SemaOverload.cpp revision 4c9be89bb615ec07eb3ed507c8fa9d0baa8a5ad7
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/Initialization.h" 17#include "clang/Sema/Template.h" 18#include "clang/Sema/TemplateDeduction.h" 19#include "clang/Basic/Diagnostic.h" 20#include "clang/Lex/Preprocessor.h" 21#include "clang/AST/ASTContext.h" 22#include "clang/AST/CXXInheritance.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/AST/Expr.h" 25#include "clang/AST/ExprCXX.h" 26#include "clang/AST/ExprObjC.h" 27#include "clang/AST/TypeOrdering.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/DenseSet.h" 30#include "llvm/ADT/SmallPtrSet.h" 31#include "llvm/ADT/STLExtras.h" 32#include <algorithm> 33 34namespace clang { 35using namespace sema; 36 37/// A convenience routine for creating a decayed reference to a 38/// function. 39static Expr * 40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, 41 SourceLocation Loc = SourceLocation()) { 42 Expr *E = new (S.Context) DeclRefExpr(Fn, Fn->getType(), VK_LValue, Loc); 43 S.DefaultFunctionArrayConversion(E); 44 return E; 45} 46 47static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 48 bool InOverloadResolution, 49 StandardConversionSequence &SCS, 50 bool CStyle); 51static OverloadingResult 52IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 53 UserDefinedConversionSequence& User, 54 OverloadCandidateSet& Conversions, 55 bool AllowExplicit); 56 57 58static ImplicitConversionSequence::CompareKind 59CompareStandardConversionSequences(Sema &S, 60 const StandardConversionSequence& SCS1, 61 const StandardConversionSequence& SCS2); 62 63static ImplicitConversionSequence::CompareKind 64CompareQualificationConversions(Sema &S, 65 const StandardConversionSequence& SCS1, 66 const StandardConversionSequence& SCS2); 67 68static ImplicitConversionSequence::CompareKind 69CompareDerivedToBaseConversions(Sema &S, 70 const StandardConversionSequence& SCS1, 71 const StandardConversionSequence& SCS2); 72 73 74 75/// GetConversionCategory - Retrieve the implicit conversion 76/// category corresponding to the given implicit conversion kind. 77ImplicitConversionCategory 78GetConversionCategory(ImplicitConversionKind Kind) { 79 static const ImplicitConversionCategory 80 Category[(int)ICK_Num_Conversion_Kinds] = { 81 ICC_Identity, 82 ICC_Lvalue_Transformation, 83 ICC_Lvalue_Transformation, 84 ICC_Lvalue_Transformation, 85 ICC_Identity, 86 ICC_Qualification_Adjustment, 87 ICC_Promotion, 88 ICC_Promotion, 89 ICC_Promotion, 90 ICC_Conversion, 91 ICC_Conversion, 92 ICC_Conversion, 93 ICC_Conversion, 94 ICC_Conversion, 95 ICC_Conversion, 96 ICC_Conversion, 97 ICC_Conversion, 98 ICC_Conversion, 99 ICC_Conversion, 100 ICC_Conversion, 101 ICC_Conversion 102 }; 103 return Category[(int)Kind]; 104} 105 106/// GetConversionRank - Retrieve the implicit conversion rank 107/// corresponding to the given implicit conversion kind. 108ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 109 static const ImplicitConversionRank 110 Rank[(int)ICK_Num_Conversion_Kinds] = { 111 ICR_Exact_Match, 112 ICR_Exact_Match, 113 ICR_Exact_Match, 114 ICR_Exact_Match, 115 ICR_Exact_Match, 116 ICR_Exact_Match, 117 ICR_Promotion, 118 ICR_Promotion, 119 ICR_Promotion, 120 ICR_Conversion, 121 ICR_Conversion, 122 ICR_Conversion, 123 ICR_Conversion, 124 ICR_Conversion, 125 ICR_Conversion, 126 ICR_Conversion, 127 ICR_Conversion, 128 ICR_Conversion, 129 ICR_Conversion, 130 ICR_Conversion, 131 ICR_Complex_Real_Conversion 132 }; 133 return Rank[(int)Kind]; 134} 135 136/// GetImplicitConversionName - Return the name of this kind of 137/// implicit conversion. 138const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 139 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 140 "No conversion", 141 "Lvalue-to-rvalue", 142 "Array-to-pointer", 143 "Function-to-pointer", 144 "Noreturn adjustment", 145 "Qualification", 146 "Integral promotion", 147 "Floating point promotion", 148 "Complex promotion", 149 "Integral conversion", 150 "Floating conversion", 151 "Complex conversion", 152 "Floating-integral conversion", 153 "Pointer conversion", 154 "Pointer-to-member conversion", 155 "Boolean conversion", 156 "Compatible-types conversion", 157 "Derived-to-base conversion", 158 "Vector conversion", 159 "Vector splat", 160 "Complex-real conversion" 161 }; 162 return Name[Kind]; 163} 164 165/// StandardConversionSequence - Set the standard conversion 166/// sequence to the identity conversion. 167void StandardConversionSequence::setAsIdentityConversion() { 168 First = ICK_Identity; 169 Second = ICK_Identity; 170 Third = ICK_Identity; 171 DeprecatedStringLiteralToCharPtr = false; 172 ReferenceBinding = false; 173 DirectBinding = false; 174 IsLvalueReference = true; 175 BindsToFunctionLvalue = false; 176 BindsToRvalue = false; 177 BindsImplicitObjectArgumentWithoutRefQualifier = false; 178 CopyConstructor = 0; 179} 180 181/// getRank - Retrieve the rank of this standard conversion sequence 182/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 183/// implicit conversions. 184ImplicitConversionRank StandardConversionSequence::getRank() const { 185 ImplicitConversionRank Rank = ICR_Exact_Match; 186 if (GetConversionRank(First) > Rank) 187 Rank = GetConversionRank(First); 188 if (GetConversionRank(Second) > Rank) 189 Rank = GetConversionRank(Second); 190 if (GetConversionRank(Third) > Rank) 191 Rank = GetConversionRank(Third); 192 return Rank; 193} 194 195/// isPointerConversionToBool - Determines whether this conversion is 196/// a conversion of a pointer or pointer-to-member to bool. This is 197/// used as part of the ranking of standard conversion sequences 198/// (C++ 13.3.3.2p4). 199bool StandardConversionSequence::isPointerConversionToBool() const { 200 // Note that FromType has not necessarily been transformed by the 201 // array-to-pointer or function-to-pointer implicit conversions, so 202 // check for their presence as well as checking whether FromType is 203 // a pointer. 204 if (getToType(1)->isBooleanType() && 205 (getFromType()->isPointerType() || 206 getFromType()->isObjCObjectPointerType() || 207 getFromType()->isBlockPointerType() || 208 getFromType()->isNullPtrType() || 209 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 210 return true; 211 212 return false; 213} 214 215/// isPointerConversionToVoidPointer - Determines whether this 216/// conversion is a conversion of a pointer to a void pointer. This is 217/// used as part of the ranking of standard conversion sequences (C++ 218/// 13.3.3.2p4). 219bool 220StandardConversionSequence:: 221isPointerConversionToVoidPointer(ASTContext& Context) const { 222 QualType FromType = getFromType(); 223 QualType ToType = getToType(1); 224 225 // Note that FromType has not necessarily been transformed by the 226 // array-to-pointer implicit conversion, so check for its presence 227 // and redo the conversion to get a pointer. 228 if (First == ICK_Array_To_Pointer) 229 FromType = Context.getArrayDecayedType(FromType); 230 231 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 232 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 233 return ToPtrType->getPointeeType()->isVoidType(); 234 235 return false; 236} 237 238/// DebugPrint - Print this standard conversion sequence to standard 239/// error. Useful for debugging overloading issues. 240void StandardConversionSequence::DebugPrint() const { 241 llvm::raw_ostream &OS = llvm::errs(); 242 bool PrintedSomething = false; 243 if (First != ICK_Identity) { 244 OS << GetImplicitConversionName(First); 245 PrintedSomething = true; 246 } 247 248 if (Second != ICK_Identity) { 249 if (PrintedSomething) { 250 OS << " -> "; 251 } 252 OS << GetImplicitConversionName(Second); 253 254 if (CopyConstructor) { 255 OS << " (by copy constructor)"; 256 } else if (DirectBinding) { 257 OS << " (direct reference binding)"; 258 } else if (ReferenceBinding) { 259 OS << " (reference binding)"; 260 } 261 PrintedSomething = true; 262 } 263 264 if (Third != ICK_Identity) { 265 if (PrintedSomething) { 266 OS << " -> "; 267 } 268 OS << GetImplicitConversionName(Third); 269 PrintedSomething = true; 270 } 271 272 if (!PrintedSomething) { 273 OS << "No conversions required"; 274 } 275} 276 277/// DebugPrint - Print this user-defined conversion sequence to standard 278/// error. Useful for debugging overloading issues. 279void UserDefinedConversionSequence::DebugPrint() const { 280 llvm::raw_ostream &OS = llvm::errs(); 281 if (Before.First || Before.Second || Before.Third) { 282 Before.DebugPrint(); 283 OS << " -> "; 284 } 285 OS << '\'' << ConversionFunction << '\''; 286 if (After.First || After.Second || After.Third) { 287 OS << " -> "; 288 After.DebugPrint(); 289 } 290} 291 292/// DebugPrint - Print this implicit conversion sequence to standard 293/// error. Useful for debugging overloading issues. 294void ImplicitConversionSequence::DebugPrint() const { 295 llvm::raw_ostream &OS = llvm::errs(); 296 switch (ConversionKind) { 297 case StandardConversion: 298 OS << "Standard conversion: "; 299 Standard.DebugPrint(); 300 break; 301 case UserDefinedConversion: 302 OS << "User-defined conversion: "; 303 UserDefined.DebugPrint(); 304 break; 305 case EllipsisConversion: 306 OS << "Ellipsis conversion"; 307 break; 308 case AmbiguousConversion: 309 OS << "Ambiguous conversion"; 310 break; 311 case BadConversion: 312 OS << "Bad conversion"; 313 break; 314 } 315 316 OS << "\n"; 317} 318 319void AmbiguousConversionSequence::construct() { 320 new (&conversions()) ConversionSet(); 321} 322 323void AmbiguousConversionSequence::destruct() { 324 conversions().~ConversionSet(); 325} 326 327void 328AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 329 FromTypePtr = O.FromTypePtr; 330 ToTypePtr = O.ToTypePtr; 331 new (&conversions()) ConversionSet(O.conversions()); 332} 333 334namespace { 335 // Structure used by OverloadCandidate::DeductionFailureInfo to store 336 // template parameter and template argument information. 337 struct DFIParamWithArguments { 338 TemplateParameter Param; 339 TemplateArgument FirstArg; 340 TemplateArgument SecondArg; 341 }; 342} 343 344/// \brief Convert from Sema's representation of template deduction information 345/// to the form used in overload-candidate information. 346OverloadCandidate::DeductionFailureInfo 347static MakeDeductionFailureInfo(ASTContext &Context, 348 Sema::TemplateDeductionResult TDK, 349 TemplateDeductionInfo &Info) { 350 OverloadCandidate::DeductionFailureInfo Result; 351 Result.Result = static_cast<unsigned>(TDK); 352 Result.Data = 0; 353 switch (TDK) { 354 case Sema::TDK_Success: 355 case Sema::TDK_InstantiationDepth: 356 case Sema::TDK_TooManyArguments: 357 case Sema::TDK_TooFewArguments: 358 break; 359 360 case Sema::TDK_Incomplete: 361 case Sema::TDK_InvalidExplicitArguments: 362 Result.Data = Info.Param.getOpaqueValue(); 363 break; 364 365 case Sema::TDK_Inconsistent: 366 case Sema::TDK_Underqualified: { 367 // FIXME: Should allocate from normal heap so that we can free this later. 368 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 369 Saved->Param = Info.Param; 370 Saved->FirstArg = Info.FirstArg; 371 Saved->SecondArg = Info.SecondArg; 372 Result.Data = Saved; 373 break; 374 } 375 376 case Sema::TDK_SubstitutionFailure: 377 Result.Data = Info.take(); 378 break; 379 380 case Sema::TDK_NonDeducedMismatch: 381 case Sema::TDK_FailedOverloadResolution: 382 break; 383 } 384 385 return Result; 386} 387 388void OverloadCandidate::DeductionFailureInfo::Destroy() { 389 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 390 case Sema::TDK_Success: 391 case Sema::TDK_InstantiationDepth: 392 case Sema::TDK_Incomplete: 393 case Sema::TDK_TooManyArguments: 394 case Sema::TDK_TooFewArguments: 395 case Sema::TDK_InvalidExplicitArguments: 396 break; 397 398 case Sema::TDK_Inconsistent: 399 case Sema::TDK_Underqualified: 400 // FIXME: Destroy the data? 401 Data = 0; 402 break; 403 404 case Sema::TDK_SubstitutionFailure: 405 // FIXME: Destroy the template arugment list? 406 Data = 0; 407 break; 408 409 // Unhandled 410 case Sema::TDK_NonDeducedMismatch: 411 case Sema::TDK_FailedOverloadResolution: 412 break; 413 } 414} 415 416TemplateParameter 417OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 418 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 419 case Sema::TDK_Success: 420 case Sema::TDK_InstantiationDepth: 421 case Sema::TDK_TooManyArguments: 422 case Sema::TDK_TooFewArguments: 423 case Sema::TDK_SubstitutionFailure: 424 return TemplateParameter(); 425 426 case Sema::TDK_Incomplete: 427 case Sema::TDK_InvalidExplicitArguments: 428 return TemplateParameter::getFromOpaqueValue(Data); 429 430 case Sema::TDK_Inconsistent: 431 case Sema::TDK_Underqualified: 432 return static_cast<DFIParamWithArguments*>(Data)->Param; 433 434 // Unhandled 435 case Sema::TDK_NonDeducedMismatch: 436 case Sema::TDK_FailedOverloadResolution: 437 break; 438 } 439 440 return TemplateParameter(); 441} 442 443TemplateArgumentList * 444OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 445 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 446 case Sema::TDK_Success: 447 case Sema::TDK_InstantiationDepth: 448 case Sema::TDK_TooManyArguments: 449 case Sema::TDK_TooFewArguments: 450 case Sema::TDK_Incomplete: 451 case Sema::TDK_InvalidExplicitArguments: 452 case Sema::TDK_Inconsistent: 453 case Sema::TDK_Underqualified: 454 return 0; 455 456 case Sema::TDK_SubstitutionFailure: 457 return static_cast<TemplateArgumentList*>(Data); 458 459 // Unhandled 460 case Sema::TDK_NonDeducedMismatch: 461 case Sema::TDK_FailedOverloadResolution: 462 break; 463 } 464 465 return 0; 466} 467 468const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 469 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 470 case Sema::TDK_Success: 471 case Sema::TDK_InstantiationDepth: 472 case Sema::TDK_Incomplete: 473 case Sema::TDK_TooManyArguments: 474 case Sema::TDK_TooFewArguments: 475 case Sema::TDK_InvalidExplicitArguments: 476 case Sema::TDK_SubstitutionFailure: 477 return 0; 478 479 case Sema::TDK_Inconsistent: 480 case Sema::TDK_Underqualified: 481 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 482 483 // Unhandled 484 case Sema::TDK_NonDeducedMismatch: 485 case Sema::TDK_FailedOverloadResolution: 486 break; 487 } 488 489 return 0; 490} 491 492const TemplateArgument * 493OverloadCandidate::DeductionFailureInfo::getSecondArg() { 494 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 495 case Sema::TDK_Success: 496 case Sema::TDK_InstantiationDepth: 497 case Sema::TDK_Incomplete: 498 case Sema::TDK_TooManyArguments: 499 case Sema::TDK_TooFewArguments: 500 case Sema::TDK_InvalidExplicitArguments: 501 case Sema::TDK_SubstitutionFailure: 502 return 0; 503 504 case Sema::TDK_Inconsistent: 505 case Sema::TDK_Underqualified: 506 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 507 508 // Unhandled 509 case Sema::TDK_NonDeducedMismatch: 510 case Sema::TDK_FailedOverloadResolution: 511 break; 512 } 513 514 return 0; 515} 516 517void OverloadCandidateSet::clear() { 518 inherited::clear(); 519 Functions.clear(); 520} 521 522// IsOverload - Determine whether the given New declaration is an 523// overload of the declarations in Old. This routine returns false if 524// New and Old cannot be overloaded, e.g., if New has the same 525// signature as some function in Old (C++ 1.3.10) or if the Old 526// declarations aren't functions (or function templates) at all. When 527// it does return false, MatchedDecl will point to the decl that New 528// cannot be overloaded with. This decl may be a UsingShadowDecl on 529// top of the underlying declaration. 530// 531// Example: Given the following input: 532// 533// void f(int, float); // #1 534// void f(int, int); // #2 535// int f(int, int); // #3 536// 537// When we process #1, there is no previous declaration of "f", 538// so IsOverload will not be used. 539// 540// When we process #2, Old contains only the FunctionDecl for #1. By 541// comparing the parameter types, we see that #1 and #2 are overloaded 542// (since they have different signatures), so this routine returns 543// false; MatchedDecl is unchanged. 544// 545// When we process #3, Old is an overload set containing #1 and #2. We 546// compare the signatures of #3 to #1 (they're overloaded, so we do 547// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 548// identical (return types of functions are not part of the 549// signature), IsOverload returns false and MatchedDecl will be set to 550// point to the FunctionDecl for #2. 551// 552// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 553// into a class by a using declaration. The rules for whether to hide 554// shadow declarations ignore some properties which otherwise figure 555// into a function template's signature. 556Sema::OverloadKind 557Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 558 NamedDecl *&Match, bool NewIsUsingDecl) { 559 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 560 I != E; ++I) { 561 NamedDecl *OldD = *I; 562 563 bool OldIsUsingDecl = false; 564 if (isa<UsingShadowDecl>(OldD)) { 565 OldIsUsingDecl = true; 566 567 // We can always introduce two using declarations into the same 568 // context, even if they have identical signatures. 569 if (NewIsUsingDecl) continue; 570 571 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 572 } 573 574 // If either declaration was introduced by a using declaration, 575 // we'll need to use slightly different rules for matching. 576 // Essentially, these rules are the normal rules, except that 577 // function templates hide function templates with different 578 // return types or template parameter lists. 579 bool UseMemberUsingDeclRules = 580 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 581 582 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 583 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 584 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 585 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 586 continue; 587 } 588 589 Match = *I; 590 return Ovl_Match; 591 } 592 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 593 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 594 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 595 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 596 continue; 597 } 598 599 Match = *I; 600 return Ovl_Match; 601 } 602 } else if (isa<UsingDecl>(OldD)) { 603 // We can overload with these, which can show up when doing 604 // redeclaration checks for UsingDecls. 605 assert(Old.getLookupKind() == LookupUsingDeclName); 606 } else if (isa<TagDecl>(OldD)) { 607 // We can always overload with tags by hiding them. 608 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 609 // Optimistically assume that an unresolved using decl will 610 // overload; if it doesn't, we'll have to diagnose during 611 // template instantiation. 612 } else { 613 // (C++ 13p1): 614 // Only function declarations can be overloaded; object and type 615 // declarations cannot be overloaded. 616 Match = *I; 617 return Ovl_NonFunction; 618 } 619 } 620 621 return Ovl_Overload; 622} 623 624bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 625 bool UseUsingDeclRules) { 626 // If both of the functions are extern "C", then they are not 627 // overloads. 628 if (Old->isExternC() && New->isExternC()) 629 return false; 630 631 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 632 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 633 634 // C++ [temp.fct]p2: 635 // A function template can be overloaded with other function templates 636 // and with normal (non-template) functions. 637 if ((OldTemplate == 0) != (NewTemplate == 0)) 638 return true; 639 640 // Is the function New an overload of the function Old? 641 QualType OldQType = Context.getCanonicalType(Old->getType()); 642 QualType NewQType = Context.getCanonicalType(New->getType()); 643 644 // Compare the signatures (C++ 1.3.10) of the two functions to 645 // determine whether they are overloads. If we find any mismatch 646 // in the signature, they are overloads. 647 648 // If either of these functions is a K&R-style function (no 649 // prototype), then we consider them to have matching signatures. 650 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 651 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 652 return false; 653 654 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 655 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 656 657 // The signature of a function includes the types of its 658 // parameters (C++ 1.3.10), which includes the presence or absence 659 // of the ellipsis; see C++ DR 357). 660 if (OldQType != NewQType && 661 (OldType->getNumArgs() != NewType->getNumArgs() || 662 OldType->isVariadic() != NewType->isVariadic() || 663 !FunctionArgTypesAreEqual(OldType, NewType))) 664 return true; 665 666 // C++ [temp.over.link]p4: 667 // The signature of a function template consists of its function 668 // signature, its return type and its template parameter list. The names 669 // of the template parameters are significant only for establishing the 670 // relationship between the template parameters and the rest of the 671 // signature. 672 // 673 // We check the return type and template parameter lists for function 674 // templates first; the remaining checks follow. 675 // 676 // However, we don't consider either of these when deciding whether 677 // a member introduced by a shadow declaration is hidden. 678 if (!UseUsingDeclRules && NewTemplate && 679 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 680 OldTemplate->getTemplateParameters(), 681 false, TPL_TemplateMatch) || 682 OldType->getResultType() != NewType->getResultType())) 683 return true; 684 685 // If the function is a class member, its signature includes the 686 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 687 // 688 // As part of this, also check whether one of the member functions 689 // is static, in which case they are not overloads (C++ 690 // 13.1p2). While not part of the definition of the signature, 691 // this check is important to determine whether these functions 692 // can be overloaded. 693 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 694 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 695 if (OldMethod && NewMethod && 696 !OldMethod->isStatic() && !NewMethod->isStatic() && 697 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() || 698 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) { 699 if (!UseUsingDeclRules && 700 OldMethod->getRefQualifier() != NewMethod->getRefQualifier() && 701 (OldMethod->getRefQualifier() == RQ_None || 702 NewMethod->getRefQualifier() == RQ_None)) { 703 // C++0x [over.load]p2: 704 // - Member function declarations with the same name and the same 705 // parameter-type-list as well as member function template 706 // declarations with the same name, the same parameter-type-list, and 707 // the same template parameter lists cannot be overloaded if any of 708 // them, but not all, have a ref-qualifier (8.3.5). 709 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 710 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 711 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 712 } 713 714 return true; 715 } 716 717 // The signatures match; this is not an overload. 718 return false; 719} 720 721/// TryImplicitConversion - Attempt to perform an implicit conversion 722/// from the given expression (Expr) to the given type (ToType). This 723/// function returns an implicit conversion sequence that can be used 724/// to perform the initialization. Given 725/// 726/// void f(float f); 727/// void g(int i) { f(i); } 728/// 729/// this routine would produce an implicit conversion sequence to 730/// describe the initialization of f from i, which will be a standard 731/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 732/// 4.1) followed by a floating-integral conversion (C++ 4.9). 733// 734/// Note that this routine only determines how the conversion can be 735/// performed; it does not actually perform the conversion. As such, 736/// it will not produce any diagnostics if no conversion is available, 737/// but will instead return an implicit conversion sequence of kind 738/// "BadConversion". 739/// 740/// If @p SuppressUserConversions, then user-defined conversions are 741/// not permitted. 742/// If @p AllowExplicit, then explicit user-defined conversions are 743/// permitted. 744static ImplicitConversionSequence 745TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 746 bool SuppressUserConversions, 747 bool AllowExplicit, 748 bool InOverloadResolution, 749 bool CStyle) { 750 ImplicitConversionSequence ICS; 751 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 752 ICS.Standard, CStyle)) { 753 ICS.setStandard(); 754 return ICS; 755 } 756 757 if (!S.getLangOptions().CPlusPlus) { 758 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 759 return ICS; 760 } 761 762 // C++ [over.ics.user]p4: 763 // A conversion of an expression of class type to the same class 764 // type is given Exact Match rank, and a conversion of an 765 // expression of class type to a base class of that type is 766 // given Conversion rank, in spite of the fact that a copy/move 767 // constructor (i.e., a user-defined conversion function) is 768 // called for those cases. 769 QualType FromType = From->getType(); 770 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 771 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 772 S.IsDerivedFrom(FromType, ToType))) { 773 ICS.setStandard(); 774 ICS.Standard.setAsIdentityConversion(); 775 ICS.Standard.setFromType(FromType); 776 ICS.Standard.setAllToTypes(ToType); 777 778 // We don't actually check at this point whether there is a valid 779 // copy/move constructor, since overloading just assumes that it 780 // exists. When we actually perform initialization, we'll find the 781 // appropriate constructor to copy the returned object, if needed. 782 ICS.Standard.CopyConstructor = 0; 783 784 // Determine whether this is considered a derived-to-base conversion. 785 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 786 ICS.Standard.Second = ICK_Derived_To_Base; 787 788 return ICS; 789 } 790 791 if (SuppressUserConversions) { 792 // We're not in the case above, so there is no conversion that 793 // we can perform. 794 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 795 return ICS; 796 } 797 798 // Attempt user-defined conversion. 799 OverloadCandidateSet Conversions(From->getExprLoc()); 800 OverloadingResult UserDefResult 801 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, 802 AllowExplicit); 803 804 if (UserDefResult == OR_Success) { 805 ICS.setUserDefined(); 806 // C++ [over.ics.user]p4: 807 // A conversion of an expression of class type to the same class 808 // type is given Exact Match rank, and a conversion of an 809 // expression of class type to a base class of that type is 810 // given Conversion rank, in spite of the fact that a copy 811 // constructor (i.e., a user-defined conversion function) is 812 // called for those cases. 813 if (CXXConstructorDecl *Constructor 814 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 815 QualType FromCanon 816 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 817 QualType ToCanon 818 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 819 if (Constructor->isCopyConstructor() && 820 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { 821 // Turn this into a "standard" conversion sequence, so that it 822 // gets ranked with standard conversion sequences. 823 ICS.setStandard(); 824 ICS.Standard.setAsIdentityConversion(); 825 ICS.Standard.setFromType(From->getType()); 826 ICS.Standard.setAllToTypes(ToType); 827 ICS.Standard.CopyConstructor = Constructor; 828 if (ToCanon != FromCanon) 829 ICS.Standard.Second = ICK_Derived_To_Base; 830 } 831 } 832 833 // C++ [over.best.ics]p4: 834 // However, when considering the argument of a user-defined 835 // conversion function that is a candidate by 13.3.1.3 when 836 // invoked for the copying of the temporary in the second step 837 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 838 // 13.3.1.6 in all cases, only standard conversion sequences and 839 // ellipsis conversion sequences are allowed. 840 if (SuppressUserConversions && ICS.isUserDefined()) { 841 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 842 } 843 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 844 ICS.setAmbiguous(); 845 ICS.Ambiguous.setFromType(From->getType()); 846 ICS.Ambiguous.setToType(ToType); 847 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 848 Cand != Conversions.end(); ++Cand) 849 if (Cand->Viable) 850 ICS.Ambiguous.addConversion(Cand->Function); 851 } else { 852 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 853 } 854 855 return ICS; 856} 857 858bool Sema::TryImplicitConversion(InitializationSequence &Sequence, 859 const InitializedEntity &Entity, 860 Expr *Initializer, 861 bool SuppressUserConversions, 862 bool AllowExplicitConversions, 863 bool InOverloadResolution, 864 bool CStyle) { 865 ImplicitConversionSequence ICS 866 = clang::TryImplicitConversion(*this, Initializer, Entity.getType(), 867 SuppressUserConversions, 868 AllowExplicitConversions, 869 InOverloadResolution, 870 CStyle); 871 if (ICS.isBad()) return true; 872 873 // Perform the actual conversion. 874 Sequence.AddConversionSequenceStep(ICS, Entity.getType()); 875 return false; 876} 877 878/// PerformImplicitConversion - Perform an implicit conversion of the 879/// expression From to the type ToType. Returns true if there was an 880/// error, false otherwise. The expression From is replaced with the 881/// converted expression. Flavor is the kind of conversion we're 882/// performing, used in the error message. If @p AllowExplicit, 883/// explicit user-defined conversions are permitted. 884bool 885Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 886 AssignmentAction Action, bool AllowExplicit) { 887 ImplicitConversionSequence ICS; 888 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 889} 890 891bool 892Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 893 AssignmentAction Action, bool AllowExplicit, 894 ImplicitConversionSequence& ICS) { 895 ICS = clang::TryImplicitConversion(*this, From, ToType, 896 /*SuppressUserConversions=*/false, 897 AllowExplicit, 898 /*InOverloadResolution=*/false, 899 /*CStyle=*/false); 900 return PerformImplicitConversion(From, ToType, ICS, Action); 901} 902 903/// \brief Determine whether the conversion from FromType to ToType is a valid 904/// conversion that strips "noreturn" off the nested function type. 905static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 906 QualType ToType, QualType &ResultTy) { 907 if (Context.hasSameUnqualifiedType(FromType, ToType)) 908 return false; 909 910 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 911 // where F adds one of the following at most once: 912 // - a pointer 913 // - a member pointer 914 // - a block pointer 915 CanQualType CanTo = Context.getCanonicalType(ToType); 916 CanQualType CanFrom = Context.getCanonicalType(FromType); 917 Type::TypeClass TyClass = CanTo->getTypeClass(); 918 if (TyClass != CanFrom->getTypeClass()) return false; 919 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 920 if (TyClass == Type::Pointer) { 921 CanTo = CanTo.getAs<PointerType>()->getPointeeType(); 922 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); 923 } else if (TyClass == Type::BlockPointer) { 924 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); 925 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); 926 } else if (TyClass == Type::MemberPointer) { 927 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType(); 928 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType(); 929 } else { 930 return false; 931 } 932 933 TyClass = CanTo->getTypeClass(); 934 if (TyClass != CanFrom->getTypeClass()) return false; 935 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 936 return false; 937 } 938 939 const FunctionType *FromFn = cast<FunctionType>(CanFrom); 940 FunctionType::ExtInfo EInfo = FromFn->getExtInfo(); 941 if (!EInfo.getNoReturn()) return false; 942 943 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false)); 944 assert(QualType(FromFn, 0).isCanonical()); 945 if (QualType(FromFn, 0) != CanTo) return false; 946 947 ResultTy = ToType; 948 return true; 949} 950 951/// \brief Determine whether the conversion from FromType to ToType is a valid 952/// vector conversion. 953/// 954/// \param ICK Will be set to the vector conversion kind, if this is a vector 955/// conversion. 956static bool IsVectorConversion(ASTContext &Context, QualType FromType, 957 QualType ToType, ImplicitConversionKind &ICK) { 958 // We need at least one of these types to be a vector type to have a vector 959 // conversion. 960 if (!ToType->isVectorType() && !FromType->isVectorType()) 961 return false; 962 963 // Identical types require no conversions. 964 if (Context.hasSameUnqualifiedType(FromType, ToType)) 965 return false; 966 967 // There are no conversions between extended vector types, only identity. 968 if (ToType->isExtVectorType()) { 969 // There are no conversions between extended vector types other than the 970 // identity conversion. 971 if (FromType->isExtVectorType()) 972 return false; 973 974 // Vector splat from any arithmetic type to a vector. 975 if (FromType->isArithmeticType()) { 976 ICK = ICK_Vector_Splat; 977 return true; 978 } 979 } 980 981 // We can perform the conversion between vector types in the following cases: 982 // 1)vector types are equivalent AltiVec and GCC vector types 983 // 2)lax vector conversions are permitted and the vector types are of the 984 // same size 985 if (ToType->isVectorType() && FromType->isVectorType()) { 986 if (Context.areCompatibleVectorTypes(FromType, ToType) || 987 (Context.getLangOptions().LaxVectorConversions && 988 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 989 ICK = ICK_Vector_Conversion; 990 return true; 991 } 992 } 993 994 return false; 995} 996 997/// IsStandardConversion - Determines whether there is a standard 998/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 999/// expression From to the type ToType. Standard conversion sequences 1000/// only consider non-class types; for conversions that involve class 1001/// types, use TryImplicitConversion. If a conversion exists, SCS will 1002/// contain the standard conversion sequence required to perform this 1003/// conversion and this routine will return true. Otherwise, this 1004/// routine will return false and the value of SCS is unspecified. 1005static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1006 bool InOverloadResolution, 1007 StandardConversionSequence &SCS, 1008 bool CStyle) { 1009 QualType FromType = From->getType(); 1010 1011 // Standard conversions (C++ [conv]) 1012 SCS.setAsIdentityConversion(); 1013 SCS.DeprecatedStringLiteralToCharPtr = false; 1014 SCS.IncompatibleObjC = false; 1015 SCS.setFromType(FromType); 1016 SCS.CopyConstructor = 0; 1017 1018 // There are no standard conversions for class types in C++, so 1019 // abort early. When overloading in C, however, we do permit 1020 if (FromType->isRecordType() || ToType->isRecordType()) { 1021 if (S.getLangOptions().CPlusPlus) 1022 return false; 1023 1024 // When we're overloading in C, we allow, as standard conversions, 1025 } 1026 1027 // The first conversion can be an lvalue-to-rvalue conversion, 1028 // array-to-pointer conversion, or function-to-pointer conversion 1029 // (C++ 4p1). 1030 1031 if (FromType == S.Context.OverloadTy) { 1032 DeclAccessPair AccessPair; 1033 if (FunctionDecl *Fn 1034 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1035 AccessPair)) { 1036 // We were able to resolve the address of the overloaded function, 1037 // so we can convert to the type of that function. 1038 FromType = Fn->getType(); 1039 1040 // we can sometimes resolve &foo<int> regardless of ToType, so check 1041 // if the type matches (identity) or we are converting to bool 1042 if (!S.Context.hasSameUnqualifiedType( 1043 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1044 QualType resultTy; 1045 // if the function type matches except for [[noreturn]], it's ok 1046 if (!IsNoReturnConversion(S.Context, FromType, 1047 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1048 // otherwise, only a boolean conversion is standard 1049 if (!ToType->isBooleanType()) 1050 return false; 1051 1052 } 1053 1054 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 1055 if (!Method->isStatic()) { 1056 const Type *ClassType 1057 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1058 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1059 } 1060 } 1061 1062 // If the "from" expression takes the address of the overloaded 1063 // function, update the type of the resulting expression accordingly. 1064 if (FromType->getAs<FunctionType>()) 1065 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) 1066 if (UnOp->getOpcode() == UO_AddrOf) 1067 FromType = S.Context.getPointerType(FromType); 1068 1069 // Check that we've computed the proper type after overload resolution. 1070 assert(S.Context.hasSameType(FromType, 1071 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1072 } else { 1073 return false; 1074 } 1075 } 1076 // Lvalue-to-rvalue conversion (C++ 4.1): 1077 // An lvalue (3.10) of a non-function, non-array type T can be 1078 // converted to an rvalue. 1079 bool argIsLValue = From->isLValue(); 1080 if (argIsLValue && 1081 !FromType->isFunctionType() && !FromType->isArrayType() && 1082 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1083 SCS.First = ICK_Lvalue_To_Rvalue; 1084 1085 // If T is a non-class type, the type of the rvalue is the 1086 // cv-unqualified version of T. Otherwise, the type of the rvalue 1087 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1088 // just strip the qualifiers because they don't matter. 1089 FromType = FromType.getUnqualifiedType(); 1090 } else if (FromType->isArrayType()) { 1091 // Array-to-pointer conversion (C++ 4.2) 1092 SCS.First = ICK_Array_To_Pointer; 1093 1094 // An lvalue or rvalue of type "array of N T" or "array of unknown 1095 // bound of T" can be converted to an rvalue of type "pointer to 1096 // T" (C++ 4.2p1). 1097 FromType = S.Context.getArrayDecayedType(FromType); 1098 1099 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1100 // This conversion is deprecated. (C++ D.4). 1101 SCS.DeprecatedStringLiteralToCharPtr = true; 1102 1103 // For the purpose of ranking in overload resolution 1104 // (13.3.3.1.1), this conversion is considered an 1105 // array-to-pointer conversion followed by a qualification 1106 // conversion (4.4). (C++ 4.2p2) 1107 SCS.Second = ICK_Identity; 1108 SCS.Third = ICK_Qualification; 1109 SCS.setAllToTypes(FromType); 1110 return true; 1111 } 1112 } else if (FromType->isFunctionType() && argIsLValue) { 1113 // Function-to-pointer conversion (C++ 4.3). 1114 SCS.First = ICK_Function_To_Pointer; 1115 1116 // An lvalue of function type T can be converted to an rvalue of 1117 // type "pointer to T." The result is a pointer to the 1118 // function. (C++ 4.3p1). 1119 FromType = S.Context.getPointerType(FromType); 1120 } else { 1121 // We don't require any conversions for the first step. 1122 SCS.First = ICK_Identity; 1123 } 1124 SCS.setToType(0, FromType); 1125 1126 // The second conversion can be an integral promotion, floating 1127 // point promotion, integral conversion, floating point conversion, 1128 // floating-integral conversion, pointer conversion, 1129 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1130 // For overloading in C, this can also be a "compatible-type" 1131 // conversion. 1132 bool IncompatibleObjC = false; 1133 ImplicitConversionKind SecondICK = ICK_Identity; 1134 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1135 // The unqualified versions of the types are the same: there's no 1136 // conversion to do. 1137 SCS.Second = ICK_Identity; 1138 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1139 // Integral promotion (C++ 4.5). 1140 SCS.Second = ICK_Integral_Promotion; 1141 FromType = ToType.getUnqualifiedType(); 1142 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1143 // Floating point promotion (C++ 4.6). 1144 SCS.Second = ICK_Floating_Promotion; 1145 FromType = ToType.getUnqualifiedType(); 1146 } else if (S.IsComplexPromotion(FromType, ToType)) { 1147 // Complex promotion (Clang extension) 1148 SCS.Second = ICK_Complex_Promotion; 1149 FromType = ToType.getUnqualifiedType(); 1150 } else if (ToType->isBooleanType() && 1151 (FromType->isArithmeticType() || 1152 FromType->isAnyPointerType() || 1153 FromType->isBlockPointerType() || 1154 FromType->isMemberPointerType() || 1155 FromType->isNullPtrType())) { 1156 // Boolean conversions (C++ 4.12). 1157 SCS.Second = ICK_Boolean_Conversion; 1158 FromType = S.Context.BoolTy; 1159 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1160 ToType->isIntegralType(S.Context)) { 1161 // Integral conversions (C++ 4.7). 1162 SCS.Second = ICK_Integral_Conversion; 1163 FromType = ToType.getUnqualifiedType(); 1164 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) { 1165 // Complex conversions (C99 6.3.1.6) 1166 SCS.Second = ICK_Complex_Conversion; 1167 FromType = ToType.getUnqualifiedType(); 1168 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1169 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1170 // Complex-real conversions (C99 6.3.1.7) 1171 SCS.Second = ICK_Complex_Real; 1172 FromType = ToType.getUnqualifiedType(); 1173 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1174 // Floating point conversions (C++ 4.8). 1175 SCS.Second = ICK_Floating_Conversion; 1176 FromType = ToType.getUnqualifiedType(); 1177 } else if ((FromType->isRealFloatingType() && 1178 ToType->isIntegralType(S.Context)) || 1179 (FromType->isIntegralOrUnscopedEnumerationType() && 1180 ToType->isRealFloatingType())) { 1181 // Floating-integral conversions (C++ 4.9). 1182 SCS.Second = ICK_Floating_Integral; 1183 FromType = ToType.getUnqualifiedType(); 1184 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1185 SCS.Second = ICK_Block_Pointer_Conversion; 1186 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1187 FromType, IncompatibleObjC)) { 1188 // Pointer conversions (C++ 4.10). 1189 SCS.Second = ICK_Pointer_Conversion; 1190 SCS.IncompatibleObjC = IncompatibleObjC; 1191 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1192 InOverloadResolution, FromType)) { 1193 // Pointer to member conversions (4.11). 