SemaOverload.cpp revision 5291c3cec0dbe8ad1d8e7e67e93af2b1586d5400
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "SemaInit.h" 17#include "clang/Basic/Diagnostic.h" 18#include "clang/Lex/Preprocessor.h" 19#include "clang/AST/ASTContext.h" 20#include "clang/AST/CXXInheritance.h" 21#include "clang/AST/Expr.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/TypeOrdering.h" 24#include "clang/Basic/PartialDiagnostic.h" 25#include "llvm/ADT/SmallPtrSet.h" 26#include "llvm/ADT/STLExtras.h" 27#include <algorithm> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Identity, 42 ICC_Qualification_Adjustment, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Promotion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion, 55 ICC_Conversion, 56 ICC_Conversion, 57 ICC_Conversion 58 }; 59 return Category[(int)Kind]; 60} 61 62/// GetConversionRank - Retrieve the implicit conversion rank 63/// corresponding to the given implicit conversion kind. 64ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 65 static const ImplicitConversionRank 66 Rank[(int)ICK_Num_Conversion_Kinds] = { 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Exact_Match, 70 ICR_Exact_Match, 71 ICR_Exact_Match, 72 ICR_Exact_Match, 73 ICR_Promotion, 74 ICR_Promotion, 75 ICR_Promotion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion, 82 ICR_Conversion, 83 ICR_Conversion, 84 ICR_Conversion, 85 ICR_Conversion, 86 ICR_Conversion, 87 ICR_Complex_Real_Conversion 88 }; 89 return Rank[(int)Kind]; 90} 91 92/// GetImplicitConversionName - Return the name of this kind of 93/// implicit conversion. 94const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 95 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 96 "No conversion", 97 "Lvalue-to-rvalue", 98 "Array-to-pointer", 99 "Function-to-pointer", 100 "Noreturn adjustment", 101 "Qualification", 102 "Integral promotion", 103 "Floating point promotion", 104 "Complex promotion", 105 "Integral conversion", 106 "Floating conversion", 107 "Complex conversion", 108 "Floating-integral conversion", 109 "Pointer conversion", 110 "Pointer-to-member conversion", 111 "Boolean conversion", 112 "Compatible-types conversion", 113 "Derived-to-base conversion", 114 "Vector conversion", 115 "Vector splat", 116 "Complex-real conversion" 117 }; 118 return Name[Kind]; 119} 120 121/// StandardConversionSequence - Set the standard conversion 122/// sequence to the identity conversion. 123void StandardConversionSequence::setAsIdentityConversion() { 124 First = ICK_Identity; 125 Second = ICK_Identity; 126 Third = ICK_Identity; 127 DeprecatedStringLiteralToCharPtr = false; 128 ReferenceBinding = false; 129 DirectBinding = false; 130 RRefBinding = false; 131 CopyConstructor = 0; 132} 133 134/// getRank - Retrieve the rank of this standard conversion sequence 135/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 136/// implicit conversions. 137ImplicitConversionRank StandardConversionSequence::getRank() const { 138 ImplicitConversionRank Rank = ICR_Exact_Match; 139 if (GetConversionRank(First) > Rank) 140 Rank = GetConversionRank(First); 141 if (GetConversionRank(Second) > Rank) 142 Rank = GetConversionRank(Second); 143 if (GetConversionRank(Third) > Rank) 144 Rank = GetConversionRank(Third); 145 return Rank; 146} 147 148/// isPointerConversionToBool - Determines whether this conversion is 149/// a conversion of a pointer or pointer-to-member to bool. This is 150/// used as part of the ranking of standard conversion sequences 151/// (C++ 13.3.3.2p4). 152bool StandardConversionSequence::isPointerConversionToBool() const { 153 // Note that FromType has not necessarily been transformed by the 154 // array-to-pointer or function-to-pointer implicit conversions, so 155 // check for their presence as well as checking whether FromType is 156 // a pointer. 157 if (getToType(1)->isBooleanType() && 158 (getFromType()->isPointerType() || 159 getFromType()->isObjCObjectPointerType() || 160 getFromType()->isBlockPointerType() || 161 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 162 return true; 163 164 return false; 165} 166 167/// isPointerConversionToVoidPointer - Determines whether this 168/// conversion is a conversion of a pointer to a void pointer. This is 169/// used as part of the ranking of standard conversion sequences (C++ 170/// 13.3.3.2p4). 171bool 172StandardConversionSequence:: 173isPointerConversionToVoidPointer(ASTContext& Context) const { 174 QualType FromType = getFromType(); 175 QualType ToType = getToType(1); 176 177 // Note that FromType has not necessarily been transformed by the 178 // array-to-pointer implicit conversion, so check for its presence 179 // and redo the conversion to get a pointer. 180 if (First == ICK_Array_To_Pointer) 181 FromType = Context.getArrayDecayedType(FromType); 182 183 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 184 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 185 return ToPtrType->getPointeeType()->isVoidType(); 186 187 return false; 188} 189 190/// DebugPrint - Print this standard conversion sequence to standard 191/// error. Useful for debugging overloading issues. 192void StandardConversionSequence::DebugPrint() const { 193 llvm::raw_ostream &OS = llvm::errs(); 194 bool PrintedSomething = false; 195 if (First != ICK_Identity) { 196 OS << GetImplicitConversionName(First); 197 PrintedSomething = true; 198 } 199 200 if (Second != ICK_Identity) { 201 if (PrintedSomething) { 202 OS << " -> "; 203 } 204 OS << GetImplicitConversionName(Second); 205 206 if (CopyConstructor) { 207 OS << " (by copy constructor)"; 208 } else if (DirectBinding) { 209 OS << " (direct reference binding)"; 210 } else if (ReferenceBinding) { 211 OS << " (reference binding)"; 212 } 213 PrintedSomething = true; 214 } 215 216 if (Third != ICK_Identity) { 217 if (PrintedSomething) { 218 OS << " -> "; 219 } 220 OS << GetImplicitConversionName(Third); 221 PrintedSomething = true; 222 } 223 224 if (!PrintedSomething) { 225 OS << "No conversions required"; 226 } 227} 228 229/// DebugPrint - Print this user-defined conversion sequence to standard 230/// error. Useful for debugging overloading issues. 231void UserDefinedConversionSequence::DebugPrint() const { 232 llvm::raw_ostream &OS = llvm::errs(); 233 if (Before.First || Before.Second || Before.Third) { 234 Before.DebugPrint(); 235 OS << " -> "; 236 } 237 OS << '\'' << ConversionFunction << '\''; 238 if (After.First || After.Second || After.Third) { 239 OS << " -> "; 240 After.DebugPrint(); 241 } 242} 243 244/// DebugPrint - Print this implicit conversion sequence to standard 245/// error. Useful for debugging overloading issues. 246void ImplicitConversionSequence::DebugPrint() const { 247 llvm::raw_ostream &OS = llvm::errs(); 248 switch (ConversionKind) { 249 case StandardConversion: 250 OS << "Standard conversion: "; 251 Standard.DebugPrint(); 252 break; 253 case UserDefinedConversion: 254 OS << "User-defined conversion: "; 255 UserDefined.DebugPrint(); 256 break; 257 case EllipsisConversion: 258 OS << "Ellipsis conversion"; 259 break; 260 case AmbiguousConversion: 261 OS << "Ambiguous conversion"; 262 break; 263 case BadConversion: 264 OS << "Bad conversion"; 265 break; 266 } 267 268 OS << "\n"; 269} 270 271void AmbiguousConversionSequence::construct() { 272 new (&conversions()) ConversionSet(); 273} 274 275void AmbiguousConversionSequence::destruct() { 276 conversions().~ConversionSet(); 277} 278 279void 280AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 281 FromTypePtr = O.FromTypePtr; 282 ToTypePtr = O.ToTypePtr; 283 new (&conversions()) ConversionSet(O.conversions()); 284} 285 286namespace { 287 // Structure used by OverloadCandidate::DeductionFailureInfo to store 288 // template parameter and template argument information. 289 struct DFIParamWithArguments { 290 TemplateParameter Param; 291 TemplateArgument FirstArg; 292 TemplateArgument SecondArg; 293 }; 294} 295 296/// \brief Convert from Sema's representation of template deduction information 297/// to the form used in overload-candidate information. 298OverloadCandidate::DeductionFailureInfo 299static MakeDeductionFailureInfo(ASTContext &Context, 300 Sema::TemplateDeductionResult TDK, 301 Sema::TemplateDeductionInfo &Info) { 302 OverloadCandidate::DeductionFailureInfo Result; 303 Result.Result = static_cast<unsigned>(TDK); 304 Result.Data = 0; 305 switch (TDK) { 306 case Sema::TDK_Success: 307 case Sema::TDK_InstantiationDepth: 308 case Sema::TDK_TooManyArguments: 309 case Sema::TDK_TooFewArguments: 310 break; 311 312 case Sema::TDK_Incomplete: 313 case Sema::TDK_InvalidExplicitArguments: 314 Result.Data = Info.Param.getOpaqueValue(); 315 break; 316 317 case Sema::TDK_Inconsistent: 318 case Sema::TDK_InconsistentQuals: { 319 // FIXME: Should allocate from normal heap so that we can free this later. 320 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 321 Saved->Param = Info.Param; 322 Saved->FirstArg = Info.FirstArg; 323 Saved->SecondArg = Info.SecondArg; 324 Result.Data = Saved; 325 break; 326 } 327 328 case Sema::TDK_SubstitutionFailure: 329 Result.Data = Info.take(); 330 break; 331 332 case Sema::TDK_NonDeducedMismatch: 333 case Sema::TDK_FailedOverloadResolution: 334 break; 335 } 336 337 return Result; 338} 339 340void OverloadCandidate::DeductionFailureInfo::Destroy() { 341 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 342 case Sema::TDK_Success: 343 case Sema::TDK_InstantiationDepth: 344 case Sema::TDK_Incomplete: 345 case Sema::TDK_TooManyArguments: 346 case Sema::TDK_TooFewArguments: 347 case Sema::TDK_InvalidExplicitArguments: 348 break; 349 350 case Sema::TDK_Inconsistent: 351 case Sema::TDK_InconsistentQuals: 352 // FIXME: Destroy the data? 353 Data = 0; 354 break; 355 356 case Sema::TDK_SubstitutionFailure: 357 // FIXME: Destroy the template arugment list? 358 Data = 0; 359 break; 360 361 // Unhandled 362 case Sema::TDK_NonDeducedMismatch: 363 case Sema::TDK_FailedOverloadResolution: 364 break; 365 } 366} 367 368TemplateParameter 369OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 370 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 371 case Sema::TDK_Success: 372 case Sema::TDK_InstantiationDepth: 373 case Sema::TDK_TooManyArguments: 374 case Sema::TDK_TooFewArguments: 375 case Sema::TDK_SubstitutionFailure: 376 return TemplateParameter(); 377 378 case Sema::TDK_Incomplete: 379 case Sema::TDK_InvalidExplicitArguments: 380 return TemplateParameter::getFromOpaqueValue(Data); 381 382 case Sema::TDK_Inconsistent: 383 case Sema::TDK_InconsistentQuals: 384 return static_cast<DFIParamWithArguments*>(Data)->Param; 385 386 // Unhandled 387 case Sema::TDK_NonDeducedMismatch: 388 case Sema::TDK_FailedOverloadResolution: 389 break; 390 } 391 392 return TemplateParameter(); 393} 394 395TemplateArgumentList * 396OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 397 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 398 case Sema::TDK_Success: 399 case Sema::TDK_InstantiationDepth: 400 case Sema::TDK_TooManyArguments: 401 case Sema::TDK_TooFewArguments: 402 case Sema::TDK_Incomplete: 403 case Sema::TDK_InvalidExplicitArguments: 404 case Sema::TDK_Inconsistent: 405 case Sema::TDK_InconsistentQuals: 406 return 0; 407 408 case Sema::TDK_SubstitutionFailure: 409 return static_cast<TemplateArgumentList*>(Data); 410 411 // Unhandled 412 case Sema::TDK_NonDeducedMismatch: 413 case Sema::TDK_FailedOverloadResolution: 414 break; 415 } 416 417 return 0; 418} 419 420const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 421 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 422 case Sema::TDK_Success: 423 case Sema::TDK_InstantiationDepth: 424 case Sema::TDK_Incomplete: 425 case Sema::TDK_TooManyArguments: 426 case Sema::TDK_TooFewArguments: 427 case Sema::TDK_InvalidExplicitArguments: 428 case Sema::TDK_SubstitutionFailure: 429 return 0; 430 431 case Sema::TDK_Inconsistent: 432 case Sema::TDK_InconsistentQuals: 433 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 434 435 // Unhandled 436 case Sema::TDK_NonDeducedMismatch: 437 case Sema::TDK_FailedOverloadResolution: 438 break; 439 } 440 441 return 0; 442} 443 444const TemplateArgument * 445OverloadCandidate::DeductionFailureInfo::getSecondArg() { 446 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 447 case Sema::TDK_Success: 448 case Sema::TDK_InstantiationDepth: 449 case Sema::TDK_Incomplete: 450 case Sema::TDK_TooManyArguments: 451 case Sema::TDK_TooFewArguments: 452 case Sema::TDK_InvalidExplicitArguments: 453 case Sema::TDK_SubstitutionFailure: 454 return 0; 455 456 case Sema::TDK_Inconsistent: 457 case Sema::TDK_InconsistentQuals: 458 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 459 460 // Unhandled 461 case Sema::TDK_NonDeducedMismatch: 462 case Sema::TDK_FailedOverloadResolution: 463 break; 464 } 465 466 return 0; 467} 468 469void OverloadCandidateSet::clear() { 470 inherited::clear(); 471 Functions.clear(); 472} 473 474// IsOverload - Determine whether the given New declaration is an 475// overload of the declarations in Old. This routine returns false if 476// New and Old cannot be overloaded, e.g., if New has the same 477// signature as some function in Old (C++ 1.3.10) or if the Old 478// declarations aren't functions (or function templates) at all. When 479// it does return false, MatchedDecl will point to the decl that New 480// cannot be overloaded with. This decl may be a UsingShadowDecl on 481// top of the underlying declaration. 482// 483// Example: Given the following input: 484// 485// void f(int, float); // #1 486// void f(int, int); // #2 487// int f(int, int); // #3 488// 489// When we process #1, there is no previous declaration of "f", 490// so IsOverload will not be used. 491// 492// When we process #2, Old contains only the FunctionDecl for #1. By 493// comparing the parameter types, we see that #1 and #2 are overloaded 494// (since they have different signatures), so this routine returns 495// false; MatchedDecl is unchanged. 496// 497// When we process #3, Old is an overload set containing #1 and #2. We 498// compare the signatures of #3 to #1 (they're overloaded, so we do 499// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 500// identical (return types of functions are not part of the 501// signature), IsOverload returns false and MatchedDecl will be set to 502// point to the FunctionDecl for #2. 503// 504// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 505// into a class by a using declaration. The rules for whether to hide 506// shadow declarations ignore some properties which otherwise figure 507// into a function template's signature. 508Sema::OverloadKind 509Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 510 NamedDecl *&Match, bool NewIsUsingDecl) { 511 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 512 I != E; ++I) { 513 NamedDecl *OldD = *I; 514 515 bool OldIsUsingDecl = false; 516 if (isa<UsingShadowDecl>(OldD)) { 517 OldIsUsingDecl = true; 518 519 // We can always introduce two using declarations into the same 520 // context, even if they have identical signatures. 521 if (NewIsUsingDecl) continue; 522 523 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 524 } 525 526 // If either declaration was introduced by a using declaration, 527 // we'll need to use slightly different rules for matching. 528 // Essentially, these rules are the normal rules, except that 529 // function templates hide function templates with different 530 // return types or template parameter lists. 531 bool UseMemberUsingDeclRules = 532 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 533 534 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 535 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 536 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 537 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 538 continue; 539 } 540 541 Match = *I; 542 return Ovl_Match; 543 } 544 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 545 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 546 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 547 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 548 continue; 549 } 550 551 Match = *I; 552 return Ovl_Match; 553 } 554 } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { 555 // We can overload with these, which can show up when doing 556 // redeclaration checks for UsingDecls. 557 assert(Old.getLookupKind() == LookupUsingDeclName); 558 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 559 // Optimistically assume that an unresolved using decl will 560 // overload; if it doesn't, we'll have to diagnose during 561 // template instantiation. 562 } else { 563 // (C++ 13p1): 564 // Only function declarations can be overloaded; object and type 565 // declarations cannot be overloaded. 566 Match = *I; 567 return Ovl_NonFunction; 568 } 569 } 570 571 return Ovl_Overload; 572} 573 574bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 575 bool UseUsingDeclRules) { 576 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 577 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 578 579 // C++ [temp.fct]p2: 580 // A function template can be overloaded with other function templates 581 // and with normal (non-template) functions. 582 if ((OldTemplate == 0) != (NewTemplate == 0)) 583 return true; 584 585 // Is the function New an overload of the function Old? 586 QualType OldQType = Context.getCanonicalType(Old->getType()); 587 QualType NewQType = Context.getCanonicalType(New->getType()); 588 589 // Compare the signatures (C++ 1.3.10) of the two functions to 590 // determine whether they are overloads. If we find any mismatch 591 // in the signature, they are overloads. 592 593 // If either of these functions is a K&R-style function (no 594 // prototype), then we consider them to have matching signatures. 595 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 596 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 597 return false; 598 599 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 600 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 601 602 // The signature of a function includes the types of its 603 // parameters (C++ 1.3.10), which includes the presence or absence 604 // of the ellipsis; see C++ DR 357). 605 if (OldQType != NewQType && 606 (OldType->getNumArgs() != NewType->getNumArgs() || 607 OldType->isVariadic() != NewType->isVariadic() || 608 !FunctionArgTypesAreEqual(OldType, NewType))) 609 return true; 610 611 // C++ [temp.over.link]p4: 612 // The signature of a function template consists of its function 613 // signature, its return type and its template parameter list. The names 614 // of the template parameters are significant only for establishing the 615 // relationship between the template parameters and the rest of the 616 // signature. 617 // 618 // We check the return type and template parameter lists for function 619 // templates first; the remaining checks follow. 620 // 621 // However, we don't consider either of these when deciding whether 622 // a member introduced by a shadow declaration is hidden. 623 if (!UseUsingDeclRules && NewTemplate && 624 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 625 OldTemplate->getTemplateParameters(), 626 false, TPL_TemplateMatch) || 627 OldType->getResultType() != NewType->getResultType())) 628 return true; 629 630 // If the function is a class member, its signature includes the 631 // cv-qualifiers (if any) on the function itself. 632 // 633 // As part of this, also check whether one of the member functions 634 // is static, in which case they are not overloads (C++ 635 // 13.1p2). While not part of the definition of the signature, 636 // this check is important to determine whether these functions 637 // can be overloaded. 638 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 639 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 640 if (OldMethod && NewMethod && 641 !OldMethod->isStatic() && !NewMethod->isStatic() && 642 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 643 return true; 644 645 // The signatures match; this is not an overload. 646 return false; 647} 648 649/// TryImplicitConversion - Attempt to perform an implicit conversion 650/// from the given expression (Expr) to the given type (ToType). This 651/// function returns an implicit conversion sequence that can be used 652/// to perform the initialization. Given 653/// 654/// void f(float f); 655/// void g(int i) { f(i); } 656/// 657/// this routine would produce an implicit conversion sequence to 658/// describe the initialization of f from i, which will be a standard 659/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 660/// 4.1) followed by a floating-integral conversion (C++ 4.9). 661// 662/// Note that this routine only determines how the conversion can be 663/// performed; it does not actually perform the conversion. As such, 664/// it will not produce any diagnostics if no conversion is available, 665/// but will instead return an implicit conversion sequence of kind 666/// "BadConversion". 667/// 668/// If @p SuppressUserConversions, then user-defined conversions are 669/// not permitted. 670/// If @p AllowExplicit, then explicit user-defined conversions are 671/// permitted. 672ImplicitConversionSequence 673Sema::TryImplicitConversion(Expr* From, QualType ToType, 674 bool SuppressUserConversions, 675 bool AllowExplicit, 676 bool InOverloadResolution) { 677 ImplicitConversionSequence ICS; 678 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) { 679 ICS.setStandard(); 680 return ICS; 681 } 682 683 if (!getLangOptions().CPlusPlus) { 684 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 685 return ICS; 686 } 687 688 if (SuppressUserConversions) { 689 // C++ [over.ics.user]p4: 690 // A conversion of an expression of class type to the same class 691 // type is given Exact Match rank, and a conversion of an 692 // expression of class type to a base class of that type is 693 // given Conversion rank, in spite of the fact that a copy/move 694 // constructor (i.e., a user-defined conversion function) is 695 // called for those cases. 696 QualType FromType = From->getType(); 697 if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() || 698 !(Context.hasSameUnqualifiedType(FromType, ToType) || 699 IsDerivedFrom(FromType, ToType))) { 700 // We're not in the case above, so there is no conversion that 701 // we can perform. 702 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 703 return ICS; 704 } 705 706 ICS.setStandard(); 707 ICS.Standard.setAsIdentityConversion(); 708 ICS.Standard.setFromType(FromType); 709 ICS.Standard.setAllToTypes(ToType); 710 711 // We don't actually check at this point whether there is a valid 712 // copy/move constructor, since overloading just assumes that it 713 // exists. When we actually perform initialization, we'll find the 714 // appropriate constructor to copy the returned object, if needed. 715 ICS.Standard.CopyConstructor = 0; 716 717 // Determine whether this is considered a derived-to-base conversion. 718 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 719 ICS.Standard.Second = ICK_Derived_To_Base; 720 721 return ICS; 722 } 723 724 // Attempt user-defined conversion. 725 OverloadCandidateSet Conversions(From->getExprLoc()); 726 OverloadingResult UserDefResult 727 = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions, 728 AllowExplicit); 729 730 if (UserDefResult == OR_Success) { 731 ICS.setUserDefined(); 732 // C++ [over.ics.user]p4: 733 // A conversion of an expression of class type to the same class 734 // type is given Exact Match rank, and a conversion of an 735 // expression of class type to a base class of that type is 736 // given Conversion rank, in spite of the fact that a copy 737 // constructor (i.e., a user-defined conversion function) is 738 // called for those cases. 739 if (CXXConstructorDecl *Constructor 740 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 741 QualType FromCanon 742 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 743 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 744 if (Constructor->isCopyConstructor() && 745 (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) { 746 // Turn this into a "standard" conversion sequence, so that it 747 // gets ranked with standard conversion sequences. 748 ICS.setStandard(); 749 ICS.Standard.setAsIdentityConversion(); 750 ICS.Standard.setFromType(From->getType()); 751 ICS.Standard.setAllToTypes(ToType); 752 ICS.Standard.CopyConstructor = Constructor; 753 if (ToCanon != FromCanon) 754 ICS.Standard.Second = ICK_Derived_To_Base; 755 } 756 } 757 758 // C++ [over.best.ics]p4: 759 // However, when considering the argument of a user-defined 760 // conversion function that is a candidate by 13.3.1.3 when 761 // invoked for the copying of the temporary in the second step 762 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 763 // 13.3.1.6 in all cases, only standard conversion sequences and 764 // ellipsis conversion sequences are allowed. 765 if (SuppressUserConversions && ICS.isUserDefined()) { 766 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 767 } 768 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 769 ICS.setAmbiguous(); 770 ICS.Ambiguous.setFromType(From->getType()); 771 ICS.Ambiguous.setToType(ToType); 772 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 773 Cand != Conversions.end(); ++Cand) 774 if (Cand->Viable) 775 ICS.Ambiguous.addConversion(Cand->Function); 776 } else { 777 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 778 } 779 780 return ICS; 781} 782 783/// PerformImplicitConversion - Perform an implicit conversion of the 784/// expression From to the type ToType. Returns true if there was an 785/// error, false otherwise. The expression From is replaced with the 786/// converted expression. Flavor is the kind of conversion we're 787/// performing, used in the error message. If @p AllowExplicit, 788/// explicit user-defined conversions are permitted. 789bool 790Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 791 AssignmentAction Action, bool AllowExplicit) { 792 ImplicitConversionSequence ICS; 793 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 794} 795 796bool 797Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 798 AssignmentAction Action, bool AllowExplicit, 799 ImplicitConversionSequence& ICS) { 800 ICS = TryImplicitConversion(From, ToType, 801 /*SuppressUserConversions=*/false, 802 AllowExplicit, 803 /*InOverloadResolution=*/false); 804 return PerformImplicitConversion(From, ToType, ICS, Action); 805} 806 807/// \brief Determine whether the conversion from FromType to ToType is a valid 808/// conversion that strips "noreturn" off the nested function type. 809static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 810 QualType ToType, QualType &ResultTy) { 811 if (Context.hasSameUnqualifiedType(FromType, ToType)) 812 return false; 813 814 // Strip the noreturn off the type we're converting from; noreturn can 815 // safely be removed. 816 FromType = Context.getNoReturnType(FromType, false); 817 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 818 return false; 819 820 ResultTy = FromType; 821 return true; 822} 823 824/// \brief Determine whether the conversion from FromType to ToType is a valid 825/// vector conversion. 826/// 827/// \param ICK Will be set to the vector conversion kind, if this is a vector 828/// conversion. 829static bool IsVectorConversion(ASTContext &Context, QualType FromType, 830 QualType ToType, ImplicitConversionKind &ICK) { 831 // We need at least one of these types to be a vector type to have a vector 832 // conversion. 833 if (!ToType->isVectorType() && !FromType->isVectorType()) 834 return false; 835 836 // Identical types require no conversions. 837 if (Context.hasSameUnqualifiedType(FromType, ToType)) 838 return false; 839 840 // There are no conversions between extended vector types, only identity. 841 if (ToType->isExtVectorType()) { 842 // There are no conversions between extended vector types other than the 843 // identity conversion. 844 if (FromType->isExtVectorType()) 845 return false; 846 847 // Vector splat from any arithmetic type to a vector. 848 if (FromType->isArithmeticType()) { 849 ICK = ICK_Vector_Splat; 850 return true; 851 } 852 } 853 854 // If lax vector conversions are permitted and the vector types are of the 855 // same size, we can perform the conversion. 856 if (Context.getLangOptions().LaxVectorConversions && 857 FromType->isVectorType() && ToType->isVectorType() && 858 Context.getTypeSize(FromType) == Context.getTypeSize(ToType)) { 859 ICK = ICK_Vector_Conversion; 860 return true; 861 } 862 863 return false; 864} 865 866/// IsStandardConversion - Determines whether there is a standard 867/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 868/// expression From to the type ToType. Standard conversion sequences 869/// only consider non-class types; for conversions that involve class 870/// types, use TryImplicitConversion. If a conversion exists, SCS will 871/// contain the standard conversion sequence required to perform this 872/// conversion and this routine will return true. Otherwise, this 873/// routine will return false and the value of SCS is unspecified. 874bool 875Sema::IsStandardConversion(Expr* From, QualType ToType, 876 bool InOverloadResolution, 877 StandardConversionSequence &SCS) { 878 QualType FromType = From->getType(); 879 880 // Standard conversions (C++ [conv]) 881 SCS.setAsIdentityConversion(); 882 SCS.DeprecatedStringLiteralToCharPtr = false; 883 SCS.IncompatibleObjC = false; 884 SCS.setFromType(FromType); 885 SCS.CopyConstructor = 0; 886 887 // There are no standard conversions for class types in C++, so 888 // abort early. When overloading in C, however, we do permit 889 if (FromType->isRecordType() || ToType->isRecordType()) { 890 if (getLangOptions().CPlusPlus) 891 return false; 892 893 // When we're overloading in C, we allow, as standard conversions, 894 } 895 896 // The first conversion can be an lvalue-to-rvalue conversion, 897 // array-to-pointer conversion, or function-to-pointer conversion 898 // (C++ 4p1). 899 900 if (FromType == Context.OverloadTy) { 901 DeclAccessPair AccessPair; 902 if (FunctionDecl *Fn 903 = ResolveAddressOfOverloadedFunction(From, ToType, false, 904 AccessPair)) { 905 // We were able to resolve the address of the overloaded function, 906 // so we can convert to the type of that function. 907 FromType = Fn->getType(); 908 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 909 if (!Method->isStatic()) { 910 Type *ClassType 911 = Context.getTypeDeclType(Method->getParent()).getTypePtr(); 912 FromType = Context.getMemberPointerType(FromType, ClassType); 913 } 914 } 915 916 // If the "from" expression takes the address of the overloaded 917 // function, update the type of the resulting expression accordingly. 918 if (FromType->getAs<FunctionType>()) 919 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) 920 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 921 FromType = Context.getPointerType(FromType); 922 923 // Check that we've computed the proper type after overload resolution. 924 assert(Context.hasSameType(FromType, 925 FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 926 } else { 927 return false; 928 } 929 } 930 // Lvalue-to-rvalue conversion (C++ 4.1): 931 // An lvalue (3.10) of a non-function, non-array type T can be 932 // converted to an rvalue. 933 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 934 if (argIsLvalue == Expr::LV_Valid && 935 !FromType->isFunctionType() && !FromType->isArrayType() && 936 Context.getCanonicalType(FromType) != Context.OverloadTy) { 937 SCS.First = ICK_Lvalue_To_Rvalue; 938 939 // If T is a non-class type, the type of the rvalue is the 940 // cv-unqualified version of T. Otherwise, the type of the rvalue 941 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 942 // just strip the qualifiers because they don't matter. 943 FromType = FromType.getUnqualifiedType(); 944 } else if (FromType->isArrayType()) { 945 // Array-to-pointer conversion (C++ 4.2) 946 SCS.First = ICK_Array_To_Pointer; 947 948 // An lvalue or rvalue of type "array of N T" or "array of unknown 949 // bound of T" can be converted to an rvalue of type "pointer to 950 // T" (C++ 4.2p1). 951 FromType = Context.getArrayDecayedType(FromType); 952 953 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 954 // This conversion is deprecated. (C++ D.4). 955 SCS.DeprecatedStringLiteralToCharPtr = true; 956 957 // For the purpose of ranking in overload resolution 958 // (13.3.3.1.1), this conversion is considered an 959 // array-to-pointer conversion followed by a qualification 960 // conversion (4.4). (C++ 4.2p2) 961 SCS.Second = ICK_Identity; 962 SCS.Third = ICK_Qualification; 963 SCS.setAllToTypes(FromType); 964 return true; 965 } 966 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 967 // Function-to-pointer conversion (C++ 4.3). 968 SCS.First = ICK_Function_To_Pointer; 969 970 // An lvalue of function type T can be converted to an rvalue of 971 // type "pointer to T." The result is a pointer to the 972 // function. (C++ 4.3p1). 973 FromType = Context.getPointerType(FromType); 974 } else { 975 // We don't require any conversions for the first step. 976 SCS.First = ICK_Identity; 977 } 978 SCS.setToType(0, FromType); 979 980 // The second conversion can be an integral promotion, floating 981 // point promotion, integral conversion, floating point conversion, 982 // floating-integral conversion, pointer conversion, 983 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 984 // For overloading in C, this can also be a "compatible-type" 985 // conversion. 986 bool IncompatibleObjC = false; 987 ImplicitConversionKind SecondICK = ICK_Identity; 988 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 989 // The unqualified versions of the types are the same: there's no 990 // conversion to do. 991 SCS.Second = ICK_Identity; 992 } else if (IsIntegralPromotion(From, FromType, ToType)) { 993 // Integral promotion (C++ 4.5). 994 SCS.Second = ICK_Integral_Promotion; 995 FromType = ToType.getUnqualifiedType(); 996 } else if (IsFloatingPointPromotion(FromType, ToType)) { 997 // Floating point promotion (C++ 4.6). 998 SCS.Second = ICK_Floating_Promotion; 999 FromType = ToType.getUnqualifiedType(); 1000 } else if (IsComplexPromotion(FromType, ToType)) { 1001 // Complex promotion (Clang extension) 1002 SCS.Second = ICK_Complex_Promotion; 1003 FromType = ToType.getUnqualifiedType(); 1004 } else if (FromType->isIntegralOrEnumerationType() && 1005 ToType->isIntegralType(Context)) { 1006 // Integral conversions (C++ 4.7). 1007 SCS.Second = ICK_Integral_Conversion; 1008 FromType = ToType.getUnqualifiedType(); 1009 } else if (FromType->isComplexType() && ToType->isComplexType()) { 1010 // Complex conversions (C99 6.3.1.6) 1011 SCS.Second = ICK_Complex_Conversion; 1012 FromType = ToType.getUnqualifiedType(); 1013 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 1014 (ToType->isComplexType() && FromType->isArithmeticType())) { 1015 // Complex-real conversions (C99 6.3.1.7) 1016 SCS.Second = ICK_Complex_Real; 1017 FromType = ToType.getUnqualifiedType(); 1018 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1019 // Floating point conversions (C++ 4.8). 1020 SCS.Second = ICK_Floating_Conversion; 1021 FromType = ToType.getUnqualifiedType(); 1022 } else if ((FromType->isRealFloatingType() && 1023 ToType->isIntegralType(Context) && !ToType->isBooleanType()) || 1024 (FromType->isIntegralOrEnumerationType() && 1025 ToType->isRealFloatingType())) { 1026 // Floating-integral conversions (C++ 4.9). 1027 SCS.Second = ICK_Floating_Integral; 1028 FromType = ToType.getUnqualifiedType(); 1029 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1030 FromType, IncompatibleObjC)) { 1031 // Pointer conversions (C++ 4.10). 1032 SCS.Second = ICK_Pointer_Conversion; 1033 SCS.IncompatibleObjC = IncompatibleObjC; 1034 } else if (IsMemberPointerConversion(From, FromType, ToType, 1035 InOverloadResolution, FromType)) { 1036 // Pointer to member conversions (4.11). 1037 SCS.Second = ICK_Pointer_Member; 1038 } else if (ToType->isBooleanType() && 1039 (FromType->isArithmeticType() || 1040 FromType->isEnumeralType() || 1041 FromType->isAnyPointerType() || 1042 FromType->isBlockPointerType() || 1043 FromType->isMemberPointerType() || 1044 FromType->isNullPtrType())) { 1045 // Boolean conversions (C++ 4.12). 