SemaOverload.cpp revision 5a1f97ee183d2614db58452a4380dd11cb309263
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/Initialization.h" 17#include "clang/Sema/Template.h" 18#include "clang/Sema/TemplateDeduction.h" 19#include "clang/Basic/Diagnostic.h" 20#include "clang/Lex/Preprocessor.h" 21#include "clang/AST/ASTContext.h" 22#include "clang/AST/CXXInheritance.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/AST/Expr.h" 25#include "clang/AST/ExprCXX.h" 26#include "clang/AST/TypeOrdering.h" 27#include "clang/Basic/PartialDiagnostic.h" 28#include "llvm/ADT/DenseSet.h" 29#include "llvm/ADT/SmallPtrSet.h" 30#include "llvm/ADT/STLExtras.h" 31#include <algorithm> 32 33namespace clang { 34using namespace sema; 35 36static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 37 bool InOverloadResolution, 38 StandardConversionSequence &SCS); 39static OverloadingResult 40IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 41 UserDefinedConversionSequence& User, 42 OverloadCandidateSet& Conversions, 43 bool AllowExplicit); 44 45 46static ImplicitConversionSequence::CompareKind 47CompareStandardConversionSequences(Sema &S, 48 const StandardConversionSequence& SCS1, 49 const StandardConversionSequence& SCS2); 50 51static ImplicitConversionSequence::CompareKind 52CompareQualificationConversions(Sema &S, 53 const StandardConversionSequence& SCS1, 54 const StandardConversionSequence& SCS2); 55 56static ImplicitConversionSequence::CompareKind 57CompareDerivedToBaseConversions(Sema &S, 58 const StandardConversionSequence& SCS1, 59 const StandardConversionSequence& SCS2); 60 61 62 63/// GetConversionCategory - Retrieve the implicit conversion 64/// category corresponding to the given implicit conversion kind. 65ImplicitConversionCategory 66GetConversionCategory(ImplicitConversionKind Kind) { 67 static const ImplicitConversionCategory 68 Category[(int)ICK_Num_Conversion_Kinds] = { 69 ICC_Identity, 70 ICC_Lvalue_Transformation, 71 ICC_Lvalue_Transformation, 72 ICC_Lvalue_Transformation, 73 ICC_Identity, 74 ICC_Qualification_Adjustment, 75 ICC_Promotion, 76 ICC_Promotion, 77 ICC_Promotion, 78 ICC_Conversion, 79 ICC_Conversion, 80 ICC_Conversion, 81 ICC_Conversion, 82 ICC_Conversion, 83 ICC_Conversion, 84 ICC_Conversion, 85 ICC_Conversion, 86 ICC_Conversion, 87 ICC_Conversion, 88 ICC_Conversion, 89 ICC_Conversion 90 }; 91 return Category[(int)Kind]; 92} 93 94/// GetConversionRank - Retrieve the implicit conversion rank 95/// corresponding to the given implicit conversion kind. 96ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 97 static const ImplicitConversionRank 98 Rank[(int)ICK_Num_Conversion_Kinds] = { 99 ICR_Exact_Match, 100 ICR_Exact_Match, 101 ICR_Exact_Match, 102 ICR_Exact_Match, 103 ICR_Exact_Match, 104 ICR_Exact_Match, 105 ICR_Promotion, 106 ICR_Promotion, 107 ICR_Promotion, 108 ICR_Conversion, 109 ICR_Conversion, 110 ICR_Conversion, 111 ICR_Conversion, 112 ICR_Conversion, 113 ICR_Conversion, 114 ICR_Conversion, 115 ICR_Conversion, 116 ICR_Conversion, 117 ICR_Conversion, 118 ICR_Conversion, 119 ICR_Complex_Real_Conversion 120 }; 121 return Rank[(int)Kind]; 122} 123 124/// GetImplicitConversionName - Return the name of this kind of 125/// implicit conversion. 126const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 127 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 128 "No conversion", 129 "Lvalue-to-rvalue", 130 "Array-to-pointer", 131 "Function-to-pointer", 132 "Noreturn adjustment", 133 "Qualification", 134 "Integral promotion", 135 "Floating point promotion", 136 "Complex promotion", 137 "Integral conversion", 138 "Floating conversion", 139 "Complex conversion", 140 "Floating-integral conversion", 141 "Pointer conversion", 142 "Pointer-to-member conversion", 143 "Boolean conversion", 144 "Compatible-types conversion", 145 "Derived-to-base conversion", 146 "Vector conversion", 147 "Vector splat", 148 "Complex-real conversion" 149 }; 150 return Name[Kind]; 151} 152 153/// StandardConversionSequence - Set the standard conversion 154/// sequence to the identity conversion. 155void StandardConversionSequence::setAsIdentityConversion() { 156 First = ICK_Identity; 157 Second = ICK_Identity; 158 Third = ICK_Identity; 159 DeprecatedStringLiteralToCharPtr = false; 160 ReferenceBinding = false; 161 DirectBinding = false; 162 RRefBinding = false; 163 CopyConstructor = 0; 164} 165 166/// getRank - Retrieve the rank of this standard conversion sequence 167/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 168/// implicit conversions. 169ImplicitConversionRank StandardConversionSequence::getRank() const { 170 ImplicitConversionRank Rank = ICR_Exact_Match; 171 if (GetConversionRank(First) > Rank) 172 Rank = GetConversionRank(First); 173 if (GetConversionRank(Second) > Rank) 174 Rank = GetConversionRank(Second); 175 if (GetConversionRank(Third) > Rank) 176 Rank = GetConversionRank(Third); 177 return Rank; 178} 179 180/// isPointerConversionToBool - Determines whether this conversion is 181/// a conversion of a pointer or pointer-to-member to bool. This is 182/// used as part of the ranking of standard conversion sequences 183/// (C++ 13.3.3.2p4). 184bool StandardConversionSequence::isPointerConversionToBool() const { 185 // Note that FromType has not necessarily been transformed by the 186 // array-to-pointer or function-to-pointer implicit conversions, so 187 // check for their presence as well as checking whether FromType is 188 // a pointer. 189 if (getToType(1)->isBooleanType() && 190 (getFromType()->isPointerType() || 191 getFromType()->isObjCObjectPointerType() || 192 getFromType()->isBlockPointerType() || 193 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 194 return true; 195 196 return false; 197} 198 199/// isPointerConversionToVoidPointer - Determines whether this 200/// conversion is a conversion of a pointer to a void pointer. This is 201/// used as part of the ranking of standard conversion sequences (C++ 202/// 13.3.3.2p4). 203bool 204StandardConversionSequence:: 205isPointerConversionToVoidPointer(ASTContext& Context) const { 206 QualType FromType = getFromType(); 207 QualType ToType = getToType(1); 208 209 // Note that FromType has not necessarily been transformed by the 210 // array-to-pointer implicit conversion, so check for its presence 211 // and redo the conversion to get a pointer. 212 if (First == ICK_Array_To_Pointer) 213 FromType = Context.getArrayDecayedType(FromType); 214 215 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 216 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 217 return ToPtrType->getPointeeType()->isVoidType(); 218 219 return false; 220} 221 222/// DebugPrint - Print this standard conversion sequence to standard 223/// error. Useful for debugging overloading issues. 