1194 SCS.Second = ICK_Pointer_Member; 1195 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { 1196 SCS.Second = SecondICK; 1197 FromType = ToType.getUnqualifiedType(); 1198 } else if (!S.getLangOptions().CPlusPlus && 1199 S.Context.typesAreCompatible(ToType, FromType)) { 1200 // Compatible conversions (Clang extension for C function overloading) 1201 SCS.Second = ICK_Compatible_Conversion; 1202 FromType = ToType.getUnqualifiedType(); 1203 } else if (IsNoReturnConversion(S.Context, FromType, ToType, FromType)) { 1204 // Treat a conversion that strips "noreturn" as an identity conversion. 1205 SCS.Second = ICK_NoReturn_Adjustment; 1206 } else { 1207 // No second conversion required. 1208 SCS.Second = ICK_Identity; 1209 } 1210 SCS.setToType(1, FromType); 1211 1212 QualType CanonFrom; 1213 QualType CanonTo; 1214 // The third conversion can be a qualification conversion (C++ 4p1). 1215 if (S.IsQualificationConversion(FromType, ToType, CStyle)) { 1216 SCS.Third = ICK_Qualification; 1217 FromType = ToType; 1218 CanonFrom = S.Context.getCanonicalType(FromType); 1219 CanonTo = S.Context.getCanonicalType(ToType); 1220 } else { 1221 // No conversion required 1222 SCS.Third = ICK_Identity; 1223 1224 // C++ [over.best.ics]p6: 1225 // [...] Any difference in top-level cv-qualification is 1226 // subsumed by the initialization itself and does not constitute 1227 // a conversion. [...] 1228 CanonFrom = S.Context.getCanonicalType(FromType); 1229 CanonTo = S.Context.getCanonicalType(ToType); 1230 if (CanonFrom.getLocalUnqualifiedType() 1231 == CanonTo.getLocalUnqualifiedType() && 1232 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1233 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) { 1234 FromType = ToType; 1235 CanonFrom = CanonTo; 1236 } 1237 } 1238 SCS.setToType(2, FromType); 1239 1240 // If we have not converted the argument type to the parameter type, 1241 // this is a bad conversion sequence. 1242 if (CanonFrom != CanonTo) 1243 return false; 1244 1245 return true; 1246} 1247 1248/// IsIntegralPromotion - Determines whether the conversion from the 1249/// expression From (whose potentially-adjusted type is FromType) to 1250/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1251/// sets PromotedType to the promoted type. 1252bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1253 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1254 // All integers are built-in. 1255 if (!To) { 1256 return false; 1257 } 1258 1259 // An rvalue of type char, signed char, unsigned char, short int, or 1260 // unsigned short int can be converted to an rvalue of type int if 1261 // int can represent all the values of the source type; otherwise, 1262 // the source rvalue can be converted to an rvalue of type unsigned 1263 // int (C++ 4.5p1). 1264 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1265 !FromType->isEnumeralType()) { 1266 if (// We can promote any signed, promotable integer type to an int 1267 (FromType->isSignedIntegerType() || 1268 // We can promote any unsigned integer type whose size is 1269 // less than int to an int. 1270 (!FromType->isSignedIntegerType() && 1271 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1272 return To->getKind() == BuiltinType::Int; 1273 } 1274 1275 return To->getKind() == BuiltinType::UInt; 1276 } 1277 1278 // C++0x [conv.prom]p3: 1279 // A prvalue of an unscoped enumeration type whose underlying type is not 1280 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 1281 // following types that can represent all the values of the enumeration 1282 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 1283 // unsigned int, long int, unsigned long int, long long int, or unsigned 1284 // long long int. If none of the types in that list can represent all the 1285 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 1286 // type can be converted to an rvalue a prvalue of the extended integer type 1287 // with lowest integer conversion rank (4.13) greater than the rank of long 1288 // long in which all the values of the enumeration can be represented. If 1289 // there are two such extended types, the signed one is chosen. 1290 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1291 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1292 // provided for a scoped enumeration. 1293 if (FromEnumType->getDecl()->isScoped()) 1294 return false; 1295 1296 // We have already pre-calculated the promotion type, so this is trivial. 1297 if (ToType->isIntegerType() && 1298 !RequireCompleteType(From->getLocStart(), FromType, PDiag())) 1299 return Context.hasSameUnqualifiedType(ToType, 1300 FromEnumType->getDecl()->getPromotionType()); 1301 } 1302 1303 // C++0x [conv.prom]p2: 1304 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 1305 // to an rvalue a prvalue of the first of the following types that can 1306 // represent all the values of its underlying type: int, unsigned int, 1307 // long int, unsigned long int, long long int, or unsigned long long int. 1308 // If none of the types in that list can represent all the values of its 1309 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 1310 // or wchar_t can be converted to an rvalue a prvalue of its underlying 1311 // type. 1312 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 1313 ToType->isIntegerType()) { 1314 // Determine whether the type we're converting from is signed or 1315 // unsigned. 1316 bool FromIsSigned; 1317 uint64_t FromSize = Context.getTypeSize(FromType); 1318 1319 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 1320 FromIsSigned = true; 1321 1322 // The types we'll try to promote to, in the appropriate 1323 // order. Try each of these types. 1324 QualType PromoteTypes[6] = { 1325 Context.IntTy, Context.UnsignedIntTy, 1326 Context.LongTy, Context.UnsignedLongTy , 1327 Context.LongLongTy, Context.UnsignedLongLongTy 1328 }; 1329 for (int Idx = 0; Idx < 6; ++Idx) { 1330 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1331 if (FromSize < ToSize || 1332 (FromSize == ToSize && 1333 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1334 // We found the type that we can promote to. If this is the 1335 // type we wanted, we have a promotion. Otherwise, no 1336 // promotion. 1337 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1338 } 1339 } 1340 } 1341 1342 // An rvalue for an integral bit-field (9.6) can be converted to an 1343 // rvalue of type int if int can represent all the values of the 1344 // bit-field; otherwise, it can be converted to unsigned int if 1345 // unsigned int can represent all the values of the bit-field. If 1346 // the bit-field is larger yet, no integral promotion applies to 1347 // it. If the bit-field has an enumerated type, it is treated as any 1348 // other value of that type for promotion purposes (C++ 4.5p3). 1349 // FIXME: We should delay checking of bit-fields until we actually perform the 1350 // conversion. 1351 using llvm::APSInt; 1352 if (From) 1353 if (FieldDecl *MemberDecl = From->getBitField()) { 1354 APSInt BitWidth; 1355 if (FromType->isIntegralType(Context) && 1356 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1357 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1358 ToSize = Context.getTypeSize(ToType); 1359 1360 // Are we promoting to an int from a bitfield that fits in an int? 1361 if (BitWidth < ToSize || 1362 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1363 return To->getKind() == BuiltinType::Int; 1364 } 1365 1366 // Are we promoting to an unsigned int from an unsigned bitfield 1367 // that fits into an unsigned int? 1368 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1369 return To->getKind() == BuiltinType::UInt; 1370 } 1371 1372 return false; 1373 } 1374 } 1375 1376 // An rvalue of type bool can be converted to an rvalue of type int, 1377 // with false becoming zero and true becoming one (C++ 4.5p4). 1378 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1379 return true; 1380 } 1381 1382 return false; 1383} 1384 1385/// IsFloatingPointPromotion - Determines whether the conversion from 1386/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1387/// returns true and sets PromotedType to the promoted type. 1388bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1389 /// An rvalue of type float can be converted to an rvalue of type 1390 /// double. (C++ 4.6p1). 1391 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1392 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1393 if (FromBuiltin->getKind() == BuiltinType::Float && 1394 ToBuiltin->getKind() == BuiltinType::Double) 1395 return true; 1396 1397 // C99 6.3.1.5p1: 1398 // When a float is promoted to double or long double, or a 1399 // double is promoted to long double [...]. 1400 if (!getLangOptions().CPlusPlus && 1401 (FromBuiltin->getKind() == BuiltinType::Float || 1402 FromBuiltin->getKind() == BuiltinType::Double) && 1403 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1404 return true; 1405 } 1406 1407 return false; 1408} 1409 1410/// \brief Determine if a conversion is a complex promotion. 1411/// 1412/// A complex promotion is defined as a complex -> complex conversion 1413/// where the conversion between the underlying real types is a 1414/// floating-point or integral promotion. 1415bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1416 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1417 if (!FromComplex) 1418 return false; 1419 1420 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1421 if (!ToComplex) 1422 return false; 1423 1424 return IsFloatingPointPromotion(FromComplex->getElementType(), 1425 ToComplex->getElementType()) || 1426 IsIntegralPromotion(0, FromComplex->getElementType(), 1427 ToComplex->getElementType()); 1428} 1429 1430/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1431/// the pointer type FromPtr to a pointer to type ToPointee, with the 1432/// same type qualifiers as FromPtr has on its pointee type. ToType, 1433/// if non-empty, will be a pointer to ToType that may or may not have 1434/// the right set of qualifiers on its pointee. 1435static QualType 1436BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 1437 QualType ToPointee, QualType ToType, 1438 ASTContext &Context) { 1439 assert((FromPtr->getTypeClass() == Type::Pointer || 1440 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 1441 "Invalid similarly-qualified pointer type"); 1442 1443 /// \brief Conversions to 'id' subsume cv-qualifier conversions. 1444 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 1445 return ToType.getUnqualifiedType(); 1446 1447 QualType CanonFromPointee 1448 = Context.getCanonicalType(FromPtr->getPointeeType()); 1449 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1450 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1451 1452 // Exact qualifier match -> return the pointer type we're converting to. 1453 if (CanonToPointee.getLocalQualifiers() == Quals) { 1454 // ToType is exactly what we need. Return it. 1455 if (!ToType.isNull()) 1456 return ToType.getUnqualifiedType(); 1457 1458 // Build a pointer to ToPointee. It has the right qualifiers 1459 // already. 1460 if (isa<ObjCObjectPointerType>(ToType)) 1461 return Context.getObjCObjectPointerType(ToPointee); 1462 return Context.getPointerType(ToPointee); 1463 } 1464 1465 // Just build a canonical type that has the right qualifiers. 1466 QualType QualifiedCanonToPointee 1467 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 1468 1469 if (isa<ObjCObjectPointerType>(ToType)) 1470 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 1471 return Context.getPointerType(QualifiedCanonToPointee); 1472} 1473 1474static bool isNullPointerConstantForConversion(Expr *Expr, 1475 bool InOverloadResolution, 1476 ASTContext &Context) { 1477 // Handle value-dependent integral null pointer constants correctly. 1478 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1479 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1480 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1481 return !InOverloadResolution; 1482 1483 return Expr->isNullPointerConstant(Context, 1484 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1485 : Expr::NPC_ValueDependentIsNull); 1486} 1487 1488/// IsPointerConversion - Determines whether the conversion of the 1489/// expression From, which has the (possibly adjusted) type FromType, 1490/// can be converted to the type ToType via a pointer conversion (C++ 1491/// 4.10). If so, returns true and places the converted type (that 1492/// might differ from ToType in its cv-qualifiers at some level) into 1493/// ConvertedType. 1494/// 1495/// This routine also supports conversions to and from block pointers 1496/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1497/// pointers to interfaces. FIXME: Once we've determined the 1498/// appropriate overloading rules for Objective-C, we may want to 1499/// split the Objective-C checks into a different routine; however, 1500/// GCC seems to consider all of these conversions to be pointer 1501/// conversions, so for now they live here. IncompatibleObjC will be 1502/// set if the conversion is an allowed Objective-C conversion that 1503/// should result in a warning. 1504bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1505 bool InOverloadResolution, 1506 QualType& ConvertedType, 1507 bool &IncompatibleObjC) { 1508 IncompatibleObjC = false; 1509 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 1510 IncompatibleObjC)) 1511 return true; 1512 1513 // Conversion from a null pointer constant to any Objective-C pointer type. 1514 if (ToType->isObjCObjectPointerType() && 1515 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1516 ConvertedType = ToType; 1517 return true; 1518 } 1519 1520 // Blocks: Block pointers can be converted to void*. 1521 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1522 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1523 ConvertedType = ToType; 1524 return true; 1525 } 1526 // Blocks: A null pointer constant can be converted to a block 1527 // pointer type. 1528 if (ToType->isBlockPointerType() && 1529 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1530 ConvertedType = ToType; 1531 return true; 1532 } 1533 1534 // If the left-hand-side is nullptr_t, the right side can be a null 1535 // pointer constant. 1536 if (ToType->isNullPtrType() && 1537 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1538 ConvertedType = ToType; 1539 return true; 1540 } 1541 1542 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1543 if (!ToTypePtr) 1544 return false; 1545 1546 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1547 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1548 ConvertedType = ToType; 1549 return true; 1550 } 1551 1552 // Beyond this point, both types need to be pointers 1553 // , including objective-c pointers. 1554 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1555 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1556 ConvertedType = BuildSimilarlyQualifiedPointerType( 1557 FromType->getAs<ObjCObjectPointerType>(), 1558 ToPointeeType, 1559 ToType, Context); 1560 return true; 1561 } 1562 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1563 if (!FromTypePtr) 1564 return false; 1565 1566 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1567 1568 // If the unqualified pointee types are the same, this can't be a 1569 // pointer conversion, so don't do all of the work below. 1570 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 1571 return false; 1572 1573 // An rvalue of type "pointer to cv T," where T is an object type, 1574 // can be converted to an rvalue of type "pointer to cv void" (C++ 1575 // 4.10p2). 1576 if (FromPointeeType->isIncompleteOrObjectType() && 1577 ToPointeeType->isVoidType()) { 1578 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1579 ToPointeeType, 1580 ToType, Context); 1581 return true; 1582 } 1583 1584 // When we're overloading in C, we allow a special kind of pointer 1585 // conversion for compatible-but-not-identical pointee types. 1586 if (!getLangOptions().CPlusPlus && 1587 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1588 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1589 ToPointeeType, 1590 ToType, Context); 1591 return true; 1592 } 1593 1594 // C++ [conv.ptr]p3: 1595 // 1596 // An rvalue of type "pointer to cv D," where D is a class type, 1597 // can be converted to an rvalue of type "pointer to cv B," where 1598 // B is a base class (clause 10) of D. If B is an inaccessible 1599 // (clause 11) or ambiguous (10.2) base class of D, a program that 1600 // necessitates this conversion is ill-formed. The result of the 1601 // conversion is a pointer to the base class sub-object of the 1602 // derived class object. The null pointer value is converted to 1603 // the null pointer value of the destination type. 1604 // 1605 // Note that we do not check for ambiguity or inaccessibility 1606 // here. That is handled by CheckPointerConversion. 1607 if (getLangOptions().CPlusPlus && 1608 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1609 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1610 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1611 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1612 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1613 ToPointeeType, 1614 ToType, Context); 1615 return true; 1616 } 1617 1618 return false; 1619} 1620 1621/// isObjCPointerConversion - Determines whether this is an 1622/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1623/// with the same arguments and return values. 1624bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1625 QualType& ConvertedType, 1626 bool &IncompatibleObjC) { 1627 if (!getLangOptions().ObjC1) 1628 return false; 1629 1630 // First, we handle all conversions on ObjC object pointer types. 1631 const ObjCObjectPointerType* ToObjCPtr = 1632 ToType->getAs<ObjCObjectPointerType>(); 1633 const ObjCObjectPointerType *FromObjCPtr = 1634 FromType->getAs<ObjCObjectPointerType>(); 1635 1636 if (ToObjCPtr && FromObjCPtr) { 1637 // If the pointee types are the same (ignoring qualifications), 1638 // then this is not a pointer conversion. 1639 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 1640 FromObjCPtr->getPointeeType())) 1641 return false; 1642 1643 // Objective C++: We're able to convert between "id" or "Class" and a 1644 // pointer to any interface (in both directions). 1645 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1646 ConvertedType = ToType; 1647 return true; 1648 } 1649 // Conversions with Objective-C's id<...>. 1650 if ((FromObjCPtr->isObjCQualifiedIdType() || 1651 ToObjCPtr->isObjCQualifiedIdType()) && 1652 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1653 /*compare=*/false)) { 1654 ConvertedType = ToType; 1655 return true; 1656 } 1657 // Objective C++: We're able to convert from a pointer to an 1658 // interface to a pointer to a different interface. 1659 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1660 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1661 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1662 if (getLangOptions().CPlusPlus && LHS && RHS && 1663 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1664 FromObjCPtr->getPointeeType())) 1665 return false; 1666 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1667 ToObjCPtr->getPointeeType(), 1668 ToType, Context); 1669 return true; 1670 } 1671 1672 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1673 // Okay: this is some kind of implicit downcast of Objective-C 1674 // interfaces, which is permitted. However, we're going to 1675 // complain about it. 1676 IncompatibleObjC = true; 1677 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1678 ToObjCPtr->getPointeeType(), 1679 ToType, Context); 1680 return true; 1681 } 1682 } 1683 // Beyond this point, both types need to be C pointers or block pointers. 1684 QualType ToPointeeType; 1685 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1686 ToPointeeType = ToCPtr->getPointeeType(); 1687 else if (const BlockPointerType *ToBlockPtr = 1688 ToType->getAs<BlockPointerType>()) { 1689 // Objective C++: We're able to convert from a pointer to any object 1690 // to a block pointer type. 1691 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1692 ConvertedType = ToType; 1693 return true; 1694 } 1695 ToPointeeType = ToBlockPtr->getPointeeType(); 1696 } 1697 else if (FromType->getAs<BlockPointerType>() && 1698 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1699 // Objective C++: We're able to convert from a block pointer type to a 1700 // pointer to any object. 1701 ConvertedType = ToType; 1702 return true; 1703 } 1704 else 1705 return false; 1706 1707 QualType FromPointeeType; 1708 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1709 FromPointeeType = FromCPtr->getPointeeType(); 1710 else if (const BlockPointerType *FromBlockPtr = 1711 FromType->getAs<BlockPointerType>()) 1712 FromPointeeType = FromBlockPtr->getPointeeType(); 1713 else 1714 return false; 1715 1716 // If we have pointers to pointers, recursively check whether this 1717 // is an Objective-C conversion. 1718 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1719 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1720 IncompatibleObjC)) { 1721 // We always complain about this conversion. 1722 IncompatibleObjC = true; 1723 ConvertedType = Context.getPointerType(ConvertedType); 1724 return true; 1725 } 1726 // Allow conversion of pointee being objective-c pointer to another one; 1727 // as in I* to id. 1728 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1729 ToPointeeType->getAs<ObjCObjectPointerType>() && 1730 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1731 IncompatibleObjC)) { 1732 ConvertedType = Context.getPointerType(ConvertedType); 1733 return true; 1734 } 1735 1736 // If we have pointers to functions or blocks, check whether the only 1737 // differences in the argument and result types are in Objective-C 1738 // pointer conversions. If so, we permit the conversion (but 1739 // complain about it). 1740 const FunctionProtoType *FromFunctionType 1741 = FromPointeeType->getAs<FunctionProtoType>(); 1742 const FunctionProtoType *ToFunctionType 1743 = ToPointeeType->getAs<FunctionProtoType>(); 1744 if (FromFunctionType && ToFunctionType) { 1745 // If the function types are exactly the same, this isn't an 1746 // Objective-C pointer conversion. 1747 if (Context.getCanonicalType(FromPointeeType) 1748 == Context.getCanonicalType(ToPointeeType)) 1749 return false; 1750 1751 // Perform the quick checks that will tell us whether these 1752 // function types are obviously different. 1753 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1754 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1755 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1756 return false; 1757 1758 bool HasObjCConversion = false; 1759 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1760 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1761 // Okay, the types match exactly. Nothing to do. 1762 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1763 ToFunctionType->getResultType(), 1764 ConvertedType, IncompatibleObjC)) { 1765 // Okay, we have an Objective-C pointer conversion. 1766 HasObjCConversion = true; 1767 } else { 1768 // Function types are too different. Abort. 1769 return false; 1770 } 1771 1772 // Check argument types. 1773 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1774 ArgIdx != NumArgs; ++ArgIdx) { 1775 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1776 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1777 if (Context.getCanonicalType(FromArgType) 1778 == Context.getCanonicalType(ToArgType)) { 1779 // Okay, the types match exactly. Nothing to do. 1780 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1781 ConvertedType, IncompatibleObjC)) { 1782 // Okay, we have an Objective-C pointer conversion. 1783 HasObjCConversion = true; 1784 } else { 1785 // Argument types are too different. Abort. 1786 return false; 1787 } 1788 } 1789 1790 if (HasObjCConversion) { 1791 // We had an Objective-C conversion. Allow this pointer 1792 // conversion, but complain about it. 1793 ConvertedType = ToType; 1794 IncompatibleObjC = true; 1795 return true; 1796 } 1797 } 1798 1799 return false; 1800} 1801 1802bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 1803 QualType& ConvertedType) { 1804 QualType ToPointeeType; 1805 if (const BlockPointerType *ToBlockPtr = 1806 ToType->getAs<BlockPointerType>()) 1807 ToPointeeType = ToBlockPtr->getPointeeType(); 1808 else 1809 return false; 1810 1811 QualType FromPointeeType; 1812 if (const BlockPointerType *FromBlockPtr = 1813 FromType->getAs<BlockPointerType>()) 1814 FromPointeeType = FromBlockPtr->getPointeeType(); 1815 else 1816 return false; 1817 // We have pointer to blocks, check whether the only 1818 // differences in the argument and result types are in Objective-C 1819 // pointer conversions. If so, we permit the conversion. 1820 1821 const FunctionProtoType *FromFunctionType 1822 = FromPointeeType->getAs<FunctionProtoType>(); 1823 const FunctionProtoType *ToFunctionType 1824 = ToPointeeType->getAs<FunctionProtoType>(); 1825 1826 if (!FromFunctionType || !ToFunctionType) 1827 return false; 1828 1829 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 1830 return true; 1831 1832 // Perform the quick checks that will tell us whether these 1833 // function types are obviously different. 1834 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1835 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 1836 return false; 1837 1838 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 1839 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 1840 if (FromEInfo != ToEInfo) 1841 return false; 1842 1843 bool IncompatibleObjC = false; 1844 if (Context.hasSameType(FromFunctionType->getResultType(), 1845 ToFunctionType->getResultType())) { 1846 // Okay, the types match exactly. Nothing to do. 1847 } else { 1848 QualType RHS = FromFunctionType->getResultType(); 1849 QualType LHS = ToFunctionType->getResultType(); 1850 if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) && 1851 !RHS.hasQualifiers() && LHS.hasQualifiers()) 1852 LHS = LHS.getUnqualifiedType(); 1853 1854 if (Context.hasSameType(RHS,LHS)) { 1855 // OK exact match. 1856 } else if (isObjCPointerConversion(RHS, LHS, 1857 ConvertedType, IncompatibleObjC)) { 1858 if (IncompatibleObjC) 1859 return false; 1860 // Okay, we have an Objective-C pointer conversion. 1861 } 1862 else 1863 return false; 1864 } 1865 1866 // Check argument types. 1867 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1868 ArgIdx != NumArgs; ++ArgIdx) { 1869 IncompatibleObjC = false; 1870 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1871 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1872 if (Context.hasSameType(FromArgType, ToArgType)) { 1873 // Okay, the types match exactly. Nothing to do. 1874 } else if (isObjCPointerConversion(ToArgType, FromArgType, 1875 ConvertedType, IncompatibleObjC)) { 1876 if (IncompatibleObjC) 1877 return false; 1878 // Okay, we have an Objective-C pointer conversion. 1879 } else 1880 // Argument types are too different. Abort. 1881 return false; 1882 } 1883 ConvertedType = ToType; 1884 return true; 1885} 1886 1887/// FunctionArgTypesAreEqual - This routine checks two function proto types 1888/// for equlity of their argument types. Caller has already checked that 1889/// they have same number of arguments. This routine assumes that Objective-C 1890/// pointer types which only differ in their protocol qualifiers are equal. 1891bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType, 1892 const FunctionProtoType *NewType) { 1893 if (!getLangOptions().ObjC1) 1894 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 1895 NewType->arg_type_begin()); 1896 1897 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 1898 N = NewType->arg_type_begin(), 1899 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 1900 QualType ToType = (*O); 1901 QualType FromType = (*N); 1902 if (ToType != FromType) { 1903 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 1904 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 1905 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 1906 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 1907 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 1908 PTFr->getPointeeType()->isObjCQualifiedClassType())) 1909 continue; 1910 } 1911 else if (const ObjCObjectPointerType *PTTo = 1912 ToType->getAs<ObjCObjectPointerType>()) { 1913 if (const ObjCObjectPointerType *PTFr = 1914 FromType->getAs<ObjCObjectPointerType>()) 1915 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 1916 continue; 1917 } 1918 return false; 1919 } 1920 } 1921 return true; 1922} 1923 1924/// CheckPointerConversion - Check the pointer conversion from the 1925/// expression From to the type ToType. This routine checks for 1926/// ambiguous or inaccessible derived-to-base pointer 1927/// conversions for which IsPointerConversion has already returned 1928/// true. It returns true and produces a diagnostic if there was an 1929/// error, or returns false otherwise. 1930bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1931 CastKind &Kind, 1932 CXXCastPath& BasePath, 1933 bool IgnoreBaseAccess) { 1934 QualType FromType = From->getType(); 1935 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 1936 1937 Kind = CK_BitCast; 1938 1939 if (CXXBoolLiteralExpr* LitBool 1940 = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens())) 1941 if (!IsCStyleOrFunctionalCast && LitBool->getValue() == false) 1942 Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false) 1943 << ToType; 1944 1945 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1946 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1947 QualType FromPointeeType = FromPtrType->getPointeeType(), 1948 ToPointeeType = ToPtrType->getPointeeType(); 1949 1950 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1951 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 1952 // We must have a derived-to-base conversion. Check an 1953 // ambiguous or inaccessible conversion. 1954 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1955 From->getExprLoc(), 1956 From->getSourceRange(), &BasePath, 1957 IgnoreBaseAccess)) 1958 return true; 1959 1960 // The conversion was successful. 1961 Kind = CK_DerivedToBase; 1962 } 1963 } 1964 if (const ObjCObjectPointerType *FromPtrType = 1965 FromType->getAs<ObjCObjectPointerType>()) { 1966 if (const ObjCObjectPointerType *ToPtrType = 1967 ToType->getAs<ObjCObjectPointerType>()) { 1968 // Objective-C++ conversions are always okay. 1969 // FIXME: We should have a different class of conversions for the 1970 // Objective-C++ implicit conversions. 1971 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1972 return false; 1973 } 1974 } 1975 1976 // We shouldn't fall into this case unless it's valid for other 1977 // reasons. 1978 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 1979 Kind = CK_NullToPointer; 1980 1981 return false; 1982} 1983 1984/// IsMemberPointerConversion - Determines whether the conversion of the 1985/// expression From, which has the (possibly adjusted) type FromType, can be 1986/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1987/// If so, returns true and places the converted type (that might differ from 1988/// ToType in its cv-qualifiers at some level) into ConvertedType. 1989bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1990 QualType ToType, 1991 bool InOverloadResolution, 1992 QualType &ConvertedType) { 1993 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1994 if (!ToTypePtr) 1995 return false; 1996 1997 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1998 if (From->isNullPointerConstant(Context, 1999 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2000 : Expr::NPC_ValueDependentIsNull)) { 2001 ConvertedType = ToType; 2002 return true; 2003 } 2004 2005 // Otherwise, both types have to be member pointers. 2006 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 2007 if (!FromTypePtr) 2008 return false; 2009 2010 // A pointer to member of B can be converted to a pointer to member of D, 2011 // where D is derived from B (C++ 4.11p2). 2012 QualType FromClass(FromTypePtr->getClass(), 0); 2013 QualType ToClass(ToTypePtr->getClass(), 0); 2014 2015 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 2016 !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) && 2017 IsDerivedFrom(ToClass, FromClass)) { 2018 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 2019 ToClass.getTypePtr()); 2020 return true; 2021 } 2022 2023 return false; 2024} 2025 2026/// CheckMemberPointerConversion - Check the member pointer conversion from the 2027/// expression From to the type ToType. This routine checks for ambiguous or 2028/// virtual or inaccessible base-to-derived member pointer conversions 2029/// for which IsMemberPointerConversion has already returned true. It returns 2030/// true and produces a diagnostic if there was an error, or returns false 2031/// otherwise. 2032bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 2033 CastKind &Kind, 2034 CXXCastPath &BasePath, 2035 bool IgnoreBaseAccess) { 2036 QualType FromType = From->getType(); 2037 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 2038 if (!FromPtrType) { 2039 // This must be a null pointer to member pointer conversion 2040 assert(From->isNullPointerConstant(Context, 2041 Expr::NPC_ValueDependentIsNull) && 2042 "Expr must be null pointer constant!"); 2043 Kind = CK_NullToMemberPointer; 2044 return false; 2045 } 2046 2047 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 2048 assert(ToPtrType && "No member pointer cast has a target type " 2049 "that is not a member pointer."); 2050 2051 QualType FromClass = QualType(FromPtrType->getClass(), 0); 2052 QualType ToClass = QualType(ToPtrType->getClass(), 0); 2053 2054 // FIXME: What about dependent types? 2055 assert(FromClass->isRecordType() && "Pointer into non-class."); 2056 assert(ToClass->isRecordType() && "Pointer into non-class."); 2057 2058 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2059 /*DetectVirtual=*/true); 2060 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 2061 assert(DerivationOkay && 2062 "Should not have been called if derivation isn't OK."); 2063 (void)DerivationOkay; 2064 2065 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 2066 getUnqualifiedType())) { 2067 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2068 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 2069 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 2070 return true; 2071 } 2072 2073 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 2074 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 2075 << FromClass << ToClass << QualType(VBase, 0) 2076 << From->getSourceRange(); 2077 return true; 2078 } 2079 2080 if (!IgnoreBaseAccess) 2081 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 2082 Paths.front(), 2083 diag::err_downcast_from_inaccessible_base); 2084 2085 // Must be a base to derived member conversion. 2086 BuildBasePathArray(Paths, BasePath); 2087 Kind = CK_BaseToDerivedMemberPointer; 2088 return false; 2089} 2090 2091/// IsQualificationConversion - Determines whether the conversion from 2092/// an rvalue of type FromType to ToType is a qualification conversion 2093/// (C++ 4.4). 2094bool 2095Sema::IsQualificationConversion(QualType FromType, QualType ToType, 2096 bool CStyle) { 2097 FromType = Context.getCanonicalType(FromType); 2098 ToType = Context.getCanonicalType(ToType); 2099 2100 // If FromType and ToType are the same type, this is not a 2101 // qualification conversion. 2102 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 2103 return false; 2104 2105 // (C++ 4.4p4): 2106 // A conversion can add cv-qualifiers at levels other than the first 2107 // in multi-level pointers, subject to the following rules: [...] 2108 bool PreviousToQualsIncludeConst = true; 2109 bool UnwrappedAnyPointer = false; 2110 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 2111 // Within each iteration of the loop, we check the qualifiers to 2112 // determine if this still looks like a qualification 2113 // conversion. Then, if all is well, we unwrap one more level of 2114 // pointers or pointers-to-members and do it all again 2115 // until there are no more pointers or pointers-to-members left to 2116 // unwrap. 2117 UnwrappedAnyPointer = true; 2118 2119 // -- for every j > 0, if const is in cv 1,j then const is in cv 2120 // 2,j, and similarly for volatile. 2121 if (!CStyle && !ToType.isAtLeastAsQualifiedAs(FromType)) 2122 return false; 2123 2124 // -- if the cv 1,j and cv 2,j are different, then const is in 2125 // every cv for 0 < k < j. 2126 if (!CStyle && FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 2127 && !PreviousToQualsIncludeConst) 2128 return false; 2129 2130 // Keep track of whether all prior cv-qualifiers in the "to" type 2131 // include const. 2132 PreviousToQualsIncludeConst 2133 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 2134 } 2135 2136 // We are left with FromType and ToType being the pointee types 2137 // after unwrapping the original FromType and ToType the same number 2138 // of types. If we unwrapped any pointers, and if FromType and 2139 // ToType have the same unqualified type (since we checked 2140 // qualifiers above), then this is a qualification conversion. 2141 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 2142} 2143 2144/// Determines whether there is a user-defined conversion sequence 2145/// (C++ [over.ics.user]) that converts expression From to the type 2146/// ToType. If such a conversion exists, User will contain the 2147/// user-defined conversion sequence that performs such a conversion 2148/// and this routine will return true. Otherwise, this routine returns 2149/// false and User is unspecified. 2150/// 2151/// \param AllowExplicit true if the conversion should consider C++0x 2152/// "explicit" conversion functions as well as non-explicit conversion 2153/// functions (C++0x [class.conv.fct]p2). 2154static OverloadingResult 2155IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 2156 UserDefinedConversionSequence& User, 2157 OverloadCandidateSet& CandidateSet, 2158 bool AllowExplicit) { 2159 // Whether we will only visit constructors. 2160 bool ConstructorsOnly = false; 2161 2162 // If the type we are conversion to is a class type, enumerate its 2163 // constructors. 2164 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 2165 // C++ [over.match.ctor]p1: 2166 // When objects of class type are direct-initialized (8.5), or 2167 // copy-initialized from an expression of the same or a 2168 // derived class type (8.5), overload resolution selects the 2169 // constructor. [...] For copy-initialization, the candidate 2170 // functions are all the converting constructors (12.3.1) of 2171 // that class. The argument list is the expression-list within 2172 // the parentheses of the initializer. 2173 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 2174 (From->getType()->getAs<RecordType>() && 2175 S.IsDerivedFrom(From->getType(), ToType))) 2176 ConstructorsOnly = true; 2177 2178 if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) { 2179 // We're not going to find any constructors. 2180 } else if (CXXRecordDecl *ToRecordDecl 2181 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 2182 DeclContext::lookup_iterator Con, ConEnd; 2183 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); 2184 Con != ConEnd; ++Con) { 2185 NamedDecl *D = *Con; 2186 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2187 2188 // Find the constructor (which may be a template). 2189 CXXConstructorDecl *Constructor = 0; 2190 FunctionTemplateDecl *ConstructorTmpl 2191 = dyn_cast<FunctionTemplateDecl>(D); 2192 if (ConstructorTmpl) 2193 Constructor 2194 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 2195 else 2196 Constructor = cast<CXXConstructorDecl>(D); 2197 2198 if (!Constructor->isInvalidDecl() && 2199 Constructor->isConvertingConstructor(AllowExplicit)) { 2200 if (ConstructorTmpl) 2201 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2202 /*ExplicitArgs*/ 0, 2203 &From, 1, CandidateSet, 2204 /*SuppressUserConversions=*/ 2205 !ConstructorsOnly); 2206 else 2207 // Allow one user-defined conversion when user specifies a 2208 // From->ToType conversion via an static cast (c-style, etc). 2209 S.AddOverloadCandidate(Constructor, FoundDecl, 2210 &From, 1, CandidateSet, 2211 /*SuppressUserConversions=*/ 2212 !ConstructorsOnly); 2213 } 2214 } 2215 } 2216 } 2217 2218 // Enumerate conversion functions, if we're allowed to. 2219 if (ConstructorsOnly) { 2220 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 2221 S.PDiag(0) << From->getSourceRange())) { 2222 // No conversion functions from incomplete types. 2223 } else if (const RecordType *FromRecordType 2224 = From->getType()->getAs<RecordType>()) { 2225 if (CXXRecordDecl *FromRecordDecl 2226 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 2227 // Add all of the conversion functions as candidates. 2228 const UnresolvedSetImpl *Conversions 2229 = FromRecordDecl->getVisibleConversionFunctions(); 2230 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2231 E = Conversions->end(); I != E; ++I) { 2232 DeclAccessPair FoundDecl = I.getPair(); 2233 NamedDecl *D = FoundDecl.getDecl(); 2234 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 2235 if (isa<UsingShadowDecl>(D)) 2236 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2237 2238 CXXConversionDecl *Conv; 2239 FunctionTemplateDecl *ConvTemplate; 2240 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 2241 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2242 else 2243 Conv = cast<CXXConversionDecl>(D); 2244 2245 if (AllowExplicit || !Conv->isExplicit()) { 2246 if (ConvTemplate) 2247 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 2248 ActingContext, From, ToType, 2249 CandidateSet); 2250 else 2251 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 2252 From, ToType, CandidateSet); 2253 } 2254 } 2255 } 2256 } 2257 2258 OverloadCandidateSet::iterator Best; 2259 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2260 case OR_Success: 2261 // Record the standard conversion we used and the conversion function. 2262 if (CXXConstructorDecl *Constructor 2263 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 2264 S.MarkDeclarationReferenced(From->getLocStart(), Constructor); 2265 2266 // C++ [over.ics.user]p1: 2267 // If the user-defined conversion is specified by a 2268 // constructor (12.3.1), the initial standard conversion 2269 // sequence converts the source type to the type required by 2270 // the argument of the constructor. 