1046 SCS.Second = ICK_Boolean_Conversion; 1047 FromType = Context.BoolTy; 1048 } else if (IsVectorConversion(Context, FromType, ToType, SecondICK)) { 1049 SCS.Second = SecondICK; 1050 FromType = ToType.getUnqualifiedType(); 1051 } else if (!getLangOptions().CPlusPlus && 1052 Context.typesAreCompatible(ToType, FromType)) { 1053 // Compatible conversions (Clang extension for C function overloading) 1054 SCS.Second = ICK_Compatible_Conversion; 1055 FromType = ToType.getUnqualifiedType(); 1056 } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) { 1057 // Treat a conversion that strips "noreturn" as an identity conversion. 1058 SCS.Second = ICK_NoReturn_Adjustment; 1059 } else { 1060 // No second conversion required. 1061 SCS.Second = ICK_Identity; 1062 } 1063 SCS.setToType(1, FromType); 1064 1065 QualType CanonFrom; 1066 QualType CanonTo; 1067 // The third conversion can be a qualification conversion (C++ 4p1). 1068 if (IsQualificationConversion(FromType, ToType)) { 1069 SCS.Third = ICK_Qualification; 1070 FromType = ToType; 1071 CanonFrom = Context.getCanonicalType(FromType); 1072 CanonTo = Context.getCanonicalType(ToType); 1073 } else { 1074 // No conversion required 1075 SCS.Third = ICK_Identity; 1076 1077 // C++ [over.best.ics]p6: 1078 // [...] Any difference in top-level cv-qualification is 1079 // subsumed by the initialization itself and does not constitute 1080 // a conversion. [...] 1081 CanonFrom = Context.getCanonicalType(FromType); 1082 CanonTo = Context.getCanonicalType(ToType); 1083 if (CanonFrom.getLocalUnqualifiedType() 1084 == CanonTo.getLocalUnqualifiedType() && 1085 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1086 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) { 1087 FromType = ToType; 1088 CanonFrom = CanonTo; 1089 } 1090 } 1091 SCS.setToType(2, FromType); 1092 1093 // If we have not converted the argument type to the parameter type, 1094 // this is a bad conversion sequence. 1095 if (CanonFrom != CanonTo) 1096 return false; 1097 1098 return true; 1099} 1100 1101/// IsIntegralPromotion - Determines whether the conversion from the 1102/// expression From (whose potentially-adjusted type is FromType) to 1103/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1104/// sets PromotedType to the promoted type. 1105bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1106 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1107 // All integers are built-in. 1108 if (!To) { 1109 return false; 1110 } 1111 1112 // An rvalue of type char, signed char, unsigned char, short int, or 1113 // unsigned short int can be converted to an rvalue of type int if 1114 // int can represent all the values of the source type; otherwise, 1115 // the source rvalue can be converted to an rvalue of type unsigned 1116 // int (C++ 4.5p1). 1117 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1118 !FromType->isEnumeralType()) { 1119 if (// We can promote any signed, promotable integer type to an int 1120 (FromType->isSignedIntegerType() || 1121 // We can promote any unsigned integer type whose size is 1122 // less than int to an int. 1123 (!FromType->isSignedIntegerType() && 1124 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1125 return To->getKind() == BuiltinType::Int; 1126 } 1127 1128 return To->getKind() == BuiltinType::UInt; 1129 } 1130 1131 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 1132 // can be converted to an rvalue of the first of the following types 1133 // that can represent all the values of its underlying type: int, 1134 // unsigned int, long, or unsigned long (C++ 4.5p2). 1135 1136 // We pre-calculate the promotion type for enum types. 1137 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) 1138 if (ToType->isIntegerType()) 1139 return Context.hasSameUnqualifiedType(ToType, 1140 FromEnumType->getDecl()->getPromotionType()); 1141 1142 if (FromType->isWideCharType() && ToType->isIntegerType()) { 1143 // Determine whether the type we're converting from is signed or 1144 // unsigned. 1145 bool FromIsSigned; 1146 uint64_t FromSize = Context.getTypeSize(FromType); 1147 1148 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 1149 FromIsSigned = true; 1150 1151 // The types we'll try to promote to, in the appropriate 1152 // order. Try each of these types. 1153 QualType PromoteTypes[6] = { 1154 Context.IntTy, Context.UnsignedIntTy, 1155 Context.LongTy, Context.UnsignedLongTy , 1156 Context.LongLongTy, Context.UnsignedLongLongTy 1157 }; 1158 for (int Idx = 0; Idx < 6; ++Idx) { 1159 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1160 if (FromSize < ToSize || 1161 (FromSize == ToSize && 1162 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1163 // We found the type that we can promote to. If this is the 1164 // type we wanted, we have a promotion. Otherwise, no 1165 // promotion. 1166 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1167 } 1168 } 1169 } 1170 1171 // An rvalue for an integral bit-field (9.6) can be converted to an 1172 // rvalue of type int if int can represent all the values of the 1173 // bit-field; otherwise, it can be converted to unsigned int if 1174 // unsigned int can represent all the values of the bit-field. If 1175 // the bit-field is larger yet, no integral promotion applies to 1176 // it. If the bit-field has an enumerated type, it is treated as any 1177 // other value of that type for promotion purposes (C++ 4.5p3). 1178 // FIXME: We should delay checking of bit-fields until we actually perform the 1179 // conversion. 1180 using llvm::APSInt; 1181 if (From) 1182 if (FieldDecl *MemberDecl = From->getBitField()) { 1183 APSInt BitWidth; 1184 if (FromType->isIntegralType(Context) && 1185 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1186 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1187 ToSize = Context.getTypeSize(ToType); 1188 1189 // Are we promoting to an int from a bitfield that fits in an int? 1190 if (BitWidth < ToSize || 1191 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1192 return To->getKind() == BuiltinType::Int; 1193 } 1194 1195 // Are we promoting to an unsigned int from an unsigned bitfield 1196 // that fits into an unsigned int? 1197 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1198 return To->getKind() == BuiltinType::UInt; 1199 } 1200 1201 return false; 1202 } 1203 } 1204 1205 // An rvalue of type bool can be converted to an rvalue of type int, 1206 // with false becoming zero and true becoming one (C++ 4.5p4). 1207 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1208 return true; 1209 } 1210 1211 return false; 1212} 1213 1214/// IsFloatingPointPromotion - Determines whether the conversion from 1215/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1216/// returns true and sets PromotedType to the promoted type. 1217bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1218 /// An rvalue of type float can be converted to an rvalue of type 1219 /// double. (C++ 4.6p1). 1220 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1221 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1222 if (FromBuiltin->getKind() == BuiltinType::Float && 1223 ToBuiltin->getKind() == BuiltinType::Double) 1224 return true; 1225 1226 // C99 6.3.1.5p1: 1227 // When a float is promoted to double or long double, or a 1228 // double is promoted to long double [...]. 1229 if (!getLangOptions().CPlusPlus && 1230 (FromBuiltin->getKind() == BuiltinType::Float || 1231 FromBuiltin->getKind() == BuiltinType::Double) && 1232 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1233 return true; 1234 } 1235 1236 return false; 1237} 1238 1239/// \brief Determine if a conversion is a complex promotion. 1240/// 1241/// A complex promotion is defined as a complex -> complex conversion 1242/// where the conversion between the underlying real types is a 1243/// floating-point or integral promotion. 1244bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1245 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1246 if (!FromComplex) 1247 return false; 1248 1249 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1250 if (!ToComplex) 1251 return false; 1252 1253 return IsFloatingPointPromotion(FromComplex->getElementType(), 1254 ToComplex->getElementType()) || 1255 IsIntegralPromotion(0, FromComplex->getElementType(), 1256 ToComplex->getElementType()); 1257} 1258 1259/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1260/// the pointer type FromPtr to a pointer to type ToPointee, with the 1261/// same type qualifiers as FromPtr has on its pointee type. ToType, 1262/// if non-empty, will be a pointer to ToType that may or may not have 1263/// the right set of qualifiers on its pointee. 1264static QualType 1265BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 1266 QualType ToPointee, QualType ToType, 1267 ASTContext &Context) { 1268 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 1269 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1270 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1271 1272 // Exact qualifier match -> return the pointer type we're converting to. 1273 if (CanonToPointee.getLocalQualifiers() == Quals) { 1274 // ToType is exactly what we need. Return it. 1275 if (!ToType.isNull()) 1276 return ToType.getUnqualifiedType(); 1277 1278 // Build a pointer to ToPointee. It has the right qualifiers 1279 // already. 1280 return Context.getPointerType(ToPointee); 1281 } 1282 1283 // Just build a canonical type that has the right qualifiers. 1284 return Context.getPointerType( 1285 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 1286 Quals)); 1287} 1288 1289/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from 1290/// the FromType, which is an objective-c pointer, to ToType, which may or may 1291/// not have the right set of qualifiers. 1292static QualType 1293BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, 1294 QualType ToType, 1295 ASTContext &Context) { 1296 QualType CanonFromType = Context.getCanonicalType(FromType); 1297 QualType CanonToType = Context.getCanonicalType(ToType); 1298 Qualifiers Quals = CanonFromType.getQualifiers(); 1299 1300 // Exact qualifier match -> return the pointer type we're converting to. 1301 if (CanonToType.getLocalQualifiers() == Quals) 1302 return ToType; 1303 1304 // Just build a canonical type that has the right qualifiers. 1305 return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); 1306} 1307 1308static bool isNullPointerConstantForConversion(Expr *Expr, 1309 bool InOverloadResolution, 1310 ASTContext &Context) { 1311 // Handle value-dependent integral null pointer constants correctly. 1312 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1313 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1314 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1315 return !InOverloadResolution; 1316 1317 return Expr->isNullPointerConstant(Context, 1318 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1319 : Expr::NPC_ValueDependentIsNull); 1320} 1321 1322/// IsPointerConversion - Determines whether the conversion of the 1323/// expression From, which has the (possibly adjusted) type FromType, 1324/// can be converted to the type ToType via a pointer conversion (C++ 1325/// 4.10). If so, returns true and places the converted type (that 1326/// might differ from ToType in its cv-qualifiers at some level) into 1327/// ConvertedType. 1328/// 1329/// This routine also supports conversions to and from block pointers 1330/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1331/// pointers to interfaces. FIXME: Once we've determined the 1332/// appropriate overloading rules for Objective-C, we may want to 1333/// split the Objective-C checks into a different routine; however, 1334/// GCC seems to consider all of these conversions to be pointer 1335/// conversions, so for now they live here. IncompatibleObjC will be 1336/// set if the conversion is an allowed Objective-C conversion that 1337/// should result in a warning. 1338bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1339 bool InOverloadResolution, 1340 QualType& ConvertedType, 1341 bool &IncompatibleObjC) { 1342 IncompatibleObjC = false; 1343 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 1344 return true; 1345 1346 // Conversion from a null pointer constant to any Objective-C pointer type. 1347 if (ToType->isObjCObjectPointerType() && 1348 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1349 ConvertedType = ToType; 1350 return true; 1351 } 1352 1353 // Blocks: Block pointers can be converted to void*. 1354 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1355 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1356 ConvertedType = ToType; 1357 return true; 1358 } 1359 // Blocks: A null pointer constant can be converted to a block 1360 // pointer type. 1361 if (ToType->isBlockPointerType() && 1362 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1363 ConvertedType = ToType; 1364 return true; 1365 } 1366 1367 // If the left-hand-side is nullptr_t, the right side can be a null 1368 // pointer constant. 1369 if (ToType->isNullPtrType() && 1370 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1371 ConvertedType = ToType; 1372 return true; 1373 } 1374 1375 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1376 if (!ToTypePtr) 1377 return false; 1378 1379 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1380 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1381 ConvertedType = ToType; 1382 return true; 1383 } 1384 1385 // Beyond this point, both types need to be pointers 1386 // , including objective-c pointers. 1387 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1388 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1389 ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, 1390 ToType, Context); 1391 return true; 1392 1393 } 1394 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1395 if (!FromTypePtr) 1396 return false; 1397 1398 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1399 1400 // An rvalue of type "pointer to cv T," where T is an object type, 1401 // can be converted to an rvalue of type "pointer to cv void" (C++ 1402 // 4.10p2). 1403 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 1404 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1405 ToPointeeType, 1406 ToType, Context); 1407 return true; 1408 } 1409 1410 // When we're overloading in C, we allow a special kind of pointer 1411 // conversion for compatible-but-not-identical pointee types. 1412 if (!getLangOptions().CPlusPlus && 1413 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1414 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1415 ToPointeeType, 1416 ToType, Context); 1417 return true; 1418 } 1419 1420 // C++ [conv.ptr]p3: 1421 // 1422 // An rvalue of type "pointer to cv D," where D is a class type, 1423 // can be converted to an rvalue of type "pointer to cv B," where 1424 // B is a base class (clause 10) of D. If B is an inaccessible 1425 // (clause 11) or ambiguous (10.2) base class of D, a program that 1426 // necessitates this conversion is ill-formed. The result of the 1427 // conversion is a pointer to the base class sub-object of the 1428 // derived class object. The null pointer value is converted to 1429 // the null pointer value of the destination type. 1430 // 1431 // Note that we do not check for ambiguity or inaccessibility 1432 // here. That is handled by CheckPointerConversion. 1433 if (getLangOptions().CPlusPlus && 1434 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1435 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1436 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1437 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1438 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1439 ToPointeeType, 1440 ToType, Context); 1441 return true; 1442 } 1443 1444 return false; 1445} 1446 1447/// isObjCPointerConversion - Determines whether this is an 1448/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1449/// with the same arguments and return values. 1450bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1451 QualType& ConvertedType, 1452 bool &IncompatibleObjC) { 1453 if (!getLangOptions().ObjC1) 1454 return false; 1455 1456 // First, we handle all conversions on ObjC object pointer types. 1457 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1458 const ObjCObjectPointerType *FromObjCPtr = 1459 FromType->getAs<ObjCObjectPointerType>(); 1460 1461 if (ToObjCPtr && FromObjCPtr) { 1462 // Objective C++: We're able to convert between "id" or "Class" and a 1463 // pointer to any interface (in both directions). 1464 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1465 ConvertedType = ToType; 1466 return true; 1467 } 1468 // Conversions with Objective-C's id<...>. 1469 if ((FromObjCPtr->isObjCQualifiedIdType() || 1470 ToObjCPtr->isObjCQualifiedIdType()) && 1471 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1472 /*compare=*/false)) { 1473 ConvertedType = ToType; 1474 return true; 1475 } 1476 // Objective C++: We're able to convert from a pointer to an 1477 // interface to a pointer to a different interface. 1478 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1479 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1480 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1481 if (getLangOptions().CPlusPlus && LHS && RHS && 1482 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1483 FromObjCPtr->getPointeeType())) 1484 return false; 1485 ConvertedType = ToType; 1486 return true; 1487 } 1488 1489 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1490 // Okay: this is some kind of implicit downcast of Objective-C 1491 // interfaces, which is permitted. However, we're going to 1492 // complain about it. 1493 IncompatibleObjC = true; 1494 ConvertedType = FromType; 1495 return true; 1496 } 1497 } 1498 // Beyond this point, both types need to be C pointers or block pointers. 1499 QualType ToPointeeType; 1500 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1501 ToPointeeType = ToCPtr->getPointeeType(); 1502 else if (const BlockPointerType *ToBlockPtr = 1503 ToType->getAs<BlockPointerType>()) { 1504 // Objective C++: We're able to convert from a pointer to any object 1505 // to a block pointer type. 1506 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1507 ConvertedType = ToType; 1508 return true; 1509 } 1510 ToPointeeType = ToBlockPtr->getPointeeType(); 1511 } 1512 else if (FromType->getAs<BlockPointerType>() && 1513 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1514 // Objective C++: We're able to convert from a block pointer type to a 1515 // pointer to any object. 1516 ConvertedType = ToType; 1517 return true; 1518 } 1519 else 1520 return false; 1521 1522 QualType FromPointeeType; 1523 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1524 FromPointeeType = FromCPtr->getPointeeType(); 1525 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1526 FromPointeeType = FromBlockPtr->getPointeeType(); 1527 else 1528 return false; 1529 1530 // If we have pointers to pointers, recursively check whether this 1531 // is an Objective-C conversion. 1532 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1533 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1534 IncompatibleObjC)) { 1535 // We always complain about this conversion. 1536 IncompatibleObjC = true; 1537 ConvertedType = ToType; 1538 return true; 1539 } 1540 // Allow conversion of pointee being objective-c pointer to another one; 1541 // as in I* to id. 1542 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1543 ToPointeeType->getAs<ObjCObjectPointerType>() && 1544 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1545 IncompatibleObjC)) { 1546 ConvertedType = ToType; 1547 return true; 1548 } 1549 1550 // If we have pointers to functions or blocks, check whether the only 1551 // differences in the argument and result types are in Objective-C 1552 // pointer conversions. If so, we permit the conversion (but 1553 // complain about it). 1554 const FunctionProtoType *FromFunctionType 1555 = FromPointeeType->getAs<FunctionProtoType>(); 1556 const FunctionProtoType *ToFunctionType 1557 = ToPointeeType->getAs<FunctionProtoType>(); 1558 if (FromFunctionType && ToFunctionType) { 1559 // If the function types are exactly the same, this isn't an 1560 // Objective-C pointer conversion. 1561 if (Context.getCanonicalType(FromPointeeType) 1562 == Context.getCanonicalType(ToPointeeType)) 1563 return false; 1564 1565 // Perform the quick checks that will tell us whether these 1566 // function types are obviously different. 1567 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1568 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1569 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1570 return false; 1571 1572 bool HasObjCConversion = false; 1573 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1574 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1575 // Okay, the types match exactly. Nothing to do. 1576 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1577 ToFunctionType->getResultType(), 1578 ConvertedType, IncompatibleObjC)) { 1579 // Okay, we have an Objective-C pointer conversion. 1580 HasObjCConversion = true; 1581 } else { 1582 // Function types are too different. Abort. 1583 return false; 1584 } 1585 1586 // Check argument types. 1587 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1588 ArgIdx != NumArgs; ++ArgIdx) { 1589 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1590 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1591 if (Context.getCanonicalType(FromArgType) 1592 == Context.getCanonicalType(ToArgType)) { 1593 // Okay, the types match exactly. Nothing to do. 1594 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1595 ConvertedType, IncompatibleObjC)) { 1596 // Okay, we have an Objective-C pointer conversion. 1597 HasObjCConversion = true; 1598 } else { 1599 // Argument types are too different. Abort. 1600 return false; 1601 } 1602 } 1603 1604 if (HasObjCConversion) { 1605 // We had an Objective-C conversion. Allow this pointer 1606 // conversion, but complain about it. 1607 ConvertedType = ToType; 1608 IncompatibleObjC = true; 1609 return true; 1610 } 1611 } 1612 1613 return false; 1614} 1615 1616/// FunctionArgTypesAreEqual - This routine checks two function proto types 1617/// for equlity of their argument types. Caller has already checked that 1618/// they have same number of arguments. This routine assumes that Objective-C 1619/// pointer types which only differ in their protocol qualifiers are equal. 1620bool Sema::FunctionArgTypesAreEqual(FunctionProtoType* OldType, 1621 FunctionProtoType* NewType){ 1622 if (!getLangOptions().ObjC1) 1623 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 1624 NewType->arg_type_begin()); 1625 1626 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 1627 N = NewType->arg_type_begin(), 1628 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 1629 QualType ToType = (*O); 1630 QualType FromType = (*N); 1631 if (ToType != FromType) { 1632 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 1633 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 1634 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 1635 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 1636 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 1637 PTFr->getPointeeType()->isObjCQualifiedClassType())) 1638 continue; 1639 } 1640 else if (const ObjCObjectPointerType *PTTo = 1641 ToType->getAs<ObjCObjectPointerType>()) { 1642 if (const ObjCObjectPointerType *PTFr = 1643 FromType->getAs<ObjCObjectPointerType>()) 1644 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 1645 continue; 1646 } 1647 return false; 1648 } 1649 } 1650 return true; 1651} 1652 1653/// CheckPointerConversion - Check the pointer conversion from the 1654/// expression From to the type ToType. This routine checks for 1655/// ambiguous or inaccessible derived-to-base pointer 1656/// conversions for which IsPointerConversion has already returned 1657/// true. It returns true and produces a diagnostic if there was an 1658/// error, or returns false otherwise. 1659bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1660 CastExpr::CastKind &Kind, 1661 CXXBaseSpecifierArray& BasePath, 1662 bool IgnoreBaseAccess) { 1663 QualType FromType = From->getType(); 1664 1665 if (CXXBoolLiteralExpr* LitBool 1666 = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens())) 1667 if (LitBool->getValue() == false) 1668 Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false) 1669 << ToType; 1670 1671 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1672 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1673 QualType FromPointeeType = FromPtrType->getPointeeType(), 1674 ToPointeeType = ToPtrType->getPointeeType(); 1675 1676 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1677 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 1678 // We must have a derived-to-base conversion. Check an 1679 // ambiguous or inaccessible conversion. 1680 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1681 From->getExprLoc(), 1682 From->getSourceRange(), &BasePath, 1683 IgnoreBaseAccess)) 1684 return true; 1685 1686 // The conversion was successful. 1687 Kind = CastExpr::CK_DerivedToBase; 1688 } 1689 } 1690 if (const ObjCObjectPointerType *FromPtrType = 1691 FromType->getAs<ObjCObjectPointerType>()) 1692 if (const ObjCObjectPointerType *ToPtrType = 1693 ToType->getAs<ObjCObjectPointerType>()) { 1694 // Objective-C++ conversions are always okay. 1695 // FIXME: We should have a different class of conversions for the 1696 // Objective-C++ implicit conversions. 1697 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1698 return false; 1699 1700 } 1701 return false; 1702} 1703 1704/// IsMemberPointerConversion - Determines whether the conversion of the 1705/// expression From, which has the (possibly adjusted) type FromType, can be 1706/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1707/// If so, returns true and places the converted type (that might differ from 1708/// ToType in its cv-qualifiers at some level) into ConvertedType. 1709bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1710 QualType ToType, 1711 bool InOverloadResolution, 1712 QualType &ConvertedType) { 1713 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1714 if (!ToTypePtr) 1715 return false; 1716 1717 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1718 if (From->isNullPointerConstant(Context, 1719 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1720 : Expr::NPC_ValueDependentIsNull)) { 1721 ConvertedType = ToType; 1722 return true; 1723 } 1724 1725 // Otherwise, both types have to be member pointers. 1726 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1727 if (!FromTypePtr) 1728 return false; 1729 1730 // A pointer to member of B can be converted to a pointer to member of D, 1731 // where D is derived from B (C++ 4.11p2). 1732 QualType FromClass(FromTypePtr->getClass(), 0); 1733 QualType ToClass(ToTypePtr->getClass(), 0); 1734 // FIXME: What happens when these are dependent? Is this function even called? 1735 1736 if (IsDerivedFrom(ToClass, FromClass)) { 1737 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1738 ToClass.getTypePtr()); 1739 return true; 1740 } 1741 1742 return false; 1743} 1744 1745/// CheckMemberPointerConversion - Check the member pointer conversion from the 1746/// expression From to the type ToType. This routine checks for ambiguous or 1747/// virtual or inaccessible base-to-derived member pointer conversions 1748/// for which IsMemberPointerConversion has already returned true. It returns 1749/// true and produces a diagnostic if there was an error, or returns false 1750/// otherwise. 1751bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1752 CastExpr::CastKind &Kind, 1753 CXXBaseSpecifierArray &BasePath, 1754 bool IgnoreBaseAccess) { 1755 QualType FromType = From->getType(); 1756 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1757 if (!FromPtrType) { 1758 // This must be a null pointer to member pointer conversion 1759 assert(From->isNullPointerConstant(Context, 1760 Expr::NPC_ValueDependentIsNull) && 1761 "Expr must be null pointer constant!"); 1762 Kind = CastExpr::CK_NullToMemberPointer; 1763 return false; 1764 } 1765 1766 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1767 assert(ToPtrType && "No member pointer cast has a target type " 1768 "that is not a member pointer."); 1769 1770 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1771 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1772 1773 // FIXME: What about dependent types? 1774 assert(FromClass->isRecordType() && "Pointer into non-class."); 1775 assert(ToClass->isRecordType() && "Pointer into non-class."); 1776 1777 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1778 /*DetectVirtual=*/true); 1779 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1780 assert(DerivationOkay && 1781 "Should not have been called if derivation isn't OK."); 1782 (void)DerivationOkay; 1783 1784 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1785 getUnqualifiedType())) { 1786 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1787 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1788 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1789 return true; 1790 } 1791 1792 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1793 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1794 << FromClass << ToClass << QualType(VBase, 0) 1795 << From->getSourceRange(); 1796 return true; 1797 } 1798 1799 if (!IgnoreBaseAccess) 1800 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 1801 Paths.front(), 1802 diag::err_downcast_from_inaccessible_base); 1803 1804 // Must be a base to derived member conversion. 1805 BuildBasePathArray(Paths, BasePath); 1806 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1807 return false; 1808} 1809 1810/// IsQualificationConversion - Determines whether the conversion from 1811/// an rvalue of type FromType to ToType is a qualification conversion 1812/// (C++ 4.4). 1813bool 1814Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1815 FromType = Context.getCanonicalType(FromType); 1816 ToType = Context.getCanonicalType(ToType); 1817 1818 // If FromType and ToType are the same type, this is not a 1819 // qualification conversion. 1820 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 1821 return false; 1822 1823 // (C++ 4.4p4): 1824 // A conversion can add cv-qualifiers at levels other than the first 1825 // in multi-level pointers, subject to the following rules: [...] 1826 bool PreviousToQualsIncludeConst = true; 1827 bool UnwrappedAnyPointer = false; 1828 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 1829 // Within each iteration of the loop, we check the qualifiers to 1830 // determine if this still looks like a qualification 1831 // conversion. Then, if all is well, we unwrap one more level of 1832 // pointers or pointers-to-members and do it all again 1833 // until there are no more pointers or pointers-to-members left to 1834 // unwrap. 1835 UnwrappedAnyPointer = true; 1836 1837 // -- for every j > 0, if const is in cv 1,j then const is in cv 1838 // 2,j, and similarly for volatile. 1839 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1840 return false; 1841 1842 // -- if the cv 1,j and cv 2,j are different, then const is in 1843 // every cv for 0 < k < j. 1844 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1845 && !PreviousToQualsIncludeConst) 1846 return false; 1847 1848 // Keep track of whether all prior cv-qualifiers in the "to" type 1849 // include const. 1850 PreviousToQualsIncludeConst 1851 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1852 } 1853 1854 // We are left with FromType and ToType being the pointee types 1855 // after unwrapping the original FromType and ToType the same number 1856 // of types. If we unwrapped any pointers, and if FromType and 1857 // ToType have the same unqualified type (since we checked 1858 // qualifiers above), then this is a qualification conversion. 1859 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1860} 1861 1862/// Determines whether there is a user-defined conversion sequence 1863/// (C++ [over.ics.user]) that converts expression From to the type 1864/// ToType. If such a conversion exists, User will contain the 1865/// user-defined conversion sequence that performs such a conversion 1866/// and this routine will return true. Otherwise, this routine returns 1867/// false and User is unspecified. 1868/// 1869/// \param AllowExplicit true if the conversion should consider C++0x 1870/// "explicit" conversion functions as well as non-explicit conversion 1871/// functions (C++0x [class.conv.fct]p2). 1872OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 1873 UserDefinedConversionSequence& User, 1874 OverloadCandidateSet& CandidateSet, 1875 bool AllowExplicit) { 1876 // Whether we will only visit constructors. 1877 bool ConstructorsOnly = false; 1878 1879 // If the type we are conversion to is a class type, enumerate its 1880 // constructors. 1881 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1882 // C++ [over.match.ctor]p1: 1883 // When objects of class type are direct-initialized (8.5), or 1884 // copy-initialized from an expression of the same or a 1885 // derived class type (8.5), overload resolution selects the 1886 // constructor. [...] For copy-initialization, the candidate 1887 // functions are all the converting constructors (12.3.1) of 1888 // that class. The argument list is the expression-list within 1889 // the parentheses of the initializer. 1890 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1891 (From->getType()->getAs<RecordType>() && 1892 IsDerivedFrom(From->getType(), ToType))) 1893 ConstructorsOnly = true; 1894 1895 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1896 // We're not going to find any constructors. 1897 } else if (CXXRecordDecl *ToRecordDecl 1898 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1899 DeclContext::lookup_iterator Con, ConEnd; 1900 for (llvm::tie(Con, ConEnd) = LookupConstructors(ToRecordDecl); 1901 Con != ConEnd; ++Con) { 1902 NamedDecl *D = *Con; 1903 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 1904 1905 // Find the constructor (which may be a template). 1906 CXXConstructorDecl *Constructor = 0; 1907 FunctionTemplateDecl *ConstructorTmpl 1908 = dyn_cast<FunctionTemplateDecl>(D); 1909 if (ConstructorTmpl) 1910 Constructor 1911 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1912 else 1913 Constructor = cast<CXXConstructorDecl>(D); 1914 1915 if (!Constructor->isInvalidDecl() && 1916 Constructor->isConvertingConstructor(AllowExplicit)) { 1917 if (ConstructorTmpl) 1918 AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 1919 /*ExplicitArgs*/ 0, 1920 &From, 1, CandidateSet, 1921 /*SuppressUserConversions=*/!ConstructorsOnly); 1922 else 1923 // Allow one user-defined conversion when user specifies a 1924 // From->ToType conversion via an static cast (c-style, etc). 1925 AddOverloadCandidate(Constructor, FoundDecl, 1926 &From, 1, CandidateSet, 1927 /*SuppressUserConversions=*/!ConstructorsOnly); 1928 } 1929 } 1930 } 1931 } 1932 1933 // Enumerate conversion functions, if we're allowed to. 1934 if (ConstructorsOnly) { 1935 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1936 PDiag(0) << From->getSourceRange())) { 1937 // No conversion functions from incomplete types. 1938 } else if (const RecordType *FromRecordType 1939 = From->getType()->getAs<RecordType>()) { 1940 if (CXXRecordDecl *FromRecordDecl 1941 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1942 // Add all of the conversion functions as candidates. 1943 const UnresolvedSetImpl *Conversions 1944 = FromRecordDecl->getVisibleConversionFunctions(); 1945 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 1946 E = Conversions->end(); I != E; ++I) { 1947 DeclAccessPair FoundDecl = I.getPair(); 1948 NamedDecl *D = FoundDecl.getDecl(); 1949 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 1950 if (isa<UsingShadowDecl>(D)) 1951 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1952 1953 CXXConversionDecl *Conv; 1954 FunctionTemplateDecl *ConvTemplate; 1955 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 1956 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1957 else 1958 Conv = cast<CXXConversionDecl>(D); 1959 1960 if (AllowExplicit || !Conv->isExplicit()) { 1961 if (ConvTemplate) 1962 AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 1963 ActingContext, From, ToType, 1964 CandidateSet); 1965 else 1966 AddConversionCandidate(Conv, FoundDecl, ActingContext, 1967 From, ToType, CandidateSet); 1968 } 1969 } 1970 } 1971 } 1972 1973 OverloadCandidateSet::iterator Best; 1974 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1975 case OR_Success: 1976 // Record the standard conversion we used and the conversion function. 