SemaOverload.cpp revision 593564ba94ff854b7a410a4ca17ad34a90c5b761
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "clang/Basic/Diagnostic.h" 16#include "clang/Lex/Preprocessor.h" 17#include "clang/AST/ASTContext.h" 18#include "clang/AST/CXXInheritance.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/TypeOrdering.h" 22#include "clang/Basic/PartialDiagnostic.h" 23#include "llvm/ADT/SmallPtrSet.h" 24#include "llvm/ADT/STLExtras.h" 25#include "llvm/Support/Compiler.h" 26#include <algorithm> 27#include <cstdio> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Qualification_Adjustment, 42 ICC_Promotion, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Conversion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion 55 }; 56 return Category[(int)Kind]; 57} 58 59/// GetConversionRank - Retrieve the implicit conversion rank 60/// corresponding to the given implicit conversion kind. 61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 62 static const ImplicitConversionRank 63 Rank[(int)ICK_Num_Conversion_Kinds] = { 64 ICR_Exact_Match, 65 ICR_Exact_Match, 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Promotion, 70 ICR_Promotion, 71 ICR_Promotion, 72 ICR_Conversion, 73 ICR_Conversion, 74 ICR_Conversion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion 82 }; 83 return Rank[(int)Kind]; 84} 85 86/// GetImplicitConversionName - Return the name of this kind of 87/// implicit conversion. 88const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 89 static const char* Name[(int)ICK_Num_Conversion_Kinds] = { 90 "No conversion", 91 "Lvalue-to-rvalue", 92 "Array-to-pointer", 93 "Function-to-pointer", 94 "Qualification", 95 "Integral promotion", 96 "Floating point promotion", 97 "Complex promotion", 98 "Integral conversion", 99 "Floating conversion", 100 "Complex conversion", 101 "Floating-integral conversion", 102 "Complex-real conversion", 103 "Pointer conversion", 104 "Pointer-to-member conversion", 105 "Boolean conversion", 106 "Compatible-types conversion", 107 "Derived-to-base conversion" 108 }; 109 return Name[Kind]; 110} 111 112/// StandardConversionSequence - Set the standard conversion 113/// sequence to the identity conversion. 114void StandardConversionSequence::setAsIdentityConversion() { 115 First = ICK_Identity; 116 Second = ICK_Identity; 117 Third = ICK_Identity; 118 Deprecated = false; 119 ReferenceBinding = false; 120 DirectBinding = false; 121 RRefBinding = false; 122 CopyConstructor = 0; 123} 124 125/// getRank - Retrieve the rank of this standard conversion sequence 126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 127/// implicit conversions. 128ImplicitConversionRank StandardConversionSequence::getRank() const { 129 ImplicitConversionRank Rank = ICR_Exact_Match; 130 if (GetConversionRank(First) > Rank) 131 Rank = GetConversionRank(First); 132 if (GetConversionRank(Second) > Rank) 133 Rank = GetConversionRank(Second); 134 if (GetConversionRank(Third) > Rank) 135 Rank = GetConversionRank(Third); 136 return Rank; 137} 138 139/// isPointerConversionToBool - Determines whether this conversion is 140/// a conversion of a pointer or pointer-to-member to bool. This is 141/// used as part of the ranking of standard conversion sequences 142/// (C++ 13.3.3.2p4). 143bool StandardConversionSequence::isPointerConversionToBool() const { 144 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 145 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 146 147 // Note that FromType has not necessarily been transformed by the 148 // array-to-pointer or function-to-pointer implicit conversions, so 149 // check for their presence as well as checking whether FromType is 150 // a pointer. 151 if (ToType->isBooleanType() && 152 (FromType->isPointerType() || FromType->isBlockPointerType() || 153 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 154 return true; 155 156 return false; 157} 158 159/// isPointerConversionToVoidPointer - Determines whether this 160/// conversion is a conversion of a pointer to a void pointer. This is 161/// used as part of the ranking of standard conversion sequences (C++ 162/// 13.3.3.2p4). 163bool 164StandardConversionSequence:: 165isPointerConversionToVoidPointer(ASTContext& Context) const { 166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 168 169 // Note that FromType has not necessarily been transformed by the 170 // array-to-pointer implicit conversion, so check for its presence 171 // and redo the conversion to get a pointer. 172 if (First == ICK_Array_To_Pointer) 173 FromType = Context.getArrayDecayedType(FromType); 174 175 if (Second == ICK_Pointer_Conversion) 176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 177 return ToPtrType->getPointeeType()->isVoidType(); 178 179 return false; 180} 181 182/// DebugPrint - Print this standard conversion sequence to standard 183/// error. Useful for debugging overloading issues. 184void StandardConversionSequence::DebugPrint() const { 185 bool PrintedSomething = false; 186 if (First != ICK_Identity) { 187 fprintf(stderr, "%s", GetImplicitConversionName(First)); 188 PrintedSomething = true; 189 } 190 191 if (Second != ICK_Identity) { 192 if (PrintedSomething) { 193 fprintf(stderr, " -> "); 194 } 195 fprintf(stderr, "%s", GetImplicitConversionName(Second)); 196 197 if (CopyConstructor) { 198 fprintf(stderr, " (by copy constructor)"); 199 } else if (DirectBinding) { 200 fprintf(stderr, " (direct reference binding)"); 201 } else if (ReferenceBinding) { 202 fprintf(stderr, " (reference binding)"); 203 } 204 PrintedSomething = true; 205 } 206 207 if (Third != ICK_Identity) { 208 if (PrintedSomething) { 209 fprintf(stderr, " -> "); 210 } 211 fprintf(stderr, "%s", GetImplicitConversionName(Third)); 212 PrintedSomething = true; 213 } 214 215 if (!PrintedSomething) { 216 fprintf(stderr, "No conversions required"); 217 } 218} 219 220/// DebugPrint - Print this user-defined conversion sequence to standard 221/// error. Useful for debugging overloading issues. 222void UserDefinedConversionSequence::DebugPrint() const { 223 if (Before.First || Before.Second || Before.Third) { 224 Before.DebugPrint(); 225 fprintf(stderr, " -> "); 226 } 227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); 228 if (After.First || After.Second || After.Third) { 229 fprintf(stderr, " -> "); 230 After.DebugPrint(); 231 } 232} 233 234/// DebugPrint - Print this implicit conversion sequence to standard 235/// error. Useful for debugging overloading issues. 236void ImplicitConversionSequence::DebugPrint() const { 237 switch (ConversionKind) { 238 case StandardConversion: 239 fprintf(stderr, "Standard conversion: "); 240 Standard.DebugPrint(); 241 break; 242 case UserDefinedConversion: 243 fprintf(stderr, "User-defined conversion: "); 244 UserDefined.DebugPrint(); 245 break; 246 case EllipsisConversion: 247 fprintf(stderr, "Ellipsis conversion"); 248 break; 249 case BadConversion: 250 fprintf(stderr, "Bad conversion"); 251 break; 252 } 253 254 fprintf(stderr, "\n"); 255} 256 257// IsOverload - Determine whether the given New declaration is an 258// overload of the Old declaration. This routine returns false if New 259// and Old cannot be overloaded, e.g., if they are functions with the 260// same signature (C++ 1.3.10) or if the Old declaration isn't a 261// function (or overload set). When it does return false and Old is an 262// OverloadedFunctionDecl, MatchedDecl will be set to point to the 263// FunctionDecl that New cannot be overloaded with. 264// 265// Example: Given the following input: 266// 267// void f(int, float); // #1 268// void f(int, int); // #2 269// int f(int, int); // #3 270// 271// When we process #1, there is no previous declaration of "f", 272// so IsOverload will not be used. 273// 274// When we process #2, Old is a FunctionDecl for #1. By comparing the 275// parameter types, we see that #1 and #2 are overloaded (since they 276// have different signatures), so this routine returns false; 277// MatchedDecl is unchanged. 278// 279// When we process #3, Old is an OverloadedFunctionDecl containing #1 280// and #2. We compare the signatures of #3 to #1 (they're overloaded, 281// so we do nothing) and then #3 to #2. Since the signatures of #3 and 282// #2 are identical (return types of functions are not part of the 283// signature), IsOverload returns false and MatchedDecl will be set to 284// point to the FunctionDecl for #2. 285bool 286Sema::IsOverload(FunctionDecl *New, Decl* OldD, 287 OverloadedFunctionDecl::function_iterator& MatchedDecl) { 288 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) { 289 // Is this new function an overload of every function in the 290 // overload set? 291 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 292 FuncEnd = Ovl->function_end(); 293 for (; Func != FuncEnd; ++Func) { 294 if (!IsOverload(New, *Func, MatchedDecl)) { 295 MatchedDecl = Func; 296 return false; 297 } 298 } 299 300 // This function overloads every function in the overload set. 301 return true; 302 } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD)) 303 return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl); 304 else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) { 305 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 306 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 307 308 // C++ [temp.fct]p2: 309 // A function template can be overloaded with other function templates 310 // and with normal (non-template) functions. 311 if ((OldTemplate == 0) != (NewTemplate == 0)) 312 return true; 313 314 // Is the function New an overload of the function Old? 315 QualType OldQType = Context.getCanonicalType(Old->getType()); 316 QualType NewQType = Context.getCanonicalType(New->getType()); 317 318 // Compare the signatures (C++ 1.3.10) of the two functions to 319 // determine whether they are overloads. If we find any mismatch 320 // in the signature, they are overloads. 321 322 // If either of these functions is a K&R-style function (no 323 // prototype), then we consider them to have matching signatures. 324 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 325 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 326 return false; 327 328 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 329 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 330 331 // The signature of a function includes the types of its 332 // parameters (C++ 1.3.10), which includes the presence or absence 333 // of the ellipsis; see C++ DR 357). 334 if (OldQType != NewQType && 335 (OldType->getNumArgs() != NewType->getNumArgs() || 336 OldType->isVariadic() != NewType->isVariadic() || 337 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 338 NewType->arg_type_begin()))) 339 return true; 340 341 // C++ [temp.over.link]p4: 342 // The signature of a function template consists of its function 343 // signature, its return type and its template parameter list. The names 344 // of the template parameters are significant only for establishing the 345 // relationship between the template parameters and the rest of the 346 // signature. 347 // 348 // We check the return type and template parameter lists for function 349 // templates first; the remaining checks follow. 350 if (NewTemplate && 351 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 352 OldTemplate->getTemplateParameters(), 353 false, TPL_TemplateMatch) || 354 OldType->getResultType() != NewType->getResultType())) 355 return true; 356 357 // If the function is a class member, its signature includes the 358 // cv-qualifiers (if any) on the function itself. 359 // 360 // As part of this, also check whether one of the member functions 361 // is static, in which case they are not overloads (C++ 362 // 13.1p2). While not part of the definition of the signature, 363 // this check is important to determine whether these functions 364 // can be overloaded. 365 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 366 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 367 if (OldMethod && NewMethod && 368 !OldMethod->isStatic() && !NewMethod->isStatic() && 369 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 370 return true; 371 372 // The signatures match; this is not an overload. 373 return false; 374 } else { 375 // (C++ 13p1): 376 // Only function declarations can be overloaded; object and type 377 // declarations cannot be overloaded. 378 return false; 379 } 380} 381 382/// TryImplicitConversion - Attempt to perform an implicit conversion 383/// from the given expression (Expr) to the given type (ToType). This 384/// function returns an implicit conversion sequence that can be used 385/// to perform the initialization. Given 386/// 387/// void f(float f); 388/// void g(int i) { f(i); } 389/// 390/// this routine would produce an implicit conversion sequence to 391/// describe the initialization of f from i, which will be a standard 392/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 393/// 4.1) followed by a floating-integral conversion (C++ 4.9). 394// 395/// Note that this routine only determines how the conversion can be 396/// performed; it does not actually perform the conversion. As such, 397/// it will not produce any diagnostics if no conversion is available, 398/// but will instead return an implicit conversion sequence of kind 399/// "BadConversion". 400/// 401/// If @p SuppressUserConversions, then user-defined conversions are 402/// not permitted. 403/// If @p AllowExplicit, then explicit user-defined conversions are 404/// permitted. 405/// If @p ForceRValue, then overloading is performed as if From was an rvalue, 406/// no matter its actual lvalueness. 407/// If @p UserCast, the implicit conversion is being done for a user-specified 408/// cast. 409ImplicitConversionSequence 410Sema::TryImplicitConversion(Expr* From, QualType ToType, 411 bool SuppressUserConversions, 412 bool AllowExplicit, bool ForceRValue, 413 bool InOverloadResolution, 414 bool UserCast) { 415 ImplicitConversionSequence ICS; 416 OverloadCandidateSet Conversions; 417 OverloadingResult UserDefResult = OR_Success; 418 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) 419 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 420 else if (getLangOptions().CPlusPlus && 421 (UserDefResult = IsUserDefinedConversion(From, ToType, 422 ICS.UserDefined, 423 Conversions, 424 !SuppressUserConversions, AllowExplicit, 425 ForceRValue, UserCast)) == OR_Success) { 426 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; 427 // C++ [over.ics.user]p4: 428 // A conversion of an expression of class type to the same class 429 // type is given Exact Match rank, and a conversion of an 430 // expression of class type to a base class of that type is 431 // given Conversion rank, in spite of the fact that a copy 432 // constructor (i.e., a user-defined conversion function) is 433 // called for those cases. 434 if (CXXConstructorDecl *Constructor 435 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 436 QualType FromCanon 437 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 438 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 439 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 440 // Turn this into a "standard" conversion sequence, so that it 441 // gets ranked with standard conversion sequences. 442 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 443 ICS.Standard.setAsIdentityConversion(); 444 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); 445 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); 446 ICS.Standard.CopyConstructor = Constructor; 447 if (ToCanon != FromCanon) 448 ICS.Standard.Second = ICK_Derived_To_Base; 449 } 450 } 451 452 // C++ [over.best.ics]p4: 453 // However, when considering the argument of a user-defined 454 // conversion function that is a candidate by 13.3.1.3 when 455 // invoked for the copying of the temporary in the second step 456 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 457 // 13.3.1.6 in all cases, only standard conversion sequences and 458 // ellipsis conversion sequences are allowed. 459 if (SuppressUserConversions && 460 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) 461 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 462 } else { 463 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 464 if (UserDefResult == OR_Ambiguous) { 465 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 466 Cand != Conversions.end(); ++Cand) 467 if (Cand->Viable) 468 ICS.ConversionFunctionSet.push_back(Cand->Function); 469 } 470 } 471 472 return ICS; 473} 474 475/// IsStandardConversion - Determines whether there is a standard 476/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 477/// expression From to the type ToType. Standard conversion sequences 478/// only consider non-class types; for conversions that involve class 479/// types, use TryImplicitConversion. If a conversion exists, SCS will 480/// contain the standard conversion sequence required to perform this 481/// conversion and this routine will return true. Otherwise, this 482/// routine will return false and the value of SCS is unspecified. 483bool 484Sema::IsStandardConversion(Expr* From, QualType ToType, 485 bool InOverloadResolution, 486 StandardConversionSequence &SCS) { 487 QualType FromType = From->getType(); 488 489 // Standard conversions (C++ [conv]) 490 SCS.setAsIdentityConversion(); 491 SCS.Deprecated = false; 492 SCS.IncompatibleObjC = false; 493 SCS.FromTypePtr = FromType.getAsOpaquePtr(); 494 SCS.CopyConstructor = 0; 495 496 // There are no standard conversions for class types in C++, so 497 // abort early. When overloading in C, however, we do permit 498 if (FromType->isRecordType() || ToType->isRecordType()) { 499 if (getLangOptions().CPlusPlus) 500 return false; 501 502 // When we're overloading in C, we allow, as standard conversions, 503 } 504 505 // The first conversion can be an lvalue-to-rvalue conversion, 506 // array-to-pointer conversion, or function-to-pointer conversion 507 // (C++ 4p1). 508 509 // Lvalue-to-rvalue conversion (C++ 4.1): 510 // An lvalue (3.10) of a non-function, non-array type T can be 511 // converted to an rvalue. 512 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 513 if (argIsLvalue == Expr::LV_Valid && 514 !FromType->isFunctionType() && !FromType->isArrayType() && 515 Context.getCanonicalType(FromType) != Context.OverloadTy) { 516 SCS.First = ICK_Lvalue_To_Rvalue; 517 518 // If T is a non-class type, the type of the rvalue is the 519 // cv-unqualified version of T. Otherwise, the type of the rvalue 520 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 521 // just strip the qualifiers because they don't matter. 522 523 // FIXME: Doesn't see through to qualifiers behind a typedef! 524 FromType = FromType.getUnqualifiedType(); 525 } else if (FromType->isArrayType()) { 526 // Array-to-pointer conversion (C++ 4.2) 527 SCS.First = ICK_Array_To_Pointer; 528 529 // An lvalue or rvalue of type "array of N T" or "array of unknown 530 // bound of T" can be converted to an rvalue of type "pointer to 531 // T" (C++ 4.2p1). 532 FromType = Context.getArrayDecayedType(FromType); 533 534 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 535 // This conversion is deprecated. (C++ D.4). 536 SCS.Deprecated = true; 537 538 // For the purpose of ranking in overload resolution 539 // (13.3.3.1.1), this conversion is considered an 540 // array-to-pointer conversion followed by a qualification 541 // conversion (4.4). (C++ 4.2p2) 542 SCS.Second = ICK_Identity; 543 SCS.Third = ICK_Qualification; 544 SCS.ToTypePtr = ToType.getAsOpaquePtr(); 545 return true; 546 } 547 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 548 // Function-to-pointer conversion (C++ 4.3). 549 SCS.First = ICK_Function_To_Pointer; 550 551 // An lvalue of function type T can be converted to an rvalue of 552 // type "pointer to T." The result is a pointer to the 553 // function. (C++ 4.3p1). 554 FromType = Context.getPointerType(FromType); 555 } else if (FunctionDecl *Fn 556 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 557 // Address of overloaded function (C++ [over.over]). 558 SCS.First = ICK_Function_To_Pointer; 559 560 // We were able to resolve the address of the overloaded function, 561 // so we can convert to the type of that function. 562 FromType = Fn->getType(); 563 if (ToType->isLValueReferenceType()) 564 FromType = Context.getLValueReferenceType(FromType); 565 else if (ToType->isRValueReferenceType()) 566 FromType = Context.getRValueReferenceType(FromType); 567 else if (ToType->isMemberPointerType()) { 568 // Resolve address only succeeds if both sides are member pointers, 569 // but it doesn't have to be the same class. See DR 247. 570 // Note that this means that the type of &Derived::fn can be 571 // Ret (Base::*)(Args) if the fn overload actually found is from the 572 // base class, even if it was brought into the derived class via a 573 // using declaration. The standard isn't clear on this issue at all. 574 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 575 FromType = Context.getMemberPointerType(FromType, 576 Context.getTypeDeclType(M->getParent()).getTypePtr()); 577 } else 578 FromType = Context.getPointerType(FromType); 579 } else { 580 // We don't require any conversions for the first step. 581 SCS.First = ICK_Identity; 582 } 583 584 // The second conversion can be an integral promotion, floating 585 // point promotion, integral conversion, floating point conversion, 586 // floating-integral conversion, pointer conversion, 587 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 588 // For overloading in C, this can also be a "compatible-type" 589 // conversion. 590 bool IncompatibleObjC = false; 591 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 592 // The unqualified versions of the types are the same: there's no 593 // conversion to do. 594 SCS.Second = ICK_Identity; 595 } else if (IsIntegralPromotion(From, FromType, ToType)) { 596 // Integral promotion (C++ 4.5). 597 SCS.Second = ICK_Integral_Promotion; 598 FromType = ToType.getUnqualifiedType(); 599 } else if (IsFloatingPointPromotion(FromType, ToType)) { 600 // Floating point promotion (C++ 4.6). 601 SCS.Second = ICK_Floating_Promotion; 602 FromType = ToType.getUnqualifiedType(); 603 } else if (IsComplexPromotion(FromType, ToType)) { 604 // Complex promotion (Clang extension) 605 SCS.Second = ICK_Complex_Promotion; 606 FromType = ToType.getUnqualifiedType(); 607 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 608 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 609 // Integral conversions (C++ 4.7). 610 // FIXME: isIntegralType shouldn't be true for enums in C++. 611 SCS.Second = ICK_Integral_Conversion; 612 FromType = ToType.getUnqualifiedType(); 613 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 614 // Floating point conversions (C++ 4.8). 615 SCS.Second = ICK_Floating_Conversion; 616 FromType = ToType.getUnqualifiedType(); 617 } else if (FromType->isComplexType() && ToType->isComplexType()) { 618 // Complex conversions (C99 6.3.1.6) 619 SCS.Second = ICK_Complex_Conversion; 620 FromType = ToType.getUnqualifiedType(); 621 } else if ((FromType->isFloatingType() && 622 ToType->isIntegralType() && (!ToType->isBooleanType() && 623 !ToType->isEnumeralType())) || 624 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 625 ToType->isFloatingType())) { 626 // Floating-integral conversions (C++ 4.9). 627 // FIXME: isIntegralType shouldn't be true for enums in C++. 628 SCS.Second = ICK_Floating_Integral; 629 FromType = ToType.getUnqualifiedType(); 630 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 631 (ToType->isComplexType() && FromType->isArithmeticType())) { 632 // Complex-real conversions (C99 6.3.1.7) 633 SCS.Second = ICK_Complex_Real; 634 FromType = ToType.getUnqualifiedType(); 635 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 636 FromType, IncompatibleObjC)) { 637 // Pointer conversions (C++ 4.10). 638 SCS.Second = ICK_Pointer_Conversion; 639 SCS.IncompatibleObjC = IncompatibleObjC; 640 } else if (IsMemberPointerConversion(From, FromType, ToType, 641 InOverloadResolution, FromType)) { 642 // Pointer to member conversions (4.11). 643 SCS.Second = ICK_Pointer_Member; 644 } else if (ToType->isBooleanType() && 645 (FromType->isArithmeticType() || 646 FromType->isEnumeralType() || 647 FromType->isPointerType() || 648 FromType->isBlockPointerType() || 649 FromType->isMemberPointerType() || 650 FromType->isNullPtrType())) { 651 // Boolean conversions (C++ 4.12). 652 SCS.Second = ICK_Boolean_Conversion; 653 FromType = Context.BoolTy; 654 } else if (!getLangOptions().CPlusPlus && 655 Context.typesAreCompatible(ToType, FromType)) { 656 // Compatible conversions (Clang extension for C function overloading) 657 SCS.Second = ICK_Compatible_Conversion; 658 } else { 659 // No second conversion required. 660 SCS.Second = ICK_Identity; 661 } 662 663 QualType CanonFrom; 664 QualType CanonTo; 665 // The third conversion can be a qualification conversion (C++ 4p1). 666 if (IsQualificationConversion(FromType, ToType)) { 667 SCS.Third = ICK_Qualification; 668 FromType = ToType; 669 CanonFrom = Context.getCanonicalType(FromType); 670 CanonTo = Context.getCanonicalType(ToType); 671 } else { 672 // No conversion required 673 SCS.Third = ICK_Identity; 674 675 // C++ [over.best.ics]p6: 676 // [...] Any difference in top-level cv-qualification is 677 // subsumed by the initialization itself and does not constitute 678 // a conversion. [...] 679 CanonFrom = Context.getCanonicalType(FromType); 680 CanonTo = Context.getCanonicalType(ToType); 681 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() && 682 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) { 683 FromType = ToType; 684 CanonFrom = CanonTo; 685 } 686 } 687 688 // If we have not converted the argument type to the parameter type, 689 // this is a bad conversion sequence. 690 if (CanonFrom != CanonTo) 691 return false; 692 693 SCS.ToTypePtr = FromType.getAsOpaquePtr(); 694 return true; 695} 696 697/// IsIntegralPromotion - Determines whether the conversion from the 698/// expression From (whose potentially-adjusted type is FromType) to 699/// ToType is an integral promotion (C++ 4.5). If so, returns true and 700/// sets PromotedType to the promoted type. 701bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 702 const BuiltinType *To = ToType->getAs<BuiltinType>(); 703 // All integers are built-in. 704 if (!To) { 705 return false; 706 } 707 708 // An rvalue of type char, signed char, unsigned char, short int, or 709 // unsigned short int can be converted to an rvalue of type int if 710 // int can represent all the values of the source type; otherwise, 711 // the source rvalue can be converted to an rvalue of type unsigned 712 // int (C++ 4.5p1). 713 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { 714 if (// We can promote any signed, promotable integer type to an int 715 (FromType->isSignedIntegerType() || 716 // We can promote any unsigned integer type whose size is 717 // less than int to an int. 718 (!FromType->isSignedIntegerType() && 719 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 720 return To->getKind() == BuiltinType::Int; 721 } 722 723 return To->getKind() == BuiltinType::UInt; 724 } 725 726 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 727 // can be converted to an rvalue of the first of the following types 728 // that can represent all the values of its underlying type: int, 729 // unsigned int, long, or unsigned long (C++ 4.5p2). 