivial. 4626 if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After)) 4627 return Diag(From->getSourceRange().getBegin(), 4628 diag::err_typecheck_converted_constant_expression_disallowed) 4629 << From->getType() << From->getSourceRange() << T; 4630 SCS = &ICS.UserDefined.After; 4631 break; 4632 case ImplicitConversionSequence::AmbiguousConversion: 4633 case ImplicitConversionSequence::BadConversion: 4634 if (!DiagnoseMultipleUserDefinedConversion(From, T)) 4635 return Diag(From->getSourceRange().getBegin(), 4636 diag::err_typecheck_converted_constant_expression) 4637 << From->getType() << From->getSourceRange() << T; 4638 return ExprError(); 4639 4640 case ImplicitConversionSequence::EllipsisConversion: 4641 llvm_unreachable("ellipsis conversion in converted constant expression"); 4642 } 4643 4644 ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting); 4645 if (Result.isInvalid()) 4646 return Result; 4647 4648 // Check for a narrowing implicit conversion. 4649 APValue PreNarrowingValue; 4650 bool Diagnosed = false; 4651 switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue)) { 4652 case NK_Variable_Narrowing: 4653 // Implicit conversion to a narrower type, and the value is not a constant 4654 // expression. We'll diagnose this in a moment. 4655 case NK_Not_Narrowing: 4656 break; 4657 4658 case NK_Constant_Narrowing: 4659 Diag(From->getSourceRange().getBegin(), diag::err_cce_narrowing) 4660 << CCE << /*Constant*/1 4661 << PreNarrowingValue.getAsString(Context, QualType()) << T; 4662 Diagnosed = true; 4663 break; 4664 4665 case NK_Type_Narrowing: 4666 Diag(From->getSourceRange().getBegin(), diag::err_cce_narrowing) 4667 << CCE << /*Constant*/0 << From->getType() << T; 4668 Diagnosed = true; 4669 break; 4670 } 4671 4672 // Check the expression is a constant expression. 4673 llvm::SmallVector<PartialDiagnosticAt, 8> Notes; 4674 Expr::EvalResult Eval; 4675 Eval.Diag = &Notes; 4676 4677 if (!Result.get()->EvaluateAsRValue(Eval, Context)) { 4678 // The expression can't be folded, so we can't keep it at this position in 4679 // the AST. 4680 Result = ExprError(); 4681 } else { 4682 Value = Eval.Val.getInt(); 4683 4684 if (Notes.empty()) { 4685 // It's a constant expression. 4686 return Result; 4687 } 4688 } 4689 4690 // Only issue one narrowing diagnostic. 4691 if (Diagnosed) 4692 return Result; 4693 4694 // It's not a constant expression. Produce an appropriate diagnostic. 4695 if (Notes.size() == 1 && 4696 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) 4697 Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; 4698 else { 4699 Diag(From->getSourceRange().getBegin(), diag::err_expr_not_cce) 4700 << CCE << From->getSourceRange(); 4701 for (unsigned I = 0; I < Notes.size(); ++I) 4702 Diag(Notes[I].first, Notes[I].second); 4703 } 4704 return Result; 4705} 4706 4707/// dropPointerConversions - If the given standard conversion sequence 4708/// involves any pointer conversions, remove them. This may change 4709/// the result type of the conversion sequence. 4710static void dropPointerConversion(StandardConversionSequence &SCS) { 4711 if (SCS.Second == ICK_Pointer_Conversion) { 4712 SCS.Second = ICK_Identity; 4713 SCS.Third = ICK_Identity; 4714 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 4715 } 4716} 4717 4718/// TryContextuallyConvertToObjCPointer - Attempt to contextually 4719/// convert the expression From to an Objective-C pointer type. 4720static ImplicitConversionSequence 4721TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 4722 // Do an implicit conversion to 'id'. 4723 QualType Ty = S.Context.getObjCIdType(); 4724 ImplicitConversionSequence ICS 4725 = TryImplicitConversion(S, From, Ty, 4726 // FIXME: Are these flags correct? 4727 /*SuppressUserConversions=*/false, 4728 /*AllowExplicit=*/true, 4729 /*InOverloadResolution=*/false, 4730 /*CStyle=*/false, 4731 /*AllowObjCWritebackConversion=*/false); 4732 4733 // Strip off any final conversions to 'id'. 4734 switch (ICS.getKind()) { 4735 case ImplicitConversionSequence::BadConversion: 4736 case ImplicitConversionSequence::AmbiguousConversion: 4737 case ImplicitConversionSequence::EllipsisConversion: 4738 break; 4739 4740 case ImplicitConversionSequence::UserDefinedConversion: 4741 dropPointerConversion(ICS.UserDefined.After); 4742 break; 4743 4744 case ImplicitConversionSequence::StandardConversion: 4745 dropPointerConversion(ICS.Standard); 4746 break; 4747 } 4748 4749 return ICS; 4750} 4751 4752/// PerformContextuallyConvertToObjCPointer - Perform a contextual 4753/// conversion of the expression From to an Objective-C pointer type. 4754ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 4755 if (checkPlaceholderForOverload(*this, From)) 4756 return ExprError(); 4757 4758 QualType Ty = Context.getObjCIdType(); 4759 ImplicitConversionSequence ICS = 4760 TryContextuallyConvertToObjCPointer(*this, From); 4761 if (!ICS.isBad()) 4762 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 4763 return ExprError(); 4764} 4765 4766/// Determine whether the provided type is an integral type, or an enumeration 4767/// type of a permitted flavor. 4768static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) { 4769 return AllowScopedEnum ? T->isIntegralOrEnumerationType() 4770 : T->isIntegralOrUnscopedEnumerationType(); 4771} 4772 4773/// \brief Attempt to convert the given expression to an integral or 4774/// enumeration type. 4775/// 4776/// This routine will attempt to convert an expression of class type to an 4777/// integral or enumeration type, if that class type only has a single 4778/// conversion to an integral or enumeration type. 4779/// 4780/// \param Loc The source location of the construct that requires the 4781/// conversion. 4782/// 4783/// \param FromE The expression we're converting from. 4784/// 4785/// \param NotIntDiag The diagnostic to be emitted if the expression does not 4786/// have integral or enumeration type. 4787/// 4788/// \param IncompleteDiag The diagnostic to be emitted if the expression has 4789/// incomplete class type. 4790/// 4791/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 4792/// explicit conversion function (because no implicit conversion functions 4793/// were available). This is a recovery mode. 4794/// 4795/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 4796/// showing which conversion was picked. 4797/// 4798/// \param AmbigDiag The diagnostic to be emitted if there is more than one 4799/// conversion function that could convert to integral or enumeration type. 4800/// 4801/// \param AmbigNote The note to be emitted with \p AmbigDiag for each 4802/// usable conversion function. 4803/// 4804/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 4805/// function, which may be an extension in this case. 4806/// 4807/// \param AllowScopedEnumerations Specifies whether conversions to scoped 4808/// enumerations should be considered. 4809/// 4810/// \returns The expression, converted to an integral or enumeration type if 4811/// successful. 4812ExprResult 4813Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, 4814 const PartialDiagnostic &NotIntDiag, 4815 const PartialDiagnostic &IncompleteDiag, 4816 const PartialDiagnostic &ExplicitConvDiag, 4817 const PartialDiagnostic &ExplicitConvNote, 4818 const PartialDiagnostic &AmbigDiag, 4819 const PartialDiagnostic &AmbigNote, 4820 const PartialDiagnostic &ConvDiag, 4821 bool AllowScopedEnumerations) { 4822 // We can't perform any more checking for type-dependent expressions. 4823 if (From->isTypeDependent()) 4824 return Owned(From); 4825 4826 // Process placeholders immediately. 4827 if (From->hasPlaceholderType()) { 4828 ExprResult result = CheckPlaceholderExpr(From); 4829 if (result.isInvalid()) return result; 4830 From = result.take(); 4831 } 4832 4833 // If the expression already has integral or enumeration type, we're golden. 4834 QualType T = From->getType(); 4835 if (isIntegralOrEnumerationType(T, AllowScopedEnumerations)) 4836 return DefaultLvalueConversion(From); 4837 4838 // FIXME: Check for missing '()' if T is a function type? 4839 4840 // If we don't have a class type in C++, there's no way we can get an 4841 // expression of integral or enumeration type. 4842 const RecordType *RecordTy = T->getAs<RecordType>(); 4843 if (!RecordTy || !getLangOptions().CPlusPlus) { 4844 if (NotIntDiag.getDiagID()) 4845 Diag(Loc, NotIntDiag) << T << From->getSourceRange(); 4846 return Owned(From); 4847 } 4848 4849 // We must have a complete class type. 4850 if (RequireCompleteType(Loc, T, IncompleteDiag)) 4851 return Owned(From); 4852 4853 // Look for a conversion to an integral or enumeration type. 4854 UnresolvedSet<4> ViableConversions; 4855 UnresolvedSet<4> ExplicitConversions; 4856 const UnresolvedSetImpl *Conversions 4857 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 4858 4859 bool HadMultipleCandidates = (Conversions->size() > 1); 4860 4861 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4862 E = Conversions->end(); 4863 I != E; 4864 ++I) { 4865 if (CXXConversionDecl *Conversion 4866 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) { 4867 if (isIntegralOrEnumerationType( 4868 Conversion->getConversionType().getNonReferenceType(), 4869 AllowScopedEnumerations)) { 4870 if (Conversion->isExplicit()) 4871 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 4872 else 4873 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 4874 } 4875 } 4876 } 4877 4878 switch (ViableConversions.size()) { 4879 case 0: 4880 if (ExplicitConversions.size() == 1 && ExplicitConvDiag.getDiagID()) { 4881 DeclAccessPair Found = ExplicitConversions[0]; 4882 CXXConversionDecl *Conversion 4883 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 4884 4885 // The user probably meant to invoke the given explicit 4886 // conversion; use it. 4887 QualType ConvTy 4888 = Conversion->getConversionType().getNonReferenceType(); 4889 std::string TypeStr; 4890 ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy()); 4891 4892 Diag(Loc, ExplicitConvDiag) 4893 << T << ConvTy 4894 << FixItHint::CreateInsertion(From->getLocStart(), 4895 "static_cast<" + TypeStr + ">(") 4896 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 4897 ")"); 4898 Diag(Conversion->getLocation(), ExplicitConvNote) 4899 << ConvTy->isEnumeralType() << ConvTy; 4900 4901 // If we aren't in a SFINAE context, build a call to the 4902 // explicit conversion function. 4903 if (isSFINAEContext()) 4904 return ExprError(); 4905 4906 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 4907 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion, 4908 HadMultipleCandidates); 4909 if (Result.isInvalid()) 4910 return ExprError(); 4911 // Record usage of conversion in an implicit cast. 4912 From = ImplicitCastExpr::Create(Context, Result.get()->getType(), 4913 CK_UserDefinedConversion, 4914 Result.get(), 0, 4915 Result.get()->getValueKind()); 4916 } 4917 4918 // We'll complain below about a non-integral condition type. 4919 break; 4920 4921 case 1: { 4922 // Apply this conversion. 4923 DeclAccessPair Found = ViableConversions[0]; 4924 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 4925 4926 CXXConversionDecl *Conversion 4927 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 4928 QualType ConvTy 4929 = Conversion->getConversionType().getNonReferenceType(); 4930 if (ConvDiag.getDiagID()) { 4931 if (isSFINAEContext()) 4932 return ExprError(); 4933 4934 Diag(Loc, ConvDiag) 4935 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 4936 } 4937 4938 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion, 4939 HadMultipleCandidates); 4940 if (Result.isInvalid()) 4941 return ExprError(); 4942 // Record usage of conversion in an implicit cast. 4943 From = ImplicitCastExpr::Create(Context, Result.get()->getType(), 4944 CK_UserDefinedConversion, 4945 Result.get(), 0, 4946 Result.get()->getValueKind()); 4947 break; 4948 } 4949 4950 default: 4951 if (!AmbigDiag.getDiagID()) 4952 return Owned(From); 4953 4954 Diag(Loc, AmbigDiag) 4955 << T << From->getSourceRange(); 4956 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 4957 CXXConversionDecl *Conv 4958 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 4959 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 4960 Diag(Conv->getLocation(), AmbigNote) 4961 << ConvTy->isEnumeralType() << ConvTy; 4962 } 4963 return Owned(From); 4964 } 4965 4966 if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) && 4967 NotIntDiag.getDiagID()) 4968 Diag(Loc, NotIntDiag) << From->getType() << From->getSourceRange(); 4969 4970 return DefaultLvalueConversion(From); 4971} 4972 4973/// AddOverloadCandidate - Adds the given function to the set of 4974/// candidate functions, using the given function call arguments. If 4975/// @p SuppressUserConversions, then don't allow user-defined 4976/// conversions via constructors or conversion operators. 4977/// 4978/// \para PartialOverloading true if we are performing "partial" overloading 4979/// based on an incomplete set of function arguments. This feature is used by 4980/// code completion. 4981void 4982Sema::AddOverloadCandidate(FunctionDecl *Function, 4983 DeclAccessPair FoundDecl, 4984 Expr **Args, unsigned NumArgs, 4985 OverloadCandidateSet& CandidateSet, 4986 bool SuppressUserConversions, 4987 bool PartialOverloading) { 4988 const FunctionProtoType* Proto 4989 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 4990 assert(Proto && "Functions without a prototype cannot be overloaded"); 4991 assert(!Function->getDescribedFunctionTemplate() && 4992 "Use AddTemplateOverloadCandidate for function templates"); 4993 4994 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 4995 if (!isa<CXXConstructorDecl>(Method)) { 4996 // If we get here, it's because we're calling a member function 4997 // that is named without a member access expression (e.g., 4998 // "this->f") that was either written explicitly or created 4999 // implicitly. This can happen with a qualified call to a member 5000 // function, e.g., X::f(). We use an empty type for the implied 5001 // object argument (C++ [over.call.func]p3), and the acting context 5002 // is irrelevant. 5003 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 5004 QualType(), Expr::Classification::makeSimpleLValue(), 5005 Args, NumArgs, CandidateSet, 5006 SuppressUserConversions); 5007 return; 5008 } 5009 // We treat a constructor like a non-member function, since its object 5010 // argument doesn't participate in overload resolution. 5011 } 5012 5013 if (!CandidateSet.isNewCandidate(Function)) 5014 return; 5015 5016 // Overload resolution is always an unevaluated context. 5017 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5018 5019 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 5020 // C++ [class.copy]p3: 5021 // A member function template is never instantiated to perform the copy 5022 // of a class object to an object of its class type. 5023 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 5024 if (NumArgs == 1 && 5025 Constructor->isSpecializationCopyingObject() && 5026 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 5027 IsDerivedFrom(Args[0]->getType(), ClassType))) 5028 return; 5029 } 5030 5031 // Add this candidate 5032 OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs); 5033 Candidate.FoundDecl = FoundDecl; 5034 Candidate.Function = Function; 5035 Candidate.Viable = true; 5036 Candidate.IsSurrogate = false; 5037 Candidate.IgnoreObjectArgument = false; 5038 Candidate.ExplicitCallArguments = NumArgs; 5039 5040 unsigned NumArgsInProto = Proto->getNumArgs(); 5041 5042 // (C++ 13.3.2p2): A candidate function having fewer than m 5043 // parameters is viable only if it has an ellipsis in its parameter 5044 // list (8.3.5). 5045 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 5046 !Proto->isVariadic()) { 5047 Candidate.Viable = false; 5048 Candidate.FailureKind = ovl_fail_too_many_arguments; 5049 return; 5050 } 5051 5052 // (C++ 13.3.2p2): A candidate function having more than m parameters 5053 // is viable only if the (m+1)st parameter has a default argument 5054 // (8.3.6). For the purposes of overload resolution, the 5055 // parameter list is truncated on the right, so that there are 5056 // exactly m parameters. 5057 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 5058 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 5059 // Not enough arguments. 5060 Candidate.Viable = false; 5061 Candidate.FailureKind = ovl_fail_too_few_arguments; 5062 return; 5063 } 5064 5065 // (CUDA B.1): Check for invalid calls between targets. 5066 if (getLangOptions().CUDA) 5067 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 5068 if (CheckCUDATarget(Caller, Function)) { 5069 Candidate.Viable = false; 5070 Candidate.FailureKind = ovl_fail_bad_target; 5071 return; 5072 } 5073 5074 // Determine the implicit conversion sequences for each of the 5075 // arguments. 5076 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5077 if (ArgIdx < NumArgsInProto) { 5078 // (C++ 13.3.2p3): for F to be a viable function, there shall 5079 // exist for each argument an implicit conversion sequence 5080 // (13.3.3.1) that converts that argument to the corresponding 5081 // parameter of F. 5082 QualType ParamType = Proto->getArgType(ArgIdx); 5083 Candidate.Conversions[ArgIdx] 5084 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 5085 SuppressUserConversions, 5086 /*InOverloadResolution=*/true, 5087 /*AllowObjCWritebackConversion=*/ 5088 getLangOptions().ObjCAutoRefCount); 5089 if (Candidate.Conversions[ArgIdx].isBad()) { 5090 Candidate.Viable = false; 5091 Candidate.FailureKind = ovl_fail_bad_conversion; 5092 break; 5093 } 5094 } else { 5095 // (C++ 13.3.2p2): For the purposes of overload resolution, any 5096 // argument for which there is no corresponding parameter is 5097 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 5098 Candidate.Conversions[ArgIdx].setEllipsis(); 5099 } 5100 } 5101} 5102 5103/// \brief Add all of the function declarations in the given function set to 5104/// the overload canddiate set. 5105void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 5106 Expr **Args, unsigned NumArgs, 5107 OverloadCandidateSet& CandidateSet, 5108 bool SuppressUserConversions) { 5109 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 5110 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 5111 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5112 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 5113 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 5114 cast<CXXMethodDecl>(FD)->getParent(), 5115 Args[0]->getType(), Args[0]->Classify(Context), 5116 Args + 1, NumArgs - 1, 5117 CandidateSet, SuppressUserConversions); 5118 else 5119 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 5120 SuppressUserConversions); 5121 } else { 5122 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 5123 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 5124 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 5125 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 5126 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 5127 /*FIXME: explicit args */ 0, 5128 Args[0]->getType(), 5129 Args[0]->Classify(Context), 5130 Args + 1, NumArgs - 1, 5131 CandidateSet, 5132 SuppressUserConversions); 5133 else 5134 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 5135 /*FIXME: explicit args */ 0, 5136 Args, NumArgs, CandidateSet, 5137 SuppressUserConversions); 5138 } 5139 } 5140} 5141 5142/// AddMethodCandidate - Adds a named decl (which is some kind of 5143/// method) as a method candidate to the given overload set. 5144void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 5145 QualType ObjectType, 5146 Expr::Classification ObjectClassification, 5147 Expr **Args, unsigned NumArgs, 5148 OverloadCandidateSet& CandidateSet, 5149 bool SuppressUserConversions) { 5150 NamedDecl *Decl = FoundDecl.getDecl(); 5151 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 5152 5153 if (isa<UsingShadowDecl>(Decl)) 5154 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 5155 5156 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 5157 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 5158 "Expected a member function template"); 5159 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 5160 /*ExplicitArgs*/ 0, 5161 ObjectType, ObjectClassification, Args, NumArgs, 5162 CandidateSet, 5163 SuppressUserConversions); 5164 } else { 5165 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 5166 ObjectType, ObjectClassification, Args, NumArgs, 5167 CandidateSet, SuppressUserConversions); 5168 } 5169} 5170 5171/// AddMethodCandidate - Adds the given C++ member function to the set 5172/// of candidate functions, using the given function call arguments 5173/// and the object argument (@c Object). For example, in a call 5174/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 5175/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 5176/// allow user-defined conversions via constructors or conversion 5177/// operators. 5178void 5179Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 5180 CXXRecordDecl *ActingContext, QualType ObjectType, 5181 Expr::Classification ObjectClassification, 5182 Expr **Args, unsigned NumArgs, 5183 OverloadCandidateSet& CandidateSet, 5184 bool SuppressUserConversions) { 5185 const FunctionProtoType* Proto 5186 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 5187 assert(Proto && "Methods without a prototype cannot be overloaded"); 5188 assert(!isa<CXXConstructorDecl>(Method) && 5189 "Use AddOverloadCandidate for constructors"); 5190 5191 if (!CandidateSet.isNewCandidate(Method)) 5192 return; 5193 5194 // Overload resolution is always an unevaluated context. 5195 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5196 5197 // Add this candidate 5198 OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs + 1); 5199 Candidate.FoundDecl = FoundDecl; 5200 Candidate.Function = Method; 5201 Candidate.IsSurrogate = false; 5202 Candidate.IgnoreObjectArgument = false; 5203 Candidate.ExplicitCallArguments = NumArgs; 5204 5205 unsigned NumArgsInProto = Proto->getNumArgs(); 5206 5207 // (C++ 13.3.2p2): A candidate function having fewer than m 5208 // parameters is viable only if it has an ellipsis in its parameter 5209 // list (8.3.5). 5210 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 5211 Candidate.Viable = false; 5212 Candidate.FailureKind = ovl_fail_too_many_arguments; 5213 return; 5214 } 5215 5216 // (C++ 13.3.2p2): A candidate function having more than m parameters 5217 // is viable only if the (m+1)st parameter has a default argument 5218 // (8.3.6). For the purposes of overload resolution, the 5219 // parameter list is truncated on the right, so that there are 5220 // exactly m parameters. 5221 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 5222 if (NumArgs < MinRequiredArgs) { 5223 // Not enough arguments. 5224 Candidate.Viable = false; 5225 Candidate.FailureKind = ovl_fail_too_few_arguments; 5226 return; 5227 } 5228 5229 Candidate.Viable = true; 5230 5231 if (Method->isStatic() || ObjectType.isNull()) 5232 // The implicit object argument is ignored. 5233 Candidate.IgnoreObjectArgument = true; 5234 else { 5235 // Determine the implicit conversion sequence for the object 5236 // parameter. 5237 Candidate.Conversions[0] 5238 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification, 5239 Method, ActingContext); 5240 if (Candidate.Conversions[0].isBad()) { 5241 Candidate.Viable = false; 5242 Candidate.FailureKind = ovl_fail_bad_conversion; 5243 return; 5244 } 5245 } 5246 5247 // Determine the implicit conversion sequences for each of the 5248 // arguments. 5249 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5250 if (ArgIdx < NumArgsInProto) { 5251 // (C++ 13.3.2p3): for F to be a viable function, there shall 5252 // exist for each argument an implicit conversion sequence 5253 // (13.3.3.1) that converts that argument to the corresponding 5254 // parameter of F. 5255 QualType ParamType = Proto->getArgType(ArgIdx); 5256 Candidate.Conversions[ArgIdx + 1] 5257 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 5258 SuppressUserConversions, 5259 /*InOverloadResolution=*/true, 5260 /*AllowObjCWritebackConversion=*/ 5261 getLangOptions().ObjCAutoRefCount); 5262 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 5263 Candidate.Viable = false; 5264 Candidate.FailureKind = ovl_fail_bad_conversion; 5265 break; 5266 } 5267 } else { 5268 // (C++ 13.3.2p2): For the purposes of overload resolution, any 5269 // argument for which there is no corresponding parameter is 5270 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 5271 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 5272 } 5273 } 5274} 5275 5276/// \brief Add a C++ member function template as a candidate to the candidate 5277/// set, using template argument deduction to produce an appropriate member 5278/// function template specialization. 5279void 5280Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 5281 DeclAccessPair FoundDecl, 5282 CXXRecordDecl *ActingContext, 5283 TemplateArgumentListInfo *ExplicitTemplateArgs, 5284 QualType ObjectType, 5285 Expr::Classification ObjectClassification, 5286 Expr **Args, unsigned NumArgs, 5287 OverloadCandidateSet& CandidateSet, 5288 bool SuppressUserConversions) { 5289 if (!CandidateSet.isNewCandidate(MethodTmpl)) 5290 return; 5291 5292 // C++ [over.match.funcs]p7: 5293 // In each case where a candidate is a function template, candidate 5294 // function template specializations are generated using template argument 5295 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 5296 // candidate functions in the usual way.113) A given name can refer to one 5297 // or more function templates and also to a set of overloaded non-template 5298 // functions. In such a case, the candidate functions generated from each 5299 // function template are combined with the set of non-template candidate 5300 // functions. 5301 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 5302 FunctionDecl *Specialization = 0; 5303 if (TemplateDeductionResult Result 5304 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 5305 Args, NumArgs, Specialization, Info)) { 5306 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 5307 Candidate.FoundDecl = FoundDecl; 5308 Candidate.Function = MethodTmpl->getTemplatedDecl(); 5309 Candidate.Viable = false; 5310 Candidate.FailureKind = ovl_fail_bad_deduction; 5311 Candidate.IsSurrogate = false; 5312 Candidate.IgnoreObjectArgument = false; 5313 Candidate.ExplicitCallArguments = NumArgs; 5314 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 5315 Info); 5316 return; 5317 } 5318 5319 // Add the function template specialization produced by template argument 5320 // deduction as a candidate. 5321 assert(Specialization && "Missing member function template specialization?"); 5322 assert(isa<CXXMethodDecl>(Specialization) && 5323 "Specialization is not a member function?"); 5324 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 5325 ActingContext, ObjectType, ObjectClassification, 5326 Args, NumArgs, CandidateSet, SuppressUserConversions); 5327} 5328 5329/// \brief Add a C++ function template specialization as a candidate 5330/// in the candidate set, using template argument deduction to produce 5331/// an appropriate function template specialization. 5332void 5333Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 5334 DeclAccessPair FoundDecl, 5335 TemplateArgumentListInfo *ExplicitTemplateArgs, 5336 Expr **Args, unsigned NumArgs, 5337 OverloadCandidateSet& CandidateSet, 5338 bool SuppressUserConversions) { 5339 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 5340 return; 5341 5342 // C++ [over.match.funcs]p7: 5343 // In each case where a candidate is a function template, candidate 5344 // function template specializations are generated using template argument 5345 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 5346 // candidate functions in the usual way.113) A given name can refer to one 5347 // or more function templates and also to a set of overloaded non-template 5348 // functions. In such a case, the candidate functions generated from each 5349 // function template are combined with the set of non-template candidate 5350 // functions. 5351 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 5352 FunctionDecl *Specialization = 0; 5353 if (TemplateDeductionResult Result 5354 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 5355 Args, NumArgs, Specialization, Info)) { 5356 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 5357 Candidate.FoundDecl = FoundDecl; 5358 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 5359 Candidate.Viable = false; 5360 Candidate.FailureKind = ovl_fail_bad_deduction; 5361 Candidate.IsSurrogate = false; 5362 Candidate.IgnoreObjectArgument = false; 5363 Candidate.ExplicitCallArguments = NumArgs; 5364 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 5365 Info); 5366 return; 5367 } 5368 5369 // Add the function template specialization produced by template argument 5370 // deduction as a candidate. 