1977 if (CXXConstructorDecl *Constructor 1978 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1979 // C++ [over.ics.user]p1: 1980 // If the user-defined conversion is specified by a 1981 // constructor (12.3.1), the initial standard conversion 1982 // sequence converts the source type to the type required by 1983 // the argument of the constructor. 1984 // 1985 QualType ThisType = Constructor->getThisType(Context); 1986 if (Best->Conversions[0].isEllipsis()) 1987 User.EllipsisConversion = true; 1988 else { 1989 User.Before = Best->Conversions[0].Standard; 1990 User.EllipsisConversion = false; 1991 } 1992 User.ConversionFunction = Constructor; 1993 User.After.setAsIdentityConversion(); 1994 User.After.setFromType( 1995 ThisType->getAs<PointerType>()->getPointeeType()); 1996 User.After.setAllToTypes(ToType); 1997 return OR_Success; 1998 } else if (CXXConversionDecl *Conversion 1999 = dyn_cast<CXXConversionDecl>(Best->Function)) { 2000 // C++ [over.ics.user]p1: 2001 // 2002 // [...] If the user-defined conversion is specified by a 2003 // conversion function (12.3.2), the initial standard 2004 // conversion sequence converts the source type to the 2005 // implicit object parameter of the conversion function. 2006 User.Before = Best->Conversions[0].Standard; 2007 User.ConversionFunction = Conversion; 2008 User.EllipsisConversion = false; 2009 2010 // C++ [over.ics.user]p2: 2011 // The second standard conversion sequence converts the 2012 // result of the user-defined conversion to the target type 2013 // for the sequence. Since an implicit conversion sequence 2014 // is an initialization, the special rules for 2015 // initialization by user-defined conversion apply when 2016 // selecting the best user-defined conversion for a 2017 // user-defined conversion sequence (see 13.3.3 and 2018 // 13.3.3.1). 2019 User.After = Best->FinalConversion; 2020 return OR_Success; 2021 } else { 2022 assert(false && "Not a constructor or conversion function?"); 2023 return OR_No_Viable_Function; 2024 } 2025 2026 case OR_No_Viable_Function: 2027 return OR_No_Viable_Function; 2028 case OR_Deleted: 2029 // No conversion here! We're done. 2030 return OR_Deleted; 2031 2032 case OR_Ambiguous: 2033 return OR_Ambiguous; 2034 } 2035 2036 return OR_No_Viable_Function; 2037} 2038 2039bool 2040Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2041 ImplicitConversionSequence ICS; 2042 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2043 OverloadingResult OvResult = 2044 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 2045 CandidateSet, false); 2046 if (OvResult == OR_Ambiguous) 2047 Diag(From->getSourceRange().getBegin(), 2048 diag::err_typecheck_ambiguous_condition) 2049 << From->getType() << ToType << From->getSourceRange(); 2050 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2051 Diag(From->getSourceRange().getBegin(), 2052 diag::err_typecheck_nonviable_condition) 2053 << From->getType() << ToType << From->getSourceRange(); 2054 else 2055 return false; 2056 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1); 2057 return true; 2058} 2059 2060/// CompareImplicitConversionSequences - Compare two implicit 2061/// conversion sequences to determine whether one is better than the 2062/// other or if they are indistinguishable (C++ 13.3.3.2). 2063ImplicitConversionSequence::CompareKind 2064Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 2065 const ImplicitConversionSequence& ICS2) 2066{ 2067 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2068 // conversion sequences (as defined in 13.3.3.1) 2069 // -- a standard conversion sequence (13.3.3.1.1) is a better 2070 // conversion sequence than a user-defined conversion sequence or 2071 // an ellipsis conversion sequence, and 2072 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2073 // conversion sequence than an ellipsis conversion sequence 2074 // (13.3.3.1.3). 2075 // 2076 // C++0x [over.best.ics]p10: 2077 // For the purpose of ranking implicit conversion sequences as 2078 // described in 13.3.3.2, the ambiguous conversion sequence is 2079 // treated as a user-defined sequence that is indistinguishable 2080 // from any other user-defined conversion sequence. 2081 if (ICS1.getKindRank() < ICS2.getKindRank()) 2082 return ImplicitConversionSequence::Better; 2083 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2084 return ImplicitConversionSequence::Worse; 2085 2086 // The following checks require both conversion sequences to be of 2087 // the same kind. 2088 if (ICS1.getKind() != ICS2.getKind()) 2089 return ImplicitConversionSequence::Indistinguishable; 2090 2091 // Two implicit conversion sequences of the same form are 2092 // indistinguishable conversion sequences unless one of the 2093 // following rules apply: (C++ 13.3.3.2p3): 2094 if (ICS1.isStandard()) 2095 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 2096 else if (ICS1.isUserDefined()) { 2097 // User-defined conversion sequence U1 is a better conversion 2098 // sequence than another user-defined conversion sequence U2 if 2099 // they contain the same user-defined conversion function or 2100 // constructor and if the second standard conversion sequence of 2101 // U1 is better than the second standard conversion sequence of 2102 // U2 (C++ 13.3.3.2p3). 2103 if (ICS1.UserDefined.ConversionFunction == 2104 ICS2.UserDefined.ConversionFunction) 2105 return CompareStandardConversionSequences(ICS1.UserDefined.After, 2106 ICS2.UserDefined.After); 2107 } 2108 2109 return ImplicitConversionSequence::Indistinguishable; 2110} 2111 2112static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2113 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2114 Qualifiers Quals; 2115 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2116 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2117 } 2118 2119 return Context.hasSameUnqualifiedType(T1, T2); 2120} 2121 2122// Per 13.3.3.2p3, compare the given standard conversion sequences to 2123// determine if one is a proper subset of the other. 2124static ImplicitConversionSequence::CompareKind 2125compareStandardConversionSubsets(ASTContext &Context, 2126 const StandardConversionSequence& SCS1, 2127 const StandardConversionSequence& SCS2) { 2128 ImplicitConversionSequence::CompareKind Result 2129 = ImplicitConversionSequence::Indistinguishable; 2130 2131 // the identity conversion sequence is considered to be a subsequence of 2132 // any non-identity conversion sequence 2133 if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) { 2134 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2135 return ImplicitConversionSequence::Better; 2136 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2137 return ImplicitConversionSequence::Worse; 2138 } 2139 2140 if (SCS1.Second != SCS2.Second) { 2141 if (SCS1.Second == ICK_Identity) 2142 Result = ImplicitConversionSequence::Better; 2143 else if (SCS2.Second == ICK_Identity) 2144 Result = ImplicitConversionSequence::Worse; 2145 else 2146 return ImplicitConversionSequence::Indistinguishable; 2147 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2148 return ImplicitConversionSequence::Indistinguishable; 2149 2150 if (SCS1.Third == SCS2.Third) { 2151 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2152 : ImplicitConversionSequence::Indistinguishable; 2153 } 2154 2155 if (SCS1.Third == ICK_Identity) 2156 return Result == ImplicitConversionSequence::Worse 2157 ? ImplicitConversionSequence::Indistinguishable 2158 : ImplicitConversionSequence::Better; 2159 2160 if (SCS2.Third == ICK_Identity) 2161 return Result == ImplicitConversionSequence::Better 2162 ? ImplicitConversionSequence::Indistinguishable 2163 : ImplicitConversionSequence::Worse; 2164 2165 return ImplicitConversionSequence::Indistinguishable; 2166} 2167 2168/// CompareStandardConversionSequences - Compare two standard 2169/// conversion sequences to determine whether one is better than the 2170/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2171ImplicitConversionSequence::CompareKind 2172Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 2173 const StandardConversionSequence& SCS2) 2174{ 2175 // Standard conversion sequence S1 is a better conversion sequence 2176 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2177 2178 // -- S1 is a proper subsequence of S2 (comparing the conversion 2179 // sequences in the canonical form defined by 13.3.3.1.1, 2180 // excluding any Lvalue Transformation; the identity conversion 2181 // sequence is considered to be a subsequence of any 2182 // non-identity conversion sequence) or, if not that, 2183 if (ImplicitConversionSequence::CompareKind CK 2184 = compareStandardConversionSubsets(Context, SCS1, SCS2)) 2185 return CK; 2186 2187 // -- the rank of S1 is better than the rank of S2 (by the rules 2188 // defined below), or, if not that, 2189 ImplicitConversionRank Rank1 = SCS1.getRank(); 2190 ImplicitConversionRank Rank2 = SCS2.getRank(); 2191 if (Rank1 < Rank2) 2192 return ImplicitConversionSequence::Better; 2193 else if (Rank2 < Rank1) 2194 return ImplicitConversionSequence::Worse; 2195 2196 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2197 // are indistinguishable unless one of the following rules 2198 // applies: 2199 2200 // A conversion that is not a conversion of a pointer, or 2201 // pointer to member, to bool is better than another conversion 2202 // that is such a conversion. 2203 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2204 return SCS2.isPointerConversionToBool() 2205 ? ImplicitConversionSequence::Better 2206 : ImplicitConversionSequence::Worse; 2207 2208 // C++ [over.ics.rank]p4b2: 2209 // 2210 // If class B is derived directly or indirectly from class A, 2211 // conversion of B* to A* is better than conversion of B* to 2212 // void*, and conversion of A* to void* is better than conversion 2213 // of B* to void*. 2214 bool SCS1ConvertsToVoid 2215 = SCS1.isPointerConversionToVoidPointer(Context); 2216 bool SCS2ConvertsToVoid 2217 = SCS2.isPointerConversionToVoidPointer(Context); 2218 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2219 // Exactly one of the conversion sequences is a conversion to 2220 // a void pointer; it's the worse conversion. 2221 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2222 : ImplicitConversionSequence::Worse; 2223 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2224 // Neither conversion sequence converts to a void pointer; compare 2225 // their derived-to-base conversions. 2226 if (ImplicitConversionSequence::CompareKind DerivedCK 2227 = CompareDerivedToBaseConversions(SCS1, SCS2)) 2228 return DerivedCK; 2229 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 2230 // Both conversion sequences are conversions to void 2231 // pointers. Compare the source types to determine if there's an 2232 // inheritance relationship in their sources. 2233 QualType FromType1 = SCS1.getFromType(); 2234 QualType FromType2 = SCS2.getFromType(); 2235 2236 // Adjust the types we're converting from via the array-to-pointer 2237 // conversion, if we need to. 2238 if (SCS1.First == ICK_Array_To_Pointer) 2239 FromType1 = Context.getArrayDecayedType(FromType1); 2240 if (SCS2.First == ICK_Array_To_Pointer) 2241 FromType2 = Context.getArrayDecayedType(FromType2); 2242 2243 QualType FromPointee1 2244 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2245 QualType FromPointee2 2246 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2247 2248 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2249 return ImplicitConversionSequence::Better; 2250 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2251 return ImplicitConversionSequence::Worse; 2252 2253 // Objective-C++: If one interface is more specific than the 2254 // other, it is the better one. 2255 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2256 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2257 if (FromIface1 && FromIface1) { 2258 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2259 return ImplicitConversionSequence::Better; 2260 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2261 return ImplicitConversionSequence::Worse; 2262 } 2263 } 2264 2265 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2266 // bullet 3). 2267 if (ImplicitConversionSequence::CompareKind QualCK 2268 = CompareQualificationConversions(SCS1, SCS2)) 2269 return QualCK; 2270 2271 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2272 // C++0x [over.ics.rank]p3b4: 2273 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2274 // implicit object parameter of a non-static member function declared 2275 // without a ref-qualifier, and S1 binds an rvalue reference to an 2276 // rvalue and S2 binds an lvalue reference. 2277 // FIXME: We don't know if we're dealing with the implicit object parameter, 2278 // or if the member function in this case has a ref qualifier. 2279 // (Of course, we don't have ref qualifiers yet.) 2280 if (SCS1.RRefBinding != SCS2.RRefBinding) 2281 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 2282 : ImplicitConversionSequence::Worse; 2283 2284 // C++ [over.ics.rank]p3b4: 2285 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2286 // which the references refer are the same type except for 2287 // top-level cv-qualifiers, and the type to which the reference 2288 // initialized by S2 refers is more cv-qualified than the type 2289 // to which the reference initialized by S1 refers. 2290 QualType T1 = SCS1.getToType(2); 2291 QualType T2 = SCS2.getToType(2); 2292 T1 = Context.getCanonicalType(T1); 2293 T2 = Context.getCanonicalType(T2); 2294 Qualifiers T1Quals, T2Quals; 2295 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2296 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2297 if (UnqualT1 == UnqualT2) { 2298 // If the type is an array type, promote the element qualifiers to the type 2299 // for comparison. 2300 if (isa<ArrayType>(T1) && T1Quals) 2301 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2302 if (isa<ArrayType>(T2) && T2Quals) 2303 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2304 if (T2.isMoreQualifiedThan(T1)) 2305 return ImplicitConversionSequence::Better; 2306 else if (T1.isMoreQualifiedThan(T2)) 2307 return ImplicitConversionSequence::Worse; 2308 } 2309 } 2310 2311 return ImplicitConversionSequence::Indistinguishable; 2312} 2313 2314/// CompareQualificationConversions - Compares two standard conversion 2315/// sequences to determine whether they can be ranked based on their 2316/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2317ImplicitConversionSequence::CompareKind 2318Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 2319 const StandardConversionSequence& SCS2) { 2320 // C++ 13.3.3.2p3: 2321 // -- S1 and S2 differ only in their qualification conversion and 2322 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2323 // cv-qualification signature of type T1 is a proper subset of 2324 // the cv-qualification signature of type T2, and S1 is not the 2325 // deprecated string literal array-to-pointer conversion (4.2). 2326 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2327 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2328 return ImplicitConversionSequence::Indistinguishable; 2329 2330 // FIXME: the example in the standard doesn't use a qualification 2331 // conversion (!) 2332 QualType T1 = SCS1.getToType(2); 2333 QualType T2 = SCS2.getToType(2); 2334 T1 = Context.getCanonicalType(T1); 2335 T2 = Context.getCanonicalType(T2); 2336 Qualifiers T1Quals, T2Quals; 2337 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2338 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2339 2340 // If the types are the same, we won't learn anything by unwrapped 2341 // them. 2342 if (UnqualT1 == UnqualT2) 2343 return ImplicitConversionSequence::Indistinguishable; 2344 2345 // If the type is an array type, promote the element qualifiers to the type 2346 // for comparison. 2347 if (isa<ArrayType>(T1) && T1Quals) 2348 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2349 if (isa<ArrayType>(T2) && T2Quals) 2350 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2351 2352 ImplicitConversionSequence::CompareKind Result 2353 = ImplicitConversionSequence::Indistinguishable; 2354 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2355 // Within each iteration of the loop, we check the qualifiers to 2356 // determine if this still looks like a qualification 2357 // conversion. Then, if all is well, we unwrap one more level of 2358 // pointers or pointers-to-members and do it all again 2359 // until there are no more pointers or pointers-to-members left 2360 // to unwrap. This essentially mimics what 2361 // IsQualificationConversion does, but here we're checking for a 2362 // strict subset of qualifiers. 2363 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2364 // The qualifiers are the same, so this doesn't tell us anything 2365 // about how the sequences rank. 2366 ; 2367 else if (T2.isMoreQualifiedThan(T1)) { 2368 // T1 has fewer qualifiers, so it could be the better sequence. 2369 if (Result == ImplicitConversionSequence::Worse) 2370 // Neither has qualifiers that are a subset of the other's 2371 // qualifiers. 2372 return ImplicitConversionSequence::Indistinguishable; 2373 2374 Result = ImplicitConversionSequence::Better; 2375 } else if (T1.isMoreQualifiedThan(T2)) { 2376 // T2 has fewer qualifiers, so it could be the better sequence. 2377 if (Result == ImplicitConversionSequence::Better) 2378 // Neither has qualifiers that are a subset of the other's 2379 // qualifiers. 2380 return ImplicitConversionSequence::Indistinguishable; 2381 2382 Result = ImplicitConversionSequence::Worse; 2383 } else { 2384 // Qualifiers are disjoint. 2385 return ImplicitConversionSequence::Indistinguishable; 2386 } 2387 2388 // If the types after this point are equivalent, we're done. 2389 if (Context.hasSameUnqualifiedType(T1, T2)) 2390 break; 2391 } 2392 2393 // Check that the winning standard conversion sequence isn't using 2394 // the deprecated string literal array to pointer conversion. 2395 switch (Result) { 2396 case ImplicitConversionSequence::Better: 2397 if (SCS1.DeprecatedStringLiteralToCharPtr) 2398 Result = ImplicitConversionSequence::Indistinguishable; 2399 break; 2400 2401 case ImplicitConversionSequence::Indistinguishable: 2402 break; 2403 2404 case ImplicitConversionSequence::Worse: 2405 if (SCS2.DeprecatedStringLiteralToCharPtr) 2406 Result = ImplicitConversionSequence::Indistinguishable; 2407 break; 2408 } 2409 2410 return Result; 2411} 2412 2413/// CompareDerivedToBaseConversions - Compares two standard conversion 2414/// sequences to determine whether they can be ranked based on their 2415/// various kinds of derived-to-base conversions (C++ 2416/// [over.ics.rank]p4b3). As part of these checks, we also look at 2417/// conversions between Objective-C interface types. 2418ImplicitConversionSequence::CompareKind 2419Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 2420 const StandardConversionSequence& SCS2) { 2421 QualType FromType1 = SCS1.getFromType(); 2422 QualType ToType1 = SCS1.getToType(1); 2423 QualType FromType2 = SCS2.getFromType(); 2424 QualType ToType2 = SCS2.getToType(1); 2425 2426 // Adjust the types we're converting from via the array-to-pointer 2427 // conversion, if we need to. 2428 if (SCS1.First == ICK_Array_To_Pointer) 2429 FromType1 = Context.getArrayDecayedType(FromType1); 2430 if (SCS2.First == ICK_Array_To_Pointer) 2431 FromType2 = Context.getArrayDecayedType(FromType2); 2432 2433 // Canonicalize all of the types. 2434 FromType1 = Context.getCanonicalType(FromType1); 2435 ToType1 = Context.getCanonicalType(ToType1); 2436 FromType2 = Context.getCanonicalType(FromType2); 2437 ToType2 = Context.getCanonicalType(ToType2); 2438 2439 // C++ [over.ics.rank]p4b3: 2440 // 2441 // If class B is derived directly or indirectly from class A and 2442 // class C is derived directly or indirectly from B, 2443 // 2444 // For Objective-C, we let A, B, and C also be Objective-C 2445 // interfaces. 2446 2447 // Compare based on pointer conversions. 2448 if (SCS1.Second == ICK_Pointer_Conversion && 2449 SCS2.Second == ICK_Pointer_Conversion && 2450 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2451 FromType1->isPointerType() && FromType2->isPointerType() && 2452 ToType1->isPointerType() && ToType2->isPointerType()) { 2453 QualType FromPointee1 2454 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2455 QualType ToPointee1 2456 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2457 QualType FromPointee2 2458 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2459 QualType ToPointee2 2460 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2461 2462 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2463 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2464 const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>(); 2465 const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>(); 2466 2467 // -- conversion of C* to B* is better than conversion of C* to A*, 2468 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2469 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2470 return ImplicitConversionSequence::Better; 2471 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2472 return ImplicitConversionSequence::Worse; 2473 2474 if (ToIface1 && ToIface2) { 2475 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 2476 return ImplicitConversionSequence::Better; 2477 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 2478 return ImplicitConversionSequence::Worse; 2479 } 2480 } 2481 2482 // -- conversion of B* to A* is better than conversion of C* to A*, 2483 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2484 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2485 return ImplicitConversionSequence::Better; 2486 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2487 return ImplicitConversionSequence::Worse; 2488 2489 if (FromIface1 && FromIface2) { 2490 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2491 return ImplicitConversionSequence::Better; 2492 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2493 return ImplicitConversionSequence::Worse; 2494 } 2495 } 2496 } 2497 2498 // Ranking of member-pointer types. 2499 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2500 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2501 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2502 const MemberPointerType * FromMemPointer1 = 2503 FromType1->getAs<MemberPointerType>(); 2504 const MemberPointerType * ToMemPointer1 = 2505 ToType1->getAs<MemberPointerType>(); 2506 const MemberPointerType * FromMemPointer2 = 2507 FromType2->getAs<MemberPointerType>(); 2508 const MemberPointerType * ToMemPointer2 = 2509 ToType2->getAs<MemberPointerType>(); 2510 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2511 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2512 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2513 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2514 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2515 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2516 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2517 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2518 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2519 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2520 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2521 return ImplicitConversionSequence::Worse; 2522 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2523 return ImplicitConversionSequence::Better; 2524 } 2525 // conversion of B::* to C::* is better than conversion of A::* to C::* 2526 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2527 if (IsDerivedFrom(FromPointee1, FromPointee2)) 2528 return ImplicitConversionSequence::Better; 2529 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 2530 return ImplicitConversionSequence::Worse; 2531 } 2532 } 2533 2534 if (SCS1.Second == ICK_Derived_To_Base) { 2535 // -- conversion of C to B is better than conversion of C to A, 2536 // -- binding of an expression of type C to a reference of type 2537 // B& is better than binding an expression of type C to a 2538 // reference of type A&, 2539 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2540 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2541 if (IsDerivedFrom(ToType1, ToType2)) 2542 return ImplicitConversionSequence::Better; 2543 else if (IsDerivedFrom(ToType2, ToType1)) 2544 return ImplicitConversionSequence::Worse; 2545 } 2546 2547 // -- conversion of B to A is better than conversion of C to A. 2548 // -- binding of an expression of type B to a reference of type 2549 // A& is better than binding an expression of type C to a 2550 // reference of type A&, 2551 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2552 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2553 if (IsDerivedFrom(FromType2, FromType1)) 2554 return ImplicitConversionSequence::Better; 2555 else if (IsDerivedFrom(FromType1, FromType2)) 2556 return ImplicitConversionSequence::Worse; 2557 } 2558 } 2559 2560 return ImplicitConversionSequence::Indistinguishable; 2561} 2562 2563/// CompareReferenceRelationship - Compare the two types T1 and T2 to 2564/// determine whether they are reference-related, 2565/// reference-compatible, reference-compatible with added 2566/// qualification, or incompatible, for use in C++ initialization by 2567/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 2568/// type, and the first type (T1) is the pointee type of the reference 2569/// type being initialized. 2570Sema::ReferenceCompareResult 2571Sema::CompareReferenceRelationship(SourceLocation Loc, 2572 QualType OrigT1, QualType OrigT2, 2573 bool& DerivedToBase) { 2574 assert(!OrigT1->isReferenceType() && 2575 "T1 must be the pointee type of the reference type"); 2576 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 2577 2578 QualType T1 = Context.getCanonicalType(OrigT1); 2579 QualType T2 = Context.getCanonicalType(OrigT2); 2580 Qualifiers T1Quals, T2Quals; 2581 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2582 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2583 2584 // C++ [dcl.init.ref]p4: 2585 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 2586 // reference-related to "cv2 T2" if T1 is the same type as T2, or 2587 // T1 is a base class of T2. 2588 if (UnqualT1 == UnqualT2) 2589 DerivedToBase = false; 2590 else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 2591 IsDerivedFrom(UnqualT2, UnqualT1)) 2592 DerivedToBase = true; 2593 else 2594 return Ref_Incompatible; 2595 2596 // At this point, we know that T1 and T2 are reference-related (at 2597 // least). 2598 2599 // If the type is an array type, promote the element qualifiers to the type 2600 // for comparison. 2601 if (isa<ArrayType>(T1) && T1Quals) 2602 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2603 if (isa<ArrayType>(T2) && T2Quals) 2604 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2605 2606 // C++ [dcl.init.ref]p4: 2607 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 2608 // reference-related to T2 and cv1 is the same cv-qualification 2609 // as, or greater cv-qualification than, cv2. For purposes of 2610 // overload resolution, cases for which cv1 is greater 2611 // cv-qualification than cv2 are identified as 2612 // reference-compatible with added qualification (see 13.3.3.2). 2613 if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) 2614 return Ref_Compatible; 2615 else if (T1.isMoreQualifiedThan(T2)) 2616 return Ref_Compatible_With_Added_Qualification; 2617 else 2618 return Ref_Related; 2619} 2620 2621/// \brief Look for a user-defined conversion to an lvalue reference-compatible 2622/// with DeclType. Return true if something definite is found. 2623static bool 2624FindConversionToLValue(Sema &S, ImplicitConversionSequence &ICS, 2625 QualType DeclType, SourceLocation DeclLoc, 2626 Expr *Init, QualType T2, bool AllowExplicit) { 2627 assert(T2->isRecordType() && "Can only find conversions of record types."); 2628 CXXRecordDecl *T2RecordDecl 2629 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 2630 2631 OverloadCandidateSet CandidateSet(DeclLoc); 2632 const UnresolvedSetImpl *Conversions 2633 = T2RecordDecl->getVisibleConversionFunctions(); 2634 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2635 E = Conversions->end(); I != E; ++I) { 2636 NamedDecl *D = *I; 2637 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 2638 if (isa<UsingShadowDecl>(D)) 2639 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2640 2641 FunctionTemplateDecl *ConvTemplate 2642 = dyn_cast<FunctionTemplateDecl>(D); 2643 CXXConversionDecl *Conv; 2644 if (ConvTemplate) 2645 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2646 else 2647 Conv = cast<CXXConversionDecl>(D); 2648 2649 // If the conversion function doesn't return a reference type, 2650 // it can't be considered for this conversion. An rvalue reference 2651 // is only acceptable if its referencee is a function type. 2652 const ReferenceType *RefType = 2653 Conv->getConversionType()->getAs<ReferenceType>(); 2654 if (RefType && (RefType->isLValueReferenceType() || 2655 RefType->getPointeeType()->isFunctionType()) && 2656 (AllowExplicit || !Conv->isExplicit())) { 2657 if (ConvTemplate) 2658 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 2659 Init, DeclType, CandidateSet); 2660 else 2661 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 2662 DeclType, CandidateSet); 2663 } 2664 } 2665 2666 OverloadCandidateSet::iterator Best; 2667 switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) { 2668 case OR_Success: 2669 // C++ [over.ics.ref]p1: 2670 // 2671 // [...] If the parameter binds directly to the result of 2672 // applying a conversion function to the argument 2673 // expression, the implicit conversion sequence is a 2674 // user-defined conversion sequence (13.3.3.1.2), with the 2675 // second standard conversion sequence either an identity 2676 // conversion or, if the conversion function returns an 2677 // entity of a type that is a derived class of the parameter 2678 // type, a derived-to-base Conversion. 2679 if (!Best->FinalConversion.DirectBinding) 2680 return false; 2681 2682 ICS.setUserDefined(); 2683 ICS.UserDefined.Before = Best->Conversions[0].Standard; 2684 ICS.UserDefined.After = Best->FinalConversion; 2685 ICS.UserDefined.ConversionFunction = Best->Function; 2686 ICS.UserDefined.EllipsisConversion = false; 2687 assert(ICS.UserDefined.After.ReferenceBinding && 2688 ICS.UserDefined.After.DirectBinding && 2689 "Expected a direct reference binding!"); 2690 return true; 2691 2692 case OR_Ambiguous: 2693 ICS.setAmbiguous(); 2694 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 2695 Cand != CandidateSet.end(); ++Cand) 2696 if (Cand->Viable) 2697 ICS.Ambiguous.addConversion(Cand->Function); 2698 return true; 2699 2700 case OR_No_Viable_Function: 2701 case OR_Deleted: 2702 // There was no suitable conversion, or we found a deleted 2703 // conversion; continue with other checks. 2704 return false; 2705 } 2706 2707 return false; 2708} 2709 2710/// \brief Compute an implicit conversion sequence for reference 2711/// initialization. 2712static ImplicitConversionSequence 2713TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 2714 SourceLocation DeclLoc, 2715 bool SuppressUserConversions, 2716 bool AllowExplicit) { 2717 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 2718 2719 // Most paths end in a failed conversion. 2720 ImplicitConversionSequence ICS; 2721 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 2722 2723 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 2724 QualType T2 = Init->getType(); 2725 2726 // If the initializer is the address of an overloaded function, try 2727 // to resolve the overloaded function. If all goes well, T2 is the 2728 // type of the resulting function. 2729 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 2730 DeclAccessPair Found; 2731 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 2732 false, Found)) 2733 T2 = Fn->getType(); 2734 } 2735 2736 // Compute some basic properties of the types and the initializer. 2737 bool isRValRef = DeclType->isRValueReferenceType(); 2738 bool DerivedToBase = false; 2739 Expr::Classification InitCategory = Init->Classify(S.Context); 2740 Sema::ReferenceCompareResult RefRelationship 2741 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase); 2742 2743 2744 // C++0x [dcl.init.ref]p5: 2745 // A reference to type "cv1 T1" is initialized by an expression 2746 // of type "cv2 T2" as follows: 2747 2748 // -- If reference is an lvalue reference and the initializer expression 2749 // The next bullet point (T1 is a function) is pretty much equivalent to this 2750 // one, so it's handled here. 2751 if (!isRValRef || T1->isFunctionType()) { 2752 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 2753 // reference-compatible with "cv2 T2," or 2754 // 2755 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 2756 if (InitCategory.isLValue() && 2757 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2758 // C++ [over.ics.ref]p1: 2759 // When a parameter of reference type binds directly (8.5.3) 2760 // to an argument expression, the implicit conversion sequence 2761 // is the identity conversion, unless the argument expression 2762 // has a type that is a derived class of the parameter type, 2763 // in which case the implicit conversion sequence is a 2764 // derived-to-base Conversion (13.3.3.1). 2765 ICS.setStandard(); 2766 ICS.Standard.First = ICK_Identity; 2767 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; 2768 ICS.Standard.Third = ICK_Identity; 2769 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2770 ICS.Standard.setToType(0, T2); 2771 ICS.Standard.setToType(1, T1); 2772 ICS.Standard.setToType(2, T1); 2773 ICS.Standard.ReferenceBinding = true; 2774 ICS.Standard.DirectBinding = true; 2775 ICS.Standard.RRefBinding = isRValRef; 2776 ICS.Standard.CopyConstructor = 0; 2777 2778 // Nothing more to do: the inaccessibility/ambiguity check for 2779 // derived-to-base conversions is suppressed when we're 2780 // computing the implicit conversion sequence (C++ 2781 // [over.best.ics]p2). 2782 return ICS; 2783 } 2784 2785 // -- has a class type (i.e., T2 is a class type), where T1 is 2786 // not reference-related to T2, and can be implicitly 2787 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 2788 // is reference-compatible with "cv3 T3" 92) (this 2789 // conversion is selected by enumerating the applicable 2790 // conversion functions (13.3.1.6) and choosing the best 2791 // one through overload resolution (13.3)), 2792 if (!SuppressUserConversions && T2->isRecordType() && 2793 !S.RequireCompleteType(DeclLoc, T2, 0) && 2794 RefRelationship == Sema::Ref_Incompatible) { 2795 if (FindConversionToLValue(S, ICS, DeclType, DeclLoc, 2796 Init, T2, AllowExplicit)) 2797 return ICS; 2798 } 2799 } 2800 2801 // -- Otherwise, the reference shall be an lvalue reference to a 2802 // non-volatile const type (i.e., cv1 shall be const), or the reference 2803 // shall be an rvalue reference and the initializer expression shall be 2804 // an rvalue or have a function type. 2805 // 2806 // We actually handle one oddity of C++ [over.ics.ref] at this 2807 // point, which is that, due to p2 (which short-circuits reference 2808 // binding by only attempting a simple conversion for non-direct 2809 // bindings) and p3's strange wording, we allow a const volatile 2810 // reference to bind to an rvalue. Hence the check for the presence 2811 // of "const" rather than checking for "const" being the only 2812 // qualifier. 2813 // This is also the point where rvalue references and lvalue inits no longer 2814 // go together. 2815 if ((!isRValRef && !T1.isConstQualified()) || 2816 (isRValRef && InitCategory.isLValue())) 2817 return ICS; 2818 2819 // -- If T1 is a function type, then 2820 // -- if T2 is the same type as T1, the reference is bound to the 2821 // initializer expression lvalue; 2822 // -- if T2 is a class type and the initializer expression can be 2823 // implicitly converted to an lvalue of type T1 [...], the 2824 // reference is bound to the function lvalue that is the result 2825 // of the conversion; 2826 // This is the same as for the lvalue case above, so it was handled there. 2827 // -- otherwise, the program is ill-formed. 