SemaOverload.cpp revision 4433aafbc2591b82e4ea2fc39c723b21d2497f4d
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "SemaInherit.h" 16#include "clang/Basic/Diagnostic.h" 17#include "clang/Lex/Preprocessor.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/TypeOrdering.h" 22#include "llvm/ADT/SmallPtrSet.h" 23#include "llvm/ADT/STLExtras.h" 24#include "llvm/Support/Compiler.h" 25#include <algorithm> 26 27namespace clang { 28 29/// GetConversionCategory - Retrieve the implicit conversion 30/// category corresponding to the given implicit conversion kind. 31ImplicitConversionCategory 32GetConversionCategory(ImplicitConversionKind Kind) { 33 static const ImplicitConversionCategory 34 Category[(int)ICK_Num_Conversion_Kinds] = { 35 ICC_Identity, 36 ICC_Lvalue_Transformation, 37 ICC_Lvalue_Transformation, 38 ICC_Lvalue_Transformation, 39 ICC_Qualification_Adjustment, 40 ICC_Promotion, 41 ICC_Promotion, 42 ICC_Conversion, 43 ICC_Conversion, 44 ICC_Conversion, 45 ICC_Conversion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion 49 }; 50 return Category[(int)Kind]; 51} 52 53/// GetConversionRank - Retrieve the implicit conversion rank 54/// corresponding to the given implicit conversion kind. 55ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 56 static const ImplicitConversionRank 57 Rank[(int)ICK_Num_Conversion_Kinds] = { 58 ICR_Exact_Match, 59 ICR_Exact_Match, 60 ICR_Exact_Match, 61 ICR_Exact_Match, 62 ICR_Exact_Match, 63 ICR_Promotion, 64 ICR_Promotion, 65 ICR_Conversion, 66 ICR_Conversion, 67 ICR_Conversion, 68 ICR_Conversion, 69 ICR_Conversion, 70 ICR_Conversion, 71 ICR_Conversion 72 }; 73 return Rank[(int)Kind]; 74} 75 76/// GetImplicitConversionName - Return the name of this kind of 77/// implicit conversion. 78const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 79 static const char* Name[(int)ICK_Num_Conversion_Kinds] = { 80 "No conversion", 81 "Lvalue-to-rvalue", 82 "Array-to-pointer", 83 "Function-to-pointer", 84 "Qualification", 85 "Integral promotion", 86 "Floating point promotion", 87 "Integral conversion", 88 "Floating conversion", 89 "Floating-integral conversion", 90 "Pointer conversion", 91 "Pointer-to-member conversion", 92 "Boolean conversion", 93 "Derived-to-base conversion" 94 }; 95 return Name[Kind]; 96} 97 98/// StandardConversionSequence - Set the standard conversion 99/// sequence to the identity conversion. 100void StandardConversionSequence::setAsIdentityConversion() { 101 First = ICK_Identity; 102 Second = ICK_Identity; 103 Third = ICK_Identity; 104 Deprecated = false; 105 ReferenceBinding = false; 106 DirectBinding = false; 107 CopyConstructor = 0; 108} 109 110/// getRank - Retrieve the rank of this standard conversion sequence 111/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 112/// implicit conversions. 113ImplicitConversionRank StandardConversionSequence::getRank() const { 114 ImplicitConversionRank Rank = ICR_Exact_Match; 115 if (GetConversionRank(First) > Rank) 116 Rank = GetConversionRank(First); 117 if (GetConversionRank(Second) > Rank) 118 Rank = GetConversionRank(Second); 119 if (GetConversionRank(Third) > Rank) 120 Rank = GetConversionRank(Third); 121 return Rank; 122} 123 124/// isPointerConversionToBool - Determines whether this conversion is 125/// a conversion of a pointer or pointer-to-member to bool. This is 126/// used as part of the ranking of standard conversion sequences 127/// (C++ 13.3.3.2p4). 128bool StandardConversionSequence::isPointerConversionToBool() const 129{ 130 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 131 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 132 133 // Note that FromType has not necessarily been transformed by the 134 // array-to-pointer or function-to-pointer implicit conversions, so 135 // check for their presence as well as checking whether FromType is 136 // a pointer. 137 if (ToType->isBooleanType() && 138 (FromType->isPointerType() || FromType->isBlockPointerType() || 139 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 140 return true; 141 142 return false; 143} 144 145/// isPointerConversionToVoidPointer - Determines whether this 146/// conversion is a conversion of a pointer to a void pointer. This is 147/// used as part of the ranking of standard conversion sequences (C++ 148/// 13.3.3.2p4). 149bool 150StandardConversionSequence:: 151isPointerConversionToVoidPointer(ASTContext& Context) const 152{ 153 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 154 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 155 156 // Note that FromType has not necessarily been transformed by the 157 // array-to-pointer implicit conversion, so check for its presence 158 // and redo the conversion to get a pointer. 159 if (First == ICK_Array_To_Pointer) 160 FromType = Context.getArrayDecayedType(FromType); 161 162 if (Second == ICK_Pointer_Conversion) 163 if (const PointerType* ToPtrType = ToType->getAsPointerType()) 164 return ToPtrType->getPointeeType()->isVoidType(); 165 166 return false; 167} 168 169/// DebugPrint - Print this standard conversion sequence to standard 170/// error. Useful for debugging overloading issues. 171void StandardConversionSequence::DebugPrint() const { 172 bool PrintedSomething = false; 173 if (First != ICK_Identity) { 174 fprintf(stderr, "%s", GetImplicitConversionName(First)); 175 PrintedSomething = true; 176 } 177 178 if (Second != ICK_Identity) { 179 if (PrintedSomething) { 180 fprintf(stderr, " -> "); 181 } 182 fprintf(stderr, "%s", GetImplicitConversionName(Second)); 183 184 if (CopyConstructor) { 185 fprintf(stderr, " (by copy constructor)"); 186 } else if (DirectBinding) { 187 fprintf(stderr, " (direct reference binding)"); 188 } else if (ReferenceBinding) { 189 fprintf(stderr, " (reference binding)"); 190 } 191 PrintedSomething = true; 192 } 193 194 if (Third != ICK_Identity) { 195 if (PrintedSomething) { 196 fprintf(stderr, " -> "); 197 } 198 fprintf(stderr, "%s", GetImplicitConversionName(Third)); 199 PrintedSomething = true; 200 } 201 202 if (!PrintedSomething) { 203 fprintf(stderr, "No conversions required"); 204 } 205} 206 207/// DebugPrint - Print this user-defined conversion sequence to standard 208/// error. Useful for debugging overloading issues. 209void UserDefinedConversionSequence::DebugPrint() const { 210 if (Before.First || Before.Second || Before.Third) { 211 Before.DebugPrint(); 212 fprintf(stderr, " -> "); 213 } 214 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); 215 if (After.First || After.Second || After.Third) { 216 fprintf(stderr, " -> "); 217 After.DebugPrint(); 218 } 219} 220 221/// DebugPrint - Print this implicit conversion sequence to standard 222/// error. Useful for debugging overloading issues. 223void ImplicitConversionSequence::DebugPrint() const { 224 switch (ConversionKind) { 225 case StandardConversion: 226 fprintf(stderr, "Standard conversion: "); 227 Standard.DebugPrint(); 228 break; 229 case UserDefinedConversion: 230 fprintf(stderr, "User-defined conversion: "); 231 UserDefined.DebugPrint(); 232 break; 233 case EllipsisConversion: 234 fprintf(stderr, "Ellipsis conversion"); 235 break; 236 case BadConversion: 237 fprintf(stderr, "Bad conversion"); 238 break; 239 } 240 241 fprintf(stderr, "\n"); 242} 243 244// IsOverload - Determine whether the given New declaration is an 245// overload of the Old declaration. This routine returns false if New 246// and Old cannot be overloaded, e.g., if they are functions with the 247// same signature (C++ 1.3.10) or if the Old declaration isn't a 248// function (or overload set). When it does return false and Old is an 249// OverloadedFunctionDecl, MatchedDecl will be set to point to the 250// FunctionDecl that New cannot be overloaded with. 251// 252// Example: Given the following input: 253// 254// void f(int, float); // #1 255// void f(int, int); // #2 256// int f(int, int); // #3 257// 258// When we process #1, there is no previous declaration of "f", 259// so IsOverload will not be used. 260// 261// When we process #2, Old is a FunctionDecl for #1. By comparing the 262// parameter types, we see that #1 and #2 are overloaded (since they 263// have different signatures), so this routine returns false; 264// MatchedDecl is unchanged. 265// 266// When we process #3, Old is an OverloadedFunctionDecl containing #1 267// and #2. We compare the signatures of #3 to #1 (they're overloaded, 268// so we do nothing) and then #3 to #2. Since the signatures of #3 and 269// #2 are identical (return types of functions are not part of the 270// signature), IsOverload returns false and MatchedDecl will be set to 271// point to the FunctionDecl for #2. 272bool 273Sema::IsOverload(FunctionDecl *New, Decl* OldD, 274 OverloadedFunctionDecl::function_iterator& MatchedDecl) 275{ 276 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) { 277 // Is this new function an overload of every function in the 278 // overload set? 279 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 280 FuncEnd = Ovl->function_end(); 281 for (; Func != FuncEnd; ++Func) { 282 if (!IsOverload(New, *Func, MatchedDecl)) { 283 MatchedDecl = Func; 284 return false; 285 } 286 } 287 288 // This function overloads every function in the overload set. 289 return true; 290 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) { 291 // Is the function New an overload of the function Old? 292 QualType OldQType = Context.getCanonicalType(Old->getType()); 293 QualType NewQType = Context.getCanonicalType(New->getType()); 294 295 // Compare the signatures (C++ 1.3.10) of the two functions to 296 // determine whether they are overloads. If we find any mismatch 297 // in the signature, they are overloads. 298 299 // If either of these functions is a K&R-style function (no 300 // prototype), then we consider them to have matching signatures. 301 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) || 302 isa<FunctionTypeNoProto>(NewQType.getTypePtr())) 303 return false; 304 305 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr()); 306 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr()); 307 308 // The signature of a function includes the types of its 309 // parameters (C++ 1.3.10), which includes the presence or absence 310 // of the ellipsis; see C++ DR 357). 311 if (OldQType != NewQType && 312 (OldType->getNumArgs() != NewType->getNumArgs() || 313 OldType->isVariadic() != NewType->isVariadic() || 314 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 315 NewType->arg_type_begin()))) 316 return true; 317 318 // If the function is a class member, its signature includes the 319 // cv-qualifiers (if any) on the function itself. 320 // 321 // As part of this, also check whether one of the member functions 322 // is static, in which case they are not overloads (C++ 323 // 13.1p2). While not part of the definition of the signature, 324 // this check is important to determine whether these functions 325 // can be overloaded. 326 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 327 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 328 if (OldMethod && NewMethod && 329 !OldMethod->isStatic() && !NewMethod->isStatic() && 330 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 331 return true; 332 333 // The signatures match; this is not an overload. 334 return false; 335 } else { 336 // (C++ 13p1): 337 // Only function declarations can be overloaded; object and type 338 // declarations cannot be overloaded. 339 return false; 340 } 341} 342 343/// TryImplicitConversion - Attempt to perform an implicit conversion 344/// from the given expression (Expr) to the given type (ToType). This 345/// function returns an implicit conversion sequence that can be used 346/// to perform the initialization. Given 347/// 348/// void f(float f); 349/// void g(int i) { f(i); } 350/// 351/// this routine would produce an implicit conversion sequence to 352/// describe the initialization of f from i, which will be a standard 353/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 354/// 4.1) followed by a floating-integral conversion (C++ 4.9). 355// 356/// Note that this routine only determines how the conversion can be 357/// performed; it does not actually perform the conversion. As such, 358/// it will not produce any diagnostics if no conversion is available, 359/// but will instead return an implicit conversion sequence of kind 360/// "BadConversion". 361/// 362/// If @p SuppressUserConversions, then user-defined conversions are 363/// not permitted. 364/// If @p AllowExplicit, then explicit user-defined conversions are 365/// permitted. 366ImplicitConversionSequence 367Sema::TryImplicitConversion(Expr* From, QualType ToType, 368 bool SuppressUserConversions, 369 bool AllowExplict) 370{ 371 ImplicitConversionSequence ICS; 372 if (IsStandardConversion(From, ToType, ICS.Standard)) 373 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 374 else if (!SuppressUserConversions && 375 IsUserDefinedConversion(From, ToType, ICS.UserDefined, AllowExplict)) { 376 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; 377 // C++ [over.ics.user]p4: 378 // A conversion of an expression of class type to the same class 379 // type is given Exact Match rank, and a conversion of an 380 // expression of class type to a base class of that type is 381 // given Conversion rank, in spite of the fact that a copy 382 // constructor (i.e., a user-defined conversion function) is 383 // called for those cases. 384 if (CXXConstructorDecl *Constructor 385 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 386 if (Constructor->isCopyConstructor(Context)) { 387 // Turn this into a "standard" conversion sequence, so that it 388 // gets ranked with standard conversion sequences. 389 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 390 ICS.Standard.setAsIdentityConversion(); 391 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); 392 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); 393 ICS.Standard.CopyConstructor = Constructor; 394 if (IsDerivedFrom(From->getType().getUnqualifiedType(), 395 ToType.getUnqualifiedType())) 396 ICS.Standard.Second = ICK_Derived_To_Base; 397 } 398 } 399 } else 400 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 401 402 return ICS; 403} 404 405/// IsStandardConversion - Determines whether there is a standard 406/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 407/// expression From to the type ToType. Standard conversion sequences 408/// only consider non-class types; for conversions that involve class 409/// types, use TryImplicitConversion. If a conversion exists, SCS will 410/// contain the standard conversion sequence required to perform this 411/// conversion and this routine will return true. Otherwise, this 412/// routine will return false and the value of SCS is unspecified. 413bool 414Sema::IsStandardConversion(Expr* From, QualType ToType, 415 StandardConversionSequence &SCS) 416{ 417 QualType FromType = From->getType(); 418 419 // There are no standard conversions for class types, so abort early. 420 if (FromType->isRecordType() || ToType->isRecordType()) 421 return false; 422 423 // Standard conversions (C++ [conv]) 424 SCS.setAsIdentityConversion(); 425 SCS.Deprecated = false; 426 SCS.IncompatibleObjC = false; 427 SCS.FromTypePtr = FromType.getAsOpaquePtr(); 428 SCS.CopyConstructor = 0; 429 430 // The first conversion can be an lvalue-to-rvalue conversion, 431 // array-to-pointer conversion, or function-to-pointer conversion 432 // (C++ 4p1). 433 434 // Lvalue-to-rvalue conversion (C++ 4.1): 435 // An lvalue (3.10) of a non-function, non-array type T can be 436 // converted to an rvalue. 437 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 438 if (argIsLvalue == Expr::LV_Valid && 439 !FromType->isFunctionType() && !FromType->isArrayType() && 440 !FromType->isOverloadType()) { 441 SCS.First = ICK_Lvalue_To_Rvalue; 442 443 // If T is a non-class type, the type of the rvalue is the 444 // cv-unqualified version of T. Otherwise, the type of the rvalue 445 // is T (C++ 4.1p1). 446 FromType = FromType.getUnqualifiedType(); 447 } 448 // Array-to-pointer conversion (C++ 4.2) 449 else if (FromType->isArrayType()) { 450 SCS.First = ICK_Array_To_Pointer; 451 452 // An lvalue or rvalue of type "array of N T" or "array of unknown 453 // bound of T" can be converted to an rvalue of type "pointer to 454 // T" (C++ 4.2p1). 455 FromType = Context.getArrayDecayedType(FromType); 456 457 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 458 // This conversion is deprecated. (C++ D.4). 459 SCS.Deprecated = true; 460 461 // For the purpose of ranking in overload resolution 462 // (13.3.3.1.1), this conversion is considered an 463 // array-to-pointer conversion followed by a qualification 464 // conversion (4.4). (C++ 4.2p2) 465 SCS.Second = ICK_Identity; 466 SCS.Third = ICK_Qualification; 467 SCS.ToTypePtr = ToType.getAsOpaquePtr(); 468 return true; 469 } 470 } 471 // Function-to-pointer conversion (C++ 4.3). 472 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 473 SCS.First = ICK_Function_To_Pointer; 474 475 // An lvalue of function type T can be converted to an rvalue of 476 // type "pointer to T." The result is a pointer to the 477 // function. (C++ 4.3p1). 478 FromType = Context.getPointerType(FromType); 479 } 480 // Address of overloaded function (C++ [over.over]). 481 else if (FunctionDecl *Fn 482 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 483 SCS.First = ICK_Function_To_Pointer; 484 485 // We were able to resolve the address of the overloaded function, 486 // so we can convert to the type of that function. 487 FromType = Fn->getType(); 488 if (ToType->isReferenceType()) 489 FromType = Context.getReferenceType(FromType); 490 else 491 FromType = Context.getPointerType(FromType); 492 } 493 // We don't require any conversions for the first step. 494 else { 495 SCS.First = ICK_Identity; 496 } 497 498 // The second conversion can be an integral promotion, floating 499 // point promotion, integral conversion, floating point conversion, 500 // floating-integral conversion, pointer conversion, 501 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 502 bool IncompatibleObjC = false; 503 if (Context.getCanonicalType(FromType).getUnqualifiedType() == 504 Context.getCanonicalType(ToType).getUnqualifiedType()) { 505 // The unqualified versions of the types are the same: there's no 506 // conversion to do. 507 SCS.Second = ICK_Identity; 508 } 509 // Integral promotion (C++ 4.5). 