SemaOverload.cpp revision 578b69b186d9cba0a6ae1dd7f4c04cd6a49f0aac
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "clang/Basic/Diagnostic.h" 17#include "clang/Lex/Preprocessor.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/CXXInheritance.h" 20#include "clang/AST/Expr.h" 21#include "clang/AST/ExprCXX.h" 22#include "clang/AST/TypeOrdering.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/SmallPtrSet.h" 25#include "llvm/ADT/STLExtras.h" 26#include <algorithm> 27#include <cstdio> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Identity, 42 ICC_Qualification_Adjustment, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Promotion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion, 55 ICC_Conversion 56 }; 57 return Category[(int)Kind]; 58} 59 60/// GetConversionRank - Retrieve the implicit conversion rank 61/// corresponding to the given implicit conversion kind. 62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 63 static const ImplicitConversionRank 64 Rank[(int)ICK_Num_Conversion_Kinds] = { 65 ICR_Exact_Match, 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Exact_Match, 70 ICR_Exact_Match, 71 ICR_Promotion, 72 ICR_Promotion, 73 ICR_Promotion, 74 ICR_Conversion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion, 82 ICR_Conversion, 83 ICR_Conversion 84 }; 85 return Rank[(int)Kind]; 86} 87 88/// GetImplicitConversionName - Return the name of this kind of 89/// implicit conversion. 90const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 91 static const char* Name[(int)ICK_Num_Conversion_Kinds] = { 92 "No conversion", 93 "Lvalue-to-rvalue", 94 "Array-to-pointer", 95 "Function-to-pointer", 96 "Noreturn adjustment", 97 "Qualification", 98 "Integral promotion", 99 "Floating point promotion", 100 "Complex promotion", 101 "Integral conversion", 102 "Floating conversion", 103 "Complex conversion", 104 "Floating-integral conversion", 105 "Complex-real conversion", 106 "Pointer conversion", 107 "Pointer-to-member conversion", 108 "Boolean conversion", 109 "Compatible-types conversion", 110 "Derived-to-base conversion" 111 }; 112 return Name[Kind]; 113} 114 115/// StandardConversionSequence - Set the standard conversion 116/// sequence to the identity conversion. 117void StandardConversionSequence::setAsIdentityConversion() { 118 First = ICK_Identity; 119 Second = ICK_Identity; 120 Third = ICK_Identity; 121 Deprecated = false; 122 ReferenceBinding = false; 123 DirectBinding = false; 124 RRefBinding = false; 125 CopyConstructor = 0; 126} 127 128/// getRank - Retrieve the rank of this standard conversion sequence 129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 130/// implicit conversions. 131ImplicitConversionRank StandardConversionSequence::getRank() const { 132 ImplicitConversionRank Rank = ICR_Exact_Match; 133 if (GetConversionRank(First) > Rank) 134 Rank = GetConversionRank(First); 135 if (GetConversionRank(Second) > Rank) 136 Rank = GetConversionRank(Second); 137 if (GetConversionRank(Third) > Rank) 138 Rank = GetConversionRank(Third); 139 return Rank; 140} 141 142/// isPointerConversionToBool - Determines whether this conversion is 143/// a conversion of a pointer or pointer-to-member to bool. This is 144/// used as part of the ranking of standard conversion sequences 145/// (C++ 13.3.3.2p4). 146bool StandardConversionSequence::isPointerConversionToBool() const { 147 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 148 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 149 150 // Note that FromType has not necessarily been transformed by the 151 // array-to-pointer or function-to-pointer implicit conversions, so 152 // check for their presence as well as checking whether FromType is 153 // a pointer. 154 if (ToType->isBooleanType() && 155 (FromType->isPointerType() || FromType->isBlockPointerType() || 156 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 157 return true; 158 159 return false; 160} 161 162/// isPointerConversionToVoidPointer - Determines whether this 163/// conversion is a conversion of a pointer to a void pointer. This is 164/// used as part of the ranking of standard conversion sequences (C++ 165/// 13.3.3.2p4). 166bool 167StandardConversionSequence:: 168isPointerConversionToVoidPointer(ASTContext& Context) const { 169 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 170 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 171 172 // Note that FromType has not necessarily been transformed by the 173 // array-to-pointer implicit conversion, so check for its presence 174 // and redo the conversion to get a pointer. 175 if (First == ICK_Array_To_Pointer) 176 FromType = Context.getArrayDecayedType(FromType); 177 178 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 179 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 180 return ToPtrType->getPointeeType()->isVoidType(); 181 182 return false; 183} 184 185/// DebugPrint - Print this standard conversion sequence to standard 186/// error. Useful for debugging overloading issues. 187void StandardConversionSequence::DebugPrint() const { 188 bool PrintedSomething = false; 189 if (First != ICK_Identity) { 190 fprintf(stderr, "%s", GetImplicitConversionName(First)); 191 PrintedSomething = true; 192 } 193 194 if (Second != ICK_Identity) { 195 if (PrintedSomething) { 196 fprintf(stderr, " -> "); 197 } 198 fprintf(stderr, "%s", GetImplicitConversionName(Second)); 199 200 if (CopyConstructor) { 201 fprintf(stderr, " (by copy constructor)"); 202 } else if (DirectBinding) { 203 fprintf(stderr, " (direct reference binding)"); 204 } else if (ReferenceBinding) { 205 fprintf(stderr, " (reference binding)"); 206 } 207 PrintedSomething = true; 208 } 209 210 if (Third != ICK_Identity) { 211 if (PrintedSomething) { 212 fprintf(stderr, " -> "); 213 } 214 fprintf(stderr, "%s", GetImplicitConversionName(Third)); 215 PrintedSomething = true; 216 } 217 218 if (!PrintedSomething) { 219 fprintf(stderr, "No conversions required"); 220 } 221} 222 223/// DebugPrint - Print this user-defined conversion sequence to standard 224/// error. Useful for debugging overloading issues. 225void UserDefinedConversionSequence::DebugPrint() const { 226 if (Before.First || Before.Second || Before.Third) { 227 Before.DebugPrint(); 228 fprintf(stderr, " -> "); 229 } 230 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); 231 if (After.First || After.Second || After.Third) { 232 fprintf(stderr, " -> "); 233 After.DebugPrint(); 234 } 235} 236 237/// DebugPrint - Print this implicit conversion sequence to standard 238/// error. Useful for debugging overloading issues. 239void ImplicitConversionSequence::DebugPrint() const { 240 switch (ConversionKind) { 241 case StandardConversion: 242 fprintf(stderr, "Standard conversion: "); 243 Standard.DebugPrint(); 244 break; 245 case UserDefinedConversion: 246 fprintf(stderr, "User-defined conversion: "); 247 UserDefined.DebugPrint(); 248 break; 249 case EllipsisConversion: 250 fprintf(stderr, "Ellipsis conversion"); 251 break; 252 case BadConversion: 253 fprintf(stderr, "Bad conversion"); 254 break; 255 } 256 257 fprintf(stderr, "\n"); 258} 259 260// IsOverload - Determine whether the given New declaration is an 261// overload of the declarations in Old. This routine returns false if 262// New and Old cannot be overloaded, e.g., if New has the same 263// signature as some function in Old (C++ 1.3.10) or if the Old 264// declarations aren't functions (or function templates) at all. When 265// it does return false, MatchedDecl will point to the decl that New 266// cannot be overloaded with. This decl may be a UsingShadowDecl on 267// top of the underlying declaration. 268// 269// Example: Given the following input: 270// 271// void f(int, float); // #1 272// void f(int, int); // #2 273// int f(int, int); // #3 274// 275// When we process #1, there is no previous declaration of "f", 276// so IsOverload will not be used. 277// 278// When we process #2, Old contains only the FunctionDecl for #1. By 279// comparing the parameter types, we see that #1 and #2 are overloaded 280// (since they have different signatures), so this routine returns 281// false; MatchedDecl is unchanged. 282// 283// When we process #3, Old is an overload set containing #1 and #2. We 284// compare the signatures of #3 to #1 (they're overloaded, so we do 285// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 286// identical (return types of functions are not part of the 287// signature), IsOverload returns false and MatchedDecl will be set to 288// point to the FunctionDecl for #2. 289Sema::OverloadKind 290Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old, 291 NamedDecl *&Match) { 292 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 293 I != E; ++I) { 294 NamedDecl *OldD = (*I)->getUnderlyingDecl(); 295 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 296 if (!IsOverload(New, OldT->getTemplatedDecl())) { 297 Match = *I; 298 return Ovl_Match; 299 } 300 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 301 if (!IsOverload(New, OldF)) { 302 Match = *I; 303 return Ovl_Match; 304 } 305 } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { 306 // We can overload with these, which can show up when doing 307 // redeclaration checks for UsingDecls. 308 assert(Old.getLookupKind() == LookupUsingDeclName); 309 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 310 // Optimistically assume that an unresolved using decl will 311 // overload; if it doesn't, we'll have to diagnose during 312 // template instantiation. 313 } else { 314 // (C++ 13p1): 315 // Only function declarations can be overloaded; object and type 316 // declarations cannot be overloaded. 317 Match = *I; 318 return Ovl_NonFunction; 319 } 320 } 321 322 return Ovl_Overload; 323} 324 325bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) { 326 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 327 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 328 329 // C++ [temp.fct]p2: 330 // A function template can be overloaded with other function templates 331 // and with normal (non-template) functions. 332 if ((OldTemplate == 0) != (NewTemplate == 0)) 333 return true; 334 335 // Is the function New an overload of the function Old? 336 QualType OldQType = Context.getCanonicalType(Old->getType()); 337 QualType NewQType = Context.getCanonicalType(New->getType()); 338 339 // Compare the signatures (C++ 1.3.10) of the two functions to 340 // determine whether they are overloads. If we find any mismatch 341 // in the signature, they are overloads. 342 343 // If either of these functions is a K&R-style function (no 344 // prototype), then we consider them to have matching signatures. 345 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 346 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 347 return false; 348 349 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 350 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 351 352 // The signature of a function includes the types of its 353 // parameters (C++ 1.3.10), which includes the presence or absence 354 // of the ellipsis; see C++ DR 357). 355 if (OldQType != NewQType && 356 (OldType->getNumArgs() != NewType->getNumArgs() || 357 OldType->isVariadic() != NewType->isVariadic() || 358 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 359 NewType->arg_type_begin()))) 360 return true; 361 362 // C++ [temp.over.link]p4: 363 // The signature of a function template consists of its function 364 // signature, its return type and its template parameter list. The names 365 // of the template parameters are significant only for establishing the 366 // relationship between the template parameters and the rest of the 367 // signature. 368 // 369 // We check the return type and template parameter lists for function 370 // templates first; the remaining checks follow. 371 if (NewTemplate && 372 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 373 OldTemplate->getTemplateParameters(), 374 false, TPL_TemplateMatch) || 375 OldType->getResultType() != NewType->getResultType())) 376 return true; 377 378 // If the function is a class member, its signature includes the 379 // cv-qualifiers (if any) on the function itself. 380 // 381 // As part of this, also check whether one of the member functions 382 // is static, in which case they are not overloads (C++ 383 // 13.1p2). While not part of the definition of the signature, 384 // this check is important to determine whether these functions 385 // can be overloaded. 386 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 387 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 388 if (OldMethod && NewMethod && 389 !OldMethod->isStatic() && !NewMethod->isStatic() && 390 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 391 return true; 392 393 // The signatures match; this is not an overload. 394 return false; 395} 396 397/// TryImplicitConversion - Attempt to perform an implicit conversion 398/// from the given expression (Expr) to the given type (ToType). This 399/// function returns an implicit conversion sequence that can be used 400/// to perform the initialization. Given 401/// 402/// void f(float f); 403/// void g(int i) { f(i); } 404/// 405/// this routine would produce an implicit conversion sequence to 406/// describe the initialization of f from i, which will be a standard 407/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 408/// 4.1) followed by a floating-integral conversion (C++ 4.9). 409// 410/// Note that this routine only determines how the conversion can be 411/// performed; it does not actually perform the conversion. As such, 412/// it will not produce any diagnostics if no conversion is available, 413/// but will instead return an implicit conversion sequence of kind 414/// "BadConversion". 415/// 416/// If @p SuppressUserConversions, then user-defined conversions are 417/// not permitted. 418/// If @p AllowExplicit, then explicit user-defined conversions are 419/// permitted. 420/// If @p ForceRValue, then overloading is performed as if From was an rvalue, 421/// no matter its actual lvalueness. 422/// If @p UserCast, the implicit conversion is being done for a user-specified 423/// cast. 424ImplicitConversionSequence 425Sema::TryImplicitConversion(Expr* From, QualType ToType, 426 bool SuppressUserConversions, 427 bool AllowExplicit, bool ForceRValue, 428 bool InOverloadResolution, 429 bool UserCast) { 430 ImplicitConversionSequence ICS; 431 OverloadCandidateSet Conversions; 432 OverloadingResult UserDefResult = OR_Success; 433 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) 434 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 435 else if (getLangOptions().CPlusPlus && 436 (UserDefResult = IsUserDefinedConversion(From, ToType, 437 ICS.UserDefined, 438 Conversions, 439 !SuppressUserConversions, AllowExplicit, 440 ForceRValue, UserCast)) == OR_Success) { 441 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; 442 // C++ [over.ics.user]p4: 443 // A conversion of an expression of class type to the same class 444 // type is given Exact Match rank, and a conversion of an 445 // expression of class type to a base class of that type is 446 // given Conversion rank, in spite of the fact that a copy 447 // constructor (i.e., a user-defined conversion function) is 448 // called for those cases. 449 if (CXXConstructorDecl *Constructor 450 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 451 QualType FromCanon 452 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 453 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 454 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 455 // Turn this into a "standard" conversion sequence, so that it 456 // gets ranked with standard conversion sequences. 457 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 458 ICS.Standard.setAsIdentityConversion(); 459 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); 460 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); 461 ICS.Standard.CopyConstructor = Constructor; 462 if (ToCanon != FromCanon) 463 ICS.Standard.Second = ICK_Derived_To_Base; 464 } 465 } 466 467 // C++ [over.best.ics]p4: 468 // However, when considering the argument of a user-defined 469 // conversion function that is a candidate by 13.3.1.3 when 470 // invoked for the copying of the temporary in the second step 471 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 472 // 13.3.1.6 in all cases, only standard conversion sequences and 473 // ellipsis conversion sequences are allowed. 474 if (SuppressUserConversions && 475 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) 476 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 477 } else { 478 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 479 if (UserDefResult == OR_Ambiguous) { 480 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 481 Cand != Conversions.end(); ++Cand) 482 if (Cand->Viable) 483 ICS.ConversionFunctionSet.push_back(Cand->Function); 484 } 485 } 486 487 return ICS; 488} 489 490/// \brief Determine whether the conversion from FromType to ToType is a valid 491/// conversion that strips "noreturn" off the nested function type. 492static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 493 QualType ToType, QualType &ResultTy) { 494 if (Context.hasSameUnqualifiedType(FromType, ToType)) 495 return false; 496 497 // Strip the noreturn off the type we're converting from; noreturn can 498 // safely be removed. 499 FromType = Context.getNoReturnType(FromType, false); 500 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 501 return false; 502 503 ResultTy = FromType; 504 return true; 505} 506 507/// IsStandardConversion - Determines whether there is a standard 508/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 509/// expression From to the type ToType. Standard conversion sequences 510/// only consider non-class types; for conversions that involve class 511/// types, use TryImplicitConversion. If a conversion exists, SCS will 512/// contain the standard conversion sequence required to perform this 513/// conversion and this routine will return true. Otherwise, this 514/// routine will return false and the value of SCS is unspecified. 515bool 516Sema::IsStandardConversion(Expr* From, QualType ToType, 517 bool InOverloadResolution, 518 StandardConversionSequence &SCS) { 519 QualType FromType = From->getType(); 520 521 // Standard conversions (C++ [conv]) 522 SCS.setAsIdentityConversion(); 523 SCS.Deprecated = false; 524 SCS.IncompatibleObjC = false; 525 SCS.FromTypePtr = FromType.getAsOpaquePtr(); 526 SCS.CopyConstructor = 0; 527 528 // There are no standard conversions for class types in C++, so 529 // abort early. When overloading in C, however, we do permit 530 if (FromType->isRecordType() || ToType->isRecordType()) { 531 if (getLangOptions().CPlusPlus) 532 return false; 533 534 // When we're overloading in C, we allow, as standard conversions, 535 } 536 537 // The first conversion can be an lvalue-to-rvalue conversion, 538 // array-to-pointer conversion, or function-to-pointer conversion 539 // (C++ 4p1). 540 541 // Lvalue-to-rvalue conversion (C++ 4.1): 542 // An lvalue (3.10) of a non-function, non-array type T can be 543 // converted to an rvalue. 544 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 545 if (argIsLvalue == Expr::LV_Valid && 546 !FromType->isFunctionType() && !FromType->isArrayType() && 547 Context.getCanonicalType(FromType) != Context.OverloadTy) { 548 SCS.First = ICK_Lvalue_To_Rvalue; 549 550 // If T is a non-class type, the type of the rvalue is the 551 // cv-unqualified version of T. Otherwise, the type of the rvalue 552 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 553 // just strip the qualifiers because they don't matter. 554 FromType = FromType.getUnqualifiedType(); 555 } else if (FromType->isArrayType()) { 556 // Array-to-pointer conversion (C++ 4.2) 557 SCS.First = ICK_Array_To_Pointer; 558 559 // An lvalue or rvalue of type "array of N T" or "array of unknown 560 // bound of T" can be converted to an rvalue of type "pointer to 561 // T" (C++ 4.2p1). 562 FromType = Context.getArrayDecayedType(FromType); 563 564 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 565 // This conversion is deprecated. (C++ D.4). 566 SCS.Deprecated = true; 567 568 // For the purpose of ranking in overload resolution 569 // (13.3.3.1.1), this conversion is considered an 570 // array-to-pointer conversion followed by a qualification 571 // conversion (4.4). (C++ 4.2p2) 572 SCS.Second = ICK_Identity; 573 SCS.Third = ICK_Qualification; 574 SCS.ToTypePtr = ToType.getAsOpaquePtr(); 575 return true; 576 } 577 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 578 // Function-to-pointer conversion (C++ 4.3). 579 SCS.First = ICK_Function_To_Pointer; 580 581 // An lvalue of function type T can be converted to an rvalue of 582 // type "pointer to T." The result is a pointer to the 583 // function. (C++ 4.3p1). 584 FromType = Context.getPointerType(FromType); 585 } else if (FunctionDecl *Fn 586 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 587 // Address of overloaded function (C++ [over.over]). 588 SCS.First = ICK_Function_To_Pointer; 589 590 // We were able to resolve the address of the overloaded function, 591 // so we can convert to the type of that function. 592 FromType = Fn->getType(); 593 if (ToType->isLValueReferenceType()) 594 FromType = Context.getLValueReferenceType(FromType); 595 else if (ToType->isRValueReferenceType()) 596 FromType = Context.getRValueReferenceType(FromType); 597 else if (ToType->isMemberPointerType()) { 598 // Resolve address only succeeds if both sides are member pointers, 599 // but it doesn't have to be the same class. See DR 247. 600 // Note that this means that the type of &Derived::fn can be 601 // Ret (Base::*)(Args) if the fn overload actually found is from the 602 // base class, even if it was brought into the derived class via a 603 // using declaration. The standard isn't clear on this issue at all. 604 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 605 FromType = Context.getMemberPointerType(FromType, 606 Context.getTypeDeclType(M->getParent()).getTypePtr()); 607 } else 608 FromType = Context.getPointerType(FromType); 609 } else { 610 // We don't require any conversions for the first step. 611 SCS.First = ICK_Identity; 612 } 613 614 // The second conversion can be an integral promotion, floating 615 // point promotion, integral conversion, floating point conversion, 616 // floating-integral conversion, pointer conversion, 617 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 618 // For overloading in C, this can also be a "compatible-type" 619 // conversion. 620 bool IncompatibleObjC = false; 621 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 622 // The unqualified versions of the types are the same: there's no 623 // conversion to do. 624 SCS.Second = ICK_Identity; 625 } else if (IsIntegralPromotion(From, FromType, ToType)) { 626 // Integral promotion (C++ 4.5). 627 SCS.Second = ICK_Integral_Promotion; 628 FromType = ToType.getUnqualifiedType(); 629 } else if (IsFloatingPointPromotion(FromType, ToType)) { 630 // Floating point promotion (C++ 4.6). 631 SCS.Second = ICK_Floating_Promotion; 632 FromType = ToType.getUnqualifiedType(); 633 } else if (IsComplexPromotion(FromType, ToType)) { 634 // Complex promotion (Clang extension) 635 SCS.Second = ICK_Complex_Promotion; 636 FromType = ToType.getUnqualifiedType(); 637 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 638 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 639 // Integral conversions (C++ 4.7). 640 // FIXME: isIntegralType shouldn't be true for enums in C++. 641 SCS.Second = ICK_Integral_Conversion; 642 FromType = ToType.getUnqualifiedType(); 643 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 644 // Floating point conversions (C++ 4.8). 645 SCS.Second = ICK_Floating_Conversion; 646 FromType = ToType.getUnqualifiedType(); 647 } else if (FromType->isComplexType() && ToType->isComplexType()) { 648 // Complex conversions (C99 6.3.1.6) 649 SCS.Second = ICK_Complex_Conversion; 650 FromType = ToType.getUnqualifiedType(); 651 } else if ((FromType->isFloatingType() && 652 ToType->isIntegralType() && (!ToType->isBooleanType() && 653 !ToType->isEnumeralType())) || 654 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 655 ToType->isFloatingType())) { 656 // Floating-integral conversions (C++ 4.9). 657 // FIXME: isIntegralType shouldn't be true for enums in C++. 658 SCS.Second = ICK_Floating_Integral; 659 FromType = ToType.getUnqualifiedType(); 660 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 661 (ToType->isComplexType() && FromType->isArithmeticType())) { 662 // Complex-real conversions (C99 6.3.1.7) 663 SCS.Second = ICK_Complex_Real; 664 FromType = ToType.getUnqualifiedType(); 665 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 666 FromType, IncompatibleObjC)) { 667 // Pointer conversions (C++ 4.10). 668 SCS.Second = ICK_Pointer_Conversion; 669 SCS.IncompatibleObjC = IncompatibleObjC; 670 } else if (IsMemberPointerConversion(From, FromType, ToType, 671 InOverloadResolution, FromType)) { 672 // Pointer to member conversions (4.11). 673 SCS.Second = ICK_Pointer_Member; 674 } else if (ToType->isBooleanType() && 675 (FromType->isArithmeticType() || 676 FromType->isEnumeralType() || 677 FromType->isAnyPointerType() || 678 FromType->isBlockPointerType() || 679 FromType->isMemberPointerType() || 680 FromType->isNullPtrType())) { 681 // Boolean conversions (C++ 4.12). 682 SCS.Second = ICK_Boolean_Conversion; 683 FromType = Context.BoolTy; 684 } else if (!getLangOptions().CPlusPlus && 685 Context.typesAreCompatible(ToType, FromType)) { 686 // Compatible conversions (Clang extension for C function overloading) 687 SCS.Second = ICK_Compatible_Conversion; 688 } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) { 689 // Treat a conversion that strips "noreturn" as an identity conversion. 690 SCS.Second = ICK_NoReturn_Adjustment; 691 } else { 692 // No second conversion required. 693 SCS.Second = ICK_Identity; 694 } 695 696 QualType CanonFrom; 697 QualType CanonTo; 698 // The third conversion can be a qualification conversion (C++ 4p1). 699 if (IsQualificationConversion(FromType, ToType)) { 700 SCS.Third = ICK_Qualification; 701 FromType = ToType; 702 CanonFrom = Context.getCanonicalType(FromType); 703 CanonTo = Context.getCanonicalType(ToType); 704 } else { 705 // No conversion required 706 SCS.Third = ICK_Identity; 707 708 // C++ [over.best.ics]p6: 709 // [...] Any difference in top-level cv-qualification is 710 // subsumed by the initialization itself and does not constitute 711 // a conversion. [...] 712 CanonFrom = Context.getCanonicalType(FromType); 713 CanonTo = Context.getCanonicalType(ToType); 714 if (CanonFrom.getLocalUnqualifiedType() 715 == CanonTo.getLocalUnqualifiedType() && 716 CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) { 717 FromType = ToType; 718 CanonFrom = CanonTo; 719 } 720 } 721 722 // If we have not converted the argument type to the parameter type, 723 // this is a bad conversion sequence. 724 if (CanonFrom != CanonTo) 725 return false; 726 727 SCS.ToTypePtr = FromType.getAsOpaquePtr(); 728 return true; 729} 730 731/// IsIntegralPromotion - Determines whether the conversion from the 732/// expression From (whose potentially-adjusted type is FromType) to 733/// ToType is an integral promotion (C++ 4.5). If so, returns true and 734/// sets PromotedType to the promoted type. 735bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 736 const BuiltinType *To = ToType->getAs<BuiltinType>(); 737 // All integers are built-in. 738 if (!To) { 739 return false; 740 } 741 742 // An rvalue of type char, signed char, unsigned char, short int, or 743 // unsigned short int can be converted to an rvalue of type int if 744 // int can represent all the values of the source type; otherwise, 745 // the source rvalue can be converted to an rvalue of type unsigned 746 // int (C++ 4.5p1). 