224void StandardConversionSequence::DebugPrint() const { 225 llvm::raw_ostream &OS = llvm::errs(); 226 bool PrintedSomething = false; 227 if (First != ICK_Identity) { 228 OS << GetImplicitConversionName(First); 229 PrintedSomething = true; 230 } 231 232 if (Second != ICK_Identity) { 233 if (PrintedSomething) { 234 OS << " -> "; 235 } 236 OS << GetImplicitConversionName(Second); 237 238 if (CopyConstructor) { 239 OS << " (by copy constructor)"; 240 } else if (DirectBinding) { 241 OS << " (direct reference binding)"; 242 } else if (ReferenceBinding) { 243 OS << " (reference binding)"; 244 } 245 PrintedSomething = true; 246 } 247 248 if (Third != ICK_Identity) { 249 if (PrintedSomething) { 250 OS << " -> "; 251 } 252 OS << GetImplicitConversionName(Third); 253 PrintedSomething = true; 254 } 255 256 if (!PrintedSomething) { 257 OS << "No conversions required"; 258 } 259} 260 261/// DebugPrint - Print this user-defined conversion sequence to standard 262/// error. Useful for debugging overloading issues. 263void UserDefinedConversionSequence::DebugPrint() const { 264 llvm::raw_ostream &OS = llvm::errs(); 265 if (Before.First || Before.Second || Before.Third) { 266 Before.DebugPrint(); 267 OS << " -> "; 268 } 269 OS << '\'' << ConversionFunction << '\''; 270 if (After.First || After.Second || After.Third) { 271 OS << " -> "; 272 After.DebugPrint(); 273 } 274} 275 276/// DebugPrint - Print this implicit conversion sequence to standard 277/// error. Useful for debugging overloading issues. 278void ImplicitConversionSequence::DebugPrint() const { 279 llvm::raw_ostream &OS = llvm::errs(); 280 switch (ConversionKind) { 281 case StandardConversion: 282 OS << "Standard conversion: "; 283 Standard.DebugPrint(); 284 break; 285 case UserDefinedConversion: 286 OS << "User-defined conversion: "; 287 UserDefined.DebugPrint(); 288 break; 289 case EllipsisConversion: 290 OS << "Ellipsis conversion"; 291 break; 292 case AmbiguousConversion: 293 OS << "Ambiguous conversion"; 294 break; 295 case BadConversion: 296 OS << "Bad conversion"; 297 break; 298 } 299 300 OS << "\n"; 301} 302 303void AmbiguousConversionSequence::construct() { 304 new (&conversions()) ConversionSet(); 305} 306 307void AmbiguousConversionSequence::destruct() { 308 conversions().~ConversionSet(); 309} 310 311void 312AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 313 FromTypePtr = O.FromTypePtr; 314 ToTypePtr = O.ToTypePtr; 315 new (&conversions()) ConversionSet(O.conversions()); 316} 317 318namespace { 319 // Structure used by OverloadCandidate::DeductionFailureInfo to store 320 // template parameter and template argument information. 321 struct DFIParamWithArguments { 322 TemplateParameter Param; 323 TemplateArgument FirstArg; 324 TemplateArgument SecondArg; 325 }; 326} 327 328/// \brief Convert from Sema's representation of template deduction information 329/// to the form used in overload-candidate information. 330OverloadCandidate::DeductionFailureInfo 331static MakeDeductionFailureInfo(ASTContext &Context, 332 Sema::TemplateDeductionResult TDK, 333 TemplateDeductionInfo &Info) { 334 OverloadCandidate::DeductionFailureInfo Result; 335 Result.Result = static_cast<unsigned>(TDK); 336 Result.Data = 0; 337 switch (TDK) { 338 case Sema::TDK_Success: 339 case Sema::TDK_InstantiationDepth: 340 case Sema::TDK_TooManyArguments: 341 case Sema::TDK_TooFewArguments: 342 break; 343 344 case Sema::TDK_Incomplete: 345 case Sema::TDK_InvalidExplicitArguments: 346 Result.Data = Info.Param.getOpaqueValue(); 347 break; 348 349 case Sema::TDK_Inconsistent: 350 case Sema::TDK_Underqualified: { 351 // FIXME: Should allocate from normal heap so that we can free this later. 352 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 353 Saved->Param = Info.Param; 354 Saved->FirstArg = Info.FirstArg; 355 Saved->SecondArg = Info.SecondArg; 356 Result.Data = Saved; 357 break; 358 } 359 360 case Sema::TDK_SubstitutionFailure: 361 Result.Data = Info.take(); 362 break; 363 364 case Sema::TDK_NonDeducedMismatch: 365 case Sema::TDK_FailedOverloadResolution: 366 break; 367 } 368 369 return Result; 370} 371 372void OverloadCandidate::DeductionFailureInfo::Destroy() { 373 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 374 case Sema::TDK_Success: 375 case Sema::TDK_InstantiationDepth: 376 case Sema::TDK_Incomplete: 377 case Sema::TDK_TooManyArguments: 378 case Sema::TDK_TooFewArguments: 379 case Sema::TDK_InvalidExplicitArguments: 380 break; 381 382 case Sema::TDK_Inconsistent: 383 case Sema::TDK_Underqualified: 384 // FIXME: Destroy the data? 385 Data = 0; 386 break; 387 388 case Sema::TDK_SubstitutionFailure: 389 // FIXME: Destroy the template arugment list? 390 Data = 0; 391 break; 392 393 // Unhandled 394 case Sema::TDK_NonDeducedMismatch: 395 case Sema::TDK_FailedOverloadResolution: 396 break; 397 } 398} 399 400TemplateParameter 401OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 402 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 403 case Sema::TDK_Success: 404 case Sema::TDK_InstantiationDepth: 405 case Sema::TDK_TooManyArguments: 406 case Sema::TDK_TooFewArguments: 407 case Sema::TDK_SubstitutionFailure: 408 return TemplateParameter(); 409 410 case Sema::TDK_Incomplete: 411 case Sema::TDK_InvalidExplicitArguments: 412 return TemplateParameter::getFromOpaqueValue(Data); 413 414 case Sema::TDK_Inconsistent: 415 case Sema::TDK_Underqualified: 416 return static_cast<DFIParamWithArguments*>(Data)->Param; 417 418 // Unhandled 419 case Sema::TDK_NonDeducedMismatch: 420 case Sema::TDK_FailedOverloadResolution: 421 break; 422 } 423 424 return TemplateParameter(); 425} 426 427TemplateArgumentList * 428OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 429 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 430 case Sema::TDK_Success: 431 case Sema::TDK_InstantiationDepth: 432 case Sema::TDK_TooManyArguments: 433 case Sema::TDK_TooFewArguments: 434 case Sema::TDK_Incomplete: 435 case Sema::TDK_InvalidExplicitArguments: 436 case Sema::TDK_Inconsistent: 437 case Sema::TDK_Underqualified: 438 return 0; 439 440 case Sema::TDK_SubstitutionFailure: 441 return static_cast<TemplateArgumentList*>(Data); 442 443 // Unhandled 444 case Sema::TDK_NonDeducedMismatch: 445 case Sema::TDK_FailedOverloadResolution: 446 break; 447 } 448 449 return 0; 450} 451 452const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 453 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 454 case Sema::TDK_Success: 455 case Sema::TDK_InstantiationDepth: 456 case Sema::TDK_Incomplete: 457 case Sema::TDK_TooManyArguments: 458 case Sema::TDK_TooFewArguments: 459 case Sema::TDK_InvalidExplicitArguments: 460 case Sema::TDK_SubstitutionFailure: 461 return 0; 462 463 case Sema::TDK_Inconsistent: 464 case Sema::TDK_Underqualified: 465 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 466 467 // Unhandled 468 case Sema::TDK_NonDeducedMismatch: 469 case Sema::TDK_FailedOverloadResolution: 470 break; 471 } 472 473 return 0; 474} 475 476const TemplateArgument * 477OverloadCandidate::DeductionFailureInfo::getSecondArg() { 478 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 479 case Sema::TDK_Success: 480 case Sema::TDK_InstantiationDepth: 481 case Sema::TDK_Incomplete: 482 case Sema::TDK_TooManyArguments: 483 case Sema::TDK_TooFewArguments: 484 case Sema::TDK_InvalidExplicitArguments: 485 case Sema::TDK_SubstitutionFailure: 486 return 0; 487 488 case Sema::TDK_Inconsistent: 489 case Sema::TDK_Underqualified: 490 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 491 492 // Unhandled 493 case Sema::TDK_NonDeducedMismatch: 494 case Sema::TDK_FailedOverloadResolution: 495 break; 496 } 497 498 return 0; 499} 500 501void OverloadCandidateSet::clear() { 502 inherited::clear(); 503 Functions.clear(); 504} 505 506// IsOverload - Determine whether the given New declaration is an 507// overload of the declarations in Old. This routine returns false if 508// New and Old cannot be overloaded, e.g., if New has the same 509// signature as some function in Old (C++ 1.3.10) or if the Old 510// declarations aren't functions (or function templates) at all. When 511// it does return false, MatchedDecl will point to the decl that New 512// cannot be overloaded with. This decl may be a UsingShadowDecl on 513// top of the underlying declaration. 