SemaOverload.cpp revision 335b07ae470045dab25739ded6541744ec8fe40b
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/TypeOrdering.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/STLExtras.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  Deprecated = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
148  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
149
150  // Note that FromType has not necessarily been transformed by the
151  // array-to-pointer or function-to-pointer implicit conversions, so
152  // check for their presence as well as checking whether FromType is
153  // a pointer.
154  if (ToType->isBooleanType() &&
155      (FromType->isPointerType() || FromType->isBlockPointerType() ||
156       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
157    return true;
158
159  return false;
160}
161
162/// isPointerConversionToVoidPointer - Determines whether this
163/// conversion is a conversion of a pointer to a void pointer. This is
164/// used as part of the ranking of standard conversion sequences (C++
165/// 13.3.3.2p4).
166bool
167StandardConversionSequence::
168isPointerConversionToVoidPointer(ASTContext& Context) const {
169  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
170  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
171
172  // Note that FromType has not necessarily been transformed by the
173  // array-to-pointer implicit conversion, so check for its presence
174  // and redo the conversion to get a pointer.
175  if (First == ICK_Array_To_Pointer)
176    FromType = Context.getArrayDecayedType(FromType);
177
178  if (Second == ICK_Pointer_Conversion)
179    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
180      return ToPtrType->getPointeeType()->isVoidType();
181
182  return false;
183}
184
185/// DebugPrint - Print this standard conversion sequence to standard
186/// error. Useful for debugging overloading issues.
187void StandardConversionSequence::DebugPrint() const {
188  bool PrintedSomething = false;
189  if (First != ICK_Identity) {
190    fprintf(stderr, "%s", GetImplicitConversionName(First));
191    PrintedSomething = true;
192  }
193
194  if (Second != ICK_Identity) {
195    if (PrintedSomething) {
196      fprintf(stderr, " -> ");
197    }
198    fprintf(stderr, "%s", GetImplicitConversionName(Second));
199
200    if (CopyConstructor) {
201      fprintf(stderr, " (by copy constructor)");
202    } else if (DirectBinding) {
203      fprintf(stderr, " (direct reference binding)");
204    } else if (ReferenceBinding) {
205      fprintf(stderr, " (reference binding)");
206    }
207    PrintedSomething = true;
208  }
209
210  if (Third != ICK_Identity) {
211    if (PrintedSomething) {
212      fprintf(stderr, " -> ");
213    }
214    fprintf(stderr, "%s", GetImplicitConversionName(Third));
215    PrintedSomething = true;
216  }
217
218  if (!PrintedSomething) {
219    fprintf(stderr, "No conversions required");
220  }
221}
222
223/// DebugPrint - Print this user-defined conversion sequence to standard
224/// error. Useful for debugging overloading issues.
225void UserDefinedConversionSequence::DebugPrint() const {
226  if (Before.First || Before.Second || Before.Third) {
227    Before.DebugPrint();
228    fprintf(stderr, " -> ");
229  }
230  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
231  if (After.First || After.Second || After.Third) {
232    fprintf(stderr, " -> ");
233    After.DebugPrint();
234  }
235}
236
237/// DebugPrint - Print this implicit conversion sequence to standard
238/// error. Useful for debugging overloading issues.
239void ImplicitConversionSequence::DebugPrint() const {
240  switch (ConversionKind) {
241  case StandardConversion:
242    fprintf(stderr, "Standard conversion: ");
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    fprintf(stderr, "User-defined conversion: ");
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    fprintf(stderr, "Ellipsis conversion");
251    break;
252  case BadConversion:
253    fprintf(stderr, "Bad conversion");
254    break;
255  }
256
257  fprintf(stderr, "\n");
258}
259
260// IsOverload - Determine whether the given New declaration is an
261// overload of the declarations in Old. This routine returns false if
262// New and Old cannot be overloaded, e.g., if New has the same
263// signature as some function in Old (C++ 1.3.10) or if the Old
264// declarations aren't functions (or function templates) at all. When
265// it does return false, MatchedDecl will point to the decl that New
266// cannot be overloaded with.  This decl may be a UsingShadowDecl on
267// top of the underlying declaration.
268//
269// Example: Given the following input:
270//
271//   void f(int, float); // #1
272//   void f(int, int); // #2
273//   int f(int, int); // #3
274//
275// When we process #1, there is no previous declaration of "f",
276// so IsOverload will not be used.
277//
278// When we process #2, Old contains only the FunctionDecl for #1.  By
279// comparing the parameter types, we see that #1 and #2 are overloaded
280// (since they have different signatures), so this routine returns
281// false; MatchedDecl is unchanged.
282//
283// When we process #3, Old is an overload set containing #1 and #2. We
284// compare the signatures of #3 to #1 (they're overloaded, so we do
285// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
286// identical (return types of functions are not part of the
287// signature), IsOverload returns false and MatchedDecl will be set to
288// point to the FunctionDecl for #2.
289Sema::OverloadKind
290Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
291                    NamedDecl *&Match) {
292  for (LookupResult::iterator I = Old.begin(), E = Old.end();
293         I != E; ++I) {
294    NamedDecl *OldD = (*I)->getUnderlyingDecl();
295    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
296      if (!IsOverload(New, OldT->getTemplatedDecl())) {
297        Match = *I;
298        return Ovl_Match;
299      }
300    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
301      if (!IsOverload(New, OldF)) {
302        Match = *I;
303        return Ovl_Match;
304      }
305    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
306      // We can overload with these, which can show up when doing
307      // redeclaration checks for UsingDecls.
308      assert(Old.getLookupKind() == LookupUsingDeclName);
309    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
310      // Optimistically assume that an unresolved using decl will
311      // overload; if it doesn't, we'll have to diagnose during
312      // template instantiation.
313    } else {
314      // (C++ 13p1):
315      //   Only function declarations can be overloaded; object and type
316      //   declarations cannot be overloaded.
317      Match = *I;
318      return Ovl_NonFunction;
319    }
320  }
321
322  return Ovl_Overload;
323}
324
325bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
326  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
327  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
328
329  // C++ [temp.fct]p2:
330  //   A function template can be overloaded with other function templates
331  //   and with normal (non-template) functions.
332  if ((OldTemplate == 0) != (NewTemplate == 0))
333    return true;
334
335  // Is the function New an overload of the function Old?
336  QualType OldQType = Context.getCanonicalType(Old->getType());
337  QualType NewQType = Context.getCanonicalType(New->getType());
338
339  // Compare the signatures (C++ 1.3.10) of the two functions to
340  // determine whether they are overloads. If we find any mismatch
341  // in the signature, they are overloads.
342
343  // If either of these functions is a K&R-style function (no
344  // prototype), then we consider them to have matching signatures.
345  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
346      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
347    return false;
348
349  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
350  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
351
352  // The signature of a function includes the types of its
353  // parameters (C++ 1.3.10), which includes the presence or absence
354  // of the ellipsis; see C++ DR 357).
355  if (OldQType != NewQType &&
356      (OldType->getNumArgs() != NewType->getNumArgs() ||
357       OldType->isVariadic() != NewType->isVariadic() ||
358       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
359                   NewType->arg_type_begin())))
360    return true;
361
362  // C++ [temp.over.link]p4:
363  //   The signature of a function template consists of its function
364  //   signature, its return type and its template parameter list. The names
365  //   of the template parameters are significant only for establishing the
366  //   relationship between the template parameters and the rest of the
367  //   signature.
368  //
369  // We check the return type and template parameter lists for function
370  // templates first; the remaining checks follow.
371  if (NewTemplate &&
372      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
373                                       OldTemplate->getTemplateParameters(),
374                                       false, TPL_TemplateMatch) ||
375       OldType->getResultType() != NewType->getResultType()))
376    return true;
377
378  // If the function is a class member, its signature includes the
379  // cv-qualifiers (if any) on the function itself.
380  //
381  // As part of this, also check whether one of the member functions
382  // is static, in which case they are not overloads (C++
383  // 13.1p2). While not part of the definition of the signature,
384  // this check is important to determine whether these functions
385  // can be overloaded.
386  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
387  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
388  if (OldMethod && NewMethod &&
389      !OldMethod->isStatic() && !NewMethod->isStatic() &&
390      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
391    return true;
392
393  // The signatures match; this is not an overload.
394  return false;
395}
396
397/// TryImplicitConversion - Attempt to perform an implicit conversion
398/// from the given expression (Expr) to the given type (ToType). This
399/// function returns an implicit conversion sequence that can be used
400/// to perform the initialization. Given
401///
402///   void f(float f);
403///   void g(int i) { f(i); }
404///
405/// this routine would produce an implicit conversion sequence to
406/// describe the initialization of f from i, which will be a standard
407/// conversion sequence containing an lvalue-to-rvalue conversion (C++
408/// 4.1) followed by a floating-integral conversion (C++ 4.9).
409//
410/// Note that this routine only determines how the conversion can be
411/// performed; it does not actually perform the conversion. As such,
412/// it will not produce any diagnostics if no conversion is available,
413/// but will instead return an implicit conversion sequence of kind
414/// "BadConversion".
415///
416/// If @p SuppressUserConversions, then user-defined conversions are
417/// not permitted.
418/// If @p AllowExplicit, then explicit user-defined conversions are
419/// permitted.
420/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
421/// no matter its actual lvalueness.
422/// If @p UserCast, the implicit conversion is being done for a user-specified
423/// cast.
424ImplicitConversionSequence
425Sema::TryImplicitConversion(Expr* From, QualType ToType,
426                            bool SuppressUserConversions,
427                            bool AllowExplicit, bool ForceRValue,
428                            bool InOverloadResolution,
429                            bool UserCast) {
430  ImplicitConversionSequence ICS;
431  OverloadCandidateSet Conversions;
432  OverloadingResult UserDefResult = OR_Success;
433  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
434    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
435  else if (getLangOptions().CPlusPlus &&
436           (UserDefResult = IsUserDefinedConversion(From, ToType,
437                                   ICS.UserDefined,
438                                   Conversions,
439                                   !SuppressUserConversions, AllowExplicit,
440				   ForceRValue, UserCast)) == OR_Success) {
441    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
442    // C++ [over.ics.user]p4:
443    //   A conversion of an expression of class type to the same class
444    //   type is given Exact Match rank, and a conversion of an
445    //   expression of class type to a base class of that type is
446    //   given Conversion rank, in spite of the fact that a copy
447    //   constructor (i.e., a user-defined conversion function) is
448    //   called for those cases.
449    if (CXXConstructorDecl *Constructor
450          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
451      QualType FromCanon
452        = Context.getCanonicalType(From->getType().getUnqualifiedType());
453      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
454      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
455        // Turn this into a "standard" conversion sequence, so that it
456        // gets ranked with standard conversion sequences.
457        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
458        ICS.Standard.setAsIdentityConversion();
459        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
460        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
461        ICS.Standard.CopyConstructor = Constructor;
462        if (ToCanon != FromCanon)
463          ICS.Standard.Second = ICK_Derived_To_Base;
464      }
465    }
466
467    // C++ [over.best.ics]p4:
468    //   However, when considering the argument of a user-defined
469    //   conversion function that is a candidate by 13.3.1.3 when
470    //   invoked for the copying of the temporary in the second step
471    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
472    //   13.3.1.6 in all cases, only standard conversion sequences and
473    //   ellipsis conversion sequences are allowed.
474    if (SuppressUserConversions &&
475        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
476      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
477  } else {
478    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
479    if (UserDefResult == OR_Ambiguous) {
480      for (OverloadCandidateSet::iterator Cand = Conversions.begin();
481           Cand != Conversions.end(); ++Cand)
482        if (Cand->Viable)
483          ICS.ConversionFunctionSet.push_back(Cand->Function);
484    }
485  }
486
487  return ICS;
488}
489
490/// \brief Determine whether the conversion from FromType to ToType is a valid
491/// conversion that strips "noreturn" off the nested function type.
492static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
493                                 QualType ToType, QualType &ResultTy) {
494  if (Context.hasSameUnqualifiedType(FromType, ToType))
495    return false;
496
497  // Strip the noreturn off the type we're converting from; noreturn can
498  // safely be removed.
499  FromType = Context.getNoReturnType(FromType, false);
500  if (!Context.hasSameUnqualifiedType(FromType, ToType))
501    return false;
502
503  ResultTy = FromType;
504  return true;
505}
506
507/// IsStandardConversion - Determines whether there is a standard
508/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
509/// expression From to the type ToType. Standard conversion sequences
510/// only consider non-class types; for conversions that involve class
511/// types, use TryImplicitConversion. If a conversion exists, SCS will
512/// contain the standard conversion sequence required to perform this
513/// conversion and this routine will return true. Otherwise, this
514/// routine will return false and the value of SCS is unspecified.
515bool
516Sema::IsStandardConversion(Expr* From, QualType ToType,
517                           bool InOverloadResolution,
518                           StandardConversionSequence &SCS) {
519  QualType FromType = From->getType();
520
521  // Standard conversions (C++ [conv])
522  SCS.setAsIdentityConversion();
523  SCS.Deprecated = false;
524  SCS.IncompatibleObjC = false;
525  SCS.FromTypePtr = FromType.getAsOpaquePtr();
526  SCS.CopyConstructor = 0;
527
528  // There are no standard conversions for class types in C++, so
529  // abort early. When overloading in C, however, we do permit
530  if (FromType->isRecordType() || ToType->isRecordType()) {
531    if (getLangOptions().CPlusPlus)
532      return false;
533
534    // When we're overloading in C, we allow, as standard conversions,
535  }
536
537  // The first conversion can be an lvalue-to-rvalue conversion,
538  // array-to-pointer conversion, or function-to-pointer conversion
539  // (C++ 4p1).
540
541  // Lvalue-to-rvalue conversion (C++ 4.1):
542  //   An lvalue (3.10) of a non-function, non-array type T can be
543  //   converted to an rvalue.
544  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
545  if (argIsLvalue == Expr::LV_Valid &&
546      !FromType->isFunctionType() && !FromType->isArrayType() &&
547      Context.getCanonicalType(FromType) != Context.OverloadTy) {
548    SCS.First = ICK_Lvalue_To_Rvalue;
549
550    // If T is a non-class type, the type of the rvalue is the
551    // cv-unqualified version of T. Otherwise, the type of the rvalue
552    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
553    // just strip the qualifiers because they don't matter.
554    FromType = FromType.getUnqualifiedType();
555  } else if (FromType->isArrayType()) {
556    // Array-to-pointer conversion (C++ 4.2)
557    SCS.First = ICK_Array_To_Pointer;
558
559    // An lvalue or rvalue of type "array of N T" or "array of unknown
560    // bound of T" can be converted to an rvalue of type "pointer to
561    // T" (C++ 4.2p1).
562    FromType = Context.getArrayDecayedType(FromType);
563
564    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
565      // This conversion is deprecated. (C++ D.4).
566      SCS.Deprecated = true;
567
568      // For the purpose of ranking in overload resolution
569      // (13.3.3.1.1), this conversion is considered an
570      // array-to-pointer conversion followed by a qualification
571      // conversion (4.4). (C++ 4.2p2)
572      SCS.Second = ICK_Identity;
573      SCS.Third = ICK_Qualification;
574      SCS.ToTypePtr = ToType.getAsOpaquePtr();
575      return true;
576    }
577  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
578    // Function-to-pointer conversion (C++ 4.3).
579    SCS.First = ICK_Function_To_Pointer;
580
581    // An lvalue of function type T can be converted to an rvalue of
582    // type "pointer to T." The result is a pointer to the
583    // function. (C++ 4.3p1).
584    FromType = Context.getPointerType(FromType);
585  } else if (FunctionDecl *Fn
586               = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
587    // Address of overloaded function (C++ [over.over]).
588    SCS.First = ICK_Function_To_Pointer;
589
590    // We were able to resolve the address of the overloaded function,
591    // so we can convert to the type of that function.
592    FromType = Fn->getType();
593    if (ToType->isLValueReferenceType())
594      FromType = Context.getLValueReferenceType(FromType);
595    else if (ToType->isRValueReferenceType())
596      FromType = Context.getRValueReferenceType(FromType);
597    else if (ToType->isMemberPointerType()) {
598      // Resolve address only succeeds if both sides are member pointers,
599      // but it doesn't have to be the same class. See DR 247.
600      // Note that this means that the type of &Derived::fn can be
601      // Ret (Base::*)(Args) if the fn overload actually found is from the
602      // base class, even if it was brought into the derived class via a
603      // using declaration. The standard isn't clear on this issue at all.
604      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
605      FromType = Context.getMemberPointerType(FromType,
606                    Context.getTypeDeclType(M->getParent()).getTypePtr());
607    } else
608      FromType = Context.getPointerType(FromType);
609  } else {
610    // We don't require any conversions for the first step.
611    SCS.First = ICK_Identity;
612  }
613
614  // The second conversion can be an integral promotion, floating
615  // point promotion, integral conversion, floating point conversion,
616  // floating-integral conversion, pointer conversion,
617  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
618  // For overloading in C, this can also be a "compatible-type"
619  // conversion.
620  bool IncompatibleObjC = false;
621  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
622    // The unqualified versions of the types are the same: there's no
623    // conversion to do.
624    SCS.Second = ICK_Identity;
625  } else if (IsIntegralPromotion(From, FromType, ToType)) {
626    // Integral promotion (C++ 4.5).
627    SCS.Second = ICK_Integral_Promotion;
628    FromType = ToType.getUnqualifiedType();
629  } else if (IsFloatingPointPromotion(FromType, ToType)) {
630    // Floating point promotion (C++ 4.6).
631    SCS.Second = ICK_Floating_Promotion;
632    FromType = ToType.getUnqualifiedType();
633  } else if (IsComplexPromotion(FromType, ToType)) {
634    // Complex promotion (Clang extension)
635    SCS.Second = ICK_Complex_Promotion;
636    FromType = ToType.getUnqualifiedType();
637  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
638           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
639    // Integral conversions (C++ 4.7).
640    // FIXME: isIntegralType shouldn't be true for enums in C++.
641    SCS.Second = ICK_Integral_Conversion;
642    FromType = ToType.getUnqualifiedType();
643  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
644    // Floating point conversions (C++ 4.8).
645    SCS.Second = ICK_Floating_Conversion;
646    FromType = ToType.getUnqualifiedType();
647  } else if (FromType->isComplexType() && ToType->isComplexType()) {
648    // Complex conversions (C99 6.3.1.6)
649    SCS.Second = ICK_Complex_Conversion;
650    FromType = ToType.getUnqualifiedType();
651  } else if ((FromType->isFloatingType() &&
652              ToType->isIntegralType() && (!ToType->isBooleanType() &&
653                                           !ToType->isEnumeralType())) ||
654             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
655              ToType->isFloatingType())) {
656    // Floating-integral conversions (C++ 4.9).
657    // FIXME: isIntegralType shouldn't be true for enums in C++.
658    SCS.Second = ICK_Floating_Integral;
659    FromType = ToType.getUnqualifiedType();
660  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
661             (ToType->isComplexType() && FromType->isArithmeticType())) {
662    // Complex-real conversions (C99 6.3.1.7)
663    SCS.Second = ICK_Complex_Real;
664    FromType = ToType.getUnqualifiedType();
665  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
666                                 FromType, IncompatibleObjC)) {
667    // Pointer conversions (C++ 4.10).
668    SCS.Second = ICK_Pointer_Conversion;
669    SCS.IncompatibleObjC = IncompatibleObjC;
670  } else if (IsMemberPointerConversion(From, FromType, ToType,
671                                       InOverloadResolution, FromType)) {
672    // Pointer to member conversions (4.11).
673    SCS.Second = ICK_Pointer_Member;
674  } else if (ToType->isBooleanType() &&
675             (FromType->isArithmeticType() ||
676              FromType->isEnumeralType() ||
677              FromType->isAnyPointerType() ||
678              FromType->isBlockPointerType() ||
679              FromType->isMemberPointerType() ||
680              FromType->isNullPtrType())) {
681    // Boolean conversions (C++ 4.12).
682    SCS.Second = ICK_Boolean_Conversion;
683    FromType = Context.BoolTy;
684  } else if (!getLangOptions().CPlusPlus &&
685             Context.typesAreCompatible(ToType, FromType)) {
686    // Compatible conversions (Clang extension for C function overloading)
687    SCS.Second = ICK_Compatible_Conversion;
688  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
689    // Treat a conversion that strips "noreturn" as an identity conversion.
690    SCS.Second = ICK_NoReturn_Adjustment;
691  } else {
692    // No second conversion required.
693    SCS.Second = ICK_Identity;
694  }
695
696  QualType CanonFrom;
697  QualType CanonTo;
698  // The third conversion can be a qualification conversion (C++ 4p1).
699  if (IsQualificationConversion(FromType, ToType)) {
700    SCS.Third = ICK_Qualification;
701    FromType = ToType;
702    CanonFrom = Context.getCanonicalType(FromType);
703    CanonTo = Context.getCanonicalType(ToType);
704  } else {
705    // No conversion required
706    SCS.Third = ICK_Identity;
707
708    // C++ [over.best.ics]p6:
709    //   [...] Any difference in top-level cv-qualification is
710    //   subsumed by the initialization itself and does not constitute
711    //   a conversion. [...]
712    CanonFrom = Context.getCanonicalType(FromType);
713    CanonTo = Context.getCanonicalType(ToType);
714    if (CanonFrom.getLocalUnqualifiedType()
715                                       == CanonTo.getLocalUnqualifiedType() &&
716        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
717      FromType = ToType;
718      CanonFrom = CanonTo;
719    }
720  }
721
722  // If we have not converted the argument type to the parameter type,
723  // this is a bad conversion sequence.
724  if (CanonFrom != CanonTo)
725    return false;
726
727  SCS.ToTypePtr = FromType.getAsOpaquePtr();
728  return true;
729}
730
731/// IsIntegralPromotion - Determines whether the conversion from the
732/// expression From (whose potentially-adjusted type is FromType) to
733/// ToType is an integral promotion (C++ 4.5). If so, returns true and
734/// sets PromotedType to the promoted type.
735bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
736  const BuiltinType *To = ToType->getAs<BuiltinType>();
737  // All integers are built-in.
738  if (!To) {
739    return false;
740  }
741
742  // An rvalue of type char, signed char, unsigned char, short int, or
743  // unsigned short int can be converted to an rvalue of type int if
744  // int can represent all the values of the source type; otherwise,
745  // the source rvalue can be converted to an rvalue of type unsigned
746  // int (C++ 4.5p1).
747  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
748    if (// We can promote any signed, promotable integer type to an int
749        (FromType->isSignedIntegerType() ||
750         // We can promote any unsigned integer type whose size is
751         // less than int to an int.
752         (!FromType->isSignedIntegerType() &&
753          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
754      return To->getKind() == BuiltinType::Int;
755    }
756
757    return To->getKind() == BuiltinType::UInt;
758  }
759
760  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
761  // can be converted to an rvalue of the first of the following types
762  // that can represent all the values of its underlying type: int,
763  // unsigned int, long, or unsigned long (C++ 4.5p2).
764
765  // We pre-calculate the promotion type for enum types.
766  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
767    if (ToType->isIntegerType())
768      return Context.hasSameUnqualifiedType(ToType,
769                                FromEnumType->getDecl()->getPromotionType());
770
771  if (FromType->isWideCharType() && ToType->isIntegerType()) {
772    // Determine whether the type we're converting from is signed or
773    // unsigned.
774    bool FromIsSigned;
775    uint64_t FromSize = Context.getTypeSize(FromType);
776
777    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
778    FromIsSigned = true;
779
780    // The types we'll try to promote to, in the appropriate
781    // order. Try each of these types.
782    QualType PromoteTypes[6] = {
783      Context.IntTy, Context.UnsignedIntTy,
784      Context.LongTy, Context.UnsignedLongTy ,
785      Context.LongLongTy, Context.UnsignedLongLongTy
786    };
787    for (int Idx = 0; Idx < 6; ++Idx) {
788      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
789      if (FromSize < ToSize ||
790          (FromSize == ToSize &&
791           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
792        // We found the type that we can promote to. If this is the
793        // type we wanted, we have a promotion. Otherwise, no
794        // promotion.