5371 assert(Specialization && "Missing function template specialization?"); 5372 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 5373 SuppressUserConversions); 5374} 5375 5376/// AddConversionCandidate - Add a C++ conversion function as a 5377/// candidate in the candidate set (C++ [over.match.conv], 5378/// C++ [over.match.copy]). From is the expression we're converting from, 5379/// and ToType is the type that we're eventually trying to convert to 5380/// (which may or may not be the same type as the type that the 5381/// conversion function produces). 5382void 5383Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 5384 DeclAccessPair FoundDecl, 5385 CXXRecordDecl *ActingContext, 5386 Expr *From, QualType ToType, 5387 OverloadCandidateSet& CandidateSet) { 5388 assert(!Conversion->getDescribedFunctionTemplate() && 5389 "Conversion function templates use AddTemplateConversionCandidate"); 5390 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 5391 if (!CandidateSet.isNewCandidate(Conversion)) 5392 return; 5393 5394 // Overload resolution is always an unevaluated context. 5395 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5396 5397 // Add this candidate 5398 OverloadCandidate &Candidate = CandidateSet.addCandidate(1); 5399 Candidate.FoundDecl = FoundDecl; 5400 Candidate.Function = Conversion; 5401 Candidate.IsSurrogate = false; 5402 Candidate.IgnoreObjectArgument = false; 5403 Candidate.FinalConversion.setAsIdentityConversion(); 5404 Candidate.FinalConversion.setFromType(ConvType); 5405 Candidate.FinalConversion.setAllToTypes(ToType); 5406 Candidate.Viable = true; 5407 Candidate.ExplicitCallArguments = 1; 5408 5409 // C++ [over.match.funcs]p4: 5410 // For conversion functions, the function is considered to be a member of 5411 // the class of the implicit implied object argument for the purpose of 5412 // defining the type of the implicit object parameter. 5413 // 5414 // Determine the implicit conversion sequence for the implicit 5415 // object parameter. 5416 QualType ImplicitParamType = From->getType(); 5417 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 5418 ImplicitParamType = FromPtrType->getPointeeType(); 5419 CXXRecordDecl *ConversionContext 5420 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 5421 5422 Candidate.Conversions[0] 5423 = TryObjectArgumentInitialization(*this, From->getType(), 5424 From->Classify(Context), 5425 Conversion, ConversionContext); 5426 5427 if (Candidate.Conversions[0].isBad()) { 5428 Candidate.Viable = false; 5429 Candidate.FailureKind = ovl_fail_bad_conversion; 5430 return; 5431 } 5432 5433 // We won't go through a user-define type conversion function to convert a 5434 // derived to base as such conversions are given Conversion Rank. They only 5435 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 5436 QualType FromCanon 5437 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 5438 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 5439 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 5440 Candidate.Viable = false; 5441 Candidate.FailureKind = ovl_fail_trivial_conversion; 5442 return; 5443 } 5444 5445 // To determine what the conversion from the result of calling the 5446 // conversion function to the type we're eventually trying to 5447 // convert to (ToType), we need to synthesize a call to the 5448 // conversion function and attempt copy initialization from it. This 5449 // makes sure that we get the right semantics with respect to 5450 // lvalues/rvalues and the type. Fortunately, we can allocate this 5451 // call on the stack and we don't need its arguments to be 5452 // well-formed. 5453 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 5454 VK_LValue, From->getLocStart()); 5455 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 5456 Context.getPointerType(Conversion->getType()), 5457 CK_FunctionToPointerDecay, 5458 &ConversionRef, VK_RValue); 5459 5460 QualType ConversionType = Conversion->getConversionType(); 5461 if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) { 5462 Candidate.Viable = false; 5463 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5464 return; 5465 } 5466 5467 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 5468 5469 // Note that it is safe to allocate CallExpr on the stack here because 5470 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 5471 // allocator). 5472 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 5473 CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK, 5474 From->getLocStart()); 5475 ImplicitConversionSequence ICS = 5476 TryCopyInitialization(*this, &Call, ToType, 5477 /*SuppressUserConversions=*/true, 5478 /*InOverloadResolution=*/false, 5479 /*AllowObjCWritebackConversion=*/false); 5480 5481 switch (ICS.getKind()) { 5482 case ImplicitConversionSequence::StandardConversion: 5483 Candidate.FinalConversion = ICS.Standard; 5484 5485 // C++ [over.ics.user]p3: 5486 // If the user-defined conversion is specified by a specialization of a 5487 // conversion function template, the second standard conversion sequence 5488 // shall have exact match rank. 5489 if (Conversion->getPrimaryTemplate() && 5490 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 5491 Candidate.Viable = false; 5492 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 5493 } 5494 5495 // C++0x [dcl.init.ref]p5: 5496 // In the second case, if the reference is an rvalue reference and 5497 // the second standard conversion sequence of the user-defined 5498 // conversion sequence includes an lvalue-to-rvalue conversion, the 5499 // program is ill-formed. 5500 if (ToType->isRValueReferenceType() && 5501 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5502 Candidate.Viable = false; 5503 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5504 } 5505 break; 5506 5507 case ImplicitConversionSequence::BadConversion: 5508 Candidate.Viable = false; 5509 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5510 break; 5511 5512 default: 5513 llvm_unreachable( 5514 "Can only end up with a standard conversion sequence or failure"); 5515 } 5516} 5517 5518/// \brief Adds a conversion function template specialization 5519/// candidate to the overload set, using template argument deduction 5520/// to deduce the template arguments of the conversion function 5521/// template from the type that we are converting to (C++ 5522/// [temp.deduct.conv]). 5523void 5524Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 5525 DeclAccessPair FoundDecl, 5526 CXXRecordDecl *ActingDC, 5527 Expr *From, QualType ToType, 5528 OverloadCandidateSet &CandidateSet) { 5529 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 5530 "Only conversion function templates permitted here"); 5531 5532 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 5533 return; 5534 5535 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 5536 CXXConversionDecl *Specialization = 0; 5537 if (TemplateDeductionResult Result 5538 = DeduceTemplateArguments(FunctionTemplate, ToType, 5539 Specialization, Info)) { 5540 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 5541 Candidate.FoundDecl = FoundDecl; 5542 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 5543 Candidate.Viable = false; 5544 Candidate.FailureKind = ovl_fail_bad_deduction; 5545 Candidate.IsSurrogate = false; 5546 Candidate.IgnoreObjectArgument = false; 5547 Candidate.ExplicitCallArguments = 1; 5548 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 5549 Info); 5550 return; 5551 } 5552 5553 // Add the conversion function template specialization produced by 5554 // template argument deduction as a candidate. 5555 assert(Specialization && "Missing function template specialization?"); 5556 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 5557 CandidateSet); 5558} 5559 5560/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 5561/// converts the given @c Object to a function pointer via the 5562/// conversion function @c Conversion, and then attempts to call it 5563/// with the given arguments (C++ [over.call.object]p2-4). Proto is 5564/// the type of function that we'll eventually be calling. 5565void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 5566 DeclAccessPair FoundDecl, 5567 CXXRecordDecl *ActingContext, 5568 const FunctionProtoType *Proto, 5569 Expr *Object, 5570 Expr **Args, unsigned NumArgs, 5571 OverloadCandidateSet& CandidateSet) { 5572 if (!CandidateSet.isNewCandidate(Conversion)) 5573 return; 5574 5575 // Overload resolution is always an unevaluated context. 5576 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5577 5578 OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs + 1); 5579 Candidate.FoundDecl = FoundDecl; 5580 Candidate.Function = 0; 5581 Candidate.Surrogate = Conversion; 5582 Candidate.Viable = true; 5583 Candidate.IsSurrogate = true; 5584 Candidate.IgnoreObjectArgument = false; 5585 Candidate.ExplicitCallArguments = NumArgs; 5586 5587 // Determine the implicit conversion sequence for the implicit 5588 // object parameter. 5589 ImplicitConversionSequence ObjectInit 5590 = TryObjectArgumentInitialization(*this, Object->getType(), 5591 Object->Classify(Context), 5592 Conversion, ActingContext); 5593 if (ObjectInit.isBad()) { 5594 Candidate.Viable = false; 5595 Candidate.FailureKind = ovl_fail_bad_conversion; 5596 Candidate.Conversions[0] = ObjectInit; 5597 return; 5598 } 5599 5600 // The first conversion is actually a user-defined conversion whose 5601 // first conversion is ObjectInit's standard conversion (which is 5602 // effectively a reference binding). Record it as such. 5603 Candidate.Conversions[0].setUserDefined(); 5604 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 5605 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 5606 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; 5607 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 5608 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; 5609 Candidate.Conversions[0].UserDefined.After 5610 = Candidate.Conversions[0].UserDefined.Before; 5611 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 5612 5613 // Find the 5614 unsigned NumArgsInProto = Proto->getNumArgs(); 5615 5616 // (C++ 13.3.2p2): A candidate function having fewer than m 5617 // parameters is viable only if it has an ellipsis in its parameter 5618 // list (8.3.5). 5619 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 5620 Candidate.Viable = false; 5621 Candidate.FailureKind = ovl_fail_too_many_arguments; 5622 return; 5623 } 5624 5625 // Function types don't have any default arguments, so just check if 5626 // we have enough arguments. 5627 if (NumArgs < NumArgsInProto) { 5628 // Not enough arguments. 5629 Candidate.Viable = false; 5630 Candidate.FailureKind = ovl_fail_too_few_arguments; 5631 return; 5632 } 5633 5634 // Determine the implicit conversion sequences for each of the 5635 // arguments. 5636 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5637 if (ArgIdx < NumArgsInProto) { 5638 // (C++ 13.3.2p3): for F to be a viable function, there shall 5639 // exist for each argument an implicit conversion sequence 5640 // (13.3.3.1) that converts that argument to the corresponding 5641 // parameter of F. 5642 QualType ParamType = Proto->getArgType(ArgIdx); 5643 Candidate.Conversions[ArgIdx + 1] 5644 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 5645 /*SuppressUserConversions=*/false, 5646 /*InOverloadResolution=*/false, 5647 /*AllowObjCWritebackConversion=*/ 5648 getLangOptions().ObjCAutoRefCount); 5649 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 5650 Candidate.Viable = false; 5651 Candidate.FailureKind = ovl_fail_bad_conversion; 5652 break; 5653 } 5654 } else { 5655 // (C++ 13.3.2p2): For the purposes of overload resolution, any 5656 // argument for which there is no corresponding parameter is 5657 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 5658 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 5659 } 5660 } 5661} 5662 5663/// \brief Add overload candidates for overloaded operators that are 5664/// member functions. 5665/// 5666/// Add the overloaded operator candidates that are member functions 5667/// for the operator Op that was used in an operator expression such 5668/// as "x Op y". , Args/NumArgs provides the operator arguments, and 5669/// CandidateSet will store the added overload candidates. (C++ 5670/// [over.match.oper]). 5671void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 5672 SourceLocation OpLoc, 5673 Expr **Args, unsigned NumArgs, 5674 OverloadCandidateSet& CandidateSet, 5675 SourceRange OpRange) { 5676 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 5677 5678 // C++ [over.match.oper]p3: 5679 // For a unary operator @ with an operand of a type whose 5680 // cv-unqualified version is T1, and for a binary operator @ with 5681 // a left operand of a type whose cv-unqualified version is T1 and 5682 // a right operand of a type whose cv-unqualified version is T2, 5683 // three sets of candidate functions, designated member 5684 // candidates, non-member candidates and built-in candidates, are 5685 // constructed as follows: 5686 QualType T1 = Args[0]->getType(); 5687 5688 // -- If T1 is a class type, the set of member candidates is the 5689 // result of the qualified lookup of T1::operator@ 5690 // (13.3.1.1.1); otherwise, the set of member candidates is 5691 // empty. 5692 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 5693 // Complete the type if it can be completed. Otherwise, we're done. 5694 if (RequireCompleteType(OpLoc, T1, PDiag())) 5695 return; 5696 5697 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 5698 LookupQualifiedName(Operators, T1Rec->getDecl()); 5699 Operators.suppressDiagnostics(); 5700 5701 for (LookupResult::iterator Oper = Operators.begin(), 5702 OperEnd = Operators.end(); 5703 Oper != OperEnd; 5704 ++Oper) 5705 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 5706 Args[0]->Classify(Context), Args + 1, NumArgs - 1, 5707 CandidateSet, 5708 /* SuppressUserConversions = */ false); 5709 } 5710} 5711 5712/// AddBuiltinCandidate - Add a candidate for a built-in 5713/// operator. ResultTy and ParamTys are the result and parameter types 5714/// of the built-in candidate, respectively. Args and NumArgs are the 5715/// arguments being passed to the candidate. IsAssignmentOperator 5716/// should be true when this built-in candidate is an assignment 5717/// operator. NumContextualBoolArguments is the number of arguments 5718/// (at the beginning of the argument list) that will be contextually 5719/// converted to bool. 5720void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 5721 Expr **Args, unsigned NumArgs, 5722 OverloadCandidateSet& CandidateSet, 5723 bool IsAssignmentOperator, 5724 unsigned NumContextualBoolArguments) { 5725 // Overload resolution is always an unevaluated context. 5726 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5727 5728 // Add this candidate 5729 OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs); 5730 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 5731 Candidate.Function = 0; 5732 Candidate.IsSurrogate = false; 5733 Candidate.IgnoreObjectArgument = false; 5734 Candidate.BuiltinTypes.ResultTy = ResultTy; 5735 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5736 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 5737 5738 // Determine the implicit conversion sequences for each of the 5739 // arguments. 5740 Candidate.Viable = true; 5741 Candidate.ExplicitCallArguments = NumArgs; 5742 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5743 // C++ [over.match.oper]p4: 5744 // For the built-in assignment operators, conversions of the 5745 // left operand are restricted as follows: 5746 // -- no temporaries are introduced to hold the left operand, and 5747 // -- no user-defined conversions are applied to the left 5748 // operand to achieve a type match with the left-most 5749 // parameter of a built-in candidate. 5750 // 5751 // We block these conversions by turning off user-defined 5752 // conversions, since that is the only way that initialization of 5753 // a reference to a non-class type can occur from something that 5754 // is not of the same type. 5755 if (ArgIdx < NumContextualBoolArguments) { 5756 assert(ParamTys[ArgIdx] == Context.BoolTy && 5757 "Contextual conversion to bool requires bool type"); 5758 Candidate.Conversions[ArgIdx] 5759 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 5760 } else { 5761 Candidate.Conversions[ArgIdx] 5762 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 5763 ArgIdx == 0 && IsAssignmentOperator, 5764 /*InOverloadResolution=*/false, 5765 /*AllowObjCWritebackConversion=*/ 5766 getLangOptions().ObjCAutoRefCount); 5767 } 5768 if (Candidate.Conversions[ArgIdx].isBad()) { 5769 Candidate.Viable = false; 5770 Candidate.FailureKind = ovl_fail_bad_conversion; 5771 break; 5772 } 5773 } 5774} 5775 5776/// BuiltinCandidateTypeSet - A set of types that will be used for the 5777/// candidate operator functions for built-in operators (C++ 5778/// [over.built]). The types are separated into pointer types and 5779/// enumeration types. 5780class BuiltinCandidateTypeSet { 5781 /// TypeSet - A set of types. 5782 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 5783 5784 /// PointerTypes - The set of pointer types that will be used in the 5785 /// built-in candidates. 5786 TypeSet PointerTypes; 5787 5788 /// MemberPointerTypes - The set of member pointer types that will be 5789 /// used in the built-in candidates. 5790 TypeSet MemberPointerTypes; 5791 5792 /// EnumerationTypes - The set of enumeration types that will be 5793 /// used in the built-in candidates. 5794 TypeSet EnumerationTypes; 5795 5796 /// \brief The set of vector types that will be used in the built-in 5797 /// candidates. 5798 TypeSet VectorTypes; 5799 5800 /// \brief A flag indicating non-record types are viable candidates 5801 bool HasNonRecordTypes; 5802 5803 /// \brief A flag indicating whether either arithmetic or enumeration types 5804 /// were present in the candidate set. 5805 bool HasArithmeticOrEnumeralTypes; 5806 5807 /// \brief A flag indicating whether the nullptr type was present in the 5808 /// candidate set. 5809 bool HasNullPtrType; 5810 5811 /// Sema - The semantic analysis instance where we are building the 5812 /// candidate type set. 5813 Sema &SemaRef; 5814 5815 /// Context - The AST context in which we will build the type sets. 5816 ASTContext &Context; 5817 5818 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 5819 const Qualifiers &VisibleQuals); 5820 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 5821 5822public: 5823 /// iterator - Iterates through the types that are part of the set. 5824 typedef TypeSet::iterator iterator; 5825 5826 BuiltinCandidateTypeSet(Sema &SemaRef) 5827 : HasNonRecordTypes(false), 5828 HasArithmeticOrEnumeralTypes(false), 5829 HasNullPtrType(false), 5830 SemaRef(SemaRef), 5831 Context(SemaRef.Context) { } 5832 5833 void AddTypesConvertedFrom(QualType Ty, 5834 SourceLocation Loc, 5835 bool AllowUserConversions, 5836 bool AllowExplicitConversions, 5837 const Qualifiers &VisibleTypeConversionsQuals); 5838 5839 /// pointer_begin - First pointer type found; 5840 iterator pointer_begin() { return PointerTypes.begin(); } 5841 5842 /// pointer_end - Past the last pointer type found; 5843 iterator pointer_end() { return PointerTypes.end(); } 5844 5845 /// member_pointer_begin - First member pointer type found; 5846 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 5847 5848 /// member_pointer_end - Past the last member pointer type found; 5849 iterator member_pointer_end() { return MemberPointerTypes.end(); } 5850 5851 /// enumeration_begin - First enumeration type found; 5852 iterator enumeration_begin() { return EnumerationTypes.begin(); } 5853 5854 /// enumeration_end - Past the last enumeration type found; 5855 iterator enumeration_end() { return EnumerationTypes.end(); } 5856 5857 iterator vector_begin() { return VectorTypes.begin(); } 5858 iterator vector_end() { return VectorTypes.end(); } 5859 5860 bool hasNonRecordTypes() { return HasNonRecordTypes; } 5861 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 5862 bool hasNullPtrType() const { return HasNullPtrType; } 5863}; 5864 5865/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 5866/// the set of pointer types along with any more-qualified variants of 5867/// that type. For example, if @p Ty is "int const *", this routine 5868/// will add "int const *", "int const volatile *", "int const 5869/// restrict *", and "int const volatile restrict *" to the set of 5870/// pointer types. Returns true if the add of @p Ty itself succeeded, 5871/// false otherwise. 5872/// 5873/// FIXME: what to do about extended qualifiers? 5874bool 5875BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 5876 const Qualifiers &VisibleQuals) { 5877 5878 // Insert this type. 5879 if (!PointerTypes.insert(Ty)) 5880 return false; 5881 5882 QualType PointeeTy; 5883 const PointerType *PointerTy = Ty->getAs<PointerType>(); 5884 bool buildObjCPtr = false; 5885 if (!PointerTy) { 5886 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) { 5887 PointeeTy = PTy->getPointeeType(); 5888 buildObjCPtr = true; 5889 } 5890 else 5891 llvm_unreachable("type was not a pointer type!"); 5892 } 5893 else 5894 PointeeTy = PointerTy->getPointeeType(); 5895 5896 // Don't add qualified variants of arrays. For one, they're not allowed 5897 // (the qualifier would sink to the element type), and for another, the 5898 // only overload situation where it matters is subscript or pointer +- int, 5899 // and those shouldn't have qualifier variants anyway. 5900 if (PointeeTy->isArrayType()) 5901 return true; 5902 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 5903 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 5904 BaseCVR = Array->getElementType().getCVRQualifiers(); 5905 bool hasVolatile = VisibleQuals.hasVolatile(); 5906 bool hasRestrict = VisibleQuals.hasRestrict(); 5907 5908 // Iterate through all strict supersets of BaseCVR. 5909 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 5910 if ((CVR | BaseCVR) != CVR) continue; 5911 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 5912 // in the types. 5913 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 5914 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 5915 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 5916 if (!buildObjCPtr) 5917 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 5918 else 5919 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); 5920 } 5921 5922 return true; 5923} 5924 5925/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 5926/// to the set of pointer types along with any more-qualified variants of 5927/// that type. For example, if @p Ty is "int const *", this routine 5928/// will add "int const *", "int const volatile *", "int const 5929/// restrict *", and "int const volatile restrict *" to the set of 5930/// pointer types. Returns true if the add of @p Ty itself succeeded, 5931/// false otherwise. 5932/// 5933/// FIXME: what to do about extended qualifiers? 5934bool 5935BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 5936 QualType Ty) { 5937 // Insert this type. 5938 if (!MemberPointerTypes.insert(Ty)) 5939 return false; 5940 5941 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 5942 assert(PointerTy && "type was not a member pointer type!"); 5943 5944 QualType PointeeTy = PointerTy->getPointeeType(); 5945 // Don't add qualified variants of arrays. For one, they're not allowed 5946 // (the qualifier would sink to the element type), and for another, the 5947 // only overload situation where it matters is subscript or pointer +- int, 5948 // and those shouldn't have qualifier variants anyway. 5949 if (PointeeTy->isArrayType()) 5950 return true; 5951 const Type *ClassTy = PointerTy->getClass(); 5952 5953 // Iterate through all strict supersets of the pointee type's CVR 5954 // qualifiers. 5955 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 5956 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 5957 if ((CVR | BaseCVR) != CVR) continue; 5958 5959 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 5960 MemberPointerTypes.insert( 5961 Context.getMemberPointerType(QPointeeTy, ClassTy)); 5962 } 5963 5964 return true; 5965} 5966 5967/// AddTypesConvertedFrom - Add each of the types to which the type @p 5968/// Ty can be implicit converted to the given set of @p Types. We're 5969/// primarily interested in pointer types and enumeration types. We also 5970/// take member pointer types, for the conditional operator. 5971/// AllowUserConversions is true if we should look at the conversion 5972/// functions of a class type, and AllowExplicitConversions if we 5973/// should also include the explicit conversion functions of a class 5974/// type. 5975void 5976BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 5977 SourceLocation Loc, 5978 bool AllowUserConversions, 5979 bool AllowExplicitConversions, 5980 const Qualifiers &VisibleQuals) { 5981 // Only deal with canonical types. 5982 Ty = Context.getCanonicalType(Ty); 5983 5984 // Look through reference types; they aren't part of the type of an 5985 // expression for the purposes of conversions. 5986 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 5987 Ty = RefTy->getPointeeType(); 5988 5989 // If we're dealing with an array type, decay to the pointer. 5990 if (Ty->isArrayType()) 5991 Ty = SemaRef.Context.getArrayDecayedType(Ty); 5992 5993 // Otherwise, we don't care about qualifiers on the type. 5994 Ty = Ty.getLocalUnqualifiedType(); 5995 5996 // Flag if we ever add a non-record type. 5997 const RecordType *TyRec = Ty->getAs<RecordType>(); 5998 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 5999 6000 // Flag if we encounter an arithmetic type. 6001 HasArithmeticOrEnumeralTypes = 6002 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 6003 6004 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 6005 PointerTypes.insert(Ty); 6006 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 6007 // Insert our type, and its more-qualified variants, into the set 6008 // of types. 6009 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 6010 return; 6011 } else if (Ty->isMemberPointerType()) { 6012 // Member pointers are far easier, since the pointee can't be converted. 6013 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 6014 return; 6015 } else if (Ty->isEnumeralType()) { 6016 HasArithmeticOrEnumeralTypes = true; 6017 EnumerationTypes.insert(Ty); 6018 } else if (Ty->isVectorType()) { 6019 // We treat vector types as arithmetic types in many contexts as an 6020 // extension. 6021 HasArithmeticOrEnumeralTypes = true; 6022 VectorTypes.insert(Ty); 6023 } else if (Ty->isNullPtrType()) { 6024 HasNullPtrType = true; 6025 } else if (AllowUserConversions && TyRec) { 6026 // No conversion functions in incomplete types. 