510 else if (IsIntegralPromotion(From, FromType, ToType)) { 511 SCS.Second = ICK_Integral_Promotion; 512 FromType = ToType.getUnqualifiedType(); 513 } 514 // Floating point promotion (C++ 4.6). 515 else if (IsFloatingPointPromotion(FromType, ToType)) { 516 SCS.Second = ICK_Floating_Promotion; 517 FromType = ToType.getUnqualifiedType(); 518 } 519 // Integral conversions (C++ 4.7). 520 // FIXME: isIntegralType shouldn't be true for enums in C++. 521 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 522 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 523 SCS.Second = ICK_Integral_Conversion; 524 FromType = ToType.getUnqualifiedType(); 525 } 526 // Floating point conversions (C++ 4.8). 527 else if (FromType->isFloatingType() && ToType->isFloatingType()) { 528 SCS.Second = ICK_Floating_Conversion; 529 FromType = ToType.getUnqualifiedType(); 530 } 531 // Floating-integral conversions (C++ 4.9). 532 // FIXME: isIntegralType shouldn't be true for enums in C++. 533 else if ((FromType->isFloatingType() && 534 ToType->isIntegralType() && !ToType->isBooleanType() && 535 !ToType->isEnumeralType()) || 536 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 537 ToType->isFloatingType())) { 538 SCS.Second = ICK_Floating_Integral; 539 FromType = ToType.getUnqualifiedType(); 540 } 541 // Pointer conversions (C++ 4.10). 542 else if (IsPointerConversion(From, FromType, ToType, FromType, 543 IncompatibleObjC)) { 544 SCS.Second = ICK_Pointer_Conversion; 545 SCS.IncompatibleObjC = IncompatibleObjC; 546 } 547 // Pointer to member conversions (4.11). 548 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) { 549 SCS.Second = ICK_Pointer_Member; 550 } 551 // Boolean conversions (C++ 4.12). 552 else if (ToType->isBooleanType() && 553 (FromType->isArithmeticType() || 554 FromType->isEnumeralType() || 555 FromType->isPointerType() || 556 FromType->isBlockPointerType() || 557 FromType->isMemberPointerType())) { 558 SCS.Second = ICK_Boolean_Conversion; 559 FromType = Context.BoolTy; 560 } else { 561 // No second conversion required. 562 SCS.Second = ICK_Identity; 563 } 564 565 QualType CanonFrom; 566 QualType CanonTo; 567 // The third conversion can be a qualification conversion (C++ 4p1). 568 if (IsQualificationConversion(FromType, ToType)) { 569 SCS.Third = ICK_Qualification; 570 FromType = ToType; 571 CanonFrom = Context.getCanonicalType(FromType); 572 CanonTo = Context.getCanonicalType(ToType); 573 } else { 574 // No conversion required 575 SCS.Third = ICK_Identity; 576 577 // C++ [over.best.ics]p6: 578 // [...] Any difference in top-level cv-qualification is 579 // subsumed by the initialization itself and does not constitute 580 // a conversion. [...] 581 CanonFrom = Context.getCanonicalType(FromType); 582 CanonTo = Context.getCanonicalType(ToType); 583 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() && 584 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) { 585 FromType = ToType; 586 CanonFrom = CanonTo; 587 } 588 } 589 590 // If we have not converted the argument type to the parameter type, 591 // this is a bad conversion sequence. 592 if (CanonFrom != CanonTo) 593 return false; 594 595 SCS.ToTypePtr = FromType.getAsOpaquePtr(); 596 return true; 597} 598 599/// IsIntegralPromotion - Determines whether the conversion from the 600/// expression From (whose potentially-adjusted type is FromType) to 601/// ToType is an integral promotion (C++ 4.5). If so, returns true and 602/// sets PromotedType to the promoted type. 603bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) 604{ 605 const BuiltinType *To = ToType->getAsBuiltinType(); 606 // All integers are built-in. 607 if (!To) { 608 return false; 609 } 610 611 // An rvalue of type char, signed char, unsigned char, short int, or 612 // unsigned short int can be converted to an rvalue of type int if 613 // int can represent all the values of the source type; otherwise, 614 // the source rvalue can be converted to an rvalue of type unsigned 615 // int (C++ 4.5p1). 616 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { 617 if (// We can promote any signed, promotable integer type to an int 618 (FromType->isSignedIntegerType() || 619 // We can promote any unsigned integer type whose size is 620 // less than int to an int. 621 (!FromType->isSignedIntegerType() && 622 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 623 return To->getKind() == BuiltinType::Int; 624 } 625 626 return To->getKind() == BuiltinType::UInt; 627 } 628 629 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 630 // can be converted to an rvalue of the first of the following types 631 // that can represent all the values of its underlying type: int, 632 // unsigned int, long, or unsigned long (C++ 4.5p2). 633 if ((FromType->isEnumeralType() || FromType->isWideCharType()) 634 && ToType->isIntegerType()) { 635 // Determine whether the type we're converting from is signed or 636 // unsigned. 637 bool FromIsSigned; 638 uint64_t FromSize = Context.getTypeSize(FromType); 639 if (const EnumType *FromEnumType = FromType->getAsEnumType()) { 640 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType(); 641 FromIsSigned = UnderlyingType->isSignedIntegerType(); 642 } else { 643 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 644 FromIsSigned = true; 645 } 646 647 // The types we'll try to promote to, in the appropriate 648 // order. Try each of these types. 649 QualType PromoteTypes[6] = { 650 Context.IntTy, Context.UnsignedIntTy, 651 Context.LongTy, Context.UnsignedLongTy , 652 Context.LongLongTy, Context.UnsignedLongLongTy 653 }; 654 for (int Idx = 0; Idx < 6; ++Idx) { 655 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 656 if (FromSize < ToSize || 657 (FromSize == ToSize && 658 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 659 // We found the type that we can promote to. If this is the 660 // type we wanted, we have a promotion. Otherwise, no 661 // promotion. 662 return Context.getCanonicalType(ToType).getUnqualifiedType() 663 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType(); 664 } 665 } 666 } 667 668 // An rvalue for an integral bit-field (9.6) can be converted to an 669 // rvalue of type int if int can represent all the values of the 670 // bit-field; otherwise, it can be converted to unsigned int if 671 // unsigned int can represent all the values of the bit-field. If 672 // the bit-field is larger yet, no integral promotion applies to 673 // it. If the bit-field has an enumerated type, it is treated as any 674 // other value of that type for promotion purposes (C++ 4.5p3). 675 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) { 676 using llvm::APSInt; 677 if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) { 678 APSInt BitWidth; 679 if (MemberDecl->isBitField() && 680 FromType->isIntegralType() && !FromType->isEnumeralType() && 681 From->isIntegerConstantExpr(BitWidth, Context)) { 682 APSInt ToSize(Context.getTypeSize(ToType)); 683 684 // Are we promoting to an int from a bitfield that fits in an int? 685 if (BitWidth < ToSize || 686 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 687 return To->getKind() == BuiltinType::Int; 688 } 689 690 // Are we promoting to an unsigned int from an unsigned bitfield 691 // that fits into an unsigned int? 692 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 693 return To->getKind() == BuiltinType::UInt; 694 } 695 696 return false; 697 } 698 } 699 } 700 701 // An rvalue of type bool can be converted to an rvalue of type int, 702 // with false becoming zero and true becoming one (C++ 4.5p4). 703 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 704 return true; 705 } 706 707 return false; 708} 709 710/// IsFloatingPointPromotion - Determines whether the conversion from 711/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 712/// returns true and sets PromotedType to the promoted type. 713bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) 714{ 715 /// An rvalue of type float can be converted to an rvalue of type 716 /// double. (C++ 4.6p1). 717 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType()) 718 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) 719 if (FromBuiltin->getKind() == BuiltinType::Float && 720 ToBuiltin->getKind() == BuiltinType::Double) 721 return true; 722 723 return false; 724} 725 726/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 727/// the pointer type FromPtr to a pointer to type ToPointee, with the 728/// same type qualifiers as FromPtr has on its pointee type. ToType, 729/// if non-empty, will be a pointer to ToType that may or may not have 730/// the right set of qualifiers on its pointee. 731static QualType 732BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 733 QualType ToPointee, QualType ToType, 734 ASTContext &Context) { 735 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 736 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 737 unsigned Quals = CanonFromPointee.getCVRQualifiers(); 738 739 // Exact qualifier match -> return the pointer type we're converting to. 740 if (CanonToPointee.getCVRQualifiers() == Quals) { 741 // ToType is exactly what we need. Return it. 742 if (ToType.getTypePtr()) 743 return ToType; 744 745 // Build a pointer to ToPointee. It has the right qualifiers 746 // already. 747 return Context.getPointerType(ToPointee); 748 } 749 750 // Just build a canonical type that has the right qualifiers. 751 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals)); 752} 753 754/// IsPointerConversion - Determines whether the conversion of the 755/// expression From, which has the (possibly adjusted) type FromType, 756/// can be converted to the type ToType via a pointer conversion (C++ 757/// 4.10). If so, returns true and places the converted type (that 758/// might differ from ToType in its cv-qualifiers at some level) into 759/// ConvertedType. 760/// 761/// This routine also supports conversions to and from block pointers 762/// and conversions with Objective-C's 'id', 'id<protocols...>', and 763/// pointers to interfaces. FIXME: Once we've determined the 764/// appropriate overloading rules for Objective-C, we may want to 765/// split the Objective-C checks into a different routine; however, 766/// GCC seems to consider all of these conversions to be pointer 767/// conversions, so for now they live here. IncompatibleObjC will be 768/// set if the conversion is an allowed Objective-C conversion that 769/// should result in a warning. 770bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 771 QualType& ConvertedType, 772 bool &IncompatibleObjC) 773{ 774 IncompatibleObjC = false; 775 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 776 return true; 777 778 // Conversion from a null pointer constant to any Objective-C pointer type. 779 if (Context.isObjCObjectPointerType(ToType) && 780 From->isNullPointerConstant(Context)) { 781 ConvertedType = ToType; 782 return true; 783 } 784 785 // Blocks: Block pointers can be converted to void*. 786 if (FromType->isBlockPointerType() && ToType->isPointerType() && 787 ToType->getAsPointerType()->getPointeeType()->isVoidType()) { 788 ConvertedType = ToType; 789 return true; 790 } 791 // Blocks: A null pointer constant can be converted to a block 792 // pointer type. 793 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) { 794 ConvertedType = ToType; 795 return true; 796 } 797 798 const PointerType* ToTypePtr = ToType->getAsPointerType(); 799 if (!ToTypePtr) 800 return false; 801 802 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 803 if (From->isNullPointerConstant(Context)) { 804 ConvertedType = ToType; 805 return true; 806 } 807 808 // Beyond this point, both types need to be pointers. 809 const PointerType *FromTypePtr = FromType->getAsPointerType(); 810 if (!FromTypePtr) 811 return false; 812 813 QualType FromPointeeType = FromTypePtr->getPointeeType(); 814 QualType ToPointeeType = ToTypePtr->getPointeeType(); 815 816 // An rvalue of type "pointer to cv T," where T is an object type, 817 // can be converted to an rvalue of type "pointer to cv void" (C++ 818 // 4.10p2). 819 if (FromPointeeType->isIncompleteOrObjectType() && 820 ToPointeeType->isVoidType()) { 821 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 822 ToPointeeType, 823 ToType, Context); 824 return true; 825 } 826 827 // C++ [conv.ptr]p3: 828 // 829 // An rvalue of type "pointer to cv D," where D is a class type, 830 // can be converted to an rvalue of type "pointer to cv B," where 831 // B is a base class (clause 10) of D. If B is an inaccessible 832 // (clause 11) or ambiguous (10.2) base class of D, a program that 833 // necessitates this conversion is ill-formed. The result of the 834 // conversion is a pointer to the base class sub-object of the 835 // derived class object. The null pointer value is converted to 836 // the null pointer value of the destination type. 837 // 838 // Note that we do not check for ambiguity or inaccessibility 839 // here. That is handled by CheckPointerConversion. 840 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 841 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 842 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 843 ToPointeeType, 844 ToType, Context); 845 return true; 846 } 847 848 return false; 849} 850 851/// isObjCPointerConversion - Determines whether this is an 852/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 853/// with the same arguments and return values. 854bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 855 QualType& ConvertedType, 856 bool &IncompatibleObjC) { 857 if (!getLangOptions().ObjC1) 858 return false; 859 860 // Conversions with Objective-C's id<...>. 861 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) && 862 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) { 863 ConvertedType = ToType; 864 return true; 865 } 866 867 // Beyond this point, both types need to be pointers or block pointers. 868 QualType ToPointeeType; 869 const PointerType* ToTypePtr = ToType->getAsPointerType(); 870 if (ToTypePtr) 871 ToPointeeType = ToTypePtr->getPointeeType(); 872 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType()) 873 ToPointeeType = ToBlockPtr->getPointeeType(); 874 else 875 return false; 876 877 QualType FromPointeeType; 878 const PointerType *FromTypePtr = FromType->getAsPointerType(); 879 if (FromTypePtr) 880 FromPointeeType = FromTypePtr->getPointeeType(); 881 else if (const BlockPointerType *FromBlockPtr 882 = FromType->getAsBlockPointerType()) 883 FromPointeeType = FromBlockPtr->getPointeeType(); 884 else 885 return false; 886 887 // Objective C++: We're able to convert from a pointer to an 888 // interface to a pointer to a different interface. 889 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType(); 890 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType(); 891 if (FromIface && ToIface && 892 Context.canAssignObjCInterfaces(ToIface, FromIface)) { 893 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 894 ToPointeeType, 895 ToType, Context); 896 return true; 897 } 898 899 if (FromIface && ToIface && 900 Context.canAssignObjCInterfaces(FromIface, ToIface)) { 901 // Okay: this is some kind of implicit downcast of Objective-C 902 // interfaces, which is permitted. However, we're going to 903 // complain about it. 904 IncompatibleObjC = true; 905 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 906 ToPointeeType, 907 ToType, Context); 908 return true; 909 } 910 911 // Objective C++: We're able to convert between "id" and a pointer 912 // to any interface (in both directions). 913 if ((FromIface && Context.isObjCIdType(ToPointeeType)) 914 || (ToIface && Context.isObjCIdType(FromPointeeType))) { 915 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 916 ToPointeeType, 917 ToType, Context); 918 return true; 919 } 920 921 // Objective C++: Allow conversions between the Objective-C "id" and 922 // "Class", in either direction. 923 if ((Context.isObjCIdType(FromPointeeType) && 924 Context.isObjCClassType(ToPointeeType)) || 925 (Context.isObjCClassType(FromPointeeType) && 926 Context.isObjCIdType(ToPointeeType))) { 927 ConvertedType = ToType; 928 return true; 929 } 930 931 // If we have pointers to pointers, recursively check whether this 932 // is an Objective-C conversion. 933 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 934 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 935 IncompatibleObjC)) { 936 // We always complain about this conversion. 937 IncompatibleObjC = true; 938 ConvertedType = ToType; 939 return true; 940 } 941 942 // If we have pointers to functions or blocks, check whether the only 943 // differences in the argument and result types are in Objective-C 944 // pointer conversions. If so, we permit the conversion (but 945 // complain about it). 946 const FunctionTypeProto *FromFunctionType 947 = FromPointeeType->getAsFunctionTypeProto(); 948 const FunctionTypeProto *ToFunctionType 949 = ToPointeeType->getAsFunctionTypeProto(); 950 if (FromFunctionType && ToFunctionType) { 951 // If the function types are exactly the same, this isn't an 952 // Objective-C pointer conversion. 953 if (Context.getCanonicalType(FromPointeeType) 954 == Context.getCanonicalType(ToPointeeType)) 955 return false; 956 957 // Perform the quick checks that will tell us whether these 958 // function types are obviously different. 959 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 960 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 961 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 962 return false; 963 964 bool HasObjCConversion = false; 965 if (Context.getCanonicalType(FromFunctionType->getResultType()) 966 == Context.getCanonicalType(ToFunctionType->getResultType())) { 967 // Okay, the types match exactly. Nothing to do. 968 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 969 ToFunctionType->getResultType(), 970 ConvertedType, IncompatibleObjC)) { 971 // Okay, we have an Objective-C pointer conversion. 972 HasObjCConversion = true; 973 } else { 974 // Function types are too different. Abort. 975 return false; 976 } 977 978 // Check argument types. 979 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 980 ArgIdx != NumArgs; ++ArgIdx) { 981 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 982 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 983 if (Context.getCanonicalType(FromArgType) 984 == Context.getCanonicalType(ToArgType)) { 985 // Okay, the types match exactly. Nothing to do. 986 } else if (isObjCPointerConversion(FromArgType, ToArgType, 987 ConvertedType, IncompatibleObjC)) { 988 // Okay, we have an Objective-C pointer conversion. 