795        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
796      }
797    }
798  }
799
800  // An rvalue for an integral bit-field (9.6) can be converted to an
801  // rvalue of type int if int can represent all the values of the
802  // bit-field; otherwise, it can be converted to unsigned int if
803  // unsigned int can represent all the values of the bit-field. If
804  // the bit-field is larger yet, no integral promotion applies to
805  // it. If the bit-field has an enumerated type, it is treated as any
806  // other value of that type for promotion purposes (C++ 4.5p3).
807  // FIXME: We should delay checking of bit-fields until we actually perform the
808  // conversion.
809  using llvm::APSInt;
810  if (From)
811    if (FieldDecl *MemberDecl = From->getBitField()) {
812      APSInt BitWidth;
813      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
814          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
815        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
816        ToSize = Context.getTypeSize(ToType);
817
818        // Are we promoting to an int from a bitfield that fits in an int?
819        if (BitWidth < ToSize ||
820            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
821          return To->getKind() == BuiltinType::Int;
822        }
823
824        // Are we promoting to an unsigned int from an unsigned bitfield
825        // that fits into an unsigned int?
826        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
827          return To->getKind() == BuiltinType::UInt;
828        }
829
830        return false;
831      }
832    }
833
834  // An rvalue of type bool can be converted to an rvalue of type int,
835  // with false becoming zero and true becoming one (C++ 4.5p4).
836  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
837    return true;
838  }
839
840  return false;
841}
842
843/// IsFloatingPointPromotion - Determines whether the conversion from
844/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
845/// returns true and sets PromotedType to the promoted type.
846bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
847  /// An rvalue of type float can be converted to an rvalue of type
848  /// double. (C++ 4.6p1).
849  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
850    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
851      if (FromBuiltin->getKind() == BuiltinType::Float &&
852          ToBuiltin->getKind() == BuiltinType::Double)
853        return true;
854
855      // C99 6.3.1.5p1:
856      //   When a float is promoted to double or long double, or a
857      //   double is promoted to long double [...].
858      if (!getLangOptions().CPlusPlus &&
859          (FromBuiltin->getKind() == BuiltinType::Float ||
860           FromBuiltin->getKind() == BuiltinType::Double) &&
861          (ToBuiltin->getKind() == BuiltinType::LongDouble))
862        return true;
863    }
864
865  return false;
866}
867
868/// \brief Determine if a conversion is a complex promotion.
869///
870/// A complex promotion is defined as a complex -> complex conversion
871/// where the conversion between the underlying real types is a
872/// floating-point or integral promotion.
873bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
874  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
875  if (!FromComplex)
876    return false;
877
878  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
879  if (!ToComplex)
880    return false;
881
882  return IsFloatingPointPromotion(FromComplex->getElementType(),
883                                  ToComplex->getElementType()) ||
884    IsIntegralPromotion(0, FromComplex->getElementType(),
885                        ToComplex->getElementType());
886}
887
888/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
889/// the pointer type FromPtr to a pointer to type ToPointee, with the
890/// same type qualifiers as FromPtr has on its pointee type. ToType,
891/// if non-empty, will be a pointer to ToType that may or may not have
892/// the right set of qualifiers on its pointee.
893static QualType
894BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
895                                   QualType ToPointee, QualType ToType,
896                                   ASTContext &Context) {
897  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
898  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
899  Qualifiers Quals = CanonFromPointee.getQualifiers();
900
901  // Exact qualifier match -> return the pointer type we're converting to.
902  if (CanonToPointee.getLocalQualifiers() == Quals) {
903    // ToType is exactly what we need. Return it.
904    if (!ToType.isNull())
905      return ToType;
906
907    // Build a pointer to ToPointee. It has the right qualifiers
908    // already.
909    return Context.getPointerType(ToPointee);
910  }
911
912  // Just build a canonical type that has the right qualifiers.
913  return Context.getPointerType(
914         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
915                                  Quals));
916}
917
918static bool isNullPointerConstantForConversion(Expr *Expr,
919                                               bool InOverloadResolution,
920                                               ASTContext &Context) {
921  // Handle value-dependent integral null pointer constants correctly.
922  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
923  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
924      Expr->getType()->isIntegralType())
925    return !InOverloadResolution;
926
927  return Expr->isNullPointerConstant(Context,
928                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
929                                        : Expr::NPC_ValueDependentIsNull);
930}
931
932/// IsPointerConversion - Determines whether the conversion of the
933/// expression From, which has the (possibly adjusted) type FromType,
934/// can be converted to the type ToType via a pointer conversion (C++
935/// 4.10). If so, returns true and places the converted type (that
936/// might differ from ToType in its cv-qualifiers at some level) into
937/// ConvertedType.
938///
939/// This routine also supports conversions to and from block pointers
940/// and conversions with Objective-C's 'id', 'id<protocols...>', and
941/// pointers to interfaces. FIXME: Once we've determined the
942/// appropriate overloading rules for Objective-C, we may want to
943/// split the Objective-C checks into a different routine; however,
944/// GCC seems to consider all of these conversions to be pointer
945/// conversions, so for now they live here. IncompatibleObjC will be
946/// set if the conversion is an allowed Objective-C conversion that
947/// should result in a warning.
948bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
949                               bool InOverloadResolution,
950                               QualType& ConvertedType,
951                               bool &IncompatibleObjC) {
952  IncompatibleObjC = false;
953  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
954    return true;
955
956  // Conversion from a null pointer constant to any Objective-C pointer type.
957  if (ToType->isObjCObjectPointerType() &&
958      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
959    ConvertedType = ToType;
960    return true;
961  }
962
963  // Blocks: Block pointers can be converted to void*.
964  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
965      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
966    ConvertedType = ToType;
967    return true;
968  }
969  // Blocks: A null pointer constant can be converted to a block
970  // pointer type.
971  if (ToType->isBlockPointerType() &&
972      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
973    ConvertedType = ToType;
974    return true;
975  }
976
977  // If the left-hand-side is nullptr_t, the right side can be a null
978  // pointer constant.
979  if (ToType->isNullPtrType() &&
980      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
981    ConvertedType = ToType;
982    return true;
983  }
984
985  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
986  if (!ToTypePtr)
987    return false;
988
989  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
990  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
991    ConvertedType = ToType;
992    return true;
993  }
994
995  // Beyond this point, both types need to be pointers.
996  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
997  if (!FromTypePtr)
998    return false;
999
1000  QualType FromPointeeType = FromTypePtr->getPointeeType();
1001  QualType ToPointeeType = ToTypePtr->getPointeeType();
1002
1003  // An rvalue of type "pointer to cv T," where T is an object type,
1004  // can be converted to an rvalue of type "pointer to cv void" (C++
1005  // 4.10p2).
1006  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1007    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1008                                                       ToPointeeType,
1009                                                       ToType, Context);
1010    return true;
1011  }
1012
1013  // When we're overloading in C, we allow a special kind of pointer
1014  // conversion for compatible-but-not-identical pointee types.
1015  if (!getLangOptions().CPlusPlus &&
1016      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1017    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1018                                                       ToPointeeType,
1019                                                       ToType, Context);
1020    return true;
1021  }
1022
1023  // C++ [conv.ptr]p3:
1024  //
1025  //   An rvalue of type "pointer to cv D," where D is a class type,
1026  //   can be converted to an rvalue of type "pointer to cv B," where
1027  //   B is a base class (clause 10) of D. If B is an inaccessible
1028  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1029  //   necessitates this conversion is ill-formed. The result of the
1030  //   conversion is a pointer to the base class sub-object of the
1031  //   derived class object. The null pointer value is converted to
1032  //   the null pointer value of the destination type.
1033  //
1034  // Note that we do not check for ambiguity or inaccessibility
1035  // here. That is handled by CheckPointerConversion.
1036  if (getLangOptions().CPlusPlus &&
1037      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1038      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1039      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1040    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1041                                                       ToPointeeType,
1042                                                       ToType, Context);
1043    return true;
1044  }
1045
1046  return false;
1047}
1048
1049/// isObjCPointerConversion - Determines whether this is an
1050/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1051/// with the same arguments and return values.
1052bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1053                                   QualType& ConvertedType,
1054                                   bool &IncompatibleObjC) {
1055  if (!getLangOptions().ObjC1)
1056    return false;
1057
1058  // First, we handle all conversions on ObjC object pointer types.
1059  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1060  const ObjCObjectPointerType *FromObjCPtr =
1061    FromType->getAs<ObjCObjectPointerType>();
1062
1063  if (ToObjCPtr && FromObjCPtr) {
1064    // Objective C++: We're able to convert between "id" or "Class" and a
1065    // pointer to any interface (in both directions).
1066    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1067      ConvertedType = ToType;
1068      return true;
1069    }
1070    // Conversions with Objective-C's id<...>.
1071    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1072         ToObjCPtr->isObjCQualifiedIdType()) &&
1073        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1074                                                  /*compare=*/false)) {
1075      ConvertedType = ToType;
1076      return true;
1077    }
1078    // Objective C++: We're able to convert from a pointer to an
1079    // interface to a pointer to a different interface.
1080    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1081      ConvertedType = ToType;
1082      return true;
1083    }
1084
1085    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1086      // Okay: this is some kind of implicit downcast of Objective-C
1087      // interfaces, which is permitted. However, we're going to
1088      // complain about it.
1089      IncompatibleObjC = true;
1090      ConvertedType = FromType;
1091      return true;
1092    }
1093  }
1094  // Beyond this point, both types need to be C pointers or block pointers.
1095  QualType ToPointeeType;
1096  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1097    ToPointeeType = ToCPtr->getPointeeType();
1098  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1099    ToPointeeType = ToBlockPtr->getPointeeType();
1100  else
1101    return false;
1102
1103  QualType FromPointeeType;
1104  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1105    FromPointeeType = FromCPtr->getPointeeType();
1106  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1107    FromPointeeType = FromBlockPtr->getPointeeType();
1108  else
1109    return false;
1110
1111  // If we have pointers to pointers, recursively check whether this
1112  // is an Objective-C conversion.
1113  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1114      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1115                              IncompatibleObjC)) {
1116    // We always complain about this conversion.
1117    IncompatibleObjC = true;
1118    ConvertedType = ToType;
1119    return true;
1120  }
1121  // If we have pointers to functions or blocks, check whether the only
1122  // differences in the argument and result types are in Objective-C
1123  // pointer conversions. If so, we permit the conversion (but
1124  // complain about it).
1125  const FunctionProtoType *FromFunctionType
1126    = FromPointeeType->getAs<FunctionProtoType>();
1127  const FunctionProtoType *ToFunctionType
1128    = ToPointeeType->getAs<FunctionProtoType>();
1129  if (FromFunctionType && ToFunctionType) {
1130    // If the function types are exactly the same, this isn't an
1131    // Objective-C pointer conversion.
1132    if (Context.getCanonicalType(FromPointeeType)
1133          == Context.getCanonicalType(ToPointeeType))
1134      return false;
1135
1136    // Perform the quick checks that will tell us whether these
1137    // function types are obviously different.
1138    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1139        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1140        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1141      return false;
1142
1143    bool HasObjCConversion = false;
1144    if (Context.getCanonicalType(FromFunctionType->getResultType())
1145          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1146      // Okay, the types match exactly. Nothing to do.
1147    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1148                                       ToFunctionType->getResultType(),
1149                                       ConvertedType, IncompatibleObjC)) {
1150      // Okay, we have an Objective-C pointer conversion.
1151      HasObjCConversion = true;
1152    } else {
1153      // Function types are too different. Abort.
1154      return false;
1155    }
1156
1157    // Check argument types.
1158    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1159         ArgIdx != NumArgs; ++ArgIdx) {
1160      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1161      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1162      if (Context.getCanonicalType(FromArgType)
1163            == Context.getCanonicalType(ToArgType)) {
1164        // Okay, the types match exactly. Nothing to do.
1165      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1166                                         ConvertedType, IncompatibleObjC)) {
1167        // Okay, we have an Objective-C pointer conversion.
1168        HasObjCConversion = true;
1169      } else {
1170        // Argument types are too different. Abort.
1171        return false;
1172      }
1173    }
1174
1175    if (HasObjCConversion) {
1176      // We had an Objective-C conversion. Allow this pointer
1177      // conversion, but complain about it.
1178      ConvertedType = ToType;
1179      IncompatibleObjC = true;
1180      return true;
1181    }
1182  }
1183
1184  return false;
1185}
1186
1187/// CheckPointerConversion - Check the pointer conversion from the
1188/// expression From to the type ToType. This routine checks for
1189/// ambiguous or inaccessible derived-to-base pointer
1190/// conversions for which IsPointerConversion has already returned
1191/// true. It returns true and produces a diagnostic if there was an
1192/// error, or returns false otherwise.
1193bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1194                                  CastExpr::CastKind &Kind,
1195                                  bool IgnoreBaseAccess) {
1196  QualType FromType = From->getType();
1197
1198  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1199    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1200      QualType FromPointeeType = FromPtrType->getPointeeType(),
1201               ToPointeeType   = ToPtrType->getPointeeType();
1202
1203      if (FromPointeeType->isRecordType() &&
1204          ToPointeeType->isRecordType()) {
1205        // We must have a derived-to-base conversion. Check an
1206        // ambiguous or inaccessible conversion.
1207        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1208                                         From->getExprLoc(),
1209                                         From->getSourceRange(),
1210                                         IgnoreBaseAccess))
1211          return true;
1212
1213        // The conversion was successful.
1214        Kind = CastExpr::CK_DerivedToBase;
1215      }
1216    }
1217  if (const ObjCObjectPointerType *FromPtrType =
1218        FromType->getAs<ObjCObjectPointerType>())
1219    if (const ObjCObjectPointerType *ToPtrType =
1220          ToType->getAs<ObjCObjectPointerType>()) {
1221      // Objective-C++ conversions are always okay.
1222      // FIXME: We should have a different class of conversions for the
1223      // Objective-C++ implicit conversions.
1224      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1225        return false;
1226
1227  }
1228  return false;
1229}
1230
1231/// IsMemberPointerConversion - Determines whether the conversion of the
1232/// expression From, which has the (possibly adjusted) type FromType, can be
1233/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1234/// If so, returns true and places the converted type (that might differ from
1235/// ToType in its cv-qualifiers at some level) into ConvertedType.
1236bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1237                                     QualType ToType,
1238                                     bool InOverloadResolution,
1239                                     QualType &ConvertedType) {
1240  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1241  if (!ToTypePtr)
1242    return false;
1243
1244  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1245  if (From->isNullPointerConstant(Context,
1246                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1247                                        : Expr::NPC_ValueDependentIsNull)) {
1248    ConvertedType = ToType;
1249    return true;
1250  }
1251
1252  // Otherwise, both types have to be member pointers.
1253  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1254  if (!FromTypePtr)
1255    return false;
1256
1257  // A pointer to member of B can be converted to a pointer to member of D,
1258  // where D is derived from B (C++ 4.11p2).
1259  QualType FromClass(FromTypePtr->getClass(), 0);
1260  QualType ToClass(ToTypePtr->getClass(), 0);
1261  // FIXME: What happens when these are dependent? Is this function even called?
1262
1263  if (IsDerivedFrom(ToClass, FromClass)) {
1264    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1265                                                 ToClass.getTypePtr());
1266    return true;
1267  }
1268
1269  return false;
1270}
1271
1272/// CheckMemberPointerConversion - Check the member pointer conversion from the
1273/// expression From to the type ToType. This routine checks for ambiguous or
1274/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1275/// for which IsMemberPointerConversion has already returned true. It returns
1276/// true and produces a diagnostic if there was an error, or returns false
1277/// otherwise.
1278bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1279                                        CastExpr::CastKind &Kind,
1280                                        bool IgnoreBaseAccess) {
1281  (void)IgnoreBaseAccess;
1282  QualType FromType = From->getType();
1283  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1284  if (!FromPtrType) {
1285    // This must be a null pointer to member pointer conversion
1286    assert(From->isNullPointerConstant(Context,
1287                                       Expr::NPC_ValueDependentIsNull) &&
1288           "Expr must be null pointer constant!");
1289    Kind = CastExpr::CK_NullToMemberPointer;
1290    return false;
1291  }
1292
1293  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1294  assert(ToPtrType && "No member pointer cast has a target type "
1295                      "that is not a member pointer.");
1296
1297  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1298  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1299
1300  // FIXME: What about dependent types?
1301  assert(FromClass->isRecordType() && "Pointer into non-class.");
1302  assert(ToClass->isRecordType() && "Pointer into non-class.");
1303
1304  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1305                     /*DetectVirtual=*/true);
1306  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1307  assert(DerivationOkay &&
1308         "Should not have been called if derivation isn't OK.");
1309  (void)DerivationOkay;
1310
1311  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1312                                  getUnqualifiedType())) {
1313    // Derivation is ambiguous. Redo the check to find the exact paths.
1314    Paths.clear();
1315    Paths.setRecordingPaths(true);
1316    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1317    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1318    (void)StillOkay;
1319
1320    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1321    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1322      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1323    return true;
1324  }
1325
1326  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1327    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1328      << FromClass << ToClass << QualType(VBase, 0)
1329      << From->getSourceRange();
1330    return true;
1331  }
1332
1333  // Must be a base to derived member conversion.
1334  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1335  return false;
1336}
1337
1338/// IsQualificationConversion - Determines whether the conversion from
1339/// an rvalue of type FromType to ToType is a qualification conversion
1340/// (C++ 4.4).
1341bool
1342Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1343  FromType = Context.getCanonicalType(FromType);
1344  ToType = Context.getCanonicalType(ToType);
1345
1346  // If FromType and ToType are the same type, this is not a
1347  // qualification conversion.
1348  if (FromType == ToType)
1349    return false;
1350
1351  // (C++ 4.4p4):
1352  //   A conversion can add cv-qualifiers at levels other than the first
1353  //   in multi-level pointers, subject to the following rules: [...]
1354  bool PreviousToQualsIncludeConst = true;
1355  bool UnwrappedAnyPointer = false;
1356  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1357    // Within each iteration of the loop, we check the qualifiers to
1358    // determine if this still looks like a qualification
1359    // conversion. Then, if all is well, we unwrap one more level of
1360    // pointers or pointers-to-members and do it all again
1361    // until there are no more pointers or pointers-to-members left to
1362    // unwrap.
1363    UnwrappedAnyPointer = true;
1364
1365    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1366    //      2,j, and similarly for volatile.
1367    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1368      return false;
1369
1370    //   -- if the cv 1,j and cv 2,j are different, then const is in
1371    //      every cv for 0 < k < j.
1372    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1373        && !PreviousToQualsIncludeConst)
1374      return false;
1375
1376    // Keep track of whether all prior cv-qualifiers in the "to" type
1377    // include const.
1378    PreviousToQualsIncludeConst
1379      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1380  }
1381
1382  // We are left with FromType and ToType being the pointee types
1383  // after unwrapping the original FromType and ToType the same number
1384  // of types. If we unwrapped any pointers, and if FromType and
1385  // ToType have the same unqualified type (since we checked
1386  // qualifiers above), then this is a qualification conversion.
1387  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1388}
1389
1390/// Determines whether there is a user-defined conversion sequence
1391/// (C++ [over.ics.user]) that converts expression From to the type
1392/// ToType. If such a conversion exists, User will contain the
1393/// user-defined conversion sequence that performs such a conversion
1394/// and this routine will return true. Otherwise, this routine returns
1395/// false and User is unspecified.
1396///
1397/// \param AllowConversionFunctions true if the conversion should
1398/// consider conversion functions at all. If false, only constructors
1399/// will be considered.
1400///
1401/// \param AllowExplicit  true if the conversion should consider C++0x
1402/// "explicit" conversion functions as well as non-explicit conversion
1403/// functions (C++0x [class.conv.fct]p2).
1404///
1405/// \param ForceRValue  true if the expression should be treated as an rvalue
1406/// for overload resolution.
1407/// \param UserCast true if looking for user defined conversion for a static
1408/// cast.
1409OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1410                                          UserDefinedConversionSequence& User,
1411                                            OverloadCandidateSet& CandidateSet,
1412                                                bool AllowConversionFunctions,
1413                                                bool AllowExplicit,
1414                                                bool ForceRValue,
1415                                                bool UserCast) {
1416  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1417    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1418      // We're not going to find any constructors.
1419    } else if (CXXRecordDecl *ToRecordDecl
1420                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1421      // C++ [over.match.ctor]p1:
1422      //   When objects of class type are direct-initialized (8.5), or
1423      //   copy-initialized from an expression of the same or a
1424      //   derived class type (8.5), overload resolution selects the
1425      //   constructor. [...] For copy-initialization, the candidate
1426      //   functions are all the converting constructors (12.3.1) of
1427      //   that class. The argument list is the expression-list within
1428      //   the parentheses of the initializer.
1429      bool SuppressUserConversions = !UserCast;
1430      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1431          IsDerivedFrom(From->getType(), ToType)) {
1432        SuppressUserConversions = false;
1433        AllowConversionFunctions = false;
1434      }
1435
1436      DeclarationName ConstructorName
1437        = Context.DeclarationNames.getCXXConstructorName(
1438                          Context.getCanonicalType(ToType).getUnqualifiedType());
1439      DeclContext::lookup_iterator Con, ConEnd;
1440      for (llvm::tie(Con, ConEnd)
1441             = ToRecordDecl->lookup(ConstructorName);
1442           Con != ConEnd; ++Con) {
1443        // Find the constructor (which may be a template).
1444        CXXConstructorDecl *Constructor = 0;
1445        FunctionTemplateDecl *ConstructorTmpl
1446          = dyn_cast<FunctionTemplateDecl>(*Con);
1447        if (ConstructorTmpl)
1448          Constructor
1449            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1450        else
1451          Constructor = cast<CXXConstructorDecl>(*Con);
1452
1453        if (!Constructor->isInvalidDecl() &&
1454            Constructor->isConvertingConstructor(AllowExplicit)) {
1455          if (ConstructorTmpl)
1456            AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0,
1457                                         &From, 1, CandidateSet,
1458                                         SuppressUserConversions, ForceRValue);
1459          else
1460            // Allow one user-defined conversion when user specifies a
1461            // From->ToType conversion via an static cast (c-style, etc).
1462            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1463                                 SuppressUserConversions, ForceRValue);
1464        }
1465      }
1466    }
1467  }
1468
1469  if (!AllowConversionFunctions) {
1470    // Don't allow any conversion functions to enter the overload set.
1471  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1472                                 PDiag(0)
1473                                   << From->getSourceRange())) {
1474    // No conversion functions from incomplete types.
1475  } else if (const RecordType *FromRecordType
1476               = From->getType()->getAs<RecordType>()) {
1477    if (CXXRecordDecl *FromRecordDecl
1478         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1479      // Add all of the conversion functions as candidates.
1480      const UnresolvedSet *Conversions
1481        = FromRecordDecl->getVisibleConversionFunctions();
1482      for (UnresolvedSet::iterator I = Conversions->begin(),
1483             E = Conversions->end(); I != E; ++I) {
1484        NamedDecl *D = *I;
1485        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1486        if (isa<UsingShadowDecl>(D))
1487          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1488
1489        CXXConversionDecl *Conv;
1490        FunctionTemplateDecl *ConvTemplate;
1491        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1492          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1493        else
1494          Conv = dyn_cast<CXXConversionDecl>(*I);
1495
1496        if (AllowExplicit || !Conv->isExplicit()) {
1497          if (ConvTemplate)
1498            AddTemplateConversionCandidate(ConvTemplate, ActingContext,
1499                                           From, ToType, CandidateSet);
1500          else
1501            AddConversionCandidate(Conv, ActingContext, From, ToType,
1502                                   CandidateSet);
1503        }
1504      }
1505    }
1506  }
1507
1508  OverloadCandidateSet::iterator Best;
1509  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1510    case OR_Success:
1511      // Record the standard conversion we used and the conversion function.
1512      if (CXXConstructorDecl *Constructor
1513            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1514        // C++ [over.ics.user]p1:
1515        //   If the user-defined conversion is specified by a
1516        //   constructor (12.3.1), the initial standard conversion
1517        //   sequence converts the source type to the type required by
1518        //   the argument of the constructor.