514// 515// Example: Given the following input: 516// 517// void f(int, float); // #1 518// void f(int, int); // #2 519// int f(int, int); // #3 520// 521// When we process #1, there is no previous declaration of "f", 522// so IsOverload will not be used. 523// 524// When we process #2, Old contains only the FunctionDecl for #1. By 525// comparing the parameter types, we see that #1 and #2 are overloaded 526// (since they have different signatures), so this routine returns 527// false; MatchedDecl is unchanged. 528// 529// When we process #3, Old is an overload set containing #1 and #2. We 530// compare the signatures of #3 to #1 (they're overloaded, so we do 531// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 532// identical (return types of functions are not part of the 533// signature), IsOverload returns false and MatchedDecl will be set to 534// point to the FunctionDecl for #2. 535// 536// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 537// into a class by a using declaration. The rules for whether to hide 538// shadow declarations ignore some properties which otherwise figure 539// into a function template's signature. 540Sema::OverloadKind 541Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 542 NamedDecl *&Match, bool NewIsUsingDecl) { 543 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 544 I != E; ++I) { 545 NamedDecl *OldD = *I; 546 547 bool OldIsUsingDecl = false; 548 if (isa<UsingShadowDecl>(OldD)) { 549 OldIsUsingDecl = true; 550 551 // We can always introduce two using declarations into the same 552 // context, even if they have identical signatures. 553 if (NewIsUsingDecl) continue; 554 555 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 556 } 557 558 // If either declaration was introduced by a using declaration, 559 // we'll need to use slightly different rules for matching. 560 // Essentially, these rules are the normal rules, except that 561 // function templates hide function templates with different 562 // return types or template parameter lists. 563 bool UseMemberUsingDeclRules = 564 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 565 566 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 567 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 568 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 569 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 570 continue; 571 } 572 573 Match = *I; 574 return Ovl_Match; 575 } 576 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 577 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 578 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 579 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 580 continue; 581 } 582 583 Match = *I; 584 return Ovl_Match; 585 } 586 } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { 587 // We can overload with these, which can show up when doing 588 // redeclaration checks for UsingDecls. 589 assert(Old.getLookupKind() == LookupUsingDeclName); 590 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 591 // Optimistically assume that an unresolved using decl will 592 // overload; if it doesn't, we'll have to diagnose during 593 // template instantiation. 594 } else { 595 // (C++ 13p1): 596 // Only function declarations can be overloaded; object and type 597 // declarations cannot be overloaded. 598 Match = *I; 599 return Ovl_NonFunction; 600 } 601 } 602 603 return Ovl_Overload; 604} 605 606bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 607 bool UseUsingDeclRules) { 608 // If both of the functions are extern "C", then they are not 609 // overloads. 610 if (Old->isExternC() && New->isExternC()) 611 return false; 612 613 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 614 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 615 616 // C++ [temp.fct]p2: 617 // A function template can be overloaded with other function templates 618 // and with normal (non-template) functions. 619 if ((OldTemplate == 0) != (NewTemplate == 0)) 620 return true; 621 622 // Is the function New an overload of the function Old? 623 QualType OldQType = Context.getCanonicalType(Old->getType()); 624 QualType NewQType = Context.getCanonicalType(New->getType()); 625 626 // Compare the signatures (C++ 1.3.10) of the two functions to 627 // determine whether they are overloads. If we find any mismatch 628 // in the signature, they are overloads. 629 630 // If either of these functions is a K&R-style function (no 631 // prototype), then we consider them to have matching signatures. 632 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 633 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 634 return false; 635 636 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 637 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 638 639 // The signature of a function includes the types of its 640 // parameters (C++ 1.3.10), which includes the presence or absence 641 // of the ellipsis; see C++ DR 357). 642 if (OldQType != NewQType && 643 (OldType->getNumArgs() != NewType->getNumArgs() || 644 OldType->isVariadic() != NewType->isVariadic() || 645 !FunctionArgTypesAreEqual(OldType, NewType))) 646 return true; 647 648 // C++ [temp.over.link]p4: 649 // The signature of a function template consists of its function 650 // signature, its return type and its template parameter list. The names 651 // of the template parameters are significant only for establishing the 652 // relationship between the template parameters and the rest of the 653 // signature. 654 // 655 // We check the return type and template parameter lists for function 656 // templates first; the remaining checks follow. 657 // 658 // However, we don't consider either of these when deciding whether 659 // a member introduced by a shadow declaration is hidden. 660 if (!UseUsingDeclRules && NewTemplate && 661 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 662 OldTemplate->getTemplateParameters(), 663 false, TPL_TemplateMatch) || 664 OldType->getResultType() != NewType->getResultType())) 665 return true; 666 667 // If the function is a class member, its signature includes the 668 // cv-qualifiers (if any) on the function itself. 669 // 670 // As part of this, also check whether one of the member functions 671 // is static, in which case they are not overloads (C++ 672 // 13.1p2). While not part of the definition of the signature, 673 // this check is important to determine whether these functions 674 // can be overloaded. 