6027 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) 6028 return; 6029 6030 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 6031 const UnresolvedSetImpl *Conversions 6032 = ClassDecl->getVisibleConversionFunctions(); 6033 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 6034 E = Conversions->end(); I != E; ++I) { 6035 NamedDecl *D = I.getDecl(); 6036 if (isa<UsingShadowDecl>(D)) 6037 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6038 6039 // Skip conversion function templates; they don't tell us anything 6040 // about which builtin types we can convert to. 6041 if (isa<FunctionTemplateDecl>(D)) 6042 continue; 6043 6044 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 6045 if (AllowExplicitConversions || !Conv->isExplicit()) { 6046 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 6047 VisibleQuals); 6048 } 6049 } 6050 } 6051} 6052 6053/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 6054/// the volatile- and non-volatile-qualified assignment operators for the 6055/// given type to the candidate set. 6056static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 6057 QualType T, 6058 Expr **Args, 6059 unsigned NumArgs, 6060 OverloadCandidateSet &CandidateSet) { 6061 QualType ParamTypes[2]; 6062 6063 // T& operator=(T&, T) 6064 ParamTypes[0] = S.Context.getLValueReferenceType(T); 6065 ParamTypes[1] = T; 6066 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6067 /*IsAssignmentOperator=*/true); 6068 6069 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 6070 // volatile T& operator=(volatile T&, T) 6071 ParamTypes[0] 6072 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 6073 ParamTypes[1] = T; 6074 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6075 /*IsAssignmentOperator=*/true); 6076 } 6077} 6078 6079/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 6080/// if any, found in visible type conversion functions found in ArgExpr's type. 6081static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 6082 Qualifiers VRQuals; 6083 const RecordType *TyRec; 6084 if (const MemberPointerType *RHSMPType = 6085 ArgExpr->getType()->getAs<MemberPointerType>()) 6086 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 6087 else 6088 TyRec = ArgExpr->getType()->getAs<RecordType>(); 6089 if (!TyRec) { 6090 // Just to be safe, assume the worst case. 6091 VRQuals.addVolatile(); 6092 VRQuals.addRestrict(); 6093 return VRQuals; 6094 } 6095 6096 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 6097 if (!ClassDecl->hasDefinition()) 6098 return VRQuals; 6099 6100 const UnresolvedSetImpl *Conversions = 6101 ClassDecl->getVisibleConversionFunctions(); 6102 6103 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 6104 E = Conversions->end(); I != E; ++I) { 6105 NamedDecl *D = I.getDecl(); 6106 if (isa<UsingShadowDecl>(D)) 6107 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6108 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 6109 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 6110 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 6111 CanTy = ResTypeRef->getPointeeType(); 6112 // Need to go down the pointer/mempointer chain and add qualifiers 6113 // as see them. 6114 bool done = false; 6115 while (!done) { 6116 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 6117 CanTy = ResTypePtr->getPointeeType(); 6118 else if (const MemberPointerType *ResTypeMPtr = 6119 CanTy->getAs<MemberPointerType>()) 6120 CanTy = ResTypeMPtr->getPointeeType(); 6121 else 6122 done = true; 6123 if (CanTy.isVolatileQualified()) 6124 VRQuals.addVolatile(); 6125 if (CanTy.isRestrictQualified()) 6126 VRQuals.addRestrict(); 6127 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 6128 return VRQuals; 6129 } 6130 } 6131 } 6132 return VRQuals; 6133} 6134 6135namespace { 6136 6137/// \brief Helper class to manage the addition of builtin operator overload 6138/// candidates. It provides shared state and utility methods used throughout 6139/// the process, as well as a helper method to add each group of builtin 6140/// operator overloads from the standard to a candidate set. 6141class BuiltinOperatorOverloadBuilder { 6142 // Common instance state available to all overload candidate addition methods. 6143 Sema &S; 6144 Expr **Args; 6145 unsigned NumArgs; 6146 Qualifiers VisibleTypeConversionsQuals; 6147 bool HasArithmeticOrEnumeralCandidateType; 6148 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 6149 OverloadCandidateSet &CandidateSet; 6150 6151 // Define some constants used to index and iterate over the arithemetic types 6152 // provided via the getArithmeticType() method below. 6153 // The "promoted arithmetic types" are the arithmetic 6154 // types are that preserved by promotion (C++ [over.built]p2). 6155 static const unsigned FirstIntegralType = 3; 6156 static const unsigned LastIntegralType = 18; 6157 static const unsigned FirstPromotedIntegralType = 3, 6158 LastPromotedIntegralType = 9; 6159 static const unsigned FirstPromotedArithmeticType = 0, 6160 LastPromotedArithmeticType = 9; 6161 static const unsigned NumArithmeticTypes = 18; 6162 6163 /// \brief Get the canonical type for a given arithmetic type index. 6164 CanQualType getArithmeticType(unsigned index) { 6165 assert(index < NumArithmeticTypes); 6166 static CanQualType ASTContext::* const 6167 ArithmeticTypes[NumArithmeticTypes] = { 6168 // Start of promoted types. 6169 &ASTContext::FloatTy, 6170 &ASTContext::DoubleTy, 6171 &ASTContext::LongDoubleTy, 6172 6173 // Start of integral types. 6174 &ASTContext::IntTy, 6175 &ASTContext::LongTy, 6176 &ASTContext::LongLongTy, 6177 &ASTContext::UnsignedIntTy, 6178 &ASTContext::UnsignedLongTy, 6179 &ASTContext::UnsignedLongLongTy, 6180 // End of promoted types. 6181 6182 &ASTContext::BoolTy, 6183 &ASTContext::CharTy, 6184 &ASTContext::WCharTy, 6185 &ASTContext::Char16Ty, 6186 &ASTContext::Char32Ty, 6187 &ASTContext::SignedCharTy, 6188 &ASTContext::ShortTy, 6189 &ASTContext::UnsignedCharTy, 6190 &ASTContext::UnsignedShortTy, 6191 // End of integral types. 6192 // FIXME: What about complex? 6193 }; 6194 return S.Context.*ArithmeticTypes[index]; 6195 } 6196 6197 /// \brief Gets the canonical type resulting from the usual arithemetic 6198 /// converions for the given arithmetic types. 6199 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) { 6200 // Accelerator table for performing the usual arithmetic conversions. 6201 // The rules are basically: 6202 // - if either is floating-point, use the wider floating-point 6203 // - if same signedness, use the higher rank 6204 // - if same size, use unsigned of the higher rank 6205 // - use the larger type 6206 // These rules, together with the axiom that higher ranks are 6207 // never smaller, are sufficient to precompute all of these results 6208 // *except* when dealing with signed types of higher rank. 6209 // (we could precompute SLL x UI for all known platforms, but it's 6210 // better not to make any assumptions). 6211 enum PromotedType { 6212 Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1 6213 }; 6214 static PromotedType ConversionsTable[LastPromotedArithmeticType] 6215 [LastPromotedArithmeticType] = { 6216 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt }, 6217 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl }, 6218 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, 6219 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL }, 6220 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL }, 6221 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL }, 6222 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL }, 6223 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL }, 6224 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL }, 6225 }; 6226 6227 assert(L < LastPromotedArithmeticType); 6228 assert(R < LastPromotedArithmeticType); 6229 int Idx = ConversionsTable[L][R]; 6230 6231 // Fast path: the table gives us a concrete answer. 6232 if (Idx != Dep) return getArithmeticType(Idx); 6233 6234 // Slow path: we need to compare widths. 6235 // An invariant is that the signed type has higher rank. 6236 CanQualType LT = getArithmeticType(L), 6237 RT = getArithmeticType(R); 6238 unsigned LW = S.Context.getIntWidth(LT), 6239 RW = S.Context.getIntWidth(RT); 6240 6241 // If they're different widths, use the signed type. 6242 if (LW > RW) return LT; 6243 else if (LW < RW) return RT; 6244 6245 // Otherwise, use the unsigned type of the signed type's rank. 6246 if (L == SL || R == SL) return S.Context.UnsignedLongTy; 6247 assert(L == SLL || R == SLL); 6248 return S.Context.UnsignedLongLongTy; 6249 } 6250 6251 /// \brief Helper method to factor out the common pattern of adding overloads 6252 /// for '++' and '--' builtin operators. 6253 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 6254 bool HasVolatile) { 6255 QualType ParamTypes[2] = { 6256 S.Context.getLValueReferenceType(CandidateTy), 6257 S.Context.IntTy 6258 }; 6259 6260 // Non-volatile version. 6261 if (NumArgs == 1) 6262 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 6263 else 6264 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 6265 6266 // Use a heuristic to reduce number of builtin candidates in the set: 6267 // add volatile version only if there are conversions to a volatile type. 6268 if (HasVolatile) { 6269 ParamTypes[0] = 6270 S.Context.getLValueReferenceType( 6271 S.Context.getVolatileType(CandidateTy)); 6272 if (NumArgs == 1) 6273 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 6274 else 6275 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 6276 } 6277 } 6278 6279public: 6280 BuiltinOperatorOverloadBuilder( 6281 Sema &S, Expr **Args, unsigned NumArgs, 6282 Qualifiers VisibleTypeConversionsQuals, 6283 bool HasArithmeticOrEnumeralCandidateType, 6284 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 6285 OverloadCandidateSet &CandidateSet) 6286 : S(S), Args(Args), NumArgs(NumArgs), 6287 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 6288 HasArithmeticOrEnumeralCandidateType( 6289 HasArithmeticOrEnumeralCandidateType), 6290 CandidateTypes(CandidateTypes), 6291 CandidateSet(CandidateSet) { 6292 // Validate some of our static helper constants in debug builds. 6293 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy && 6294 "Invalid first promoted integral type"); 6295 assert(getArithmeticType(LastPromotedIntegralType - 1) 6296 == S.Context.UnsignedLongLongTy && 6297 "Invalid last promoted integral type"); 6298 assert(getArithmeticType(FirstPromotedArithmeticType) 6299 == S.Context.FloatTy && 6300 "Invalid first promoted arithmetic type"); 6301 assert(getArithmeticType(LastPromotedArithmeticType - 1) 6302 == S.Context.UnsignedLongLongTy && 6303 "Invalid last promoted arithmetic type"); 6304 } 6305 6306 // C++ [over.built]p3: 6307 // 6308 // For every pair (T, VQ), where T is an arithmetic type, and VQ 6309 // is either volatile or empty, there exist candidate operator 6310 // functions of the form 6311 // 6312 // VQ T& operator++(VQ T&); 6313 // T operator++(VQ T&, int); 6314 // 6315 // C++ [over.built]p4: 6316 // 6317 // For every pair (T, VQ), where T is an arithmetic type other 6318 // than bool, and VQ is either volatile or empty, there exist 6319 // candidate operator functions of the form 6320 // 6321 // VQ T& operator--(VQ T&); 6322 // T operator--(VQ T&, int); 6323 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 6324 if (!HasArithmeticOrEnumeralCandidateType) 6325 return; 6326 6327 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 6328 Arith < NumArithmeticTypes; ++Arith) { 6329 addPlusPlusMinusMinusStyleOverloads( 6330 getArithmeticType(Arith), 6331 VisibleTypeConversionsQuals.hasVolatile()); 6332 } 6333 } 6334 6335 // C++ [over.built]p5: 6336 // 6337 // For every pair (T, VQ), where T is a cv-qualified or 6338 // cv-unqualified object type, and VQ is either volatile or 6339 // empty, there exist candidate operator functions of the form 6340 // 6341 // T*VQ& operator++(T*VQ&); 6342 // T*VQ& operator--(T*VQ&); 6343 // T* operator++(T*VQ&, int); 6344 // T* operator--(T*VQ&, int); 6345 void addPlusPlusMinusMinusPointerOverloads() { 6346 for (BuiltinCandidateTypeSet::iterator 6347 Ptr = CandidateTypes[0].pointer_begin(), 6348 PtrEnd = CandidateTypes[0].pointer_end(); 6349 Ptr != PtrEnd; ++Ptr) { 6350 // Skip pointer types that aren't pointers to object types. 6351 if (!(*Ptr)->getPointeeType()->isObjectType()) 6352 continue; 6353 6354 addPlusPlusMinusMinusStyleOverloads(*Ptr, 6355 (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 6356 VisibleTypeConversionsQuals.hasVolatile())); 6357 } 6358 } 6359 6360 // C++ [over.built]p6: 6361 // For every cv-qualified or cv-unqualified object type T, there 6362 // exist candidate operator functions of the form 6363 // 6364 // T& operator*(T*); 6365 // 6366 // C++ [over.built]p7: 6367 // For every function type T that does not have cv-qualifiers or a 6368 // ref-qualifier, there exist candidate operator functions of the form 6369 // T& operator*(T*); 6370 void addUnaryStarPointerOverloads() { 6371 for (BuiltinCandidateTypeSet::iterator 6372 Ptr = CandidateTypes[0].pointer_begin(), 6373 PtrEnd = CandidateTypes[0].pointer_end(); 6374 Ptr != PtrEnd; ++Ptr) { 6375 QualType ParamTy = *Ptr; 6376 QualType PointeeTy = ParamTy->getPointeeType(); 6377 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 6378 continue; 6379 6380 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 6381 if (Proto->getTypeQuals() || Proto->getRefQualifier()) 6382 continue; 6383 6384 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy), 6385 &ParamTy, Args, 1, CandidateSet); 6386 } 6387 } 6388 6389 // C++ [over.built]p9: 6390 // For every promoted arithmetic type T, there exist candidate 6391 // operator functions of the form 6392 // 6393 // T operator+(T); 6394 // T operator-(T); 6395 void addUnaryPlusOrMinusArithmeticOverloads() { 6396 if (!HasArithmeticOrEnumeralCandidateType) 6397 return; 6398 6399 for (unsigned Arith = FirstPromotedArithmeticType; 6400 Arith < LastPromotedArithmeticType; ++Arith) { 6401 QualType ArithTy = getArithmeticType(Arith); 6402 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 6403 } 6404 6405 // Extension: We also add these operators for vector types. 6406 for (BuiltinCandidateTypeSet::iterator 6407 Vec = CandidateTypes[0].vector_begin(), 6408 VecEnd = CandidateTypes[0].vector_end(); 6409 Vec != VecEnd; ++Vec) { 6410 QualType VecTy = *Vec; 6411 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 6412 } 6413 } 6414 6415 // C++ [over.built]p8: 6416 // For every type T, there exist candidate operator functions of 6417 // the form 6418 // 6419 // T* operator+(T*); 6420 void addUnaryPlusPointerOverloads() { 6421 for (BuiltinCandidateTypeSet::iterator 6422 Ptr = CandidateTypes[0].pointer_begin(), 6423 PtrEnd = CandidateTypes[0].pointer_end(); 6424 Ptr != PtrEnd; ++Ptr) { 6425 QualType ParamTy = *Ptr; 6426 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 6427 } 6428 } 6429 6430 // C++ [over.built]p10: 6431 // For every promoted integral type T, there exist candidate 6432 // operator functions of the form 6433 // 6434 // T operator~(T); 6435 void addUnaryTildePromotedIntegralOverloads() { 6436 if (!HasArithmeticOrEnumeralCandidateType) 6437 return; 6438 6439 for (unsigned Int = FirstPromotedIntegralType; 6440 Int < LastPromotedIntegralType; ++Int) { 6441 QualType IntTy = getArithmeticType(Int); 6442 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 6443 } 6444 6445 // Extension: We also add this operator for vector types. 6446 for (BuiltinCandidateTypeSet::iterator 6447 Vec = CandidateTypes[0].vector_begin(), 6448 VecEnd = CandidateTypes[0].vector_end(); 6449 Vec != VecEnd; ++Vec) { 6450 QualType VecTy = *Vec; 6451 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 6452 } 6453 } 6454 6455 // C++ [over.match.oper]p16: 6456 // For every pointer to member type T, there exist candidate operator 6457 // functions of the form 6458 // 6459 // bool operator==(T,T); 6460 // bool operator!=(T,T); 6461 void addEqualEqualOrNotEqualMemberPointerOverloads() { 6462 /// Set of (canonical) types that we've already handled. 6463 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6464 6465 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6466 for (BuiltinCandidateTypeSet::iterator 6467 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 6468 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 6469 MemPtr != MemPtrEnd; 6470 ++MemPtr) { 6471 // Don't add the same builtin candidate twice. 6472 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 6473 continue; 6474 6475 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 6476 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6477 CandidateSet); 6478 } 6479 } 6480 } 6481 6482 // C++ [over.built]p15: 6483 // 6484 // For every T, where T is an enumeration type, a pointer type, or 6485 // std::nullptr_t, there exist candidate operator functions of the form 6486 // 6487 // bool operator<(T, T); 6488 // bool operator>(T, T); 6489 // bool operator<=(T, T); 6490 // bool operator>=(T, T); 6491 // bool operator==(T, T); 6492 // bool operator!=(T, T); 6493 void addRelationalPointerOrEnumeralOverloads() { 6494 // C++ [over.built]p1: 6495 // If there is a user-written candidate with the same name and parameter 6496 // types as a built-in candidate operator function, the built-in operator 6497 // function is hidden and is not included in the set of candidate 6498 // functions. 6499 // 6500 // The text is actually in a note, but if we don't implement it then we end 6501 // up with ambiguities when the user provides an overloaded operator for 6502 // an enumeration type. Note that only enumeration types have this problem, 6503 // so we track which enumeration types we've seen operators for. Also, the 6504 // only other overloaded operator with enumeration argumenst, operator=, 6505 // cannot be overloaded for enumeration types, so this is the only place 6506 // where we must suppress candidates like this. 6507 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 6508 UserDefinedBinaryOperators; 6509 6510 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6511 if (CandidateTypes[ArgIdx].enumeration_begin() != 6512 CandidateTypes[ArgIdx].enumeration_end()) { 6513 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 6514 CEnd = CandidateSet.end(); 6515 C != CEnd; ++C) { 6516 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 6517 continue; 6518 6519 QualType FirstParamType = 6520 C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 6521 QualType SecondParamType = 6522 C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 6523 6524 // Skip if either parameter isn't of enumeral type. 6525 if (!FirstParamType->isEnumeralType() || 6526 !SecondParamType->isEnumeralType()) 6527 continue; 6528 6529 // Add this operator to the set of known user-defined operators. 6530 UserDefinedBinaryOperators.insert( 6531 std::make_pair(S.Context.getCanonicalType(FirstParamType), 6532 S.Context.getCanonicalType(SecondParamType))); 6533 } 6534 } 6535 } 6536 6537 /// Set of (canonical) types that we've already handled. 6538 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6539 6540 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6541 for (BuiltinCandidateTypeSet::iterator 6542 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 6543 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 6544 Ptr != PtrEnd; ++Ptr) { 6545 // Don't add the same builtin candidate twice. 6546 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6547 continue; 6548 6549 QualType ParamTypes[2] = { *Ptr, *Ptr }; 6550 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6551 CandidateSet); 6552 } 6553 for (BuiltinCandidateTypeSet::iterator 6554 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 6555 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 6556 Enum != EnumEnd; ++Enum) { 6557 CanQualType CanonType = S.Context.getCanonicalType(*Enum); 6558 6559 // Don't add the same builtin candidate twice, or if a user defined 6560 // candidate exists. 6561 if (!AddedTypes.insert(CanonType) || 6562 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 6563 CanonType))) 6564 continue; 6565 6566 QualType ParamTypes[2] = { *Enum, *Enum }; 6567 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6568 CandidateSet); 6569 } 6570 6571 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 6572 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 6573 if (AddedTypes.insert(NullPtrTy) && 6574 !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy, 6575 NullPtrTy))) { 6576 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 6577 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6578 CandidateSet); 6579 } 6580 } 6581 } 6582 } 6583 6584 // C++ [over.built]p13: 6585 // 6586 // For every cv-qualified or cv-unqualified object type T 6587 // there exist candidate operator functions of the form 6588 // 6589 // T* operator+(T*, ptrdiff_t); 6590 // T& operator[](T*, ptrdiff_t); [BELOW] 6591 // T* operator-(T*, ptrdiff_t); 6592 // T* operator+(ptrdiff_t, T*); 6593 // T& operator[](ptrdiff_t, T*); [BELOW] 6594 // 6595 // C++ [over.built]p14: 6596 // 6597 // For every T, where T is a pointer to object type, there 6598 // exist candidate operator functions of the form 6599 // 6600 // ptrdiff_t operator-(T, T); 6601 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 6602 /// Set of (canonical) types that we've already handled. 6603 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6604 6605 for (int Arg = 0; Arg < 2; ++Arg) { 6606 QualType AsymetricParamTypes[2] = { 6607 S.Context.getPointerDiffType(), 6608 S.Context.getPointerDiffType(), 6609 }; 6610 for (BuiltinCandidateTypeSet::iterator 6611 Ptr = CandidateTypes[Arg].pointer_begin(), 6612 PtrEnd = CandidateTypes[Arg].pointer_end(); 6613 Ptr != PtrEnd; ++Ptr) { 6614 QualType PointeeTy = (*Ptr)->getPointeeType(); 6615 if (!PointeeTy->isObjectType()) 6616 continue; 6617 6618 AsymetricParamTypes[Arg] = *Ptr; 6619 if (Arg == 0 || Op == OO_Plus) { 6620 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 6621 // T* operator+(ptrdiff_t, T*); 6622 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2, 6623 CandidateSet); 6624 } 6625 if (Op == OO_Minus) { 6626 // ptrdiff_t operator-(T, T); 6627 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6628 continue; 6629 6630 QualType ParamTypes[2] = { *Ptr, *Ptr }; 6631 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes, 6632 Args, 2, CandidateSet); 6633 } 6634 } 6635 } 6636 } 6637 6638 // C++ [over.built]p12: 6639 // 6640 // For every pair of promoted arithmetic types L and R, there 6641 // exist candidate operator functions of the form 6642 // 6643 // LR operator*(L, R); 6644 // LR operator/(L, R); 6645 // LR operator+(L, R); 6646 // LR operator-(L, R); 6647 // bool operator<(L, R); 6648 // bool operator>(L, R); 6649 // bool operator<=(L, R); 6650 // bool operator>=(L, R); 6651 // bool operator==(L, R); 6652 // bool operator!=(L, R); 6653 // 6654 // where LR is the result of the usual arithmetic conversions 6655 // between types L and R. 6656 // 6657 // C++ [over.built]p24: 6658 // 6659 // For every pair of promoted arithmetic types L and R, there exist 6660 // candidate operator functions of the form 6661 // 6662 // LR operator?(bool, L, R); 6663 // 6664 // where LR is the result of the usual arithmetic conversions 6665 // between types L and R. 6666 // Our candidates ignore the first parameter. 6667 void addGenericBinaryArithmeticOverloads(bool isComparison) { 6668 if (!HasArithmeticOrEnumeralCandidateType) 6669 return; 6670 6671 for (unsigned Left = FirstPromotedArithmeticType; 6672 Left < LastPromotedArithmeticType; ++Left) { 6673 for (unsigned Right = FirstPromotedArithmeticType; 6674 Right < LastPromotedArithmeticType; ++Right) { 6675 QualType LandR[2] = { getArithmeticType(Left), 6676 getArithmeticType(Right) }; 6677 QualType Result = 6678 isComparison ? S.Context.BoolTy 6679 : getUsualArithmeticConversions(Left, Right); 6680 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 6681 } 6682 } 6683 6684 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 6685 // conditional operator for vector types. 6686 for (BuiltinCandidateTypeSet::iterator 6687 Vec1 = CandidateTypes[0].vector_begin(), 6688 Vec1End = CandidateTypes[0].vector_end(); 6689 Vec1 != Vec1End; ++Vec1) { 6690 for (BuiltinCandidateTypeSet::iterator 6691 Vec2 = CandidateTypes[1].vector_begin(), 6692 Vec2End = CandidateTypes[1].vector_end(); 6693 Vec2 != Vec2End; ++Vec2) { 6694 QualType LandR[2] = { *Vec1, *Vec2 }; 6695 QualType Result = S.Context.BoolTy; 6696 if (!isComparison) { 6697 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 6698 Result = *Vec1; 6699 else 6700 Result = *Vec2; 6701 } 6702 6703 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 6704 } 6705 } 6706 } 6707 6708 // C++ [over.built]p17: 6709 // 6710 // For every pair of promoted integral types L and R, there 6711 // exist candidate operator functions of the form 6712 // 6713 // LR operator%(L, R); 6714 // LR operator&(L, R); 6715 // LR operator^(L, R); 6716 // LR operator|(L, R); 6717 // L operator<<(L, R); 6718 // L operator>>(L, R); 6719 // 6720 // where LR is the result of the usual arithmetic conversions 6721 // between types L and R. 6722 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { 6723 if (!HasArithmeticOrEnumeralCandidateType) 6724 return; 6725 6726 for (unsigned Left = FirstPromotedIntegralType; 6727 Left < LastPromotedIntegralType; ++Left) { 6728 for (unsigned Right = FirstPromotedIntegralType; 6729 Right < LastPromotedIntegralType; ++Right) { 6730 QualType LandR[2] = { getArithmeticType(Left), 6731 getArithmeticType(Right) }; 6732 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 6733 ? LandR[0] 6734 : getUsualArithmeticConversions(Left, Right); 6735 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 6736 } 6737 } 6738 } 6739 6740 // C++ [over.built]p20: 6741 // 6742 // For every pair (T, VQ), where T is an enumeration or 6743 // pointer to member type and VQ is either volatile or 6744 // empty, there exist candidate operator functions of the form 6745 // 6746 // VQ T& operator=(VQ T&, T); 6747 void addAssignmentMemberPointerOrEnumeralOverloads() { 6748 /// Set of (canonical) types that we've already handled. 6749 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6750 6751 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 6752 for (BuiltinCandidateTypeSet::iterator 6753 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 6754 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 6755 Enum != EnumEnd; ++Enum) { 6756 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 6757 continue; 6758 6759 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2, 6760 CandidateSet); 6761 } 6762 6763 for (BuiltinCandidateTypeSet::iterator 6764 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 6765 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 6766 MemPtr != MemPtrEnd; ++MemPtr) { 6767 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 6768 continue; 6769 6770 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2, 6771 CandidateSet); 6772 } 6773 } 6774 } 6775 6776 // C++ [over.built]p19: 6777 // 6778 // For every pair (T, VQ), where T is any type and VQ is either 6779 // volatile or empty, there exist candidate operator functions 6780 // of the form 6781 // 6782 // T*VQ& operator=(T*VQ&, T*); 6783 // 6784 // C++ [over.built]p21: 6785 // 6786 // For every pair (T, VQ), where T is a cv-qualified or 6787 // cv-unqualified object type and VQ is either volatile or 6788 // empty, there exist candidate operator functions of the form 6789 // 6790 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 6791 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 6792 void addAssignmentPointerOverloads(bool isEqualOp) { 6793 /// Set of (canonical) types that we've already handled. 6794 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6795 6796 for (BuiltinCandidateTypeSet::iterator 6797 Ptr = CandidateTypes[0].pointer_begin(), 6798 PtrEnd = CandidateTypes[0].pointer_end(); 6799 Ptr != PtrEnd; ++Ptr) { 6800 // If this is operator=, keep track of the builtin candidates we added. 6801 if (isEqualOp) 6802 AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); 6803 else if (!(*Ptr)->getPointeeType()->isObjectType()) 6804 continue; 6805 6806 // non-volatile version 6807 QualType ParamTypes[2] = { 6808 S.Context.getLValueReferenceType(*Ptr), 6809 isEqualOp ? *Ptr : S.Context.getPointerDiffType(), 6810 }; 6811 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6812 /*IsAssigmentOperator=*/ isEqualOp); 6813 6814 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 6815 VisibleTypeConversionsQuals.hasVolatile()) { 6816 // volatile version 6817 ParamTypes[0] = 6818 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 6819 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6820 /*IsAssigmentOperator=*/isEqualOp); 6821 } 6822 } 6823 6824 if (isEqualOp) { 6825 for (BuiltinCandidateTypeSet::iterator 6826 Ptr = CandidateTypes[1].pointer_begin(), 6827 PtrEnd = CandidateTypes[1].pointer_end(); 6828 Ptr != PtrEnd; ++Ptr) { 6829 // Make sure we don't add the same candidate twice. 6830 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6831 continue; 6832 6833 QualType ParamTypes[2] = { 6834 S.Context.getLValueReferenceType(*Ptr), 6835 *Ptr, 6836 }; 6837 6838 // non-volatile version 6839 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6840 /*IsAssigmentOperator=*/true); 6841 6842 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 6843 VisibleTypeConversionsQuals.hasVolatile()) { 6844 // volatile version 6845 ParamTypes[0] = 6846 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 6847 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6848 CandidateSet, /*IsAssigmentOperator=*/true); 6849 } 6850 } 6851 } 6852 } 6853 6854 // C++ [over.built]p18: 6855 // 6856 // For every triple (L, VQ, R), where L is an arithmetic type, 6857 // VQ is either volatile or empty, and R is a promoted 6858 // arithmetic type, there exist candidate operator functions of 6859 // the form 6860 // 6861 // VQ L& operator=(VQ L&, R); 6862 // VQ L& operator*=(VQ L&, R); 6863 // VQ L& operator/=(VQ L&, R); 6864 // VQ L& operator+=(VQ L&, R); 6865 // VQ L& operator-=(VQ L&, R); 6866 void addAssignmentArithmeticOverloads(bool isEqualOp) { 6867 if (!HasArithmeticOrEnumeralCandidateType) 6868 return; 6869 6870 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 6871 for (unsigned Right = FirstPromotedArithmeticType; 6872 Right < LastPromotedArithmeticType; ++Right) { 6873 QualType ParamTypes[2]; 6874 ParamTypes[1] = getArithmeticType(Right); 6875 6876 // Add this built-in operator as a candidate (VQ is empty). 6877 ParamTypes[0] = 6878 S.Context.getLValueReferenceType(getArithmeticType(Left)); 6879 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6880 /*IsAssigmentOperator=*/isEqualOp); 6881 6882 // Add this built-in operator as a candidate (VQ is 'volatile'). 