2271 // 2272 QualType ThisType = Constructor->getThisType(S.Context); 2273 if (Best->Conversions[0].isEllipsis()) 2274 User.EllipsisConversion = true; 2275 else { 2276 User.Before = Best->Conversions[0].Standard; 2277 User.EllipsisConversion = false; 2278 } 2279 User.ConversionFunction = Constructor; 2280 User.FoundConversionFunction = Best->FoundDecl.getDecl(); 2281 User.After.setAsIdentityConversion(); 2282 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2283 User.After.setAllToTypes(ToType); 2284 return OR_Success; 2285 } else if (CXXConversionDecl *Conversion 2286 = dyn_cast<CXXConversionDecl>(Best->Function)) { 2287 S.MarkDeclarationReferenced(From->getLocStart(), Conversion); 2288 2289 // C++ [over.ics.user]p1: 2290 // 2291 // [...] If the user-defined conversion is specified by a 2292 // conversion function (12.3.2), the initial standard 2293 // conversion sequence converts the source type to the 2294 // implicit object parameter of the conversion function. 2295 User.Before = Best->Conversions[0].Standard; 2296 User.ConversionFunction = Conversion; 2297 User.FoundConversionFunction = Best->FoundDecl.getDecl(); 2298 User.EllipsisConversion = false; 2299 2300 // C++ [over.ics.user]p2: 2301 // The second standard conversion sequence converts the 2302 // result of the user-defined conversion to the target type 2303 // for the sequence. Since an implicit conversion sequence 2304 // is an initialization, the special rules for 2305 // initialization by user-defined conversion apply when 2306 // selecting the best user-defined conversion for a 2307 // user-defined conversion sequence (see 13.3.3 and 2308 // 13.3.3.1). 2309 User.After = Best->FinalConversion; 2310 return OR_Success; 2311 } else { 2312 llvm_unreachable("Not a constructor or conversion function?"); 2313 return OR_No_Viable_Function; 2314 } 2315 2316 case OR_No_Viable_Function: 2317 return OR_No_Viable_Function; 2318 case OR_Deleted: 2319 // No conversion here! We're done. 2320 return OR_Deleted; 2321 2322 case OR_Ambiguous: 2323 return OR_Ambiguous; 2324 } 2325 2326 return OR_No_Viable_Function; 2327} 2328 2329bool 2330Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2331 ImplicitConversionSequence ICS; 2332 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2333 OverloadingResult OvResult = 2334 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 2335 CandidateSet, false); 2336 if (OvResult == OR_Ambiguous) 2337 Diag(From->getSourceRange().getBegin(), 2338 diag::err_typecheck_ambiguous_condition) 2339 << From->getType() << ToType << From->getSourceRange(); 2340 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2341 Diag(From->getSourceRange().getBegin(), 2342 diag::err_typecheck_nonviable_condition) 2343 << From->getType() << ToType << From->getSourceRange(); 2344 else 2345 return false; 2346 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); 2347 return true; 2348} 2349 2350/// CompareImplicitConversionSequences - Compare two implicit 2351/// conversion sequences to determine whether one is better than the 2352/// other or if they are indistinguishable (C++ 13.3.3.2). 2353static ImplicitConversionSequence::CompareKind 2354CompareImplicitConversionSequences(Sema &S, 2355 const ImplicitConversionSequence& ICS1, 2356 const ImplicitConversionSequence& ICS2) 2357{ 2358 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2359 // conversion sequences (as defined in 13.3.3.1) 2360 // -- a standard conversion sequence (13.3.3.1.1) is a better 2361 // conversion sequence than a user-defined conversion sequence or 2362 // an ellipsis conversion sequence, and 2363 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2364 // conversion sequence than an ellipsis conversion sequence 2365 // (13.3.3.1.3). 2366 // 2367 // C++0x [over.best.ics]p10: 2368 // For the purpose of ranking implicit conversion sequences as 2369 // described in 13.3.3.2, the ambiguous conversion sequence is 2370 // treated as a user-defined sequence that is indistinguishable 2371 // from any other user-defined conversion sequence. 2372 if (ICS1.getKindRank() < ICS2.getKindRank()) 2373 return ImplicitConversionSequence::Better; 2374 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2375 return ImplicitConversionSequence::Worse; 2376 2377 // The following checks require both conversion sequences to be of 2378 // the same kind. 2379 if (ICS1.getKind() != ICS2.getKind()) 2380 return ImplicitConversionSequence::Indistinguishable; 2381 2382 // Two implicit conversion sequences of the same form are 2383 // indistinguishable conversion sequences unless one of the 2384 // following rules apply: (C++ 13.3.3.2p3): 2385 if (ICS1.isStandard()) 2386 return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard); 2387 else if (ICS1.isUserDefined()) { 2388 // User-defined conversion sequence U1 is a better conversion 2389 // sequence than another user-defined conversion sequence U2 if 2390 // they contain the same user-defined conversion function or 2391 // constructor and if the second standard conversion sequence of 2392 // U1 is better than the second standard conversion sequence of 2393 // U2 (C++ 13.3.3.2p3). 2394 if (ICS1.UserDefined.ConversionFunction == 2395 ICS2.UserDefined.ConversionFunction) 2396 return CompareStandardConversionSequences(S, 2397 ICS1.UserDefined.After, 2398 ICS2.UserDefined.After); 2399 } 2400 2401 return ImplicitConversionSequence::Indistinguishable; 2402} 2403 2404static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2405 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2406 Qualifiers Quals; 2407 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2408 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2409 } 2410 2411 return Context.hasSameUnqualifiedType(T1, T2); 2412} 2413 2414// Per 13.3.3.2p3, compare the given standard conversion sequences to 2415// determine if one is a proper subset of the other. 2416static ImplicitConversionSequence::CompareKind 2417compareStandardConversionSubsets(ASTContext &Context, 2418 const StandardConversionSequence& SCS1, 2419 const StandardConversionSequence& SCS2) { 2420 ImplicitConversionSequence::CompareKind Result 2421 = ImplicitConversionSequence::Indistinguishable; 2422 2423 // the identity conversion sequence is considered to be a subsequence of 2424 // any non-identity conversion sequence 2425 if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) { 2426 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2427 return ImplicitConversionSequence::Better; 2428 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2429 return ImplicitConversionSequence::Worse; 2430 } 2431 2432 if (SCS1.Second != SCS2.Second) { 2433 if (SCS1.Second == ICK_Identity) 2434 Result = ImplicitConversionSequence::Better; 2435 else if (SCS2.Second == ICK_Identity) 2436 Result = ImplicitConversionSequence::Worse; 2437 else 2438 return ImplicitConversionSequence::Indistinguishable; 2439 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2440 return ImplicitConversionSequence::Indistinguishable; 2441 2442 if (SCS1.Third == SCS2.Third) { 2443 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2444 : ImplicitConversionSequence::Indistinguishable; 2445 } 2446 2447 if (SCS1.Third == ICK_Identity) 2448 return Result == ImplicitConversionSequence::Worse 2449 ? ImplicitConversionSequence::Indistinguishable 2450 : ImplicitConversionSequence::Better; 2451 2452 if (SCS2.Third == ICK_Identity) 2453 return Result == ImplicitConversionSequence::Better 2454 ? ImplicitConversionSequence::Indistinguishable 2455 : ImplicitConversionSequence::Worse; 2456 2457 return ImplicitConversionSequence::Indistinguishable; 2458} 2459 2460/// \brief Determine whether one of the given reference bindings is better 2461/// than the other based on what kind of bindings they are. 2462static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 2463 const StandardConversionSequence &SCS2) { 2464 // C++0x [over.ics.rank]p3b4: 2465 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2466 // implicit object parameter of a non-static member function declared 2467 // without a ref-qualifier, and *either* S1 binds an rvalue reference 2468 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 2469 // lvalue reference to a function lvalue and S2 binds an rvalue 2470 // reference*. 2471 // 2472 // FIXME: Rvalue references. We're going rogue with the above edits, 2473 // because the semantics in the current C++0x working paper (N3225 at the 2474 // time of this writing) break the standard definition of std::forward 2475 // and std::reference_wrapper when dealing with references to functions. 2476 // Proposed wording changes submitted to CWG for consideration. 2477 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 2478 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 2479 return false; 2480 2481 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 2482 SCS2.IsLvalueReference) || 2483 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 2484 !SCS2.IsLvalueReference); 2485} 2486 2487/// CompareStandardConversionSequences - Compare two standard 2488/// conversion sequences to determine whether one is better than the 2489/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2490static ImplicitConversionSequence::CompareKind 2491CompareStandardConversionSequences(Sema &S, 2492 const StandardConversionSequence& SCS1, 2493 const StandardConversionSequence& SCS2) 2494{ 2495 // Standard conversion sequence S1 is a better conversion sequence 2496 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2497 2498 // -- S1 is a proper subsequence of S2 (comparing the conversion 2499 // sequences in the canonical form defined by 13.3.3.1.1, 2500 // excluding any Lvalue Transformation; the identity conversion 2501 // sequence is considered to be a subsequence of any 2502 // non-identity conversion sequence) or, if not that, 2503 if (ImplicitConversionSequence::CompareKind CK 2504 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 2505 return CK; 2506 2507 // -- the rank of S1 is better than the rank of S2 (by the rules 2508 // defined below), or, if not that, 2509 ImplicitConversionRank Rank1 = SCS1.getRank(); 2510 ImplicitConversionRank Rank2 = SCS2.getRank(); 2511 if (Rank1 < Rank2) 2512 return ImplicitConversionSequence::Better; 2513 else if (Rank2 < Rank1) 2514 return ImplicitConversionSequence::Worse; 2515 2516 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2517 // are indistinguishable unless one of the following rules 2518 // applies: 2519 2520 // A conversion that is not a conversion of a pointer, or 2521 // pointer to member, to bool is better than another conversion 2522 // that is such a conversion. 2523 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2524 return SCS2.isPointerConversionToBool() 2525 ? ImplicitConversionSequence::Better 2526 : ImplicitConversionSequence::Worse; 2527 2528 // C++ [over.ics.rank]p4b2: 2529 // 2530 // If class B is derived directly or indirectly from class A, 2531 // conversion of B* to A* is better than conversion of B* to 2532 // void*, and conversion of A* to void* is better than conversion 2533 // of B* to void*. 2534 bool SCS1ConvertsToVoid 2535 = SCS1.isPointerConversionToVoidPointer(S.Context); 2536 bool SCS2ConvertsToVoid 2537 = SCS2.isPointerConversionToVoidPointer(S.Context); 2538 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2539 // Exactly one of the conversion sequences is a conversion to 2540 // a void pointer; it's the worse conversion. 2541 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2542 : ImplicitConversionSequence::Worse; 2543 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2544 // Neither conversion sequence converts to a void pointer; compare 2545 // their derived-to-base conversions. 2546 if (ImplicitConversionSequence::CompareKind DerivedCK 2547 = CompareDerivedToBaseConversions(S, SCS1, SCS2)) 2548 return DerivedCK; 2549 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 2550 // Both conversion sequences are conversions to void 2551 // pointers. Compare the source types to determine if there's an 2552 // inheritance relationship in their sources. 2553 QualType FromType1 = SCS1.getFromType(); 2554 QualType FromType2 = SCS2.getFromType(); 2555 2556 // Adjust the types we're converting from via the array-to-pointer 2557 // conversion, if we need to. 2558 if (SCS1.First == ICK_Array_To_Pointer) 2559 FromType1 = S.Context.getArrayDecayedType(FromType1); 2560 if (SCS2.First == ICK_Array_To_Pointer) 2561 FromType2 = S.Context.getArrayDecayedType(FromType2); 2562 2563 QualType FromPointee1 2564 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2565 QualType FromPointee2 2566 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2567 2568 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2569 return ImplicitConversionSequence::Better; 2570 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2571 return ImplicitConversionSequence::Worse; 2572 2573 // Objective-C++: If one interface is more specific than the 2574 // other, it is the better one. 2575 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2576 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2577 if (FromIface1 && FromIface1) { 2578 if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2579 return ImplicitConversionSequence::Better; 2580 else if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2581 return ImplicitConversionSequence::Worse; 2582 } 2583 } 2584 2585 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2586 // bullet 3). 2587 if (ImplicitConversionSequence::CompareKind QualCK 2588 = CompareQualificationConversions(S, SCS1, SCS2)) 2589 return QualCK; 2590 2591 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2592 // Check for a better reference binding based on the kind of bindings. 2593 if (isBetterReferenceBindingKind(SCS1, SCS2)) 2594 return ImplicitConversionSequence::Better; 2595 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 2596 return ImplicitConversionSequence::Worse; 2597 2598 // C++ [over.ics.rank]p3b4: 2599 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2600 // which the references refer are the same type except for 2601 // top-level cv-qualifiers, and the type to which the reference 2602 // initialized by S2 refers is more cv-qualified than the type 2603 // to which the reference initialized by S1 refers. 2604 QualType T1 = SCS1.getToType(2); 2605 QualType T2 = SCS2.getToType(2); 2606 T1 = S.Context.getCanonicalType(T1); 2607 T2 = S.Context.getCanonicalType(T2); 2608 Qualifiers T1Quals, T2Quals; 2609 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2610 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2611 if (UnqualT1 == UnqualT2) { 2612 // If the type is an array type, promote the element qualifiers to the 2613 // type for comparison. 2614 if (isa<ArrayType>(T1) && T1Quals) 2615 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2616 if (isa<ArrayType>(T2) && T2Quals) 2617 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2618 if (T2.isMoreQualifiedThan(T1)) 2619 return ImplicitConversionSequence::Better; 2620 else if (T1.isMoreQualifiedThan(T2)) 2621 return ImplicitConversionSequence::Worse; 2622 } 2623 } 2624 2625 return ImplicitConversionSequence::Indistinguishable; 2626} 2627 2628/// CompareQualificationConversions - Compares two standard conversion 2629/// sequences to determine whether they can be ranked based on their 2630/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2631ImplicitConversionSequence::CompareKind 2632CompareQualificationConversions(Sema &S, 2633 const StandardConversionSequence& SCS1, 2634 const StandardConversionSequence& SCS2) { 2635 // C++ 13.3.3.2p3: 2636 // -- S1 and S2 differ only in their qualification conversion and 2637 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2638 // cv-qualification signature of type T1 is a proper subset of 2639 // the cv-qualification signature of type T2, and S1 is not the 2640 // deprecated string literal array-to-pointer conversion (4.2). 2641 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2642 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2643 return ImplicitConversionSequence::Indistinguishable; 2644 2645 // FIXME: the example in the standard doesn't use a qualification 2646 // conversion (!) 2647 QualType T1 = SCS1.getToType(2); 2648 QualType T2 = SCS2.getToType(2); 2649 T1 = S.Context.getCanonicalType(T1); 2650 T2 = S.Context.getCanonicalType(T2); 2651 Qualifiers T1Quals, T2Quals; 2652 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2653 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2654 2655 // If the types are the same, we won't learn anything by unwrapped 2656 // them. 2657 if (UnqualT1 == UnqualT2) 2658 return ImplicitConversionSequence::Indistinguishable; 2659 2660 // If the type is an array type, promote the element qualifiers to the type 2661 // for comparison. 2662 if (isa<ArrayType>(T1) && T1Quals) 2663 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2664 if (isa<ArrayType>(T2) && T2Quals) 2665 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2666 2667 ImplicitConversionSequence::CompareKind Result 2668 = ImplicitConversionSequence::Indistinguishable; 2669 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 2670 // Within each iteration of the loop, we check the qualifiers to 2671 // determine if this still looks like a qualification 2672 // conversion. Then, if all is well, we unwrap one more level of 2673 // pointers or pointers-to-members and do it all again 2674 // until there are no more pointers or pointers-to-members left 2675 // to unwrap. This essentially mimics what 2676 // IsQualificationConversion does, but here we're checking for a 2677 // strict subset of qualifiers. 2678 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2679 // The qualifiers are the same, so this doesn't tell us anything 2680 // about how the sequences rank. 2681 ; 2682 else if (T2.isMoreQualifiedThan(T1)) { 2683 // T1 has fewer qualifiers, so it could be the better sequence. 2684 if (Result == ImplicitConversionSequence::Worse) 2685 // Neither has qualifiers that are a subset of the other's 2686 // qualifiers. 2687 return ImplicitConversionSequence::Indistinguishable; 2688 2689 Result = ImplicitConversionSequence::Better; 2690 } else if (T1.isMoreQualifiedThan(T2)) { 2691 // T2 has fewer qualifiers, so it could be the better sequence. 2692 if (Result == ImplicitConversionSequence::Better) 2693 // Neither has qualifiers that are a subset of the other's 2694 // qualifiers. 2695 return ImplicitConversionSequence::Indistinguishable; 2696 2697 Result = ImplicitConversionSequence::Worse; 2698 } else { 2699 // Qualifiers are disjoint. 2700 return ImplicitConversionSequence::Indistinguishable; 2701 } 2702 2703 // If the types after this point are equivalent, we're done. 2704 if (S.Context.hasSameUnqualifiedType(T1, T2)) 2705 break; 2706 } 2707 2708 // Check that the winning standard conversion sequence isn't using 2709 // the deprecated string literal array to pointer conversion. 2710 switch (Result) { 2711 case ImplicitConversionSequence::Better: 2712 if (SCS1.DeprecatedStringLiteralToCharPtr) 2713 Result = ImplicitConversionSequence::Indistinguishable; 2714 break; 2715 2716 case ImplicitConversionSequence::Indistinguishable: 2717 break; 2718 2719 case ImplicitConversionSequence::Worse: 2720 if (SCS2.DeprecatedStringLiteralToCharPtr) 2721 Result = ImplicitConversionSequence::Indistinguishable; 2722 break; 2723 } 2724 2725 return Result; 2726} 2727 2728/// CompareDerivedToBaseConversions - Compares two standard conversion 2729/// sequences to determine whether they can be ranked based on their 2730/// various kinds of derived-to-base conversions (C++ 2731/// [over.ics.rank]p4b3). As part of these checks, we also look at 2732/// conversions between Objective-C interface types. 2733ImplicitConversionSequence::CompareKind 2734CompareDerivedToBaseConversions(Sema &S, 2735 const StandardConversionSequence& SCS1, 2736 const StandardConversionSequence& SCS2) { 2737 QualType FromType1 = SCS1.getFromType(); 2738 QualType ToType1 = SCS1.getToType(1); 2739 QualType FromType2 = SCS2.getFromType(); 2740 QualType ToType2 = SCS2.getToType(1); 2741 2742 // Adjust the types we're converting from via the array-to-pointer 2743 // conversion, if we need to. 2744 if (SCS1.First == ICK_Array_To_Pointer) 2745 FromType1 = S.Context.getArrayDecayedType(FromType1); 2746 if (SCS2.First == ICK_Array_To_Pointer) 2747 FromType2 = S.Context.getArrayDecayedType(FromType2); 2748 2749 // Canonicalize all of the types. 2750 FromType1 = S.Context.getCanonicalType(FromType1); 2751 ToType1 = S.Context.getCanonicalType(ToType1); 2752 FromType2 = S.Context.getCanonicalType(FromType2); 2753 ToType2 = S.Context.getCanonicalType(ToType2); 2754 2755 // C++ [over.ics.rank]p4b3: 2756 // 2757 // If class B is derived directly or indirectly from class A and 2758 // class C is derived directly or indirectly from B, 2759 // 2760 // Compare based on pointer conversions. 2761 if (SCS1.Second == ICK_Pointer_Conversion && 2762 SCS2.Second == ICK_Pointer_Conversion && 2763 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2764 FromType1->isPointerType() && FromType2->isPointerType() && 2765 ToType1->isPointerType() && ToType2->isPointerType()) { 2766 QualType FromPointee1 2767 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2768 QualType ToPointee1 2769 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2770 QualType FromPointee2 2771 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2772 QualType ToPointee2 2773 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2774 2775 // -- conversion of C* to B* is better than conversion of C* to A*, 2776 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2777 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 2778 return ImplicitConversionSequence::Better; 2779 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 2780 return ImplicitConversionSequence::Worse; 2781 } 2782 2783 // -- conversion of B* to A* is better than conversion of C* to A*, 2784 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2785 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2786 return ImplicitConversionSequence::Better; 2787 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2788 return ImplicitConversionSequence::Worse; 2789 } 2790 } else if (SCS1.Second == ICK_Pointer_Conversion && 2791 SCS2.Second == ICK_Pointer_Conversion) { 2792 const ObjCObjectPointerType *FromPtr1 2793 = FromType1->getAs<ObjCObjectPointerType>(); 2794 const ObjCObjectPointerType *FromPtr2 2795 = FromType2->getAs<ObjCObjectPointerType>(); 2796 const ObjCObjectPointerType *ToPtr1 2797 = ToType1->getAs<ObjCObjectPointerType>(); 2798 const ObjCObjectPointerType *ToPtr2 2799 = ToType2->getAs<ObjCObjectPointerType>(); 2800 2801 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 2802 // Apply the same conversion ranking rules for Objective-C pointer types 2803 // that we do for C++ pointers to class types. However, we employ the 2804 // Objective-C pseudo-subtyping relationship used for assignment of 2805 // Objective-C pointer types. 2806 bool FromAssignLeft 2807 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 2808 bool FromAssignRight 2809 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 2810 bool ToAssignLeft 2811 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 2812 bool ToAssignRight 2813 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 2814 2815 // A conversion to an a non-id object pointer type or qualified 'id' 2816 // type is better than a conversion to 'id'. 2817 if (ToPtr1->isObjCIdType() && 2818 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 2819 return ImplicitConversionSequence::Worse; 2820 if (ToPtr2->isObjCIdType() && 2821 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 2822 return ImplicitConversionSequence::Better; 2823 2824 // A conversion to a non-id object pointer type is better than a 2825 // conversion to a qualified 'id' type 2826 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 2827 return ImplicitConversionSequence::Worse; 2828 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 2829 return ImplicitConversionSequence::Better; 2830 2831 // A conversion to an a non-Class object pointer type or qualified 'Class' 2832 // type is better than a conversion to 'Class'. 2833 if (ToPtr1->isObjCClassType() && 2834 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 2835 return ImplicitConversionSequence::Worse; 2836 if (ToPtr2->isObjCClassType() && 2837 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 2838 return ImplicitConversionSequence::Better; 2839 2840 // A conversion to a non-Class object pointer type is better than a 2841 // conversion to a qualified 'Class' type. 2842 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 2843 return ImplicitConversionSequence::Worse; 2844 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 2845 return ImplicitConversionSequence::Better; 2846 2847 // -- "conversion of C* to B* is better than conversion of C* to A*," 2848 if (S.Context.hasSameType(FromType1, FromType2) && 2849 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 2850 (ToAssignLeft != ToAssignRight)) 2851 return ToAssignLeft? ImplicitConversionSequence::Worse 2852 : ImplicitConversionSequence::Better; 2853 2854 // -- "conversion of B* to A* is better than conversion of C* to A*," 2855 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 2856 (FromAssignLeft != FromAssignRight)) 2857 return FromAssignLeft? ImplicitConversionSequence::Better 2858 : ImplicitConversionSequence::Worse; 2859 } 2860 } 2861 2862 // Ranking of member-pointer types. 2863 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2864 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2865 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2866 const MemberPointerType * FromMemPointer1 = 2867 FromType1->getAs<MemberPointerType>(); 2868 const MemberPointerType * ToMemPointer1 = 2869 ToType1->getAs<MemberPointerType>(); 2870 const MemberPointerType * FromMemPointer2 = 2871 FromType2->getAs<MemberPointerType>(); 2872 const MemberPointerType * ToMemPointer2 = 2873 ToType2->getAs<MemberPointerType>(); 2874 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2875 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2876 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2877 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2878 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2879 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2880 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2881 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2882 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2883 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2884 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 2885 return ImplicitConversionSequence::Worse; 2886 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 2887 return ImplicitConversionSequence::Better; 2888 } 2889 // conversion of B::* to C::* is better than conversion of A::* to C::* 2890 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2891 if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2892 return ImplicitConversionSequence::Better; 2893 else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2894 return ImplicitConversionSequence::Worse; 2895 } 2896 } 2897 2898 if (SCS1.Second == ICK_Derived_To_Base) { 2899 // -- conversion of C to B is better than conversion of C to A, 2900 // -- binding of an expression of type C to a reference of type 2901 // B& is better than binding an expression of type C to a 2902 // reference of type A&, 2903 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 2904 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2905 if (S.IsDerivedFrom(ToType1, ToType2)) 2906 return ImplicitConversionSequence::Better; 2907 else if (S.IsDerivedFrom(ToType2, ToType1)) 2908 return ImplicitConversionSequence::Worse; 2909 } 2910 2911 // -- conversion of B to A is better than conversion of C to A. 2912 // -- binding of an expression of type B to a reference of type 2913 // A& is better than binding an expression of type C to a 2914 // reference of type A&, 2915 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 2916 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2917 if (S.IsDerivedFrom(FromType2, FromType1)) 2918 return ImplicitConversionSequence::Better; 2919 else if (S.IsDerivedFrom(FromType1, FromType2)) 2920 return ImplicitConversionSequence::Worse; 2921 } 2922 } 2923 2924 return ImplicitConversionSequence::Indistinguishable; 2925} 2926 2927/// CompareReferenceRelationship - Compare the two types T1 and T2 to 2928/// determine whether they are reference-related, 2929/// reference-compatible, reference-compatible with added 2930/// qualification, or incompatible, for use in C++ initialization by 2931/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 2932/// type, and the first type (T1) is the pointee type of the reference 2933/// type being initialized. 2934Sema::ReferenceCompareResult 2935Sema::CompareReferenceRelationship(SourceLocation Loc, 2936 QualType OrigT1, QualType OrigT2, 2937 bool &DerivedToBase, 2938 bool &ObjCConversion) { 2939 assert(!OrigT1->isReferenceType() && 2940 "T1 must be the pointee type of the reference type"); 2941 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 2942 2943 QualType T1 = Context.getCanonicalType(OrigT1); 2944 QualType T2 = Context.getCanonicalType(OrigT2); 2945 Qualifiers T1Quals, T2Quals; 2946 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2947 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2948 2949 // C++ [dcl.init.ref]p4: 2950 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 2951 // reference-related to "cv2 T2" if T1 is the same type as T2, or 2952 // T1 is a base class of T2. 2953 DerivedToBase = false; 2954 ObjCConversion = false; 2955 if (UnqualT1 == UnqualT2) { 2956 // Nothing to do. 2957 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 2958 IsDerivedFrom(UnqualT2, UnqualT1)) 2959 DerivedToBase = true; 2960 else if (UnqualT1->isObjCObjectOrInterfaceType() && 2961 UnqualT2->isObjCObjectOrInterfaceType() && 2962 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 2963 ObjCConversion = true; 2964 else 2965 return Ref_Incompatible; 2966 2967 // At this point, we know that T1 and T2 are reference-related (at 2968 // least). 2969 2970 // If the type is an array type, promote the element qualifiers to the type 2971 // for comparison. 2972 if (isa<ArrayType>(T1) && T1Quals) 2973 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2974 if (isa<ArrayType>(T2) && T2Quals) 2975 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2976 2977 // C++ [dcl.init.ref]p4: 2978 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 2979 // reference-related to T2 and cv1 is the same cv-qualification 2980 // as, or greater cv-qualification than, cv2. For purposes of 2981 // overload resolution, cases for which cv1 is greater 2982 // cv-qualification than cv2 are identified as 2983 // reference-compatible with added qualification (see 13.3.3.2). 2984 if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) 2985 return Ref_Compatible; 2986 else if (T1.isMoreQualifiedThan(T2)) 2987 return Ref_Compatible_With_Added_Qualification; 2988 else 2989 return Ref_Related; 2990} 2991 2992/// \brief Look for a user-defined conversion to an value reference-compatible 2993/// with DeclType. Return true if something definite is found. 2994static bool 2995FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 2996 QualType DeclType, SourceLocation DeclLoc, 2997 Expr *Init, QualType T2, bool AllowRvalues, 2998 bool AllowExplicit) { 2999 assert(T2->isRecordType() && "Can only find conversions of record types."); 3000 CXXRecordDecl *T2RecordDecl 3001 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 3002 3003 OverloadCandidateSet CandidateSet(DeclLoc); 3004 const UnresolvedSetImpl *Conversions 3005 = T2RecordDecl->getVisibleConversionFunctions(); 3006 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3007 E = Conversions->end(); I != E; ++I) { 3008 NamedDecl *D = *I; 3009 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3010 if (isa<UsingShadowDecl>(D)) 3011 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3012 3013 FunctionTemplateDecl *ConvTemplate 3014 = dyn_cast<FunctionTemplateDecl>(D); 3015 CXXConversionDecl *Conv; 3016 if (ConvTemplate) 3017 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3018 else 3019 Conv = cast<CXXConversionDecl>(D); 3020 3021 // If this is an explicit conversion, and we're not allowed to consider 3022 // explicit conversions, skip it. 3023 if (!AllowExplicit && Conv->isExplicit()) 3024 continue; 3025 3026 if (AllowRvalues) { 3027 bool DerivedToBase = false; 3028 bool ObjCConversion = false; 3029 if (!ConvTemplate && 3030 S.CompareReferenceRelationship( 3031 DeclLoc, 3032 Conv->getConversionType().getNonReferenceType() 3033 .getUnqualifiedType(), 3034 DeclType.getNonReferenceType().getUnqualifiedType(), 3035 DerivedToBase, ObjCConversion) == 3036 Sema::Ref_Incompatible) 3037 continue; 3038 } else { 3039 // If the conversion function doesn't return a reference type, 3040 // it can't be considered for this conversion. An rvalue reference 3041 // is only acceptable if its referencee is a function type. 3042 3043 const ReferenceType *RefType = 3044 Conv->getConversionType()->getAs<ReferenceType>(); 3045 if (!RefType || 3046 (!RefType->isLValueReferenceType() && 3047 !RefType->getPointeeType()->isFunctionType())) 3048 continue; 3049 } 3050 3051 if (ConvTemplate) 3052 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 3053 Init, DeclType, CandidateSet); 3054 else 3055 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 3056 DeclType, CandidateSet); 3057 } 3058 3059 OverloadCandidateSet::iterator Best; 3060 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 3061 case OR_Success: 3062 // C++ [over.ics.ref]p1: 3063 // 3064 // [...] If the parameter binds directly to the result of 3065 // applying a conversion function to the argument 3066 // expression, the implicit conversion sequence is a 3067 // user-defined conversion sequence (13.3.3.1.2), with the 3068 // second standard conversion sequence either an identity 3069 // conversion or, if the conversion function returns an 3070 // entity of a type that is a derived class of the parameter 3071 // type, a derived-to-base Conversion. 3072 if (!Best->FinalConversion.DirectBinding) 3073 return false; 3074 3075 if (Best->Function) 3076 S.MarkDeclarationReferenced(DeclLoc, Best->Function); 3077 ICS.setUserDefined(); 3078 ICS.UserDefined.Before = Best->Conversions[0].Standard; 3079 ICS.UserDefined.After = Best->FinalConversion; 3080 ICS.UserDefined.ConversionFunction = Best->Function; 3081 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl(); 3082 ICS.UserDefined.EllipsisConversion = false; 3083 assert(ICS.UserDefined.After.ReferenceBinding && 3084 ICS.UserDefined.After.DirectBinding && 3085 "Expected a direct reference binding!"); 3086 return true; 3087 3088 case OR_Ambiguous: 3089 ICS.setAmbiguous(); 3090 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3091 Cand != CandidateSet.end(); ++Cand) 3092 if (Cand->Viable) 3093 ICS.Ambiguous.addConversion(Cand->Function); 3094 return true; 3095 3096 case OR_No_Viable_Function: 3097 case OR_Deleted: 3098 // There was no suitable conversion, or we found a deleted 3099 // conversion; continue with other checks. 3100 return false; 3101 } 3102 3103 return false; 3104} 3105 3106/// \brief Compute an implicit conversion sequence for reference 3107/// initialization. 3108static ImplicitConversionSequence 3109TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 3110 SourceLocation DeclLoc, 3111 bool SuppressUserConversions, 3112 bool AllowExplicit) { 3113 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 3114 3115 // Most paths end in a failed conversion. 3116 ImplicitConversionSequence ICS; 3117 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3118 3119 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 3120 QualType T2 = Init->getType(); 3121 3122 // If the initializer is the address of an overloaded function, try 3123 // to resolve the overloaded function. If all goes well, T2 is the 3124 // type of the resulting function. 3125 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 3126 DeclAccessPair Found; 3127 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 3128 false, Found)) 3129 T2 = Fn->getType(); 3130 } 3131 3132 // Compute some basic properties of the types and the initializer. 3133 bool isRValRef = DeclType->isRValueReferenceType(); 3134 bool DerivedToBase = false; 3135 bool ObjCConversion = false; 3136 Expr::Classification InitCategory = Init->Classify(S.Context); 3137 Sema::ReferenceCompareResult RefRelationship 3138 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 3139 ObjCConversion); 3140 3141 3142 // C++0x [dcl.init.ref]p5: 3143 // A reference to type "cv1 T1" is initialized by an expression 3144 // of type "cv2 T2" as follows: 3145 3146 // -- If reference is an lvalue reference and the initializer expression 3147 if (!isRValRef) { 3148 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 3149 // reference-compatible with "cv2 T2," or 3150 // 3151 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 3152 if (InitCategory.isLValue() && 3153 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 3154 // C++ [over.ics.ref]p1: 3155 // When a parameter of reference type binds directly (8.5.3) 3156 // to an argument expression, the implicit conversion sequence 3157 // is the identity conversion, unless the argument expression 3158 // has a type that is a derived class of the parameter type, 3159 // in which case the implicit conversion sequence is a 3160 // derived-to-base Conversion (13.3.3.1). 3161 ICS.setStandard(); 3162 ICS.Standard.First = ICK_Identity; 3163 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3164 : ObjCConversion? ICK_Compatible_Conversion 3165 : ICK_Identity; 3166 ICS.Standard.Third = ICK_Identity; 3167 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3168 ICS.Standard.setToType(0, T2); 3169 ICS.Standard.setToType(1, T1); 3170 ICS.Standard.setToType(2, T1); 3171 ICS.Standard.ReferenceBinding = true; 3172 ICS.Standard.DirectBinding = true; 3173 ICS.Standard.IsLvalueReference = !isRValRef; 3174 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3175 ICS.Standard.BindsToRvalue = false; 3176 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3177 ICS.Standard.CopyConstructor = 0; 3178 3179 // Nothing more to do: the inaccessibility/ambiguity check for 3180 // derived-to-base conversions is suppressed when we're 3181 // computing the implicit conversion sequence (C++ 3182 // [over.best.ics]p2). 3183 return ICS; 3184 } 3185 3186 // -- has a class type (i.e., T2 is a class type), where T1 is 3187 // not reference-related to T2, and can be implicitly 3188 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 3189 // is reference-compatible with "cv3 T3" 92) (this 3190 // conversion is selected by enumerating the applicable 3191 // conversion functions (13.3.1.6) and choosing the best 3192 // one through overload resolution (13.3)), 3193 if (!SuppressUserConversions && T2->isRecordType() && 3194 !S.RequireCompleteType(DeclLoc, T2, 0) && 3195 RefRelationship == Sema::Ref_Incompatible) { 3196 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3197 Init, T2, /*AllowRvalues=*/false, 3198 AllowExplicit)) 3199 return ICS; 3200 } 3201 } 3202 3203 // -- Otherwise, the reference shall be an lvalue reference to a 3204 // non-volatile const type (i.e., cv1 shall be const), or the reference 3205 // shall be an rvalue reference. 3206 // 3207 // We actually handle one oddity of C++ [over.ics.ref] at this 3208 // point, which is that, due to p2 (which short-circuits reference 3209 // binding by only attempting a simple conversion for non-direct 3210 // bindings) and p3's strange wording, we allow a const volatile 3211 // reference to bind to an rvalue. Hence the check for the presence 3212 // of "const" rather than checking for "const" being the only 3213 // qualifier. 3214 // This is also the point where rvalue references and lvalue inits no longer 3215 // go together. 3216 if (!isRValRef && !T1.isConstQualified()) 3217 return ICS; 3218 3219 // -- If the initializer expression 3220 // 3221 // -- is an xvalue, class prvalue, array prvalue or function 3222 // lvalue and "cv1T1" is reference-compatible with "cv2 T2", or 3223 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification && 3224 (InitCategory.isXValue() || 3225 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || 3226 (InitCategory.isLValue() && T2->isFunctionType()))) { 3227 ICS.setStandard(); 3228 ICS.Standard.First = ICK_Identity; 3229 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3230 : ObjCConversion? ICK_Compatible_Conversion 3231 : ICK_Identity; 3232 ICS.Standard.Third = ICK_Identity; 3233 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3234 ICS.Standard.setToType(0, T2); 3235 ICS.Standard.setToType(1, T1); 3236 ICS.Standard.setToType(2, T1); 3237 ICS.Standard.ReferenceBinding = true; 3238 // In C++0x, this is always a direct binding. In C++98/03, it's a direct 3239 // binding unless we're binding to a class prvalue. 3240 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 3241 // allow the use of rvalue references in C++98/03 for the benefit of 3242 // standard library implementors; therefore, we need the xvalue check here. 3243 ICS.Standard.DirectBinding = 3244 S.getLangOptions().CPlusPlus0x || 3245 (InitCategory.isPRValue() && !T2->isRecordType()); 3246 ICS.Standard.IsLvalueReference = !isRValRef; 3247 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3248 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 3249 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3250 ICS.Standard.CopyConstructor = 0; 3251 return ICS; 3252 } 3253 3254 // -- has a class type (i.e., T2 is a class type), where T1 is not 3255 // reference-related to T2, and can be implicitly converted to 3256 // an xvalue, class prvalue, or function lvalue of type 3257 // "cv3 T3", where "cv1 T1" is reference-compatible with 3258 // "cv3 T3", 3259 // 3260 // then the reference is bound to the value of the initializer 3261 // expression in the first case and to the result of the conversion 3262 // in the second case (or, in either case, to an appropriate base 3263 // class subobject). 