675 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 676 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 677 if (OldMethod && NewMethod && 678 !OldMethod->isStatic() && !NewMethod->isStatic() && 679 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 680 return true; 681 682 // The signatures match; this is not an overload. 683 return false; 684} 685 686/// TryImplicitConversion - Attempt to perform an implicit conversion 687/// from the given expression (Expr) to the given type (ToType). This 688/// function returns an implicit conversion sequence that can be used 689/// to perform the initialization. Given 690/// 691/// void f(float f); 692/// void g(int i) { f(i); } 693/// 694/// this routine would produce an implicit conversion sequence to 695/// describe the initialization of f from i, which will be a standard 696/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 697/// 4.1) followed by a floating-integral conversion (C++ 4.9). 698// 699/// Note that this routine only determines how the conversion can be 700/// performed; it does not actually perform the conversion. As such, 701/// it will not produce any diagnostics if no conversion is available, 702/// but will instead return an implicit conversion sequence of kind 703/// "BadConversion". 704/// 705/// If @p SuppressUserConversions, then user-defined conversions are 706/// not permitted. 707/// If @p AllowExplicit, then explicit user-defined conversions are 708/// permitted. 709static ImplicitConversionSequence 710TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 711 bool SuppressUserConversions, 712 bool AllowExplicit, 713 bool InOverloadResolution) { 714 ImplicitConversionSequence ICS; 715 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 716 ICS.Standard)) { 717 ICS.setStandard(); 718 return ICS; 719 } 720 721 if (!S.getLangOptions().CPlusPlus) { 722 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 723 return ICS; 724 } 725 726 // C++ [over.ics.user]p4: 727 // A conversion of an expression of class type to the same class 728 // type is given Exact Match rank, and a conversion of an 729 // expression of class type to a base class of that type is 730 // given Conversion rank, in spite of the fact that a copy/move 731 // constructor (i.e., a user-defined conversion function) is 732 // called for those cases. 733 QualType FromType = From->getType(); 734 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 735 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 736 S.IsDerivedFrom(FromType, ToType))) { 737 ICS.setStandard(); 738 ICS.Standard.setAsIdentityConversion(); 739 ICS.Standard.setFromType(FromType); 740 ICS.Standard.setAllToTypes(ToType); 741 742 // We don't actually check at this point whether there is a valid 743 // copy/move constructor, since overloading just assumes that it 744 // exists. When we actually perform initialization, we'll find the 745 // appropriate constructor to copy the returned object, if needed. 746 ICS.Standard.CopyConstructor = 0; 747 748 // Determine whether this is considered a derived-to-base conversion. 749 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 750 ICS.Standard.Second = ICK_Derived_To_Base; 751 752 return ICS; 753 } 754 755 if (SuppressUserConversions) { 756 // We're not in the case above, so there is no conversion that 757 // we can perform. 758 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 759 return ICS; 760 } 761 762 // Attempt user-defined conversion. 763 OverloadCandidateSet Conversions(From->getExprLoc()); 764 OverloadingResult UserDefResult 765 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, 766 AllowExplicit); 767 768 if (UserDefResult == OR_Success) { 769 ICS.setUserDefined(); 770 // C++ [over.ics.user]p4: 771 // A conversion of an expression of class type to the same class 772 // type is given Exact Match rank, and a conversion of an 773 // expression of class type to a base class of that type is 774 // given Conversion rank, in spite of the fact that a copy 775 // constructor (i.e., a user-defined conversion function) is 776 // called for those cases. 777 if (CXXConstructorDecl *Constructor 778 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 779 QualType FromCanon 780 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 781 QualType ToCanon 782 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 783 if (Constructor->isCopyConstructor() && 784 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { 785 // Turn this into a "standard" conversion sequence, so that it 786 // gets ranked with standard conversion sequences. 787 ICS.setStandard(); 788 ICS.Standard.setAsIdentityConversion(); 789 ICS.Standard.setFromType(From->getType()); 790 ICS.Standard.setAllToTypes(ToType); 791 ICS.Standard.CopyConstructor = Constructor; 792 if (ToCanon != FromCanon) 793 ICS.Standard.Second = ICK_Derived_To_Base; 794 } 795 } 796 797 // C++ [over.best.ics]p4: 798 // However, when considering the argument of a user-defined 799 // conversion function that is a candidate by 13.3.1.3 when 800 // invoked for the copying of the temporary in the second step 801 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 802 // 13.3.1.6 in all cases, only standard conversion sequences and 803 // ellipsis conversion sequences are allowed. 804 if (SuppressUserConversions && ICS.isUserDefined()) { 805 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 806 } 807 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 808 ICS.setAmbiguous(); 809 ICS.Ambiguous.setFromType(From->getType()); 810 ICS.Ambiguous.setToType(ToType); 811 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 812 Cand != Conversions.end(); ++Cand) 813 if (Cand->Viable) 814 ICS.Ambiguous.addConversion(Cand->Function); 815 } else { 816 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 817 } 818 819 return ICS; 820} 821 822bool Sema::TryImplicitConversion(InitializationSequence &Sequence, 823 const InitializedEntity &Entity, 824 Expr *Initializer, 825 bool SuppressUserConversions, 826 bool AllowExplicitConversions, 827 bool InOverloadResolution) { 828 ImplicitConversionSequence ICS 829 = clang::TryImplicitConversion(*this, Initializer, Entity.getType(), 830 SuppressUserConversions, 831 AllowExplicitConversions, 832 InOverloadResolution); 833 if (ICS.isBad()) return true; 834 835 // Perform the actual conversion. 836 Sequence.AddConversionSequenceStep(ICS, Entity.getType()); 837 return false; 838} 839 840/// PerformImplicitConversion - Perform an implicit conversion of the 841/// expression From to the type ToType. Returns true if there was an 842/// error, false otherwise. The expression From is replaced with the 843/// converted expression. Flavor is the kind of conversion we're 844/// performing, used in the error message. If @p AllowExplicit, 845/// explicit user-defined conversions are permitted. 