2828 // This is the one difference to the lvalue case. 2829 if (T1->isFunctionType()) 2830 return ICS; 2831 2832 // -- Otherwise, if T2 is a class type and 2833 // -- the initializer expression is an rvalue and "cv1 T1" 2834 // is reference-compatible with "cv2 T2," or 2835 // 2836 // -- T1 is not reference-related to T2 and the initializer 2837 // expression can be implicitly converted to an rvalue 2838 // of type "cv3 T3" (this conversion is selected by 2839 // enumerating the applicable conversion functions 2840 // (13.3.1.6) and choosing the best one through overload 2841 // resolution (13.3)), 2842 // 2843 // then the reference is bound to the initializer 2844 // expression rvalue in the first case and to the object 2845 // that is the result of the conversion in the second case 2846 // (or, in either case, to the appropriate base class 2847 // subobject of the object). 2848 // 2849 // We're only checking the first case here, which is a direct 2850 // binding in C++0x but not in C++03. 2851 if (InitCategory.isRValue() && T2->isRecordType() && 2852 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2853 ICS.setStandard(); 2854 ICS.Standard.First = ICK_Identity; 2855 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; 2856 ICS.Standard.Third = ICK_Identity; 2857 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2858 ICS.Standard.setToType(0, T2); 2859 ICS.Standard.setToType(1, T1); 2860 ICS.Standard.setToType(2, T1); 2861 ICS.Standard.ReferenceBinding = true; 2862 ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x; 2863 ICS.Standard.RRefBinding = isRValRef; 2864 ICS.Standard.CopyConstructor = 0; 2865 return ICS; 2866 } 2867 2868 // -- Otherwise, a temporary of type "cv1 T1" is created and 2869 // initialized from the initializer expression using the 2870 // rules for a non-reference copy initialization (8.5). The 2871 // reference is then bound to the temporary. If T1 is 2872 // reference-related to T2, cv1 must be the same 2873 // cv-qualification as, or greater cv-qualification than, 2874 // cv2; otherwise, the program is ill-formed. 2875 if (RefRelationship == Sema::Ref_Related) { 2876 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 2877 // we would be reference-compatible or reference-compatible with 2878 // added qualification. But that wasn't the case, so the reference 2879 // initialization fails. 2880 return ICS; 2881 } 2882 2883 // If at least one of the types is a class type, the types are not 2884 // related, and we aren't allowed any user conversions, the 2885 // reference binding fails. This case is important for breaking 2886 // recursion, since TryImplicitConversion below will attempt to 2887 // create a temporary through the use of a copy constructor. 2888 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 2889 (T1->isRecordType() || T2->isRecordType())) 2890 return ICS; 2891 2892 // C++ [over.ics.ref]p2: 2893 // When a parameter of reference type is not bound directly to 2894 // an argument expression, the conversion sequence is the one 2895 // required to convert the argument expression to the 2896 // underlying type of the reference according to 2897 // 13.3.3.1. Conceptually, this conversion sequence corresponds 2898 // to copy-initializing a temporary of the underlying type with 2899 // the argument expression. Any difference in top-level 2900 // cv-qualification is subsumed by the initialization itself 2901 // and does not constitute a conversion. 2902 ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions, 2903 /*AllowExplicit=*/false, 2904 /*InOverloadResolution=*/false); 2905 2906 // Of course, that's still a reference binding. 2907 if (ICS.isStandard()) { 2908 ICS.Standard.ReferenceBinding = true; 2909 ICS.Standard.RRefBinding = isRValRef; 2910 } else if (ICS.isUserDefined()) { 2911 ICS.UserDefined.After.ReferenceBinding = true; 2912 ICS.UserDefined.After.RRefBinding = isRValRef; 2913 } 2914 return ICS; 2915} 2916 2917/// TryCopyInitialization - Try to copy-initialize a value of type 2918/// ToType from the expression From. Return the implicit conversion 2919/// sequence required to pass this argument, which may be a bad 2920/// conversion sequence (meaning that the argument cannot be passed to 2921/// a parameter of this type). If @p SuppressUserConversions, then we 2922/// do not permit any user-defined conversion sequences. 2923static ImplicitConversionSequence 2924TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 2925 bool SuppressUserConversions, 2926 bool InOverloadResolution) { 2927 if (ToType->isReferenceType()) 2928 return TryReferenceInit(S, From, ToType, 2929 /*FIXME:*/From->getLocStart(), 2930 SuppressUserConversions, 2931 /*AllowExplicit=*/false); 2932 2933 return S.TryImplicitConversion(From, ToType, 2934 SuppressUserConversions, 2935 /*AllowExplicit=*/false, 2936 InOverloadResolution); 2937} 2938 2939/// TryObjectArgumentInitialization - Try to initialize the object 2940/// parameter of the given member function (@c Method) from the 2941/// expression @p From. 2942ImplicitConversionSequence 2943Sema::TryObjectArgumentInitialization(QualType OrigFromType, 2944 CXXMethodDecl *Method, 2945 CXXRecordDecl *ActingContext) { 2946 QualType ClassType = Context.getTypeDeclType(ActingContext); 2947 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 2948 // const volatile object. 2949 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 2950 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 2951 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); 2952 2953 // Set up the conversion sequence as a "bad" conversion, to allow us 2954 // to exit early. 2955 ImplicitConversionSequence ICS; 2956 2957 // We need to have an object of class type. 2958 QualType FromType = OrigFromType; 2959 if (const PointerType *PT = FromType->getAs<PointerType>()) 2960 FromType = PT->getPointeeType(); 2961 2962 assert(FromType->isRecordType()); 2963 2964 // The implicit object parameter is has the type "reference to cv X", 2965 // where X is the class of which the function is a member 2966 // (C++ [over.match.funcs]p4). However, when finding an implicit 2967 // conversion sequence for the argument, we are not allowed to 2968 // create temporaries or perform user-defined conversions 2969 // (C++ [over.match.funcs]p5). We perform a simplified version of 2970 // reference binding here, that allows class rvalues to bind to 2971 // non-constant references. 2972 2973 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2974 // with the implicit object parameter (C++ [over.match.funcs]p5). 2975 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2976 if (ImplicitParamType.getCVRQualifiers() 2977 != FromTypeCanon.getLocalCVRQualifiers() && 2978 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 2979 ICS.setBad(BadConversionSequence::bad_qualifiers, 2980 OrigFromType, ImplicitParamType); 2981 return ICS; 2982 } 2983 2984 // Check that we have either the same type or a derived type. It 2985 // affects the conversion rank. 2986 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2987 ImplicitConversionKind SecondKind; 2988 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 2989 SecondKind = ICK_Identity; 2990 } else if (IsDerivedFrom(FromType, ClassType)) 2991 SecondKind = ICK_Derived_To_Base; 2992 else { 2993 ICS.setBad(BadConversionSequence::unrelated_class, 2994 FromType, ImplicitParamType); 2995 return ICS; 2996 } 2997 2998 // Success. Mark this as a reference binding. 2999 ICS.setStandard(); 3000 ICS.Standard.setAsIdentityConversion(); 3001 ICS.Standard.Second = SecondKind; 3002 ICS.Standard.setFromType(FromType); 3003 ICS.Standard.setAllToTypes(ImplicitParamType); 3004 ICS.Standard.ReferenceBinding = true; 3005 ICS.Standard.DirectBinding = true; 3006 ICS.Standard.RRefBinding = false; 3007 return ICS; 3008} 3009 3010/// PerformObjectArgumentInitialization - Perform initialization of 3011/// the implicit object parameter for the given Method with the given 3012/// expression. 3013bool 3014Sema::PerformObjectArgumentInitialization(Expr *&From, 3015 NestedNameSpecifier *Qualifier, 3016 NamedDecl *FoundDecl, 3017 CXXMethodDecl *Method) { 3018 QualType FromRecordType, DestType; 3019 QualType ImplicitParamRecordType = 3020 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 3021 3022 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 3023 FromRecordType = PT->getPointeeType(); 3024 DestType = Method->getThisType(Context); 3025 } else { 3026 FromRecordType = From->getType(); 3027 DestType = ImplicitParamRecordType; 3028 } 3029 3030 // Note that we always use the true parent context when performing 3031 // the actual argument initialization. 3032 ImplicitConversionSequence ICS 3033 = TryObjectArgumentInitialization(From->getType(), Method, 3034 Method->getParent()); 3035 if (ICS.isBad()) 3036 return Diag(From->getSourceRange().getBegin(), 3037 diag::err_implicit_object_parameter_init) 3038 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 3039 3040 if (ICS.Standard.Second == ICK_Derived_To_Base) 3041 return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 3042 3043 if (!Context.hasSameType(From->getType(), DestType)) 3044 ImpCastExprToType(From, DestType, CastExpr::CK_NoOp, 3045 /*isLvalue=*/!From->getType()->isPointerType()); 3046 return false; 3047} 3048 3049/// TryContextuallyConvertToBool - Attempt to contextually convert the 3050/// expression From to bool (C++0x [conv]p3). 3051ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 3052 // FIXME: This is pretty broken. 3053 return TryImplicitConversion(From, Context.BoolTy, 3054 // FIXME: Are these flags correct? 3055 /*SuppressUserConversions=*/false, 3056 /*AllowExplicit=*/true, 3057 /*InOverloadResolution=*/false); 3058} 3059 3060/// PerformContextuallyConvertToBool - Perform a contextual conversion 3061/// of the expression From to bool (C++0x [conv]p3). 3062bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 3063 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 3064 if (!ICS.isBad()) 3065 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 3066 3067 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 3068 return Diag(From->getSourceRange().getBegin(), 3069 diag::err_typecheck_bool_condition) 3070 << From->getType() << From->getSourceRange(); 3071 return true; 3072} 3073 3074/// TryContextuallyConvertToObjCId - Attempt to contextually convert the 3075/// expression From to 'id'. 3076ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) { 3077 QualType Ty = Context.getObjCIdType(); 3078 return TryImplicitConversion(From, Ty, 3079 // FIXME: Are these flags correct? 3080 /*SuppressUserConversions=*/false, 3081 /*AllowExplicit=*/true, 3082 /*InOverloadResolution=*/false); 3083} 3084 3085/// PerformContextuallyConvertToObjCId - Perform a contextual conversion 3086/// of the expression From to 'id'. 3087bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { 3088 QualType Ty = Context.getObjCIdType(); 3089 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From); 3090 if (!ICS.isBad()) 3091 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 3092 return true; 3093} 3094 3095/// \brief Attempt to convert the given expression to an integral or 3096/// enumeration type. 3097/// 3098/// This routine will attempt to convert an expression of class type to an 3099/// integral or enumeration type, if that class type only has a single 3100/// conversion to an integral or enumeration type. 3101/// 3102/// \param Loc The source location of the construct that requires the 3103/// conversion. 3104/// 3105/// \param FromE The expression we're converting from. 3106/// 3107/// \param NotIntDiag The diagnostic to be emitted if the expression does not 3108/// have integral or enumeration type. 3109/// 3110/// \param IncompleteDiag The diagnostic to be emitted if the expression has 3111/// incomplete class type. 3112/// 3113/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 3114/// explicit conversion function (because no implicit conversion functions 3115/// were available). This is a recovery mode. 3116/// 3117/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 3118/// showing which conversion was picked. 3119/// 3120/// \param AmbigDiag The diagnostic to be emitted if there is more than one 3121/// conversion function that could convert to integral or enumeration type. 3122/// 3123/// \param AmbigNote The note to be emitted with \p AmbigDiag for each 3124/// usable conversion function. 3125/// 3126/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 3127/// function, which may be an extension in this case. 3128/// 3129/// \returns The expression, converted to an integral or enumeration type if 3130/// successful. 3131Sema::OwningExprResult 3132Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, ExprArg FromE, 3133 const PartialDiagnostic &NotIntDiag, 3134 const PartialDiagnostic &IncompleteDiag, 3135 const PartialDiagnostic &ExplicitConvDiag, 3136 const PartialDiagnostic &ExplicitConvNote, 3137 const PartialDiagnostic &AmbigDiag, 3138 const PartialDiagnostic &AmbigNote, 3139 const PartialDiagnostic &ConvDiag) { 3140 Expr *From = static_cast<Expr *>(FromE.get()); 3141 3142 // We can't perform any more checking for type-dependent expressions. 3143 if (From->isTypeDependent()) 3144 return move(FromE); 3145 3146 // If the expression already has integral or enumeration type, we're golden. 3147 QualType T = From->getType(); 3148 if (T->isIntegralOrEnumerationType()) 3149 return move(FromE); 3150 3151 // FIXME: Check for missing '()' if T is a function type? 3152 3153 // If we don't have a class type in C++, there's no way we can get an 3154 // expression of integral or enumeration type. 3155 const RecordType *RecordTy = T->getAs<RecordType>(); 3156 if (!RecordTy || !getLangOptions().CPlusPlus) { 3157 Diag(Loc, NotIntDiag) 3158 << T << From->getSourceRange(); 3159 return move(FromE); 3160 } 3161 3162 // We must have a complete class type. 3163 if (RequireCompleteType(Loc, T, IncompleteDiag)) 3164 return move(FromE); 3165 3166 // Look for a conversion to an integral or enumeration type. 3167 UnresolvedSet<4> ViableConversions; 3168 UnresolvedSet<4> ExplicitConversions; 3169 const UnresolvedSetImpl *Conversions 3170 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 3171 3172 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3173 E = Conversions->end(); 3174 I != E; 3175 ++I) { 3176 if (CXXConversionDecl *Conversion 3177 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) 3178 if (Conversion->getConversionType().getNonReferenceType() 3179 ->isIntegralOrEnumerationType()) { 3180 if (Conversion->isExplicit()) 3181 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 3182 else 3183 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 3184 } 3185 } 3186 3187 switch (ViableConversions.size()) { 3188 case 0: 3189 if (ExplicitConversions.size() == 1) { 3190 DeclAccessPair Found = ExplicitConversions[0]; 3191 CXXConversionDecl *Conversion 3192 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3193 3194 // The user probably meant to invoke the given explicit 3195 // conversion; use it. 3196 QualType ConvTy 3197 = Conversion->getConversionType().getNonReferenceType(); 3198 std::string TypeStr; 3199 ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy); 3200 3201 Diag(Loc, ExplicitConvDiag) 3202 << T << ConvTy 3203 << FixItHint::CreateInsertion(From->getLocStart(), 3204 "static_cast<" + TypeStr + ">(") 3205 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 3206 ")"); 3207 Diag(Conversion->getLocation(), ExplicitConvNote) 3208 << ConvTy->isEnumeralType() << ConvTy; 3209 3210 // If we aren't in a SFINAE context, build a call to the 3211 // explicit conversion function. 3212 if (isSFINAEContext()) 3213 return ExprError(); 3214 3215 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3216 From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found, Conversion); 3217 FromE = Owned(From); 3218 } 3219 3220 // We'll complain below about a non-integral condition type. 3221 break; 3222 3223 case 1: { 3224 // Apply this conversion. 3225 DeclAccessPair Found = ViableConversions[0]; 3226 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3227 3228 CXXConversionDecl *Conversion 3229 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3230 QualType ConvTy 3231 = Conversion->getConversionType().getNonReferenceType(); 3232 if (ConvDiag.getDiagID()) { 3233 if (isSFINAEContext()) 3234 return ExprError(); 3235 3236 Diag(Loc, ConvDiag) 3237 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 3238 } 3239 3240 From = BuildCXXMemberCallExpr(FromE.takeAs<Expr>(), Found, 3241 cast<CXXConversionDecl>(Found->getUnderlyingDecl())); 3242 FromE = Owned(From); 3243 break; 3244 } 3245 3246 default: 3247 Diag(Loc, AmbigDiag) 3248 << T << From->getSourceRange(); 3249 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 3250 CXXConversionDecl *Conv 3251 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 3252 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 3253 Diag(Conv->getLocation(), AmbigNote) 3254 << ConvTy->isEnumeralType() << ConvTy; 3255 } 3256 return move(FromE); 3257 } 3258 3259 if (!From->getType()->isIntegralOrEnumerationType()) 3260 Diag(Loc, NotIntDiag) 3261 << From->getType() << From->getSourceRange(); 3262 3263 return move(FromE); 3264} 3265 3266/// AddOverloadCandidate - Adds the given function to the set of 3267/// candidate functions, using the given function call arguments. If 3268/// @p SuppressUserConversions, then don't allow user-defined 3269/// conversions via constructors or conversion operators. 3270/// 3271/// \para PartialOverloading true if we are performing "partial" overloading 3272/// based on an incomplete set of function arguments. This feature is used by 3273/// code completion. 3274void 3275Sema::AddOverloadCandidate(FunctionDecl *Function, 3276 DeclAccessPair FoundDecl, 3277 Expr **Args, unsigned NumArgs, 3278 OverloadCandidateSet& CandidateSet, 3279 bool SuppressUserConversions, 3280 bool PartialOverloading) { 3281 const FunctionProtoType* Proto 3282 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 3283 assert(Proto && "Functions without a prototype cannot be overloaded"); 3284 assert(!Function->getDescribedFunctionTemplate() && 3285 "Use AddTemplateOverloadCandidate for function templates"); 3286 3287 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3288 if (!isa<CXXConstructorDecl>(Method)) { 3289 // If we get here, it's because we're calling a member function 3290 // that is named without a member access expression (e.g., 3291 // "this->f") that was either written explicitly or created 3292 // implicitly. This can happen with a qualified call to a member 3293 // function, e.g., X::f(). We use an empty type for the implied 3294 // object argument (C++ [over.call.func]p3), and the acting context 3295 // is irrelevant. 3296 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 3297 QualType(), Args, NumArgs, CandidateSet, 3298 SuppressUserConversions); 3299 return; 3300 } 3301 // We treat a constructor like a non-member function, since its object 3302 // argument doesn't participate in overload resolution. 3303 } 3304 3305 if (!CandidateSet.isNewCandidate(Function)) 3306 return; 3307 3308 // Overload resolution is always an unevaluated context. 3309 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3310 3311 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 3312 // C++ [class.copy]p3: 3313 // A member function template is never instantiated to perform the copy 3314 // of a class object to an object of its class type. 3315 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 3316 if (NumArgs == 1 && 3317 Constructor->isCopyConstructorLikeSpecialization() && 3318 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 3319 IsDerivedFrom(Args[0]->getType(), ClassType))) 3320 return; 3321 } 3322 3323 // Add this candidate 3324 CandidateSet.push_back(OverloadCandidate()); 3325 OverloadCandidate& Candidate = CandidateSet.back(); 3326 Candidate.FoundDecl = FoundDecl; 3327 Candidate.Function = Function; 3328 Candidate.Viable = true; 3329 Candidate.IsSurrogate = false; 3330 Candidate.IgnoreObjectArgument = false; 3331 3332 unsigned NumArgsInProto = Proto->getNumArgs(); 3333 3334 // (C++ 13.3.2p2): A candidate function having fewer than m 3335 // parameters is viable only if it has an ellipsis in its parameter 3336 // list (8.3.5). 3337 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 3338 !Proto->isVariadic()) { 3339 Candidate.Viable = false; 3340 Candidate.FailureKind = ovl_fail_too_many_arguments; 3341 return; 3342 } 3343 3344 // (C++ 13.3.2p2): A candidate function having more than m parameters 3345 // is viable only if the (m+1)st parameter has a default argument 3346 // (8.3.6). For the purposes of overload resolution, the 3347 // parameter list is truncated on the right, so that there are 3348 // exactly m parameters. 3349 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 3350 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 3351 // Not enough arguments. 3352 Candidate.Viable = false; 3353 Candidate.FailureKind = ovl_fail_too_few_arguments; 3354 return; 3355 } 3356 3357 // Determine the implicit conversion sequences for each of the 3358 // arguments. 3359 Candidate.Conversions.resize(NumArgs); 3360 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3361 if (ArgIdx < NumArgsInProto) { 3362 // (C++ 13.3.2p3): for F to be a viable function, there shall 3363 // exist for each argument an implicit conversion sequence 3364 // (13.3.3.1) that converts that argument to the corresponding 3365 // parameter of F. 3366 QualType ParamType = Proto->getArgType(ArgIdx); 3367 Candidate.Conversions[ArgIdx] 3368 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3369 SuppressUserConversions, 3370 /*InOverloadResolution=*/true); 3371 if (Candidate.Conversions[ArgIdx].isBad()) { 3372 Candidate.Viable = false; 3373 Candidate.FailureKind = ovl_fail_bad_conversion; 3374 break; 3375 } 3376 } else { 3377 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3378 // argument for which there is no corresponding parameter is 3379 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3380 Candidate.Conversions[ArgIdx].setEllipsis(); 3381 } 3382 } 3383} 3384 3385/// \brief Add all of the function declarations in the given function set to 3386/// the overload canddiate set. 3387void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 3388 Expr **Args, unsigned NumArgs, 3389 OverloadCandidateSet& CandidateSet, 3390 bool SuppressUserConversions) { 3391 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 3392 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 3393 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3394 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 3395 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 3396 cast<CXXMethodDecl>(FD)->getParent(), 3397 Args[0]->getType(), Args + 1, NumArgs - 1, 3398 CandidateSet, SuppressUserConversions); 3399 else 3400 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 3401 SuppressUserConversions); 3402 } else { 3403 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 3404 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 3405 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 3406 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 3407 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 3408 /*FIXME: explicit args */ 0, 3409 Args[0]->getType(), Args + 1, NumArgs - 1, 3410 CandidateSet, 3411 SuppressUserConversions); 3412 else 3413 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 3414 /*FIXME: explicit args */ 0, 3415 Args, NumArgs, CandidateSet, 3416 SuppressUserConversions); 3417 } 3418 } 3419} 3420 3421/// AddMethodCandidate - Adds a named decl (which is some kind of 3422/// method) as a method candidate to the given overload set. 3423void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 3424 QualType ObjectType, 3425 Expr **Args, unsigned NumArgs, 3426 OverloadCandidateSet& CandidateSet, 3427 bool SuppressUserConversions) { 3428 NamedDecl *Decl = FoundDecl.getDecl(); 3429 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 3430 3431 if (isa<UsingShadowDecl>(Decl)) 3432 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 3433 3434 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 3435 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 3436 "Expected a member function template"); 3437 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 3438 /*ExplicitArgs*/ 0, 3439 ObjectType, Args, NumArgs, 3440 CandidateSet, 3441 SuppressUserConversions); 3442 } else { 3443 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 3444 ObjectType, Args, NumArgs, 3445 CandidateSet, SuppressUserConversions); 3446 } 3447} 3448 3449/// AddMethodCandidate - Adds the given C++ member function to the set 3450/// of candidate functions, using the given function call arguments 3451/// and the object argument (@c Object). For example, in a call 3452/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 3453/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 3454/// allow user-defined conversions via constructors or conversion 3455/// operators. 3456void 3457Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 3458 CXXRecordDecl *ActingContext, QualType ObjectType, 3459 Expr **Args, unsigned NumArgs, 3460 OverloadCandidateSet& CandidateSet, 3461 bool SuppressUserConversions) { 3462 const FunctionProtoType* Proto 3463 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 3464 assert(Proto && "Methods without a prototype cannot be overloaded"); 3465 assert(!isa<CXXConstructorDecl>(Method) && 3466 "Use AddOverloadCandidate for constructors"); 3467 3468 if (!CandidateSet.isNewCandidate(Method)) 3469 return; 3470 3471 // Overload resolution is always an unevaluated context. 3472 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3473 3474 // Add this candidate 3475 CandidateSet.push_back(OverloadCandidate()); 3476 OverloadCandidate& Candidate = CandidateSet.back(); 3477 Candidate.FoundDecl = FoundDecl; 3478 Candidate.Function = Method; 3479 Candidate.IsSurrogate = false; 3480 Candidate.IgnoreObjectArgument = false; 3481 3482 unsigned NumArgsInProto = Proto->getNumArgs(); 3483 3484 // (C++ 13.3.2p2): A candidate function having fewer than m 3485 // parameters is viable only if it has an ellipsis in its parameter 3486 // list (8.3.5). 3487 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3488 Candidate.Viable = false; 3489 Candidate.FailureKind = ovl_fail_too_many_arguments; 3490 return; 3491 } 3492 3493 // (C++ 13.3.2p2): A candidate function having more than m parameters 3494 // is viable only if the (m+1)st parameter has a default argument 3495 // (8.3.6). For the purposes of overload resolution, the 3496 // parameter list is truncated on the right, so that there are 3497 // exactly m parameters. 3498 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 3499 if (NumArgs < MinRequiredArgs) { 3500 // Not enough arguments. 3501 Candidate.Viable = false; 3502 Candidate.FailureKind = ovl_fail_too_few_arguments; 3503 return; 3504 } 3505 3506 Candidate.Viable = true; 3507 Candidate.Conversions.resize(NumArgs + 1); 3508 3509 if (Method->isStatic() || ObjectType.isNull()) 3510 // The implicit object argument is ignored. 3511 Candidate.IgnoreObjectArgument = true; 3512 else { 3513 // Determine the implicit conversion sequence for the object 3514 // parameter. 3515 Candidate.Conversions[0] 3516 = TryObjectArgumentInitialization(ObjectType, Method, ActingContext); 3517 if (Candidate.Conversions[0].isBad()) { 3518 Candidate.Viable = false; 3519 Candidate.FailureKind = ovl_fail_bad_conversion; 3520 return; 3521 } 3522 } 3523 3524 // Determine the implicit conversion sequences for each of the 3525 // arguments. 3526 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3527 if (ArgIdx < NumArgsInProto) { 3528 // (C++ 13.3.2p3): for F to be a viable function, there shall 3529 // exist for each argument an implicit conversion sequence 3530 // (13.3.3.1) that converts that argument to the corresponding 3531 // parameter of F. 3532 QualType ParamType = Proto->getArgType(ArgIdx); 3533 Candidate.Conversions[ArgIdx + 1] 3534 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3535 SuppressUserConversions, 3536 /*InOverloadResolution=*/true); 3537 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3538 Candidate.Viable = false; 3539 Candidate.FailureKind = ovl_fail_bad_conversion; 3540 break; 3541 } 3542 } else { 3543 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3544 // argument for which there is no corresponding parameter is 3545 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3546 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3547 } 3548 } 3549} 3550 3551/// \brief Add a C++ member function template as a candidate to the candidate 3552/// set, using template argument deduction to produce an appropriate member 3553/// function template specialization. 3554void 3555Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 3556 DeclAccessPair FoundDecl, 3557 CXXRecordDecl *ActingContext, 3558 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3559 QualType ObjectType, 3560 Expr **Args, unsigned NumArgs, 3561 OverloadCandidateSet& CandidateSet, 3562 bool SuppressUserConversions) { 3563 if (!CandidateSet.isNewCandidate(MethodTmpl)) 3564 return; 3565 3566 // C++ [over.match.funcs]p7: 3567 // In each case where a candidate is a function template, candidate 3568 // function template specializations are generated using template argument 3569 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3570 // candidate functions in the usual way.113) A given name can refer to one 3571 // or more function templates and also to a set of overloaded non-template 3572 // functions. In such a case, the candidate functions generated from each 3573 // function template are combined with the set of non-template candidate 3574 // functions. 3575 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3576 FunctionDecl *Specialization = 0; 3577 if (TemplateDeductionResult Result 3578 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 3579 Args, NumArgs, Specialization, Info)) { 3580 CandidateSet.push_back(OverloadCandidate()); 3581 OverloadCandidate &Candidate = CandidateSet.back(); 3582 Candidate.FoundDecl = FoundDecl; 3583 Candidate.Function = MethodTmpl->getTemplatedDecl(); 3584 Candidate.Viable = false; 3585 Candidate.FailureKind = ovl_fail_bad_deduction; 3586 Candidate.IsSurrogate = false; 3587 Candidate.IgnoreObjectArgument = false; 3588 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3589 Info); 3590 return; 3591 } 3592 3593 // Add the function template specialization produced by template argument 3594 // deduction as a candidate. 3595 assert(Specialization && "Missing member function template specialization?"); 3596 assert(isa<CXXMethodDecl>(Specialization) && 3597 "Specialization is not a member function?"); 3598 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 3599 ActingContext, ObjectType, Args, NumArgs, 3600 CandidateSet, SuppressUserConversions); 3601} 3602 3603/// \brief Add a C++ function template specialization as a candidate 3604/// in the candidate set, using template argument deduction to produce 3605/// an appropriate function template specialization. 3606void 3607Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 3608 DeclAccessPair FoundDecl, 3609 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3610 Expr **Args, unsigned NumArgs, 3611 OverloadCandidateSet& CandidateSet, 3612 bool SuppressUserConversions) { 3613 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3614 return; 3615 3616 // C++ [over.match.funcs]p7: 3617 // In each case where a candidate is a function template, candidate 3618 // function template specializations are generated using template argument 3619 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3620 // candidate functions in the usual way.113) A given name can refer to one 3621 // or more function templates and also to a set of overloaded non-template 3622 // functions. In such a case, the candidate functions generated from each 3623 // function template are combined with the set of non-template candidate 3624 // functions. 3625 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3626 FunctionDecl *Specialization = 0; 3627 if (TemplateDeductionResult Result 3628 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 3629 Args, NumArgs, Specialization, Info)) { 3630 CandidateSet.push_back(OverloadCandidate()); 3631 OverloadCandidate &Candidate = CandidateSet.back(); 3632 Candidate.FoundDecl = FoundDecl; 3633 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3634 Candidate.Viable = false; 3635 Candidate.FailureKind = ovl_fail_bad_deduction; 3636 Candidate.IsSurrogate = false; 3637 Candidate.IgnoreObjectArgument = false; 3638 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3639 Info); 3640 return; 3641 } 3642 3643 // Add the function template specialization produced by template argument 3644 // deduction as a candidate. 3645 assert(Specialization && "Missing function template specialization?"); 3646 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 3647 SuppressUserConversions); 3648} 3649 3650/// AddConversionCandidate - Add a C++ conversion function as a 3651/// candidate in the candidate set (C++ [over.match.conv], 3652/// C++ [over.match.copy]). From is the expression we're converting from, 3653/// and ToType is the type that we're eventually trying to convert to 3654/// (which may or may not be the same type as the type that the 3655/// conversion function produces). 3656void 3657Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 3658 DeclAccessPair FoundDecl, 3659 CXXRecordDecl *ActingContext, 3660 Expr *From, QualType ToType, 3661 OverloadCandidateSet& CandidateSet) { 3662 assert(!Conversion->getDescribedFunctionTemplate() && 3663 "Conversion function templates use AddTemplateConversionCandidate"); 3664 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 3665 if (!CandidateSet.isNewCandidate(Conversion)) 3666 return; 3667 3668 // Overload resolution is always an unevaluated context. 3669 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3670 3671 // Add this candidate 3672 CandidateSet.push_back(OverloadCandidate()); 3673 OverloadCandidate& Candidate = CandidateSet.back(); 3674 Candidate.FoundDecl = FoundDecl; 3675 Candidate.Function = Conversion; 3676 Candidate.IsSurrogate = false; 3677 Candidate.IgnoreObjectArgument = false; 3678 Candidate.FinalConversion.setAsIdentityConversion(); 3679 Candidate.FinalConversion.setFromType(ConvType); 3680 Candidate.FinalConversion.setAllToTypes(ToType); 3681 3682 // Determine the implicit conversion sequence for the implicit 3683 // object parameter. 3684 Candidate.Viable = true; 3685 Candidate.Conversions.resize(1); 3686 Candidate.Conversions[0] 3687 = TryObjectArgumentInitialization(From->getType(), Conversion, 3688 ActingContext); 3689 // Conversion functions to a different type in the base class is visible in 3690 // the derived class. So, a derived to base conversion should not participate 3691 // in overload resolution. 3692 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 3693 Candidate.Conversions[0].Standard.Second = ICK_Identity; 3694 if (Candidate.Conversions[0].isBad()) { 3695 Candidate.Viable = false; 3696 Candidate.FailureKind = ovl_fail_bad_conversion; 3697 return; 3698 } 3699 3700 // We won't go through a user-define type conversion function to convert a 3701 // derived to base as such conversions are given Conversion Rank. They only 3702 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 3703 QualType FromCanon 3704 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 3705 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 3706 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 3707 Candidate.Viable = false; 3708 Candidate.FailureKind = ovl_fail_trivial_conversion; 3709 return; 3710 } 3711 3712 // To determine what the conversion from the result of calling the 3713 // conversion function to the type we're eventually trying to 3714 // convert to (ToType), we need to synthesize a call to the 3715 // conversion function and attempt copy initialization from it. This 3716 // makes sure that we get the right semantics with respect to 3717 // lvalues/rvalues and the type. Fortunately, we can allocate this 3718 // call on the stack and we don't need its arguments to be 3719 // well-formed. 3720 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 3721 From->getLocStart()); 3722 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 3723 CastExpr::CK_FunctionToPointerDecay, 3724 &ConversionRef, CXXBaseSpecifierArray(), false); 3725 3726 // Note that it is safe to allocate CallExpr on the stack here because 3727 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 3728 // allocator). 