730 if ((FromType->isEnumeralType() || FromType->isWideCharType()) 731 && ToType->isIntegerType()) { 732 // Determine whether the type we're converting from is signed or 733 // unsigned. 734 bool FromIsSigned; 735 uint64_t FromSize = Context.getTypeSize(FromType); 736 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 737 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType(); 738 FromIsSigned = UnderlyingType->isSignedIntegerType(); 739 } else { 740 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 741 FromIsSigned = true; 742 } 743 744 // The types we'll try to promote to, in the appropriate 745 // order. Try each of these types. 746 QualType PromoteTypes[6] = { 747 Context.IntTy, Context.UnsignedIntTy, 748 Context.LongTy, Context.UnsignedLongTy , 749 Context.LongLongTy, Context.UnsignedLongLongTy 750 }; 751 for (int Idx = 0; Idx < 6; ++Idx) { 752 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 753 if (FromSize < ToSize || 754 (FromSize == ToSize && 755 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 756 // We found the type that we can promote to. If this is the 757 // type we wanted, we have a promotion. Otherwise, no 758 // promotion. 759 return Context.getCanonicalType(ToType).getUnqualifiedType() 760 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType(); 761 } 762 } 763 } 764 765 // An rvalue for an integral bit-field (9.6) can be converted to an 766 // rvalue of type int if int can represent all the values of the 767 // bit-field; otherwise, it can be converted to unsigned int if 768 // unsigned int can represent all the values of the bit-field. If 769 // the bit-field is larger yet, no integral promotion applies to 770 // it. If the bit-field has an enumerated type, it is treated as any 771 // other value of that type for promotion purposes (C++ 4.5p3). 772 // FIXME: We should delay checking of bit-fields until we actually perform the 773 // conversion. 774 using llvm::APSInt; 775 if (From) 776 if (FieldDecl *MemberDecl = From->getBitField()) { 777 APSInt BitWidth; 778 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 779 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 780 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 781 ToSize = Context.getTypeSize(ToType); 782 783 // Are we promoting to an int from a bitfield that fits in an int? 784 if (BitWidth < ToSize || 785 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 786 return To->getKind() == BuiltinType::Int; 787 } 788 789 // Are we promoting to an unsigned int from an unsigned bitfield 790 // that fits into an unsigned int? 791 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 792 return To->getKind() == BuiltinType::UInt; 793 } 794 795 return false; 796 } 797 } 798 799 // An rvalue of type bool can be converted to an rvalue of type int, 800 // with false becoming zero and true becoming one (C++ 4.5p4). 801 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 802 return true; 803 } 804 805 return false; 806} 807 808/// IsFloatingPointPromotion - Determines whether the conversion from 809/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 810/// returns true and sets PromotedType to the promoted type. 811bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 812 /// An rvalue of type float can be converted to an rvalue of type 813 /// double. (C++ 4.6p1). 814 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 815 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 816 if (FromBuiltin->getKind() == BuiltinType::Float && 817 ToBuiltin->getKind() == BuiltinType::Double) 818 return true; 819 820 // C99 6.3.1.5p1: 821 // When a float is promoted to double or long double, or a 822 // double is promoted to long double [...]. 823 if (!getLangOptions().CPlusPlus && 824 (FromBuiltin->getKind() == BuiltinType::Float || 825 FromBuiltin->getKind() == BuiltinType::Double) && 826 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 827 return true; 828 } 829 830 return false; 831} 832 833/// \brief Determine if a conversion is a complex promotion. 834/// 835/// A complex promotion is defined as a complex -> complex conversion 836/// where the conversion between the underlying real types is a 837/// floating-point or integral promotion. 838bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 839 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 840 if (!FromComplex) 841 return false; 842 843 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 844 if (!ToComplex) 845 return false; 846 847 return IsFloatingPointPromotion(FromComplex->getElementType(), 848 ToComplex->getElementType()) || 849 IsIntegralPromotion(0, FromComplex->getElementType(), 850 ToComplex->getElementType()); 851} 852 853/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 854/// the pointer type FromPtr to a pointer to type ToPointee, with the 855/// same type qualifiers as FromPtr has on its pointee type. ToType, 856/// if non-empty, will be a pointer to ToType that may or may not have 857/// the right set of qualifiers on its pointee. 858static QualType 859BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 860 QualType ToPointee, QualType ToType, 861 ASTContext &Context) { 862 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 863 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 864 Qualifiers Quals = CanonFromPointee.getQualifiers(); 865 866 // Exact qualifier match -> return the pointer type we're converting to. 867 if (CanonToPointee.getQualifiers() == Quals) { 868 // ToType is exactly what we need. Return it. 869 if (!ToType.isNull()) 870 return ToType; 871 872 // Build a pointer to ToPointee. It has the right qualifiers 873 // already. 874 return Context.getPointerType(ToPointee); 875 } 876 877 // Just build a canonical type that has the right qualifiers. 878 return Context.getPointerType( 879 Context.getQualifiedType(CanonToPointee.getUnqualifiedType(), Quals)); 880} 881 882static bool isNullPointerConstantForConversion(Expr *Expr, 883 bool InOverloadResolution, 884 ASTContext &Context) { 885 // Handle value-dependent integral null pointer constants correctly. 886 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 887 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 888 Expr->getType()->isIntegralType()) 889 return !InOverloadResolution; 890 891 return Expr->isNullPointerConstant(Context, 892 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 893 : Expr::NPC_ValueDependentIsNull); 894} 895 896/// IsPointerConversion - Determines whether the conversion of the 897/// expression From, which has the (possibly adjusted) type FromType, 898/// can be converted to the type ToType via a pointer conversion (C++ 899/// 4.10). If so, returns true and places the converted type (that 900/// might differ from ToType in its cv-qualifiers at some level) into 901/// ConvertedType. 902/// 903/// This routine also supports conversions to and from block pointers 904/// and conversions with Objective-C's 'id', 'id<protocols...>', and 905/// pointers to interfaces. FIXME: Once we've determined the 906/// appropriate overloading rules for Objective-C, we may want to 907/// split the Objective-C checks into a different routine; however, 908/// GCC seems to consider all of these conversions to be pointer 909/// conversions, so for now they live here. IncompatibleObjC will be 910/// set if the conversion is an allowed Objective-C conversion that 911/// should result in a warning. 912bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 913 bool InOverloadResolution, 914 QualType& ConvertedType, 915 bool &IncompatibleObjC) { 916 IncompatibleObjC = false; 917 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 918 return true; 919 920 // Conversion from a null pointer constant to any Objective-C pointer type. 921 if (ToType->isObjCObjectPointerType() && 922 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 923 ConvertedType = ToType; 924 return true; 925 } 926 927 // Blocks: Block pointers can be converted to void*. 928 if (FromType->isBlockPointerType() && ToType->isPointerType() && 929 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 930 ConvertedType = ToType; 931 return true; 932 } 933 // Blocks: A null pointer constant can be converted to a block 934 // pointer type. 935 if (ToType->isBlockPointerType() && 936 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 937 ConvertedType = ToType; 938 return true; 939 } 940 941 // If the left-hand-side is nullptr_t, the right side can be a null 942 // pointer constant. 943 if (ToType->isNullPtrType() && 944 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 945 ConvertedType = ToType; 946 return true; 947 } 948 949 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 950 if (!ToTypePtr) 951 return false; 952 953 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 954 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 955 ConvertedType = ToType; 956 return true; 957 } 958 959 // Beyond this point, both types need to be pointers. 960 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 961 if (!FromTypePtr) 962 return false; 963 964 QualType FromPointeeType = FromTypePtr->getPointeeType(); 965 QualType ToPointeeType = ToTypePtr->getPointeeType(); 966 967 // An rvalue of type "pointer to cv T," where T is an object type, 968 // can be converted to an rvalue of type "pointer to cv void" (C++ 969 // 4.10p2). 970 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 971 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 972 ToPointeeType, 973 ToType, Context); 974 return true; 975 } 976 977 // When we're overloading in C, we allow a special kind of pointer 978 // conversion for compatible-but-not-identical pointee types. 979 if (!getLangOptions().CPlusPlus && 980 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 981 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 982 ToPointeeType, 983 ToType, Context); 984 return true; 985 } 986 987 // C++ [conv.ptr]p3: 988 // 989 // An rvalue of type "pointer to cv D," where D is a class type, 990 // can be converted to an rvalue of type "pointer to cv B," where 991 // B is a base class (clause 10) of D. If B is an inaccessible 992 // (clause 11) or ambiguous (10.2) base class of D, a program that 993 // necessitates this conversion is ill-formed. The result of the 994 // conversion is a pointer to the base class sub-object of the 995 // derived class object. The null pointer value is converted to 996 // the null pointer value of the destination type. 997 // 998 // Note that we do not check for ambiguity or inaccessibility 999 // here. That is handled by CheckPointerConversion. 1000 if (getLangOptions().CPlusPlus && 1001 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1002 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1003 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1004 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1005 ToPointeeType, 1006 ToType, Context); 1007 return true; 1008 } 1009 1010 return false; 1011} 1012 1013/// isObjCPointerConversion - Determines whether this is an 1014/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1015/// with the same arguments and return values. 1016bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1017 QualType& ConvertedType, 1018 bool &IncompatibleObjC) { 1019 if (!getLangOptions().ObjC1) 1020 return false; 1021 1022 // First, we handle all conversions on ObjC object pointer types. 1023 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1024 const ObjCObjectPointerType *FromObjCPtr = 1025 FromType->getAs<ObjCObjectPointerType>(); 1026 1027 if (ToObjCPtr && FromObjCPtr) { 1028 // Objective C++: We're able to convert between "id" or "Class" and a 1029 // pointer to any interface (in both directions). 1030 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1031 ConvertedType = ToType; 1032 return true; 1033 } 1034 // Conversions with Objective-C's id<...>. 1035 if ((FromObjCPtr->isObjCQualifiedIdType() || 1036 ToObjCPtr->isObjCQualifiedIdType()) && 1037 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1038 /*compare=*/false)) { 1039 ConvertedType = ToType; 1040 return true; 1041 } 1042 // Objective C++: We're able to convert from a pointer to an 1043 // interface to a pointer to a different interface. 1044 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1045 ConvertedType = ToType; 1046 return true; 1047 } 1048 1049 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1050 // Okay: this is some kind of implicit downcast of Objective-C 1051 // interfaces, which is permitted. However, we're going to 1052 // complain about it. 1053 IncompatibleObjC = true; 1054 ConvertedType = FromType; 1055 return true; 1056 } 1057 } 1058 // Beyond this point, both types need to be C pointers or block pointers. 1059 QualType ToPointeeType; 1060 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1061 ToPointeeType = ToCPtr->getPointeeType(); 1062 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>()) 1063 ToPointeeType = ToBlockPtr->getPointeeType(); 1064 else 1065 return false; 1066 1067 QualType FromPointeeType; 1068 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1069 FromPointeeType = FromCPtr->getPointeeType(); 1070 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1071 FromPointeeType = FromBlockPtr->getPointeeType(); 1072 else 1073 return false; 1074 1075 // If we have pointers to pointers, recursively check whether this 1076 // is an Objective-C conversion. 1077 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1078 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1079 IncompatibleObjC)) { 1080 // We always complain about this conversion. 1081 IncompatibleObjC = true; 1082 ConvertedType = ToType; 1083 return true; 1084 } 1085 // If we have pointers to functions or blocks, check whether the only 1086 // differences in the argument and result types are in Objective-C 1087 // pointer conversions. If so, we permit the conversion (but 1088 // complain about it). 1089 const FunctionProtoType *FromFunctionType 1090 = FromPointeeType->getAs<FunctionProtoType>(); 1091 const FunctionProtoType *ToFunctionType 1092 = ToPointeeType->getAs<FunctionProtoType>(); 1093 if (FromFunctionType && ToFunctionType) { 1094 // If the function types are exactly the same, this isn't an 1095 // Objective-C pointer conversion. 1096 if (Context.getCanonicalType(FromPointeeType) 1097 == Context.getCanonicalType(ToPointeeType)) 1098 return false; 1099 1100 // Perform the quick checks that will tell us whether these 1101 // function types are obviously different. 1102 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1103 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1104 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1105 return false; 1106 1107 bool HasObjCConversion = false; 1108 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1109 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1110 // Okay, the types match exactly. Nothing to do. 1111 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1112 ToFunctionType->getResultType(), 1113 ConvertedType, IncompatibleObjC)) { 1114 // Okay, we have an Objective-C pointer conversion. 1115 HasObjCConversion = true; 1116 } else { 1117 // Function types are too different. Abort. 1118 return false; 1119 } 1120 1121 // Check argument types. 1122 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1123 ArgIdx != NumArgs; ++ArgIdx) { 1124 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1125 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1126 if (Context.getCanonicalType(FromArgType) 1127 == Context.getCanonicalType(ToArgType)) { 1128 // Okay, the types match exactly. Nothing to do. 1129 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1130 ConvertedType, IncompatibleObjC)) { 1131 // Okay, we have an Objective-C pointer conversion. 1132 HasObjCConversion = true; 1133 } else { 1134 // Argument types are too different. Abort. 1135 return false; 1136 } 1137 } 1138 1139 if (HasObjCConversion) { 1140 // We had an Objective-C conversion. Allow this pointer 1141 // conversion, but complain about it. 1142 ConvertedType = ToType; 1143 IncompatibleObjC = true; 1144 return true; 1145 } 1146 } 1147 1148 return false; 1149} 1150 1151/// CheckPointerConversion - Check the pointer conversion from the 1152/// expression From to the type ToType. This routine checks for 1153/// ambiguous or inaccessible derived-to-base pointer 1154/// conversions for which IsPointerConversion has already returned 1155/// true. It returns true and produces a diagnostic if there was an 1156/// error, or returns false otherwise. 1157bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1158 CastExpr::CastKind &Kind, 1159 bool IgnoreBaseAccess) { 1160 QualType FromType = From->getType(); 1161 1162 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1163 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1164 QualType FromPointeeType = FromPtrType->getPointeeType(), 1165 ToPointeeType = ToPtrType->getPointeeType(); 1166 1167 if (FromPointeeType->isRecordType() && 1168 ToPointeeType->isRecordType()) { 1169 // We must have a derived-to-base conversion. Check an 1170 // ambiguous or inaccessible conversion. 1171 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1172 From->getExprLoc(), 1173 From->getSourceRange(), 1174 IgnoreBaseAccess)) 1175 return true; 1176 1177 // The conversion was successful. 1178 Kind = CastExpr::CK_DerivedToBase; 1179 } 1180 } 1181 if (const ObjCObjectPointerType *FromPtrType = 1182 FromType->getAs<ObjCObjectPointerType>()) 1183 if (const ObjCObjectPointerType *ToPtrType = 1184 ToType->getAs<ObjCObjectPointerType>()) { 1185 // Objective-C++ conversions are always okay. 1186 // FIXME: We should have a different class of conversions for the 1187 // Objective-C++ implicit conversions. 1188 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1189 return false; 1190 1191 } 1192 return false; 1193} 1194 1195/// IsMemberPointerConversion - Determines whether the conversion of the 1196/// expression From, which has the (possibly adjusted) type FromType, can be 1197/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1198/// If so, returns true and places the converted type (that might differ from 1199/// ToType in its cv-qualifiers at some level) into ConvertedType. 1200bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1201 QualType ToType, 1202 bool InOverloadResolution, 1203 QualType &ConvertedType) { 1204 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1205 if (!ToTypePtr) 1206 return false; 1207 1208 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1209 if (From->isNullPointerConstant(Context, 1210 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1211 : Expr::NPC_ValueDependentIsNull)) { 1212 ConvertedType = ToType; 1213 return true; 1214 } 1215 1216 // Otherwise, both types have to be member pointers. 1217 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1218 if (!FromTypePtr) 1219 return false; 1220 1221 // A pointer to member of B can be converted to a pointer to member of D, 1222 // where D is derived from B (C++ 4.11p2). 1223 QualType FromClass(FromTypePtr->getClass(), 0); 1224 QualType ToClass(ToTypePtr->getClass(), 0); 1225 // FIXME: What happens when these are dependent? Is this function even called? 1226 1227 if (IsDerivedFrom(ToClass, FromClass)) { 1228 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1229 ToClass.getTypePtr()); 1230 return true; 1231 } 1232 1233 return false; 1234} 1235 1236/// CheckMemberPointerConversion - Check the member pointer conversion from the 1237/// expression From to the type ToType. This routine checks for ambiguous or 1238/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions 1239/// for which IsMemberPointerConversion has already returned true. It returns 1240/// true and produces a diagnostic if there was an error, or returns false 1241/// otherwise. 1242bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1243 CastExpr::CastKind &Kind, 1244 bool IgnoreBaseAccess) { 1245 (void)IgnoreBaseAccess; 1246 QualType FromType = From->getType(); 1247 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1248 if (!FromPtrType) { 1249 // This must be a null pointer to member pointer conversion 1250 assert(From->isNullPointerConstant(Context, 1251 Expr::NPC_ValueDependentIsNull) && 1252 "Expr must be null pointer constant!"); 1253 Kind = CastExpr::CK_NullToMemberPointer; 1254 return false; 1255 } 1256 1257 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1258 assert(ToPtrType && "No member pointer cast has a target type " 1259 "that is not a member pointer."); 1260 1261 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1262 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1263 1264 // FIXME: What about dependent types? 1265 assert(FromClass->isRecordType() && "Pointer into non-class."); 1266 assert(ToClass->isRecordType() && "Pointer into non-class."); 1267 1268 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 1269 /*DetectVirtual=*/true); 1270 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1271 assert(DerivationOkay && 1272 "Should not have been called if derivation isn't OK."); 1273 (void)DerivationOkay; 1274 1275 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1276 getUnqualifiedType())) { 1277 // Derivation is ambiguous. Redo the check to find the exact paths. 1278 Paths.clear(); 1279 Paths.setRecordingPaths(true); 1280 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1281 assert(StillOkay && "Derivation changed due to quantum fluctuation."); 1282 (void)StillOkay; 1283 1284 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1285 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1286 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1287 return true; 1288 } 1289 1290 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1291 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1292 << FromClass << ToClass << QualType(VBase, 0) 1293 << From->getSourceRange(); 1294 return true; 1295 } 1296 1297 // Must be a base to derived member conversion. 1298 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1299 return false; 1300} 1301 1302/// IsQualificationConversion - Determines whether the conversion from 1303/// an rvalue of type FromType to ToType is a qualification conversion 1304/// (C++ 4.4). 1305bool 1306Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1307 FromType = Context.getCanonicalType(FromType); 1308 ToType = Context.getCanonicalType(ToType); 1309 1310 // If FromType and ToType are the same type, this is not a 1311 // qualification conversion. 1312 if (FromType == ToType) 1313 return false; 1314 1315 // (C++ 4.4p4): 1316 // A conversion can add cv-qualifiers at levels other than the first 1317 // in multi-level pointers, subject to the following rules: [...] 1318 bool PreviousToQualsIncludeConst = true; 1319 bool UnwrappedAnyPointer = false; 1320 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1321 // Within each iteration of the loop, we check the qualifiers to 1322 // determine if this still looks like a qualification 1323 // conversion. Then, if all is well, we unwrap one more level of 1324 // pointers or pointers-to-members and do it all again 1325 // until there are no more pointers or pointers-to-members left to 1326 // unwrap. 1327 UnwrappedAnyPointer = true; 1328 1329 // -- for every j > 0, if const is in cv 1,j then const is in cv 1330 // 2,j, and similarly for volatile. 1331 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1332 return false; 1333 1334 // -- if the cv 1,j and cv 2,j are different, then const is in 1335 // every cv for 0 < k < j. 1336 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1337 && !PreviousToQualsIncludeConst) 1338 return false; 1339 1340 // Keep track of whether all prior cv-qualifiers in the "to" type 1341 // include const. 1342 PreviousToQualsIncludeConst 1343 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1344 } 1345 1346 // We are left with FromType and ToType being the pointee types 1347 // after unwrapping the original FromType and ToType the same number 1348 // of types. If we unwrapped any pointers, and if FromType and 1349 // ToType have the same unqualified type (since we checked 1350 // qualifiers above), then this is a qualification conversion. 1351 return UnwrappedAnyPointer && 1352 FromType.getUnqualifiedType() == ToType.getUnqualifiedType(); 1353} 1354 1355/// \brief Given a function template or function, extract the function template 1356/// declaration (if any) and the underlying function declaration. 1357template<typename T> 1358static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function, 1359 FunctionTemplateDecl *&FunctionTemplate) { 1360 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig); 1361 if (FunctionTemplate) 1362 Function = cast<T>(FunctionTemplate->getTemplatedDecl()); 1363 else 1364 Function = cast<T>(Orig); 1365} 1366 1367/// Determines whether there is a user-defined conversion sequence 1368/// (C++ [over.ics.user]) that converts expression From to the type 1369/// ToType. If such a conversion exists, User will contain the 1370/// user-defined conversion sequence that performs such a conversion 1371/// and this routine will return true. Otherwise, this routine returns 1372/// false and User is unspecified. 1373/// 1374/// \param AllowConversionFunctions true if the conversion should 1375/// consider conversion functions at all. If false, only constructors 1376/// will be considered. 1377/// 1378/// \param AllowExplicit true if the conversion should consider C++0x 1379/// "explicit" conversion functions as well as non-explicit conversion 1380/// functions (C++0x [class.conv.fct]p2). 1381/// 1382/// \param ForceRValue true if the expression should be treated as an rvalue 1383/// for overload resolution. 1384/// \param UserCast true if looking for user defined conversion for a static 1385/// cast. 1386Sema::OverloadingResult Sema::IsUserDefinedConversion( 1387 Expr *From, QualType ToType, 1388 UserDefinedConversionSequence& User, 1389 OverloadCandidateSet& CandidateSet, 1390 bool AllowConversionFunctions, 1391 bool AllowExplicit, bool ForceRValue, 1392 bool UserCast) { 1393 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1394 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1395 // We're not going to find any constructors. 1396 } else if (CXXRecordDecl *ToRecordDecl 1397 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1398 // C++ [over.match.ctor]p1: 1399 // When objects of class type are direct-initialized (8.5), or 1400 // copy-initialized from an expression of the same or a 1401 // derived class type (8.5), overload resolution selects the 1402 // constructor. [...] For copy-initialization, the candidate 1403 // functions are all the converting constructors (12.3.1) of 1404 // that class. The argument list is the expression-list within 1405 // the parentheses of the initializer. 