6883 if (VisibleTypeConversionsQuals.hasVolatile()) { 6884 ParamTypes[0] = 6885 S.Context.getVolatileType(getArithmeticType(Left)); 6886 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6887 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6888 CandidateSet, 6889 /*IsAssigmentOperator=*/isEqualOp); 6890 } 6891 } 6892 } 6893 6894 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 6895 for (BuiltinCandidateTypeSet::iterator 6896 Vec1 = CandidateTypes[0].vector_begin(), 6897 Vec1End = CandidateTypes[0].vector_end(); 6898 Vec1 != Vec1End; ++Vec1) { 6899 for (BuiltinCandidateTypeSet::iterator 6900 Vec2 = CandidateTypes[1].vector_begin(), 6901 Vec2End = CandidateTypes[1].vector_end(); 6902 Vec2 != Vec2End; ++Vec2) { 6903 QualType ParamTypes[2]; 6904 ParamTypes[1] = *Vec2; 6905 // Add this built-in operator as a candidate (VQ is empty). 6906 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); 6907 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6908 /*IsAssigmentOperator=*/isEqualOp); 6909 6910 // Add this built-in operator as a candidate (VQ is 'volatile'). 6911 if (VisibleTypeConversionsQuals.hasVolatile()) { 6912 ParamTypes[0] = S.Context.getVolatileType(*Vec1); 6913 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6914 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6915 CandidateSet, 6916 /*IsAssigmentOperator=*/isEqualOp); 6917 } 6918 } 6919 } 6920 } 6921 6922 // C++ [over.built]p22: 6923 // 6924 // For every triple (L, VQ, R), where L is an integral type, VQ 6925 // is either volatile or empty, and R is a promoted integral 6926 // type, there exist candidate operator functions of the form 6927 // 6928 // VQ L& operator%=(VQ L&, R); 6929 // VQ L& operator<<=(VQ L&, R); 6930 // VQ L& operator>>=(VQ L&, R); 6931 // VQ L& operator&=(VQ L&, R); 6932 // VQ L& operator^=(VQ L&, R); 6933 // VQ L& operator|=(VQ L&, R); 6934 void addAssignmentIntegralOverloads() { 6935 if (!HasArithmeticOrEnumeralCandidateType) 6936 return; 6937 6938 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 6939 for (unsigned Right = FirstPromotedIntegralType; 6940 Right < LastPromotedIntegralType; ++Right) { 6941 QualType ParamTypes[2]; 6942 ParamTypes[1] = getArithmeticType(Right); 6943 6944 // Add this built-in operator as a candidate (VQ is empty). 6945 ParamTypes[0] = 6946 S.Context.getLValueReferenceType(getArithmeticType(Left)); 6947 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 6948 if (VisibleTypeConversionsQuals.hasVolatile()) { 6949 // Add this built-in operator as a candidate (VQ is 'volatile'). 6950 ParamTypes[0] = getArithmeticType(Left); 6951 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 6952 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6953 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6954 CandidateSet); 6955 } 6956 } 6957 } 6958 } 6959 6960 // C++ [over.operator]p23: 6961 // 6962 // There also exist candidate operator functions of the form 6963 // 6964 // bool operator!(bool); 6965 // bool operator&&(bool, bool); 6966 // bool operator||(bool, bool); 6967 void addExclaimOverload() { 6968 QualType ParamTy = S.Context.BoolTy; 6969 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 6970 /*IsAssignmentOperator=*/false, 6971 /*NumContextualBoolArguments=*/1); 6972 } 6973 void addAmpAmpOrPipePipeOverload() { 6974 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 6975 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 6976 /*IsAssignmentOperator=*/false, 6977 /*NumContextualBoolArguments=*/2); 6978 } 6979 6980 // C++ [over.built]p13: 6981 // 6982 // For every cv-qualified or cv-unqualified object type T there 6983 // exist candidate operator functions of the form 6984 // 6985 // T* operator+(T*, ptrdiff_t); [ABOVE] 6986 // T& operator[](T*, ptrdiff_t); 6987 // T* operator-(T*, ptrdiff_t); [ABOVE] 6988 // T* operator+(ptrdiff_t, T*); [ABOVE] 6989 // T& operator[](ptrdiff_t, T*); 6990 void addSubscriptOverloads() { 6991 for (BuiltinCandidateTypeSet::iterator 6992 Ptr = CandidateTypes[0].pointer_begin(), 6993 PtrEnd = CandidateTypes[0].pointer_end(); 6994 Ptr != PtrEnd; ++Ptr) { 6995 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; 6996 QualType PointeeType = (*Ptr)->getPointeeType(); 6997 if (!PointeeType->isObjectType()) 6998 continue; 6999 7000 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 7001 7002 // T& operator[](T*, ptrdiff_t) 7003 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 7004 } 7005 7006 for (BuiltinCandidateTypeSet::iterator 7007 Ptr = CandidateTypes[1].pointer_begin(), 7008 PtrEnd = CandidateTypes[1].pointer_end(); 7009 Ptr != PtrEnd; ++Ptr) { 7010 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; 7011 QualType PointeeType = (*Ptr)->getPointeeType(); 7012 if (!PointeeType->isObjectType()) 7013 continue; 7014 7015 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 7016 7017 // T& operator[](ptrdiff_t, T*) 7018 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 7019 } 7020 } 7021 7022 // C++ [over.built]p11: 7023 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 7024 // C1 is the same type as C2 or is a derived class of C2, T is an object 7025 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 7026 // there exist candidate operator functions of the form 7027 // 7028 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 7029 // 7030 // where CV12 is the union of CV1 and CV2. 7031 void addArrowStarOverloads() { 7032 for (BuiltinCandidateTypeSet::iterator 7033 Ptr = CandidateTypes[0].pointer_begin(), 7034 PtrEnd = CandidateTypes[0].pointer_end(); 7035 Ptr != PtrEnd; ++Ptr) { 7036 QualType C1Ty = (*Ptr); 7037 QualType C1; 7038 QualifierCollector Q1; 7039 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 7040 if (!isa<RecordType>(C1)) 7041 continue; 7042 // heuristic to reduce number of builtin candidates in the set. 7043 // Add volatile/restrict version only if there are conversions to a 7044 // volatile/restrict type. 7045 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 7046 continue; 7047 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 7048 continue; 7049 for (BuiltinCandidateTypeSet::iterator 7050 MemPtr = CandidateTypes[1].member_pointer_begin(), 7051 MemPtrEnd = CandidateTypes[1].member_pointer_end(); 7052 MemPtr != MemPtrEnd; ++MemPtr) { 7053 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 7054 QualType C2 = QualType(mptr->getClass(), 0); 7055 C2 = C2.getUnqualifiedType(); 7056 if (C1 != C2 && !S.IsDerivedFrom(C1, C2)) 7057 break; 7058 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 7059 // build CV12 T& 7060 QualType T = mptr->getPointeeType(); 7061 if (!VisibleTypeConversionsQuals.hasVolatile() && 7062 T.isVolatileQualified()) 7063 continue; 7064 if (!VisibleTypeConversionsQuals.hasRestrict() && 7065 T.isRestrictQualified()) 7066 continue; 7067 T = Q1.apply(S.Context, T); 7068 QualType ResultTy = S.Context.getLValueReferenceType(T); 7069 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 7070 } 7071 } 7072 } 7073 7074 // Note that we don't consider the first argument, since it has been 7075 // contextually converted to bool long ago. The candidates below are 7076 // therefore added as binary. 7077 // 7078 // C++ [over.built]p25: 7079 // For every type T, where T is a pointer, pointer-to-member, or scoped 7080 // enumeration type, there exist candidate operator functions of the form 7081 // 7082 // T operator?(bool, T, T); 7083 // 7084 void addConditionalOperatorOverloads() { 7085 /// Set of (canonical) types that we've already handled. 7086 llvm::SmallPtrSet<QualType, 8> AddedTypes; 7087 7088 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 7089 for (BuiltinCandidateTypeSet::iterator 7090 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 7091 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 7092 Ptr != PtrEnd; ++Ptr) { 7093 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 7094 continue; 7095 7096 QualType ParamTypes[2] = { *Ptr, *Ptr }; 7097 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 7098 } 7099 7100 for (BuiltinCandidateTypeSet::iterator 7101 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 7102 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 7103 MemPtr != MemPtrEnd; ++MemPtr) { 7104 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 7105 continue; 7106 7107 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 7108 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet); 7109 } 7110 7111 if (S.getLangOptions().CPlusPlus0x) { 7112 for (BuiltinCandidateTypeSet::iterator 7113 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 7114 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 7115 Enum != EnumEnd; ++Enum) { 7116 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 7117 continue; 7118 7119 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 7120 continue; 7121 7122 QualType ParamTypes[2] = { *Enum, *Enum }; 7123 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); 7124 } 7125 } 7126 } 7127 } 7128}; 7129 7130} // end anonymous namespace 7131 7132/// AddBuiltinOperatorCandidates - Add the appropriate built-in 7133/// operator overloads to the candidate set (C++ [over.built]), based 7134/// on the operator @p Op and the arguments given. For example, if the 7135/// operator is a binary '+', this routine might add "int 7136/// operator+(int, int)" to cover integer addition. 7137void 7138Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 7139 SourceLocation OpLoc, 7140 Expr **Args, unsigned NumArgs, 7141 OverloadCandidateSet& CandidateSet) { 7142 // Find all of the types that the arguments can convert to, but only 7143 // if the operator we're looking at has built-in operator candidates 7144 // that make use of these types. Also record whether we encounter non-record 7145 // candidate types or either arithmetic or enumeral candidate types. 7146 Qualifiers VisibleTypeConversionsQuals; 7147 VisibleTypeConversionsQuals.addConst(); 7148 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7149 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 7150 7151 bool HasNonRecordCandidateType = false; 7152 bool HasArithmeticOrEnumeralCandidateType = false; 7153 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 7154 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 7155 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); 7156 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 7157 OpLoc, 7158 true, 7159 (Op == OO_Exclaim || 7160 Op == OO_AmpAmp || 7161 Op == OO_PipePipe), 7162 VisibleTypeConversionsQuals); 7163 HasNonRecordCandidateType = HasNonRecordCandidateType || 7164 CandidateTypes[ArgIdx].hasNonRecordTypes(); 7165 HasArithmeticOrEnumeralCandidateType = 7166 HasArithmeticOrEnumeralCandidateType || 7167 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 7168 } 7169 7170 // Exit early when no non-record types have been added to the candidate set 7171 // for any of the arguments to the operator. 7172 // 7173 // We can't exit early for !, ||, or &&, since there we have always have 7174 // 'bool' overloads. 7175 if (!HasNonRecordCandidateType && 7176 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) 7177 return; 7178 7179 // Setup an object to manage the common state for building overloads. 7180 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs, 7181 VisibleTypeConversionsQuals, 7182 HasArithmeticOrEnumeralCandidateType, 7183 CandidateTypes, CandidateSet); 7184 7185 // Dispatch over the operation to add in only those overloads which apply. 7186 switch (Op) { 7187 case OO_None: 7188 case NUM_OVERLOADED_OPERATORS: 7189 llvm_unreachable("Expected an overloaded operator"); 7190 7191 case OO_New: 7192 case OO_Delete: 7193 case OO_Array_New: 7194 case OO_Array_Delete: 7195 case OO_Call: 7196 llvm_unreachable( 7197 "Special operators don't use AddBuiltinOperatorCandidates"); 7198 7199 case OO_Comma: 7200 case OO_Arrow: 7201 // C++ [over.match.oper]p3: 7202 // -- For the operator ',', the unary operator '&', or the 7203 // operator '->', the built-in candidates set is empty. 7204 break; 7205 7206 case OO_Plus: // '+' is either unary or binary 7207 if (NumArgs == 1) 7208 OpBuilder.addUnaryPlusPointerOverloads(); 7209 // Fall through. 7210 7211 case OO_Minus: // '-' is either unary or binary 7212 if (NumArgs == 1) { 7213 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 7214 } else { 7215 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 7216 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7217 } 7218 break; 7219 7220 case OO_Star: // '*' is either unary or binary 7221 if (NumArgs == 1) 7222 OpBuilder.addUnaryStarPointerOverloads(); 7223 else 7224 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7225 break; 7226 7227 case OO_Slash: 7228 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7229 break; 7230 7231 case OO_PlusPlus: 7232 case OO_MinusMinus: 7233 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 7234 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 7235 break; 7236 7237 case OO_EqualEqual: 7238 case OO_ExclaimEqual: 7239 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads(); 7240 // Fall through. 7241 7242 case OO_Less: 7243 case OO_Greater: 7244 case OO_LessEqual: 7245 case OO_GreaterEqual: 7246 OpBuilder.addRelationalPointerOrEnumeralOverloads(); 7247 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true); 7248 break; 7249 7250 case OO_Percent: 7251 case OO_Caret: 7252 case OO_Pipe: 7253 case OO_LessLess: 7254 case OO_GreaterGreater: 7255 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 7256 break; 7257 7258 case OO_Amp: // '&' is either unary or binary 7259 if (NumArgs == 1) 7260 // C++ [over.match.oper]p3: 7261 // -- For the operator ',', the unary operator '&', or the 7262 // operator '->', the built-in candidates set is empty. 7263 break; 7264 7265 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 7266 break; 7267 7268 case OO_Tilde: 7269 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 7270 break; 7271 7272 case OO_Equal: 7273 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 7274 // Fall through. 7275 7276 case OO_PlusEqual: 7277 case OO_MinusEqual: 7278 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 7279 // Fall through. 7280 7281 case OO_StarEqual: 7282 case OO_SlashEqual: 7283 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 7284 break; 7285 7286 case OO_PercentEqual: 7287 case OO_LessLessEqual: 7288 case OO_GreaterGreaterEqual: 7289 case OO_AmpEqual: 7290 case OO_CaretEqual: 7291 case OO_PipeEqual: 7292 OpBuilder.addAssignmentIntegralOverloads(); 7293 break; 7294 7295 case OO_Exclaim: 7296 OpBuilder.addExclaimOverload(); 7297 break; 7298 7299 case OO_AmpAmp: 7300 case OO_PipePipe: 7301 OpBuilder.addAmpAmpOrPipePipeOverload(); 7302 break; 7303 7304 case OO_Subscript: 7305 OpBuilder.addSubscriptOverloads(); 7306 break; 7307 7308 case OO_ArrowStar: 7309 OpBuilder.addArrowStarOverloads(); 7310 break; 7311 7312 case OO_Conditional: 7313 OpBuilder.addConditionalOperatorOverloads(); 7314 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7315 break; 7316 } 7317} 7318 7319/// \brief Add function candidates found via argument-dependent lookup 7320/// to the set of overloading candidates. 7321/// 7322/// This routine performs argument-dependent name lookup based on the 7323/// given function name (which may also be an operator name) and adds 7324/// all of the overload candidates found by ADL to the overload 7325/// candidate set (C++ [basic.lookup.argdep]). 7326void 7327Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 7328 bool Operator, 7329 Expr **Args, unsigned NumArgs, 7330 TemplateArgumentListInfo *ExplicitTemplateArgs, 7331 OverloadCandidateSet& CandidateSet, 7332 bool PartialOverloading, 7333 bool StdNamespaceIsAssociated) { 7334 ADLResult Fns; 7335 7336 // FIXME: This approach for uniquing ADL results (and removing 7337 // redundant candidates from the set) relies on pointer-equality, 7338 // which means we need to key off the canonical decl. However, 7339 // always going back to the canonical decl might not get us the 7340 // right set of default arguments. What default arguments are 7341 // we supposed to consider on ADL candidates, anyway? 7342 7343 // FIXME: Pass in the explicit template arguments? 7344 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns, 7345 StdNamespaceIsAssociated); 7346 7347 // Erase all of the candidates we already knew about. 7348 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 7349 CandEnd = CandidateSet.end(); 7350 Cand != CandEnd; ++Cand) 7351 if (Cand->Function) { 7352 Fns.erase(Cand->Function); 7353 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 7354 Fns.erase(FunTmpl); 7355 } 7356 7357 // For each of the ADL candidates we found, add it to the overload 7358 // set. 7359 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 7360 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 7361 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 7362 if (ExplicitTemplateArgs) 7363 continue; 7364 7365 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 7366 false, PartialOverloading); 7367 } else 7368 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 7369 FoundDecl, ExplicitTemplateArgs, 7370 Args, NumArgs, CandidateSet); 7371 } 7372} 7373 7374/// isBetterOverloadCandidate - Determines whether the first overload 7375/// candidate is a better candidate than the second (C++ 13.3.3p1). 7376bool 7377isBetterOverloadCandidate(Sema &S, 7378 const OverloadCandidate &Cand1, 7379 const OverloadCandidate &Cand2, 7380 SourceLocation Loc, 7381 bool UserDefinedConversion) { 7382 // Define viable functions to be better candidates than non-viable 7383 // functions. 7384 if (!Cand2.Viable) 7385 return Cand1.Viable; 7386 else if (!Cand1.Viable) 7387 return false; 7388 7389 // C++ [over.match.best]p1: 7390 // 7391 // -- if F is a static member function, ICS1(F) is defined such 7392 // that ICS1(F) is neither better nor worse than ICS1(G) for 7393 // any function G, and, symmetrically, ICS1(G) is neither 7394 // better nor worse than ICS1(F). 7395 unsigned StartArg = 0; 7396 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 7397 StartArg = 1; 7398 7399 // C++ [over.match.best]p1: 7400 // A viable function F1 is defined to be a better function than another 7401 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 7402 // conversion sequence than ICSi(F2), and then... 7403 unsigned NumArgs = Cand1.NumConversions; 7404 assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch"); 7405 bool HasBetterConversion = false; 7406 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 7407 switch (CompareImplicitConversionSequences(S, 7408 Cand1.Conversions[ArgIdx], 7409 Cand2.Conversions[ArgIdx])) { 7410 case ImplicitConversionSequence::Better: 7411 // Cand1 has a better conversion sequence. 7412 HasBetterConversion = true; 7413 break; 7414 7415 case ImplicitConversionSequence::Worse: 7416 // Cand1 can't be better than Cand2. 7417 return false; 7418 7419 case ImplicitConversionSequence::Indistinguishable: 7420 // Do nothing. 7421 break; 7422 } 7423 } 7424 7425 // -- for some argument j, ICSj(F1) is a better conversion sequence than 7426 // ICSj(F2), or, if not that, 7427 if (HasBetterConversion) 7428 return true; 7429 7430 // - F1 is a non-template function and F2 is a function template 7431 // specialization, or, if not that, 7432 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 7433 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 7434 return true; 7435 7436 // -- F1 and F2 are function template specializations, and the function 7437 // template for F1 is more specialized than the template for F2 7438 // according to the partial ordering rules described in 14.5.5.2, or, 7439 // if not that, 7440 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 7441 Cand2.Function && Cand2.Function->getPrimaryTemplate()) { 7442 if (FunctionTemplateDecl *BetterTemplate 7443 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 7444 Cand2.Function->getPrimaryTemplate(), 7445 Loc, 7446 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 7447 : TPOC_Call, 7448 Cand1.ExplicitCallArguments)) 7449 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 7450 } 7451 7452 // -- the context is an initialization by user-defined conversion 7453 // (see 8.5, 13.3.1.5) and the standard conversion sequence 7454 // from the return type of F1 to the destination type (i.e., 7455 // the type of the entity being initialized) is a better 7456 // conversion sequence than the standard conversion sequence 7457 // from the return type of F2 to the destination type. 7458 if (UserDefinedConversion && Cand1.Function && Cand2.Function && 7459 isa<CXXConversionDecl>(Cand1.Function) && 7460 isa<CXXConversionDecl>(Cand2.Function)) { 7461 switch (CompareStandardConversionSequences(S, 7462 Cand1.FinalConversion, 7463 Cand2.FinalConversion)) { 7464 case ImplicitConversionSequence::Better: 7465 // Cand1 has a better conversion sequence. 7466 return true; 7467 7468 case ImplicitConversionSequence::Worse: 7469 // Cand1 can't be better than Cand2. 7470 return false; 7471 7472 case ImplicitConversionSequence::Indistinguishable: 7473 // Do nothing 7474 break; 7475 } 7476 } 7477 7478 return false; 7479} 7480 7481/// \brief Computes the best viable function (C++ 13.3.3) 7482/// within an overload candidate set. 7483/// 7484/// \param CandidateSet the set of candidate functions. 7485/// 7486/// \param Loc the location of the function name (or operator symbol) for 7487/// which overload resolution occurs. 7488/// 7489/// \param Best f overload resolution was successful or found a deleted 7490/// function, Best points to the candidate function found. 7491/// 7492/// \returns The result of overload resolution. 7493OverloadingResult 7494OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 7495 iterator &Best, 7496 bool UserDefinedConversion) { 7497 // Find the best viable function. 7498 Best = end(); 7499 for (iterator Cand = begin(); Cand != end(); ++Cand) { 7500 if (Cand->Viable) 7501 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, 7502 UserDefinedConversion)) 7503 Best = Cand; 7504 } 7505 7506 // If we didn't find any viable functions, abort. 7507 if (Best == end()) 7508 return OR_No_Viable_Function; 7509 7510 // Make sure that this function is better than every other viable 7511 // function. If not, we have an ambiguity. 7512 for (iterator Cand = begin(); Cand != end(); ++Cand) { 7513 if (Cand->Viable && 7514 Cand != Best && 7515 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, 7516 UserDefinedConversion)) { 7517 Best = end(); 7518 return OR_Ambiguous; 7519 } 7520 } 7521 7522 // Best is the best viable function. 7523 if (Best->Function && 7524 (Best->Function->isDeleted() || 7525 S.isFunctionConsideredUnavailable(Best->Function))) 7526 return OR_Deleted; 7527 7528 return OR_Success; 7529} 7530 7531namespace { 7532 7533enum OverloadCandidateKind { 7534 oc_function, 7535 oc_method, 7536 oc_constructor, 7537 oc_function_template, 7538 oc_method_template, 7539 oc_constructor_template, 7540 oc_implicit_default_constructor, 7541 oc_implicit_copy_constructor, 7542 oc_implicit_move_constructor, 7543 oc_implicit_copy_assignment, 7544 oc_implicit_move_assignment, 7545 oc_implicit_inherited_constructor 7546}; 7547 7548OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 7549 FunctionDecl *Fn, 7550 std::string &Description) { 7551 bool isTemplate = false; 7552 7553 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 7554 isTemplate = true; 7555 Description = S.getTemplateArgumentBindingsText( 7556 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 7557 } 7558 7559 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 7560 if (!Ctor->isImplicit()) 7561 return isTemplate ? oc_constructor_template : oc_constructor; 7562 7563 if (Ctor->getInheritedConstructor()) 7564 return oc_implicit_inherited_constructor; 7565 7566 if (Ctor->isDefaultConstructor()) 7567 return oc_implicit_default_constructor; 7568 7569 if (Ctor->isMoveConstructor()) 7570 return oc_implicit_move_constructor; 7571 7572 assert(Ctor->isCopyConstructor() && 7573 "unexpected sort of implicit constructor"); 7574 return oc_implicit_copy_constructor; 7575 } 7576 7577 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 7578 // This actually gets spelled 'candidate function' for now, but 7579 // it doesn't hurt to split it out. 7580 if (!Meth->isImplicit()) 7581 return isTemplate ? oc_method_template : oc_method; 7582 7583 if (Meth->isMoveAssignmentOperator()) 7584 return oc_implicit_move_assignment; 7585 7586 assert(Meth->isCopyAssignmentOperator() 7587 && "implicit method is not copy assignment operator?"); 7588 return oc_implicit_copy_assignment; 7589 } 7590 7591 return isTemplate ? oc_function_template : oc_function; 7592} 7593 7594void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) { 7595 const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn); 7596 if (!Ctor) return; 7597 7598 Ctor = Ctor->getInheritedConstructor(); 7599 if (!Ctor) return; 7600 7601 S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor); 7602} 7603 7604} // end anonymous namespace 7605 7606// Notes the location of an overload candidate. 7607void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) { 7608 std::string FnDesc; 7609 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 7610 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) 7611 << (unsigned) K << FnDesc; 7612 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); 7613 Diag(Fn->getLocation(), PD); 7614 MaybeEmitInheritedConstructorNote(*this, Fn); 7615} 7616 7617//Notes the location of all overload candidates designated through 7618// OverloadedExpr 7619void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) { 7620 assert(OverloadedExpr->getType() == Context.OverloadTy); 7621 7622 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 7623 OverloadExpr *OvlExpr = Ovl.Expression; 7624 7625 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7626 IEnd = OvlExpr->decls_end(); 7627 I != IEnd; ++I) { 7628 if (FunctionTemplateDecl *FunTmpl = 7629 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 7630 NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType); 7631 } else if (FunctionDecl *Fun 7632 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 7633 NoteOverloadCandidate(Fun, DestType); 7634 } 7635 } 7636} 7637 7638/// Diagnoses an ambiguous conversion. The partial diagnostic is the 7639/// "lead" diagnostic; it will be given two arguments, the source and 7640/// target types of the conversion. 7641void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 7642 Sema &S, 7643 SourceLocation CaretLoc, 7644 const PartialDiagnostic &PDiag) const { 7645 S.Diag(CaretLoc, PDiag) 7646 << Ambiguous.getFromType() << Ambiguous.getToType(); 7647 for (AmbiguousConversionSequence::const_iterator 7648 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 7649 S.NoteOverloadCandidate(*I); 7650 } 7651} 7652 7653namespace { 7654 7655void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 7656 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 7657 assert(Conv.isBad()); 7658 assert(Cand->Function && "for now, candidate must be a function"); 7659 FunctionDecl *Fn = Cand->Function; 7660 7661 // There's a conversion slot for the object argument if this is a 7662 // non-constructor method. Note that 'I' corresponds the 7663 // conversion-slot index. 7664 bool isObjectArgument = false; 7665 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 7666 if (I == 0) 7667 isObjectArgument = true; 7668 else 7669 I--; 7670 } 7671 7672 std::string FnDesc; 7673 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 7674 7675 Expr *FromExpr = Conv.Bad.FromExpr; 7676 QualType FromTy = Conv.Bad.getFromType(); 7677 QualType ToTy = Conv.Bad.getToType(); 7678 7679 if (FromTy == S.Context.OverloadTy) { 7680 assert(FromExpr && "overload set argument came from implicit argument?"); 7681 Expr *E = FromExpr->IgnoreParens(); 7682 if (isa<UnaryOperator>(E)) 7683 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 7684 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 7685 7686 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 7687 << (unsigned) FnKind << FnDesc 7688 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7689 << ToTy << Name << I+1; 7690 MaybeEmitInheritedConstructorNote(S, Fn); 7691 return; 7692 } 7693 7694 // Do some hand-waving analysis to see if the non-viability is due 7695 // to a qualifier mismatch. 7696 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 7697 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 7698 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 7699 CToTy = RT->getPointeeType(); 7700 else { 7701 // TODO: detect and diagnose the full richness of const mismatches. 