747 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { 748 if (// We can promote any signed, promotable integer type to an int 749 (FromType->isSignedIntegerType() || 750 // We can promote any unsigned integer type whose size is 751 // less than int to an int. 752 (!FromType->isSignedIntegerType() && 753 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 754 return To->getKind() == BuiltinType::Int; 755 } 756 757 return To->getKind() == BuiltinType::UInt; 758 } 759 760 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 761 // can be converted to an rvalue of the first of the following types 762 // that can represent all the values of its underlying type: int, 763 // unsigned int, long, or unsigned long (C++ 4.5p2). 764 765 // We pre-calculate the promotion type for enum types. 766 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) 767 if (ToType->isIntegerType()) 768 return Context.hasSameUnqualifiedType(ToType, 769 FromEnumType->getDecl()->getPromotionType()); 770 771 if (FromType->isWideCharType() && ToType->isIntegerType()) { 772 // Determine whether the type we're converting from is signed or 773 // unsigned. 774 bool FromIsSigned; 775 uint64_t FromSize = Context.getTypeSize(FromType); 776 777 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 778 FromIsSigned = true; 779 780 // The types we'll try to promote to, in the appropriate 781 // order. Try each of these types. 782 QualType PromoteTypes[6] = { 783 Context.IntTy, Context.UnsignedIntTy, 784 Context.LongTy, Context.UnsignedLongTy , 785 Context.LongLongTy, Context.UnsignedLongLongTy 786 }; 787 for (int Idx = 0; Idx < 6; ++Idx) { 788 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 789 if (FromSize < ToSize || 790 (FromSize == ToSize && 791 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 792 // We found the type that we can promote to. If this is the 793 // type we wanted, we have a promotion. Otherwise, no 794 // promotion. 795 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 796 } 797 } 798 } 799 800 // An rvalue for an integral bit-field (9.6) can be converted to an 801 // rvalue of type int if int can represent all the values of the 802 // bit-field; otherwise, it can be converted to unsigned int if 803 // unsigned int can represent all the values of the bit-field. If 804 // the bit-field is larger yet, no integral promotion applies to 805 // it. If the bit-field has an enumerated type, it is treated as any 806 // other value of that type for promotion purposes (C++ 4.5p3). 807 // FIXME: We should delay checking of bit-fields until we actually perform the 808 // conversion. 809 using llvm::APSInt; 810 if (From) 811 if (FieldDecl *MemberDecl = From->getBitField()) { 812 APSInt BitWidth; 813 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 814 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 815 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 816 ToSize = Context.getTypeSize(ToType); 817 818 // Are we promoting to an int from a bitfield that fits in an int? 819 if (BitWidth < ToSize || 820 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 821 return To->getKind() == BuiltinType::Int; 822 } 823 824 // Are we promoting to an unsigned int from an unsigned bitfield 825 // that fits into an unsigned int? 826 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 827 return To->getKind() == BuiltinType::UInt; 828 } 829 830 return false; 831 } 832 } 833 834 // An rvalue of type bool can be converted to an rvalue of type int, 835 // with false becoming zero and true becoming one (C++ 4.5p4). 836 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 837 return true; 838 } 839 840 return false; 841} 842 843/// IsFloatingPointPromotion - Determines whether the conversion from 844/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 845/// returns true and sets PromotedType to the promoted type. 846bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 847 /// An rvalue of type float can be converted to an rvalue of type 848 /// double. (C++ 4.6p1). 849 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 850 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 851 if (FromBuiltin->getKind() == BuiltinType::Float && 852 ToBuiltin->getKind() == BuiltinType::Double) 853 return true; 854 855 // C99 6.3.1.5p1: 856 // When a float is promoted to double or long double, or a 857 // double is promoted to long double [...]. 858 if (!getLangOptions().CPlusPlus && 859 (FromBuiltin->getKind() == BuiltinType::Float || 860 FromBuiltin->getKind() == BuiltinType::Double) && 861 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 862 return true; 863 } 864 865 return false; 866} 867 868/// \brief Determine if a conversion is a complex promotion. 869/// 870/// A complex promotion is defined as a complex -> complex conversion 871/// where the conversion between the underlying real types is a 872/// floating-point or integral promotion. 873bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 874 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 875 if (!FromComplex) 876 return false; 877 878 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 879 if (!ToComplex) 880 return false; 881 882 return IsFloatingPointPromotion(FromComplex->getElementType(), 883 ToComplex->getElementType()) || 884 IsIntegralPromotion(0, FromComplex->getElementType(), 885 ToComplex->getElementType()); 886} 887 888/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 889/// the pointer type FromPtr to a pointer to type ToPointee, with the 890/// same type qualifiers as FromPtr has on its pointee type. ToType, 891/// if non-empty, will be a pointer to ToType that may or may not have 892/// the right set of qualifiers on its pointee. 893static QualType 894BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 895 QualType ToPointee, QualType ToType, 896 ASTContext &Context) { 897 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 898 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 899 Qualifiers Quals = CanonFromPointee.getQualifiers(); 900 901 // Exact qualifier match -> return the pointer type we're converting to. 902 if (CanonToPointee.getLocalQualifiers() == Quals) { 903 // ToType is exactly what we need. Return it. 904 if (!ToType.isNull()) 905 return ToType; 906 907 // Build a pointer to ToPointee. It has the right qualifiers 908 // already. 909 return Context.getPointerType(ToPointee); 910 } 911 912 // Just build a canonical type that has the right qualifiers. 913 return Context.getPointerType( 914 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 915 Quals)); 916} 917 918static bool isNullPointerConstantForConversion(Expr *Expr, 919 bool InOverloadResolution, 920 ASTContext &Context) { 921 // Handle value-dependent integral null pointer constants correctly. 922 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 923 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 924 Expr->getType()->isIntegralType()) 925 return !InOverloadResolution; 926 927 return Expr->isNullPointerConstant(Context, 928 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 929 : Expr::NPC_ValueDependentIsNull); 930} 931 932/// IsPointerConversion - Determines whether the conversion of the 933/// expression From, which has the (possibly adjusted) type FromType, 934/// can be converted to the type ToType via a pointer conversion (C++ 935/// 4.10). If so, returns true and places the converted type (that 936/// might differ from ToType in its cv-qualifiers at some level) into 937/// ConvertedType. 938/// 939/// This routine also supports conversions to and from block pointers 940/// and conversions with Objective-C's 'id', 'id<protocols...>', and 941/// pointers to interfaces. FIXME: Once we've determined the 942/// appropriate overloading rules for Objective-C, we may want to 943/// split the Objective-C checks into a different routine; however, 944/// GCC seems to consider all of these conversions to be pointer 945/// conversions, so for now they live here. IncompatibleObjC will be 946/// set if the conversion is an allowed Objective-C conversion that 947/// should result in a warning. 948bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 949 bool InOverloadResolution, 950 QualType& ConvertedType, 951 bool &IncompatibleObjC) { 952 IncompatibleObjC = false; 953 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 954 return true; 955 956 // Conversion from a null pointer constant to any Objective-C pointer type. 957 if (ToType->isObjCObjectPointerType() && 958 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 959 ConvertedType = ToType; 960 return true; 961 } 962 963 // Blocks: Block pointers can be converted to void*. 964 if (FromType->isBlockPointerType() && ToType->isPointerType() && 965 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 966 ConvertedType = ToType; 967 return true; 968 } 969 // Blocks: A null pointer constant can be converted to a block 970 // pointer type. 971 if (ToType->isBlockPointerType() && 972 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 973 ConvertedType = ToType; 974 return true; 975 } 976 977 // If the left-hand-side is nullptr_t, the right side can be a null 978 // pointer constant. 979 if (ToType->isNullPtrType() && 980 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 981 ConvertedType = ToType; 982 return true; 983 } 984 985 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 986 if (!ToTypePtr) 987 return false; 988 989 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 990 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 991 ConvertedType = ToType; 992 return true; 993 } 994 995 // Beyond this point, both types need to be pointers. 996 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 997 if (!FromTypePtr) 998 return false; 999 1000 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1001 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1002 1003 // An rvalue of type "pointer to cv T," where T is an object type, 1004 // can be converted to an rvalue of type "pointer to cv void" (C++ 1005 // 4.10p2). 1006 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 1007 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1008 ToPointeeType, 1009 ToType, Context); 1010 return true; 1011 } 1012 1013 // When we're overloading in C, we allow a special kind of pointer 1014 // conversion for compatible-but-not-identical pointee types. 1015 if (!getLangOptions().CPlusPlus && 1016 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1017 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1018 ToPointeeType, 1019 ToType, Context); 1020 return true; 1021 } 1022 1023 // C++ [conv.ptr]p3: 1024 // 1025 // An rvalue of type "pointer to cv D," where D is a class type, 1026 // can be converted to an rvalue of type "pointer to cv B," where 1027 // B is a base class (clause 10) of D. If B is an inaccessible 1028 // (clause 11) or ambiguous (10.2) base class of D, a program that 1029 // necessitates this conversion is ill-formed. The result of the 1030 // conversion is a pointer to the base class sub-object of the 1031 // derived class object. The null pointer value is converted to 1032 // the null pointer value of the destination type. 1033 // 1034 // Note that we do not check for ambiguity or inaccessibility 1035 // here. That is handled by CheckPointerConversion. 1036 if (getLangOptions().CPlusPlus && 1037 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1038 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1039 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1040 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1041 ToPointeeType, 1042 ToType, Context); 1043 return true; 1044 } 1045 1046 return false; 1047} 1048 1049/// isObjCPointerConversion - Determines whether this is an 1050/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1051/// with the same arguments and return values. 1052bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1053 QualType& ConvertedType, 1054 bool &IncompatibleObjC) { 1055 if (!getLangOptions().ObjC1) 1056 return false; 1057 1058 // First, we handle all conversions on ObjC object pointer types. 1059 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1060 const ObjCObjectPointerType *FromObjCPtr = 1061 FromType->getAs<ObjCObjectPointerType>(); 1062 1063 if (ToObjCPtr && FromObjCPtr) { 1064 // Objective C++: We're able to convert between "id" or "Class" and a 1065 // pointer to any interface (in both directions). 1066 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1067 ConvertedType = ToType; 1068 return true; 1069 } 1070 // Conversions with Objective-C's id<...>. 1071 if ((FromObjCPtr->isObjCQualifiedIdType() || 1072 ToObjCPtr->isObjCQualifiedIdType()) && 1073 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1074 /*compare=*/false)) { 1075 ConvertedType = ToType; 1076 return true; 1077 } 1078 // Objective C++: We're able to convert from a pointer to an 1079 // interface to a pointer to a different interface. 1080 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1081 ConvertedType = ToType; 1082 return true; 1083 } 1084 1085 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1086 // Okay: this is some kind of implicit downcast of Objective-C 1087 // interfaces, which is permitted. However, we're going to 1088 // complain about it. 1089 IncompatibleObjC = true; 1090 ConvertedType = FromType; 1091 return true; 1092 } 1093 } 1094 // Beyond this point, both types need to be C pointers or block pointers. 1095 QualType ToPointeeType; 1096 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1097 ToPointeeType = ToCPtr->getPointeeType(); 1098 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>()) 1099 ToPointeeType = ToBlockPtr->getPointeeType(); 1100 else 1101 return false; 1102 1103 QualType FromPointeeType; 1104 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1105 FromPointeeType = FromCPtr->getPointeeType(); 1106 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1107 FromPointeeType = FromBlockPtr->getPointeeType(); 1108 else 1109 return false; 1110 1111 // If we have pointers to pointers, recursively check whether this 1112 // is an Objective-C conversion. 1113 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1114 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1115 IncompatibleObjC)) { 1116 // We always complain about this conversion. 1117 IncompatibleObjC = true; 1118 ConvertedType = ToType; 1119 return true; 1120 } 1121 // If we have pointers to functions or blocks, check whether the only 1122 // differences in the argument and result types are in Objective-C 1123 // pointer conversions. If so, we permit the conversion (but 1124 // complain about it). 1125 const FunctionProtoType *FromFunctionType 1126 = FromPointeeType->getAs<FunctionProtoType>(); 1127 const FunctionProtoType *ToFunctionType 1128 = ToPointeeType->getAs<FunctionProtoType>(); 1129 if (FromFunctionType && ToFunctionType) { 1130 // If the function types are exactly the same, this isn't an 1131 // Objective-C pointer conversion. 1132 if (Context.getCanonicalType(FromPointeeType) 1133 == Context.getCanonicalType(ToPointeeType)) 1134 return false; 1135 1136 // Perform the quick checks that will tell us whether these 1137 // function types are obviously different. 1138 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1139 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1140 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1141 return false; 1142 1143 bool HasObjCConversion = false; 1144 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1145 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1146 // Okay, the types match exactly. Nothing to do. 1147 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1148 ToFunctionType->getResultType(), 1149 ConvertedType, IncompatibleObjC)) { 1150 // Okay, we have an Objective-C pointer conversion. 1151 HasObjCConversion = true; 1152 } else { 1153 // Function types are too different. Abort. 1154 return false; 1155 } 1156 1157 // Check argument types. 1158 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1159 ArgIdx != NumArgs; ++ArgIdx) { 1160 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1161 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1162 if (Context.getCanonicalType(FromArgType) 1163 == Context.getCanonicalType(ToArgType)) { 1164 // Okay, the types match exactly. Nothing to do. 1165 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1166 ConvertedType, IncompatibleObjC)) { 1167 // Okay, we have an Objective-C pointer conversion. 1168 HasObjCConversion = true; 1169 } else { 1170 // Argument types are too different. Abort. 1171 return false; 1172 } 1173 } 1174 1175 if (HasObjCConversion) { 1176 // We had an Objective-C conversion. Allow this pointer 1177 // conversion, but complain about it. 1178 ConvertedType = ToType; 1179 IncompatibleObjC = true; 1180 return true; 1181 } 1182 } 1183 1184 return false; 1185} 1186 1187/// CheckPointerConversion - Check the pointer conversion from the 1188/// expression From to the type ToType. This routine checks for 1189/// ambiguous or inaccessible derived-to-base pointer 1190/// conversions for which IsPointerConversion has already returned 1191/// true. It returns true and produces a diagnostic if there was an 1192/// error, or returns false otherwise. 1193bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1194 CastExpr::CastKind &Kind, 1195 bool IgnoreBaseAccess) { 1196 QualType FromType = From->getType(); 1197 1198 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1199 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1200 QualType FromPointeeType = FromPtrType->getPointeeType(), 1201 ToPointeeType = ToPtrType->getPointeeType(); 1202 1203 if (FromPointeeType->isRecordType() && 1204 ToPointeeType->isRecordType()) { 1205 // We must have a derived-to-base conversion. Check an 1206 // ambiguous or inaccessible conversion. 1207 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1208 From->getExprLoc(), 1209 From->getSourceRange(), 1210 IgnoreBaseAccess)) 1211 return true; 1212 1213 // The conversion was successful. 1214 Kind = CastExpr::CK_DerivedToBase; 1215 } 1216 } 1217 if (const ObjCObjectPointerType *FromPtrType = 1218 FromType->getAs<ObjCObjectPointerType>()) 1219 if (const ObjCObjectPointerType *ToPtrType = 1220 ToType->getAs<ObjCObjectPointerType>()) { 1221 // Objective-C++ conversions are always okay. 1222 // FIXME: We should have a different class of conversions for the 1223 // Objective-C++ implicit conversions. 1224 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1225 return false; 1226 1227 } 1228 return false; 1229} 1230 1231/// IsMemberPointerConversion - Determines whether the conversion of the 1232/// expression From, which has the (possibly adjusted) type FromType, can be 1233/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1234/// If so, returns true and places the converted type (that might differ from 1235/// ToType in its cv-qualifiers at some level) into ConvertedType. 1236bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1237 QualType ToType, 1238 bool InOverloadResolution, 1239 QualType &ConvertedType) { 1240 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1241 if (!ToTypePtr) 1242 return false; 1243 1244 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1245 if (From->isNullPointerConstant(Context, 1246 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1247 : Expr::NPC_ValueDependentIsNull)) { 1248 ConvertedType = ToType; 1249 return true; 1250 } 1251 1252 // Otherwise, both types have to be member pointers. 1253 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1254 if (!FromTypePtr) 1255 return false; 1256 1257 // A pointer to member of B can be converted to a pointer to member of D, 1258 // where D is derived from B (C++ 4.11p2). 1259 QualType FromClass(FromTypePtr->getClass(), 0); 1260 QualType ToClass(ToTypePtr->getClass(), 0); 1261 // FIXME: What happens when these are dependent? Is this function even called? 1262 1263 if (IsDerivedFrom(ToClass, FromClass)) { 1264 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1265 ToClass.getTypePtr()); 1266 return true; 1267 } 1268 1269 return false; 1270} 1271 1272/// CheckMemberPointerConversion - Check the member pointer conversion from the 1273/// expression From to the type ToType. This routine checks for ambiguous or 1274/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions 1275/// for which IsMemberPointerConversion has already returned true. It returns 1276/// true and produces a diagnostic if there was an error, or returns false 1277/// otherwise. 1278bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1279 CastExpr::CastKind &Kind, 1280 bool IgnoreBaseAccess) { 1281 (void)IgnoreBaseAccess; 1282 QualType FromType = From->getType(); 1283 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1284 if (!FromPtrType) { 1285 // This must be a null pointer to member pointer conversion 1286 assert(From->isNullPointerConstant(Context, 1287 Expr::NPC_ValueDependentIsNull) && 1288 "Expr must be null pointer constant!"); 1289 Kind = CastExpr::CK_NullToMemberPointer; 1290 return false; 1291 } 1292 1293 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1294 assert(ToPtrType && "No member pointer cast has a target type " 1295 "that is not a member pointer."); 1296 1297 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1298 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1299 1300 // FIXME: What about dependent types? 1301 assert(FromClass->isRecordType() && "Pointer into non-class."); 1302 assert(ToClass->isRecordType() && "Pointer into non-class."); 1303 1304 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 1305 /*DetectVirtual=*/true); 1306 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1307 assert(DerivationOkay && 1308 "Should not have been called if derivation isn't OK."); 1309 (void)DerivationOkay; 1310 1311 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1312 getUnqualifiedType())) { 1313 // Derivation is ambiguous. Redo the check to find the exact paths. 1314 Paths.clear(); 1315 Paths.setRecordingPaths(true); 1316 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1317 assert(StillOkay && "Derivation changed due to quantum fluctuation."); 1318 (void)StillOkay; 1319 1320 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1321 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1322 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1323 return true; 1324 } 1325 1326 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1327 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1328 << FromClass << ToClass << QualType(VBase, 0) 1329 << From->getSourceRange(); 1330 return true; 1331 } 1332 1333 // Must be a base to derived member conversion. 1334 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1335 return false; 1336} 1337 1338/// IsQualificationConversion - Determines whether the conversion from 1339/// an rvalue of type FromType to ToType is a qualification conversion 1340/// (C++ 4.4). 1341bool 1342Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1343 FromType = Context.getCanonicalType(FromType); 1344 ToType = Context.getCanonicalType(ToType); 1345 1346 // If FromType and ToType are the same type, this is not a 1347 // qualification conversion. 1348 if (FromType == ToType) 1349 return false; 1350 1351 // (C++ 4.4p4): 1352 // A conversion can add cv-qualifiers at levels other than the first 1353 // in multi-level pointers, subject to the following rules: [...] 1354 bool PreviousToQualsIncludeConst = true; 1355 bool UnwrappedAnyPointer = false; 1356 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1357 // Within each iteration of the loop, we check the qualifiers to 1358 // determine if this still looks like a qualification 1359 // conversion. Then, if all is well, we unwrap one more level of 1360 // pointers or pointers-to-members and do it all again 1361 // until there are no more pointers or pointers-to-members left to 1362 // unwrap. 1363 UnwrappedAnyPointer = true; 1364 1365 // -- for every j > 0, if const is in cv 1,j then const is in cv 1366 // 2,j, and similarly for volatile. 1367 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1368 return false; 1369 1370 // -- if the cv 1,j and cv 2,j are different, then const is in 1371 // every cv for 0 < k < j. 1372 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1373 && !PreviousToQualsIncludeConst) 1374 return false; 1375 1376 // Keep track of whether all prior cv-qualifiers in the "to" type 1377 // include const. 1378 PreviousToQualsIncludeConst 1379 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1380 } 1381 1382 // We are left with FromType and ToType being the pointee types 1383 // after unwrapping the original FromType and ToType the same number 1384 // of types. If we unwrapped any pointers, and if FromType and 1385 // ToType have the same unqualified type (since we checked 1386 // qualifiers above), then this is a qualification conversion. 1387 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1388} 1389 1390/// Determines whether there is a user-defined conversion sequence 1391/// (C++ [over.ics.user]) that converts expression From to the type 1392/// ToType. If such a conversion exists, User will contain the 1393/// user-defined conversion sequence that performs such a conversion 1394/// and this routine will return true. Otherwise, this routine returns 1395/// false and User is unspecified. 1396/// 1397/// \param AllowConversionFunctions true if the conversion should 1398/// consider conversion functions at all. If false, only constructors 1399/// will be considered. 1400/// 1401/// \param AllowExplicit true if the conversion should consider C++0x 1402/// "explicit" conversion functions as well as non-explicit conversion 1403/// functions (C++0x [class.conv.fct]p2). 1404/// 1405/// \param ForceRValue true if the expression should be treated as an rvalue 1406/// for overload resolution. 1407/// \param UserCast true if looking for user defined conversion for a static 1408/// cast. 1409OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 1410 UserDefinedConversionSequence& User, 1411 OverloadCandidateSet& CandidateSet, 1412 bool AllowConversionFunctions, 1413 bool AllowExplicit, 1414 bool ForceRValue, 1415 bool UserCast) { 1416 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1417 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1418 // We're not going to find any constructors. 1419 } else if (CXXRecordDecl *ToRecordDecl 1420 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1421 // C++ [over.match.ctor]p1: 1422 // When objects of class type are direct-initialized (8.5), or 1423 // copy-initialized from an expression of the same or a 1424 // derived class type (8.5), overload resolution selects the 1425 // constructor. [...] For copy-initialization, the candidate 1426 // functions are all the converting constructors (12.3.1) of 1427 // that class. The argument list is the expression-list within 1428 // the parentheses of the initializer. 1429 bool SuppressUserConversions = !UserCast; 1430 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1431 IsDerivedFrom(From->getType(), ToType)) { 1432 SuppressUserConversions = false; 1433 AllowConversionFunctions = false; 1434 } 1435 1436 DeclarationName ConstructorName 1437 = Context.DeclarationNames.getCXXConstructorName( 1438 Context.getCanonicalType(ToType).getUnqualifiedType()); 1439 DeclContext::lookup_iterator Con, ConEnd; 1440 for (llvm::tie(Con, ConEnd) 1441 = ToRecordDecl->lookup(ConstructorName); 1442 Con != ConEnd; ++Con) { 1443 // Find the constructor (which may be a template). 1444 CXXConstructorDecl *Constructor = 0; 1445 FunctionTemplateDecl *ConstructorTmpl 1446 = dyn_cast<FunctionTemplateDecl>(*Con); 1447 if (ConstructorTmpl) 1448 Constructor 1449 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1450 else 1451 Constructor = cast<CXXConstructorDecl>(*Con); 1452 1453 if (!Constructor->isInvalidDecl() && 1454 Constructor->isConvertingConstructor(AllowExplicit)) { 1455 if (ConstructorTmpl) 1456 AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0, 1457 &From, 1, CandidateSet, 1458 SuppressUserConversions, ForceRValue); 1459 else 1460 // Allow one user-defined conversion when user specifies a 1461 // From->ToType conversion via an static cast (c-style, etc). 