1406 bool SuppressUserConversions = !UserCast; 1407 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1408 IsDerivedFrom(From->getType(), ToType)) { 1409 SuppressUserConversions = false; 1410 AllowConversionFunctions = false; 1411 } 1412 1413 DeclarationName ConstructorName 1414 = Context.DeclarationNames.getCXXConstructorName( 1415 Context.getCanonicalType(ToType).getUnqualifiedType()); 1416 DeclContext::lookup_iterator Con, ConEnd; 1417 for (llvm::tie(Con, ConEnd) 1418 = ToRecordDecl->lookup(ConstructorName); 1419 Con != ConEnd; ++Con) { 1420 // Find the constructor (which may be a template). 1421 CXXConstructorDecl *Constructor = 0; 1422 FunctionTemplateDecl *ConstructorTmpl 1423 = dyn_cast<FunctionTemplateDecl>(*Con); 1424 if (ConstructorTmpl) 1425 Constructor 1426 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1427 else 1428 Constructor = cast<CXXConstructorDecl>(*Con); 1429 1430 if (!Constructor->isInvalidDecl() && 1431 Constructor->isConvertingConstructor(AllowExplicit)) { 1432 if (ConstructorTmpl) 1433 AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From, 1434 1, CandidateSet, 1435 SuppressUserConversions, ForceRValue); 1436 else 1437 // Allow one user-defined conversion when user specifies a 1438 // From->ToType conversion via an static cast (c-style, etc). 1439 AddOverloadCandidate(Constructor, &From, 1, CandidateSet, 1440 SuppressUserConversions, ForceRValue); 1441 } 1442 } 1443 } 1444 } 1445 1446 if (!AllowConversionFunctions) { 1447 // Don't allow any conversion functions to enter the overload set. 1448 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1449 PDiag(0) 1450 << From->getSourceRange())) { 1451 // No conversion functions from incomplete types. 1452 } else if (const RecordType *FromRecordType 1453 = From->getType()->getAs<RecordType>()) { 1454 if (CXXRecordDecl *FromRecordDecl 1455 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1456 // Add all of the conversion functions as candidates. 1457 OverloadedFunctionDecl *Conversions 1458 = FromRecordDecl->getVisibleConversionFunctions(); 1459 for (OverloadedFunctionDecl::function_iterator Func 1460 = Conversions->function_begin(); 1461 Func != Conversions->function_end(); ++Func) { 1462 CXXConversionDecl *Conv; 1463 FunctionTemplateDecl *ConvTemplate; 1464 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 1465 if (ConvTemplate) 1466 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1467 else 1468 Conv = dyn_cast<CXXConversionDecl>(*Func); 1469 1470 if (AllowExplicit || !Conv->isExplicit()) { 1471 if (ConvTemplate) 1472 AddTemplateConversionCandidate(ConvTemplate, From, ToType, 1473 CandidateSet); 1474 else 1475 AddConversionCandidate(Conv, From, ToType, CandidateSet); 1476 } 1477 } 1478 } 1479 } 1480 1481 OverloadCandidateSet::iterator Best; 1482 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1483 case OR_Success: 1484 // Record the standard conversion we used and the conversion function. 1485 if (CXXConstructorDecl *Constructor 1486 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1487 // C++ [over.ics.user]p1: 1488 // If the user-defined conversion is specified by a 1489 // constructor (12.3.1), the initial standard conversion 1490 // sequence converts the source type to the type required by 1491 // the argument of the constructor. 1492 // 1493 QualType ThisType = Constructor->getThisType(Context); 1494 if (Best->Conversions[0].ConversionKind == 1495 ImplicitConversionSequence::EllipsisConversion) 1496 User.EllipsisConversion = true; 1497 else { 1498 User.Before = Best->Conversions[0].Standard; 1499 User.EllipsisConversion = false; 1500 } 1501 User.ConversionFunction = Constructor; 1502 User.After.setAsIdentityConversion(); 1503 User.After.FromTypePtr 1504 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr(); 1505 User.After.ToTypePtr = ToType.getAsOpaquePtr(); 1506 return OR_Success; 1507 } else if (CXXConversionDecl *Conversion 1508 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1509 // C++ [over.ics.user]p1: 1510 // 1511 // [...] If the user-defined conversion is specified by a 1512 // conversion function (12.3.2), the initial standard 1513 // conversion sequence converts the source type to the 1514 // implicit object parameter of the conversion function. 1515 User.Before = Best->Conversions[0].Standard; 1516 User.ConversionFunction = Conversion; 1517 User.EllipsisConversion = false; 1518 1519 // C++ [over.ics.user]p2: 1520 // The second standard conversion sequence converts the 1521 // result of the user-defined conversion to the target type 1522 // for the sequence. Since an implicit conversion sequence 1523 // is an initialization, the special rules for 1524 // initialization by user-defined conversion apply when 1525 // selecting the best user-defined conversion for a 1526 // user-defined conversion sequence (see 13.3.3 and 1527 // 13.3.3.1). 1528 User.After = Best->FinalConversion; 1529 return OR_Success; 1530 } else { 1531 assert(false && "Not a constructor or conversion function?"); 1532 return OR_No_Viable_Function; 1533 } 1534 1535 case OR_No_Viable_Function: 1536 return OR_No_Viable_Function; 1537 case OR_Deleted: 1538 // No conversion here! We're done. 1539 return OR_Deleted; 1540 1541 case OR_Ambiguous: 1542 return OR_Ambiguous; 1543 } 1544 1545 return OR_No_Viable_Function; 1546} 1547 1548bool 1549Sema::DiagnoseAmbiguousUserDefinedConversion(Expr *From, QualType ToType) { 1550 ImplicitConversionSequence ICS; 1551 OverloadCandidateSet CandidateSet; 1552 OverloadingResult OvResult = 1553 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 1554 CandidateSet, true, false, false); 1555 if (OvResult != OR_Ambiguous) 1556 return false; 1557 Diag(From->getSourceRange().getBegin(), 1558 diag::err_typecheck_ambiguous_condition) 1559 << From->getType() << ToType << From->getSourceRange(); 1560 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 1561 return true; 1562} 1563 1564/// CompareImplicitConversionSequences - Compare two implicit 1565/// conversion sequences to determine whether one is better than the 1566/// other or if they are indistinguishable (C++ 13.3.3.2). 1567ImplicitConversionSequence::CompareKind 1568Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1569 const ImplicitConversionSequence& ICS2) 1570{ 1571 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1572 // conversion sequences (as defined in 13.3.3.1) 1573 // -- a standard conversion sequence (13.3.3.1.1) is a better 1574 // conversion sequence than a user-defined conversion sequence or 1575 // an ellipsis conversion sequence, and 1576 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1577 // conversion sequence than an ellipsis conversion sequence 1578 // (13.3.3.1.3). 1579 // 1580 if (ICS1.ConversionKind < ICS2.ConversionKind) 1581 return ImplicitConversionSequence::Better; 1582 else if (ICS2.ConversionKind < ICS1.ConversionKind) 1583 return ImplicitConversionSequence::Worse; 1584 1585 // Two implicit conversion sequences of the same form are 1586 // indistinguishable conversion sequences unless one of the 1587 // following rules apply: (C++ 13.3.3.2p3): 1588 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) 1589 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1590 else if (ICS1.ConversionKind == 1591 ImplicitConversionSequence::UserDefinedConversion) { 1592 // User-defined conversion sequence U1 is a better conversion 1593 // sequence than another user-defined conversion sequence U2 if 1594 // they contain the same user-defined conversion function or 1595 // constructor and if the second standard conversion sequence of 1596 // U1 is better than the second standard conversion sequence of 1597 // U2 (C++ 13.3.3.2p3). 1598 if (ICS1.UserDefined.ConversionFunction == 1599 ICS2.UserDefined.ConversionFunction) 1600 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1601 ICS2.UserDefined.After); 1602 } 1603 1604 return ImplicitConversionSequence::Indistinguishable; 1605} 1606 1607/// CompareStandardConversionSequences - Compare two standard 1608/// conversion sequences to determine whether one is better than the 1609/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1610ImplicitConversionSequence::CompareKind 1611Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1612 const StandardConversionSequence& SCS2) 1613{ 1614 // Standard conversion sequence S1 is a better conversion sequence 1615 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1616 1617 // -- S1 is a proper subsequence of S2 (comparing the conversion 1618 // sequences in the canonical form defined by 13.3.3.1.1, 1619 // excluding any Lvalue Transformation; the identity conversion 1620 // sequence is considered to be a subsequence of any 1621 // non-identity conversion sequence) or, if not that, 1622 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) 1623 // Neither is a proper subsequence of the other. Do nothing. 1624 ; 1625 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || 1626 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || 1627 (SCS1.Second == ICK_Identity && 1628 SCS1.Third == ICK_Identity)) 1629 // SCS1 is a proper subsequence of SCS2. 1630 return ImplicitConversionSequence::Better; 1631 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || 1632 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || 1633 (SCS2.Second == ICK_Identity && 1634 SCS2.Third == ICK_Identity)) 1635 // SCS2 is a proper subsequence of SCS1. 1636 return ImplicitConversionSequence::Worse; 1637 1638 // -- the rank of S1 is better than the rank of S2 (by the rules 1639 // defined below), or, if not that, 1640 ImplicitConversionRank Rank1 = SCS1.getRank(); 1641 ImplicitConversionRank Rank2 = SCS2.getRank(); 1642 if (Rank1 < Rank2) 1643 return ImplicitConversionSequence::Better; 1644 else if (Rank2 < Rank1) 1645 return ImplicitConversionSequence::Worse; 1646 1647 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1648 // are indistinguishable unless one of the following rules 1649 // applies: 1650 1651 // A conversion that is not a conversion of a pointer, or 1652 // pointer to member, to bool is better than another conversion 1653 // that is such a conversion. 1654 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1655 return SCS2.isPointerConversionToBool() 1656 ? ImplicitConversionSequence::Better 1657 : ImplicitConversionSequence::Worse; 1658 1659 // C++ [over.ics.rank]p4b2: 1660 // 1661 // If class B is derived directly or indirectly from class A, 1662 // conversion of B* to A* is better than conversion of B* to 1663 // void*, and conversion of A* to void* is better than conversion 1664 // of B* to void*. 1665 bool SCS1ConvertsToVoid 1666 = SCS1.isPointerConversionToVoidPointer(Context); 1667 bool SCS2ConvertsToVoid 1668 = SCS2.isPointerConversionToVoidPointer(Context); 1669 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1670 // Exactly one of the conversion sequences is a conversion to 1671 // a void pointer; it's the worse conversion. 1672 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1673 : ImplicitConversionSequence::Worse; 1674 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1675 // Neither conversion sequence converts to a void pointer; compare 1676 // their derived-to-base conversions. 1677 if (ImplicitConversionSequence::CompareKind DerivedCK 1678 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1679 return DerivedCK; 1680 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1681 // Both conversion sequences are conversions to void 1682 // pointers. Compare the source types to determine if there's an 1683 // inheritance relationship in their sources. 1684 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1685 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1686 1687 // Adjust the types we're converting from via the array-to-pointer 1688 // conversion, if we need to. 1689 if (SCS1.First == ICK_Array_To_Pointer) 1690 FromType1 = Context.getArrayDecayedType(FromType1); 1691 if (SCS2.First == ICK_Array_To_Pointer) 1692 FromType2 = Context.getArrayDecayedType(FromType2); 1693 1694 QualType FromPointee1 1695 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1696 QualType FromPointee2 1697 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1698 1699 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1700 return ImplicitConversionSequence::Better; 1701 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1702 return ImplicitConversionSequence::Worse; 1703 1704 // Objective-C++: If one interface is more specific than the 1705 // other, it is the better one. 1706 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1707 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1708 if (FromIface1 && FromIface1) { 1709 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1710 return ImplicitConversionSequence::Better; 1711 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1712 return ImplicitConversionSequence::Worse; 1713 } 1714 } 1715 1716 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1717 // bullet 3). 1718 if (ImplicitConversionSequence::CompareKind QualCK 1719 = CompareQualificationConversions(SCS1, SCS2)) 1720 return QualCK; 1721 1722 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1723 // C++0x [over.ics.rank]p3b4: 1724 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 1725 // implicit object parameter of a non-static member function declared 1726 // without a ref-qualifier, and S1 binds an rvalue reference to an 1727 // rvalue and S2 binds an lvalue reference. 1728 // FIXME: We don't know if we're dealing with the implicit object parameter, 1729 // or if the member function in this case has a ref qualifier. 1730 // (Of course, we don't have ref qualifiers yet.) 1731 if (SCS1.RRefBinding != SCS2.RRefBinding) 1732 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 1733 : ImplicitConversionSequence::Worse; 1734 1735 // C++ [over.ics.rank]p3b4: 1736 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1737 // which the references refer are the same type except for 1738 // top-level cv-qualifiers, and the type to which the reference 1739 // initialized by S2 refers is more cv-qualified than the type 1740 // to which the reference initialized by S1 refers. 1741 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1742 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1743 T1 = Context.getCanonicalType(T1); 1744 T2 = Context.getCanonicalType(T2); 1745 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) { 1746 if (T2.isMoreQualifiedThan(T1)) 1747 return ImplicitConversionSequence::Better; 1748 else if (T1.isMoreQualifiedThan(T2)) 1749 return ImplicitConversionSequence::Worse; 1750 } 1751 } 1752 1753 return ImplicitConversionSequence::Indistinguishable; 1754} 1755 1756/// CompareQualificationConversions - Compares two standard conversion 1757/// sequences to determine whether they can be ranked based on their 1758/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1759ImplicitConversionSequence::CompareKind 1760Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1761 const StandardConversionSequence& SCS2) { 1762 // C++ 13.3.3.2p3: 1763 // -- S1 and S2 differ only in their qualification conversion and 1764 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1765 // cv-qualification signature of type T1 is a proper subset of 1766 // the cv-qualification signature of type T2, and S1 is not the 1767 // deprecated string literal array-to-pointer conversion (4.2). 1768 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1769 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1770 return ImplicitConversionSequence::Indistinguishable; 1771 1772 // FIXME: the example in the standard doesn't use a qualification 1773 // conversion (!) 1774 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1775 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1776 T1 = Context.getCanonicalType(T1); 1777 T2 = Context.getCanonicalType(T2); 1778 1779 // If the types are the same, we won't learn anything by unwrapped 1780 // them. 1781 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1782 return ImplicitConversionSequence::Indistinguishable; 1783 1784 ImplicitConversionSequence::CompareKind Result 1785 = ImplicitConversionSequence::Indistinguishable; 1786 while (UnwrapSimilarPointerTypes(T1, T2)) { 1787 // Within each iteration of the loop, we check the qualifiers to 1788 // determine if this still looks like a qualification 1789 // conversion. Then, if all is well, we unwrap one more level of 1790 // pointers or pointers-to-members and do it all again 1791 // until there are no more pointers or pointers-to-members left 1792 // to unwrap. This essentially mimics what 1793 // IsQualificationConversion does, but here we're checking for a 1794 // strict subset of qualifiers. 1795 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1796 // The qualifiers are the same, so this doesn't tell us anything 1797 // about how the sequences rank. 1798 ; 1799 else if (T2.isMoreQualifiedThan(T1)) { 1800 // T1 has fewer qualifiers, so it could be the better sequence. 1801 if (Result == ImplicitConversionSequence::Worse) 1802 // Neither has qualifiers that are a subset of the other's 1803 // qualifiers. 1804 return ImplicitConversionSequence::Indistinguishable; 1805 1806 Result = ImplicitConversionSequence::Better; 1807 } else if (T1.isMoreQualifiedThan(T2)) { 1808 // T2 has fewer qualifiers, so it could be the better sequence. 1809 if (Result == ImplicitConversionSequence::Better) 1810 // Neither has qualifiers that are a subset of the other's 1811 // qualifiers. 1812 return ImplicitConversionSequence::Indistinguishable; 1813 1814 Result = ImplicitConversionSequence::Worse; 1815 } else { 1816 // Qualifiers are disjoint. 1817 return ImplicitConversionSequence::Indistinguishable; 1818 } 1819 1820 // If the types after this point are equivalent, we're done. 1821 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1822 break; 1823 } 1824 1825 // Check that the winning standard conversion sequence isn't using 1826 // the deprecated string literal array to pointer conversion. 1827 switch (Result) { 1828 case ImplicitConversionSequence::Better: 1829 if (SCS1.Deprecated) 1830 Result = ImplicitConversionSequence::Indistinguishable; 1831 break; 1832 1833 case ImplicitConversionSequence::Indistinguishable: 1834 break; 1835 1836 case ImplicitConversionSequence::Worse: 1837 if (SCS2.Deprecated) 1838 Result = ImplicitConversionSequence::Indistinguishable; 1839 break; 1840 } 1841 1842 return Result; 1843} 1844 1845/// CompareDerivedToBaseConversions - Compares two standard conversion 1846/// sequences to determine whether they can be ranked based on their 1847/// various kinds of derived-to-base conversions (C++ 1848/// [over.ics.rank]p4b3). As part of these checks, we also look at 1849/// conversions between Objective-C interface types. 1850ImplicitConversionSequence::CompareKind 1851Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 1852 const StandardConversionSequence& SCS2) { 1853 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1854 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1855 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1856 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1857 1858 // Adjust the types we're converting from via the array-to-pointer 1859 // conversion, if we need to. 1860 if (SCS1.First == ICK_Array_To_Pointer) 1861 FromType1 = Context.getArrayDecayedType(FromType1); 1862 if (SCS2.First == ICK_Array_To_Pointer) 1863 FromType2 = Context.getArrayDecayedType(FromType2); 1864 1865 // Canonicalize all of the types. 1866 FromType1 = Context.getCanonicalType(FromType1); 1867 ToType1 = Context.getCanonicalType(ToType1); 1868 FromType2 = Context.getCanonicalType(FromType2); 1869 ToType2 = Context.getCanonicalType(ToType2); 1870 1871 // C++ [over.ics.rank]p4b3: 1872 // 1873 // If class B is derived directly or indirectly from class A and 1874 // class C is derived directly or indirectly from B, 1875 // 1876 // For Objective-C, we let A, B, and C also be Objective-C 1877 // interfaces. 1878 1879 // Compare based on pointer conversions. 1880 if (SCS1.Second == ICK_Pointer_Conversion && 1881 SCS2.Second == ICK_Pointer_Conversion && 1882 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 1883 FromType1->isPointerType() && FromType2->isPointerType() && 1884 ToType1->isPointerType() && ToType2->isPointerType()) { 1885 QualType FromPointee1 1886 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1887 QualType ToPointee1 1888 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1889 QualType FromPointee2 1890 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1891 QualType ToPointee2 1892 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1893 1894 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1895 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1896 const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>(); 1897 const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>(); 1898 1899 // -- conversion of C* to B* is better than conversion of C* to A*, 1900 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1901 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1902 return ImplicitConversionSequence::Better; 1903 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1904 return ImplicitConversionSequence::Worse; 1905 1906 if (ToIface1 && ToIface2) { 1907 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 1908 return ImplicitConversionSequence::Better; 1909 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 1910 return ImplicitConversionSequence::Worse; 1911 } 1912 } 1913 1914 // -- conversion of B* to A* is better than conversion of C* to A*, 1915 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 1916 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1917 return ImplicitConversionSequence::Better; 1918 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1919 return ImplicitConversionSequence::Worse; 1920 1921 if (FromIface1 && FromIface2) { 1922 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1923 return ImplicitConversionSequence::Better; 1924 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1925 return ImplicitConversionSequence::Worse; 1926 } 1927 } 1928 } 1929 1930 // Compare based on reference bindings. 1931 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 1932 SCS1.Second == ICK_Derived_To_Base) { 1933 // -- binding of an expression of type C to a reference of type 1934 // B& is better than binding an expression of type C to a 1935 // reference of type A&, 1936 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1937 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1938 if (IsDerivedFrom(ToType1, ToType2)) 1939 return ImplicitConversionSequence::Better; 1940 else if (IsDerivedFrom(ToType2, ToType1)) 1941 return ImplicitConversionSequence::Worse; 1942 } 1943 1944 // -- binding of an expression of type B to a reference of type 1945 // A& is better than binding an expression of type C to a 1946 // reference of type A&, 1947 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 1948 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 1949 if (IsDerivedFrom(FromType2, FromType1)) 1950 return ImplicitConversionSequence::Better; 1951 else if (IsDerivedFrom(FromType1, FromType2)) 1952 return ImplicitConversionSequence::Worse; 1953 } 1954 } 1955 1956 // Ranking of member-pointer types. 1957 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 1958 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 1959 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 1960 const MemberPointerType * FromMemPointer1 = 1961 FromType1->getAs<MemberPointerType>(); 1962 const MemberPointerType * ToMemPointer1 = 1963 ToType1->getAs<MemberPointerType>(); 1964 const MemberPointerType * FromMemPointer2 = 1965 FromType2->getAs<MemberPointerType>(); 1966 const MemberPointerType * ToMemPointer2 = 1967 ToType2->getAs<MemberPointerType>(); 1968 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 1969 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 1970 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 1971 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 1972 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 1973 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 1974 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 1975 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 1976 // conversion of A::* to B::* is better than conversion of A::* to C::*, 1977 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1978 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1979 return ImplicitConversionSequence::Worse; 1980 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1981 return ImplicitConversionSequence::Better; 1982 } 1983 // conversion of B::* to C::* is better than conversion of A::* to C::* 1984 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 1985 if (IsDerivedFrom(FromPointee1, FromPointee2)) 1986 return ImplicitConversionSequence::Better; 1987 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 1988 return ImplicitConversionSequence::Worse; 1989 } 1990 } 1991 1992 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 1993 SCS1.Second == ICK_Derived_To_Base) { 1994 // -- conversion of C to B is better than conversion of C to A, 1995 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1996 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1997 if (IsDerivedFrom(ToType1, ToType2)) 1998 return ImplicitConversionSequence::Better; 1999 else if (IsDerivedFrom(ToType2, ToType1)) 2000 return ImplicitConversionSequence::Worse; 2001 } 2002 2003 // -- conversion of B to A is better than conversion of C to A. 2004 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 2005 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 2006 if (IsDerivedFrom(FromType2, FromType1)) 2007 return ImplicitConversionSequence::Better; 2008 else if (IsDerivedFrom(FromType1, FromType2)) 2009 return ImplicitConversionSequence::Worse; 2010 } 2011 } 2012 2013 return ImplicitConversionSequence::Indistinguishable; 2014} 2015 2016/// TryCopyInitialization - Try to copy-initialize a value of type 2017/// ToType from the expression From. Return the implicit conversion 2018/// sequence required to pass this argument, which may be a bad 2019/// conversion sequence (meaning that the argument cannot be passed to 2020/// a parameter of this type). If @p SuppressUserConversions, then we 2021/// do not permit any user-defined conversion sequences. If @p ForceRValue, 2022/// then we treat @p From as an rvalue, even if it is an lvalue. 2023ImplicitConversionSequence 2024Sema::TryCopyInitialization(Expr *From, QualType ToType, 2025 bool SuppressUserConversions, bool ForceRValue, 2026 bool InOverloadResolution) { 2027 if (ToType->isReferenceType()) { 2028 ImplicitConversionSequence ICS; 2029 CheckReferenceInit(From, ToType, 2030 /*FIXME:*/From->getLocStart(), 2031 SuppressUserConversions, 2032 /*AllowExplicit=*/false, 2033 ForceRValue, 2034 &ICS); 2035 return ICS; 2036 } else { 2037 return TryImplicitConversion(From, ToType, 2038 SuppressUserConversions, 2039 /*AllowExplicit=*/false, 2040 ForceRValue, 2041 InOverloadResolution); 2042 } 2043} 2044 2045/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with 2046/// the expression @p From. Returns true (and emits a diagnostic) if there was 2047/// an error, returns false if the initialization succeeded. Elidable should 2048/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works 2049/// differently in C++0x for this case. 2050bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 2051 const char* Flavor, bool Elidable) { 2052 if (!getLangOptions().CPlusPlus) { 2053 // In C, argument passing is the same as performing an assignment. 