846bool 847Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 848 AssignmentAction Action, bool AllowExplicit) { 849 ImplicitConversionSequence ICS; 850 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 851} 852 853bool 854Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 855 AssignmentAction Action, bool AllowExplicit, 856 ImplicitConversionSequence& ICS) { 857 ICS = clang::TryImplicitConversion(*this, From, ToType, 858 /*SuppressUserConversions=*/false, 859 AllowExplicit, 860 /*InOverloadResolution=*/false); 861 return PerformImplicitConversion(From, ToType, ICS, Action); 862} 863 864/// \brief Determine whether the conversion from FromType to ToType is a valid 865/// conversion that strips "noreturn" off the nested function type. 866static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 867 QualType ToType, QualType &ResultTy) { 868 if (Context.hasSameUnqualifiedType(FromType, ToType)) 869 return false; 870 871 // Strip the noreturn off the type we're converting from; noreturn can 872 // safely be removed. 873 FromType = Context.getNoReturnType(FromType, false); 874 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 875 return false; 876 877 ResultTy = FromType; 878 return true; 879} 880 881/// \brief Determine whether the conversion from FromType to ToType is a valid 882/// vector conversion. 883/// 884/// \param ICK Will be set to the vector conversion kind, if this is a vector 885/// conversion. 886static bool IsVectorConversion(ASTContext &Context, QualType FromType, 887 QualType ToType, ImplicitConversionKind &ICK) { 888 // We need at least one of these types to be a vector type to have a vector 889 // conversion. 890 if (!ToType->isVectorType() && !FromType->isVectorType()) 891 return false; 892 893 // Identical types require no conversions. 894 if (Context.hasSameUnqualifiedType(FromType, ToType)) 895 return false; 896 897 // There are no conversions between extended vector types, only identity. 898 if (ToType->isExtVectorType()) { 899 // There are no conversions between extended vector types other than the 900 // identity conversion. 901 if (FromType->isExtVectorType()) 902 return false; 903 904 // Vector splat from any arithmetic type to a vector. 905 if (FromType->isArithmeticType()) { 906 ICK = ICK_Vector_Splat; 907 return true; 908 } 909 } 910 911 // We can perform the conversion between vector types in the following cases: 912 // 1)vector types are equivalent AltiVec and GCC vector types 913 // 2)lax vector conversions are permitted and the vector types are of the 914 // same size 915 if (ToType->isVectorType() && FromType->isVectorType()) { 916 if (Context.areCompatibleVectorTypes(FromType, ToType) || 917 (Context.getLangOptions().LaxVectorConversions && 918 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 919 ICK = ICK_Vector_Conversion; 920 return true; 921 } 922 } 923 924 return false; 925} 926 927/// IsStandardConversion - Determines whether there is a standard 928/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 929/// expression From to the type ToType. Standard conversion sequences 930/// only consider non-class types; for conversions that involve class 931/// types, use TryImplicitConversion. If a conversion exists, SCS will 932/// contain the standard conversion sequence required to perform this 933/// conversion and this routine will return true. Otherwise, this 934/// routine will return false and the value of SCS is unspecified. 935static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 936 bool InOverloadResolution, 937 StandardConversionSequence &SCS) { 938 QualType FromType = From->getType(); 939 940 // Standard conversions (C++ [conv]) 941 SCS.setAsIdentityConversion(); 942 SCS.DeprecatedStringLiteralToCharPtr = false; 943 SCS.IncompatibleObjC = false; 944 SCS.setFromType(FromType); 945 SCS.CopyConstructor = 0; 946 947 // There are no standard conversions for class types in C++, so 948 // abort early. When overloading in C, however, we do permit 949 if (FromType->isRecordType() || ToType->isRecordType()) { 950 if (S.getLangOptions().CPlusPlus) 951 return false; 952 953 // When we're overloading in C, we allow, as standard conversions, 954 } 955 956 // The first conversion can be an lvalue-to-rvalue conversion, 957 // array-to-pointer conversion, or function-to-pointer conversion 958 // (C++ 4p1). 959 960 if (FromType == S.Context.OverloadTy) { 961 DeclAccessPair AccessPair; 962 if (FunctionDecl *Fn 963 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 964 AccessPair)) { 965 // We were able to resolve the address of the overloaded function, 966 // so we can convert to the type of that function. 967 FromType = Fn->getType(); 968 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 969 if (!Method->isStatic()) { 970 Type *ClassType 971 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 972 FromType = S.Context.getMemberPointerType(FromType, ClassType); 973 } 974 } 975 976 // If the "from" expression takes the address of the overloaded 977 // function, update the type of the resulting expression accordingly. 978 if (FromType->getAs<FunctionType>()) 979 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) 980 if (UnOp->getOpcode() == UO_AddrOf) 981 FromType = S.Context.getPointerType(FromType); 982 983 // Check that we've computed the proper type after overload resolution. 984 assert(S.Context.hasSameType(FromType, 985 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 986 } else { 987 return false; 988 } 989 } 990 // Lvalue-to-rvalue conversion (C++ 4.1): 991 // An lvalue (3.10) of a non-function, non-array type T can be 992 // converted to an rvalue. 993 Expr::isLvalueResult argIsLvalue = From->isLvalue(S.Context); 994 if (argIsLvalue == Expr::LV_Valid && 995 !FromType->isFunctionType() && !FromType->isArrayType() && 996 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 997 SCS.First = ICK_Lvalue_To_Rvalue; 998 999 // If T is a non-class type, the type of the rvalue is the 1000 // cv-unqualified version of T. Otherwise, the type of the rvalue 1001 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1002 // just strip the qualifiers because they don't matter. 1003 FromType = FromType.getUnqualifiedType(); 1004 } else if (FromType->isArrayType()) { 1005 // Array-to-pointer conversion (C++ 4.2) 1006 SCS.First = ICK_Array_To_Pointer; 1007 1008 // An lvalue or rvalue of type "array of N T" or "array of unknown 1009 // bound of T" can be converted to an rvalue of type "pointer to 1010 // T" (C++ 4.2p1). 1011 FromType = S.Context.getArrayDecayedType(FromType); 1012 1013 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1014 // This conversion is deprecated. (C++ D.4). 1015 SCS.DeprecatedStringLiteralToCharPtr = true; 1016 1017 // For the purpose of ranking in overload resolution 1018 // (13.3.3.1.1), this conversion is considered an 1019 // array-to-pointer conversion followed by a qualification 1020 // conversion (4.4). (C++ 4.2p2) 1021 SCS.Second = ICK_Identity; 1022 SCS.Third = ICK_Qualification; 1023 SCS.setAllToTypes(FromType); 1024 return true; 1025 } 1026 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 1027 // Function-to-pointer conversion (C++ 4.3). 1028 SCS.First = ICK_Function_To_Pointer; 1029 1030 // An lvalue of function type T can be converted to an rvalue of 1031 // type "pointer to T." The result is a pointer to the 1032 // function. (C++ 4.3p1). 