1462 AddOverloadCandidate(Constructor, &From, 1, CandidateSet, 1463 SuppressUserConversions, ForceRValue); 1464 } 1465 } 1466 } 1467 } 1468 1469 if (!AllowConversionFunctions) { 1470 // Don't allow any conversion functions to enter the overload set. 1471 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1472 PDiag(0) 1473 << From->getSourceRange())) { 1474 // No conversion functions from incomplete types. 1475 } else if (const RecordType *FromRecordType 1476 = From->getType()->getAs<RecordType>()) { 1477 if (CXXRecordDecl *FromRecordDecl 1478 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1479 // Add all of the conversion functions as candidates. 1480 const UnresolvedSet *Conversions 1481 = FromRecordDecl->getVisibleConversionFunctions(); 1482 for (UnresolvedSet::iterator I = Conversions->begin(), 1483 E = Conversions->end(); I != E; ++I) { 1484 NamedDecl *D = *I; 1485 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 1486 if (isa<UsingShadowDecl>(D)) 1487 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1488 1489 CXXConversionDecl *Conv; 1490 FunctionTemplateDecl *ConvTemplate; 1491 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I))) 1492 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1493 else 1494 Conv = dyn_cast<CXXConversionDecl>(*I); 1495 1496 if (AllowExplicit || !Conv->isExplicit()) { 1497 if (ConvTemplate) 1498 AddTemplateConversionCandidate(ConvTemplate, ActingContext, 1499 From, ToType, CandidateSet); 1500 else 1501 AddConversionCandidate(Conv, ActingContext, From, ToType, 1502 CandidateSet); 1503 } 1504 } 1505 } 1506 } 1507 1508 OverloadCandidateSet::iterator Best; 1509 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1510 case OR_Success: 1511 // Record the standard conversion we used and the conversion function. 1512 if (CXXConstructorDecl *Constructor 1513 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1514 // C++ [over.ics.user]p1: 1515 // If the user-defined conversion is specified by a 1516 // constructor (12.3.1), the initial standard conversion 1517 // sequence converts the source type to the type required by 1518 // the argument of the constructor. 1519 // 1520 QualType ThisType = Constructor->getThisType(Context); 1521 if (Best->Conversions[0].ConversionKind == 1522 ImplicitConversionSequence::EllipsisConversion) 1523 User.EllipsisConversion = true; 1524 else { 1525 User.Before = Best->Conversions[0].Standard; 1526 User.EllipsisConversion = false; 1527 } 1528 User.ConversionFunction = Constructor; 1529 User.After.setAsIdentityConversion(); 1530 User.After.FromTypePtr 1531 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr(); 1532 User.After.ToTypePtr = ToType.getAsOpaquePtr(); 1533 return OR_Success; 1534 } else if (CXXConversionDecl *Conversion 1535 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1536 // C++ [over.ics.user]p1: 1537 // 1538 // [...] If the user-defined conversion is specified by a 1539 // conversion function (12.3.2), the initial standard 1540 // conversion sequence converts the source type to the 1541 // implicit object parameter of the conversion function. 1542 User.Before = Best->Conversions[0].Standard; 1543 User.ConversionFunction = Conversion; 1544 User.EllipsisConversion = false; 1545 1546 // C++ [over.ics.user]p2: 1547 // The second standard conversion sequence converts the 1548 // result of the user-defined conversion to the target type 1549 // for the sequence. Since an implicit conversion sequence 1550 // is an initialization, the special rules for 1551 // initialization by user-defined conversion apply when 1552 // selecting the best user-defined conversion for a 1553 // user-defined conversion sequence (see 13.3.3 and 1554 // 13.3.3.1). 1555 User.After = Best->FinalConversion; 1556 return OR_Success; 1557 } else { 1558 assert(false && "Not a constructor or conversion function?"); 1559 return OR_No_Viable_Function; 1560 } 1561 1562 case OR_No_Viable_Function: 1563 return OR_No_Viable_Function; 1564 case OR_Deleted: 1565 // No conversion here! We're done. 1566 return OR_Deleted; 1567 1568 case OR_Ambiguous: 1569 return OR_Ambiguous; 1570 } 1571 1572 return OR_No_Viable_Function; 1573} 1574 1575bool 1576Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 1577 ImplicitConversionSequence ICS; 1578 OverloadCandidateSet CandidateSet; 1579 OverloadingResult OvResult = 1580 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 1581 CandidateSet, true, false, false); 1582 if (OvResult == OR_Ambiguous) 1583 Diag(From->getSourceRange().getBegin(), 1584 diag::err_typecheck_ambiguous_condition) 1585 << From->getType() << ToType << From->getSourceRange(); 1586 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 1587 Diag(From->getSourceRange().getBegin(), 1588 diag::err_typecheck_nonviable_condition) 1589 << From->getType() << ToType << From->getSourceRange(); 1590 else 1591 return false; 1592 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 1593 return true; 1594} 1595 1596/// CompareImplicitConversionSequences - Compare two implicit 1597/// conversion sequences to determine whether one is better than the 1598/// other or if they are indistinguishable (C++ 13.3.3.2). 1599ImplicitConversionSequence::CompareKind 1600Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1601 const ImplicitConversionSequence& ICS2) 1602{ 1603 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1604 // conversion sequences (as defined in 13.3.3.1) 1605 // -- a standard conversion sequence (13.3.3.1.1) is a better 1606 // conversion sequence than a user-defined conversion sequence or 1607 // an ellipsis conversion sequence, and 1608 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1609 // conversion sequence than an ellipsis conversion sequence 1610 // (13.3.3.1.3). 1611 // 1612 if (ICS1.ConversionKind < ICS2.ConversionKind) 1613 return ImplicitConversionSequence::Better; 1614 else if (ICS2.ConversionKind < ICS1.ConversionKind) 1615 return ImplicitConversionSequence::Worse; 1616 1617 // Two implicit conversion sequences of the same form are 1618 // indistinguishable conversion sequences unless one of the 1619 // following rules apply: (C++ 13.3.3.2p3): 1620 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) 1621 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1622 else if (ICS1.ConversionKind == 1623 ImplicitConversionSequence::UserDefinedConversion) { 1624 // User-defined conversion sequence U1 is a better conversion 1625 // sequence than another user-defined conversion sequence U2 if 1626 // they contain the same user-defined conversion function or 1627 // constructor and if the second standard conversion sequence of 1628 // U1 is better than the second standard conversion sequence of 1629 // U2 (C++ 13.3.3.2p3). 1630 if (ICS1.UserDefined.ConversionFunction == 1631 ICS2.UserDefined.ConversionFunction) 1632 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1633 ICS2.UserDefined.After); 1634 } 1635 1636 return ImplicitConversionSequence::Indistinguishable; 1637} 1638 1639/// CompareStandardConversionSequences - Compare two standard 1640/// conversion sequences to determine whether one is better than the 1641/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1642ImplicitConversionSequence::CompareKind 1643Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1644 const StandardConversionSequence& SCS2) 1645{ 1646 // Standard conversion sequence S1 is a better conversion sequence 1647 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1648 1649 // -- S1 is a proper subsequence of S2 (comparing the conversion 1650 // sequences in the canonical form defined by 13.3.3.1.1, 1651 // excluding any Lvalue Transformation; the identity conversion 1652 // sequence is considered to be a subsequence of any 1653 // non-identity conversion sequence) or, if not that, 1654 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) 1655 // Neither is a proper subsequence of the other. Do nothing. 1656 ; 1657 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || 1658 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || 1659 (SCS1.Second == ICK_Identity && 1660 SCS1.Third == ICK_Identity)) 1661 // SCS1 is a proper subsequence of SCS2. 1662 return ImplicitConversionSequence::Better; 1663 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || 1664 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || 1665 (SCS2.Second == ICK_Identity && 1666 SCS2.Third == ICK_Identity)) 1667 // SCS2 is a proper subsequence of SCS1. 1668 return ImplicitConversionSequence::Worse; 1669 1670 // -- the rank of S1 is better than the rank of S2 (by the rules 1671 // defined below), or, if not that, 1672 ImplicitConversionRank Rank1 = SCS1.getRank(); 1673 ImplicitConversionRank Rank2 = SCS2.getRank(); 1674 if (Rank1 < Rank2) 1675 return ImplicitConversionSequence::Better; 1676 else if (Rank2 < Rank1) 1677 return ImplicitConversionSequence::Worse; 1678 1679 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1680 // are indistinguishable unless one of the following rules 1681 // applies: 1682 1683 // A conversion that is not a conversion of a pointer, or 1684 // pointer to member, to bool is better than another conversion 1685 // that is such a conversion. 1686 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1687 return SCS2.isPointerConversionToBool() 1688 ? ImplicitConversionSequence::Better 1689 : ImplicitConversionSequence::Worse; 1690 1691 // C++ [over.ics.rank]p4b2: 1692 // 1693 // If class B is derived directly or indirectly from class A, 1694 // conversion of B* to A* is better than conversion of B* to 1695 // void*, and conversion of A* to void* is better than conversion 1696 // of B* to void*. 1697 bool SCS1ConvertsToVoid 1698 = SCS1.isPointerConversionToVoidPointer(Context); 1699 bool SCS2ConvertsToVoid 1700 = SCS2.isPointerConversionToVoidPointer(Context); 1701 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1702 // Exactly one of the conversion sequences is a conversion to 1703 // a void pointer; it's the worse conversion. 1704 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1705 : ImplicitConversionSequence::Worse; 1706 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1707 // Neither conversion sequence converts to a void pointer; compare 1708 // their derived-to-base conversions. 1709 if (ImplicitConversionSequence::CompareKind DerivedCK 1710 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1711 return DerivedCK; 1712 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1713 // Both conversion sequences are conversions to void 1714 // pointers. Compare the source types to determine if there's an 1715 // inheritance relationship in their sources. 1716 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1717 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1718 1719 // Adjust the types we're converting from via the array-to-pointer 1720 // conversion, if we need to. 1721 if (SCS1.First == ICK_Array_To_Pointer) 1722 FromType1 = Context.getArrayDecayedType(FromType1); 1723 if (SCS2.First == ICK_Array_To_Pointer) 1724 FromType2 = Context.getArrayDecayedType(FromType2); 1725 1726 QualType FromPointee1 1727 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1728 QualType FromPointee2 1729 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1730 1731 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1732 return ImplicitConversionSequence::Better; 1733 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1734 return ImplicitConversionSequence::Worse; 1735 1736 // Objective-C++: If one interface is more specific than the 1737 // other, it is the better one. 1738 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1739 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1740 if (FromIface1 && FromIface1) { 1741 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1742 return ImplicitConversionSequence::Better; 1743 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1744 return ImplicitConversionSequence::Worse; 1745 } 1746 } 1747 1748 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1749 // bullet 3). 1750 if (ImplicitConversionSequence::CompareKind QualCK 1751 = CompareQualificationConversions(SCS1, SCS2)) 1752 return QualCK; 1753 1754 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1755 // C++0x [over.ics.rank]p3b4: 1756 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 1757 // implicit object parameter of a non-static member function declared 1758 // without a ref-qualifier, and S1 binds an rvalue reference to an 1759 // rvalue and S2 binds an lvalue reference. 1760 // FIXME: We don't know if we're dealing with the implicit object parameter, 1761 // or if the member function in this case has a ref qualifier. 1762 // (Of course, we don't have ref qualifiers yet.) 1763 if (SCS1.RRefBinding != SCS2.RRefBinding) 1764 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 1765 : ImplicitConversionSequence::Worse; 1766 1767 // C++ [over.ics.rank]p3b4: 1768 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1769 // which the references refer are the same type except for 1770 // top-level cv-qualifiers, and the type to which the reference 1771 // initialized by S2 refers is more cv-qualified than the type 1772 // to which the reference initialized by S1 refers. 1773 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1774 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1775 T1 = Context.getCanonicalType(T1); 1776 T2 = Context.getCanonicalType(T2); 1777 if (Context.hasSameUnqualifiedType(T1, T2)) { 1778 if (T2.isMoreQualifiedThan(T1)) 1779 return ImplicitConversionSequence::Better; 1780 else if (T1.isMoreQualifiedThan(T2)) 1781 return ImplicitConversionSequence::Worse; 1782 } 1783 } 1784 1785 return ImplicitConversionSequence::Indistinguishable; 1786} 1787 1788/// CompareQualificationConversions - Compares two standard conversion 1789/// sequences to determine whether they can be ranked based on their 1790/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1791ImplicitConversionSequence::CompareKind 1792Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1793 const StandardConversionSequence& SCS2) { 1794 // C++ 13.3.3.2p3: 1795 // -- S1 and S2 differ only in their qualification conversion and 1796 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1797 // cv-qualification signature of type T1 is a proper subset of 1798 // the cv-qualification signature of type T2, and S1 is not the 1799 // deprecated string literal array-to-pointer conversion (4.2). 1800 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1801 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1802 return ImplicitConversionSequence::Indistinguishable; 1803 1804 // FIXME: the example in the standard doesn't use a qualification 1805 // conversion (!) 1806 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1807 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1808 T1 = Context.getCanonicalType(T1); 1809 T2 = Context.getCanonicalType(T2); 1810 1811 // If the types are the same, we won't learn anything by unwrapped 1812 // them. 1813 if (Context.hasSameUnqualifiedType(T1, T2)) 1814 return ImplicitConversionSequence::Indistinguishable; 1815 1816 ImplicitConversionSequence::CompareKind Result 1817 = ImplicitConversionSequence::Indistinguishable; 1818 while (UnwrapSimilarPointerTypes(T1, T2)) { 1819 // Within each iteration of the loop, we check the qualifiers to 1820 // determine if this still looks like a qualification 1821 // conversion. Then, if all is well, we unwrap one more level of 1822 // pointers or pointers-to-members and do it all again 1823 // until there are no more pointers or pointers-to-members left 1824 // to unwrap. This essentially mimics what 1825 // IsQualificationConversion does, but here we're checking for a 1826 // strict subset of qualifiers. 1827 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1828 // The qualifiers are the same, so this doesn't tell us anything 1829 // about how the sequences rank. 1830 ; 1831 else if (T2.isMoreQualifiedThan(T1)) { 1832 // T1 has fewer qualifiers, so it could be the better sequence. 1833 if (Result == ImplicitConversionSequence::Worse) 1834 // Neither has qualifiers that are a subset of the other's 1835 // qualifiers. 1836 return ImplicitConversionSequence::Indistinguishable; 1837 1838 Result = ImplicitConversionSequence::Better; 1839 } else if (T1.isMoreQualifiedThan(T2)) { 1840 // T2 has fewer qualifiers, so it could be the better sequence. 1841 if (Result == ImplicitConversionSequence::Better) 1842 // Neither has qualifiers that are a subset of the other's 1843 // qualifiers. 1844 return ImplicitConversionSequence::Indistinguishable; 1845 1846 Result = ImplicitConversionSequence::Worse; 1847 } else { 1848 // Qualifiers are disjoint. 1849 return ImplicitConversionSequence::Indistinguishable; 1850 } 1851 1852 // If the types after this point are equivalent, we're done. 1853 if (Context.hasSameUnqualifiedType(T1, T2)) 1854 break; 1855 } 1856 1857 // Check that the winning standard conversion sequence isn't using 1858 // the deprecated string literal array to pointer conversion. 1859 switch (Result) { 1860 case ImplicitConversionSequence::Better: 1861 if (SCS1.Deprecated) 1862 Result = ImplicitConversionSequence::Indistinguishable; 1863 break; 1864 1865 case ImplicitConversionSequence::Indistinguishable: 1866 break; 1867 1868 case ImplicitConversionSequence::Worse: 1869 if (SCS2.Deprecated) 1870 Result = ImplicitConversionSequence::Indistinguishable; 1871 break; 1872 } 1873 1874 return Result; 1875} 1876 1877/// CompareDerivedToBaseConversions - Compares two standard conversion 1878/// sequences to determine whether they can be ranked based on their 1879/// various kinds of derived-to-base conversions (C++ 1880/// [over.ics.rank]p4b3). As part of these checks, we also look at 1881/// conversions between Objective-C interface types. 1882ImplicitConversionSequence::CompareKind 1883Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 1884 const StandardConversionSequence& SCS2) { 1885 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1886 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1887 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1888 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1889 1890 // Adjust the types we're converting from via the array-to-pointer 1891 // conversion, if we need to. 1892 if (SCS1.First == ICK_Array_To_Pointer) 1893 FromType1 = Context.getArrayDecayedType(FromType1); 1894 if (SCS2.First == ICK_Array_To_Pointer) 1895 FromType2 = Context.getArrayDecayedType(FromType2); 1896 1897 // Canonicalize all of the types. 1898 FromType1 = Context.getCanonicalType(FromType1); 1899 ToType1 = Context.getCanonicalType(ToType1); 1900 FromType2 = Context.getCanonicalType(FromType2); 1901 ToType2 = Context.getCanonicalType(ToType2); 1902 1903 // C++ [over.ics.rank]p4b3: 1904 // 1905 // If class B is derived directly or indirectly from class A and 1906 // class C is derived directly or indirectly from B, 1907 // 1908 // For Objective-C, we let A, B, and C also be Objective-C 1909 // interfaces. 1910 1911 // Compare based on pointer conversions. 1912 if (SCS1.Second == ICK_Pointer_Conversion && 1913 SCS2.Second == ICK_Pointer_Conversion && 1914 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 1915 FromType1->isPointerType() && FromType2->isPointerType() && 1916 ToType1->isPointerType() && ToType2->isPointerType()) { 1917 QualType FromPointee1 1918 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1919 QualType ToPointee1 1920 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1921 QualType FromPointee2 1922 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1923 QualType ToPointee2 1924 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1925 1926 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1927 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1928 const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>(); 1929 const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>(); 1930 1931 // -- conversion of C* to B* is better than conversion of C* to A*, 1932 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1933 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1934 return ImplicitConversionSequence::Better; 1935 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1936 return ImplicitConversionSequence::Worse; 1937 1938 if (ToIface1 && ToIface2) { 1939 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 1940 return ImplicitConversionSequence::Better; 1941 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 1942 return ImplicitConversionSequence::Worse; 1943 } 1944 } 1945 1946 // -- conversion of B* to A* is better than conversion of C* to A*, 1947 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 1948 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1949 return ImplicitConversionSequence::Better; 1950 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1951 return ImplicitConversionSequence::Worse; 1952 1953 if (FromIface1 && FromIface2) { 1954 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1955 return ImplicitConversionSequence::Better; 1956 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1957 return ImplicitConversionSequence::Worse; 1958 } 1959 } 1960 } 1961 1962 // Compare based on reference bindings. 1963 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 1964 SCS1.Second == ICK_Derived_To_Base) { 1965 // -- binding of an expression of type C to a reference of type 1966 // B& is better than binding an expression of type C to a 1967 // reference of type A&, 1968 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 1969 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 1970 if (IsDerivedFrom(ToType1, ToType2)) 1971 return ImplicitConversionSequence::Better; 1972 else if (IsDerivedFrom(ToType2, ToType1)) 1973 return ImplicitConversionSequence::Worse; 1974 } 1975 1976 // -- binding of an expression of type B to a reference of type 1977 // A& is better than binding an expression of type C to a 1978 // reference of type A&, 1979 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 1980 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 1981 if (IsDerivedFrom(FromType2, FromType1)) 1982 return ImplicitConversionSequence::Better; 1983 else if (IsDerivedFrom(FromType1, FromType2)) 1984 return ImplicitConversionSequence::Worse; 1985 } 1986 } 1987 1988 // Ranking of member-pointer types. 1989 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 1990 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 1991 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 1992 const MemberPointerType * FromMemPointer1 = 1993 FromType1->getAs<MemberPointerType>(); 1994 const MemberPointerType * ToMemPointer1 = 1995 ToType1->getAs<MemberPointerType>(); 1996 const MemberPointerType * FromMemPointer2 = 1997 FromType2->getAs<MemberPointerType>(); 1998 const MemberPointerType * ToMemPointer2 = 1999 ToType2->getAs<MemberPointerType>(); 2000 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2001 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2002 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2003 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2004 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2005 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2006 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2007 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2008 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2009 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2010 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2011 return ImplicitConversionSequence::Worse; 2012 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2013 return ImplicitConversionSequence::Better; 2014 } 2015 // conversion of B::* to C::* is better than conversion of A::* to C::* 2016 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2017 if (IsDerivedFrom(FromPointee1, FromPointee2)) 2018 return ImplicitConversionSequence::Better; 2019 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 2020 return ImplicitConversionSequence::Worse; 2021 } 2022 } 2023 2024 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 2025 SCS1.Second == ICK_Derived_To_Base) { 2026 // -- conversion of C to B is better than conversion of C to A, 2027 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2028 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2029 if (IsDerivedFrom(ToType1, ToType2)) 2030 return ImplicitConversionSequence::Better; 2031 else if (IsDerivedFrom(ToType2, ToType1)) 2032 return ImplicitConversionSequence::Worse; 2033 } 2034 2035 // -- conversion of B to A is better than conversion of C to A. 2036 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2037 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2038 if (IsDerivedFrom(FromType2, FromType1)) 2039 return ImplicitConversionSequence::Better; 2040 else if (IsDerivedFrom(FromType1, FromType2)) 2041 return ImplicitConversionSequence::Worse; 2042 } 2043 } 2044 2045 return ImplicitConversionSequence::Indistinguishable; 2046} 2047 2048/// TryCopyInitialization - Try to copy-initialize a value of type 2049/// ToType from the expression From. Return the implicit conversion 2050/// sequence required to pass this argument, which may be a bad 2051/// conversion sequence (meaning that the argument cannot be passed to 2052/// a parameter of this type). If @p SuppressUserConversions, then we 2053/// do not permit any user-defined conversion sequences. If @p ForceRValue, 2054/// then we treat @p From as an rvalue, even if it is an lvalue. 2055ImplicitConversionSequence 2056Sema::TryCopyInitialization(Expr *From, QualType ToType, 2057 bool SuppressUserConversions, bool ForceRValue, 2058 bool InOverloadResolution) { 2059 if (ToType->isReferenceType()) { 2060 ImplicitConversionSequence ICS; 2061 CheckReferenceInit(From, ToType, 2062 /*FIXME:*/From->getLocStart(), 2063 SuppressUserConversions, 2064 /*AllowExplicit=*/false, 2065 ForceRValue, 2066 &ICS); 2067 return ICS; 2068 } else { 2069 return TryImplicitConversion(From, ToType, 2070 SuppressUserConversions, 2071 /*AllowExplicit=*/false, 2072 ForceRValue, 2073 InOverloadResolution); 2074 } 2075} 2076 2077/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with 2078/// the expression @p From. Returns true (and emits a diagnostic) if there was 2079/// an error, returns false if the initialization succeeded. Elidable should 2080/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works 2081/// differently in C++0x for this case. 2082bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 2083 AssignmentAction Action, bool Elidable) { 2084 if (!getLangOptions().CPlusPlus) { 2085 // In C, argument passing is the same as performing an assignment. 2086 QualType FromType = From->getType(); 2087 2088 AssignConvertType ConvTy = 2089 CheckSingleAssignmentConstraints(ToType, From); 2090 if (ConvTy != Compatible && 2091 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) 2092 ConvTy = Compatible; 2093 2094 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 2095 FromType, From, Action); 2096 } 2097 2098 if (ToType->isReferenceType()) 2099 return CheckReferenceInit(From, ToType, 2100 /*FIXME:*/From->getLocStart(), 2101 /*SuppressUserConversions=*/false, 2102 /*AllowExplicit=*/false, 2103 /*ForceRValue=*/false); 2104 2105 if (!PerformImplicitConversion(From, ToType, Action, 2106 /*AllowExplicit=*/false, Elidable)) 2107 return false; 2108 if (!DiagnoseMultipleUserDefinedConversion(From, ToType)) 2109 return Diag(From->getSourceRange().getBegin(), 2110 diag::err_typecheck_convert_incompatible) 2111 << ToType << From->getType() << Action << From->getSourceRange(); 2112 return true; 2113} 2114 2115/// TryObjectArgumentInitialization - Try to initialize the object 2116/// parameter of the given member function (@c Method) from the 2117/// expression @p From. 2118ImplicitConversionSequence 2119Sema::TryObjectArgumentInitialization(QualType FromType, 2120 CXXMethodDecl *Method, 2121 CXXRecordDecl *ActingContext) { 2122 QualType ClassType = Context.getTypeDeclType(ActingContext); 2123 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 2124 // const volatile object. 