2054 QualType FromType = From->getType(); 2055 2056 AssignConvertType ConvTy = 2057 CheckSingleAssignmentConstraints(ToType, From); 2058 if (ConvTy != Compatible && 2059 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) 2060 ConvTy = Compatible; 2061 2062 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 2063 FromType, From, Flavor); 2064 } 2065 2066 if (ToType->isReferenceType()) 2067 return CheckReferenceInit(From, ToType, 2068 /*FIXME:*/From->getLocStart(), 2069 /*SuppressUserConversions=*/false, 2070 /*AllowExplicit=*/false, 2071 /*ForceRValue=*/false); 2072 2073 if (!PerformImplicitConversion(From, ToType, Flavor, 2074 /*AllowExplicit=*/false, Elidable)) 2075 return false; 2076 if (!DiagnoseAmbiguousUserDefinedConversion(From, ToType)) 2077 return Diag(From->getSourceRange().getBegin(), 2078 diag::err_typecheck_convert_incompatible) 2079 << ToType << From->getType() << Flavor << From->getSourceRange(); 2080 return true; 2081} 2082 2083/// TryObjectArgumentInitialization - Try to initialize the object 2084/// parameter of the given member function (@c Method) from the 2085/// expression @p From. 2086ImplicitConversionSequence 2087Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) { 2088 QualType ClassType = Context.getTypeDeclType(Method->getParent()); 2089 QualType ImplicitParamType 2090 = Context.getCVRQualifiedType(ClassType, Method->getTypeQualifiers()); 2091 2092 // Set up the conversion sequence as a "bad" conversion, to allow us 2093 // to exit early. 2094 ImplicitConversionSequence ICS; 2095 ICS.Standard.setAsIdentityConversion(); 2096 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 2097 2098 // We need to have an object of class type. 2099 QualType FromType = From->getType(); 2100 if (const PointerType *PT = FromType->getAs<PointerType>()) 2101 FromType = PT->getPointeeType(); 2102 2103 assert(FromType->isRecordType()); 2104 2105 // The implicit object parmeter is has the type "reference to cv X", 2106 // where X is the class of which the function is a member 2107 // (C++ [over.match.funcs]p4). However, when finding an implicit 2108 // conversion sequence for the argument, we are not allowed to 2109 // create temporaries or perform user-defined conversions 2110 // (C++ [over.match.funcs]p5). We perform a simplified version of 2111 // reference binding here, that allows class rvalues to bind to 2112 // non-constant references. 2113 2114 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2115 // with the implicit object parameter (C++ [over.match.funcs]p5). 2116 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2117 if (ImplicitParamType.getCVRQualifiers() != FromTypeCanon.getCVRQualifiers() && 2118 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) 2119 return ICS; 2120 2121 // Check that we have either the same type or a derived type. It 2122 // affects the conversion rank. 2123 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2124 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType()) 2125 ICS.Standard.Second = ICK_Identity; 2126 else if (IsDerivedFrom(FromType, ClassType)) 2127 ICS.Standard.Second = ICK_Derived_To_Base; 2128 else 2129 return ICS; 2130 2131 // Success. Mark this as a reference binding. 2132 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 2133 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); 2134 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); 2135 ICS.Standard.ReferenceBinding = true; 2136 ICS.Standard.DirectBinding = true; 2137 ICS.Standard.RRefBinding = false; 2138 return ICS; 2139} 2140 2141/// PerformObjectArgumentInitialization - Perform initialization of 2142/// the implicit object parameter for the given Method with the given 2143/// expression. 2144bool 2145Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 2146 QualType FromRecordType, DestType; 2147 QualType ImplicitParamRecordType = 2148 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2149 2150 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2151 FromRecordType = PT->getPointeeType(); 2152 DestType = Method->getThisType(Context); 2153 } else { 2154 FromRecordType = From->getType(); 2155 DestType = ImplicitParamRecordType; 2156 } 2157 2158 ImplicitConversionSequence ICS 2159 = TryObjectArgumentInitialization(From, Method); 2160 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) 2161 return Diag(From->getSourceRange().getBegin(), 2162 diag::err_implicit_object_parameter_init) 2163 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2164 2165 if (ICS.Standard.Second == ICK_Derived_To_Base && 2166 CheckDerivedToBaseConversion(FromRecordType, 2167 ImplicitParamRecordType, 2168 From->getSourceRange().getBegin(), 2169 From->getSourceRange())) 2170 return true; 2171 2172 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, 2173 /*isLvalue=*/true); 2174 return false; 2175} 2176 2177/// TryContextuallyConvertToBool - Attempt to contextually convert the 2178/// expression From to bool (C++0x [conv]p3). 2179ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2180 return TryImplicitConversion(From, Context.BoolTy, 2181 // FIXME: Are these flags correct? 2182 /*SuppressUserConversions=*/false, 2183 /*AllowExplicit=*/true, 2184 /*ForceRValue=*/false, 2185 /*InOverloadResolution=*/false); 2186} 2187 2188/// PerformContextuallyConvertToBool - Perform a contextual conversion 2189/// of the expression From to bool (C++0x [conv]p3). 2190bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2191 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2192 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting")) 2193 return false; 2194 2195 if (!DiagnoseAmbiguousUserDefinedConversion(From, Context.BoolTy)) 2196 return Diag(From->getSourceRange().getBegin(), 2197 diag::err_typecheck_bool_condition) 2198 << From->getType() << From->getSourceRange(); 2199 return true; 2200} 2201 2202/// AddOverloadCandidate - Adds the given function to the set of 2203/// candidate functions, using the given function call arguments. If 2204/// @p SuppressUserConversions, then don't allow user-defined 2205/// conversions via constructors or conversion operators. 2206/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly 2207/// hacky way to implement the overloading rules for elidable copy 2208/// initialization in C++0x (C++0x 12.8p15). 2209/// 2210/// \para PartialOverloading true if we are performing "partial" overloading 2211/// based on an incomplete set of function arguments. This feature is used by 2212/// code completion. 2213void 2214Sema::AddOverloadCandidate(FunctionDecl *Function, 2215 Expr **Args, unsigned NumArgs, 2216 OverloadCandidateSet& CandidateSet, 2217 bool SuppressUserConversions, 2218 bool ForceRValue, 2219 bool PartialOverloading) { 2220 const FunctionProtoType* Proto 2221 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 2222 assert(Proto && "Functions without a prototype cannot be overloaded"); 2223 assert(!isa<CXXConversionDecl>(Function) && 2224 "Use AddConversionCandidate for conversion functions"); 2225 assert(!Function->getDescribedFunctionTemplate() && 2226 "Use AddTemplateOverloadCandidate for function templates"); 2227 2228 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2229 if (!isa<CXXConstructorDecl>(Method)) { 2230 // If we get here, it's because we're calling a member function 2231 // that is named without a member access expression (e.g., 2232 // "this->f") that was either written explicitly or created 2233 // implicitly. This can happen with a qualified call to a member 2234 // function, e.g., X::f(). We use a NULL object as the implied 2235 // object argument (C++ [over.call.func]p3). 2236 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet, 2237 SuppressUserConversions, ForceRValue); 2238 return; 2239 } 2240 // We treat a constructor like a non-member function, since its object 2241 // argument doesn't participate in overload resolution. 2242 } 2243 2244 if (!CandidateSet.isNewCandidate(Function)) 2245 return; 2246 2247 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 2248 // C++ [class.copy]p3: 2249 // A member function template is never instantiated to perform the copy 2250 // of a class object to an object of its class type. 2251 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 2252 if (NumArgs == 1 && 2253 Constructor->isCopyConstructorLikeSpecialization() && 2254 Context.hasSameUnqualifiedType(ClassType, Args[0]->getType())) 2255 return; 2256 } 2257 2258 // Add this candidate 2259 CandidateSet.push_back(OverloadCandidate()); 2260 OverloadCandidate& Candidate = CandidateSet.back(); 2261 Candidate.Function = Function; 2262 Candidate.Viable = true; 2263 Candidate.IsSurrogate = false; 2264 Candidate.IgnoreObjectArgument = false; 2265 2266 unsigned NumArgsInProto = Proto->getNumArgs(); 2267 2268 // (C++ 13.3.2p2): A candidate function having fewer than m 2269 // parameters is viable only if it has an ellipsis in its parameter 2270 // list (8.3.5). 2271 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 2272 !Proto->isVariadic()) { 2273 Candidate.Viable = false; 2274 return; 2275 } 2276 2277 // (C++ 13.3.2p2): A candidate function having more than m parameters 2278 // is viable only if the (m+1)st parameter has a default argument 2279 // (8.3.6). For the purposes of overload resolution, the 2280 // parameter list is truncated on the right, so that there are 2281 // exactly m parameters. 2282 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 2283 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 2284 // Not enough arguments. 2285 Candidate.Viable = false; 2286 return; 2287 } 2288 2289 // Determine the implicit conversion sequences for each of the 2290 // arguments. 2291 Candidate.Conversions.resize(NumArgs); 2292 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2293 if (ArgIdx < NumArgsInProto) { 2294 // (C++ 13.3.2p3): for F to be a viable function, there shall 2295 // exist for each argument an implicit conversion sequence 2296 // (13.3.3.1) that converts that argument to the corresponding 2297 // parameter of F. 2298 QualType ParamType = Proto->getArgType(ArgIdx); 2299 Candidate.Conversions[ArgIdx] 2300 = TryCopyInitialization(Args[ArgIdx], ParamType, 2301 SuppressUserConversions, ForceRValue, 2302 /*InOverloadResolution=*/true); 2303 if (Candidate.Conversions[ArgIdx].ConversionKind 2304 == ImplicitConversionSequence::BadConversion) { 2305 // 13.3.3.1-p10 If several different sequences of conversions exist that 2306 // each convert the argument to the parameter type, the implicit conversion 2307 // sequence associated with the parameter is defined to be the unique conversion 2308 // sequence designated the ambiguous conversion sequence. For the purpose of 2309 // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous 2310 // conversion sequence is treated as a user-defined sequence that is 2311 // indistinguishable from any other user-defined conversion sequence 2312 if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) { 2313 Candidate.Conversions[ArgIdx].ConversionKind = 2314 ImplicitConversionSequence::UserDefinedConversion; 2315 // Set the conversion function to one of them. As due to ambiguity, 2316 // they carry the same weight and is needed for overload resolution 2317 // later. 2318 Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction = 2319 Candidate.Conversions[ArgIdx].ConversionFunctionSet[0]; 2320 } 2321 else { 2322 Candidate.Viable = false; 2323 break; 2324 } 2325 } 2326 } else { 2327 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2328 // argument for which there is no corresponding parameter is 2329 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2330 Candidate.Conversions[ArgIdx].ConversionKind 2331 = ImplicitConversionSequence::EllipsisConversion; 2332 } 2333 } 2334} 2335 2336/// \brief Add all of the function declarations in the given function set to 2337/// the overload canddiate set. 2338void Sema::AddFunctionCandidates(const FunctionSet &Functions, 2339 Expr **Args, unsigned NumArgs, 2340 OverloadCandidateSet& CandidateSet, 2341 bool SuppressUserConversions) { 2342 for (FunctionSet::const_iterator F = Functions.begin(), 2343 FEnd = Functions.end(); 2344 F != FEnd; ++F) { 2345 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) { 2346 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2347 AddMethodCandidate(cast<CXXMethodDecl>(FD), 2348 Args[0], Args + 1, NumArgs - 1, 2349 CandidateSet, SuppressUserConversions); 2350 else 2351 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 2352 SuppressUserConversions); 2353 } else { 2354 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F); 2355 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 2356 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 2357 AddMethodTemplateCandidate(FunTmpl, 2358 /*FIXME: explicit args */false, 0, 0, 2359 Args[0], Args + 1, NumArgs - 1, 2360 CandidateSet, 2361 SuppressUserConversions); 2362 else 2363 AddTemplateOverloadCandidate(FunTmpl, 2364 /*FIXME: explicit args */false, 0, 0, 2365 Args, NumArgs, CandidateSet, 2366 SuppressUserConversions); 2367 } 2368 } 2369} 2370 2371/// AddMethodCandidate - Adds the given C++ member function to the set 2372/// of candidate functions, using the given function call arguments 2373/// and the object argument (@c Object). For example, in a call 2374/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 2375/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 2376/// allow user-defined conversions via constructors or conversion 2377/// operators. If @p ForceRValue, treat all arguments as rvalues. This is 2378/// a slightly hacky way to implement the overloading rules for elidable copy 2379/// initialization in C++0x (C++0x 12.8p15). 2380void 2381Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, 2382 Expr **Args, unsigned NumArgs, 2383 OverloadCandidateSet& CandidateSet, 2384 bool SuppressUserConversions, bool ForceRValue) { 2385 const FunctionProtoType* Proto 2386 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 2387 assert(Proto && "Methods without a prototype cannot be overloaded"); 2388 assert(!isa<CXXConversionDecl>(Method) && 2389 "Use AddConversionCandidate for conversion functions"); 2390 assert(!isa<CXXConstructorDecl>(Method) && 2391 "Use AddOverloadCandidate for constructors"); 2392 2393 if (!CandidateSet.isNewCandidate(Method)) 2394 return; 2395 2396 // Add this candidate 2397 CandidateSet.push_back(OverloadCandidate()); 2398 OverloadCandidate& Candidate = CandidateSet.back(); 2399 Candidate.Function = Method; 2400 Candidate.IsSurrogate = false; 2401 Candidate.IgnoreObjectArgument = false; 2402 2403 unsigned NumArgsInProto = Proto->getNumArgs(); 2404 2405 // (C++ 13.3.2p2): A candidate function having fewer than m 2406 // parameters is viable only if it has an ellipsis in its parameter 2407 // list (8.3.5). 2408 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2409 Candidate.Viable = false; 2410 return; 2411 } 2412 2413 // (C++ 13.3.2p2): A candidate function having more than m parameters 2414 // is viable only if the (m+1)st parameter has a default argument 2415 // (8.3.6). For the purposes of overload resolution, the 2416 // parameter list is truncated on the right, so that there are 2417 // exactly m parameters. 2418 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2419 if (NumArgs < MinRequiredArgs) { 2420 // Not enough arguments. 2421 Candidate.Viable = false; 2422 return; 2423 } 2424 2425 Candidate.Viable = true; 2426 Candidate.Conversions.resize(NumArgs + 1); 2427 2428 if (Method->isStatic() || !Object) 2429 // The implicit object argument is ignored. 2430 Candidate.IgnoreObjectArgument = true; 2431 else { 2432 // Determine the implicit conversion sequence for the object 2433 // parameter. 2434 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method); 2435 if (Candidate.Conversions[0].ConversionKind 2436 == ImplicitConversionSequence::BadConversion) { 2437 Candidate.Viable = false; 2438 return; 2439 } 2440 } 2441 2442 // Determine the implicit conversion sequences for each of the 2443 // arguments. 2444 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2445 if (ArgIdx < NumArgsInProto) { 2446 // (C++ 13.3.2p3): for F to be a viable function, there shall 2447 // exist for each argument an implicit conversion sequence 2448 // (13.3.3.1) that converts that argument to the corresponding 2449 // parameter of F. 2450 QualType ParamType = Proto->getArgType(ArgIdx); 2451 Candidate.Conversions[ArgIdx + 1] 2452 = TryCopyInitialization(Args[ArgIdx], ParamType, 2453 SuppressUserConversions, ForceRValue, 2454 /*InOverloadResolution=*/true); 2455 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2456 == ImplicitConversionSequence::BadConversion) { 2457 Candidate.Viable = false; 2458 break; 2459 } 2460 } else { 2461 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2462 // argument for which there is no corresponding parameter is 2463 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2464 Candidate.Conversions[ArgIdx + 1].ConversionKind 2465 = ImplicitConversionSequence::EllipsisConversion; 2466 } 2467 } 2468} 2469 2470/// \brief Add a C++ member function template as a candidate to the candidate 2471/// set, using template argument deduction to produce an appropriate member 2472/// function template specialization. 2473void 2474Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 2475 bool HasExplicitTemplateArgs, 2476 const TemplateArgumentLoc *ExplicitTemplateArgs, 2477 unsigned NumExplicitTemplateArgs, 2478 Expr *Object, Expr **Args, unsigned NumArgs, 2479 OverloadCandidateSet& CandidateSet, 2480 bool SuppressUserConversions, 2481 bool ForceRValue) { 2482 if (!CandidateSet.isNewCandidate(MethodTmpl)) 2483 return; 2484 2485 // C++ [over.match.funcs]p7: 2486 // In each case where a candidate is a function template, candidate 2487 // function template specializations are generated using template argument 2488 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2489 // candidate functions in the usual way.113) A given name can refer to one 2490 // or more function templates and also to a set of overloaded non-template 2491 // functions. In such a case, the candidate functions generated from each 2492 // function template are combined with the set of non-template candidate 2493 // functions. 2494 TemplateDeductionInfo Info(Context); 2495 FunctionDecl *Specialization = 0; 2496 if (TemplateDeductionResult Result 2497 = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs, 2498 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2499 Args, NumArgs, Specialization, Info)) { 2500 // FIXME: Record what happened with template argument deduction, so 2501 // that we can give the user a beautiful diagnostic. 2502 (void)Result; 2503 return; 2504 } 2505 2506 // Add the function template specialization produced by template argument 2507 // deduction as a candidate. 2508 assert(Specialization && "Missing member function template specialization?"); 2509 assert(isa<CXXMethodDecl>(Specialization) && 2510 "Specialization is not a member function?"); 2511 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs, 2512 CandidateSet, SuppressUserConversions, ForceRValue); 2513} 2514 2515/// \brief Add a C++ function template specialization as a candidate 2516/// in the candidate set, using template argument deduction to produce 2517/// an appropriate function template specialization. 2518void 2519Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 2520 bool HasExplicitTemplateArgs, 2521 const TemplateArgumentLoc *ExplicitTemplateArgs, 2522 unsigned NumExplicitTemplateArgs, 2523 Expr **Args, unsigned NumArgs, 2524 OverloadCandidateSet& CandidateSet, 2525 bool SuppressUserConversions, 2526 bool ForceRValue) { 2527 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2528 return; 2529 2530 // C++ [over.match.funcs]p7: 2531 // In each case where a candidate is a function template, candidate 2532 // function template specializations are generated using template argument 2533 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2534 // candidate functions in the usual way.113) A given name can refer to one 2535 // or more function templates and also to a set of overloaded non-template 2536 // functions. In such a case, the candidate functions generated from each 2537 // function template are combined with the set of non-template candidate 2538 // functions. 2539 TemplateDeductionInfo Info(Context); 2540 FunctionDecl *Specialization = 0; 2541 if (TemplateDeductionResult Result 2542 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs, 2543 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2544 Args, NumArgs, Specialization, Info)) { 2545 // FIXME: Record what happened with template argument deduction, so 2546 // that we can give the user a beautiful diagnostic. 2547 (void)Result; 2548 return; 2549 } 2550 2551 // Add the function template specialization produced by template argument 2552 // deduction as a candidate. 2553 assert(Specialization && "Missing function template specialization?"); 2554 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet, 2555 SuppressUserConversions, ForceRValue); 2556} 2557 2558/// AddConversionCandidate - Add a C++ conversion function as a 2559/// candidate in the candidate set (C++ [over.match.conv], 2560/// C++ [over.match.copy]). From is the expression we're converting from, 2561/// and ToType is the type that we're eventually trying to convert to 2562/// (which may or may not be the same type as the type that the 2563/// conversion function produces). 2564void 2565Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2566 Expr *From, QualType ToType, 2567 OverloadCandidateSet& CandidateSet) { 2568 assert(!Conversion->getDescribedFunctionTemplate() && 2569 "Conversion function templates use AddTemplateConversionCandidate"); 2570 2571 if (!CandidateSet.isNewCandidate(Conversion)) 2572 return; 2573 2574 // Add this candidate 2575 CandidateSet.push_back(OverloadCandidate()); 2576 OverloadCandidate& Candidate = CandidateSet.back(); 2577 Candidate.Function = Conversion; 2578 Candidate.IsSurrogate = false; 2579 Candidate.IgnoreObjectArgument = false; 2580 Candidate.FinalConversion.setAsIdentityConversion(); 2581 Candidate.FinalConversion.FromTypePtr 2582 = Conversion->getConversionType().getAsOpaquePtr(); 2583 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); 2584 2585 // Determine the implicit conversion sequence for the implicit 2586 // object parameter. 2587 Candidate.Viable = true; 2588 Candidate.Conversions.resize(1); 2589 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion); 2590 // Conversion functions to a different type in the base class is visible in 2591 // the derived class. So, a derived to base conversion should not participate 2592 // in overload resolution. 2593 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 2594 Candidate.Conversions[0].Standard.Second = ICK_Identity; 2595 if (Candidate.Conversions[0].ConversionKind 2596 == ImplicitConversionSequence::BadConversion) { 2597 Candidate.Viable = false; 2598 return; 2599 } 2600 2601 // We won't go through a user-define type conversion function to convert a 2602 // derived to base as such conversions are given Conversion Rank. They only 2603 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 2604 QualType FromCanon 2605 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 2606 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 2607 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 2608 Candidate.Viable = false; 2609 return; 2610 } 2611 2612 2613 // To determine what the conversion from the result of calling the 2614 // conversion function to the type we're eventually trying to 2615 // convert to (ToType), we need to synthesize a call to the 2616 // conversion function and attempt copy initialization from it. This 2617 // makes sure that we get the right semantics with respect to 2618 // lvalues/rvalues and the type. Fortunately, we can allocate this 2619 // call on the stack and we don't need its arguments to be 2620 // well-formed. 2621 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2622 SourceLocation()); 2623 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2624 CastExpr::CK_FunctionToPointerDecay, 2625 &ConversionRef, false); 2626 2627 // Note that it is safe to allocate CallExpr on the stack here because 2628 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 2629 // allocator). 2630 CallExpr Call(Context, &ConversionFn, 0, 0, 2631 Conversion->getConversionType().getNonReferenceType(), 2632 SourceLocation()); 2633 ImplicitConversionSequence ICS = 2634 TryCopyInitialization(&Call, ToType, 2635 /*SuppressUserConversions=*/true, 2636 /*ForceRValue=*/false, 2637 /*InOverloadResolution=*/false); 2638 2639 switch (ICS.ConversionKind) { 2640 case ImplicitConversionSequence::StandardConversion: 2641 Candidate.FinalConversion = ICS.Standard; 2642 break; 2643 2644 case ImplicitConversionSequence::BadConversion: 2645 Candidate.Viable = false; 2646 break; 2647 2648 default: 2649 assert(false && 2650 "Can only end up with a standard conversion sequence or failure"); 2651 } 2652} 2653 2654/// \brief Adds a conversion function template specialization 2655/// candidate to the overload set, using template argument deduction 2656/// to deduce the template arguments of the conversion function 2657/// template from the type that we are converting to (C++ 2658/// [temp.deduct.conv]). 2659void 2660Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 2661 Expr *From, QualType ToType, 2662 OverloadCandidateSet &CandidateSet) { 2663 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 2664 "Only conversion function templates permitted here"); 2665 2666 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2667 return; 2668 2669 TemplateDeductionInfo Info(Context); 2670 CXXConversionDecl *Specialization = 0; 2671 if (TemplateDeductionResult Result 2672 = DeduceTemplateArguments(FunctionTemplate, ToType, 2673 Specialization, Info)) { 2674 // FIXME: Record what happened with template argument deduction, so 2675 // that we can give the user a beautiful diagnostic. 2676 (void)Result; 2677 return; 2678 } 2679 2680 // Add the conversion function template specialization produced by 2681 // template argument deduction as a candidate. 2682 assert(Specialization && "Missing function template specialization?"); 2683 AddConversionCandidate(Specialization, From, ToType, CandidateSet); 2684} 2685 2686/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2687/// converts the given @c Object to a function pointer via the 2688/// conversion function @c Conversion, and then attempts to call it 2689/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2690/// the type of function that we'll eventually be calling. 2691void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2692 const FunctionProtoType *Proto, 2693 Expr *Object, Expr **Args, unsigned NumArgs, 2694 OverloadCandidateSet& CandidateSet) { 2695 if (!CandidateSet.isNewCandidate(Conversion)) 2696 return; 2697 2698 CandidateSet.push_back(OverloadCandidate()); 2699 OverloadCandidate& Candidate = CandidateSet.back(); 2700 Candidate.Function = 0; 2701 Candidate.Surrogate = Conversion; 2702 Candidate.Viable = true; 2703 Candidate.IsSurrogate = true; 2704 Candidate.IgnoreObjectArgument = false; 2705 Candidate.Conversions.resize(NumArgs + 1); 2706 2707 // Determine the implicit conversion sequence for the implicit 2708 // object parameter. 