7702 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 7703 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 7704 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 7705 } 7706 7707 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 7708 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 7709 // It is dumb that we have to do this here. 7710 while (isa<ArrayType>(CFromTy)) 7711 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 7712 while (isa<ArrayType>(CToTy)) 7713 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 7714 7715 Qualifiers FromQs = CFromTy.getQualifiers(); 7716 Qualifiers ToQs = CToTy.getQualifiers(); 7717 7718 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 7719 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 7720 << (unsigned) FnKind << FnDesc 7721 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7722 << FromTy 7723 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 7724 << (unsigned) isObjectArgument << I+1; 7725 MaybeEmitInheritedConstructorNote(S, Fn); 7726 return; 7727 } 7728 7729 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 7730 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 7731 << (unsigned) FnKind << FnDesc 7732 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7733 << FromTy 7734 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 7735 << (unsigned) isObjectArgument << I+1; 7736 MaybeEmitInheritedConstructorNote(S, Fn); 7737 return; 7738 } 7739 7740 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 7741 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 7742 << (unsigned) FnKind << FnDesc 7743 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7744 << FromTy 7745 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 7746 << (unsigned) isObjectArgument << I+1; 7747 MaybeEmitInheritedConstructorNote(S, Fn); 7748 return; 7749 } 7750 7751 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 7752 assert(CVR && "unexpected qualifiers mismatch"); 7753 7754 if (isObjectArgument) { 7755 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 7756 << (unsigned) FnKind << FnDesc 7757 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7758 << FromTy << (CVR - 1); 7759 } else { 7760 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 7761 << (unsigned) FnKind << FnDesc 7762 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7763 << FromTy << (CVR - 1) << I+1; 7764 } 7765 MaybeEmitInheritedConstructorNote(S, Fn); 7766 return; 7767 } 7768 7769 // Special diagnostic for failure to convert an initializer list, since 7770 // telling the user that it has type void is not useful. 7771 if (FromExpr && isa<InitListExpr>(FromExpr)) { 7772 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) 7773 << (unsigned) FnKind << FnDesc 7774 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7775 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 7776 MaybeEmitInheritedConstructorNote(S, Fn); 7777 return; 7778 } 7779 7780 // Diagnose references or pointers to incomplete types differently, 7781 // since it's far from impossible that the incompleteness triggered 7782 // the failure. 7783 QualType TempFromTy = FromTy.getNonReferenceType(); 7784 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 7785 TempFromTy = PTy->getPointeeType(); 7786 if (TempFromTy->isIncompleteType()) { 7787 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 7788 << (unsigned) FnKind << FnDesc 7789 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7790 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 7791 MaybeEmitInheritedConstructorNote(S, Fn); 7792 return; 7793 } 7794 7795 // Diagnose base -> derived pointer conversions. 7796 unsigned BaseToDerivedConversion = 0; 7797 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 7798 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 7799 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 7800 FromPtrTy->getPointeeType()) && 7801 !FromPtrTy->getPointeeType()->isIncompleteType() && 7802 !ToPtrTy->getPointeeType()->isIncompleteType() && 7803 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 7804 FromPtrTy->getPointeeType())) 7805 BaseToDerivedConversion = 1; 7806 } 7807 } else if (const ObjCObjectPointerType *FromPtrTy 7808 = FromTy->getAs<ObjCObjectPointerType>()) { 7809 if (const ObjCObjectPointerType *ToPtrTy 7810 = ToTy->getAs<ObjCObjectPointerType>()) 7811 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 7812 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 7813 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 7814 FromPtrTy->getPointeeType()) && 7815 FromIface->isSuperClassOf(ToIface)) 7816 BaseToDerivedConversion = 2; 7817 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 7818 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 7819 !FromTy->isIncompleteType() && 7820 !ToRefTy->getPointeeType()->isIncompleteType() && 7821 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 7822 BaseToDerivedConversion = 3; 7823 } 7824 7825 if (BaseToDerivedConversion) { 7826 S.Diag(Fn->getLocation(), 7827 diag::note_ovl_candidate_bad_base_to_derived_conv) 7828 << (unsigned) FnKind << FnDesc 7829 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7830 << (BaseToDerivedConversion - 1) 7831 << FromTy << ToTy << I+1; 7832 MaybeEmitInheritedConstructorNote(S, Fn); 7833 return; 7834 } 7835 7836 if (isa<ObjCObjectPointerType>(CFromTy) && 7837 isa<PointerType>(CToTy)) { 7838 Qualifiers FromQs = CFromTy.getQualifiers(); 7839 Qualifiers ToQs = CToTy.getQualifiers(); 7840 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 7841 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) 7842 << (unsigned) FnKind << FnDesc 7843 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7844 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 7845 MaybeEmitInheritedConstructorNote(S, Fn); 7846 return; 7847 } 7848 } 7849 7850 // Emit the generic diagnostic and, optionally, add the hints to it. 7851 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 7852 FDiag << (unsigned) FnKind << FnDesc 7853 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7854 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1 7855 << (unsigned) (Cand->Fix.Kind); 7856 7857 // If we can fix the conversion, suggest the FixIts. 7858 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), 7859 HE = Cand->Fix.Hints.end(); HI != HE; ++HI) 7860 FDiag << *HI; 7861 S.Diag(Fn->getLocation(), FDiag); 7862 7863 MaybeEmitInheritedConstructorNote(S, Fn); 7864} 7865 7866void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 7867 unsigned NumFormalArgs) { 7868 // TODO: treat calls to a missing default constructor as a special case 7869 7870 FunctionDecl *Fn = Cand->Function; 7871 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 7872 7873 unsigned MinParams = Fn->getMinRequiredArguments(); 7874 7875 // With invalid overloaded operators, it's possible that we think we 7876 // have an arity mismatch when it fact it looks like we have the 7877 // right number of arguments, because only overloaded operators have 7878 // the weird behavior of overloading member and non-member functions. 7879 // Just don't report anything. 7880 if (Fn->isInvalidDecl() && 7881 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 7882 return; 7883 7884 // at least / at most / exactly 7885 unsigned mode, modeCount; 7886 if (NumFormalArgs < MinParams) { 7887 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 7888 (Cand->FailureKind == ovl_fail_bad_deduction && 7889 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 7890 if (MinParams != FnTy->getNumArgs() || 7891 FnTy->isVariadic() || FnTy->isTemplateVariadic()) 7892 mode = 0; // "at least" 7893 else 7894 mode = 2; // "exactly" 7895 modeCount = MinParams; 7896 } else { 7897 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 7898 (Cand->FailureKind == ovl_fail_bad_deduction && 7899 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 7900 if (MinParams != FnTy->getNumArgs()) 7901 mode = 1; // "at most" 7902 else 7903 mode = 2; // "exactly" 7904 modeCount = FnTy->getNumArgs(); 7905 } 7906 7907 std::string Description; 7908 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 7909 7910 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 7911 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 7912 << modeCount << NumFormalArgs; 7913 MaybeEmitInheritedConstructorNote(S, Fn); 7914} 7915 7916/// Diagnose a failed template-argument deduction. 7917void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 7918 Expr **Args, unsigned NumArgs) { 7919 FunctionDecl *Fn = Cand->Function; // pattern 7920 7921 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 7922 NamedDecl *ParamD; 7923 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 7924 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 7925 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 7926 switch (Cand->DeductionFailure.Result) { 7927 case Sema::TDK_Success: 7928 llvm_unreachable("TDK_success while diagnosing bad deduction"); 7929 7930 case Sema::TDK_Incomplete: { 7931 assert(ParamD && "no parameter found for incomplete deduction result"); 7932 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 7933 << ParamD->getDeclName(); 7934 MaybeEmitInheritedConstructorNote(S, Fn); 7935 return; 7936 } 7937 7938 case Sema::TDK_Underqualified: { 7939 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 7940 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 7941 7942 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 7943 7944 // Param will have been canonicalized, but it should just be a 7945 // qualified version of ParamD, so move the qualifiers to that. 7946 QualifierCollector Qs; 7947 Qs.strip(Param); 7948 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 7949 assert(S.Context.hasSameType(Param, NonCanonParam)); 7950 7951 // Arg has also been canonicalized, but there's nothing we can do 7952 // about that. It also doesn't matter as much, because it won't 7953 // have any template parameters in it (because deduction isn't 7954 // done on dependent types). 7955 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 7956 7957 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 7958 << ParamD->getDeclName() << Arg << NonCanonParam; 7959 MaybeEmitInheritedConstructorNote(S, Fn); 7960 return; 7961 } 7962 7963 case Sema::TDK_Inconsistent: { 7964 assert(ParamD && "no parameter found for inconsistent deduction result"); 7965 int which = 0; 7966 if (isa<TemplateTypeParmDecl>(ParamD)) 7967 which = 0; 7968 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 7969 which = 1; 7970 else { 7971 which = 2; 7972 } 7973 7974 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 7975 << which << ParamD->getDeclName() 7976 << *Cand->DeductionFailure.getFirstArg() 7977 << *Cand->DeductionFailure.getSecondArg(); 7978 MaybeEmitInheritedConstructorNote(S, Fn); 7979 return; 7980 } 7981 7982 case Sema::TDK_InvalidExplicitArguments: 7983 assert(ParamD && "no parameter found for invalid explicit arguments"); 7984 if (ParamD->getDeclName()) 7985 S.Diag(Fn->getLocation(), 7986 diag::note_ovl_candidate_explicit_arg_mismatch_named) 7987 << ParamD->getDeclName(); 7988 else { 7989 int index = 0; 7990 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 7991 index = TTP->getIndex(); 7992 else if (NonTypeTemplateParmDecl *NTTP 7993 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 7994 index = NTTP->getIndex(); 7995 else 7996 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 7997 S.Diag(Fn->getLocation(), 7998 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 7999 << (index + 1); 8000 } 8001 MaybeEmitInheritedConstructorNote(S, Fn); 8002 return; 8003 8004 case Sema::TDK_TooManyArguments: 8005 case Sema::TDK_TooFewArguments: 8006 DiagnoseArityMismatch(S, Cand, NumArgs); 8007 return; 8008 8009 case Sema::TDK_InstantiationDepth: 8010 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 8011 MaybeEmitInheritedConstructorNote(S, Fn); 8012 return; 8013 8014 case Sema::TDK_SubstitutionFailure: { 8015 std::string ArgString; 8016 if (TemplateArgumentList *Args 8017 = Cand->DeductionFailure.getTemplateArgumentList()) 8018 ArgString = S.getTemplateArgumentBindingsText( 8019 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 8020 *Args); 8021 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 8022 << ArgString; 8023 MaybeEmitInheritedConstructorNote(S, Fn); 8024 return; 8025 } 8026 8027 // TODO: diagnose these individually, then kill off 8028 // note_ovl_candidate_bad_deduction, which is uselessly vague. 8029 case Sema::TDK_NonDeducedMismatch: 8030 case Sema::TDK_FailedOverloadResolution: 8031 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 8032 MaybeEmitInheritedConstructorNote(S, Fn); 8033 return; 8034 } 8035} 8036 8037/// CUDA: diagnose an invalid call across targets. 8038void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { 8039 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); 8040 FunctionDecl *Callee = Cand->Function; 8041 8042 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), 8043 CalleeTarget = S.IdentifyCUDATarget(Callee); 8044 8045 std::string FnDesc; 8046 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc); 8047 8048 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) 8049 << (unsigned) FnKind << CalleeTarget << CallerTarget; 8050} 8051 8052/// Generates a 'note' diagnostic for an overload candidate. We've 8053/// already generated a primary error at the call site. 8054/// 8055/// It really does need to be a single diagnostic with its caret 8056/// pointed at the candidate declaration. Yes, this creates some 8057/// major challenges of technical writing. Yes, this makes pointing 8058/// out problems with specific arguments quite awkward. It's still 8059/// better than generating twenty screens of text for every failed 8060/// overload. 8061/// 8062/// It would be great to be able to express per-candidate problems 8063/// more richly for those diagnostic clients that cared, but we'd 8064/// still have to be just as careful with the default diagnostics. 8065void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 8066 Expr **Args, unsigned NumArgs) { 8067 FunctionDecl *Fn = Cand->Function; 8068 8069 // Note deleted candidates, but only if they're viable. 8070 if (Cand->Viable && (Fn->isDeleted() || 8071 S.isFunctionConsideredUnavailable(Fn))) { 8072 std::string FnDesc; 8073 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 8074 8075 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 8076 << FnKind << FnDesc << Fn->isDeleted(); 8077 MaybeEmitInheritedConstructorNote(S, Fn); 8078 return; 8079 } 8080 8081 // We don't really have anything else to say about viable candidates. 8082 if (Cand->Viable) { 8083 S.NoteOverloadCandidate(Fn); 8084 return; 8085 } 8086 8087 switch (Cand->FailureKind) { 8088 case ovl_fail_too_many_arguments: 8089 case ovl_fail_too_few_arguments: 8090 return DiagnoseArityMismatch(S, Cand, NumArgs); 8091 8092 case ovl_fail_bad_deduction: 8093 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 8094 8095 case ovl_fail_trivial_conversion: 8096 case ovl_fail_bad_final_conversion: 8097 case ovl_fail_final_conversion_not_exact: 8098 return S.NoteOverloadCandidate(Fn); 8099 8100 case ovl_fail_bad_conversion: { 8101 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 8102 for (unsigned N = Cand->NumConversions; I != N; ++I) 8103 if (Cand->Conversions[I].isBad()) 8104 return DiagnoseBadConversion(S, Cand, I); 8105 8106 // FIXME: this currently happens when we're called from SemaInit 8107 // when user-conversion overload fails. Figure out how to handle 8108 // those conditions and diagnose them well. 8109 return S.NoteOverloadCandidate(Fn); 8110 } 8111 8112 case ovl_fail_bad_target: 8113 return DiagnoseBadTarget(S, Cand); 8114 } 8115} 8116 8117void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 8118 // Desugar the type of the surrogate down to a function type, 8119 // retaining as many typedefs as possible while still showing 8120 // the function type (and, therefore, its parameter types). 8121 QualType FnType = Cand->Surrogate->getConversionType(); 8122 bool isLValueReference = false; 8123 bool isRValueReference = false; 8124 bool isPointer = false; 8125 if (const LValueReferenceType *FnTypeRef = 8126 FnType->getAs<LValueReferenceType>()) { 8127 FnType = FnTypeRef->getPointeeType(); 8128 isLValueReference = true; 8129 } else if (const RValueReferenceType *FnTypeRef = 8130 FnType->getAs<RValueReferenceType>()) { 8131 FnType = FnTypeRef->getPointeeType(); 8132 isRValueReference = true; 8133 } 8134 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 8135 FnType = FnTypePtr->getPointeeType(); 8136 isPointer = true; 8137 } 8138 // Desugar down to a function type. 8139 FnType = QualType(FnType->getAs<FunctionType>(), 0); 8140 // Reconstruct the pointer/reference as appropriate. 8141 if (isPointer) FnType = S.Context.getPointerType(FnType); 8142 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 8143 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 8144 8145 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 8146 << FnType; 8147 MaybeEmitInheritedConstructorNote(S, Cand->Surrogate); 8148} 8149 8150void NoteBuiltinOperatorCandidate(Sema &S, 8151 const char *Opc, 8152 SourceLocation OpLoc, 8153 OverloadCandidate *Cand) { 8154 assert(Cand->NumConversions <= 2 && "builtin operator is not binary"); 8155 std::string TypeStr("operator"); 8156 TypeStr += Opc; 8157 TypeStr += "("; 8158 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 8159 if (Cand->NumConversions == 1) { 8160 TypeStr += ")"; 8161 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 8162 } else { 8163 TypeStr += ", "; 8164 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 8165 TypeStr += ")"; 8166 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 8167 } 8168} 8169 8170void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 8171 OverloadCandidate *Cand) { 8172 unsigned NoOperands = Cand->NumConversions; 8173 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 8174 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 8175 if (ICS.isBad()) break; // all meaningless after first invalid 8176 if (!ICS.isAmbiguous()) continue; 8177 8178 ICS.DiagnoseAmbiguousConversion(S, OpLoc, 8179 S.PDiag(diag::note_ambiguous_type_conversion)); 8180 } 8181} 8182 8183SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 8184 if (Cand->Function) 8185 return Cand->Function->getLocation(); 8186 if (Cand->IsSurrogate) 8187 return Cand->Surrogate->getLocation(); 8188 return SourceLocation(); 8189} 8190 8191static unsigned 8192RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) { 8193 switch ((Sema::TemplateDeductionResult)DFI.Result) { 8194 case Sema::TDK_Success: 8195 llvm_unreachable("TDK_success while diagnosing bad deduction"); 8196 8197 case Sema::TDK_Incomplete: 8198 return 1; 8199 8200 case Sema::TDK_Underqualified: 8201 case Sema::TDK_Inconsistent: 8202 return 2; 8203 8204 case Sema::TDK_SubstitutionFailure: 8205 case Sema::TDK_NonDeducedMismatch: 8206 return 3; 8207 8208 case Sema::TDK_InstantiationDepth: 8209 case Sema::TDK_FailedOverloadResolution: 8210 return 4; 8211 8212 case Sema::TDK_InvalidExplicitArguments: 8213 return 5; 8214 8215 case Sema::TDK_TooManyArguments: 8216 case Sema::TDK_TooFewArguments: 8217 return 6; 8218 } 8219 llvm_unreachable("Unhandled deduction result"); 8220} 8221 8222struct CompareOverloadCandidatesForDisplay { 8223 Sema &S; 8224 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 8225 8226 bool operator()(const OverloadCandidate *L, 8227 const OverloadCandidate *R) { 8228 // Fast-path this check. 8229 if (L == R) return false; 8230 8231 // Order first by viability. 8232 if (L->Viable) { 8233 if (!R->Viable) return true; 8234 8235 // TODO: introduce a tri-valued comparison for overload 8236 // candidates. Would be more worthwhile if we had a sort 8237 // that could exploit it. 8238 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; 8239 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; 8240 } else if (R->Viable) 8241 return false; 8242 8243 assert(L->Viable == R->Viable); 8244 8245 // Criteria by which we can sort non-viable candidates: 8246 if (!L->Viable) { 8247 // 1. Arity mismatches come after other candidates. 8248 if (L->FailureKind == ovl_fail_too_many_arguments || 8249 L->FailureKind == ovl_fail_too_few_arguments) 8250 return false; 8251 if (R->FailureKind == ovl_fail_too_many_arguments || 8252 R->FailureKind == ovl_fail_too_few_arguments) 8253 return true; 8254 8255 // 2. Bad conversions come first and are ordered by the number 8256 // of bad conversions and quality of good conversions. 8257 if (L->FailureKind == ovl_fail_bad_conversion) { 8258 if (R->FailureKind != ovl_fail_bad_conversion) 8259 return true; 8260 8261 // The conversion that can be fixed with a smaller number of changes, 8262 // comes first. 8263 unsigned numLFixes = L->Fix.NumConversionsFixed; 8264 unsigned numRFixes = R->Fix.NumConversionsFixed; 8265 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 8266 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 8267 if (numLFixes != numRFixes) { 8268 if (numLFixes < numRFixes) 8269 return true; 8270 else 8271 return false; 8272 } 8273 8274 // If there's any ordering between the defined conversions... 8275 // FIXME: this might not be transitive. 8276 assert(L->NumConversions == R->NumConversions); 8277 8278 int leftBetter = 0; 8279 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 8280 for (unsigned E = L->NumConversions; I != E; ++I) { 8281 switch (CompareImplicitConversionSequences(S, 8282 L->Conversions[I], 8283 R->Conversions[I])) { 8284 case ImplicitConversionSequence::Better: 8285 leftBetter++; 8286 break; 8287 8288 case ImplicitConversionSequence::Worse: 8289 leftBetter--; 8290 break; 8291 8292 case ImplicitConversionSequence::Indistinguishable: 8293 break; 8294 } 8295 } 8296 if (leftBetter > 0) return true; 8297 if (leftBetter < 0) return false; 8298 8299 } else if (R->FailureKind == ovl_fail_bad_conversion) 8300 return false; 8301 8302 if (L->FailureKind == ovl_fail_bad_deduction) { 8303 if (R->FailureKind != ovl_fail_bad_deduction) 8304 return true; 8305 8306 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 8307 return RankDeductionFailure(L->DeductionFailure) 8308 < RankDeductionFailure(R->DeductionFailure); 8309 } else if (R->FailureKind == ovl_fail_bad_deduction) 8310 return false; 8311 8312 // TODO: others? 8313 } 8314 8315 // Sort everything else by location. 8316 SourceLocation LLoc = GetLocationForCandidate(L); 8317 SourceLocation RLoc = GetLocationForCandidate(R); 8318 8319 // Put candidates without locations (e.g. builtins) at the end. 8320 if (LLoc.isInvalid()) return false; 8321 if (RLoc.isInvalid()) return true; 8322 8323 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 8324 } 8325}; 8326 8327/// CompleteNonViableCandidate - Normally, overload resolution only 8328/// computes up to the first. Produces the FixIt set if possible. 8329void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 8330 Expr **Args, unsigned NumArgs) { 8331 assert(!Cand->Viable); 8332 8333 // Don't do anything on failures other than bad conversion. 8334 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 8335 8336 // We only want the FixIts if all the arguments can be corrected. 8337 bool Unfixable = false; 8338 // Use a implicit copy initialization to check conversion fixes. 8339 Cand->Fix.setConversionChecker(TryCopyInitialization); 8340 8341 // Skip forward to the first bad conversion. 8342 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 8343 unsigned ConvCount = Cand->NumConversions; 8344 while (true) { 8345 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 8346 ConvIdx++; 8347 if (Cand->Conversions[ConvIdx - 1].isBad()) { 8348 Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S); 8349 break; 8350 } 8351 } 8352 8353 if (ConvIdx == ConvCount) 8354 return; 8355 8356 assert(!Cand->Conversions[ConvIdx].isInitialized() && 8357 "remaining conversion is initialized?"); 8358 8359 // FIXME: this should probably be preserved from the overload 8360 // operation somehow. 8361 bool SuppressUserConversions = false; 8362 8363 const FunctionProtoType* Proto; 8364 unsigned ArgIdx = ConvIdx; 8365 8366 if (Cand->IsSurrogate) { 8367 QualType ConvType 8368 = Cand->Surrogate->getConversionType().getNonReferenceType(); 8369 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 8370 ConvType = ConvPtrType->getPointeeType(); 8371 Proto = ConvType->getAs<FunctionProtoType>(); 8372 ArgIdx--; 8373 } else if (Cand->Function) { 8374 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 8375 if (isa<CXXMethodDecl>(Cand->Function) && 8376 !isa<CXXConstructorDecl>(Cand->Function)) 8377 ArgIdx--; 8378 } else { 8379 // Builtin binary operator with a bad first conversion. 8380 assert(ConvCount <= 3); 8381 for (; ConvIdx != ConvCount; ++ConvIdx) 8382 Cand->Conversions[ConvIdx] 8383 = TryCopyInitialization(S, Args[ConvIdx], 8384 Cand->BuiltinTypes.ParamTypes[ConvIdx], 8385 SuppressUserConversions, 8386 /*InOverloadResolution*/ true, 8387 /*AllowObjCWritebackConversion=*/ 8388 S.getLangOptions().ObjCAutoRefCount); 8389 return; 8390 } 8391 8392 // Fill in the rest of the conversions. 8393 unsigned NumArgsInProto = Proto->getNumArgs(); 8394 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 8395 if (ArgIdx < NumArgsInProto) { 8396 Cand->Conversions[ConvIdx] 8397 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 8398 SuppressUserConversions, 8399 /*InOverloadResolution=*/true, 8400 /*AllowObjCWritebackConversion=*/ 8401 S.getLangOptions().ObjCAutoRefCount); 8402 // Store the FixIt in the candidate if it exists. 8403 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 8404 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 8405 } 8406 else 8407 Cand->Conversions[ConvIdx].setEllipsis(); 8408 } 8409} 8410 8411} // end anonymous namespace 8412 8413/// PrintOverloadCandidates - When overload resolution fails, prints 8414/// diagnostic messages containing the candidates in the candidate 8415/// set. 8416void OverloadCandidateSet::NoteCandidates(Sema &S, 8417 OverloadCandidateDisplayKind OCD, 8418 Expr **Args, unsigned NumArgs, 8419 const char *Opc, 8420 SourceLocation OpLoc) { 8421 // Sort the candidates by viability and position. Sorting directly would 8422 // be prohibitive, so we make a set of pointers and sort those. 8423 SmallVector<OverloadCandidate*, 32> Cands; 8424 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 8425 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 8426 if (Cand->Viable) 8427 Cands.push_back(Cand); 8428 else if (OCD == OCD_AllCandidates) { 8429 CompleteNonViableCandidate(S, Cand, Args, NumArgs); 8430 if (Cand->Function || Cand->IsSurrogate) 8431 Cands.push_back(Cand); 8432 // Otherwise, this a non-viable builtin candidate. We do not, in general, 8433 // want to list every possible builtin candidate. 8434 } 8435 } 8436 8437 std::sort(Cands.begin(), Cands.end(), 8438 CompareOverloadCandidatesForDisplay(S)); 8439 8440 bool ReportedAmbiguousConversions = false; 8441 8442 SmallVectorImpl<OverloadCandidate*>::iterator I, E; 8443 const DiagnosticsEngine::OverloadsShown ShowOverloads = 8444 S.Diags.getShowOverloads(); 8445 unsigned CandsShown = 0; 8446 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 8447 OverloadCandidate *Cand = *I; 8448 8449 // Set an arbitrary limit on the number of candidate functions we'll spam 8450 // the user with. FIXME: This limit should depend on details of the 8451 // candidate list. 8452 if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) { 8453 break; 8454 } 8455 ++CandsShown; 8456 8457 if (Cand->Function) 8458 NoteFunctionCandidate(S, Cand, Args, NumArgs); 8459 else if (Cand->IsSurrogate) 8460 NoteSurrogateCandidate(S, Cand); 8461 else { 8462 assert(Cand->Viable && 8463 "Non-viable built-in candidates are not added to Cands."); 8464 // Generally we only see ambiguities including viable builtin 8465 // operators if overload resolution got screwed up by an 8466 // ambiguous user-defined conversion. 8467 // 8468 // FIXME: It's quite possible for different conversions to see 8469 // different ambiguities, though. 