1519        //
1520        QualType ThisType = Constructor->getThisType(Context);
1521        if (Best->Conversions[0].ConversionKind ==
1522            ImplicitConversionSequence::EllipsisConversion)
1523          User.EllipsisConversion = true;
1524        else {
1525          User.Before = Best->Conversions[0].Standard;
1526          User.EllipsisConversion = false;
1527        }
1528        User.ConversionFunction = Constructor;
1529        User.After.setAsIdentityConversion();
1530        User.After.FromTypePtr
1531          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1532        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1533        return OR_Success;
1534      } else if (CXXConversionDecl *Conversion
1535                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1536        // C++ [over.ics.user]p1:
1537        //
1538        //   [...] If the user-defined conversion is specified by a
1539        //   conversion function (12.3.2), the initial standard
1540        //   conversion sequence converts the source type to the
1541        //   implicit object parameter of the conversion function.
1542        User.Before = Best->Conversions[0].Standard;
1543        User.ConversionFunction = Conversion;
1544        User.EllipsisConversion = false;
1545
1546        // C++ [over.ics.user]p2:
1547        //   The second standard conversion sequence converts the
1548        //   result of the user-defined conversion to the target type
1549        //   for the sequence. Since an implicit conversion sequence
1550        //   is an initialization, the special rules for
1551        //   initialization by user-defined conversion apply when
1552        //   selecting the best user-defined conversion for a
1553        //   user-defined conversion sequence (see 13.3.3 and
1554        //   13.3.3.1).
1555        User.After = Best->FinalConversion;
1556        return OR_Success;
1557      } else {
1558        assert(false && "Not a constructor or conversion function?");
1559        return OR_No_Viable_Function;
1560      }
1561
1562    case OR_No_Viable_Function:
1563      return OR_No_Viable_Function;
1564    case OR_Deleted:
1565      // No conversion here! We're done.
1566      return OR_Deleted;
1567
1568    case OR_Ambiguous:
1569      return OR_Ambiguous;
1570    }
1571
1572  return OR_No_Viable_Function;
1573}
1574
1575bool
1576Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1577  ImplicitConversionSequence ICS;
1578  OverloadCandidateSet CandidateSet;
1579  OverloadingResult OvResult =
1580    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1581                            CandidateSet, true, false, false);
1582  if (OvResult == OR_Ambiguous)
1583    Diag(From->getSourceRange().getBegin(),
1584         diag::err_typecheck_ambiguous_condition)
1585          << From->getType() << ToType << From->getSourceRange();
1586  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1587    Diag(From->getSourceRange().getBegin(),
1588         diag::err_typecheck_nonviable_condition)
1589    << From->getType() << ToType << From->getSourceRange();
1590  else
1591    return false;
1592  PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1593  return true;
1594}
1595
1596/// CompareImplicitConversionSequences - Compare two implicit
1597/// conversion sequences to determine whether one is better than the
1598/// other or if they are indistinguishable (C++ 13.3.3.2).
1599ImplicitConversionSequence::CompareKind
1600Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1601                                         const ImplicitConversionSequence& ICS2)
1602{
1603  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1604  // conversion sequences (as defined in 13.3.3.1)
1605  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1606  //      conversion sequence than a user-defined conversion sequence or
1607  //      an ellipsis conversion sequence, and
1608  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1609  //      conversion sequence than an ellipsis conversion sequence
1610  //      (13.3.3.1.3).
1611  //
1612  if (ICS1.ConversionKind < ICS2.ConversionKind)
1613    return ImplicitConversionSequence::Better;
1614  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1615    return ImplicitConversionSequence::Worse;
1616
1617  // Two implicit conversion sequences of the same form are
1618  // indistinguishable conversion sequences unless one of the
1619  // following rules apply: (C++ 13.3.3.2p3):
1620  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1621    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1622  else if (ICS1.ConversionKind ==
1623             ImplicitConversionSequence::UserDefinedConversion) {
1624    // User-defined conversion sequence U1 is a better conversion
1625    // sequence than another user-defined conversion sequence U2 if
1626    // they contain the same user-defined conversion function or
1627    // constructor and if the second standard conversion sequence of
1628    // U1 is better than the second standard conversion sequence of
1629    // U2 (C++ 13.3.3.2p3).
1630    if (ICS1.UserDefined.ConversionFunction ==
1631          ICS2.UserDefined.ConversionFunction)
1632      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1633                                                ICS2.UserDefined.After);
1634  }
1635
1636  return ImplicitConversionSequence::Indistinguishable;
1637}
1638
1639/// CompareStandardConversionSequences - Compare two standard
1640/// conversion sequences to determine whether one is better than the
1641/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1642ImplicitConversionSequence::CompareKind
1643Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1644                                         const StandardConversionSequence& SCS2)
1645{
1646  // Standard conversion sequence S1 is a better conversion sequence
1647  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1648
1649  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1650  //     sequences in the canonical form defined by 13.3.3.1.1,
1651  //     excluding any Lvalue Transformation; the identity conversion
1652  //     sequence is considered to be a subsequence of any
1653  //     non-identity conversion sequence) or, if not that,
1654  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1655    // Neither is a proper subsequence of the other. Do nothing.
1656    ;
1657  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1658           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1659           (SCS1.Second == ICK_Identity &&
1660            SCS1.Third == ICK_Identity))
1661    // SCS1 is a proper subsequence of SCS2.
1662    return ImplicitConversionSequence::Better;
1663  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1664           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1665           (SCS2.Second == ICK_Identity &&
1666            SCS2.Third == ICK_Identity))
1667    // SCS2 is a proper subsequence of SCS1.
1668    return ImplicitConversionSequence::Worse;
1669
1670  //  -- the rank of S1 is better than the rank of S2 (by the rules
1671  //     defined below), or, if not that,
1672  ImplicitConversionRank Rank1 = SCS1.getRank();
1673  ImplicitConversionRank Rank2 = SCS2.getRank();
1674  if (Rank1 < Rank2)
1675    return ImplicitConversionSequence::Better;
1676  else if (Rank2 < Rank1)
1677    return ImplicitConversionSequence::Worse;
1678
1679  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1680  // are indistinguishable unless one of the following rules
1681  // applies:
1682
1683  //   A conversion that is not a conversion of a pointer, or
1684  //   pointer to member, to bool is better than another conversion
1685  //   that is such a conversion.
1686  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1687    return SCS2.isPointerConversionToBool()
1688             ? ImplicitConversionSequence::Better
1689             : ImplicitConversionSequence::Worse;
1690
1691  // C++ [over.ics.rank]p4b2:
1692  //
1693  //   If class B is derived directly or indirectly from class A,
1694  //   conversion of B* to A* is better than conversion of B* to
1695  //   void*, and conversion of A* to void* is better than conversion
1696  //   of B* to void*.
1697  bool SCS1ConvertsToVoid
1698    = SCS1.isPointerConversionToVoidPointer(Context);
1699  bool SCS2ConvertsToVoid
1700    = SCS2.isPointerConversionToVoidPointer(Context);
1701  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1702    // Exactly one of the conversion sequences is a conversion to
1703    // a void pointer; it's the worse conversion.
1704    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1705                              : ImplicitConversionSequence::Worse;
1706  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1707    // Neither conversion sequence converts to a void pointer; compare
1708    // their derived-to-base conversions.
1709    if (ImplicitConversionSequence::CompareKind DerivedCK
1710          = CompareDerivedToBaseConversions(SCS1, SCS2))
1711      return DerivedCK;
1712  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1713    // Both conversion sequences are conversions to void
1714    // pointers. Compare the source types to determine if there's an
1715    // inheritance relationship in their sources.
1716    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1717    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1718
1719    // Adjust the types we're converting from via the array-to-pointer
1720    // conversion, if we need to.
1721    if (SCS1.First == ICK_Array_To_Pointer)
1722      FromType1 = Context.getArrayDecayedType(FromType1);
1723    if (SCS2.First == ICK_Array_To_Pointer)
1724      FromType2 = Context.getArrayDecayedType(FromType2);
1725
1726    if (const PointerType *FromPointer1 = FromType1->getAs<PointerType>())
1727      if (const PointerType *FromPointer2 = FromType2->getAs<PointerType>()) {
1728        QualType FromPointee1
1729          = FromPointer1->getPointeeType().getUnqualifiedType();
1730        QualType FromPointee2
1731          = FromPointer2->getPointeeType().getUnqualifiedType();
1732
1733        if (IsDerivedFrom(FromPointee2, FromPointee1))
1734          return ImplicitConversionSequence::Better;
1735        else if (IsDerivedFrom(FromPointee1, FromPointee2))
1736          return ImplicitConversionSequence::Worse;
1737
1738        // Objective-C++: If one interface is more specific than the
1739        // other, it is the better one.
1740        const ObjCInterfaceType* FromIface1
1741          = FromPointee1->getAs<ObjCInterfaceType>();
1742        const ObjCInterfaceType* FromIface2
1743          = FromPointee2->getAs<ObjCInterfaceType>();
1744        if (FromIface1 && FromIface1) {
1745          if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1746            return ImplicitConversionSequence::Better;
1747          else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1748            return ImplicitConversionSequence::Worse;
1749        }
1750      }
1751  }
1752
1753  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1754  // bullet 3).
1755  if (ImplicitConversionSequence::CompareKind QualCK
1756        = CompareQualificationConversions(SCS1, SCS2))
1757    return QualCK;
1758
1759  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1760    // C++0x [over.ics.rank]p3b4:
1761    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1762    //      implicit object parameter of a non-static member function declared
1763    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1764    //      rvalue and S2 binds an lvalue reference.
1765    // FIXME: We don't know if we're dealing with the implicit object parameter,
1766    // or if the member function in this case has a ref qualifier.
1767    // (Of course, we don't have ref qualifiers yet.)
1768    if (SCS1.RRefBinding != SCS2.RRefBinding)
1769      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1770                              : ImplicitConversionSequence::Worse;
1771
1772    // C++ [over.ics.rank]p3b4:
1773    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1774    //      which the references refer are the same type except for
1775    //      top-level cv-qualifiers, and the type to which the reference
1776    //      initialized by S2 refers is more cv-qualified than the type
1777    //      to which the reference initialized by S1 refers.
1778    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1779    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1780    T1 = Context.getCanonicalType(T1);
1781    T2 = Context.getCanonicalType(T2);
1782    if (Context.hasSameUnqualifiedType(T1, T2)) {
1783      if (T2.isMoreQualifiedThan(T1))
1784        return ImplicitConversionSequence::Better;
1785      else if (T1.isMoreQualifiedThan(T2))
1786        return ImplicitConversionSequence::Worse;
1787    }
1788  }
1789
1790  return ImplicitConversionSequence::Indistinguishable;
1791}
1792
1793/// CompareQualificationConversions - Compares two standard conversion
1794/// sequences to determine whether they can be ranked based on their
1795/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1796ImplicitConversionSequence::CompareKind
1797Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1798                                      const StandardConversionSequence& SCS2) {
1799  // C++ 13.3.3.2p3:
1800  //  -- S1 and S2 differ only in their qualification conversion and
1801  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1802  //     cv-qualification signature of type T1 is a proper subset of
1803  //     the cv-qualification signature of type T2, and S1 is not the
1804  //     deprecated string literal array-to-pointer conversion (4.2).
1805  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1806      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1807    return ImplicitConversionSequence::Indistinguishable;
1808
1809  // FIXME: the example in the standard doesn't use a qualification
1810  // conversion (!)
1811  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1812  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1813  T1 = Context.getCanonicalType(T1);
1814  T2 = Context.getCanonicalType(T2);
1815
1816  // If the types are the same, we won't learn anything by unwrapped
1817  // them.
1818  if (Context.hasSameUnqualifiedType(T1, T2))
1819    return ImplicitConversionSequence::Indistinguishable;
1820
1821  ImplicitConversionSequence::CompareKind Result
1822    = ImplicitConversionSequence::Indistinguishable;
1823  while (UnwrapSimilarPointerTypes(T1, T2)) {
1824    // Within each iteration of the loop, we check the qualifiers to
1825    // determine if this still looks like a qualification
1826    // conversion. Then, if all is well, we unwrap one more level of
1827    // pointers or pointers-to-members and do it all again
1828    // until there are no more pointers or pointers-to-members left
1829    // to unwrap. This essentially mimics what
1830    // IsQualificationConversion does, but here we're checking for a
1831    // strict subset of qualifiers.
1832    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1833      // The qualifiers are the same, so this doesn't tell us anything
1834      // about how the sequences rank.
1835      ;
1836    else if (T2.isMoreQualifiedThan(T1)) {
1837      // T1 has fewer qualifiers, so it could be the better sequence.
1838      if (Result == ImplicitConversionSequence::Worse)
1839        // Neither has qualifiers that are a subset of the other's
1840        // qualifiers.
1841        return ImplicitConversionSequence::Indistinguishable;
1842
1843      Result = ImplicitConversionSequence::Better;
1844    } else if (T1.isMoreQualifiedThan(T2)) {
1845      // T2 has fewer qualifiers, so it could be the better sequence.
1846      if (Result == ImplicitConversionSequence::Better)
1847        // Neither has qualifiers that are a subset of the other's
1848        // qualifiers.
1849        return ImplicitConversionSequence::Indistinguishable;
1850
1851      Result = ImplicitConversionSequence::Worse;
1852    } else {
1853      // Qualifiers are disjoint.
1854      return ImplicitConversionSequence::Indistinguishable;
1855    }
1856
1857    // If the types after this point are equivalent, we're done.
1858    if (Context.hasSameUnqualifiedType(T1, T2))
1859      break;
1860  }
1861
1862  // Check that the winning standard conversion sequence isn't using
1863  // the deprecated string literal array to pointer conversion.
1864  switch (Result) {
1865  case ImplicitConversionSequence::Better:
1866    if (SCS1.Deprecated)
1867      Result = ImplicitConversionSequence::Indistinguishable;
1868    break;
1869
1870  case ImplicitConversionSequence::Indistinguishable:
1871    break;
1872
1873  case ImplicitConversionSequence::Worse:
1874    if (SCS2.Deprecated)
1875      Result = ImplicitConversionSequence::Indistinguishable;
1876    break;
1877  }
1878
1879  return Result;
1880}
1881
1882/// CompareDerivedToBaseConversions - Compares two standard conversion
1883/// sequences to determine whether they can be ranked based on their
1884/// various kinds of derived-to-base conversions (C++
1885/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1886/// conversions between Objective-C interface types.
1887ImplicitConversionSequence::CompareKind
1888Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1889                                      const StandardConversionSequence& SCS2) {
1890  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1891  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1892  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1893  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1894
1895  // Adjust the types we're converting from via the array-to-pointer
1896  // conversion, if we need to.
1897  if (SCS1.First == ICK_Array_To_Pointer)
1898    FromType1 = Context.getArrayDecayedType(FromType1);
1899  if (SCS2.First == ICK_Array_To_Pointer)
1900    FromType2 = Context.getArrayDecayedType(FromType2);
1901
1902  // Canonicalize all of the types.
1903  FromType1 = Context.getCanonicalType(FromType1);
1904  ToType1 = Context.getCanonicalType(ToType1);
1905  FromType2 = Context.getCanonicalType(FromType2);
1906  ToType2 = Context.getCanonicalType(ToType2);
1907
1908  // C++ [over.ics.rank]p4b3:
1909  //
1910  //   If class B is derived directly or indirectly from class A and
1911  //   class C is derived directly or indirectly from B,
1912  //
1913  // For Objective-C, we let A, B, and C also be Objective-C
1914  // interfaces.
1915
1916  // Compare based on pointer conversions.
1917  if (SCS1.Second == ICK_Pointer_Conversion &&
1918      SCS2.Second == ICK_Pointer_Conversion &&
1919      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1920      FromType1->isPointerType() && FromType2->isPointerType() &&
1921      ToType1->isPointerType() && ToType2->isPointerType()) {
1922    QualType FromPointee1
1923      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1924    QualType ToPointee1
1925      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1926    QualType FromPointee2
1927      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1928    QualType ToPointee2
1929      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1930
1931    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1932    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1933    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
1934    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
1935
1936    //   -- conversion of C* to B* is better than conversion of C* to A*,
1937    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1938      if (IsDerivedFrom(ToPointee1, ToPointee2))
1939        return ImplicitConversionSequence::Better;
1940      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1941        return ImplicitConversionSequence::Worse;
1942
1943      if (ToIface1 && ToIface2) {
1944        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1945          return ImplicitConversionSequence::Better;
1946        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1947          return ImplicitConversionSequence::Worse;
1948      }
1949    }
1950
1951    //   -- conversion of B* to A* is better than conversion of C* to A*,
1952    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1953      if (IsDerivedFrom(FromPointee2, FromPointee1))
1954        return ImplicitConversionSequence::Better;
1955      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1956        return ImplicitConversionSequence::Worse;
1957
1958      if (FromIface1 && FromIface2) {
1959        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1960          return ImplicitConversionSequence::Better;
1961        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1962          return ImplicitConversionSequence::Worse;
1963      }
1964    }
1965  }
1966
1967  // Compare based on reference bindings.
1968  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1969      SCS1.Second == ICK_Derived_To_Base) {
1970    //   -- binding of an expression of type C to a reference of type
1971    //      B& is better than binding an expression of type C to a
1972    //      reference of type A&,
1973    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
1974        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
1975      if (IsDerivedFrom(ToType1, ToType2))
1976        return ImplicitConversionSequence::Better;
1977      else if (IsDerivedFrom(ToType2, ToType1))
1978        return ImplicitConversionSequence::Worse;
1979    }
1980
1981    //   -- binding of an expression of type B to a reference of type
1982    //      A& is better than binding an expression of type C to a
1983    //      reference of type A&,
1984    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
1985        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
1986      if (IsDerivedFrom(FromType2, FromType1))
1987        return ImplicitConversionSequence::Better;
1988      else if (IsDerivedFrom(FromType1, FromType2))
1989        return ImplicitConversionSequence::Worse;
1990    }
1991  }
1992
1993  // Ranking of member-pointer types.
1994  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
1995      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
1996      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
1997    const MemberPointerType * FromMemPointer1 =
1998                                        FromType1->getAs<MemberPointerType>();
1999    const MemberPointerType * ToMemPointer1 =
2000                                          ToType1->getAs<MemberPointerType>();
2001    const MemberPointerType * FromMemPointer2 =
2002                                          FromType2->getAs<MemberPointerType>();
2003    const MemberPointerType * ToMemPointer2 =
2004                                          ToType2->getAs<MemberPointerType>();
2005    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2006    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2007    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2008    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2009    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2010    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2011    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2012    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2013    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2014    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2015      if (IsDerivedFrom(ToPointee1, ToPointee2))
2016        return ImplicitConversionSequence::Worse;
2017      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2018        return ImplicitConversionSequence::Better;
2019    }
2020    // conversion of B::* to C::* is better than conversion of A::* to C::*
2021    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2022      if (IsDerivedFrom(FromPointee1, FromPointee2))
2023        return ImplicitConversionSequence::Better;
2024      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2025        return ImplicitConversionSequence::Worse;
2026    }
2027  }
2028
2029  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
2030      SCS1.Second == ICK_Derived_To_Base) {
2031    //   -- conversion of C to B is better than conversion of C to A,
2032    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2033        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2034      if (IsDerivedFrom(ToType1, ToType2))
2035        return ImplicitConversionSequence::Better;
2036      else if (IsDerivedFrom(ToType2, ToType1))
2037        return ImplicitConversionSequence::Worse;
2038    }
2039
2040    //   -- conversion of B to A is better than conversion of C to A.
2041    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2042        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2043      if (IsDerivedFrom(FromType2, FromType1))
2044        return ImplicitConversionSequence::Better;
2045      else if (IsDerivedFrom(FromType1, FromType2))
2046        return ImplicitConversionSequence::Worse;
2047    }
2048  }
2049
2050  return ImplicitConversionSequence::Indistinguishable;
2051}
2052
2053/// TryCopyInitialization - Try to copy-initialize a value of type
2054/// ToType from the expression From. Return the implicit conversion
2055/// sequence required to pass this argument, which may be a bad
2056/// conversion sequence (meaning that the argument cannot be passed to
2057/// a parameter of this type). If @p SuppressUserConversions, then we
2058/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2059/// then we treat @p From as an rvalue, even if it is an lvalue.
2060ImplicitConversionSequence
2061Sema::TryCopyInitialization(Expr *From, QualType ToType,
2062                            bool SuppressUserConversions, bool ForceRValue,
2063                            bool InOverloadResolution) {
2064  if (ToType->isReferenceType()) {
2065    ImplicitConversionSequence ICS;
2066    CheckReferenceInit(From, ToType,
2067                       /*FIXME:*/From->getLocStart(),
2068                       SuppressUserConversions,
2069                       /*AllowExplicit=*/false,
2070                       ForceRValue,
2071                       &ICS);
2072    return ICS;
2073  } else {
2074    return TryImplicitConversion(From, ToType,
2075                                 SuppressUserConversions,
2076                                 /*AllowExplicit=*/false,
2077                                 ForceRValue,
2078                                 InOverloadResolution);
2079  }
2080}
2081
2082/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2083/// the expression @p From. Returns true (and emits a diagnostic) if there was
2084/// an error, returns false if the initialization succeeded. Elidable should
2085/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2086/// differently in C++0x for this case.
2087bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2088                                     const char* Flavor, bool Elidable) {
2089  if (!getLangOptions().CPlusPlus) {
2090    // In C, argument passing is the same as performing an assignment.
2091    QualType FromType = From->getType();
2092
2093    AssignConvertType ConvTy =
2094      CheckSingleAssignmentConstraints(ToType, From);
2095    if (ConvTy != Compatible &&
2096        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2097      ConvTy = Compatible;
2098
2099    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2100                                    FromType, From, Flavor);
2101  }
2102
2103  if (ToType->isReferenceType())
2104    return CheckReferenceInit(From, ToType,
2105                              /*FIXME:*/From->getLocStart(),
2106                              /*SuppressUserConversions=*/false,
2107                              /*AllowExplicit=*/false,
2108                              /*ForceRValue=*/false);
2109
2110  if (!PerformImplicitConversion(From, ToType, Flavor,
2111                                 /*AllowExplicit=*/false, Elidable))
2112    return false;
2113  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2114    return Diag(From->getSourceRange().getBegin(),
2115                diag::err_typecheck_convert_incompatible)
2116      << ToType << From->getType() << Flavor << From->getSourceRange();
2117  return true;
2118}
2119
2120/// TryObjectArgumentInitialization - Try to initialize the object
2121/// parameter of the given member function (@c Method) from the
2122/// expression @p From.
2123ImplicitConversionSequence
2124Sema::TryObjectArgumentInitialization(QualType FromType,
2125                                      CXXMethodDecl *Method,
2126                                      CXXRecordDecl *ActingContext) {
2127  QualType ClassType = Context.getTypeDeclType(ActingContext);
2128  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2129  //                 const volatile object.
2130  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2131    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2132  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2133
2134  // Set up the conversion sequence as a "bad" conversion, to allow us
2135  // to exit early.
2136  ImplicitConversionSequence ICS;
2137  ICS.Standard.setAsIdentityConversion();
2138  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2139
2140  // We need to have an object of class type.
2141  if (const PointerType *PT = FromType->getAs<PointerType>())
2142    FromType = PT->getPointeeType();
2143
2144  assert(FromType->isRecordType());
2145
2146  // The implicit object parameter is has the type "reference to cv X",
2147  // where X is the class of which the function is a member
2148  // (C++ [over.match.funcs]p4). However, when finding an implicit
2149  // conversion sequence for the argument, we are not allowed to
2150  // create temporaries or perform user-defined conversions
2151  // (C++ [over.match.funcs]p5). We perform a simplified version of
2152  // reference binding here, that allows class rvalues to bind to
2153  // non-constant references.
2154
2155  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2156  // with the implicit object parameter (C++ [over.match.funcs]p5).
2157  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2158  if (ImplicitParamType.getCVRQualifiers()
2159                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2160      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon))
2161    return ICS;
2162
2163  // Check that we have either the same type or a derived type. It
2164  // affects the conversion rank.
2165  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2166  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType())
2167    ICS.Standard.Second = ICK_Identity;
2168  else if (IsDerivedFrom(FromType, ClassType))
2169    ICS.Standard.Second = ICK_Derived_To_Base;
2170  else
2171    return ICS;
2172
2173  // Success. Mark this as a reference binding.
2174  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2175  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2176  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2177  ICS.Standard.ReferenceBinding = true;
2178  ICS.Standard.DirectBinding = true;
2179  ICS.Standard.RRefBinding = false;
2180  return ICS;
2181}
2182
2183/// PerformObjectArgumentInitialization - Perform initialization of
2184/// the implicit object parameter for the given Method with the given
2185/// expression.