2709 ImplicitConversionSequence ObjectInit 2710 = TryObjectArgumentInitialization(Object, Conversion); 2711 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { 2712 Candidate.Viable = false; 2713 return; 2714 } 2715 2716 // The first conversion is actually a user-defined conversion whose 2717 // first conversion is ObjectInit's standard conversion (which is 2718 // effectively a reference binding). Record it as such. 2719 Candidate.Conversions[0].ConversionKind 2720 = ImplicitConversionSequence::UserDefinedConversion; 2721 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2722 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 2723 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2724 Candidate.Conversions[0].UserDefined.After 2725 = Candidate.Conversions[0].UserDefined.Before; 2726 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2727 2728 // Find the 2729 unsigned NumArgsInProto = Proto->getNumArgs(); 2730 2731 // (C++ 13.3.2p2): A candidate function having fewer than m 2732 // parameters is viable only if it has an ellipsis in its parameter 2733 // list (8.3.5). 2734 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2735 Candidate.Viable = false; 2736 return; 2737 } 2738 2739 // Function types don't have any default arguments, so just check if 2740 // we have enough arguments. 2741 if (NumArgs < NumArgsInProto) { 2742 // Not enough arguments. 2743 Candidate.Viable = false; 2744 return; 2745 } 2746 2747 // Determine the implicit conversion sequences for each of the 2748 // arguments. 2749 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2750 if (ArgIdx < NumArgsInProto) { 2751 // (C++ 13.3.2p3): for F to be a viable function, there shall 2752 // exist for each argument an implicit conversion sequence 2753 // (13.3.3.1) that converts that argument to the corresponding 2754 // parameter of F. 2755 QualType ParamType = Proto->getArgType(ArgIdx); 2756 Candidate.Conversions[ArgIdx + 1] 2757 = TryCopyInitialization(Args[ArgIdx], ParamType, 2758 /*SuppressUserConversions=*/false, 2759 /*ForceRValue=*/false, 2760 /*InOverloadResolution=*/false); 2761 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2762 == ImplicitConversionSequence::BadConversion) { 2763 Candidate.Viable = false; 2764 break; 2765 } 2766 } else { 2767 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2768 // argument for which there is no corresponding parameter is 2769 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2770 Candidate.Conversions[ArgIdx + 1].ConversionKind 2771 = ImplicitConversionSequence::EllipsisConversion; 2772 } 2773 } 2774} 2775 2776// FIXME: This will eventually be removed, once we've migrated all of the 2777// operator overloading logic over to the scheme used by binary operators, which 2778// works for template instantiation. 2779void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 2780 SourceLocation OpLoc, 2781 Expr **Args, unsigned NumArgs, 2782 OverloadCandidateSet& CandidateSet, 2783 SourceRange OpRange) { 2784 FunctionSet Functions; 2785 2786 QualType T1 = Args[0]->getType(); 2787 QualType T2; 2788 if (NumArgs > 1) 2789 T2 = Args[1]->getType(); 2790 2791 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2792 if (S) 2793 LookupOverloadedOperatorName(Op, S, T1, T2, Functions); 2794 ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions); 2795 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); 2796 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); 2797 AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet); 2798} 2799 2800/// \brief Add overload candidates for overloaded operators that are 2801/// member functions. 2802/// 2803/// Add the overloaded operator candidates that are member functions 2804/// for the operator Op that was used in an operator expression such 2805/// as "x Op y". , Args/NumArgs provides the operator arguments, and 2806/// CandidateSet will store the added overload candidates. (C++ 2807/// [over.match.oper]). 2808void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 2809 SourceLocation OpLoc, 2810 Expr **Args, unsigned NumArgs, 2811 OverloadCandidateSet& CandidateSet, 2812 SourceRange OpRange) { 2813 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2814 2815 // C++ [over.match.oper]p3: 2816 // For a unary operator @ with an operand of a type whose 2817 // cv-unqualified version is T1, and for a binary operator @ with 2818 // a left operand of a type whose cv-unqualified version is T1 and 2819 // a right operand of a type whose cv-unqualified version is T2, 2820 // three sets of candidate functions, designated member 2821 // candidates, non-member candidates and built-in candidates, are 2822 // constructed as follows: 2823 QualType T1 = Args[0]->getType(); 2824 QualType T2; 2825 if (NumArgs > 1) 2826 T2 = Args[1]->getType(); 2827 2828 // -- If T1 is a class type, the set of member candidates is the 2829 // result of the qualified lookup of T1::operator@ 2830 // (13.3.1.1.1); otherwise, the set of member candidates is 2831 // empty. 2832 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 2833 // Complete the type if it can be completed. Otherwise, we're done. 2834 if (RequireCompleteType(OpLoc, T1, PDiag())) 2835 return; 2836 2837 LookupResult Operators; 2838 LookupQualifiedName(Operators, T1Rec->getDecl(), OpName, 2839 LookupOrdinaryName, false); 2840 for (LookupResult::iterator Oper = Operators.begin(), 2841 OperEnd = Operators.end(); 2842 Oper != OperEnd; 2843 ++Oper) { 2844 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Oper)) { 2845 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet, 2846 /*SuppressUserConversions=*/false); 2847 continue; 2848 } 2849 2850 assert(isa<FunctionTemplateDecl>(*Oper) && 2851 isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(*Oper) 2852 ->getTemplatedDecl()) && 2853 "Expected a member function template"); 2854 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Oper), false, 0, 0, 2855 Args[0], Args+1, NumArgs - 1, CandidateSet, 2856 /*SuppressUserConversions=*/false); 2857 } 2858 } 2859} 2860 2861/// AddBuiltinCandidate - Add a candidate for a built-in 2862/// operator. ResultTy and ParamTys are the result and parameter types 2863/// of the built-in candidate, respectively. Args and NumArgs are the 2864/// arguments being passed to the candidate. IsAssignmentOperator 2865/// should be true when this built-in candidate is an assignment 2866/// operator. NumContextualBoolArguments is the number of arguments 2867/// (at the beginning of the argument list) that will be contextually 2868/// converted to bool. 2869void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 2870 Expr **Args, unsigned NumArgs, 2871 OverloadCandidateSet& CandidateSet, 2872 bool IsAssignmentOperator, 2873 unsigned NumContextualBoolArguments) { 2874 // Add this candidate 2875 CandidateSet.push_back(OverloadCandidate()); 2876 OverloadCandidate& Candidate = CandidateSet.back(); 2877 Candidate.Function = 0; 2878 Candidate.IsSurrogate = false; 2879 Candidate.IgnoreObjectArgument = false; 2880 Candidate.BuiltinTypes.ResultTy = ResultTy; 2881 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 2882 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 2883 2884 // Determine the implicit conversion sequences for each of the 2885 // arguments. 2886 Candidate.Viable = true; 2887 Candidate.Conversions.resize(NumArgs); 2888 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2889 // C++ [over.match.oper]p4: 2890 // For the built-in assignment operators, conversions of the 2891 // left operand are restricted as follows: 2892 // -- no temporaries are introduced to hold the left operand, and 2893 // -- no user-defined conversions are applied to the left 2894 // operand to achieve a type match with the left-most 2895 // parameter of a built-in candidate. 2896 // 2897 // We block these conversions by turning off user-defined 2898 // conversions, since that is the only way that initialization of 2899 // a reference to a non-class type can occur from something that 2900 // is not of the same type. 2901 if (ArgIdx < NumContextualBoolArguments) { 2902 assert(ParamTys[ArgIdx] == Context.BoolTy && 2903 "Contextual conversion to bool requires bool type"); 2904 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 2905 } else { 2906 Candidate.Conversions[ArgIdx] 2907 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 2908 ArgIdx == 0 && IsAssignmentOperator, 2909 /*ForceRValue=*/false, 2910 /*InOverloadResolution=*/false); 2911 } 2912 if (Candidate.Conversions[ArgIdx].ConversionKind 2913 == ImplicitConversionSequence::BadConversion) { 2914 Candidate.Viable = false; 2915 break; 2916 } 2917 } 2918} 2919 2920/// BuiltinCandidateTypeSet - A set of types that will be used for the 2921/// candidate operator functions for built-in operators (C++ 2922/// [over.built]). The types are separated into pointer types and 2923/// enumeration types. 2924class BuiltinCandidateTypeSet { 2925 /// TypeSet - A set of types. 2926 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 2927 2928 /// PointerTypes - The set of pointer types that will be used in the 2929 /// built-in candidates. 2930 TypeSet PointerTypes; 2931 2932 /// MemberPointerTypes - The set of member pointer types that will be 2933 /// used in the built-in candidates. 2934 TypeSet MemberPointerTypes; 2935 2936 /// EnumerationTypes - The set of enumeration types that will be 2937 /// used in the built-in candidates. 2938 TypeSet EnumerationTypes; 2939 2940 /// Sema - The semantic analysis instance where we are building the 2941 /// candidate type set. 2942 Sema &SemaRef; 2943 2944 /// Context - The AST context in which we will build the type sets. 2945 ASTContext &Context; 2946 2947 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 2948 const Qualifiers &VisibleQuals); 2949 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 2950 2951public: 2952 /// iterator - Iterates through the types that are part of the set. 2953 typedef TypeSet::iterator iterator; 2954 2955 BuiltinCandidateTypeSet(Sema &SemaRef) 2956 : SemaRef(SemaRef), Context(SemaRef.Context) { } 2957 2958 void AddTypesConvertedFrom(QualType Ty, 2959 SourceLocation Loc, 2960 bool AllowUserConversions, 2961 bool AllowExplicitConversions, 2962 const Qualifiers &VisibleTypeConversionsQuals); 2963 2964 /// pointer_begin - First pointer type found; 2965 iterator pointer_begin() { return PointerTypes.begin(); } 2966 2967 /// pointer_end - Past the last pointer type found; 2968 iterator pointer_end() { return PointerTypes.end(); } 2969 2970 /// member_pointer_begin - First member pointer type found; 2971 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 2972 2973 /// member_pointer_end - Past the last member pointer type found; 2974 iterator member_pointer_end() { return MemberPointerTypes.end(); } 2975 2976 /// enumeration_begin - First enumeration type found; 2977 iterator enumeration_begin() { return EnumerationTypes.begin(); } 2978 2979 /// enumeration_end - Past the last enumeration type found; 2980 iterator enumeration_end() { return EnumerationTypes.end(); } 2981}; 2982 2983/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 2984/// the set of pointer types along with any more-qualified variants of 2985/// that type. For example, if @p Ty is "int const *", this routine 2986/// will add "int const *", "int const volatile *", "int const 2987/// restrict *", and "int const volatile restrict *" to the set of 2988/// pointer types. Returns true if the add of @p Ty itself succeeded, 2989/// false otherwise. 2990/// 2991/// FIXME: what to do about extended qualifiers? 2992bool 2993BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 2994 const Qualifiers &VisibleQuals) { 2995 2996 // Insert this type. 2997 if (!PointerTypes.insert(Ty)) 2998 return false; 2999 3000 const PointerType *PointerTy = Ty->getAs<PointerType>(); 3001 assert(PointerTy && "type was not a pointer type!"); 3002 3003 QualType PointeeTy = PointerTy->getPointeeType(); 3004 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3005 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 3006 BaseCVR = Array->getElementType().getCVRQualifiers(); 3007 bool hasVolatile = VisibleQuals.hasVolatile(); 3008 bool hasRestrict = VisibleQuals.hasRestrict(); 3009 3010 // Iterate through all strict supersets of BaseCVR. 3011 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3012 if ((CVR | BaseCVR) != CVR) continue; 3013 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 3014 // in the types. 3015 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 3016 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 3017 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3018 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 3019 } 3020 3021 return true; 3022} 3023 3024/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 3025/// to the set of pointer types along with any more-qualified variants of 3026/// that type. For example, if @p Ty is "int const *", this routine 3027/// will add "int const *", "int const volatile *", "int const 3028/// restrict *", and "int const volatile restrict *" to the set of 3029/// pointer types. Returns true if the add of @p Ty itself succeeded, 3030/// false otherwise. 3031/// 3032/// FIXME: what to do about extended qualifiers? 3033bool 3034BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 3035 QualType Ty) { 3036 // Insert this type. 3037 if (!MemberPointerTypes.insert(Ty)) 3038 return false; 3039 3040 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 3041 assert(PointerTy && "type was not a member pointer type!"); 3042 3043 QualType PointeeTy = PointerTy->getPointeeType(); 3044 const Type *ClassTy = PointerTy->getClass(); 3045 3046 // Iterate through all strict supersets of the pointee type's CVR 3047 // qualifiers. 3048 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3049 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3050 if ((CVR | BaseCVR) != CVR) continue; 3051 3052 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3053 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 3054 } 3055 3056 return true; 3057} 3058 3059/// AddTypesConvertedFrom - Add each of the types to which the type @p 3060/// Ty can be implicit converted to the given set of @p Types. We're 3061/// primarily interested in pointer types and enumeration types. We also 3062/// take member pointer types, for the conditional operator. 3063/// AllowUserConversions is true if we should look at the conversion 3064/// functions of a class type, and AllowExplicitConversions if we 3065/// should also include the explicit conversion functions of a class 3066/// type. 3067void 3068BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 3069 SourceLocation Loc, 3070 bool AllowUserConversions, 3071 bool AllowExplicitConversions, 3072 const Qualifiers &VisibleQuals) { 3073 // Only deal with canonical types. 3074 Ty = Context.getCanonicalType(Ty); 3075 3076 // Look through reference types; they aren't part of the type of an 3077 // expression for the purposes of conversions. 3078 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3079 Ty = RefTy->getPointeeType(); 3080 3081 // We don't care about qualifiers on the type. 3082 Ty = Ty.getUnqualifiedType(); 3083 3084 // If we're dealing with an array type, decay to the pointer. 3085 if (Ty->isArrayType()) 3086 Ty = SemaRef.Context.getArrayDecayedType(Ty); 3087 3088 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3089 QualType PointeeTy = PointerTy->getPointeeType(); 3090 3091 // Insert our type, and its more-qualified variants, into the set 3092 // of types. 3093 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3094 return; 3095 } else if (Ty->isMemberPointerType()) { 3096 // Member pointers are far easier, since the pointee can't be converted. 3097 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3098 return; 3099 } else if (Ty->isEnumeralType()) { 3100 EnumerationTypes.insert(Ty); 3101 } else if (AllowUserConversions) { 3102 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3103 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 3104 // No conversion functions in incomplete types. 3105 return; 3106 } 3107 3108 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3109 OverloadedFunctionDecl *Conversions 3110 = ClassDecl->getVisibleConversionFunctions(); 3111 for (OverloadedFunctionDecl::function_iterator Func 3112 = Conversions->function_begin(); 3113 Func != Conversions->function_end(); ++Func) { 3114 CXXConversionDecl *Conv; 3115 FunctionTemplateDecl *ConvTemplate; 3116 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 3117 3118 // Skip conversion function templates; they don't tell us anything 3119 // about which builtin types we can convert to. 3120 if (ConvTemplate) 3121 continue; 3122 3123 if (AllowExplicitConversions || !Conv->isExplicit()) { 3124 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 3125 VisibleQuals); 3126 } 3127 } 3128 } 3129 } 3130} 3131 3132/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 3133/// the volatile- and non-volatile-qualified assignment operators for the 3134/// given type to the candidate set. 3135static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 3136 QualType T, 3137 Expr **Args, 3138 unsigned NumArgs, 3139 OverloadCandidateSet &CandidateSet) { 3140 QualType ParamTypes[2]; 3141 3142 // T& operator=(T&, T) 3143 ParamTypes[0] = S.Context.getLValueReferenceType(T); 3144 ParamTypes[1] = T; 3145 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3146 /*IsAssignmentOperator=*/true); 3147 3148 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 3149 // volatile T& operator=(volatile T&, T) 3150 ParamTypes[0] 3151 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 3152 ParamTypes[1] = T; 3153 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3154 /*IsAssignmentOperator=*/true); 3155 } 3156} 3157 3158/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 3159/// if any, found in visible type conversion functions found in ArgExpr's type. 3160static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 3161 Qualifiers VRQuals; 3162 const RecordType *TyRec; 3163 if (const MemberPointerType *RHSMPType = 3164 ArgExpr->getType()->getAs<MemberPointerType>()) 3165 TyRec = cast<RecordType>(RHSMPType->getClass()); 3166 else 3167 TyRec = ArgExpr->getType()->getAs<RecordType>(); 3168 if (!TyRec) { 3169 // Just to be safe, assume the worst case. 3170 VRQuals.addVolatile(); 3171 VRQuals.addRestrict(); 3172 return VRQuals; 3173 } 3174 3175 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3176 OverloadedFunctionDecl *Conversions = 3177 ClassDecl->getVisibleConversionFunctions(); 3178 3179 for (OverloadedFunctionDecl::function_iterator Func 3180 = Conversions->function_begin(); 3181 Func != Conversions->function_end(); ++Func) { 3182 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*Func)) { 3183 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 3184 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 3185 CanTy = ResTypeRef->getPointeeType(); 3186 // Need to go down the pointer/mempointer chain and add qualifiers 3187 // as see them. 3188 bool done = false; 3189 while (!done) { 3190 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 3191 CanTy = ResTypePtr->getPointeeType(); 3192 else if (const MemberPointerType *ResTypeMPtr = 3193 CanTy->getAs<MemberPointerType>()) 3194 CanTy = ResTypeMPtr->getPointeeType(); 3195 else 3196 done = true; 3197 if (CanTy.isVolatileQualified()) 3198 VRQuals.addVolatile(); 3199 if (CanTy.isRestrictQualified()) 3200 VRQuals.addRestrict(); 3201 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 3202 return VRQuals; 3203 } 3204 } 3205 } 3206 return VRQuals; 3207} 3208 3209/// AddBuiltinOperatorCandidates - Add the appropriate built-in 3210/// operator overloads to the candidate set (C++ [over.built]), based 3211/// on the operator @p Op and the arguments given. For example, if the 3212/// operator is a binary '+', this routine might add "int 3213/// operator+(int, int)" to cover integer addition. 3214void 3215Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 3216 SourceLocation OpLoc, 3217 Expr **Args, unsigned NumArgs, 3218 OverloadCandidateSet& CandidateSet) { 3219 // The set of "promoted arithmetic types", which are the arithmetic 3220 // types are that preserved by promotion (C++ [over.built]p2). Note 3221 // that the first few of these types are the promoted integral 3222 // types; these types need to be first. 3223 // FIXME: What about complex? 3224 const unsigned FirstIntegralType = 0; 3225 const unsigned LastIntegralType = 13; 3226 const unsigned FirstPromotedIntegralType = 7, 3227 LastPromotedIntegralType = 13; 3228 const unsigned FirstPromotedArithmeticType = 7, 3229 LastPromotedArithmeticType = 16; 3230 const unsigned NumArithmeticTypes = 16; 3231 QualType ArithmeticTypes[NumArithmeticTypes] = { 3232 Context.BoolTy, Context.CharTy, Context.WCharTy, 3233// FIXME: Context.Char16Ty, Context.Char32Ty, 3234 Context.SignedCharTy, Context.ShortTy, 3235 Context.UnsignedCharTy, Context.UnsignedShortTy, 3236 Context.IntTy, Context.LongTy, Context.LongLongTy, 3237 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 3238 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 3239 }; 3240 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 3241 "Invalid first promoted integral type"); 3242 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 3243 == Context.UnsignedLongLongTy && 3244 "Invalid last promoted integral type"); 3245 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 3246 "Invalid first promoted arithmetic type"); 3247 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 3248 == Context.LongDoubleTy && 3249 "Invalid last promoted arithmetic type"); 3250 3251 // Find all of the types that the arguments can convert to, but only 3252 // if the operator we're looking at has built-in operator candidates 3253 // that make use of these types. 3254 Qualifiers VisibleTypeConversionsQuals; 3255 VisibleTypeConversionsQuals.addConst(); 3256 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3257 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 3258 3259 BuiltinCandidateTypeSet CandidateTypes(*this); 3260 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 3261 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 3262 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 3263 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 3264 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 3265 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 3266 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3267 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 3268 OpLoc, 3269 true, 3270 (Op == OO_Exclaim || 3271 Op == OO_AmpAmp || 3272 Op == OO_PipePipe), 3273 VisibleTypeConversionsQuals); 3274 } 3275 3276 bool isComparison = false; 3277 switch (Op) { 3278 case OO_None: 3279 case NUM_OVERLOADED_OPERATORS: 3280 assert(false && "Expected an overloaded operator"); 3281 break; 3282 3283 case OO_Star: // '*' is either unary or binary 3284 if (NumArgs == 1) 3285 goto UnaryStar; 3286 else 3287 goto BinaryStar; 3288 break; 3289 3290 case OO_Plus: // '+' is either unary or binary 3291 if (NumArgs == 1) 3292 goto UnaryPlus; 3293 else 3294 goto BinaryPlus; 3295 break; 3296 3297 case OO_Minus: // '-' is either unary or binary 3298 if (NumArgs == 1) 3299 goto UnaryMinus; 3300 else 3301 goto BinaryMinus; 3302 break; 3303 3304 case OO_Amp: // '&' is either unary or binary 3305 if (NumArgs == 1) 3306 goto UnaryAmp; 3307 else 3308 goto BinaryAmp; 3309 3310 case OO_PlusPlus: 3311 case OO_MinusMinus: 3312 // C++ [over.built]p3: 3313 // 3314 // For every pair (T, VQ), where T is an arithmetic type, and VQ 3315 // is either volatile or empty, there exist candidate operator 3316 // functions of the form 3317 // 3318 // VQ T& operator++(VQ T&); 3319 // T operator++(VQ T&, int); 3320 // 3321 // C++ [over.built]p4: 3322 // 3323 // For every pair (T, VQ), where T is an arithmetic type other 3324 // than bool, and VQ is either volatile or empty, there exist 3325 // candidate operator functions of the form 3326 // 3327 // VQ T& operator--(VQ T&); 3328 // T operator--(VQ T&, int); 3329 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 3330 Arith < NumArithmeticTypes; ++Arith) { 3331 QualType ArithTy = ArithmeticTypes[Arith]; 3332 QualType ParamTypes[2] 3333 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 3334 3335 // Non-volatile version. 3336 if (NumArgs == 1) 3337 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3338 else 3339 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3340 // heuristic to reduce number of builtin candidates in the set. 3341 // Add volatile version only if there are conversions to a volatile type. 3342 if (VisibleTypeConversionsQuals.hasVolatile()) { 3343 // Volatile version 3344 ParamTypes[0] 3345 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 3346 if (NumArgs == 1) 3347 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3348 else 3349 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3350 } 3351 } 3352 3353 // C++ [over.built]p5: 3354 // 3355 // For every pair (T, VQ), where T is a cv-qualified or 3356 // cv-unqualified object type, and VQ is either volatile or 3357 // empty, there exist candidate operator functions of the form 3358 // 3359 // T*VQ& operator++(T*VQ&); 3360 // T*VQ& operator--(T*VQ&); 3361 // T* operator++(T*VQ&, int); 3362 // T* operator--(T*VQ&, int); 3363 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3364 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3365 // Skip pointer types that aren't pointers to object types. 