8470 if (!ReportedAmbiguousConversions) { 8471 NoteAmbiguousUserConversions(S, OpLoc, Cand); 8472 ReportedAmbiguousConversions = true; 8473 } 8474 8475 // If this is a viable builtin, print it. 8476 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 8477 } 8478 } 8479 8480 if (I != E) 8481 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 8482} 8483 8484// [PossiblyAFunctionType] --> [Return] 8485// NonFunctionType --> NonFunctionType 8486// R (A) --> R(A) 8487// R (*)(A) --> R (A) 8488// R (&)(A) --> R (A) 8489// R (S::*)(A) --> R (A) 8490QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 8491 QualType Ret = PossiblyAFunctionType; 8492 if (const PointerType *ToTypePtr = 8493 PossiblyAFunctionType->getAs<PointerType>()) 8494 Ret = ToTypePtr->getPointeeType(); 8495 else if (const ReferenceType *ToTypeRef = 8496 PossiblyAFunctionType->getAs<ReferenceType>()) 8497 Ret = ToTypeRef->getPointeeType(); 8498 else if (const MemberPointerType *MemTypePtr = 8499 PossiblyAFunctionType->getAs<MemberPointerType>()) 8500 Ret = MemTypePtr->getPointeeType(); 8501 Ret = 8502 Context.getCanonicalType(Ret).getUnqualifiedType(); 8503 return Ret; 8504} 8505 8506// A helper class to help with address of function resolution 8507// - allows us to avoid passing around all those ugly parameters 8508class AddressOfFunctionResolver 8509{ 8510 Sema& S; 8511 Expr* SourceExpr; 8512 const QualType& TargetType; 8513 QualType TargetFunctionType; // Extracted function type from target type 8514 8515 bool Complain; 8516 //DeclAccessPair& ResultFunctionAccessPair; 8517 ASTContext& Context; 8518 8519 bool TargetTypeIsNonStaticMemberFunction; 8520 bool FoundNonTemplateFunction; 8521 8522 OverloadExpr::FindResult OvlExprInfo; 8523 OverloadExpr *OvlExpr; 8524 TemplateArgumentListInfo OvlExplicitTemplateArgs; 8525 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 8526 8527public: 8528 AddressOfFunctionResolver(Sema &S, Expr* SourceExpr, 8529 const QualType& TargetType, bool Complain) 8530 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 8531 Complain(Complain), Context(S.getASTContext()), 8532 TargetTypeIsNonStaticMemberFunction( 8533 !!TargetType->getAs<MemberPointerType>()), 8534 FoundNonTemplateFunction(false), 8535 OvlExprInfo(OverloadExpr::find(SourceExpr)), 8536 OvlExpr(OvlExprInfo.Expression) 8537 { 8538 ExtractUnqualifiedFunctionTypeFromTargetType(); 8539 8540 if (!TargetFunctionType->isFunctionType()) { 8541 if (OvlExpr->hasExplicitTemplateArgs()) { 8542 DeclAccessPair dap; 8543 if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization( 8544 OvlExpr, false, &dap) ) { 8545 8546 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 8547 if (!Method->isStatic()) { 8548 // If the target type is a non-function type and the function 8549 // found is a non-static member function, pretend as if that was 8550 // the target, it's the only possible type to end up with. 8551 TargetTypeIsNonStaticMemberFunction = true; 8552 8553 // And skip adding the function if its not in the proper form. 8554 // We'll diagnose this due to an empty set of functions. 8555 if (!OvlExprInfo.HasFormOfMemberPointer) 8556 return; 8557 } 8558 } 8559 8560 Matches.push_back(std::make_pair(dap,Fn)); 8561 } 8562 } 8563 return; 8564 } 8565 8566 if (OvlExpr->hasExplicitTemplateArgs()) 8567 OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs); 8568 8569 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 8570 // C++ [over.over]p4: 8571 // If more than one function is selected, [...] 8572 if (Matches.size() > 1) { 8573 if (FoundNonTemplateFunction) 8574 EliminateAllTemplateMatches(); 8575 else 8576 EliminateAllExceptMostSpecializedTemplate(); 8577 } 8578 } 8579 } 8580 8581private: 8582 bool isTargetTypeAFunction() const { 8583 return TargetFunctionType->isFunctionType(); 8584 } 8585 8586 // [ToType] [Return] 8587 8588 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 8589 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 8590 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 8591 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 8592 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 8593 } 8594 8595 // return true if any matching specializations were found 8596 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 8597 const DeclAccessPair& CurAccessFunPair) { 8598 if (CXXMethodDecl *Method 8599 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 8600 // Skip non-static function templates when converting to pointer, and 8601 // static when converting to member pointer. 8602 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 8603 return false; 8604 } 8605 else if (TargetTypeIsNonStaticMemberFunction) 8606 return false; 8607 8608 // C++ [over.over]p2: 8609 // If the name is a function template, template argument deduction is 8610 // done (14.8.2.2), and if the argument deduction succeeds, the 8611 // resulting template argument list is used to generate a single 8612 // function template specialization, which is added to the set of 8613 // overloaded functions considered. 8614 FunctionDecl *Specialization = 0; 8615 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 8616 if (Sema::TemplateDeductionResult Result 8617 = S.DeduceTemplateArguments(FunctionTemplate, 8618 &OvlExplicitTemplateArgs, 8619 TargetFunctionType, Specialization, 8620 Info)) { 8621 // FIXME: make a note of the failed deduction for diagnostics. 8622 (void)Result; 8623 return false; 8624 } 8625 8626 // Template argument deduction ensures that we have an exact match. 8627 // This function template specicalization works. 8628 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); 8629 assert(TargetFunctionType 8630 == Context.getCanonicalType(Specialization->getType())); 8631 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 8632 return true; 8633 } 8634 8635 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 8636 const DeclAccessPair& CurAccessFunPair) { 8637 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 8638 // Skip non-static functions when converting to pointer, and static 8639 // when converting to member pointer. 8640 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 8641 return false; 8642 } 8643 else if (TargetTypeIsNonStaticMemberFunction) 8644 return false; 8645 8646 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 8647 if (S.getLangOptions().CUDA) 8648 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 8649 if (S.CheckCUDATarget(Caller, FunDecl)) 8650 return false; 8651 8652 QualType ResultTy; 8653 if (Context.hasSameUnqualifiedType(TargetFunctionType, 8654 FunDecl->getType()) || 8655 S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType, 8656 ResultTy)) { 8657 Matches.push_back(std::make_pair(CurAccessFunPair, 8658 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 8659 FoundNonTemplateFunction = true; 8660 return true; 8661 } 8662 } 8663 8664 return false; 8665 } 8666 8667 bool FindAllFunctionsThatMatchTargetTypeExactly() { 8668 bool Ret = false; 8669 8670 // If the overload expression doesn't have the form of a pointer to 8671 // member, don't try to convert it to a pointer-to-member type. 8672 if (IsInvalidFormOfPointerToMemberFunction()) 8673 return false; 8674 8675 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 8676 E = OvlExpr->decls_end(); 8677 I != E; ++I) { 8678 // Look through any using declarations to find the underlying function. 8679 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 8680 8681 // C++ [over.over]p3: 8682 // Non-member functions and static member functions match 8683 // targets of type "pointer-to-function" or "reference-to-function." 8684 // Nonstatic member functions match targets of 8685 // type "pointer-to-member-function." 8686 // Note that according to DR 247, the containing class does not matter. 8687 if (FunctionTemplateDecl *FunctionTemplate 8688 = dyn_cast<FunctionTemplateDecl>(Fn)) { 8689 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 8690 Ret = true; 8691 } 8692 // If we have explicit template arguments supplied, skip non-templates. 8693 else if (!OvlExpr->hasExplicitTemplateArgs() && 8694 AddMatchingNonTemplateFunction(Fn, I.getPair())) 8695 Ret = true; 8696 } 8697 assert(Ret || Matches.empty()); 8698 return Ret; 8699 } 8700 8701 void EliminateAllExceptMostSpecializedTemplate() { 8702 // [...] and any given function template specialization F1 is 8703 // eliminated if the set contains a second function template 8704 // specialization whose function template is more specialized 8705 // than the function template of F1 according to the partial 8706 // ordering rules of 14.5.5.2. 8707 8708 // The algorithm specified above is quadratic. We instead use a 8709 // two-pass algorithm (similar to the one used to identify the 8710 // best viable function in an overload set) that identifies the 8711 // best function template (if it exists). 8712 8713 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 8714 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 8715 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 8716 8717 UnresolvedSetIterator Result = 8718 S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 8719 TPOC_Other, 0, SourceExpr->getLocStart(), 8720 S.PDiag(), 8721 S.PDiag(diag::err_addr_ovl_ambiguous) 8722 << Matches[0].second->getDeclName(), 8723 S.PDiag(diag::note_ovl_candidate) 8724 << (unsigned) oc_function_template, 8725 Complain, TargetFunctionType); 8726 8727 if (Result != MatchesCopy.end()) { 8728 // Make it the first and only element 8729 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 8730 Matches[0].second = cast<FunctionDecl>(*Result); 8731 Matches.resize(1); 8732 } 8733 } 8734 8735 void EliminateAllTemplateMatches() { 8736 // [...] any function template specializations in the set are 8737 // eliminated if the set also contains a non-template function, [...] 8738 for (unsigned I = 0, N = Matches.size(); I != N; ) { 8739 if (Matches[I].second->getPrimaryTemplate() == 0) 8740 ++I; 8741 else { 8742 Matches[I] = Matches[--N]; 8743 Matches.set_size(N); 8744 } 8745 } 8746 } 8747 8748public: 8749 void ComplainNoMatchesFound() const { 8750 assert(Matches.empty()); 8751 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable) 8752 << OvlExpr->getName() << TargetFunctionType 8753 << OvlExpr->getSourceRange(); 8754 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); 8755 } 8756 8757 bool IsInvalidFormOfPointerToMemberFunction() const { 8758 return TargetTypeIsNonStaticMemberFunction && 8759 !OvlExprInfo.HasFormOfMemberPointer; 8760 } 8761 8762 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 8763 // TODO: Should we condition this on whether any functions might 8764 // have matched, or is it more appropriate to do that in callers? 8765 // TODO: a fixit wouldn't hurt. 8766 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 8767 << TargetType << OvlExpr->getSourceRange(); 8768 } 8769 8770 void ComplainOfInvalidConversion() const { 8771 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 8772 << OvlExpr->getName() << TargetType; 8773 } 8774 8775 void ComplainMultipleMatchesFound() const { 8776 assert(Matches.size() > 1); 8777 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous) 8778 << OvlExpr->getName() 8779 << OvlExpr->getSourceRange(); 8780 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); 8781 } 8782 8783 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } 8784 8785 int getNumMatches() const { return Matches.size(); } 8786 8787 FunctionDecl* getMatchingFunctionDecl() const { 8788 if (Matches.size() != 1) return 0; 8789 return Matches[0].second; 8790 } 8791 8792 const DeclAccessPair* getMatchingFunctionAccessPair() const { 8793 if (Matches.size() != 1) return 0; 8794 return &Matches[0].first; 8795 } 8796}; 8797 8798/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 8799/// an overloaded function (C++ [over.over]), where @p From is an 8800/// expression with overloaded function type and @p ToType is the type 8801/// we're trying to resolve to. For example: 8802/// 8803/// @code 8804/// int f(double); 8805/// int f(int); 8806/// 8807/// int (*pfd)(double) = f; // selects f(double) 8808/// @endcode 8809/// 8810/// This routine returns the resulting FunctionDecl if it could be 8811/// resolved, and NULL otherwise. When @p Complain is true, this 8812/// routine will emit diagnostics if there is an error. 8813FunctionDecl * 8814Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, 8815 QualType TargetType, 8816 bool Complain, 8817 DeclAccessPair &FoundResult, 8818 bool *pHadMultipleCandidates) { 8819 assert(AddressOfExpr->getType() == Context.OverloadTy); 8820 8821 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, 8822 Complain); 8823 int NumMatches = Resolver.getNumMatches(); 8824 FunctionDecl* Fn = 0; 8825 if (NumMatches == 0 && Complain) { 8826 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 8827 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 8828 else 8829 Resolver.ComplainNoMatchesFound(); 8830 } 8831 else if (NumMatches > 1 && Complain) 8832 Resolver.ComplainMultipleMatchesFound(); 8833 else if (NumMatches == 1) { 8834 Fn = Resolver.getMatchingFunctionDecl(); 8835 assert(Fn); 8836 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 8837 MarkFunctionReferenced(AddressOfExpr->getLocStart(), Fn); 8838 if (Complain) 8839 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 8840 } 8841 8842 if (pHadMultipleCandidates) 8843 *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); 8844 return Fn; 8845} 8846 8847/// \brief Given an expression that refers to an overloaded function, try to 8848/// resolve that overloaded function expression down to a single function. 8849/// 8850/// This routine can only resolve template-ids that refer to a single function 8851/// template, where that template-id refers to a single template whose template 8852/// arguments are either provided by the template-id or have defaults, 8853/// as described in C++0x [temp.arg.explicit]p3. 8854FunctionDecl * 8855Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 8856 bool Complain, 8857 DeclAccessPair *FoundResult) { 8858 // C++ [over.over]p1: 8859 // [...] [Note: any redundant set of parentheses surrounding the 8860 // overloaded function name is ignored (5.1). ] 8861 // C++ [over.over]p1: 8862 // [...] The overloaded function name can be preceded by the & 8863 // operator. 8864 8865 // If we didn't actually find any template-ids, we're done. 8866 if (!ovl->hasExplicitTemplateArgs()) 8867 return 0; 8868 8869 TemplateArgumentListInfo ExplicitTemplateArgs; 8870 ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 8871 8872 // Look through all of the overloaded functions, searching for one 8873 // whose type matches exactly. 8874 FunctionDecl *Matched = 0; 8875 for (UnresolvedSetIterator I = ovl->decls_begin(), 8876 E = ovl->decls_end(); I != E; ++I) { 8877 // C++0x [temp.arg.explicit]p3: 8878 // [...] In contexts where deduction is done and fails, or in contexts 8879 // where deduction is not done, if a template argument list is 8880 // specified and it, along with any default template arguments, 8881 // identifies a single function template specialization, then the 8882 // template-id is an lvalue for the function template specialization. 8883 FunctionTemplateDecl *FunctionTemplate 8884 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 8885 8886 // C++ [over.over]p2: 8887 // If the name is a function template, template argument deduction is 8888 // done (14.8.2.2), and if the argument deduction succeeds, the 8889 // resulting template argument list is used to generate a single 8890 // function template specialization, which is added to the set of 8891 // overloaded functions considered. 8892 FunctionDecl *Specialization = 0; 8893 TemplateDeductionInfo Info(Context, ovl->getNameLoc()); 8894 if (TemplateDeductionResult Result 8895 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 8896 Specialization, Info)) { 8897 // FIXME: make a note of the failed deduction for diagnostics. 8898 (void)Result; 8899 continue; 8900 } 8901 8902 assert(Specialization && "no specialization and no error?"); 8903 8904 // Multiple matches; we can't resolve to a single declaration. 8905 if (Matched) { 8906 if (Complain) { 8907 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 8908 << ovl->getName(); 8909 NoteAllOverloadCandidates(ovl); 8910 } 8911 return 0; 8912 } 8913 8914 Matched = Specialization; 8915 if (FoundResult) *FoundResult = I.getPair(); 8916 } 8917 8918 return Matched; 8919} 8920 8921 8922 8923 8924// Resolve and fix an overloaded expression that can be resolved 8925// because it identifies a single function template specialization. 8926// 8927// Last three arguments should only be supplied if Complain = true 8928// 8929// Return true if it was logically possible to so resolve the 8930// expression, regardless of whether or not it succeeded. Always 8931// returns true if 'complain' is set. 8932bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 8933 ExprResult &SrcExpr, bool doFunctionPointerConverion, 8934 bool complain, const SourceRange& OpRangeForComplaining, 8935 QualType DestTypeForComplaining, 8936 unsigned DiagIDForComplaining) { 8937 assert(SrcExpr.get()->getType() == Context.OverloadTy); 8938 8939 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); 8940 8941 DeclAccessPair found; 8942 ExprResult SingleFunctionExpression; 8943 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 8944 ovl.Expression, /*complain*/ false, &found)) { 8945 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getSourceRange().getBegin())) { 8946 SrcExpr = ExprError(); 8947 return true; 8948 } 8949 8950 // It is only correct to resolve to an instance method if we're 8951 // resolving a form that's permitted to be a pointer to member. 8952 // Otherwise we'll end up making a bound member expression, which 8953 // is illegal in all the contexts we resolve like this. 8954 if (!ovl.HasFormOfMemberPointer && 8955 isa<CXXMethodDecl>(fn) && 8956 cast<CXXMethodDecl>(fn)->isInstance()) { 8957 if (!complain) return false; 8958 8959 Diag(ovl.Expression->getExprLoc(), 8960 diag::err_bound_member_function) 8961 << 0 << ovl.Expression->getSourceRange(); 8962 8963 // TODO: I believe we only end up here if there's a mix of 8964 // static and non-static candidates (otherwise the expression 8965 // would have 'bound member' type, not 'overload' type). 8966 // Ideally we would note which candidate was chosen and why 8967 // the static candidates were rejected. 8968 SrcExpr = ExprError(); 8969 return true; 8970 } 8971 8972 // Fix the expresion to refer to 'fn'. 8973 SingleFunctionExpression = 8974 Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn)); 8975 8976 // If desired, do function-to-pointer decay. 8977 if (doFunctionPointerConverion) { 8978 SingleFunctionExpression = 8979 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take()); 8980 if (SingleFunctionExpression.isInvalid()) { 8981 SrcExpr = ExprError(); 8982 return true; 8983 } 8984 } 8985 } 8986 8987 if (!SingleFunctionExpression.isUsable()) { 8988 if (complain) { 8989 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 8990 << ovl.Expression->getName() 8991 << DestTypeForComplaining 8992 << OpRangeForComplaining 8993 << ovl.Expression->getQualifierLoc().getSourceRange(); 8994 NoteAllOverloadCandidates(SrcExpr.get()); 8995 8996 SrcExpr = ExprError(); 8997 return true; 8998 } 8999 9000 return false; 9001 } 9002 9003 SrcExpr = SingleFunctionExpression; 9004 return true; 9005} 9006 9007/// \brief Add a single candidate to the overload set. 9008static void AddOverloadedCallCandidate(Sema &S, 9009 DeclAccessPair FoundDecl, 9010 TemplateArgumentListInfo *ExplicitTemplateArgs, 9011 Expr **Args, unsigned NumArgs, 9012 OverloadCandidateSet &CandidateSet, 9013 bool PartialOverloading, 9014 bool KnownValid) { 9015 NamedDecl *Callee = FoundDecl.getDecl(); 9016 if (isa<UsingShadowDecl>(Callee)) 9017 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 9018 9019 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 9020 if (ExplicitTemplateArgs) { 9021 assert(!KnownValid && "Explicit template arguments?"); 9022 return; 9023 } 9024 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 9025 false, PartialOverloading); 9026 return; 9027 } 9028 9029 if (FunctionTemplateDecl *FuncTemplate 9030 = dyn_cast<FunctionTemplateDecl>(Callee)) { 9031 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 9032 ExplicitTemplateArgs, 9033 Args, NumArgs, CandidateSet); 9034 return; 9035 } 9036 9037 assert(!KnownValid && "unhandled case in overloaded call candidate"); 9038} 9039 9040/// \brief Add the overload candidates named by callee and/or found by argument 9041/// dependent lookup to the given overload set. 9042void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 9043 Expr **Args, unsigned NumArgs, 9044 OverloadCandidateSet &CandidateSet, 9045 bool PartialOverloading) { 9046 9047#ifndef NDEBUG 9048 // Verify that ArgumentDependentLookup is consistent with the rules 9049 // in C++0x [basic.lookup.argdep]p3: 9050 // 9051 // Let X be the lookup set produced by unqualified lookup (3.4.1) 9052 // and let Y be the lookup set produced by argument dependent 9053 // lookup (defined as follows). If X contains 9054 // 9055 // -- a declaration of a class member, or 9056 // 9057 // -- a block-scope function declaration that is not a 9058 // using-declaration, or 9059 // 9060 // -- a declaration that is neither a function or a function 9061 // template 9062 // 9063 // then Y is empty. 9064 9065 if (ULE->requiresADL()) { 9066 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 9067 E = ULE->decls_end(); I != E; ++I) { 9068 assert(!(*I)->getDeclContext()->isRecord()); 9069 assert(isa<UsingShadowDecl>(*I) || 9070 !(*I)->getDeclContext()->isFunctionOrMethod()); 9071 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 9072 } 9073 } 9074#endif 9075 9076 // It would be nice to avoid this copy. 9077 TemplateArgumentListInfo TABuffer; 9078 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 9079 if (ULE->hasExplicitTemplateArgs()) { 9080 ULE->copyTemplateArgumentsInto(TABuffer); 9081 ExplicitTemplateArgs = &TABuffer; 9082 } 9083 9084 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 9085 E = ULE->decls_end(); I != E; ++I) 9086 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 9087 Args, NumArgs, CandidateSet, 9088 PartialOverloading, /*KnownValid*/ true); 9089 9090 if (ULE->requiresADL()) 9091 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 9092 Args, NumArgs, 9093 ExplicitTemplateArgs, 9094 CandidateSet, 9095 PartialOverloading, 9096 ULE->isStdAssociatedNamespace()); 9097} 9098 9099/// Attempt to recover from an ill-formed use of a non-dependent name in a 9100/// template, where the non-dependent name was declared after the template 9101/// was defined. This is common in code written for a compilers which do not 9102/// correctly implement two-stage name lookup. 9103/// 9104/// Returns true if a viable candidate was found and a diagnostic was issued. 9105static bool 9106DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc, 9107 const CXXScopeSpec &SS, LookupResult &R, 9108 TemplateArgumentListInfo *ExplicitTemplateArgs, 9109 Expr **Args, unsigned NumArgs) { 9110 if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty()) 9111 return false; 9112 9113 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 9114 SemaRef.LookupQualifiedName(R, DC); 9115 9116 if (!R.empty()) { 9117 R.suppressDiagnostics(); 9118 9119 if (isa<CXXRecordDecl>(DC)) { 9120 // Don't diagnose names we find in classes; we get much better 9121 // diagnostics for these from DiagnoseEmptyLookup. 9122 R.clear(); 9123 return false; 9124 } 9125 9126 OverloadCandidateSet Candidates(FnLoc); 9127 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 9128 AddOverloadedCallCandidate(SemaRef, I.getPair(), 9129 ExplicitTemplateArgs, Args, NumArgs, 9130 Candidates, false, /*KnownValid*/ false); 9131 9132 OverloadCandidateSet::iterator Best; 9133 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) { 9134 // No viable functions. Don't bother the user with notes for functions 9135 // which don't work and shouldn't be found anyway. 9136 R.clear(); 9137 return false; 9138 } 9139 9140 // Find the namespaces where ADL would have looked, and suggest 9141 // declaring the function there instead. 9142 Sema::AssociatedNamespaceSet AssociatedNamespaces; 9143 Sema::AssociatedClassSet AssociatedClasses; 9144 SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs, 9145 AssociatedNamespaces, 9146 AssociatedClasses); 9147 // Never suggest declaring a function within namespace 'std'. 9148 Sema::AssociatedNamespaceSet SuggestedNamespaces; 9149 if (DeclContext *Std = SemaRef.getStdNamespace()) { 9150 for (Sema::AssociatedNamespaceSet::iterator 9151 it = AssociatedNamespaces.begin(), 9152 end = AssociatedNamespaces.end(); it != end; ++it) { 9153 if (!Std->Encloses(*it)) 9154 SuggestedNamespaces.insert(*it); 9155 } 9156 } else { 9157 // Lacking the 'std::' namespace, use all of the associated namespaces. 9158 SuggestedNamespaces = AssociatedNamespaces; 9159 } 9160 9161 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 9162 << R.getLookupName(); 9163 if (SuggestedNamespaces.empty()) { 9164 SemaRef.Diag(Best->Function->getLocation(), 9165 diag::note_not_found_by_two_phase_lookup) 9166 << R.getLookupName() << 0; 9167 } else if (SuggestedNamespaces.size() == 1) { 9168 SemaRef.Diag(Best->Function->getLocation(), 9169 diag::note_not_found_by_two_phase_lookup) 9170 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 9171 } else { 9172 // FIXME: It would be useful to list the associated namespaces here, 9173 // but the diagnostics infrastructure doesn't provide a way to produce 9174 // a localized representation of a list of items. 9175 SemaRef.Diag(Best->Function->getLocation(), 9176 diag::note_not_found_by_two_phase_lookup) 9177 << R.getLookupName() << 2; 9178 } 9179 9180 // Try to recover by calling this function. 9181 return true; 9182 } 9183 9184 R.clear(); 9185 } 9186 9187 return false; 9188} 9189 9190/// Attempt to recover from ill-formed use of a non-dependent operator in a 9191/// template, where the non-dependent operator was declared after the template 9192/// was defined. 9193/// 9194/// Returns true if a viable candidate was found and a diagnostic was issued. 9195static bool 9196DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 9197 SourceLocation OpLoc, 9198 Expr **Args, unsigned NumArgs) { 9199 DeclarationName OpName = 9200 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 9201 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 9202 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 9203 /*ExplicitTemplateArgs=*/0, Args, NumArgs); 9204} 9205 9206namespace { 9207// Callback to limit the allowed keywords and to only accept typo corrections 9208// that are keywords or whose decls refer to functions (or template functions) 9209// that accept the given number of arguments. 9210class RecoveryCallCCC : public CorrectionCandidateCallback { 9211 public: 9212 RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs) 9213 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) { 9214 WantTypeSpecifiers = SemaRef.getLangOptions().CPlusPlus; 9215 WantRemainingKeywords = false; 9216 } 9217 9218 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 9219 if (!candidate.getCorrectionDecl()) 9220 return candidate.isKeyword(); 9221 9222 for (TypoCorrection::const_decl_iterator DI = candidate.begin(), 9223 DIEnd = candidate.end(); DI != DIEnd; ++DI) { 9224 FunctionDecl *FD = 0; 9225 NamedDecl *ND = (*DI)->getUnderlyingDecl(); 9226 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 9227 FD = FTD->getTemplatedDecl(); 9228 if (!HasExplicitTemplateArgs && !FD) { 9229 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { 9230 // If the Decl is neither a function nor a template function, 9231 // determine if it is a pointer or reference to a function. If so, 9232 // check against the number of arguments expected for the pointee. 9233 QualType ValType = cast<ValueDecl>(ND)->getType(); 9234 if (ValType->isAnyPointerType() || ValType->isReferenceType()) 9235 ValType = ValType->getPointeeType(); 9236 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) 9237 if (FPT->getNumArgs() == NumArgs) 9238 return true; 9239 } 9240 } 9241 if (FD && FD->getNumParams() >= NumArgs && 9242 FD->getMinRequiredArguments() <= NumArgs) 9243 return true; 9244 } 9245 return false; 9246 } 9247 9248 private: 9249 unsigned NumArgs; 9250 bool HasExplicitTemplateArgs; 9251}; 9252 9253// Callback that effectively disabled typo correction 9254class NoTypoCorrectionCCC : public CorrectionCandidateCallback { 9255 public: 9256 NoTypoCorrectionCCC() { 9257 WantTypeSpecifiers = false; 9258 WantExpressionKeywords = false; 9259 WantCXXNamedCasts = false; 9260 WantRemainingKeywords = false; 9261 } 9262 9263 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 9264 return false; 9265 } 9266}; 9267} 9268 9269/// Attempts to recover from a call where no functions were found. 9270/// 9271/// Returns true if new candidates were found. 9272static ExprResult 9273BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 9274 UnresolvedLookupExpr *ULE, 9275 SourceLocation LParenLoc, 9276 Expr **Args, unsigned NumArgs, 9277 SourceLocation RParenLoc, 9278 bool EmptyLookup, bool AllowTypoCorrection) { 9279 9280 CXXScopeSpec SS; 9281 SS.Adopt(ULE->getQualifierLoc()); 9282 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); 9283 9284 TemplateArgumentListInfo TABuffer; 9285 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 9286 if (ULE->hasExplicitTemplateArgs()) { 9287 ULE->copyTemplateArgumentsInto(TABuffer); 9288 ExplicitTemplateArgs = &TABuffer; 9289 } 9290 9291 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 9292 Sema::LookupOrdinaryName); 9293 RecoveryCallCCC Validator(SemaRef, NumArgs, ExplicitTemplateArgs != 0); 9294 NoTypoCorrectionCCC RejectAll; 9295 CorrectionCandidateCallback *CCC = AllowTypoCorrection ? 