2125 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 2126 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 2127 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); 2128 2129 // Set up the conversion sequence as a "bad" conversion, to allow us 2130 // to exit early. 2131 ImplicitConversionSequence ICS; 2132 ICS.Standard.setAsIdentityConversion(); 2133 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 2134 2135 // We need to have an object of class type. 2136 if (const PointerType *PT = FromType->getAs<PointerType>()) 2137 FromType = PT->getPointeeType(); 2138 2139 assert(FromType->isRecordType()); 2140 2141 // The implicit object parameter is has the type "reference to cv X", 2142 // where X is the class of which the function is a member 2143 // (C++ [over.match.funcs]p4). However, when finding an implicit 2144 // conversion sequence for the argument, we are not allowed to 2145 // create temporaries or perform user-defined conversions 2146 // (C++ [over.match.funcs]p5). We perform a simplified version of 2147 // reference binding here, that allows class rvalues to bind to 2148 // non-constant references. 2149 2150 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2151 // with the implicit object parameter (C++ [over.match.funcs]p5). 2152 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2153 if (ImplicitParamType.getCVRQualifiers() 2154 != FromTypeCanon.getLocalCVRQualifiers() && 2155 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) 2156 return ICS; 2157 2158 // Check that we have either the same type or a derived type. It 2159 // affects the conversion rank. 2160 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2161 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) 2162 ICS.Standard.Second = ICK_Identity; 2163 else if (IsDerivedFrom(FromType, ClassType)) 2164 ICS.Standard.Second = ICK_Derived_To_Base; 2165 else 2166 return ICS; 2167 2168 // Success. Mark this as a reference binding. 2169 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 2170 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); 2171 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); 2172 ICS.Standard.ReferenceBinding = true; 2173 ICS.Standard.DirectBinding = true; 2174 ICS.Standard.RRefBinding = false; 2175 return ICS; 2176} 2177 2178/// PerformObjectArgumentInitialization - Perform initialization of 2179/// the implicit object parameter for the given Method with the given 2180/// expression. 2181bool 2182Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 2183 QualType FromRecordType, DestType; 2184 QualType ImplicitParamRecordType = 2185 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2186 2187 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2188 FromRecordType = PT->getPointeeType(); 2189 DestType = Method->getThisType(Context); 2190 } else { 2191 FromRecordType = From->getType(); 2192 DestType = ImplicitParamRecordType; 2193 } 2194 2195 // Note that we always use the true parent context when performing 2196 // the actual argument initialization. 2197 ImplicitConversionSequence ICS 2198 = TryObjectArgumentInitialization(From->getType(), Method, 2199 Method->getParent()); 2200 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) 2201 return Diag(From->getSourceRange().getBegin(), 2202 diag::err_implicit_object_parameter_init) 2203 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2204 2205 if (ICS.Standard.Second == ICK_Derived_To_Base && 2206 CheckDerivedToBaseConversion(FromRecordType, 2207 ImplicitParamRecordType, 2208 From->getSourceRange().getBegin(), 2209 From->getSourceRange())) 2210 return true; 2211 2212 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, 2213 /*isLvalue=*/true); 2214 return false; 2215} 2216 2217/// TryContextuallyConvertToBool - Attempt to contextually convert the 2218/// expression From to bool (C++0x [conv]p3). 2219ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2220 return TryImplicitConversion(From, Context.BoolTy, 2221 // FIXME: Are these flags correct? 2222 /*SuppressUserConversions=*/false, 2223 /*AllowExplicit=*/true, 2224 /*ForceRValue=*/false, 2225 /*InOverloadResolution=*/false); 2226} 2227 2228/// PerformContextuallyConvertToBool - Perform a contextual conversion 2229/// of the expression From to bool (C++0x [conv]p3). 2230bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2231 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2232 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting)) 2233 return false; 2234 2235 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 2236 return Diag(From->getSourceRange().getBegin(), 2237 diag::err_typecheck_bool_condition) 2238 << From->getType() << From->getSourceRange(); 2239 return true; 2240} 2241 2242/// AddOverloadCandidate - Adds the given function to the set of 2243/// candidate functions, using the given function call arguments. If 2244/// @p SuppressUserConversions, then don't allow user-defined 2245/// conversions via constructors or conversion operators. 2246/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly 2247/// hacky way to implement the overloading rules for elidable copy 2248/// initialization in C++0x (C++0x 12.8p15). 2249/// 2250/// \para PartialOverloading true if we are performing "partial" overloading 2251/// based on an incomplete set of function arguments. This feature is used by 2252/// code completion. 2253void 2254Sema::AddOverloadCandidate(FunctionDecl *Function, 2255 Expr **Args, unsigned NumArgs, 2256 OverloadCandidateSet& CandidateSet, 2257 bool SuppressUserConversions, 2258 bool ForceRValue, 2259 bool PartialOverloading) { 2260 const FunctionProtoType* Proto 2261 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 2262 assert(Proto && "Functions without a prototype cannot be overloaded"); 2263 assert(!isa<CXXConversionDecl>(Function) && 2264 "Use AddConversionCandidate for conversion functions"); 2265 assert(!Function->getDescribedFunctionTemplate() && 2266 "Use AddTemplateOverloadCandidate for function templates"); 2267 2268 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2269 if (!isa<CXXConstructorDecl>(Method)) { 2270 // If we get here, it's because we're calling a member function 2271 // that is named without a member access expression (e.g., 2272 // "this->f") that was either written explicitly or created 2273 // implicitly. This can happen with a qualified call to a member 2274 // function, e.g., X::f(). We use an empty type for the implied 2275 // object argument (C++ [over.call.func]p3), and the acting context 2276 // is irrelevant. 2277 AddMethodCandidate(Method, Method->getParent(), 2278 QualType(), Args, NumArgs, CandidateSet, 2279 SuppressUserConversions, ForceRValue); 2280 return; 2281 } 2282 // We treat a constructor like a non-member function, since its object 2283 // argument doesn't participate in overload resolution. 2284 } 2285 2286 if (!CandidateSet.isNewCandidate(Function)) 2287 return; 2288 2289 // Overload resolution is always an unevaluated context. 2290 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2291 2292 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 2293 // C++ [class.copy]p3: 2294 // A member function template is never instantiated to perform the copy 2295 // of a class object to an object of its class type. 2296 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 2297 if (NumArgs == 1 && 2298 Constructor->isCopyConstructorLikeSpecialization() && 2299 Context.hasSameUnqualifiedType(ClassType, Args[0]->getType())) 2300 return; 2301 } 2302 2303 // Add this candidate 2304 CandidateSet.push_back(OverloadCandidate()); 2305 OverloadCandidate& Candidate = CandidateSet.back(); 2306 Candidate.Function = Function; 2307 Candidate.Viable = true; 2308 Candidate.IsSurrogate = false; 2309 Candidate.IgnoreObjectArgument = false; 2310 2311 unsigned NumArgsInProto = Proto->getNumArgs(); 2312 2313 // (C++ 13.3.2p2): A candidate function having fewer than m 2314 // parameters is viable only if it has an ellipsis in its parameter 2315 // list (8.3.5). 2316 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 2317 !Proto->isVariadic()) { 2318 Candidate.Viable = false; 2319 return; 2320 } 2321 2322 // (C++ 13.3.2p2): A candidate function having more than m parameters 2323 // is viable only if the (m+1)st parameter has a default argument 2324 // (8.3.6). For the purposes of overload resolution, the 2325 // parameter list is truncated on the right, so that there are 2326 // exactly m parameters. 2327 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 2328 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 2329 // Not enough arguments. 2330 Candidate.Viable = false; 2331 return; 2332 } 2333 2334 // Determine the implicit conversion sequences for each of the 2335 // arguments. 2336 Candidate.Conversions.resize(NumArgs); 2337 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2338 if (ArgIdx < NumArgsInProto) { 2339 // (C++ 13.3.2p3): for F to be a viable function, there shall 2340 // exist for each argument an implicit conversion sequence 2341 // (13.3.3.1) that converts that argument to the corresponding 2342 // parameter of F. 2343 QualType ParamType = Proto->getArgType(ArgIdx); 2344 Candidate.Conversions[ArgIdx] 2345 = TryCopyInitialization(Args[ArgIdx], ParamType, 2346 SuppressUserConversions, ForceRValue, 2347 /*InOverloadResolution=*/true); 2348 if (Candidate.Conversions[ArgIdx].ConversionKind 2349 == ImplicitConversionSequence::BadConversion) { 2350 // 13.3.3.1-p10 If several different sequences of conversions exist that 2351 // each convert the argument to the parameter type, the implicit conversion 2352 // sequence associated with the parameter is defined to be the unique conversion 2353 // sequence designated the ambiguous conversion sequence. For the purpose of 2354 // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous 2355 // conversion sequence is treated as a user-defined sequence that is 2356 // indistinguishable from any other user-defined conversion sequence 2357 if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) { 2358 Candidate.Conversions[ArgIdx].ConversionKind = 2359 ImplicitConversionSequence::UserDefinedConversion; 2360 // Set the conversion function to one of them. As due to ambiguity, 2361 // they carry the same weight and is needed for overload resolution 2362 // later. 2363 Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction = 2364 Candidate.Conversions[ArgIdx].ConversionFunctionSet[0]; 2365 } 2366 else { 2367 Candidate.Viable = false; 2368 break; 2369 } 2370 } 2371 } else { 2372 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2373 // argument for which there is no corresponding parameter is 2374 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2375 Candidate.Conversions[ArgIdx].ConversionKind 2376 = ImplicitConversionSequence::EllipsisConversion; 2377 } 2378 } 2379} 2380 2381/// \brief Add all of the function declarations in the given function set to 2382/// the overload canddiate set. 2383void Sema::AddFunctionCandidates(const FunctionSet &Functions, 2384 Expr **Args, unsigned NumArgs, 2385 OverloadCandidateSet& CandidateSet, 2386 bool SuppressUserConversions) { 2387 for (FunctionSet::const_iterator F = Functions.begin(), 2388 FEnd = Functions.end(); 2389 F != FEnd; ++F) { 2390 // FIXME: using declarations 2391 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) { 2392 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2393 AddMethodCandidate(cast<CXXMethodDecl>(FD), 2394 cast<CXXMethodDecl>(FD)->getParent(), 2395 Args[0]->getType(), Args + 1, NumArgs - 1, 2396 CandidateSet, SuppressUserConversions); 2397 else 2398 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 2399 SuppressUserConversions); 2400 } else { 2401 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F); 2402 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 2403 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 2404 AddMethodTemplateCandidate(FunTmpl, 2405 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 2406 /*FIXME: explicit args */ 0, 2407 Args[0]->getType(), Args + 1, NumArgs - 1, 2408 CandidateSet, 2409 SuppressUserConversions); 2410 else 2411 AddTemplateOverloadCandidate(FunTmpl, 2412 /*FIXME: explicit args */ 0, 2413 Args, NumArgs, CandidateSet, 2414 SuppressUserConversions); 2415 } 2416 } 2417} 2418 2419/// AddMethodCandidate - Adds a named decl (which is some kind of 2420/// method) as a method candidate to the given overload set. 2421void Sema::AddMethodCandidate(NamedDecl *Decl, 2422 QualType ObjectType, 2423 Expr **Args, unsigned NumArgs, 2424 OverloadCandidateSet& CandidateSet, 2425 bool SuppressUserConversions, bool ForceRValue) { 2426 2427 // FIXME: use this 2428 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 2429 2430 if (isa<UsingShadowDecl>(Decl)) 2431 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 2432 2433 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 2434 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 2435 "Expected a member function template"); 2436 AddMethodTemplateCandidate(TD, ActingContext, /*ExplicitArgs*/ 0, 2437 ObjectType, Args, NumArgs, 2438 CandidateSet, 2439 SuppressUserConversions, 2440 ForceRValue); 2441 } else { 2442 AddMethodCandidate(cast<CXXMethodDecl>(Decl), ActingContext, 2443 ObjectType, Args, NumArgs, 2444 CandidateSet, SuppressUserConversions, ForceRValue); 2445 } 2446} 2447 2448/// AddMethodCandidate - Adds the given C++ member function to the set 2449/// of candidate functions, using the given function call arguments 2450/// and the object argument (@c Object). For example, in a call 2451/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 2452/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 2453/// allow user-defined conversions via constructors or conversion 2454/// operators. If @p ForceRValue, treat all arguments as rvalues. This is 2455/// a slightly hacky way to implement the overloading rules for elidable copy 2456/// initialization in C++0x (C++0x 12.8p15). 2457void 2458Sema::AddMethodCandidate(CXXMethodDecl *Method, CXXRecordDecl *ActingContext, 2459 QualType ObjectType, Expr **Args, unsigned NumArgs, 2460 OverloadCandidateSet& CandidateSet, 2461 bool SuppressUserConversions, bool ForceRValue) { 2462 const FunctionProtoType* Proto 2463 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 2464 assert(Proto && "Methods without a prototype cannot be overloaded"); 2465 assert(!isa<CXXConversionDecl>(Method) && 2466 "Use AddConversionCandidate for conversion functions"); 2467 assert(!isa<CXXConstructorDecl>(Method) && 2468 "Use AddOverloadCandidate for constructors"); 2469 2470 if (!CandidateSet.isNewCandidate(Method)) 2471 return; 2472 2473 // Overload resolution is always an unevaluated context. 2474 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2475 2476 // Add this candidate 2477 CandidateSet.push_back(OverloadCandidate()); 2478 OverloadCandidate& Candidate = CandidateSet.back(); 2479 Candidate.Function = Method; 2480 Candidate.IsSurrogate = false; 2481 Candidate.IgnoreObjectArgument = false; 2482 2483 unsigned NumArgsInProto = Proto->getNumArgs(); 2484 2485 // (C++ 13.3.2p2): A candidate function having fewer than m 2486 // parameters is viable only if it has an ellipsis in its parameter 2487 // list (8.3.5). 2488 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2489 Candidate.Viable = false; 2490 return; 2491 } 2492 2493 // (C++ 13.3.2p2): A candidate function having more than m parameters 2494 // is viable only if the (m+1)st parameter has a default argument 2495 // (8.3.6). For the purposes of overload resolution, the 2496 // parameter list is truncated on the right, so that there are 2497 // exactly m parameters. 2498 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2499 if (NumArgs < MinRequiredArgs) { 2500 // Not enough arguments. 2501 Candidate.Viable = false; 2502 return; 2503 } 2504 2505 Candidate.Viable = true; 2506 Candidate.Conversions.resize(NumArgs + 1); 2507 2508 if (Method->isStatic() || ObjectType.isNull()) 2509 // The implicit object argument is ignored. 2510 Candidate.IgnoreObjectArgument = true; 2511 else { 2512 // Determine the implicit conversion sequence for the object 2513 // parameter. 2514 Candidate.Conversions[0] 2515 = TryObjectArgumentInitialization(ObjectType, Method, ActingContext); 2516 if (Candidate.Conversions[0].ConversionKind 2517 == ImplicitConversionSequence::BadConversion) { 2518 Candidate.Viable = false; 2519 return; 2520 } 2521 } 2522 2523 // Determine the implicit conversion sequences for each of the 2524 // arguments. 2525 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2526 if (ArgIdx < NumArgsInProto) { 2527 // (C++ 13.3.2p3): for F to be a viable function, there shall 2528 // exist for each argument an implicit conversion sequence 2529 // (13.3.3.1) that converts that argument to the corresponding 2530 // parameter of F. 2531 QualType ParamType = Proto->getArgType(ArgIdx); 2532 Candidate.Conversions[ArgIdx + 1] 2533 = TryCopyInitialization(Args[ArgIdx], ParamType, 2534 SuppressUserConversions, ForceRValue, 2535 /*InOverloadResolution=*/true); 2536 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2537 == ImplicitConversionSequence::BadConversion) { 2538 Candidate.Viable = false; 2539 break; 2540 } 2541 } else { 2542 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2543 // argument for which there is no corresponding parameter is 2544 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2545 Candidate.Conversions[ArgIdx + 1].ConversionKind 2546 = ImplicitConversionSequence::EllipsisConversion; 2547 } 2548 } 2549} 2550 2551/// \brief Add a C++ member function template as a candidate to the candidate 2552/// set, using template argument deduction to produce an appropriate member 2553/// function template specialization. 2554void 2555Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 2556 CXXRecordDecl *ActingContext, 2557 const TemplateArgumentListInfo *ExplicitTemplateArgs, 2558 QualType ObjectType, 2559 Expr **Args, unsigned NumArgs, 2560 OverloadCandidateSet& CandidateSet, 2561 bool SuppressUserConversions, 2562 bool ForceRValue) { 2563 if (!CandidateSet.isNewCandidate(MethodTmpl)) 2564 return; 2565 2566 // C++ [over.match.funcs]p7: 2567 // In each case where a candidate is a function template, candidate 2568 // function template specializations are generated using template argument 2569 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2570 // candidate functions in the usual way.113) A given name can refer to one 2571 // or more function templates and also to a set of overloaded non-template 2572 // functions. In such a case, the candidate functions generated from each 2573 // function template are combined with the set of non-template candidate 2574 // functions. 2575 TemplateDeductionInfo Info(Context); 2576 FunctionDecl *Specialization = 0; 2577 if (TemplateDeductionResult Result 2578 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 2579 Args, NumArgs, Specialization, Info)) { 2580 // FIXME: Record what happened with template argument deduction, so 2581 // that we can give the user a beautiful diagnostic. 2582 (void)Result; 2583 return; 2584 } 2585 2586 // Add the function template specialization produced by template argument 2587 // deduction as a candidate. 2588 assert(Specialization && "Missing member function template specialization?"); 2589 assert(isa<CXXMethodDecl>(Specialization) && 2590 "Specialization is not a member function?"); 2591 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), ActingContext, 2592 ObjectType, Args, NumArgs, 2593 CandidateSet, SuppressUserConversions, ForceRValue); 2594} 2595 2596/// \brief Add a C++ function template specialization as a candidate 2597/// in the candidate set, using template argument deduction to produce 2598/// an appropriate function template specialization. 2599void 2600Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 2601 const TemplateArgumentListInfo *ExplicitTemplateArgs, 2602 Expr **Args, unsigned NumArgs, 2603 OverloadCandidateSet& CandidateSet, 2604 bool SuppressUserConversions, 2605 bool ForceRValue) { 2606 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2607 return; 2608 2609 // C++ [over.match.funcs]p7: 2610 // In each case where a candidate is a function template, candidate 2611 // function template specializations are generated using template argument 2612 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2613 // candidate functions in the usual way.113) A given name can refer to one 2614 // or more function templates and also to a set of overloaded non-template 2615 // functions. In such a case, the candidate functions generated from each 2616 // function template are combined with the set of non-template candidate 2617 // functions. 2618 TemplateDeductionInfo Info(Context); 2619 FunctionDecl *Specialization = 0; 2620 if (TemplateDeductionResult Result 2621 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 2622 Args, NumArgs, Specialization, Info)) { 2623 // FIXME: Record what happened with template argument deduction, so 2624 // that we can give the user a beautiful diagnostic. 2625 (void) Result; 2626 2627 CandidateSet.push_back(OverloadCandidate()); 2628 OverloadCandidate &Candidate = CandidateSet.back(); 2629 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 2630 Candidate.Viable = false; 2631 Candidate.IsSurrogate = false; 2632 Candidate.IgnoreObjectArgument = false; 2633 return; 2634 } 2635 2636 // Add the function template specialization produced by template argument 2637 // deduction as a candidate. 2638 assert(Specialization && "Missing function template specialization?"); 2639 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet, 2640 SuppressUserConversions, ForceRValue); 2641} 2642 2643/// AddConversionCandidate - Add a C++ conversion function as a 2644/// candidate in the candidate set (C++ [over.match.conv], 2645/// C++ [over.match.copy]). From is the expression we're converting from, 2646/// and ToType is the type that we're eventually trying to convert to 2647/// (which may or may not be the same type as the type that the 2648/// conversion function produces). 2649void 2650Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2651 CXXRecordDecl *ActingContext, 2652 Expr *From, QualType ToType, 2653 OverloadCandidateSet& CandidateSet) { 2654 assert(!Conversion->getDescribedFunctionTemplate() && 2655 "Conversion function templates use AddTemplateConversionCandidate"); 2656 2657 if (!CandidateSet.isNewCandidate(Conversion)) 2658 return; 2659 2660 // Overload resolution is always an unevaluated context. 2661 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2662 2663 // Add this candidate 2664 CandidateSet.push_back(OverloadCandidate()); 2665 OverloadCandidate& Candidate = CandidateSet.back(); 2666 Candidate.Function = Conversion; 2667 Candidate.IsSurrogate = false; 2668 Candidate.IgnoreObjectArgument = false; 2669 Candidate.FinalConversion.setAsIdentityConversion(); 2670 Candidate.FinalConversion.FromTypePtr 2671 = Conversion->getConversionType().getAsOpaquePtr(); 2672 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); 2673 2674 // Determine the implicit conversion sequence for the implicit 2675 // object parameter. 2676 Candidate.Viable = true; 2677 Candidate.Conversions.resize(1); 2678 Candidate.Conversions[0] 2679 = TryObjectArgumentInitialization(From->getType(), Conversion, 2680 ActingContext); 2681 // Conversion functions to a different type in the base class is visible in 2682 // the derived class. So, a derived to base conversion should not participate 2683 // in overload resolution. 2684 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 2685 Candidate.Conversions[0].Standard.Second = ICK_Identity; 2686 if (Candidate.Conversions[0].ConversionKind 2687 == ImplicitConversionSequence::BadConversion) { 2688 Candidate.Viable = false; 2689 return; 2690 } 2691 2692 // We won't go through a user-define type conversion function to convert a 2693 // derived to base as such conversions are given Conversion Rank. They only 2694 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 2695 QualType FromCanon 2696 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 2697 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 2698 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 2699 Candidate.Viable = false; 2700 return; 2701 } 2702 2703 2704 // To determine what the conversion from the result of calling the 2705 // conversion function to the type we're eventually trying to 2706 // convert to (ToType), we need to synthesize a call to the 2707 // conversion function and attempt copy initialization from it. This 2708 // makes sure that we get the right semantics with respect to 2709 // lvalues/rvalues and the type. Fortunately, we can allocate this 2710 // call on the stack and we don't need its arguments to be 2711 // well-formed. 2712 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2713 From->getLocStart()); 2714 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2715 CastExpr::CK_FunctionToPointerDecay, 2716 &ConversionRef, false); 2717 2718 // Note that it is safe to allocate CallExpr on the stack here because 2719 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 2720 // allocator). 2721 CallExpr Call(Context, &ConversionFn, 0, 0, 2722 Conversion->getConversionType().getNonReferenceType(), 2723 From->getLocStart()); 2724 ImplicitConversionSequence ICS = 2725 TryCopyInitialization(&Call, ToType, 2726 /*SuppressUserConversions=*/true, 2727 /*ForceRValue=*/false, 2728 /*InOverloadResolution=*/false); 2729 2730 switch (ICS.ConversionKind) { 2731 case ImplicitConversionSequence::StandardConversion: 2732 Candidate.FinalConversion = ICS.Standard; 2733 break; 2734 2735 case ImplicitConversionSequence::BadConversion: 2736 Candidate.Viable = false; 2737 break; 2738 2739 default: 2740 assert(false && 2741 "Can only end up with a standard conversion sequence or failure"); 2742 } 2743} 2744 2745/// \brief Adds a conversion function template specialization 2746/// candidate to the overload set, using template argument deduction 2747/// to deduce the template arguments of the conversion function 2748/// template from the type that we are converting to (C++ 2749/// [temp.deduct.conv]). 2750void 2751Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 2752 CXXRecordDecl *ActingDC, 2753 Expr *From, QualType ToType, 2754 OverloadCandidateSet &CandidateSet) { 2755 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 2756 "Only conversion function templates permitted here"); 2757 2758 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2759 return; 2760 2761 TemplateDeductionInfo Info(Context); 2762 CXXConversionDecl *Specialization = 0; 2763 if (TemplateDeductionResult Result 2764 = DeduceTemplateArguments(FunctionTemplate, ToType, 2765 Specialization, Info)) { 2766 // FIXME: Record what happened with template argument deduction, so 2767 // that we can give the user a beautiful diagnostic. 2768 (void)Result; 2769 return; 2770 } 2771 2772 // Add the conversion function template specialization produced by 2773 // template argument deduction as a candidate. 2774 assert(Specialization && "Missing function template specialization?"); 2775 AddConversionCandidate(Specialization, ActingDC, From, ToType, CandidateSet); 2776} 2777 2778/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2779/// converts the given @c Object to a function pointer via the 2780/// conversion function @c Conversion, and then attempts to call it 2781/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2782/// the type of function that we'll eventually be calling. 