3366 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 3367 continue; 3368 3369 QualType ParamTypes[2] = { 3370 Context.getLValueReferenceType(*Ptr), Context.IntTy 3371 }; 3372 3373 // Without volatile 3374 if (NumArgs == 1) 3375 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3376 else 3377 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3378 3379 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3380 VisibleTypeConversionsQuals.hasVolatile()) { 3381 // With volatile 3382 ParamTypes[0] 3383 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3384 if (NumArgs == 1) 3385 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3386 else 3387 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3388 } 3389 } 3390 break; 3391 3392 UnaryStar: 3393 // C++ [over.built]p6: 3394 // For every cv-qualified or cv-unqualified object type T, there 3395 // exist candidate operator functions of the form 3396 // 3397 // T& operator*(T*); 3398 // 3399 // C++ [over.built]p7: 3400 // For every function type T, there exist candidate operator 3401 // functions of the form 3402 // T& operator*(T*); 3403 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3404 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3405 QualType ParamTy = *Ptr; 3406 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 3407 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 3408 &ParamTy, Args, 1, CandidateSet); 3409 } 3410 break; 3411 3412 UnaryPlus: 3413 // C++ [over.built]p8: 3414 // For every type T, there exist candidate operator functions of 3415 // the form 3416 // 3417 // T* operator+(T*); 3418 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3419 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3420 QualType ParamTy = *Ptr; 3421 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 3422 } 3423 3424 // Fall through 3425 3426 UnaryMinus: 3427 // C++ [over.built]p9: 3428 // For every promoted arithmetic type T, there exist candidate 3429 // operator functions of the form 3430 // 3431 // T operator+(T); 3432 // T operator-(T); 3433 for (unsigned Arith = FirstPromotedArithmeticType; 3434 Arith < LastPromotedArithmeticType; ++Arith) { 3435 QualType ArithTy = ArithmeticTypes[Arith]; 3436 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 3437 } 3438 break; 3439 3440 case OO_Tilde: 3441 // C++ [over.built]p10: 3442 // For every promoted integral type T, there exist candidate 3443 // operator functions of the form 3444 // 3445 // T operator~(T); 3446 for (unsigned Int = FirstPromotedIntegralType; 3447 Int < LastPromotedIntegralType; ++Int) { 3448 QualType IntTy = ArithmeticTypes[Int]; 3449 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 3450 } 3451 break; 3452 3453 case OO_New: 3454 case OO_Delete: 3455 case OO_Array_New: 3456 case OO_Array_Delete: 3457 case OO_Call: 3458 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 3459 break; 3460 3461 case OO_Comma: 3462 UnaryAmp: 3463 case OO_Arrow: 3464 // C++ [over.match.oper]p3: 3465 // -- For the operator ',', the unary operator '&', or the 3466 // operator '->', the built-in candidates set is empty. 3467 break; 3468 3469 case OO_EqualEqual: 3470 case OO_ExclaimEqual: 3471 // C++ [over.match.oper]p16: 3472 // For every pointer to member type T, there exist candidate operator 3473 // functions of the form 3474 // 3475 // bool operator==(T,T); 3476 // bool operator!=(T,T); 3477 for (BuiltinCandidateTypeSet::iterator 3478 MemPtr = CandidateTypes.member_pointer_begin(), 3479 MemPtrEnd = CandidateTypes.member_pointer_end(); 3480 MemPtr != MemPtrEnd; 3481 ++MemPtr) { 3482 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 3483 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3484 } 3485 3486 // Fall through 3487 3488 case OO_Less: 3489 case OO_Greater: 3490 case OO_LessEqual: 3491 case OO_GreaterEqual: 3492 // C++ [over.built]p15: 3493 // 3494 // For every pointer or enumeration type T, there exist 3495 // candidate operator functions of the form 3496 // 3497 // bool operator<(T, T); 3498 // bool operator>(T, T); 3499 // bool operator<=(T, T); 3500 // bool operator>=(T, T); 3501 // bool operator==(T, T); 3502 // bool operator!=(T, T); 3503 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3504 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3505 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3506 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3507 } 3508 for (BuiltinCandidateTypeSet::iterator Enum 3509 = CandidateTypes.enumeration_begin(); 3510 Enum != CandidateTypes.enumeration_end(); ++Enum) { 3511 QualType ParamTypes[2] = { *Enum, *Enum }; 3512 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3513 } 3514 3515 // Fall through. 3516 isComparison = true; 3517 3518 BinaryPlus: 3519 BinaryMinus: 3520 if (!isComparison) { 3521 // We didn't fall through, so we must have OO_Plus or OO_Minus. 3522 3523 // C++ [over.built]p13: 3524 // 3525 // For every cv-qualified or cv-unqualified object type T 3526 // there exist candidate operator functions of the form 3527 // 3528 // T* operator+(T*, ptrdiff_t); 3529 // T& operator[](T*, ptrdiff_t); [BELOW] 3530 // T* operator-(T*, ptrdiff_t); 3531 // T* operator+(ptrdiff_t, T*); 3532 // T& operator[](ptrdiff_t, T*); [BELOW] 3533 // 3534 // C++ [over.built]p14: 3535 // 3536 // For every T, where T is a pointer to object type, there 3537 // exist candidate operator functions of the form 3538 // 3539 // ptrdiff_t operator-(T, T); 3540 for (BuiltinCandidateTypeSet::iterator Ptr 3541 = CandidateTypes.pointer_begin(); 3542 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3543 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3544 3545 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 3546 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3547 3548 if (Op == OO_Plus) { 3549 // T* operator+(ptrdiff_t, T*); 3550 ParamTypes[0] = ParamTypes[1]; 3551 ParamTypes[1] = *Ptr; 3552 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3553 } else { 3554 // ptrdiff_t operator-(T, T); 3555 ParamTypes[1] = *Ptr; 3556 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 3557 Args, 2, CandidateSet); 3558 } 3559 } 3560 } 3561 // Fall through 3562 3563 case OO_Slash: 3564 BinaryStar: 3565 Conditional: 3566 // C++ [over.built]p12: 3567 // 3568 // For every pair of promoted arithmetic types L and R, there 3569 // exist candidate operator functions of the form 3570 // 3571 // LR operator*(L, R); 3572 // LR operator/(L, R); 3573 // LR operator+(L, R); 3574 // LR operator-(L, R); 3575 // bool operator<(L, R); 3576 // bool operator>(L, R); 3577 // bool operator<=(L, R); 3578 // bool operator>=(L, R); 3579 // bool operator==(L, R); 3580 // bool operator!=(L, R); 3581 // 3582 // where LR is the result of the usual arithmetic conversions 3583 // between types L and R. 3584 // 3585 // C++ [over.built]p24: 3586 // 3587 // For every pair of promoted arithmetic types L and R, there exist 3588 // candidate operator functions of the form 3589 // 3590 // LR operator?(bool, L, R); 3591 // 3592 // where LR is the result of the usual arithmetic conversions 3593 // between types L and R. 3594 // Our candidates ignore the first parameter. 3595 for (unsigned Left = FirstPromotedArithmeticType; 3596 Left < LastPromotedArithmeticType; ++Left) { 3597 for (unsigned Right = FirstPromotedArithmeticType; 3598 Right < LastPromotedArithmeticType; ++Right) { 3599 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3600 QualType Result 3601 = isComparison 3602 ? Context.BoolTy 3603 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3604 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3605 } 3606 } 3607 break; 3608 3609 case OO_Percent: 3610 BinaryAmp: 3611 case OO_Caret: 3612 case OO_Pipe: 3613 case OO_LessLess: 3614 case OO_GreaterGreater: 3615 // C++ [over.built]p17: 3616 // 3617 // For every pair of promoted integral types L and R, there 3618 // exist candidate operator functions of the form 3619 // 3620 // LR operator%(L, R); 3621 // LR operator&(L, R); 3622 // LR operator^(L, R); 3623 // LR operator|(L, R); 3624 // L operator<<(L, R); 3625 // L operator>>(L, R); 3626 // 3627 // where LR is the result of the usual arithmetic conversions 3628 // between types L and R. 3629 for (unsigned Left = FirstPromotedIntegralType; 3630 Left < LastPromotedIntegralType; ++Left) { 3631 for (unsigned Right = FirstPromotedIntegralType; 3632 Right < LastPromotedIntegralType; ++Right) { 3633 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3634 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 3635 ? LandR[0] 3636 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3637 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3638 } 3639 } 3640 break; 3641 3642 case OO_Equal: 3643 // C++ [over.built]p20: 3644 // 3645 // For every pair (T, VQ), where T is an enumeration or 3646 // pointer to member type and VQ is either volatile or 3647 // empty, there exist candidate operator functions of the form 3648 // 3649 // VQ T& operator=(VQ T&, T); 3650 for (BuiltinCandidateTypeSet::iterator 3651 Enum = CandidateTypes.enumeration_begin(), 3652 EnumEnd = CandidateTypes.enumeration_end(); 3653 Enum != EnumEnd; ++Enum) 3654 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 3655 CandidateSet); 3656 for (BuiltinCandidateTypeSet::iterator 3657 MemPtr = CandidateTypes.member_pointer_begin(), 3658 MemPtrEnd = CandidateTypes.member_pointer_end(); 3659 MemPtr != MemPtrEnd; ++MemPtr) 3660 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 3661 CandidateSet); 3662 // Fall through. 3663 3664 case OO_PlusEqual: 3665 case OO_MinusEqual: 3666 // C++ [over.built]p19: 3667 // 3668 // For every pair (T, VQ), where T is any type and VQ is either 3669 // volatile or empty, there exist candidate operator functions 3670 // of the form 3671 // 3672 // T*VQ& operator=(T*VQ&, T*); 3673 // 3674 // C++ [over.built]p21: 3675 // 3676 // For every pair (T, VQ), where T is a cv-qualified or 3677 // cv-unqualified object type and VQ is either volatile or 3678 // empty, there exist candidate operator functions of the form 3679 // 3680 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 3681 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 3682 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3683 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3684 QualType ParamTypes[2]; 3685 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 3686 3687 // non-volatile version 3688 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 3689 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3690 /*IsAssigmentOperator=*/Op == OO_Equal); 3691 3692 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3693 VisibleTypeConversionsQuals.hasVolatile()) { 3694 // volatile version 3695 ParamTypes[0] 3696 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3697 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3698 /*IsAssigmentOperator=*/Op == OO_Equal); 3699 } 3700 } 3701 // Fall through. 3702 3703 case OO_StarEqual: 3704 case OO_SlashEqual: 3705 // C++ [over.built]p18: 3706 // 3707 // For every triple (L, VQ, R), where L is an arithmetic type, 3708 // VQ is either volatile or empty, and R is a promoted 3709 // arithmetic type, there exist candidate operator functions of 3710 // the form 3711 // 3712 // VQ L& operator=(VQ L&, R); 3713 // VQ L& operator*=(VQ L&, R); 3714 // VQ L& operator/=(VQ L&, R); 3715 // VQ L& operator+=(VQ L&, R); 3716 // VQ L& operator-=(VQ L&, R); 3717 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3718 for (unsigned Right = FirstPromotedArithmeticType; 3719 Right < LastPromotedArithmeticType; ++Right) { 3720 QualType ParamTypes[2]; 3721 ParamTypes[1] = ArithmeticTypes[Right]; 3722 3723 // Add this built-in operator as a candidate (VQ is empty). 3724 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3725 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3726 /*IsAssigmentOperator=*/Op == OO_Equal); 3727 3728 // Add this built-in operator as a candidate (VQ is 'volatile'). 3729 if (VisibleTypeConversionsQuals.hasVolatile()) { 3730 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 3731 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3732 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3733 /*IsAssigmentOperator=*/Op == OO_Equal); 3734 } 3735 } 3736 } 3737 break; 3738 3739 case OO_PercentEqual: 3740 case OO_LessLessEqual: 3741 case OO_GreaterGreaterEqual: 3742 case OO_AmpEqual: 3743 case OO_CaretEqual: 3744 case OO_PipeEqual: 3745 // C++ [over.built]p22: 3746 // 3747 // For every triple (L, VQ, R), where L is an integral type, VQ 3748 // is either volatile or empty, and R is a promoted integral 3749 // type, there exist candidate operator functions of the form 3750 // 3751 // VQ L& operator%=(VQ L&, R); 3752 // VQ L& operator<<=(VQ L&, R); 3753 // VQ L& operator>>=(VQ L&, R); 3754 // VQ L& operator&=(VQ L&, R); 3755 // VQ L& operator^=(VQ L&, R); 3756 // VQ L& operator|=(VQ L&, R); 3757 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 3758 for (unsigned Right = FirstPromotedIntegralType; 3759 Right < LastPromotedIntegralType; ++Right) { 3760 QualType ParamTypes[2]; 3761 ParamTypes[1] = ArithmeticTypes[Right]; 3762 3763 // Add this built-in operator as a candidate (VQ is empty). 3764 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3765 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3766 if (VisibleTypeConversionsQuals.hasVolatile()) { 3767 // Add this built-in operator as a candidate (VQ is 'volatile'). 3768 ParamTypes[0] = ArithmeticTypes[Left]; 3769 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 3770 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3771 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3772 } 3773 } 3774 } 3775 break; 3776 3777 case OO_Exclaim: { 3778 // C++ [over.operator]p23: 3779 // 3780 // There also exist candidate operator functions of the form 3781 // 3782 // bool operator!(bool); 3783 // bool operator&&(bool, bool); [BELOW] 3784 // bool operator||(bool, bool); [BELOW] 3785 QualType ParamTy = Context.BoolTy; 3786 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 3787 /*IsAssignmentOperator=*/false, 3788 /*NumContextualBoolArguments=*/1); 3789 break; 3790 } 3791 3792 case OO_AmpAmp: 3793 case OO_PipePipe: { 3794 // C++ [over.operator]p23: 3795 // 3796 // There also exist candidate operator functions of the form 3797 // 3798 // bool operator!(bool); [ABOVE] 3799 // bool operator&&(bool, bool); 3800 // bool operator||(bool, bool); 3801 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 3802 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 3803 /*IsAssignmentOperator=*/false, 3804 /*NumContextualBoolArguments=*/2); 3805 break; 3806 } 3807 3808 case OO_Subscript: 3809 // C++ [over.built]p13: 3810 // 3811 // For every cv-qualified or cv-unqualified object type T there 3812 // exist candidate operator functions of the form 3813 // 3814 // T* operator+(T*, ptrdiff_t); [ABOVE] 3815 // T& operator[](T*, ptrdiff_t); 3816 // T* operator-(T*, ptrdiff_t); [ABOVE] 3817 // T* operator+(ptrdiff_t, T*); [ABOVE] 3818 // T& operator[](ptrdiff_t, T*); 3819 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3820 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3821 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3822 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 3823 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 3824 3825 // T& operator[](T*, ptrdiff_t) 3826 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3827 3828 // T& operator[](ptrdiff_t, T*); 3829 ParamTypes[0] = ParamTypes[1]; 3830 ParamTypes[1] = *Ptr; 3831 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3832 } 3833 break; 3834 3835 case OO_ArrowStar: 3836 // C++ [over.built]p11: 3837 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 3838 // C1 is the same type as C2 or is a derived class of C2, T is an object 3839 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 3840 // there exist candidate operator functions of the form 3841 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 3842 // where CV12 is the union of CV1 and CV2. 3843 { 3844 for (BuiltinCandidateTypeSet::iterator Ptr = 3845 CandidateTypes.pointer_begin(); 3846 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3847 QualType C1Ty = (*Ptr); 3848 QualType C1; 3849 QualifierCollector Q1; 3850 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 3851 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 3852 if (!isa<RecordType>(C1)) 3853 continue; 3854 // heuristic to reduce number of builtin candidates in the set. 3855 // Add volatile/restrict version only if there are conversions to a 3856 // volatile/restrict type. 3857 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 3858 continue; 3859 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 3860 continue; 3861 } 3862 for (BuiltinCandidateTypeSet::iterator 3863 MemPtr = CandidateTypes.member_pointer_begin(), 3864 MemPtrEnd = CandidateTypes.member_pointer_end(); 3865 MemPtr != MemPtrEnd; ++MemPtr) { 3866 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 3867 QualType C2 = QualType(mptr->getClass(), 0); 3868 C2 = C2.getUnqualifiedType(); 3869 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 3870 break; 3871 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 3872 // build CV12 T& 3873 QualType T = mptr->getPointeeType(); 3874 if (!VisibleTypeConversionsQuals.hasVolatile() && 3875 T.isVolatileQualified()) 3876 continue; 3877 if (!VisibleTypeConversionsQuals.hasRestrict() && 3878 T.isRestrictQualified()) 3879 continue; 3880 T = Q1.apply(T); 3881 QualType ResultTy = Context.getLValueReferenceType(T); 3882 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3883 } 3884 } 3885 } 3886 break; 3887 3888 case OO_Conditional: 3889 // Note that we don't consider the first argument, since it has been 3890 // contextually converted to bool long ago. The candidates below are 3891 // therefore added as binary. 3892 // 3893 // C++ [over.built]p24: 3894 // For every type T, where T is a pointer or pointer-to-member type, 3895 // there exist candidate operator functions of the form 3896 // 3897 // T operator?(bool, T, T); 3898 // 3899 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 3900 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 3901 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3902 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3903 } 3904 for (BuiltinCandidateTypeSet::iterator Ptr = 3905 CandidateTypes.member_pointer_begin(), 3906 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 3907 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3908 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3909 } 3910 goto Conditional; 3911 } 3912} 3913 3914/// \brief Add function candidates found via argument-dependent lookup 3915/// to the set of overloading candidates. 3916/// 3917/// This routine performs argument-dependent name lookup based on the 3918/// given function name (which may also be an operator name) and adds 3919/// all of the overload candidates found by ADL to the overload 3920/// candidate set (C++ [basic.lookup.argdep]). 3921void 3922Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 3923 Expr **Args, unsigned NumArgs, 3924 bool HasExplicitTemplateArgs, 3925 const TemplateArgumentLoc *ExplicitTemplateArgs, 3926 unsigned NumExplicitTemplateArgs, 3927 OverloadCandidateSet& CandidateSet, 3928 bool PartialOverloading) { 3929 FunctionSet Functions; 3930 3931 // FIXME: Should we be trafficking in canonical function decls throughout? 3932 3933 // Record all of the function candidates that we've already 3934 // added to the overload set, so that we don't add those same 3935 // candidates a second time. 3936 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3937 CandEnd = CandidateSet.end(); 3938 Cand != CandEnd; ++Cand) 3939 if (Cand->Function) { 3940 Functions.insert(Cand->Function); 3941 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3942 Functions.insert(FunTmpl); 3943 } 3944 3945 // FIXME: Pass in the explicit template arguments? 3946 ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions); 3947 3948 // Erase all of the candidates we already knew about. 3949 // FIXME: This is suboptimal. Is there a better way? 3950 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3951 CandEnd = CandidateSet.end(); 3952 Cand != CandEnd; ++Cand) 3953 if (Cand->Function) { 3954 Functions.erase(Cand->Function); 3955 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3956 Functions.erase(FunTmpl); 3957 } 3958 3959 // For each of the ADL candidates we found, add it to the overload 3960 // set. 3961 for (FunctionSet::iterator Func = Functions.begin(), 3962 FuncEnd = Functions.end(); 3963 Func != FuncEnd; ++Func) { 3964 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) { 3965 if (HasExplicitTemplateArgs) 3966 continue; 3967 3968 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 3969 false, false, PartialOverloading); 3970 } else 3971 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func), 3972 HasExplicitTemplateArgs, 3973 ExplicitTemplateArgs, 3974 NumExplicitTemplateArgs, 3975 Args, NumArgs, CandidateSet); 3976 } 3977} 3978 3979/// isBetterOverloadCandidate - Determines whether the first overload 3980/// candidate is a better candidate than the second (C++ 13.3.3p1). 3981bool 3982Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 3983 const OverloadCandidate& Cand2) { 3984 // Define viable functions to be better candidates than non-viable 3985 // functions. 3986 if (!Cand2.Viable) 3987 return Cand1.Viable; 3988 else if (!Cand1.Viable) 3989 return false; 3990 3991 // C++ [over.match.best]p1: 3992 // 3993 // -- if F is a static member function, ICS1(F) is defined such 3994 // that ICS1(F) is neither better nor worse than ICS1(G) for 3995 // any function G, and, symmetrically, ICS1(G) is neither 3996 // better nor worse than ICS1(F). 3997 unsigned StartArg = 0; 3998 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 3999 StartArg = 1; 4000 4001 // C++ [over.match.best]p1: 4002 // A viable function F1 is defined to be a better function than another 4003 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 4004 // conversion sequence than ICSi(F2), and then... 4005 unsigned NumArgs = Cand1.Conversions.size(); 4006 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 4007 bool HasBetterConversion = false; 4008 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 4009 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 4010 Cand2.Conversions[ArgIdx])) { 4011 case ImplicitConversionSequence::Better: 4012 // Cand1 has a better conversion sequence. 4013 HasBetterConversion = true; 4014 break; 4015 4016 case ImplicitConversionSequence::Worse: 4017 // Cand1 can't be better than Cand2. 4018 return false; 4019 4020 case ImplicitConversionSequence::Indistinguishable: 4021 // Do nothing. 4022 break; 4023 } 4024 } 4025 4026 // -- for some argument j, ICSj(F1) is a better conversion sequence than 4027 // ICSj(F2), or, if not that, 4028 if (HasBetterConversion) 4029 return true; 4030 4031 // - F1 is a non-template function and F2 is a function template 4032 // specialization, or, if not that, 4033 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 4034 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4035 return true; 4036 4037 // -- F1 and F2 are function template specializations, and the function 4038 // template for F1 is more specialized than the template for F2 4039 // according to the partial ordering rules described in 14.5.5.2, or, 4040 // if not that, 4041 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 4042 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4043 if (FunctionTemplateDecl *BetterTemplate 4044 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 4045 Cand2.Function->getPrimaryTemplate(), 4046 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 4047 : TPOC_Call)) 4048 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 4049 4050 // -- the context is an initialization by user-defined conversion 4051 // (see 8.5, 13.3.1.5) and the standard conversion sequence 4052 // from the return type of F1 to the destination type (i.e., 4053 // the type of the entity being initialized) is a better 4054 // conversion sequence than the standard conversion sequence 4055 // from the return type of F2 to the destination type. 4056 if (Cand1.Function && Cand2.Function && 4057 isa<CXXConversionDecl>(Cand1.Function) && 4058 isa<CXXConversionDecl>(Cand2.Function)) { 4059 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 4060 Cand2.FinalConversion)) { 4061 case ImplicitConversionSequence::Better: 4062 // Cand1 has a better conversion sequence. 4063 return true; 4064 4065 case ImplicitConversionSequence::Worse: 4066 // Cand1 can't be better than Cand2. 4067 return false; 4068 4069 case ImplicitConversionSequence::Indistinguishable: 4070 // Do nothing 4071 break; 4072 } 4073 } 4074 4075 return false; 4076} 4077 4078/// \brief Computes the best viable function (C++ 13.3.3) 4079/// within an overload candidate set. 4080/// 4081/// \param CandidateSet the set of candidate functions. 4082/// 4083/// \param Loc the location of the function name (or operator symbol) for 4084/// which overload resolution occurs. 4085/// 4086/// \param Best f overload resolution was successful or found a deleted 4087/// function, Best points to the candidate function found. 4088/// 4089/// \returns The result of overload resolution. 4090Sema::OverloadingResult 4091Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 4092 SourceLocation Loc, 4093 OverloadCandidateSet::iterator& Best) { 4094 // Find the best viable function. 4095 Best = CandidateSet.end(); 4096 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4097 Cand != CandidateSet.end(); ++Cand) { 4098 if (Cand->Viable) { 4099 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) 4100 Best = Cand; 4101 } 4102 } 4103 4104 // If we didn't find any viable functions, abort. 4105 if (Best == CandidateSet.end()) 4106 return OR_No_Viable_Function; 4107 4108 // Make sure that this function is better than every other viable 4109 // function. If not, we have an ambiguity. 4110 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4111 Cand != CandidateSet.end(); ++Cand) { 4112 if (Cand->Viable && 4113 Cand != Best && 4114 !isBetterOverloadCandidate(*Best, *Cand)) { 4115 Best = CandidateSet.end(); 4116 return OR_Ambiguous; 4117 } 4118 } 4119 4120 // Best is the best viable function. 4121 if (Best->Function && 4122 (Best->Function->isDeleted() || 4123 Best->Function->getAttr<UnavailableAttr>())) 4124 return OR_Deleted; 4125 4126 // C++ [basic.def.odr]p2: 4127 // An overloaded function is used if it is selected by overload resolution 4128 // when referred to from a potentially-evaluated expression. [Note: this 4129 // covers calls to named functions (5.2.2), operator overloading 4130 // (clause 13), user-defined conversions (12.3.2), allocation function for 4131 // placement new (5.3.4), as well as non-default initialization (8.5). 4132 if (Best->Function) 4133 MarkDeclarationReferenced(Loc, Best->Function); 4134 return OR_Success; 4135} 4136 4137/// PrintOverloadCandidates - When overload resolution fails, prints 4138/// diagnostic messages containing the candidates in the candidate 4139/// set. If OnlyViable is true, only viable candidates will be printed. 4140void 4141Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 4142 bool OnlyViable, 4143 const char *Opc, 4144 SourceLocation OpLoc) { 4145 OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4146 LastCand = CandidateSet.end(); 4147 bool Reported = false; 4148 for (; Cand != LastCand; ++Cand) { 4149 if (Cand->Viable || !OnlyViable) { 4150 if (Cand->Function) { 4151 if (Cand->Function->isDeleted() || 4152 Cand->Function->getAttr<UnavailableAttr>()) { 4153 // Deleted or "unavailable" function. 4154 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted) 4155 << Cand->Function->isDeleted(); 4156 } else if (FunctionTemplateDecl *FunTmpl 4157 = Cand->Function->getPrimaryTemplate()) { 4158 // Function template specialization 4159 // FIXME: Give a better reason! 4160 Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate) 4161 << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(), 4162 *Cand->Function->getTemplateSpecializationArgs()); 4163 } else { 4164 // Normal function 4165 bool errReported = false; 4166 if (!Cand->Viable && Cand->Conversions.size() > 0) { 4167 for (int i = Cand->Conversions.size()-1; i >= 0; i--) { 4168 const ImplicitConversionSequence &Conversion = 4169 Cand->Conversions[i]; 4170 if ((Conversion.ConversionKind != 4171 ImplicitConversionSequence::BadConversion) || 4172 Conversion.ConversionFunctionSet.size() == 0) 4173 continue; 4174 Diag(Cand->Function->getLocation(), 4175 diag::err_ovl_candidate_not_viable) << (i+1); 4176 errReported = true; 4177 for (int j = Conversion.ConversionFunctionSet.size()-1; 4178 j >= 0; j--) { 4179 FunctionDecl *Func = Conversion.ConversionFunctionSet[j]; 4180 Diag(Func->getLocation(), diag::err_ovl_candidate); 4181 } 4182 } 4183 } 4184 if (!errReported) 4185 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate); 4186 } 4187 } else if (Cand->IsSurrogate) { 4188 // Desugar the type of the surrogate down to a function type, 4189 // retaining as many typedefs as possible while still showing 4190 // the function type (and, therefore, its parameter types). 