9296 (CorrectionCandidateCallback*)&Validator : 9297 (CorrectionCandidateCallback*)&RejectAll; 9298 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 9299 ExplicitTemplateArgs, Args, NumArgs) && 9300 (!EmptyLookup || 9301 SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC, 9302 ExplicitTemplateArgs, Args, NumArgs))) 9303 return ExprError(); 9304 9305 assert(!R.empty() && "lookup results empty despite recovery"); 9306 9307 // Build an implicit member call if appropriate. Just drop the 9308 // casts and such from the call, we don't really care. 9309 ExprResult NewFn = ExprError(); 9310 if ((*R.begin())->isCXXClassMember()) 9311 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, 9312 R, ExplicitTemplateArgs); 9313 else if (ExplicitTemplateArgs) 9314 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, 9315 *ExplicitTemplateArgs); 9316 else 9317 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 9318 9319 if (NewFn.isInvalid()) 9320 return ExprError(); 9321 9322 // This shouldn't cause an infinite loop because we're giving it 9323 // an expression with viable lookup results, which should never 9324 // end up here. 9325 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, 9326 MultiExprArg(Args, NumArgs), RParenLoc); 9327} 9328 9329/// ResolveOverloadedCallFn - Given the call expression that calls Fn 9330/// (which eventually refers to the declaration Func) and the call 9331/// arguments Args/NumArgs, attempt to resolve the function call down 9332/// to a specific function. If overload resolution succeeds, returns 9333/// the function declaration produced by overload 9334/// resolution. Otherwise, emits diagnostics, deletes all of the 9335/// arguments and Fn, and returns NULL. 9336ExprResult 9337Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 9338 SourceLocation LParenLoc, 9339 Expr **Args, unsigned NumArgs, 9340 SourceLocation RParenLoc, 9341 Expr *ExecConfig, 9342 bool AllowTypoCorrection) { 9343#ifndef NDEBUG 9344 if (ULE->requiresADL()) { 9345 // To do ADL, we must have found an unqualified name. 9346 assert(!ULE->getQualifier() && "qualified name with ADL"); 9347 9348 // We don't perform ADL for implicit declarations of builtins. 9349 // Verify that this was correctly set up. 9350 FunctionDecl *F; 9351 if (ULE->decls_begin() + 1 == ULE->decls_end() && 9352 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 9353 F->getBuiltinID() && F->isImplicit()) 9354 llvm_unreachable("performing ADL for builtin"); 9355 9356 // We don't perform ADL in C. 9357 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 9358 } else 9359 assert(!ULE->isStdAssociatedNamespace() && 9360 "std is associated namespace but not doing ADL"); 9361#endif 9362 9363 UnbridgedCastsSet UnbridgedCasts; 9364 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) 9365 return ExprError(); 9366 9367 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 9368 9369 // Add the functions denoted by the callee to the set of candidate 9370 // functions, including those from argument-dependent lookup. 9371 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 9372 9373 // If we found nothing, try to recover. 9374 // BuildRecoveryCallExpr diagnoses the error itself, so we just bail 9375 // out if it fails. 9376 if (CandidateSet.empty()) { 9377 // In Microsoft mode, if we are inside a template class member function then 9378 // create a type dependent CallExpr. The goal is to postpone name lookup 9379 // to instantiation time to be able to search into type dependent base 9380 // classes. 9381 if (getLangOptions().MicrosoftMode && CurContext->isDependentContext() && 9382 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { 9383 CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs, 9384 Context.DependentTy, VK_RValue, 9385 RParenLoc); 9386 CE->setTypeDependent(true); 9387 return Owned(CE); 9388 } 9389 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 9390 RParenLoc, /*EmptyLookup=*/true, 9391 AllowTypoCorrection); 9392 } 9393 9394 UnbridgedCasts.restore(); 9395 9396 OverloadCandidateSet::iterator Best; 9397 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { 9398 case OR_Success: { 9399 FunctionDecl *FDecl = Best->Function; 9400 MarkFunctionReferenced(Fn->getExprLoc(), FDecl); 9401 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 9402 DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()); 9403 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 9404 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc, 9405 ExecConfig); 9406 } 9407 9408 case OR_No_Viable_Function: { 9409 // Try to recover by looking for viable functions which the user might 9410 // have meant to call. 9411 ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, 9412 Args, NumArgs, RParenLoc, 9413 /*EmptyLookup=*/false, 9414 AllowTypoCorrection); 9415 if (!Recovery.isInvalid()) 9416 return Recovery; 9417 9418 Diag(Fn->getSourceRange().getBegin(), 9419 diag::err_ovl_no_viable_function_in_call) 9420 << ULE->getName() << Fn->getSourceRange(); 9421 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9422 break; 9423 } 9424 9425 case OR_Ambiguous: 9426 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 9427 << ULE->getName() << Fn->getSourceRange(); 9428 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 9429 break; 9430 9431 case OR_Deleted: 9432 { 9433 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 9434 << Best->Function->isDeleted() 9435 << ULE->getName() 9436 << getDeletedOrUnavailableSuffix(Best->Function) 9437 << Fn->getSourceRange(); 9438 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9439 9440 // We emitted an error for the unvailable/deleted function call but keep 9441 // the call in the AST. 9442 FunctionDecl *FDecl = Best->Function; 9443 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 9444 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, 9445 RParenLoc, ExecConfig); 9446 } 9447 } 9448 9449 // Overload resolution failed. 9450 return ExprError(); 9451} 9452 9453static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 9454 return Functions.size() > 1 || 9455 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 9456} 9457 9458/// \brief Create a unary operation that may resolve to an overloaded 9459/// operator. 9460/// 9461/// \param OpLoc The location of the operator itself (e.g., '*'). 9462/// 9463/// \param OpcIn The UnaryOperator::Opcode that describes this 9464/// operator. 9465/// 9466/// \param Functions The set of non-member functions that will be 9467/// considered by overload resolution. The caller needs to build this 9468/// set based on the context using, e.g., 9469/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 9470/// set should not contain any member functions; those will be added 9471/// by CreateOverloadedUnaryOp(). 9472/// 9473/// \param input The input argument. 9474ExprResult 9475Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 9476 const UnresolvedSetImpl &Fns, 9477 Expr *Input) { 9478 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 9479 9480 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 9481 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 9482 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 9483 // TODO: provide better source location info. 9484 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 9485 9486 if (checkPlaceholderForOverload(*this, Input)) 9487 return ExprError(); 9488 9489 Expr *Args[2] = { Input, 0 }; 9490 unsigned NumArgs = 1; 9491 9492 // For post-increment and post-decrement, add the implicit '0' as 9493 // the second argument, so that we know this is a post-increment or 9494 // post-decrement. 9495 if (Opc == UO_PostInc || Opc == UO_PostDec) { 9496 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 9497 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 9498 SourceLocation()); 9499 NumArgs = 2; 9500 } 9501 9502 if (Input->isTypeDependent()) { 9503 if (Fns.empty()) 9504 return Owned(new (Context) UnaryOperator(Input, 9505 Opc, 9506 Context.DependentTy, 9507 VK_RValue, OK_Ordinary, 9508 OpLoc)); 9509 9510 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 9511 UnresolvedLookupExpr *Fn 9512 = UnresolvedLookupExpr::Create(Context, NamingClass, 9513 NestedNameSpecifierLoc(), OpNameInfo, 9514 /*ADL*/ true, IsOverloaded(Fns), 9515 Fns.begin(), Fns.end()); 9516 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 9517 &Args[0], NumArgs, 9518 Context.DependentTy, 9519 VK_RValue, 9520 OpLoc)); 9521 } 9522 9523 // Build an empty overload set. 9524 OverloadCandidateSet CandidateSet(OpLoc); 9525 9526 // Add the candidates from the given function set. 9527 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 9528 9529 // Add operator candidates that are member functions. 9530 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 9531 9532 // Add candidates from ADL. 9533 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 9534 Args, NumArgs, 9535 /*ExplicitTemplateArgs*/ 0, 9536 CandidateSet); 9537 9538 // Add builtin operator candidates. 9539 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 9540 9541 bool HadMultipleCandidates = (CandidateSet.size() > 1); 9542 9543 // Perform overload resolution. 9544 OverloadCandidateSet::iterator Best; 9545 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 9546 case OR_Success: { 9547 // We found a built-in operator or an overloaded operator. 9548 FunctionDecl *FnDecl = Best->Function; 9549 9550 if (FnDecl) { 9551 // We matched an overloaded operator. Build a call to that 9552 // operator. 9553 9554 MarkFunctionReferenced(OpLoc, FnDecl); 9555 9556 // Convert the arguments. 9557 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 9558 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 9559 9560 ExprResult InputRes = 9561 PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 9562 Best->FoundDecl, Method); 9563 if (InputRes.isInvalid()) 9564 return ExprError(); 9565 Input = InputRes.take(); 9566 } else { 9567 // Convert the arguments. 9568 ExprResult InputInit 9569 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 9570 Context, 9571 FnDecl->getParamDecl(0)), 9572 SourceLocation(), 9573 Input); 9574 if (InputInit.isInvalid()) 9575 return ExprError(); 9576 Input = InputInit.take(); 9577 } 9578 9579 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 9580 9581 // Determine the result type. 9582 QualType ResultTy = FnDecl->getResultType(); 9583 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9584 ResultTy = ResultTy.getNonLValueExprType(Context); 9585 9586 // Build the actual expression node. 9587 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 9588 HadMultipleCandidates); 9589 if (FnExpr.isInvalid()) 9590 return ExprError(); 9591 9592 Args[0] = Input; 9593 CallExpr *TheCall = 9594 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 9595 Args, NumArgs, ResultTy, VK, OpLoc); 9596 9597 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 9598 FnDecl)) 9599 return ExprError(); 9600 9601 return MaybeBindToTemporary(TheCall); 9602 } else { 9603 // We matched a built-in operator. Convert the arguments, then 9604 // break out so that we will build the appropriate built-in 9605 // operator node. 9606 ExprResult InputRes = 9607 PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 9608 Best->Conversions[0], AA_Passing); 9609 if (InputRes.isInvalid()) 9610 return ExprError(); 9611 Input = InputRes.take(); 9612 break; 9613 } 9614 } 9615 9616 case OR_No_Viable_Function: 9617 // This is an erroneous use of an operator which can be overloaded by 9618 // a non-member function. Check for non-member operators which were 9619 // defined too late to be candidates. 9620 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs)) 9621 // FIXME: Recover by calling the found function. 9622 return ExprError(); 9623 9624 // No viable function; fall through to handling this as a 9625 // built-in operator, which will produce an error message for us. 9626 break; 9627 9628 case OR_Ambiguous: 9629 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 9630 << UnaryOperator::getOpcodeStr(Opc) 9631 << Input->getType() 9632 << Input->getSourceRange(); 9633 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs, 9634 UnaryOperator::getOpcodeStr(Opc), OpLoc); 9635 return ExprError(); 9636 9637 case OR_Deleted: 9638 Diag(OpLoc, diag::err_ovl_deleted_oper) 9639 << Best->Function->isDeleted() 9640 << UnaryOperator::getOpcodeStr(Opc) 9641 << getDeletedOrUnavailableSuffix(Best->Function) 9642 << Input->getSourceRange(); 9643 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs, 9644 UnaryOperator::getOpcodeStr(Opc), OpLoc); 9645 return ExprError(); 9646 } 9647 9648 // Either we found no viable overloaded operator or we matched a 9649 // built-in operator. In either case, fall through to trying to 9650 // build a built-in operation. 9651 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 9652} 9653 9654/// \brief Create a binary operation that may resolve to an overloaded 9655/// operator. 9656/// 9657/// \param OpLoc The location of the operator itself (e.g., '+'). 9658/// 9659/// \param OpcIn The BinaryOperator::Opcode that describes this 9660/// operator. 9661/// 9662/// \param Functions The set of non-member functions that will be 9663/// considered by overload resolution. The caller needs to build this 9664/// set based on the context using, e.g., 9665/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 9666/// set should not contain any member functions; those will be added 9667/// by CreateOverloadedBinOp(). 9668/// 9669/// \param LHS Left-hand argument. 9670/// \param RHS Right-hand argument. 9671ExprResult 9672Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 9673 unsigned OpcIn, 9674 const UnresolvedSetImpl &Fns, 9675 Expr *LHS, Expr *RHS) { 9676 Expr *Args[2] = { LHS, RHS }; 9677 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 9678 9679 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 9680 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 9681 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 9682 9683 // If either side is type-dependent, create an appropriate dependent 9684 // expression. 9685 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 9686 if (Fns.empty()) { 9687 // If there are no functions to store, just build a dependent 9688 // BinaryOperator or CompoundAssignment. 9689 if (Opc <= BO_Assign || Opc > BO_OrAssign) 9690 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 9691 Context.DependentTy, 9692 VK_RValue, OK_Ordinary, 9693 OpLoc)); 9694 9695 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 9696 Context.DependentTy, 9697 VK_LValue, 9698 OK_Ordinary, 9699 Context.DependentTy, 9700 Context.DependentTy, 9701 OpLoc)); 9702 } 9703 9704 // FIXME: save results of ADL from here? 9705 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 9706 // TODO: provide better source location info in DNLoc component. 9707 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 9708 UnresolvedLookupExpr *Fn 9709 = UnresolvedLookupExpr::Create(Context, NamingClass, 9710 NestedNameSpecifierLoc(), OpNameInfo, 9711 /*ADL*/ true, IsOverloaded(Fns), 9712 Fns.begin(), Fns.end()); 9713 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 9714 Args, 2, 9715 Context.DependentTy, 9716 VK_RValue, 9717 OpLoc)); 9718 } 9719 9720 // Always do placeholder-like conversions on the RHS. 9721 if (checkPlaceholderForOverload(*this, Args[1])) 9722 return ExprError(); 9723 9724 // Do placeholder-like conversion on the LHS; note that we should 9725 // not get here with a PseudoObject LHS. 9726 assert(Args[0]->getObjectKind() != OK_ObjCProperty); 9727 if (checkPlaceholderForOverload(*this, Args[0])) 9728 return ExprError(); 9729 9730 // If this is the assignment operator, we only perform overload resolution 9731 // if the left-hand side is a class or enumeration type. This is actually 9732 // a hack. The standard requires that we do overload resolution between the 9733 // various built-in candidates, but as DR507 points out, this can lead to 9734 // problems. So we do it this way, which pretty much follows what GCC does. 9735 // Note that we go the traditional code path for compound assignment forms. 9736 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 9737 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 9738 9739 // If this is the .* operator, which is not overloadable, just 9740 // create a built-in binary operator. 9741 if (Opc == BO_PtrMemD) 9742 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 9743 9744 // Build an empty overload set. 9745 OverloadCandidateSet CandidateSet(OpLoc); 9746 9747 // Add the candidates from the given function set. 9748 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 9749 9750 // Add operator candidates that are member functions. 9751 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 9752 9753 // Add candidates from ADL. 9754 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 9755 Args, 2, 9756 /*ExplicitTemplateArgs*/ 0, 9757 CandidateSet); 9758 9759 // Add builtin operator candidates. 9760 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 9761 9762 bool HadMultipleCandidates = (CandidateSet.size() > 1); 9763 9764 // Perform overload resolution. 9765 OverloadCandidateSet::iterator Best; 9766 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 9767 case OR_Success: { 9768 // We found a built-in operator or an overloaded operator. 9769 FunctionDecl *FnDecl = Best->Function; 9770 9771 if (FnDecl) { 9772 // We matched an overloaded operator. Build a call to that 9773 // operator. 9774 9775 MarkFunctionReferenced(OpLoc, FnDecl); 9776 9777 // Convert the arguments. 9778 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 9779 // Best->Access is only meaningful for class members. 9780 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 9781 9782 ExprResult Arg1 = 9783 PerformCopyInitialization( 9784 InitializedEntity::InitializeParameter(Context, 9785 FnDecl->getParamDecl(0)), 9786 SourceLocation(), Owned(Args[1])); 9787 if (Arg1.isInvalid()) 9788 return ExprError(); 9789 9790 ExprResult Arg0 = 9791 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 9792 Best->FoundDecl, Method); 9793 if (Arg0.isInvalid()) 9794 return ExprError(); 9795 Args[0] = Arg0.takeAs<Expr>(); 9796 Args[1] = RHS = Arg1.takeAs<Expr>(); 9797 } else { 9798 // Convert the arguments. 9799 ExprResult Arg0 = PerformCopyInitialization( 9800 InitializedEntity::InitializeParameter(Context, 9801 FnDecl->getParamDecl(0)), 9802 SourceLocation(), Owned(Args[0])); 9803 if (Arg0.isInvalid()) 9804 return ExprError(); 9805 9806 ExprResult Arg1 = 9807 PerformCopyInitialization( 9808 InitializedEntity::InitializeParameter(Context, 9809 FnDecl->getParamDecl(1)), 9810 SourceLocation(), Owned(Args[1])); 9811 if (Arg1.isInvalid()) 9812 return ExprError(); 9813 Args[0] = LHS = Arg0.takeAs<Expr>(); 9814 Args[1] = RHS = Arg1.takeAs<Expr>(); 9815 } 9816 9817 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 9818 9819 // Determine the result type. 9820 QualType ResultTy = FnDecl->getResultType(); 9821 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9822 ResultTy = ResultTy.getNonLValueExprType(Context); 9823 9824 // Build the actual expression node. 9825 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 9826 HadMultipleCandidates, OpLoc); 9827 if (FnExpr.isInvalid()) 9828 return ExprError(); 9829 9830 CXXOperatorCallExpr *TheCall = 9831 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 9832 Args, 2, ResultTy, VK, OpLoc); 9833 9834 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 9835 FnDecl)) 9836 return ExprError(); 9837 9838 return MaybeBindToTemporary(TheCall); 9839 } else { 9840 // We matched a built-in operator. Convert the arguments, then 9841 // break out so that we will build the appropriate built-in 9842 // operator node. 9843 ExprResult ArgsRes0 = 9844 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 9845 Best->Conversions[0], AA_Passing); 9846 if (ArgsRes0.isInvalid()) 9847 return ExprError(); 9848 Args[0] = ArgsRes0.take(); 9849 9850 ExprResult ArgsRes1 = 9851 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 9852 Best->Conversions[1], AA_Passing); 9853 if (ArgsRes1.isInvalid()) 9854 return ExprError(); 9855 Args[1] = ArgsRes1.take(); 9856 break; 9857 } 9858 } 9859 9860 case OR_No_Viable_Function: { 9861 // C++ [over.match.oper]p9: 9862 // If the operator is the operator , [...] and there are no 9863 // viable functions, then the operator is assumed to be the 9864 // built-in operator and interpreted according to clause 5. 9865 if (Opc == BO_Comma) 9866 break; 9867 9868 // For class as left operand for assignment or compound assigment 9869 // operator do not fall through to handling in built-in, but report that 9870 // no overloaded assignment operator found 9871 ExprResult Result = ExprError(); 9872 if (Args[0]->getType()->isRecordType() && 9873 Opc >= BO_Assign && Opc <= BO_OrAssign) { 9874 Diag(OpLoc, diag::err_ovl_no_viable_oper) 9875 << BinaryOperator::getOpcodeStr(Opc) 9876 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9877 } else { 9878 // This is an erroneous use of an operator which can be overloaded by 9879 // a non-member function. Check for non-member operators which were 9880 // defined too late to be candidates. 9881 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2)) 9882 // FIXME: Recover by calling the found function. 9883 return ExprError(); 9884 9885 // No viable function; try to create a built-in operation, which will 9886 // produce an error. Then, show the non-viable candidates. 9887 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 9888 } 9889 assert(Result.isInvalid() && 9890 "C++ binary operator overloading is missing candidates!"); 9891 if (Result.isInvalid()) 9892 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 9893 BinaryOperator::getOpcodeStr(Opc), OpLoc); 9894 return move(Result); 9895 } 9896 9897 case OR_Ambiguous: 9898 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) 9899 << BinaryOperator::getOpcodeStr(Opc) 9900 << Args[0]->getType() << Args[1]->getType() 9901 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9902 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 9903 BinaryOperator::getOpcodeStr(Opc), OpLoc); 9904 return ExprError(); 9905 9906 case OR_Deleted: 9907 Diag(OpLoc, diag::err_ovl_deleted_oper) 9908 << Best->Function->isDeleted() 9909 << BinaryOperator::getOpcodeStr(Opc) 9910 << getDeletedOrUnavailableSuffix(Best->Function) 9911 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9912 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 9913 BinaryOperator::getOpcodeStr(Opc), OpLoc); 9914 return ExprError(); 9915 } 9916 9917 // We matched a built-in operator; build it. 9918 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 9919} 9920 9921ExprResult 9922Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 9923 SourceLocation RLoc, 9924 Expr *Base, Expr *Idx) { 9925 Expr *Args[2] = { Base, Idx }; 9926 DeclarationName OpName = 9927 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 9928 9929 // If either side is type-dependent, create an appropriate dependent 9930 // expression. 9931 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 9932 9933 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 9934 // CHECKME: no 'operator' keyword? 9935 DeclarationNameInfo OpNameInfo(OpName, LLoc); 9936 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 9937 UnresolvedLookupExpr *Fn 9938 = UnresolvedLookupExpr::Create(Context, NamingClass, 9939 NestedNameSpecifierLoc(), OpNameInfo, 9940 /*ADL*/ true, /*Overloaded*/ false, 9941 UnresolvedSetIterator(), 9942 UnresolvedSetIterator()); 9943 // Can't add any actual overloads yet 9944 9945 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 9946 Args, 2, 9947 Context.DependentTy, 9948 VK_RValue, 9949 RLoc)); 9950 } 9951 9952 // Handle placeholders on both operands. 9953 if (checkPlaceholderForOverload(*this, Args[0])) 9954 return ExprError(); 9955 if (checkPlaceholderForOverload(*this, Args[1])) 9956 return ExprError(); 9957 9958 // Build an empty overload set. 9959 OverloadCandidateSet CandidateSet(LLoc); 9960 9961 // Subscript can only be overloaded as a member function. 9962 9963 // Add operator candidates that are member functions. 9964 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 9965 9966 // Add builtin operator candidates. 9967 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 9968 9969 bool HadMultipleCandidates = (CandidateSet.size() > 1); 9970 9971 // Perform overload resolution. 9972 OverloadCandidateSet::iterator Best; 9973 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 9974 case OR_Success: { 9975 // We found a built-in operator or an overloaded operator. 9976 FunctionDecl *FnDecl = Best->Function; 9977 9978 if (FnDecl) { 9979 // We matched an overloaded operator. Build a call to that 9980 // operator. 9981 9982 MarkFunctionReferenced(LLoc, FnDecl); 9983 9984 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 9985 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 9986 9987 // Convert the arguments. 9988 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 9989 ExprResult Arg0 = 9990 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 9991 Best->FoundDecl, Method); 9992 if (Arg0.isInvalid()) 9993 return ExprError(); 9994 Args[0] = Arg0.take(); 9995 9996 // Convert the arguments. 9997 ExprResult InputInit 9998 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 9999 Context, 10000 FnDecl->getParamDecl(0)), 10001 SourceLocation(), 10002 Owned(Args[1])); 10003 if (InputInit.isInvalid()) 10004 return ExprError(); 10005 10006 Args[1] = InputInit.takeAs<Expr>(); 10007 10008 // Determine the result type 10009 QualType ResultTy = FnDecl->getResultType(); 10010 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 10011 ResultTy = ResultTy.getNonLValueExprType(Context); 10012 10013 // Build the actual expression node. 10014 DeclarationNameLoc LocInfo; 10015 LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding(); 10016 LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding(); 10017 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 10018 HadMultipleCandidates, 10019 LLoc, LocInfo); 10020 if (FnExpr.isInvalid()) 10021 return ExprError(); 10022 10023 CXXOperatorCallExpr *TheCall = 10024 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 10025 FnExpr.take(), Args, 2, 10026 ResultTy, VK, RLoc); 10027 10028 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, 10029 FnDecl)) 10030 return ExprError(); 10031 10032 return MaybeBindToTemporary(TheCall); 10033 } else { 10034 // We matched a built-in operator. Convert the arguments, then 10035 // break out so that we will build the appropriate built-in 10036 // operator node. 10037 ExprResult ArgsRes0 = 10038 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 10039 Best->Conversions[0], AA_Passing); 10040 if (ArgsRes0.isInvalid()) 10041 return ExprError(); 10042 Args[0] = ArgsRes0.take(); 10043 10044 ExprResult ArgsRes1 = 10045 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 10046 Best->Conversions[1], AA_Passing); 10047 if (ArgsRes1.isInvalid()) 10048 return ExprError(); 10049 Args[1] = ArgsRes1.take(); 10050 10051 break; 10052 } 10053 } 10054 10055 case OR_No_Viable_Function: { 10056 if (CandidateSet.empty()) 10057 Diag(LLoc, diag::err_ovl_no_oper) 10058 << Args[0]->getType() << /*subscript*/ 0 10059 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10060 else 10061 Diag(LLoc, diag::err_ovl_no_viable_subscript) 10062 << Args[0]->getType() 10063 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10064 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 10065 "[]", LLoc); 10066 return ExprError(); 10067 } 10068 10069 case OR_Ambiguous: 10070 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) 10071 << "[]" 10072 << Args[0]->getType() << Args[1]->getType() 10073 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10074 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 10075 "[]", LLoc); 10076 return ExprError(); 10077 10078 case OR_Deleted: 10079 Diag(LLoc, diag::err_ovl_deleted_oper) 10080 << Best->Function->isDeleted() << "[]" 10081 << getDeletedOrUnavailableSuffix(Best->Function) 10082 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10083 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 10084 "[]", LLoc); 10085 return ExprError(); 10086 } 10087 10088 // We matched a built-in operator; build it. 10089 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 10090} 10091 10092/// BuildCallToMemberFunction - Build a call to a member 10093/// function. MemExpr is the expression that refers to the member 10094/// function (and includes the object parameter), Args/NumArgs are the 10095/// arguments to the function call (not including the object 10096/// parameter). The caller needs to validate that the member 10097/// expression refers to a non-static member function or an overloaded 10098/// member function. 