3264 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3265 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && 3266 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3267 Init, T2, /*AllowRvalues=*/true, 3268 AllowExplicit)) { 3269 // In the second case, if the reference is an rvalue reference 3270 // and the second standard conversion sequence of the 3271 // user-defined conversion sequence includes an lvalue-to-rvalue 3272 // conversion, the program is ill-formed. 3273 if (ICS.isUserDefined() && isRValRef && 3274 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 3275 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3276 3277 return ICS; 3278 } 3279 3280 // -- Otherwise, a temporary of type "cv1 T1" is created and 3281 // initialized from the initializer expression using the 3282 // rules for a non-reference copy initialization (8.5). The 3283 // reference is then bound to the temporary. If T1 is 3284 // reference-related to T2, cv1 must be the same 3285 // cv-qualification as, or greater cv-qualification than, 3286 // cv2; otherwise, the program is ill-formed. 3287 if (RefRelationship == Sema::Ref_Related) { 3288 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 3289 // we would be reference-compatible or reference-compatible with 3290 // added qualification. But that wasn't the case, so the reference 3291 // initialization fails. 3292 return ICS; 3293 } 3294 3295 // If at least one of the types is a class type, the types are not 3296 // related, and we aren't allowed any user conversions, the 3297 // reference binding fails. This case is important for breaking 3298 // recursion, since TryImplicitConversion below will attempt to 3299 // create a temporary through the use of a copy constructor. 3300 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3301 (T1->isRecordType() || T2->isRecordType())) 3302 return ICS; 3303 3304 // If T1 is reference-related to T2 and the reference is an rvalue 3305 // reference, the initializer expression shall not be an lvalue. 3306 if (RefRelationship >= Sema::Ref_Related && 3307 isRValRef && Init->Classify(S.Context).isLValue()) 3308 return ICS; 3309 3310 // C++ [over.ics.ref]p2: 3311 // When a parameter of reference type is not bound directly to 3312 // an argument expression, the conversion sequence is the one 3313 // required to convert the argument expression to the 3314 // underlying type of the reference according to 3315 // 13.3.3.1. Conceptually, this conversion sequence corresponds 3316 // to copy-initializing a temporary of the underlying type with 3317 // the argument expression. Any difference in top-level 3318 // cv-qualification is subsumed by the initialization itself 3319 // and does not constitute a conversion. 3320 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 3321 /*AllowExplicit=*/false, 3322 /*InOverloadResolution=*/false, 3323 /*CStyle=*/false); 3324 3325 // Of course, that's still a reference binding. 3326 if (ICS.isStandard()) { 3327 ICS.Standard.ReferenceBinding = true; 3328 ICS.Standard.IsLvalueReference = !isRValRef; 3329 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3330 ICS.Standard.BindsToRvalue = true; 3331 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3332 } else if (ICS.isUserDefined()) { 3333 ICS.UserDefined.After.ReferenceBinding = true; 3334 ICS.Standard.IsLvalueReference = !isRValRef; 3335 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3336 ICS.Standard.BindsToRvalue = true; 3337 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3338 } 3339 3340 return ICS; 3341} 3342 3343/// TryCopyInitialization - Try to copy-initialize a value of type 3344/// ToType from the expression From. Return the implicit conversion 3345/// sequence required to pass this argument, which may be a bad 3346/// conversion sequence (meaning that the argument cannot be passed to 3347/// a parameter of this type). If @p SuppressUserConversions, then we 3348/// do not permit any user-defined conversion sequences. 3349static ImplicitConversionSequence 3350TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 3351 bool SuppressUserConversions, 3352 bool InOverloadResolution) { 3353 if (ToType->isReferenceType()) 3354 return TryReferenceInit(S, From, ToType, 3355 /*FIXME:*/From->getLocStart(), 3356 SuppressUserConversions, 3357 /*AllowExplicit=*/false); 3358 3359 return TryImplicitConversion(S, From, ToType, 3360 SuppressUserConversions, 3361 /*AllowExplicit=*/false, 3362 InOverloadResolution, 3363 /*CStyle=*/false); 3364} 3365 3366/// TryObjectArgumentInitialization - Try to initialize the object 3367/// parameter of the given member function (@c Method) from the 3368/// expression @p From. 3369static ImplicitConversionSequence 3370TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, 3371 Expr::Classification FromClassification, 3372 CXXMethodDecl *Method, 3373 CXXRecordDecl *ActingContext) { 3374 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 3375 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 3376 // const volatile object. 3377 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 3378 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 3379 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 3380 3381 // Set up the conversion sequence as a "bad" conversion, to allow us 3382 // to exit early. 3383 ImplicitConversionSequence ICS; 3384 3385 // We need to have an object of class type. 3386 QualType FromType = OrigFromType; 3387 if (const PointerType *PT = FromType->getAs<PointerType>()) { 3388 FromType = PT->getPointeeType(); 3389 3390 // When we had a pointer, it's implicitly dereferenced, so we 3391 // better have an lvalue. 3392 assert(FromClassification.isLValue()); 3393 } 3394 3395 assert(FromType->isRecordType()); 3396 3397 // C++0x [over.match.funcs]p4: 3398 // For non-static member functions, the type of the implicit object 3399 // parameter is 3400 // 3401 // - "lvalue reference to cv X" for functions declared without a 3402 // ref-qualifier or with the & ref-qualifier 3403 // - "rvalue reference to cv X" for functions declared with the && 3404 // ref-qualifier 3405 // 3406 // where X is the class of which the function is a member and cv is the 3407 // cv-qualification on the member function declaration. 3408 // 3409 // However, when finding an implicit conversion sequence for the argument, we 3410 // are not allowed to create temporaries or perform user-defined conversions 3411 // (C++ [over.match.funcs]p5). We perform a simplified version of 3412 // reference binding here, that allows class rvalues to bind to 3413 // non-constant references. 3414 3415 // First check the qualifiers. 3416 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 3417 if (ImplicitParamType.getCVRQualifiers() 3418 != FromTypeCanon.getLocalCVRQualifiers() && 3419 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 3420 ICS.setBad(BadConversionSequence::bad_qualifiers, 3421 OrigFromType, ImplicitParamType); 3422 return ICS; 3423 } 3424 3425 // Check that we have either the same type or a derived type. It 3426 // affects the conversion rank. 3427 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 3428 ImplicitConversionKind SecondKind; 3429 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 3430 SecondKind = ICK_Identity; 3431 } else if (S.IsDerivedFrom(FromType, ClassType)) 3432 SecondKind = ICK_Derived_To_Base; 3433 else { 3434 ICS.setBad(BadConversionSequence::unrelated_class, 3435 FromType, ImplicitParamType); 3436 return ICS; 3437 } 3438 3439 // Check the ref-qualifier. 3440 switch (Method->getRefQualifier()) { 3441 case RQ_None: 3442 // Do nothing; we don't care about lvalueness or rvalueness. 3443 break; 3444 3445 case RQ_LValue: 3446 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { 3447 // non-const lvalue reference cannot bind to an rvalue 3448 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 3449 ImplicitParamType); 3450 return ICS; 3451 } 3452 break; 3453 3454 case RQ_RValue: 3455 if (!FromClassification.isRValue()) { 3456 // rvalue reference cannot bind to an lvalue 3457 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 3458 ImplicitParamType); 3459 return ICS; 3460 } 3461 break; 3462 } 3463 3464 // Success. Mark this as a reference binding. 3465 ICS.setStandard(); 3466 ICS.Standard.setAsIdentityConversion(); 3467 ICS.Standard.Second = SecondKind; 3468 ICS.Standard.setFromType(FromType); 3469 ICS.Standard.setAllToTypes(ImplicitParamType); 3470 ICS.Standard.ReferenceBinding = true; 3471 ICS.Standard.DirectBinding = true; 3472 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 3473 ICS.Standard.BindsToFunctionLvalue = false; 3474 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 3475 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 3476 = (Method->getRefQualifier() == RQ_None); 3477 return ICS; 3478} 3479 3480/// PerformObjectArgumentInitialization - Perform initialization of 3481/// the implicit object parameter for the given Method with the given 3482/// expression. 3483bool 3484Sema::PerformObjectArgumentInitialization(Expr *&From, 3485 NestedNameSpecifier *Qualifier, 3486 NamedDecl *FoundDecl, 3487 CXXMethodDecl *Method) { 3488 QualType FromRecordType, DestType; 3489 QualType ImplicitParamRecordType = 3490 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 3491 3492 Expr::Classification FromClassification; 3493 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 3494 FromRecordType = PT->getPointeeType(); 3495 DestType = Method->getThisType(Context); 3496 FromClassification = Expr::Classification::makeSimpleLValue(); 3497 } else { 3498 FromRecordType = From->getType(); 3499 DestType = ImplicitParamRecordType; 3500 FromClassification = From->Classify(Context); 3501 } 3502 3503 // Note that we always use the true parent context when performing 3504 // the actual argument initialization. 3505 ImplicitConversionSequence ICS 3506 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification, 3507 Method, Method->getParent()); 3508 if (ICS.isBad()) { 3509 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { 3510 Qualifiers FromQs = FromRecordType.getQualifiers(); 3511 Qualifiers ToQs = DestType.getQualifiers(); 3512 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 3513 if (CVR) { 3514 Diag(From->getSourceRange().getBegin(), 3515 diag::err_member_function_call_bad_cvr) 3516 << Method->getDeclName() << FromRecordType << (CVR - 1) 3517 << From->getSourceRange(); 3518 Diag(Method->getLocation(), diag::note_previous_decl) 3519 << Method->getDeclName(); 3520 return true; 3521 } 3522 } 3523 3524 return Diag(From->getSourceRange().getBegin(), 3525 diag::err_implicit_object_parameter_init) 3526 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 3527 } 3528 3529 if (ICS.Standard.Second == ICK_Derived_To_Base) 3530 return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 3531 3532 if (!Context.hasSameType(From->getType(), DestType)) 3533 ImpCastExprToType(From, DestType, CK_NoOp, 3534 From->getType()->isPointerType() ? VK_RValue : VK_LValue); 3535 return false; 3536} 3537 3538/// TryContextuallyConvertToBool - Attempt to contextually convert the 3539/// expression From to bool (C++0x [conv]p3). 3540static ImplicitConversionSequence 3541TryContextuallyConvertToBool(Sema &S, Expr *From) { 3542 // FIXME: This is pretty broken. 3543 return TryImplicitConversion(S, From, S.Context.BoolTy, 3544 // FIXME: Are these flags correct? 3545 /*SuppressUserConversions=*/false, 3546 /*AllowExplicit=*/true, 3547 /*InOverloadResolution=*/false, 3548 /*CStyle=*/false); 3549} 3550 3551/// PerformContextuallyConvertToBool - Perform a contextual conversion 3552/// of the expression From to bool (C++0x [conv]p3). 3553bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 3554 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 3555 if (!ICS.isBad()) 3556 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 3557 3558 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 3559 return Diag(From->getSourceRange().getBegin(), 3560 diag::err_typecheck_bool_condition) 3561 << From->getType() << From->getSourceRange(); 3562 return true; 3563} 3564 3565/// TryContextuallyConvertToObjCId - Attempt to contextually convert the 3566/// expression From to 'id'. 3567static ImplicitConversionSequence 3568TryContextuallyConvertToObjCId(Sema &S, Expr *From) { 3569 QualType Ty = S.Context.getObjCIdType(); 3570 return TryImplicitConversion(S, From, Ty, 3571 // FIXME: Are these flags correct? 3572 /*SuppressUserConversions=*/false, 3573 /*AllowExplicit=*/true, 3574 /*InOverloadResolution=*/false, 3575 /*CStyle=*/false); 3576} 3577 3578/// PerformContextuallyConvertToObjCId - Perform a contextual conversion 3579/// of the expression From to 'id'. 3580bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { 3581 QualType Ty = Context.getObjCIdType(); 3582 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From); 3583 if (!ICS.isBad()) 3584 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 3585 return true; 3586} 3587 3588/// \brief Attempt to convert the given expression to an integral or 3589/// enumeration type. 3590/// 3591/// This routine will attempt to convert an expression of class type to an 3592/// integral or enumeration type, if that class type only has a single 3593/// conversion to an integral or enumeration type. 3594/// 3595/// \param Loc The source location of the construct that requires the 3596/// conversion. 3597/// 3598/// \param FromE The expression we're converting from. 3599/// 3600/// \param NotIntDiag The diagnostic to be emitted if the expression does not 3601/// have integral or enumeration type. 3602/// 3603/// \param IncompleteDiag The diagnostic to be emitted if the expression has 3604/// incomplete class type. 3605/// 3606/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 3607/// explicit conversion function (because no implicit conversion functions 3608/// were available). This is a recovery mode. 3609/// 3610/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 3611/// showing which conversion was picked. 3612/// 3613/// \param AmbigDiag The diagnostic to be emitted if there is more than one 3614/// conversion function that could convert to integral or enumeration type. 3615/// 3616/// \param AmbigNote The note to be emitted with \p AmbigDiag for each 3617/// usable conversion function. 3618/// 3619/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 3620/// function, which may be an extension in this case. 3621/// 3622/// \returns The expression, converted to an integral or enumeration type if 3623/// successful. 3624ExprResult 3625Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, 3626 const PartialDiagnostic &NotIntDiag, 3627 const PartialDiagnostic &IncompleteDiag, 3628 const PartialDiagnostic &ExplicitConvDiag, 3629 const PartialDiagnostic &ExplicitConvNote, 3630 const PartialDiagnostic &AmbigDiag, 3631 const PartialDiagnostic &AmbigNote, 3632 const PartialDiagnostic &ConvDiag) { 3633 // We can't perform any more checking for type-dependent expressions. 3634 if (From->isTypeDependent()) 3635 return Owned(From); 3636 3637 // If the expression already has integral or enumeration type, we're golden. 3638 QualType T = From->getType(); 3639 if (T->isIntegralOrEnumerationType()) 3640 return Owned(From); 3641 3642 // FIXME: Check for missing '()' if T is a function type? 3643 3644 // If we don't have a class type in C++, there's no way we can get an 3645 // expression of integral or enumeration type. 3646 const RecordType *RecordTy = T->getAs<RecordType>(); 3647 if (!RecordTy || !getLangOptions().CPlusPlus) { 3648 Diag(Loc, NotIntDiag) 3649 << T << From->getSourceRange(); 3650 return Owned(From); 3651 } 3652 3653 // We must have a complete class type. 3654 if (RequireCompleteType(Loc, T, IncompleteDiag)) 3655 return Owned(From); 3656 3657 // Look for a conversion to an integral or enumeration type. 3658 UnresolvedSet<4> ViableConversions; 3659 UnresolvedSet<4> ExplicitConversions; 3660 const UnresolvedSetImpl *Conversions 3661 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 3662 3663 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3664 E = Conversions->end(); 3665 I != E; 3666 ++I) { 3667 if (CXXConversionDecl *Conversion 3668 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) 3669 if (Conversion->getConversionType().getNonReferenceType() 3670 ->isIntegralOrEnumerationType()) { 3671 if (Conversion->isExplicit()) 3672 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 3673 else 3674 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 3675 } 3676 } 3677 3678 switch (ViableConversions.size()) { 3679 case 0: 3680 if (ExplicitConversions.size() == 1) { 3681 DeclAccessPair Found = ExplicitConversions[0]; 3682 CXXConversionDecl *Conversion 3683 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3684 3685 // The user probably meant to invoke the given explicit 3686 // conversion; use it. 3687 QualType ConvTy 3688 = Conversion->getConversionType().getNonReferenceType(); 3689 std::string TypeStr; 3690 ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy); 3691 3692 Diag(Loc, ExplicitConvDiag) 3693 << T << ConvTy 3694 << FixItHint::CreateInsertion(From->getLocStart(), 3695 "static_cast<" + TypeStr + ">(") 3696 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 3697 ")"); 3698 Diag(Conversion->getLocation(), ExplicitConvNote) 3699 << ConvTy->isEnumeralType() << ConvTy; 3700 3701 // If we aren't in a SFINAE context, build a call to the 3702 // explicit conversion function. 3703 if (isSFINAEContext()) 3704 return ExprError(); 3705 3706 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3707 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion); 3708 if (Result.isInvalid()) 3709 return ExprError(); 3710 3711 From = Result.get(); 3712 } 3713 3714 // We'll complain below about a non-integral condition type. 3715 break; 3716 3717 case 1: { 3718 // Apply this conversion. 3719 DeclAccessPair Found = ViableConversions[0]; 3720 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3721 3722 CXXConversionDecl *Conversion 3723 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3724 QualType ConvTy 3725 = Conversion->getConversionType().getNonReferenceType(); 3726 if (ConvDiag.getDiagID()) { 3727 if (isSFINAEContext()) 3728 return ExprError(); 3729 3730 Diag(Loc, ConvDiag) 3731 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 3732 } 3733 3734 ExprResult Result = BuildCXXMemberCallExpr(From, Found, 3735 cast<CXXConversionDecl>(Found->getUnderlyingDecl())); 3736 if (Result.isInvalid()) 3737 return ExprError(); 3738 3739 From = Result.get(); 3740 break; 3741 } 3742 3743 default: 3744 Diag(Loc, AmbigDiag) 3745 << T << From->getSourceRange(); 3746 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 3747 CXXConversionDecl *Conv 3748 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 3749 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 3750 Diag(Conv->getLocation(), AmbigNote) 3751 << ConvTy->isEnumeralType() << ConvTy; 3752 } 3753 return Owned(From); 3754 } 3755 3756 if (!From->getType()->isIntegralOrEnumerationType()) 3757 Diag(Loc, NotIntDiag) 3758 << From->getType() << From->getSourceRange(); 3759 3760 return Owned(From); 3761} 3762 3763/// AddOverloadCandidate - Adds the given function to the set of 3764/// candidate functions, using the given function call arguments. If 3765/// @p SuppressUserConversions, then don't allow user-defined 3766/// conversions via constructors or conversion operators. 3767/// 3768/// \para PartialOverloading true if we are performing "partial" overloading 3769/// based on an incomplete set of function arguments. This feature is used by 3770/// code completion. 3771void 3772Sema::AddOverloadCandidate(FunctionDecl *Function, 3773 DeclAccessPair FoundDecl, 3774 Expr **Args, unsigned NumArgs, 3775 OverloadCandidateSet& CandidateSet, 3776 bool SuppressUserConversions, 3777 bool PartialOverloading) { 3778 const FunctionProtoType* Proto 3779 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 3780 assert(Proto && "Functions without a prototype cannot be overloaded"); 3781 assert(!Function->getDescribedFunctionTemplate() && 3782 "Use AddTemplateOverloadCandidate for function templates"); 3783 3784 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3785 if (!isa<CXXConstructorDecl>(Method)) { 3786 // If we get here, it's because we're calling a member function 3787 // that is named without a member access expression (e.g., 3788 // "this->f") that was either written explicitly or created 3789 // implicitly. This can happen with a qualified call to a member 3790 // function, e.g., X::f(). We use an empty type for the implied 3791 // object argument (C++ [over.call.func]p3), and the acting context 3792 // is irrelevant. 3793 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 3794 QualType(), Expr::Classification::makeSimpleLValue(), 3795 Args, NumArgs, CandidateSet, 3796 SuppressUserConversions); 3797 return; 3798 } 3799 // We treat a constructor like a non-member function, since its object 3800 // argument doesn't participate in overload resolution. 3801 } 3802 3803 if (!CandidateSet.isNewCandidate(Function)) 3804 return; 3805 3806 // Overload resolution is always an unevaluated context. 3807 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3808 3809 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 3810 // C++ [class.copy]p3: 3811 // A member function template is never instantiated to perform the copy 3812 // of a class object to an object of its class type. 3813 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 3814 if (NumArgs == 1 && 3815 Constructor->isSpecializationCopyingObject() && 3816 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 3817 IsDerivedFrom(Args[0]->getType(), ClassType))) 3818 return; 3819 } 3820 3821 // Add this candidate 3822 CandidateSet.push_back(OverloadCandidate()); 3823 OverloadCandidate& Candidate = CandidateSet.back(); 3824 Candidate.FoundDecl = FoundDecl; 3825 Candidate.Function = Function; 3826 Candidate.Viable = true; 3827 Candidate.IsSurrogate = false; 3828 Candidate.IgnoreObjectArgument = false; 3829 Candidate.ExplicitCallArguments = NumArgs; 3830 3831 unsigned NumArgsInProto = Proto->getNumArgs(); 3832 3833 // (C++ 13.3.2p2): A candidate function having fewer than m 3834 // parameters is viable only if it has an ellipsis in its parameter 3835 // list (8.3.5). 3836 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 3837 !Proto->isVariadic()) { 3838 Candidate.Viable = false; 3839 Candidate.FailureKind = ovl_fail_too_many_arguments; 3840 return; 3841 } 3842 3843 // (C++ 13.3.2p2): A candidate function having more than m parameters 3844 // is viable only if the (m+1)st parameter has a default argument 3845 // (8.3.6). For the purposes of overload resolution, the 3846 // parameter list is truncated on the right, so that there are 3847 // exactly m parameters. 3848 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 3849 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 3850 // Not enough arguments. 3851 Candidate.Viable = false; 3852 Candidate.FailureKind = ovl_fail_too_few_arguments; 3853 return; 3854 } 3855 3856 // Determine the implicit conversion sequences for each of the 3857 // arguments. 3858 Candidate.Conversions.resize(NumArgs); 3859 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3860 if (ArgIdx < NumArgsInProto) { 3861 // (C++ 13.3.2p3): for F to be a viable function, there shall 3862 // exist for each argument an implicit conversion sequence 3863 // (13.3.3.1) that converts that argument to the corresponding 3864 // parameter of F. 3865 QualType ParamType = Proto->getArgType(ArgIdx); 3866 Candidate.Conversions[ArgIdx] 3867 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3868 SuppressUserConversions, 3869 /*InOverloadResolution=*/true); 3870 if (Candidate.Conversions[ArgIdx].isBad()) { 3871 Candidate.Viable = false; 3872 Candidate.FailureKind = ovl_fail_bad_conversion; 3873 break; 3874 } 3875 } else { 3876 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3877 // argument for which there is no corresponding parameter is 3878 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3879 Candidate.Conversions[ArgIdx].setEllipsis(); 3880 } 3881 } 3882} 3883 3884/// \brief Add all of the function declarations in the given function set to 3885/// the overload canddiate set. 3886void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 3887 Expr **Args, unsigned NumArgs, 3888 OverloadCandidateSet& CandidateSet, 3889 bool SuppressUserConversions) { 3890 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 3891 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 3892 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3893 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 3894 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 3895 cast<CXXMethodDecl>(FD)->getParent(), 3896 Args[0]->getType(), Args[0]->Classify(Context), 3897 Args + 1, NumArgs - 1, 3898 CandidateSet, SuppressUserConversions); 3899 else 3900 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 3901 SuppressUserConversions); 3902 } else { 3903 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 3904 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 3905 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 3906 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 3907 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 3908 /*FIXME: explicit args */ 0, 3909 Args[0]->getType(), 3910 Args[0]->Classify(Context), 3911 Args + 1, NumArgs - 1, 3912 CandidateSet, 3913 SuppressUserConversions); 3914 else 3915 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 3916 /*FIXME: explicit args */ 0, 3917 Args, NumArgs, CandidateSet, 3918 SuppressUserConversions); 3919 } 3920 } 3921} 3922 3923/// AddMethodCandidate - Adds a named decl (which is some kind of 3924/// method) as a method candidate to the given overload set. 3925void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 3926 QualType ObjectType, 3927 Expr::Classification ObjectClassification, 3928 Expr **Args, unsigned NumArgs, 3929 OverloadCandidateSet& CandidateSet, 3930 bool SuppressUserConversions) { 3931 NamedDecl *Decl = FoundDecl.getDecl(); 3932 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 3933 3934 if (isa<UsingShadowDecl>(Decl)) 3935 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 3936 3937 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 3938 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 3939 "Expected a member function template"); 3940 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 3941 /*ExplicitArgs*/ 0, 3942 ObjectType, ObjectClassification, Args, NumArgs, 3943 CandidateSet, 3944 SuppressUserConversions); 3945 } else { 3946 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 3947 ObjectType, ObjectClassification, Args, NumArgs, 3948 CandidateSet, SuppressUserConversions); 3949 } 3950} 3951 3952/// AddMethodCandidate - Adds the given C++ member function to the set 3953/// of candidate functions, using the given function call arguments 3954/// and the object argument (@c Object). For example, in a call 3955/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 3956/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 3957/// allow user-defined conversions via constructors or conversion 3958/// operators. 3959void 3960Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 3961 CXXRecordDecl *ActingContext, QualType ObjectType, 3962 Expr::Classification ObjectClassification, 3963 Expr **Args, unsigned NumArgs, 3964 OverloadCandidateSet& CandidateSet, 3965 bool SuppressUserConversions) { 3966 const FunctionProtoType* Proto 3967 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 3968 assert(Proto && "Methods without a prototype cannot be overloaded"); 3969 assert(!isa<CXXConstructorDecl>(Method) && 3970 "Use AddOverloadCandidate for constructors"); 3971 3972 if (!CandidateSet.isNewCandidate(Method)) 3973 return; 3974 3975 // Overload resolution is always an unevaluated context. 3976 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3977 3978 // Add this candidate 3979 CandidateSet.push_back(OverloadCandidate()); 3980 OverloadCandidate& Candidate = CandidateSet.back(); 3981 Candidate.FoundDecl = FoundDecl; 3982 Candidate.Function = Method; 3983 Candidate.IsSurrogate = false; 3984 Candidate.IgnoreObjectArgument = false; 3985 Candidate.ExplicitCallArguments = NumArgs; 3986 3987 unsigned NumArgsInProto = Proto->getNumArgs(); 3988 3989 // (C++ 13.3.2p2): A candidate function having fewer than m 3990 // parameters is viable only if it has an ellipsis in its parameter 3991 // list (8.3.5). 3992 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3993 Candidate.Viable = false; 3994 Candidate.FailureKind = ovl_fail_too_many_arguments; 3995 return; 3996 } 3997 3998 // (C++ 13.3.2p2): A candidate function having more than m parameters 3999 // is viable only if the (m+1)st parameter has a default argument 4000 // (8.3.6). For the purposes of overload resolution, the 4001 // parameter list is truncated on the right, so that there are 4002 // exactly m parameters. 4003 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 4004 if (NumArgs < MinRequiredArgs) { 4005 // Not enough arguments. 4006 Candidate.Viable = false; 4007 Candidate.FailureKind = ovl_fail_too_few_arguments; 4008 return; 4009 } 4010 4011 Candidate.Viable = true; 4012 Candidate.Conversions.resize(NumArgs + 1); 4013 4014 if (Method->isStatic() || ObjectType.isNull()) 4015 // The implicit object argument is ignored. 4016 Candidate.IgnoreObjectArgument = true; 4017 else { 4018 // Determine the implicit conversion sequence for the object 4019 // parameter. 4020 Candidate.Conversions[0] 4021 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification, 4022 Method, ActingContext); 4023 if (Candidate.Conversions[0].isBad()) { 4024 Candidate.Viable = false; 4025 Candidate.FailureKind = ovl_fail_bad_conversion; 4026 return; 4027 } 4028 } 4029 4030 // Determine the implicit conversion sequences for each of the 4031 // arguments. 4032 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4033 if (ArgIdx < NumArgsInProto) { 4034 // (C++ 13.3.2p3): for F to be a viable function, there shall 4035 // exist for each argument an implicit conversion sequence 4036 // (13.3.3.1) that converts that argument to the corresponding 4037 // parameter of F. 4038 QualType ParamType = Proto->getArgType(ArgIdx); 4039 Candidate.Conversions[ArgIdx + 1] 4040 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4041 SuppressUserConversions, 4042 /*InOverloadResolution=*/true); 4043 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 4044 Candidate.Viable = false; 4045 Candidate.FailureKind = ovl_fail_bad_conversion; 4046 break; 4047 } 4048 } else { 4049 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4050 // argument for which there is no corresponding parameter is 4051 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4052 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 4053 } 4054 } 4055} 4056 4057/// \brief Add a C++ member function template as a candidate to the candidate 4058/// set, using template argument deduction to produce an appropriate member 4059/// function template specialization. 4060void 4061Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 4062 DeclAccessPair FoundDecl, 4063 CXXRecordDecl *ActingContext, 4064 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4065 QualType ObjectType, 4066 Expr::Classification ObjectClassification, 4067 Expr **Args, unsigned NumArgs, 4068 OverloadCandidateSet& CandidateSet, 4069 bool SuppressUserConversions) { 4070 if (!CandidateSet.isNewCandidate(MethodTmpl)) 4071 return; 4072 4073 // C++ [over.match.funcs]p7: 4074 // In each case where a candidate is a function template, candidate 4075 // function template specializations are generated using template argument 4076 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 4077 // candidate functions in the usual way.113) A given name can refer to one 4078 // or more function templates and also to a set of overloaded non-template 4079 // functions. In such a case, the candidate functions generated from each 4080 // function template are combined with the set of non-template candidate 4081 // functions. 4082 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4083 FunctionDecl *Specialization = 0; 4084 if (TemplateDeductionResult Result 4085 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 4086 Args, NumArgs, Specialization, Info)) { 4087 CandidateSet.push_back(OverloadCandidate()); 4088 OverloadCandidate &Candidate = CandidateSet.back(); 4089 Candidate.FoundDecl = FoundDecl; 4090 Candidate.Function = MethodTmpl->getTemplatedDecl(); 4091 Candidate.Viable = false; 4092 Candidate.FailureKind = ovl_fail_bad_deduction; 4093 Candidate.IsSurrogate = false; 4094 Candidate.IgnoreObjectArgument = false; 4095 Candidate.ExplicitCallArguments = NumArgs; 4096 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4097 Info); 4098 return; 4099 } 4100 4101 // Add the function template specialization produced by template argument 4102 // deduction as a candidate. 4103 assert(Specialization && "Missing member function template specialization?"); 4104 assert(isa<CXXMethodDecl>(Specialization) && 4105 "Specialization is not a member function?"); 4106 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 4107 ActingContext, ObjectType, ObjectClassification, 4108 Args, NumArgs, CandidateSet, SuppressUserConversions); 4109} 4110 4111/// \brief Add a C++ function template specialization as a candidate 4112/// in the candidate set, using template argument deduction to produce 4113/// an appropriate function template specialization. 4114void 4115Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 4116 DeclAccessPair FoundDecl, 4117 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4118 Expr **Args, unsigned NumArgs, 4119 OverloadCandidateSet& CandidateSet, 4120 bool SuppressUserConversions) { 4121 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 4122 return; 4123 4124 // C++ [over.match.funcs]p7: 4125 // In each case where a candidate is a function template, candidate 4126 // function template specializations are generated using template argument 4127 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 4128 // candidate functions in the usual way.113) A given name can refer to one 4129 // or more function templates and also to a set of overloaded non-template 4130 // functions. In such a case, the candidate functions generated from each 4131 // function template are combined with the set of non-template candidate 4132 // functions. 4133 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4134 FunctionDecl *Specialization = 0; 4135 if (TemplateDeductionResult Result 4136 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4137 Args, NumArgs, Specialization, Info)) { 4138 CandidateSet.push_back(OverloadCandidate()); 4139 OverloadCandidate &Candidate = CandidateSet.back(); 4140 Candidate.FoundDecl = FoundDecl; 4141 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 4142 Candidate.Viable = false; 4143 Candidate.FailureKind = ovl_fail_bad_deduction; 4144 Candidate.IsSurrogate = false; 4145 Candidate.IgnoreObjectArgument = false; 4146 Candidate.ExplicitCallArguments = NumArgs; 4147 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4148 Info); 4149 return; 4150 } 4151 4152 // Add the function template specialization produced by template argument 4153 // deduction as a candidate. 4154 assert(Specialization && "Missing function template specialization?"); 4155 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 4156 SuppressUserConversions); 4157} 4158 4159/// AddConversionCandidate - Add a C++ conversion function as a 4160/// candidate in the candidate set (C++ [over.match.conv], 4161/// C++ [over.match.copy]). From is the expression we're converting from, 4162/// and ToType is the type that we're eventually trying to convert to 4163/// (which may or may not be the same type as the type that the 4164/// conversion function produces). 4165void 4166Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 4167 DeclAccessPair FoundDecl, 4168 CXXRecordDecl *ActingContext, 4169 Expr *From, QualType ToType, 4170 OverloadCandidateSet& CandidateSet) { 4171 assert(!Conversion->getDescribedFunctionTemplate() && 4172 "Conversion function templates use AddTemplateConversionCandidate"); 4173 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 4174 if (!CandidateSet.isNewCandidate(Conversion)) 4175 return; 4176 4177 // Overload resolution is always an unevaluated context. 4178 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4179 4180 // Add this candidate 4181 CandidateSet.push_back(OverloadCandidate()); 4182 OverloadCandidate& Candidate = CandidateSet.back(); 4183 Candidate.FoundDecl = FoundDecl; 4184 Candidate.Function = Conversion; 4185 Candidate.IsSurrogate = false; 4186 Candidate.IgnoreObjectArgument = false; 4187 Candidate.FinalConversion.setAsIdentityConversion(); 4188 Candidate.FinalConversion.setFromType(ConvType); 4189 Candidate.FinalConversion.setAllToTypes(ToType); 4190 Candidate.Viable = true; 4191 Candidate.Conversions.resize(1); 4192 Candidate.ExplicitCallArguments = 1; 4193 4194 // C++ [over.match.funcs]p4: 4195 // For conversion functions, the function is considered to be a member of 4196 // the class of the implicit implied object argument for the purpose of 4197 // defining the type of the implicit object parameter. 4198 // 4199 // Determine the implicit conversion sequence for the implicit 4200 // object parameter. 4201 QualType ImplicitParamType = From->getType(); 4202 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 4203 ImplicitParamType = FromPtrType->getPointeeType(); 4204 CXXRecordDecl *ConversionContext 4205 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 4206 4207 Candidate.Conversions[0] 4208 = TryObjectArgumentInitialization(*this, From->getType(), 4209 From->Classify(Context), 4210 Conversion, ConversionContext); 4211 4212 if (Candidate.Conversions[0].isBad()) { 4213 Candidate.Viable = false; 4214 Candidate.FailureKind = ovl_fail_bad_conversion; 4215 return; 4216 } 4217 4218 // We won't go through a user-define type conversion function to convert a 4219 // derived to base as such conversions are given Conversion Rank. They only 4220 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 4221 QualType FromCanon 4222 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 4223 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 4224 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 4225 Candidate.Viable = false; 4226 Candidate.FailureKind = ovl_fail_trivial_conversion; 4227 return; 4228 } 4229 4230 // To determine what the conversion from the result of calling the 4231 // conversion function to the type we're eventually trying to 4232 // convert to (ToType), we need to synthesize a call to the 4233 // conversion function and attempt copy initialization from it. This 4234 // makes sure that we get the right semantics with respect to 4235 // lvalues/rvalues and the type. Fortunately, we can allocate this 4236 // call on the stack and we don't need its arguments to be 4237 // well-formed. 4238 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 4239 VK_LValue, From->getLocStart()); 4240 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 4241 Context.getPointerType(Conversion->getType()), 4242 CK_FunctionToPointerDecay, 4243 &ConversionRef, VK_RValue); 4244 4245 QualType CallResultType 4246 = Conversion->getConversionType().getNonLValueExprType(Context); 4247 if (RequireCompleteType(From->getLocStart(), CallResultType, 0)) { 4248 Candidate.Viable = false; 4249 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4250 return; 4251 } 4252 4253 ExprValueKind VK = Expr::getValueKindForType(Conversion->getConversionType()); 4254 4255 // Note that it is safe to allocate CallExpr on the stack here because 4256 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 4257 // allocator). 4258 CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK, 4259 From->getLocStart()); 4260 ImplicitConversionSequence ICS = 4261 TryCopyInitialization(*this, &Call, ToType, 4262 /*SuppressUserConversions=*/true, 4263 /*InOverloadResolution=*/false); 4264 4265 switch (ICS.getKind()) { 4266 case ImplicitConversionSequence::StandardConversion: 4267 Candidate.FinalConversion = ICS.Standard; 4268 4269 // C++ [over.ics.user]p3: 4270 // If the user-defined conversion is specified by a specialization of a 4271 // conversion function template, the second standard conversion sequence 4272 // shall have exact match rank. 4273 if (Conversion->getPrimaryTemplate() && 4274 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 4275 Candidate.Viable = false; 4276 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 4277 } 4278 4279 // C++0x [dcl.init.ref]p5: 4280 // In the second case, if the reference is an rvalue reference and 4281 // the second standard conversion sequence of the user-defined 4282 // conversion sequence includes an lvalue-to-rvalue conversion, the 4283 // program is ill-formed. 4284 if (ToType->isRValueReferenceType() && 4285 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 4286 Candidate.Viable = false; 4287 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4288 } 4289 break; 4290 4291 case ImplicitConversionSequence::BadConversion: 4292 Candidate.Viable = false; 4293 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4294 break; 4295 4296 default: 4297 assert(false && 4298 "Can only end up with a standard conversion sequence or failure"); 4299 } 4300} 4301 4302/// \brief Adds a conversion function template specialization 4303/// candidate to the overload set, using template argument deduction 4304/// to deduce the template arguments of the conversion function 4305/// template from the type that we are converting to (C++ 4306/// [temp.deduct.conv]). 4307void 4308Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 4309 DeclAccessPair FoundDecl, 4310 CXXRecordDecl *ActingDC, 4311 Expr *From, QualType ToType, 4312 OverloadCandidateSet &CandidateSet) { 4313 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 4314 "Only conversion function templates permitted here"); 4315 4316 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 4317 return; 4318 4319 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4320 CXXConversionDecl *Specialization = 0; 4321 if (TemplateDeductionResult Result 4322 = DeduceTemplateArguments(FunctionTemplate, ToType, 4323 Specialization, Info)) { 4324 CandidateSet.push_back(OverloadCandidate()); 4325 OverloadCandidate &Candidate = CandidateSet.back(); 4326 Candidate.FoundDecl = FoundDecl; 4327 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 4328 Candidate.Viable = false; 4329 Candidate.FailureKind = ovl_fail_bad_deduction; 4330 Candidate.IsSurrogate = false; 4331 Candidate.IgnoreObjectArgument = false; 4332 Candidate.ExplicitCallArguments = 1; 4333 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4334 Info); 4335 return; 4336 } 4337 4338 // Add the conversion function template specialization produced by 4339 // template argument deduction as a candidate. 