3729 CallExpr Call(Context, &ConversionFn, 0, 0, 3730 Conversion->getConversionType().getNonReferenceType(), 3731 From->getLocStart()); 3732 ImplicitConversionSequence ICS = 3733 TryCopyInitialization(*this, &Call, ToType, 3734 /*SuppressUserConversions=*/true, 3735 /*InOverloadResolution=*/false); 3736 3737 switch (ICS.getKind()) { 3738 case ImplicitConversionSequence::StandardConversion: 3739 Candidate.FinalConversion = ICS.Standard; 3740 3741 // C++ [over.ics.user]p3: 3742 // If the user-defined conversion is specified by a specialization of a 3743 // conversion function template, the second standard conversion sequence 3744 // shall have exact match rank. 3745 if (Conversion->getPrimaryTemplate() && 3746 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 3747 Candidate.Viable = false; 3748 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 3749 } 3750 3751 break; 3752 3753 case ImplicitConversionSequence::BadConversion: 3754 Candidate.Viable = false; 3755 Candidate.FailureKind = ovl_fail_bad_final_conversion; 3756 break; 3757 3758 default: 3759 assert(false && 3760 "Can only end up with a standard conversion sequence or failure"); 3761 } 3762} 3763 3764/// \brief Adds a conversion function template specialization 3765/// candidate to the overload set, using template argument deduction 3766/// to deduce the template arguments of the conversion function 3767/// template from the type that we are converting to (C++ 3768/// [temp.deduct.conv]). 3769void 3770Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 3771 DeclAccessPair FoundDecl, 3772 CXXRecordDecl *ActingDC, 3773 Expr *From, QualType ToType, 3774 OverloadCandidateSet &CandidateSet) { 3775 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 3776 "Only conversion function templates permitted here"); 3777 3778 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3779 return; 3780 3781 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3782 CXXConversionDecl *Specialization = 0; 3783 if (TemplateDeductionResult Result 3784 = DeduceTemplateArguments(FunctionTemplate, ToType, 3785 Specialization, Info)) { 3786 CandidateSet.push_back(OverloadCandidate()); 3787 OverloadCandidate &Candidate = CandidateSet.back(); 3788 Candidate.FoundDecl = FoundDecl; 3789 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3790 Candidate.Viable = false; 3791 Candidate.FailureKind = ovl_fail_bad_deduction; 3792 Candidate.IsSurrogate = false; 3793 Candidate.IgnoreObjectArgument = false; 3794 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3795 Info); 3796 return; 3797 } 3798 3799 // Add the conversion function template specialization produced by 3800 // template argument deduction as a candidate. 3801 assert(Specialization && "Missing function template specialization?"); 3802 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 3803 CandidateSet); 3804} 3805 3806/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 3807/// converts the given @c Object to a function pointer via the 3808/// conversion function @c Conversion, and then attempts to call it 3809/// with the given arguments (C++ [over.call.object]p2-4). Proto is 3810/// the type of function that we'll eventually be calling. 3811void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 3812 DeclAccessPair FoundDecl, 3813 CXXRecordDecl *ActingContext, 3814 const FunctionProtoType *Proto, 3815 QualType ObjectType, 3816 Expr **Args, unsigned NumArgs, 3817 OverloadCandidateSet& CandidateSet) { 3818 if (!CandidateSet.isNewCandidate(Conversion)) 3819 return; 3820 3821 // Overload resolution is always an unevaluated context. 3822 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3823 3824 CandidateSet.push_back(OverloadCandidate()); 3825 OverloadCandidate& Candidate = CandidateSet.back(); 3826 Candidate.FoundDecl = FoundDecl; 3827 Candidate.Function = 0; 3828 Candidate.Surrogate = Conversion; 3829 Candidate.Viable = true; 3830 Candidate.IsSurrogate = true; 3831 Candidate.IgnoreObjectArgument = false; 3832 Candidate.Conversions.resize(NumArgs + 1); 3833 3834 // Determine the implicit conversion sequence for the implicit 3835 // object parameter. 3836 ImplicitConversionSequence ObjectInit 3837 = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext); 3838 if (ObjectInit.isBad()) { 3839 Candidate.Viable = false; 3840 Candidate.FailureKind = ovl_fail_bad_conversion; 3841 Candidate.Conversions[0] = ObjectInit; 3842 return; 3843 } 3844 3845 // The first conversion is actually a user-defined conversion whose 3846 // first conversion is ObjectInit's standard conversion (which is 3847 // effectively a reference binding). Record it as such. 3848 Candidate.Conversions[0].setUserDefined(); 3849 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 3850 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 3851 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 3852 Candidate.Conversions[0].UserDefined.After 3853 = Candidate.Conversions[0].UserDefined.Before; 3854 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 3855 3856 // Find the 3857 unsigned NumArgsInProto = Proto->getNumArgs(); 3858 3859 // (C++ 13.3.2p2): A candidate function having fewer than m 3860 // parameters is viable only if it has an ellipsis in its parameter 3861 // list (8.3.5). 3862 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3863 Candidate.Viable = false; 3864 Candidate.FailureKind = ovl_fail_too_many_arguments; 3865 return; 3866 } 3867 3868 // Function types don't have any default arguments, so just check if 3869 // we have enough arguments. 3870 if (NumArgs < NumArgsInProto) { 3871 // Not enough arguments. 3872 Candidate.Viable = false; 3873 Candidate.FailureKind = ovl_fail_too_few_arguments; 3874 return; 3875 } 3876 3877 // Determine the implicit conversion sequences for each of the 3878 // arguments. 3879 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3880 if (ArgIdx < NumArgsInProto) { 3881 // (C++ 13.3.2p3): for F to be a viable function, there shall 3882 // exist for each argument an implicit conversion sequence 3883 // (13.3.3.1) that converts that argument to the corresponding 3884 // parameter of F. 3885 QualType ParamType = Proto->getArgType(ArgIdx); 3886 Candidate.Conversions[ArgIdx + 1] 3887 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3888 /*SuppressUserConversions=*/false, 3889 /*InOverloadResolution=*/false); 3890 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3891 Candidate.Viable = false; 3892 Candidate.FailureKind = ovl_fail_bad_conversion; 3893 break; 3894 } 3895 } else { 3896 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3897 // argument for which there is no corresponding parameter is 3898 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3899 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3900 } 3901 } 3902} 3903 3904/// \brief Add overload candidates for overloaded operators that are 3905/// member functions. 3906/// 3907/// Add the overloaded operator candidates that are member functions 3908/// for the operator Op that was used in an operator expression such 3909/// as "x Op y". , Args/NumArgs provides the operator arguments, and 3910/// CandidateSet will store the added overload candidates. (C++ 3911/// [over.match.oper]). 3912void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 3913 SourceLocation OpLoc, 3914 Expr **Args, unsigned NumArgs, 3915 OverloadCandidateSet& CandidateSet, 3916 SourceRange OpRange) { 3917 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3918 3919 // C++ [over.match.oper]p3: 3920 // For a unary operator @ with an operand of a type whose 3921 // cv-unqualified version is T1, and for a binary operator @ with 3922 // a left operand of a type whose cv-unqualified version is T1 and 3923 // a right operand of a type whose cv-unqualified version is T2, 3924 // three sets of candidate functions, designated member 3925 // candidates, non-member candidates and built-in candidates, are 3926 // constructed as follows: 3927 QualType T1 = Args[0]->getType(); 3928 QualType T2; 3929 if (NumArgs > 1) 3930 T2 = Args[1]->getType(); 3931 3932 // -- If T1 is a class type, the set of member candidates is the 3933 // result of the qualified lookup of T1::operator@ 3934 // (13.3.1.1.1); otherwise, the set of member candidates is 3935 // empty. 3936 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 3937 // Complete the type if it can be completed. Otherwise, we're done. 3938 if (RequireCompleteType(OpLoc, T1, PDiag())) 3939 return; 3940 3941 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 3942 LookupQualifiedName(Operators, T1Rec->getDecl()); 3943 Operators.suppressDiagnostics(); 3944 3945 for (LookupResult::iterator Oper = Operators.begin(), 3946 OperEnd = Operators.end(); 3947 Oper != OperEnd; 3948 ++Oper) 3949 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 3950 Args + 1, NumArgs - 1, CandidateSet, 3951 /* SuppressUserConversions = */ false); 3952 } 3953} 3954 3955/// AddBuiltinCandidate - Add a candidate for a built-in 3956/// operator. ResultTy and ParamTys are the result and parameter types 3957/// of the built-in candidate, respectively. Args and NumArgs are the 3958/// arguments being passed to the candidate. IsAssignmentOperator 3959/// should be true when this built-in candidate is an assignment 3960/// operator. NumContextualBoolArguments is the number of arguments 3961/// (at the beginning of the argument list) that will be contextually 3962/// converted to bool. 3963void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 3964 Expr **Args, unsigned NumArgs, 3965 OverloadCandidateSet& CandidateSet, 3966 bool IsAssignmentOperator, 3967 unsigned NumContextualBoolArguments) { 3968 // Overload resolution is always an unevaluated context. 3969 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3970 3971 // Add this candidate 3972 CandidateSet.push_back(OverloadCandidate()); 3973 OverloadCandidate& Candidate = CandidateSet.back(); 3974 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 3975 Candidate.Function = 0; 3976 Candidate.IsSurrogate = false; 3977 Candidate.IgnoreObjectArgument = false; 3978 Candidate.BuiltinTypes.ResultTy = ResultTy; 3979 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3980 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 3981 3982 // Determine the implicit conversion sequences for each of the 3983 // arguments. 3984 Candidate.Viable = true; 3985 Candidate.Conversions.resize(NumArgs); 3986 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3987 // C++ [over.match.oper]p4: 3988 // For the built-in assignment operators, conversions of the 3989 // left operand are restricted as follows: 3990 // -- no temporaries are introduced to hold the left operand, and 3991 // -- no user-defined conversions are applied to the left 3992 // operand to achieve a type match with the left-most 3993 // parameter of a built-in candidate. 3994 // 3995 // We block these conversions by turning off user-defined 3996 // conversions, since that is the only way that initialization of 3997 // a reference to a non-class type can occur from something that 3998 // is not of the same type. 3999 if (ArgIdx < NumContextualBoolArguments) { 4000 assert(ParamTys[ArgIdx] == Context.BoolTy && 4001 "Contextual conversion to bool requires bool type"); 4002 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 4003 } else { 4004 Candidate.Conversions[ArgIdx] 4005 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 4006 ArgIdx == 0 && IsAssignmentOperator, 4007 /*InOverloadResolution=*/false); 4008 } 4009 if (Candidate.Conversions[ArgIdx].isBad()) { 4010 Candidate.Viable = false; 4011 Candidate.FailureKind = ovl_fail_bad_conversion; 4012 break; 4013 } 4014 } 4015} 4016 4017/// BuiltinCandidateTypeSet - A set of types that will be used for the 4018/// candidate operator functions for built-in operators (C++ 4019/// [over.built]). The types are separated into pointer types and 4020/// enumeration types. 4021class BuiltinCandidateTypeSet { 4022 /// TypeSet - A set of types. 4023 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 4024 4025 /// PointerTypes - The set of pointer types that will be used in the 4026 /// built-in candidates. 4027 TypeSet PointerTypes; 4028 4029 /// MemberPointerTypes - The set of member pointer types that will be 4030 /// used in the built-in candidates. 4031 TypeSet MemberPointerTypes; 4032 4033 /// EnumerationTypes - The set of enumeration types that will be 4034 /// used in the built-in candidates. 4035 TypeSet EnumerationTypes; 4036 4037 /// \brief The set of vector types that will be used in the built-in 4038 /// candidates. 4039 TypeSet VectorTypes; 4040 4041 /// Sema - The semantic analysis instance where we are building the 4042 /// candidate type set. 4043 Sema &SemaRef; 4044 4045 /// Context - The AST context in which we will build the type sets. 4046 ASTContext &Context; 4047 4048 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4049 const Qualifiers &VisibleQuals); 4050 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 4051 4052public: 4053 /// iterator - Iterates through the types that are part of the set. 4054 typedef TypeSet::iterator iterator; 4055 4056 BuiltinCandidateTypeSet(Sema &SemaRef) 4057 : SemaRef(SemaRef), Context(SemaRef.Context) { } 4058 4059 void AddTypesConvertedFrom(QualType Ty, 4060 SourceLocation Loc, 4061 bool AllowUserConversions, 4062 bool AllowExplicitConversions, 4063 const Qualifiers &VisibleTypeConversionsQuals); 4064 4065 /// pointer_begin - First pointer type found; 4066 iterator pointer_begin() { return PointerTypes.begin(); } 4067 4068 /// pointer_end - Past the last pointer type found; 4069 iterator pointer_end() { return PointerTypes.end(); } 4070 4071 /// member_pointer_begin - First member pointer type found; 4072 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 4073 4074 /// member_pointer_end - Past the last member pointer type found; 4075 iterator member_pointer_end() { return MemberPointerTypes.end(); } 4076 4077 /// enumeration_begin - First enumeration type found; 4078 iterator enumeration_begin() { return EnumerationTypes.begin(); } 4079 4080 /// enumeration_end - Past the last enumeration type found; 4081 iterator enumeration_end() { return EnumerationTypes.end(); } 4082 4083 iterator vector_begin() { return VectorTypes.begin(); } 4084 iterator vector_end() { return VectorTypes.end(); } 4085}; 4086 4087/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 4088/// the set of pointer types along with any more-qualified variants of 4089/// that type. For example, if @p Ty is "int const *", this routine 4090/// will add "int const *", "int const volatile *", "int const 4091/// restrict *", and "int const volatile restrict *" to the set of 4092/// pointer types. Returns true if the add of @p Ty itself succeeded, 4093/// false otherwise. 4094/// 4095/// FIXME: what to do about extended qualifiers? 4096bool 4097BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4098 const Qualifiers &VisibleQuals) { 4099 4100 // Insert this type. 4101 if (!PointerTypes.insert(Ty)) 4102 return false; 4103 4104 const PointerType *PointerTy = Ty->getAs<PointerType>(); 4105 assert(PointerTy && "type was not a pointer type!"); 4106 4107 QualType PointeeTy = PointerTy->getPointeeType(); 4108 // Don't add qualified variants of arrays. For one, they're not allowed 4109 // (the qualifier would sink to the element type), and for another, the 4110 // only overload situation where it matters is subscript or pointer +- int, 4111 // and those shouldn't have qualifier variants anyway. 4112 if (PointeeTy->isArrayType()) 4113 return true; 4114 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4115 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 4116 BaseCVR = Array->getElementType().getCVRQualifiers(); 4117 bool hasVolatile = VisibleQuals.hasVolatile(); 4118 bool hasRestrict = VisibleQuals.hasRestrict(); 4119 4120 // Iterate through all strict supersets of BaseCVR. 4121 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4122 if ((CVR | BaseCVR) != CVR) continue; 4123 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 4124 // in the types. 4125 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 4126 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 4127 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4128 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 4129 } 4130 4131 return true; 4132} 4133 4134/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 4135/// to the set of pointer types along with any more-qualified variants of 4136/// that type. For example, if @p Ty is "int const *", this routine 4137/// will add "int const *", "int const volatile *", "int const 4138/// restrict *", and "int const volatile restrict *" to the set of 4139/// pointer types. Returns true if the add of @p Ty itself succeeded, 4140/// false otherwise. 4141/// 4142/// FIXME: what to do about extended qualifiers? 4143bool 4144BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 4145 QualType Ty) { 4146 // Insert this type. 4147 if (!MemberPointerTypes.insert(Ty)) 4148 return false; 4149 4150 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 4151 assert(PointerTy && "type was not a member pointer type!"); 4152 4153 QualType PointeeTy = PointerTy->getPointeeType(); 4154 // Don't add qualified variants of arrays. For one, they're not allowed 4155 // (the qualifier would sink to the element type), and for another, the 4156 // only overload situation where it matters is subscript or pointer +- int, 4157 // and those shouldn't have qualifier variants anyway. 4158 if (PointeeTy->isArrayType()) 4159 return true; 4160 const Type *ClassTy = PointerTy->getClass(); 4161 4162 // Iterate through all strict supersets of the pointee type's CVR 4163 // qualifiers. 4164 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4165 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4166 if ((CVR | BaseCVR) != CVR) continue; 4167 4168 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4169 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 4170 } 4171 4172 return true; 4173} 4174 4175/// AddTypesConvertedFrom - Add each of the types to which the type @p 4176/// Ty can be implicit converted to the given set of @p Types. We're 4177/// primarily interested in pointer types and enumeration types. We also 4178/// take member pointer types, for the conditional operator. 4179/// AllowUserConversions is true if we should look at the conversion 4180/// functions of a class type, and AllowExplicitConversions if we 4181/// should also include the explicit conversion functions of a class 4182/// type. 4183void 4184BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 4185 SourceLocation Loc, 4186 bool AllowUserConversions, 4187 bool AllowExplicitConversions, 4188 const Qualifiers &VisibleQuals) { 4189 // Only deal with canonical types. 4190 Ty = Context.getCanonicalType(Ty); 4191 4192 // Look through reference types; they aren't part of the type of an 4193 // expression for the purposes of conversions. 4194 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 4195 Ty = RefTy->getPointeeType(); 4196 4197 // We don't care about qualifiers on the type. 4198 Ty = Ty.getLocalUnqualifiedType(); 4199 4200 // If we're dealing with an array type, decay to the pointer. 4201 if (Ty->isArrayType()) 4202 Ty = SemaRef.Context.getArrayDecayedType(Ty); 4203 4204 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 4205 QualType PointeeTy = PointerTy->getPointeeType(); 4206 4207 // Insert our type, and its more-qualified variants, into the set 4208 // of types. 4209 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 4210 return; 4211 } else if (Ty->isMemberPointerType()) { 4212 // Member pointers are far easier, since the pointee can't be converted. 4213 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 4214 return; 4215 } else if (Ty->isEnumeralType()) { 4216 EnumerationTypes.insert(Ty); 4217 } else if (Ty->isVectorType()) { 4218 VectorTypes.insert(Ty); 4219 } else if (AllowUserConversions) { 4220 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 4221 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 4222 // No conversion functions in incomplete types. 4223 return; 4224 } 4225 4226 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4227 const UnresolvedSetImpl *Conversions 4228 = ClassDecl->getVisibleConversionFunctions(); 4229 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4230 E = Conversions->end(); I != E; ++I) { 4231 NamedDecl *D = I.getDecl(); 4232 if (isa<UsingShadowDecl>(D)) 4233 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4234 4235 // Skip conversion function templates; they don't tell us anything 4236 // about which builtin types we can convert to. 4237 if (isa<FunctionTemplateDecl>(D)) 4238 continue; 4239 4240 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 4241 if (AllowExplicitConversions || !Conv->isExplicit()) { 4242 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 4243 VisibleQuals); 4244 } 4245 } 4246 } 4247 } 4248} 4249 4250/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 4251/// the volatile- and non-volatile-qualified assignment operators for the 4252/// given type to the candidate set. 4253static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 4254 QualType T, 4255 Expr **Args, 4256 unsigned NumArgs, 4257 OverloadCandidateSet &CandidateSet) { 4258 QualType ParamTypes[2]; 4259 4260 // T& operator=(T&, T) 4261 ParamTypes[0] = S.Context.getLValueReferenceType(T); 4262 ParamTypes[1] = T; 4263 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4264 /*IsAssignmentOperator=*/true); 4265 4266 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 4267 // volatile T& operator=(volatile T&, T) 4268 ParamTypes[0] 4269 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 4270 ParamTypes[1] = T; 4271 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4272 /*IsAssignmentOperator=*/true); 4273 } 4274} 4275 4276/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 4277/// if any, found in visible type conversion functions found in ArgExpr's type. 4278static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 4279 Qualifiers VRQuals; 4280 const RecordType *TyRec; 4281 if (const MemberPointerType *RHSMPType = 4282 ArgExpr->getType()->getAs<MemberPointerType>()) 4283 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 4284 else 4285 TyRec = ArgExpr->getType()->getAs<RecordType>(); 4286 if (!TyRec) { 4287 // Just to be safe, assume the worst case. 4288 VRQuals.addVolatile(); 4289 VRQuals.addRestrict(); 4290 return VRQuals; 4291 } 4292 4293 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4294 if (!ClassDecl->hasDefinition()) 4295 return VRQuals; 4296 4297 const UnresolvedSetImpl *Conversions = 4298 ClassDecl->getVisibleConversionFunctions(); 4299 4300 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4301 E = Conversions->end(); I != E; ++I) { 4302 NamedDecl *D = I.getDecl(); 4303 if (isa<UsingShadowDecl>(D)) 4304 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4305 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 4306 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 4307 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 4308 CanTy = ResTypeRef->getPointeeType(); 4309 // Need to go down the pointer/mempointer chain and add qualifiers 4310 // as see them. 4311 bool done = false; 4312 while (!done) { 4313 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 4314 CanTy = ResTypePtr->getPointeeType(); 4315 else if (const MemberPointerType *ResTypeMPtr = 4316 CanTy->getAs<MemberPointerType>()) 4317 CanTy = ResTypeMPtr->getPointeeType(); 4318 else 4319 done = true; 4320 if (CanTy.isVolatileQualified()) 4321 VRQuals.addVolatile(); 4322 if (CanTy.isRestrictQualified()) 4323 VRQuals.addRestrict(); 4324 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 4325 return VRQuals; 4326 } 4327 } 4328 } 4329 return VRQuals; 4330} 4331 4332/// AddBuiltinOperatorCandidates - Add the appropriate built-in 4333/// operator overloads to the candidate set (C++ [over.built]), based 4334/// on the operator @p Op and the arguments given. For example, if the 4335/// operator is a binary '+', this routine might add "int 4336/// operator+(int, int)" to cover integer addition. 4337void 4338Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 4339 SourceLocation OpLoc, 4340 Expr **Args, unsigned NumArgs, 4341 OverloadCandidateSet& CandidateSet) { 4342 // The set of "promoted arithmetic types", which are the arithmetic 4343 // types are that preserved by promotion (C++ [over.built]p2). Note 4344 // that the first few of these types are the promoted integral 4345 // types; these types need to be first. 4346 // FIXME: What about complex? 4347 const unsigned FirstIntegralType = 0; 4348 const unsigned LastIntegralType = 13; 4349 const unsigned FirstPromotedIntegralType = 7, 4350 LastPromotedIntegralType = 13; 4351 const unsigned FirstPromotedArithmeticType = 7, 4352 LastPromotedArithmeticType = 16; 4353 const unsigned NumArithmeticTypes = 16; 4354 QualType ArithmeticTypes[NumArithmeticTypes] = { 4355 Context.BoolTy, Context.CharTy, Context.WCharTy, 4356// FIXME: Context.Char16Ty, Context.Char32Ty, 4357 Context.SignedCharTy, Context.ShortTy, 4358 Context.UnsignedCharTy, Context.UnsignedShortTy, 4359 Context.IntTy, Context.LongTy, Context.LongLongTy, 4360 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 4361 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 4362 }; 4363 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 4364 "Invalid first promoted integral type"); 4365 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 4366 == Context.UnsignedLongLongTy && 4367 "Invalid last promoted integral type"); 4368 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 4369 "Invalid first promoted arithmetic type"); 4370 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 4371 == Context.LongDoubleTy && 4372 "Invalid last promoted arithmetic type"); 4373 4374 // Find all of the types that the arguments can convert to, but only 4375 // if the operator we're looking at has built-in operator candidates 4376 // that make use of these types. 4377 Qualifiers VisibleTypeConversionsQuals; 4378 VisibleTypeConversionsQuals.addConst(); 4379 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4380 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 4381 4382 BuiltinCandidateTypeSet CandidateTypes(*this); 4383 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4384 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 4385 OpLoc, 4386 true, 4387 (Op == OO_Exclaim || 4388 Op == OO_AmpAmp || 4389 Op == OO_PipePipe), 4390 VisibleTypeConversionsQuals); 4391 4392 bool isComparison = false; 4393 switch (Op) { 4394 case OO_None: 4395 case NUM_OVERLOADED_OPERATORS: 4396 assert(false && "Expected an overloaded operator"); 4397 break; 4398 4399 case OO_Star: // '*' is either unary or binary 4400 if (NumArgs == 1) 4401 goto UnaryStar; 4402 else 4403 goto BinaryStar; 4404 break; 4405 4406 case OO_Plus: // '+' is either unary or binary 4407 if (NumArgs == 1) 4408 goto UnaryPlus; 4409 else 4410 goto BinaryPlus; 4411 break; 4412 4413 case OO_Minus: // '-' is either unary or binary 4414 if (NumArgs == 1) 4415 goto UnaryMinus; 4416 else 4417 goto BinaryMinus; 4418 break; 4419 4420 case OO_Amp: // '&' is either unary or binary 4421 if (NumArgs == 1) 4422 goto UnaryAmp; 4423 else 4424 goto BinaryAmp; 4425 4426 case OO_PlusPlus: 4427 case OO_MinusMinus: 4428 // C++ [over.built]p3: 4429 // 4430 // For every pair (T, VQ), where T is an arithmetic type, and VQ 4431 // is either volatile or empty, there exist candidate operator 4432 // functions of the form 4433 // 4434 // VQ T& operator++(VQ T&); 4435 // T operator++(VQ T&, int); 4436 // 4437 // C++ [over.built]p4: 4438 // 4439 // For every pair (T, VQ), where T is an arithmetic type other 4440 // than bool, and VQ is either volatile or empty, there exist 4441 // candidate operator functions of the form 4442 // 4443 // VQ T& operator--(VQ T&); 4444 // T operator--(VQ T&, int); 4445 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 4446 Arith < NumArithmeticTypes; ++Arith) { 4447 QualType ArithTy = ArithmeticTypes[Arith]; 4448 QualType ParamTypes[2] 4449 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 4450 4451 // Non-volatile version. 4452 if (NumArgs == 1) 4453 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4454 else 4455 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4456 // heuristic to reduce number of builtin candidates in the set. 4457 // Add volatile version only if there are conversions to a volatile type. 4458 if (VisibleTypeConversionsQuals.hasVolatile()) { 4459 // Volatile version 4460 ParamTypes[0] 4461 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 4462 if (NumArgs == 1) 4463 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4464 else 4465 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4466 } 4467 } 4468 4469 // C++ [over.built]p5: 4470 // 4471 // For every pair (T, VQ), where T is a cv-qualified or 4472 // cv-unqualified object type, and VQ is either volatile or 4473 // empty, there exist candidate operator functions of the form 4474 // 4475 // T*VQ& operator++(T*VQ&); 4476 // T*VQ& operator--(T*VQ&); 4477 // T* operator++(T*VQ&, int); 4478 // T* operator--(T*VQ&, int); 4479 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4480 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4481 // Skip pointer types that aren't pointers to object types. 4482 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 4483 continue; 4484 4485 QualType ParamTypes[2] = { 4486 Context.getLValueReferenceType(*Ptr), Context.IntTy 4487 }; 4488 4489 // Without volatile 4490 if (NumArgs == 1) 4491 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4492 else 4493 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4494 4495 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4496 VisibleTypeConversionsQuals.hasVolatile()) { 4497 // With volatile 4498 ParamTypes[0] 4499 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4500 if (NumArgs == 1) 4501 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4502 else 4503 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4504 } 4505 } 4506 break; 4507 4508 UnaryStar: 4509 // C++ [over.built]p6: 4510 // For every cv-qualified or cv-unqualified object type T, there 4511 // exist candidate operator functions of the form 4512 // 4513 // T& operator*(T*); 4514 // 4515 // C++ [over.built]p7: 4516 // For every function type T, there exist candidate operator 4517 // functions of the form 4518 // T& operator*(T*); 4519 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4520 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4521 QualType ParamTy = *Ptr; 4522 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 4523 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 4524 &ParamTy, Args, 1, CandidateSet); 4525 } 4526 break; 4527 4528 UnaryPlus: 4529 // C++ [over.built]p8: 4530 // For every type T, there exist candidate operator functions of 4531 // the form 4532 // 4533 // T* operator+(T*); 4534 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4535 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4536 QualType ParamTy = *Ptr; 4537 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 4538 } 4539 4540 // Fall through 4541 4542 UnaryMinus: 4543 // C++ [over.built]p9: 4544 // For every promoted arithmetic type T, there exist candidate 4545 // operator functions of the form 4546 // 4547 // T operator+(T); 4548 // T operator-(T); 4549 for (unsigned Arith = FirstPromotedArithmeticType; 4550 Arith < LastPromotedArithmeticType; ++Arith) { 4551 QualType ArithTy = ArithmeticTypes[Arith]; 4552 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 4553 } 4554 4555 // Extension: We also add these operators for vector types. 4556 for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), 4557 VecEnd = CandidateTypes.vector_end(); 4558 Vec != VecEnd; ++Vec) { 4559 QualType VecTy = *Vec; 4560 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4561 } 4562 break; 4563 4564 case OO_Tilde: 4565 // C++ [over.built]p10: 4566 // For every promoted integral type T, there exist candidate 4567 // operator functions of the form 4568 // 4569 // T operator~(T); 4570 for (unsigned Int = FirstPromotedIntegralType; 4571 Int < LastPromotedIntegralType; ++Int) { 4572 QualType IntTy = ArithmeticTypes[Int]; 4573 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 4574 } 4575 4576 // Extension: We also add this operator for vector types. 4577 for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), 4578 VecEnd = CandidateTypes.vector_end(); 4579 Vec != VecEnd; ++Vec) { 4580 QualType VecTy = *Vec; 4581 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4582 } 4583 break; 4584 4585 case OO_New: 4586 case OO_Delete: 4587 case OO_Array_New: 4588 case OO_Array_Delete: 4589 case OO_Call: 4590 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 4591 break; 4592 4593 case OO_Comma: 4594 UnaryAmp: 4595 case OO_Arrow: 4596 // C++ [over.match.oper]p3: 4597 // -- For the operator ',', the unary operator '&', or the 4598 // operator '->', the built-in candidates set is empty. 4599 break; 4600 4601 case OO_EqualEqual: 4602 case OO_ExclaimEqual: 4603 // C++ [over.match.oper]p16: 4604 // For every pointer to member type T, there exist candidate operator 4605 // functions of the form 4606 // 4607 // bool operator==(T,T); 4608 // bool operator!=(T,T); 4609 for (BuiltinCandidateTypeSet::iterator 4610 MemPtr = CandidateTypes.member_pointer_begin(), 4611 MemPtrEnd = CandidateTypes.member_pointer_end(); 4612 MemPtr != MemPtrEnd; 4613 ++MemPtr) { 4614 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 4615 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4616 } 4617 4618 // Fall through 4619 4620 case OO_Less: 4621 case OO_Greater: 4622 case OO_LessEqual: 4623 case OO_GreaterEqual: 4624 // C++ [over.built]p15: 4625 // 4626 // For every pointer or enumeration type T, there exist 4627 // candidate operator functions of the form 4628 // 4629 // bool operator<(T, T); 4630 // bool operator>(T, T); 4631 // bool operator<=(T, T); 4632 // bool operator>=(T, T); 4633 // bool operator==(T, T); 4634 // bool operator!=(T, T); 4635 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4636 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4637 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4638 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4639 } 4640 for (BuiltinCandidateTypeSet::iterator Enum 4641 = CandidateTypes.enumeration_begin(); 4642 Enum != CandidateTypes.enumeration_end(); ++Enum) { 4643 QualType ParamTypes[2] = { *Enum, *Enum }; 4644 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4645 } 4646 4647 // Fall through. 4648 isComparison = true; 4649 4650 BinaryPlus: 4651 BinaryMinus: 4652 if (!isComparison) { 4653 // We didn't fall through, so we must have OO_Plus or OO_Minus. 4654 4655 // C++ [over.built]p13: 4656 // 4657 // For every cv-qualified or cv-unqualified object type T 4658 // there exist candidate operator functions of the form 4659 // 4660 // T* operator+(T*, ptrdiff_t); 4661 // T& operator[](T*, ptrdiff_t); [BELOW] 4662 // T* operator-(T*, ptrdiff_t); 4663 // T* operator+(ptrdiff_t, T*); 4664 // T& operator[](ptrdiff_t, T*); [BELOW] 4665 // 4666 // C++ [over.built]p14: 4667 // 4668 // For every T, where T is a pointer to object type, there 4669 // exist candidate operator functions of the form 4670 // 4671 // ptrdiff_t operator-(T, T); 4672 for (BuiltinCandidateTypeSet::iterator Ptr 4673 = CandidateTypes.pointer_begin(); 4674 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4675 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 4676 4677 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 4678 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4679 4680 if (Op == OO_Plus) { 4681 // T* operator+(ptrdiff_t, T*); 4682 ParamTypes[0] = ParamTypes[1]; 4683 ParamTypes[1] = *Ptr; 4684 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4685 } else { 4686 // ptrdiff_t operator-(T, T); 4687 ParamTypes[1] = *Ptr; 4688 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 4689 Args, 2, CandidateSet); 4690 } 4691 } 4692 } 4693 // Fall through 4694 4695 case OO_Slash: 4696 BinaryStar: 4697 Conditional: 4698 // C++ [over.built]p12: 4699 // 4700 // For every pair of promoted arithmetic types L and R, there 4701 // exist candidate operator functions of the form 4702 // 4703 // LR operator*(L, R); 4704 // LR operator/(L, R); 4705 // LR operator+(L, R); 4706 // LR operator-(L, R); 4707 // bool operator<(L, R); 4708 // bool operator>(L, R); 4709 // bool operator<=(L, R); 4710 // bool operator>=(L, R); 4711 // bool operator==(L, R); 4712 // bool operator!