1033 FromType = S.Context.getPointerType(FromType); 1034 } else { 1035 // We don't require any conversions for the first step. 1036 SCS.First = ICK_Identity; 1037 } 1038 SCS.setToType(0, FromType); 1039 1040 // The second conversion can be an integral promotion, floating 1041 // point promotion, integral conversion, floating point conversion, 1042 // floating-integral conversion, pointer conversion, 1043 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1044 // For overloading in C, this can also be a "compatible-type" 1045 // conversion. 1046 bool IncompatibleObjC = false; 1047 ImplicitConversionKind SecondICK = ICK_Identity; 1048 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1049 // The unqualified versions of the types are the same: there's no 1050 // conversion to do. 1051 SCS.Second = ICK_Identity; 1052 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1053 // Integral promotion (C++ 4.5). 1054 SCS.Second = ICK_Integral_Promotion; 1055 FromType = ToType.getUnqualifiedType(); 1056 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1057 // Floating point promotion (C++ 4.6). 1058 SCS.Second = ICK_Floating_Promotion; 1059 FromType = ToType.getUnqualifiedType(); 1060 } else if (S.IsComplexPromotion(FromType, ToType)) { 1061 // Complex promotion (Clang extension) 1062 SCS.Second = ICK_Complex_Promotion; 1063 FromType = ToType.getUnqualifiedType(); 1064 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1065 ToType->isIntegralType(S.Context)) { 1066 // Integral conversions (C++ 4.7). 1067 SCS.Second = ICK_Integral_Conversion; 1068 FromType = ToType.getUnqualifiedType(); 1069 } else if (FromType->isComplexType() && ToType->isComplexType()) { 1070 // Complex conversions (C99 6.3.1.6) 1071 SCS.Second = ICK_Complex_Conversion; 1072 FromType = ToType.getUnqualifiedType(); 1073 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 1074 (ToType->isComplexType() && FromType->isArithmeticType())) { 1075 // Complex-real conversions (C99 6.3.1.7) 1076 SCS.Second = ICK_Complex_Real; 1077 FromType = ToType.getUnqualifiedType(); 1078 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1079 // Floating point conversions (C++ 4.8). 1080 SCS.Second = ICK_Floating_Conversion; 1081 FromType = ToType.getUnqualifiedType(); 1082 } else if ((FromType->isRealFloatingType() && 1083 ToType->isIntegralType(S.Context) && !ToType->isBooleanType()) || 1084 (FromType->isIntegralOrUnscopedEnumerationType() && 1085 ToType->isRealFloatingType())) { 1086 // Floating-integral conversions (C++ 4.9). 1087 SCS.Second = ICK_Floating_Integral; 1088 FromType = ToType.getUnqualifiedType(); 1089 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1090 FromType, IncompatibleObjC)) { 1091 // Pointer conversions (C++ 4.10). 1092 SCS.Second = ICK_Pointer_Conversion; 1093 SCS.IncompatibleObjC = IncompatibleObjC; 1094 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1095 InOverloadResolution, FromType)) { 1096 // Pointer to member conversions (4.11). 1097 SCS.Second = ICK_Pointer_Member; 1098 } else if (ToType->isBooleanType() && 1099 (FromType->isArithmeticType() || 1100 FromType->isAnyPointerType() || 1101 FromType->isBlockPointerType() || 1102 FromType->isMemberPointerType() || 1103 FromType->isNullPtrType())) { 1104 // Boolean conversions (C++ 4.12). 1105 SCS.Second = ICK_Boolean_Conversion; 1106 FromType = S.Context.BoolTy; 1107 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { 1108 SCS.Second = SecondICK; 1109 FromType = ToType.getUnqualifiedType(); 1110 } else if (!S.getLangOptions().CPlusPlus && 1111 S.Context.typesAreCompatible(ToType, FromType)) { 1112 // Compatible conversions (Clang extension for C function overloading) 1113 SCS.Second = ICK_Compatible_Conversion; 1114 FromType = ToType.getUnqualifiedType(); 1115 } else if (IsNoReturnConversion(S.Context, FromType, ToType, FromType)) { 1116 // Treat a conversion that strips "noreturn" as an identity conversion. 1117 SCS.Second = ICK_NoReturn_Adjustment; 1118 } else { 1119 // No second conversion required. 1120 SCS.Second = ICK_Identity; 1121 } 1122 SCS.setToType(1, FromType); 1123 1124 QualType CanonFrom; 1125 QualType CanonTo; 1126 // The third conversion can be a qualification conversion (C++ 4p1). 1127 if (S.IsQualificationConversion(FromType, ToType)) { 1128 SCS.Third = ICK_Qualification; 1129 FromType = ToType; 1130 CanonFrom = S.Context.getCanonicalType(FromType); 1131 CanonTo = S.Context.getCanonicalType(ToType); 1132 } else { 1133 // No conversion required 1134 SCS.Third = ICK_Identity; 1135 1136 // C++ [over.best.ics]p6: 1137 // [...] Any difference in top-level cv-qualification is 1138 // subsumed by the initialization itself and does not constitute 1139 // a conversion. [...] 1140 CanonFrom = S.Context.getCanonicalType(FromType); 1141 CanonTo = S.Context.getCanonicalType(ToType); 1142 if (CanonFrom.getLocalUnqualifiedType() 1143 == CanonTo.getLocalUnqualifiedType() && 1144 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1145 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) { 1146 FromType = ToType; 1147 CanonFrom = CanonTo; 1148 } 1149 } 1150 SCS.setToType(2, FromType); 1151 1152 // If we have not converted the argument type to the parameter type, 1153 // this is a bad conversion sequence. 1154 if (CanonFrom != CanonTo) 1155 return false; 1156 1157 return true; 1158} 1159 1160/// IsIntegralPromotion - Determines whether the conversion from the 1161/// expression From (whose potentially-adjusted type is FromType) to 1162/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1163/// sets PromotedType to the promoted type. 1164bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1165 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1166 // All integers are built-in. 1167 if (!To) { 1168 return false; 1169 } 1170 1171 // An rvalue of type char, signed char, unsigned char, short int, or 1172 // unsigned short int can be converted to an rvalue of type int if 1173 // int can represent all the values of the source type; otherwise, 1174 // the source rvalue can be converted to an rvalue of type unsigned 1175 // int (C++ 4.5p1). 1176 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1177 !FromType->isEnumeralType()) { 1178 if (// We can promote any signed, promotable integer type to an int 1179 (FromType->isSignedIntegerType() || 1180 // We can promote any unsigned integer type whose size is 1181 // less than int to an int. 1182 (!FromType->isSignedIntegerType() && 1183 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1184 return To->getKind() == BuiltinType::Int; 1185 } 1186 1187 return To->getKind() == BuiltinType::UInt; 1188 } 1189 1190 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 1191 // can be converted to an rvalue of the first of the following types 1192 // that can represent all the values of its underlying type: int, 1193 // unsigned int, long, or unsigned long (C++ 4.5p2). 1194 1195 // We pre-calculate the promotion type for enum types. 1196 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1197 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1198 // provided for a scoped enumeration. 