989 HasObjCConversion = true; 990 } else { 991 // Argument types are too different. Abort. 992 return false; 993 } 994 } 995 996 if (HasObjCConversion) { 997 // We had an Objective-C conversion. Allow this pointer 998 // conversion, but complain about it. 999 ConvertedType = ToType; 1000 IncompatibleObjC = true; 1001 return true; 1002 } 1003 } 1004 1005 return false; 1006} 1007 1008/// CheckPointerConversion - Check the pointer conversion from the 1009/// expression From to the type ToType. This routine checks for 1010/// ambiguous (FIXME: or inaccessible) derived-to-base pointer 1011/// conversions for which IsPointerConversion has already returned 1012/// true. It returns true and produces a diagnostic if there was an 1013/// error, or returns false otherwise. 1014bool Sema::CheckPointerConversion(Expr *From, QualType ToType) { 1015 QualType FromType = From->getType(); 1016 1017 if (const PointerType *FromPtrType = FromType->getAsPointerType()) 1018 if (const PointerType *ToPtrType = ToType->getAsPointerType()) { 1019 QualType FromPointeeType = FromPtrType->getPointeeType(), 1020 ToPointeeType = ToPtrType->getPointeeType(); 1021 1022 // Objective-C++ conversions are always okay. 1023 // FIXME: We should have a different class of conversions for 1024 // the Objective-C++ implicit conversions. 1025 if (Context.isObjCIdType(FromPointeeType) || 1026 Context.isObjCIdType(ToPointeeType) || 1027 Context.isObjCClassType(FromPointeeType) || 1028 Context.isObjCClassType(ToPointeeType)) 1029 return false; 1030 1031 if (FromPointeeType->isRecordType() && 1032 ToPointeeType->isRecordType()) { 1033 // We must have a derived-to-base conversion. Check an 1034 // ambiguous or inaccessible conversion. 1035 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1036 From->getExprLoc(), 1037 From->getSourceRange()); 1038 } 1039 } 1040 1041 return false; 1042} 1043 1044/// IsMemberPointerConversion - Determines whether the conversion of the 1045/// expression From, which has the (possibly adjusted) type FromType, can be 1046/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1047/// If so, returns true and places the converted type (that might differ from 1048/// ToType in its cv-qualifiers at some level) into ConvertedType. 1049bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1050 QualType ToType, QualType &ConvertedType) 1051{ 1052 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType(); 1053 if (!ToTypePtr) 1054 return false; 1055 1056 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1057 if (From->isNullPointerConstant(Context)) { 1058 ConvertedType = ToType; 1059 return true; 1060 } 1061 1062 // Otherwise, both types have to be member pointers. 1063 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType(); 1064 if (!FromTypePtr) 1065 return false; 1066 1067 // A pointer to member of B can be converted to a pointer to member of D, 1068 // where D is derived from B (C++ 4.11p2). 1069 QualType FromClass(FromTypePtr->getClass(), 0); 1070 QualType ToClass(ToTypePtr->getClass(), 0); 1071 // FIXME: What happens when these are dependent? Is this function even called? 1072 1073 if (IsDerivedFrom(ToClass, FromClass)) { 1074 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1075 ToClass.getTypePtr()); 1076 return true; 1077 } 1078 1079 return false; 1080} 1081 1082/// CheckMemberPointerConversion - Check the member pointer conversion from the 1083/// expression From to the type ToType. This routine checks for ambiguous or 1084/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions 1085/// for which IsMemberPointerConversion has already returned true. It returns 1086/// true and produces a diagnostic if there was an error, or returns false 1087/// otherwise. 1088bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) { 1089 QualType FromType = From->getType(); 1090 1091 if (const MemberPointerType *FromPtrType = 1092 FromType->getAsMemberPointerType()) { 1093 if (const MemberPointerType *ToPtrType = 1094 ToType->getAsMemberPointerType()) { 1095 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1096 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1097 1098 // FIXME: What about dependent types? 1099 assert(FromClass->isRecordType() && "Pointer into non-class."); 1100 assert(ToClass->isRecordType() && "Pointer into non-class."); 1101 1102 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 1103 /*DetectVirtual=*/true); 1104 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1105 assert(DerivationOkay && 1106 "Should not have been called if derivation isn't OK."); 1107 if (!DerivationOkay) 1108 return true; 1109 1110 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1111 getUnqualifiedType())) { 1112 // Derivation is ambiguous. Redo the check to find the exact paths. 1113 Paths.clear(); 1114 Paths.setRecordingPaths(true); 1115 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1116 assert(StillOkay && "Derivation changed due to quantum fluctuation."); 1117 if (!StillOkay) 1118 return true; 1119 1120 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1121 Diag(From->getExprLoc(), 1122 diag::err_ambiguous_base_to_derived_memptr_conv) 1123 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1124 return true; 1125 } 1126 1127 if (const CXXRecordType *VBase = Paths.getDetectedVirtual()) { 1128 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1129 << FromClass << ToClass << QualType(VBase, 0) 1130 << From->getSourceRange(); 1131 return true; 1132 } 1133 } 1134 } 1135 return false; 1136} 1137 1138/// IsQualificationConversion - Determines whether the conversion from 1139/// an rvalue of type FromType to ToType is a qualification conversion 1140/// (C++ 4.4). 1141bool 1142Sema::IsQualificationConversion(QualType FromType, QualType ToType) 1143{ 1144 FromType = Context.getCanonicalType(FromType); 1145 ToType = Context.getCanonicalType(ToType); 1146 1147 // If FromType and ToType are the same type, this is not a 1148 // qualification conversion. 1149 if (FromType == ToType) 1150 return false; 1151 1152 // (C++ 4.4p4): 1153 // A conversion can add cv-qualifiers at levels other than the first 1154 // in multi-level pointers, subject to the following rules: [...] 1155 bool PreviousToQualsIncludeConst = true; 1156 bool UnwrappedAnyPointer = false; 1157 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1158 // Within each iteration of the loop, we check the qualifiers to 1159 // determine if this still looks like a qualification 1160 // conversion. Then, if all is well, we unwrap one more level of 1161 // pointers or pointers-to-members and do it all again 1162 // until there are no more pointers or pointers-to-members left to 1163 // unwrap. 1164 UnwrappedAnyPointer = true; 1165 1166 // -- for every j > 0, if const is in cv 1,j then const is in cv 1167 // 2,j, and similarly for volatile. 1168 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1169 return false; 1170 1171 // -- if the cv 1,j and cv 2,j are different, then const is in 1172 // every cv for 0 < k < j. 1173 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1174 && !PreviousToQualsIncludeConst) 1175 return false; 1176 1177 // Keep track of whether all prior cv-qualifiers in the "to" type 1178 // include const. 1179 PreviousToQualsIncludeConst 1180 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1181 } 1182 1183 // We are left with FromType and ToType being the pointee types 1184 // after unwrapping the original FromType and ToType the same number 1185 // of types. If we unwrapped any pointers, and if FromType and 1186 // ToType have the same unqualified type (since we checked 1187 // qualifiers above), then this is a qualification conversion. 1188 return UnwrappedAnyPointer && 1189 FromType.getUnqualifiedType() == ToType.getUnqualifiedType(); 1190} 1191 1192/// IsUserDefinedConversion - Determines whether there is a 1193/// user-defined conversion sequence (C++ [over.ics.user]) that 1194/// converts expression From to the type ToType. If such a conversion 1195/// exists, User will contain the user-defined conversion sequence 1196/// that performs such a conversion and this routine will return 1197/// true. Otherwise, this routine returns false and User is 1198/// unspecified. AllowExplicit is true if the conversion should 1199/// consider C++0x "explicit" conversion functions as well as 1200/// non-explicit conversion functions (C++0x [class.conv.fct]p2). 1201bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 1202 UserDefinedConversionSequence& User, 1203 bool AllowExplicit) 1204{ 1205 OverloadCandidateSet CandidateSet; 1206 if (const CXXRecordType *ToRecordType 1207 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) { 1208 // C++ [over.match.ctor]p1: 1209 // When objects of class type are direct-initialized (8.5), or 1210 // copy-initialized from an expression of the same or a 1211 // derived class type (8.5), overload resolution selects the 1212 // constructor. [...] For copy-initialization, the candidate 1213 // functions are all the converting constructors (12.3.1) of 1214 // that class. The argument list is the expression-list within 1215 // the parentheses of the initializer. 1216 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl(); 1217 DeclarationName ConstructorName 1218 = Context.DeclarationNames.getCXXConstructorName( 1219 Context.getCanonicalType(ToType).getUnqualifiedType()); 1220 DeclContext::lookup_iterator Con, ConEnd; 1221 for (llvm::tie(Con, ConEnd) = ToRecordDecl->lookup(ConstructorName); 1222 Con != ConEnd; ++Con) { 1223 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); 1224 if (Constructor->isConvertingConstructor()) 1225 AddOverloadCandidate(Constructor, &From, 1, CandidateSet, 1226 /*SuppressUserConversions=*/true); 1227 } 1228 } 1229 1230 if (const CXXRecordType *FromRecordType 1231 = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) { 1232 // Add all of the conversion functions as candidates. 1233 // FIXME: Look for conversions in base classes! 1234 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl(); 1235 OverloadedFunctionDecl *Conversions 1236 = FromRecordDecl->getConversionFunctions(); 1237 for (OverloadedFunctionDecl::function_iterator Func 1238 = Conversions->function_begin(); 1239 Func != Conversions->function_end(); ++Func) { 1240 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func); 1241 if (AllowExplicit || !Conv->isExplicit()) 1242 AddConversionCandidate(Conv, From, ToType, CandidateSet); 1243 } 1244 } 1245 1246 OverloadCandidateSet::iterator Best; 1247 switch (BestViableFunction(CandidateSet, Best)) { 1248 case OR_Success: 1249 // Record the standard conversion we used and the conversion function. 1250 if (CXXConstructorDecl *Constructor 1251 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1252 // C++ [over.ics.user]p1: 1253 // If the user-defined conversion is specified by a 1254 // constructor (12.3.1), the initial standard conversion 1255 // sequence converts the source type to the type required by 1256 // the argument of the constructor. 1257 // 1258 // FIXME: What about ellipsis conversions? 1259 QualType ThisType = Constructor->getThisType(Context); 1260 User.Before = Best->Conversions[0].Standard; 1261 User.ConversionFunction = Constructor; 1262 User.After.setAsIdentityConversion(); 1263 User.After.FromTypePtr 1264 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr(); 1265 User.After.ToTypePtr = ToType.getAsOpaquePtr(); 1266 return true; 1267 } else if (CXXConversionDecl *Conversion 1268 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1269 // C++ [over.ics.user]p1: 1270 // 1271 // [...] If the user-defined conversion is specified by a 1272 // conversion function (12.3.2), the initial standard 1273 // conversion sequence converts the source type to the 1274 // implicit object parameter of the conversion function. 1275 User.Before = Best->Conversions[0].Standard; 1276 User.ConversionFunction = Conversion; 1277 1278 // C++ [over.ics.user]p2: 1279 // The second standard conversion sequence converts the 1280 // result of the user-defined conversion to the target type 1281 // for the sequence. Since an implicit conversion sequence 1282 // is an initialization, the special rules for 1283 // initialization by user-defined conversion apply when 1284 // selecting the best user-defined conversion for a 1285 // user-defined conversion sequence (see 13.3.3 and 1286 // 13.3.3.1). 1287 User.After = Best->FinalConversion; 1288 return true; 1289 } else { 1290 assert(false && "Not a constructor or conversion function?"); 1291 return false; 1292 } 1293 1294 case OR_No_Viable_Function: 1295 // No conversion here! We're done. 1296 return false; 1297 1298 case OR_Ambiguous: 1299 // FIXME: See C++ [over.best.ics]p10 for the handling of 1300 // ambiguous conversion sequences. 1301 return false; 1302 } 1303 1304 return false; 1305} 1306 1307/// CompareImplicitConversionSequences - Compare two implicit 1308/// conversion sequences to determine whether one is better than the 1309/// other or if they are indistinguishable (C++ 13.3.3.2). 1310ImplicitConversionSequence::CompareKind 1311Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1312 const ImplicitConversionSequence& ICS2) 1313{ 1314 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1315 // conversion sequences (as defined in 13.3.3.1) 1316 // -- a standard conversion sequence (13.3.3.1.1) is a better 1317 // conversion sequence than a user-defined conversion sequence or 1318 // an ellipsis conversion sequence, and 1319 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1320 // conversion sequence than an ellipsis conversion sequence 1321 // (13.3.3.1.3). 1322 // 1323 if (ICS1.ConversionKind < ICS2.ConversionKind) 1324 return ImplicitConversionSequence::Better; 1325 else if (ICS2.ConversionKind < ICS1.ConversionKind) 1326 return ImplicitConversionSequence::Worse; 1327 1328 // Two implicit conversion sequences of the same form are 1329 // indistinguishable conversion sequences unless one of the 1330 // following rules apply: (C++ 13.3.3.2p3): 1331 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) 1332 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1333 else if (ICS1.ConversionKind == 1334 ImplicitConversionSequence::UserDefinedConversion) { 1335 // User-defined conversion sequence U1 is a better conversion 1336 // sequence than another user-defined conversion sequence U2 if 1337 // they contain the same user-defined conversion function or 1338 // constructor and if the second standard conversion sequence of 1339 // U1 is better than the second standard conversion sequence of 1340 // U2 (C++ 13.3.3.2p3). 1341 if (ICS1.UserDefined.ConversionFunction == 1342 ICS2.UserDefined.ConversionFunction) 1343 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1344 ICS2.UserDefined.After); 1345 } 1346 1347 return ImplicitConversionSequence::Indistinguishable; 1348} 1349 1350/// CompareStandardConversionSequences - Compare two standard 1351/// conversion sequences to determine whether one is better than the 1352/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1353ImplicitConversionSequence::CompareKind 1354Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1355 const StandardConversionSequence& SCS2) 1356{ 1357 // Standard conversion sequence S1 is a better conversion sequence 1358 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1359 1360 // -- S1 is a proper subsequence of S2 (comparing the conversion 1361 // sequences in the canonical form defined by 13.3.3.1.1, 1362 // excluding any Lvalue Transformation; the identity conversion 1363 // sequence is considered to be a subsequence of any 1364 // non-identity conversion sequence) or, if not that, 1365 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) 1366 // Neither is a proper subsequence of the other. Do nothing. 1367 ; 1368 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || 1369 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || 1370 (SCS1.Second == ICK_Identity && 1371 SCS1.Third == ICK_Identity)) 1372 // SCS1 is a proper subsequence of SCS2. 1373 return ImplicitConversionSequence::Better; 1374 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || 1375 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || 1376 (SCS2.Second == ICK_Identity && 1377 SCS2.Third == ICK_Identity)) 1378 // SCS2 is a proper subsequence of SCS1. 1379 return ImplicitConversionSequence::Worse; 1380 1381 // -- the rank of S1 is better than the rank of S2 (by the rules 1382 // defined below), or, if not that, 1383 ImplicitConversionRank Rank1 = SCS1.getRank(); 1384 ImplicitConversionRank Rank2 = SCS2.getRank(); 1385 if (Rank1 < Rank2) 1386 return ImplicitConversionSequence::Better; 1387 else if (Rank2 < Rank1) 1388 return ImplicitConversionSequence::Worse; 1389 1390 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1391 // are indistinguishable unless one of the following rules 1392 // applies: 1393 1394 // A conversion that is not a conversion of a pointer, or 1395 // pointer to member, to bool is better than another conversion 1396 // that is such a conversion. 1397 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1398 return SCS2.isPointerConversionToBool() 1399 ? ImplicitConversionSequence::Better 1400 : ImplicitConversionSequence::Worse; 1401 1402 // C++ [over.ics.rank]p4b2: 1403 // 1404 // If class B is derived directly or indirectly from class A, 1405 // conversion of B* to A* is better than conversion of B* to 1406 // void*, and conversion of A* to void* is better than conversion 1407 // of B* to void*. 1408 bool SCS1ConvertsToVoid 1409 = SCS1.isPointerConversionToVoidPointer(Context); 1410 bool SCS2ConvertsToVoid 1411 = SCS2.isPointerConversionToVoidPointer(Context); 1412 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1413 // Exactly one of the conversion sequences is a conversion to 1414 // a void pointer; it's the worse conversion. 1415 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1416 : ImplicitConversionSequence::Worse; 1417 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1418 // Neither conversion sequence converts to a void pointer; compare 1419 // their derived-to-base conversions. 1420 if (ImplicitConversionSequence::CompareKind DerivedCK 1421 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1422 return DerivedCK; 1423 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1424 // Both conversion sequences are conversions to void 1425 // pointers. Compare the source types to determine if there's an 1426 // inheritance relationship in their sources. 