=(L, R); 4713 // 4714 // where LR is the result of the usual arithmetic conversions 4715 // between types L and R. 4716 // 4717 // C++ [over.built]p24: 4718 // 4719 // For every pair of promoted arithmetic types L and R, there exist 4720 // candidate operator functions of the form 4721 // 4722 // LR operator?(bool, L, R); 4723 // 4724 // where LR is the result of the usual arithmetic conversions 4725 // between types L and R. 4726 // Our candidates ignore the first parameter. 4727 for (unsigned Left = FirstPromotedArithmeticType; 4728 Left < LastPromotedArithmeticType; ++Left) { 4729 for (unsigned Right = FirstPromotedArithmeticType; 4730 Right < LastPromotedArithmeticType; ++Right) { 4731 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4732 QualType Result 4733 = isComparison 4734 ? Context.BoolTy 4735 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4736 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4737 } 4738 } 4739 4740 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 4741 // conditional operator for vector types. 4742 for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), 4743 Vec1End = CandidateTypes.vector_end(); 4744 Vec1 != Vec1End; ++Vec1) 4745 for (BuiltinCandidateTypeSet::iterator 4746 Vec2 = CandidateTypes.vector_begin(), 4747 Vec2End = CandidateTypes.vector_end(); 4748 Vec2 != Vec2End; ++Vec2) { 4749 QualType LandR[2] = { *Vec1, *Vec2 }; 4750 QualType Result; 4751 if (isComparison) 4752 Result = Context.BoolTy; 4753 else { 4754 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 4755 Result = *Vec1; 4756 else 4757 Result = *Vec2; 4758 } 4759 4760 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4761 } 4762 4763 break; 4764 4765 case OO_Percent: 4766 BinaryAmp: 4767 case OO_Caret: 4768 case OO_Pipe: 4769 case OO_LessLess: 4770 case OO_GreaterGreater: 4771 // C++ [over.built]p17: 4772 // 4773 // For every pair of promoted integral types L and R, there 4774 // exist candidate operator functions of the form 4775 // 4776 // LR operator%(L, R); 4777 // LR operator&(L, R); 4778 // LR operator^(L, R); 4779 // LR operator|(L, R); 4780 // L operator<<(L, R); 4781 // L operator>>(L, R); 4782 // 4783 // where LR is the result of the usual arithmetic conversions 4784 // between types L and R. 4785 for (unsigned Left = FirstPromotedIntegralType; 4786 Left < LastPromotedIntegralType; ++Left) { 4787 for (unsigned Right = FirstPromotedIntegralType; 4788 Right < LastPromotedIntegralType; ++Right) { 4789 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4790 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 4791 ? LandR[0] 4792 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4793 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4794 } 4795 } 4796 break; 4797 4798 case OO_Equal: 4799 // C++ [over.built]p20: 4800 // 4801 // For every pair (T, VQ), where T is an enumeration or 4802 // pointer to member type and VQ is either volatile or 4803 // empty, there exist candidate operator functions of the form 4804 // 4805 // VQ T& operator=(VQ T&, T); 4806 for (BuiltinCandidateTypeSet::iterator 4807 Enum = CandidateTypes.enumeration_begin(), 4808 EnumEnd = CandidateTypes.enumeration_end(); 4809 Enum != EnumEnd; ++Enum) 4810 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 4811 CandidateSet); 4812 for (BuiltinCandidateTypeSet::iterator 4813 MemPtr = CandidateTypes.member_pointer_begin(), 4814 MemPtrEnd = CandidateTypes.member_pointer_end(); 4815 MemPtr != MemPtrEnd; ++MemPtr) 4816 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 4817 CandidateSet); 4818 4819 // Fall through. 4820 4821 case OO_PlusEqual: 4822 case OO_MinusEqual: 4823 // C++ [over.built]p19: 4824 // 4825 // For every pair (T, VQ), where T is any type and VQ is either 4826 // volatile or empty, there exist candidate operator functions 4827 // of the form 4828 // 4829 // T*VQ& operator=(T*VQ&, T*); 4830 // 4831 // C++ [over.built]p21: 4832 // 4833 // For every pair (T, VQ), where T is a cv-qualified or 4834 // cv-unqualified object type and VQ is either volatile or 4835 // empty, there exist candidate operator functions of the form 4836 // 4837 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 4838 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 4839 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4840 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4841 QualType ParamTypes[2]; 4842 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 4843 4844 // non-volatile version 4845 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 4846 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4847 /*IsAssigmentOperator=*/Op == OO_Equal); 4848 4849 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4850 VisibleTypeConversionsQuals.hasVolatile()) { 4851 // volatile version 4852 ParamTypes[0] 4853 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4854 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4855 /*IsAssigmentOperator=*/Op == OO_Equal); 4856 } 4857 } 4858 // Fall through. 4859 4860 case OO_StarEqual: 4861 case OO_SlashEqual: 4862 // C++ [over.built]p18: 4863 // 4864 // For every triple (L, VQ, R), where L is an arithmetic type, 4865 // VQ is either volatile or empty, and R is a promoted 4866 // arithmetic type, there exist candidate operator functions of 4867 // the form 4868 // 4869 // VQ L& operator=(VQ L&, R); 4870 // VQ L& operator*=(VQ L&, R); 4871 // VQ L& operator/=(VQ L&, R); 4872 // VQ L& operator+=(VQ L&, R); 4873 // VQ L& operator-=(VQ L&, R); 4874 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 4875 for (unsigned Right = FirstPromotedArithmeticType; 4876 Right < LastPromotedArithmeticType; ++Right) { 4877 QualType ParamTypes[2]; 4878 ParamTypes[1] = ArithmeticTypes[Right]; 4879 4880 // Add this built-in operator as a candidate (VQ is empty). 4881 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 4882 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4883 /*IsAssigmentOperator=*/Op == OO_Equal); 4884 4885 // Add this built-in operator as a candidate (VQ is 'volatile'). 4886 if (VisibleTypeConversionsQuals.hasVolatile()) { 4887 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 4888 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4889 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4890 /*IsAssigmentOperator=*/Op == OO_Equal); 4891 } 4892 } 4893 } 4894 4895 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 4896 for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), 4897 Vec1End = CandidateTypes.vector_end(); 4898 Vec1 != Vec1End; ++Vec1) 4899 for (BuiltinCandidateTypeSet::iterator 4900 Vec2 = CandidateTypes.vector_begin(), 4901 Vec2End = CandidateTypes.vector_end(); 4902 Vec2 != Vec2End; ++Vec2) { 4903 QualType ParamTypes[2]; 4904 ParamTypes[1] = *Vec2; 4905 // Add this built-in operator as a candidate (VQ is empty). 4906 ParamTypes[0] = Context.getLValueReferenceType(*Vec1); 4907 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4908 /*IsAssigmentOperator=*/Op == OO_Equal); 4909 4910 // Add this built-in operator as a candidate (VQ is 'volatile'). 4911 if (VisibleTypeConversionsQuals.hasVolatile()) { 4912 ParamTypes[0] = Context.getVolatileType(*Vec1); 4913 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4914 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4915 /*IsAssigmentOperator=*/Op == OO_Equal); 4916 } 4917 } 4918 break; 4919 4920 case OO_PercentEqual: 4921 case OO_LessLessEqual: 4922 case OO_GreaterGreaterEqual: 4923 case OO_AmpEqual: 4924 case OO_CaretEqual: 4925 case OO_PipeEqual: 4926 // C++ [over.built]p22: 4927 // 4928 // For every triple (L, VQ, R), where L is an integral type, VQ 4929 // is either volatile or empty, and R is a promoted integral 4930 // type, there exist candidate operator functions of the form 4931 // 4932 // VQ L& operator%=(VQ L&, R); 4933 // VQ L& operator<<=(VQ L&, R); 4934 // VQ L& operator>>=(VQ L&, R); 4935 // VQ L& operator&=(VQ L&, R); 4936 // VQ L& operator^=(VQ L&, R); 4937 // VQ L& operator|=(VQ L&, R); 4938 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 4939 for (unsigned Right = FirstPromotedIntegralType; 4940 Right < LastPromotedIntegralType; ++Right) { 4941 QualType ParamTypes[2]; 4942 ParamTypes[1] = ArithmeticTypes[Right]; 4943 4944 // Add this built-in operator as a candidate (VQ is empty). 4945 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 4946 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 4947 if (VisibleTypeConversionsQuals.hasVolatile()) { 4948 // Add this built-in operator as a candidate (VQ is 'volatile'). 4949 ParamTypes[0] = ArithmeticTypes[Left]; 4950 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 4951 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4952 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 4953 } 4954 } 4955 } 4956 break; 4957 4958 case OO_Exclaim: { 4959 // C++ [over.operator]p23: 4960 // 4961 // There also exist candidate operator functions of the form 4962 // 4963 // bool operator!(bool); 4964 // bool operator&&(bool, bool); [BELOW] 4965 // bool operator||(bool, bool); [BELOW] 4966 QualType ParamTy = Context.BoolTy; 4967 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 4968 /*IsAssignmentOperator=*/false, 4969 /*NumContextualBoolArguments=*/1); 4970 break; 4971 } 4972 4973 case OO_AmpAmp: 4974 case OO_PipePipe: { 4975 // C++ [over.operator]p23: 4976 // 4977 // There also exist candidate operator functions of the form 4978 // 4979 // bool operator!(bool); [ABOVE] 4980 // bool operator&&(bool, bool); 4981 // bool operator||(bool, bool); 4982 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 4983 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 4984 /*IsAssignmentOperator=*/false, 4985 /*NumContextualBoolArguments=*/2); 4986 break; 4987 } 4988 4989 case OO_Subscript: 4990 // C++ [over.built]p13: 4991 // 4992 // For every cv-qualified or cv-unqualified object type T there 4993 // exist candidate operator functions of the form 4994 // 4995 // T* operator+(T*, ptrdiff_t); [ABOVE] 4996 // T& operator[](T*, ptrdiff_t); 4997 // T* operator-(T*, ptrdiff_t); [ABOVE] 4998 // T* operator+(ptrdiff_t, T*); [ABOVE] 4999 // T& operator[](ptrdiff_t, T*); 5000 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 5001 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 5002 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 5003 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 5004 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 5005 5006 // T& operator[](T*, ptrdiff_t) 5007 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5008 5009 // T& operator[](ptrdiff_t, T*); 5010 ParamTypes[0] = ParamTypes[1]; 5011 ParamTypes[1] = *Ptr; 5012 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5013 } 5014 break; 5015 5016 case OO_ArrowStar: 5017 // C++ [over.built]p11: 5018 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 5019 // C1 is the same type as C2 or is a derived class of C2, T is an object 5020 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 5021 // there exist candidate operator functions of the form 5022 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 5023 // where CV12 is the union of CV1 and CV2. 5024 { 5025 for (BuiltinCandidateTypeSet::iterator Ptr = 5026 CandidateTypes.pointer_begin(); 5027 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 5028 QualType C1Ty = (*Ptr); 5029 QualType C1; 5030 QualifierCollector Q1; 5031 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 5032 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 5033 if (!isa<RecordType>(C1)) 5034 continue; 5035 // heuristic to reduce number of builtin candidates in the set. 5036 // Add volatile/restrict version only if there are conversions to a 5037 // volatile/restrict type. 5038 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 5039 continue; 5040 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 5041 continue; 5042 } 5043 for (BuiltinCandidateTypeSet::iterator 5044 MemPtr = CandidateTypes.member_pointer_begin(), 5045 MemPtrEnd = CandidateTypes.member_pointer_end(); 5046 MemPtr != MemPtrEnd; ++MemPtr) { 5047 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 5048 QualType C2 = QualType(mptr->getClass(), 0); 5049 C2 = C2.getUnqualifiedType(); 5050 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 5051 break; 5052 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 5053 // build CV12 T& 5054 QualType T = mptr->getPointeeType(); 5055 if (!VisibleTypeConversionsQuals.hasVolatile() && 5056 T.isVolatileQualified()) 5057 continue; 5058 if (!VisibleTypeConversionsQuals.hasRestrict() && 5059 T.isRestrictQualified()) 5060 continue; 5061 T = Q1.apply(T); 5062 QualType ResultTy = Context.getLValueReferenceType(T); 5063 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5064 } 5065 } 5066 } 5067 break; 5068 5069 case OO_Conditional: 5070 // Note that we don't consider the first argument, since it has been 5071 // contextually converted to bool long ago. The candidates below are 5072 // therefore added as binary. 5073 // 5074 // C++ [over.built]p24: 5075 // For every type T, where T is a pointer or pointer-to-member type, 5076 // there exist candidate operator functions of the form 5077 // 5078 // T operator?(bool, T, T); 5079 // 5080 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 5081 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 5082 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5083 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5084 } 5085 for (BuiltinCandidateTypeSet::iterator Ptr = 5086 CandidateTypes.member_pointer_begin(), 5087 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 5088 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5089 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5090 } 5091 goto Conditional; 5092 } 5093} 5094 5095/// \brief Add function candidates found via argument-dependent lookup 5096/// to the set of overloading candidates. 5097/// 5098/// This routine performs argument-dependent name lookup based on the 5099/// given function name (which may also be an operator name) and adds 5100/// all of the overload candidates found by ADL to the overload 5101/// candidate set (C++ [basic.lookup.argdep]). 5102void 5103Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 5104 bool Operator, 5105 Expr **Args, unsigned NumArgs, 5106 const TemplateArgumentListInfo *ExplicitTemplateArgs, 5107 OverloadCandidateSet& CandidateSet, 5108 bool PartialOverloading) { 5109 ADLResult Fns; 5110 5111 // FIXME: This approach for uniquing ADL results (and removing 5112 // redundant candidates from the set) relies on pointer-equality, 5113 // which means we need to key off the canonical decl. However, 5114 // always going back to the canonical decl might not get us the 5115 // right set of default arguments. What default arguments are 5116 // we supposed to consider on ADL candidates, anyway? 5117 5118 // FIXME: Pass in the explicit template arguments? 5119 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); 5120 5121 // Erase all of the candidates we already knew about. 5122 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 5123 CandEnd = CandidateSet.end(); 5124 Cand != CandEnd; ++Cand) 5125 if (Cand->Function) { 5126 Fns.erase(Cand->Function); 5127 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 5128 Fns.erase(FunTmpl); 5129 } 5130 5131 // For each of the ADL candidates we found, add it to the overload 5132 // set. 5133 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 5134 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 5135 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 5136 if (ExplicitTemplateArgs) 5137 continue; 5138 5139 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 5140 false, PartialOverloading); 5141 } else 5142 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 5143 FoundDecl, ExplicitTemplateArgs, 5144 Args, NumArgs, CandidateSet); 5145 } 5146} 5147 5148/// isBetterOverloadCandidate - Determines whether the first overload 5149/// candidate is a better candidate than the second (C++ 13.3.3p1). 5150bool 5151Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 5152 const OverloadCandidate& Cand2, 5153 SourceLocation Loc) { 5154 // Define viable functions to be better candidates than non-viable 5155 // functions. 5156 if (!Cand2.Viable) 5157 return Cand1.Viable; 5158 else if (!Cand1.Viable) 5159 return false; 5160 5161 // C++ [over.match.best]p1: 5162 // 5163 // -- if F is a static member function, ICS1(F) is defined such 5164 // that ICS1(F) is neither better nor worse than ICS1(G) for 5165 // any function G, and, symmetrically, ICS1(G) is neither 5166 // better nor worse than ICS1(F). 5167 unsigned StartArg = 0; 5168 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 5169 StartArg = 1; 5170 5171 // C++ [over.match.best]p1: 5172 // A viable function F1 is defined to be a better function than another 5173 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 5174 // conversion sequence than ICSi(F2), and then... 5175 unsigned NumArgs = Cand1.Conversions.size(); 5176 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 5177 bool HasBetterConversion = false; 5178 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 5179 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 5180 Cand2.Conversions[ArgIdx])) { 5181 case ImplicitConversionSequence::Better: 5182 // Cand1 has a better conversion sequence. 5183 HasBetterConversion = true; 5184 break; 5185 5186 case ImplicitConversionSequence::Worse: 5187 // Cand1 can't be better than Cand2. 5188 return false; 5189 5190 case ImplicitConversionSequence::Indistinguishable: 5191 // Do nothing. 5192 break; 5193 } 5194 } 5195 5196 // -- for some argument j, ICSj(F1) is a better conversion sequence than 5197 // ICSj(F2), or, if not that, 5198 if (HasBetterConversion) 5199 return true; 5200 5201 // - F1 is a non-template function and F2 is a function template 5202 // specialization, or, if not that, 5203 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 5204 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 5205 return true; 5206 5207 // -- F1 and F2 are function template specializations, and the function 5208 // template for F1 is more specialized than the template for F2 5209 // according to the partial ordering rules described in 14.5.5.2, or, 5210 // if not that, 5211 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 5212 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 5213 if (FunctionTemplateDecl *BetterTemplate 5214 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 5215 Cand2.Function->getPrimaryTemplate(), 5216 Loc, 5217 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 5218 : TPOC_Call)) 5219 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 5220 5221 // -- the context is an initialization by user-defined conversion 5222 // (see 8.5, 13.3.1.5) and the standard conversion sequence 5223 // from the return type of F1 to the destination type (i.e., 5224 // the type of the entity being initialized) is a better 5225 // conversion sequence than the standard conversion sequence 5226 // from the return type of F2 to the destination type. 5227 if (Cand1.Function && Cand2.Function && 5228 isa<CXXConversionDecl>(Cand1.Function) && 5229 isa<CXXConversionDecl>(Cand2.Function)) { 5230 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 5231 Cand2.FinalConversion)) { 5232 case ImplicitConversionSequence::Better: 5233 // Cand1 has a better conversion sequence. 5234 return true; 5235 5236 case ImplicitConversionSequence::Worse: 5237 // Cand1 can't be better than Cand2. 5238 return false; 5239 5240 case ImplicitConversionSequence::Indistinguishable: 5241 // Do nothing 5242 break; 5243 } 5244 } 5245 5246 return false; 5247} 5248 5249/// \brief Computes the best viable function (C++ 13.3.3) 5250/// within an overload candidate set. 5251/// 5252/// \param CandidateSet the set of candidate functions. 5253/// 5254/// \param Loc the location of the function name (or operator symbol) for 5255/// which overload resolution occurs. 5256/// 5257/// \param Best f overload resolution was successful or found a deleted 5258/// function, Best points to the candidate function found. 5259/// 5260/// \returns The result of overload resolution. 5261OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 5262 SourceLocation Loc, 5263 OverloadCandidateSet::iterator& Best) { 5264 // Find the best viable function. 5265 Best = CandidateSet.end(); 5266 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 5267 Cand != CandidateSet.end(); ++Cand) { 5268 if (Cand->Viable) { 5269 if (Best == CandidateSet.end() || 5270 isBetterOverloadCandidate(*Cand, *Best, Loc)) 5271 Best = Cand; 5272 } 5273 } 5274 5275 // If we didn't find any viable functions, abort. 5276 if (Best == CandidateSet.end()) 5277 return OR_No_Viable_Function; 5278 5279 // Make sure that this function is better than every other viable 5280 // function. If not, we have an ambiguity. 5281 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 5282 Cand != CandidateSet.end(); ++Cand) { 5283 if (Cand->Viable && 5284 Cand != Best && 5285 !isBetterOverloadCandidate(*Best, *Cand, Loc)) { 5286 Best = CandidateSet.end(); 5287 return OR_Ambiguous; 5288 } 5289 } 5290 5291 // Best is the best viable function. 5292 if (Best->Function && 5293 (Best->Function->isDeleted() || 5294 Best->Function->getAttr<UnavailableAttr>())) 5295 return OR_Deleted; 5296 5297 // C++ [basic.def.odr]p2: 5298 // An overloaded function is used if it is selected by overload resolution 5299 // when referred to from a potentially-evaluated expression. [Note: this 5300 // covers calls to named functions (5.2.2), operator overloading 5301 // (clause 13), user-defined conversions (12.3.2), allocation function for 5302 // placement new (5.3.4), as well as non-default initialization (8.5). 5303 if (Best->Function) 5304 MarkDeclarationReferenced(Loc, Best->Function); 5305 return OR_Success; 5306} 5307 5308namespace { 5309 5310enum OverloadCandidateKind { 5311 oc_function, 5312 oc_method, 5313 oc_constructor, 5314 oc_function_template, 5315 oc_method_template, 5316 oc_constructor_template, 5317 oc_implicit_default_constructor, 5318 oc_implicit_copy_constructor, 5319 oc_implicit_copy_assignment 5320}; 5321 5322OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 5323 FunctionDecl *Fn, 5324 std::string &Description) { 5325 bool isTemplate = false; 5326 5327 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 5328 isTemplate = true; 5329 Description = S.getTemplateArgumentBindingsText( 5330 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 5331 } 5332 5333 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 5334 if (!Ctor->isImplicit()) 5335 return isTemplate ? oc_constructor_template : oc_constructor; 5336 5337 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 5338 : oc_implicit_default_constructor; 5339 } 5340 5341 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 5342 // This actually gets spelled 'candidate function' for now, but 5343 // it doesn't hurt to split it out. 5344 if (!Meth->isImplicit()) 5345 return isTemplate ? oc_method_template : oc_method; 5346 5347 assert(Meth->isCopyAssignment() 5348 && "implicit method is not copy assignment operator?"); 5349 return oc_implicit_copy_assignment; 5350 } 5351 5352 return isTemplate ? oc_function_template : oc_function; 5353} 5354 5355} // end anonymous namespace 5356 5357// Notes the location of an overload candidate. 5358void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 5359 std::string FnDesc; 5360 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 5361 Diag(Fn->getLocation(), diag::note_ovl_candidate) 5362 << (unsigned) K << FnDesc; 5363} 5364 5365/// Diagnoses an ambiguous conversion. The partial diagnostic is the 5366/// "lead" diagnostic; it will be given two arguments, the source and 5367/// target types of the conversion. 5368void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS, 5369 SourceLocation CaretLoc, 5370 const PartialDiagnostic &PDiag) { 5371 Diag(CaretLoc, PDiag) 5372 << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType(); 5373 for (AmbiguousConversionSequence::const_iterator 5374 I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) { 5375 NoteOverloadCandidate(*I); 5376 } 5377} 5378 5379namespace { 5380 5381void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 5382 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 5383 assert(Conv.isBad()); 5384 assert(Cand->Function && "for now, candidate must be a function"); 5385 FunctionDecl *Fn = Cand->Function; 5386 5387 // There's a conversion slot for the object argument if this is a 5388 // non-constructor method. Note that 'I' corresponds the 5389 // conversion-slot index. 5390 bool isObjectArgument = false; 5391 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 5392 if (I == 0) 5393 isObjectArgument = true; 5394 else 5395 I--; 5396 } 5397 5398 std::string FnDesc; 5399 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5400 5401 Expr *FromExpr = Conv.Bad.FromExpr; 5402 QualType FromTy = Conv.Bad.getFromType(); 5403 QualType ToTy = Conv.Bad.getToType(); 5404 5405 if (FromTy == S.Context.OverloadTy) { 5406 assert(FromExpr && "overload set argument came from implicit argument?"); 5407 Expr *E = FromExpr->IgnoreParens(); 5408 if (isa<UnaryOperator>(E)) 5409 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 5410 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 5411 5412 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 5413 << (unsigned) FnKind << FnDesc 5414 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5415 << ToTy << Name << I+1; 5416 return; 5417 } 5418 5419 // Do some hand-waving analysis to see if the non-viability is due 5420 // to a qualifier mismatch. 5421 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 5422 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 5423 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 5424 CToTy = RT->getPointeeType(); 5425 else { 5426 // TODO: detect and diagnose the full richness of const mismatches. 5427 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 5428 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 5429 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 5430 } 5431 5432 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 5433 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 5434 // It is dumb that we have to do this here. 5435 while (isa<ArrayType>(CFromTy)) 5436 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 5437 while (isa<ArrayType>(CToTy)) 5438 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 5439 5440 Qualifiers FromQs = CFromTy.getQualifiers(); 5441 Qualifiers ToQs = CToTy.getQualifiers(); 5442 5443 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 5444 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 5445 << (unsigned) FnKind << FnDesc 5446 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5447 << FromTy 5448 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 5449 << (unsigned) isObjectArgument << I+1; 5450 return; 5451 } 5452 5453 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5454 assert(CVR && "unexpected qualifiers mismatch"); 5455 5456 if (isObjectArgument) { 5457 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 5458 << (unsigned) FnKind << FnDesc 5459 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5460 << FromTy << (CVR - 1); 5461 } else { 5462 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 5463 << (unsigned) FnKind << FnDesc 5464 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5465 << FromTy << (CVR - 1) << I+1; 5466 } 5467 return; 5468 } 5469 5470 // Diagnose references or pointers to incomplete types differently, 5471 // since it's far from impossible that the incompleteness triggered 5472 // the failure. 5473 QualType TempFromTy = FromTy.getNonReferenceType(); 5474 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 5475 TempFromTy = PTy->getPointeeType(); 5476 if (TempFromTy->isIncompleteType()) { 5477 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 5478 << (unsigned) FnKind << FnDesc 5479 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5480 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5481 return; 5482 } 5483 5484 // Diagnose base -> derived pointer conversions. 5485 unsigned BaseToDerivedConversion = 0; 5486 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 5487 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 5488 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 5489 FromPtrTy->getPointeeType()) && 5490 !FromPtrTy->getPointeeType()->isIncompleteType() && 5491 !ToPtrTy->getPointeeType()->isIncompleteType() && 5492 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 5493 FromPtrTy->getPointeeType())) 5494 BaseToDerivedConversion = 1; 5495 } 5496 } else if (const ObjCObjectPointerType *FromPtrTy 5497 = FromTy->getAs<ObjCObjectPointerType>()) { 5498 if (const ObjCObjectPointerType *ToPtrTy 5499 = ToTy->getAs<ObjCObjectPointerType>()) 5500 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 5501 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 5502 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 5503 FromPtrTy->getPointeeType()) && 5504 FromIface->isSuperClassOf(ToIface)) 5505 BaseToDerivedConversion = 2; 5506 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 5507 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 5508 !FromTy->isIncompleteType() && 5509 !ToRefTy->getPointeeType()->isIncompleteType() && 5510 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 5511 BaseToDerivedConversion = 3; 5512 } 5513 5514 if (BaseToDerivedConversion) { 5515 S.Diag(Fn->getLocation(), 5516 diag::note_ovl_candidate_bad_base_to_derived_conv) 5517 << (unsigned) FnKind << FnDesc 5518 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5519 << (BaseToDerivedConversion - 1) 5520 << FromTy << ToTy << I+1; 5521 return; 5522 } 5523 5524 // TODO: specialize more based on the kind of mismatch 5525 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 5526 << (unsigned) FnKind << FnDesc 5527 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5528 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5529} 5530 5531void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 5532 unsigned NumFormalArgs) { 5533 // TODO: treat calls to a missing default constructor as a special case 5534 5535 FunctionDecl *Fn = Cand->Function; 5536 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 5537 5538 unsigned MinParams = Fn->getMinRequiredArguments(); 5539 5540 // at least / at most / exactly 5541 // FIXME: variadic templates "at most" should account for parameter packs 5542 unsigned mode, modeCount; 5543 if (NumFormalArgs < MinParams) { 5544 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 5545 (Cand->FailureKind == ovl_fail_bad_deduction && 5546 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 5547 if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) 5548 mode = 0; // "at least" 5549 else 5550 mode = 2; // "exactly" 5551 modeCount = MinParams; 5552 } else { 5553 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 5554 (Cand->FailureKind == ovl_fail_bad_deduction && 5555 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 5556 if (MinParams != FnTy->getNumArgs()) 5557 mode = 1; // "at most" 5558 else 5559 mode = 2; // "exactly" 5560 modeCount = FnTy->getNumArgs(); 5561 } 5562 5563 std::string Description; 5564 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 5565 5566 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 5567 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 5568 << modeCount << NumFormalArgs; 5569} 5570 5571/// Diagnose a failed template-argument deduction. 5572void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 5573 Expr **Args, unsigned NumArgs) { 5574 FunctionDecl *Fn = Cand->Function; // pattern 5575 5576 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 5577 NamedDecl *ParamD; 5578 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 5579 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 5580 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 5581 switch (Cand->DeductionFailure.Result) { 5582 case Sema::TDK_Success: 5583 llvm_unreachable("TDK_success while diagnosing bad deduction"); 5584 5585 case Sema::TDK_Incomplete: { 5586 assert(ParamD && "no parameter found for incomplete deduction result"); 5587 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 5588 << ParamD->getDeclName(); 5589 return; 5590 } 5591 5592 case Sema::TDK_Inconsistent: 5593 case Sema::TDK_InconsistentQuals: { 5594 assert(ParamD && "no parameter found for inconsistent deduction result"); 5595 int which = 0; 5596 if (isa<TemplateTypeParmDecl>(ParamD)) 5597 which = 0; 5598 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 5599 which = 1; 5600 else { 5601 which = 2; 5602 } 5603 5604 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 5605 << which << ParamD->getDeclName() 5606 << *Cand->DeductionFailure.getFirstArg() 5607 << *Cand->DeductionFailure.getSecondArg(); 5608 return; 5609 } 5610 5611 case Sema::TDK_InvalidExplicitArguments: 5612 assert(ParamD && "no parameter found for invalid explicit arguments"); 5613 if (ParamD->getDeclName()) 5614 S.Diag(Fn->getLocation(), 5615 diag::note_ovl_candidate_explicit_arg_mismatch_named) 5616 << ParamD->getDeclName(); 5617 else { 5618 int index = 0; 5619 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 5620 index = TTP->getIndex(); 5621 else if (NonTypeTemplateParmDecl *NTTP 5622 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 5623 index = NTTP->getIndex(); 5624 else 5625 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 5626 S.Diag(Fn->getLocation(), 5627 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 5628 << (index + 1); 5629 } 5630 return; 5631 5632 case Sema::TDK_TooManyArguments: 5633 case Sema::TDK_TooFewArguments: 5634 DiagnoseArityMismatch(S, Cand, NumArgs); 5635 return; 5636 5637 case Sema::TDK_InstantiationDepth: 5638 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 5639 return; 5640 5641 case Sema::TDK_SubstitutionFailure: { 5642 std::string ArgString; 5643 if (TemplateArgumentList *Args 5644 = Cand->DeductionFailure.getTemplateArgumentList()) 5645 ArgString = S.getTemplateArgumentBindingsText( 5646 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 5647 *Args); 5648 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 5649 << ArgString; 5650 return; 5651 } 5652 5653 // TODO: diagnose these individually, then kill off 5654 // note_ovl_candidate_bad_deduction, which is uselessly vague. 5655 case Sema::TDK_NonDeducedMismatch: 5656 case Sema::TDK_FailedOverloadResolution: 5657 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 5658 return; 5659 } 5660} 5661 5662/// Generates a 'note' diagnostic for an overload candidate. We've 5663/// already generated a primary error at the call site. 5664/// 5665/// It really does need to be a single diagnostic with its caret 5666/// pointed at the candidate declaration. Yes, this creates some 5667/// major challenges of technical writing. Yes, this makes pointing 5668/// out problems with specific arguments quite awkward. It's still 5669/// better than generating twenty screens of text for every failed 5670/// overload. 5671/// 5672/// It would be great to be able to express per-candidate problems 5673/// more richly for those diagnostic clients that cared, but we'd 5674/// still have to be just as careful with the default diagnostics. 5675void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 5676 Expr **Args, unsigned NumArgs) { 5677 FunctionDecl *Fn = Cand->Function; 5678 5679 // Note deleted candidates, but only if they're viable. 5680 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 5681 std::string FnDesc; 5682 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5683 5684 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 5685 << FnKind << FnDesc << Fn->isDeleted(); 5686 return; 5687 } 5688 5689 // We don't really have anything else to say about viable candidates. 5690 if (Cand->Viable) { 5691 S.NoteOverloadCandidate(Fn); 5692 return; 5693 } 5694 5695 switch (Cand->FailureKind) { 5696 case ovl_fail_too_many_arguments: 5697 case ovl_fail_too_few_arguments: 5698 return DiagnoseArityMismatch(S, Cand, NumArgs); 5699 5700 case ovl_fail_bad_deduction: 5701 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 5702 5703 case ovl_fail_trivial_conversion: 5704 case ovl_fail_bad_final_conversion: 5705 case ovl_fail_final_conversion_not_exact: 5706 return S.NoteOverloadCandidate(Fn); 5707 5708 case ovl_fail_bad_conversion: { 5709 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 5710 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 5711 if (Cand->Conversions[I].isBad()) 5712 return DiagnoseBadConversion(S, Cand, I); 5713 5714 // FIXME: this currently happens when we're called from SemaInit 5715 // when user-conversion overload fails. Figure out how to handle 5716 // those conditions and diagnose them well. 5717 return S.NoteOverloadCandidate(Fn); 5718 } 5719 } 5720} 5721 5722void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 5723 // Desugar the type of the surrogate down to a function type, 5724 // retaining as many typedefs as possible while still showing 5725 // the function type (and, therefore, its parameter types). 