1199 if (FromEnumType->getDecl()->isScoped()) 1200 return false; 1201 1202 if (ToType->isIntegerType() && 1203 !RequireCompleteType(From->getLocStart(), FromType, PDiag())) 1204 return Context.hasSameUnqualifiedType(ToType, 1205 FromEnumType->getDecl()->getPromotionType()); 1206 } 1207 1208 if (FromType->isWideCharType() && ToType->isIntegerType()) { 1209 // Determine whether the type we're converting from is signed or 1210 // unsigned. 1211 bool FromIsSigned; 1212 uint64_t FromSize = Context.getTypeSize(FromType); 1213 1214 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 1215 FromIsSigned = true; 1216 1217 // The types we'll try to promote to, in the appropriate 1218 // order. Try each of these types. 1219 QualType PromoteTypes[6] = { 1220 Context.IntTy, Context.UnsignedIntTy, 1221 Context.LongTy, Context.UnsignedLongTy , 1222 Context.LongLongTy, Context.UnsignedLongLongTy 1223 }; 1224 for (int Idx = 0; Idx < 6; ++Idx) { 1225 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1226 if (FromSize < ToSize || 1227 (FromSize == ToSize && 1228 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1229 // We found the type that we can promote to. If this is the 1230 // type we wanted, we have a promotion. Otherwise, no 1231 // promotion. 1232 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1233 } 1234 } 1235 } 1236 1237 // An rvalue for an integral bit-field (9.6) can be converted to an 1238 // rvalue of type int if int can represent all the values of the 1239 // bit-field; otherwise, it can be converted to unsigned int if 1240 // unsigned int can represent all the values of the bit-field. If 1241 // the bit-field is larger yet, no integral promotion applies to 1242 // it. If the bit-field has an enumerated type, it is treated as any 1243 // other value of that type for promotion purposes (C++ 4.5p3). 1244 // FIXME: We should delay checking of bit-fields until we actually perform the 1245 // conversion. 1246 using llvm::APSInt; 1247 if (From) 1248 if (FieldDecl *MemberDecl = From->getBitField()) { 1249 APSInt BitWidth; 1250 if (FromType->isIntegralType(Context) && 1251 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1252 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1253 ToSize = Context.getTypeSize(ToType); 1254 1255 // Are we promoting to an int from a bitfield that fits in an int? 1256 if (BitWidth < ToSize || 1257 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1258 return To->getKind() == BuiltinType::Int; 1259 } 1260 1261 // Are we promoting to an unsigned int from an unsigned bitfield 1262 // that fits into an unsigned int? 1263 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1264 return To->getKind() == BuiltinType::UInt; 1265 } 1266 1267 return false; 1268 } 1269 } 1270 1271 // An rvalue of type bool can be converted to an rvalue of type int, 1272 // with false becoming zero and true becoming one (C++ 4.5p4). 1273 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1274 return true; 1275 } 1276 1277 return false; 1278} 1279 1280/// IsFloatingPointPromotion - Determines whether the conversion from 1281/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1282/// returns true and sets PromotedType to the promoted type. 1283bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1284 /// An rvalue of type float can be converted to an rvalue of type 1285 /// double. (C++ 4.6p1). 1286 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1287 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1288 if (FromBuiltin->getKind() == BuiltinType::Float && 1289 ToBuiltin->getKind() == BuiltinType::Double) 1290 return true; 1291 1292 // C99 6.3.1.5p1: 1293 // When a float is promoted to double or long double, or a 1294 // double is promoted to long double [...]. 1295 if (!getLangOptions().CPlusPlus && 1296 (FromBuiltin->getKind() == BuiltinType::Float || 1297 FromBuiltin->getKind() == BuiltinType::Double) && 1298 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1299 return true; 1300 } 1301 1302 return false; 1303} 1304 1305/// \brief Determine if a conversion is a complex promotion. 1306/// 1307/// A complex promotion is defined as a complex -> complex conversion 1308/// where the conversion between the underlying real types is a 1309/// floating-point or integral promotion. 1310bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1311 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1312 if (!FromComplex) 1313 return false; 1314 1315 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1316 if (!ToComplex) 1317 return false; 1318 1319 return IsFloatingPointPromotion(FromComplex->getElementType(), 1320 ToComplex->getElementType()) || 1321 IsIntegralPromotion(0, FromComplex->getElementType(), 1322 ToComplex->getElementType()); 1323} 1324 1325/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1326/// the pointer type FromPtr to a pointer to type ToPointee, with the 1327/// same type qualifiers as FromPtr has on its pointee type. ToType, 1328/// if non-empty, will be a pointer to ToType that may or may not have 1329/// the right set of qualifiers on its pointee. 1330static QualType 1331BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 1332 QualType ToPointee, QualType ToType, 1333 ASTContext &Context) { 1334 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 1335 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1336 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1337 1338 // Exact qualifier match -> return the pointer type we're converting to. 1339 if (CanonToPointee.getLocalQualifiers() == Quals) { 1340 // ToType is exactly what we need. Return it. 1341 if (!ToType.isNull()) 1342 return ToType.getUnqualifiedType(); 1343 1344 // Build a pointer to ToPointee. It has the right qualifiers 1345 // already. 1346 return Context.getPointerType(ToPointee); 1347 } 1348 1349 // Just build a canonical type that has the right qualifiers. 1350 return Context.getPointerType( 1351 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 1352 Quals)); 1353} 1354 1355/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from 1356/// the FromType, which is an objective-c pointer, to ToType, which may or may 1357/// not have the right set of qualifiers. 1358static QualType 1359BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, 1360 QualType ToType, 1361 ASTContext &Context) { 1362 QualType CanonFromType = Context.getCanonicalType(FromType); 1363 QualType CanonToType = Context.getCanonicalType(ToType); 1364 Qualifiers Quals = CanonFromType.getQualifiers(); 1365 1366 // Exact qualifier match -> return the pointer type we're converting to. 1367 if (CanonToType.getLocalQualifiers() == Quals) 1368 return ToType; 1369 1370 // Just build a canonical type that has the right qualifiers. 1371 return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); 1372} 1373 1374static bool isNullPointerConstantForConversion(Expr *Expr, 1375 bool InOverloadResolution, 1376 ASTContext &Context) { 1377 // Handle value-dependent integral null pointer constants correctly. 