1427 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1428 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1429 1430 // Adjust the types we're converting from via the array-to-pointer 1431 // conversion, if we need to. 1432 if (SCS1.First == ICK_Array_To_Pointer) 1433 FromType1 = Context.getArrayDecayedType(FromType1); 1434 if (SCS2.First == ICK_Array_To_Pointer) 1435 FromType2 = Context.getArrayDecayedType(FromType2); 1436 1437 QualType FromPointee1 1438 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType(); 1439 QualType FromPointee2 1440 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType(); 1441 1442 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1443 return ImplicitConversionSequence::Better; 1444 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1445 return ImplicitConversionSequence::Worse; 1446 1447 // Objective-C++: If one interface is more specific than the 1448 // other, it is the better one. 1449 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType(); 1450 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType(); 1451 if (FromIface1 && FromIface1) { 1452 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1453 return ImplicitConversionSequence::Better; 1454 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1455 return ImplicitConversionSequence::Worse; 1456 } 1457 } 1458 1459 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1460 // bullet 3). 1461 if (ImplicitConversionSequence::CompareKind QualCK 1462 = CompareQualificationConversions(SCS1, SCS2)) 1463 return QualCK; 1464 1465 // C++ [over.ics.rank]p3b4: 1466 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1467 // which the references refer are the same type except for 1468 // top-level cv-qualifiers, and the type to which the reference 1469 // initialized by S2 refers is more cv-qualified than the type 1470 // to which the reference initialized by S1 refers. 1471 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1472 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1473 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1474 T1 = Context.getCanonicalType(T1); 1475 T2 = Context.getCanonicalType(T2); 1476 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) { 1477 if (T2.isMoreQualifiedThan(T1)) 1478 return ImplicitConversionSequence::Better; 1479 else if (T1.isMoreQualifiedThan(T2)) 1480 return ImplicitConversionSequence::Worse; 1481 } 1482 } 1483 1484 return ImplicitConversionSequence::Indistinguishable; 1485} 1486 1487/// CompareQualificationConversions - Compares two standard conversion 1488/// sequences to determine whether they can be ranked based on their 1489/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1490ImplicitConversionSequence::CompareKind 1491Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1492 const StandardConversionSequence& SCS2) 1493{ 1494 // C++ 13.3.3.2p3: 1495 // -- S1 and S2 differ only in their qualification conversion and 1496 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1497 // cv-qualification signature of type T1 is a proper subset of 1498 // the cv-qualification signature of type T2, and S1 is not the 1499 // deprecated string literal array-to-pointer conversion (4.2). 1500 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1501 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1502 return ImplicitConversionSequence::Indistinguishable; 1503 1504 // FIXME: the example in the standard doesn't use a qualification 1505 // conversion (!) 1506 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1507 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1508 T1 = Context.getCanonicalType(T1); 1509 T2 = Context.getCanonicalType(T2); 1510 1511 // If the types are the same, we won't learn anything by unwrapped 1512 // them. 1513 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1514 return ImplicitConversionSequence::Indistinguishable; 1515 1516 ImplicitConversionSequence::CompareKind Result 1517 = ImplicitConversionSequence::Indistinguishable; 1518 while (UnwrapSimilarPointerTypes(T1, T2)) { 1519 // Within each iteration of the loop, we check the qualifiers to 1520 // determine if this still looks like a qualification 1521 // conversion. Then, if all is well, we unwrap one more level of 1522 // pointers or pointers-to-members and do it all again 1523 // until there are no more pointers or pointers-to-members left 1524 // to unwrap. This essentially mimics what 1525 // IsQualificationConversion does, but here we're checking for a 1526 // strict subset of qualifiers. 1527 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1528 // The qualifiers are the same, so this doesn't tell us anything 1529 // about how the sequences rank. 1530 ; 1531 else if (T2.isMoreQualifiedThan(T1)) { 1532 // T1 has fewer qualifiers, so it could be the better sequence. 1533 if (Result == ImplicitConversionSequence::Worse) 1534 // Neither has qualifiers that are a subset of the other's 1535 // qualifiers. 1536 return ImplicitConversionSequence::Indistinguishable; 1537 1538 Result = ImplicitConversionSequence::Better; 1539 } else if (T1.isMoreQualifiedThan(T2)) { 1540 // T2 has fewer qualifiers, so it could be the better sequence. 1541 if (Result == ImplicitConversionSequence::Better) 1542 // Neither has qualifiers that are a subset of the other's 1543 // qualifiers. 1544 return ImplicitConversionSequence::Indistinguishable; 1545 1546 Result = ImplicitConversionSequence::Worse; 1547 } else { 1548 // Qualifiers are disjoint. 1549 return ImplicitConversionSequence::Indistinguishable; 1550 } 1551 1552 // If the types after this point are equivalent, we're done. 1553 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1554 break; 1555 } 1556 1557 // Check that the winning standard conversion sequence isn't using 1558 // the deprecated string literal array to pointer conversion. 1559 switch (Result) { 1560 case ImplicitConversionSequence::Better: 1561 if (SCS1.Deprecated) 1562 Result = ImplicitConversionSequence::Indistinguishable; 1563 break; 1564 1565 case ImplicitConversionSequence::Indistinguishable: 1566 break; 1567 1568 case ImplicitConversionSequence::Worse: 1569 if (SCS2.Deprecated) 1570 Result = ImplicitConversionSequence::Indistinguishable; 1571 break; 1572 } 1573 1574 return Result; 1575} 1576 1577/// CompareDerivedToBaseConversions - Compares two standard conversion 1578/// sequences to determine whether they can be ranked based on their 1579/// various kinds of derived-to-base conversions (C++ 1580/// [over.ics.rank]p4b3). As part of these checks, we also look at 1581/// conversions between Objective-C interface types. 1582ImplicitConversionSequence::CompareKind 1583Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 1584 const StandardConversionSequence& SCS2) { 1585 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1586 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1587 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1588 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1589 1590 // Adjust the types we're converting from via the array-to-pointer 1591 // conversion, if we need to. 1592 if (SCS1.First == ICK_Array_To_Pointer) 1593 FromType1 = Context.getArrayDecayedType(FromType1); 1594 if (SCS2.First == ICK_Array_To_Pointer) 1595 FromType2 = Context.getArrayDecayedType(FromType2); 1596 1597 // Canonicalize all of the types. 1598 FromType1 = Context.getCanonicalType(FromType1); 1599 ToType1 = Context.getCanonicalType(ToType1); 1600 FromType2 = Context.getCanonicalType(FromType2); 1601 ToType2 = Context.getCanonicalType(ToType2); 1602 1603 // C++ [over.ics.rank]p4b3: 1604 // 1605 // If class B is derived directly or indirectly from class A and 1606 // class C is derived directly or indirectly from B, 1607 // 1608 // For Objective-C, we let A, B, and C also be Objective-C 1609 // interfaces. 1610 1611 // Compare based on pointer conversions. 1612 if (SCS1.Second == ICK_Pointer_Conversion && 1613 SCS2.Second == ICK_Pointer_Conversion && 1614 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 1615 FromType1->isPointerType() && FromType2->isPointerType() && 1616 ToType1->isPointerType() && ToType2->isPointerType()) { 1617 QualType FromPointee1 1618 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType(); 1619 QualType ToPointee1 1620 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType(); 1621 QualType FromPointee2 1622 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType(); 1623 QualType ToPointee2 1624 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType(); 1625 1626 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType(); 1627 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType(); 1628 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType(); 1629 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType(); 1630 1631 // -- conversion of C* to B* is better than conversion of C* to A*, 1632 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1633 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1634 return ImplicitConversionSequence::Better; 1635 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1636 return ImplicitConversionSequence::Worse; 1637 1638 if (ToIface1 && ToIface2) { 1639 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 1640 return ImplicitConversionSequence::Better; 1641 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 1642 return ImplicitConversionSequence::Worse; 1643 } 1644 } 1645 1646 // -- conversion of B* to A* is better than conversion of C* to A*, 1647 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 1648 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1649 return ImplicitConversionSequence::Better; 1650 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1651 return ImplicitConversionSequence::Worse; 1652 1653 if (FromIface1 && FromIface2) { 1654 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1655 return ImplicitConversionSequence::Better; 1656 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1657 return ImplicitConversionSequence::Worse; 1658 } 1659 } 1660 } 1661 1662 // Compare based on reference bindings. 1663 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 1664 SCS1.Second == ICK_Derived_To_Base) { 1665 // -- binding of an expression of type C to a reference of type 1666 // B& is better than binding an expression of type C to a 1667 // reference of type A&, 1668 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1669 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1670 if (IsDerivedFrom(ToType1, ToType2)) 1671 return ImplicitConversionSequence::Better; 1672 else if (IsDerivedFrom(ToType2, ToType1)) 1673 return ImplicitConversionSequence::Worse; 1674 } 1675 1676 // -- binding of an expression of type B to a reference of type 1677 // A& is better than binding an expression of type C to a 1678 // reference of type A&, 1679 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 1680 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 1681 if (IsDerivedFrom(FromType2, FromType1)) 1682 return ImplicitConversionSequence::Better; 1683 else if (IsDerivedFrom(FromType1, FromType2)) 1684 return ImplicitConversionSequence::Worse; 1685 } 1686 } 1687 1688 1689 // FIXME: conversion of A::* to B::* is better than conversion of 1690 // A::* to C::*, 1691 1692 // FIXME: conversion of B::* to C::* is better than conversion of 1693 // A::* to C::*, and 1694 1695 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 1696 SCS1.Second == ICK_Derived_To_Base) { 1697 // -- conversion of C to B is better than conversion of C to A, 1698 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1699 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1700 if (IsDerivedFrom(ToType1, ToType2)) 1701 return ImplicitConversionSequence::Better; 1702 else if (IsDerivedFrom(ToType2, ToType1)) 1703 return ImplicitConversionSequence::Worse; 1704 } 1705 1706 // -- conversion of B to A is better than conversion of C to A. 1707 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 1708 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 1709 if (IsDerivedFrom(FromType2, FromType1)) 1710 return ImplicitConversionSequence::Better; 1711 else if (IsDerivedFrom(FromType1, FromType2)) 1712 return ImplicitConversionSequence::Worse; 1713 } 1714 } 1715 1716 return ImplicitConversionSequence::Indistinguishable; 1717} 1718 1719/// TryCopyInitialization - Try to copy-initialize a value of type 1720/// ToType from the expression From. Return the implicit conversion 1721/// sequence required to pass this argument, which may be a bad 1722/// conversion sequence (meaning that the argument cannot be passed to 1723/// a parameter of this type). If @p SuppressUserConversions, then we 1724/// do not permit any user-defined conversion sequences. 1725ImplicitConversionSequence 1726Sema::TryCopyInitialization(Expr *From, QualType ToType, 1727 bool SuppressUserConversions) { 1728 if (!getLangOptions().CPlusPlus) { 1729 // In C, copy initialization is the same as performing an assignment. 1730 AssignConvertType ConvTy = 1731 CheckSingleAssignmentConstraints(ToType, From); 1732 ImplicitConversionSequence ICS; 1733 if (getLangOptions().NoExtensions? ConvTy != Compatible 1734 : ConvTy == Incompatible) 1735 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 1736 else 1737 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 1738 return ICS; 1739 } else if (ToType->isReferenceType()) { 1740 ImplicitConversionSequence ICS; 1741 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions); 1742 return ICS; 1743 } else { 1744 return TryImplicitConversion(From, ToType, SuppressUserConversions); 1745 } 1746} 1747 1748/// PerformArgumentPassing - Pass the argument Arg into a parameter of 1749/// type ToType. Returns true (and emits a diagnostic) if there was 1750/// an error, returns false if the initialization succeeded. 1751bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 1752 const char* Flavor) { 1753 if (!getLangOptions().CPlusPlus) { 1754 // In C, argument passing is the same as performing an assignment. 1755 QualType FromType = From->getType(); 1756 AssignConvertType ConvTy = 1757 CheckSingleAssignmentConstraints(ToType, From); 1758 1759 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 1760 FromType, From, Flavor); 1761 } 1762 1763 if (ToType->isReferenceType()) 1764 return CheckReferenceInit(From, ToType); 1765 1766 if (!PerformImplicitConversion(From, ToType, Flavor)) 1767 return false; 1768 1769 return Diag(From->getSourceRange().getBegin(), 1770 diag::err_typecheck_convert_incompatible) 1771 << ToType << From->getType() << Flavor << From->getSourceRange(); 1772} 1773 1774/// TryObjectArgumentInitialization - Try to initialize the object 1775/// parameter of the given member function (@c Method) from the 1776/// expression @p From. 1777ImplicitConversionSequence 1778Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) { 1779 QualType ClassType = Context.getTypeDeclType(Method->getParent()); 1780 unsigned MethodQuals = Method->getTypeQualifiers(); 1781 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals); 1782 1783 // Set up the conversion sequence as a "bad" conversion, to allow us 1784 // to exit early. 1785 ImplicitConversionSequence ICS; 1786 ICS.Standard.setAsIdentityConversion(); 1787 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 1788 1789 // We need to have an object of class type. 1790 QualType FromType = From->getType(); 1791 if (!FromType->isRecordType()) 1792 return ICS; 1793 1794 // The implicit object parmeter is has the type "reference to cv X", 1795 // where X is the class of which the function is a member 1796 // (C++ [over.match.funcs]p4). However, when finding an implicit 1797 // conversion sequence for the argument, we are not allowed to 1798 // create temporaries or perform user-defined conversions 1799 // (C++ [over.match.funcs]p5). We perform a simplified version of 1800 // reference binding here, that allows class rvalues to bind to 1801 // non-constant references. 1802 1803 // First check the qualifiers. We don't care about lvalue-vs-rvalue 1804 // with the implicit object parameter (C++ [over.match.funcs]p5). 1805 QualType FromTypeCanon = Context.getCanonicalType(FromType); 1806 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() && 1807 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType)) 1808 return ICS; 1809 1810 // Check that we have either the same type or a derived type. It 1811 // affects the conversion rank. 1812 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 1813 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType()) 1814 ICS.Standard.Second = ICK_Identity; 1815 else if (IsDerivedFrom(FromType, ClassType)) 1816 ICS.Standard.Second = ICK_Derived_To_Base; 1817 else 1818 return ICS; 1819 1820 // Success. Mark this as a reference binding. 1821 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 1822 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); 1823 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); 1824 ICS.Standard.ReferenceBinding = true; 1825 ICS.Standard.DirectBinding = true; 1826 return ICS; 1827} 1828 1829/// PerformObjectArgumentInitialization - Perform initialization of 1830/// the implicit object parameter for the given Method with the given 1831/// expression. 1832bool 1833Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 1834 QualType ImplicitParamType 1835 = Method->getThisType(Context)->getAsPointerType()->getPointeeType(); 1836 ImplicitConversionSequence ICS 1837 = TryObjectArgumentInitialization(From, Method); 1838 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) 1839 return Diag(From->getSourceRange().getBegin(), 1840 diag::err_implicit_object_parameter_init) 1841 << ImplicitParamType << From->getType() << From->getSourceRange(); 1842 1843 if (ICS.Standard.Second == ICK_Derived_To_Base && 1844 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType, 1845 From->getSourceRange().getBegin(), 1846 From->getSourceRange())) 1847 return true; 1848 1849 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true); 1850 return false; 1851} 1852 1853/// TryContextuallyConvertToBool - Attempt to contextually convert the 1854/// expression From to bool (C++0x [conv]p3). 1855ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 1856 return TryImplicitConversion(From, Context.BoolTy, false, true); 1857} 1858 1859/// PerformContextuallyConvertToBool - Perform a contextual conversion 1860/// of the expression From to bool (C++0x [conv]p3). 