5726 QualType FnType = Cand->Surrogate->getConversionType(); 5727 bool isLValueReference = false; 5728 bool isRValueReference = false; 5729 bool isPointer = false; 5730 if (const LValueReferenceType *FnTypeRef = 5731 FnType->getAs<LValueReferenceType>()) { 5732 FnType = FnTypeRef->getPointeeType(); 5733 isLValueReference = true; 5734 } else if (const RValueReferenceType *FnTypeRef = 5735 FnType->getAs<RValueReferenceType>()) { 5736 FnType = FnTypeRef->getPointeeType(); 5737 isRValueReference = true; 5738 } 5739 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 5740 FnType = FnTypePtr->getPointeeType(); 5741 isPointer = true; 5742 } 5743 // Desugar down to a function type. 5744 FnType = QualType(FnType->getAs<FunctionType>(), 0); 5745 // Reconstruct the pointer/reference as appropriate. 5746 if (isPointer) FnType = S.Context.getPointerType(FnType); 5747 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 5748 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 5749 5750 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 5751 << FnType; 5752} 5753 5754void NoteBuiltinOperatorCandidate(Sema &S, 5755 const char *Opc, 5756 SourceLocation OpLoc, 5757 OverloadCandidate *Cand) { 5758 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 5759 std::string TypeStr("operator"); 5760 TypeStr += Opc; 5761 TypeStr += "("; 5762 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 5763 if (Cand->Conversions.size() == 1) { 5764 TypeStr += ")"; 5765 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 5766 } else { 5767 TypeStr += ", "; 5768 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 5769 TypeStr += ")"; 5770 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 5771 } 5772} 5773 5774void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 5775 OverloadCandidate *Cand) { 5776 unsigned NoOperands = Cand->Conversions.size(); 5777 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 5778 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 5779 if (ICS.isBad()) break; // all meaningless after first invalid 5780 if (!ICS.isAmbiguous()) continue; 5781 5782 S.DiagnoseAmbiguousConversion(ICS, OpLoc, 5783 S.PDiag(diag::note_ambiguous_type_conversion)); 5784 } 5785} 5786 5787SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 5788 if (Cand->Function) 5789 return Cand->Function->getLocation(); 5790 if (Cand->IsSurrogate) 5791 return Cand->Surrogate->getLocation(); 5792 return SourceLocation(); 5793} 5794 5795struct CompareOverloadCandidatesForDisplay { 5796 Sema &S; 5797 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 5798 5799 bool operator()(const OverloadCandidate *L, 5800 const OverloadCandidate *R) { 5801 // Fast-path this check. 5802 if (L == R) return false; 5803 5804 // Order first by viability. 5805 if (L->Viable) { 5806 if (!R->Viable) return true; 5807 5808 // TODO: introduce a tri-valued comparison for overload 5809 // candidates. Would be more worthwhile if we had a sort 5810 // that could exploit it. 5811 if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true; 5812 if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false; 5813 } else if (R->Viable) 5814 return false; 5815 5816 assert(L->Viable == R->Viable); 5817 5818 // Criteria by which we can sort non-viable candidates: 5819 if (!L->Viable) { 5820 // 1. Arity mismatches come after other candidates. 5821 if (L->FailureKind == ovl_fail_too_many_arguments || 5822 L->FailureKind == ovl_fail_too_few_arguments) 5823 return false; 5824 if (R->FailureKind == ovl_fail_too_many_arguments || 5825 R->FailureKind == ovl_fail_too_few_arguments) 5826 return true; 5827 5828 // 2. Bad conversions come first and are ordered by the number 5829 // of bad conversions and quality of good conversions. 5830 if (L->FailureKind == ovl_fail_bad_conversion) { 5831 if (R->FailureKind != ovl_fail_bad_conversion) 5832 return true; 5833 5834 // If there's any ordering between the defined conversions... 5835 // FIXME: this might not be transitive. 5836 assert(L->Conversions.size() == R->Conversions.size()); 5837 5838 int leftBetter = 0; 5839 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 5840 for (unsigned E = L->Conversions.size(); I != E; ++I) { 5841 switch (S.CompareImplicitConversionSequences(L->Conversions[I], 5842 R->Conversions[I])) { 5843 case ImplicitConversionSequence::Better: 5844 leftBetter++; 5845 break; 5846 5847 case ImplicitConversionSequence::Worse: 5848 leftBetter--; 5849 break; 5850 5851 case ImplicitConversionSequence::Indistinguishable: 5852 break; 5853 } 5854 } 5855 if (leftBetter > 0) return true; 5856 if (leftBetter < 0) return false; 5857 5858 } else if (R->FailureKind == ovl_fail_bad_conversion) 5859 return false; 5860 5861 // TODO: others? 5862 } 5863 5864 // Sort everything else by location. 5865 SourceLocation LLoc = GetLocationForCandidate(L); 5866 SourceLocation RLoc = GetLocationForCandidate(R); 5867 5868 // Put candidates without locations (e.g. builtins) at the end. 5869 if (LLoc.isInvalid()) return false; 5870 if (RLoc.isInvalid()) return true; 5871 5872 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 5873 } 5874}; 5875 5876/// CompleteNonViableCandidate - Normally, overload resolution only 5877/// computes up to the first 5878void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 5879 Expr **Args, unsigned NumArgs) { 5880 assert(!Cand->Viable); 5881 5882 // Don't do anything on failures other than bad conversion. 5883 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 5884 5885 // Skip forward to the first bad conversion. 5886 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 5887 unsigned ConvCount = Cand->Conversions.size(); 5888 while (true) { 5889 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 5890 ConvIdx++; 5891 if (Cand->Conversions[ConvIdx - 1].isBad()) 5892 break; 5893 } 5894 5895 if (ConvIdx == ConvCount) 5896 return; 5897 5898 assert(!Cand->Conversions[ConvIdx].isInitialized() && 5899 "remaining conversion is initialized?"); 5900 5901 // FIXME: this should probably be preserved from the overload 5902 // operation somehow. 5903 bool SuppressUserConversions = false; 5904 5905 const FunctionProtoType* Proto; 5906 unsigned ArgIdx = ConvIdx; 5907 5908 if (Cand->IsSurrogate) { 5909 QualType ConvType 5910 = Cand->Surrogate->getConversionType().getNonReferenceType(); 5911 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5912 ConvType = ConvPtrType->getPointeeType(); 5913 Proto = ConvType->getAs<FunctionProtoType>(); 5914 ArgIdx--; 5915 } else if (Cand->Function) { 5916 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 5917 if (isa<CXXMethodDecl>(Cand->Function) && 5918 !isa<CXXConstructorDecl>(Cand->Function)) 5919 ArgIdx--; 5920 } else { 5921 // Builtin binary operator with a bad first conversion. 5922 assert(ConvCount <= 3); 5923 for (; ConvIdx != ConvCount; ++ConvIdx) 5924 Cand->Conversions[ConvIdx] 5925 = TryCopyInitialization(S, Args[ConvIdx], 5926 Cand->BuiltinTypes.ParamTypes[ConvIdx], 5927 SuppressUserConversions, 5928 /*InOverloadResolution*/ true); 5929 return; 5930 } 5931 5932 // Fill in the rest of the conversions. 5933 unsigned NumArgsInProto = Proto->getNumArgs(); 5934 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 5935 if (ArgIdx < NumArgsInProto) 5936 Cand->Conversions[ConvIdx] 5937 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 5938 SuppressUserConversions, 5939 /*InOverloadResolution=*/true); 5940 else 5941 Cand->Conversions[ConvIdx].setEllipsis(); 5942 } 5943} 5944 5945} // end anonymous namespace 5946 5947/// PrintOverloadCandidates - When overload resolution fails, prints 5948/// diagnostic messages containing the candidates in the candidate 5949/// set. 5950void 5951Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 5952 OverloadCandidateDisplayKind OCD, 5953 Expr **Args, unsigned NumArgs, 5954 const char *Opc, 5955 SourceLocation OpLoc) { 5956 // Sort the candidates by viability and position. Sorting directly would 5957 // be prohibitive, so we make a set of pointers and sort those. 5958 llvm::SmallVector<OverloadCandidate*, 32> Cands; 5959 if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size()); 5960 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 5961 LastCand = CandidateSet.end(); 5962 Cand != LastCand; ++Cand) { 5963 if (Cand->Viable) 5964 Cands.push_back(Cand); 5965 else if (OCD == OCD_AllCandidates) { 5966 CompleteNonViableCandidate(*this, Cand, Args, NumArgs); 5967 if (Cand->Function || Cand->IsSurrogate) 5968 Cands.push_back(Cand); 5969 // Otherwise, this a non-viable builtin candidate. We do not, in general, 5970 // want to list every possible builtin candidate. 5971 } 5972 } 5973 5974 std::sort(Cands.begin(), Cands.end(), 5975 CompareOverloadCandidatesForDisplay(*this)); 5976 5977 bool ReportedAmbiguousConversions = false; 5978 5979 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 5980 const Diagnostic::OverloadsShown ShowOverloads = Diags.getShowOverloads(); 5981 unsigned CandsShown = 0; 5982 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 5983 OverloadCandidate *Cand = *I; 5984 5985 // Set an arbitrary limit on the number of candidate functions we'll spam 5986 // the user with. FIXME: This limit should depend on details of the 5987 // candidate list. 5988 if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { 5989 break; 5990 } 5991 ++CandsShown; 5992 5993 if (Cand->Function) 5994 NoteFunctionCandidate(*this, Cand, Args, NumArgs); 5995 else if (Cand->IsSurrogate) 5996 NoteSurrogateCandidate(*this, Cand); 5997 else { 5998 assert(Cand->Viable && 5999 "Non-viable built-in candidates are not added to Cands."); 6000 // Generally we only see ambiguities including viable builtin 6001 // operators if overload resolution got screwed up by an 6002 // ambiguous user-defined conversion. 6003 // 6004 // FIXME: It's quite possible for different conversions to see 6005 // different ambiguities, though. 6006 if (!ReportedAmbiguousConversions) { 6007 NoteAmbiguousUserConversions(*this, OpLoc, Cand); 6008 ReportedAmbiguousConversions = true; 6009 } 6010 6011 // If this is a viable builtin, print it. 6012 NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand); 6013 } 6014 } 6015 6016 if (I != E) 6017 Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 6018} 6019 6020static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { 6021 if (isa<UnresolvedLookupExpr>(E)) 6022 return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D); 6023 6024 return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D); 6025} 6026 6027/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 6028/// an overloaded function (C++ [over.over]), where @p From is an 6029/// expression with overloaded function type and @p ToType is the type 6030/// we're trying to resolve to. For example: 6031/// 6032/// @code 6033/// int f(double); 6034/// int f(int); 6035/// 6036/// int (*pfd)(double) = f; // selects f(double) 6037/// @endcode 6038/// 6039/// This routine returns the resulting FunctionDecl if it could be 6040/// resolved, and NULL otherwise. When @p Complain is true, this 6041/// routine will emit diagnostics if there is an error. 6042FunctionDecl * 6043Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 6044 bool Complain, 6045 DeclAccessPair &FoundResult) { 6046 QualType FunctionType = ToType; 6047 bool IsMember = false; 6048 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 6049 FunctionType = ToTypePtr->getPointeeType(); 6050 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 6051 FunctionType = ToTypeRef->getPointeeType(); 6052 else if (const MemberPointerType *MemTypePtr = 6053 ToType->getAs<MemberPointerType>()) { 6054 FunctionType = MemTypePtr->getPointeeType(); 6055 IsMember = true; 6056 } 6057 6058 // C++ [over.over]p1: 6059 // [...] [Note: any redundant set of parentheses surrounding the 6060 // overloaded function name is ignored (5.1). ] 6061 // C++ [over.over]p1: 6062 // [...] The overloaded function name can be preceded by the & 6063 // operator. 6064 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 6065 TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; 6066 if (OvlExpr->hasExplicitTemplateArgs()) { 6067 OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); 6068 ExplicitTemplateArgs = &ETABuffer; 6069 } 6070 6071 // We expect a pointer or reference to function, or a function pointer. 6072 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 6073 if (!FunctionType->isFunctionType()) { 6074 if (Complain) 6075 Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 6076 << OvlExpr->getName() << ToType; 6077 6078 return 0; 6079 } 6080 6081 assert(From->getType() == Context.OverloadTy); 6082 6083 // Look through all of the overloaded functions, searching for one 6084 // whose type matches exactly. 6085 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 6086 llvm::SmallVector<FunctionDecl *, 4> NonMatches; 6087 6088 bool FoundNonTemplateFunction = false; 6089 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6090 E = OvlExpr->decls_end(); I != E; ++I) { 6091 // Look through any using declarations to find the underlying function. 6092 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 6093 6094 // C++ [over.over]p3: 6095 // Non-member functions and static member functions match 6096 // targets of type "pointer-to-function" or "reference-to-function." 6097 // Nonstatic member functions match targets of 6098 // type "pointer-to-member-function." 6099 // Note that according to DR 247, the containing class does not matter. 6100 6101 if (FunctionTemplateDecl *FunctionTemplate 6102 = dyn_cast<FunctionTemplateDecl>(Fn)) { 6103 if (CXXMethodDecl *Method 6104 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 6105 // Skip non-static function templates when converting to pointer, and 6106 // static when converting to member pointer. 6107 if (Method->isStatic() == IsMember) 6108 continue; 6109 } else if (IsMember) 6110 continue; 6111 6112 // C++ [over.over]p2: 6113 // If the name is a function template, template argument deduction is 6114 // done (14.8.2.2), and if the argument deduction succeeds, the 6115 // resulting template argument list is used to generate a single 6116 // function template specialization, which is added to the set of 6117 // overloaded functions considered. 6118 // FIXME: We don't really want to build the specialization here, do we? 6119 FunctionDecl *Specialization = 0; 6120 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6121 if (TemplateDeductionResult Result 6122 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 6123 FunctionType, Specialization, Info)) { 6124 // FIXME: make a note of the failed deduction for diagnostics. 6125 (void)Result; 6126 } else { 6127 // FIXME: If the match isn't exact, shouldn't we just drop this as 6128 // a candidate? Find a testcase before changing the code. 6129 assert(FunctionType 6130 == Context.getCanonicalType(Specialization->getType())); 6131 Matches.push_back(std::make_pair(I.getPair(), 6132 cast<FunctionDecl>(Specialization->getCanonicalDecl()))); 6133 } 6134 6135 continue; 6136 } 6137 6138 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 6139 // Skip non-static functions when converting to pointer, and static 6140 // when converting to member pointer. 6141 if (Method->isStatic() == IsMember) 6142 continue; 6143 6144 // If we have explicit template arguments, skip non-templates. 6145 if (OvlExpr->hasExplicitTemplateArgs()) 6146 continue; 6147 } else if (IsMember) 6148 continue; 6149 6150 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 6151 QualType ResultTy; 6152 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 6153 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 6154 ResultTy)) { 6155 Matches.push_back(std::make_pair(I.getPair(), 6156 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 6157 FoundNonTemplateFunction = true; 6158 } 6159 } 6160 } 6161 6162 // If there were 0 or 1 matches, we're done. 6163 if (Matches.empty()) { 6164 if (Complain) { 6165 Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) 6166 << OvlExpr->getName() << FunctionType; 6167 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6168 E = OvlExpr->decls_end(); 6169 I != E; ++I) 6170 if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 6171 NoteOverloadCandidate(F); 6172 } 6173 6174 return 0; 6175 } else if (Matches.size() == 1) { 6176 FunctionDecl *Result = Matches[0].second; 6177 FoundResult = Matches[0].first; 6178 MarkDeclarationReferenced(From->getLocStart(), Result); 6179 if (Complain) 6180 CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); 6181 return Result; 6182 } 6183 6184 // C++ [over.over]p4: 6185 // If more than one function is selected, [...] 6186 if (!FoundNonTemplateFunction) { 6187 // [...] and any given function template specialization F1 is 6188 // eliminated if the set contains a second function template 6189 // specialization whose function template is more specialized 6190 // than the function template of F1 according to the partial 6191 // ordering rules of 14.5.5.2. 6192 6193 // The algorithm specified above is quadratic. We instead use a 6194 // two-pass algorithm (similar to the one used to identify the 6195 // best viable function in an overload set) that identifies the 6196 // best function template (if it exists). 6197 6198 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 6199 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 6200 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 6201 6202 UnresolvedSetIterator Result = 6203 getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 6204 TPOC_Other, From->getLocStart(), 6205 PDiag(), 6206 PDiag(diag::err_addr_ovl_ambiguous) 6207 << Matches[0].second->getDeclName(), 6208 PDiag(diag::note_ovl_candidate) 6209 << (unsigned) oc_function_template); 6210 assert(Result != MatchesCopy.end() && "no most-specialized template"); 6211 MarkDeclarationReferenced(From->getLocStart(), *Result); 6212 FoundResult = Matches[Result - MatchesCopy.begin()].first; 6213 if (Complain) { 6214 CheckUnresolvedAccess(*this, OvlExpr, FoundResult); 6215 DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc()); 6216 } 6217 return cast<FunctionDecl>(*Result); 6218 } 6219 6220 // [...] any function template specializations in the set are 6221 // eliminated if the set also contains a non-template function, [...] 6222 for (unsigned I = 0, N = Matches.size(); I != N; ) { 6223 if (Matches[I].second->getPrimaryTemplate() == 0) 6224 ++I; 6225 else { 6226 Matches[I] = Matches[--N]; 6227 Matches.set_size(N); 6228 } 6229 } 6230 6231 // [...] After such eliminations, if any, there shall remain exactly one 6232 // selected function. 6233 if (Matches.size() == 1) { 6234 MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); 6235 FoundResult = Matches[0].first; 6236 if (Complain) { 6237 CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); 6238 DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc()); 6239 } 6240 return cast<FunctionDecl>(Matches[0].second); 6241 } 6242 6243 // FIXME: We should probably return the same thing that BestViableFunction 6244 // returns (even if we issue the diagnostics here). 6245 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 6246 << Matches[0].second->getDeclName(); 6247 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 6248 NoteOverloadCandidate(Matches[I].second); 6249 return 0; 6250} 6251 6252/// \brief Given an expression that refers to an overloaded function, try to 6253/// resolve that overloaded function expression down to a single function. 6254/// 6255/// This routine can only resolve template-ids that refer to a single function 6256/// template, where that template-id refers to a single template whose template 6257/// arguments are either provided by the template-id or have defaults, 6258/// as described in C++0x [temp.arg.explicit]p3. 6259FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 6260 // C++ [over.over]p1: 6261 // [...] [Note: any redundant set of parentheses surrounding the 6262 // overloaded function name is ignored (5.1). ] 6263 // C++ [over.over]p1: 6264 // [...] The overloaded function name can be preceded by the & 6265 // operator. 6266 6267 if (From->getType() != Context.OverloadTy) 6268 return 0; 6269 6270 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 6271 6272 // If we didn't actually find any template-ids, we're done. 6273 if (!OvlExpr->hasExplicitTemplateArgs()) 6274 return 0; 6275 6276 TemplateArgumentListInfo ExplicitTemplateArgs; 6277 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 6278 6279 // Look through all of the overloaded functions, searching for one 6280 // whose type matches exactly. 6281 FunctionDecl *Matched = 0; 6282 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6283 E = OvlExpr->decls_end(); I != E; ++I) { 6284 // C++0x [temp.arg.explicit]p3: 6285 // [...] In contexts where deduction is done and fails, or in contexts 6286 // where deduction is not done, if a template argument list is 6287 // specified and it, along with any default template arguments, 6288 // identifies a single function template specialization, then the 6289 // template-id is an lvalue for the function template specialization. 6290 FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I); 6291 6292 // C++ [over.over]p2: 6293 // If the name is a function template, template argument deduction is 6294 // done (14.8.2.2), and if the argument deduction succeeds, the 6295 // resulting template argument list is used to generate a single 6296 // function template specialization, which is added to the set of 6297 // overloaded functions considered. 6298 FunctionDecl *Specialization = 0; 6299 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6300 if (TemplateDeductionResult Result 6301 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 6302 Specialization, Info)) { 6303 // FIXME: make a note of the failed deduction for diagnostics. 6304 (void)Result; 6305 continue; 6306 } 6307 6308 // Multiple matches; we can't resolve to a single declaration. 6309 if (Matched) 6310 return 0; 6311 6312 Matched = Specialization; 6313 } 6314 6315 return Matched; 6316} 6317 6318/// \brief Add a single candidate to the overload set. 6319static void AddOverloadedCallCandidate(Sema &S, 6320 DeclAccessPair FoundDecl, 6321 const TemplateArgumentListInfo *ExplicitTemplateArgs, 6322 Expr **Args, unsigned NumArgs, 6323 OverloadCandidateSet &CandidateSet, 6324 bool PartialOverloading) { 6325 NamedDecl *Callee = FoundDecl.getDecl(); 6326 if (isa<UsingShadowDecl>(Callee)) 6327 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 6328 6329 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 6330 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 6331 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 6332 false, PartialOverloading); 6333 return; 6334 } 6335 6336 if (FunctionTemplateDecl *FuncTemplate 6337 = dyn_cast<FunctionTemplateDecl>(Callee)) { 6338 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 6339 ExplicitTemplateArgs, 6340 Args, NumArgs, CandidateSet); 6341 return; 6342 } 6343 6344 assert(false && "unhandled case in overloaded call candidate"); 6345 6346 // do nothing? 6347} 6348 6349/// \brief Add the overload candidates named by callee and/or found by argument 6350/// dependent lookup to the given overload set. 6351void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 6352 Expr **Args, unsigned NumArgs, 6353 OverloadCandidateSet &CandidateSet, 6354 bool PartialOverloading) { 6355 6356#ifndef NDEBUG 6357 // Verify that ArgumentDependentLookup is consistent with the rules 6358 // in C++0x [basic.lookup.argdep]p3: 6359 // 6360 // Let X be the lookup set produced by unqualified lookup (3.4.1) 6361 // and let Y be the lookup set produced by argument dependent 6362 // lookup (defined as follows). If X contains 6363 // 6364 // -- a declaration of a class member, or 6365 // 6366 // -- a block-scope function declaration that is not a 6367 // using-declaration, or 6368 // 6369 // -- a declaration that is neither a function or a function 6370 // template 6371 // 6372 // then Y is empty. 6373 6374 if (ULE->requiresADL()) { 6375 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6376 E = ULE->decls_end(); I != E; ++I) { 6377 assert(!(*I)->getDeclContext()->isRecord()); 6378 assert(isa<UsingShadowDecl>(*I) || 6379 !(*I)->getDeclContext()->isFunctionOrMethod()); 6380 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 6381 } 6382 } 6383#endif 6384 6385 // It would be nice to avoid this copy. 6386 TemplateArgumentListInfo TABuffer; 6387 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6388 if (ULE->hasExplicitTemplateArgs()) { 6389 ULE->copyTemplateArgumentsInto(TABuffer); 6390 ExplicitTemplateArgs = &TABuffer; 6391 } 6392 6393 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6394 E = ULE->decls_end(); I != E; ++I) 6395 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 6396 Args, NumArgs, CandidateSet, 6397 PartialOverloading); 6398 6399 if (ULE->requiresADL()) 6400 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 6401 Args, NumArgs, 6402 ExplicitTemplateArgs, 6403 CandidateSet, 6404 PartialOverloading); 6405} 6406 6407static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn, 6408 Expr **Args, unsigned NumArgs) { 6409 Fn->Destroy(SemaRef.Context); 6410 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 6411 Args[Arg]->Destroy(SemaRef.Context); 6412 return SemaRef.ExprError(); 6413} 6414 6415/// Attempts to recover from a call where no functions were found. 6416/// 6417/// Returns true if new candidates were found. 6418static Sema::OwningExprResult 6419BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 6420 UnresolvedLookupExpr *ULE, 6421 SourceLocation LParenLoc, 6422 Expr **Args, unsigned NumArgs, 6423 SourceLocation *CommaLocs, 6424 SourceLocation RParenLoc) { 6425 6426 CXXScopeSpec SS; 6427 if (ULE->getQualifier()) { 6428 SS.setScopeRep(ULE->getQualifier()); 6429 SS.setRange(ULE->getQualifierRange()); 6430 } 6431 6432 TemplateArgumentListInfo TABuffer; 6433 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6434 if (ULE->hasExplicitTemplateArgs()) { 6435 ULE->copyTemplateArgumentsInto(TABuffer); 6436 ExplicitTemplateArgs = &TABuffer; 6437 } 6438 6439 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 6440 Sema::LookupOrdinaryName); 6441 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)) 6442 return Destroy(SemaRef, Fn, Args, NumArgs); 6443 6444 assert(!R.empty() && "lookup results empty despite recovery"); 6445 6446 // Build an implicit member call if appropriate. Just drop the 6447 // casts and such from the call, we don't really care. 6448 Sema::OwningExprResult NewFn = SemaRef.ExprError(); 6449 if ((*R.begin())->isCXXClassMember()) 6450 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); 6451 else if (ExplicitTemplateArgs) 6452 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 6453 else 6454 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 6455 6456 if (NewFn.isInvalid()) 6457 return Destroy(SemaRef, Fn, Args, NumArgs); 6458 6459 Fn->Destroy(SemaRef.Context); 6460 6461 // This shouldn't cause an infinite loop because we're giving it 6462 // an expression with non-empty lookup results, which should never 6463 // end up here. 6464 return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc, 6465 Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs), 6466 CommaLocs, RParenLoc); 6467} 6468 6469/// ResolveOverloadedCallFn - Given the call expression that calls Fn 6470/// (which eventually refers to the declaration Func) and the call 6471/// arguments Args/NumArgs, attempt to resolve the function call down 6472/// to a specific function. If overload resolution succeeds, returns 6473/// the function declaration produced by overload 6474/// resolution. Otherwise, emits diagnostics, deletes all of the 6475/// arguments and Fn, and returns NULL. 6476Sema::OwningExprResult 6477Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 6478 SourceLocation LParenLoc, 6479 Expr **Args, unsigned NumArgs, 6480 SourceLocation *CommaLocs, 6481 SourceLocation RParenLoc) { 6482#ifndef NDEBUG 6483 if (ULE->requiresADL()) { 6484 // To do ADL, we must have found an unqualified name. 6485 assert(!ULE->getQualifier() && "qualified name with ADL"); 6486 6487 // We don't perform ADL for implicit declarations of builtins. 6488 // Verify that this was correctly set up. 6489 FunctionDecl *F; 6490 if (ULE->decls_begin() + 1 == ULE->decls_end() && 6491 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 6492 F->getBuiltinID() && F->isImplicit()) 6493 assert(0 && "performing ADL for builtin"); 6494 6495 // We don't perform ADL in C. 6496 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 6497 } 6498#endif 6499 6500 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 6501 6502 // Add the functions denoted by the callee to the set of candidate 6503 // functions, including those from argument-dependent lookup. 6504 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 6505 6506 // If we found nothing, try to recover. 6507 // AddRecoveryCallCandidates diagnoses the error itself, so we just 6508 // bailout out if it fails. 6509 if (CandidateSet.empty()) 6510 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 6511 CommaLocs, RParenLoc); 6512 6513 OverloadCandidateSet::iterator Best; 6514 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 6515 case OR_Success: { 6516 FunctionDecl *FDecl = Best->Function; 6517 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 6518 DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc()); 6519 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 6520 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); 6521 } 6522 6523 case OR_No_Viable_Function: 6524 Diag(Fn->getSourceRange().getBegin(), 6525 diag::err_ovl_no_viable_function_in_call) 6526 << ULE->getName() << Fn->getSourceRange(); 6527 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6528 break; 6529 6530 case OR_Ambiguous: 6531 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 6532 << ULE->getName() << Fn->getSourceRange(); 6533 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 6534 break; 6535 6536 case OR_Deleted: 6537 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 6538 << Best->Function->isDeleted() 6539 << ULE->getName() 6540 << Fn->getSourceRange(); 6541 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6542 break; 6543 } 6544 6545 // Overload resolution failed. Destroy all of the subexpressions and 6546 // return NULL. 6547 Fn->Destroy(Context); 6548 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 6549 Args[Arg]->Destroy(Context); 6550 return ExprError(); 6551} 6552 6553static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 6554 return Functions.size() > 1 || 6555 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 6556} 6557 6558/// \brief Create a unary operation that may resolve to an overloaded 6559/// operator. 6560/// 6561/// \param OpLoc The location of the operator itself (e.g., '*'). 6562/// 6563/// \param OpcIn The UnaryOperator::Opcode that describes this 6564/// operator. 6565/// 6566/// \param Functions The set of non-member functions that will be 6567/// considered by overload resolution. The caller needs to build this 6568/// set based on the context using, e.g., 6569/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6570/// set should not contain any member functions; those will be added 6571/// by CreateOverloadedUnaryOp(). 6572/// 6573/// \param input The input argument. 6574Sema::OwningExprResult 6575Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 6576 const UnresolvedSetImpl &Fns, 6577 ExprArg input) { 6578 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 6579 Expr *Input = (Expr *)input.get(); 6580 6581 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 6582 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 6583 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6584 6585 Expr *Args[2] = { Input, 0 }; 6586 unsigned NumArgs = 1; 6587 6588 // For post-increment and post-decrement, add the implicit '0' as 6589 // the second argument, so that we know this is a post-increment or 6590 // post-decrement. 6591 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 6592 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 6593 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 6594 SourceLocation()); 6595 NumArgs = 2; 6596 } 6597 6598 if (Input->isTypeDependent()) { 6599 if (Fns.empty()) 6600 return Owned(new (Context) UnaryOperator(input.takeAs<Expr>(), 6601 Opc, 6602 Context.DependentTy, 6603 OpLoc)); 6604 6605 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6606 UnresolvedLookupExpr *Fn 6607 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6608 0, SourceRange(), OpName, OpLoc, 6609 /*ADL*/ true, IsOverloaded(Fns), 6610 Fns.begin(), Fns.end()); 6611 input.release(); 6612 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 6613 &Args[0], NumArgs, 6614 Context.DependentTy, 6615 OpLoc)); 6616 } 6617 6618 // Build an empty overload set. 6619 OverloadCandidateSet CandidateSet(OpLoc); 6620 6621 // Add the candidates from the given function set. 6622 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 6623 6624 // Add operator candidates that are member functions. 6625 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6626 6627 // Add candidates from ADL. 6628 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 6629 Args, NumArgs, 6630 /*ExplicitTemplateArgs*/ 0, 6631 CandidateSet); 6632 6633 // Add builtin operator candidates. 6634 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6635 6636 // Perform overload resolution. 6637 OverloadCandidateSet::iterator Best; 6638 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6639 case OR_Success: { 6640 // We found a built-in operator or an overloaded operator. 6641 FunctionDecl *FnDecl = Best->Function; 6642 6643 if (FnDecl) { 6644 // We matched an overloaded operator. Build a call to that 6645 // operator. 6646 6647 // Convert the arguments. 6648 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 6649 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 6650 6651 if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 6652 Best->FoundDecl, Method)) 6653 return ExprError(); 6654 } else { 6655 // Convert the arguments. 6656 OwningExprResult InputInit 6657 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 6658 FnDecl->getParamDecl(0)), 6659 SourceLocation(), 6660 move(input)); 6661 if (InputInit.isInvalid()) 6662 return ExprError(); 6663 6664 input = move(InputInit); 6665 Input = (Expr *)input.get(); 6666 } 6667 6668 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 6669 6670 // Determine the result type 6671 QualType ResultTy = FnDecl->getCallResultType(); 6672 6673 // Build the actual expression node. 6674 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6675 SourceLocation()); 6676 UsualUnaryConversions(FnExpr); 6677 6678 input.release(); 6679 Args[0] = Input; 6680 ExprOwningPtr<CallExpr> TheCall(this, 6681 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 6682 Args, NumArgs, ResultTy, OpLoc)); 6683 6684 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 6685 FnDecl)) 6686 return ExprError(); 6687 6688 return MaybeBindToTemporary(TheCall.release()); 6689 } else { 6690 // We matched a built-in operator. Convert the arguments, then 6691 // break out so that we will build the appropriate built-in 6692 // operator node. 6693 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 6694 Best->Conversions[0], AA_Passing)) 6695 return ExprError(); 6696 6697 break; 6698 } 6699 } 6700 6701 case OR_No_Viable_Function: 6702 // No viable function; fall through to handling this as a 6703 // built-in operator, which will produce an error message for us. 6704 break; 6705 6706 case OR_Ambiguous: 6707 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6708 << UnaryOperator::getOpcodeStr(Opc) 6709 << Input->getSourceRange(); 6710 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs, 6711 UnaryOperator::getOpcodeStr(Opc), OpLoc); 6712 return ExprError(); 6713 6714 case OR_Deleted: 6715 Diag(OpLoc, diag::err_ovl_deleted_oper) 6716 << Best->Function->isDeleted() 6717 << UnaryOperator::getOpcodeStr(Opc) 6718 << Input->getSourceRange(); 6719 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6720 return ExprError(); 6721 } 6722 6723 // Either we found no viable overloaded operator or we matched a 6724 // built-in operator. In either case, fall through to trying to 6725 // build a built-in operation. 