4340 assert(Specialization && "Missing function template specialization?"); 4341 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 4342 CandidateSet); 4343} 4344 4345/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 4346/// converts the given @c Object to a function pointer via the 4347/// conversion function @c Conversion, and then attempts to call it 4348/// with the given arguments (C++ [over.call.object]p2-4). Proto is 4349/// the type of function that we'll eventually be calling. 4350void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 4351 DeclAccessPair FoundDecl, 4352 CXXRecordDecl *ActingContext, 4353 const FunctionProtoType *Proto, 4354 Expr *Object, 4355 Expr **Args, unsigned NumArgs, 4356 OverloadCandidateSet& CandidateSet) { 4357 if (!CandidateSet.isNewCandidate(Conversion)) 4358 return; 4359 4360 // Overload resolution is always an unevaluated context. 4361 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4362 4363 CandidateSet.push_back(OverloadCandidate()); 4364 OverloadCandidate& Candidate = CandidateSet.back(); 4365 Candidate.FoundDecl = FoundDecl; 4366 Candidate.Function = 0; 4367 Candidate.Surrogate = Conversion; 4368 Candidate.Viable = true; 4369 Candidate.IsSurrogate = true; 4370 Candidate.IgnoreObjectArgument = false; 4371 Candidate.Conversions.resize(NumArgs + 1); 4372 Candidate.ExplicitCallArguments = NumArgs; 4373 4374 // Determine the implicit conversion sequence for the implicit 4375 // object parameter. 4376 ImplicitConversionSequence ObjectInit 4377 = TryObjectArgumentInitialization(*this, Object->getType(), 4378 Object->Classify(Context), 4379 Conversion, ActingContext); 4380 if (ObjectInit.isBad()) { 4381 Candidate.Viable = false; 4382 Candidate.FailureKind = ovl_fail_bad_conversion; 4383 Candidate.Conversions[0] = ObjectInit; 4384 return; 4385 } 4386 4387 // The first conversion is actually a user-defined conversion whose 4388 // first conversion is ObjectInit's standard conversion (which is 4389 // effectively a reference binding). Record it as such. 4390 Candidate.Conversions[0].setUserDefined(); 4391 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 4392 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 4393 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 4394 Candidate.Conversions[0].UserDefined.FoundConversionFunction 4395 = FoundDecl.getDecl(); 4396 Candidate.Conversions[0].UserDefined.After 4397 = Candidate.Conversions[0].UserDefined.Before; 4398 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 4399 4400 // Find the 4401 unsigned NumArgsInProto = Proto->getNumArgs(); 4402 4403 // (C++ 13.3.2p2): A candidate function having fewer than m 4404 // parameters is viable only if it has an ellipsis in its parameter 4405 // list (8.3.5). 4406 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 4407 Candidate.Viable = false; 4408 Candidate.FailureKind = ovl_fail_too_many_arguments; 4409 return; 4410 } 4411 4412 // Function types don't have any default arguments, so just check if 4413 // we have enough arguments. 4414 if (NumArgs < NumArgsInProto) { 4415 // Not enough arguments. 4416 Candidate.Viable = false; 4417 Candidate.FailureKind = ovl_fail_too_few_arguments; 4418 return; 4419 } 4420 4421 // Determine the implicit conversion sequences for each of the 4422 // arguments. 4423 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4424 if (ArgIdx < NumArgsInProto) { 4425 // (C++ 13.3.2p3): for F to be a viable function, there shall 4426 // exist for each argument an implicit conversion sequence 4427 // (13.3.3.1) that converts that argument to the corresponding 4428 // parameter of F. 4429 QualType ParamType = Proto->getArgType(ArgIdx); 4430 Candidate.Conversions[ArgIdx + 1] 4431 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4432 /*SuppressUserConversions=*/false, 4433 /*InOverloadResolution=*/false); 4434 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 4435 Candidate.Viable = false; 4436 Candidate.FailureKind = ovl_fail_bad_conversion; 4437 break; 4438 } 4439 } else { 4440 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4441 // argument for which there is no corresponding parameter is 4442 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4443 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 4444 } 4445 } 4446} 4447 4448/// \brief Add overload candidates for overloaded operators that are 4449/// member functions. 4450/// 4451/// Add the overloaded operator candidates that are member functions 4452/// for the operator Op that was used in an operator expression such 4453/// as "x Op y". , Args/NumArgs provides the operator arguments, and 4454/// CandidateSet will store the added overload candidates. (C++ 4455/// [over.match.oper]). 4456void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 4457 SourceLocation OpLoc, 4458 Expr **Args, unsigned NumArgs, 4459 OverloadCandidateSet& CandidateSet, 4460 SourceRange OpRange) { 4461 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4462 4463 // C++ [over.match.oper]p3: 4464 // For a unary operator @ with an operand of a type whose 4465 // cv-unqualified version is T1, and for a binary operator @ with 4466 // a left operand of a type whose cv-unqualified version is T1 and 4467 // a right operand of a type whose cv-unqualified version is T2, 4468 // three sets of candidate functions, designated member 4469 // candidates, non-member candidates and built-in candidates, are 4470 // constructed as follows: 4471 QualType T1 = Args[0]->getType(); 4472 4473 // -- If T1 is a class type, the set of member candidates is the 4474 // result of the qualified lookup of T1::operator@ 4475 // (13.3.1.1.1); otherwise, the set of member candidates is 4476 // empty. 4477 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 4478 // Complete the type if it can be completed. Otherwise, we're done. 4479 if (RequireCompleteType(OpLoc, T1, PDiag())) 4480 return; 4481 4482 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 4483 LookupQualifiedName(Operators, T1Rec->getDecl()); 4484 Operators.suppressDiagnostics(); 4485 4486 for (LookupResult::iterator Oper = Operators.begin(), 4487 OperEnd = Operators.end(); 4488 Oper != OperEnd; 4489 ++Oper) 4490 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 4491 Args[0]->Classify(Context), Args + 1, NumArgs - 1, 4492 CandidateSet, 4493 /* SuppressUserConversions = */ false); 4494 } 4495} 4496 4497/// AddBuiltinCandidate - Add a candidate for a built-in 4498/// operator. ResultTy and ParamTys are the result and parameter types 4499/// of the built-in candidate, respectively. Args and NumArgs are the 4500/// arguments being passed to the candidate. IsAssignmentOperator 4501/// should be true when this built-in candidate is an assignment 4502/// operator. NumContextualBoolArguments is the number of arguments 4503/// (at the beginning of the argument list) that will be contextually 4504/// converted to bool. 4505void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 4506 Expr **Args, unsigned NumArgs, 4507 OverloadCandidateSet& CandidateSet, 4508 bool IsAssignmentOperator, 4509 unsigned NumContextualBoolArguments) { 4510 // Overload resolution is always an unevaluated context. 4511 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4512 4513 // Add this candidate 4514 CandidateSet.push_back(OverloadCandidate()); 4515 OverloadCandidate& Candidate = CandidateSet.back(); 4516 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 4517 Candidate.Function = 0; 4518 Candidate.IsSurrogate = false; 4519 Candidate.IgnoreObjectArgument = false; 4520 Candidate.BuiltinTypes.ResultTy = ResultTy; 4521 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4522 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 4523 4524 // Determine the implicit conversion sequences for each of the 4525 // arguments. 4526 Candidate.Viable = true; 4527 Candidate.Conversions.resize(NumArgs); 4528 Candidate.ExplicitCallArguments = NumArgs; 4529 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4530 // C++ [over.match.oper]p4: 4531 // For the built-in assignment operators, conversions of the 4532 // left operand are restricted as follows: 4533 // -- no temporaries are introduced to hold the left operand, and 4534 // -- no user-defined conversions are applied to the left 4535 // operand to achieve a type match with the left-most 4536 // parameter of a built-in candidate. 4537 // 4538 // We block these conversions by turning off user-defined 4539 // conversions, since that is the only way that initialization of 4540 // a reference to a non-class type can occur from something that 4541 // is not of the same type. 4542 if (ArgIdx < NumContextualBoolArguments) { 4543 assert(ParamTys[ArgIdx] == Context.BoolTy && 4544 "Contextual conversion to bool requires bool type"); 4545 Candidate.Conversions[ArgIdx] 4546 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 4547 } else { 4548 Candidate.Conversions[ArgIdx] 4549 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 4550 ArgIdx == 0 && IsAssignmentOperator, 4551 /*InOverloadResolution=*/false); 4552 } 4553 if (Candidate.Conversions[ArgIdx].isBad()) { 4554 Candidate.Viable = false; 4555 Candidate.FailureKind = ovl_fail_bad_conversion; 4556 break; 4557 } 4558 } 4559} 4560 4561/// BuiltinCandidateTypeSet - A set of types that will be used for the 4562/// candidate operator functions for built-in operators (C++ 4563/// [over.built]). The types are separated into pointer types and 4564/// enumeration types. 4565class BuiltinCandidateTypeSet { 4566 /// TypeSet - A set of types. 4567 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 4568 4569 /// PointerTypes - The set of pointer types that will be used in the 4570 /// built-in candidates. 4571 TypeSet PointerTypes; 4572 4573 /// MemberPointerTypes - The set of member pointer types that will be 4574 /// used in the built-in candidates. 4575 TypeSet MemberPointerTypes; 4576 4577 /// EnumerationTypes - The set of enumeration types that will be 4578 /// used in the built-in candidates. 4579 TypeSet EnumerationTypes; 4580 4581 /// \brief The set of vector types that will be used in the built-in 4582 /// candidates. 4583 TypeSet VectorTypes; 4584 4585 /// \brief A flag indicating non-record types are viable candidates 4586 bool HasNonRecordTypes; 4587 4588 /// \brief A flag indicating whether either arithmetic or enumeration types 4589 /// were present in the candidate set. 4590 bool HasArithmeticOrEnumeralTypes; 4591 4592 /// Sema - The semantic analysis instance where we are building the 4593 /// candidate type set. 4594 Sema &SemaRef; 4595 4596 /// Context - The AST context in which we will build the type sets. 4597 ASTContext &Context; 4598 4599 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4600 const Qualifiers &VisibleQuals); 4601 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 4602 4603public: 4604 /// iterator - Iterates through the types that are part of the set. 4605 typedef TypeSet::iterator iterator; 4606 4607 BuiltinCandidateTypeSet(Sema &SemaRef) 4608 : HasNonRecordTypes(false), 4609 HasArithmeticOrEnumeralTypes(false), 4610 SemaRef(SemaRef), 4611 Context(SemaRef.Context) { } 4612 4613 void AddTypesConvertedFrom(QualType Ty, 4614 SourceLocation Loc, 4615 bool AllowUserConversions, 4616 bool AllowExplicitConversions, 4617 const Qualifiers &VisibleTypeConversionsQuals); 4618 4619 /// pointer_begin - First pointer type found; 4620 iterator pointer_begin() { return PointerTypes.begin(); } 4621 4622 /// pointer_end - Past the last pointer type found; 4623 iterator pointer_end() { return PointerTypes.end(); } 4624 4625 /// member_pointer_begin - First member pointer type found; 4626 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 4627 4628 /// member_pointer_end - Past the last member pointer type found; 4629 iterator member_pointer_end() { return MemberPointerTypes.end(); } 4630 4631 /// enumeration_begin - First enumeration type found; 4632 iterator enumeration_begin() { return EnumerationTypes.begin(); } 4633 4634 /// enumeration_end - Past the last enumeration type found; 4635 iterator enumeration_end() { return EnumerationTypes.end(); } 4636 4637 iterator vector_begin() { return VectorTypes.begin(); } 4638 iterator vector_end() { return VectorTypes.end(); } 4639 4640 bool hasNonRecordTypes() { return HasNonRecordTypes; } 4641 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 4642}; 4643 4644/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 4645/// the set of pointer types along with any more-qualified variants of 4646/// that type. For example, if @p Ty is "int const *", this routine 4647/// will add "int const *", "int const volatile *", "int const 4648/// restrict *", and "int const volatile restrict *" to the set of 4649/// pointer types. Returns true if the add of @p Ty itself succeeded, 4650/// false otherwise. 4651/// 4652/// FIXME: what to do about extended qualifiers? 4653bool 4654BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4655 const Qualifiers &VisibleQuals) { 4656 4657 // Insert this type. 4658 if (!PointerTypes.insert(Ty)) 4659 return false; 4660 4661 QualType PointeeTy; 4662 const PointerType *PointerTy = Ty->getAs<PointerType>(); 4663 bool buildObjCPtr = false; 4664 if (!PointerTy) { 4665 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) { 4666 PointeeTy = PTy->getPointeeType(); 4667 buildObjCPtr = true; 4668 } 4669 else 4670 assert(false && "type was not a pointer type!"); 4671 } 4672 else 4673 PointeeTy = PointerTy->getPointeeType(); 4674 4675 // Don't add qualified variants of arrays. For one, they're not allowed 4676 // (the qualifier would sink to the element type), and for another, the 4677 // only overload situation where it matters is subscript or pointer +- int, 4678 // and those shouldn't have qualifier variants anyway. 4679 if (PointeeTy->isArrayType()) 4680 return true; 4681 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4682 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 4683 BaseCVR = Array->getElementType().getCVRQualifiers(); 4684 bool hasVolatile = VisibleQuals.hasVolatile(); 4685 bool hasRestrict = VisibleQuals.hasRestrict(); 4686 4687 // Iterate through all strict supersets of BaseCVR. 4688 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4689 if ((CVR | BaseCVR) != CVR) continue; 4690 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 4691 // in the types. 4692 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 4693 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 4694 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4695 if (!buildObjCPtr) 4696 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 4697 else 4698 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); 4699 } 4700 4701 return true; 4702} 4703 4704/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 4705/// to the set of pointer types along with any more-qualified variants of 4706/// that type. For example, if @p Ty is "int const *", this routine 4707/// will add "int const *", "int const volatile *", "int const 4708/// restrict *", and "int const volatile restrict *" to the set of 4709/// pointer types. Returns true if the add of @p Ty itself succeeded, 4710/// false otherwise. 4711/// 4712/// FIXME: what to do about extended qualifiers? 4713bool 4714BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 4715 QualType Ty) { 4716 // Insert this type. 4717 if (!MemberPointerTypes.insert(Ty)) 4718 return false; 4719 4720 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 4721 assert(PointerTy && "type was not a member pointer type!"); 4722 4723 QualType PointeeTy = PointerTy->getPointeeType(); 4724 // Don't add qualified variants of arrays. For one, they're not allowed 4725 // (the qualifier would sink to the element type), and for another, the 4726 // only overload situation where it matters is subscript or pointer +- int, 4727 // and those shouldn't have qualifier variants anyway. 4728 if (PointeeTy->isArrayType()) 4729 return true; 4730 const Type *ClassTy = PointerTy->getClass(); 4731 4732 // Iterate through all strict supersets of the pointee type's CVR 4733 // qualifiers. 4734 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4735 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4736 if ((CVR | BaseCVR) != CVR) continue; 4737 4738 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4739 MemberPointerTypes.insert( 4740 Context.getMemberPointerType(QPointeeTy, ClassTy)); 4741 } 4742 4743 return true; 4744} 4745 4746/// AddTypesConvertedFrom - Add each of the types to which the type @p 4747/// Ty can be implicit converted to the given set of @p Types. We're 4748/// primarily interested in pointer types and enumeration types. We also 4749/// take member pointer types, for the conditional operator. 4750/// AllowUserConversions is true if we should look at the conversion 4751/// functions of a class type, and AllowExplicitConversions if we 4752/// should also include the explicit conversion functions of a class 4753/// type. 4754void 4755BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 4756 SourceLocation Loc, 4757 bool AllowUserConversions, 4758 bool AllowExplicitConversions, 4759 const Qualifiers &VisibleQuals) { 4760 // Only deal with canonical types. 4761 Ty = Context.getCanonicalType(Ty); 4762 4763 // Look through reference types; they aren't part of the type of an 4764 // expression for the purposes of conversions. 4765 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 4766 Ty = RefTy->getPointeeType(); 4767 4768 // If we're dealing with an array type, decay to the pointer. 4769 if (Ty->isArrayType()) 4770 Ty = SemaRef.Context.getArrayDecayedType(Ty); 4771 4772 // Otherwise, we don't care about qualifiers on the type. 4773 Ty = Ty.getLocalUnqualifiedType(); 4774 4775 // Flag if we ever add a non-record type. 4776 const RecordType *TyRec = Ty->getAs<RecordType>(); 4777 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 4778 4779 // Flag if we encounter an arithmetic type. 4780 HasArithmeticOrEnumeralTypes = 4781 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 4782 4783 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 4784 PointerTypes.insert(Ty); 4785 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 4786 // Insert our type, and its more-qualified variants, into the set 4787 // of types. 4788 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 4789 return; 4790 } else if (Ty->isMemberPointerType()) { 4791 // Member pointers are far easier, since the pointee can't be converted. 4792 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 4793 return; 4794 } else if (Ty->isEnumeralType()) { 4795 HasArithmeticOrEnumeralTypes = true; 4796 EnumerationTypes.insert(Ty); 4797 } else if (Ty->isVectorType()) { 4798 // We treat vector types as arithmetic types in many contexts as an 4799 // extension. 4800 HasArithmeticOrEnumeralTypes = true; 4801 VectorTypes.insert(Ty); 4802 } else if (AllowUserConversions && TyRec) { 4803 // No conversion functions in incomplete types. 4804 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) 4805 return; 4806 4807 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4808 const UnresolvedSetImpl *Conversions 4809 = ClassDecl->getVisibleConversionFunctions(); 4810 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4811 E = Conversions->end(); I != E; ++I) { 4812 NamedDecl *D = I.getDecl(); 4813 if (isa<UsingShadowDecl>(D)) 4814 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4815 4816 // Skip conversion function templates; they don't tell us anything 4817 // about which builtin types we can convert to. 4818 if (isa<FunctionTemplateDecl>(D)) 4819 continue; 4820 4821 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 4822 if (AllowExplicitConversions || !Conv->isExplicit()) { 4823 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 4824 VisibleQuals); 4825 } 4826 } 4827 } 4828} 4829 4830/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 4831/// the volatile- and non-volatile-qualified assignment operators for the 4832/// given type to the candidate set. 4833static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 4834 QualType T, 4835 Expr **Args, 4836 unsigned NumArgs, 4837 OverloadCandidateSet &CandidateSet) { 4838 QualType ParamTypes[2]; 4839 4840 // T& operator=(T&, T) 4841 ParamTypes[0] = S.Context.getLValueReferenceType(T); 4842 ParamTypes[1] = T; 4843 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4844 /*IsAssignmentOperator=*/true); 4845 4846 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 4847 // volatile T& operator=(volatile T&, T) 4848 ParamTypes[0] 4849 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 4850 ParamTypes[1] = T; 4851 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4852 /*IsAssignmentOperator=*/true); 4853 } 4854} 4855 4856/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 4857/// if any, found in visible type conversion functions found in ArgExpr's type. 4858static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 4859 Qualifiers VRQuals; 4860 const RecordType *TyRec; 4861 if (const MemberPointerType *RHSMPType = 4862 ArgExpr->getType()->getAs<MemberPointerType>()) 4863 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 4864 else 4865 TyRec = ArgExpr->getType()->getAs<RecordType>(); 4866 if (!TyRec) { 4867 // Just to be safe, assume the worst case. 4868 VRQuals.addVolatile(); 4869 VRQuals.addRestrict(); 4870 return VRQuals; 4871 } 4872 4873 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4874 if (!ClassDecl->hasDefinition()) 4875 return VRQuals; 4876 4877 const UnresolvedSetImpl *Conversions = 4878 ClassDecl->getVisibleConversionFunctions(); 4879 4880 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4881 E = Conversions->end(); I != E; ++I) { 4882 NamedDecl *D = I.getDecl(); 4883 if (isa<UsingShadowDecl>(D)) 4884 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4885 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 4886 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 4887 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 4888 CanTy = ResTypeRef->getPointeeType(); 4889 // Need to go down the pointer/mempointer chain and add qualifiers 4890 // as see them. 4891 bool done = false; 4892 while (!done) { 4893 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 4894 CanTy = ResTypePtr->getPointeeType(); 4895 else if (const MemberPointerType *ResTypeMPtr = 4896 CanTy->getAs<MemberPointerType>()) 4897 CanTy = ResTypeMPtr->getPointeeType(); 4898 else 4899 done = true; 4900 if (CanTy.isVolatileQualified()) 4901 VRQuals.addVolatile(); 4902 if (CanTy.isRestrictQualified()) 4903 VRQuals.addRestrict(); 4904 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 4905 return VRQuals; 4906 } 4907 } 4908 } 4909 return VRQuals; 4910} 4911 4912namespace { 4913 4914/// \brief Helper class to manage the addition of builtin operator overload 4915/// candidates. It provides shared state and utility methods used throughout 4916/// the process, as well as a helper method to add each group of builtin 4917/// operator overloads from the standard to a candidate set. 4918class BuiltinOperatorOverloadBuilder { 4919 // Common instance state available to all overload candidate addition methods. 4920 Sema &S; 4921 Expr **Args; 4922 unsigned NumArgs; 4923 Qualifiers VisibleTypeConversionsQuals; 4924 bool HasArithmeticOrEnumeralCandidateType; 4925 llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 4926 OverloadCandidateSet &CandidateSet; 4927 4928 // Define some constants used to index and iterate over the arithemetic types 4929 // provided via the getArithmeticType() method below. 4930 // The "promoted arithmetic types" are the arithmetic 4931 // types are that preserved by promotion (C++ [over.built]p2). 4932 static const unsigned FirstIntegralType = 3; 4933 static const unsigned LastIntegralType = 18; 4934 static const unsigned FirstPromotedIntegralType = 3, 4935 LastPromotedIntegralType = 9; 4936 static const unsigned FirstPromotedArithmeticType = 0, 4937 LastPromotedArithmeticType = 9; 4938 static const unsigned NumArithmeticTypes = 18; 4939 4940 /// \brief Get the canonical type for a given arithmetic type index. 4941 CanQualType getArithmeticType(unsigned index) { 4942 assert(index < NumArithmeticTypes); 4943 static CanQualType ASTContext::* const 4944 ArithmeticTypes[NumArithmeticTypes] = { 4945 // Start of promoted types. 4946 &ASTContext::FloatTy, 4947 &ASTContext::DoubleTy, 4948 &ASTContext::LongDoubleTy, 4949 4950 // Start of integral types. 4951 &ASTContext::IntTy, 4952 &ASTContext::LongTy, 4953 &ASTContext::LongLongTy, 4954 &ASTContext::UnsignedIntTy, 4955 &ASTContext::UnsignedLongTy, 4956 &ASTContext::UnsignedLongLongTy, 4957 // End of promoted types. 4958 4959 &ASTContext::BoolTy, 4960 &ASTContext::CharTy, 4961 &ASTContext::WCharTy, 4962 &ASTContext::Char16Ty, 4963 &ASTContext::Char32Ty, 4964 &ASTContext::SignedCharTy, 4965 &ASTContext::ShortTy, 4966 &ASTContext::UnsignedCharTy, 4967 &ASTContext::UnsignedShortTy, 4968 // End of integral types. 4969 // FIXME: What about complex? 4970 }; 4971 return S.Context.*ArithmeticTypes[index]; 4972 } 4973 4974 /// \brief Gets the canonical type resulting from the usual arithemetic 4975 /// converions for the given arithmetic types. 4976 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) { 4977 // Accelerator table for performing the usual arithmetic conversions. 4978 // The rules are basically: 4979 // - if either is floating-point, use the wider floating-point 4980 // - if same signedness, use the higher rank 4981 // - if same size, use unsigned of the higher rank 4982 // - use the larger type 4983 // These rules, together with the axiom that higher ranks are 4984 // never smaller, are sufficient to precompute all of these results 4985 // *except* when dealing with signed types of higher rank. 4986 // (we could precompute SLL x UI for all known platforms, but it's 4987 // better not to make any assumptions). 4988 enum PromotedType { 4989 Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1 4990 }; 4991 static PromotedType ConversionsTable[LastPromotedArithmeticType] 4992 [LastPromotedArithmeticType] = { 4993 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt }, 4994 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl }, 4995 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, 4996 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL }, 4997 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL }, 4998 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL }, 4999 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL }, 5000 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL }, 5001 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL }, 5002 }; 5003 5004 assert(L < LastPromotedArithmeticType); 5005 assert(R < LastPromotedArithmeticType); 5006 int Idx = ConversionsTable[L][R]; 5007 5008 // Fast path: the table gives us a concrete answer. 5009 if (Idx != Dep) return getArithmeticType(Idx); 5010 5011 // Slow path: we need to compare widths. 5012 // An invariant is that the signed type has higher rank. 5013 CanQualType LT = getArithmeticType(L), 5014 RT = getArithmeticType(R); 5015 unsigned LW = S.Context.getIntWidth(LT), 5016 RW = S.Context.getIntWidth(RT); 5017 5018 // If they're different widths, use the signed type. 5019 if (LW > RW) return LT; 5020 else if (LW < RW) return RT; 5021 5022 // Otherwise, use the unsigned type of the signed type's rank. 5023 if (L == SL || R == SL) return S.Context.UnsignedLongTy; 5024 assert(L == SLL || R == SLL); 5025 return S.Context.UnsignedLongLongTy; 5026 } 5027 5028 /// \brief Helper method to factor out the common pattern of adding overloads 5029 /// for '++' and '--' builtin operators. 5030 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 5031 bool HasVolatile) { 5032 QualType ParamTypes[2] = { 5033 S.Context.getLValueReferenceType(CandidateTy), 5034 S.Context.IntTy 5035 }; 5036 5037 // Non-volatile version. 5038 if (NumArgs == 1) 5039 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 5040 else 5041 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 5042 5043 // Use a heuristic to reduce number of builtin candidates in the set: 5044 // add volatile version only if there are conversions to a volatile type. 5045 if (HasVolatile) { 5046 ParamTypes[0] = 5047 S.Context.getLValueReferenceType( 5048 S.Context.getVolatileType(CandidateTy)); 5049 if (NumArgs == 1) 5050 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 5051 else 5052 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 5053 } 5054 } 5055 5056public: 5057 BuiltinOperatorOverloadBuilder( 5058 Sema &S, Expr **Args, unsigned NumArgs, 5059 Qualifiers VisibleTypeConversionsQuals, 5060 bool HasArithmeticOrEnumeralCandidateType, 5061 llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 5062 OverloadCandidateSet &CandidateSet) 5063 : S(S), Args(Args), NumArgs(NumArgs), 5064 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 5065 HasArithmeticOrEnumeralCandidateType( 5066 HasArithmeticOrEnumeralCandidateType), 5067 CandidateTypes(CandidateTypes), 5068 CandidateSet(CandidateSet) { 5069 // Validate some of our static helper constants in debug builds. 5070 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy && 5071 "Invalid first promoted integral type"); 5072 assert(getArithmeticType(LastPromotedIntegralType - 1) 5073 == S.Context.UnsignedLongLongTy && 5074 "Invalid last promoted integral type"); 5075 assert(getArithmeticType(FirstPromotedArithmeticType) 5076 == S.Context.FloatTy && 5077 "Invalid first promoted arithmetic type"); 5078 assert(getArithmeticType(LastPromotedArithmeticType - 1) 5079 == S.Context.UnsignedLongLongTy && 5080 "Invalid last promoted arithmetic type"); 5081 } 5082 5083 // C++ [over.built]p3: 5084 // 5085 // For every pair (T, VQ), where T is an arithmetic type, and VQ 5086 // is either volatile or empty, there exist candidate operator 5087 // functions of the form 5088 // 5089 // VQ T& operator++(VQ T&); 5090 // T operator++(VQ T&, int); 5091 // 5092 // C++ [over.built]p4: 5093 // 5094 // For every pair (T, VQ), where T is an arithmetic type other 5095 // than bool, and VQ is either volatile or empty, there exist 5096 // candidate operator functions of the form 5097 // 5098 // VQ T& operator--(VQ T&); 5099 // T operator--(VQ T&, int); 5100 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 5101 if (!HasArithmeticOrEnumeralCandidateType) 5102 return; 5103 5104 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 5105 Arith < NumArithmeticTypes; ++Arith) { 5106 addPlusPlusMinusMinusStyleOverloads( 5107 getArithmeticType(Arith), 5108 VisibleTypeConversionsQuals.hasVolatile()); 5109 } 5110 } 5111 5112 // C++ [over.built]p5: 5113 // 5114 // For every pair (T, VQ), where T is a cv-qualified or 5115 // cv-unqualified object type, and VQ is either volatile or 5116 // empty, there exist candidate operator functions of the form 5117 // 5118 // T*VQ& operator++(T*VQ&); 5119 // T*VQ& operator--(T*VQ&); 5120 // T* operator++(T*VQ&, int); 5121 // T* operator--(T*VQ&, int); 5122 void addPlusPlusMinusMinusPointerOverloads() { 5123 for (BuiltinCandidateTypeSet::iterator 5124 Ptr = CandidateTypes[0].pointer_begin(), 5125 PtrEnd = CandidateTypes[0].pointer_end(); 5126 Ptr != PtrEnd; ++Ptr) { 5127 // Skip pointer types that aren't pointers to object types. 5128 if (!(*Ptr)->getPointeeType()->isObjectType()) 5129 continue; 5130 5131 addPlusPlusMinusMinusStyleOverloads(*Ptr, 5132 (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5133 VisibleTypeConversionsQuals.hasVolatile())); 5134 } 5135 } 5136 5137 // C++ [over.built]p6: 5138 // For every cv-qualified or cv-unqualified object type T, there 5139 // exist candidate operator functions of the form 5140 // 5141 // T& operator*(T*); 5142 // 5143 // C++ [over.built]p7: 5144 // For every function type T that does not have cv-qualifiers or a 5145 // ref-qualifier, there exist candidate operator functions of the form 5146 // T& operator*(T*); 5147 void addUnaryStarPointerOverloads() { 5148 for (BuiltinCandidateTypeSet::iterator 5149 Ptr = CandidateTypes[0].pointer_begin(), 5150 PtrEnd = CandidateTypes[0].pointer_end(); 5151 Ptr != PtrEnd; ++Ptr) { 5152 QualType ParamTy = *Ptr; 5153 QualType PointeeTy = ParamTy->getPointeeType(); 5154 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 5155 continue; 5156 5157 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 5158 if (Proto->getTypeQuals() || Proto->getRefQualifier()) 5159 continue; 5160 5161 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy), 5162 &ParamTy, Args, 1, CandidateSet); 5163 } 5164 } 5165 5166 // C++ [over.built]p9: 5167 // For every promoted arithmetic type T, there exist candidate 5168 // operator functions of the form 5169 // 5170 // T operator+(T); 5171 // T operator-(T); 5172 void addUnaryPlusOrMinusArithmeticOverloads() { 5173 if (!HasArithmeticOrEnumeralCandidateType) 5174 return; 5175 5176 for (unsigned Arith = FirstPromotedArithmeticType; 5177 Arith < LastPromotedArithmeticType; ++Arith) { 5178 QualType ArithTy = getArithmeticType(Arith); 5179 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 5180 } 5181 5182 // Extension: We also add these operators for vector types. 5183 for (BuiltinCandidateTypeSet::iterator 5184 Vec = CandidateTypes[0].vector_begin(), 5185 VecEnd = CandidateTypes[0].vector_end(); 5186 Vec != VecEnd; ++Vec) { 5187 QualType VecTy = *Vec; 5188 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 5189 } 5190 } 5191 5192 // C++ [over.built]p8: 5193 // For every type T, there exist candidate operator functions of 5194 // the form 5195 // 5196 // T* operator+(T*); 5197 void addUnaryPlusPointerOverloads() { 5198 for (BuiltinCandidateTypeSet::iterator 5199 Ptr = CandidateTypes[0].pointer_begin(), 5200 PtrEnd = CandidateTypes[0].pointer_end(); 5201 Ptr != PtrEnd; ++Ptr) { 5202 QualType ParamTy = *Ptr; 5203 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 5204 } 5205 } 5206 5207 // C++ [over.built]p10: 5208 // For every promoted integral type T, there exist candidate 5209 // operator functions of the form 5210 // 5211 // T operator~(T); 5212 void addUnaryTildePromotedIntegralOverloads() { 5213 if (!HasArithmeticOrEnumeralCandidateType) 5214 return; 5215 5216 for (unsigned Int = FirstPromotedIntegralType; 5217 Int < LastPromotedIntegralType; ++Int) { 5218 QualType IntTy = getArithmeticType(Int); 5219 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 5220 } 5221 5222 // Extension: We also add this operator for vector types. 5223 for (BuiltinCandidateTypeSet::iterator 5224 Vec = CandidateTypes[0].vector_begin(), 5225 VecEnd = CandidateTypes[0].vector_end(); 5226 Vec != VecEnd; ++Vec) { 5227 QualType VecTy = *Vec; 5228 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 5229 } 5230 } 5231 5232 // C++ [over.match.oper]p16: 5233 // For every pointer to member type T, there exist candidate operator 5234 // functions of the form 5235 // 5236 // bool operator==(T,T); 5237 // bool operator!=(T,T); 5238 void addEqualEqualOrNotEqualMemberPointerOverloads() { 5239 /// Set of (canonical) types that we've already handled. 5240 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5241 5242 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5243 for (BuiltinCandidateTypeSet::iterator 5244 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5245 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5246 MemPtr != MemPtrEnd; 5247 ++MemPtr) { 5248 // Don't add the same builtin candidate twice. 5249 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5250 continue; 5251 5252 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 5253 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5254 CandidateSet); 5255 } 5256 } 5257 } 5258 5259 // C++ [over.built]p15: 5260 // 5261 // For every pointer or enumeration type T, there exist 5262 // candidate operator functions of the form 5263 // 5264 // bool operator<(T, T); 5265 // bool operator>(T, T); 5266 // bool operator<=(T, T); 5267 // bool operator>=(T, T); 5268 // bool operator==(T, T); 5269 // bool operator!=(T, T); 5270 void addRelationalPointerOrEnumeralOverloads() { 5271 // C++ [over.built]p1: 5272 // If there is a user-written candidate with the same name and parameter 5273 // types as a built-in candidate operator function, the built-in operator 5274 // function is hidden and is not included in the set of candidate 5275 // functions. 5276 // 5277 // The text is actually in a note, but if we don't implement it then we end 5278 // up with ambiguities when the user provides an overloaded operator for 5279 // an enumeration type. Note that only enumeration types have this problem, 5280 // so we track which enumeration types we've seen operators for. Also, the 5281 // only other overloaded operator with enumeration argumenst, operator=, 5282 // cannot be overloaded for enumeration types, so this is the only place 5283 // where we must suppress candidates like this. 5284 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 5285 UserDefinedBinaryOperators; 5286 5287 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5288 if (CandidateTypes[ArgIdx].enumeration_begin() != 5289 CandidateTypes[ArgIdx].enumeration_end()) { 5290 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 5291 CEnd = CandidateSet.end(); 5292 C != CEnd; ++C) { 5293 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 5294 continue; 5295 5296 QualType FirstParamType = 5297 C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 5298 QualType SecondParamType = 5299 C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 5300 5301 // Skip if either parameter isn't of enumeral type. 5302 if (!FirstParamType->isEnumeralType() || 5303 !SecondParamType->isEnumeralType()) 5304 continue; 5305 5306 // Add this operator to the set of known user-defined operators. 5307 UserDefinedBinaryOperators.insert( 5308 std::make_pair(S.Context.getCanonicalType(FirstParamType), 5309 S.Context.getCanonicalType(SecondParamType))); 5310 } 5311 } 5312 } 5313 5314 /// Set of (canonical) types that we've already handled. 5315 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5316 5317 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5318 for (BuiltinCandidateTypeSet::iterator 5319 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 5320 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 5321 Ptr != PtrEnd; ++Ptr) { 5322 // Don't add the same builtin candidate twice. 5323 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5324 continue; 5325 5326 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5327 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5328 CandidateSet); 5329 } 5330 for (BuiltinCandidateTypeSet::iterator 5331 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5332 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5333 Enum != EnumEnd; ++Enum) { 5334 CanQualType CanonType = S.Context.getCanonicalType(*Enum); 5335 5336 // Don't add the same builtin candidate twice, or if a user defined 5337 // candidate exists. 5338 if (!AddedTypes.insert(CanonType) || 5339 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 5340 CanonType))) 5341 continue; 5342 5343 QualType ParamTypes[2] = { *Enum, *Enum }; 5344 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5345 CandidateSet); 5346 } 5347 } 5348 } 5349 5350 // C++ [over.built]p13: 5351 // 5352 // For every cv-qualified or cv-unqualified object type T 5353 // there exist candidate operator functions of the form 5354 // 5355 // T* operator+(T*, ptrdiff_t); 5356 // T& operator[](T*, ptrdiff_t); [BELOW] 5357 // T* operator-(T*, ptrdiff_t); 5358 // T* operator+(ptrdiff_t, T*); 5359 // T& operator[](ptrdiff_t, T*); [BELOW] 5360 // 5361 // C++ [over.built]p14: 5362 // 5363 // For every T, where T is a pointer to object type, there 5364 // exist candidate operator functions of the form 5365 // 5366 // ptrdiff_t operator-(T, T); 5367 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 5368 /// Set of (canonical) types that we've already handled. 5369 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5370 5371 for (int Arg = 0; Arg < 2; ++Arg) { 5372 QualType AsymetricParamTypes[2] = { 5373 S.Context.getPointerDiffType(), 5374 S.Context.getPointerDiffType(), 5375 }; 5376 for (BuiltinCandidateTypeSet::iterator 5377 Ptr = CandidateTypes[Arg].pointer_begin(), 5378 PtrEnd = CandidateTypes[Arg].pointer_end(); 5379 Ptr != PtrEnd; ++Ptr) { 5380 QualType PointeeTy = (*Ptr)->getPointeeType(); 5381 if (!PointeeTy->isObjectType()) 5382 continue; 5383 5384 AsymetricParamTypes[Arg] = *Ptr; 5385 if (Arg == 0 || Op == OO_Plus) { 5386 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 5387 // T* operator+(ptrdiff_t, T*); 5388 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2, 5389 CandidateSet); 5390 } 5391 if (Op == OO_Minus) { 5392 // ptrdiff_t operator-(T, T); 5393 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5394 continue; 5395 5396 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5397 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes, 5398 Args, 2, CandidateSet); 5399 } 5400 } 5401 } 5402 } 5403 5404 // C++ [over.built]p12: 5405 // 5406 // For every pair of promoted arithmetic types L and R, there 5407 // exist candidate operator functions of the form 5408 // 5409 // LR operator*(L, R); 5410 // LR operator/(L, R); 5411 // LR operator+(L, R); 5412 // LR operator-(L, R); 5413 // bool operator<(L, R); 5414 // bool operator>(L, R); 5415 // bool operator<=(L, R); 5416 // bool operator>=(L, R); 5417 // bool operator==(L, R); 5418 // bool operator!=(L, R); 5419 // 5420 // where LR is the result of the usual arithmetic conversions 5421 // between types L and R. 5422 // 5423 // C++ [over.built]p24: 5424 // 5425 // For every pair of promoted arithmetic types L and R, there exist 5426 // candidate operator functions of the form 5427 // 5428 // LR operator?(bool, L, R); 5429 // 5430 // where LR is the result of the usual arithmetic conversions 5431 // between types L and R. 5432 // Our candidates ignore the first parameter. 