2186bool
2187Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2188  QualType FromRecordType, DestType;
2189  QualType ImplicitParamRecordType  =
2190    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2191
2192  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2193    FromRecordType = PT->getPointeeType();
2194    DestType = Method->getThisType(Context);
2195  } else {
2196    FromRecordType = From->getType();
2197    DestType = ImplicitParamRecordType;
2198  }
2199
2200  // Note that we always use the true parent context when performing
2201  // the actual argument initialization.
2202  ImplicitConversionSequence ICS
2203    = TryObjectArgumentInitialization(From->getType(), Method,
2204                                      Method->getParent());
2205  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2206    return Diag(From->getSourceRange().getBegin(),
2207                diag::err_implicit_object_parameter_init)
2208       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2209
2210  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2211      CheckDerivedToBaseConversion(FromRecordType,
2212                                   ImplicitParamRecordType,
2213                                   From->getSourceRange().getBegin(),
2214                                   From->getSourceRange()))
2215    return true;
2216
2217  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2218                    /*isLvalue=*/true);
2219  return false;
2220}
2221
2222/// TryContextuallyConvertToBool - Attempt to contextually convert the
2223/// expression From to bool (C++0x [conv]p3).
2224ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2225  return TryImplicitConversion(From, Context.BoolTy,
2226                               // FIXME: Are these flags correct?
2227                               /*SuppressUserConversions=*/false,
2228                               /*AllowExplicit=*/true,
2229                               /*ForceRValue=*/false,
2230                               /*InOverloadResolution=*/false);
2231}
2232
2233/// PerformContextuallyConvertToBool - Perform a contextual conversion
2234/// of the expression From to bool (C++0x [conv]p3).
2235bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2236  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2237  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2238    return false;
2239
2240  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2241    return  Diag(From->getSourceRange().getBegin(),
2242                 diag::err_typecheck_bool_condition)
2243                  << From->getType() << From->getSourceRange();
2244  return true;
2245}
2246
2247/// AddOverloadCandidate - Adds the given function to the set of
2248/// candidate functions, using the given function call arguments.  If
2249/// @p SuppressUserConversions, then don't allow user-defined
2250/// conversions via constructors or conversion operators.
2251/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2252/// hacky way to implement the overloading rules for elidable copy
2253/// initialization in C++0x (C++0x 12.8p15).
2254///
2255/// \para PartialOverloading true if we are performing "partial" overloading
2256/// based on an incomplete set of function arguments. This feature is used by
2257/// code completion.
2258void
2259Sema::AddOverloadCandidate(FunctionDecl *Function,
2260                           Expr **Args, unsigned NumArgs,
2261                           OverloadCandidateSet& CandidateSet,
2262                           bool SuppressUserConversions,
2263                           bool ForceRValue,
2264                           bool PartialOverloading) {
2265  const FunctionProtoType* Proto
2266    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2267  assert(Proto && "Functions without a prototype cannot be overloaded");
2268  assert(!isa<CXXConversionDecl>(Function) &&
2269         "Use AddConversionCandidate for conversion functions");
2270  assert(!Function->getDescribedFunctionTemplate() &&
2271         "Use AddTemplateOverloadCandidate for function templates");
2272
2273  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2274    if (!isa<CXXConstructorDecl>(Method)) {
2275      // If we get here, it's because we're calling a member function
2276      // that is named without a member access expression (e.g.,
2277      // "this->f") that was either written explicitly or created
2278      // implicitly. This can happen with a qualified call to a member
2279      // function, e.g., X::f(). We use an empty type for the implied
2280      // object argument (C++ [over.call.func]p3), and the acting context
2281      // is irrelevant.
2282      AddMethodCandidate(Method, Method->getParent(),
2283                         QualType(), Args, NumArgs, CandidateSet,
2284                         SuppressUserConversions, ForceRValue);
2285      return;
2286    }
2287    // We treat a constructor like a non-member function, since its object
2288    // argument doesn't participate in overload resolution.
2289  }
2290
2291  if (!CandidateSet.isNewCandidate(Function))
2292    return;
2293
2294  // Overload resolution is always an unevaluated context.
2295  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2296
2297  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2298    // C++ [class.copy]p3:
2299    //   A member function template is never instantiated to perform the copy
2300    //   of a class object to an object of its class type.
2301    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2302    if (NumArgs == 1 &&
2303        Constructor->isCopyConstructorLikeSpecialization() &&
2304        Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2305      return;
2306  }
2307
2308  // Add this candidate
2309  CandidateSet.push_back(OverloadCandidate());
2310  OverloadCandidate& Candidate = CandidateSet.back();
2311  Candidate.Function = Function;
2312  Candidate.Viable = true;
2313  Candidate.IsSurrogate = false;
2314  Candidate.IgnoreObjectArgument = false;
2315
2316  unsigned NumArgsInProto = Proto->getNumArgs();
2317
2318  // (C++ 13.3.2p2): A candidate function having fewer than m
2319  // parameters is viable only if it has an ellipsis in its parameter
2320  // list (8.3.5).
2321  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2322      !Proto->isVariadic()) {
2323    Candidate.Viable = false;
2324    return;
2325  }
2326
2327  // (C++ 13.3.2p2): A candidate function having more than m parameters
2328  // is viable only if the (m+1)st parameter has a default argument
2329  // (8.3.6). For the purposes of overload resolution, the
2330  // parameter list is truncated on the right, so that there are
2331  // exactly m parameters.
2332  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2333  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2334    // Not enough arguments.
2335    Candidate.Viable = false;
2336    return;
2337  }
2338
2339  // Determine the implicit conversion sequences for each of the
2340  // arguments.
2341  Candidate.Conversions.resize(NumArgs);
2342  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2343    if (ArgIdx < NumArgsInProto) {
2344      // (C++ 13.3.2p3): for F to be a viable function, there shall
2345      // exist for each argument an implicit conversion sequence
2346      // (13.3.3.1) that converts that argument to the corresponding
2347      // parameter of F.
2348      QualType ParamType = Proto->getArgType(ArgIdx);
2349      Candidate.Conversions[ArgIdx]
2350        = TryCopyInitialization(Args[ArgIdx], ParamType,
2351                                SuppressUserConversions, ForceRValue,
2352                                /*InOverloadResolution=*/true);
2353      if (Candidate.Conversions[ArgIdx].ConversionKind
2354            == ImplicitConversionSequence::BadConversion) {
2355      // 13.3.3.1-p10 If several different sequences of conversions exist that
2356      // each convert the argument to the parameter type, the implicit conversion
2357      // sequence associated with the parameter is defined to be the unique conversion
2358      // sequence designated the ambiguous conversion sequence. For the purpose of
2359      // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous
2360      // conversion sequence is treated as a user-defined sequence that is
2361      // indistinguishable from any other user-defined conversion sequence
2362        if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) {
2363          Candidate.Conversions[ArgIdx].ConversionKind =
2364            ImplicitConversionSequence::UserDefinedConversion;
2365          // Set the conversion function to one of them. As due to ambiguity,
2366          // they carry the same weight and is needed for overload resolution
2367          // later.
2368          Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction =
2369            Candidate.Conversions[ArgIdx].ConversionFunctionSet[0];
2370        }
2371        else {
2372          Candidate.Viable = false;
2373          break;
2374        }
2375      }
2376    } else {
2377      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2378      // argument for which there is no corresponding parameter is
2379      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2380      Candidate.Conversions[ArgIdx].ConversionKind
2381        = ImplicitConversionSequence::EllipsisConversion;
2382    }
2383  }
2384}
2385
2386/// \brief Add all of the function declarations in the given function set to
2387/// the overload canddiate set.
2388void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2389                                 Expr **Args, unsigned NumArgs,
2390                                 OverloadCandidateSet& CandidateSet,
2391                                 bool SuppressUserConversions) {
2392  for (FunctionSet::const_iterator F = Functions.begin(),
2393                                FEnd = Functions.end();
2394       F != FEnd; ++F) {
2395    // FIXME: using declarations
2396    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2397      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2398        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2399                           cast<CXXMethodDecl>(FD)->getParent(),
2400                           Args[0]->getType(), Args + 1, NumArgs - 1,
2401                           CandidateSet, SuppressUserConversions);
2402      else
2403        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2404                             SuppressUserConversions);
2405    } else {
2406      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2407      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2408          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2409        AddMethodTemplateCandidate(FunTmpl,
2410                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2411                                   /*FIXME: explicit args */ 0,
2412                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2413                                   CandidateSet,
2414                                   SuppressUserConversions);
2415      else
2416        AddTemplateOverloadCandidate(FunTmpl,
2417                                     /*FIXME: explicit args */ 0,
2418                                     Args, NumArgs, CandidateSet,
2419                                     SuppressUserConversions);
2420    }
2421  }
2422}
2423
2424/// AddMethodCandidate - Adds a named decl (which is some kind of
2425/// method) as a method candidate to the given overload set.
2426void Sema::AddMethodCandidate(NamedDecl *Decl,
2427                              QualType ObjectType,
2428                              Expr **Args, unsigned NumArgs,
2429                              OverloadCandidateSet& CandidateSet,
2430                              bool SuppressUserConversions, bool ForceRValue) {
2431
2432  // FIXME: use this
2433  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2434
2435  if (isa<UsingShadowDecl>(Decl))
2436    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2437
2438  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2439    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2440           "Expected a member function template");
2441    AddMethodTemplateCandidate(TD, ActingContext, /*ExplicitArgs*/ 0,
2442                               ObjectType, Args, NumArgs,
2443                               CandidateSet,
2444                               SuppressUserConversions,
2445                               ForceRValue);
2446  } else {
2447    AddMethodCandidate(cast<CXXMethodDecl>(Decl), ActingContext,
2448                       ObjectType, Args, NumArgs,
2449                       CandidateSet, SuppressUserConversions, ForceRValue);
2450  }
2451}
2452
2453/// AddMethodCandidate - Adds the given C++ member function to the set
2454/// of candidate functions, using the given function call arguments
2455/// and the object argument (@c Object). For example, in a call
2456/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2457/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2458/// allow user-defined conversions via constructors or conversion
2459/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2460/// a slightly hacky way to implement the overloading rules for elidable copy
2461/// initialization in C++0x (C++0x 12.8p15).
2462void
2463Sema::AddMethodCandidate(CXXMethodDecl *Method, CXXRecordDecl *ActingContext,
2464                         QualType ObjectType, Expr **Args, unsigned NumArgs,
2465                         OverloadCandidateSet& CandidateSet,
2466                         bool SuppressUserConversions, bool ForceRValue) {
2467  const FunctionProtoType* Proto
2468    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2469  assert(Proto && "Methods without a prototype cannot be overloaded");
2470  assert(!isa<CXXConversionDecl>(Method) &&
2471         "Use AddConversionCandidate for conversion functions");
2472  assert(!isa<CXXConstructorDecl>(Method) &&
2473         "Use AddOverloadCandidate for constructors");
2474
2475  if (!CandidateSet.isNewCandidate(Method))
2476    return;
2477
2478  // Overload resolution is always an unevaluated context.
2479  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2480
2481  // Add this candidate
2482  CandidateSet.push_back(OverloadCandidate());
2483  OverloadCandidate& Candidate = CandidateSet.back();
2484  Candidate.Function = Method;
2485  Candidate.IsSurrogate = false;
2486  Candidate.IgnoreObjectArgument = false;
2487
2488  unsigned NumArgsInProto = Proto->getNumArgs();
2489
2490  // (C++ 13.3.2p2): A candidate function having fewer than m
2491  // parameters is viable only if it has an ellipsis in its parameter
2492  // list (8.3.5).
2493  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2494    Candidate.Viable = false;
2495    return;
2496  }
2497
2498  // (C++ 13.3.2p2): A candidate function having more than m parameters
2499  // is viable only if the (m+1)st parameter has a default argument
2500  // (8.3.6). For the purposes of overload resolution, the
2501  // parameter list is truncated on the right, so that there are
2502  // exactly m parameters.
2503  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2504  if (NumArgs < MinRequiredArgs) {
2505    // Not enough arguments.
2506    Candidate.Viable = false;
2507    return;
2508  }
2509
2510  Candidate.Viable = true;
2511  Candidate.Conversions.resize(NumArgs + 1);
2512
2513  if (Method->isStatic() || ObjectType.isNull())
2514    // The implicit object argument is ignored.
2515    Candidate.IgnoreObjectArgument = true;
2516  else {
2517    // Determine the implicit conversion sequence for the object
2518    // parameter.
2519    Candidate.Conversions[0]
2520      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2521    if (Candidate.Conversions[0].ConversionKind
2522          == ImplicitConversionSequence::BadConversion) {
2523      Candidate.Viable = false;
2524      return;
2525    }
2526  }
2527
2528  // Determine the implicit conversion sequences for each of the
2529  // arguments.
2530  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2531    if (ArgIdx < NumArgsInProto) {
2532      // (C++ 13.3.2p3): for F to be a viable function, there shall
2533      // exist for each argument an implicit conversion sequence
2534      // (13.3.3.1) that converts that argument to the corresponding
2535      // parameter of F.
2536      QualType ParamType = Proto->getArgType(ArgIdx);
2537      Candidate.Conversions[ArgIdx + 1]
2538        = TryCopyInitialization(Args[ArgIdx], ParamType,
2539                                SuppressUserConversions, ForceRValue,
2540                                /*InOverloadResolution=*/true);
2541      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2542            == ImplicitConversionSequence::BadConversion) {
2543        Candidate.Viable = false;
2544        break;
2545      }
2546    } else {
2547      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2548      // argument for which there is no corresponding parameter is
2549      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2550      Candidate.Conversions[ArgIdx + 1].ConversionKind
2551        = ImplicitConversionSequence::EllipsisConversion;
2552    }
2553  }
2554}
2555
2556/// \brief Add a C++ member function template as a candidate to the candidate
2557/// set, using template argument deduction to produce an appropriate member
2558/// function template specialization.
2559void
2560Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2561                                 CXXRecordDecl *ActingContext,
2562                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2563                                 QualType ObjectType,
2564                                 Expr **Args, unsigned NumArgs,
2565                                 OverloadCandidateSet& CandidateSet,
2566                                 bool SuppressUserConversions,
2567                                 bool ForceRValue) {
2568  if (!CandidateSet.isNewCandidate(MethodTmpl))
2569    return;
2570
2571  // C++ [over.match.funcs]p7:
2572  //   In each case where a candidate is a function template, candidate
2573  //   function template specializations are generated using template argument
2574  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2575  //   candidate functions in the usual way.113) A given name can refer to one
2576  //   or more function templates and also to a set of overloaded non-template
2577  //   functions. In such a case, the candidate functions generated from each
2578  //   function template are combined with the set of non-template candidate
2579  //   functions.
2580  TemplateDeductionInfo Info(Context);
2581  FunctionDecl *Specialization = 0;
2582  if (TemplateDeductionResult Result
2583      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2584                                Args, NumArgs, Specialization, Info)) {
2585        // FIXME: Record what happened with template argument deduction, so
2586        // that we can give the user a beautiful diagnostic.
2587        (void)Result;
2588        return;
2589      }
2590
2591  // Add the function template specialization produced by template argument
2592  // deduction as a candidate.
2593  assert(Specialization && "Missing member function template specialization?");
2594  assert(isa<CXXMethodDecl>(Specialization) &&
2595         "Specialization is not a member function?");
2596  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), ActingContext,
2597                     ObjectType, Args, NumArgs,
2598                     CandidateSet, SuppressUserConversions, ForceRValue);
2599}
2600
2601/// \brief Add a C++ function template specialization as a candidate
2602/// in the candidate set, using template argument deduction to produce
2603/// an appropriate function template specialization.
2604void
2605Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2606                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2607                                   Expr **Args, unsigned NumArgs,
2608                                   OverloadCandidateSet& CandidateSet,
2609                                   bool SuppressUserConversions,
2610                                   bool ForceRValue) {
2611  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2612    return;
2613
2614  // C++ [over.match.funcs]p7:
2615  //   In each case where a candidate is a function template, candidate
2616  //   function template specializations are generated using template argument
2617  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2618  //   candidate functions in the usual way.113) A given name can refer to one
2619  //   or more function templates and also to a set of overloaded non-template
2620  //   functions. In such a case, the candidate functions generated from each
2621  //   function template are combined with the set of non-template candidate
2622  //   functions.
2623  TemplateDeductionInfo Info(Context);
2624  FunctionDecl *Specialization = 0;
2625  if (TemplateDeductionResult Result
2626        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2627                                  Args, NumArgs, Specialization, Info)) {
2628    // FIXME: Record what happened with template argument deduction, so
2629    // that we can give the user a beautiful diagnostic.
2630    (void)Result;
2631    return;
2632  }
2633
2634  // Add the function template specialization produced by template argument
2635  // deduction as a candidate.
2636  assert(Specialization && "Missing function template specialization?");
2637  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2638                       SuppressUserConversions, ForceRValue);
2639}
2640
2641/// AddConversionCandidate - Add a C++ conversion function as a
2642/// candidate in the candidate set (C++ [over.match.conv],
2643/// C++ [over.match.copy]). From is the expression we're converting from,
2644/// and ToType is the type that we're eventually trying to convert to
2645/// (which may or may not be the same type as the type that the
2646/// conversion function produces).
2647void
2648Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2649                             CXXRecordDecl *ActingContext,
2650                             Expr *From, QualType ToType,
2651                             OverloadCandidateSet& CandidateSet) {
2652  assert(!Conversion->getDescribedFunctionTemplate() &&
2653         "Conversion function templates use AddTemplateConversionCandidate");
2654
2655  if (!CandidateSet.isNewCandidate(Conversion))
2656    return;
2657
2658  // Overload resolution is always an unevaluated context.
2659  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2660
2661  // Add this candidate
2662  CandidateSet.push_back(OverloadCandidate());
2663  OverloadCandidate& Candidate = CandidateSet.back();
2664  Candidate.Function = Conversion;
2665  Candidate.IsSurrogate = false;
2666  Candidate.IgnoreObjectArgument = false;
2667  Candidate.FinalConversion.setAsIdentityConversion();
2668  Candidate.FinalConversion.FromTypePtr
2669    = Conversion->getConversionType().getAsOpaquePtr();
2670  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2671
2672  // Determine the implicit conversion sequence for the implicit
2673  // object parameter.
2674  Candidate.Viable = true;
2675  Candidate.Conversions.resize(1);
2676  Candidate.Conversions[0]
2677    = TryObjectArgumentInitialization(From->getType(), Conversion,
2678                                      ActingContext);
2679  // Conversion functions to a different type in the base class is visible in
2680  // the derived class.  So, a derived to base conversion should not participate
2681  // in overload resolution.
2682  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2683    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2684  if (Candidate.Conversions[0].ConversionKind
2685      == ImplicitConversionSequence::BadConversion) {
2686    Candidate.Viable = false;
2687    return;
2688  }
2689
2690  // We won't go through a user-define type conversion function to convert a
2691  // derived to base as such conversions are given Conversion Rank. They only
2692  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2693  QualType FromCanon
2694    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2695  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2696  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2697    Candidate.Viable = false;
2698    return;
2699  }
2700
2701
2702  // To determine what the conversion from the result of calling the
2703  // conversion function to the type we're eventually trying to
2704  // convert to (ToType), we need to synthesize a call to the
2705  // conversion function and attempt copy initialization from it. This
2706  // makes sure that we get the right semantics with respect to
2707  // lvalues/rvalues and the type. Fortunately, we can allocate this
2708  // call on the stack and we don't need its arguments to be
2709  // well-formed.
2710  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2711                            From->getLocStart());
2712  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2713                                CastExpr::CK_FunctionToPointerDecay,
2714                                &ConversionRef, false);
2715
2716  // Note that it is safe to allocate CallExpr on the stack here because
2717  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2718  // allocator).
2719  CallExpr Call(Context, &ConversionFn, 0, 0,
2720                Conversion->getConversionType().getNonReferenceType(),
2721                From->getLocStart());
2722  ImplicitConversionSequence ICS =
2723    TryCopyInitialization(&Call, ToType,
2724                          /*SuppressUserConversions=*/true,
2725                          /*ForceRValue=*/false,
2726                          /*InOverloadResolution=*/false);
2727
2728  switch (ICS.ConversionKind) {
2729  case ImplicitConversionSequence::StandardConversion:
2730    Candidate.FinalConversion = ICS.Standard;
2731    break;
2732
2733  case ImplicitConversionSequence::BadConversion:
2734    Candidate.Viable = false;
2735    break;
2736
2737  default:
2738    assert(false &&
2739           "Can only end up with a standard conversion sequence or failure");
2740  }
2741}
2742
2743/// \brief Adds a conversion function template specialization
2744/// candidate to the overload set, using template argument deduction
2745/// to deduce the template arguments of the conversion function
2746/// template from the type that we are converting to (C++
2747/// [temp.deduct.conv]).
2748void
2749Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2750                                     CXXRecordDecl *ActingDC,
2751                                     Expr *From, QualType ToType,
2752                                     OverloadCandidateSet &CandidateSet) {
2753  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2754         "Only conversion function templates permitted here");
2755
2756  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2757    return;
2758
2759  TemplateDeductionInfo Info(Context);
2760  CXXConversionDecl *Specialization = 0;
2761  if (TemplateDeductionResult Result
2762        = DeduceTemplateArguments(FunctionTemplate, ToType,
2763                                  Specialization, Info)) {
2764    // FIXME: Record what happened with template argument deduction, so
2765    // that we can give the user a beautiful diagnostic.
2766    (void)Result;
2767    return;
2768  }
2769
2770  // Add the conversion function template specialization produced by
2771  // template argument deduction as a candidate.
2772  assert(Specialization && "Missing function template specialization?");
2773  AddConversionCandidate(Specialization, ActingDC, From, ToType, CandidateSet);
2774}
2775
2776/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2777/// converts the given @c Object to a function pointer via the
2778/// conversion function @c Conversion, and then attempts to call it
2779/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2780/// the type of function that we'll eventually be calling.
2781void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2782                                 CXXRecordDecl *ActingContext,
2783                                 const FunctionProtoType *Proto,
2784                                 QualType ObjectType,
2785                                 Expr **Args, unsigned NumArgs,
2786                                 OverloadCandidateSet& CandidateSet) {
2787  if (!CandidateSet.isNewCandidate(Conversion))
2788    return;
2789
2790  // Overload resolution is always an unevaluated context.
2791  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2792
2793  CandidateSet.push_back(OverloadCandidate());
2794  OverloadCandidate& Candidate = CandidateSet.back();
2795  Candidate.Function = 0;
2796  Candidate.Surrogate = Conversion;
2797  Candidate.Viable = true;
2798  Candidate.IsSurrogate = true;
2799  Candidate.IgnoreObjectArgument = false;
2800  Candidate.Conversions.resize(NumArgs + 1);
2801
2802  // Determine the implicit conversion sequence for the implicit
2803  // object parameter.
2804  ImplicitConversionSequence ObjectInit
2805    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2806  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2807    Candidate.Viable = false;
2808    return;
2809  }
2810
2811  // The first conversion is actually a user-defined conversion whose
2812  // first conversion is ObjectInit's standard conversion (which is
2813  // effectively a reference binding). Record it as such.
2814  Candidate.Conversions[0].ConversionKind
2815    = ImplicitConversionSequence::UserDefinedConversion;
2816  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2817  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2818  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2819  Candidate.Conversions[0].UserDefined.After
2820    = Candidate.Conversions[0].UserDefined.Before;
2821  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2822
2823  // Find the
2824  unsigned NumArgsInProto = Proto->getNumArgs();
2825
2826  // (C++ 13.3.2p2): A candidate function having fewer than m
2827  // parameters is viable only if it has an ellipsis in its parameter
2828  // list (8.3.5).
2829  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2830    Candidate.Viable = false;
2831    return;
2832  }
2833
2834  // Function types don't have any default arguments, so just check if
2835  // we have enough arguments.
2836  if (NumArgs < NumArgsInProto) {
2837    // Not enough arguments.
2838    Candidate.Viable = false;
2839    return;
2840  }
2841
2842  // Determine the implicit conversion sequences for each of the
2843  // arguments.