4191 QualType FnType = Cand->Surrogate->getConversionType(); 4192 bool isLValueReference = false; 4193 bool isRValueReference = false; 4194 bool isPointer = false; 4195 if (const LValueReferenceType *FnTypeRef = 4196 FnType->getAs<LValueReferenceType>()) { 4197 FnType = FnTypeRef->getPointeeType(); 4198 isLValueReference = true; 4199 } else if (const RValueReferenceType *FnTypeRef = 4200 FnType->getAs<RValueReferenceType>()) { 4201 FnType = FnTypeRef->getPointeeType(); 4202 isRValueReference = true; 4203 } 4204 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 4205 FnType = FnTypePtr->getPointeeType(); 4206 isPointer = true; 4207 } 4208 // Desugar down to a function type. 4209 FnType = QualType(FnType->getAs<FunctionType>(), 0); 4210 // Reconstruct the pointer/reference as appropriate. 4211 if (isPointer) FnType = Context.getPointerType(FnType); 4212 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType); 4213 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType); 4214 4215 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand) 4216 << FnType; 4217 } else if (OnlyViable) { 4218 assert(Cand->Conversions.size() <= 2 && 4219 "builtin-binary-operator-not-binary"); 4220 std::string TypeStr("operator"); 4221 TypeStr += Opc; 4222 TypeStr += "("; 4223 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 4224 if (Cand->Conversions.size() == 1) { 4225 TypeStr += ")"; 4226 Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr; 4227 } 4228 else { 4229 TypeStr += ", "; 4230 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 4231 TypeStr += ")"; 4232 Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr; 4233 } 4234 } 4235 else if (!Cand->Viable && !Reported) { 4236 // Non-viability might be due to ambiguous user-defined conversions, 4237 // needed for built-in operators. Report them as well, but only once 4238 // as we have typically many built-in candidates. 4239 unsigned NoOperands = Cand->Conversions.size(); 4240 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 4241 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 4242 if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion || 4243 ICS.ConversionFunctionSet.empty()) 4244 continue; 4245 if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>( 4246 Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) { 4247 QualType FromTy = 4248 QualType( 4249 static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0); 4250 Diag(OpLoc,diag::note_ambiguous_type_conversion) 4251 << FromTy << Func->getConversionType(); 4252 } 4253 for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) { 4254 FunctionDecl *Func = 4255 Cand->Conversions[ArgIdx].ConversionFunctionSet[j]; 4256 Diag(Func->getLocation(),diag::err_ovl_candidate); 4257 } 4258 } 4259 Reported = true; 4260 } 4261 } 4262 } 4263} 4264 4265/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 4266/// an overloaded function (C++ [over.over]), where @p From is an 4267/// expression with overloaded function type and @p ToType is the type 4268/// we're trying to resolve to. For example: 4269/// 4270/// @code 4271/// int f(double); 4272/// int f(int); 4273/// 4274/// int (*pfd)(double) = f; // selects f(double) 4275/// @endcode 4276/// 4277/// This routine returns the resulting FunctionDecl if it could be 4278/// resolved, and NULL otherwise. When @p Complain is true, this 4279/// routine will emit diagnostics if there is an error. 4280FunctionDecl * 4281Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 4282 bool Complain) { 4283 QualType FunctionType = ToType; 4284 bool IsMember = false; 4285 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 4286 FunctionType = ToTypePtr->getPointeeType(); 4287 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 4288 FunctionType = ToTypeRef->getPointeeType(); 4289 else if (const MemberPointerType *MemTypePtr = 4290 ToType->getAs<MemberPointerType>()) { 4291 FunctionType = MemTypePtr->getPointeeType(); 4292 IsMember = true; 4293 } 4294 4295 // We only look at pointers or references to functions. 4296 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 4297 if (!FunctionType->isFunctionType()) 4298 return 0; 4299 4300 // Find the actual overloaded function declaration. 4301 OverloadedFunctionDecl *Ovl = 0; 4302 4303 // C++ [over.over]p1: 4304 // [...] [Note: any redundant set of parentheses surrounding the 4305 // overloaded function name is ignored (5.1). ] 4306 Expr *OvlExpr = From->IgnoreParens(); 4307 4308 // C++ [over.over]p1: 4309 // [...] The overloaded function name can be preceded by the & 4310 // operator. 4311 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 4312 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 4313 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 4314 } 4315 4316 bool HasExplicitTemplateArgs = false; 4317 const TemplateArgumentLoc *ExplicitTemplateArgs = 0; 4318 unsigned NumExplicitTemplateArgs = 0; 4319 4320 // Try to dig out the overloaded function. 4321 FunctionTemplateDecl *FunctionTemplate = 0; 4322 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) { 4323 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl()); 4324 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl()); 4325 HasExplicitTemplateArgs = DR->hasExplicitTemplateArgumentList(); 4326 ExplicitTemplateArgs = DR->getTemplateArgs(); 4327 NumExplicitTemplateArgs = DR->getNumTemplateArgs(); 4328 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) { 4329 Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl()); 4330 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl()); 4331 HasExplicitTemplateArgs = ME->hasExplicitTemplateArgumentList(); 4332 ExplicitTemplateArgs = ME->getTemplateArgs(); 4333 NumExplicitTemplateArgs = ME->getNumTemplateArgs(); 4334 } else if (TemplateIdRefExpr *TIRE = dyn_cast<TemplateIdRefExpr>(OvlExpr)) { 4335 TemplateName Name = TIRE->getTemplateName(); 4336 Ovl = Name.getAsOverloadedFunctionDecl(); 4337 FunctionTemplate = 4338 dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4339 4340 HasExplicitTemplateArgs = true; 4341 ExplicitTemplateArgs = TIRE->getTemplateArgs(); 4342 NumExplicitTemplateArgs = TIRE->getNumTemplateArgs(); 4343 } 4344 4345 // If there's no overloaded function declaration or function template, 4346 // we're done. 4347 if (!Ovl && !FunctionTemplate) 4348 return 0; 4349 4350 OverloadIterator Fun; 4351 if (Ovl) 4352 Fun = Ovl; 4353 else 4354 Fun = FunctionTemplate; 4355 4356 // Look through all of the overloaded functions, searching for one 4357 // whose type matches exactly. 4358 llvm::SmallPtrSet<FunctionDecl *, 4> Matches; 4359 bool FoundNonTemplateFunction = false; 4360 for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) { 4361 // C++ [over.over]p3: 4362 // Non-member functions and static member functions match 4363 // targets of type "pointer-to-function" or "reference-to-function." 4364 // Nonstatic member functions match targets of 4365 // type "pointer-to-member-function." 4366 // Note that according to DR 247, the containing class does not matter. 4367 4368 if (FunctionTemplateDecl *FunctionTemplate 4369 = dyn_cast<FunctionTemplateDecl>(*Fun)) { 4370 if (CXXMethodDecl *Method 4371 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 4372 // Skip non-static function templates when converting to pointer, and 4373 // static when converting to member pointer. 4374 if (Method->isStatic() == IsMember) 4375 continue; 4376 } else if (IsMember) 4377 continue; 4378 4379 // C++ [over.over]p2: 4380 // If the name is a function template, template argument deduction is 4381 // done (14.8.2.2), and if the argument deduction succeeds, the 4382 // resulting template argument list is used to generate a single 4383 // function template specialization, which is added to the set of 4384 // overloaded functions considered. 4385 // FIXME: We don't really want to build the specialization here, do we? 4386 FunctionDecl *Specialization = 0; 4387 TemplateDeductionInfo Info(Context); 4388 if (TemplateDeductionResult Result 4389 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs, 4390 ExplicitTemplateArgs, 4391 NumExplicitTemplateArgs, 4392 FunctionType, Specialization, Info)) { 4393 // FIXME: make a note of the failed deduction for diagnostics. 4394 (void)Result; 4395 } else { 4396 // FIXME: If the match isn't exact, shouldn't we just drop this as 4397 // a candidate? Find a testcase before changing the code. 4398 assert(FunctionType 4399 == Context.getCanonicalType(Specialization->getType())); 4400 Matches.insert( 4401 cast<FunctionDecl>(Specialization->getCanonicalDecl())); 4402 } 4403 } 4404 4405 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) { 4406 // Skip non-static functions when converting to pointer, and static 4407 // when converting to member pointer. 4408 if (Method->isStatic() == IsMember) 4409 continue; 4410 4411 // If we have explicit template arguments, skip non-templates. 4412 if (HasExplicitTemplateArgs) 4413 continue; 4414 } else if (IsMember) 4415 continue; 4416 4417 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) { 4418 if (FunctionType == Context.getCanonicalType(FunDecl->getType())) { 4419 Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl())); 4420 FoundNonTemplateFunction = true; 4421 } 4422 } 4423 } 4424 4425 // If there were 0 or 1 matches, we're done. 4426 if (Matches.empty()) 4427 return 0; 4428 else if (Matches.size() == 1) { 4429 FunctionDecl *Result = *Matches.begin(); 4430 MarkDeclarationReferenced(From->getLocStart(), Result); 4431 return Result; 4432 } 4433 4434 // C++ [over.over]p4: 4435 // If more than one function is selected, [...] 4436 typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter; 4437 if (!FoundNonTemplateFunction) { 4438 // [...] and any given function template specialization F1 is 4439 // eliminated if the set contains a second function template 4440 // specialization whose function template is more specialized 4441 // than the function template of F1 according to the partial 4442 // ordering rules of 14.5.5.2. 4443 4444 // The algorithm specified above is quadratic. We instead use a 4445 // two-pass algorithm (similar to the one used to identify the 4446 // best viable function in an overload set) that identifies the 4447 // best function template (if it exists). 4448 llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(), 4449 Matches.end()); 4450 FunctionDecl *Result = 4451 getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(), 4452 TPOC_Other, From->getLocStart(), 4453 PDiag(), 4454 PDiag(diag::err_addr_ovl_ambiguous) 4455 << TemplateMatches[0]->getDeclName(), 4456 PDiag(diag::err_ovl_template_candidate)); 4457 MarkDeclarationReferenced(From->getLocStart(), Result); 4458 return Result; 4459 } 4460 4461 // [...] any function template specializations in the set are 4462 // eliminated if the set also contains a non-template function, [...] 4463 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches; 4464 for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M) 4465 if ((*M)->getPrimaryTemplate() == 0) 4466 RemainingMatches.push_back(*M); 4467 4468 // [...] After such eliminations, if any, there shall remain exactly one 4469 // selected function. 4470 if (RemainingMatches.size() == 1) { 4471 FunctionDecl *Result = RemainingMatches.front(); 4472 MarkDeclarationReferenced(From->getLocStart(), Result); 4473 return Result; 4474 } 4475 4476 // FIXME: We should probably return the same thing that BestViableFunction 4477 // returns (even if we issue the diagnostics here). 4478 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 4479 << RemainingMatches[0]->getDeclName(); 4480 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I) 4481 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate); 4482 return 0; 4483} 4484 4485/// \brief Add a single candidate to the overload set. 4486static void AddOverloadedCallCandidate(Sema &S, 4487 AnyFunctionDecl Callee, 4488 bool &ArgumentDependentLookup, 4489 bool HasExplicitTemplateArgs, 4490 const TemplateArgumentLoc *ExplicitTemplateArgs, 4491 unsigned NumExplicitTemplateArgs, 4492 Expr **Args, unsigned NumArgs, 4493 OverloadCandidateSet &CandidateSet, 4494 bool PartialOverloading) { 4495 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 4496 assert(!HasExplicitTemplateArgs && "Explicit template arguments?"); 4497 S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false, 4498 PartialOverloading); 4499 4500 if (Func->getDeclContext()->isRecord() || 4501 Func->getDeclContext()->isFunctionOrMethod()) 4502 ArgumentDependentLookup = false; 4503 return; 4504 } 4505 4506 FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee); 4507 S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs, 4508 ExplicitTemplateArgs, 4509 NumExplicitTemplateArgs, 4510 Args, NumArgs, CandidateSet); 4511 4512 if (FuncTemplate->getDeclContext()->isRecord()) 4513 ArgumentDependentLookup = false; 4514} 4515 4516/// \brief Add the overload candidates named by callee and/or found by argument 4517/// dependent lookup to the given overload set. 4518void Sema::AddOverloadedCallCandidates(NamedDecl *Callee, 4519 DeclarationName &UnqualifiedName, 4520 bool &ArgumentDependentLookup, 4521 bool HasExplicitTemplateArgs, 4522 const TemplateArgumentLoc *ExplicitTemplateArgs, 4523 unsigned NumExplicitTemplateArgs, 4524 Expr **Args, unsigned NumArgs, 4525 OverloadCandidateSet &CandidateSet, 4526 bool PartialOverloading) { 4527 // Add the functions denoted by Callee to the set of candidate 4528 // functions. While we're doing so, track whether argument-dependent 4529 // lookup still applies, per: 4530 // 4531 // C++0x [basic.lookup.argdep]p3: 4532 // Let X be the lookup set produced by unqualified lookup (3.4.1) 4533 // and let Y be the lookup set produced by argument dependent 4534 // lookup (defined as follows). If X contains 4535 // 4536 // -- a declaration of a class member, or 4537 // 4538 // -- a block-scope function declaration that is not a 4539 // using-declaration (FIXME: check for using declaration), or 4540 // 4541 // -- a declaration that is neither a function or a function 4542 // template 4543 // 4544 // then Y is empty. 4545 if (!Callee) { 4546 // Nothing to do. 4547 } else if (OverloadedFunctionDecl *Ovl 4548 = dyn_cast<OverloadedFunctionDecl>(Callee)) { 4549 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 4550 FuncEnd = Ovl->function_end(); 4551 Func != FuncEnd; ++Func) 4552 AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup, 4553 HasExplicitTemplateArgs, 4554 ExplicitTemplateArgs, NumExplicitTemplateArgs, 4555 Args, NumArgs, CandidateSet, 4556 PartialOverloading); 4557 } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee)) 4558 AddOverloadedCallCandidate(*this, 4559 AnyFunctionDecl::getFromNamedDecl(Callee), 4560 ArgumentDependentLookup, 4561 HasExplicitTemplateArgs, 4562 ExplicitTemplateArgs, NumExplicitTemplateArgs, 4563 Args, NumArgs, CandidateSet, 4564 PartialOverloading); 4565 // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than 4566 // checking dynamically. 4567 4568 if (Callee) 4569 UnqualifiedName = Callee->getDeclName(); 4570 4571 if (ArgumentDependentLookup) 4572 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs, 4573 HasExplicitTemplateArgs, 4574 ExplicitTemplateArgs, 4575 NumExplicitTemplateArgs, 4576 CandidateSet, 4577 PartialOverloading); 4578} 4579 4580/// ResolveOverloadedCallFn - Given the call expression that calls Fn 4581/// (which eventually refers to the declaration Func) and the call 4582/// arguments Args/NumArgs, attempt to resolve the function call down 4583/// to a specific function. If overload resolution succeeds, returns 4584/// the function declaration produced by overload 4585/// resolution. Otherwise, emits diagnostics, deletes all of the 4586/// arguments and Fn, and returns NULL. 4587FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee, 4588 DeclarationName UnqualifiedName, 4589 bool HasExplicitTemplateArgs, 4590 const TemplateArgumentLoc *ExplicitTemplateArgs, 4591 unsigned NumExplicitTemplateArgs, 4592 SourceLocation LParenLoc, 4593 Expr **Args, unsigned NumArgs, 4594 SourceLocation *CommaLocs, 4595 SourceLocation RParenLoc, 4596 bool &ArgumentDependentLookup) { 4597 OverloadCandidateSet CandidateSet; 4598 4599 // Add the functions denoted by Callee to the set of candidate 4600 // functions. 4601 AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup, 4602 HasExplicitTemplateArgs, ExplicitTemplateArgs, 4603 NumExplicitTemplateArgs, Args, NumArgs, 4604 CandidateSet); 4605 OverloadCandidateSet::iterator Best; 4606 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 4607 case OR_Success: 4608 return Best->Function; 4609 4610 case OR_No_Viable_Function: 4611 Diag(Fn->getSourceRange().getBegin(), 4612 diag::err_ovl_no_viable_function_in_call) 4613 << UnqualifiedName << Fn->getSourceRange(); 4614 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4615 break; 4616 4617 case OR_Ambiguous: 4618 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 4619 << UnqualifiedName << Fn->getSourceRange(); 4620 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4621 break; 4622 4623 case OR_Deleted: 4624 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 4625 << Best->Function->isDeleted() 4626 << UnqualifiedName 4627 << Fn->getSourceRange(); 4628 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4629 break; 4630 } 4631 4632 // Overload resolution failed. Destroy all of the subexpressions and 4633 // return NULL. 4634 Fn->Destroy(Context); 4635 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 4636 Args[Arg]->Destroy(Context); 4637 return 0; 4638} 4639 4640/// \brief Create a unary operation that may resolve to an overloaded 4641/// operator. 4642/// 4643/// \param OpLoc The location of the operator itself (e.g., '*'). 4644/// 4645/// \param OpcIn The UnaryOperator::Opcode that describes this 4646/// operator. 4647/// 4648/// \param Functions The set of non-member functions that will be 4649/// considered by overload resolution. The caller needs to build this 4650/// set based on the context using, e.g., 4651/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4652/// set should not contain any member functions; those will be added 4653/// by CreateOverloadedUnaryOp(). 4654/// 4655/// \param input The input argument. 4656Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, 4657 unsigned OpcIn, 4658 FunctionSet &Functions, 4659 ExprArg input) { 4660 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 4661 Expr *Input = (Expr *)input.get(); 4662 4663 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 4664 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 4665 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4666 4667 Expr *Args[2] = { Input, 0 }; 4668 unsigned NumArgs = 1; 4669 4670 // For post-increment and post-decrement, add the implicit '0' as 4671 // the second argument, so that we know this is a post-increment or 4672 // post-decrement. 4673 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 4674 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 4675 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 4676 SourceLocation()); 4677 NumArgs = 2; 4678 } 4679 4680 if (Input->isTypeDependent()) { 4681 OverloadedFunctionDecl *Overloads 4682 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4683 for (FunctionSet::iterator Func = Functions.begin(), 4684 FuncEnd = Functions.end(); 4685 Func != FuncEnd; ++Func) 4686 Overloads->addOverload(*Func); 4687 4688 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4689 OpLoc, false, false); 4690 4691 input.release(); 4692 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4693 &Args[0], NumArgs, 4694 Context.DependentTy, 4695 OpLoc)); 4696 } 4697 4698 // Build an empty overload set. 4699 OverloadCandidateSet CandidateSet; 4700 4701 // Add the candidates from the given function set. 4702 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); 4703 4704 // Add operator candidates that are member functions. 4705 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4706 4707 // Add builtin operator candidates. 4708 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4709 4710 // Perform overload resolution. 4711 OverloadCandidateSet::iterator Best; 4712 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4713 case OR_Success: { 4714 // We found a built-in operator or an overloaded operator. 4715 FunctionDecl *FnDecl = Best->Function; 4716 4717 if (FnDecl) { 4718 // We matched an overloaded operator. Build a call to that 4719 // operator. 4720 4721 // Convert the arguments. 4722 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4723 if (PerformObjectArgumentInitialization(Input, Method)) 4724 return ExprError(); 4725 } else { 4726 // Convert the arguments. 4727 if (PerformCopyInitialization(Input, 4728 FnDecl->getParamDecl(0)->getType(), 4729 "passing")) 4730 return ExprError(); 4731 } 4732 4733 // Determine the result type 4734 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 4735 4736 // Build the actual expression node. 4737 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4738 SourceLocation()); 4739 UsualUnaryConversions(FnExpr); 4740 4741 input.release(); 4742 4743 ExprOwningPtr<CallExpr> TheCall(this, 4744 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4745 &Input, 1, ResultTy, OpLoc)); 4746 4747 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 4748 FnDecl)) 4749 return ExprError(); 4750 4751 return MaybeBindToTemporary(TheCall.release()); 4752 } else { 4753 // We matched a built-in operator. Convert the arguments, then 4754 // break out so that we will build the appropriate built-in 4755 // operator node. 4756 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 4757 Best->Conversions[0], "passing")) 4758 return ExprError(); 4759 4760 break; 4761 } 4762 } 4763 4764 case OR_No_Viable_Function: 4765 // No viable function; fall through to handling this as a 4766 // built-in operator, which will produce an error message for us. 4767 break; 4768 4769 case OR_Ambiguous: 4770 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4771 << UnaryOperator::getOpcodeStr(Opc) 4772 << Input->getSourceRange(); 4773 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 4774 UnaryOperator::getOpcodeStr(Opc), OpLoc); 4775 return ExprError(); 4776 4777 case OR_Deleted: 4778 Diag(OpLoc, diag::err_ovl_deleted_oper) 4779 << Best->Function->isDeleted() 4780 << UnaryOperator::getOpcodeStr(Opc) 4781 << Input->getSourceRange(); 4782 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4783 return ExprError(); 4784 } 4785 4786 // Either we found no viable overloaded operator or we matched a 4787 // built-in operator. In either case, fall through to trying to 4788 // build a built-in operation. 4789 input.release(); 4790 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 4791} 4792 4793/// \brief Create a binary operation that may resolve to an overloaded 4794/// operator. 4795/// 4796/// \param OpLoc The location of the operator itself (e.g., '+'). 4797/// 4798/// \param OpcIn The BinaryOperator::Opcode that describes this 4799/// operator. 4800/// 4801/// \param Functions The set of non-member functions that will be 4802/// considered by overload resolution. The caller needs to build this 4803/// set based on the context using, e.g., 4804/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4805/// set should not contain any member functions; those will be added 4806/// by CreateOverloadedBinOp(). 4807/// 4808/// \param LHS Left-hand argument. 4809/// \param RHS Right-hand argument. 4810Sema::OwningExprResult 4811Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 4812 unsigned OpcIn, 4813 FunctionSet &Functions, 4814 Expr *LHS, Expr *RHS) { 4815 Expr *Args[2] = { LHS, RHS }; 4816 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 4817 4818 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 4819 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 4820 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4821 4822 // If either side is type-dependent, create an appropriate dependent 4823 // expression. 4824 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 4825 if (Functions.empty()) { 4826 // If there are no functions to store, just build a dependent 4827 // BinaryOperator or CompoundAssignment. 4828 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 4829 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 4830 Context.DependentTy, OpLoc)); 4831 4832 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 4833 Context.DependentTy, 4834 Context.DependentTy, 4835 Context.DependentTy, 4836 OpLoc)); 4837 } 4838 4839 OverloadedFunctionDecl *Overloads 4840 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4841 for (FunctionSet::iterator Func = Functions.begin(), 4842 FuncEnd = Functions.end(); 4843 Func != FuncEnd; ++Func) 4844 Overloads->addOverload(*Func); 4845 4846 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4847 OpLoc, false, false); 4848 4849 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4850 Args, 2, 4851 Context.DependentTy, 4852 OpLoc)); 4853 } 4854 4855 // If this is the .* operator, which is not overloadable, just 4856 // create a built-in binary operator. 4857 if (Opc == BinaryOperator::PtrMemD) 4858 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4859 4860 // If this is one of the assignment operators, we only perform 4861 // overload resolution if the left-hand side is a class or 4862 // enumeration type (C++ [expr.ass]p3). 4863 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign && 4864 !Args[0]->getType()->isOverloadableType()) 4865 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4866 4867 // Build an empty overload set. 4868 OverloadCandidateSet CandidateSet; 4869 4870 // Add the candidates from the given function set. 4871 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); 4872 4873 // Add operator candidates that are member functions. 4874 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4875 4876 // Add builtin operator candidates. 4877 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4878 4879 // Perform overload resolution. 4880 OverloadCandidateSet::iterator Best; 4881 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4882 case OR_Success: { 4883 // We found a built-in operator or an overloaded operator. 4884 FunctionDecl *FnDecl = Best->Function; 4885 4886 if (FnDecl) { 4887 // We matched an overloaded operator. Build a call to that 4888 // operator. 4889 4890 // Convert the arguments. 4891 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4892 if (PerformObjectArgumentInitialization(Args[0], Method) || 4893 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(), 4894 "passing")) 4895 return ExprError(); 4896 } else { 4897 // Convert the arguments. 