5433 void addGenericBinaryArithmeticOverloads(bool isComparison) { 5434 if (!HasArithmeticOrEnumeralCandidateType) 5435 return; 5436 5437 for (unsigned Left = FirstPromotedArithmeticType; 5438 Left < LastPromotedArithmeticType; ++Left) { 5439 for (unsigned Right = FirstPromotedArithmeticType; 5440 Right < LastPromotedArithmeticType; ++Right) { 5441 QualType LandR[2] = { getArithmeticType(Left), 5442 getArithmeticType(Right) }; 5443 QualType Result = 5444 isComparison ? S.Context.BoolTy 5445 : getUsualArithmeticConversions(Left, Right); 5446 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5447 } 5448 } 5449 5450 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 5451 // conditional operator for vector types. 5452 for (BuiltinCandidateTypeSet::iterator 5453 Vec1 = CandidateTypes[0].vector_begin(), 5454 Vec1End = CandidateTypes[0].vector_end(); 5455 Vec1 != Vec1End; ++Vec1) { 5456 for (BuiltinCandidateTypeSet::iterator 5457 Vec2 = CandidateTypes[1].vector_begin(), 5458 Vec2End = CandidateTypes[1].vector_end(); 5459 Vec2 != Vec2End; ++Vec2) { 5460 QualType LandR[2] = { *Vec1, *Vec2 }; 5461 QualType Result = S.Context.BoolTy; 5462 if (!isComparison) { 5463 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 5464 Result = *Vec1; 5465 else 5466 Result = *Vec2; 5467 } 5468 5469 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5470 } 5471 } 5472 } 5473 5474 // C++ [over.built]p17: 5475 // 5476 // For every pair of promoted integral types L and R, there 5477 // exist candidate operator functions of the form 5478 // 5479 // LR operator%(L, R); 5480 // LR operator&(L, R); 5481 // LR operator^(L, R); 5482 // LR operator|(L, R); 5483 // L operator<<(L, R); 5484 // L operator>>(L, R); 5485 // 5486 // where LR is the result of the usual arithmetic conversions 5487 // between types L and R. 5488 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { 5489 if (!HasArithmeticOrEnumeralCandidateType) 5490 return; 5491 5492 for (unsigned Left = FirstPromotedIntegralType; 5493 Left < LastPromotedIntegralType; ++Left) { 5494 for (unsigned Right = FirstPromotedIntegralType; 5495 Right < LastPromotedIntegralType; ++Right) { 5496 QualType LandR[2] = { getArithmeticType(Left), 5497 getArithmeticType(Right) }; 5498 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 5499 ? LandR[0] 5500 : getUsualArithmeticConversions(Left, Right); 5501 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5502 } 5503 } 5504 } 5505 5506 // C++ [over.built]p20: 5507 // 5508 // For every pair (T, VQ), where T is an enumeration or 5509 // pointer to member type and VQ is either volatile or 5510 // empty, there exist candidate operator functions of the form 5511 // 5512 // VQ T& operator=(VQ T&, T); 5513 void addAssignmentMemberPointerOrEnumeralOverloads() { 5514 /// Set of (canonical) types that we've already handled. 5515 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5516 5517 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 5518 for (BuiltinCandidateTypeSet::iterator 5519 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5520 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5521 Enum != EnumEnd; ++Enum) { 5522 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 5523 continue; 5524 5525 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2, 5526 CandidateSet); 5527 } 5528 5529 for (BuiltinCandidateTypeSet::iterator 5530 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5531 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5532 MemPtr != MemPtrEnd; ++MemPtr) { 5533 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5534 continue; 5535 5536 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2, 5537 CandidateSet); 5538 } 5539 } 5540 } 5541 5542 // C++ [over.built]p19: 5543 // 5544 // For every pair (T, VQ), where T is any type and VQ is either 5545 // volatile or empty, there exist candidate operator functions 5546 // of the form 5547 // 5548 // T*VQ& operator=(T*VQ&, T*); 5549 // 5550 // C++ [over.built]p21: 5551 // 5552 // For every pair (T, VQ), where T is a cv-qualified or 5553 // cv-unqualified object type and VQ is either volatile or 5554 // empty, there exist candidate operator functions of the form 5555 // 5556 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 5557 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 5558 void addAssignmentPointerOverloads(bool isEqualOp) { 5559 /// Set of (canonical) types that we've already handled. 5560 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5561 5562 for (BuiltinCandidateTypeSet::iterator 5563 Ptr = CandidateTypes[0].pointer_begin(), 5564 PtrEnd = CandidateTypes[0].pointer_end(); 5565 Ptr != PtrEnd; ++Ptr) { 5566 // If this is operator=, keep track of the builtin candidates we added. 5567 if (isEqualOp) 5568 AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); 5569 else if (!(*Ptr)->getPointeeType()->isObjectType()) 5570 continue; 5571 5572 // non-volatile version 5573 QualType ParamTypes[2] = { 5574 S.Context.getLValueReferenceType(*Ptr), 5575 isEqualOp ? *Ptr : S.Context.getPointerDiffType(), 5576 }; 5577 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5578 /*IsAssigmentOperator=*/ isEqualOp); 5579 5580 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5581 VisibleTypeConversionsQuals.hasVolatile()) { 5582 // volatile version 5583 ParamTypes[0] = 5584 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 5585 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5586 /*IsAssigmentOperator=*/isEqualOp); 5587 } 5588 } 5589 5590 if (isEqualOp) { 5591 for (BuiltinCandidateTypeSet::iterator 5592 Ptr = CandidateTypes[1].pointer_begin(), 5593 PtrEnd = CandidateTypes[1].pointer_end(); 5594 Ptr != PtrEnd; ++Ptr) { 5595 // Make sure we don't add the same candidate twice. 5596 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5597 continue; 5598 5599 QualType ParamTypes[2] = { 5600 S.Context.getLValueReferenceType(*Ptr), 5601 *Ptr, 5602 }; 5603 5604 // non-volatile version 5605 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5606 /*IsAssigmentOperator=*/true); 5607 5608 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5609 VisibleTypeConversionsQuals.hasVolatile()) { 5610 // volatile version 5611 ParamTypes[0] = 5612 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 5613 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5614 CandidateSet, /*IsAssigmentOperator=*/true); 5615 } 5616 } 5617 } 5618 } 5619 5620 // C++ [over.built]p18: 5621 // 5622 // For every triple (L, VQ, R), where L is an arithmetic type, 5623 // VQ is either volatile or empty, and R is a promoted 5624 // arithmetic type, there exist candidate operator functions of 5625 // the form 5626 // 5627 // VQ L& operator=(VQ L&, R); 5628 // VQ L& operator*=(VQ L&, R); 5629 // VQ L& operator/=(VQ L&, R); 5630 // VQ L& operator+=(VQ L&, R); 5631 // VQ L& operator-=(VQ L&, R); 5632 void addAssignmentArithmeticOverloads(bool isEqualOp) { 5633 if (!HasArithmeticOrEnumeralCandidateType) 5634 return; 5635 5636 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 5637 for (unsigned Right = FirstPromotedArithmeticType; 5638 Right < LastPromotedArithmeticType; ++Right) { 5639 QualType ParamTypes[2]; 5640 ParamTypes[1] = getArithmeticType(Right); 5641 5642 // Add this built-in operator as a candidate (VQ is empty). 5643 ParamTypes[0] = 5644 S.Context.getLValueReferenceType(getArithmeticType(Left)); 5645 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5646 /*IsAssigmentOperator=*/isEqualOp); 5647 5648 // Add this built-in operator as a candidate (VQ is 'volatile'). 5649 if (VisibleTypeConversionsQuals.hasVolatile()) { 5650 ParamTypes[0] = 5651 S.Context.getVolatileType(getArithmeticType(Left)); 5652 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 5653 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5654 CandidateSet, 5655 /*IsAssigmentOperator=*/isEqualOp); 5656 } 5657 } 5658 } 5659 5660 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 5661 for (BuiltinCandidateTypeSet::iterator 5662 Vec1 = CandidateTypes[0].vector_begin(), 5663 Vec1End = CandidateTypes[0].vector_end(); 5664 Vec1 != Vec1End; ++Vec1) { 5665 for (BuiltinCandidateTypeSet::iterator 5666 Vec2 = CandidateTypes[1].vector_begin(), 5667 Vec2End = CandidateTypes[1].vector_end(); 5668 Vec2 != Vec2End; ++Vec2) { 5669 QualType ParamTypes[2]; 5670 ParamTypes[1] = *Vec2; 5671 // Add this built-in operator as a candidate (VQ is empty). 5672 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); 5673 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5674 /*IsAssigmentOperator=*/isEqualOp); 5675 5676 // Add this built-in operator as a candidate (VQ is 'volatile'). 5677 if (VisibleTypeConversionsQuals.hasVolatile()) { 5678 ParamTypes[0] = S.Context.getVolatileType(*Vec1); 5679 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 5680 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5681 CandidateSet, 5682 /*IsAssigmentOperator=*/isEqualOp); 5683 } 5684 } 5685 } 5686 } 5687 5688 // C++ [over.built]p22: 5689 // 5690 // For every triple (L, VQ, R), where L is an integral type, VQ 5691 // is either volatile or empty, and R is a promoted integral 5692 // type, there exist candidate operator functions of the form 5693 // 5694 // VQ L& operator%=(VQ L&, R); 5695 // VQ L& operator<<=(VQ L&, R); 5696 // VQ L& operator>>=(VQ L&, R); 5697 // VQ L& operator&=(VQ L&, R); 5698 // VQ L& operator^=(VQ L&, R); 5699 // VQ L& operator|=(VQ L&, R); 5700 void addAssignmentIntegralOverloads() { 5701 if (!HasArithmeticOrEnumeralCandidateType) 5702 return; 5703 5704 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 5705 for (unsigned Right = FirstPromotedIntegralType; 5706 Right < LastPromotedIntegralType; ++Right) { 5707 QualType ParamTypes[2]; 5708 ParamTypes[1] = getArithmeticType(Right); 5709 5710 // Add this built-in operator as a candidate (VQ is empty). 5711 ParamTypes[0] = 5712 S.Context.getLValueReferenceType(getArithmeticType(Left)); 5713 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 5714 if (VisibleTypeConversionsQuals.hasVolatile()) { 5715 // Add this built-in operator as a candidate (VQ is 'volatile'). 5716 ParamTypes[0] = getArithmeticType(Left); 5717 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 5718 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 5719 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 5720 CandidateSet); 5721 } 5722 } 5723 } 5724 } 5725 5726 // C++ [over.operator]p23: 5727 // 5728 // There also exist candidate operator functions of the form 5729 // 5730 // bool operator!(bool); 5731 // bool operator&&(bool, bool); 5732 // bool operator||(bool, bool); 5733 void addExclaimOverload() { 5734 QualType ParamTy = S.Context.BoolTy; 5735 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 5736 /*IsAssignmentOperator=*/false, 5737 /*NumContextualBoolArguments=*/1); 5738 } 5739 void addAmpAmpOrPipePipeOverload() { 5740 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 5741 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 5742 /*IsAssignmentOperator=*/false, 5743 /*NumContextualBoolArguments=*/2); 5744 } 5745 5746 // C++ [over.built]p13: 5747 // 5748 // For every cv-qualified or cv-unqualified object type T there 5749 // exist candidate operator functions of the form 5750 // 5751 // T* operator+(T*, ptrdiff_t); [ABOVE] 5752 // T& operator[](T*, ptrdiff_t); 5753 // T* operator-(T*, ptrdiff_t); [ABOVE] 5754 // T* operator+(ptrdiff_t, T*); [ABOVE] 5755 // T& operator[](ptrdiff_t, T*); 5756 void addSubscriptOverloads() { 5757 for (BuiltinCandidateTypeSet::iterator 5758 Ptr = CandidateTypes[0].pointer_begin(), 5759 PtrEnd = CandidateTypes[0].pointer_end(); 5760 Ptr != PtrEnd; ++Ptr) { 5761 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; 5762 QualType PointeeType = (*Ptr)->getPointeeType(); 5763 if (!PointeeType->isObjectType()) 5764 continue; 5765 5766 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 5767 5768 // T& operator[](T*, ptrdiff_t) 5769 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5770 } 5771 5772 for (BuiltinCandidateTypeSet::iterator 5773 Ptr = CandidateTypes[1].pointer_begin(), 5774 PtrEnd = CandidateTypes[1].pointer_end(); 5775 Ptr != PtrEnd; ++Ptr) { 5776 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; 5777 QualType PointeeType = (*Ptr)->getPointeeType(); 5778 if (!PointeeType->isObjectType()) 5779 continue; 5780 5781 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 5782 5783 // T& operator[](ptrdiff_t, T*) 5784 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5785 } 5786 } 5787 5788 // C++ [over.built]p11: 5789 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 5790 // C1 is the same type as C2 or is a derived class of C2, T is an object 5791 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 5792 // there exist candidate operator functions of the form 5793 // 5794 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 5795 // 5796 // where CV12 is the union of CV1 and CV2. 5797 void addArrowStarOverloads() { 5798 for (BuiltinCandidateTypeSet::iterator 5799 Ptr = CandidateTypes[0].pointer_begin(), 5800 PtrEnd = CandidateTypes[0].pointer_end(); 5801 Ptr != PtrEnd; ++Ptr) { 5802 QualType C1Ty = (*Ptr); 5803 QualType C1; 5804 QualifierCollector Q1; 5805 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 5806 if (!isa<RecordType>(C1)) 5807 continue; 5808 // heuristic to reduce number of builtin candidates in the set. 5809 // Add volatile/restrict version only if there are conversions to a 5810 // volatile/restrict type. 5811 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 5812 continue; 5813 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 5814 continue; 5815 for (BuiltinCandidateTypeSet::iterator 5816 MemPtr = CandidateTypes[1].member_pointer_begin(), 5817 MemPtrEnd = CandidateTypes[1].member_pointer_end(); 5818 MemPtr != MemPtrEnd; ++MemPtr) { 5819 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 5820 QualType C2 = QualType(mptr->getClass(), 0); 5821 C2 = C2.getUnqualifiedType(); 5822 if (C1 != C2 && !S.IsDerivedFrom(C1, C2)) 5823 break; 5824 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 5825 // build CV12 T& 5826 QualType T = mptr->getPointeeType(); 5827 if (!VisibleTypeConversionsQuals.hasVolatile() && 5828 T.isVolatileQualified()) 5829 continue; 5830 if (!VisibleTypeConversionsQuals.hasRestrict() && 5831 T.isRestrictQualified()) 5832 continue; 5833 T = Q1.apply(S.Context, T); 5834 QualType ResultTy = S.Context.getLValueReferenceType(T); 5835 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5836 } 5837 } 5838 } 5839 5840 // Note that we don't consider the first argument, since it has been 5841 // contextually converted to bool long ago. The candidates below are 5842 // therefore added as binary. 5843 // 5844 // C++ [over.built]p25: 5845 // For every type T, where T is a pointer, pointer-to-member, or scoped 5846 // enumeration type, there exist candidate operator functions of the form 5847 // 5848 // T operator?(bool, T, T); 5849 // 5850 void addConditionalOperatorOverloads() { 5851 /// Set of (canonical) types that we've already handled. 5852 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5853 5854 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 5855 for (BuiltinCandidateTypeSet::iterator 5856 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 5857 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 5858 Ptr != PtrEnd; ++Ptr) { 5859 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5860 continue; 5861 5862 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5863 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5864 } 5865 5866 for (BuiltinCandidateTypeSet::iterator 5867 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5868 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5869 MemPtr != MemPtrEnd; ++MemPtr) { 5870 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5871 continue; 5872 5873 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 5874 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet); 5875 } 5876 5877 if (S.getLangOptions().CPlusPlus0x) { 5878 for (BuiltinCandidateTypeSet::iterator 5879 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5880 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5881 Enum != EnumEnd; ++Enum) { 5882 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 5883 continue; 5884 5885 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 5886 continue; 5887 5888 QualType ParamTypes[2] = { *Enum, *Enum }; 5889 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); 5890 } 5891 } 5892 } 5893 } 5894}; 5895 5896} // end anonymous namespace 5897 5898/// AddBuiltinOperatorCandidates - Add the appropriate built-in 5899/// operator overloads to the candidate set (C++ [over.built]), based 5900/// on the operator @p Op and the arguments given. For example, if the 5901/// operator is a binary '+', this routine might add "int 5902/// operator+(int, int)" to cover integer addition. 5903void 5904Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 5905 SourceLocation OpLoc, 5906 Expr **Args, unsigned NumArgs, 5907 OverloadCandidateSet& CandidateSet) { 5908 // Find all of the types that the arguments can convert to, but only 5909 // if the operator we're looking at has built-in operator candidates 5910 // that make use of these types. Also record whether we encounter non-record 5911 // candidate types or either arithmetic or enumeral candidate types. 5912 Qualifiers VisibleTypeConversionsQuals; 5913 VisibleTypeConversionsQuals.addConst(); 5914 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5915 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 5916 5917 bool HasNonRecordCandidateType = false; 5918 bool HasArithmeticOrEnumeralCandidateType = false; 5919 llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 5920 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5921 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); 5922 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 5923 OpLoc, 5924 true, 5925 (Op == OO_Exclaim || 5926 Op == OO_AmpAmp || 5927 Op == OO_PipePipe), 5928 VisibleTypeConversionsQuals); 5929 HasNonRecordCandidateType = HasNonRecordCandidateType || 5930 CandidateTypes[ArgIdx].hasNonRecordTypes(); 5931 HasArithmeticOrEnumeralCandidateType = 5932 HasArithmeticOrEnumeralCandidateType || 5933 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 5934 } 5935 5936 // Exit early when no non-record types have been added to the candidate set 5937 // for any of the arguments to the operator. 5938 if (!HasNonRecordCandidateType) 5939 return; 5940 5941 // Setup an object to manage the common state for building overloads. 5942 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs, 5943 VisibleTypeConversionsQuals, 5944 HasArithmeticOrEnumeralCandidateType, 5945 CandidateTypes, CandidateSet); 5946 5947 // Dispatch over the operation to add in only those overloads which apply. 5948 switch (Op) { 5949 case OO_None: 5950 case NUM_OVERLOADED_OPERATORS: 5951 assert(false && "Expected an overloaded operator"); 5952 break; 5953 5954 case OO_New: 5955 case OO_Delete: 5956 case OO_Array_New: 5957 case OO_Array_Delete: 5958 case OO_Call: 5959 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 5960 break; 5961 5962 case OO_Comma: 5963 case OO_Arrow: 5964 // C++ [over.match.oper]p3: 5965 // -- For the operator ',', the unary operator '&', or the 5966 // operator '->', the built-in candidates set is empty. 5967 break; 5968 5969 case OO_Plus: // '+' is either unary or binary 5970 if (NumArgs == 1) 5971 OpBuilder.addUnaryPlusPointerOverloads(); 5972 // Fall through. 5973 5974 case OO_Minus: // '-' is either unary or binary 5975 if (NumArgs == 1) { 5976 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 5977 } else { 5978 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 5979 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 5980 } 5981 break; 5982 5983 case OO_Star: // '*' is either unary or binary 5984 if (NumArgs == 1) 5985 OpBuilder.addUnaryStarPointerOverloads(); 5986 else 5987 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 5988 break; 5989 5990 case OO_Slash: 5991 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 5992 break; 5993 5994 case OO_PlusPlus: 5995 case OO_MinusMinus: 5996 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 5997 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 5998 break; 5999 6000 case OO_EqualEqual: 6001 case OO_ExclaimEqual: 6002 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads(); 6003 // Fall through. 6004 6005 case OO_Less: 6006 case OO_Greater: 6007 case OO_LessEqual: 6008 case OO_GreaterEqual: 6009 OpBuilder.addRelationalPointerOrEnumeralOverloads(); 6010 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true); 6011 break; 6012 6013 case OO_Percent: 6014 case OO_Caret: 6015 case OO_Pipe: 6016 case OO_LessLess: 6017 case OO_GreaterGreater: 6018 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 6019 break; 6020 6021 case OO_Amp: // '&' is either unary or binary 6022 if (NumArgs == 1) 6023 // C++ [over.match.oper]p3: 6024 // -- For the operator ',', the unary operator '&', or the 6025 // operator '->', the built-in candidates set is empty. 6026 break; 6027 6028 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 6029 break; 6030 6031 case OO_Tilde: 6032 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 6033 break; 6034 6035 case OO_Equal: 6036 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 6037 // Fall through. 6038 6039 case OO_PlusEqual: 6040 case OO_MinusEqual: 6041 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 6042 // Fall through. 6043 6044 case OO_StarEqual: 6045 case OO_SlashEqual: 6046 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 6047 break; 6048 6049 case OO_PercentEqual: 6050 case OO_LessLessEqual: 6051 case OO_GreaterGreaterEqual: 6052 case OO_AmpEqual: 6053 case OO_CaretEqual: 6054 case OO_PipeEqual: 6055 OpBuilder.addAssignmentIntegralOverloads(); 6056 break; 6057 6058 case OO_Exclaim: 6059 OpBuilder.addExclaimOverload(); 6060 break; 6061 6062 case OO_AmpAmp: 6063 case OO_PipePipe: 6064 OpBuilder.addAmpAmpOrPipePipeOverload(); 6065 break; 6066 6067 case OO_Subscript: 6068 OpBuilder.addSubscriptOverloads(); 6069 break; 6070 6071 case OO_ArrowStar: 6072 OpBuilder.addArrowStarOverloads(); 6073 break; 6074 6075 case OO_Conditional: 6076 OpBuilder.addConditionalOperatorOverloads(); 6077 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6078 break; 6079 } 6080} 6081 6082/// \brief Add function candidates found via argument-dependent lookup 6083/// to the set of overloading candidates. 6084/// 6085/// This routine performs argument-dependent name lookup based on the 6086/// given function name (which may also be an operator name) and adds 6087/// all of the overload candidates found by ADL to the overload 6088/// candidate set (C++ [basic.lookup.argdep]). 6089void 6090Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 6091 bool Operator, 6092 Expr **Args, unsigned NumArgs, 6093 const TemplateArgumentListInfo *ExplicitTemplateArgs, 6094 OverloadCandidateSet& CandidateSet, 6095 bool PartialOverloading) { 6096 ADLResult Fns; 6097 6098 // FIXME: This approach for uniquing ADL results (and removing 6099 // redundant candidates from the set) relies on pointer-equality, 6100 // which means we need to key off the canonical decl. However, 6101 // always going back to the canonical decl might not get us the 6102 // right set of default arguments. What default arguments are 6103 // we supposed to consider on ADL candidates, anyway? 6104 6105 // FIXME: Pass in the explicit template arguments? 6106 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); 6107 6108 // Erase all of the candidates we already knew about. 6109 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 6110 CandEnd = CandidateSet.end(); 6111 Cand != CandEnd; ++Cand) 6112 if (Cand->Function) { 6113 Fns.erase(Cand->Function); 6114 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 6115 Fns.erase(FunTmpl); 6116 } 6117 6118 // For each of the ADL candidates we found, add it to the overload 6119 // set. 6120 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 6121 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 6122 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 6123 if (ExplicitTemplateArgs) 6124 continue; 6125 6126 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 6127 false, PartialOverloading); 6128 } else 6129 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 6130 FoundDecl, ExplicitTemplateArgs, 6131 Args, NumArgs, CandidateSet); 6132 } 6133} 6134 6135/// isBetterOverloadCandidate - Determines whether the first overload 6136/// candidate is a better candidate than the second (C++ 13.3.3p1). 6137bool 6138isBetterOverloadCandidate(Sema &S, 6139 const OverloadCandidate &Cand1, 6140 const OverloadCandidate &Cand2, 6141 SourceLocation Loc, 6142 bool UserDefinedConversion) { 6143 // Define viable functions to be better candidates than non-viable 6144 // functions. 6145 if (!Cand2.Viable) 6146 return Cand1.Viable; 6147 else if (!Cand1.Viable) 6148 return false; 6149 6150 // C++ [over.match.best]p1: 6151 // 6152 // -- if F is a static member function, ICS1(F) is defined such 6153 // that ICS1(F) is neither better nor worse than ICS1(G) for 6154 // any function G, and, symmetrically, ICS1(G) is neither 6155 // better nor worse than ICS1(F). 6156 unsigned StartArg = 0; 6157 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 6158 StartArg = 1; 6159 6160 // C++ [over.match.best]p1: 6161 // A viable function F1 is defined to be a better function than another 6162 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 6163 // conversion sequence than ICSi(F2), and then... 6164 unsigned NumArgs = Cand1.Conversions.size(); 6165 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 6166 bool HasBetterConversion = false; 6167 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 6168 switch (CompareImplicitConversionSequences(S, 6169 Cand1.Conversions[ArgIdx], 6170 Cand2.Conversions[ArgIdx])) { 6171 case ImplicitConversionSequence::Better: 6172 // Cand1 has a better conversion sequence. 6173 HasBetterConversion = true; 6174 break; 6175 6176 case ImplicitConversionSequence::Worse: 6177 // Cand1 can't be better than Cand2. 6178 return false; 6179 6180 case ImplicitConversionSequence::Indistinguishable: 6181 // Do nothing. 6182 break; 6183 } 6184 } 6185 6186 // -- for some argument j, ICSj(F1) is a better conversion sequence than 6187 // ICSj(F2), or, if not that, 6188 if (HasBetterConversion) 6189 return true; 6190 6191 // - F1 is a non-template function and F2 is a function template 6192 // specialization, or, if not that, 6193 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 6194 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 6195 return true; 6196 6197 // -- F1 and F2 are function template specializations, and the function 6198 // template for F1 is more specialized than the template for F2 6199 // according to the partial ordering rules described in 14.5.5.2, or, 6200 // if not that, 6201 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 6202 Cand2.Function && Cand2.Function->getPrimaryTemplate()) { 6203 if (FunctionTemplateDecl *BetterTemplate 6204 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 6205 Cand2.Function->getPrimaryTemplate(), 6206 Loc, 6207 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 6208 : TPOC_Call, 6209 Cand1.ExplicitCallArguments)) 6210 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 6211 } 6212 6213 // -- the context is an initialization by user-defined conversion 6214 // (see 8.5, 13.3.1.5) and the standard conversion sequence 6215 // from the return type of F1 to the destination type (i.e., 6216 // the type of the entity being initialized) is a better 6217 // conversion sequence than the standard conversion sequence 6218 // from the return type of F2 to the destination type. 6219 if (UserDefinedConversion && Cand1.Function && Cand2.Function && 6220 isa<CXXConversionDecl>(Cand1.Function) && 6221 isa<CXXConversionDecl>(Cand2.Function)) { 6222 switch (CompareStandardConversionSequences(S, 6223 Cand1.FinalConversion, 6224 Cand2.FinalConversion)) { 6225 case ImplicitConversionSequence::Better: 6226 // Cand1 has a better conversion sequence. 6227 return true; 6228 6229 case ImplicitConversionSequence::Worse: 6230 // Cand1 can't be better than Cand2. 6231 return false; 6232 6233 case ImplicitConversionSequence::Indistinguishable: 6234 // Do nothing 6235 break; 6236 } 6237 } 6238 6239 return false; 6240} 6241 6242/// \brief Computes the best viable function (C++ 13.3.3) 6243/// within an overload candidate set. 6244/// 6245/// \param CandidateSet the set of candidate functions. 6246/// 6247/// \param Loc the location of the function name (or operator symbol) for 6248/// which overload resolution occurs. 6249/// 6250/// \param Best f overload resolution was successful or found a deleted 6251/// function, Best points to the candidate function found. 6252/// 6253/// \returns The result of overload resolution. 6254OverloadingResult 6255OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 6256 iterator &Best, 6257 bool UserDefinedConversion) { 6258 // Find the best viable function. 6259 Best = end(); 6260 for (iterator Cand = begin(); Cand != end(); ++Cand) { 6261 if (Cand->Viable) 6262 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, 6263 UserDefinedConversion)) 6264 Best = Cand; 6265 } 6266 6267 // If we didn't find any viable functions, abort. 6268 if (Best == end()) 6269 return OR_No_Viable_Function; 6270 6271 // Make sure that this function is better than every other viable 6272 // function. If not, we have an ambiguity. 6273 for (iterator Cand = begin(); Cand != end(); ++Cand) { 6274 if (Cand->Viable && 6275 Cand != Best && 6276 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, 6277 UserDefinedConversion)) { 6278 Best = end(); 6279 return OR_Ambiguous; 6280 } 6281 } 6282 6283 // Best is the best viable function. 6284 if (Best->Function && 6285 (Best->Function->isDeleted() || 6286 Best->Function->getAttr<UnavailableAttr>())) 6287 return OR_Deleted; 6288 6289 return OR_Success; 6290} 6291 6292namespace { 6293 6294enum OverloadCandidateKind { 6295 oc_function, 6296 oc_method, 6297 oc_constructor, 6298 oc_function_template, 6299 oc_method_template, 6300 oc_constructor_template, 6301 oc_implicit_default_constructor, 6302 oc_implicit_copy_constructor, 6303 oc_implicit_copy_assignment, 6304 oc_implicit_inherited_constructor 6305}; 6306 6307OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 6308 FunctionDecl *Fn, 6309 std::string &Description) { 6310 bool isTemplate = false; 6311 6312 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 6313 isTemplate = true; 6314 Description = S.getTemplateArgumentBindingsText( 6315 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 6316 } 6317 6318 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 6319 if (!Ctor->isImplicit()) 6320 return isTemplate ? oc_constructor_template : oc_constructor; 6321 6322 if (Ctor->getInheritedConstructor()) 6323 return oc_implicit_inherited_constructor; 6324 6325 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 6326 : oc_implicit_default_constructor; 6327 } 6328 6329 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 6330 // This actually gets spelled 'candidate function' for now, but 6331 // it doesn't hurt to split it out. 6332 if (!Meth->isImplicit()) 6333 return isTemplate ? oc_method_template : oc_method; 6334 6335 assert(Meth->isCopyAssignmentOperator() 6336 && "implicit method is not copy assignment operator?"); 6337 return oc_implicit_copy_assignment; 6338 } 6339 6340 return isTemplate ? oc_function_template : oc_function; 6341} 6342 6343void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) { 6344 const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn); 6345 if (!Ctor) return; 6346 6347 Ctor = Ctor->getInheritedConstructor(); 6348 if (!Ctor) return; 6349 6350 S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor); 6351} 6352 6353} // end anonymous namespace 6354 6355// Notes the location of an overload candidate. 6356void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 6357 std::string FnDesc; 6358 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 6359 Diag(Fn->getLocation(), diag::note_ovl_candidate) 6360 << (unsigned) K << FnDesc; 6361 MaybeEmitInheritedConstructorNote(*this, Fn); 6362} 6363 6364//Notes the location of all overload candidates designated through 6365// OverloadedExpr 6366void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) { 6367 assert(OverloadedExpr->getType() == Context.OverloadTy); 6368 6369 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 6370 OverloadExpr *OvlExpr = Ovl.Expression; 6371 6372 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6373 IEnd = OvlExpr->decls_end(); 6374 I != IEnd; ++I) { 6375 if (FunctionTemplateDecl *FunTmpl = 6376 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 6377 NoteOverloadCandidate(FunTmpl->getTemplatedDecl()); 6378 } else if (FunctionDecl *Fun 6379 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 6380 NoteOverloadCandidate(Fun); 6381 } 6382 } 6383} 6384 6385/// Diagnoses an ambiguous conversion. The partial diagnostic is the 6386/// "lead" diagnostic; it will be given two arguments, the source and 6387/// target types of the conversion. 6388void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 6389 Sema &S, 6390 SourceLocation CaretLoc, 6391 const PartialDiagnostic &PDiag) const { 6392 S.Diag(CaretLoc, PDiag) 6393 << Ambiguous.getFromType() << Ambiguous.getToType(); 6394 for (AmbiguousConversionSequence::const_iterator 6395 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 6396 S.NoteOverloadCandidate(*I); 6397 } 6398} 6399 6400namespace { 6401 6402void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 6403 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 6404 assert(Conv.isBad()); 6405 assert(Cand->Function && "for now, candidate must be a function"); 6406 FunctionDecl *Fn = Cand->Function; 6407 6408 // There's a conversion slot for the object argument if this is a 6409 // non-constructor method. Note that 'I' corresponds the 6410 // conversion-slot index. 6411 bool isObjectArgument = false; 6412 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 6413 if (I == 0) 6414 isObjectArgument = true; 6415 else 6416 I--; 6417 } 6418 6419 std::string FnDesc; 6420 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 6421 6422 Expr *FromExpr = Conv.Bad.FromExpr; 6423 QualType FromTy = Conv.Bad.getFromType(); 6424 QualType ToTy = Conv.Bad.getToType(); 6425 6426 if (FromTy == S.Context.OverloadTy) { 6427 assert(FromExpr && "overload set argument came from implicit argument?"); 6428 Expr *E = FromExpr->IgnoreParens(); 6429 if (isa<UnaryOperator>(E)) 6430 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 6431 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 6432 6433 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 6434 << (unsigned) FnKind << FnDesc 6435 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6436 << ToTy << Name << I+1; 6437 MaybeEmitInheritedConstructorNote(S, Fn); 6438 return; 6439 } 6440 6441 // Do some hand-waving analysis to see if the non-viability is due 6442 // to a qualifier mismatch. 6443 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 6444 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 6445 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 6446 CToTy = RT->getPointeeType(); 6447 else { 6448 // TODO: detect and diagnose the full richness of const mismatches. 6449 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 6450 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 6451 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 6452 } 6453 6454 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 6455 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 6456 // It is dumb that we have to do this here. 6457 while (isa<ArrayType>(CFromTy)) 6458 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 6459 while (isa<ArrayType>(CToTy)) 6460 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 6461 6462 Qualifiers FromQs = CFromTy.getQualifiers(); 6463 Qualifiers ToQs = CToTy.getQualifiers(); 6464 6465 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 6466 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 6467 << (unsigned) FnKind << FnDesc 6468 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6469 << FromTy 6470 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 6471 << (unsigned) isObjectArgument << I+1; 6472 MaybeEmitInheritedConstructorNote(S, Fn); 6473 return; 6474 } 6475 6476 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 6477 assert(CVR && "unexpected qualifiers mismatch"); 6478 6479 if (isObjectArgument) { 6480 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 6481 << (unsigned) FnKind << FnDesc 6482 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6483 << FromTy << (CVR - 1); 6484 } else { 6485 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 6486 << (unsigned) FnKind << FnDesc 6487 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6488 << FromTy << (CVR - 1) << I+1; 6489 } 6490 MaybeEmitInheritedConstructorNote(S, Fn); 6491 return; 6492 } 6493 6494 // Diagnose references or pointers to incomplete types differently, 6495 // since it's far from impossible that the incompleteness triggered 6496 // the failure. 6497 QualType TempFromTy = FromTy.getNonReferenceType(); 6498 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 6499 TempFromTy = PTy->getPointeeType(); 6500 if (TempFromTy->isIncompleteType()) { 6501 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 6502 << (unsigned) FnKind << FnDesc 6503 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6504 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 6505 MaybeEmitInheritedConstructorNote(S, Fn); 6506 return; 6507 } 6508 6509 // Diagnose base -> derived pointer conversions. 6510 unsigned BaseToDerivedConversion = 0; 6511 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 6512 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 6513 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 6514 FromPtrTy->getPointeeType()) && 6515 !FromPtrTy->getPointeeType()->isIncompleteType() && 6516 !ToPtrTy->getPointeeType()->isIncompleteType() && 6517 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 6518 FromPtrTy->getPointeeType())) 6519 BaseToDerivedConversion = 1; 6520 } 6521 } else if (const ObjCObjectPointerType *FromPtrTy 6522 = FromTy->getAs<ObjCObjectPointerType>()) { 6523 if (const ObjCObjectPointerType *ToPtrTy 6524 = ToTy->getAs<ObjCObjectPointerType>()) 6525 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 6526 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 6527 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 6528 FromPtrTy->getPointeeType()) && 6529 FromIface->isSuperClassOf(ToIface)) 6530 BaseToDerivedConversion = 2; 6531 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 6532 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 6533 !FromTy->isIncompleteType() && 6534 !ToRefTy->getPointeeType()->isIncompleteType() && 6535 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 6536 BaseToDerivedConversion = 3; 6537 } 6538 6539 if (BaseToDerivedConversion) { 6540 S.Diag(Fn->getLocation(), 6541 diag::note_ovl_candidate_bad_base_to_derived_conv) 6542 << (unsigned) FnKind << FnDesc 6543 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6544 << (BaseToDerivedConversion - 1) 6545 << FromTy << ToTy << I+1; 6546 MaybeEmitInheritedConstructorNote(S, Fn); 6547 return; 6548 } 6549 6550 // TODO: specialize more based on the kind of mismatch 6551 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 6552 << (unsigned) FnKind << FnDesc 6553 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6554 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 6555 MaybeEmitInheritedConstructorNote(S, Fn); 6556} 6557 6558void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 6559 unsigned NumFormalArgs) { 6560 // TODO: treat calls to a missing default constructor as a special case 6561 6562 FunctionDecl *Fn = Cand->Function; 6563 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 6564 6565 unsigned MinParams = Fn->getMinRequiredArguments(); 6566 6567 // at least / at most / exactly 6568 unsigned mode, modeCount; 6569 if (NumFormalArgs < MinParams) { 6570 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 6571 (Cand->FailureKind == ovl_fail_bad_deduction && 6572 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 6573 if (MinParams != FnTy->getNumArgs() || 6574 FnTy->isVariadic() || FnTy->isTemplateVariadic()) 6575 mode = 0; // "at least" 6576 else 6577 mode = 2; // "exactly" 6578 modeCount = MinParams; 6579 } else { 6580 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 6581 (Cand->FailureKind == ovl_fail_bad_deduction && 6582 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 6583 if (MinParams != FnTy->getNumArgs()) 6584 mode = 1; // "at most" 6585 else 6586 mode = 2; // "exactly" 6587 modeCount = FnTy->getNumArgs(); 6588 } 6589 6590 std::string Description; 6591 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 6592 6593 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 6594 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 6595 << modeCount << NumFormalArgs; 6596 MaybeEmitInheritedConstructorNote(S, Fn); 6597} 6598 6599/// Diagnose a failed template-argument deduction. 6600void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 6601 Expr **Args, unsigned NumArgs) { 6602 FunctionDecl *Fn = Cand->Function; // pattern 6603 6604 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 6605 NamedDecl *ParamD; 6606 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 6607 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 6608 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 6609 switch (Cand->DeductionFailure.Result) { 6610 case Sema::TDK_Success: 6611 llvm_unreachable("TDK_success while diagnosing bad deduction"); 6612 6613 case Sema::TDK_Incomplete: { 6614 assert(ParamD && "no parameter found for incomplete deduction result"); 6615 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 6616 << ParamD->getDeclName(); 6617 MaybeEmitInheritedConstructorNote(S, Fn); 6618 return; 6619 } 6620 6621 case Sema::TDK_Underqualified: { 6622 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 6623 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 6624 6625 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 6626 6627 // Param will have been canonicalized, but it should just be a 6628 // qualified version of ParamD, so move the qualifiers to that. 6629 QualifierCollector Qs; 6630 Qs.strip(Param); 6631 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 6632 assert(S.Context.hasSameType(Param, NonCanonParam)); 6633 6634 // Arg has also been canonicalized, but there's nothing we can do 6635 // about that. It also doesn't matter as much, because it won't 6636 // have any template parameters in it (because deduction isn't 6637 // done on dependent types). 