2844  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2845    if (ArgIdx < NumArgsInProto) {
2846      // (C++ 13.3.2p3): for F to be a viable function, there shall
2847      // exist for each argument an implicit conversion sequence
2848      // (13.3.3.1) that converts that argument to the corresponding
2849      // parameter of F.
2850      QualType ParamType = Proto->getArgType(ArgIdx);
2851      Candidate.Conversions[ArgIdx + 1]
2852        = TryCopyInitialization(Args[ArgIdx], ParamType,
2853                                /*SuppressUserConversions=*/false,
2854                                /*ForceRValue=*/false,
2855                                /*InOverloadResolution=*/false);
2856      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2857            == ImplicitConversionSequence::BadConversion) {
2858        Candidate.Viable = false;
2859        break;
2860      }
2861    } else {
2862      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2863      // argument for which there is no corresponding parameter is
2864      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2865      Candidate.Conversions[ArgIdx + 1].ConversionKind
2866        = ImplicitConversionSequence::EllipsisConversion;
2867    }
2868  }
2869}
2870
2871// FIXME: This will eventually be removed, once we've migrated all of the
2872// operator overloading logic over to the scheme used by binary operators, which
2873// works for template instantiation.
2874void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2875                                 SourceLocation OpLoc,
2876                                 Expr **Args, unsigned NumArgs,
2877                                 OverloadCandidateSet& CandidateSet,
2878                                 SourceRange OpRange) {
2879  FunctionSet Functions;
2880
2881  QualType T1 = Args[0]->getType();
2882  QualType T2;
2883  if (NumArgs > 1)
2884    T2 = Args[1]->getType();
2885
2886  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2887  if (S)
2888    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2889  ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions);
2890  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2891  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2892  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2893}
2894
2895/// \brief Add overload candidates for overloaded operators that are
2896/// member functions.
2897///
2898/// Add the overloaded operator candidates that are member functions
2899/// for the operator Op that was used in an operator expression such
2900/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2901/// CandidateSet will store the added overload candidates. (C++
2902/// [over.match.oper]).
2903void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2904                                       SourceLocation OpLoc,
2905                                       Expr **Args, unsigned NumArgs,
2906                                       OverloadCandidateSet& CandidateSet,
2907                                       SourceRange OpRange) {
2908  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2909
2910  // C++ [over.match.oper]p3:
2911  //   For a unary operator @ with an operand of a type whose
2912  //   cv-unqualified version is T1, and for a binary operator @ with
2913  //   a left operand of a type whose cv-unqualified version is T1 and
2914  //   a right operand of a type whose cv-unqualified version is T2,
2915  //   three sets of candidate functions, designated member
2916  //   candidates, non-member candidates and built-in candidates, are
2917  //   constructed as follows:
2918  QualType T1 = Args[0]->getType();
2919  QualType T2;
2920  if (NumArgs > 1)
2921    T2 = Args[1]->getType();
2922
2923  //     -- If T1 is a class type, the set of member candidates is the
2924  //        result of the qualified lookup of T1::operator@
2925  //        (13.3.1.1.1); otherwise, the set of member candidates is
2926  //        empty.
2927  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2928    // Complete the type if it can be completed. Otherwise, we're done.
2929    if (RequireCompleteType(OpLoc, T1, PDiag()))
2930      return;
2931
2932    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
2933    LookupQualifiedName(Operators, T1Rec->getDecl());
2934    Operators.suppressDiagnostics();
2935
2936    for (LookupResult::iterator Oper = Operators.begin(),
2937                             OperEnd = Operators.end();
2938         Oper != OperEnd;
2939         ++Oper)
2940      AddMethodCandidate(*Oper, Args[0]->getType(),
2941                         Args + 1, NumArgs - 1, CandidateSet,
2942                         /* SuppressUserConversions = */ false);
2943  }
2944}
2945
2946/// AddBuiltinCandidate - Add a candidate for a built-in
2947/// operator. ResultTy and ParamTys are the result and parameter types
2948/// of the built-in candidate, respectively. Args and NumArgs are the
2949/// arguments being passed to the candidate. IsAssignmentOperator
2950/// should be true when this built-in candidate is an assignment
2951/// operator. NumContextualBoolArguments is the number of arguments
2952/// (at the beginning of the argument list) that will be contextually
2953/// converted to bool.
2954void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2955                               Expr **Args, unsigned NumArgs,
2956                               OverloadCandidateSet& CandidateSet,
2957                               bool IsAssignmentOperator,
2958                               unsigned NumContextualBoolArguments) {
2959  // Overload resolution is always an unevaluated context.
2960  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2961
2962  // Add this candidate
2963  CandidateSet.push_back(OverloadCandidate());
2964  OverloadCandidate& Candidate = CandidateSet.back();
2965  Candidate.Function = 0;
2966  Candidate.IsSurrogate = false;
2967  Candidate.IgnoreObjectArgument = false;
2968  Candidate.BuiltinTypes.ResultTy = ResultTy;
2969  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2970    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2971
2972  // Determine the implicit conversion sequences for each of the
2973  // arguments.
2974  Candidate.Viable = true;
2975  Candidate.Conversions.resize(NumArgs);
2976  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2977    // C++ [over.match.oper]p4:
2978    //   For the built-in assignment operators, conversions of the
2979    //   left operand are restricted as follows:
2980    //     -- no temporaries are introduced to hold the left operand, and
2981    //     -- no user-defined conversions are applied to the left
2982    //        operand to achieve a type match with the left-most
2983    //        parameter of a built-in candidate.
2984    //
2985    // We block these conversions by turning off user-defined
2986    // conversions, since that is the only way that initialization of
2987    // a reference to a non-class type can occur from something that
2988    // is not of the same type.
2989    if (ArgIdx < NumContextualBoolArguments) {
2990      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2991             "Contextual conversion to bool requires bool type");
2992      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2993    } else {
2994      Candidate.Conversions[ArgIdx]
2995        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2996                                ArgIdx == 0 && IsAssignmentOperator,
2997                                /*ForceRValue=*/false,
2998                                /*InOverloadResolution=*/false);
2999    }
3000    if (Candidate.Conversions[ArgIdx].ConversionKind
3001        == ImplicitConversionSequence::BadConversion) {
3002      Candidate.Viable = false;
3003      break;
3004    }
3005  }
3006}
3007
3008/// BuiltinCandidateTypeSet - A set of types that will be used for the
3009/// candidate operator functions for built-in operators (C++
3010/// [over.built]). The types are separated into pointer types and
3011/// enumeration types.
3012class BuiltinCandidateTypeSet  {
3013  /// TypeSet - A set of types.
3014  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3015
3016  /// PointerTypes - The set of pointer types that will be used in the
3017  /// built-in candidates.
3018  TypeSet PointerTypes;
3019
3020  /// MemberPointerTypes - The set of member pointer types that will be
3021  /// used in the built-in candidates.
3022  TypeSet MemberPointerTypes;
3023
3024  /// EnumerationTypes - The set of enumeration types that will be
3025  /// used in the built-in candidates.
3026  TypeSet EnumerationTypes;
3027
3028  /// Sema - The semantic analysis instance where we are building the
3029  /// candidate type set.
3030  Sema &SemaRef;
3031
3032  /// Context - The AST context in which we will build the type sets.
3033  ASTContext &Context;
3034
3035  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3036                                               const Qualifiers &VisibleQuals);
3037  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3038
3039public:
3040  /// iterator - Iterates through the types that are part of the set.
3041  typedef TypeSet::iterator iterator;
3042
3043  BuiltinCandidateTypeSet(Sema &SemaRef)
3044    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3045
3046  void AddTypesConvertedFrom(QualType Ty,
3047                             SourceLocation Loc,
3048                             bool AllowUserConversions,
3049                             bool AllowExplicitConversions,
3050                             const Qualifiers &VisibleTypeConversionsQuals);
3051
3052  /// pointer_begin - First pointer type found;
3053  iterator pointer_begin() { return PointerTypes.begin(); }
3054
3055  /// pointer_end - Past the last pointer type found;
3056  iterator pointer_end() { return PointerTypes.end(); }
3057
3058  /// member_pointer_begin - First member pointer type found;
3059  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3060
3061  /// member_pointer_end - Past the last member pointer type found;
3062  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3063
3064  /// enumeration_begin - First enumeration type found;
3065  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3066
3067  /// enumeration_end - Past the last enumeration type found;
3068  iterator enumeration_end() { return EnumerationTypes.end(); }
3069};
3070
3071/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3072/// the set of pointer types along with any more-qualified variants of
3073/// that type. For example, if @p Ty is "int const *", this routine
3074/// will add "int const *", "int const volatile *", "int const
3075/// restrict *", and "int const volatile restrict *" to the set of
3076/// pointer types. Returns true if the add of @p Ty itself succeeded,
3077/// false otherwise.
3078///
3079/// FIXME: what to do about extended qualifiers?
3080bool
3081BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3082                                             const Qualifiers &VisibleQuals) {
3083
3084  // Insert this type.
3085  if (!PointerTypes.insert(Ty))
3086    return false;
3087
3088  const PointerType *PointerTy = Ty->getAs<PointerType>();
3089  assert(PointerTy && "type was not a pointer type!");
3090
3091  QualType PointeeTy = PointerTy->getPointeeType();
3092  // Don't add qualified variants of arrays. For one, they're not allowed
3093  // (the qualifier would sink to the element type), and for another, the
3094  // only overload situation where it matters is subscript or pointer +- int,
3095  // and those shouldn't have qualifier variants anyway.
3096  if (PointeeTy->isArrayType())
3097    return true;
3098  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3099  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3100    BaseCVR = Array->getElementType().getCVRQualifiers();
3101  bool hasVolatile = VisibleQuals.hasVolatile();
3102  bool hasRestrict = VisibleQuals.hasRestrict();
3103
3104  // Iterate through all strict supersets of BaseCVR.
3105  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3106    if ((CVR | BaseCVR) != CVR) continue;
3107    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3108    // in the types.
3109    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3110    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3111    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3112    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3113  }
3114
3115  return true;
3116}
3117
3118/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3119/// to the set of pointer types along with any more-qualified variants of
3120/// that type. For example, if @p Ty is "int const *", this routine
3121/// will add "int const *", "int const volatile *", "int const
3122/// restrict *", and "int const volatile restrict *" to the set of
3123/// pointer types. Returns true if the add of @p Ty itself succeeded,
3124/// false otherwise.
3125///
3126/// FIXME: what to do about extended qualifiers?
3127bool
3128BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3129    QualType Ty) {
3130  // Insert this type.
3131  if (!MemberPointerTypes.insert(Ty))
3132    return false;
3133
3134  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3135  assert(PointerTy && "type was not a member pointer type!");
3136
3137  QualType PointeeTy = PointerTy->getPointeeType();
3138  // Don't add qualified variants of arrays. For one, they're not allowed
3139  // (the qualifier would sink to the element type), and for another, the
3140  // only overload situation where it matters is subscript or pointer +- int,
3141  // and those shouldn't have qualifier variants anyway.
3142  if (PointeeTy->isArrayType())
3143    return true;
3144  const Type *ClassTy = PointerTy->getClass();
3145
3146  // Iterate through all strict supersets of the pointee type's CVR
3147  // qualifiers.
3148  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3149  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3150    if ((CVR | BaseCVR) != CVR) continue;
3151
3152    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3153    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3154  }
3155
3156  return true;
3157}
3158
3159/// AddTypesConvertedFrom - Add each of the types to which the type @p
3160/// Ty can be implicit converted to the given set of @p Types. We're
3161/// primarily interested in pointer types and enumeration types. We also
3162/// take member pointer types, for the conditional operator.
3163/// AllowUserConversions is true if we should look at the conversion
3164/// functions of a class type, and AllowExplicitConversions if we
3165/// should also include the explicit conversion functions of a class
3166/// type.
3167void
3168BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3169                                               SourceLocation Loc,
3170                                               bool AllowUserConversions,
3171                                               bool AllowExplicitConversions,
3172                                               const Qualifiers &VisibleQuals) {
3173  // Only deal with canonical types.
3174  Ty = Context.getCanonicalType(Ty);
3175
3176  // Look through reference types; they aren't part of the type of an
3177  // expression for the purposes of conversions.
3178  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3179    Ty = RefTy->getPointeeType();
3180
3181  // We don't care about qualifiers on the type.
3182  Ty = Ty.getLocalUnqualifiedType();
3183
3184  // If we're dealing with an array type, decay to the pointer.
3185  if (Ty->isArrayType())
3186    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3187
3188  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3189    QualType PointeeTy = PointerTy->getPointeeType();
3190
3191    // Insert our type, and its more-qualified variants, into the set
3192    // of types.
3193    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3194      return;
3195  } else if (Ty->isMemberPointerType()) {
3196    // Member pointers are far easier, since the pointee can't be converted.
3197    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3198      return;
3199  } else if (Ty->isEnumeralType()) {
3200    EnumerationTypes.insert(Ty);
3201  } else if (AllowUserConversions) {
3202    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3203      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3204        // No conversion functions in incomplete types.
3205        return;
3206      }
3207
3208      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3209      const UnresolvedSet *Conversions
3210        = ClassDecl->getVisibleConversionFunctions();
3211      for (UnresolvedSet::iterator I = Conversions->begin(),
3212             E = Conversions->end(); I != E; ++I) {
3213
3214        // Skip conversion function templates; they don't tell us anything
3215        // about which builtin types we can convert to.
3216        if (isa<FunctionTemplateDecl>(*I))
3217          continue;
3218
3219        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3220        if (AllowExplicitConversions || !Conv->isExplicit()) {
3221          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3222                                VisibleQuals);
3223        }
3224      }
3225    }
3226  }
3227}
3228
3229/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3230/// the volatile- and non-volatile-qualified assignment operators for the
3231/// given type to the candidate set.
3232static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3233                                                   QualType T,
3234                                                   Expr **Args,
3235                                                   unsigned NumArgs,
3236                                    OverloadCandidateSet &CandidateSet) {
3237  QualType ParamTypes[2];
3238
3239  // T& operator=(T&, T)
3240  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3241  ParamTypes[1] = T;
3242  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3243                        /*IsAssignmentOperator=*/true);
3244
3245  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3246    // volatile T& operator=(volatile T&, T)
3247    ParamTypes[0]
3248      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3249    ParamTypes[1] = T;
3250    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3251                          /*IsAssignmentOperator=*/true);
3252  }
3253}
3254
3255/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3256/// if any, found in visible type conversion functions found in ArgExpr's type.
3257static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3258    Qualifiers VRQuals;
3259    const RecordType *TyRec;
3260    if (const MemberPointerType *RHSMPType =
3261        ArgExpr->getType()->getAs<MemberPointerType>())
3262      TyRec = cast<RecordType>(RHSMPType->getClass());
3263    else
3264      TyRec = ArgExpr->getType()->getAs<RecordType>();
3265    if (!TyRec) {
3266      // Just to be safe, assume the worst case.
3267      VRQuals.addVolatile();
3268      VRQuals.addRestrict();
3269      return VRQuals;
3270    }
3271
3272    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3273    const UnresolvedSet *Conversions =
3274      ClassDecl->getVisibleConversionFunctions();
3275
3276    for (UnresolvedSet::iterator I = Conversions->begin(),
3277           E = Conversions->end(); I != E; ++I) {
3278      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3279        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3280        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3281          CanTy = ResTypeRef->getPointeeType();
3282        // Need to go down the pointer/mempointer chain and add qualifiers
3283        // as see them.
3284        bool done = false;
3285        while (!done) {
3286          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3287            CanTy = ResTypePtr->getPointeeType();
3288          else if (const MemberPointerType *ResTypeMPtr =
3289                CanTy->getAs<MemberPointerType>())
3290            CanTy = ResTypeMPtr->getPointeeType();
3291          else
3292            done = true;
3293          if (CanTy.isVolatileQualified())
3294            VRQuals.addVolatile();
3295          if (CanTy.isRestrictQualified())
3296            VRQuals.addRestrict();
3297          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3298            return VRQuals;
3299        }
3300      }
3301    }
3302    return VRQuals;
3303}
3304
3305/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3306/// operator overloads to the candidate set (C++ [over.built]), based
3307/// on the operator @p Op and the arguments given. For example, if the
3308/// operator is a binary '+', this routine might add "int
3309/// operator+(int, int)" to cover integer addition.
3310void
3311Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3312                                   SourceLocation OpLoc,
3313                                   Expr **Args, unsigned NumArgs,
3314                                   OverloadCandidateSet& CandidateSet) {
3315  // The set of "promoted arithmetic types", which are the arithmetic
3316  // types are that preserved by promotion (C++ [over.built]p2). Note
3317  // that the first few of these types are the promoted integral
3318  // types; these types need to be first.
3319  // FIXME: What about complex?
3320  const unsigned FirstIntegralType = 0;
3321  const unsigned LastIntegralType = 13;
3322  const unsigned FirstPromotedIntegralType = 7,
3323                 LastPromotedIntegralType = 13;
3324  const unsigned FirstPromotedArithmeticType = 7,
3325                 LastPromotedArithmeticType = 16;
3326  const unsigned NumArithmeticTypes = 16;
3327  QualType ArithmeticTypes[NumArithmeticTypes] = {
3328    Context.BoolTy, Context.CharTy, Context.WCharTy,
3329// FIXME:   Context.Char16Ty, Context.Char32Ty,
3330    Context.SignedCharTy, Context.ShortTy,
3331    Context.UnsignedCharTy, Context.UnsignedShortTy,
3332    Context.IntTy, Context.LongTy, Context.LongLongTy,
3333    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3334    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3335  };
3336  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3337         "Invalid first promoted integral type");
3338  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3339           == Context.UnsignedLongLongTy &&
3340         "Invalid last promoted integral type");
3341  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3342         "Invalid first promoted arithmetic type");
3343  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3344            == Context.LongDoubleTy &&
3345         "Invalid last promoted arithmetic type");
3346
3347  // Find all of the types that the arguments can convert to, but only
3348  // if the operator we're looking at has built-in operator candidates
3349  // that make use of these types.
3350  Qualifiers VisibleTypeConversionsQuals;
3351  VisibleTypeConversionsQuals.addConst();
3352  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3353    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3354
3355  BuiltinCandidateTypeSet CandidateTypes(*this);
3356  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3357      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3358      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3359      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3360      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3361      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3362    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3363      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3364                                           OpLoc,
3365                                           true,
3366                                           (Op == OO_Exclaim ||
3367                                            Op == OO_AmpAmp ||
3368                                            Op == OO_PipePipe),
3369                                           VisibleTypeConversionsQuals);
3370  }
3371
3372  bool isComparison = false;
3373  switch (Op) {
3374  case OO_None:
3375  case NUM_OVERLOADED_OPERATORS:
3376    assert(false && "Expected an overloaded operator");
3377    break;
3378
3379  case OO_Star: // '*' is either unary or binary
3380    if (NumArgs == 1)
3381      goto UnaryStar;
3382    else
3383      goto BinaryStar;
3384    break;
3385
3386  case OO_Plus: // '+' is either unary or binary
3387    if (NumArgs == 1)
3388      goto UnaryPlus;
3389    else
3390      goto BinaryPlus;
3391    break;
3392
3393  case OO_Minus: // '-' is either unary or binary
3394    if (NumArgs == 1)
3395      goto UnaryMinus;
3396    else
3397      goto BinaryMinus;
3398    break;
3399
3400  case OO_Amp: // '&' is either unary or binary
3401    if (NumArgs == 1)
3402      goto UnaryAmp;
3403    else
3404      goto BinaryAmp;
3405
3406  case OO_PlusPlus:
3407  case OO_MinusMinus:
3408    // C++ [over.built]p3:
3409    //
3410    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3411    //   is either volatile or empty, there exist candidate operator
3412    //   functions of the form
3413    //
3414    //       VQ T&      operator++(VQ T&);
3415    //       T          operator++(VQ T&, int);
3416    //
3417    // C++ [over.built]p4:
3418    //
3419    //   For every pair (T, VQ), where T is an arithmetic type other
3420    //   than bool, and VQ is either volatile or empty, there exist
3421    //   candidate operator functions of the form
3422    //
3423    //       VQ T&      operator--(VQ T&);
3424    //       T          operator--(VQ T&, int);
3425    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3426         Arith < NumArithmeticTypes; ++Arith) {
3427      QualType ArithTy = ArithmeticTypes[Arith];
3428      QualType ParamTypes[2]
3429        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3430
3431      // Non-volatile version.
3432      if (NumArgs == 1)
3433        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3434      else
3435        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3436      // heuristic to reduce number of builtin candidates in the set.
3437      // Add volatile version only if there are conversions to a volatile type.
3438      if (VisibleTypeConversionsQuals.hasVolatile()) {
3439        // Volatile version
3440        ParamTypes[0]
3441          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3442        if (NumArgs == 1)
3443          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3444        else
3445          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3446      }
3447    }
3448
3449    // C++ [over.built]p5:
3450    //
3451    //   For every pair (T, VQ), where T is a cv-qualified or
3452    //   cv-unqualified object type, and VQ is either volatile or
3453    //   empty, there exist candidate operator functions of the form
3454    //
3455    //       T*VQ&      operator++(T*VQ&);
3456    //       T*VQ&      operator--(T*VQ&);
3457    //       T*         operator++(T*VQ&, int);
3458    //       T*         operator--(T*VQ&, int);
3459    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3460         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3461      // Skip pointer types that aren't pointers to object types.
3462      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3463        continue;
3464
3465      QualType ParamTypes[2] = {
3466        Context.getLValueReferenceType(*Ptr), Context.IntTy
3467      };
3468
3469      // Without volatile
3470      if (NumArgs == 1)
3471        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3472      else
3473        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3474
3475      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3476          VisibleTypeConversionsQuals.hasVolatile()) {
3477        // With volatile
3478        ParamTypes[0]
3479          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3480        if (NumArgs == 1)
3481          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3482        else
3483          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3484      }
3485    }
3486    break;
3487
3488  UnaryStar:
3489    // C++ [over.built]p6:
3490    //   For every cv-qualified or cv-unqualified object type T, there
3491    //   exist candidate operator functions of the form
3492    //
3493    //       T&         operator*(T*);
3494    //
3495    // C++ [over.built]p7:
3496    //   For every function type T, there exist candidate operator
3497    //   functions of the form
3498    //       T&         operator*(T*);
3499    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3500         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3501      QualType ParamTy = *Ptr;
3502      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3503      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3504                          &ParamTy, Args, 1, CandidateSet);
3505    }
3506    break;
3507
3508  UnaryPlus:
3509    // C++ [over.built]p8:
3510    //   For every type T, there exist candidate operator functions of
3511    //   the form
3512    //
3513    //       T*         operator+(T*);
3514    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3515         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3516      QualType ParamTy = *Ptr;
3517      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3518    }
3519
3520    // Fall through
3521
3522  UnaryMinus:
3523    // C++ [over.built]p9:
3524    //  For every promoted arithmetic type T, there exist candidate
3525    //  operator functions of the form
3526    //
3527    //       T         operator+(T);
3528    //       T         operator-(T);
3529    for (unsigned Arith = FirstPromotedArithmeticType;
3530         Arith < LastPromotedArithmeticType; ++Arith) {
3531      QualType ArithTy = ArithmeticTypes[Arith];
3532      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3533    }
3534    break;
3535
3536  case OO_Tilde:
3537    // C++ [over.built]p10:
3538    //   For every promoted integral type T, there exist candidate
3539    //   operator functions of the form
3540    //
3541    //        T         operator~(T);
3542    for (unsigned Int = FirstPromotedIntegralType;
3543         Int < LastPromotedIntegralType; ++Int) {
3544      QualType IntTy = ArithmeticTypes[Int];
3545      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3546    }
3547    break;
3548
3549  case OO_New:
3550  case OO_Delete:
3551  case OO_Array_New:
3552  case OO_Array_Delete:
3553  case OO_Call:
3554    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3555    break;
3556
3557  case OO_Comma:
3558  UnaryAmp:
3559  case OO_Arrow:
3560    // C++ [over.match.oper]p3:
3561    //   -- For the operator ',', the unary operator '&', or the
3562    //      operator '->', the built-in candidates set is empty.