1861bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 1862 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 1863 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting")) 1864 return false; 1865 1866 return Diag(From->getSourceRange().getBegin(), 1867 diag::err_typecheck_bool_condition) 1868 << From->getType() << From->getSourceRange(); 1869} 1870 1871/// AddOverloadCandidate - Adds the given function to the set of 1872/// candidate functions, using the given function call arguments. If 1873/// @p SuppressUserConversions, then don't allow user-defined 1874/// conversions via constructors or conversion operators. 1875void 1876Sema::AddOverloadCandidate(FunctionDecl *Function, 1877 Expr **Args, unsigned NumArgs, 1878 OverloadCandidateSet& CandidateSet, 1879 bool SuppressUserConversions) 1880{ 1881 const FunctionTypeProto* Proto 1882 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType()); 1883 assert(Proto && "Functions without a prototype cannot be overloaded"); 1884 assert(!isa<CXXConversionDecl>(Function) && 1885 "Use AddConversionCandidate for conversion functions"); 1886 1887 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 1888 // If we get here, it's because we're calling a member function 1889 // that is named without a member access expression (e.g., 1890 // "this->f") that was either written explicitly or created 1891 // implicitly. This can happen with a qualified call to a member 1892 // function, e.g., X::f(). We use a NULL object as the implied 1893 // object argument (C++ [over.call.func]p3). 1894 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet, 1895 SuppressUserConversions); 1896 return; 1897 } 1898 1899 1900 // Add this candidate 1901 CandidateSet.push_back(OverloadCandidate()); 1902 OverloadCandidate& Candidate = CandidateSet.back(); 1903 Candidate.Function = Function; 1904 Candidate.Viable = true; 1905 Candidate.IsSurrogate = false; 1906 Candidate.IgnoreObjectArgument = false; 1907 1908 unsigned NumArgsInProto = Proto->getNumArgs(); 1909 1910 // (C++ 13.3.2p2): A candidate function having fewer than m 1911 // parameters is viable only if it has an ellipsis in its parameter 1912 // list (8.3.5). 1913 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 1914 Candidate.Viable = false; 1915 return; 1916 } 1917 1918 // (C++ 13.3.2p2): A candidate function having more than m parameters 1919 // is viable only if the (m+1)st parameter has a default argument 1920 // (8.3.6). For the purposes of overload resolution, the 1921 // parameter list is truncated on the right, so that there are 1922 // exactly m parameters. 1923 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 1924 if (NumArgs < MinRequiredArgs) { 1925 // Not enough arguments. 1926 Candidate.Viable = false; 1927 return; 1928 } 1929 1930 // Determine the implicit conversion sequences for each of the 1931 // arguments. 1932 Candidate.Conversions.resize(NumArgs); 1933 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 1934 if (ArgIdx < NumArgsInProto) { 1935 // (C++ 13.3.2p3): for F to be a viable function, there shall 1936 // exist for each argument an implicit conversion sequence 1937 // (13.3.3.1) that converts that argument to the corresponding 1938 // parameter of F. 1939 QualType ParamType = Proto->getArgType(ArgIdx); 1940 Candidate.Conversions[ArgIdx] 1941 = TryCopyInitialization(Args[ArgIdx], ParamType, 1942 SuppressUserConversions); 1943 if (Candidate.Conversions[ArgIdx].ConversionKind 1944 == ImplicitConversionSequence::BadConversion) { 1945 Candidate.Viable = false; 1946 break; 1947 } 1948 } else { 1949 // (C++ 13.3.2p2): For the purposes of overload resolution, any 1950 // argument for which there is no corresponding parameter is 1951 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 1952 Candidate.Conversions[ArgIdx].ConversionKind 1953 = ImplicitConversionSequence::EllipsisConversion; 1954 } 1955 } 1956} 1957 1958/// AddMethodCandidate - Adds the given C++ member function to the set 1959/// of candidate functions, using the given function call arguments 1960/// and the object argument (@c Object). For example, in a call 1961/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 1962/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 1963/// allow user-defined conversions via constructors or conversion 1964/// operators. 1965void 1966Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, 1967 Expr **Args, unsigned NumArgs, 1968 OverloadCandidateSet& CandidateSet, 1969 bool SuppressUserConversions) 1970{ 1971 const FunctionTypeProto* Proto 1972 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType()); 1973 assert(Proto && "Methods without a prototype cannot be overloaded"); 1974 assert(!isa<CXXConversionDecl>(Method) && 1975 "Use AddConversionCandidate for conversion functions"); 1976 1977 // Add this candidate 1978 CandidateSet.push_back(OverloadCandidate()); 1979 OverloadCandidate& Candidate = CandidateSet.back(); 1980 Candidate.Function = Method; 1981 Candidate.IsSurrogate = false; 1982 Candidate.IgnoreObjectArgument = false; 1983 1984 unsigned NumArgsInProto = Proto->getNumArgs(); 1985 1986 // (C++ 13.3.2p2): A candidate function having fewer than m 1987 // parameters is viable only if it has an ellipsis in its parameter 1988 // list (8.3.5). 1989 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 1990 Candidate.Viable = false; 1991 return; 1992 } 1993 1994 // (C++ 13.3.2p2): A candidate function having more than m parameters 1995 // is viable only if the (m+1)st parameter has a default argument 1996 // (8.3.6). For the purposes of overload resolution, the 1997 // parameter list is truncated on the right, so that there are 1998 // exactly m parameters. 1999 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2000 if (NumArgs < MinRequiredArgs) { 2001 // Not enough arguments. 2002 Candidate.Viable = false; 2003 return; 2004 } 2005 2006 Candidate.Viable = true; 2007 Candidate.Conversions.resize(NumArgs + 1); 2008 2009 if (Method->isStatic() || !Object) 2010 // The implicit object argument is ignored. 2011 Candidate.IgnoreObjectArgument = true; 2012 else { 2013 // Determine the implicit conversion sequence for the object 2014 // parameter. 2015 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method); 2016 if (Candidate.Conversions[0].ConversionKind 2017 == ImplicitConversionSequence::BadConversion) { 2018 Candidate.Viable = false; 2019 return; 2020 } 2021 } 2022 2023 // Determine the implicit conversion sequences for each of the 2024 // arguments. 2025 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2026 if (ArgIdx < NumArgsInProto) { 2027 // (C++ 13.3.2p3): for F to be a viable function, there shall 2028 // exist for each argument an implicit conversion sequence 2029 // (13.3.3.1) that converts that argument to the corresponding 2030 // parameter of F. 2031 QualType ParamType = Proto->getArgType(ArgIdx); 2032 Candidate.Conversions[ArgIdx + 1] 2033 = TryCopyInitialization(Args[ArgIdx], ParamType, 2034 SuppressUserConversions); 2035 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2036 == ImplicitConversionSequence::BadConversion) { 2037 Candidate.Viable = false; 2038 break; 2039 } 2040 } else { 2041 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2042 // argument for which there is no corresponding parameter is 2043 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2044 Candidate.Conversions[ArgIdx + 1].ConversionKind 2045 = ImplicitConversionSequence::EllipsisConversion; 2046 } 2047 } 2048} 2049 2050/// AddConversionCandidate - Add a C++ conversion function as a 2051/// candidate in the candidate set (C++ [over.match.conv], 2052/// C++ [over.match.copy]). From is the expression we're converting from, 2053/// and ToType is the type that we're eventually trying to convert to 2054/// (which may or may not be the same type as the type that the 2055/// conversion function produces). 2056void 2057Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2058 Expr *From, QualType ToType, 2059 OverloadCandidateSet& CandidateSet) { 2060 // Add this candidate 2061 CandidateSet.push_back(OverloadCandidate()); 2062 OverloadCandidate& Candidate = CandidateSet.back(); 2063 Candidate.Function = Conversion; 2064 Candidate.IsSurrogate = false; 2065 Candidate.IgnoreObjectArgument = false; 2066 Candidate.FinalConversion.setAsIdentityConversion(); 2067 Candidate.FinalConversion.FromTypePtr 2068 = Conversion->getConversionType().getAsOpaquePtr(); 2069 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); 2070 2071 // Determine the implicit conversion sequence for the implicit 2072 // object parameter. 2073 Candidate.Viable = true; 2074 Candidate.Conversions.resize(1); 2075 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion); 2076 2077 if (Candidate.Conversions[0].ConversionKind 2078 == ImplicitConversionSequence::BadConversion) { 2079 Candidate.Viable = false; 2080 return; 2081 } 2082 2083 // To determine what the conversion from the result of calling the 2084 // conversion function to the type we're eventually trying to 2085 // convert to (ToType), we need to synthesize a call to the 2086 // conversion function and attempt copy initialization from it. This 2087 // makes sure that we get the right semantics with respect to 2088 // lvalues/rvalues and the type. Fortunately, we can allocate this 2089 // call on the stack and we don't need its arguments to be 2090 // well-formed. 2091 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2092 SourceLocation()); 2093 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2094 &ConversionRef, false); 2095 CallExpr Call(&ConversionFn, 0, 0, 2096 Conversion->getConversionType().getNonReferenceType(), 2097 SourceLocation()); 2098 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true); 2099 switch (ICS.ConversionKind) { 2100 case ImplicitConversionSequence::StandardConversion: 2101 Candidate.FinalConversion = ICS.Standard; 2102 break; 2103 2104 case ImplicitConversionSequence::BadConversion: 2105 Candidate.Viable = false; 2106 break; 2107 2108 default: 2109 assert(false && 2110 "Can only end up with a standard conversion sequence or failure"); 2111 } 2112} 2113 2114/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2115/// converts the given @c Object to a function pointer via the 2116/// conversion function @c Conversion, and then attempts to call it 2117/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2118/// the type of function that we'll eventually be calling. 2119void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2120 const FunctionTypeProto *Proto, 2121 Expr *Object, Expr **Args, unsigned NumArgs, 2122 OverloadCandidateSet& CandidateSet) { 2123 CandidateSet.push_back(OverloadCandidate()); 2124 OverloadCandidate& Candidate = CandidateSet.back(); 2125 Candidate.Function = 0; 2126 Candidate.Surrogate = Conversion; 2127 Candidate.Viable = true; 2128 Candidate.IsSurrogate = true; 2129 Candidate.IgnoreObjectArgument = false; 2130 Candidate.Conversions.resize(NumArgs + 1); 2131 2132 // Determine the implicit conversion sequence for the implicit 2133 // object parameter. 2134 ImplicitConversionSequence ObjectInit 2135 = TryObjectArgumentInitialization(Object, Conversion); 2136 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { 2137 Candidate.Viable = false; 2138 return; 2139 } 2140 2141 // The first conversion is actually a user-defined conversion whose 2142 // first conversion is ObjectInit's standard conversion (which is 2143 // effectively a reference binding). Record it as such. 2144 Candidate.Conversions[0].ConversionKind 2145 = ImplicitConversionSequence::UserDefinedConversion; 2146 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2147 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2148 Candidate.Conversions[0].UserDefined.After 2149 = Candidate.Conversions[0].UserDefined.Before; 2150 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2151 2152 // Find the 2153 unsigned NumArgsInProto = Proto->getNumArgs(); 2154 2155 // (C++ 13.3.2p2): A candidate function having fewer than m 2156 // parameters is viable only if it has an ellipsis in its parameter 2157 // list (8.3.5). 2158 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2159 Candidate.Viable = false; 2160 return; 2161 } 2162 2163 // Function types don't have any default arguments, so just check if 2164 // we have enough arguments. 2165 if (NumArgs < NumArgsInProto) { 2166 // Not enough arguments. 2167 Candidate.Viable = false; 2168 return; 2169 } 2170 2171 // Determine the implicit conversion sequences for each of the 2172 // arguments. 2173 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2174 if (ArgIdx < NumArgsInProto) { 2175 // (C++ 13.3.2p3): for F to be a viable function, there shall 2176 // exist for each argument an implicit conversion sequence 2177 // (13.3.3.1) that converts that argument to the corresponding 2178 // parameter of F. 2179 QualType ParamType = Proto->getArgType(ArgIdx); 2180 Candidate.Conversions[ArgIdx + 1] 2181 = TryCopyInitialization(Args[ArgIdx], ParamType, 2182 /*SuppressUserConversions=*/false); 2183 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2184 == ImplicitConversionSequence::BadConversion) { 2185 Candidate.Viable = false; 2186 break; 2187 } 2188 } else { 2189 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2190 // argument for which there is no corresponding parameter is 2191 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2192 Candidate.Conversions[ArgIdx + 1].ConversionKind 2193 = ImplicitConversionSequence::EllipsisConversion; 2194 } 2195 } 2196} 2197 2198/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is 2199/// an acceptable non-member overloaded operator for a call whose 2200/// arguments have types T1 (and, if non-empty, T2). This routine 2201/// implements the check in C++ [over.match.oper]p3b2 concerning 2202/// enumeration types. 2203static bool 2204IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn, 2205 QualType T1, QualType T2, 2206 ASTContext &Context) { 2207 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) 2208 return true; 2209 2210 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto(); 2211 if (Proto->getNumArgs() < 1) 2212 return false; 2213 2214 if (T1->isEnumeralType()) { 2215 QualType ArgType = Proto->getArgType(0).getNonReferenceType(); 2216 if (Context.getCanonicalType(T1).getUnqualifiedType() 2217 == Context.getCanonicalType(ArgType).getUnqualifiedType()) 2218 return true; 2219 } 2220 2221 if (Proto->getNumArgs() < 2) 2222 return false; 2223 2224 if (!T2.isNull() && T2->isEnumeralType()) { 2225 QualType ArgType = Proto->getArgType(1).getNonReferenceType(); 2226 if (Context.getCanonicalType(T2).getUnqualifiedType() 2227 == Context.getCanonicalType(ArgType).getUnqualifiedType()) 2228 return true; 2229 } 2230 2231 return false; 2232} 2233 2234/// AddOperatorCandidates - Add the overloaded operator candidates for 2235/// the operator Op that was used in an operator expression such as "x 2236/// Op y". S is the scope in which the expression occurred (used for 2237/// name lookup of the operator), Args/NumArgs provides the operator 2238/// arguments, and CandidateSet will store the added overload 2239/// candidates. (C++ [over.match.oper]). 2240void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 2241 Expr **Args, unsigned NumArgs, 2242 OverloadCandidateSet& CandidateSet) { 2243 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2244 2245 // C++ [over.match.oper]p3: 2246 // For a unary operator @ with an operand of a type whose 2247 // cv-unqualified version is T1, and for a binary operator @ with 2248 // a left operand of a type whose cv-unqualified version is T1 and 2249 // a right operand of a type whose cv-unqualified version is T2, 2250 // three sets of candidate functions, designated member 2251 // candidates, non-member candidates and built-in candidates, are 2252 // constructed as follows: 2253 QualType T1 = Args[0]->getType(); 2254 QualType T2; 2255 if (NumArgs > 1) 2256 T2 = Args[1]->getType(); 2257 2258 // -- If T1 is a class type, the set of member candidates is the 2259 // result of the qualified lookup of T1::operator@ 2260 // (13.3.1.1.1); otherwise, the set of member candidates is 2261 // empty. 2262 if (const RecordType *T1Rec = T1->getAsRecordType()) { 2263 DeclContext::lookup_const_iterator Oper, OperEnd; 2264 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName); 2265 Oper != OperEnd; ++Oper) 2266 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0], 2267 Args+1, NumArgs - 1, CandidateSet, 2268 /*SuppressUserConversions=*/false); 2269 } 2270 2271 // -- The set of non-member candidates is the result of the 2272 // unqualified lookup of operator@ in the context of the 2273 // expression according to the usual rules for name lookup in 2274 // unqualified function calls (3.4.2) except that all member 2275 // functions are ignored. However, if no operand has a class 2276 // type, only those non-member functions in the lookup set 2277 // that have a first parameter of type T1 or “reference to 2278 // (possibly cv-qualified) T1”, when T1 is an enumeration 2279 // type, or (if there is a right operand) a second parameter 2280 // of type T2 or “reference to (possibly cv-qualified) T2”, 2281 // when T2 is an enumeration type, are candidate functions. 2282 { 2283 IdentifierResolver::iterator 2284 I = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/), 2285 IEnd = IdResolver.end(); 2286 for (; I != IEnd; ++I) { 2287 // We don't need to check the identifier namespace, because 2288 // operator names can only be ordinary identifiers. 2289 2290 // Ignore member functions. 2291 if ((*I)->getDeclContext()->isRecord()) 2292 continue; 2293 2294 // We found something with this name. We're done. 2295 break; 2296 } 2297 2298 if (I != IEnd) { 2299 Decl *FirstDecl = *I; 2300 for (; I != IEnd; ++I) { 2301 if (FirstDecl->getDeclContext() != (*I)->getDeclContext()) 2302 break; 2303 2304 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) 2305 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context)) 2306 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 2307 /*SuppressUserConversions=*/false); 2308 } 2309 } 2310 } 2311 2312 // Add builtin overload candidates (C++ [over.built]). 