2783void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2784 CXXRecordDecl *ActingContext, 2785 const FunctionProtoType *Proto, 2786 QualType ObjectType, 2787 Expr **Args, unsigned NumArgs, 2788 OverloadCandidateSet& CandidateSet) { 2789 if (!CandidateSet.isNewCandidate(Conversion)) 2790 return; 2791 2792 // Overload resolution is always an unevaluated context. 2793 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2794 2795 CandidateSet.push_back(OverloadCandidate()); 2796 OverloadCandidate& Candidate = CandidateSet.back(); 2797 Candidate.Function = 0; 2798 Candidate.Surrogate = Conversion; 2799 Candidate.Viable = true; 2800 Candidate.IsSurrogate = true; 2801 Candidate.IgnoreObjectArgument = false; 2802 Candidate.Conversions.resize(NumArgs + 1); 2803 2804 // Determine the implicit conversion sequence for the implicit 2805 // object parameter. 2806 ImplicitConversionSequence ObjectInit 2807 = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext); 2808 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { 2809 Candidate.Viable = false; 2810 return; 2811 } 2812 2813 // The first conversion is actually a user-defined conversion whose 2814 // first conversion is ObjectInit's standard conversion (which is 2815 // effectively a reference binding). Record it as such. 2816 Candidate.Conversions[0].ConversionKind 2817 = ImplicitConversionSequence::UserDefinedConversion; 2818 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2819 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 2820 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2821 Candidate.Conversions[0].UserDefined.After 2822 = Candidate.Conversions[0].UserDefined.Before; 2823 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2824 2825 // Find the 2826 unsigned NumArgsInProto = Proto->getNumArgs(); 2827 2828 // (C++ 13.3.2p2): A candidate function having fewer than m 2829 // parameters is viable only if it has an ellipsis in its parameter 2830 // list (8.3.5). 2831 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2832 Candidate.Viable = false; 2833 return; 2834 } 2835 2836 // Function types don't have any default arguments, so just check if 2837 // we have enough arguments. 2838 if (NumArgs < NumArgsInProto) { 2839 // Not enough arguments. 2840 Candidate.Viable = false; 2841 return; 2842 } 2843 2844 // Determine the implicit conversion sequences for each of the 2845 // arguments. 2846 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2847 if (ArgIdx < NumArgsInProto) { 2848 // (C++ 13.3.2p3): for F to be a viable function, there shall 2849 // exist for each argument an implicit conversion sequence 2850 // (13.3.3.1) that converts that argument to the corresponding 2851 // parameter of F. 2852 QualType ParamType = Proto->getArgType(ArgIdx); 2853 Candidate.Conversions[ArgIdx + 1] 2854 = TryCopyInitialization(Args[ArgIdx], ParamType, 2855 /*SuppressUserConversions=*/false, 2856 /*ForceRValue=*/false, 2857 /*InOverloadResolution=*/false); 2858 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2859 == ImplicitConversionSequence::BadConversion) { 2860 Candidate.Viable = false; 2861 break; 2862 } 2863 } else { 2864 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2865 // argument for which there is no corresponding parameter is 2866 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2867 Candidate.Conversions[ArgIdx + 1].ConversionKind 2868 = ImplicitConversionSequence::EllipsisConversion; 2869 } 2870 } 2871} 2872 2873// FIXME: This will eventually be removed, once we've migrated all of the 2874// operator overloading logic over to the scheme used by binary operators, which 2875// works for template instantiation. 2876void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 2877 SourceLocation OpLoc, 2878 Expr **Args, unsigned NumArgs, 2879 OverloadCandidateSet& CandidateSet, 2880 SourceRange OpRange) { 2881 FunctionSet Functions; 2882 2883 QualType T1 = Args[0]->getType(); 2884 QualType T2; 2885 if (NumArgs > 1) 2886 T2 = Args[1]->getType(); 2887 2888 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2889 if (S) 2890 LookupOverloadedOperatorName(Op, S, T1, T2, Functions); 2891 ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions); 2892 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); 2893 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); 2894 AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet); 2895} 2896 2897/// \brief Add overload candidates for overloaded operators that are 2898/// member functions. 2899/// 2900/// Add the overloaded operator candidates that are member functions 2901/// for the operator Op that was used in an operator expression such 2902/// as "x Op y". , Args/NumArgs provides the operator arguments, and 2903/// CandidateSet will store the added overload candidates. (C++ 2904/// [over.match.oper]). 2905void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 2906 SourceLocation OpLoc, 2907 Expr **Args, unsigned NumArgs, 2908 OverloadCandidateSet& CandidateSet, 2909 SourceRange OpRange) { 2910 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2911 2912 // C++ [over.match.oper]p3: 2913 // For a unary operator @ with an operand of a type whose 2914 // cv-unqualified version is T1, and for a binary operator @ with 2915 // a left operand of a type whose cv-unqualified version is T1 and 2916 // a right operand of a type whose cv-unqualified version is T2, 2917 // three sets of candidate functions, designated member 2918 // candidates, non-member candidates and built-in candidates, are 2919 // constructed as follows: 2920 QualType T1 = Args[0]->getType(); 2921 QualType T2; 2922 if (NumArgs > 1) 2923 T2 = Args[1]->getType(); 2924 2925 // -- If T1 is a class type, the set of member candidates is the 2926 // result of the qualified lookup of T1::operator@ 2927 // (13.3.1.1.1); otherwise, the set of member candidates is 2928 // empty. 2929 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 2930 // Complete the type if it can be completed. Otherwise, we're done. 2931 if (RequireCompleteType(OpLoc, T1, PDiag())) 2932 return; 2933 2934 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 2935 LookupQualifiedName(Operators, T1Rec->getDecl()); 2936 Operators.suppressDiagnostics(); 2937 2938 for (LookupResult::iterator Oper = Operators.begin(), 2939 OperEnd = Operators.end(); 2940 Oper != OperEnd; 2941 ++Oper) 2942 AddMethodCandidate(*Oper, Args[0]->getType(), 2943 Args + 1, NumArgs - 1, CandidateSet, 2944 /* SuppressUserConversions = */ false); 2945 } 2946} 2947 2948/// AddBuiltinCandidate - Add a candidate for a built-in 2949/// operator. ResultTy and ParamTys are the result and parameter types 2950/// of the built-in candidate, respectively. Args and NumArgs are the 2951/// arguments being passed to the candidate. IsAssignmentOperator 2952/// should be true when this built-in candidate is an assignment 2953/// operator. NumContextualBoolArguments is the number of arguments 2954/// (at the beginning of the argument list) that will be contextually 2955/// converted to bool. 2956void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 2957 Expr **Args, unsigned NumArgs, 2958 OverloadCandidateSet& CandidateSet, 2959 bool IsAssignmentOperator, 2960 unsigned NumContextualBoolArguments) { 2961 // Overload resolution is always an unevaluated context. 2962 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 2963 2964 // Add this candidate 2965 CandidateSet.push_back(OverloadCandidate()); 2966 OverloadCandidate& Candidate = CandidateSet.back(); 2967 Candidate.Function = 0; 2968 Candidate.IsSurrogate = false; 2969 Candidate.IgnoreObjectArgument = false; 2970 Candidate.BuiltinTypes.ResultTy = ResultTy; 2971 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 2972 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 2973 2974 // Determine the implicit conversion sequences for each of the 2975 // arguments. 2976 Candidate.Viable = true; 2977 Candidate.Conversions.resize(NumArgs); 2978 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2979 // C++ [over.match.oper]p4: 2980 // For the built-in assignment operators, conversions of the 2981 // left operand are restricted as follows: 2982 // -- no temporaries are introduced to hold the left operand, and 2983 // -- no user-defined conversions are applied to the left 2984 // operand to achieve a type match with the left-most 2985 // parameter of a built-in candidate. 2986 // 2987 // We block these conversions by turning off user-defined 2988 // conversions, since that is the only way that initialization of 2989 // a reference to a non-class type can occur from something that 2990 // is not of the same type. 2991 if (ArgIdx < NumContextualBoolArguments) { 2992 assert(ParamTys[ArgIdx] == Context.BoolTy && 2993 "Contextual conversion to bool requires bool type"); 2994 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 2995 } else { 2996 Candidate.Conversions[ArgIdx] 2997 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 2998 ArgIdx == 0 && IsAssignmentOperator, 2999 /*ForceRValue=*/false, 3000 /*InOverloadResolution=*/false); 3001 } 3002 if (Candidate.Conversions[ArgIdx].ConversionKind 3003 == ImplicitConversionSequence::BadConversion) { 3004 Candidate.Viable = false; 3005 break; 3006 } 3007 } 3008} 3009 3010/// BuiltinCandidateTypeSet - A set of types that will be used for the 3011/// candidate operator functions for built-in operators (C++ 3012/// [over.built]). The types are separated into pointer types and 3013/// enumeration types. 3014class BuiltinCandidateTypeSet { 3015 /// TypeSet - A set of types. 3016 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 3017 3018 /// PointerTypes - The set of pointer types that will be used in the 3019 /// built-in candidates. 3020 TypeSet PointerTypes; 3021 3022 /// MemberPointerTypes - The set of member pointer types that will be 3023 /// used in the built-in candidates. 3024 TypeSet MemberPointerTypes; 3025 3026 /// EnumerationTypes - The set of enumeration types that will be 3027 /// used in the built-in candidates. 3028 TypeSet EnumerationTypes; 3029 3030 /// Sema - The semantic analysis instance where we are building the 3031 /// candidate type set. 3032 Sema &SemaRef; 3033 3034 /// Context - The AST context in which we will build the type sets. 3035 ASTContext &Context; 3036 3037 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3038 const Qualifiers &VisibleQuals); 3039 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 3040 3041public: 3042 /// iterator - Iterates through the types that are part of the set. 3043 typedef TypeSet::iterator iterator; 3044 3045 BuiltinCandidateTypeSet(Sema &SemaRef) 3046 : SemaRef(SemaRef), Context(SemaRef.Context) { } 3047 3048 void AddTypesConvertedFrom(QualType Ty, 3049 SourceLocation Loc, 3050 bool AllowUserConversions, 3051 bool AllowExplicitConversions, 3052 const Qualifiers &VisibleTypeConversionsQuals); 3053 3054 /// pointer_begin - First pointer type found; 3055 iterator pointer_begin() { return PointerTypes.begin(); } 3056 3057 /// pointer_end - Past the last pointer type found; 3058 iterator pointer_end() { return PointerTypes.end(); } 3059 3060 /// member_pointer_begin - First member pointer type found; 3061 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 3062 3063 /// member_pointer_end - Past the last member pointer type found; 3064 iterator member_pointer_end() { return MemberPointerTypes.end(); } 3065 3066 /// enumeration_begin - First enumeration type found; 3067 iterator enumeration_begin() { return EnumerationTypes.begin(); } 3068 3069 /// enumeration_end - Past the last enumeration type found; 3070 iterator enumeration_end() { return EnumerationTypes.end(); } 3071}; 3072 3073/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 3074/// the set of pointer types along with any more-qualified variants of 3075/// that type. For example, if @p Ty is "int const *", this routine 3076/// will add "int const *", "int const volatile *", "int const 3077/// restrict *", and "int const volatile restrict *" to the set of 3078/// pointer types. Returns true if the add of @p Ty itself succeeded, 3079/// false otherwise. 3080/// 3081/// FIXME: what to do about extended qualifiers? 3082bool 3083BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3084 const Qualifiers &VisibleQuals) { 3085 3086 // Insert this type. 3087 if (!PointerTypes.insert(Ty)) 3088 return false; 3089 3090 const PointerType *PointerTy = Ty->getAs<PointerType>(); 3091 assert(PointerTy && "type was not a pointer type!"); 3092 3093 QualType PointeeTy = PointerTy->getPointeeType(); 3094 // Don't add qualified variants of arrays. For one, they're not allowed 3095 // (the qualifier would sink to the element type), and for another, the 3096 // only overload situation where it matters is subscript or pointer +- int, 3097 // and those shouldn't have qualifier variants anyway. 3098 if (PointeeTy->isArrayType()) 3099 return true; 3100 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3101 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 3102 BaseCVR = Array->getElementType().getCVRQualifiers(); 3103 bool hasVolatile = VisibleQuals.hasVolatile(); 3104 bool hasRestrict = VisibleQuals.hasRestrict(); 3105 3106 // Iterate through all strict supersets of BaseCVR. 3107 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3108 if ((CVR | BaseCVR) != CVR) continue; 3109 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 3110 // in the types. 3111 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 3112 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 3113 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3114 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 3115 } 3116 3117 return true; 3118} 3119 3120/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 3121/// to the set of pointer types along with any more-qualified variants of 3122/// that type. For example, if @p Ty is "int const *", this routine 3123/// will add "int const *", "int const volatile *", "int const 3124/// restrict *", and "int const volatile restrict *" to the set of 3125/// pointer types. Returns true if the add of @p Ty itself succeeded, 3126/// false otherwise. 3127/// 3128/// FIXME: what to do about extended qualifiers? 3129bool 3130BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 3131 QualType Ty) { 3132 // Insert this type. 3133 if (!MemberPointerTypes.insert(Ty)) 3134 return false; 3135 3136 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 3137 assert(PointerTy && "type was not a member pointer type!"); 3138 3139 QualType PointeeTy = PointerTy->getPointeeType(); 3140 // Don't add qualified variants of arrays. For one, they're not allowed 3141 // (the qualifier would sink to the element type), and for another, the 3142 // only overload situation where it matters is subscript or pointer +- int, 3143 // and those shouldn't have qualifier variants anyway. 3144 if (PointeeTy->isArrayType()) 3145 return true; 3146 const Type *ClassTy = PointerTy->getClass(); 3147 3148 // Iterate through all strict supersets of the pointee type's CVR 3149 // qualifiers. 3150 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3151 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3152 if ((CVR | BaseCVR) != CVR) continue; 3153 3154 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3155 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 3156 } 3157 3158 return true; 3159} 3160 3161/// AddTypesConvertedFrom - Add each of the types to which the type @p 3162/// Ty can be implicit converted to the given set of @p Types. We're 3163/// primarily interested in pointer types and enumeration types. We also 3164/// take member pointer types, for the conditional operator. 3165/// AllowUserConversions is true if we should look at the conversion 3166/// functions of a class type, and AllowExplicitConversions if we 3167/// should also include the explicit conversion functions of a class 3168/// type. 3169void 3170BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 3171 SourceLocation Loc, 3172 bool AllowUserConversions, 3173 bool AllowExplicitConversions, 3174 const Qualifiers &VisibleQuals) { 3175 // Only deal with canonical types. 3176 Ty = Context.getCanonicalType(Ty); 3177 3178 // Look through reference types; they aren't part of the type of an 3179 // expression for the purposes of conversions. 3180 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3181 Ty = RefTy->getPointeeType(); 3182 3183 // We don't care about qualifiers on the type. 3184 Ty = Ty.getLocalUnqualifiedType(); 3185 3186 // If we're dealing with an array type, decay to the pointer. 3187 if (Ty->isArrayType()) 3188 Ty = SemaRef.Context.getArrayDecayedType(Ty); 3189 3190 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3191 QualType PointeeTy = PointerTy->getPointeeType(); 3192 3193 // Insert our type, and its more-qualified variants, into the set 3194 // of types. 3195 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3196 return; 3197 } else if (Ty->isMemberPointerType()) { 3198 // Member pointers are far easier, since the pointee can't be converted. 3199 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3200 return; 3201 } else if (Ty->isEnumeralType()) { 3202 EnumerationTypes.insert(Ty); 3203 } else if (AllowUserConversions) { 3204 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3205 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 3206 // No conversion functions in incomplete types. 3207 return; 3208 } 3209 3210 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3211 const UnresolvedSet *Conversions 3212 = ClassDecl->getVisibleConversionFunctions(); 3213 for (UnresolvedSet::iterator I = Conversions->begin(), 3214 E = Conversions->end(); I != E; ++I) { 3215 3216 // Skip conversion function templates; they don't tell us anything 3217 // about which builtin types we can convert to. 3218 if (isa<FunctionTemplateDecl>(*I)) 3219 continue; 3220 3221 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I); 3222 if (AllowExplicitConversions || !Conv->isExplicit()) { 3223 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 3224 VisibleQuals); 3225 } 3226 } 3227 } 3228 } 3229} 3230 3231/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 3232/// the volatile- and non-volatile-qualified assignment operators for the 3233/// given type to the candidate set. 3234static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 3235 QualType T, 3236 Expr **Args, 3237 unsigned NumArgs, 3238 OverloadCandidateSet &CandidateSet) { 3239 QualType ParamTypes[2]; 3240 3241 // T& operator=(T&, T) 3242 ParamTypes[0] = S.Context.getLValueReferenceType(T); 3243 ParamTypes[1] = T; 3244 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3245 /*IsAssignmentOperator=*/true); 3246 3247 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 3248 // volatile T& operator=(volatile T&, T) 3249 ParamTypes[0] 3250 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 3251 ParamTypes[1] = T; 3252 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3253 /*IsAssignmentOperator=*/true); 3254 } 3255} 3256 3257/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 3258/// if any, found in visible type conversion functions found in ArgExpr's type. 3259static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 3260 Qualifiers VRQuals; 3261 const RecordType *TyRec; 3262 if (const MemberPointerType *RHSMPType = 3263 ArgExpr->getType()->getAs<MemberPointerType>()) 3264 TyRec = cast<RecordType>(RHSMPType->getClass()); 3265 else 3266 TyRec = ArgExpr->getType()->getAs<RecordType>(); 3267 if (!TyRec) { 3268 // Just to be safe, assume the worst case. 3269 VRQuals.addVolatile(); 3270 VRQuals.addRestrict(); 3271 return VRQuals; 3272 } 3273 3274 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3275 const UnresolvedSet *Conversions = 3276 ClassDecl->getVisibleConversionFunctions(); 3277 3278 for (UnresolvedSet::iterator I = Conversions->begin(), 3279 E = Conversions->end(); I != E; ++I) { 3280 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) { 3281 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 3282 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 3283 CanTy = ResTypeRef->getPointeeType(); 3284 // Need to go down the pointer/mempointer chain and add qualifiers 3285 // as see them. 3286 bool done = false; 3287 while (!done) { 3288 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 3289 CanTy = ResTypePtr->getPointeeType(); 3290 else if (const MemberPointerType *ResTypeMPtr = 3291 CanTy->getAs<MemberPointerType>()) 3292 CanTy = ResTypeMPtr->getPointeeType(); 3293 else 3294 done = true; 3295 if (CanTy.isVolatileQualified()) 3296 VRQuals.addVolatile(); 3297 if (CanTy.isRestrictQualified()) 3298 VRQuals.addRestrict(); 3299 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 3300 return VRQuals; 3301 } 3302 } 3303 } 3304 return VRQuals; 3305} 3306 3307/// AddBuiltinOperatorCandidates - Add the appropriate built-in 3308/// operator overloads to the candidate set (C++ [over.built]), based 3309/// on the operator @p Op and the arguments given. For example, if the 3310/// operator is a binary '+', this routine might add "int 3311/// operator+(int, int)" to cover integer addition. 3312void 3313Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 3314 SourceLocation OpLoc, 3315 Expr **Args, unsigned NumArgs, 3316 OverloadCandidateSet& CandidateSet) { 3317 // The set of "promoted arithmetic types", which are the arithmetic 3318 // types are that preserved by promotion (C++ [over.built]p2). Note 3319 // that the first few of these types are the promoted integral 3320 // types; these types need to be first. 3321 // FIXME: What about complex? 3322 const unsigned FirstIntegralType = 0; 3323 const unsigned LastIntegralType = 13; 3324 const unsigned FirstPromotedIntegralType = 7, 3325 LastPromotedIntegralType = 13; 3326 const unsigned FirstPromotedArithmeticType = 7, 3327 LastPromotedArithmeticType = 16; 3328 const unsigned NumArithmeticTypes = 16; 3329 QualType ArithmeticTypes[NumArithmeticTypes] = { 3330 Context.BoolTy, Context.CharTy, Context.WCharTy, 3331// FIXME: Context.Char16Ty, Context.Char32Ty, 3332 Context.SignedCharTy, Context.ShortTy, 3333 Context.UnsignedCharTy, Context.UnsignedShortTy, 3334 Context.IntTy, Context.LongTy, Context.LongLongTy, 3335 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 3336 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 3337 }; 3338 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 3339 "Invalid first promoted integral type"); 3340 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 3341 == Context.UnsignedLongLongTy && 3342 "Invalid last promoted integral type"); 3343 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 3344 "Invalid first promoted arithmetic type"); 3345 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 3346 == Context.LongDoubleTy && 3347 "Invalid last promoted arithmetic type"); 3348 3349 // Find all of the types that the arguments can convert to, but only 3350 // if the operator we're looking at has built-in operator candidates 3351 // that make use of these types. 3352 Qualifiers VisibleTypeConversionsQuals; 3353 VisibleTypeConversionsQuals.addConst(); 3354 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3355 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 3356 3357 BuiltinCandidateTypeSet CandidateTypes(*this); 3358 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 3359 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 3360 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 3361 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 3362 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 3363 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 3364 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3365 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 3366 OpLoc, 3367 true, 3368 (Op == OO_Exclaim || 3369 Op == OO_AmpAmp || 3370 Op == OO_PipePipe), 3371 VisibleTypeConversionsQuals); 3372 } 3373 3374 bool isComparison = false; 3375 switch (Op) { 3376 case OO_None: 3377 case NUM_OVERLOADED_OPERATORS: 3378 assert(false && "Expected an overloaded operator"); 3379 break; 3380 3381 case OO_Star: // '*' is either unary or binary 3382 if (NumArgs == 1) 3383 goto UnaryStar; 3384 else 3385 goto BinaryStar; 3386 break; 3387 3388 case OO_Plus: // '+' is either unary or binary 3389 if (NumArgs == 1) 3390 goto UnaryPlus; 3391 else 3392 goto BinaryPlus; 3393 break; 3394 3395 case OO_Minus: // '-' is either unary or binary 3396 if (NumArgs == 1) 3397 goto UnaryMinus; 3398 else 3399 goto BinaryMinus; 3400 break; 3401 3402 case OO_Amp: // '&' is either unary or binary 3403 if (NumArgs == 1) 3404 goto UnaryAmp; 3405 else 3406 goto BinaryAmp; 3407 3408 case OO_PlusPlus: 3409 case OO_MinusMinus: 3410 // C++ [over.built]p3: 3411 // 3412 // For every pair (T, VQ), where T is an arithmetic type, and VQ 3413 // is either volatile or empty, there exist candidate operator 3414 // functions of the form 3415 // 3416 // VQ T& operator++(VQ T&); 3417 // T operator++(VQ T&, int); 3418 // 3419 // C++ [over.built]p4: 3420 // 3421 // For every pair (T, VQ), where T is an arithmetic type other 3422 // than bool, and VQ is either volatile or empty, there exist 3423 // candidate operator functions of the form 3424 // 3425 // VQ T& operator--(VQ T&); 3426 // T operator--(VQ T&, int); 3427 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 3428 Arith < NumArithmeticTypes; ++Arith) { 3429 QualType ArithTy = ArithmeticTypes[Arith]; 3430 QualType ParamTypes[2] 3431 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 3432 3433 // Non-volatile version. 3434 if (NumArgs == 1) 3435 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3436 else 3437 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3438 // heuristic to reduce number of builtin candidates in the set. 3439 // Add volatile version only if there are conversions to a volatile type. 3440 if (VisibleTypeConversionsQuals.hasVolatile()) { 3441 // Volatile version 3442 ParamTypes[0] 3443 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 3444 if (NumArgs == 1) 3445 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3446 else 3447 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3448 } 3449 } 3450 3451 // C++ [over.built]p5: 3452 // 3453 // For every pair (T, VQ), where T is a cv-qualified or 3454 // cv-unqualified object type, and VQ is either volatile or 3455 // empty, there exist candidate operator functions of the form 3456 // 3457 // T*VQ& operator++(T*VQ&); 3458 // T*VQ& operator--(T*VQ&); 3459 // T* operator++(T*VQ&, int); 3460 // T* operator--(T*VQ&, int); 3461 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3462 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3463 // Skip pointer types that aren't pointers to object types. 