3563    break;
3564
3565  case OO_EqualEqual:
3566  case OO_ExclaimEqual:
3567    // C++ [over.match.oper]p16:
3568    //   For every pointer to member type T, there exist candidate operator
3569    //   functions of the form
3570    //
3571    //        bool operator==(T,T);
3572    //        bool operator!=(T,T);
3573    for (BuiltinCandidateTypeSet::iterator
3574           MemPtr = CandidateTypes.member_pointer_begin(),
3575           MemPtrEnd = CandidateTypes.member_pointer_end();
3576         MemPtr != MemPtrEnd;
3577         ++MemPtr) {
3578      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3579      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3580    }
3581
3582    // Fall through
3583
3584  case OO_Less:
3585  case OO_Greater:
3586  case OO_LessEqual:
3587  case OO_GreaterEqual:
3588    // C++ [over.built]p15:
3589    //
3590    //   For every pointer or enumeration type T, there exist
3591    //   candidate operator functions of the form
3592    //
3593    //        bool       operator<(T, T);
3594    //        bool       operator>(T, T);
3595    //        bool       operator<=(T, T);
3596    //        bool       operator>=(T, T);
3597    //        bool       operator==(T, T);
3598    //        bool       operator!=(T, T);
3599    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3600         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3601      QualType ParamTypes[2] = { *Ptr, *Ptr };
3602      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3603    }
3604    for (BuiltinCandidateTypeSet::iterator Enum
3605           = CandidateTypes.enumeration_begin();
3606         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3607      QualType ParamTypes[2] = { *Enum, *Enum };
3608      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3609    }
3610
3611    // Fall through.
3612    isComparison = true;
3613
3614  BinaryPlus:
3615  BinaryMinus:
3616    if (!isComparison) {
3617      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3618
3619      // C++ [over.built]p13:
3620      //
3621      //   For every cv-qualified or cv-unqualified object type T
3622      //   there exist candidate operator functions of the form
3623      //
3624      //      T*         operator+(T*, ptrdiff_t);
3625      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3626      //      T*         operator-(T*, ptrdiff_t);
3627      //      T*         operator+(ptrdiff_t, T*);
3628      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3629      //
3630      // C++ [over.built]p14:
3631      //
3632      //   For every T, where T is a pointer to object type, there
3633      //   exist candidate operator functions of the form
3634      //
3635      //      ptrdiff_t  operator-(T, T);
3636      for (BuiltinCandidateTypeSet::iterator Ptr
3637             = CandidateTypes.pointer_begin();
3638           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3639        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3640
3641        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3642        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3643
3644        if (Op == OO_Plus) {
3645          // T* operator+(ptrdiff_t, T*);
3646          ParamTypes[0] = ParamTypes[1];
3647          ParamTypes[1] = *Ptr;
3648          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3649        } else {
3650          // ptrdiff_t operator-(T, T);
3651          ParamTypes[1] = *Ptr;
3652          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3653                              Args, 2, CandidateSet);
3654        }
3655      }
3656    }
3657    // Fall through
3658
3659  case OO_Slash:
3660  BinaryStar:
3661  Conditional:
3662    // C++ [over.built]p12:
3663    //
3664    //   For every pair of promoted arithmetic types L and R, there
3665    //   exist candidate operator functions of the form
3666    //
3667    //        LR         operator*(L, R);
3668    //        LR         operator/(L, R);
3669    //        LR         operator+(L, R);
3670    //        LR         operator-(L, R);
3671    //        bool       operator<(L, R);
3672    //        bool       operator>(L, R);
3673    //        bool       operator<=(L, R);
3674    //        bool       operator>=(L, R);
3675    //        bool       operator==(L, R);
3676    //        bool       operator!=(L, R);
3677    //
3678    //   where LR is the result of the usual arithmetic conversions
3679    //   between types L and R.
3680    //
3681    // C++ [over.built]p24:
3682    //
3683    //   For every pair of promoted arithmetic types L and R, there exist
3684    //   candidate operator functions of the form
3685    //
3686    //        LR       operator?(bool, L, R);
3687    //
3688    //   where LR is the result of the usual arithmetic conversions
3689    //   between types L and R.
3690    // Our candidates ignore the first parameter.
3691    for (unsigned Left = FirstPromotedArithmeticType;
3692         Left < LastPromotedArithmeticType; ++Left) {
3693      for (unsigned Right = FirstPromotedArithmeticType;
3694           Right < LastPromotedArithmeticType; ++Right) {
3695        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3696        QualType Result
3697          = isComparison
3698          ? Context.BoolTy
3699          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3700        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3701      }
3702    }
3703    break;
3704
3705  case OO_Percent:
3706  BinaryAmp:
3707  case OO_Caret:
3708  case OO_Pipe:
3709  case OO_LessLess:
3710  case OO_GreaterGreater:
3711    // C++ [over.built]p17:
3712    //
3713    //   For every pair of promoted integral types L and R, there
3714    //   exist candidate operator functions of the form
3715    //
3716    //      LR         operator%(L, R);
3717    //      LR         operator&(L, R);
3718    //      LR         operator^(L, R);
3719    //      LR         operator|(L, R);
3720    //      L          operator<<(L, R);
3721    //      L          operator>>(L, R);
3722    //
3723    //   where LR is the result of the usual arithmetic conversions
3724    //   between types L and R.
3725    for (unsigned Left = FirstPromotedIntegralType;
3726         Left < LastPromotedIntegralType; ++Left) {
3727      for (unsigned Right = FirstPromotedIntegralType;
3728           Right < LastPromotedIntegralType; ++Right) {
3729        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3730        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3731            ? LandR[0]
3732            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3733        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3734      }
3735    }
3736    break;
3737
3738  case OO_Equal:
3739    // C++ [over.built]p20:
3740    //
3741    //   For every pair (T, VQ), where T is an enumeration or
3742    //   pointer to member type and VQ is either volatile or
3743    //   empty, there exist candidate operator functions of the form
3744    //
3745    //        VQ T&      operator=(VQ T&, T);
3746    for (BuiltinCandidateTypeSet::iterator
3747           Enum = CandidateTypes.enumeration_begin(),
3748           EnumEnd = CandidateTypes.enumeration_end();
3749         Enum != EnumEnd; ++Enum)
3750      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3751                                             CandidateSet);
3752    for (BuiltinCandidateTypeSet::iterator
3753           MemPtr = CandidateTypes.member_pointer_begin(),
3754         MemPtrEnd = CandidateTypes.member_pointer_end();
3755         MemPtr != MemPtrEnd; ++MemPtr)
3756      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3757                                             CandidateSet);
3758      // Fall through.
3759
3760  case OO_PlusEqual:
3761  case OO_MinusEqual:
3762    // C++ [over.built]p19:
3763    //
3764    //   For every pair (T, VQ), where T is any type and VQ is either
3765    //   volatile or empty, there exist candidate operator functions
3766    //   of the form
3767    //
3768    //        T*VQ&      operator=(T*VQ&, T*);
3769    //
3770    // C++ [over.built]p21:
3771    //
3772    //   For every pair (T, VQ), where T is a cv-qualified or
3773    //   cv-unqualified object type and VQ is either volatile or
3774    //   empty, there exist candidate operator functions of the form
3775    //
3776    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3777    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3778    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3779         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3780      QualType ParamTypes[2];
3781      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3782
3783      // non-volatile version
3784      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3785      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3786                          /*IsAssigmentOperator=*/Op == OO_Equal);
3787
3788      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3789          VisibleTypeConversionsQuals.hasVolatile()) {
3790        // volatile version
3791        ParamTypes[0]
3792          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3793        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3794                            /*IsAssigmentOperator=*/Op == OO_Equal);
3795      }
3796    }
3797    // Fall through.
3798
3799  case OO_StarEqual:
3800  case OO_SlashEqual:
3801    // C++ [over.built]p18:
3802    //
3803    //   For every triple (L, VQ, R), where L is an arithmetic type,
3804    //   VQ is either volatile or empty, and R is a promoted
3805    //   arithmetic type, there exist candidate operator functions of
3806    //   the form
3807    //
3808    //        VQ L&      operator=(VQ L&, R);
3809    //        VQ L&      operator*=(VQ L&, R);
3810    //        VQ L&      operator/=(VQ L&, R);
3811    //        VQ L&      operator+=(VQ L&, R);
3812    //        VQ L&      operator-=(VQ L&, R);
3813    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3814      for (unsigned Right = FirstPromotedArithmeticType;
3815           Right < LastPromotedArithmeticType; ++Right) {
3816        QualType ParamTypes[2];
3817        ParamTypes[1] = ArithmeticTypes[Right];
3818
3819        // Add this built-in operator as a candidate (VQ is empty).
3820        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3821        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3822                            /*IsAssigmentOperator=*/Op == OO_Equal);
3823
3824        // Add this built-in operator as a candidate (VQ is 'volatile').
3825        if (VisibleTypeConversionsQuals.hasVolatile()) {
3826          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3827          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3828          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3829                              /*IsAssigmentOperator=*/Op == OO_Equal);
3830        }
3831      }
3832    }
3833    break;
3834
3835  case OO_PercentEqual:
3836  case OO_LessLessEqual:
3837  case OO_GreaterGreaterEqual:
3838  case OO_AmpEqual:
3839  case OO_CaretEqual:
3840  case OO_PipeEqual:
3841    // C++ [over.built]p22:
3842    //
3843    //   For every triple (L, VQ, R), where L is an integral type, VQ
3844    //   is either volatile or empty, and R is a promoted integral
3845    //   type, there exist candidate operator functions of the form
3846    //
3847    //        VQ L&       operator%=(VQ L&, R);
3848    //        VQ L&       operator<<=(VQ L&, R);
3849    //        VQ L&       operator>>=(VQ L&, R);
3850    //        VQ L&       operator&=(VQ L&, R);
3851    //        VQ L&       operator^=(VQ L&, R);
3852    //        VQ L&       operator|=(VQ L&, R);
3853    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3854      for (unsigned Right = FirstPromotedIntegralType;
3855           Right < LastPromotedIntegralType; ++Right) {
3856        QualType ParamTypes[2];
3857        ParamTypes[1] = ArithmeticTypes[Right];
3858
3859        // Add this built-in operator as a candidate (VQ is empty).
3860        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3861        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3862        if (VisibleTypeConversionsQuals.hasVolatile()) {
3863          // Add this built-in operator as a candidate (VQ is 'volatile').
3864          ParamTypes[0] = ArithmeticTypes[Left];
3865          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3866          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3867          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3868        }
3869      }
3870    }
3871    break;
3872
3873  case OO_Exclaim: {
3874    // C++ [over.operator]p23:
3875    //
3876    //   There also exist candidate operator functions of the form
3877    //
3878    //        bool        operator!(bool);
3879    //        bool        operator&&(bool, bool);     [BELOW]
3880    //        bool        operator||(bool, bool);     [BELOW]
3881    QualType ParamTy = Context.BoolTy;
3882    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3883                        /*IsAssignmentOperator=*/false,
3884                        /*NumContextualBoolArguments=*/1);
3885    break;
3886  }
3887
3888  case OO_AmpAmp:
3889  case OO_PipePipe: {
3890    // C++ [over.operator]p23:
3891    //
3892    //   There also exist candidate operator functions of the form
3893    //
3894    //        bool        operator!(bool);            [ABOVE]
3895    //        bool        operator&&(bool, bool);
3896    //        bool        operator||(bool, bool);
3897    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3898    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3899                        /*IsAssignmentOperator=*/false,
3900                        /*NumContextualBoolArguments=*/2);
3901    break;
3902  }
3903
3904  case OO_Subscript:
3905    // C++ [over.built]p13:
3906    //
3907    //   For every cv-qualified or cv-unqualified object type T there
3908    //   exist candidate operator functions of the form
3909    //
3910    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3911    //        T&         operator[](T*, ptrdiff_t);
3912    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3913    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3914    //        T&         operator[](ptrdiff_t, T*);
3915    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3916         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3917      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3918      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3919      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3920
3921      // T& operator[](T*, ptrdiff_t)
3922      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3923
3924      // T& operator[](ptrdiff_t, T*);
3925      ParamTypes[0] = ParamTypes[1];
3926      ParamTypes[1] = *Ptr;
3927      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3928    }
3929    break;
3930
3931  case OO_ArrowStar:
3932    // C++ [over.built]p11:
3933    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
3934    //    C1 is the same type as C2 or is a derived class of C2, T is an object
3935    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
3936    //    there exist candidate operator functions of the form
3937    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
3938    //    where CV12 is the union of CV1 and CV2.
3939    {
3940      for (BuiltinCandidateTypeSet::iterator Ptr =
3941             CandidateTypes.pointer_begin();
3942           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3943        QualType C1Ty = (*Ptr);
3944        QualType C1;
3945        QualifierCollector Q1;
3946        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
3947          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
3948          if (!isa<RecordType>(C1))
3949            continue;
3950          // heuristic to reduce number of builtin candidates in the set.
3951          // Add volatile/restrict version only if there are conversions to a
3952          // volatile/restrict type.
3953          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
3954            continue;
3955          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
3956            continue;
3957        }
3958        for (BuiltinCandidateTypeSet::iterator
3959             MemPtr = CandidateTypes.member_pointer_begin(),
3960             MemPtrEnd = CandidateTypes.member_pointer_end();
3961             MemPtr != MemPtrEnd; ++MemPtr) {
3962          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
3963          QualType C2 = QualType(mptr->getClass(), 0);
3964          C2 = C2.getUnqualifiedType();
3965          if (C1 != C2 && !IsDerivedFrom(C1, C2))
3966            break;
3967          QualType ParamTypes[2] = { *Ptr, *MemPtr };
3968          // build CV12 T&
3969          QualType T = mptr->getPointeeType();
3970          if (!VisibleTypeConversionsQuals.hasVolatile() &&
3971              T.isVolatileQualified())
3972            continue;
3973          if (!VisibleTypeConversionsQuals.hasRestrict() &&
3974              T.isRestrictQualified())
3975            continue;
3976          T = Q1.apply(T);
3977          QualType ResultTy = Context.getLValueReferenceType(T);
3978          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3979        }
3980      }
3981    }
3982    break;
3983
3984  case OO_Conditional:
3985    // Note that we don't consider the first argument, since it has been
3986    // contextually converted to bool long ago. The candidates below are
3987    // therefore added as binary.
3988    //
3989    // C++ [over.built]p24:
3990    //   For every type T, where T is a pointer or pointer-to-member type,
3991    //   there exist candidate operator functions of the form
3992    //
3993    //        T        operator?(bool, T, T);
3994    //
3995    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3996         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3997      QualType ParamTypes[2] = { *Ptr, *Ptr };
3998      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3999    }
4000    for (BuiltinCandidateTypeSet::iterator Ptr =
4001           CandidateTypes.member_pointer_begin(),
4002         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4003      QualType ParamTypes[2] = { *Ptr, *Ptr };
4004      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4005    }
4006    goto Conditional;
4007  }
4008}
4009
4010/// \brief Add function candidates found via argument-dependent lookup
4011/// to the set of overloading candidates.
4012///
4013/// This routine performs argument-dependent name lookup based on the
4014/// given function name (which may also be an operator name) and adds
4015/// all of the overload candidates found by ADL to the overload
4016/// candidate set (C++ [basic.lookup.argdep]).
4017void
4018Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4019                                           Expr **Args, unsigned NumArgs,
4020                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4021                                           OverloadCandidateSet& CandidateSet,
4022                                           bool PartialOverloading) {
4023  FunctionSet Functions;
4024
4025  // FIXME: Should we be trafficking in canonical function decls throughout?
4026
4027  // Record all of the function candidates that we've already
4028  // added to the overload set, so that we don't add those same
4029  // candidates a second time.
4030  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4031                                   CandEnd = CandidateSet.end();
4032       Cand != CandEnd; ++Cand)
4033    if (Cand->Function) {
4034      Functions.insert(Cand->Function);
4035      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4036        Functions.insert(FunTmpl);
4037    }
4038
4039  // FIXME: Pass in the explicit template arguments?
4040  ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions);
4041
4042  // Erase all of the candidates we already knew about.
4043  // FIXME: This is suboptimal. Is there a better way?
4044  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4045                                   CandEnd = CandidateSet.end();
4046       Cand != CandEnd; ++Cand)
4047    if (Cand->Function) {
4048      Functions.erase(Cand->Function);
4049      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4050        Functions.erase(FunTmpl);
4051    }
4052
4053  // For each of the ADL candidates we found, add it to the overload
4054  // set.
4055  for (FunctionSet::iterator Func = Functions.begin(),
4056                          FuncEnd = Functions.end();
4057       Func != FuncEnd; ++Func) {
4058    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
4059      if (ExplicitTemplateArgs)
4060        continue;
4061
4062      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
4063                           false, false, PartialOverloading);
4064    } else
4065      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
4066                                   ExplicitTemplateArgs,
4067                                   Args, NumArgs, CandidateSet);
4068  }
4069}
4070
4071/// isBetterOverloadCandidate - Determines whether the first overload
4072/// candidate is a better candidate than the second (C++ 13.3.3p1).
4073bool
4074Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4075                                const OverloadCandidate& Cand2) {
4076  // Define viable functions to be better candidates than non-viable
4077  // functions.
4078  if (!Cand2.Viable)
4079    return Cand1.Viable;
4080  else if (!Cand1.Viable)
4081    return false;
4082
4083  // C++ [over.match.best]p1:
4084  //
4085  //   -- if F is a static member function, ICS1(F) is defined such
4086  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4087  //      any function G, and, symmetrically, ICS1(G) is neither
4088  //      better nor worse than ICS1(F).
4089  unsigned StartArg = 0;
4090  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4091    StartArg = 1;
4092
4093  // C++ [over.match.best]p1:
4094  //   A viable function F1 is defined to be a better function than another
4095  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4096  //   conversion sequence than ICSi(F2), and then...
4097  unsigned NumArgs = Cand1.Conversions.size();
4098  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4099  bool HasBetterConversion = false;
4100  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4101    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4102                                               Cand2.Conversions[ArgIdx])) {
4103    case ImplicitConversionSequence::Better:
4104      // Cand1 has a better conversion sequence.
4105      HasBetterConversion = true;
4106      break;
4107
4108    case ImplicitConversionSequence::Worse:
4109      // Cand1 can't be better than Cand2.
4110      return false;
4111
4112    case ImplicitConversionSequence::Indistinguishable:
4113      // Do nothing.
4114      break;
4115    }
4116  }
4117
4118  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4119  //       ICSj(F2), or, if not that,
4120  if (HasBetterConversion)
4121    return true;
4122
4123  //     - F1 is a non-template function and F2 is a function template
4124  //       specialization, or, if not that,
4125  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4126      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4127    return true;
4128
4129  //   -- F1 and F2 are function template specializations, and the function
4130  //      template for F1 is more specialized than the template for F2
4131  //      according to the partial ordering rules described in 14.5.5.2, or,
4132  //      if not that,
4133  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4134      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4135    if (FunctionTemplateDecl *BetterTemplate
4136          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4137                                       Cand2.Function->getPrimaryTemplate(),
4138                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4139                                                             : TPOC_Call))
4140      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4141
4142  //   -- the context is an initialization by user-defined conversion
4143  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4144  //      from the return type of F1 to the destination type (i.e.,
4145  //      the type of the entity being initialized) is a better
4146  //      conversion sequence than the standard conversion sequence
4147  //      from the return type of F2 to the destination type.
4148  if (Cand1.Function && Cand2.Function &&
4149      isa<CXXConversionDecl>(Cand1.Function) &&
4150      isa<CXXConversionDecl>(Cand2.Function)) {
4151    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4152                                               Cand2.FinalConversion)) {
4153    case ImplicitConversionSequence::Better:
4154      // Cand1 has a better conversion sequence.
4155      return true;
4156
4157    case ImplicitConversionSequence::Worse:
4158      // Cand1 can't be better than Cand2.
4159      return false;
4160
4161    case ImplicitConversionSequence::Indistinguishable:
4162      // Do nothing
4163      break;
4164    }
4165  }
4166
4167  return false;
4168}
4169
4170/// \brief Computes the best viable function (C++ 13.3.3)
4171/// within an overload candidate set.
4172///
4173/// \param CandidateSet the set of candidate functions.
4174///
4175/// \param Loc the location of the function name (or operator symbol) for
4176/// which overload resolution occurs.
4177///
4178/// \param Best f overload resolution was successful or found a deleted
4179/// function, Best points to the candidate function found.
4180///
4181/// \returns The result of overload resolution.
4182OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4183                                           SourceLocation Loc,
4184                                        OverloadCandidateSet::iterator& Best) {
4185  // Find the best viable function.
4186  Best = CandidateSet.end();
4187  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4188       Cand != CandidateSet.end(); ++Cand) {
4189    if (Cand->Viable) {
4190      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4191        Best = Cand;
4192    }
4193  }
4194
4195  // If we didn't find any viable functions, abort.
4196  if (Best == CandidateSet.end())
4197    return OR_No_Viable_Function;
4198
4199  // Make sure that this function is better than every other viable
4200  // function. If not, we have an ambiguity.
4201  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4202       Cand != CandidateSet.end(); ++Cand) {
4203    if (Cand->Viable &&
4204        Cand != Best &&
4205        !isBetterOverloadCandidate(*Best, *Cand)) {
4206      Best = CandidateSet.end();
4207      return OR_Ambiguous;
4208    }
4209  }
4210
4211  // Best is the best viable function.
4212  if (Best->Function &&
4213      (Best->Function->isDeleted() ||
4214       Best->Function->getAttr<UnavailableAttr>()))
4215    return OR_Deleted;
4216
4217  // C++ [basic.def.odr]p2:
4218  //   An overloaded function is used if it is selected by overload resolution
4219  //   when referred to from a potentially-evaluated expression. [Note: this
4220  //   covers calls to named functions (5.2.2), operator overloading
4221  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4222  //   placement new (5.3.4), as well as non-default initialization (8.5).
4223  if (Best->Function)
4224    MarkDeclarationReferenced(Loc, Best->Function);
4225  return OR_Success;
4226}
4227
4228/// PrintOverloadCandidates - When overload resolution fails, prints
4229/// diagnostic messages containing the candidates in the candidate
4230/// set. If OnlyViable is true, only viable candidates will be printed.
4231void
4232Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4233                              bool OnlyViable,
4234                              const char *Opc,
4235                              SourceLocation OpLoc) {
4236  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4237                             LastCand = CandidateSet.end();
4238  bool Reported = false;
4239  for (; Cand != LastCand; ++Cand) {
4240    if (Cand->Viable || !OnlyViable) {
4241      if (Cand->Function) {
4242        if (Cand->Function->isDeleted() ||
4243            Cand->Function->getAttr<UnavailableAttr>()) {
4244          // Deleted or "unavailable" function.
4245          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
4246            << Cand->Function->isDeleted();
4247        } else if (FunctionTemplateDecl *FunTmpl
4248                     = Cand->Function->getPrimaryTemplate()) {
4249          // Function template specialization
4250          // FIXME: Give a better reason!
4251          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
4252            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
4253                              *Cand->Function->getTemplateSpecializationArgs());
4254        } else {
4255          // Normal function
4256          bool errReported = false;
4257          if (!Cand->Viable && Cand->Conversions.size() > 0) {
4258            for (int i = Cand->Conversions.size()-1; i >= 0; i--) {
4259              const ImplicitConversionSequence &Conversion =
4260                                                        Cand->Conversions[i];
4261              if ((Conversion.ConversionKind !=
4262                   ImplicitConversionSequence::BadConversion) ||
4263                  Conversion.ConversionFunctionSet.size() == 0)
4264                continue;
4265              Diag(Cand->Function->getLocation(),
4266                   diag::err_ovl_candidate_not_viable) << (i+1);
4267              errReported = true;
4268              for (int j = Conversion.ConversionFunctionSet.size()-1;
4269                   j >= 0; j--) {
4270                FunctionDecl *Func = Conversion.ConversionFunctionSet[j];
4271                Diag(Func->getLocation(), diag::err_ovl_candidate);
4272              }
4273            }
4274          }
4275          if (!errReported)
4276            Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
4277        }
4278      } else if (Cand->IsSurrogate) {
4279        // Desugar the type of the surrogate down to a function type,
4280        // retaining as many typedefs as possible while still showing
4281        // the function type (and, therefore, its parameter types).