10099ExprResult 10100Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 10101 SourceLocation LParenLoc, Expr **Args, 10102 unsigned NumArgs, SourceLocation RParenLoc) { 10103 assert(MemExprE->getType() == Context.BoundMemberTy || 10104 MemExprE->getType() == Context.OverloadTy); 10105 10106 // Dig out the member expression. This holds both the object 10107 // argument and the member function we're referring to. 10108 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 10109 10110 // Determine whether this is a call to a pointer-to-member function. 10111 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 10112 assert(op->getType() == Context.BoundMemberTy); 10113 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 10114 10115 QualType fnType = 10116 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 10117 10118 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 10119 QualType resultType = proto->getCallResultType(Context); 10120 ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType()); 10121 10122 // Check that the object type isn't more qualified than the 10123 // member function we're calling. 10124 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals()); 10125 10126 QualType objectType = op->getLHS()->getType(); 10127 if (op->getOpcode() == BO_PtrMemI) 10128 objectType = objectType->castAs<PointerType>()->getPointeeType(); 10129 Qualifiers objectQuals = objectType.getQualifiers(); 10130 10131 Qualifiers difference = objectQuals - funcQuals; 10132 difference.removeObjCGCAttr(); 10133 difference.removeAddressSpace(); 10134 if (difference) { 10135 std::string qualsString = difference.getAsString(); 10136 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 10137 << fnType.getUnqualifiedType() 10138 << qualsString 10139 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 10140 } 10141 10142 CXXMemberCallExpr *call 10143 = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 10144 resultType, valueKind, RParenLoc); 10145 10146 if (CheckCallReturnType(proto->getResultType(), 10147 op->getRHS()->getSourceRange().getBegin(), 10148 call, 0)) 10149 return ExprError(); 10150 10151 if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc)) 10152 return ExprError(); 10153 10154 return MaybeBindToTemporary(call); 10155 } 10156 10157 UnbridgedCastsSet UnbridgedCasts; 10158 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) 10159 return ExprError(); 10160 10161 MemberExpr *MemExpr; 10162 CXXMethodDecl *Method = 0; 10163 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 10164 NestedNameSpecifier *Qualifier = 0; 10165 if (isa<MemberExpr>(NakedMemExpr)) { 10166 MemExpr = cast<MemberExpr>(NakedMemExpr); 10167 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 10168 FoundDecl = MemExpr->getFoundDecl(); 10169 Qualifier = MemExpr->getQualifier(); 10170 UnbridgedCasts.restore(); 10171 } else { 10172 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 10173 Qualifier = UnresExpr->getQualifier(); 10174 10175 QualType ObjectType = UnresExpr->getBaseType(); 10176 Expr::Classification ObjectClassification 10177 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 10178 : UnresExpr->getBase()->Classify(Context); 10179 10180 // Add overload candidates 10181 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 10182 10183 // FIXME: avoid copy. 10184 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 10185 if (UnresExpr->hasExplicitTemplateArgs()) { 10186 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 10187 TemplateArgs = &TemplateArgsBuffer; 10188 } 10189 10190 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 10191 E = UnresExpr->decls_end(); I != E; ++I) { 10192 10193 NamedDecl *Func = *I; 10194 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 10195 if (isa<UsingShadowDecl>(Func)) 10196 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 10197 10198 10199 // Microsoft supports direct constructor calls. 10200 if (getLangOptions().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { 10201 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs, 10202 CandidateSet); 10203 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 10204 // If explicit template arguments were provided, we can't call a 10205 // non-template member function. 10206 if (TemplateArgs) 10207 continue; 10208 10209 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 10210 ObjectClassification, 10211 Args, NumArgs, CandidateSet, 10212 /*SuppressUserConversions=*/false); 10213 } else { 10214 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 10215 I.getPair(), ActingDC, TemplateArgs, 10216 ObjectType, ObjectClassification, 10217 Args, NumArgs, CandidateSet, 10218 /*SuppressUsedConversions=*/false); 10219 } 10220 } 10221 10222 DeclarationName DeclName = UnresExpr->getMemberName(); 10223 10224 UnbridgedCasts.restore(); 10225 10226 OverloadCandidateSet::iterator Best; 10227 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 10228 Best)) { 10229 case OR_Success: 10230 Method = cast<CXXMethodDecl>(Best->Function); 10231 MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method); 10232 FoundDecl = Best->FoundDecl; 10233 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 10234 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 10235 break; 10236 10237 case OR_No_Viable_Function: 10238 Diag(UnresExpr->getMemberLoc(), 10239 diag::err_ovl_no_viable_member_function_in_call) 10240 << DeclName << MemExprE->getSourceRange(); 10241 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 10242 // FIXME: Leaking incoming expressions! 10243 return ExprError(); 10244 10245 case OR_Ambiguous: 10246 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 10247 << DeclName << MemExprE->getSourceRange(); 10248 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 10249 // FIXME: Leaking incoming expressions! 10250 return ExprError(); 10251 10252 case OR_Deleted: 10253 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 10254 << Best->Function->isDeleted() 10255 << DeclName 10256 << getDeletedOrUnavailableSuffix(Best->Function) 10257 << MemExprE->getSourceRange(); 10258 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 10259 // FIXME: Leaking incoming expressions! 10260 return ExprError(); 10261 } 10262 10263 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 10264 10265 // If overload resolution picked a static member, build a 10266 // non-member call based on that function. 10267 if (Method->isStatic()) { 10268 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 10269 Args, NumArgs, RParenLoc); 10270 } 10271 10272 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 10273 } 10274 10275 QualType ResultType = Method->getResultType(); 10276 ExprValueKind VK = Expr::getValueKindForType(ResultType); 10277 ResultType = ResultType.getNonLValueExprType(Context); 10278 10279 assert(Method && "Member call to something that isn't a method?"); 10280 CXXMemberCallExpr *TheCall = 10281 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 10282 ResultType, VK, RParenLoc); 10283 10284 // Check for a valid return type. 10285 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 10286 TheCall, Method)) 10287 return ExprError(); 10288 10289 // Convert the object argument (for a non-static member function call). 10290 // We only need to do this if there was actually an overload; otherwise 10291 // it was done at lookup. 10292 if (!Method->isStatic()) { 10293 ExprResult ObjectArg = 10294 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 10295 FoundDecl, Method); 10296 if (ObjectArg.isInvalid()) 10297 return ExprError(); 10298 MemExpr->setBase(ObjectArg.take()); 10299 } 10300 10301 // Convert the rest of the arguments 10302 const FunctionProtoType *Proto = 10303 Method->getType()->getAs<FunctionProtoType>(); 10304 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, 10305 RParenLoc)) 10306 return ExprError(); 10307 10308 if (CheckFunctionCall(Method, TheCall)) 10309 return ExprError(); 10310 10311 if ((isa<CXXConstructorDecl>(CurContext) || 10312 isa<CXXDestructorDecl>(CurContext)) && 10313 TheCall->getMethodDecl()->isPure()) { 10314 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 10315 10316 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) { 10317 Diag(MemExpr->getLocStart(), 10318 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 10319 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 10320 << MD->getParent()->getDeclName(); 10321 10322 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName(); 10323 } 10324 } 10325 return MaybeBindToTemporary(TheCall); 10326} 10327 10328/// BuildCallToObjectOfClassType - Build a call to an object of class 10329/// type (C++ [over.call.object]), which can end up invoking an 10330/// overloaded function call operator (@c operator()) or performing a 10331/// user-defined conversion on the object argument. 10332ExprResult 10333Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 10334 SourceLocation LParenLoc, 10335 Expr **Args, unsigned NumArgs, 10336 SourceLocation RParenLoc) { 10337 if (checkPlaceholderForOverload(*this, Obj)) 10338 return ExprError(); 10339 ExprResult Object = Owned(Obj); 10340 10341 UnbridgedCastsSet UnbridgedCasts; 10342 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) 10343 return ExprError(); 10344 10345 assert(Object.get()->getType()->isRecordType() && "Requires object type argument"); 10346 const RecordType *Record = Object.get()->getType()->getAs<RecordType>(); 10347 10348 // C++ [over.call.object]p1: 10349 // If the primary-expression E in the function call syntax 10350 // evaluates to a class object of type "cv T", then the set of 10351 // candidate functions includes at least the function call 10352 // operators of T. The function call operators of T are obtained by 10353 // ordinary lookup of the name operator() in the context of 10354 // (E).operator(). 10355 OverloadCandidateSet CandidateSet(LParenLoc); 10356 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 10357 10358 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 10359 PDiag(diag::err_incomplete_object_call) 10360 << Object.get()->getSourceRange())) 10361 return true; 10362 10363 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 10364 LookupQualifiedName(R, Record->getDecl()); 10365 R.suppressDiagnostics(); 10366 10367 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 10368 Oper != OperEnd; ++Oper) { 10369 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 10370 Object.get()->Classify(Context), Args, NumArgs, CandidateSet, 10371 /*SuppressUserConversions=*/ false); 10372 } 10373 10374 // C++ [over.call.object]p2: 10375 // In addition, for each (non-explicit in C++0x) conversion function 10376 // declared in T of the form 10377 // 10378 // operator conversion-type-id () cv-qualifier; 10379 // 10380 // where cv-qualifier is the same cv-qualification as, or a 10381 // greater cv-qualification than, cv, and where conversion-type-id 10382 // denotes the type "pointer to function of (P1,...,Pn) returning 10383 // R", or the type "reference to pointer to function of 10384 // (P1,...,Pn) returning R", or the type "reference to function 10385 // of (P1,...,Pn) returning R", a surrogate call function [...] 10386 // is also considered as a candidate function. Similarly, 10387 // surrogate call functions are added to the set of candidate 10388 // functions for each conversion function declared in an 10389 // accessible base class provided the function is not hidden 10390 // within T by another intervening declaration. 10391 const UnresolvedSetImpl *Conversions 10392 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 10393 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 10394 E = Conversions->end(); I != E; ++I) { 10395 NamedDecl *D = *I; 10396 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 10397 if (isa<UsingShadowDecl>(D)) 10398 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 10399 10400 // Skip over templated conversion functions; they aren't 10401 // surrogates. 10402 if (isa<FunctionTemplateDecl>(D)) 10403 continue; 10404 10405 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 10406 if (!Conv->isExplicit()) { 10407 // Strip the reference type (if any) and then the pointer type (if 10408 // any) to get down to what might be a function type. 10409 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 10410 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 10411 ConvType = ConvPtrType->getPointeeType(); 10412 10413 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 10414 { 10415 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 10416 Object.get(), Args, NumArgs, CandidateSet); 10417 } 10418 } 10419 } 10420 10421 bool HadMultipleCandidates = (CandidateSet.size() > 1); 10422 10423 // Perform overload resolution. 10424 OverloadCandidateSet::iterator Best; 10425 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(), 10426 Best)) { 10427 case OR_Success: 10428 // Overload resolution succeeded; we'll build the appropriate call 10429 // below. 10430 break; 10431 10432 case OR_No_Viable_Function: 10433 if (CandidateSet.empty()) 10434 Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper) 10435 << Object.get()->getType() << /*call*/ 1 10436 << Object.get()->getSourceRange(); 10437 else 10438 Diag(Object.get()->getSourceRange().getBegin(), 10439 diag::err_ovl_no_viable_object_call) 10440 << Object.get()->getType() << Object.get()->getSourceRange(); 10441 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 10442 break; 10443 10444 case OR_Ambiguous: 10445 Diag(Object.get()->getSourceRange().getBegin(), 10446 diag::err_ovl_ambiguous_object_call) 10447 << Object.get()->getType() << Object.get()->getSourceRange(); 10448 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 10449 break; 10450 10451 case OR_Deleted: 10452 Diag(Object.get()->getSourceRange().getBegin(), 10453 diag::err_ovl_deleted_object_call) 10454 << Best->Function->isDeleted() 10455 << Object.get()->getType() 10456 << getDeletedOrUnavailableSuffix(Best->Function) 10457 << Object.get()->getSourceRange(); 10458 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 10459 break; 10460 } 10461 10462 if (Best == CandidateSet.end()) 10463 return true; 10464 10465 UnbridgedCasts.restore(); 10466 10467 if (Best->Function == 0) { 10468 // Since there is no function declaration, this is one of the 10469 // surrogate candidates. Dig out the conversion function. 10470 CXXConversionDecl *Conv 10471 = cast<CXXConversionDecl>( 10472 Best->Conversions[0].UserDefined.ConversionFunction); 10473 10474 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 10475 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 10476 10477 // We selected one of the surrogate functions that converts the 10478 // object parameter to a function pointer. Perform the conversion 10479 // on the object argument, then let ActOnCallExpr finish the job. 10480 10481 // Create an implicit member expr to refer to the conversion operator. 10482 // and then call it. 10483 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, 10484 Conv, HadMultipleCandidates); 10485 if (Call.isInvalid()) 10486 return ExprError(); 10487 // Record usage of conversion in an implicit cast. 10488 Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(), 10489 CK_UserDefinedConversion, 10490 Call.get(), 0, VK_RValue)); 10491 10492 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs), 10493 RParenLoc); 10494 } 10495 10496 MarkFunctionReferenced(LParenLoc, Best->Function); 10497 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 10498 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 10499 10500 // We found an overloaded operator(). Build a CXXOperatorCallExpr 10501 // that calls this method, using Object for the implicit object 10502 // parameter and passing along the remaining arguments. 10503 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 10504 const FunctionProtoType *Proto = 10505 Method->getType()->getAs<FunctionProtoType>(); 10506 10507 unsigned NumArgsInProto = Proto->getNumArgs(); 10508 unsigned NumArgsToCheck = NumArgs; 10509 10510 // Build the full argument list for the method call (the 10511 // implicit object parameter is placed at the beginning of the 10512 // list). 10513 Expr **MethodArgs; 10514 if (NumArgs < NumArgsInProto) { 10515 NumArgsToCheck = NumArgsInProto; 10516 MethodArgs = new Expr*[NumArgsInProto + 1]; 10517 } else { 10518 MethodArgs = new Expr*[NumArgs + 1]; 10519 } 10520 MethodArgs[0] = Object.get(); 10521 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 10522 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 10523 10524 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, 10525 HadMultipleCandidates); 10526 if (NewFn.isInvalid()) 10527 return true; 10528 10529 // Once we've built TheCall, all of the expressions are properly 10530 // owned. 10531 QualType ResultTy = Method->getResultType(); 10532 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 10533 ResultTy = ResultTy.getNonLValueExprType(Context); 10534 10535 CXXOperatorCallExpr *TheCall = 10536 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(), 10537 MethodArgs, NumArgs + 1, 10538 ResultTy, VK, RParenLoc); 10539 delete [] MethodArgs; 10540 10541 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, 10542 Method)) 10543 return true; 10544 10545 // We may have default arguments. If so, we need to allocate more 10546 // slots in the call for them. 10547 if (NumArgs < NumArgsInProto) 10548 TheCall->setNumArgs(Context, NumArgsInProto + 1); 10549 else if (NumArgs > NumArgsInProto) 10550 NumArgsToCheck = NumArgsInProto; 10551 10552 bool IsError = false; 10553 10554 // Initialize the implicit object parameter. 10555 ExprResult ObjRes = 10556 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0, 10557 Best->FoundDecl, Method); 10558 if (ObjRes.isInvalid()) 10559 IsError = true; 10560 else 10561 Object = move(ObjRes); 10562 TheCall->setArg(0, Object.take()); 10563 10564 // Check the argument types. 10565 for (unsigned i = 0; i != NumArgsToCheck; i++) { 10566 Expr *Arg; 10567 if (i < NumArgs) { 10568 Arg = Args[i]; 10569 10570 // Pass the argument. 10571 10572 ExprResult InputInit 10573 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 10574 Context, 10575 Method->getParamDecl(i)), 10576 SourceLocation(), Arg); 10577 10578 IsError |= InputInit.isInvalid(); 10579 Arg = InputInit.takeAs<Expr>(); 10580 } else { 10581 ExprResult DefArg 10582 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 10583 if (DefArg.isInvalid()) { 10584 IsError = true; 10585 break; 10586 } 10587 10588 Arg = DefArg.takeAs<Expr>(); 10589 } 10590 10591 TheCall->setArg(i + 1, Arg); 10592 } 10593 10594 // If this is a variadic call, handle args passed through "...". 10595 if (Proto->isVariadic()) { 10596 // Promote the arguments (C99 6.5.2.2p7). 10597 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 10598 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0); 10599 IsError |= Arg.isInvalid(); 10600 TheCall->setArg(i + 1, Arg.take()); 10601 } 10602 } 10603 10604 if (IsError) return true; 10605 10606 if (CheckFunctionCall(Method, TheCall)) 10607 return true; 10608 10609 return MaybeBindToTemporary(TheCall); 10610} 10611 10612/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 10613/// (if one exists), where @c Base is an expression of class type and 10614/// @c Member is the name of the member we're trying to find. 10615ExprResult 10616Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { 10617 assert(Base->getType()->isRecordType() && 10618 "left-hand side must have class type"); 10619 10620 if (checkPlaceholderForOverload(*this, Base)) 10621 return ExprError(); 10622 10623 SourceLocation Loc = Base->getExprLoc(); 10624 10625 // C++ [over.ref]p1: 10626 // 10627 // [...] An expression x->m is interpreted as (x.operator->())->m 10628 // for a class object x of type T if T::operator->() exists and if 10629 // the operator is selected as the best match function by the 10630 // overload resolution mechanism (13.3). 10631 DeclarationName OpName = 10632 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 10633 OverloadCandidateSet CandidateSet(Loc); 10634 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 10635 10636 if (RequireCompleteType(Loc, Base->getType(), 10637 PDiag(diag::err_typecheck_incomplete_tag) 10638 << Base->getSourceRange())) 10639 return ExprError(); 10640 10641 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 10642 LookupQualifiedName(R, BaseRecord->getDecl()); 10643 R.suppressDiagnostics(); 10644 10645 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 10646 Oper != OperEnd; ++Oper) { 10647 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 10648 0, 0, CandidateSet, /*SuppressUserConversions=*/false); 10649 } 10650 10651 bool HadMultipleCandidates = (CandidateSet.size() > 1); 10652 10653 // Perform overload resolution. 10654 OverloadCandidateSet::iterator Best; 10655 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 10656 case OR_Success: 10657 // Overload resolution succeeded; we'll build the call below. 10658 break; 10659 10660 case OR_No_Viable_Function: 10661 if (CandidateSet.empty()) 10662 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 10663 << Base->getType() << Base->getSourceRange(); 10664 else 10665 Diag(OpLoc, diag::err_ovl_no_viable_oper) 10666 << "operator->" << Base->getSourceRange(); 10667 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 10668 return ExprError(); 10669 10670 case OR_Ambiguous: 10671 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 10672 << "->" << Base->getType() << Base->getSourceRange(); 10673 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); 10674 return ExprError(); 10675 10676 case OR_Deleted: 10677 Diag(OpLoc, diag::err_ovl_deleted_oper) 10678 << Best->Function->isDeleted() 10679 << "->" 10680 << getDeletedOrUnavailableSuffix(Best->Function) 10681 << Base->getSourceRange(); 10682 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 10683 return ExprError(); 10684 } 10685 10686 MarkFunctionReferenced(OpLoc, Best->Function); 10687 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 10688 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 10689 10690 // Convert the object parameter. 10691 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 10692 ExprResult BaseResult = 10693 PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 10694 Best->FoundDecl, Method); 10695 if (BaseResult.isInvalid()) 10696 return ExprError(); 10697 Base = BaseResult.take(); 10698 10699 // Build the operator call. 10700 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, 10701 HadMultipleCandidates); 10702 if (FnExpr.isInvalid()) 10703 return ExprError(); 10704 10705 QualType ResultTy = Method->getResultType(); 10706 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 10707 ResultTy = ResultTy.getNonLValueExprType(Context); 10708 CXXOperatorCallExpr *TheCall = 10709 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(), 10710 &Base, 1, ResultTy, VK, OpLoc); 10711 10712 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, 10713 Method)) 10714 return ExprError(); 10715 10716 return MaybeBindToTemporary(TheCall); 10717} 10718 10719/// FixOverloadedFunctionReference - E is an expression that refers to 10720/// a C++ overloaded function (possibly with some parentheses and 10721/// perhaps a '&' around it). We have resolved the overloaded function 10722/// to the function declaration Fn, so patch up the expression E to 10723/// refer (possibly indirectly) to Fn. Returns the new expr. 10724Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 10725 FunctionDecl *Fn) { 10726 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 10727 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 10728 Found, Fn); 10729 if (SubExpr == PE->getSubExpr()) 10730 return PE; 10731 10732 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 10733 } 10734 10735 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 10736 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 10737 Found, Fn); 10738 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 10739 SubExpr->getType()) && 10740 "Implicit cast type cannot be determined from overload"); 10741 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 10742 if (SubExpr == ICE->getSubExpr()) 10743 return ICE; 10744 10745 return ImplicitCastExpr::Create(Context, ICE->getType(), 10746 ICE->getCastKind(), 10747 SubExpr, 0, 10748 ICE->getValueKind()); 10749 } 10750 10751 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 10752 assert(UnOp->getOpcode() == UO_AddrOf && 10753 "Can only take the address of an overloaded function"); 10754 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 10755 if (Method->isStatic()) { 10756 // Do nothing: static member functions aren't any different 10757 // from non-member functions. 10758 } else { 10759 // Fix the sub expression, which really has to be an 10760 // UnresolvedLookupExpr holding an overloaded member function 10761 // or template. 10762 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 10763 Found, Fn); 10764 if (SubExpr == UnOp->getSubExpr()) 10765 return UnOp; 10766 10767 assert(isa<DeclRefExpr>(SubExpr) 10768 && "fixed to something other than a decl ref"); 10769 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 10770 && "fixed to a member ref with no nested name qualifier"); 10771 10772 // We have taken the address of a pointer to member 10773 // function. Perform the computation here so that we get the 10774 // appropriate pointer to member type. 10775 QualType ClassType 10776 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 10777 QualType MemPtrType 10778 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 10779 10780 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, 10781 VK_RValue, OK_Ordinary, 10782 UnOp->getOperatorLoc()); 10783 } 10784 } 10785 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 10786 Found, Fn); 10787 if (SubExpr == UnOp->getSubExpr()) 10788 return UnOp; 10789 10790 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 10791 Context.getPointerType(SubExpr->getType()), 10792 VK_RValue, OK_Ordinary, 10793 UnOp->getOperatorLoc()); 10794 } 10795 10796 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 10797 // FIXME: avoid copy. 10798 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 10799 if (ULE->hasExplicitTemplateArgs()) { 10800 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 10801 TemplateArgs = &TemplateArgsBuffer; 10802 } 10803 10804 DeclRefExpr *DRE = DeclRefExpr::Create(Context, 10805 ULE->getQualifierLoc(), 10806 ULE->getTemplateKeywordLoc(), 10807 Fn, 10808 ULE->getNameLoc(), 10809 Fn->getType(), 10810 VK_LValue, 10811 Found.getDecl(), 10812 TemplateArgs); 10813 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); 10814 return DRE; 10815 } 10816 10817 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 10818 // FIXME: avoid copy. 10819 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 10820 if (MemExpr->hasExplicitTemplateArgs()) { 10821 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 10822 TemplateArgs = &TemplateArgsBuffer; 10823 } 10824 10825 Expr *Base; 10826 10827 // If we're filling in a static method where we used to have an 10828 // implicit member access, rewrite to a simple decl ref. 10829 if (MemExpr->isImplicitAccess()) { 10830 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 10831 DeclRefExpr *DRE = DeclRefExpr::Create(Context, 10832 MemExpr->getQualifierLoc(), 10833 MemExpr->getTemplateKeywordLoc(), 10834 Fn, 10835 MemExpr->getMemberLoc(), 10836 Fn->getType(), 10837 VK_LValue, 10838 Found.getDecl(), 10839 TemplateArgs); 10840 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); 10841 return DRE; 10842 } else { 10843 SourceLocation Loc = MemExpr->getMemberLoc(); 10844 if (MemExpr->getQualifier()) 10845 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 10846 CheckCXXThisCapture(Loc); 10847 Base = new (Context) CXXThisExpr(Loc, 10848 MemExpr->getBaseType(), 10849 /*isImplicit=*/true); 10850 } 10851 } else 10852 Base = MemExpr->getBase(); 10853 10854 ExprValueKind valueKind; 10855 QualType type; 10856 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 10857 valueKind = VK_LValue; 10858 type = Fn->getType(); 10859 } else { 10860 valueKind = VK_RValue; 10861 type = Context.BoundMemberTy; 10862 } 10863 10864 MemberExpr *ME = MemberExpr::Create(Context, Base, 10865 MemExpr->isArrow(), 10866 MemExpr->getQualifierLoc(), 10867 MemExpr->getTemplateKeywordLoc(), 10868 Fn, 10869 Found, 10870 MemExpr->getMemberNameInfo(), 10871 TemplateArgs, 10872 type, valueKind, OK_Ordinary); 10873 ME->setHadMultipleCandidates(true); 10874 return ME; 10875 } 10876 10877 llvm_unreachable("Invalid reference to overloaded function"); 10878} 10879 10880ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 10881 DeclAccessPair Found, 10882 FunctionDecl *Fn) { 10883 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 10884} 10885 10886} // end namespace clang 10887