3464 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 3465 continue; 3466 3467 QualType ParamTypes[2] = { 3468 Context.getLValueReferenceType(*Ptr), Context.IntTy 3469 }; 3470 3471 // Without volatile 3472 if (NumArgs == 1) 3473 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3474 else 3475 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3476 3477 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3478 VisibleTypeConversionsQuals.hasVolatile()) { 3479 // With volatile 3480 ParamTypes[0] 3481 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3482 if (NumArgs == 1) 3483 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3484 else 3485 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3486 } 3487 } 3488 break; 3489 3490 UnaryStar: 3491 // C++ [over.built]p6: 3492 // For every cv-qualified or cv-unqualified object type T, there 3493 // exist candidate operator functions of the form 3494 // 3495 // T& operator*(T*); 3496 // 3497 // C++ [over.built]p7: 3498 // For every function type T, there exist candidate operator 3499 // functions of the form 3500 // T& operator*(T*); 3501 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3502 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3503 QualType ParamTy = *Ptr; 3504 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 3505 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 3506 &ParamTy, Args, 1, CandidateSet); 3507 } 3508 break; 3509 3510 UnaryPlus: 3511 // C++ [over.built]p8: 3512 // For every type T, there exist candidate operator functions of 3513 // the form 3514 // 3515 // T* operator+(T*); 3516 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3517 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3518 QualType ParamTy = *Ptr; 3519 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 3520 } 3521 3522 // Fall through 3523 3524 UnaryMinus: 3525 // C++ [over.built]p9: 3526 // For every promoted arithmetic type T, there exist candidate 3527 // operator functions of the form 3528 // 3529 // T operator+(T); 3530 // T operator-(T); 3531 for (unsigned Arith = FirstPromotedArithmeticType; 3532 Arith < LastPromotedArithmeticType; ++Arith) { 3533 QualType ArithTy = ArithmeticTypes[Arith]; 3534 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 3535 } 3536 break; 3537 3538 case OO_Tilde: 3539 // C++ [over.built]p10: 3540 // For every promoted integral type T, there exist candidate 3541 // operator functions of the form 3542 // 3543 // T operator~(T); 3544 for (unsigned Int = FirstPromotedIntegralType; 3545 Int < LastPromotedIntegralType; ++Int) { 3546 QualType IntTy = ArithmeticTypes[Int]; 3547 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 3548 } 3549 break; 3550 3551 case OO_New: 3552 case OO_Delete: 3553 case OO_Array_New: 3554 case OO_Array_Delete: 3555 case OO_Call: 3556 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 3557 break; 3558 3559 case OO_Comma: 3560 UnaryAmp: 3561 case OO_Arrow: 3562 // C++ [over.match.oper]p3: 3563 // -- For the operator ',', the unary operator '&', or the 3564 // operator '->', the built-in candidates set is empty. 3565 break; 3566 3567 case OO_EqualEqual: 3568 case OO_ExclaimEqual: 3569 // C++ [over.match.oper]p16: 3570 // For every pointer to member type T, there exist candidate operator 3571 // functions of the form 3572 // 3573 // bool operator==(T,T); 3574 // bool operator!=(T,T); 3575 for (BuiltinCandidateTypeSet::iterator 3576 MemPtr = CandidateTypes.member_pointer_begin(), 3577 MemPtrEnd = CandidateTypes.member_pointer_end(); 3578 MemPtr != MemPtrEnd; 3579 ++MemPtr) { 3580 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 3581 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3582 } 3583 3584 // Fall through 3585 3586 case OO_Less: 3587 case OO_Greater: 3588 case OO_LessEqual: 3589 case OO_GreaterEqual: 3590 // C++ [over.built]p15: 3591 // 3592 // For every pointer or enumeration type T, there exist 3593 // candidate operator functions of the form 3594 // 3595 // bool operator<(T, T); 3596 // bool operator>(T, T); 3597 // bool operator<=(T, T); 3598 // bool operator>=(T, T); 3599 // bool operator==(T, T); 3600 // bool operator!=(T, T); 3601 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3602 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3603 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3604 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3605 } 3606 for (BuiltinCandidateTypeSet::iterator Enum 3607 = CandidateTypes.enumeration_begin(); 3608 Enum != CandidateTypes.enumeration_end(); ++Enum) { 3609 QualType ParamTypes[2] = { *Enum, *Enum }; 3610 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3611 } 3612 3613 // Fall through. 3614 isComparison = true; 3615 3616 BinaryPlus: 3617 BinaryMinus: 3618 if (!isComparison) { 3619 // We didn't fall through, so we must have OO_Plus or OO_Minus. 3620 3621 // C++ [over.built]p13: 3622 // 3623 // For every cv-qualified or cv-unqualified object type T 3624 // there exist candidate operator functions of the form 3625 // 3626 // T* operator+(T*, ptrdiff_t); 3627 // T& operator[](T*, ptrdiff_t); [BELOW] 3628 // T* operator-(T*, ptrdiff_t); 3629 // T* operator+(ptrdiff_t, T*); 3630 // T& operator[](ptrdiff_t, T*); [BELOW] 3631 // 3632 // C++ [over.built]p14: 3633 // 3634 // For every T, where T is a pointer to object type, there 3635 // exist candidate operator functions of the form 3636 // 3637 // ptrdiff_t operator-(T, T); 3638 for (BuiltinCandidateTypeSet::iterator Ptr 3639 = CandidateTypes.pointer_begin(); 3640 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3641 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3642 3643 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 3644 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3645 3646 if (Op == OO_Plus) { 3647 // T* operator+(ptrdiff_t, T*); 3648 ParamTypes[0] = ParamTypes[1]; 3649 ParamTypes[1] = *Ptr; 3650 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3651 } else { 3652 // ptrdiff_t operator-(T, T); 3653 ParamTypes[1] = *Ptr; 3654 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 3655 Args, 2, CandidateSet); 3656 } 3657 } 3658 } 3659 // Fall through 3660 3661 case OO_Slash: 3662 BinaryStar: 3663 Conditional: 3664 // C++ [over.built]p12: 3665 // 3666 // For every pair of promoted arithmetic types L and R, there 3667 // exist candidate operator functions of the form 3668 // 3669 // LR operator*(L, R); 3670 // LR operator/(L, R); 3671 // LR operator+(L, R); 3672 // LR operator-(L, R); 3673 // bool operator<(L, R); 3674 // bool operator>(L, R); 3675 // bool operator<=(L, R); 3676 // bool operator>=(L, R); 3677 // bool operator==(L, R); 3678 // bool operator!=(L, R); 3679 // 3680 // where LR is the result of the usual arithmetic conversions 3681 // between types L and R. 3682 // 3683 // C++ [over.built]p24: 3684 // 3685 // For every pair of promoted arithmetic types L and R, there exist 3686 // candidate operator functions of the form 3687 // 3688 // LR operator?(bool, L, R); 3689 // 3690 // where LR is the result of the usual arithmetic conversions 3691 // between types L and R. 3692 // Our candidates ignore the first parameter. 3693 for (unsigned Left = FirstPromotedArithmeticType; 3694 Left < LastPromotedArithmeticType; ++Left) { 3695 for (unsigned Right = FirstPromotedArithmeticType; 3696 Right < LastPromotedArithmeticType; ++Right) { 3697 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3698 QualType Result 3699 = isComparison 3700 ? Context.BoolTy 3701 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3702 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3703 } 3704 } 3705 break; 3706 3707 case OO_Percent: 3708 BinaryAmp: 3709 case OO_Caret: 3710 case OO_Pipe: 3711 case OO_LessLess: 3712 case OO_GreaterGreater: 3713 // C++ [over.built]p17: 3714 // 3715 // For every pair of promoted integral types L and R, there 3716 // exist candidate operator functions of the form 3717 // 3718 // LR operator%(L, R); 3719 // LR operator&(L, R); 3720 // LR operator^(L, R); 3721 // LR operator|(L, R); 3722 // L operator<<(L, R); 3723 // L operator>>(L, R); 3724 // 3725 // where LR is the result of the usual arithmetic conversions 3726 // between types L and R. 3727 for (unsigned Left = FirstPromotedIntegralType; 3728 Left < LastPromotedIntegralType; ++Left) { 3729 for (unsigned Right = FirstPromotedIntegralType; 3730 Right < LastPromotedIntegralType; ++Right) { 3731 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3732 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 3733 ? LandR[0] 3734 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3735 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3736 } 3737 } 3738 break; 3739 3740 case OO_Equal: 3741 // C++ [over.built]p20: 3742 // 3743 // For every pair (T, VQ), where T is an enumeration or 3744 // pointer to member type and VQ is either volatile or 3745 // empty, there exist candidate operator functions of the form 3746 // 3747 // VQ T& operator=(VQ T&, T); 3748 for (BuiltinCandidateTypeSet::iterator 3749 Enum = CandidateTypes.enumeration_begin(), 3750 EnumEnd = CandidateTypes.enumeration_end(); 3751 Enum != EnumEnd; ++Enum) 3752 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 3753 CandidateSet); 3754 for (BuiltinCandidateTypeSet::iterator 3755 MemPtr = CandidateTypes.member_pointer_begin(), 3756 MemPtrEnd = CandidateTypes.member_pointer_end(); 3757 MemPtr != MemPtrEnd; ++MemPtr) 3758 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 3759 CandidateSet); 3760 // Fall through. 3761 3762 case OO_PlusEqual: 3763 case OO_MinusEqual: 3764 // C++ [over.built]p19: 3765 // 3766 // For every pair (T, VQ), where T is any type and VQ is either 3767 // volatile or empty, there exist candidate operator functions 3768 // of the form 3769 // 3770 // T*VQ& operator=(T*VQ&, T*); 3771 // 3772 // C++ [over.built]p21: 3773 // 3774 // For every pair (T, VQ), where T is a cv-qualified or 3775 // cv-unqualified object type and VQ is either volatile or 3776 // empty, there exist candidate operator functions of the form 3777 // 3778 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 3779 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 3780 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3781 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3782 QualType ParamTypes[2]; 3783 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 3784 3785 // non-volatile version 3786 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 3787 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3788 /*IsAssigmentOperator=*/Op == OO_Equal); 3789 3790 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3791 VisibleTypeConversionsQuals.hasVolatile()) { 3792 // volatile version 3793 ParamTypes[0] 3794 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3795 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3796 /*IsAssigmentOperator=*/Op == OO_Equal); 3797 } 3798 } 3799 // Fall through. 3800 3801 case OO_StarEqual: 3802 case OO_SlashEqual: 3803 // C++ [over.built]p18: 3804 // 3805 // For every triple (L, VQ, R), where L is an arithmetic type, 3806 // VQ is either volatile or empty, and R is a promoted 3807 // arithmetic type, there exist candidate operator functions of 3808 // the form 3809 // 3810 // VQ L& operator=(VQ L&, R); 3811 // VQ L& operator*=(VQ L&, R); 3812 // VQ L& operator/=(VQ L&, R); 3813 // VQ L& operator+=(VQ L&, R); 3814 // VQ L& operator-=(VQ L&, R); 3815 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3816 for (unsigned Right = FirstPromotedArithmeticType; 3817 Right < LastPromotedArithmeticType; ++Right) { 3818 QualType ParamTypes[2]; 3819 ParamTypes[1] = ArithmeticTypes[Right]; 3820 3821 // Add this built-in operator as a candidate (VQ is empty). 3822 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3823 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3824 /*IsAssigmentOperator=*/Op == OO_Equal); 3825 3826 // Add this built-in operator as a candidate (VQ is 'volatile'). 3827 if (VisibleTypeConversionsQuals.hasVolatile()) { 3828 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 3829 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3830 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3831 /*IsAssigmentOperator=*/Op == OO_Equal); 3832 } 3833 } 3834 } 3835 break; 3836 3837 case OO_PercentEqual: 3838 case OO_LessLessEqual: 3839 case OO_GreaterGreaterEqual: 3840 case OO_AmpEqual: 3841 case OO_CaretEqual: 3842 case OO_PipeEqual: 3843 // C++ [over.built]p22: 3844 // 3845 // For every triple (L, VQ, R), where L is an integral type, VQ 3846 // is either volatile or empty, and R is a promoted integral 3847 // type, there exist candidate operator functions of the form 3848 // 3849 // VQ L& operator%=(VQ L&, R); 3850 // VQ L& operator<<=(VQ L&, R); 3851 // VQ L& operator>>=(VQ L&, R); 3852 // VQ L& operator&=(VQ L&, R); 3853 // VQ L& operator^=(VQ L&, R); 3854 // VQ L& operator|=(VQ L&, R); 3855 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 3856 for (unsigned Right = FirstPromotedIntegralType; 3857 Right < LastPromotedIntegralType; ++Right) { 3858 QualType ParamTypes[2]; 3859 ParamTypes[1] = ArithmeticTypes[Right]; 3860 3861 // Add this built-in operator as a candidate (VQ is empty). 3862 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3863 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3864 if (VisibleTypeConversionsQuals.hasVolatile()) { 3865 // Add this built-in operator as a candidate (VQ is 'volatile'). 3866 ParamTypes[0] = ArithmeticTypes[Left]; 3867 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 3868 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3869 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3870 } 3871 } 3872 } 3873 break; 3874 3875 case OO_Exclaim: { 3876 // C++ [over.operator]p23: 3877 // 3878 // There also exist candidate operator functions of the form 3879 // 3880 // bool operator!(bool); 3881 // bool operator&&(bool, bool); [BELOW] 3882 // bool operator||(bool, bool); [BELOW] 3883 QualType ParamTy = Context.BoolTy; 3884 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 3885 /*IsAssignmentOperator=*/false, 3886 /*NumContextualBoolArguments=*/1); 3887 break; 3888 } 3889 3890 case OO_AmpAmp: 3891 case OO_PipePipe: { 3892 // C++ [over.operator]p23: 3893 // 3894 // There also exist candidate operator functions of the form 3895 // 3896 // bool operator!(bool); [ABOVE] 3897 // bool operator&&(bool, bool); 3898 // bool operator||(bool, bool); 3899 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 3900 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 3901 /*IsAssignmentOperator=*/false, 3902 /*NumContextualBoolArguments=*/2); 3903 break; 3904 } 3905 3906 case OO_Subscript: 3907 // C++ [over.built]p13: 3908 // 3909 // For every cv-qualified or cv-unqualified object type T there 3910 // exist candidate operator functions of the form 3911 // 3912 // T* operator+(T*, ptrdiff_t); [ABOVE] 3913 // T& operator[](T*, ptrdiff_t); 3914 // T* operator-(T*, ptrdiff_t); [ABOVE] 3915 // T* operator+(ptrdiff_t, T*); [ABOVE] 3916 // T& operator[](ptrdiff_t, T*); 3917 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3918 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3919 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3920 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 3921 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 3922 3923 // T& operator[](T*, ptrdiff_t) 3924 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3925 3926 // T& operator[](ptrdiff_t, T*); 3927 ParamTypes[0] = ParamTypes[1]; 3928 ParamTypes[1] = *Ptr; 3929 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3930 } 3931 break; 3932 3933 case OO_ArrowStar: 3934 // C++ [over.built]p11: 3935 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 3936 // C1 is the same type as C2 or is a derived class of C2, T is an object 3937 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 3938 // there exist candidate operator functions of the form 3939 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 3940 // where CV12 is the union of CV1 and CV2. 3941 { 3942 for (BuiltinCandidateTypeSet::iterator Ptr = 3943 CandidateTypes.pointer_begin(); 3944 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3945 QualType C1Ty = (*Ptr); 3946 QualType C1; 3947 QualifierCollector Q1; 3948 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 3949 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 3950 if (!isa<RecordType>(C1)) 3951 continue; 3952 // heuristic to reduce number of builtin candidates in the set. 3953 // Add volatile/restrict version only if there are conversions to a 3954 // volatile/restrict type. 3955 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 3956 continue; 3957 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 3958 continue; 3959 } 3960 for (BuiltinCandidateTypeSet::iterator 3961 MemPtr = CandidateTypes.member_pointer_begin(), 3962 MemPtrEnd = CandidateTypes.member_pointer_end(); 3963 MemPtr != MemPtrEnd; ++MemPtr) { 3964 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 3965 QualType C2 = QualType(mptr->getClass(), 0); 3966 C2 = C2.getUnqualifiedType(); 3967 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 3968 break; 3969 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 3970 // build CV12 T& 3971 QualType T = mptr->getPointeeType(); 3972 if (!VisibleTypeConversionsQuals.hasVolatile() && 3973 T.isVolatileQualified()) 3974 continue; 3975 if (!VisibleTypeConversionsQuals.hasRestrict() && 3976 T.isRestrictQualified()) 3977 continue; 3978 T = Q1.apply(T); 3979 QualType ResultTy = Context.getLValueReferenceType(T); 3980 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3981 } 3982 } 3983 } 3984 break; 3985 3986 case OO_Conditional: 3987 // Note that we don't consider the first argument, since it has been 3988 // contextually converted to bool long ago. The candidates below are 3989 // therefore added as binary. 3990 // 3991 // C++ [over.built]p24: 3992 // For every type T, where T is a pointer or pointer-to-member type, 3993 // there exist candidate operator functions of the form 3994 // 3995 // T operator?(bool, T, T); 3996 // 3997 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 3998 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 3999 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4000 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4001 } 4002 for (BuiltinCandidateTypeSet::iterator Ptr = 4003 CandidateTypes.member_pointer_begin(), 4004 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 4005 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4006 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4007 } 4008 goto Conditional; 4009 } 4010} 4011 4012/// \brief Add function candidates found via argument-dependent lookup 4013/// to the set of overloading candidates. 4014/// 4015/// This routine performs argument-dependent name lookup based on the 4016/// given function name (which may also be an operator name) and adds 4017/// all of the overload candidates found by ADL to the overload 4018/// candidate set (C++ [basic.lookup.argdep]). 4019void 4020Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 4021 Expr **Args, unsigned NumArgs, 4022 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4023 OverloadCandidateSet& CandidateSet, 4024 bool PartialOverloading) { 4025 FunctionSet Functions; 4026 4027 // FIXME: Should we be trafficking in canonical function decls throughout? 4028 4029 // Record all of the function candidates that we've already 4030 // added to the overload set, so that we don't add those same 4031 // candidates a second time. 4032 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4033 CandEnd = CandidateSet.end(); 4034 Cand != CandEnd; ++Cand) 4035 if (Cand->Function) { 4036 Functions.insert(Cand->Function); 4037 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 4038 Functions.insert(FunTmpl); 4039 } 4040 4041 // FIXME: Pass in the explicit template arguments? 4042 ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions); 4043 4044 // Erase all of the candidates we already knew about. 4045 // FIXME: This is suboptimal. Is there a better way? 4046 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4047 CandEnd = CandidateSet.end(); 4048 Cand != CandEnd; ++Cand) 4049 if (Cand->Function) { 4050 Functions.erase(Cand->Function); 4051 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 4052 Functions.erase(FunTmpl); 4053 } 4054 4055 // For each of the ADL candidates we found, add it to the overload 4056 // set. 4057 for (FunctionSet::iterator Func = Functions.begin(), 4058 FuncEnd = Functions.end(); 4059 Func != FuncEnd; ++Func) { 4060 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) { 4061 if (ExplicitTemplateArgs) 4062 continue; 4063 4064 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 4065 false, false, PartialOverloading); 4066 } else 4067 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func), 4068 ExplicitTemplateArgs, 4069 Args, NumArgs, CandidateSet); 4070 } 4071} 4072 4073/// isBetterOverloadCandidate - Determines whether the first overload 4074/// candidate is a better candidate than the second (C++ 13.3.3p1). 4075bool 4076Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 4077 const OverloadCandidate& Cand2) { 4078 // Define viable functions to be better candidates than non-viable 4079 // functions. 4080 if (!Cand2.Viable) 4081 return Cand1.Viable; 4082 else if (!Cand1.Viable) 4083 return false; 4084 4085 // C++ [over.match.best]p1: 4086 // 4087 // -- if F is a static member function, ICS1(F) is defined such 4088 // that ICS1(F) is neither better nor worse than ICS1(G) for 4089 // any function G, and, symmetrically, ICS1(G) is neither 4090 // better nor worse than ICS1(F). 4091 unsigned StartArg = 0; 4092 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 4093 StartArg = 1; 4094 4095 // C++ [over.match.best]p1: 4096 // A viable function F1 is defined to be a better function than another 4097 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 4098 // conversion sequence than ICSi(F2), and then... 4099 unsigned NumArgs = Cand1.Conversions.size(); 4100 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 4101 bool HasBetterConversion = false; 4102 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 4103 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 4104 Cand2.Conversions[ArgIdx])) { 4105 case ImplicitConversionSequence::Better: 4106 // Cand1 has a better conversion sequence. 4107 HasBetterConversion = true; 4108 break; 4109 4110 case ImplicitConversionSequence::Worse: 4111 // Cand1 can't be better than Cand2. 4112 return false; 4113 4114 case ImplicitConversionSequence::Indistinguishable: 4115 // Do nothing. 4116 break; 4117 } 4118 } 4119 4120 // -- for some argument j, ICSj(F1) is a better conversion sequence than 4121 // ICSj(F2), or, if not that, 4122 if (HasBetterConversion) 4123 return true; 4124 4125 // - F1 is a non-template function and F2 is a function template 4126 // specialization, or, if not that, 4127 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 4128 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4129 return true; 4130 4131 // -- F1 and F2 are function template specializations, and the function 4132 // template for F1 is more specialized than the template for F2 4133 // according to the partial ordering rules described in 14.5.5.2, or, 4134 // if not that, 4135 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 4136 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4137 if (FunctionTemplateDecl *BetterTemplate 4138 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 4139 Cand2.Function->getPrimaryTemplate(), 4140 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 4141 : TPOC_Call)) 4142 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 4143 4144 // -- the context is an initialization by user-defined conversion 4145 // (see 8.5, 13.3.1.5) and the standard conversion sequence 4146 // from the return type of F1 to the destination type (i.e., 4147 // the type of the entity being initialized) is a better 4148 // conversion sequence than the standard conversion sequence 4149 // from the return type of F2 to the destination type. 4150 if (Cand1.Function && Cand2.Function && 4151 isa<CXXConversionDecl>(Cand1.Function) && 4152 isa<CXXConversionDecl>(Cand2.Function)) { 4153 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 4154 Cand2.FinalConversion)) { 4155 case ImplicitConversionSequence::Better: 4156 // Cand1 has a better conversion sequence. 4157 return true; 4158 4159 case ImplicitConversionSequence::Worse: 4160 // Cand1 can't be better than Cand2. 4161 return false; 4162 4163 case ImplicitConversionSequence::Indistinguishable: 4164 // Do nothing 4165 break; 4166 } 4167 } 4168 4169 return false; 4170} 4171 4172/// \brief Computes the best viable function (C++ 13.3.3) 4173/// within an overload candidate set. 4174/// 4175/// \param CandidateSet the set of candidate functions. 4176/// 4177/// \param Loc the location of the function name (or operator symbol) for 4178/// which overload resolution occurs. 4179/// 4180/// \param Best f overload resolution was successful or found a deleted 4181/// function, Best points to the candidate function found. 4182/// 4183/// \returns The result of overload resolution. 4184OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 4185 SourceLocation Loc, 4186 OverloadCandidateSet::iterator& Best) { 4187 // Find the best viable function. 4188 Best = CandidateSet.end(); 4189 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4190 Cand != CandidateSet.end(); ++Cand) { 4191 if (Cand->Viable) { 4192 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) 4193 Best = Cand; 4194 } 4195 } 4196 4197 // If we didn't find any viable functions, abort. 4198 if (Best == CandidateSet.end()) 4199 return OR_No_Viable_Function; 4200 4201 // Make sure that this function is better than every other viable 4202 // function. If not, we have an ambiguity. 4203 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4204 Cand != CandidateSet.end(); ++Cand) { 4205 if (Cand->Viable && 4206 Cand != Best && 4207 !isBetterOverloadCandidate(*Best, *Cand)) { 4208 Best = CandidateSet.end(); 4209 return OR_Ambiguous; 4210 } 4211 } 4212 4213 // Best is the best viable function. 4214 if (Best->Function && 4215 (Best->Function->isDeleted() || 4216 Best->Function->getAttr<UnavailableAttr>())) 4217 return OR_Deleted; 4218 4219 // C++ [basic.def.odr]p2: 4220 // An overloaded function is used if it is selected by overload resolution 4221 // when referred to from a potentially-evaluated expression. [Note: this 4222 // covers calls to named functions (5.2.2), operator overloading 4223 // (clause 13), user-defined conversions (12.3.2), allocation function for 4224 // placement new (5.3.4), as well as non-default initialization (8.5). 4225 if (Best->Function) 4226 MarkDeclarationReferenced(Loc, Best->Function); 4227 return OR_Success; 4228} 4229 4230/// PrintOverloadCandidates - When overload resolution fails, prints 4231/// diagnostic messages containing the candidates in the candidate 4232/// set. If OnlyViable is true, only viable candidates will be printed. 4233void 4234Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 4235 bool OnlyViable, 4236 const char *Opc, 4237 SourceLocation OpLoc) { 4238 OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4239 LastCand = CandidateSet.end(); 4240 bool Reported = false; 4241 for (; Cand != LastCand; ++Cand) { 4242 if (Cand->Viable || !OnlyViable) { 4243 if (Cand->Function) { 4244 if (Cand->Function->isDeleted() || 4245 Cand->Function->getAttr<UnavailableAttr>()) { 4246 // Deleted or "unavailable" function. 4247 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted) 4248 << Cand->Function->isDeleted(); 4249 } else if (FunctionTemplateDecl *FunTmpl 4250 = Cand->Function->getPrimaryTemplate()) { 4251 // Function template specialization 4252 // FIXME: Give a better reason! 4253 Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate) 4254 << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(), 4255 *Cand->Function->getTemplateSpecializationArgs()); 4256 } else { 4257 // Normal function 4258 bool errReported = false; 4259 if (!Cand->Viable && Cand->Conversions.size() > 0) { 4260 for (int i = Cand->Conversions.size()-1; i >= 0; i--) { 4261 const ImplicitConversionSequence &Conversion = 4262 Cand->Conversions[i]; 4263 if ((Conversion.ConversionKind != 4264 ImplicitConversionSequence::BadConversion) || 4265 Conversion.ConversionFunctionSet.size() == 0) 4266 continue; 4267 Diag(Cand->Function->getLocation(), 4268 diag::err_ovl_candidate_not_viable) << (i+1); 4269 errReported = true; 4270 for (int j = Conversion.ConversionFunctionSet.size()-1; 4271 j >= 0; j--) { 4272 FunctionDecl *Func = Conversion.ConversionFunctionSet[j]; 4273 Diag(Func->getLocation(), diag::err_ovl_candidate); 4274 } 4275 } 4276 } 4277 if (!errReported) 4278 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate); 4279 } 4280 } else if (Cand->IsSurrogate) { 4281 // Desugar the type of the surrogate down to a function type, 4282 // retaining as many typedefs as possible while still showing 4283 // the function type (and, therefore, its parameter types). 