4282        QualType FnType = Cand->Surrogate->getConversionType();
4283        bool isLValueReference = false;
4284        bool isRValueReference = false;
4285        bool isPointer = false;
4286        if (const LValueReferenceType *FnTypeRef =
4287              FnType->getAs<LValueReferenceType>()) {
4288          FnType = FnTypeRef->getPointeeType();
4289          isLValueReference = true;
4290        } else if (const RValueReferenceType *FnTypeRef =
4291                     FnType->getAs<RValueReferenceType>()) {
4292          FnType = FnTypeRef->getPointeeType();
4293          isRValueReference = true;
4294        }
4295        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4296          FnType = FnTypePtr->getPointeeType();
4297          isPointer = true;
4298        }
4299        // Desugar down to a function type.
4300        FnType = QualType(FnType->getAs<FunctionType>(), 0);
4301        // Reconstruct the pointer/reference as appropriate.
4302        if (isPointer) FnType = Context.getPointerType(FnType);
4303        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
4304        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
4305
4306        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
4307          << FnType;
4308      } else if (OnlyViable) {
4309        assert(Cand->Conversions.size() <= 2 &&
4310               "builtin-binary-operator-not-binary");
4311        std::string TypeStr("operator");
4312        TypeStr += Opc;
4313        TypeStr += "(";
4314        TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4315        if (Cand->Conversions.size() == 1) {
4316          TypeStr += ")";
4317          Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr;
4318        }
4319        else {
4320          TypeStr += ", ";
4321          TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4322          TypeStr += ")";
4323          Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr;
4324        }
4325      }
4326      else if (!Cand->Viable && !Reported) {
4327        // Non-viability might be due to ambiguous user-defined conversions,
4328        // needed for built-in operators. Report them as well, but only once
4329        // as we have typically many built-in candidates.
4330        unsigned NoOperands = Cand->Conversions.size();
4331        for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4332          const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4333          if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion ||
4334              ICS.ConversionFunctionSet.empty())
4335            continue;
4336          if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>(
4337                         Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) {
4338            QualType FromTy =
4339              QualType(
4340                     static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0);
4341            Diag(OpLoc,diag::note_ambiguous_type_conversion)
4342                  << FromTy << Func->getConversionType();
4343          }
4344          for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) {
4345            FunctionDecl *Func =
4346              Cand->Conversions[ArgIdx].ConversionFunctionSet[j];
4347            Diag(Func->getLocation(),diag::err_ovl_candidate);
4348          }
4349        }
4350        Reported = true;
4351      }
4352    }
4353  }
4354}
4355
4356/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4357/// an overloaded function (C++ [over.over]), where @p From is an
4358/// expression with overloaded function type and @p ToType is the type
4359/// we're trying to resolve to. For example:
4360///
4361/// @code
4362/// int f(double);
4363/// int f(int);
4364///
4365/// int (*pfd)(double) = f; // selects f(double)
4366/// @endcode
4367///
4368/// This routine returns the resulting FunctionDecl if it could be
4369/// resolved, and NULL otherwise. When @p Complain is true, this
4370/// routine will emit diagnostics if there is an error.
4371FunctionDecl *
4372Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4373                                         bool Complain) {
4374  QualType FunctionType = ToType;
4375  bool IsMember = false;
4376  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4377    FunctionType = ToTypePtr->getPointeeType();
4378  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4379    FunctionType = ToTypeRef->getPointeeType();
4380  else if (const MemberPointerType *MemTypePtr =
4381                    ToType->getAs<MemberPointerType>()) {
4382    FunctionType = MemTypePtr->getPointeeType();
4383    IsMember = true;
4384  }
4385
4386  // We only look at pointers or references to functions.
4387  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4388  if (!FunctionType->isFunctionType())
4389    return 0;
4390
4391  // Find the actual overloaded function declaration.
4392
4393  // C++ [over.over]p1:
4394  //   [...] [Note: any redundant set of parentheses surrounding the
4395  //   overloaded function name is ignored (5.1). ]
4396  Expr *OvlExpr = From->IgnoreParens();
4397
4398  // C++ [over.over]p1:
4399  //   [...] The overloaded function name can be preceded by the &
4400  //   operator.
4401  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4402    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4403      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4404  }
4405
4406  bool HasExplicitTemplateArgs = false;
4407  TemplateArgumentListInfo ExplicitTemplateArgs;
4408
4409  llvm::SmallVector<NamedDecl*,8> Fns;
4410
4411  // Look into the overloaded expression.
4412  if (UnresolvedLookupExpr *UL
4413               = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) {
4414    Fns.append(UL->decls_begin(), UL->decls_end());
4415    if (UL->hasExplicitTemplateArgs()) {
4416      HasExplicitTemplateArgs = true;
4417      UL->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4418    }
4419  } else if (UnresolvedMemberExpr *ME
4420               = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) {
4421    Fns.append(ME->decls_begin(), ME->decls_end());
4422    if (ME->hasExplicitTemplateArgs()) {
4423      HasExplicitTemplateArgs = true;
4424      ME->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4425    }
4426  }
4427
4428  // If we didn't actually find anything, we're done.
4429  if (Fns.empty())
4430    return 0;
4431
4432  // Look through all of the overloaded functions, searching for one
4433  // whose type matches exactly.
4434  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4435  bool FoundNonTemplateFunction = false;
4436  for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(),
4437         E = Fns.end(); I != E; ++I) {
4438    // C++ [over.over]p3:
4439    //   Non-member functions and static member functions match
4440    //   targets of type "pointer-to-function" or "reference-to-function."
4441    //   Nonstatic member functions match targets of
4442    //   type "pointer-to-member-function."
4443    // Note that according to DR 247, the containing class does not matter.
4444
4445    if (FunctionTemplateDecl *FunctionTemplate
4446          = dyn_cast<FunctionTemplateDecl>(*I)) {
4447      if (CXXMethodDecl *Method
4448            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4449        // Skip non-static function templates when converting to pointer, and
4450        // static when converting to member pointer.
4451        if (Method->isStatic() == IsMember)
4452          continue;
4453      } else if (IsMember)
4454        continue;
4455
4456      // C++ [over.over]p2:
4457      //   If the name is a function template, template argument deduction is
4458      //   done (14.8.2.2), and if the argument deduction succeeds, the
4459      //   resulting template argument list is used to generate a single
4460      //   function template specialization, which is added to the set of
4461      //   overloaded functions considered.
4462      // FIXME: We don't really want to build the specialization here, do we?
4463      FunctionDecl *Specialization = 0;
4464      TemplateDeductionInfo Info(Context);
4465      if (TemplateDeductionResult Result
4466            = DeduceTemplateArguments(FunctionTemplate,
4467                       (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0),
4468                                      FunctionType, Specialization, Info)) {
4469        // FIXME: make a note of the failed deduction for diagnostics.
4470        (void)Result;
4471      } else {
4472        // FIXME: If the match isn't exact, shouldn't we just drop this as
4473        // a candidate? Find a testcase before changing the code.
4474        assert(FunctionType
4475                 == Context.getCanonicalType(Specialization->getType()));
4476        Matches.insert(
4477                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4478      }
4479
4480      continue;
4481    }
4482
4483    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*I)) {
4484      // Skip non-static functions when converting to pointer, and static
4485      // when converting to member pointer.
4486      if (Method->isStatic() == IsMember)
4487        continue;
4488
4489      // If we have explicit template arguments, skip non-templates.
4490      if (HasExplicitTemplateArgs)
4491        continue;
4492    } else if (IsMember)
4493      continue;
4494
4495    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*I)) {
4496      QualType ResultTy;
4497      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
4498          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
4499                               ResultTy)) {
4500        Matches.insert(cast<FunctionDecl>(FunDecl->getCanonicalDecl()));
4501        FoundNonTemplateFunction = true;
4502      }
4503    }
4504  }
4505
4506  // If there were 0 or 1 matches, we're done.
4507  if (Matches.empty())
4508    return 0;
4509  else if (Matches.size() == 1) {
4510    FunctionDecl *Result = *Matches.begin();
4511    MarkDeclarationReferenced(From->getLocStart(), Result);
4512    return Result;
4513  }
4514
4515  // C++ [over.over]p4:
4516  //   If more than one function is selected, [...]
4517  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4518  if (!FoundNonTemplateFunction) {
4519    //   [...] and any given function template specialization F1 is
4520    //   eliminated if the set contains a second function template
4521    //   specialization whose function template is more specialized
4522    //   than the function template of F1 according to the partial
4523    //   ordering rules of 14.5.5.2.
4524
4525    // The algorithm specified above is quadratic. We instead use a
4526    // two-pass algorithm (similar to the one used to identify the
4527    // best viable function in an overload set) that identifies the
4528    // best function template (if it exists).
4529    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
4530                                                         Matches.end());
4531    FunctionDecl *Result =
4532        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
4533                           TPOC_Other, From->getLocStart(),
4534                           PDiag(),
4535                           PDiag(diag::err_addr_ovl_ambiguous)
4536                               << TemplateMatches[0]->getDeclName(),
4537                           PDiag(diag::err_ovl_template_candidate));
4538    MarkDeclarationReferenced(From->getLocStart(), Result);
4539    return Result;
4540  }
4541
4542  //   [...] any function template specializations in the set are
4543  //   eliminated if the set also contains a non-template function, [...]
4544  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4545  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4546    if ((*M)->getPrimaryTemplate() == 0)
4547      RemainingMatches.push_back(*M);
4548
4549  // [...] After such eliminations, if any, there shall remain exactly one
4550  // selected function.
4551  if (RemainingMatches.size() == 1) {
4552    FunctionDecl *Result = RemainingMatches.front();
4553    MarkDeclarationReferenced(From->getLocStart(), Result);
4554    return Result;
4555  }
4556
4557  // FIXME: We should probably return the same thing that BestViableFunction
4558  // returns (even if we issue the diagnostics here).
4559  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4560    << RemainingMatches[0]->getDeclName();
4561  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4562    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4563  return 0;
4564}
4565
4566/// \brief Add a single candidate to the overload set.
4567static void AddOverloadedCallCandidate(Sema &S,
4568                                       NamedDecl *Callee,
4569                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4570                                       Expr **Args, unsigned NumArgs,
4571                                       OverloadCandidateSet &CandidateSet,
4572                                       bool PartialOverloading) {
4573  if (isa<UsingShadowDecl>(Callee))
4574    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
4575
4576  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
4577    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
4578    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
4579                           PartialOverloading);
4580    return;
4581  }
4582
4583  if (FunctionTemplateDecl *FuncTemplate
4584      = dyn_cast<FunctionTemplateDecl>(Callee)) {
4585    S.AddTemplateOverloadCandidate(FuncTemplate, ExplicitTemplateArgs,
4586                                   Args, NumArgs, CandidateSet);
4587    return;
4588  }
4589
4590  assert(false && "unhandled case in overloaded call candidate");
4591
4592  // do nothing?
4593}
4594
4595/// \brief Add the overload candidates named by callee and/or found by argument
4596/// dependent lookup to the given overload set.
4597void Sema::AddOverloadedCallCandidates(llvm::SmallVectorImpl<NamedDecl*> &Fns,
4598                                       DeclarationName &UnqualifiedName,
4599                                       bool ArgumentDependentLookup,
4600                         const TemplateArgumentListInfo *ExplicitTemplateArgs,
4601                                       Expr **Args, unsigned NumArgs,
4602                                       OverloadCandidateSet &CandidateSet,
4603                                       bool PartialOverloading) {
4604
4605#ifndef NDEBUG
4606  // Verify that ArgumentDependentLookup is consistent with the rules
4607  // in C++0x [basic.lookup.argdep]p3:
4608  //
4609  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4610  //   and let Y be the lookup set produced by argument dependent
4611  //   lookup (defined as follows). If X contains
4612  //
4613  //     -- a declaration of a class member, or
4614  //
4615  //     -- a block-scope function declaration that is not a
4616  //        using-declaration, or
4617  //
4618  //     -- a declaration that is neither a function or a function
4619  //        template
4620  //
4621  //   then Y is empty.
4622
4623  if (ArgumentDependentLookup) {
4624    for (unsigned I = 0; I < Fns.size(); ++I) {
4625      assert(!Fns[I]->getDeclContext()->isRecord());
4626      assert(isa<UsingShadowDecl>(Fns[I]) ||
4627             !Fns[I]->getDeclContext()->isFunctionOrMethod());
4628      assert(Fns[I]->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
4629    }
4630  }
4631#endif
4632
4633  for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(),
4634         E = Fns.end(); I != E; ++I)
4635    AddOverloadedCallCandidate(*this, *I, ExplicitTemplateArgs,
4636                               Args, NumArgs, CandidateSet,
4637                               PartialOverloading);
4638
4639  if (ArgumentDependentLookup)
4640    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4641                                         ExplicitTemplateArgs,
4642                                         CandidateSet,
4643                                         PartialOverloading);
4644}
4645
4646/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4647/// (which eventually refers to the declaration Func) and the call
4648/// arguments Args/NumArgs, attempt to resolve the function call down
4649/// to a specific function. If overload resolution succeeds, returns
4650/// the function declaration produced by overload
4651/// resolution. Otherwise, emits diagnostics, deletes all of the
4652/// arguments and Fn, and returns NULL.
4653FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn,
4654                                     llvm::SmallVectorImpl<NamedDecl*> &Fns,
4655                                            DeclarationName UnqualifiedName,
4656                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4657                                            SourceLocation LParenLoc,
4658                                            Expr **Args, unsigned NumArgs,
4659                                            SourceLocation *CommaLocs,
4660                                            SourceLocation RParenLoc,
4661                                            bool ArgumentDependentLookup) {
4662  OverloadCandidateSet CandidateSet;
4663
4664  // Add the functions denoted by Callee to the set of candidate
4665  // functions.
4666  AddOverloadedCallCandidates(Fns, UnqualifiedName, ArgumentDependentLookup,
4667                              ExplicitTemplateArgs, Args, NumArgs,
4668                              CandidateSet);
4669  OverloadCandidateSet::iterator Best;
4670  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4671  case OR_Success:
4672    return Best->Function;
4673
4674  case OR_No_Viable_Function:
4675    Diag(Fn->getSourceRange().getBegin(),
4676         diag::err_ovl_no_viable_function_in_call)
4677      << UnqualifiedName << Fn->getSourceRange();
4678    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4679    break;
4680
4681  case OR_Ambiguous:
4682    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4683      << UnqualifiedName << Fn->getSourceRange();
4684    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4685    break;
4686
4687  case OR_Deleted:
4688    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4689      << Best->Function->isDeleted()
4690      << UnqualifiedName
4691      << Fn->getSourceRange();
4692    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4693    break;
4694  }
4695
4696  // Overload resolution failed. Destroy all of the subexpressions and
4697  // return NULL.
4698  Fn->Destroy(Context);
4699  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4700    Args[Arg]->Destroy(Context);
4701  return 0;
4702}
4703
4704static bool IsOverloaded(const Sema::FunctionSet &Functions) {
4705  return Functions.size() > 1 ||
4706    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
4707}
4708
4709/// \brief Create a unary operation that may resolve to an overloaded
4710/// operator.
4711///
4712/// \param OpLoc The location of the operator itself (e.g., '*').
4713///
4714/// \param OpcIn The UnaryOperator::Opcode that describes this
4715/// operator.
4716///
4717/// \param Functions The set of non-member functions that will be
4718/// considered by overload resolution. The caller needs to build this
4719/// set based on the context using, e.g.,
4720/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4721/// set should not contain any member functions; those will be added
4722/// by CreateOverloadedUnaryOp().
4723///
4724/// \param input The input argument.
4725Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4726                                                     unsigned OpcIn,
4727                                                     FunctionSet &Functions,
4728                                                     ExprArg input) {
4729  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4730  Expr *Input = (Expr *)input.get();
4731
4732  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4733  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4734  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4735
4736  Expr *Args[2] = { Input, 0 };
4737  unsigned NumArgs = 1;
4738
4739  // For post-increment and post-decrement, add the implicit '0' as
4740  // the second argument, so that we know this is a post-increment or
4741  // post-decrement.
4742  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4743    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4744    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4745                                           SourceLocation());
4746    NumArgs = 2;
4747  }
4748
4749  if (Input->isTypeDependent()) {
4750    UnresolvedLookupExpr *Fn
4751      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
4752                                     0, SourceRange(), OpName, OpLoc,
4753                                     /*ADL*/ true, IsOverloaded(Functions));
4754    for (FunctionSet::iterator Func = Functions.begin(),
4755                            FuncEnd = Functions.end();
4756         Func != FuncEnd; ++Func)
4757      Fn->addDecl(*Func);
4758
4759    input.release();
4760    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4761                                                   &Args[0], NumArgs,
4762                                                   Context.DependentTy,
4763                                                   OpLoc));
4764  }
4765
4766  // Build an empty overload set.
4767  OverloadCandidateSet CandidateSet;
4768
4769  // Add the candidates from the given function set.
4770  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4771
4772  // Add operator candidates that are member functions.
4773  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4774
4775  // Add builtin operator candidates.
4776  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4777
4778  // Perform overload resolution.
4779  OverloadCandidateSet::iterator Best;
4780  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4781  case OR_Success: {
4782    // We found a built-in operator or an overloaded operator.
4783    FunctionDecl *FnDecl = Best->Function;
4784
4785    if (FnDecl) {
4786      // We matched an overloaded operator. Build a call to that
4787      // operator.
4788
4789      // Convert the arguments.
4790      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4791        if (PerformObjectArgumentInitialization(Input, Method))
4792          return ExprError();
4793      } else {
4794        // Convert the arguments.
4795        if (PerformCopyInitialization(Input,
4796                                      FnDecl->getParamDecl(0)->getType(),
4797                                      "passing"))
4798          return ExprError();
4799      }
4800
4801      // Determine the result type
4802      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
4803
4804      // Build the actual expression node.
4805      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4806                                               SourceLocation());
4807      UsualUnaryConversions(FnExpr);
4808
4809      input.release();
4810      Args[0] = Input;
4811      ExprOwningPtr<CallExpr> TheCall(this,
4812        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4813                                          Args, NumArgs, ResultTy, OpLoc));
4814
4815      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4816                              FnDecl))
4817        return ExprError();
4818
4819      return MaybeBindToTemporary(TheCall.release());
4820    } else {
4821      // We matched a built-in operator. Convert the arguments, then
4822      // break out so that we will build the appropriate built-in
4823      // operator node.
4824        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4825                                      Best->Conversions[0], "passing"))
4826          return ExprError();
4827
4828        break;
4829      }
4830    }
4831
4832    case OR_No_Viable_Function:
4833      // No viable function; fall through to handling this as a
4834      // built-in operator, which will produce an error message for us.
4835      break;
4836
4837    case OR_Ambiguous:
4838      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4839          << UnaryOperator::getOpcodeStr(Opc)
4840          << Input->getSourceRange();
4841      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4842                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
4843      return ExprError();
4844
4845    case OR_Deleted:
4846      Diag(OpLoc, diag::err_ovl_deleted_oper)
4847        << Best->Function->isDeleted()
4848        << UnaryOperator::getOpcodeStr(Opc)
4849        << Input->getSourceRange();
4850      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4851      return ExprError();
4852    }
4853
4854  // Either we found no viable overloaded operator or we matched a
4855  // built-in operator. In either case, fall through to trying to
4856  // build a built-in operation.
4857  input.release();
4858  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4859}
4860
4861/// \brief Create a binary operation that may resolve to an overloaded
4862/// operator.
4863///
4864/// \param OpLoc The location of the operator itself (e.g., '+').
4865///
4866/// \param OpcIn The BinaryOperator::Opcode that describes this
4867/// operator.
4868///
4869/// \param Functions The set of non-member functions that will be
4870/// considered by overload resolution. The caller needs to build this
4871/// set based on the context using, e.g.,
4872/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4873/// set should not contain any member functions; those will be added
4874/// by CreateOverloadedBinOp().
4875///
4876/// \param LHS Left-hand argument.
4877/// \param RHS Right-hand argument.
4878Sema::OwningExprResult
4879Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4880                            unsigned OpcIn,
4881                            FunctionSet &Functions,
4882                            Expr *LHS, Expr *RHS) {
4883  Expr *Args[2] = { LHS, RHS };
4884  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4885
4886  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4887  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4888  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4889
4890  // If either side is type-dependent, create an appropriate dependent
4891  // expression.
4892  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4893    if (Functions.empty()) {
4894      // If there are no functions to store, just build a dependent
4895      // BinaryOperator or CompoundAssignment.
4896      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
4897        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4898                                                  Context.DependentTy, OpLoc));
4899
4900      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
4901                                                        Context.DependentTy,
4902                                                        Context.DependentTy,
4903                                                        Context.DependentTy,
4904                                                        OpLoc));
4905    }
4906
4907    UnresolvedLookupExpr *Fn
4908      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
4909                                     0, SourceRange(), OpName, OpLoc,
4910                                     /* ADL */ true, IsOverloaded(Functions));
4911
4912    for (FunctionSet::iterator Func = Functions.begin(),
4913                            FuncEnd = Functions.end();
4914         Func != FuncEnd; ++Func)
4915      Fn->addDecl(*Func);
4916
4917    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4918                                                   Args, 2,
4919                                                   Context.DependentTy,
4920                                                   OpLoc));
4921  }
4922
4923  // If this is the .* operator, which is not overloadable, just
4924  // create a built-in binary operator.
4925  if (Opc == BinaryOperator::PtrMemD)
4926    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4927
4928  // If this is the assignment operator, we only perform overload resolution
4929  // if the left-hand side is a class or enumeration type. This is actually
4930  // a hack. The standard requires that we do overload resolution between the
4931  // various built-in candidates, but as DR507 points out, this can lead to
4932  // problems. So we do it this way, which pretty much follows what GCC does.
4933  // Note that we go the traditional code path for compound assignment forms.
4934  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
4935    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4936
4937  // Build an empty overload set.
4938  OverloadCandidateSet CandidateSet;
4939
4940  // Add the candidates from the given function set.
4941  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4942
4943  // Add operator candidates that are member functions.
4944  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4945
4946  // Add builtin operator candidates.
4947  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4948
4949  // Perform overload resolution.
4950  OverloadCandidateSet::iterator Best;
4951  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4952    case OR_Success: {
4953      // We found a built-in operator or an overloaded operator.
4954      FunctionDecl *FnDecl = Best->Function;
4955
4956      if (FnDecl) {
4957        // We matched an overloaded operator. Build a call to that
4958        // operator.
4959
4960        // Convert the arguments.
4961        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4962          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4963              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4964                                        "passing"))
4965            return ExprError();
4966        } else {
4967          // Convert the arguments.
4968          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4969                                        "passing") ||
4970              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4971                                        "passing"))
4972            return ExprError();
4973        }
4974
4975        // Determine the result type
4976        QualType ResultTy
4977          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
4978        ResultTy = ResultTy.getNonReferenceType();
4979
4980        // Build the actual expression node.
4981        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4982                                                 OpLoc);
4983        UsualUnaryConversions(FnExpr);
4984
4985        ExprOwningPtr<CXXOperatorCallExpr>
4986          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4987                                                          Args, 2, ResultTy,
4988                                                          OpLoc));
4989
4990        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4991                                FnDecl))
4992          return ExprError();
4993
4994        return MaybeBindToTemporary(TheCall.release());
4995      } else {
4996        // We matched a built-in operator. Convert the arguments, then
4997        // break out so that we will build the appropriate built-in
4998        // operator node.
4999        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5000                                      Best->Conversions[0], "passing") ||
5001            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5002                                      Best->Conversions[1], "passing"))
5003          return ExprError();
5004
5005        break;
5006      }
5007    }
5008
5009    case OR_No_Viable_Function: {
5010      // C++ [over.match.oper]p9:
5011      //   If the operator is the operator , [...] and there are no
5012      //   viable functions, then the operator is assumed to be the
5013      //   built-in operator and interpreted according to clause 5.
5014      if (Opc == BinaryOperator::Comma)
5015        break;
5016
5017      // For class as left operand for assignment or compound assigment operator
5018      // do not fall through to handling in built-in, but report that no overloaded
5019      // assignment operator found
5020      OwningExprResult Result = ExprError();
5021      if (Args[0]->getType()->isRecordType() &&
5022          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5023        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
5024             << BinaryOperator::getOpcodeStr(Opc)
5025             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5026      } else {
5027        // No viable function; try to create a built-in operation, which will
5028        // produce an error. Then, show the non-viable candidates.