4898 if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(), 4899 "passing") || 4900 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(), 4901 "passing")) 4902 return ExprError(); 4903 } 4904 4905 // Determine the result type 4906 QualType ResultTy 4907 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 4908 ResultTy = ResultTy.getNonReferenceType(); 4909 4910 // Build the actual expression node. 4911 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4912 OpLoc); 4913 UsualUnaryConversions(FnExpr); 4914 4915 ExprOwningPtr<CXXOperatorCallExpr> 4916 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4917 Args, 2, ResultTy, 4918 OpLoc)); 4919 4920 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 4921 FnDecl)) 4922 return ExprError(); 4923 4924 return MaybeBindToTemporary(TheCall.release()); 4925 } else { 4926 // We matched a built-in operator. Convert the arguments, then 4927 // break out so that we will build the appropriate built-in 4928 // operator node. 4929 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 4930 Best->Conversions[0], "passing") || 4931 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 4932 Best->Conversions[1], "passing")) 4933 return ExprError(); 4934 4935 break; 4936 } 4937 } 4938 4939 case OR_No_Viable_Function: { 4940 // C++ [over.match.oper]p9: 4941 // If the operator is the operator , [...] and there are no 4942 // viable functions, then the operator is assumed to be the 4943 // built-in operator and interpreted according to clause 5. 4944 if (Opc == BinaryOperator::Comma) 4945 break; 4946 4947 // For class as left operand for assignment or compound assigment operator 4948 // do not fall through to handling in built-in, but report that no overloaded 4949 // assignment operator found 4950 OwningExprResult Result = ExprError(); 4951 if (Args[0]->getType()->isRecordType() && 4952 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 4953 Diag(OpLoc, diag::err_ovl_no_viable_oper) 4954 << BinaryOperator::getOpcodeStr(Opc) 4955 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4956 } else { 4957 // No viable function; try to create a built-in operation, which will 4958 // produce an error. Then, show the non-viable candidates. 4959 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4960 } 4961 assert(Result.isInvalid() && 4962 "C++ binary operator overloading is missing candidates!"); 4963 if (Result.isInvalid()) 4964 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 4965 BinaryOperator::getOpcodeStr(Opc), OpLoc); 4966 return move(Result); 4967 } 4968 4969 case OR_Ambiguous: 4970 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4971 << BinaryOperator::getOpcodeStr(Opc) 4972 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4973 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 4974 BinaryOperator::getOpcodeStr(Opc), OpLoc); 4975 return ExprError(); 4976 4977 case OR_Deleted: 4978 Diag(OpLoc, diag::err_ovl_deleted_oper) 4979 << Best->Function->isDeleted() 4980 << BinaryOperator::getOpcodeStr(Opc) 4981 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4982 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4983 return ExprError(); 4984 } 4985 4986 // We matched a built-in operator; build it. 4987 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4988} 4989 4990Action::OwningExprResult 4991Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 4992 SourceLocation RLoc, 4993 ExprArg Base, ExprArg Idx) { 4994 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 4995 static_cast<Expr*>(Idx.get()) }; 4996 DeclarationName OpName = 4997 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 4998 4999 // If either side is type-dependent, create an appropriate dependent 5000 // expression. 5001 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 5002 5003 OverloadedFunctionDecl *Overloads 5004 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 5005 5006 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 5007 LLoc, false, false); 5008 5009 Base.release(); 5010 Idx.release(); 5011 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 5012 Args, 2, 5013 Context.DependentTy, 5014 RLoc)); 5015 } 5016 5017 // Build an empty overload set. 5018 OverloadCandidateSet CandidateSet; 5019 5020 // Subscript can only be overloaded as a member function. 5021 5022 // Add operator candidates that are member functions. 5023 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5024 5025 // Add builtin operator candidates. 5026 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5027 5028 // Perform overload resolution. 5029 OverloadCandidateSet::iterator Best; 5030 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 5031 case OR_Success: { 5032 // We found a built-in operator or an overloaded operator. 5033 FunctionDecl *FnDecl = Best->Function; 5034 5035 if (FnDecl) { 5036 // We matched an overloaded operator. Build a call to that 5037 // operator. 5038 5039 // Convert the arguments. 5040 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 5041 if (PerformObjectArgumentInitialization(Args[0], Method) || 5042 PerformCopyInitialization(Args[1], 5043 FnDecl->getParamDecl(0)->getType(), 5044 "passing")) 5045 return ExprError(); 5046 5047 // Determine the result type 5048 QualType ResultTy 5049 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5050 ResultTy = ResultTy.getNonReferenceType(); 5051 5052 // Build the actual expression node. 5053 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5054 LLoc); 5055 UsualUnaryConversions(FnExpr); 5056 5057 Base.release(); 5058 Idx.release(); 5059 ExprOwningPtr<CXXOperatorCallExpr> 5060 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 5061 FnExpr, Args, 2, 5062 ResultTy, RLoc)); 5063 5064 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 5065 FnDecl)) 5066 return ExprError(); 5067 5068 return MaybeBindToTemporary(TheCall.release()); 5069 } else { 5070 // We matched a built-in operator. Convert the arguments, then 5071 // break out so that we will build the appropriate built-in 5072 // operator node. 5073 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5074 Best->Conversions[0], "passing") || 5075 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5076 Best->Conversions[1], "passing")) 5077 return ExprError(); 5078 5079 break; 5080 } 5081 } 5082 5083 case OR_No_Viable_Function: { 5084 // No viable function; try to create a built-in operation, which will 5085 // produce an error. Then, show the non-viable candidates. 5086 OwningExprResult Result = 5087 CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc); 5088 assert(Result.isInvalid() && 5089 "C++ subscript operator overloading is missing candidates!"); 5090 if (Result.isInvalid()) 5091 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 5092 "[]", LLoc); 5093 return move(Result); 5094 } 5095 5096 case OR_Ambiguous: 5097 Diag(LLoc, diag::err_ovl_ambiguous_oper) 5098 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5099 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 5100 "[]", LLoc); 5101 return ExprError(); 5102 5103 case OR_Deleted: 5104 Diag(LLoc, diag::err_ovl_deleted_oper) 5105 << Best->Function->isDeleted() << "[]" 5106 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5107 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5108 return ExprError(); 5109 } 5110 5111 // We matched a built-in operator; build it. 5112 Base.release(); 5113 Idx.release(); 5114 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 5115 Owned(Args[1]), RLoc); 5116} 5117 5118/// BuildCallToMemberFunction - Build a call to a member 5119/// function. MemExpr is the expression that refers to the member 5120/// function (and includes the object parameter), Args/NumArgs are the 5121/// arguments to the function call (not including the object 5122/// parameter). The caller needs to validate that the member 5123/// expression refers to a member function or an overloaded member 5124/// function. 5125Sema::ExprResult 5126Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 5127 SourceLocation LParenLoc, Expr **Args, 5128 unsigned NumArgs, SourceLocation *CommaLocs, 5129 SourceLocation RParenLoc) { 5130 // Dig out the member expression. This holds both the object 5131 // argument and the member function we're referring to. 5132 MemberExpr *MemExpr = 0; 5133 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE)) 5134 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr()); 5135 else 5136 MemExpr = dyn_cast<MemberExpr>(MemExprE); 5137 assert(MemExpr && "Building member call without member expression"); 5138 5139 // Extract the object argument. 5140 Expr *ObjectArg = MemExpr->getBase(); 5141 5142 CXXMethodDecl *Method = 0; 5143 if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) || 5144 isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) { 5145 // Add overload candidates 5146 OverloadCandidateSet CandidateSet; 5147 DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName(); 5148 5149 for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd; 5150 Func != FuncEnd; ++Func) { 5151 if ((Method = dyn_cast<CXXMethodDecl>(*Func))) { 5152 // If explicit template arguments were provided, we can't call a 5153 // non-template member function. 5154 if (MemExpr->hasExplicitTemplateArgumentList()) 5155 continue; 5156 5157 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet, 5158 /*SuppressUserConversions=*/false); 5159 } else 5160 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func), 5161 MemExpr->hasExplicitTemplateArgumentList(), 5162 MemExpr->getTemplateArgs(), 5163 MemExpr->getNumTemplateArgs(), 5164 ObjectArg, Args, NumArgs, 5165 CandidateSet, 5166 /*SuppressUsedConversions=*/false); 5167 } 5168 5169 OverloadCandidateSet::iterator Best; 5170 switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) { 5171 case OR_Success: 5172 Method = cast<CXXMethodDecl>(Best->Function); 5173 break; 5174 5175 case OR_No_Viable_Function: 5176 Diag(MemExpr->getSourceRange().getBegin(), 5177 diag::err_ovl_no_viable_member_function_in_call) 5178 << DeclName << MemExprE->getSourceRange(); 5179 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5180 // FIXME: Leaking incoming expressions! 5181 return true; 5182 5183 case OR_Ambiguous: 5184 Diag(MemExpr->getSourceRange().getBegin(), 5185 diag::err_ovl_ambiguous_member_call) 5186 << DeclName << MemExprE->getSourceRange(); 5187 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5188 // FIXME: Leaking incoming expressions! 5189 return true; 5190 5191 case OR_Deleted: 5192 Diag(MemExpr->getSourceRange().getBegin(), 5193 diag::err_ovl_deleted_member_call) 5194 << Best->Function->isDeleted() 5195 << DeclName << MemExprE->getSourceRange(); 5196 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5197 // FIXME: Leaking incoming expressions! 5198 return true; 5199 } 5200 5201 FixOverloadedFunctionReference(MemExpr, Method); 5202 } else { 5203 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 5204 } 5205 5206 assert(Method && "Member call to something that isn't a method?"); 5207 ExprOwningPtr<CXXMemberCallExpr> 5208 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args, 5209 NumArgs, 5210 Method->getResultType().getNonReferenceType(), 5211 RParenLoc)); 5212 5213 // Check for a valid return type. 5214 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 5215 TheCall.get(), Method)) 5216 return true; 5217 5218 // Convert the object argument (for a non-static member function call). 5219 if (!Method->isStatic() && 5220 PerformObjectArgumentInitialization(ObjectArg, Method)) 5221 return true; 5222 MemExpr->setBase(ObjectArg); 5223 5224 // Convert the rest of the arguments 5225 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); 5226 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 5227 RParenLoc)) 5228 return true; 5229 5230 if (CheckFunctionCall(Method, TheCall.get())) 5231 return true; 5232 5233 return MaybeBindToTemporary(TheCall.release()).release(); 5234} 5235 5236/// BuildCallToObjectOfClassType - Build a call to an object of class 5237/// type (C++ [over.call.object]), which can end up invoking an 5238/// overloaded function call operator (@c operator()) or performing a 5239/// user-defined conversion on the object argument. 5240Sema::ExprResult 5241Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 5242 SourceLocation LParenLoc, 5243 Expr **Args, unsigned NumArgs, 5244 SourceLocation *CommaLocs, 5245 SourceLocation RParenLoc) { 5246 assert(Object->getType()->isRecordType() && "Requires object type argument"); 5247 const RecordType *Record = Object->getType()->getAs<RecordType>(); 5248 5249 // C++ [over.call.object]p1: 5250 // If the primary-expression E in the function call syntax 5251 // evaluates to a class object of type "cv T", then the set of 5252 // candidate functions includes at least the function call 5253 // operators of T. The function call operators of T are obtained by 5254 // ordinary lookup of the name operator() in the context of 5255 // (E).operator(). 5256 OverloadCandidateSet CandidateSet; 5257 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 5258 5259 if (RequireCompleteType(LParenLoc, Object->getType(), 5260 PartialDiagnostic(diag::err_incomplete_object_call) 5261 << Object->getSourceRange())) 5262 return true; 5263 5264 LookupResult R; 5265 LookupQualifiedName(R, Record->getDecl(), OpName, LookupOrdinaryName, false); 5266 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5267 Oper != OperEnd; ++Oper) { 5268 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Oper)) { 5269 AddMethodTemplateCandidate(FunTmpl, false, 0, 0, Object, Args, NumArgs, 5270 CandidateSet, 5271 /*SuppressUserConversions=*/false); 5272 continue; 5273 } 5274 5275 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs, 5276 CandidateSet, /*SuppressUserConversions=*/false); 5277 } 5278 5279 // C++ [over.call.object]p2: 5280 // In addition, for each conversion function declared in T of the 5281 // form 5282 // 5283 // operator conversion-type-id () cv-qualifier; 5284 // 5285 // where cv-qualifier is the same cv-qualification as, or a 5286 // greater cv-qualification than, cv, and where conversion-type-id 5287 // denotes the type "pointer to function of (P1,...,Pn) returning 5288 // R", or the type "reference to pointer to function of 5289 // (P1,...,Pn) returning R", or the type "reference to function 5290 // of (P1,...,Pn) returning R", a surrogate call function [...] 5291 // is also considered as a candidate function. Similarly, 5292 // surrogate call functions are added to the set of candidate 5293 // functions for each conversion function declared in an 5294 // accessible base class provided the function is not hidden 5295 // within T by another intervening declaration. 5296 // FIXME: Look in base classes for more conversion operators! 5297 OverloadedFunctionDecl *Conversions 5298 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); 5299 for (OverloadedFunctionDecl::function_iterator 5300 Func = Conversions->function_begin(), 5301 FuncEnd = Conversions->function_end(); 5302 Func != FuncEnd; ++Func) { 5303 CXXConversionDecl *Conv; 5304 FunctionTemplateDecl *ConvTemplate; 5305 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 5306 5307 // Skip over templated conversion functions; they aren't 5308 // surrogates. 5309 if (ConvTemplate) 5310 continue; 5311 5312 // Strip the reference type (if any) and then the pointer type (if 5313 // any) to get down to what might be a function type. 5314 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 5315 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5316 ConvType = ConvPtrType->getPointeeType(); 5317 5318 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 5319 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet); 5320 } 5321 5322 // Perform overload resolution. 5323 OverloadCandidateSet::iterator Best; 5324 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 5325 case OR_Success: 5326 // Overload resolution succeeded; we'll build the appropriate call 5327 // below. 5328 break; 5329 5330 case OR_No_Viable_Function: 5331 Diag(Object->getSourceRange().getBegin(), 5332 diag::err_ovl_no_viable_object_call) 5333 << Object->getType() << Object->getSourceRange(); 5334 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5335 break; 5336 5337 case OR_Ambiguous: 5338 Diag(Object->getSourceRange().getBegin(), 5339 diag::err_ovl_ambiguous_object_call) 5340 << Object->getType() << Object->getSourceRange(); 5341 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5342 break; 5343 5344 case OR_Deleted: 5345 Diag(Object->getSourceRange().getBegin(), 5346 diag::err_ovl_deleted_object_call) 5347 << Best->Function->isDeleted() 5348 << Object->getType() << Object->getSourceRange(); 5349 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5350 break; 5351 } 5352 5353 if (Best == CandidateSet.end()) { 5354 // We had an error; delete all of the subexpressions and return 5355 // the error. 5356 Object->Destroy(Context); 5357 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5358 Args[ArgIdx]->Destroy(Context); 5359 return true; 5360 } 5361 5362 if (Best->Function == 0) { 5363 // Since there is no function declaration, this is one of the 5364 // surrogate candidates. Dig out the conversion function. 5365 CXXConversionDecl *Conv 5366 = cast<CXXConversionDecl>( 5367 Best->Conversions[0].UserDefined.ConversionFunction); 5368 5369 // We selected one of the surrogate functions that converts the 5370 // object parameter to a function pointer. Perform the conversion 5371 // on the object argument, then let ActOnCallExpr finish the job. 5372 5373 // Create an implicit member expr to refer to the conversion operator. 5374 // and then call it. 5375 CXXMemberCallExpr *CE = 5376 BuildCXXMemberCallExpr(Object, Conv); 5377 5378 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 5379 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 5380 CommaLocs, RParenLoc).release(); 5381 } 5382 5383 // We found an overloaded operator(). Build a CXXOperatorCallExpr 5384 // that calls this method, using Object for the implicit object 5385 // parameter and passing along the remaining arguments. 5386 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5387 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 5388 5389 unsigned NumArgsInProto = Proto->getNumArgs(); 5390 unsigned NumArgsToCheck = NumArgs; 5391 5392 // Build the full argument list for the method call (the 5393 // implicit object parameter is placed at the beginning of the 5394 // list). 5395 Expr **MethodArgs; 5396 if (NumArgs < NumArgsInProto) { 5397 NumArgsToCheck = NumArgsInProto; 5398 MethodArgs = new Expr*[NumArgsInProto + 1]; 5399 } else { 5400 MethodArgs = new Expr*[NumArgs + 1]; 5401 } 5402 MethodArgs[0] = Object; 5403 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5404 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 5405 5406 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 5407 SourceLocation()); 5408 UsualUnaryConversions(NewFn); 5409 5410 // Once we've built TheCall, all of the expressions are properly 5411 // owned. 5412 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5413 ExprOwningPtr<CXXOperatorCallExpr> 5414 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 5415 MethodArgs, NumArgs + 1, 5416 ResultTy, RParenLoc)); 5417 delete [] MethodArgs; 5418 5419 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 5420 Method)) 5421 return true; 5422 5423 // We may have default arguments. If so, we need to allocate more 5424 // slots in the call for them. 5425 if (NumArgs < NumArgsInProto) 5426 TheCall->setNumArgs(Context, NumArgsInProto + 1); 5427 else if (NumArgs > NumArgsInProto) 5428 NumArgsToCheck = NumArgsInProto; 5429 5430 bool IsError = false; 5431 5432 // Initialize the implicit object parameter. 5433 IsError |= PerformObjectArgumentInitialization(Object, Method); 5434 TheCall->setArg(0, Object); 5435 5436 5437 // Check the argument types. 5438 for (unsigned i = 0; i != NumArgsToCheck; i++) { 5439 Expr *Arg; 5440 if (i < NumArgs) { 5441 Arg = Args[i]; 5442 5443 // Pass the argument. 5444 QualType ProtoArgType = Proto->getArgType(i); 5445 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing"); 5446 } else { 5447 OwningExprResult DefArg 5448 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 5449 if (DefArg.isInvalid()) { 5450 IsError = true; 5451 break; 5452 } 5453 5454 Arg = DefArg.takeAs<Expr>(); 5455 } 5456 5457 TheCall->setArg(i + 1, Arg); 5458 } 5459 5460 // If this is a variadic call, handle args passed through "...". 5461 if (Proto->isVariadic()) { 5462 // Promote the arguments (C99 6.5.2.2p7). 5463 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 5464 Expr *Arg = Args[i]; 5465 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 5466 TheCall->setArg(i + 1, Arg); 5467 } 5468 } 5469 5470 if (IsError) return true; 5471 5472 if (CheckFunctionCall(Method, TheCall.get())) 5473 return true; 5474 5475 return MaybeBindToTemporary(TheCall.release()).release(); 5476} 5477 5478/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 5479/// (if one exists), where @c Base is an expression of class type and 5480/// @c Member is the name of the member we're trying to find. 5481Sema::OwningExprResult 5482Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 5483 Expr *Base = static_cast<Expr *>(BaseIn.get()); 5484 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 5485 5486 // C++ [over.ref]p1: 5487 // 5488 // [...] An expression x->m is interpreted as (x.operator->())->m 5489 // for a class object x of type T if T::operator->() exists and if 5490 // the operator is selected as the best match function by the 5491 // overload resolution mechanism (13.3). 5492 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 5493 OverloadCandidateSet CandidateSet; 5494 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 5495 5496 LookupResult R; 5497 LookupQualifiedName(R, BaseRecord->getDecl(), OpName, LookupOrdinaryName); 5498 5499 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5500 Oper != OperEnd; ++Oper) 5501 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet, 5502 /*SuppressUserConversions=*/false); 5503 5504 // Perform overload resolution. 5505 OverloadCandidateSet::iterator Best; 5506 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5507 case OR_Success: 5508 // Overload resolution succeeded; we'll build the call below. 5509 break; 5510 5511 case OR_No_Viable_Function: 5512 if (CandidateSet.empty()) 5513 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 5514 << Base->getType() << Base->getSourceRange(); 5515 else 5516 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5517 << "operator->" << Base->getSourceRange(); 5518 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5519 return ExprError(); 5520 5521 case OR_Ambiguous: 5522 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5523 << "->" << Base->getSourceRange(); 5524 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5525 return ExprError(); 5526 5527 case OR_Deleted: 5528 Diag(OpLoc, diag::err_ovl_deleted_oper) 5529 << Best->Function->isDeleted() 5530 << "->" << Base->getSourceRange(); 5531 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5532 return ExprError(); 5533 } 5534 5535 // Convert the object parameter. 5536 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5537 if (PerformObjectArgumentInitialization(Base, Method)) 5538 return ExprError(); 5539 5540 // No concerns about early exits now. 5541 BaseIn.release(); 5542 5543 // Build the operator call. 5544 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 5545 SourceLocation()); 5546 UsualUnaryConversions(FnExpr); 5547 5548 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5549 ExprOwningPtr<CXXOperatorCallExpr> 5550 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 5551 &Base, 1, ResultTy, OpLoc)); 5552 5553 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 5554 Method)) 5555 return ExprError(); 5556 return move(TheCall); 5557} 5558 5559/// FixOverloadedFunctionReference - E is an expression that refers to 5560/// a C++ overloaded function (possibly with some parentheses and 5561/// perhaps a '&' around it). We have resolved the overloaded function 5562/// to the function declaration Fn, so patch up the expression E to 5563/// refer (possibly indirectly) to Fn. Returns the new expr. 5564Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 5565 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 5566 Expr *NewExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 5567 PE->setSubExpr(NewExpr); 5568 PE->setType(NewExpr->getType()); 5569 } else if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 5570 Expr *NewExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn); 5571 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 5572 NewExpr->getType()) && 5573 "Implicit cast type cannot be determined from overload"); 5574 ICE->setSubExpr(NewExpr); 5575 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 5576 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 5577 "Can only take the address of an overloaded function"); 5578 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5579 if (Method->isStatic()) { 5580 // Do nothing: static member functions aren't any different 5581 // from non-member functions. 5582 } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr())) { 5583 if (DRE->getQualifier()) { 5584 // We have taken the address of a pointer to member 5585 // function. Perform the computation here so that we get the 5586 // appropriate pointer to member type. 5587 DRE->setDecl(Fn); 5588 DRE->setType(Fn->getType()); 5589 QualType ClassType 5590 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 5591 E->setType(Context.getMemberPointerType(Fn->getType(), 5592 ClassType.getTypePtr())); 5593 return E; 5594 } 5595 } 5596 // FIXME: TemplateIdRefExpr referring to a member function template 5597 // specialization! 5598 } 5599 Expr *NewExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 5600 UnOp->setSubExpr(NewExpr); 5601 UnOp->setType(Context.getPointerType(NewExpr->getType())); 5602 5603 return UnOp; 5604 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) { 5605 assert((isa<OverloadedFunctionDecl>(DR->getDecl()) || 5606 isa<FunctionTemplateDecl>(DR->getDecl()) || 5607 isa<FunctionDecl>(DR->getDecl())) && 5608 "Expected function or function template"); 5609 DR->setDecl(Fn); 5610 E->setType(Fn->getType()); 5611 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) { 5612 MemExpr->setMemberDecl(Fn); 5613 E->setType(Fn->getType()); 5614 } else if (TemplateIdRefExpr *TID = dyn_cast<TemplateIdRefExpr>(E)) { 5615 E = DeclRefExpr::Create(Context, 5616 TID->getQualifier(), TID->getQualifierRange(), 5617 Fn, TID->getTemplateNameLoc(), 5618 true, 5619 TID->getLAngleLoc(), 5620 TID->getTemplateArgs(), 5621 TID->getNumTemplateArgs(), 5622 TID->getRAngleLoc(), 5623 Fn->getType(), 5624 /*FIXME?*/false, /*FIXME?*/false); 5625 5626 // FIXME: Don't destroy TID here, since we need its template arguments 5627 // to survive. 5628 // TID->Destroy(Context); 5629 } else if (isa<UnresolvedFunctionNameExpr>(E)) { 5630 return DeclRefExpr::Create(Context, 5631 /*Qualifier=*/0, 5632 /*QualifierRange=*/SourceRange(), 5633 Fn, E->getLocStart(), 5634 Fn->getType(), false, false); 5635 } else { 5636 assert(false && "Invalid reference to overloaded function"); 5637 } 5638 5639 return E; 5640} 5641 5642} // end namespace clang 5643