2313 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet); 2314} 2315 2316/// AddBuiltinCandidate - Add a candidate for a built-in 2317/// operator. ResultTy and ParamTys are the result and parameter types 2318/// of the built-in candidate, respectively. Args and NumArgs are the 2319/// arguments being passed to the candidate. IsAssignmentOperator 2320/// should be true when this built-in candidate is an assignment 2321/// operator. NumContextualBoolArguments is the number of arguments 2322/// (at the beginning of the argument list) that will be contextually 2323/// converted to bool. 2324void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 2325 Expr **Args, unsigned NumArgs, 2326 OverloadCandidateSet& CandidateSet, 2327 bool IsAssignmentOperator, 2328 unsigned NumContextualBoolArguments) { 2329 // Add this candidate 2330 CandidateSet.push_back(OverloadCandidate()); 2331 OverloadCandidate& Candidate = CandidateSet.back(); 2332 Candidate.Function = 0; 2333 Candidate.IsSurrogate = false; 2334 Candidate.IgnoreObjectArgument = false; 2335 Candidate.BuiltinTypes.ResultTy = ResultTy; 2336 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 2337 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 2338 2339 // Determine the implicit conversion sequences for each of the 2340 // arguments. 2341 Candidate.Viable = true; 2342 Candidate.Conversions.resize(NumArgs); 2343 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2344 // C++ [over.match.oper]p4: 2345 // For the built-in assignment operators, conversions of the 2346 // left operand are restricted as follows: 2347 // -- no temporaries are introduced to hold the left operand, and 2348 // -- no user-defined conversions are applied to the left 2349 // operand to achieve a type match with the left-most 2350 // parameter of a built-in candidate. 2351 // 2352 // We block these conversions by turning off user-defined 2353 // conversions, since that is the only way that initialization of 2354 // a reference to a non-class type can occur from something that 2355 // is not of the same type. 2356 if (ArgIdx < NumContextualBoolArguments) { 2357 assert(ParamTys[ArgIdx] == Context.BoolTy && 2358 "Contextual conversion to bool requires bool type"); 2359 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 2360 } else { 2361 Candidate.Conversions[ArgIdx] 2362 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 2363 ArgIdx == 0 && IsAssignmentOperator); 2364 } 2365 if (Candidate.Conversions[ArgIdx].ConversionKind 2366 == ImplicitConversionSequence::BadConversion) { 2367 Candidate.Viable = false; 2368 break; 2369 } 2370 } 2371} 2372 2373/// BuiltinCandidateTypeSet - A set of types that will be used for the 2374/// candidate operator functions for built-in operators (C++ 2375/// [over.built]). The types are separated into pointer types and 2376/// enumeration types. 2377class BuiltinCandidateTypeSet { 2378 /// TypeSet - A set of types. 2379 typedef llvm::SmallPtrSet<void*, 8> TypeSet; 2380 2381 /// PointerTypes - The set of pointer types that will be used in the 2382 /// built-in candidates. 2383 TypeSet PointerTypes; 2384 2385 /// EnumerationTypes - The set of enumeration types that will be 2386 /// used in the built-in candidates. 2387 TypeSet EnumerationTypes; 2388 2389 /// Context - The AST context in which we will build the type sets. 2390 ASTContext &Context; 2391 2392 bool AddWithMoreQualifiedTypeVariants(QualType Ty); 2393 2394public: 2395 /// iterator - Iterates through the types that are part of the set. 2396 class iterator { 2397 TypeSet::iterator Base; 2398 2399 public: 2400 typedef QualType value_type; 2401 typedef QualType reference; 2402 typedef QualType pointer; 2403 typedef std::ptrdiff_t difference_type; 2404 typedef std::input_iterator_tag iterator_category; 2405 2406 iterator(TypeSet::iterator B) : Base(B) { } 2407 2408 iterator& operator++() { 2409 ++Base; 2410 return *this; 2411 } 2412 2413 iterator operator++(int) { 2414 iterator tmp(*this); 2415 ++(*this); 2416 return tmp; 2417 } 2418 2419 reference operator*() const { 2420 return QualType::getFromOpaquePtr(*Base); 2421 } 2422 2423 pointer operator->() const { 2424 return **this; 2425 } 2426 2427 friend bool operator==(iterator LHS, iterator RHS) { 2428 return LHS.Base == RHS.Base; 2429 } 2430 2431 friend bool operator!=(iterator LHS, iterator RHS) { 2432 return LHS.Base != RHS.Base; 2433 } 2434 }; 2435 2436 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { } 2437 2438 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions, 2439 bool AllowExplicitConversions); 2440 2441 /// pointer_begin - First pointer type found; 2442 iterator pointer_begin() { return PointerTypes.begin(); } 2443 2444 /// pointer_end - Last pointer type found; 2445 iterator pointer_end() { return PointerTypes.end(); } 2446 2447 /// enumeration_begin - First enumeration type found; 2448 iterator enumeration_begin() { return EnumerationTypes.begin(); } 2449 2450 /// enumeration_end - Last enumeration type found; 2451 iterator enumeration_end() { return EnumerationTypes.end(); } 2452}; 2453 2454/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 2455/// the set of pointer types along with any more-qualified variants of 2456/// that type. For example, if @p Ty is "int const *", this routine 2457/// will add "int const *", "int const volatile *", "int const 2458/// restrict *", and "int const volatile restrict *" to the set of 2459/// pointer types. Returns true if the add of @p Ty itself succeeded, 2460/// false otherwise. 2461bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) { 2462 // Insert this type. 2463 if (!PointerTypes.insert(Ty.getAsOpaquePtr())) 2464 return false; 2465 2466 if (const PointerType *PointerTy = Ty->getAsPointerType()) { 2467 QualType PointeeTy = PointerTy->getPointeeType(); 2468 // FIXME: Optimize this so that we don't keep trying to add the same types. 2469 2470 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal 2471 // with all pointer conversions that don't cast away constness? 2472 if (!PointeeTy.isConstQualified()) 2473 AddWithMoreQualifiedTypeVariants 2474 (Context.getPointerType(PointeeTy.withConst())); 2475 if (!PointeeTy.isVolatileQualified()) 2476 AddWithMoreQualifiedTypeVariants 2477 (Context.getPointerType(PointeeTy.withVolatile())); 2478 if (!PointeeTy.isRestrictQualified()) 2479 AddWithMoreQualifiedTypeVariants 2480 (Context.getPointerType(PointeeTy.withRestrict())); 2481 } 2482 2483 return true; 2484} 2485 2486/// AddTypesConvertedFrom - Add each of the types to which the type @p 2487/// Ty can be implicit converted to the given set of @p Types. We're 2488/// primarily interested in pointer types and enumeration types. 2489/// AllowUserConversions is true if we should look at the conversion 2490/// functions of a class type, and AllowExplicitConversions if we 2491/// should also include the explicit conversion functions of a class 2492/// type. 2493void 2494BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 2495 bool AllowUserConversions, 2496 bool AllowExplicitConversions) { 2497 // Only deal with canonical types. 2498 Ty = Context.getCanonicalType(Ty); 2499 2500 // Look through reference types; they aren't part of the type of an 2501 // expression for the purposes of conversions. 2502 if (const ReferenceType *RefTy = Ty->getAsReferenceType()) 2503 Ty = RefTy->getPointeeType(); 2504 2505 // We don't care about qualifiers on the type. 2506 Ty = Ty.getUnqualifiedType(); 2507 2508 if (const PointerType *PointerTy = Ty->getAsPointerType()) { 2509 QualType PointeeTy = PointerTy->getPointeeType(); 2510 2511 // Insert our type, and its more-qualified variants, into the set 2512 // of types. 2513 if (!AddWithMoreQualifiedTypeVariants(Ty)) 2514 return; 2515 2516 // Add 'cv void*' to our set of types. 2517 if (!Ty->isVoidType()) { 2518 QualType QualVoid 2519 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers()); 2520 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid)); 2521 } 2522 2523 // If this is a pointer to a class type, add pointers to its bases 2524 // (with the same level of cv-qualification as the original 2525 // derived class, of course). 2526 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) { 2527 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl()); 2528 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); 2529 Base != ClassDecl->bases_end(); ++Base) { 2530 QualType BaseTy = Context.getCanonicalType(Base->getType()); 2531 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers()); 2532 2533 // Add the pointer type, recursively, so that we get all of 2534 // the indirect base classes, too. 2535 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false); 2536 } 2537 } 2538 } else if (Ty->isEnumeralType()) { 2539 EnumerationTypes.insert(Ty.getAsOpaquePtr()); 2540 } else if (AllowUserConversions) { 2541 if (const RecordType *TyRec = Ty->getAsRecordType()) { 2542 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 2543 // FIXME: Visit conversion functions in the base classes, too. 2544 OverloadedFunctionDecl *Conversions 2545 = ClassDecl->getConversionFunctions(); 2546 for (OverloadedFunctionDecl::function_iterator Func 2547 = Conversions->function_begin(); 2548 Func != Conversions->function_end(); ++Func) { 2549 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func); 2550 if (AllowExplicitConversions || !Conv->isExplicit()) 2551 AddTypesConvertedFrom(Conv->getConversionType(), false, false); 2552 } 2553 } 2554 } 2555} 2556 2557/// AddBuiltinOperatorCandidates - Add the appropriate built-in 2558/// operator overloads to the candidate set (C++ [over.built]), based 2559/// on the operator @p Op and the arguments given. For example, if the 2560/// operator is a binary '+', this routine might add "int 2561/// operator+(int, int)" to cover integer addition. 2562void 2563Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 2564 Expr **Args, unsigned NumArgs, 2565 OverloadCandidateSet& CandidateSet) { 2566 // The set of "promoted arithmetic types", which are the arithmetic 2567 // types are that preserved by promotion (C++ [over.built]p2). Note 2568 // that the first few of these types are the promoted integral 2569 // types; these types need to be first. 2570 // FIXME: What about complex? 2571 const unsigned FirstIntegralType = 0; 2572 const unsigned LastIntegralType = 13; 2573 const unsigned FirstPromotedIntegralType = 7, 2574 LastPromotedIntegralType = 13; 2575 const unsigned FirstPromotedArithmeticType = 7, 2576 LastPromotedArithmeticType = 16; 2577 const unsigned NumArithmeticTypes = 16; 2578 QualType ArithmeticTypes[NumArithmeticTypes] = { 2579 Context.BoolTy, Context.CharTy, Context.WCharTy, 2580 Context.SignedCharTy, Context.ShortTy, 2581 Context.UnsignedCharTy, Context.UnsignedShortTy, 2582 Context.IntTy, Context.LongTy, Context.LongLongTy, 2583 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 2584 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 2585 }; 2586 2587 // Find all of the types that the arguments can convert to, but only 2588 // if the operator we're looking at has built-in operator candidates 2589 // that make use of these types. 2590 BuiltinCandidateTypeSet CandidateTypes(Context); 2591 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 2592 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 2593 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 2594 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 2595 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 2596 (Op == OO_Star && NumArgs == 1)) { 2597 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 2598 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 2599 true, 2600 (Op == OO_Exclaim || 2601 Op == OO_AmpAmp || 2602 Op == OO_PipePipe)); 2603 } 2604 2605 bool isComparison = false; 2606 switch (Op) { 2607 case OO_None: 2608 case NUM_OVERLOADED_OPERATORS: 2609 assert(false && "Expected an overloaded operator"); 2610 break; 2611 2612 case OO_Star: // '*' is either unary or binary 2613 if (NumArgs == 1) 2614 goto UnaryStar; 2615 else 2616 goto BinaryStar; 2617 break; 2618 2619 case OO_Plus: // '+' is either unary or binary 2620 if (NumArgs == 1) 2621 goto UnaryPlus; 2622 else 2623 goto BinaryPlus; 2624 break; 2625 2626 case OO_Minus: // '-' is either unary or binary 2627 if (NumArgs == 1) 2628 goto UnaryMinus; 2629 else 2630 goto BinaryMinus; 2631 break; 2632 2633 case OO_Amp: // '&' is either unary or binary 2634 if (NumArgs == 1) 2635 goto UnaryAmp; 2636 else 2637 goto BinaryAmp; 2638 2639 case OO_PlusPlus: 2640 case OO_MinusMinus: 2641 // C++ [over.built]p3: 2642 // 2643 // For every pair (T, VQ), where T is an arithmetic type, and VQ 2644 // is either volatile or empty, there exist candidate operator 2645 // functions of the form 2646 // 2647 // VQ T& operator++(VQ T&); 2648 // T operator++(VQ T&, int); 2649 // 2650 // C++ [over.built]p4: 2651 // 2652 // For every pair (T, VQ), where T is an arithmetic type other 2653 // than bool, and VQ is either volatile or empty, there exist 2654 // candidate operator functions of the form 2655 // 2656 // VQ T& operator--(VQ T&); 2657 // T operator--(VQ T&, int); 2658 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 2659 Arith < NumArithmeticTypes; ++Arith) { 2660 QualType ArithTy = ArithmeticTypes[Arith]; 2661 QualType ParamTypes[2] 2662 = { Context.getReferenceType(ArithTy), Context.IntTy }; 2663 2664 // Non-volatile version. 2665 if (NumArgs == 1) 2666 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 2667 else 2668 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 2669 2670 // Volatile version 2671 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile()); 2672 if (NumArgs == 1) 2673 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 2674 else 2675 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 2676 } 2677 2678 // C++ [over.built]p5: 2679 // 2680 // For every pair (T, VQ), where T is a cv-qualified or 2681 // cv-unqualified object type, and VQ is either volatile or 2682 // empty, there exist candidate operator functions of the form 2683 // 2684 // T*VQ& operator++(T*VQ&); 2685 // T*VQ& operator--(T*VQ&); 2686 // T* operator++(T*VQ&, int); 2687 // T* operator--(T*VQ&, int); 2688 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 2689 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 2690 // Skip pointer types that aren't pointers to object types. 2691 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType()) 2692 continue; 2693 2694 QualType ParamTypes[2] = { 2695 Context.getReferenceType(*Ptr), Context.IntTy 2696 }; 2697 2698 // Without volatile 2699 if (NumArgs == 1) 2700 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 2701 else 2702 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 2703 2704 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) { 2705 // With volatile 2706 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile()); 2707 if (NumArgs == 1) 2708 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 2709 else 2710 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 2711 } 2712 } 2713 break; 2714 2715 UnaryStar: 2716 // C++ [over.built]p6: 2717 // For every cv-qualified or cv-unqualified object type T, there 2718 // exist candidate operator functions of the form 2719 // 2720 // T& operator*(T*); 2721 // 2722 // C++ [over.built]p7: 2723 // For every function type T, there exist candidate operator 2724 // functions of the form 2725 // T& operator*(T*); 2726 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 2727 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 2728 QualType ParamTy = *Ptr; 2729 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType(); 2730 AddBuiltinCandidate(Context.getReferenceType(PointeeTy), 2731 &ParamTy, Args, 1, CandidateSet); 2732 } 2733 break; 2734 2735 UnaryPlus: 2736 // C++ [over.built]p8: 2737 // For every type T, there exist candidate operator functions of 2738 // the form 2739 // 2740 // T* operator+(T*); 2741 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 2742 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 2743 QualType ParamTy = *Ptr; 2744 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 2745 } 2746 2747 // Fall through 2748 2749 UnaryMinus: 2750 // C++ [over.built]p9: 2751 // For every promoted arithmetic type T, there exist candidate 2752 // operator functions of the form 2753 // 2754 // T operator+(T); 2755 // T operator-(T); 2756 for (unsigned Arith = FirstPromotedArithmeticType; 2757 Arith < LastPromotedArithmeticType; ++Arith) { 2758 QualType ArithTy = ArithmeticTypes[Arith]; 2759 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 2760 } 2761 break; 2762 2763 case OO_Tilde: 2764 // C++ [over.built]p10: 2765 // For every promoted integral type T, there exist candidate 2766 // operator functions of the form 2767 // 2768 // T operator~(T); 2769 for (unsigned Int = FirstPromotedIntegralType; 2770 Int < LastPromotedIntegralType; ++Int) { 2771 QualType IntTy = ArithmeticTypes[Int]; 2772 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 2773 } 2774 break; 2775 2776 case OO_New: 2777 case OO_Delete: 2778 case OO_Array_New: 2779 case OO_Array_Delete: 2780 case OO_Call: 2781 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 2782 break; 2783 2784 case OO_Comma: 2785 UnaryAmp: 2786 case OO_Arrow: 2787 // C++ [over.match.oper]p3: 2788 // -- For the operator ',', the unary operator '&', or the 2789 // operator '->', the built-in candidates set is empty. 2790 break; 2791 2792 case OO_Less: 2793 case OO_Greater: 2794 case OO_LessEqual: 2795 case OO_GreaterEqual: 2796 case OO_EqualEqual: 2797 case OO_ExclaimEqual: 2798 // C++ [over.built]p15: 2799 // 2800 // For every pointer or enumeration type T, there exist 2801 // candidate operator functions of the form 2802 // 2803 // bool operator<(T, T); 2804 // bool operator>(T, T); 2805 // bool operator<=(T, T); 2806 // bool operator>=(T, T); 2807 // bool operator==(T, T); 2808 // bool operator!=(T, T); 2809 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 2810 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 2811 QualType ParamTypes[2] = { *Ptr, *Ptr }; 2812 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 2813 } 2814 for (BuiltinCandidateTypeSet::iterator Enum 2815 = CandidateTypes.enumeration_begin(); 2816 Enum != CandidateTypes.enumeration_end(); ++Enum) { 2817 QualType ParamTypes[2] = { *Enum, *Enum }; 2818 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 2819 } 2820 2821 // Fall through. 2822 isComparison = true; 2823 2824 BinaryPlus: 2825 BinaryMinus: 2826 if (!isComparison) { 2827 // We didn't fall through, so we must have OO_Plus or OO_Minus. 