5029        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5030      }
5031      assert(Result.isInvalid() &&
5032             "C++ binary operator overloading is missing candidates!");
5033      if (Result.isInvalid())
5034        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
5035                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
5036      return move(Result);
5037    }
5038
5039    case OR_Ambiguous:
5040      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5041          << BinaryOperator::getOpcodeStr(Opc)
5042          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5043      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
5044                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5045      return ExprError();
5046
5047    case OR_Deleted:
5048      Diag(OpLoc, diag::err_ovl_deleted_oper)
5049        << Best->Function->isDeleted()
5050        << BinaryOperator::getOpcodeStr(Opc)
5051        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5052      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5053      return ExprError();
5054    }
5055
5056  // We matched a built-in operator; build it.
5057  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5058}
5059
5060Action::OwningExprResult
5061Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5062                                         SourceLocation RLoc,
5063                                         ExprArg Base, ExprArg Idx) {
5064  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5065                    static_cast<Expr*>(Idx.get()) };
5066  DeclarationName OpName =
5067      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5068
5069  // If either side is type-dependent, create an appropriate dependent
5070  // expression.
5071  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5072
5073    UnresolvedLookupExpr *Fn
5074      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
5075                                     0, SourceRange(), OpName, LLoc,
5076                                     /*ADL*/ true, /*Overloaded*/ false);
5077    // Can't add any actual overloads yet
5078
5079    Base.release();
5080    Idx.release();
5081    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5082                                                   Args, 2,
5083                                                   Context.DependentTy,
5084                                                   RLoc));
5085  }
5086
5087  // Build an empty overload set.
5088  OverloadCandidateSet CandidateSet;
5089
5090  // Subscript can only be overloaded as a member function.
5091
5092  // Add operator candidates that are member functions.
5093  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5094
5095  // Add builtin operator candidates.
5096  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5097
5098  // Perform overload resolution.
5099  OverloadCandidateSet::iterator Best;
5100  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5101    case OR_Success: {
5102      // We found a built-in operator or an overloaded operator.
5103      FunctionDecl *FnDecl = Best->Function;
5104
5105      if (FnDecl) {
5106        // We matched an overloaded operator. Build a call to that
5107        // operator.
5108
5109        // Convert the arguments.
5110        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5111        if (PerformObjectArgumentInitialization(Args[0], Method) ||
5112            PerformCopyInitialization(Args[1],
5113                                      FnDecl->getParamDecl(0)->getType(),
5114                                      "passing"))
5115          return ExprError();
5116
5117        // Determine the result type
5118        QualType ResultTy
5119          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5120        ResultTy = ResultTy.getNonReferenceType();
5121
5122        // Build the actual expression node.
5123        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5124                                                 LLoc);
5125        UsualUnaryConversions(FnExpr);
5126
5127        Base.release();
5128        Idx.release();
5129        ExprOwningPtr<CXXOperatorCallExpr>
5130          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5131                                                          FnExpr, Args, 2,
5132                                                          ResultTy, RLoc));
5133
5134        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5135                                FnDecl))
5136          return ExprError();
5137
5138        return MaybeBindToTemporary(TheCall.release());
5139      } else {
5140        // We matched a built-in operator. Convert the arguments, then
5141        // break out so that we will build the appropriate built-in
5142        // operator node.
5143        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5144                                      Best->Conversions[0], "passing") ||
5145            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5146                                      Best->Conversions[1], "passing"))
5147          return ExprError();
5148
5149        break;
5150      }
5151    }
5152
5153    case OR_No_Viable_Function: {
5154      // No viable function; try to create a built-in operation, which will
5155      // produce an error. Then, show the non-viable candidates.
5156      OwningExprResult Result =
5157          CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
5158      assert(Result.isInvalid() &&
5159             "C++ subscript operator overloading is missing candidates!");
5160      if (Result.isInvalid())
5161        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
5162                                "[]", LLoc);
5163      return move(Result);
5164    }
5165
5166    case OR_Ambiguous:
5167      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5168          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5169      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
5170                              "[]", LLoc);
5171      return ExprError();
5172
5173    case OR_Deleted:
5174      Diag(LLoc, diag::err_ovl_deleted_oper)
5175        << Best->Function->isDeleted() << "[]"
5176        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5177      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5178      return ExprError();
5179    }
5180
5181  // We matched a built-in operator; build it.
5182  Base.release();
5183  Idx.release();
5184  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5185                                         Owned(Args[1]), RLoc);
5186}
5187
5188/// BuildCallToMemberFunction - Build a call to a member
5189/// function. MemExpr is the expression that refers to the member
5190/// function (and includes the object parameter), Args/NumArgs are the
5191/// arguments to the function call (not including the object
5192/// parameter). The caller needs to validate that the member
5193/// expression refers to a member function or an overloaded member
5194/// function.
5195Sema::OwningExprResult
5196Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5197                                SourceLocation LParenLoc, Expr **Args,
5198                                unsigned NumArgs, SourceLocation *CommaLocs,
5199                                SourceLocation RParenLoc) {
5200  // Dig out the member expression. This holds both the object
5201  // argument and the member function we're referring to.
5202  Expr *NakedMemExpr = MemExprE->IgnoreParens();
5203
5204  MemberExpr *MemExpr;
5205  CXXMethodDecl *Method = 0;
5206  if (isa<MemberExpr>(NakedMemExpr)) {
5207    MemExpr = cast<MemberExpr>(NakedMemExpr);
5208    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5209  } else {
5210    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
5211
5212    QualType ObjectType = UnresExpr->getBaseType();
5213
5214    // Add overload candidates
5215    OverloadCandidateSet CandidateSet;
5216
5217    // FIXME: avoid copy.
5218    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
5219    if (UnresExpr->hasExplicitTemplateArgs()) {
5220      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
5221      TemplateArgs = &TemplateArgsBuffer;
5222    }
5223
5224    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
5225           E = UnresExpr->decls_end(); I != E; ++I) {
5226
5227      NamedDecl *Func = *I;
5228      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
5229      if (isa<UsingShadowDecl>(Func))
5230        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
5231
5232      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
5233        // If explicit template arguments were provided, we can't call a
5234        // non-template member function.
5235        if (TemplateArgs)
5236          continue;
5237
5238        AddMethodCandidate(Method, ActingDC, ObjectType, Args, NumArgs,
5239                           CandidateSet, /*SuppressUserConversions=*/false);
5240      } else {
5241        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
5242                                   ActingDC, TemplateArgs,
5243                                   ObjectType, Args, NumArgs,
5244                                   CandidateSet,
5245                                   /*SuppressUsedConversions=*/false);
5246      }
5247    }
5248
5249    DeclarationName DeclName = UnresExpr->getMemberName();
5250
5251    OverloadCandidateSet::iterator Best;
5252    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
5253    case OR_Success:
5254      Method = cast<CXXMethodDecl>(Best->Function);
5255      break;
5256
5257    case OR_No_Viable_Function:
5258      Diag(UnresExpr->getMemberLoc(),
5259           diag::err_ovl_no_viable_member_function_in_call)
5260        << DeclName << MemExprE->getSourceRange();
5261      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5262      // FIXME: Leaking incoming expressions!
5263      return ExprError();
5264
5265    case OR_Ambiguous:
5266      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
5267        << DeclName << MemExprE->getSourceRange();
5268      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5269      // FIXME: Leaking incoming expressions!
5270      return ExprError();
5271
5272    case OR_Deleted:
5273      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
5274        << Best->Function->isDeleted()
5275        << DeclName << MemExprE->getSourceRange();
5276      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5277      // FIXME: Leaking incoming expressions!
5278      return ExprError();
5279    }
5280
5281    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
5282
5283    // If overload resolution picked a static member, build a
5284    // non-member call based on that function.
5285    if (Method->isStatic()) {
5286      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
5287                                   Args, NumArgs, RParenLoc);
5288    }
5289
5290    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
5291  }
5292
5293  assert(Method && "Member call to something that isn't a method?");
5294  ExprOwningPtr<CXXMemberCallExpr>
5295    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
5296                                                  NumArgs,
5297                                  Method->getResultType().getNonReferenceType(),
5298                                  RParenLoc));
5299
5300  // Check for a valid return type.
5301  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
5302                          TheCall.get(), Method))
5303    return ExprError();
5304
5305  // Convert the object argument (for a non-static member function call).
5306  Expr *ObjectArg = MemExpr->getBase();
5307  if (!Method->isStatic() &&
5308      PerformObjectArgumentInitialization(ObjectArg, Method))
5309    return ExprError();
5310  MemExpr->setBase(ObjectArg);
5311
5312  // Convert the rest of the arguments
5313  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
5314  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
5315                              RParenLoc))
5316    return ExprError();
5317
5318  if (CheckFunctionCall(Method, TheCall.get()))
5319    return ExprError();
5320
5321  return MaybeBindToTemporary(TheCall.release());
5322}
5323
5324/// BuildCallToObjectOfClassType - Build a call to an object of class
5325/// type (C++ [over.call.object]), which can end up invoking an
5326/// overloaded function call operator (@c operator()) or performing a
5327/// user-defined conversion on the object argument.
5328Sema::ExprResult
5329Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
5330                                   SourceLocation LParenLoc,
5331                                   Expr **Args, unsigned NumArgs,
5332                                   SourceLocation *CommaLocs,
5333                                   SourceLocation RParenLoc) {
5334  assert(Object->getType()->isRecordType() && "Requires object type argument");
5335  const RecordType *Record = Object->getType()->getAs<RecordType>();
5336
5337  // C++ [over.call.object]p1:
5338  //  If the primary-expression E in the function call syntax
5339  //  evaluates to a class object of type "cv T", then the set of
5340  //  candidate functions includes at least the function call
5341  //  operators of T. The function call operators of T are obtained by
5342  //  ordinary lookup of the name operator() in the context of
5343  //  (E).operator().
5344  OverloadCandidateSet CandidateSet;
5345  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
5346
5347  if (RequireCompleteType(LParenLoc, Object->getType(),
5348                          PartialDiagnostic(diag::err_incomplete_object_call)
5349                          << Object->getSourceRange()))
5350    return true;
5351
5352  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
5353  LookupQualifiedName(R, Record->getDecl());
5354  R.suppressDiagnostics();
5355
5356  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5357       Oper != OperEnd; ++Oper) {
5358    AddMethodCandidate(*Oper, Object->getType(), Args, NumArgs, CandidateSet,
5359                       /*SuppressUserConversions=*/ false);
5360  }
5361
5362  // C++ [over.call.object]p2:
5363  //   In addition, for each conversion function declared in T of the
5364  //   form
5365  //
5366  //        operator conversion-type-id () cv-qualifier;
5367  //
5368  //   where cv-qualifier is the same cv-qualification as, or a
5369  //   greater cv-qualification than, cv, and where conversion-type-id
5370  //   denotes the type "pointer to function of (P1,...,Pn) returning
5371  //   R", or the type "reference to pointer to function of
5372  //   (P1,...,Pn) returning R", or the type "reference to function
5373  //   of (P1,...,Pn) returning R", a surrogate call function [...]
5374  //   is also considered as a candidate function. Similarly,
5375  //   surrogate call functions are added to the set of candidate
5376  //   functions for each conversion function declared in an
5377  //   accessible base class provided the function is not hidden
5378  //   within T by another intervening declaration.
5379  // FIXME: Look in base classes for more conversion operators!
5380  const UnresolvedSet *Conversions
5381    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
5382  for (UnresolvedSet::iterator I = Conversions->begin(),
5383         E = Conversions->end(); I != E; ++I) {
5384    NamedDecl *D = *I;
5385    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5386    if (isa<UsingShadowDecl>(D))
5387      D = cast<UsingShadowDecl>(D)->getTargetDecl();
5388
5389    // Skip over templated conversion functions; they aren't
5390    // surrogates.
5391    if (isa<FunctionTemplateDecl>(D))
5392      continue;
5393
5394    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
5395
5396    // Strip the reference type (if any) and then the pointer type (if
5397    // any) to get down to what might be a function type.
5398    QualType ConvType = Conv->getConversionType().getNonReferenceType();
5399    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5400      ConvType = ConvPtrType->getPointeeType();
5401
5402    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
5403      AddSurrogateCandidate(Conv, ActingContext, Proto,
5404                            Object->getType(), Args, NumArgs,
5405                            CandidateSet);
5406  }
5407
5408  // Perform overload resolution.
5409  OverloadCandidateSet::iterator Best;
5410  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
5411  case OR_Success:
5412    // Overload resolution succeeded; we'll build the appropriate call
5413    // below.
5414    break;
5415
5416  case OR_No_Viable_Function:
5417    Diag(Object->getSourceRange().getBegin(),
5418         diag::err_ovl_no_viable_object_call)
5419      << Object->getType() << Object->getSourceRange();
5420    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5421    break;
5422
5423  case OR_Ambiguous:
5424    Diag(Object->getSourceRange().getBegin(),
5425         diag::err_ovl_ambiguous_object_call)
5426      << Object->getType() << Object->getSourceRange();
5427    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5428    break;
5429
5430  case OR_Deleted:
5431    Diag(Object->getSourceRange().getBegin(),
5432         diag::err_ovl_deleted_object_call)
5433      << Best->Function->isDeleted()
5434      << Object->getType() << Object->getSourceRange();
5435    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5436    break;
5437  }
5438
5439  if (Best == CandidateSet.end()) {
5440    // We had an error; delete all of the subexpressions and return
5441    // the error.
5442    Object->Destroy(Context);
5443    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5444      Args[ArgIdx]->Destroy(Context);
5445    return true;
5446  }
5447
5448  if (Best->Function == 0) {
5449    // Since there is no function declaration, this is one of the
5450    // surrogate candidates. Dig out the conversion function.
5451    CXXConversionDecl *Conv
5452      = cast<CXXConversionDecl>(
5453                         Best->Conversions[0].UserDefined.ConversionFunction);
5454
5455    // We selected one of the surrogate functions that converts the
5456    // object parameter to a function pointer. Perform the conversion
5457    // on the object argument, then let ActOnCallExpr finish the job.
5458
5459    // Create an implicit member expr to refer to the conversion operator.
5460    // and then call it.
5461    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
5462
5463    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
5464                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
5465                         CommaLocs, RParenLoc).release();
5466  }
5467
5468  // We found an overloaded operator(). Build a CXXOperatorCallExpr
5469  // that calls this method, using Object for the implicit object
5470  // parameter and passing along the remaining arguments.
5471  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5472  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
5473
5474  unsigned NumArgsInProto = Proto->getNumArgs();
5475  unsigned NumArgsToCheck = NumArgs;
5476
5477  // Build the full argument list for the method call (the
5478  // implicit object parameter is placed at the beginning of the
5479  // list).
5480  Expr **MethodArgs;
5481  if (NumArgs < NumArgsInProto) {
5482    NumArgsToCheck = NumArgsInProto;
5483    MethodArgs = new Expr*[NumArgsInProto + 1];
5484  } else {
5485    MethodArgs = new Expr*[NumArgs + 1];
5486  }
5487  MethodArgs[0] = Object;
5488  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5489    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
5490
5491  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
5492                                          SourceLocation());
5493  UsualUnaryConversions(NewFn);
5494
5495  // Once we've built TheCall, all of the expressions are properly
5496  // owned.
5497  QualType ResultTy = Method->getResultType().getNonReferenceType();
5498  ExprOwningPtr<CXXOperatorCallExpr>
5499    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
5500                                                    MethodArgs, NumArgs + 1,
5501                                                    ResultTy, RParenLoc));
5502  delete [] MethodArgs;
5503
5504  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
5505                          Method))
5506    return true;
5507
5508  // We may have default arguments. If so, we need to allocate more
5509  // slots in the call for them.
5510  if (NumArgs < NumArgsInProto)
5511    TheCall->setNumArgs(Context, NumArgsInProto + 1);
5512  else if (NumArgs > NumArgsInProto)
5513    NumArgsToCheck = NumArgsInProto;
5514
5515  bool IsError = false;
5516
5517  // Initialize the implicit object parameter.
5518  IsError |= PerformObjectArgumentInitialization(Object, Method);
5519  TheCall->setArg(0, Object);
5520
5521
5522  // Check the argument types.
5523  for (unsigned i = 0; i != NumArgsToCheck; i++) {
5524    Expr *Arg;
5525    if (i < NumArgs) {
5526      Arg = Args[i];
5527
5528      // Pass the argument.
5529      QualType ProtoArgType = Proto->getArgType(i);
5530      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
5531    } else {
5532      OwningExprResult DefArg
5533        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
5534      if (DefArg.isInvalid()) {
5535        IsError = true;
5536        break;
5537      }
5538
5539      Arg = DefArg.takeAs<Expr>();
5540    }
5541
5542    TheCall->setArg(i + 1, Arg);
5543  }
5544
5545  // If this is a variadic call, handle args passed through "...".
5546  if (Proto->isVariadic()) {
5547    // Promote the arguments (C99 6.5.2.2p7).
5548    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
5549      Expr *Arg = Args[i];
5550      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
5551      TheCall->setArg(i + 1, Arg);
5552    }
5553  }
5554
5555  if (IsError) return true;
5556
5557  if (CheckFunctionCall(Method, TheCall.get()))
5558    return true;
5559
5560  return MaybeBindToTemporary(TheCall.release()).release();
5561}
5562
5563/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
5564///  (if one exists), where @c Base is an expression of class type and
5565/// @c Member is the name of the member we're trying to find.
5566Sema::OwningExprResult
5567Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
5568  Expr *Base = static_cast<Expr *>(BaseIn.get());
5569  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
5570
5571  // C++ [over.ref]p1:
5572  //
5573  //   [...] An expression x->m is interpreted as (x.operator->())->m
5574  //   for a class object x of type T if T::operator->() exists and if
5575  //   the operator is selected as the best match function by the
5576  //   overload resolution mechanism (13.3).
5577  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
5578  OverloadCandidateSet CandidateSet;
5579  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
5580
5581  if (RequireCompleteType(Base->getLocStart(), Base->getType(),
5582                          PDiag(diag::err_typecheck_incomplete_tag)
5583                            << Base->getSourceRange()))
5584    return ExprError();
5585
5586  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
5587  LookupQualifiedName(R, BaseRecord->getDecl());
5588  R.suppressDiagnostics();
5589
5590  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5591       Oper != OperEnd; ++Oper) {
5592    NamedDecl *D = *Oper;
5593    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5594    if (isa<UsingShadowDecl>(D))
5595      D = cast<UsingShadowDecl>(D)->getTargetDecl();
5596
5597    AddMethodCandidate(cast<CXXMethodDecl>(D), ActingContext,
5598                       Base->getType(), 0, 0, CandidateSet,
5599                       /*SuppressUserConversions=*/false);
5600  }
5601
5602  // Perform overload resolution.
5603  OverloadCandidateSet::iterator Best;
5604  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5605  case OR_Success:
5606    // Overload resolution succeeded; we'll build the call below.
5607    break;
5608
5609  case OR_No_Viable_Function:
5610    if (CandidateSet.empty())
5611      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5612        << Base->getType() << Base->getSourceRange();
5613    else
5614      Diag(OpLoc, diag::err_ovl_no_viable_oper)
5615        << "operator->" << Base->getSourceRange();
5616    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5617    return ExprError();
5618
5619  case OR_Ambiguous:
5620    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5621      << "->" << Base->getSourceRange();
5622    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5623    return ExprError();
5624
5625  case OR_Deleted:
5626    Diag(OpLoc,  diag::err_ovl_deleted_oper)
5627      << Best->Function->isDeleted()
5628      << "->" << Base->getSourceRange();
5629    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5630    return ExprError();
5631  }
5632
5633  // Convert the object parameter.
5634  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5635  if (PerformObjectArgumentInitialization(Base, Method))
5636    return ExprError();
5637
5638  // No concerns about early exits now.
5639  BaseIn.release();
5640
5641  // Build the operator call.
5642  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
5643                                           SourceLocation());
5644  UsualUnaryConversions(FnExpr);
5645
5646  QualType ResultTy = Method->getResultType().getNonReferenceType();
5647  ExprOwningPtr<CXXOperatorCallExpr>
5648    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
5649                                                    &Base, 1, ResultTy, OpLoc));
5650
5651  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
5652                          Method))
5653          return ExprError();
5654  return move(TheCall);
5655}
5656
5657/// FixOverloadedFunctionReference - E is an expression that refers to
5658/// a C++ overloaded function (possibly with some parentheses and
5659/// perhaps a '&' around it). We have resolved the overloaded function
5660/// to the function declaration Fn, so patch up the expression E to
5661/// refer (possibly indirectly) to Fn. Returns the new expr.
5662Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
5663  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5664    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
5665    if (SubExpr == PE->getSubExpr())
5666      return PE->Retain();
5667
5668    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
5669  }
5670
5671  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5672    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
5673    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
5674                               SubExpr->getType()) &&
5675           "Implicit cast type cannot be determined from overload");
5676    if (SubExpr == ICE->getSubExpr())
5677      return ICE->Retain();
5678
5679    return new (Context) ImplicitCastExpr(ICE->getType(),
5680                                          ICE->getCastKind(),
5681                                          SubExpr,
5682                                          ICE->isLvalueCast());
5683  }
5684
5685  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
5686    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
5687           "Can only take the address of an overloaded function");
5688    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5689      if (Method->isStatic()) {
5690        // Do nothing: static member functions aren't any different
5691        // from non-member functions.
5692      } else {
5693        // Fix the sub expression, which really has to be an
5694        // UnresolvedLookupExpr holding an overloaded member function
5695        // or template.
5696        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5697        if (SubExpr == UnOp->getSubExpr())
5698          return UnOp->Retain();
5699
5700        assert(isa<DeclRefExpr>(SubExpr)
5701               && "fixed to something other than a decl ref");
5702        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
5703               && "fixed to a member ref with no nested name qualifier");
5704
5705        // We have taken the address of a pointer to member
5706        // function. Perform the computation here so that we get the
5707        // appropriate pointer to member type.
5708        QualType ClassType
5709          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
5710        QualType MemPtrType
5711          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
5712
5713        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
5714                                           MemPtrType, UnOp->getOperatorLoc());
5715      }
5716    }
5717    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5718    if (SubExpr == UnOp->getSubExpr())
5719      return UnOp->Retain();
5720
5721    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
5722                                     Context.getPointerType(SubExpr->getType()),
5723                                       UnOp->getOperatorLoc());
5724  }
5725
5726  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
5727    // FIXME: avoid copy.
5728    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
5729    if (ULE->hasExplicitTemplateArgs()) {
5730      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
5731      TemplateArgs = &TemplateArgsBuffer;
5732    }
5733
5734    return DeclRefExpr::Create(Context,
5735                               ULE->getQualifier(),
5736                               ULE->getQualifierRange(),
5737                               Fn,
5738                               ULE->getNameLoc(),
5739                               Fn->getType(),
5740                               TemplateArgs);
5741  }
5742
5743  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
5744    // FIXME: avoid copy.
5745    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
5746    if (MemExpr->hasExplicitTemplateArgs()) {
5747      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
5748      TemplateArgs = &TemplateArgsBuffer;
5749    }
5750
5751    Expr *Base;
5752
5753    // If we're filling in
5754    if (MemExpr->isImplicitAccess()) {
5755      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
5756        return DeclRefExpr::Create(Context,
5757                                   MemExpr->getQualifier(),
5758                                   MemExpr->getQualifierRange(),
5759                                   Fn,
5760                                   MemExpr->getMemberLoc(),
5761                                   Fn->getType(),
5762                                   TemplateArgs);
5763      } else
5764        Base = new (Context) CXXThisExpr(SourceLocation(),
5765                                         MemExpr->getBaseType());
5766    } else
5767      Base = MemExpr->getBase()->Retain();
5768
5769    return MemberExpr::Create(Context, Base,
5770                              MemExpr->isArrow(),
5771                              MemExpr->getQualifier(),
5772                              MemExpr->getQualifierRange(),
5773                              Fn,
5774                              MemExpr->getMemberLoc(),
5775                              TemplateArgs,
5776                              Fn->getType());
5777  }
5778
5779  assert(false && "Invalid reference to overloaded function");
5780  return E->Retain();
5781}
5782
5783Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
5784                                                            FunctionDecl *Fn) {
5785  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
5786}
5787
5788} // end namespace clang
5789