6638 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 6639 6640 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 6641 << ParamD->getDeclName() << Arg << NonCanonParam; 6642 MaybeEmitInheritedConstructorNote(S, Fn); 6643 return; 6644 } 6645 6646 case Sema::TDK_Inconsistent: { 6647 assert(ParamD && "no parameter found for inconsistent deduction result"); 6648 int which = 0; 6649 if (isa<TemplateTypeParmDecl>(ParamD)) 6650 which = 0; 6651 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 6652 which = 1; 6653 else { 6654 which = 2; 6655 } 6656 6657 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 6658 << which << ParamD->getDeclName() 6659 << *Cand->DeductionFailure.getFirstArg() 6660 << *Cand->DeductionFailure.getSecondArg(); 6661 MaybeEmitInheritedConstructorNote(S, Fn); 6662 return; 6663 } 6664 6665 case Sema::TDK_InvalidExplicitArguments: 6666 assert(ParamD && "no parameter found for invalid explicit arguments"); 6667 if (ParamD->getDeclName()) 6668 S.Diag(Fn->getLocation(), 6669 diag::note_ovl_candidate_explicit_arg_mismatch_named) 6670 << ParamD->getDeclName(); 6671 else { 6672 int index = 0; 6673 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 6674 index = TTP->getIndex(); 6675 else if (NonTypeTemplateParmDecl *NTTP 6676 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 6677 index = NTTP->getIndex(); 6678 else 6679 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 6680 S.Diag(Fn->getLocation(), 6681 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 6682 << (index + 1); 6683 } 6684 MaybeEmitInheritedConstructorNote(S, Fn); 6685 return; 6686 6687 case Sema::TDK_TooManyArguments: 6688 case Sema::TDK_TooFewArguments: 6689 DiagnoseArityMismatch(S, Cand, NumArgs); 6690 return; 6691 6692 case Sema::TDK_InstantiationDepth: 6693 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 6694 MaybeEmitInheritedConstructorNote(S, Fn); 6695 return; 6696 6697 case Sema::TDK_SubstitutionFailure: { 6698 std::string ArgString; 6699 if (TemplateArgumentList *Args 6700 = Cand->DeductionFailure.getTemplateArgumentList()) 6701 ArgString = S.getTemplateArgumentBindingsText( 6702 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 6703 *Args); 6704 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 6705 << ArgString; 6706 MaybeEmitInheritedConstructorNote(S, Fn); 6707 return; 6708 } 6709 6710 // TODO: diagnose these individually, then kill off 6711 // note_ovl_candidate_bad_deduction, which is uselessly vague. 6712 case Sema::TDK_NonDeducedMismatch: 6713 case Sema::TDK_FailedOverloadResolution: 6714 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 6715 MaybeEmitInheritedConstructorNote(S, Fn); 6716 return; 6717 } 6718} 6719 6720/// Generates a 'note' diagnostic for an overload candidate. We've 6721/// already generated a primary error at the call site. 6722/// 6723/// It really does need to be a single diagnostic with its caret 6724/// pointed at the candidate declaration. Yes, this creates some 6725/// major challenges of technical writing. Yes, this makes pointing 6726/// out problems with specific arguments quite awkward. It's still 6727/// better than generating twenty screens of text for every failed 6728/// overload. 6729/// 6730/// It would be great to be able to express per-candidate problems 6731/// more richly for those diagnostic clients that cared, but we'd 6732/// still have to be just as careful with the default diagnostics. 6733void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 6734 Expr **Args, unsigned NumArgs) { 6735 FunctionDecl *Fn = Cand->Function; 6736 6737 // Note deleted candidates, but only if they're viable. 6738 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 6739 std::string FnDesc; 6740 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 6741 6742 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 6743 << FnKind << FnDesc << Fn->isDeleted(); 6744 MaybeEmitInheritedConstructorNote(S, Fn); 6745 return; 6746 } 6747 6748 // We don't really have anything else to say about viable candidates. 6749 if (Cand->Viable) { 6750 S.NoteOverloadCandidate(Fn); 6751 return; 6752 } 6753 6754 switch (Cand->FailureKind) { 6755 case ovl_fail_too_many_arguments: 6756 case ovl_fail_too_few_arguments: 6757 return DiagnoseArityMismatch(S, Cand, NumArgs); 6758 6759 case ovl_fail_bad_deduction: 6760 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 6761 6762 case ovl_fail_trivial_conversion: 6763 case ovl_fail_bad_final_conversion: 6764 case ovl_fail_final_conversion_not_exact: 6765 return S.NoteOverloadCandidate(Fn); 6766 6767 case ovl_fail_bad_conversion: { 6768 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 6769 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 6770 if (Cand->Conversions[I].isBad()) 6771 return DiagnoseBadConversion(S, Cand, I); 6772 6773 // FIXME: this currently happens when we're called from SemaInit 6774 // when user-conversion overload fails. Figure out how to handle 6775 // those conditions and diagnose them well. 6776 return S.NoteOverloadCandidate(Fn); 6777 } 6778 } 6779} 6780 6781void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 6782 // Desugar the type of the surrogate down to a function type, 6783 // retaining as many typedefs as possible while still showing 6784 // the function type (and, therefore, its parameter types). 6785 QualType FnType = Cand->Surrogate->getConversionType(); 6786 bool isLValueReference = false; 6787 bool isRValueReference = false; 6788 bool isPointer = false; 6789 if (const LValueReferenceType *FnTypeRef = 6790 FnType->getAs<LValueReferenceType>()) { 6791 FnType = FnTypeRef->getPointeeType(); 6792 isLValueReference = true; 6793 } else if (const RValueReferenceType *FnTypeRef = 6794 FnType->getAs<RValueReferenceType>()) { 6795 FnType = FnTypeRef->getPointeeType(); 6796 isRValueReference = true; 6797 } 6798 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 6799 FnType = FnTypePtr->getPointeeType(); 6800 isPointer = true; 6801 } 6802 // Desugar down to a function type. 6803 FnType = QualType(FnType->getAs<FunctionType>(), 0); 6804 // Reconstruct the pointer/reference as appropriate. 6805 if (isPointer) FnType = S.Context.getPointerType(FnType); 6806 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 6807 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 6808 6809 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 6810 << FnType; 6811 MaybeEmitInheritedConstructorNote(S, Cand->Surrogate); 6812} 6813 6814void NoteBuiltinOperatorCandidate(Sema &S, 6815 const char *Opc, 6816 SourceLocation OpLoc, 6817 OverloadCandidate *Cand) { 6818 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 6819 std::string TypeStr("operator"); 6820 TypeStr += Opc; 6821 TypeStr += "("; 6822 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 6823 if (Cand->Conversions.size() == 1) { 6824 TypeStr += ")"; 6825 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 6826 } else { 6827 TypeStr += ", "; 6828 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 6829 TypeStr += ")"; 6830 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 6831 } 6832} 6833 6834void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 6835 OverloadCandidate *Cand) { 6836 unsigned NoOperands = Cand->Conversions.size(); 6837 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 6838 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 6839 if (ICS.isBad()) break; // all meaningless after first invalid 6840 if (!ICS.isAmbiguous()) continue; 6841 6842 ICS.DiagnoseAmbiguousConversion(S, OpLoc, 6843 S.PDiag(diag::note_ambiguous_type_conversion)); 6844 } 6845} 6846 6847SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 6848 if (Cand->Function) 6849 return Cand->Function->getLocation(); 6850 if (Cand->IsSurrogate) 6851 return Cand->Surrogate->getLocation(); 6852 return SourceLocation(); 6853} 6854 6855struct CompareOverloadCandidatesForDisplay { 6856 Sema &S; 6857 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 6858 6859 bool operator()(const OverloadCandidate *L, 6860 const OverloadCandidate *R) { 6861 // Fast-path this check. 6862 if (L == R) return false; 6863 6864 // Order first by viability. 6865 if (L->Viable) { 6866 if (!R->Viable) return true; 6867 6868 // TODO: introduce a tri-valued comparison for overload 6869 // candidates. Would be more worthwhile if we had a sort 6870 // that could exploit it. 6871 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; 6872 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; 6873 } else if (R->Viable) 6874 return false; 6875 6876 assert(L->Viable == R->Viable); 6877 6878 // Criteria by which we can sort non-viable candidates: 6879 if (!L->Viable) { 6880 // 1. Arity mismatches come after other candidates. 6881 if (L->FailureKind == ovl_fail_too_many_arguments || 6882 L->FailureKind == ovl_fail_too_few_arguments) 6883 return false; 6884 if (R->FailureKind == ovl_fail_too_many_arguments || 6885 R->FailureKind == ovl_fail_too_few_arguments) 6886 return true; 6887 6888 // 2. Bad conversions come first and are ordered by the number 6889 // of bad conversions and quality of good conversions. 6890 if (L->FailureKind == ovl_fail_bad_conversion) { 6891 if (R->FailureKind != ovl_fail_bad_conversion) 6892 return true; 6893 6894 // If there's any ordering between the defined conversions... 6895 // FIXME: this might not be transitive. 6896 assert(L->Conversions.size() == R->Conversions.size()); 6897 6898 int leftBetter = 0; 6899 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 6900 for (unsigned E = L->Conversions.size(); I != E; ++I) { 6901 switch (CompareImplicitConversionSequences(S, 6902 L->Conversions[I], 6903 R->Conversions[I])) { 6904 case ImplicitConversionSequence::Better: 6905 leftBetter++; 6906 break; 6907 6908 case ImplicitConversionSequence::Worse: 6909 leftBetter--; 6910 break; 6911 6912 case ImplicitConversionSequence::Indistinguishable: 6913 break; 6914 } 6915 } 6916 if (leftBetter > 0) return true; 6917 if (leftBetter < 0) return false; 6918 6919 } else if (R->FailureKind == ovl_fail_bad_conversion) 6920 return false; 6921 6922 // TODO: others? 6923 } 6924 6925 // Sort everything else by location. 6926 SourceLocation LLoc = GetLocationForCandidate(L); 6927 SourceLocation RLoc = GetLocationForCandidate(R); 6928 6929 // Put candidates without locations (e.g. builtins) at the end. 6930 if (LLoc.isInvalid()) return false; 6931 if (RLoc.isInvalid()) return true; 6932 6933 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 6934 } 6935}; 6936 6937/// CompleteNonViableCandidate - Normally, overload resolution only 6938/// computes up to the first 6939void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 6940 Expr **Args, unsigned NumArgs) { 6941 assert(!Cand->Viable); 6942 6943 // Don't do anything on failures other than bad conversion. 6944 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 6945 6946 // Skip forward to the first bad conversion. 6947 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 6948 unsigned ConvCount = Cand->Conversions.size(); 6949 while (true) { 6950 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 6951 ConvIdx++; 6952 if (Cand->Conversions[ConvIdx - 1].isBad()) 6953 break; 6954 } 6955 6956 if (ConvIdx == ConvCount) 6957 return; 6958 6959 assert(!Cand->Conversions[ConvIdx].isInitialized() && 6960 "remaining conversion is initialized?"); 6961 6962 // FIXME: this should probably be preserved from the overload 6963 // operation somehow. 6964 bool SuppressUserConversions = false; 6965 6966 const FunctionProtoType* Proto; 6967 unsigned ArgIdx = ConvIdx; 6968 6969 if (Cand->IsSurrogate) { 6970 QualType ConvType 6971 = Cand->Surrogate->getConversionType().getNonReferenceType(); 6972 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 6973 ConvType = ConvPtrType->getPointeeType(); 6974 Proto = ConvType->getAs<FunctionProtoType>(); 6975 ArgIdx--; 6976 } else if (Cand->Function) { 6977 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 6978 if (isa<CXXMethodDecl>(Cand->Function) && 6979 !isa<CXXConstructorDecl>(Cand->Function)) 6980 ArgIdx--; 6981 } else { 6982 // Builtin binary operator with a bad first conversion. 6983 assert(ConvCount <= 3); 6984 for (; ConvIdx != ConvCount; ++ConvIdx) 6985 Cand->Conversions[ConvIdx] 6986 = TryCopyInitialization(S, Args[ConvIdx], 6987 Cand->BuiltinTypes.ParamTypes[ConvIdx], 6988 SuppressUserConversions, 6989 /*InOverloadResolution*/ true); 6990 return; 6991 } 6992 6993 // Fill in the rest of the conversions. 6994 unsigned NumArgsInProto = Proto->getNumArgs(); 6995 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 6996 if (ArgIdx < NumArgsInProto) 6997 Cand->Conversions[ConvIdx] 6998 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 6999 SuppressUserConversions, 7000 /*InOverloadResolution=*/true); 7001 else 7002 Cand->Conversions[ConvIdx].setEllipsis(); 7003 } 7004} 7005 7006} // end anonymous namespace 7007 7008/// PrintOverloadCandidates - When overload resolution fails, prints 7009/// diagnostic messages containing the candidates in the candidate 7010/// set. 7011void OverloadCandidateSet::NoteCandidates(Sema &S, 7012 OverloadCandidateDisplayKind OCD, 7013 Expr **Args, unsigned NumArgs, 7014 const char *Opc, 7015 SourceLocation OpLoc) { 7016 // Sort the candidates by viability and position. Sorting directly would 7017 // be prohibitive, so we make a set of pointers and sort those. 7018 llvm::SmallVector<OverloadCandidate*, 32> Cands; 7019 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 7020 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 7021 if (Cand->Viable) 7022 Cands.push_back(Cand); 7023 else if (OCD == OCD_AllCandidates) { 7024 CompleteNonViableCandidate(S, Cand, Args, NumArgs); 7025 if (Cand->Function || Cand->IsSurrogate) 7026 Cands.push_back(Cand); 7027 // Otherwise, this a non-viable builtin candidate. We do not, in general, 7028 // want to list every possible builtin candidate. 7029 } 7030 } 7031 7032 std::sort(Cands.begin(), Cands.end(), 7033 CompareOverloadCandidatesForDisplay(S)); 7034 7035 bool ReportedAmbiguousConversions = false; 7036 7037 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 7038 const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 7039 unsigned CandsShown = 0; 7040 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 7041 OverloadCandidate *Cand = *I; 7042 7043 // Set an arbitrary limit on the number of candidate functions we'll spam 7044 // the user with. FIXME: This limit should depend on details of the 7045 // candidate list. 7046 if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { 7047 break; 7048 } 7049 ++CandsShown; 7050 7051 if (Cand->Function) 7052 NoteFunctionCandidate(S, Cand, Args, NumArgs); 7053 else if (Cand->IsSurrogate) 7054 NoteSurrogateCandidate(S, Cand); 7055 else { 7056 assert(Cand->Viable && 7057 "Non-viable built-in candidates are not added to Cands."); 7058 // Generally we only see ambiguities including viable builtin 7059 // operators if overload resolution got screwed up by an 7060 // ambiguous user-defined conversion. 7061 // 7062 // FIXME: It's quite possible for different conversions to see 7063 // different ambiguities, though. 7064 if (!ReportedAmbiguousConversions) { 7065 NoteAmbiguousUserConversions(S, OpLoc, Cand); 7066 ReportedAmbiguousConversions = true; 7067 } 7068 7069 // If this is a viable builtin, print it. 7070 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 7071 } 7072 } 7073 7074 if (I != E) 7075 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 7076} 7077 7078// [PossiblyAFunctionType] --> [Return] 7079// NonFunctionType --> NonFunctionType 7080// R (A) --> R(A) 7081// R (*)(A) --> R (A) 7082// R (&)(A) --> R (A) 7083// R (S::*)(A) --> R (A) 7084QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 7085 QualType Ret = PossiblyAFunctionType; 7086 if (const PointerType *ToTypePtr = 7087 PossiblyAFunctionType->getAs<PointerType>()) 7088 Ret = ToTypePtr->getPointeeType(); 7089 else if (const ReferenceType *ToTypeRef = 7090 PossiblyAFunctionType->getAs<ReferenceType>()) 7091 Ret = ToTypeRef->getPointeeType(); 7092 else if (const MemberPointerType *MemTypePtr = 7093 PossiblyAFunctionType->getAs<MemberPointerType>()) 7094 Ret = MemTypePtr->getPointeeType(); 7095 Ret = 7096 Context.getCanonicalType(Ret).getUnqualifiedType(); 7097 return Ret; 7098} 7099 7100// A helper class to help with address of function resolution 7101// - allows us to avoid passing around all those ugly parameters 7102class AddressOfFunctionResolver 7103{ 7104 Sema& S; 7105 Expr* SourceExpr; 7106 const QualType& TargetType; 7107 QualType TargetFunctionType; // Extracted function type from target type 7108 7109 bool Complain; 7110 //DeclAccessPair& ResultFunctionAccessPair; 7111 ASTContext& Context; 7112 7113 bool TargetTypeIsNonStaticMemberFunction; 7114 bool FoundNonTemplateFunction; 7115 7116 OverloadExpr::FindResult OvlExprInfo; 7117 OverloadExpr *OvlExpr; 7118 TemplateArgumentListInfo OvlExplicitTemplateArgs; 7119 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 7120 7121public: 7122 AddressOfFunctionResolver(Sema &S, Expr* SourceExpr, 7123 const QualType& TargetType, bool Complain) 7124 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 7125 Complain(Complain), Context(S.getASTContext()), 7126 TargetTypeIsNonStaticMemberFunction( 7127 !!TargetType->getAs<MemberPointerType>()), 7128 FoundNonTemplateFunction(false), 7129 OvlExprInfo(OverloadExpr::find(SourceExpr)), 7130 OvlExpr(OvlExprInfo.Expression) 7131 { 7132 ExtractUnqualifiedFunctionTypeFromTargetType(); 7133 7134 if (!TargetFunctionType->isFunctionType()) { 7135 if (OvlExpr->hasExplicitTemplateArgs()) { 7136 DeclAccessPair dap; 7137 if( FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization( 7138 OvlExpr, false, &dap) ) { 7139 Matches.push_back(std::make_pair(dap,Fn)); 7140 } 7141 } 7142 return; 7143 } 7144 7145 if (OvlExpr->hasExplicitTemplateArgs()) 7146 OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs); 7147 7148 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 7149 // C++ [over.over]p4: 7150 // If more than one function is selected, [...] 7151 if (Matches.size() > 1) { 7152 if (FoundNonTemplateFunction) 7153 EliminateAllTemplateMatches(); 7154 else 7155 EliminateAllExceptMostSpecializedTemplate(); 7156 } 7157 } 7158 } 7159 7160private: 7161 bool isTargetTypeAFunction() const { 7162 return TargetFunctionType->isFunctionType(); 7163 } 7164 7165 // [ToType] [Return] 7166 7167 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 7168 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 7169 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 7170 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 7171 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 7172 } 7173 7174 // return true if any matching specializations were found 7175 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 7176 const DeclAccessPair& CurAccessFunPair) { 7177 if (CXXMethodDecl *Method 7178 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 7179 // Skip non-static function templates when converting to pointer, and 7180 // static when converting to member pointer. 7181 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 7182 return false; 7183 } 7184 else if (TargetTypeIsNonStaticMemberFunction) 7185 return false; 7186 7187 // C++ [over.over]p2: 7188 // If the name is a function template, template argument deduction is 7189 // done (14.8.2.2), and if the argument deduction succeeds, the 7190 // resulting template argument list is used to generate a single 7191 // function template specialization, which is added to the set of 7192 // overloaded functions considered. 7193 FunctionDecl *Specialization = 0; 7194 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 7195 if (Sema::TemplateDeductionResult Result 7196 = S.DeduceTemplateArguments(FunctionTemplate, 7197 &OvlExplicitTemplateArgs, 7198 TargetFunctionType, Specialization, 7199 Info)) { 7200 // FIXME: make a note of the failed deduction for diagnostics. 7201 (void)Result; 7202 return false; 7203 } 7204 7205 // Template argument deduction ensures that we have an exact match. 7206 // This function template specicalization works. 7207 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); 7208 assert(TargetFunctionType 7209 == Context.getCanonicalType(Specialization->getType())); 7210 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 7211 return true; 7212 } 7213 7214 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 7215 const DeclAccessPair& CurAccessFunPair) { 7216 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7217 // Skip non-static functions when converting to pointer, and static 7218 // when converting to member pointer. 7219 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 7220 return false; 7221 } 7222 else if (TargetTypeIsNonStaticMemberFunction) 7223 return false; 7224 7225 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 7226 QualType ResultTy; 7227 if (Context.hasSameUnqualifiedType(TargetFunctionType, 7228 FunDecl->getType()) || 7229 IsNoReturnConversion(Context, FunDecl->getType(), TargetFunctionType, 7230 ResultTy)) { 7231 Matches.push_back(std::make_pair(CurAccessFunPair, 7232 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 7233 FoundNonTemplateFunction = true; 7234 return true; 7235 } 7236 } 7237 7238 return false; 7239 } 7240 7241 bool FindAllFunctionsThatMatchTargetTypeExactly() { 7242 bool Ret = false; 7243 7244 // If the overload expression doesn't have the form of a pointer to 7245 // member, don't try to convert it to a pointer-to-member type. 7246 if (IsInvalidFormOfPointerToMemberFunction()) 7247 return false; 7248 7249 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7250 E = OvlExpr->decls_end(); 7251 I != E; ++I) { 7252 // Look through any using declarations to find the underlying function. 7253 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 7254 7255 // C++ [over.over]p3: 7256 // Non-member functions and static member functions match 7257 // targets of type "pointer-to-function" or "reference-to-function." 7258 // Nonstatic member functions match targets of 7259 // type "pointer-to-member-function." 7260 // Note that according to DR 247, the containing class does not matter. 7261 if (FunctionTemplateDecl *FunctionTemplate 7262 = dyn_cast<FunctionTemplateDecl>(Fn)) { 7263 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 7264 Ret = true; 7265 } 7266 // If we have explicit template arguments supplied, skip non-templates. 7267 else if (!OvlExpr->hasExplicitTemplateArgs() && 7268 AddMatchingNonTemplateFunction(Fn, I.getPair())) 7269 Ret = true; 7270 } 7271 assert(Ret || Matches.empty()); 7272 return Ret; 7273 } 7274 7275 void EliminateAllExceptMostSpecializedTemplate() { 7276 // [...] and any given function template specialization F1 is 7277 // eliminated if the set contains a second function template 7278 // specialization whose function template is more specialized 7279 // than the function template of F1 according to the partial 7280 // ordering rules of 14.5.5.2. 7281 7282 // The algorithm specified above is quadratic. We instead use a 7283 // two-pass algorithm (similar to the one used to identify the 7284 // best viable function in an overload set) that identifies the 7285 // best function template (if it exists). 7286 7287 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 7288 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 7289 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 7290 7291 UnresolvedSetIterator Result = 7292 S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 7293 TPOC_Other, 0, SourceExpr->getLocStart(), 7294 S.PDiag(), 7295 S.PDiag(diag::err_addr_ovl_ambiguous) 7296 << Matches[0].second->getDeclName(), 7297 S.PDiag(diag::note_ovl_candidate) 7298 << (unsigned) oc_function_template, 7299 Complain); 7300 7301 if (Result != MatchesCopy.end()) { 7302 // Make it the first and only element 7303 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 7304 Matches[0].second = cast<FunctionDecl>(*Result); 7305 Matches.resize(1); 7306 } 7307 } 7308 7309 void EliminateAllTemplateMatches() { 7310 // [...] any function template specializations in the set are 7311 // eliminated if the set also contains a non-template function, [...] 7312 for (unsigned I = 0, N = Matches.size(); I != N; ) { 7313 if (Matches[I].second->getPrimaryTemplate() == 0) 7314 ++I; 7315 else { 7316 Matches[I] = Matches[--N]; 7317 Matches.set_size(N); 7318 } 7319 } 7320 } 7321 7322public: 7323 void ComplainNoMatchesFound() const { 7324 assert(Matches.empty()); 7325 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable) 7326 << OvlExpr->getName() << TargetFunctionType 7327 << OvlExpr->getSourceRange(); 7328 S.NoteAllOverloadCandidates(OvlExpr); 7329 } 7330 7331 bool IsInvalidFormOfPointerToMemberFunction() const { 7332 return TargetTypeIsNonStaticMemberFunction && 7333 !OvlExprInfo.HasFormOfMemberPointer; 7334 } 7335 7336 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 7337 // TODO: Should we condition this on whether any functions might 7338 // have matched, or is it more appropriate to do that in callers? 7339 // TODO: a fixit wouldn't hurt. 7340 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 7341 << TargetType << OvlExpr->getSourceRange(); 7342 } 7343 7344 void ComplainOfInvalidConversion() const { 7345 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 7346 << OvlExpr->getName() << TargetType; 7347 } 7348 7349 void ComplainMultipleMatchesFound() const { 7350 assert(Matches.size() > 1); 7351 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous) 7352 << OvlExpr->getName() 7353 << OvlExpr->getSourceRange(); 7354 S.NoteAllOverloadCandidates(OvlExpr); 7355 } 7356 7357 int getNumMatches() const { return Matches.size(); } 7358 7359 FunctionDecl* getMatchingFunctionDecl() const { 7360 if (Matches.size() != 1) return 0; 7361 return Matches[0].second; 7362 } 7363 7364 const DeclAccessPair* getMatchingFunctionAccessPair() const { 7365 if (Matches.size() != 1) return 0; 7366 return &Matches[0].first; 7367 } 7368}; 7369 7370/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 7371/// an overloaded function (C++ [over.over]), where @p From is an 7372/// expression with overloaded function type and @p ToType is the type 7373/// we're trying to resolve to. For example: 7374/// 7375/// @code 7376/// int f(double); 7377/// int f(int); 7378/// 7379/// int (*pfd)(double) = f; // selects f(double) 7380/// @endcode 7381/// 7382/// This routine returns the resulting FunctionDecl if it could be 7383/// resolved, and NULL otherwise. When @p Complain is true, this 7384/// routine will emit diagnostics if there is an error. 7385FunctionDecl * 7386Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType, 7387 bool Complain, 7388 DeclAccessPair &FoundResult) { 7389 7390 assert(AddressOfExpr->getType() == Context.OverloadTy); 7391 7392 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain); 7393 int NumMatches = Resolver.getNumMatches(); 7394 FunctionDecl* Fn = 0; 7395 if ( NumMatches == 0 && Complain) { 7396 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 7397 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 7398 else 7399 Resolver.ComplainNoMatchesFound(); 7400 } 7401 else if (NumMatches > 1 && Complain) 7402 Resolver.ComplainMultipleMatchesFound(); 7403 else if (NumMatches == 1) { 7404 Fn = Resolver.getMatchingFunctionDecl(); 7405 assert(Fn); 7406 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 7407 MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn); 7408 if (Complain) 7409 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 7410 } 7411 7412 return Fn; 7413} 7414 7415/// \brief Given an expression that refers to an overloaded function, try to 7416/// resolve that overloaded function expression down to a single function. 7417/// 7418/// This routine can only resolve template-ids that refer to a single function 7419/// template, where that template-id refers to a single template whose template 7420/// arguments are either provided by the template-id or have defaults, 7421/// as described in C++0x [temp.arg.explicit]p3. 7422FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From, 7423 bool Complain, 7424 DeclAccessPair* FoundResult) { 7425 // C++ [over.over]p1: 7426 // [...] [Note: any redundant set of parentheses surrounding the 7427 // overloaded function name is ignored (5.1). ] 7428 // C++ [over.over]p1: 7429 // [...] The overloaded function name can be preceded by the & 7430 // operator. 7431 if (From->getType() != Context.OverloadTy) 7432 return 0; 7433 7434 OverloadExpr *OvlExpr = OverloadExpr::find(From).Expression; 7435 7436 // If we didn't actually find any template-ids, we're done. 7437 if (!OvlExpr->hasExplicitTemplateArgs()) 7438 return 0; 7439 7440 TemplateArgumentListInfo ExplicitTemplateArgs; 7441 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 7442 7443 // Look through all of the overloaded functions, searching for one 7444 // whose type matches exactly. 7445 FunctionDecl *Matched = 0; 7446 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7447 E = OvlExpr->decls_end(); I != E; ++I) { 7448 // C++0x [temp.arg.explicit]p3: 7449 // [...] In contexts where deduction is done and fails, or in contexts 7450 // where deduction is not done, if a template argument list is 7451 // specified and it, along with any default template arguments, 7452 // identifies a single function template specialization, then the 7453 // template-id is an lvalue for the function template specialization. 7454 FunctionTemplateDecl *FunctionTemplate 7455 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 7456 7457 // C++ [over.over]p2: 7458 // If the name is a function template, template argument deduction is 7459 // done (14.8.2.2), and if the argument deduction succeeds, the 7460 // resulting template argument list is used to generate a single 7461 // function template specialization, which is added to the set of 7462 // overloaded functions considered. 7463 FunctionDecl *Specialization = 0; 7464 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 7465 if (TemplateDeductionResult Result 7466 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 7467 Specialization, Info)) { 7468 // FIXME: make a note of the failed deduction for diagnostics. 7469 (void)Result; 7470 continue; 7471 } 7472 7473 // Multiple matches; we can't resolve to a single declaration. 7474 if (Matched) { 7475 if (FoundResult) 7476 *FoundResult = DeclAccessPair(); 7477 7478 if (Complain) { 7479 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 7480 << OvlExpr->getName(); 7481 NoteAllOverloadCandidates(OvlExpr); 7482 } 7483 return 0; 7484 } 7485 7486 if ((Matched = Specialization) && FoundResult) 7487 *FoundResult = I.getPair(); 7488 } 7489 7490 return Matched; 7491} 7492 7493/// \brief Add a single candidate to the overload set. 7494static void AddOverloadedCallCandidate(Sema &S, 7495 DeclAccessPair FoundDecl, 7496 const TemplateArgumentListInfo *ExplicitTemplateArgs, 7497 Expr **Args, unsigned NumArgs, 7498 OverloadCandidateSet &CandidateSet, 7499 bool PartialOverloading) { 7500 NamedDecl *Callee = FoundDecl.getDecl(); 7501 if (isa<UsingShadowDecl>(Callee)) 7502 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 7503 7504 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 7505 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 7506 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 7507 false, PartialOverloading); 7508 return; 7509 } 7510 7511 if (FunctionTemplateDecl *FuncTemplate 7512 = dyn_cast<FunctionTemplateDecl>(Callee)) { 7513 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 7514 ExplicitTemplateArgs, 7515 Args, NumArgs, CandidateSet); 7516 return; 7517 } 7518 7519 assert(false && "unhandled case in overloaded call candidate"); 7520 7521 // do nothing? 7522} 7523 7524/// \brief Add the overload candidates named by callee and/or found by argument 7525/// dependent lookup to the given overload set. 7526void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 7527 Expr **Args, unsigned NumArgs, 7528 OverloadCandidateSet &CandidateSet, 7529 bool PartialOverloading) { 7530 7531#ifndef NDEBUG 7532 // Verify that ArgumentDependentLookup is consistent with the rules 7533 // in C++0x [basic.lookup.argdep]p3: 7534 // 7535 // Let X be the lookup set produced by unqualified lookup (3.4.1) 7536 // and let Y be the lookup set produced by argument dependent 7537 // lookup (defined as follows). If X contains 7538 // 7539 // -- a declaration of a class member, or 7540 // 7541 // -- a block-scope function declaration that is not a 7542 // using-declaration, or 7543 // 7544 // -- a declaration that is neither a function or a function 7545 // template 7546 // 7547 // then Y is empty. 7548 7549 if (ULE->requiresADL()) { 7550 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 7551 E = ULE->decls_end(); I != E; ++I) { 7552 assert(!(*I)->getDeclContext()->isRecord()); 7553 assert(isa<UsingShadowDecl>(*I) || 7554 !(*I)->getDeclContext()->isFunctionOrMethod()); 7555 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 7556 } 7557 } 7558#endif 7559 7560 // It would be nice to avoid this copy. 7561 TemplateArgumentListInfo TABuffer; 7562 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 7563 if (ULE->hasExplicitTemplateArgs()) { 7564 ULE->copyTemplateArgumentsInto(TABuffer); 7565 ExplicitTemplateArgs = &TABuffer; 7566 } 7567 7568 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 7569 E = ULE->decls_end(); I != E; ++I) 7570 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 7571 Args, NumArgs, CandidateSet, 7572 PartialOverloading); 7573 7574 if (ULE->requiresADL()) 7575 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 7576 Args, NumArgs, 7577 ExplicitTemplateArgs, 7578 CandidateSet, 7579 PartialOverloading); 7580} 7581 7582/// Attempts to recover from a call where no functions were found. 7583/// 7584/// Returns true if new candidates were found. 7585static ExprResult 7586BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 7587 UnresolvedLookupExpr *ULE, 7588 SourceLocation LParenLoc, 7589 Expr **Args, unsigned NumArgs, 7590 SourceLocation RParenLoc) { 7591 7592 CXXScopeSpec SS; 7593 SS.Adopt(ULE->getQualifierLoc()); 7594 7595 TemplateArgumentListInfo TABuffer; 7596 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 7597 if (ULE->hasExplicitTemplateArgs()) { 7598 ULE->copyTemplateArgumentsInto(TABuffer); 7599 ExplicitTemplateArgs = &TABuffer; 7600 } 7601 7602 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 7603 Sema::LookupOrdinaryName); 7604 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)) 7605 return ExprError(); 7606 7607 assert(!R.empty() && "lookup results empty despite recovery"); 7608 7609 // Build an implicit member call if appropriate. Just drop the 7610 // casts and such from the call, we don't really care. 7611 ExprResult NewFn = ExprError(); 7612 if ((*R.begin())->isCXXClassMember()) 7613 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, 7614 ExplicitTemplateArgs); 7615 else if (ExplicitTemplateArgs) 7616 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 7617 else 7618 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 7619 7620 if (NewFn.isInvalid()) 7621 return ExprError(); 7622 7623 // This shouldn't cause an infinite loop because we're giving it 7624 // an expression with non-empty lookup results, which should never 7625 // end up here. 7626 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, 7627 MultiExprArg(Args, NumArgs), RParenLoc); 7628} 7629 7630/// ResolveOverloadedCallFn - Given the call expression that calls Fn 7631/// (which eventually refers to the declaration Func) and the call 7632/// arguments Args/NumArgs, attempt to resolve the function call down 7633/// to a specific function. If overload resolution succeeds, returns 7634/// the function declaration produced by overload 7635/// resolution. Otherwise, emits diagnostics, deletes all of the 7636/// arguments and Fn, and returns NULL. 7637ExprResult 7638Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 7639 SourceLocation LParenLoc, 7640 Expr **Args, unsigned NumArgs, 7641 SourceLocation RParenLoc, 7642 Expr *ExecConfig) { 7643#ifndef NDEBUG 7644 if (ULE->requiresADL()) { 7645 // To do ADL, we must have found an unqualified name. 7646 assert(!ULE->getQualifier() && "qualified name with ADL"); 7647 7648 // We don't perform ADL for implicit declarations of builtins. 7649 // Verify that this was correctly set up. 7650 FunctionDecl *F; 7651 if (ULE->decls_begin() + 1 == ULE->decls_end() && 7652 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 7653 F->getBuiltinID() && F->isImplicit()) 7654 assert(0 && "performing ADL for builtin"); 7655 7656 // We don't perform ADL in C. 7657 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 7658 } 7659#endif 7660 7661 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 7662 7663 // Add the functions denoted by the callee to the set of candidate 7664 // functions, including those from argument-dependent lookup. 7665 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 7666 7667 // If we found nothing, try to recover. 7668 // AddRecoveryCallCandidates diagnoses the error itself, so we just 7669 // bailout out if it fails. 7670 if (CandidateSet.empty()) 7671 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 7672 RParenLoc); 7673 7674 OverloadCandidateSet::iterator Best; 7675 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { 7676 case OR_Success: { 7677 FunctionDecl *FDecl = Best->Function; 7678 MarkDeclarationReferenced(Fn->getExprLoc(), FDecl); 7679 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 7680 DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(), 7681 ULE->getNameLoc()); 7682 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 7683 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc, 7684 ExecConfig); 7685 } 7686 7687 case OR_No_Viable_Function: 7688 Diag(Fn->getSourceRange().getBegin(), 7689 diag::err_ovl_no_viable_function_in_call) 7690 << ULE->getName() << Fn->getSourceRange(); 7691 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7692 break; 7693 7694 case OR_Ambiguous: 7695 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 7696 << ULE->getName() << Fn->getSourceRange(); 7697 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 7698 break; 7699 7700 case OR_Deleted: 7701 { 7702 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 7703 << Best->Function->isDeleted() 7704 << ULE->getName() 7705 << Best->Function->getMessageUnavailableAttr( 7706 !Best->Function->isDeleted()) 7707 << Fn->getSourceRange(); 7708 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7709 } 7710 break; 7711 } 7712 7713 // Overload resolution failed. 7714 return ExprError(); 7715} 7716 7717static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 7718 return Functions.size() > 1 || 7719 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 7720} 7721 7722/// \brief Create a unary operation that may resolve to an overloaded 7723/// operator. 7724/// 7725/// \param OpLoc The location of the operator itself (e.g., '*'). 7726/// 7727/// \param OpcIn The UnaryOperator::Opcode that describes this 7728/// operator. 7729/// 7730/// \param Functions The set of non-member functions that will be 7731/// considered by overload resolution. The caller needs to build this 7732/// set based on the context using, e.g., 7733/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 7734/// set should not contain any member functions; those will be added 7735/// by CreateOverloadedUnaryOp(). 7736/// 7737/// \param input The input argument. 7738ExprResult 7739Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 7740 const UnresolvedSetImpl &Fns, 7741 Expr *Input) { 7742 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 7743 7744 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 7745 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 7746 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7747 // TODO: provide better source location info. 7748 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 7749 7750 if (Input->getObjectKind() == OK_ObjCProperty) 7751 ConvertPropertyForRValue(Input); 7752 7753 Expr *Args[2] = { Input, 0 }; 7754 unsigned NumArgs = 1; 7755 7756 // For post-increment and post-decrement, add the implicit '0' as 7757 // the second argument, so that we know this is a post-increment or 7758 // post-decrement. 7759 if (Opc == UO_PostInc || Opc == UO_PostDec) { 7760 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 7761 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 7762 SourceLocation()); 7763 NumArgs = 2; 7764 } 7765 7766 if (Input->isTypeDependent()) { 7767 if (Fns.empty()) 7768 return Owned(new (Context) UnaryOperator(Input, 7769 Opc, 7770 Context.DependentTy, 7771 VK_RValue, OK_Ordinary, 7772 OpLoc)); 7773 7774 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7775 UnresolvedLookupExpr *Fn 7776 = UnresolvedLookupExpr::Create(Context, NamingClass, 7777 NestedNameSpecifierLoc(), OpNameInfo, 7778 /*ADL*/ true, IsOverloaded(Fns), 7779 Fns.begin(), Fns.end()); 7780 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 7781 &Args[0], NumArgs, 7782 Context.DependentTy, 7783 VK_RValue, 7784 OpLoc)); 7785 } 7786 7787 // Build an empty overload set. 7788 OverloadCandidateSet CandidateSet(OpLoc); 7789 7790 // Add the candidates from the given function set. 7791 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 7792 7793 // Add operator candidates that are member functions. 7794 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 7795 7796 // Add candidates from ADL. 7797 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 7798 Args, NumArgs, 7799 /*ExplicitTemplateArgs*/ 0, 7800 CandidateSet); 7801 7802 // Add builtin operator candidates. 7803 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 7804 7805 // Perform overload resolution. 7806 OverloadCandidateSet::iterator Best; 7807 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 7808 case OR_Success: { 7809 // We found a built-in operator or an overloaded operator. 7810 FunctionDecl *FnDecl = Best->Function; 7811 7812 if (FnDecl) { 7813 // We matched an overloaded operator. Build a call to that 7814 // operator. 