4284 QualType FnType = Cand->Surrogate->getConversionType(); 4285 bool isLValueReference = false; 4286 bool isRValueReference = false; 4287 bool isPointer = false; 4288 if (const LValueReferenceType *FnTypeRef = 4289 FnType->getAs<LValueReferenceType>()) { 4290 FnType = FnTypeRef->getPointeeType(); 4291 isLValueReference = true; 4292 } else if (const RValueReferenceType *FnTypeRef = 4293 FnType->getAs<RValueReferenceType>()) { 4294 FnType = FnTypeRef->getPointeeType(); 4295 isRValueReference = true; 4296 } 4297 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 4298 FnType = FnTypePtr->getPointeeType(); 4299 isPointer = true; 4300 } 4301 // Desugar down to a function type. 4302 FnType = QualType(FnType->getAs<FunctionType>(), 0); 4303 // Reconstruct the pointer/reference as appropriate. 4304 if (isPointer) FnType = Context.getPointerType(FnType); 4305 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType); 4306 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType); 4307 4308 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand) 4309 << FnType; 4310 } else if (OnlyViable) { 4311 assert(Cand->Conversions.size() <= 2 && 4312 "builtin-binary-operator-not-binary"); 4313 std::string TypeStr("operator"); 4314 TypeStr += Opc; 4315 TypeStr += "("; 4316 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 4317 if (Cand->Conversions.size() == 1) { 4318 TypeStr += ")"; 4319 Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr; 4320 } 4321 else { 4322 TypeStr += ", "; 4323 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 4324 TypeStr += ")"; 4325 Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr; 4326 } 4327 } 4328 else if (!Cand->Viable && !Reported) { 4329 // Non-viability might be due to ambiguous user-defined conversions, 4330 // needed for built-in operators. Report them as well, but only once 4331 // as we have typically many built-in candidates. 4332 unsigned NoOperands = Cand->Conversions.size(); 4333 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 4334 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 4335 if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion || 4336 ICS.ConversionFunctionSet.empty()) 4337 continue; 4338 if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>( 4339 Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) { 4340 QualType FromTy = 4341 QualType( 4342 static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0); 4343 Diag(OpLoc,diag::note_ambiguous_type_conversion) 4344 << FromTy << Func->getConversionType(); 4345 } 4346 for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) { 4347 FunctionDecl *Func = 4348 Cand->Conversions[ArgIdx].ConversionFunctionSet[j]; 4349 Diag(Func->getLocation(),diag::err_ovl_candidate); 4350 } 4351 } 4352 Reported = true; 4353 } 4354 } 4355 } 4356} 4357 4358/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 4359/// an overloaded function (C++ [over.over]), where @p From is an 4360/// expression with overloaded function type and @p ToType is the type 4361/// we're trying to resolve to. For example: 4362/// 4363/// @code 4364/// int f(double); 4365/// int f(int); 4366/// 4367/// int (*pfd)(double) = f; // selects f(double) 4368/// @endcode 4369/// 4370/// This routine returns the resulting FunctionDecl if it could be 4371/// resolved, and NULL otherwise. When @p Complain is true, this 4372/// routine will emit diagnostics if there is an error. 4373FunctionDecl * 4374Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 4375 bool Complain) { 4376 QualType FunctionType = ToType; 4377 bool IsMember = false; 4378 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 4379 FunctionType = ToTypePtr->getPointeeType(); 4380 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 4381 FunctionType = ToTypeRef->getPointeeType(); 4382 else if (const MemberPointerType *MemTypePtr = 4383 ToType->getAs<MemberPointerType>()) { 4384 FunctionType = MemTypePtr->getPointeeType(); 4385 IsMember = true; 4386 } 4387 4388 // We only look at pointers or references to functions. 4389 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 4390 if (!FunctionType->isFunctionType()) 4391 return 0; 4392 4393 // Find the actual overloaded function declaration. 4394 4395 // C++ [over.over]p1: 4396 // [...] [Note: any redundant set of parentheses surrounding the 4397 // overloaded function name is ignored (5.1). ] 4398 Expr *OvlExpr = From->IgnoreParens(); 4399 4400 // C++ [over.over]p1: 4401 // [...] The overloaded function name can be preceded by the & 4402 // operator. 4403 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 4404 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 4405 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 4406 } 4407 4408 bool HasExplicitTemplateArgs = false; 4409 TemplateArgumentListInfo ExplicitTemplateArgs; 4410 4411 llvm::SmallVector<NamedDecl*,8> Fns; 4412 4413 // Look into the overloaded expression. 4414 if (UnresolvedLookupExpr *UL 4415 = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) { 4416 Fns.append(UL->decls_begin(), UL->decls_end()); 4417 if (UL->hasExplicitTemplateArgs()) { 4418 HasExplicitTemplateArgs = true; 4419 UL->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4420 } 4421 } else if (UnresolvedMemberExpr *ME 4422 = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) { 4423 Fns.append(ME->decls_begin(), ME->decls_end()); 4424 if (ME->hasExplicitTemplateArgs()) { 4425 HasExplicitTemplateArgs = true; 4426 ME->copyTemplateArgumentsInto(ExplicitTemplateArgs); 4427 } 4428 } 4429 4430 // If we didn't actually find anything, we're done. 4431 if (Fns.empty()) 4432 return 0; 4433 4434 // Look through all of the overloaded functions, searching for one 4435 // whose type matches exactly. 4436 llvm::SmallPtrSet<FunctionDecl *, 4> Matches; 4437 bool FoundNonTemplateFunction = false; 4438 for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(), 4439 E = Fns.end(); I != E; ++I) { 4440 // C++ [over.over]p3: 4441 // Non-member functions and static member functions match 4442 // targets of type "pointer-to-function" or "reference-to-function." 4443 // Nonstatic member functions match targets of 4444 // type "pointer-to-member-function." 4445 // Note that according to DR 247, the containing class does not matter. 4446 4447 if (FunctionTemplateDecl *FunctionTemplate 4448 = dyn_cast<FunctionTemplateDecl>(*I)) { 4449 if (CXXMethodDecl *Method 4450 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 4451 // Skip non-static function templates when converting to pointer, and 4452 // static when converting to member pointer. 4453 if (Method->isStatic() == IsMember) 4454 continue; 4455 } else if (IsMember) 4456 continue; 4457 4458 // C++ [over.over]p2: 4459 // If the name is a function template, template argument deduction is 4460 // done (14.8.2.2), and if the argument deduction succeeds, the 4461 // resulting template argument list is used to generate a single 4462 // function template specialization, which is added to the set of 4463 // overloaded functions considered. 4464 // FIXME: We don't really want to build the specialization here, do we? 4465 FunctionDecl *Specialization = 0; 4466 TemplateDeductionInfo Info(Context); 4467 if (TemplateDeductionResult Result 4468 = DeduceTemplateArguments(FunctionTemplate, 4469 (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0), 4470 FunctionType, Specialization, Info)) { 4471 // FIXME: make a note of the failed deduction for diagnostics. 4472 (void)Result; 4473 } else { 4474 // FIXME: If the match isn't exact, shouldn't we just drop this as 4475 // a candidate? Find a testcase before changing the code. 4476 assert(FunctionType 4477 == Context.getCanonicalType(Specialization->getType())); 4478 Matches.insert( 4479 cast<FunctionDecl>(Specialization->getCanonicalDecl())); 4480 } 4481 4482 continue; 4483 } 4484 4485 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*I)) { 4486 // Skip non-static functions when converting to pointer, and static 4487 // when converting to member pointer. 4488 if (Method->isStatic() == IsMember) 4489 continue; 4490 4491 // If we have explicit template arguments, skip non-templates. 4492 if (HasExplicitTemplateArgs) 4493 continue; 4494 } else if (IsMember) 4495 continue; 4496 4497 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*I)) { 4498 QualType ResultTy; 4499 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 4500 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 4501 ResultTy)) { 4502 Matches.insert(cast<FunctionDecl>(FunDecl->getCanonicalDecl())); 4503 FoundNonTemplateFunction = true; 4504 } 4505 } 4506 } 4507 4508 // If there were 0 or 1 matches, we're done. 4509 if (Matches.empty()) 4510 return 0; 4511 else if (Matches.size() == 1) { 4512 FunctionDecl *Result = *Matches.begin(); 4513 MarkDeclarationReferenced(From->getLocStart(), Result); 4514 return Result; 4515 } 4516 4517 // C++ [over.over]p4: 4518 // If more than one function is selected, [...] 4519 typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter; 4520 if (!FoundNonTemplateFunction) { 4521 // [...] and any given function template specialization F1 is 4522 // eliminated if the set contains a second function template 4523 // specialization whose function template is more specialized 4524 // than the function template of F1 according to the partial 4525 // ordering rules of 14.5.5.2. 4526 4527 // The algorithm specified above is quadratic. We instead use a 4528 // two-pass algorithm (similar to the one used to identify the 4529 // best viable function in an overload set) that identifies the 4530 // best function template (if it exists). 4531 llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(), 4532 Matches.end()); 4533 FunctionDecl *Result = 4534 getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(), 4535 TPOC_Other, From->getLocStart(), 4536 PDiag(), 4537 PDiag(diag::err_addr_ovl_ambiguous) 4538 << TemplateMatches[0]->getDeclName(), 4539 PDiag(diag::err_ovl_template_candidate)); 4540 MarkDeclarationReferenced(From->getLocStart(), Result); 4541 return Result; 4542 } 4543 4544 // [...] any function template specializations in the set are 4545 // eliminated if the set also contains a non-template function, [...] 4546 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches; 4547 for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M) 4548 if ((*M)->getPrimaryTemplate() == 0) 4549 RemainingMatches.push_back(*M); 4550 4551 // [...] After such eliminations, if any, there shall remain exactly one 4552 // selected function. 4553 if (RemainingMatches.size() == 1) { 4554 FunctionDecl *Result = RemainingMatches.front(); 4555 MarkDeclarationReferenced(From->getLocStart(), Result); 4556 return Result; 4557 } 4558 4559 // FIXME: We should probably return the same thing that BestViableFunction 4560 // returns (even if we issue the diagnostics here). 4561 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 4562 << RemainingMatches[0]->getDeclName(); 4563 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I) 4564 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate); 4565 return 0; 4566} 4567 4568/// \brief Add a single candidate to the overload set. 4569static void AddOverloadedCallCandidate(Sema &S, 4570 NamedDecl *Callee, 4571 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4572 Expr **Args, unsigned NumArgs, 4573 OverloadCandidateSet &CandidateSet, 4574 bool PartialOverloading) { 4575 if (isa<UsingShadowDecl>(Callee)) 4576 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 4577 4578 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 4579 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 4580 S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false, 4581 PartialOverloading); 4582 return; 4583 } 4584 4585 if (FunctionTemplateDecl *FuncTemplate 4586 = dyn_cast<FunctionTemplateDecl>(Callee)) { 4587 S.AddTemplateOverloadCandidate(FuncTemplate, ExplicitTemplateArgs, 4588 Args, NumArgs, CandidateSet); 4589 return; 4590 } 4591 4592 assert(false && "unhandled case in overloaded call candidate"); 4593 4594 // do nothing? 4595} 4596 4597/// \brief Add the overload candidates named by callee and/or found by argument 4598/// dependent lookup to the given overload set. 4599void Sema::AddOverloadedCallCandidates(llvm::SmallVectorImpl<NamedDecl*> &Fns, 4600 DeclarationName &UnqualifiedName, 4601 bool ArgumentDependentLookup, 4602 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4603 Expr **Args, unsigned NumArgs, 4604 OverloadCandidateSet &CandidateSet, 4605 bool PartialOverloading) { 4606 4607#ifndef NDEBUG 4608 // Verify that ArgumentDependentLookup is consistent with the rules 4609 // in C++0x [basic.lookup.argdep]p3: 4610 // 4611 // Let X be the lookup set produced by unqualified lookup (3.4.1) 4612 // and let Y be the lookup set produced by argument dependent 4613 // lookup (defined as follows). If X contains 4614 // 4615 // -- a declaration of a class member, or 4616 // 4617 // -- a block-scope function declaration that is not a 4618 // using-declaration, or 4619 // 4620 // -- a declaration that is neither a function or a function 4621 // template 4622 // 4623 // then Y is empty. 4624 4625 if (ArgumentDependentLookup) { 4626 for (unsigned I = 0; I < Fns.size(); ++I) { 4627 assert(!Fns[I]->getDeclContext()->isRecord()); 4628 assert(isa<UsingShadowDecl>(Fns[I]) || 4629 !Fns[I]->getDeclContext()->isFunctionOrMethod()); 4630 assert(Fns[I]->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 4631 } 4632 } 4633#endif 4634 4635 for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(), 4636 E = Fns.end(); I != E; ++I) 4637 AddOverloadedCallCandidate(*this, *I, ExplicitTemplateArgs, 4638 Args, NumArgs, CandidateSet, 4639 PartialOverloading); 4640 4641 if (ArgumentDependentLookup) 4642 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs, 4643 ExplicitTemplateArgs, 4644 CandidateSet, 4645 PartialOverloading); 4646} 4647 4648/// Attempts to recover from a call where no functions were found. 4649/// 4650/// Returns true if new candidates were found. 4651static bool AddRecoveryCallCandidates(Sema &SemaRef, Expr *Fn, 4652 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4653 Expr **Args, unsigned NumArgs, 4654 OverloadCandidateSet &CandidateSet) { 4655 UnresolvedLookupExpr *ULE 4656 = cast<UnresolvedLookupExpr>(Fn->IgnoreParenCasts()); 4657 4658 CXXScopeSpec SS; 4659 if (ULE->getQualifier()) { 4660 SS.setScopeRep(ULE->getQualifier()); 4661 SS.setRange(ULE->getQualifierRange()); 4662 } 4663 4664 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 4665 Sema::LookupOrdinaryName); 4666 if (SemaRef.DiagnoseEmptyLookup(SS, R)) 4667 return false; 4668 4669 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 4670 AddOverloadedCallCandidate(SemaRef, *I, ExplicitTemplateArgs, 4671 Args, NumArgs, CandidateSet, false); 4672 } 4673 return true; 4674} 4675 4676/// ResolveOverloadedCallFn - Given the call expression that calls Fn 4677/// (which eventually refers to the declaration Func) and the call 4678/// arguments Args/NumArgs, attempt to resolve the function call down 4679/// to a specific function. If overload resolution succeeds, returns 4680/// the function declaration produced by overload 4681/// resolution. Otherwise, emits diagnostics, deletes all of the 4682/// arguments and Fn, and returns NULL. 4683FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, 4684 llvm::SmallVectorImpl<NamedDecl*> &Fns, 4685 DeclarationName UnqualifiedName, 4686 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4687 SourceLocation LParenLoc, 4688 Expr **Args, unsigned NumArgs, 4689 SourceLocation *CommaLocs, 4690 SourceLocation RParenLoc, 4691 bool ArgumentDependentLookup) { 4692 OverloadCandidateSet CandidateSet; 4693 4694 // Add the functions denoted by Callee to the set of candidate 4695 // functions. 4696 AddOverloadedCallCandidates(Fns, UnqualifiedName, ArgumentDependentLookup, 4697 ExplicitTemplateArgs, Args, NumArgs, 4698 CandidateSet); 4699 4700 // If we found nothing, try to recover. 4701 // AddRecoveryCallCandidates diagnoses the error itself, so we just 4702 // bailout out if it fails. 4703 if (CandidateSet.empty() && 4704 !AddRecoveryCallCandidates(*this, Fn, ExplicitTemplateArgs, 4705 Args, NumArgs, CandidateSet)) { 4706 Fn->Destroy(Context); 4707 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 4708 Args[Arg]->Destroy(Context); 4709 return 0; 4710 } 4711 4712 OverloadCandidateSet::iterator Best; 4713 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 4714 case OR_Success: 4715 return Best->Function; 4716 4717 case OR_No_Viable_Function: 4718 Diag(Fn->getSourceRange().getBegin(), 4719 diag::err_ovl_no_viable_function_in_call) 4720 << UnqualifiedName << Fn->getSourceRange(); 4721 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4722 break; 4723 4724 case OR_Ambiguous: 4725 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 4726 << UnqualifiedName << Fn->getSourceRange(); 4727 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4728 break; 4729 4730 case OR_Deleted: 4731 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 4732 << Best->Function->isDeleted() 4733 << UnqualifiedName 4734 << Fn->getSourceRange(); 4735 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4736 break; 4737 } 4738 4739 // Overload resolution failed. Destroy all of the subexpressions and 4740 // return NULL. 4741 Fn->Destroy(Context); 4742 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 4743 Args[Arg]->Destroy(Context); 4744 return 0; 4745} 4746 4747static bool IsOverloaded(const Sema::FunctionSet &Functions) { 4748 return Functions.size() > 1 || 4749 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 4750} 4751 4752/// \brief Create a unary operation that may resolve to an overloaded 4753/// operator. 4754/// 4755/// \param OpLoc The location of the operator itself (e.g., '*'). 4756/// 4757/// \param OpcIn The UnaryOperator::Opcode that describes this 4758/// operator. 4759/// 4760/// \param Functions The set of non-member functions that will be 4761/// considered by overload resolution. The caller needs to build this 4762/// set based on the context using, e.g., 4763/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4764/// set should not contain any member functions; those will be added 4765/// by CreateOverloadedUnaryOp(). 4766/// 4767/// \param input The input argument. 4768Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, 4769 unsigned OpcIn, 4770 FunctionSet &Functions, 4771 ExprArg input) { 4772 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 4773 Expr *Input = (Expr *)input.get(); 4774 4775 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 4776 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 4777 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4778 4779 Expr *Args[2] = { Input, 0 }; 4780 unsigned NumArgs = 1; 4781 4782 // For post-increment and post-decrement, add the implicit '0' as 4783 // the second argument, so that we know this is a post-increment or 4784 // post-decrement. 4785 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 4786 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 4787 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 4788 SourceLocation()); 4789 NumArgs = 2; 4790 } 4791 4792 if (Input->isTypeDependent()) { 4793 UnresolvedLookupExpr *Fn 4794 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 4795 0, SourceRange(), OpName, OpLoc, 4796 /*ADL*/ true, IsOverloaded(Functions)); 4797 for (FunctionSet::iterator Func = Functions.begin(), 4798 FuncEnd = Functions.end(); 4799 Func != FuncEnd; ++Func) 4800 Fn->addDecl(*Func); 4801 4802 input.release(); 4803 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4804 &Args[0], NumArgs, 4805 Context.DependentTy, 4806 OpLoc)); 4807 } 4808 4809 // Build an empty overload set. 4810 OverloadCandidateSet CandidateSet; 4811 4812 // Add the candidates from the given function set. 4813 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); 4814 4815 // Add operator candidates that are member functions. 4816 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4817 4818 // Add builtin operator candidates. 4819 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4820 4821 // Perform overload resolution. 4822 OverloadCandidateSet::iterator Best; 4823 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4824 case OR_Success: { 4825 // We found a built-in operator or an overloaded operator. 4826 FunctionDecl *FnDecl = Best->Function; 4827 4828 if (FnDecl) { 4829 // We matched an overloaded operator. Build a call to that 4830 // operator. 4831 4832 // Convert the arguments. 4833 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4834 if (PerformObjectArgumentInitialization(Input, Method)) 4835 return ExprError(); 4836 } else { 4837 // Convert the arguments. 4838 if (PerformCopyInitialization(Input, 4839 FnDecl->getParamDecl(0)->getType(), 4840 AA_Passing)) 4841 return ExprError(); 4842 } 4843 4844 // Determine the result type 4845 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 4846 4847 // Build the actual expression node. 4848 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4849 SourceLocation()); 4850 UsualUnaryConversions(FnExpr); 4851 4852 input.release(); 4853 Args[0] = Input; 4854 ExprOwningPtr<CallExpr> TheCall(this, 4855 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4856 Args, NumArgs, ResultTy, OpLoc)); 4857 4858 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 4859 FnDecl)) 4860 return ExprError(); 4861 4862 return MaybeBindToTemporary(TheCall.release()); 4863 } else { 4864 // We matched a built-in operator. Convert the arguments, then 4865 // break out so that we will build the appropriate built-in 4866 // operator node. 4867 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 4868 Best->Conversions[0], AA_Passing)) 4869 return ExprError(); 4870 4871 break; 4872 } 4873 } 4874 4875 case OR_No_Viable_Function: 4876 // No viable function; fall through to handling this as a 4877 // built-in operator, which will produce an error message for us. 4878 break; 4879 4880 case OR_Ambiguous: 4881 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4882 << UnaryOperator::getOpcodeStr(Opc) 4883 << Input->getSourceRange(); 4884 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 4885 UnaryOperator::getOpcodeStr(Opc), OpLoc); 4886 return ExprError(); 4887 4888 case OR_Deleted: 4889 Diag(OpLoc, diag::err_ovl_deleted_oper) 4890 << Best->Function->isDeleted() 4891 << UnaryOperator::getOpcodeStr(Opc) 4892 << Input->getSourceRange(); 4893 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4894 return ExprError(); 4895 } 4896 4897 // Either we found no viable overloaded operator or we matched a 4898 // built-in operator. In either case, fall through to trying to 4899 // build a built-in operation. 4900 input.release(); 4901 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 4902} 4903 4904/// \brief Create a binary operation that may resolve to an overloaded 4905/// operator. 4906/// 4907/// \param OpLoc The location of the operator itself (e.g., '+'). 4908/// 4909/// \param OpcIn The BinaryOperator::Opcode that describes this 4910/// operator. 4911/// 4912/// \param Functions The set of non-member functions that will be 4913/// considered by overload resolution. The caller needs to build this 4914/// set based on the context using, e.g., 4915/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4916/// set should not contain any member functions; those will be added 4917/// by CreateOverloadedBinOp(). 4918/// 4919/// \param LHS Left-hand argument. 4920/// \param RHS Right-hand argument. 4921Sema::OwningExprResult 4922Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 4923 unsigned OpcIn, 4924 FunctionSet &Functions, 4925 Expr *LHS, Expr *RHS) { 4926 Expr *Args[2] = { LHS, RHS }; 4927 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 4928 4929 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 4930 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 4931 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4932 4933 // If either side is type-dependent, create an appropriate dependent 4934 // expression. 4935 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 4936 if (Functions.empty()) { 4937 // If there are no functions to store, just build a dependent 4938 // BinaryOperator or CompoundAssignment. 4939 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 4940 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 4941 Context.DependentTy, OpLoc)); 4942 4943 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 4944 Context.DependentTy, 4945 Context.DependentTy, 4946 Context.DependentTy, 4947 OpLoc)); 4948 } 4949 4950 UnresolvedLookupExpr *Fn 4951 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 4952 0, SourceRange(), OpName, OpLoc, 4953 /* ADL */ true, IsOverloaded(Functions)); 4954 4955 for (FunctionSet::iterator Func = Functions.begin(), 4956 FuncEnd = Functions.end(); 4957 Func != FuncEnd; ++Func) 4958 Fn->addDecl(*Func); 4959 4960 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4961 Args, 2, 4962 Context.DependentTy, 4963 OpLoc)); 4964 } 4965 4966 // If this is the .* operator, which is not overloadable, just 4967 // create a built-in binary operator. 4968 if (Opc == BinaryOperator::PtrMemD) 4969 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4970 4971 // If this is the assignment operator, we only perform overload resolution 4972 // if the left-hand side is a class or enumeration type. This is actually 4973 // a hack. The standard requires that we do overload resolution between the 4974 // various built-in candidates, but as DR507 points out, this can lead to 4975 // problems. So we do it this way, which pretty much follows what GCC does. 4976 // Note that we go the traditional code path for compound assignment forms. 4977 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) 4978 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4979 4980 // Build an empty overload set. 4981 OverloadCandidateSet CandidateSet; 4982 4983 // Add the candidates from the given function set. 4984 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); 4985 4986 // Add operator candidates that are member functions. 4987 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4988 4989 // Add builtin operator candidates. 4990 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4991 4992 // Perform overload resolution. 4993 OverloadCandidateSet::iterator Best; 4994 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4995 case OR_Success: { 4996 // We found a built-in operator or an overloaded operator. 4997 FunctionDecl *FnDecl = Best->Function; 4998 4999 if (FnDecl) { 5000 // We matched an overloaded operator. Build a call to that 5001 // operator. 5002 5003 // Convert the arguments. 5004 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 5005 if (PerformObjectArgumentInitialization(Args[0], Method) || 5006 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(), 5007 AA_Passing)) 5008 return ExprError(); 5009 } else { 5010 // Convert the arguments. 5011 if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(), 5012 AA_Passing) || 5013 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(), 5014 AA_Passing)) 5015 return ExprError(); 5016 } 5017 5018 // Determine the result type 5019 QualType ResultTy 5020 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5021 ResultTy = ResultTy.getNonReferenceType(); 5022 5023 // Build the actual expression node. 5024 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5025 OpLoc); 5026 UsualUnaryConversions(FnExpr); 5027 5028 ExprOwningPtr<CXXOperatorCallExpr> 5029 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 5030 Args, 2, ResultTy, 5031 OpLoc)); 5032 5033 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 5034 FnDecl)) 5035 return ExprError(); 5036 5037 return MaybeBindToTemporary(TheCall.release()); 5038 } else { 5039 // We matched a built-in operator. Convert the arguments, then 5040 // break out so that we will build the appropriate built-in 5041 // operator node. 5042 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5043 Best->Conversions[0], AA_Passing) || 5044 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5045 Best->Conversions[1], AA_Passing)) 5046 return ExprError(); 5047 5048 break; 5049 } 5050 } 5051 5052 case OR_No_Viable_Function: { 5053 // C++ [over.match.oper]p9: 5054 // If the operator is the operator , [...] and there are no 5055 // viable functions, then the operator is assumed to be the 5056 // built-in operator and interpreted according to clause 5. 