2828 2829 // C++ [over.built]p13: 2830 // 2831 // For every cv-qualified or cv-unqualified object type T 2832 // there exist candidate operator functions of the form 2833 // 2834 // T* operator+(T*, ptrdiff_t); 2835 // T& operator[](T*, ptrdiff_t); [BELOW] 2836 // T* operator-(T*, ptrdiff_t); 2837 // T* operator+(ptrdiff_t, T*); 2838 // T& operator[](ptrdiff_t, T*); [BELOW] 2839 // 2840 // C++ [over.built]p14: 2841 // 2842 // For every T, where T is a pointer to object type, there 2843 // exist candidate operator functions of the form 2844 // 2845 // ptrdiff_t operator-(T, T); 2846 for (BuiltinCandidateTypeSet::iterator Ptr 2847 = CandidateTypes.pointer_begin(); 2848 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 2849 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 2850 2851 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 2852 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 2853 2854 if (Op == OO_Plus) { 2855 // T* operator+(ptrdiff_t, T*); 2856 ParamTypes[0] = ParamTypes[1]; 2857 ParamTypes[1] = *Ptr; 2858 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 2859 } else { 2860 // ptrdiff_t operator-(T, T); 2861 ParamTypes[1] = *Ptr; 2862 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 2863 Args, 2, CandidateSet); 2864 } 2865 } 2866 } 2867 // Fall through 2868 2869 case OO_Slash: 2870 BinaryStar: 2871 // C++ [over.built]p12: 2872 // 2873 // For every pair of promoted arithmetic types L and R, there 2874 // exist candidate operator functions of the form 2875 // 2876 // LR operator*(L, R); 2877 // LR operator/(L, R); 2878 // LR operator+(L, R); 2879 // LR operator-(L, R); 2880 // bool operator<(L, R); 2881 // bool operator>(L, R); 2882 // bool operator<=(L, R); 2883 // bool operator>=(L, R); 2884 // bool operator==(L, R); 2885 // bool operator!=(L, R); 2886 // 2887 // where LR is the result of the usual arithmetic conversions 2888 // between types L and R. 2889 for (unsigned Left = FirstPromotedArithmeticType; 2890 Left < LastPromotedArithmeticType; ++Left) { 2891 for (unsigned Right = FirstPromotedArithmeticType; 2892 Right < LastPromotedArithmeticType; ++Right) { 2893 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 2894 QualType Result 2895 = isComparison? Context.BoolTy 2896 : UsualArithmeticConversionsType(LandR[0], LandR[1]); 2897 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 2898 } 2899 } 2900 break; 2901 2902 case OO_Percent: 2903 BinaryAmp: 2904 case OO_Caret: 2905 case OO_Pipe: 2906 case OO_LessLess: 2907 case OO_GreaterGreater: 2908 // C++ [over.built]p17: 2909 // 2910 // For every pair of promoted integral types L and R, there 2911 // exist candidate operator functions of the form 2912 // 2913 // LR operator%(L, R); 2914 // LR operator&(L, R); 2915 // LR operator^(L, R); 2916 // LR operator|(L, R); 2917 // L operator<<(L, R); 2918 // L operator>>(L, R); 2919 // 2920 // where LR is the result of the usual arithmetic conversions 2921 // between types L and R. 2922 for (unsigned Left = FirstPromotedIntegralType; 2923 Left < LastPromotedIntegralType; ++Left) { 2924 for (unsigned Right = FirstPromotedIntegralType; 2925 Right < LastPromotedIntegralType; ++Right) { 2926 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 2927 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 2928 ? LandR[0] 2929 : UsualArithmeticConversionsType(LandR[0], LandR[1]); 2930 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 2931 } 2932 } 2933 break; 2934 2935 case OO_Equal: 2936 // C++ [over.built]p20: 2937 // 2938 // For every pair (T, VQ), where T is an enumeration or 2939 // (FIXME:) pointer to member type and VQ is either volatile or 2940 // empty, there exist candidate operator functions of the form 2941 // 2942 // VQ T& operator=(VQ T&, T); 2943 for (BuiltinCandidateTypeSet::iterator Enum 2944 = CandidateTypes.enumeration_begin(); 2945 Enum != CandidateTypes.enumeration_end(); ++Enum) { 2946 QualType ParamTypes[2]; 2947 2948 // T& operator=(T&, T) 2949 ParamTypes[0] = Context.getReferenceType(*Enum); 2950 ParamTypes[1] = *Enum; 2951 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 2952 /*IsAssignmentOperator=*/false); 2953 2954 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) { 2955 // volatile T& operator=(volatile T&, T) 2956 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile()); 2957 ParamTypes[1] = *Enum; 2958 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 2959 /*IsAssignmentOperator=*/false); 2960 } 2961 } 2962 // Fall through. 2963 2964 case OO_PlusEqual: 2965 case OO_MinusEqual: 2966 // C++ [over.built]p19: 2967 // 2968 // For every pair (T, VQ), where T is any type and VQ is either 2969 // volatile or empty, there exist candidate operator functions 2970 // of the form 2971 // 2972 // T*VQ& operator=(T*VQ&, T*); 2973 // 2974 // C++ [over.built]p21: 2975 // 2976 // For every pair (T, VQ), where T is a cv-qualified or 2977 // cv-unqualified object type and VQ is either volatile or 2978 // empty, there exist candidate operator functions of the form 2979 // 2980 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 2981 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 2982 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 2983 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 2984 QualType ParamTypes[2]; 2985 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 2986 2987 // non-volatile version 2988 ParamTypes[0] = Context.getReferenceType(*Ptr); 2989 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 2990 /*IsAssigmentOperator=*/Op == OO_Equal); 2991 2992 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) { 2993 // volatile version 2994 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile()); 2995 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 2996 /*IsAssigmentOperator=*/Op == OO_Equal); 2997 } 2998 } 2999 // Fall through. 3000 3001 case OO_StarEqual: 3002 case OO_SlashEqual: 3003 // C++ [over.built]p18: 3004 // 3005 // For every triple (L, VQ, R), where L is an arithmetic type, 3006 // VQ is either volatile or empty, and R is a promoted 3007 // arithmetic type, there exist candidate operator functions of 3008 // the form 3009 // 3010 // VQ L& operator=(VQ L&, R); 3011 // VQ L& operator*=(VQ L&, R); 3012 // VQ L& operator/=(VQ L&, R); 3013 // VQ L& operator+=(VQ L&, R); 3014 // VQ L& operator-=(VQ L&, R); 3015 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3016 for (unsigned Right = FirstPromotedArithmeticType; 3017 Right < LastPromotedArithmeticType; ++Right) { 3018 QualType ParamTypes[2]; 3019 ParamTypes[1] = ArithmeticTypes[Right]; 3020 3021 // Add this built-in operator as a candidate (VQ is empty). 3022 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]); 3023 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3024 /*IsAssigmentOperator=*/Op == OO_Equal); 3025 3026 // Add this built-in operator as a candidate (VQ is 'volatile'). 3027 ParamTypes[0] = ArithmeticTypes[Left].withVolatile(); 3028 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]); 3029 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3030 /*IsAssigmentOperator=*/Op == OO_Equal); 3031 } 3032 } 3033 break; 3034 3035 case OO_PercentEqual: 3036 case OO_LessLessEqual: 3037 case OO_GreaterGreaterEqual: 3038 case OO_AmpEqual: 3039 case OO_CaretEqual: 3040 case OO_PipeEqual: 3041 // C++ [over.built]p22: 3042 // 3043 // For every triple (L, VQ, R), where L is an integral type, VQ 3044 // is either volatile or empty, and R is a promoted integral 3045 // type, there exist candidate operator functions of the form 3046 // 3047 // VQ L& operator%=(VQ L&, R); 3048 // VQ L& operator<<=(VQ L&, R); 3049 // VQ L& operator>>=(VQ L&, R); 3050 // VQ L& operator&=(VQ L&, R); 3051 // VQ L& operator^=(VQ L&, R); 3052 // VQ L& operator|=(VQ L&, R); 3053 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 3054 for (unsigned Right = FirstPromotedIntegralType; 3055 Right < LastPromotedIntegralType; ++Right) { 3056 QualType ParamTypes[2]; 3057 ParamTypes[1] = ArithmeticTypes[Right]; 3058 3059 // Add this built-in operator as a candidate (VQ is empty). 3060 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]); 3061 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3062 3063 // Add this built-in operator as a candidate (VQ is 'volatile'). 3064 ParamTypes[0] = ArithmeticTypes[Left]; 3065 ParamTypes[0].addVolatile(); 3066 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]); 3067 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3068 } 3069 } 3070 break; 3071 3072 case OO_Exclaim: { 3073 // C++ [over.operator]p23: 3074 // 3075 // There also exist candidate operator functions of the form 3076 // 3077 // bool operator!(bool); 3078 // bool operator&&(bool, bool); [BELOW] 3079 // bool operator||(bool, bool); [BELOW] 3080 QualType ParamTy = Context.BoolTy; 3081 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 3082 /*IsAssignmentOperator=*/false, 3083 /*NumContextualBoolArguments=*/1); 3084 break; 3085 } 3086 3087 case OO_AmpAmp: 3088 case OO_PipePipe: { 3089 // C++ [over.operator]p23: 3090 // 3091 // There also exist candidate operator functions of the form 3092 // 3093 // bool operator!(bool); [ABOVE] 3094 // bool operator&&(bool, bool); 3095 // bool operator||(bool, bool); 3096 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 3097 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 3098 /*IsAssignmentOperator=*/false, 3099 /*NumContextualBoolArguments=*/2); 3100 break; 3101 } 3102 3103 case OO_Subscript: 3104 // C++ [over.built]p13: 3105 // 3106 // For every cv-qualified or cv-unqualified object type T there 3107 // exist candidate operator functions of the form 3108 // 3109 // T* operator+(T*, ptrdiff_t); [ABOVE] 3110 // T& operator[](T*, ptrdiff_t); 3111 // T* operator-(T*, ptrdiff_t); [ABOVE] 3112 // T* operator+(ptrdiff_t, T*); [ABOVE] 3113 // T& operator[](ptrdiff_t, T*); 3114 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3115 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3116 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3117 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType(); 3118 QualType ResultTy = Context.getReferenceType(PointeeType); 3119 3120 // T& operator[](T*, ptrdiff_t) 3121 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3122 3123 // T& operator[](ptrdiff_t, T*); 3124 ParamTypes[0] = ParamTypes[1]; 3125 ParamTypes[1] = *Ptr; 3126 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3127 } 3128 break; 3129 3130 case OO_ArrowStar: 3131 // FIXME: No support for pointer-to-members yet. 3132 break; 3133 } 3134} 3135 3136/// AddOverloadCandidates - Add all of the function overloads in Ovl 3137/// to the candidate set. 3138void 3139Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl, 3140 Expr **Args, unsigned NumArgs, 3141 OverloadCandidateSet& CandidateSet, 3142 bool SuppressUserConversions) 3143{ 3144 for (OverloadedFunctionDecl::function_const_iterator Func 3145 = Ovl->function_begin(); 3146 Func != Ovl->function_end(); ++Func) 3147 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet, 3148 SuppressUserConversions); 3149} 3150 3151/// isBetterOverloadCandidate - Determines whether the first overload 3152/// candidate is a better candidate than the second (C++ 13.3.3p1). 3153bool 3154Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 3155 const OverloadCandidate& Cand2) 3156{ 3157 // Define viable functions to be better candidates than non-viable 3158 // functions. 3159 if (!Cand2.Viable) 3160 return Cand1.Viable; 3161 else if (!Cand1.Viable) 3162 return false; 3163 3164 // C++ [over.match.best]p1: 3165 // 3166 // -- if F is a static member function, ICS1(F) is defined such 3167 // that ICS1(F) is neither better nor worse than ICS1(G) for 3168 // any function G, and, symmetrically, ICS1(G) is neither 3169 // better nor worse than ICS1(F). 3170 unsigned StartArg = 0; 3171 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 3172 StartArg = 1; 3173 3174 // (C++ 13.3.3p1): a viable function F1 is defined to be a better 3175 // function than another viable function F2 if for all arguments i, 3176 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and 3177 // then... 3178 unsigned NumArgs = Cand1.Conversions.size(); 3179 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 3180 bool HasBetterConversion = false; 3181 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 3182 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 3183 Cand2.Conversions[ArgIdx])) { 3184 case ImplicitConversionSequence::Better: 3185 // Cand1 has a better conversion sequence. 3186 HasBetterConversion = true; 3187 break; 3188 3189 case ImplicitConversionSequence::Worse: 3190 // Cand1 can't be better than Cand2. 3191 return false; 3192 3193 case ImplicitConversionSequence::Indistinguishable: 3194 // Do nothing. 3195 break; 3196 } 3197 } 3198 3199 if (HasBetterConversion) 3200 return true; 3201 3202 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be 3203 // implemented, but they require template support. 3204 3205 // C++ [over.match.best]p1b4: 3206 // 3207 // -- the context is an initialization by user-defined conversion 3208 // (see 8.5, 13.3.1.5) and the standard conversion sequence 3209 // from the return type of F1 to the destination type (i.e., 3210 // the type of the entity being initialized) is a better 3211 // conversion sequence than the standard conversion sequence 3212 // from the return type of F2 to the destination type. 3213 if (Cand1.Function && Cand2.Function && 3214 isa<CXXConversionDecl>(Cand1.Function) && 3215 isa<CXXConversionDecl>(Cand2.Function)) { 3216 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 3217 Cand2.FinalConversion)) { 3218 case ImplicitConversionSequence::Better: 3219 // Cand1 has a better conversion sequence. 3220 return true; 3221 3222 case ImplicitConversionSequence::Worse: 3223 // Cand1 can't be better than Cand2. 3224 return false; 3225 3226 case ImplicitConversionSequence::Indistinguishable: 3227 // Do nothing 3228 break; 3229 } 3230 } 3231 3232 return false; 3233} 3234 3235/// BestViableFunction - Computes the best viable function (C++ 13.3.3) 3236/// within an overload candidate set. If overloading is successful, 3237/// the result will be OR_Success and Best will be set to point to the 3238/// best viable function within the candidate set. Otherwise, one of 3239/// several kinds of errors will be returned; see 3240/// Sema::OverloadingResult. 3241Sema::OverloadingResult 3242Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 3243 OverloadCandidateSet::iterator& Best) 3244{ 3245 // Find the best viable function. 3246 Best = CandidateSet.end(); 3247 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3248 Cand != CandidateSet.end(); ++Cand) { 3249 if (Cand->Viable) { 3250 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) 3251 Best = Cand; 3252 } 3253 } 3254 3255 // If we didn't find any viable functions, abort. 3256 if (Best == CandidateSet.end()) 3257 return OR_No_Viable_Function; 3258 3259 // Make sure that this function is better than every other viable 3260 // function. If not, we have an ambiguity. 3261 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3262 Cand != CandidateSet.end(); ++Cand) { 3263 if (Cand->Viable && 3264 Cand != Best && 3265 !isBetterOverloadCandidate(*Best, *Cand)) { 3266 Best = CandidateSet.end(); 3267 return OR_Ambiguous; 3268 } 3269 } 3270 3271 // Best is the best viable function. 3272 return OR_Success; 3273} 3274 3275/// PrintOverloadCandidates - When overload resolution fails, prints 3276/// diagnostic messages containing the candidates in the candidate 3277/// set. If OnlyViable is true, only viable candidates will be printed. 3278void 3279Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 3280 bool OnlyViable) 3281{ 3282 OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3283 LastCand = CandidateSet.end(); 3284 for (; Cand != LastCand; ++Cand) { 3285 if (Cand->Viable || !OnlyViable) { 3286 if (Cand->Function) { 3287 // Normal function 3288 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate); 3289 } else if (Cand->IsSurrogate) { 3290 // Desugar the type of the surrogate down to a function type, 3291 // retaining as many typedefs as possible while still showing 3292 // the function type (and, therefore, its parameter types). 3293 QualType FnType = Cand->Surrogate->getConversionType(); 3294 bool isReference = false; 3295 bool isPointer = false; 3296 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) { 3297 FnType = FnTypeRef->getPointeeType(); 3298 isReference = true; 3299 } 3300 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) { 3301 FnType = FnTypePtr->getPointeeType(); 3302 isPointer = true; 3303 } 3304 // Desugar down to a function type. 3305 FnType = QualType(FnType->getAsFunctionType(), 0); 3306 // Reconstruct the pointer/reference as appropriate. 3307 if (isPointer) FnType = Context.getPointerType(FnType); 3308 if (isReference) FnType = Context.getReferenceType(FnType); 3309 3310 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand) 3311 << FnType; 3312 } else { 3313 // FIXME: We need to get the identifier in here 3314 // FIXME: Do we want the error message to point at the 3315 // operator? (built-ins won't have a location) 3316 QualType FnType 3317 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy, 3318 Cand->BuiltinTypes.ParamTypes, 3319 Cand->Conversions.size(), 3320 false, 0); 3321 3322 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType; 3323 } 3324 } 3325 } 3326} 3327 3328/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 3329/// an overloaded function (C++ [over.over]), where @p From is an 3330/// expression with overloaded function type and @p ToType is the type 3331/// we're trying to resolve to. For example: 3332/// 3333/// @code 3334/// int f(double); 3335/// int f(int); 3336/// 3337/// int (*pfd)(double) = f; // selects f(double) 3338/// @endcode 3339/// 3340/// This routine returns the resulting FunctionDecl if it could be 3341/// resolved, and NULL otherwise. When @p Complain is true, this 3342/// routine will emit diagnostics if there is an error. 3343FunctionDecl * 3344Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 3345 bool Complain) { 3346 QualType FunctionType = ToType; 3347 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType()) 3348 FunctionType = ToTypePtr->getPointeeType(); 3349 3350 // We only look at pointers or references to functions. 3351 if (!FunctionType->isFunctionType()) 3352 return 0; 3353 3354 // Find the actual overloaded function declaration. 3355 OverloadedFunctionDecl *Ovl = 0; 3356 3357 // C++ [over.over]p1: 3358 // [...] [Note: any redundant set of parentheses surrounding the 3359 // overloaded function name is ignored (5.1). ] 3360 Expr *OvlExpr = From->IgnoreParens(); 3361 3362 // C++ [over.over]p1: 3363 // [...] The overloaded function name can be preceded by the & 3364 // operator. 