6726 input.release(); 6727 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 6728} 6729 6730/// \brief Create a binary operation that may resolve to an overloaded 6731/// operator. 6732/// 6733/// \param OpLoc The location of the operator itself (e.g., '+'). 6734/// 6735/// \param OpcIn The BinaryOperator::Opcode that describes this 6736/// operator. 6737/// 6738/// \param Functions The set of non-member functions that will be 6739/// considered by overload resolution. The caller needs to build this 6740/// set based on the context using, e.g., 6741/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6742/// set should not contain any member functions; those will be added 6743/// by CreateOverloadedBinOp(). 6744/// 6745/// \param LHS Left-hand argument. 6746/// \param RHS Right-hand argument. 6747Sema::OwningExprResult 6748Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 6749 unsigned OpcIn, 6750 const UnresolvedSetImpl &Fns, 6751 Expr *LHS, Expr *RHS) { 6752 Expr *Args[2] = { LHS, RHS }; 6753 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 6754 6755 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 6756 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 6757 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6758 6759 // If either side is type-dependent, create an appropriate dependent 6760 // expression. 6761 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 6762 if (Fns.empty()) { 6763 // If there are no functions to store, just build a dependent 6764 // BinaryOperator or CompoundAssignment. 6765 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 6766 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 6767 Context.DependentTy, OpLoc)); 6768 6769 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 6770 Context.DependentTy, 6771 Context.DependentTy, 6772 Context.DependentTy, 6773 OpLoc)); 6774 } 6775 6776 // FIXME: save results of ADL from here? 6777 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6778 UnresolvedLookupExpr *Fn 6779 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6780 0, SourceRange(), OpName, OpLoc, 6781 /*ADL*/ true, IsOverloaded(Fns), 6782 Fns.begin(), Fns.end()); 6783 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 6784 Args, 2, 6785 Context.DependentTy, 6786 OpLoc)); 6787 } 6788 6789 // If this is the .* operator, which is not overloadable, just 6790 // create a built-in binary operator. 6791 if (Opc == BinaryOperator::PtrMemD) 6792 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6793 6794 // If this is the assignment operator, we only perform overload resolution 6795 // if the left-hand side is a class or enumeration type. This is actually 6796 // a hack. The standard requires that we do overload resolution between the 6797 // various built-in candidates, but as DR507 points out, this can lead to 6798 // problems. So we do it this way, which pretty much follows what GCC does. 6799 // Note that we go the traditional code path for compound assignment forms. 6800 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) 6801 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6802 6803 // Build an empty overload set. 6804 OverloadCandidateSet CandidateSet(OpLoc); 6805 6806 // Add the candidates from the given function set. 6807 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 6808 6809 // Add operator candidates that are member functions. 6810 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 6811 6812 // Add candidates from ADL. 6813 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 6814 Args, 2, 6815 /*ExplicitTemplateArgs*/ 0, 6816 CandidateSet); 6817 6818 // Add builtin operator candidates. 6819 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 6820 6821 // Perform overload resolution. 6822 OverloadCandidateSet::iterator Best; 6823 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6824 case OR_Success: { 6825 // We found a built-in operator or an overloaded operator. 6826 FunctionDecl *FnDecl = Best->Function; 6827 6828 if (FnDecl) { 6829 // We matched an overloaded operator. Build a call to that 6830 // operator. 6831 6832 // Convert the arguments. 6833 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 6834 // Best->Access is only meaningful for class members. 6835 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 6836 6837 OwningExprResult Arg1 6838 = PerformCopyInitialization( 6839 InitializedEntity::InitializeParameter( 6840 FnDecl->getParamDecl(0)), 6841 SourceLocation(), 6842 Owned(Args[1])); 6843 if (Arg1.isInvalid()) 6844 return ExprError(); 6845 6846 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 6847 Best->FoundDecl, Method)) 6848 return ExprError(); 6849 6850 Args[1] = RHS = Arg1.takeAs<Expr>(); 6851 } else { 6852 // Convert the arguments. 6853 OwningExprResult Arg0 6854 = PerformCopyInitialization( 6855 InitializedEntity::InitializeParameter( 6856 FnDecl->getParamDecl(0)), 6857 SourceLocation(), 6858 Owned(Args[0])); 6859 if (Arg0.isInvalid()) 6860 return ExprError(); 6861 6862 OwningExprResult Arg1 6863 = PerformCopyInitialization( 6864 InitializedEntity::InitializeParameter( 6865 FnDecl->getParamDecl(1)), 6866 SourceLocation(), 6867 Owned(Args[1])); 6868 if (Arg1.isInvalid()) 6869 return ExprError(); 6870 Args[0] = LHS = Arg0.takeAs<Expr>(); 6871 Args[1] = RHS = Arg1.takeAs<Expr>(); 6872 } 6873 6874 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 6875 6876 // Determine the result type 6877 QualType ResultTy 6878 = FnDecl->getType()->getAs<FunctionType>() 6879 ->getCallResultType(Context); 6880 6881 // Build the actual expression node. 6882 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6883 OpLoc); 6884 UsualUnaryConversions(FnExpr); 6885 6886 ExprOwningPtr<CXXOperatorCallExpr> 6887 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 6888 Args, 2, ResultTy, 6889 OpLoc)); 6890 6891 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 6892 FnDecl)) 6893 return ExprError(); 6894 6895 return MaybeBindToTemporary(TheCall.release()); 6896 } else { 6897 // We matched a built-in operator. Convert the arguments, then 6898 // break out so that we will build the appropriate built-in 6899 // operator node. 6900 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 6901 Best->Conversions[0], AA_Passing) || 6902 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 6903 Best->Conversions[1], AA_Passing)) 6904 return ExprError(); 6905 6906 break; 6907 } 6908 } 6909 6910 case OR_No_Viable_Function: { 6911 // C++ [over.match.oper]p9: 6912 // If the operator is the operator , [...] and there are no 6913 // viable functions, then the operator is assumed to be the 6914 // built-in operator and interpreted according to clause 5. 6915 if (Opc == BinaryOperator::Comma) 6916 break; 6917 6918 // For class as left operand for assignment or compound assigment operator 6919 // do not fall through to handling in built-in, but report that no overloaded 6920 // assignment operator found 6921 OwningExprResult Result = ExprError(); 6922 if (Args[0]->getType()->isRecordType() && 6923 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 6924 Diag(OpLoc, diag::err_ovl_no_viable_oper) 6925 << BinaryOperator::getOpcodeStr(Opc) 6926 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6927 } else { 6928 // No viable function; try to create a built-in operation, which will 6929 // produce an error. Then, show the non-viable candidates. 6930 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6931 } 6932 assert(Result.isInvalid() && 6933 "C++ binary operator overloading is missing candidates!"); 6934 if (Result.isInvalid()) 6935 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 6936 BinaryOperator::getOpcodeStr(Opc), OpLoc); 6937 return move(Result); 6938 } 6939 6940 case OR_Ambiguous: 6941 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6942 << BinaryOperator::getOpcodeStr(Opc) 6943 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6944 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 6945 BinaryOperator::getOpcodeStr(Opc), OpLoc); 6946 return ExprError(); 6947 6948 case OR_Deleted: 6949 Diag(OpLoc, diag::err_ovl_deleted_oper) 6950 << Best->Function->isDeleted() 6951 << BinaryOperator::getOpcodeStr(Opc) 6952 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6953 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2); 6954 return ExprError(); 6955 } 6956 6957 // We matched a built-in operator; build it. 6958 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6959} 6960 6961Action::OwningExprResult 6962Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 6963 SourceLocation RLoc, 6964 ExprArg Base, ExprArg Idx) { 6965 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 6966 static_cast<Expr*>(Idx.get()) }; 6967 DeclarationName OpName = 6968 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 6969 6970 // If either side is type-dependent, create an appropriate dependent 6971 // expression. 6972 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 6973 6974 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6975 UnresolvedLookupExpr *Fn 6976 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6977 0, SourceRange(), OpName, LLoc, 6978 /*ADL*/ true, /*Overloaded*/ false, 6979 UnresolvedSetIterator(), 6980 UnresolvedSetIterator()); 6981 // Can't add any actual overloads yet 6982 6983 Base.release(); 6984 Idx.release(); 6985 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 6986 Args, 2, 6987 Context.DependentTy, 6988 RLoc)); 6989 } 6990 6991 // Build an empty overload set. 6992 OverloadCandidateSet CandidateSet(LLoc); 6993 6994 // Subscript can only be overloaded as a member function. 6995 6996 // Add operator candidates that are member functions. 6997 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 6998 6999 // Add builtin operator candidates. 7000 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 7001 7002 // Perform overload resolution. 7003 OverloadCandidateSet::iterator Best; 7004 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 7005 case OR_Success: { 7006 // We found a built-in operator or an overloaded operator. 7007 FunctionDecl *FnDecl = Best->Function; 7008 7009 if (FnDecl) { 7010 // We matched an overloaded operator. Build a call to that 7011 // operator. 7012 7013 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 7014 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 7015 7016 // Convert the arguments. 7017 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 7018 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 7019 Best->FoundDecl, Method)) 7020 return ExprError(); 7021 7022 // Convert the arguments. 7023 OwningExprResult InputInit 7024 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7025 FnDecl->getParamDecl(0)), 7026 SourceLocation(), 7027 Owned(Args[1])); 7028 if (InputInit.isInvalid()) 7029 return ExprError(); 7030 7031 Args[1] = InputInit.takeAs<Expr>(); 7032 7033 // Determine the result type 7034 QualType ResultTy 7035 = FnDecl->getType()->getAs<FunctionType>() 7036 ->getCallResultType(Context); 7037 7038 // Build the actual expression node. 7039 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 7040 LLoc); 7041 UsualUnaryConversions(FnExpr); 7042 7043 Base.release(); 7044 Idx.release(); 7045 ExprOwningPtr<CXXOperatorCallExpr> 7046 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 7047 FnExpr, Args, 2, 7048 ResultTy, RLoc)); 7049 7050 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 7051 FnDecl)) 7052 return ExprError(); 7053 7054 return MaybeBindToTemporary(TheCall.release()); 7055 } else { 7056 // We matched a built-in operator. Convert the arguments, then 7057 // break out so that we will build the appropriate built-in 7058 // operator node. 7059 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 7060 Best->Conversions[0], AA_Passing) || 7061 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 7062 Best->Conversions[1], AA_Passing)) 7063 return ExprError(); 7064 7065 break; 7066 } 7067 } 7068 7069 case OR_No_Viable_Function: { 7070 if (CandidateSet.empty()) 7071 Diag(LLoc, diag::err_ovl_no_oper) 7072 << Args[0]->getType() << /*subscript*/ 0 7073 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7074 else 7075 Diag(LLoc, diag::err_ovl_no_viable_subscript) 7076 << Args[0]->getType() 7077 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7078 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 7079 "[]", LLoc); 7080 return ExprError(); 7081 } 7082 7083 case OR_Ambiguous: 7084 Diag(LLoc, diag::err_ovl_ambiguous_oper) 7085 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7086 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 7087 "[]", LLoc); 7088 return ExprError(); 7089 7090 case OR_Deleted: 7091 Diag(LLoc, diag::err_ovl_deleted_oper) 7092 << Best->Function->isDeleted() << "[]" 7093 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7094 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 7095 "[]", LLoc); 7096 return ExprError(); 7097 } 7098 7099 // We matched a built-in operator; build it. 7100 Base.release(); 7101 Idx.release(); 7102 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 7103 Owned(Args[1]), RLoc); 7104} 7105 7106/// BuildCallToMemberFunction - Build a call to a member 7107/// function. MemExpr is the expression that refers to the member 7108/// function (and includes the object parameter), Args/NumArgs are the 7109/// arguments to the function call (not including the object 7110/// parameter). The caller needs to validate that the member 7111/// expression refers to a member function or an overloaded member 7112/// function. 7113Sema::OwningExprResult 7114Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 7115 SourceLocation LParenLoc, Expr **Args, 7116 unsigned NumArgs, SourceLocation *CommaLocs, 7117 SourceLocation RParenLoc) { 7118 // Dig out the member expression. This holds both the object 7119 // argument and the member function we're referring to. 7120 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 7121 7122 MemberExpr *MemExpr; 7123 CXXMethodDecl *Method = 0; 7124 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 7125 NestedNameSpecifier *Qualifier = 0; 7126 if (isa<MemberExpr>(NakedMemExpr)) { 7127 MemExpr = cast<MemberExpr>(NakedMemExpr); 7128 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 7129 FoundDecl = MemExpr->getFoundDecl(); 7130 Qualifier = MemExpr->getQualifier(); 7131 } else { 7132 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 7133 Qualifier = UnresExpr->getQualifier(); 7134 7135 QualType ObjectType = UnresExpr->getBaseType(); 7136 7137 // Add overload candidates 7138 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 7139 7140 // FIXME: avoid copy. 7141 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7142 if (UnresExpr->hasExplicitTemplateArgs()) { 7143 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 7144 TemplateArgs = &TemplateArgsBuffer; 7145 } 7146 7147 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 7148 E = UnresExpr->decls_end(); I != E; ++I) { 7149 7150 NamedDecl *Func = *I; 7151 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 7152 if (isa<UsingShadowDecl>(Func)) 7153 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 7154 7155 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 7156 // If explicit template arguments were provided, we can't call a 7157 // non-template member function. 7158 if (TemplateArgs) 7159 continue; 7160 7161 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 7162 Args, NumArgs, 7163 CandidateSet, /*SuppressUserConversions=*/false); 7164 } else { 7165 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 7166 I.getPair(), ActingDC, TemplateArgs, 7167 ObjectType, Args, NumArgs, 7168 CandidateSet, 7169 /*SuppressUsedConversions=*/false); 7170 } 7171 } 7172 7173 DeclarationName DeclName = UnresExpr->getMemberName(); 7174 7175 OverloadCandidateSet::iterator Best; 7176 switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { 7177 case OR_Success: 7178 Method = cast<CXXMethodDecl>(Best->Function); 7179 FoundDecl = Best->FoundDecl; 7180 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 7181 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 7182 break; 7183 7184 case OR_No_Viable_Function: 7185 Diag(UnresExpr->getMemberLoc(), 7186 diag::err_ovl_no_viable_member_function_in_call) 7187 << DeclName << MemExprE->getSourceRange(); 7188 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7189 // FIXME: Leaking incoming expressions! 7190 return ExprError(); 7191 7192 case OR_Ambiguous: 7193 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 7194 << DeclName << MemExprE->getSourceRange(); 7195 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7196 // FIXME: Leaking incoming expressions! 7197 return ExprError(); 7198 7199 case OR_Deleted: 7200 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 7201 << Best->Function->isDeleted() 7202 << DeclName << MemExprE->getSourceRange(); 7203 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7204 // FIXME: Leaking incoming expressions! 7205 return ExprError(); 7206 } 7207 7208 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 7209 7210 // If overload resolution picked a static member, build a 7211 // non-member call based on that function. 7212 if (Method->isStatic()) { 7213 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 7214 Args, NumArgs, RParenLoc); 7215 } 7216 7217 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 7218 } 7219 7220 assert(Method && "Member call to something that isn't a method?"); 7221 ExprOwningPtr<CXXMemberCallExpr> 7222 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args, 7223 NumArgs, 7224 Method->getCallResultType(), 7225 RParenLoc)); 7226 7227 // Check for a valid return type. 7228 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 7229 TheCall.get(), Method)) 7230 return ExprError(); 7231 7232 // Convert the object argument (for a non-static member function call). 7233 // We only need to do this if there was actually an overload; otherwise 7234 // it was done at lookup. 7235 Expr *ObjectArg = MemExpr->getBase(); 7236 if (!Method->isStatic() && 7237 PerformObjectArgumentInitialization(ObjectArg, Qualifier, 7238 FoundDecl, Method)) 7239 return ExprError(); 7240 MemExpr->setBase(ObjectArg); 7241 7242 // Convert the rest of the arguments 7243 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 7244 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 7245 RParenLoc)) 7246 return ExprError(); 7247 7248 if (CheckFunctionCall(Method, TheCall.get())) 7249 return ExprError(); 7250 7251 return MaybeBindToTemporary(TheCall.release()); 7252} 7253 7254/// BuildCallToObjectOfClassType - Build a call to an object of class 7255/// type (C++ [over.call.object]), which can end up invoking an 7256/// overloaded function call operator (@c operator()) or performing a 7257/// user-defined conversion on the object argument. 7258Sema::ExprResult 7259Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 7260 SourceLocation LParenLoc, 7261 Expr **Args, unsigned NumArgs, 7262 SourceLocation *CommaLocs, 7263 SourceLocation RParenLoc) { 7264 assert(Object->getType()->isRecordType() && "Requires object type argument"); 7265 const RecordType *Record = Object->getType()->getAs<RecordType>(); 7266 7267 // C++ [over.call.object]p1: 7268 // If the primary-expression E in the function call syntax 7269 // evaluates to a class object of type "cv T", then the set of 7270 // candidate functions includes at least the function call 7271 // operators of T. The function call operators of T are obtained by 7272 // ordinary lookup of the name operator() in the context of 7273 // (E).operator(). 7274 OverloadCandidateSet CandidateSet(LParenLoc); 7275 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 7276 7277 if (RequireCompleteType(LParenLoc, Object->getType(), 7278 PDiag(diag::err_incomplete_object_call) 7279 << Object->getSourceRange())) 7280 return true; 7281 7282 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 7283 LookupQualifiedName(R, Record->getDecl()); 7284 R.suppressDiagnostics(); 7285 7286 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7287 Oper != OperEnd; ++Oper) { 7288 AddMethodCandidate(Oper.getPair(), Object->getType(), 7289 Args, NumArgs, CandidateSet, 7290 /*SuppressUserConversions=*/ false); 7291 } 7292 7293 // C++ [over.call.object]p2: 7294 // In addition, for each conversion function declared in T of the 7295 // form 7296 // 7297 // operator conversion-type-id () cv-qualifier; 7298 // 7299 // where cv-qualifier is the same cv-qualification as, or a 7300 // greater cv-qualification than, cv, and where conversion-type-id 7301 // denotes the type "pointer to function of (P1,...,Pn) returning 7302 // R", or the type "reference to pointer to function of 7303 // (P1,...,Pn) returning R", or the type "reference to function 7304 // of (P1,...,Pn) returning R", a surrogate call function [...] 7305 // is also considered as a candidate function. Similarly, 7306 // surrogate call functions are added to the set of candidate 7307 // functions for each conversion function declared in an 7308 // accessible base class provided the function is not hidden 7309 // within T by another intervening declaration. 7310 const UnresolvedSetImpl *Conversions 7311 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 7312 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 7313 E = Conversions->end(); I != E; ++I) { 7314 NamedDecl *D = *I; 7315 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 7316 if (isa<UsingShadowDecl>(D)) 7317 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 7318 7319 // Skip over templated conversion functions; they aren't 7320 // surrogates. 7321 if (isa<FunctionTemplateDecl>(D)) 7322 continue; 7323 7324 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 7325 7326 // Strip the reference type (if any) and then the pointer type (if 7327 // any) to get down to what might be a function type. 7328 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 7329 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 7330 ConvType = ConvPtrType->getPointeeType(); 7331 7332 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 7333 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 7334 Object->getType(), Args, NumArgs, 7335 CandidateSet); 7336 } 7337 7338 // Perform overload resolution. 7339 OverloadCandidateSet::iterator Best; 7340 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 7341 case OR_Success: 7342 // Overload resolution succeeded; we'll build the appropriate call 7343 // below. 7344 break; 7345 7346 case OR_No_Viable_Function: 7347 if (CandidateSet.empty()) 7348 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 7349 << Object->getType() << /*call*/ 1 7350 << Object->getSourceRange(); 7351 else 7352 Diag(Object->getSourceRange().getBegin(), 7353 diag::err_ovl_no_viable_object_call) 7354 << Object->getType() << Object->getSourceRange(); 7355 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7356 break; 7357 7358 case OR_Ambiguous: 7359 Diag(Object->getSourceRange().getBegin(), 7360 diag::err_ovl_ambiguous_object_call) 7361 << Object->getType() << Object->getSourceRange(); 7362 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 7363 break; 7364 7365 case OR_Deleted: 7366 Diag(Object->getSourceRange().getBegin(), 7367 diag::err_ovl_deleted_object_call) 7368 << Best->Function->isDeleted() 7369 << Object->getType() << Object->getSourceRange(); 7370 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7371 break; 7372 } 7373 7374 if (Best == CandidateSet.end()) { 7375 // We had an error; delete all of the subexpressions and return 7376 // the error. 7377 Object->Destroy(Context); 7378 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7379 Args[ArgIdx]->Destroy(Context); 7380 return true; 7381 } 7382 7383 if (Best->Function == 0) { 7384 // Since there is no function declaration, this is one of the 7385 // surrogate candidates. Dig out the conversion function. 7386 CXXConversionDecl *Conv 7387 = cast<CXXConversionDecl>( 7388 Best->Conversions[0].UserDefined.ConversionFunction); 7389 7390 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7391 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7392 7393 // We selected one of the surrogate functions that converts the 7394 // object parameter to a function pointer. Perform the conversion 7395 // on the object argument, then let ActOnCallExpr finish the job. 7396 7397 // Create an implicit member expr to refer to the conversion operator. 7398 // and then call it. 7399 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl, 7400 Conv); 7401 7402 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 7403 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 7404 CommaLocs, RParenLoc).result(); 7405 } 7406 7407 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7408 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7409 7410 // We found an overloaded operator(). Build a CXXOperatorCallExpr 7411 // that calls this method, using Object for the implicit object 7412 // parameter and passing along the remaining arguments. 7413 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7414 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 7415 7416 unsigned NumArgsInProto = Proto->getNumArgs(); 7417 unsigned NumArgsToCheck = NumArgs; 7418 7419 // Build the full argument list for the method call (the 7420 // implicit object parameter is placed at the beginning of the 7421 // list). 7422 Expr **MethodArgs; 7423 if (NumArgs < NumArgsInProto) { 7424 NumArgsToCheck = NumArgsInProto; 7425 MethodArgs = new Expr*[NumArgsInProto + 1]; 7426 } else { 7427 MethodArgs = new Expr*[NumArgs + 1]; 7428 } 7429 MethodArgs[0] = Object; 7430 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7431 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 7432 7433 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 7434 SourceLocation()); 7435 UsualUnaryConversions(NewFn); 7436 7437 // Once we've built TheCall, all of the expressions are properly 7438 // owned. 7439 QualType ResultTy = Method->getCallResultType(); 7440 ExprOwningPtr<CXXOperatorCallExpr> 7441 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 7442 MethodArgs, NumArgs + 1, 7443 ResultTy, RParenLoc)); 7444 delete [] MethodArgs; 7445 7446 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 7447 Method)) 7448 return true; 7449 7450 // We may have default arguments. If so, we need to allocate more 7451 // slots in the call for them. 7452 if (NumArgs < NumArgsInProto) 7453 TheCall->setNumArgs(Context, NumArgsInProto + 1); 7454 else if (NumArgs > NumArgsInProto) 7455 NumArgsToCheck = NumArgsInProto; 7456 7457 bool IsError = false; 7458 7459 // Initialize the implicit object parameter. 7460 IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, 7461 Best->FoundDecl, Method); 7462 TheCall->setArg(0, Object); 7463 7464 7465 // Check the argument types. 7466 for (unsigned i = 0; i != NumArgsToCheck; i++) { 7467 Expr *Arg; 7468 if (i < NumArgs) { 7469 Arg = Args[i]; 7470 7471 // Pass the argument. 7472 7473 OwningExprResult InputInit 7474 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7475 Method->getParamDecl(i)), 7476 SourceLocation(), Owned(Arg)); 7477 7478 IsError |= InputInit.isInvalid(); 7479 Arg = InputInit.takeAs<Expr>(); 7480 } else { 7481 OwningExprResult DefArg 7482 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 7483 if (DefArg.isInvalid()) { 7484 IsError = true; 7485 break; 7486 } 7487 7488 Arg = DefArg.takeAs<Expr>(); 7489 } 7490 7491 TheCall->setArg(i + 1, Arg); 7492 } 7493 7494 // If this is a variadic call, handle args passed through "...". 7495 if (Proto->isVariadic()) { 7496 // Promote the arguments (C99 6.5.2.2p7). 7497 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 7498 Expr *Arg = Args[i]; 7499 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0); 7500 TheCall->setArg(i + 1, Arg); 7501 } 7502 } 7503 7504 if (IsError) return true; 7505 7506 if (CheckFunctionCall(Method, TheCall.get())) 7507 return true; 7508 7509 return MaybeBindToTemporary(TheCall.release()).result(); 7510} 7511 7512/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 7513/// (if one exists), where @c Base is an expression of class type and 7514/// @c Member is the name of the member we're trying to find. 7515Sema::OwningExprResult 7516Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 7517 Expr *Base = static_cast<Expr *>(BaseIn.get()); 7518 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 7519 7520 SourceLocation Loc = Base->getExprLoc(); 7521 7522 // C++ [over.ref]p1: 7523 // 7524 // [...] An expression x->m is interpreted as (x.operator->())->m 7525 // for a class object x of type T if T::operator->() exists and if 7526 // the operator is selected as the best match function by the 7527 // overload resolution mechanism (13.3). 7528 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 7529 OverloadCandidateSet CandidateSet(Loc); 7530 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 7531 7532 if (RequireCompleteType(Loc, Base->getType(), 7533 PDiag(diag::err_typecheck_incomplete_tag) 7534 << Base->getSourceRange())) 7535 return ExprError(); 7536 7537 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 7538 LookupQualifiedName(R, BaseRecord->getDecl()); 7539 R.suppressDiagnostics(); 7540 7541 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7542 Oper != OperEnd; ++Oper) { 7543 AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet, 7544 /*SuppressUserConversions=*/false); 7545 } 7546 7547 // Perform overload resolution. 7548 OverloadCandidateSet::iterator Best; 7549 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 7550 case OR_Success: 7551 // Overload resolution succeeded; we'll build the call below. 7552 break; 7553 7554 case OR_No_Viable_Function: 7555 if (CandidateSet.empty()) 7556 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7557 << Base->getType() << Base->getSourceRange(); 7558 else 7559 Diag(OpLoc, diag::err_ovl_no_viable_oper) 7560 << "operator->" << Base->getSourceRange(); 7561 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 7562 return ExprError(); 7563 7564 case OR_Ambiguous: 7565 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 7566 << "->" << Base->getSourceRange(); 7567 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1); 7568 return ExprError(); 7569 7570 case OR_Deleted: 7571 Diag(OpLoc, diag::err_ovl_deleted_oper) 7572 << Best->Function->isDeleted() 7573 << "->" << Base->getSourceRange(); 7574 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 7575 return ExprError(); 7576 } 7577 7578 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 7579 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7580 7581 // Convert the object parameter. 7582 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7583 if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 7584 Best->FoundDecl, Method)) 7585 return ExprError(); 7586 7587 // No concerns about early exits now. 7588 BaseIn.release(); 7589 7590 // Build the operator call. 7591 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 7592 SourceLocation()); 7593 UsualUnaryConversions(FnExpr); 7594 7595 QualType ResultTy = Method->getCallResultType(); 7596 ExprOwningPtr<CXXOperatorCallExpr> 7597 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 7598 &Base, 1, ResultTy, OpLoc)); 7599 7600 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 7601 Method)) 7602 return ExprError(); 7603 return move(TheCall); 7604} 7605 7606/// FixOverloadedFunctionReference - E is an expression that refers to 7607/// a C++ overloaded function (possibly with some parentheses and 7608/// perhaps a '&' around it). We have resolved the overloaded function 7609/// to the function declaration Fn, so patch up the expression E to 7610/// refer (possibly indirectly) to Fn. Returns the new expr. 7611Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 7612 FunctionDecl *Fn) { 7613 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7614 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 7615 Found, Fn); 7616 if (SubExpr == PE->getSubExpr()) 7617 return PE->Retain(); 7618 7619 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 7620 } 7621 7622 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 7623 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 7624 Found, Fn); 7625 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 7626 SubExpr->getType()) && 7627 "Implicit cast type cannot be determined from overload"); 7628 if (SubExpr == ICE->getSubExpr()) 7629 return ICE->Retain(); 7630 7631 return new (Context) ImplicitCastExpr(ICE->getType(), 7632 ICE->getCastKind(), 7633 SubExpr, CXXBaseSpecifierArray(), 7634 ICE->isLvalueCast()); 7635 } 7636 7637 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 7638 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 7639 "Can only take the address of an overloaded function"); 7640 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7641 if (Method->isStatic()) { 7642 // Do nothing: static member functions aren't any different 7643 // from non-member functions. 7644 } else { 7645 // Fix the sub expression, which really has to be an 7646 // UnresolvedLookupExpr holding an overloaded member function 7647 // or template. 7648 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7649 Found, Fn); 7650 if (SubExpr == UnOp->getSubExpr()) 7651 return UnOp->Retain(); 7652 7653 assert(isa<DeclRefExpr>(SubExpr) 7654 && "fixed to something other than a decl ref"); 7655 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 7656 && "fixed to a member ref with no nested name qualifier"); 7657 7658 // We have taken the address of a pointer to member 7659 // function. Perform the computation here so that we get the 7660 // appropriate pointer to member type. 7661 QualType ClassType 7662 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 7663 QualType MemPtrType 7664 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 7665 7666 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 7667 MemPtrType, UnOp->getOperatorLoc()); 7668 } 7669 } 7670 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7671 Found, Fn); 7672 if (SubExpr == UnOp->getSubExpr()) 7673 return UnOp->Retain(); 7674 7675 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 7676 Context.getPointerType(SubExpr->getType()), 7677 UnOp->getOperatorLoc()); 7678 } 7679 7680 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 7681 // FIXME: avoid copy. 7682 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7683 if (ULE->hasExplicitTemplateArgs()) { 7684 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 7685 TemplateArgs = &TemplateArgsBuffer; 7686 } 7687 7688 return DeclRefExpr::Create(Context, 7689 ULE->getQualifier(), 7690 ULE->getQualifierRange(), 7691 Fn, 7692 ULE->getNameLoc(), 7693 Fn->getType(), 7694 TemplateArgs); 7695 } 7696 7697 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 7698 // FIXME: avoid copy. 7699 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7700 if (MemExpr->hasExplicitTemplateArgs()) { 7701 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 7702 TemplateArgs = &TemplateArgsBuffer; 7703 } 7704 7705 Expr *Base; 7706 7707 // If we're filling in 7708 if (MemExpr->isImplicitAccess()) { 7709 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 7710 return DeclRefExpr::Create(Context, 7711 MemExpr->getQualifier(), 7712 MemExpr->getQualifierRange(), 7713 Fn, 7714 MemExpr->getMemberLoc(), 7715 Fn->getType(), 7716 TemplateArgs); 7717 } else { 7718 SourceLocation Loc = MemExpr->getMemberLoc(); 7719 if (MemExpr->getQualifier()) 7720 Loc = MemExpr->getQualifierRange().getBegin(); 7721 Base = new (Context) CXXThisExpr(Loc, 7722 MemExpr->getBaseType(), 7723 /*isImplicit=*/true); 7724 } 7725 } else 7726 Base = MemExpr->getBase()->Retain(); 7727 7728 return MemberExpr::Create(Context, Base, 7729 MemExpr->isArrow(), 7730 MemExpr->getQualifier(), 7731 MemExpr->getQualifierRange(), 7732 Fn, 7733 Found, 7734 MemExpr->getMemberLoc(), 7735 TemplateArgs, 7736 Fn->getType()); 7737 } 7738 7739 assert(false && "Invalid reference to overloaded function"); 7740 return E->Retain(); 7741} 7742 7743Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E, 7744 DeclAccessPair Found, 7745 FunctionDecl *Fn) { 7746 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 7747} 7748 7749} // end namespace clang 7750