5057 if (Opc == BinaryOperator::Comma) 5058 break; 5059 5060 // For class as left operand for assignment or compound assigment operator 5061 // do not fall through to handling in built-in, but report that no overloaded 5062 // assignment operator found 5063 OwningExprResult Result = ExprError(); 5064 if (Args[0]->getType()->isRecordType() && 5065 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 5066 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5067 << BinaryOperator::getOpcodeStr(Opc) 5068 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5069 } else { 5070 // No viable function; try to create a built-in operation, which will 5071 // produce an error. Then, show the non-viable candidates. 5072 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5073 } 5074 assert(Result.isInvalid() && 5075 "C++ binary operator overloading is missing candidates!"); 5076 if (Result.isInvalid()) 5077 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 5078 BinaryOperator::getOpcodeStr(Opc), OpLoc); 5079 return move(Result); 5080 } 5081 5082 case OR_Ambiguous: 5083 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5084 << BinaryOperator::getOpcodeStr(Opc) 5085 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5086 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 5087 BinaryOperator::getOpcodeStr(Opc), OpLoc); 5088 return ExprError(); 5089 5090 case OR_Deleted: 5091 Diag(OpLoc, diag::err_ovl_deleted_oper) 5092 << Best->Function->isDeleted() 5093 << BinaryOperator::getOpcodeStr(Opc) 5094 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5095 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5096 return ExprError(); 5097 } 5098 5099 // We matched a built-in operator; build it. 5100 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5101} 5102 5103Action::OwningExprResult 5104Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 5105 SourceLocation RLoc, 5106 ExprArg Base, ExprArg Idx) { 5107 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 5108 static_cast<Expr*>(Idx.get()) }; 5109 DeclarationName OpName = 5110 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 5111 5112 // If either side is type-dependent, create an appropriate dependent 5113 // expression. 5114 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 5115 5116 UnresolvedLookupExpr *Fn 5117 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, 5118 0, SourceRange(), OpName, LLoc, 5119 /*ADL*/ true, /*Overloaded*/ false); 5120 // Can't add any actual overloads yet 5121 5122 Base.release(); 5123 Idx.release(); 5124 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 5125 Args, 2, 5126 Context.DependentTy, 5127 RLoc)); 5128 } 5129 5130 // Build an empty overload set. 5131 OverloadCandidateSet CandidateSet; 5132 5133 // Subscript can only be overloaded as a member function. 5134 5135 // Add operator candidates that are member functions. 5136 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5137 5138 // Add builtin operator candidates. 5139 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5140 5141 // Perform overload resolution. 5142 OverloadCandidateSet::iterator Best; 5143 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 5144 case OR_Success: { 5145 // We found a built-in operator or an overloaded operator. 5146 FunctionDecl *FnDecl = Best->Function; 5147 5148 if (FnDecl) { 5149 // We matched an overloaded operator. Build a call to that 5150 // operator. 5151 5152 // Convert the arguments. 5153 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 5154 if (PerformObjectArgumentInitialization(Args[0], Method) || 5155 PerformCopyInitialization(Args[1], 5156 FnDecl->getParamDecl(0)->getType(), 5157 AA_Passing)) 5158 return ExprError(); 5159 5160 // Determine the result type 5161 QualType ResultTy 5162 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5163 ResultTy = ResultTy.getNonReferenceType(); 5164 5165 // Build the actual expression node. 5166 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5167 LLoc); 5168 UsualUnaryConversions(FnExpr); 5169 5170 Base.release(); 5171 Idx.release(); 5172 ExprOwningPtr<CXXOperatorCallExpr> 5173 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 5174 FnExpr, Args, 2, 5175 ResultTy, RLoc)); 5176 5177 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 5178 FnDecl)) 5179 return ExprError(); 5180 5181 return MaybeBindToTemporary(TheCall.release()); 5182 } else { 5183 // We matched a built-in operator. Convert the arguments, then 5184 // break out so that we will build the appropriate built-in 5185 // operator node. 5186 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5187 Best->Conversions[0], AA_Passing) || 5188 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5189 Best->Conversions[1], AA_Passing)) 5190 return ExprError(); 5191 5192 break; 5193 } 5194 } 5195 5196 case OR_No_Viable_Function: { 5197 // No viable function; try to create a built-in operation, which will 5198 // produce an error. Then, show the non-viable candidates. 5199 OwningExprResult Result = 5200 CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc); 5201 assert(Result.isInvalid() && 5202 "C++ subscript operator overloading is missing candidates!"); 5203 if (Result.isInvalid()) 5204 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 5205 "[]", LLoc); 5206 return move(Result); 5207 } 5208 5209 case OR_Ambiguous: 5210 Diag(LLoc, diag::err_ovl_ambiguous_oper) 5211 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5212 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 5213 "[]", LLoc); 5214 return ExprError(); 5215 5216 case OR_Deleted: 5217 Diag(LLoc, diag::err_ovl_deleted_oper) 5218 << Best->Function->isDeleted() << "[]" 5219 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5220 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5221 return ExprError(); 5222 } 5223 5224 // We matched a built-in operator; build it. 5225 Base.release(); 5226 Idx.release(); 5227 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 5228 Owned(Args[1]), RLoc); 5229} 5230 5231/// BuildCallToMemberFunction - Build a call to a member 5232/// function. MemExpr is the expression that refers to the member 5233/// function (and includes the object parameter), Args/NumArgs are the 5234/// arguments to the function call (not including the object 5235/// parameter). The caller needs to validate that the member 5236/// expression refers to a member function or an overloaded member 5237/// function. 5238Sema::OwningExprResult 5239Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 5240 SourceLocation LParenLoc, Expr **Args, 5241 unsigned NumArgs, SourceLocation *CommaLocs, 5242 SourceLocation RParenLoc) { 5243 // Dig out the member expression. This holds both the object 5244 // argument and the member function we're referring to. 5245 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 5246 5247 MemberExpr *MemExpr; 5248 CXXMethodDecl *Method = 0; 5249 if (isa<MemberExpr>(NakedMemExpr)) { 5250 MemExpr = cast<MemberExpr>(NakedMemExpr); 5251 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 5252 } else { 5253 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 5254 5255 QualType ObjectType = UnresExpr->getBaseType(); 5256 5257 // Add overload candidates 5258 OverloadCandidateSet CandidateSet; 5259 5260 // FIXME: avoid copy. 5261 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 5262 if (UnresExpr->hasExplicitTemplateArgs()) { 5263 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 5264 TemplateArgs = &TemplateArgsBuffer; 5265 } 5266 5267 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 5268 E = UnresExpr->decls_end(); I != E; ++I) { 5269 5270 NamedDecl *Func = *I; 5271 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 5272 if (isa<UsingShadowDecl>(Func)) 5273 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 5274 5275 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 5276 // If explicit template arguments were provided, we can't call a 5277 // non-template member function. 5278 if (TemplateArgs) 5279 continue; 5280 5281 AddMethodCandidate(Method, ActingDC, ObjectType, Args, NumArgs, 5282 CandidateSet, /*SuppressUserConversions=*/false); 5283 } else { 5284 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 5285 ActingDC, TemplateArgs, 5286 ObjectType, Args, NumArgs, 5287 CandidateSet, 5288 /*SuppressUsedConversions=*/false); 5289 } 5290 } 5291 5292 DeclarationName DeclName = UnresExpr->getMemberName(); 5293 5294 OverloadCandidateSet::iterator Best; 5295 switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { 5296 case OR_Success: 5297 Method = cast<CXXMethodDecl>(Best->Function); 5298 break; 5299 5300 case OR_No_Viable_Function: 5301 Diag(UnresExpr->getMemberLoc(), 5302 diag::err_ovl_no_viable_member_function_in_call) 5303 << DeclName << MemExprE->getSourceRange(); 5304 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5305 // FIXME: Leaking incoming expressions! 5306 return ExprError(); 5307 5308 case OR_Ambiguous: 5309 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 5310 << DeclName << MemExprE->getSourceRange(); 5311 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5312 // FIXME: Leaking incoming expressions! 5313 return ExprError(); 5314 5315 case OR_Deleted: 5316 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 5317 << Best->Function->isDeleted() 5318 << DeclName << MemExprE->getSourceRange(); 5319 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5320 // FIXME: Leaking incoming expressions! 5321 return ExprError(); 5322 } 5323 5324 MemExprE = FixOverloadedFunctionReference(MemExprE, Method); 5325 5326 // If overload resolution picked a static member, build a 5327 // non-member call based on that function. 5328 if (Method->isStatic()) { 5329 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 5330 Args, NumArgs, RParenLoc); 5331 } 5332 5333 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 5334 } 5335 5336 assert(Method && "Member call to something that isn't a method?"); 5337 ExprOwningPtr<CXXMemberCallExpr> 5338 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args, 5339 NumArgs, 5340 Method->getResultType().getNonReferenceType(), 5341 RParenLoc)); 5342 5343 // Check for a valid return type. 5344 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 5345 TheCall.get(), Method)) 5346 return ExprError(); 5347 5348 // Convert the object argument (for a non-static member function call). 5349 Expr *ObjectArg = MemExpr->getBase(); 5350 if (!Method->isStatic() && 5351 PerformObjectArgumentInitialization(ObjectArg, Method)) 5352 return ExprError(); 5353 MemExpr->setBase(ObjectArg); 5354 5355 // Convert the rest of the arguments 5356 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); 5357 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 5358 RParenLoc)) 5359 return ExprError(); 5360 5361 if (CheckFunctionCall(Method, TheCall.get())) 5362 return ExprError(); 5363 5364 return MaybeBindToTemporary(TheCall.release()); 5365} 5366 5367/// BuildCallToObjectOfClassType - Build a call to an object of class 5368/// type (C++ [over.call.object]), which can end up invoking an 5369/// overloaded function call operator (@c operator()) or performing a 5370/// user-defined conversion on the object argument. 5371Sema::ExprResult 5372Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 5373 SourceLocation LParenLoc, 5374 Expr **Args, unsigned NumArgs, 5375 SourceLocation *CommaLocs, 5376 SourceLocation RParenLoc) { 5377 assert(Object->getType()->isRecordType() && "Requires object type argument"); 5378 const RecordType *Record = Object->getType()->getAs<RecordType>(); 5379 5380 // C++ [over.call.object]p1: 5381 // If the primary-expression E in the function call syntax 5382 // evaluates to a class object of type "cv T", then the set of 5383 // candidate functions includes at least the function call 5384 // operators of T. The function call operators of T are obtained by 5385 // ordinary lookup of the name operator() in the context of 5386 // (E).operator(). 5387 OverloadCandidateSet CandidateSet; 5388 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 5389 5390 if (RequireCompleteType(LParenLoc, Object->getType(), 5391 PartialDiagnostic(diag::err_incomplete_object_call) 5392 << Object->getSourceRange())) 5393 return true; 5394 5395 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 5396 LookupQualifiedName(R, Record->getDecl()); 5397 R.suppressDiagnostics(); 5398 5399 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5400 Oper != OperEnd; ++Oper) { 5401 AddMethodCandidate(*Oper, Object->getType(), Args, NumArgs, CandidateSet, 5402 /*SuppressUserConversions=*/ false); 5403 } 5404 5405 // C++ [over.call.object]p2: 5406 // In addition, for each conversion function declared in T of the 5407 // form 5408 // 5409 // operator conversion-type-id () cv-qualifier; 5410 // 5411 // where cv-qualifier is the same cv-qualification as, or a 5412 // greater cv-qualification than, cv, and where conversion-type-id 5413 // denotes the type "pointer to function of (P1,...,Pn) returning 5414 // R", or the type "reference to pointer to function of 5415 // (P1,...,Pn) returning R", or the type "reference to function 5416 // of (P1,...,Pn) returning R", a surrogate call function [...] 5417 // is also considered as a candidate function. Similarly, 5418 // surrogate call functions are added to the set of candidate 5419 // functions for each conversion function declared in an 5420 // accessible base class provided the function is not hidden 5421 // within T by another intervening declaration. 5422 // FIXME: Look in base classes for more conversion operators! 5423 const UnresolvedSet *Conversions 5424 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); 5425 for (UnresolvedSet::iterator I = Conversions->begin(), 5426 E = Conversions->end(); I != E; ++I) { 5427 NamedDecl *D = *I; 5428 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 5429 if (isa<UsingShadowDecl>(D)) 5430 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5431 5432 // Skip over templated conversion functions; they aren't 5433 // surrogates. 5434 if (isa<FunctionTemplateDecl>(D)) 5435 continue; 5436 5437 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 5438 5439 // Strip the reference type (if any) and then the pointer type (if 5440 // any) to get down to what might be a function type. 5441 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 5442 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5443 ConvType = ConvPtrType->getPointeeType(); 5444 5445 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 5446 AddSurrogateCandidate(Conv, ActingContext, Proto, 5447 Object->getType(), Args, NumArgs, 5448 CandidateSet); 5449 } 5450 5451 // Perform overload resolution. 5452 OverloadCandidateSet::iterator Best; 5453 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 5454 case OR_Success: 5455 // Overload resolution succeeded; we'll build the appropriate call 5456 // below. 5457 break; 5458 5459 case OR_No_Viable_Function: 5460 Diag(Object->getSourceRange().getBegin(), 5461 diag::err_ovl_no_viable_object_call) 5462 << Object->getType() << Object->getSourceRange(); 5463 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5464 break; 5465 5466 case OR_Ambiguous: 5467 Diag(Object->getSourceRange().getBegin(), 5468 diag::err_ovl_ambiguous_object_call) 5469 << Object->getType() << Object->getSourceRange(); 5470 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5471 break; 5472 5473 case OR_Deleted: 5474 Diag(Object->getSourceRange().getBegin(), 5475 diag::err_ovl_deleted_object_call) 5476 << Best->Function->isDeleted() 5477 << Object->getType() << Object->getSourceRange(); 5478 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5479 break; 5480 } 5481 5482 if (Best == CandidateSet.end()) { 5483 // We had an error; delete all of the subexpressions and return 5484 // the error. 5485 Object->Destroy(Context); 5486 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5487 Args[ArgIdx]->Destroy(Context); 5488 return true; 5489 } 5490 5491 if (Best->Function == 0) { 5492 // Since there is no function declaration, this is one of the 5493 // surrogate candidates. Dig out the conversion function. 5494 CXXConversionDecl *Conv 5495 = cast<CXXConversionDecl>( 5496 Best->Conversions[0].UserDefined.ConversionFunction); 5497 5498 // We selected one of the surrogate functions that converts the 5499 // object parameter to a function pointer. Perform the conversion 5500 // on the object argument, then let ActOnCallExpr finish the job. 5501 5502 // Create an implicit member expr to refer to the conversion operator. 5503 // and then call it. 5504 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv); 5505 5506 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 5507 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 5508 CommaLocs, RParenLoc).release(); 5509 } 5510 5511 // We found an overloaded operator(). Build a CXXOperatorCallExpr 5512 // that calls this method, using Object for the implicit object 5513 // parameter and passing along the remaining arguments. 5514 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5515 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 5516 5517 unsigned NumArgsInProto = Proto->getNumArgs(); 5518 unsigned NumArgsToCheck = NumArgs; 5519 5520 // Build the full argument list for the method call (the 5521 // implicit object parameter is placed at the beginning of the 5522 // list). 5523 Expr **MethodArgs; 5524 if (NumArgs < NumArgsInProto) { 5525 NumArgsToCheck = NumArgsInProto; 5526 MethodArgs = new Expr*[NumArgsInProto + 1]; 5527 } else { 5528 MethodArgs = new Expr*[NumArgs + 1]; 5529 } 5530 MethodArgs[0] = Object; 5531 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5532 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 5533 5534 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 5535 SourceLocation()); 5536 UsualUnaryConversions(NewFn); 5537 5538 // Once we've built TheCall, all of the expressions are properly 5539 // owned. 5540 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5541 ExprOwningPtr<CXXOperatorCallExpr> 5542 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 5543 MethodArgs, NumArgs + 1, 5544 ResultTy, RParenLoc)); 5545 delete [] MethodArgs; 5546 5547 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 5548 Method)) 5549 return true; 5550 5551 // We may have default arguments. If so, we need to allocate more 5552 // slots in the call for them. 5553 if (NumArgs < NumArgsInProto) 5554 TheCall->setNumArgs(Context, NumArgsInProto + 1); 5555 else if (NumArgs > NumArgsInProto) 5556 NumArgsToCheck = NumArgsInProto; 5557 5558 bool IsError = false; 5559 5560 // Initialize the implicit object parameter. 5561 IsError |= PerformObjectArgumentInitialization(Object, Method); 5562 TheCall->setArg(0, Object); 5563 5564 5565 // Check the argument types. 5566 for (unsigned i = 0; i != NumArgsToCheck; i++) { 5567 Expr *Arg; 5568 if (i < NumArgs) { 5569 Arg = Args[i]; 5570 5571 // Pass the argument. 5572 QualType ProtoArgType = Proto->getArgType(i); 5573 IsError |= PerformCopyInitialization(Arg, ProtoArgType, AA_Passing); 5574 } else { 5575 OwningExprResult DefArg 5576 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 5577 if (DefArg.isInvalid()) { 5578 IsError = true; 5579 break; 5580 } 5581 5582 Arg = DefArg.takeAs<Expr>(); 5583 } 5584 5585 TheCall->setArg(i + 1, Arg); 5586 } 5587 5588 // If this is a variadic call, handle args passed through "...". 5589 if (Proto->isVariadic()) { 5590 // Promote the arguments (C99 6.5.2.2p7). 5591 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 5592 Expr *Arg = Args[i]; 5593 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 5594 TheCall->setArg(i + 1, Arg); 5595 } 5596 } 5597 5598 if (IsError) return true; 5599 5600 if (CheckFunctionCall(Method, TheCall.get())) 5601 return true; 5602 5603 return MaybeBindToTemporary(TheCall.release()).release(); 5604} 5605 5606/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 5607/// (if one exists), where @c Base is an expression of class type and 5608/// @c Member is the name of the member we're trying to find. 5609Sema::OwningExprResult 5610Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 5611 Expr *Base = static_cast<Expr *>(BaseIn.get()); 5612 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 5613 5614 // C++ [over.ref]p1: 5615 // 5616 // [...] An expression x->m is interpreted as (x.operator->())->m 5617 // for a class object x of type T if T::operator->() exists and if 5618 // the operator is selected as the best match function by the 5619 // overload resolution mechanism (13.3). 5620 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 5621 OverloadCandidateSet CandidateSet; 5622 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 5623 5624 if (RequireCompleteType(Base->getLocStart(), Base->getType(), 5625 PDiag(diag::err_typecheck_incomplete_tag) 5626 << Base->getSourceRange())) 5627 return ExprError(); 5628 5629 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 5630 LookupQualifiedName(R, BaseRecord->getDecl()); 5631 R.suppressDiagnostics(); 5632 5633 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5634 Oper != OperEnd; ++Oper) { 5635 NamedDecl *D = *Oper; 5636 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 5637 if (isa<UsingShadowDecl>(D)) 5638 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5639 5640 AddMethodCandidate(cast<CXXMethodDecl>(D), ActingContext, 5641 Base->getType(), 0, 0, CandidateSet, 5642 /*SuppressUserConversions=*/false); 5643 } 5644 5645 // Perform overload resolution. 5646 OverloadCandidateSet::iterator Best; 5647 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5648 case OR_Success: 5649 // Overload resolution succeeded; we'll build the call below. 5650 break; 5651 5652 case OR_No_Viable_Function: 5653 if (CandidateSet.empty()) 5654 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 5655 << Base->getType() << Base->getSourceRange(); 5656 else 5657 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5658 << "operator->" << Base->getSourceRange(); 5659 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5660 return ExprError(); 5661 5662 case OR_Ambiguous: 5663 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5664 << "->" << Base->getSourceRange(); 5665 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5666 return ExprError(); 5667 5668 case OR_Deleted: 5669 Diag(OpLoc, diag::err_ovl_deleted_oper) 5670 << Best->Function->isDeleted() 5671 << "->" << Base->getSourceRange(); 5672 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5673 return ExprError(); 5674 } 5675 5676 // Convert the object parameter. 5677 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5678 if (PerformObjectArgumentInitialization(Base, Method)) 5679 return ExprError(); 5680 5681 // No concerns about early exits now. 5682 BaseIn.release(); 5683 5684 // Build the operator call. 5685 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 5686 SourceLocation()); 5687 UsualUnaryConversions(FnExpr); 5688 5689 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5690 ExprOwningPtr<CXXOperatorCallExpr> 5691 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 5692 &Base, 1, ResultTy, OpLoc)); 5693 5694 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 5695 Method)) 5696 return ExprError(); 5697 return move(TheCall); 5698} 5699 5700/// FixOverloadedFunctionReference - E is an expression that refers to 5701/// a C++ overloaded function (possibly with some parentheses and 5702/// perhaps a '&' around it). We have resolved the overloaded function 5703/// to the function declaration Fn, so patch up the expression E to 5704/// refer (possibly indirectly) to Fn. Returns the new expr. 5705Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 5706 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 5707 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 5708 if (SubExpr == PE->getSubExpr()) 5709 return PE->Retain(); 5710 5711 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 5712 } 5713 5714 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 5715 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn); 5716 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 5717 SubExpr->getType()) && 5718 "Implicit cast type cannot be determined from overload"); 5719 if (SubExpr == ICE->getSubExpr()) 5720 return ICE->Retain(); 5721 5722 return new (Context) ImplicitCastExpr(ICE->getType(), 5723 ICE->getCastKind(), 5724 SubExpr, 5725 ICE->isLvalueCast()); 5726 } 5727 5728 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 5729 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 5730 "Can only take the address of an overloaded function"); 5731 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5732 if (Method->isStatic()) { 5733 // Do nothing: static member functions aren't any different 5734 // from non-member functions. 5735 } else { 5736 // Fix the sub expression, which really has to be an 5737 // UnresolvedLookupExpr holding an overloaded member function 5738 // or template. 5739 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 5740 if (SubExpr == UnOp->getSubExpr()) 5741 return UnOp->Retain(); 5742 5743 assert(isa<DeclRefExpr>(SubExpr) 5744 && "fixed to something other than a decl ref"); 5745 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 5746 && "fixed to a member ref with no nested name qualifier"); 5747 5748 // We have taken the address of a pointer to member 5749 // function. Perform the computation here so that we get the 5750 // appropriate pointer to member type. 5751 QualType ClassType 5752 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 5753 QualType MemPtrType 5754 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 5755 5756 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 5757 MemPtrType, UnOp->getOperatorLoc()); 5758 } 5759 } 5760 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 5761 if (SubExpr == UnOp->getSubExpr()) 5762 return UnOp->Retain(); 5763 5764 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 5765 Context.getPointerType(SubExpr->getType()), 5766 UnOp->getOperatorLoc()); 5767 } 5768 5769 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 5770 // FIXME: avoid copy. 5771 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 5772 if (ULE->hasExplicitTemplateArgs()) { 5773 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 5774 TemplateArgs = &TemplateArgsBuffer; 5775 } 5776 5777 return DeclRefExpr::Create(Context, 5778 ULE->getQualifier(), 5779 ULE->getQualifierRange(), 5780 Fn, 5781 ULE->getNameLoc(), 5782 Fn->getType(), 5783 TemplateArgs); 5784 } 5785 5786 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 5787 // FIXME: avoid copy. 5788 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 5789 if (MemExpr->hasExplicitTemplateArgs()) { 5790 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 5791 TemplateArgs = &TemplateArgsBuffer; 5792 } 5793 5794 Expr *Base; 5795 5796 // If we're filling in 5797 if (MemExpr->isImplicitAccess()) { 5798 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 5799 return DeclRefExpr::Create(Context, 5800 MemExpr->getQualifier(), 5801 MemExpr->getQualifierRange(), 5802 Fn, 5803 MemExpr->getMemberLoc(), 5804 Fn->getType(), 5805 TemplateArgs); 5806 } else 5807 Base = new (Context) CXXThisExpr(SourceLocation(), 5808 MemExpr->getBaseType()); 5809 } else 5810 Base = MemExpr->getBase()->Retain(); 5811 5812 return MemberExpr::Create(Context, Base, 5813 MemExpr->isArrow(), 5814 MemExpr->getQualifier(), 5815 MemExpr->getQualifierRange(), 5816 Fn, 5817 MemExpr->getMemberLoc(), 5818 TemplateArgs, 5819 Fn->getType()); 5820 } 5821 5822 assert(false && "Invalid reference to overloaded function"); 5823 return E->Retain(); 5824} 5825 5826Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E, 5827 FunctionDecl *Fn) { 5828 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn)); 5829} 5830 5831} // end namespace clang 5832