3365 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 3366 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 3367 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 3368 } 3369 3370 // Try to dig out the overloaded function. 3371 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) 3372 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl()); 3373 3374 // If there's no overloaded function declaration, we're done. 3375 if (!Ovl) 3376 return 0; 3377 3378 // Look through all of the overloaded functions, searching for one 3379 // whose type matches exactly. 3380 // FIXME: When templates or using declarations come along, we'll actually 3381 // have to deal with duplicates, partial ordering, etc. For now, we 3382 // can just do a simple search. 3383 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType()); 3384 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin(); 3385 Fun != Ovl->function_end(); ++Fun) { 3386 // C++ [over.over]p3: 3387 // Non-member functions and static member functions match 3388 // targets of type “pointer-to-function”or 3389 // “reference-to-function.” 3390 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) 3391 if (!Method->isStatic()) 3392 continue; 3393 3394 if (FunctionType == Context.getCanonicalType((*Fun)->getType())) 3395 return *Fun; 3396 } 3397 3398 return 0; 3399} 3400 3401/// ResolveOverloadedCallFn - Given the call expression that calls Fn 3402/// (which eventually refers to the set of overloaded functions in 3403/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the 3404/// function call down to a specific function. If overload resolution 3405/// succeeds, returns the function declaration produced by overload 3406/// resolution. Otherwise, emits diagnostics, deletes all of the 3407/// arguments and Fn, and returns NULL. 3408FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl, 3409 SourceLocation LParenLoc, 3410 Expr **Args, unsigned NumArgs, 3411 SourceLocation *CommaLocs, 3412 SourceLocation RParenLoc) { 3413 OverloadCandidateSet CandidateSet; 3414 AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet); 3415 OverloadCandidateSet::iterator Best; 3416 switch (BestViableFunction(CandidateSet, Best)) { 3417 case OR_Success: 3418 return Best->Function; 3419 3420 case OR_No_Viable_Function: 3421 Diag(Fn->getSourceRange().getBegin(), 3422 diag::err_ovl_no_viable_function_in_call) 3423 << Ovl->getDeclName() << (unsigned)CandidateSet.size() 3424 << Fn->getSourceRange(); 3425 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 3426 break; 3427 3428 case OR_Ambiguous: 3429 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 3430 << Ovl->getDeclName() << Fn->getSourceRange(); 3431 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 3432 break; 3433 } 3434 3435 // Overload resolution failed. Destroy all of the subexpressions and 3436 // return NULL. 3437 Fn->Destroy(Context); 3438 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 3439 Args[Arg]->Destroy(Context); 3440 return 0; 3441} 3442 3443/// BuildCallToMemberFunction - Build a call to a member 3444/// function. MemExpr is the expression that refers to the member 3445/// function (and includes the object parameter), Args/NumArgs are the 3446/// arguments to the function call (not including the object 3447/// parameter). The caller needs to validate that the member 3448/// expression refers to a member function or an overloaded member 3449/// function. 3450Sema::ExprResult 3451Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 3452 SourceLocation LParenLoc, Expr **Args, 3453 unsigned NumArgs, SourceLocation *CommaLocs, 3454 SourceLocation RParenLoc) { 3455 // Dig out the member expression. This holds both the object 3456 // argument and the member function we're referring to. 3457 MemberExpr *MemExpr = 0; 3458 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE)) 3459 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr()); 3460 else 3461 MemExpr = dyn_cast<MemberExpr>(MemExprE); 3462 assert(MemExpr && "Building member call without member expression"); 3463 3464 // Extract the object argument. 3465 Expr *ObjectArg = MemExpr->getBase(); 3466 if (MemExpr->isArrow()) 3467 ObjectArg = new UnaryOperator(ObjectArg, UnaryOperator::Deref, 3468 ObjectArg->getType()->getAsPointerType()->getPointeeType(), 3469 SourceLocation()); 3470 CXXMethodDecl *Method = 0; 3471 if (OverloadedFunctionDecl *Ovl 3472 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) { 3473 // Add overload candidates 3474 OverloadCandidateSet CandidateSet; 3475 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 3476 FuncEnd = Ovl->function_end(); 3477 Func != FuncEnd; ++Func) { 3478 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method"); 3479 Method = cast<CXXMethodDecl>(*Func); 3480 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet, 3481 /*SuppressUserConversions=*/false); 3482 } 3483 3484 OverloadCandidateSet::iterator Best; 3485 switch (BestViableFunction(CandidateSet, Best)) { 3486 case OR_Success: 3487 Method = cast<CXXMethodDecl>(Best->Function); 3488 break; 3489 3490 case OR_No_Viable_Function: 3491 Diag(MemExpr->getSourceRange().getBegin(), 3492 diag::err_ovl_no_viable_member_function_in_call) 3493 << Ovl->getDeclName() << (unsigned)CandidateSet.size() 3494 << MemExprE->getSourceRange(); 3495 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 3496 // FIXME: Leaking incoming expressions! 3497 return true; 3498 3499 case OR_Ambiguous: 3500 Diag(MemExpr->getSourceRange().getBegin(), 3501 diag::err_ovl_ambiguous_member_call) 3502 << Ovl->getDeclName() << MemExprE->getSourceRange(); 3503 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 3504 // FIXME: Leaking incoming expressions! 3505 return true; 3506 } 3507 3508 FixOverloadedFunctionReference(MemExpr, Method); 3509 } else { 3510 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 3511 } 3512 3513 assert(Method && "Member call to something that isn't a method?"); 3514 llvm::OwningPtr<CXXMemberCallExpr> 3515 TheCall(new CXXMemberCallExpr(MemExpr, Args, NumArgs, 3516 Method->getResultType().getNonReferenceType(), 3517 RParenLoc)); 3518 3519 // Convert the object argument (for a non-static member function call). 3520 if (!Method->isStatic() && 3521 PerformObjectArgumentInitialization(ObjectArg, Method)) 3522 return true; 3523 MemExpr->setBase(ObjectArg); 3524 3525 // Convert the rest of the arguments 3526 const FunctionTypeProto *Proto = cast<FunctionTypeProto>(Method->getType()); 3527 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 3528 RParenLoc)) 3529 return true; 3530 3531 return CheckFunctionCall(Method, TheCall.take()).release(); 3532} 3533 3534/// BuildCallToObjectOfClassType - Build a call to an object of class 3535/// type (C++ [over.call.object]), which can end up invoking an 3536/// overloaded function call operator (@c operator()) or performing a 3537/// user-defined conversion on the object argument. 3538Sema::ExprResult 3539Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 3540 SourceLocation LParenLoc, 3541 Expr **Args, unsigned NumArgs, 3542 SourceLocation *CommaLocs, 3543 SourceLocation RParenLoc) { 3544 assert(Object->getType()->isRecordType() && "Requires object type argument"); 3545 const RecordType *Record = Object->getType()->getAsRecordType(); 3546 3547 // C++ [over.call.object]p1: 3548 // If the primary-expression E in the function call syntax 3549 // evaluates to a class object of type “cv T”, then the set of 3550 // candidate functions includes at least the function call 3551 // operators of T. The function call operators of T are obtained by 3552 // ordinary lookup of the name operator() in the context of 3553 // (E).operator(). 3554 OverloadCandidateSet CandidateSet; 3555 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 3556 DeclContext::lookup_const_iterator Oper, OperEnd; 3557 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName); 3558 Oper != OperEnd; ++Oper) 3559 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs, 3560 CandidateSet, /*SuppressUserConversions=*/false); 3561 3562 // C++ [over.call.object]p2: 3563 // In addition, for each conversion function declared in T of the 3564 // form 3565 // 3566 // operator conversion-type-id () cv-qualifier; 3567 // 3568 // where cv-qualifier is the same cv-qualification as, or a 3569 // greater cv-qualification than, cv, and where conversion-type-id 3570 // denotes the type "pointer to function of (P1,...,Pn) returning 3571 // R", or the type "reference to pointer to function of 3572 // (P1,...,Pn) returning R", or the type "reference to function 3573 // of (P1,...,Pn) returning R", a surrogate call function [...] 3574 // is also considered as a candidate function. Similarly, 3575 // surrogate call functions are added to the set of candidate 3576 // functions for each conversion function declared in an 3577 // accessible base class provided the function is not hidden 3578 // within T by another intervening declaration. 3579 // 3580 // FIXME: Look in base classes for more conversion operators! 3581 OverloadedFunctionDecl *Conversions 3582 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); 3583 for (OverloadedFunctionDecl::function_iterator 3584 Func = Conversions->function_begin(), 3585 FuncEnd = Conversions->function_end(); 3586 Func != FuncEnd; ++Func) { 3587 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func); 3588 3589 // Strip the reference type (if any) and then the pointer type (if 3590 // any) to get down to what might be a function type. 3591 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 3592 if (const PointerType *ConvPtrType = ConvType->getAsPointerType()) 3593 ConvType = ConvPtrType->getPointeeType(); 3594 3595 if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto()) 3596 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet); 3597 } 3598 3599 // Perform overload resolution. 3600 OverloadCandidateSet::iterator Best; 3601 switch (BestViableFunction(CandidateSet, Best)) { 3602 case OR_Success: 3603 // Overload resolution succeeded; we'll build the appropriate call 3604 // below. 3605 break; 3606 3607 case OR_No_Viable_Function: 3608 Diag(Object->getSourceRange().getBegin(), 3609 diag::err_ovl_no_viable_object_call) 3610 << Object->getType() << (unsigned)CandidateSet.size() 3611 << Object->getSourceRange(); 3612 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 3613 break; 3614 3615 case OR_Ambiguous: 3616 Diag(Object->getSourceRange().getBegin(), 3617 diag::err_ovl_ambiguous_object_call) 3618 << Object->getType() << Object->getSourceRange(); 3619 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 3620 break; 3621 } 3622 3623 if (Best == CandidateSet.end()) { 3624 // We had an error; delete all of the subexpressions and return 3625 // the error. 3626 delete Object; 3627 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3628 delete Args[ArgIdx]; 3629 return true; 3630 } 3631 3632 if (Best->Function == 0) { 3633 // Since there is no function declaration, this is one of the 3634 // surrogate candidates. Dig out the conversion function. 3635 CXXConversionDecl *Conv 3636 = cast<CXXConversionDecl>( 3637 Best->Conversions[0].UserDefined.ConversionFunction); 3638 3639 // We selected one of the surrogate functions that converts the 3640 // object parameter to a function pointer. Perform the conversion 3641 // on the object argument, then let ActOnCallExpr finish the job. 3642 // FIXME: Represent the user-defined conversion in the AST! 3643 ImpCastExprToType(Object, 3644 Conv->getConversionType().getNonReferenceType(), 3645 Conv->getConversionType()->isReferenceType()); 3646 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc, 3647 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 3648 CommaLocs, RParenLoc).release(); 3649 } 3650 3651 // We found an overloaded operator(). Build a CXXOperatorCallExpr 3652 // that calls this method, using Object for the implicit object 3653 // parameter and passing along the remaining arguments. 3654 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 3655 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto(); 3656 3657 unsigned NumArgsInProto = Proto->getNumArgs(); 3658 unsigned NumArgsToCheck = NumArgs; 3659 3660 // Build the full argument list for the method call (the 3661 // implicit object parameter is placed at the beginning of the 3662 // list). 3663 Expr **MethodArgs; 3664 if (NumArgs < NumArgsInProto) { 3665 NumArgsToCheck = NumArgsInProto; 3666 MethodArgs = new Expr*[NumArgsInProto + 1]; 3667 } else { 3668 MethodArgs = new Expr*[NumArgs + 1]; 3669 } 3670 MethodArgs[0] = Object; 3671 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3672 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 3673 3674 Expr *NewFn = new DeclRefExpr(Method, Method->getType(), 3675 SourceLocation()); 3676 UsualUnaryConversions(NewFn); 3677 3678 // Once we've built TheCall, all of the expressions are properly 3679 // owned. 3680 QualType ResultTy = Method->getResultType().getNonReferenceType(); 3681 llvm::OwningPtr<CXXOperatorCallExpr> 3682 TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1, 3683 ResultTy, RParenLoc)); 3684 delete [] MethodArgs; 3685 3686 // We may have default arguments. If so, we need to allocate more 3687 // slots in the call for them. 3688 if (NumArgs < NumArgsInProto) 3689 TheCall->setNumArgs(NumArgsInProto + 1); 3690 else if (NumArgs > NumArgsInProto) 3691 NumArgsToCheck = NumArgsInProto; 3692 3693 // Initialize the implicit object parameter. 3694 if (PerformObjectArgumentInitialization(Object, Method)) 3695 return true; 3696 TheCall->setArg(0, Object); 3697 3698 // Check the argument types. 3699 for (unsigned i = 0; i != NumArgsToCheck; i++) { 3700 Expr *Arg; 3701 if (i < NumArgs) { 3702 Arg = Args[i]; 3703 3704 // Pass the argument. 3705 QualType ProtoArgType = Proto->getArgType(i); 3706 if (PerformCopyInitialization(Arg, ProtoArgType, "passing")) 3707 return true; 3708 } else { 3709 Arg = new CXXDefaultArgExpr(Method->getParamDecl(i)); 3710 } 3711 3712 TheCall->setArg(i + 1, Arg); 3713 } 3714 3715 // If this is a variadic call, handle args passed through "...". 3716 if (Proto->isVariadic()) { 3717 // Promote the arguments (C99 6.5.2.2p7). 3718 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 3719 Expr *Arg = Args[i]; 3720 3721 DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 3722 TheCall->setArg(i + 1, Arg); 3723 } 3724 } 3725 3726 return CheckFunctionCall(Method, TheCall.take()).release(); 3727} 3728 3729/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 3730/// (if one exists), where @c Base is an expression of class type and 3731/// @c Member is the name of the member we're trying to find. 3732Action::ExprResult 3733Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, 3734 SourceLocation MemberLoc, 3735 IdentifierInfo &Member) { 3736 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 3737 3738 // C++ [over.ref]p1: 3739 // 3740 // [...] An expression x->m is interpreted as (x.operator->())->m 3741 // for a class object x of type T if T::operator->() exists and if 3742 // the operator is selected as the best match function by the 3743 // overload resolution mechanism (13.3). 3744 // FIXME: look in base classes. 3745 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 3746 OverloadCandidateSet CandidateSet; 3747 const RecordType *BaseRecord = Base->getType()->getAsRecordType(); 3748 3749 DeclContext::lookup_const_iterator Oper, OperEnd; 3750 for (llvm::tie(Oper, OperEnd) = BaseRecord->getDecl()->lookup(OpName); 3751 Oper != OperEnd; ++Oper) 3752 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet, 3753 /*SuppressUserConversions=*/false); 3754 3755 llvm::OwningPtr<Expr> BasePtr(Base); 3756 3757 // Perform overload resolution. 3758 OverloadCandidateSet::iterator Best; 3759 switch (BestViableFunction(CandidateSet, Best)) { 3760 case OR_Success: 3761 // Overload resolution succeeded; we'll build the call below. 3762 break; 3763 3764 case OR_No_Viable_Function: 3765 if (CandidateSet.empty()) 3766 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 3767 << BasePtr->getType() << BasePtr->getSourceRange(); 3768 else 3769 Diag(OpLoc, diag::err_ovl_no_viable_oper) 3770 << "operator->" << (unsigned)CandidateSet.size() 3771 << BasePtr->getSourceRange(); 3772 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 3773 return true; 3774 3775 case OR_Ambiguous: 3776 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 3777 << "operator->" << BasePtr->getSourceRange(); 3778 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 3779 return true; 3780 } 3781 3782 // Convert the object parameter. 3783 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 3784 if (PerformObjectArgumentInitialization(Base, Method)) 3785 return true; 3786 3787 // No concerns about early exits now. 3788 BasePtr.take(); 3789 3790 // Build the operator call. 3791 Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation()); 3792 UsualUnaryConversions(FnExpr); 3793 Base = new CXXOperatorCallExpr(FnExpr, &Base, 1, 3794 Method->getResultType().getNonReferenceType(), 3795 OpLoc); 3796 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow, 3797 MemberLoc, Member).release(); 3798} 3799 3800/// FixOverloadedFunctionReference - E is an expression that refers to 3801/// a C++ overloaded function (possibly with some parentheses and 3802/// perhaps a '&' around it). We have resolved the overloaded function 3803/// to the function declaration Fn, so patch up the expression E to 3804/// refer (possibly indirectly) to Fn. 3805void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 3806 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 3807 FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 3808 E->setType(PE->getSubExpr()->getType()); 3809 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 3810 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 3811 "Can only take the address of an overloaded function"); 3812 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 3813 E->setType(Context.getPointerType(E->getType())); 3814 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) { 3815 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) && 3816 "Expected overloaded function"); 3817 DR->setDecl(Fn); 3818 E->setType(Fn->getType()); 3819 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) { 3820 MemExpr->setMemberDecl(Fn); 3821 E->setType(Fn->getType()); 3822 } else { 3823 assert(false && "Invalid reference to overloaded function"); 3824 } 3825} 3826 3827} // end namespace clang 3828