7815 7816 MarkDeclarationReferenced(OpLoc, FnDecl); 7817 7818 // Convert the arguments. 7819 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 7820 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 7821 7822 if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 7823 Best->FoundDecl, Method)) 7824 return ExprError(); 7825 } else { 7826 // Convert the arguments. 7827 ExprResult InputInit 7828 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7829 Context, 7830 FnDecl->getParamDecl(0)), 7831 SourceLocation(), 7832 Input); 7833 if (InputInit.isInvalid()) 7834 return ExprError(); 7835 Input = InputInit.take(); 7836 } 7837 7838 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7839 7840 // Determine the result type. 7841 QualType ResultTy = FnDecl->getResultType(); 7842 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 7843 ResultTy = ResultTy.getNonLValueExprType(Context); 7844 7845 // Build the actual expression node. 7846 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl); 7847 7848 Args[0] = Input; 7849 CallExpr *TheCall = 7850 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 7851 Args, NumArgs, ResultTy, VK, OpLoc); 7852 7853 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 7854 FnDecl)) 7855 return ExprError(); 7856 7857 return MaybeBindToTemporary(TheCall); 7858 } else { 7859 // We matched a built-in operator. Convert the arguments, then 7860 // break out so that we will build the appropriate built-in 7861 // operator node. 7862 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 7863 Best->Conversions[0], AA_Passing)) 7864 return ExprError(); 7865 7866 break; 7867 } 7868 } 7869 7870 case OR_No_Viable_Function: 7871 // No viable function; fall through to handling this as a 7872 // built-in operator, which will produce an error message for us. 7873 break; 7874 7875 case OR_Ambiguous: 7876 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 7877 << UnaryOperator::getOpcodeStr(Opc) 7878 << Input->getType() 7879 << Input->getSourceRange(); 7880 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, 7881 Args, NumArgs, 7882 UnaryOperator::getOpcodeStr(Opc), OpLoc); 7883 return ExprError(); 7884 7885 case OR_Deleted: 7886 Diag(OpLoc, diag::err_ovl_deleted_oper) 7887 << Best->Function->isDeleted() 7888 << UnaryOperator::getOpcodeStr(Opc) 7889 << Best->Function->getMessageUnavailableAttr( 7890 !Best->Function->isDeleted()) 7891 << Input->getSourceRange(); 7892 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7893 return ExprError(); 7894 } 7895 7896 // Either we found no viable overloaded operator or we matched a 7897 // built-in operator. In either case, fall through to trying to 7898 // build a built-in operation. 7899 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 7900} 7901 7902/// \brief Create a binary operation that may resolve to an overloaded 7903/// operator. 7904/// 7905/// \param OpLoc The location of the operator itself (e.g., '+'). 7906/// 7907/// \param OpcIn The BinaryOperator::Opcode that describes this 7908/// operator. 7909/// 7910/// \param Functions The set of non-member functions that will be 7911/// considered by overload resolution. The caller needs to build this 7912/// set based on the context using, e.g., 7913/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 7914/// set should not contain any member functions; those will be added 7915/// by CreateOverloadedBinOp(). 7916/// 7917/// \param LHS Left-hand argument. 7918/// \param RHS Right-hand argument. 7919ExprResult 7920Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 7921 unsigned OpcIn, 7922 const UnresolvedSetImpl &Fns, 7923 Expr *LHS, Expr *RHS) { 7924 Expr *Args[2] = { LHS, RHS }; 7925 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 7926 7927 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 7928 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 7929 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7930 7931 // If either side is type-dependent, create an appropriate dependent 7932 // expression. 7933 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 7934 if (Fns.empty()) { 7935 // If there are no functions to store, just build a dependent 7936 // BinaryOperator or CompoundAssignment. 7937 if (Opc <= BO_Assign || Opc > BO_OrAssign) 7938 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 7939 Context.DependentTy, 7940 VK_RValue, OK_Ordinary, 7941 OpLoc)); 7942 7943 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 7944 Context.DependentTy, 7945 VK_LValue, 7946 OK_Ordinary, 7947 Context.DependentTy, 7948 Context.DependentTy, 7949 OpLoc)); 7950 } 7951 7952 // FIXME: save results of ADL from here? 7953 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7954 // TODO: provide better source location info in DNLoc component. 7955 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 7956 UnresolvedLookupExpr *Fn 7957 = UnresolvedLookupExpr::Create(Context, NamingClass, 7958 NestedNameSpecifierLoc(), OpNameInfo, 7959 /*ADL*/ true, IsOverloaded(Fns), 7960 Fns.begin(), Fns.end()); 7961 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 7962 Args, 2, 7963 Context.DependentTy, 7964 VK_RValue, 7965 OpLoc)); 7966 } 7967 7968 // Always do property rvalue conversions on the RHS. 7969 if (Args[1]->getObjectKind() == OK_ObjCProperty) 7970 ConvertPropertyForRValue(Args[1]); 7971 7972 // The LHS is more complicated. 7973 if (Args[0]->getObjectKind() == OK_ObjCProperty) { 7974 7975 // There's a tension for assignment operators between primitive 7976 // property assignment and the overloaded operators. 7977 if (BinaryOperator::isAssignmentOp(Opc)) { 7978 const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty(); 7979 7980 // Is the property "logically" settable? 7981 bool Settable = (PRE->isExplicitProperty() || 7982 PRE->getImplicitPropertySetter()); 7983 7984 // To avoid gratuitously inventing semantics, use the primitive 7985 // unless it isn't. Thoughts in case we ever really care: 7986 // - If the property isn't logically settable, we have to 7987 // load and hope. 7988 // - If the property is settable and this is simple assignment, 7989 // we really should use the primitive. 7990 // - If the property is settable, then we could try overloading 7991 // on a generic lvalue of the appropriate type; if it works 7992 // out to a builtin candidate, we would do that same operation 7993 // on the property, and otherwise just error. 7994 if (Settable) 7995 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7996 } 7997 7998 ConvertPropertyForRValue(Args[0]); 7999 } 8000 8001 // If this is the assignment operator, we only perform overload resolution 8002 // if the left-hand side is a class or enumeration type. This is actually 8003 // a hack. The standard requires that we do overload resolution between the 8004 // various built-in candidates, but as DR507 points out, this can lead to 8005 // problems. So we do it this way, which pretty much follows what GCC does. 8006 // Note that we go the traditional code path for compound assignment forms. 8007 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 8008 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8009 8010 // If this is the .* operator, which is not overloadable, just 8011 // create a built-in binary operator. 8012 if (Opc == BO_PtrMemD) 8013 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8014 8015 // Build an empty overload set. 8016 OverloadCandidateSet CandidateSet(OpLoc); 8017 8018 // Add the candidates from the given function set. 8019 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 8020 8021 // Add operator candidates that are member functions. 8022 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 8023 8024 // Add candidates from ADL. 8025 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 8026 Args, 2, 8027 /*ExplicitTemplateArgs*/ 0, 8028 CandidateSet); 8029 8030 // Add builtin operator candidates. 8031 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 8032 8033 // Perform overload resolution. 8034 OverloadCandidateSet::iterator Best; 8035 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 8036 case OR_Success: { 8037 // We found a built-in operator or an overloaded operator. 8038 FunctionDecl *FnDecl = Best->Function; 8039 8040 if (FnDecl) { 8041 // We matched an overloaded operator. Build a call to that 8042 // operator. 8043 8044 MarkDeclarationReferenced(OpLoc, FnDecl); 8045 8046 // Convert the arguments. 8047 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 8048 // Best->Access is only meaningful for class members. 8049 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 8050 8051 ExprResult Arg1 = 8052 PerformCopyInitialization( 8053 InitializedEntity::InitializeParameter(Context, 8054 FnDecl->getParamDecl(0)), 8055 SourceLocation(), Owned(Args[1])); 8056 if (Arg1.isInvalid()) 8057 return ExprError(); 8058 8059 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 8060 Best->FoundDecl, Method)) 8061 return ExprError(); 8062 8063 Args[1] = RHS = Arg1.takeAs<Expr>(); 8064 } else { 8065 // Convert the arguments. 8066 ExprResult Arg0 = PerformCopyInitialization( 8067 InitializedEntity::InitializeParameter(Context, 8068 FnDecl->getParamDecl(0)), 8069 SourceLocation(), Owned(Args[0])); 8070 if (Arg0.isInvalid()) 8071 return ExprError(); 8072 8073 ExprResult Arg1 = 8074 PerformCopyInitialization( 8075 InitializedEntity::InitializeParameter(Context, 8076 FnDecl->getParamDecl(1)), 8077 SourceLocation(), Owned(Args[1])); 8078 if (Arg1.isInvalid()) 8079 return ExprError(); 8080 Args[0] = LHS = Arg0.takeAs<Expr>(); 8081 Args[1] = RHS = Arg1.takeAs<Expr>(); 8082 } 8083 8084 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 8085 8086 // Determine the result type. 8087 QualType ResultTy = FnDecl->getResultType(); 8088 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8089 ResultTy = ResultTy.getNonLValueExprType(Context); 8090 8091 // Build the actual expression node. 8092 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc); 8093 8094 CXXOperatorCallExpr *TheCall = 8095 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 8096 Args, 2, ResultTy, VK, OpLoc); 8097 8098 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 8099 FnDecl)) 8100 return ExprError(); 8101 8102 return MaybeBindToTemporary(TheCall); 8103 } else { 8104 // We matched a built-in operator. Convert the arguments, then 8105 // break out so that we will build the appropriate built-in 8106 // operator node. 8107 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 8108 Best->Conversions[0], AA_Passing) || 8109 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 8110 Best->Conversions[1], AA_Passing)) 8111 return ExprError(); 8112 8113 break; 8114 } 8115 } 8116 8117 case OR_No_Viable_Function: { 8118 // C++ [over.match.oper]p9: 8119 // If the operator is the operator , [...] and there are no 8120 // viable functions, then the operator is assumed to be the 8121 // built-in operator and interpreted according to clause 5. 8122 if (Opc == BO_Comma) 8123 break; 8124 8125 // For class as left operand for assignment or compound assigment 8126 // operator do not fall through to handling in built-in, but report that 8127 // no overloaded assignment operator found 8128 ExprResult Result = ExprError(); 8129 if (Args[0]->getType()->isRecordType() && 8130 Opc >= BO_Assign && Opc <= BO_OrAssign) { 8131 Diag(OpLoc, diag::err_ovl_no_viable_oper) 8132 << BinaryOperator::getOpcodeStr(Opc) 8133 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8134 } else { 8135 // No viable function; try to create a built-in operation, which will 8136 // produce an error. Then, show the non-viable candidates. 8137 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8138 } 8139 assert(Result.isInvalid() && 8140 "C++ binary operator overloading is missing candidates!"); 8141 if (Result.isInvalid()) 8142 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 8143 BinaryOperator::getOpcodeStr(Opc), OpLoc); 8144 return move(Result); 8145 } 8146 8147 case OR_Ambiguous: 8148 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) 8149 << BinaryOperator::getOpcodeStr(Opc) 8150 << Args[0]->getType() << Args[1]->getType() 8151 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8152 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 8153 BinaryOperator::getOpcodeStr(Opc), OpLoc); 8154 return ExprError(); 8155 8156 case OR_Deleted: 8157 Diag(OpLoc, diag::err_ovl_deleted_oper) 8158 << Best->Function->isDeleted() 8159 << BinaryOperator::getOpcodeStr(Opc) 8160 << Best->Function->getMessageUnavailableAttr( 8161 !Best->Function->isDeleted()) 8162 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8163 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2); 8164 return ExprError(); 8165 } 8166 8167 // We matched a built-in operator; build it. 8168 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8169} 8170 8171ExprResult 8172Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 8173 SourceLocation RLoc, 8174 Expr *Base, Expr *Idx) { 8175 Expr *Args[2] = { Base, Idx }; 8176 DeclarationName OpName = 8177 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 8178 8179 // If either side is type-dependent, create an appropriate dependent 8180 // expression. 8181 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 8182 8183 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 8184 // CHECKME: no 'operator' keyword? 8185 DeclarationNameInfo OpNameInfo(OpName, LLoc); 8186 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 8187 UnresolvedLookupExpr *Fn 8188 = UnresolvedLookupExpr::Create(Context, NamingClass, 8189 NestedNameSpecifierLoc(), OpNameInfo, 8190 /*ADL*/ true, /*Overloaded*/ false, 8191 UnresolvedSetIterator(), 8192 UnresolvedSetIterator()); 8193 // Can't add any actual overloads yet 8194 8195 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 8196 Args, 2, 8197 Context.DependentTy, 8198 VK_RValue, 8199 RLoc)); 8200 } 8201 8202 if (Args[0]->getObjectKind() == OK_ObjCProperty) 8203 ConvertPropertyForRValue(Args[0]); 8204 if (Args[1]->getObjectKind() == OK_ObjCProperty) 8205 ConvertPropertyForRValue(Args[1]); 8206 8207 // Build an empty overload set. 8208 OverloadCandidateSet CandidateSet(LLoc); 8209 8210 // Subscript can only be overloaded as a member function. 8211 8212 // Add operator candidates that are member functions. 8213 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 8214 8215 // Add builtin operator candidates. 8216 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 8217 8218 // Perform overload resolution. 8219 OverloadCandidateSet::iterator Best; 8220 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 8221 case OR_Success: { 8222 // We found a built-in operator or an overloaded operator. 8223 FunctionDecl *FnDecl = Best->Function; 8224 8225 if (FnDecl) { 8226 // We matched an overloaded operator. Build a call to that 8227 // operator. 8228 8229 MarkDeclarationReferenced(LLoc, FnDecl); 8230 8231 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 8232 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 8233 8234 // Convert the arguments. 8235 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 8236 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 8237 Best->FoundDecl, Method)) 8238 return ExprError(); 8239 8240 // Convert the arguments. 8241 ExprResult InputInit 8242 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 8243 Context, 8244 FnDecl->getParamDecl(0)), 8245 SourceLocation(), 8246 Owned(Args[1])); 8247 if (InputInit.isInvalid()) 8248 return ExprError(); 8249 8250 Args[1] = InputInit.takeAs<Expr>(); 8251 8252 // Determine the result type 8253 QualType ResultTy = FnDecl->getResultType(); 8254 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8255 ResultTy = ResultTy.getNonLValueExprType(Context); 8256 8257 // Build the actual expression node. 8258 Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc); 8259 8260 CXXOperatorCallExpr *TheCall = 8261 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 8262 FnExpr, Args, 2, 8263 ResultTy, VK, RLoc); 8264 8265 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, 8266 FnDecl)) 8267 return ExprError(); 8268 8269 return MaybeBindToTemporary(TheCall); 8270 } else { 8271 // We matched a built-in operator. Convert the arguments, then 8272 // break out so that we will build the appropriate built-in 8273 // operator node. 8274 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 8275 Best->Conversions[0], AA_Passing) || 8276 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 8277 Best->Conversions[1], AA_Passing)) 8278 return ExprError(); 8279 8280 break; 8281 } 8282 } 8283 8284 case OR_No_Viable_Function: { 8285 if (CandidateSet.empty()) 8286 Diag(LLoc, diag::err_ovl_no_oper) 8287 << Args[0]->getType() << /*subscript*/ 0 8288 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8289 else 8290 Diag(LLoc, diag::err_ovl_no_viable_subscript) 8291 << Args[0]->getType() 8292 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8293 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 8294 "[]", LLoc); 8295 return ExprError(); 8296 } 8297 8298 case OR_Ambiguous: 8299 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) 8300 << "[]" 8301 << Args[0]->getType() << Args[1]->getType() 8302 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8303 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 8304 "[]", LLoc); 8305 return ExprError(); 8306 8307 case OR_Deleted: 8308 Diag(LLoc, diag::err_ovl_deleted_oper) 8309 << Best->Function->isDeleted() << "[]" 8310 << Best->Function->getMessageUnavailableAttr( 8311 !Best->Function->isDeleted()) 8312 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8313 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 8314 "[]", LLoc); 8315 return ExprError(); 8316 } 8317 8318 // We matched a built-in operator; build it. 8319 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 8320} 8321 8322/// BuildCallToMemberFunction - Build a call to a member 8323/// function. MemExpr is the expression that refers to the member 8324/// function (and includes the object parameter), Args/NumArgs are the 8325/// arguments to the function call (not including the object 8326/// parameter). The caller needs to validate that the member 8327/// expression refers to a member function or an overloaded member 8328/// function. 8329ExprResult 8330Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 8331 SourceLocation LParenLoc, Expr **Args, 8332 unsigned NumArgs, SourceLocation RParenLoc) { 8333 // Dig out the member expression. This holds both the object 8334 // argument and the member function we're referring to. 8335 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 8336 8337 MemberExpr *MemExpr; 8338 CXXMethodDecl *Method = 0; 8339 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 8340 NestedNameSpecifier *Qualifier = 0; 8341 if (isa<MemberExpr>(NakedMemExpr)) { 8342 MemExpr = cast<MemberExpr>(NakedMemExpr); 8343 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 8344 FoundDecl = MemExpr->getFoundDecl(); 8345 Qualifier = MemExpr->getQualifier(); 8346 } else { 8347 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 8348 Qualifier = UnresExpr->getQualifier(); 8349 8350 QualType ObjectType = UnresExpr->getBaseType(); 8351 Expr::Classification ObjectClassification 8352 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 8353 : UnresExpr->getBase()->Classify(Context); 8354 8355 // Add overload candidates 8356 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 8357 8358 // FIXME: avoid copy. 8359 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 8360 if (UnresExpr->hasExplicitTemplateArgs()) { 8361 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 8362 TemplateArgs = &TemplateArgsBuffer; 8363 } 8364 8365 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 8366 E = UnresExpr->decls_end(); I != E; ++I) { 8367 8368 NamedDecl *Func = *I; 8369 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 8370 if (isa<UsingShadowDecl>(Func)) 8371 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 8372 8373 8374 // Microsoft supports direct constructor calls. 8375 if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) { 8376 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs, 8377 CandidateSet); 8378 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 8379 // If explicit template arguments were provided, we can't call a 8380 // non-template member function. 8381 if (TemplateArgs) 8382 continue; 8383 8384 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 8385 ObjectClassification, 8386 Args, NumArgs, CandidateSet, 8387 /*SuppressUserConversions=*/false); 8388 } else { 8389 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 8390 I.getPair(), ActingDC, TemplateArgs, 8391 ObjectType, ObjectClassification, 8392 Args, NumArgs, CandidateSet, 8393 /*SuppressUsedConversions=*/false); 8394 } 8395 } 8396 8397 DeclarationName DeclName = UnresExpr->getMemberName(); 8398 8399 OverloadCandidateSet::iterator Best; 8400 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 8401 Best)) { 8402 case OR_Success: 8403 Method = cast<CXXMethodDecl>(Best->Function); 8404 MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method); 8405 FoundDecl = Best->FoundDecl; 8406 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 8407 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 8408 break; 8409 8410 case OR_No_Viable_Function: 8411 Diag(UnresExpr->getMemberLoc(), 8412 diag::err_ovl_no_viable_member_function_in_call) 8413 << DeclName << MemExprE->getSourceRange(); 8414 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8415 // FIXME: Leaking incoming expressions! 8416 return ExprError(); 8417 8418 case OR_Ambiguous: 8419 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 8420 << DeclName << MemExprE->getSourceRange(); 8421 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8422 // FIXME: Leaking incoming expressions! 8423 return ExprError(); 8424 8425 case OR_Deleted: 8426 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 8427 << Best->Function->isDeleted() 8428 << DeclName 8429 << Best->Function->getMessageUnavailableAttr( 8430 !Best->Function->isDeleted()) 8431 << MemExprE->getSourceRange(); 8432 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8433 // FIXME: Leaking incoming expressions! 8434 return ExprError(); 8435 } 8436 8437 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 8438 8439 // If overload resolution picked a static member, build a 8440 // non-member call based on that function. 8441 if (Method->isStatic()) { 8442 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 8443 Args, NumArgs, RParenLoc); 8444 } 8445 8446 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 8447 } 8448 8449 QualType ResultType = Method->getResultType(); 8450 ExprValueKind VK = Expr::getValueKindForType(ResultType); 8451 ResultType = ResultType.getNonLValueExprType(Context); 8452 8453 assert(Method && "Member call to something that isn't a method?"); 8454 CXXMemberCallExpr *TheCall = 8455 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 8456 ResultType, VK, RParenLoc); 8457 8458 // Check for a valid return type. 8459 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 8460 TheCall, Method)) 8461 return ExprError(); 8462 8463 // Convert the object argument (for a non-static member function call). 8464 // We only need to do this if there was actually an overload; otherwise 8465 // it was done at lookup. 8466 Expr *ObjectArg = MemExpr->getBase(); 8467 if (!Method->isStatic() && 8468 PerformObjectArgumentInitialization(ObjectArg, Qualifier, 8469 FoundDecl, Method)) 8470 return ExprError(); 8471 MemExpr->setBase(ObjectArg); 8472 8473 // Convert the rest of the arguments 8474 const FunctionProtoType *Proto = 8475 Method->getType()->getAs<FunctionProtoType>(); 8476 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, 8477 RParenLoc)) 8478 return ExprError(); 8479 8480 if (CheckFunctionCall(Method, TheCall)) 8481 return ExprError(); 8482 8483 return MaybeBindToTemporary(TheCall); 8484} 8485 8486/// BuildCallToObjectOfClassType - Build a call to an object of class 8487/// type (C++ [over.call.object]), which can end up invoking an 8488/// overloaded function call operator (@c operator()) or performing a 8489/// user-defined conversion on the object argument. 8490ExprResult 8491Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 8492 SourceLocation LParenLoc, 8493 Expr **Args, unsigned NumArgs, 8494 SourceLocation RParenLoc) { 8495 if (Object->getObjectKind() == OK_ObjCProperty) 8496 ConvertPropertyForRValue(Object); 8497 8498 assert(Object->getType()->isRecordType() && "Requires object type argument"); 8499 const RecordType *Record = Object->getType()->getAs<RecordType>(); 8500 8501 // C++ [over.call.object]p1: 8502 // If the primary-expression E in the function call syntax 8503 // evaluates to a class object of type "cv T", then the set of 8504 // candidate functions includes at least the function call 8505 // operators of T. The function call operators of T are obtained by 8506 // ordinary lookup of the name operator() in the context of 8507 // (E).operator(). 8508 OverloadCandidateSet CandidateSet(LParenLoc); 8509 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 8510 8511 if (RequireCompleteType(LParenLoc, Object->getType(), 8512 PDiag(diag::err_incomplete_object_call) 8513 << Object->getSourceRange())) 8514 return true; 8515 8516 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 8517 LookupQualifiedName(R, Record->getDecl()); 8518 R.suppressDiagnostics(); 8519 8520 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 8521 Oper != OperEnd; ++Oper) { 8522 AddMethodCandidate(Oper.getPair(), Object->getType(), 8523 Object->Classify(Context), Args, NumArgs, CandidateSet, 8524 /*SuppressUserConversions=*/ false); 8525 } 8526 8527 // C++ [over.call.object]p2: 8528 // In addition, for each conversion function declared in T of the 8529 // form 8530 // 8531 // operator conversion-type-id () cv-qualifier; 8532 // 8533 // where cv-qualifier is the same cv-qualification as, or a 8534 // greater cv-qualification than, cv, and where conversion-type-id 8535 // denotes the type "pointer to function of (P1,...,Pn) returning 8536 // R", or the type "reference to pointer to function of 8537 // (P1,...,Pn) returning R", or the type "reference to function 8538 // of (P1,...,Pn) returning R", a surrogate call function [...] 8539 // is also considered as a candidate function. Similarly, 8540 // surrogate call functions are added to the set of candidate 8541 // functions for each conversion function declared in an 8542 // accessible base class provided the function is not hidden 8543 // within T by another intervening declaration. 8544 const UnresolvedSetImpl *Conversions 8545 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 8546 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 8547 E = Conversions->end(); I != E; ++I) { 8548 NamedDecl *D = *I; 8549 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 8550 if (isa<UsingShadowDecl>(D)) 8551 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8552 8553 // Skip over templated conversion functions; they aren't 8554 // surrogates. 8555 if (isa<FunctionTemplateDecl>(D)) 8556 continue; 8557 8558 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 8559 8560 // Strip the reference type (if any) and then the pointer type (if 8561 // any) to get down to what might be a function type. 8562 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 8563 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 8564 ConvType = ConvPtrType->getPointeeType(); 8565 8566 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 8567 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 8568 Object, Args, NumArgs, CandidateSet); 8569 } 8570 8571 // Perform overload resolution. 8572 OverloadCandidateSet::iterator Best; 8573 switch (CandidateSet.BestViableFunction(*this, Object->getLocStart(), 8574 Best)) { 8575 case OR_Success: 8576 // Overload resolution succeeded; we'll build the appropriate call 8577 // below. 8578 break; 8579 8580 case OR_No_Viable_Function: 8581 if (CandidateSet.empty()) 8582 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 8583 << Object->getType() << /*call*/ 1 8584 << Object->getSourceRange(); 8585 else 8586 Diag(Object->getSourceRange().getBegin(), 8587 diag::err_ovl_no_viable_object_call) 8588 << Object->getType() << Object->getSourceRange(); 8589 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8590 break; 8591 8592 case OR_Ambiguous: 8593 Diag(Object->getSourceRange().getBegin(), 8594 diag::err_ovl_ambiguous_object_call) 8595 << Object->getType() << Object->getSourceRange(); 8596 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 8597 break; 8598 8599 case OR_Deleted: 8600 Diag(Object->getSourceRange().getBegin(), 8601 diag::err_ovl_deleted_object_call) 8602 << Best->Function->isDeleted() 8603 << Object->getType() 8604 << Best->Function->getMessageUnavailableAttr( 8605 !Best->Function->isDeleted()) 8606 << Object->getSourceRange(); 8607 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8608 break; 8609 } 8610 8611 if (Best == CandidateSet.end()) 8612 return true; 8613 8614 if (Best->Function == 0) { 8615 // Since there is no function declaration, this is one of the 8616 // surrogate candidates. Dig out the conversion function. 8617 CXXConversionDecl *Conv 8618 = cast<CXXConversionDecl>( 8619 Best->Conversions[0].UserDefined.ConversionFunction); 8620 8621 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 8622 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 8623 8624 // We selected one of the surrogate functions that converts the 8625 // object parameter to a function pointer. Perform the conversion 8626 // on the object argument, then let ActOnCallExpr finish the job. 8627 8628 // Create an implicit member expr to refer to the conversion operator. 8629 // and then call it. 8630 ExprResult Call = BuildCXXMemberCallExpr(Object, Best->FoundDecl, Conv); 8631 if (Call.isInvalid()) 8632 return ExprError(); 8633 8634 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs), 8635 RParenLoc); 8636 } 8637 8638 MarkDeclarationReferenced(LParenLoc, Best->Function); 8639 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 8640 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 8641 8642 // We found an overloaded operator(). Build a CXXOperatorCallExpr 8643 // that calls this method, using Object for the implicit object 8644 // parameter and passing along the remaining arguments. 8645 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 8646 const FunctionProtoType *Proto = 8647 Method->getType()->getAs<FunctionProtoType>(); 8648 8649 unsigned NumArgsInProto = Proto->getNumArgs(); 8650 unsigned NumArgsToCheck = NumArgs; 8651 8652 // Build the full argument list for the method call (the 8653 // implicit object parameter is placed at the beginning of the 8654 // list). 8655 Expr **MethodArgs; 8656 if (NumArgs < NumArgsInProto) { 8657 NumArgsToCheck = NumArgsInProto; 8658 MethodArgs = new Expr*[NumArgsInProto + 1]; 8659 } else { 8660 MethodArgs = new Expr*[NumArgs + 1]; 8661 } 8662 MethodArgs[0] = Object; 8663 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 8664 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 8665 8666 Expr *NewFn = CreateFunctionRefExpr(*this, Method); 8667 8668 // Once we've built TheCall, all of the expressions are properly 8669 // owned. 8670 QualType ResultTy = Method->getResultType(); 8671 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8672 ResultTy = ResultTy.getNonLValueExprType(Context); 8673 8674 CXXOperatorCallExpr *TheCall = 8675 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 8676 MethodArgs, NumArgs + 1, 8677 ResultTy, VK, RParenLoc); 8678 delete [] MethodArgs; 8679 8680 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, 8681 Method)) 8682 return true; 8683 8684 // We may have default arguments. If so, we need to allocate more 8685 // slots in the call for them. 8686 if (NumArgs < NumArgsInProto) 8687 TheCall->setNumArgs(Context, NumArgsInProto + 1); 8688 else if (NumArgs > NumArgsInProto) 8689 NumArgsToCheck = NumArgsInProto; 8690 8691 bool IsError = false; 8692 8693 // Initialize the implicit object parameter. 8694 IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, 8695 Best->FoundDecl, Method); 8696 TheCall->setArg(0, Object); 8697 8698 8699 // Check the argument types. 8700 for (unsigned i = 0; i != NumArgsToCheck; i++) { 8701 Expr *Arg; 8702 if (i < NumArgs) { 8703 Arg = Args[i]; 8704 8705 // Pass the argument. 8706 8707 ExprResult InputInit 8708 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 8709 Context, 8710 Method->getParamDecl(i)), 8711 SourceLocation(), Arg); 8712 8713 IsError |= InputInit.isInvalid(); 8714 Arg = InputInit.takeAs<Expr>(); 8715 } else { 8716 ExprResult DefArg 8717 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 8718 if (DefArg.isInvalid()) { 8719 IsError = true; 8720 break; 8721 } 8722 8723 Arg = DefArg.takeAs<Expr>(); 8724 } 8725 8726 TheCall->setArg(i + 1, Arg); 8727 } 8728 8729 // If this is a variadic call, handle args passed through "...". 8730 if (Proto->isVariadic()) { 8731 // Promote the arguments (C99 6.5.2.2p7). 8732 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 8733 Expr *Arg = Args[i]; 8734 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0); 8735 TheCall->setArg(i + 1, Arg); 8736 } 8737 } 8738 8739 if (IsError) return true; 8740 8741 if (CheckFunctionCall(Method, TheCall)) 8742 return true; 8743 8744 return MaybeBindToTemporary(TheCall); 8745} 8746 8747/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 8748/// (if one exists), where @c Base is an expression of class type and 8749/// @c Member is the name of the member we're trying to find. 8750ExprResult 8751Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { 8752 assert(Base->getType()->isRecordType() && 8753 "left-hand side must have class type"); 8754 8755 if (Base->getObjectKind() == OK_ObjCProperty) 8756 ConvertPropertyForRValue(Base); 8757 8758 SourceLocation Loc = Base->getExprLoc(); 8759 8760 // C++ [over.ref]p1: 8761 // 8762 // [...] An expression x->m is interpreted as (x.operator->())->m 8763 // for a class object x of type T if T::operator->() exists and if 8764 // the operator is selected as the best match function by the 8765 // overload resolution mechanism (13.3). 8766 DeclarationName OpName = 8767 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 8768 OverloadCandidateSet CandidateSet(Loc); 8769 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 8770 8771 if (RequireCompleteType(Loc, Base->getType(), 8772 PDiag(diag::err_typecheck_incomplete_tag) 8773 << Base->getSourceRange())) 8774 return ExprError(); 8775 8776 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 8777 LookupQualifiedName(R, BaseRecord->getDecl()); 8778 R.suppressDiagnostics(); 8779 8780 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 8781 Oper != OperEnd; ++Oper) { 8782 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 8783 0, 0, CandidateSet, /*SuppressUserConversions=*/false); 8784 } 8785 8786 // Perform overload resolution. 8787 OverloadCandidateSet::iterator Best; 8788 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 8789 case OR_Success: 8790 // Overload resolution succeeded; we'll build the call below. 8791 break; 8792 8793 case OR_No_Viable_Function: 8794 if (CandidateSet.empty()) 8795 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 8796 << Base->getType() << Base->getSourceRange(); 8797 else 8798 Diag(OpLoc, diag::err_ovl_no_viable_oper) 8799 << "operator->" << Base->getSourceRange(); 8800 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 8801 return ExprError(); 8802 8803 case OR_Ambiguous: 8804 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 8805 << "->" << Base->getType() << Base->getSourceRange(); 8806 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); 8807 return ExprError(); 8808 8809 case OR_Deleted: 8810 Diag(OpLoc, diag::err_ovl_deleted_oper) 8811 << Best->Function->isDeleted() 8812 << "->" 8813 << Best->Function->getMessageUnavailableAttr( 8814 !Best->Function->isDeleted()) 8815 << Base->getSourceRange(); 8816 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 8817 return ExprError(); 8818 } 8819 8820 MarkDeclarationReferenced(OpLoc, Best->Function); 8821 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 8822 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 8823 8824 // Convert the object parameter. 8825 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 8826 if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 8827 Best->FoundDecl, Method)) 8828 return ExprError(); 8829 8830 // Build the operator call. 8831 Expr *FnExpr = CreateFunctionRefExpr(*this, Method); 8832 8833 QualType ResultTy = Method->getResultType(); 8834 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8835 ResultTy = ResultTy.getNonLValueExprType(Context); 8836 CXXOperatorCallExpr *TheCall = 8837 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 8838 &Base, 1, ResultTy, VK, OpLoc); 8839 8840 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, 8841 Method)) 8842 return ExprError(); 8843 return Owned(TheCall); 8844} 8845 8846/// FixOverloadedFunctionReference - E is an expression that refers to 8847/// a C++ overloaded function (possibly with some parentheses and 8848/// perhaps a '&' around it). We have resolved the overloaded function 8849/// to the function declaration Fn, so patch up the expression E to 8850/// refer (possibly indirectly) to Fn. Returns the new expr. 8851Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 8852 FunctionDecl *Fn) { 8853 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 8854 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 8855 Found, Fn); 8856 if (SubExpr == PE->getSubExpr()) 8857 return PE; 8858 8859 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 8860 } 8861 8862 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8863 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 8864 Found, Fn); 8865 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 8866 SubExpr->getType()) && 8867 "Implicit cast type cannot be determined from overload"); 8868 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 8869 if (SubExpr == ICE->getSubExpr()) 8870 return ICE; 8871 8872 return ImplicitCastExpr::Create(Context, ICE->getType(), 8873 ICE->getCastKind(), 8874 SubExpr, 0, 8875 ICE->getValueKind()); 8876 } 8877 8878 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 8879 assert(UnOp->getOpcode() == UO_AddrOf && 8880 "Can only take the address of an overloaded function"); 8881 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 8882 if (Method->isStatic()) { 8883 // Do nothing: static member functions aren't any different 8884 // from non-member functions. 8885 } else { 8886 // Fix the sub expression, which really has to be an 8887 // UnresolvedLookupExpr holding an overloaded member function 8888 // or template. 8889 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 8890 Found, Fn); 8891 if (SubExpr == UnOp->getSubExpr()) 8892 return UnOp; 8893 8894 assert(isa<DeclRefExpr>(SubExpr) 8895 && "fixed to something other than a decl ref"); 8896 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 8897 && "fixed to a member ref with no nested name qualifier"); 8898 8899 // We have taken the address of a pointer to member 8900 // function. Perform the computation here so that we get the 8901 // appropriate pointer to member type. 8902 QualType ClassType 8903 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 8904 QualType MemPtrType 8905 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 8906 8907 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, 8908 VK_RValue, OK_Ordinary, 8909 UnOp->getOperatorLoc()); 8910 } 8911 } 8912 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 8913 Found, Fn); 8914 if (SubExpr == UnOp->getSubExpr()) 8915 return UnOp; 8916 8917 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 8918 Context.getPointerType(SubExpr->getType()), 8919 VK_RValue, OK_Ordinary, 8920 UnOp->getOperatorLoc()); 8921 } 8922 8923 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 8924 // FIXME: avoid copy. 8925 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 8926 if (ULE->hasExplicitTemplateArgs()) { 8927 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 8928 TemplateArgs = &TemplateArgsBuffer; 8929 } 8930 8931 // FIXME: Nested-name-specifier source location information for DeclRefExpr. 8932 return DeclRefExpr::Create(Context, 8933 ULE->getQualifier(), 8934 ULE->getQualifierLoc().getSourceRange(), 8935 Fn, 8936 ULE->getNameLoc(), 8937 Fn->getType(), 8938 VK_LValue, 8939 TemplateArgs); 8940 } 8941 8942 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 8943 // FIXME: avoid copy. 8944 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 8945 if (MemExpr->hasExplicitTemplateArgs()) { 8946 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 8947 TemplateArgs = &TemplateArgsBuffer; 8948 } 8949 8950 Expr *Base; 8951 8952 // If we're filling in a static method where we used to have an 8953 // implicit member access, rewrite to a simple decl ref. 8954 if (MemExpr->isImplicitAccess()) { 8955 // FIXME: Source location information for DeclRefExpr 8956 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 8957 return DeclRefExpr::Create(Context, 8958 MemExpr->getQualifier(), 8959 MemExpr->getQualifierLoc().getSourceRange(), 8960 Fn, 8961 MemExpr->getMemberLoc(), 8962 Fn->getType(), 8963 VK_LValue, 8964 TemplateArgs); 8965 } else { 8966 SourceLocation Loc = MemExpr->getMemberLoc(); 8967 if (MemExpr->getQualifier()) 8968 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 8969 Base = new (Context) CXXThisExpr(Loc, 8970 MemExpr->getBaseType(), 8971 /*isImplicit=*/true); 8972 } 8973 } else 8974 Base = MemExpr->getBase(); 8975 8976 // FIXME: Source location information for MemberExpr 8977 return MemberExpr::Create(Context, Base, 8978 MemExpr->isArrow(), 8979 MemExpr->getQualifier(), 8980 MemExpr->getQualifierLoc().getSourceRange(), 8981 Fn, 8982 Found, 8983 MemExpr->getMemberNameInfo(), 8984 TemplateArgs, 8985 Fn->getType(), 8986 cast<CXXMethodDecl>(Fn)->isStatic() 8987 ? VK_LValue : VK_RValue, 8988 OK_Ordinary); 8989 } 8990 8991 llvm_unreachable("Invalid reference to overloaded function"); 8992 return E; 8993} 8994 8995ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 8996 DeclAccessPair Found, 8997 FunctionDecl *Fn) { 8998 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 8999} 9000 9001} // end namespace clang 9002