1378 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1379 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1380 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1381 return !InOverloadResolution; 1382 1383 return Expr->isNullPointerConstant(Context, 1384 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1385 : Expr::NPC_ValueDependentIsNull); 1386} 1387 1388/// IsPointerConversion - Determines whether the conversion of the 1389/// expression From, which has the (possibly adjusted) type FromType, 1390/// can be converted to the type ToType via a pointer conversion (C++ 1391/// 4.10). If so, returns true and places the converted type (that 1392/// might differ from ToType in its cv-qualifiers at some level) into 1393/// ConvertedType. 1394/// 1395/// This routine also supports conversions to and from block pointers 1396/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1397/// pointers to interfaces. FIXME: Once we've determined the 1398/// appropriate overloading rules for Objective-C, we may want to 1399/// split the Objective-C checks into a different routine; however, 1400/// GCC seems to consider all of these conversions to be pointer 1401/// conversions, so for now they live here. IncompatibleObjC will be 1402/// set if the conversion is an allowed Objective-C conversion that 1403/// should result in a warning. 1404bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1405 bool InOverloadResolution, 1406 QualType& ConvertedType, 1407 bool &IncompatibleObjC) { 1408 IncompatibleObjC = false; 1409 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 1410 return true; 1411 1412 // Conversion from a null pointer constant to any Objective-C pointer type. 1413 if (ToType->isObjCObjectPointerType() && 1414 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1415 ConvertedType = ToType; 1416 return true; 1417 } 1418 1419 // Blocks: Block pointers can be converted to void*. 1420 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1421 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1422 ConvertedType = ToType; 1423 return true; 1424 } 1425 // Blocks: A null pointer constant can be converted to a block 1426 // pointer type. 1427 if (ToType->isBlockPointerType() && 1428 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1429 ConvertedType = ToType; 1430 return true; 1431 } 1432 1433 // If the left-hand-side is nullptr_t, the right side can be a null 1434 // pointer constant. 1435 if (ToType->isNullPtrType() && 1436 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1437 ConvertedType = ToType; 1438 return true; 1439 } 1440 1441 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1442 if (!ToTypePtr) 1443 return false; 1444 1445 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1446 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1447 ConvertedType = ToType; 1448 return true; 1449 } 1450 1451 // Beyond this point, both types need to be pointers 1452 // , including objective-c pointers. 1453 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1454 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1455 ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, 1456 ToType, Context); 1457 return true; 1458 1459 } 1460 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1461 if (!FromTypePtr) 1462 return false; 1463 1464 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1465 1466 // If the unqualified pointee types are the same, this can't be a 1467 // pointer conversion, so don't do all of the work below. 1468 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 1469 return false; 1470 1471 // An rvalue of type "pointer to cv T," where T is an object type, 1472 // can be converted to an rvalue of type "pointer to cv void" (C++ 1473 // 4.10p2). 1474 if (FromPointeeType->isIncompleteOrObjectType() && 1475 ToPointeeType->isVoidType()) { 1476 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1477 ToPointeeType, 1478 ToType, Context); 1479 return true; 1480 } 1481 1482 // When we're overloading in C, we allow a special kind of pointer 1483 // conversion for compatible-but-not-identical pointee types. 1484 if (!getLangOptions().CPlusPlus && 1485 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1486 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1487 ToPointeeType, 1488 ToType, Context); 1489 return true; 1490 } 1491 1492 // C++ [conv.ptr]p3: 1493 // 1494 // An rvalue of type "pointer to cv D," where D is a class type, 1495 // can be converted to an rvalue of type "pointer to cv B," where 1496 // B is a base class (clause 10) of D. If B is an inaccessible 1497 // (clause 11) or ambiguous (10.2) base class of D, a program that 1498 // necessitates this conversion is ill-formed. The result of the 1499 // conversion is a pointer to the base class sub-object of the 1500 // derived class object. The null pointer value is converted to 1501 // the null pointer value of the destination type. 1502 // 1503 // Note that we do not check for ambiguity or inaccessibility 1504 // here. That is handled by CheckPointerConversion. 1505 if (getLangOptions().CPlusPlus && 1506 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1507 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1508 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1509 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1510 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1511 ToPointeeType, 1512 ToType, Context); 1513 return true; 1514 } 1515 1516 return false; 1517} 1518 1519/// isObjCPointerConversion - Determines whether this is an 1520/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1521/// with the same arguments and return values. 1522bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1523 QualType& ConvertedType, 1524 bool &IncompatibleObjC) { 1525 if (!getLangOptions().ObjC1) 1526 return false; 1527 1528 // First, we handle all conversions on ObjC object pointer types. 1529 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1530 const ObjCObjectPointerType *FromObjCPtr = 1531 FromType->getAs<ObjCObjectPointerType>(); 1532 1533 if (ToObjCPtr && FromObjCPtr) { 1534 // Objective C++: We're able to convert between "id" or "Class" and a 1535 // pointer to any interface (in both directions). 1536 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1537 ConvertedType = ToType; 1538 return true; 1539 } 1540 // Conversions with Objective-C's id<...>. 1541 if ((FromObjCPtr->isObjCQualifiedIdType() || 1542 ToObjCPtr->isObjCQualifiedIdType()) && 1543 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1544 /*compare=*/false)) { 1545 ConvertedType = ToType; 1546 return true; 1547 } 1548 // Objective C++: We're able to convert from a pointer to an 1549 // interface to a pointer to a different interface. 1550 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1551 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1552 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1553 if (getLangOptions().CPlusPlus && LHS && RHS && 1554 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1555 FromObjCPtr->getPointeeType())) 1556 return false; 1557 ConvertedType = ToType; 1558 return true; 1559 } 1560 1561 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1562 // Okay: this is some kind of implicit downcast of Objective-C 1563 // interfaces, which is permitted. However, we're going to 1564 // complain about it. 1565 IncompatibleObjC = true; 1566 ConvertedType = FromType; 1567 return true; 1568 } 1569 } 1570 // Beyond this point, both types need to be C pointers or block pointers. 1571 QualType ToPointeeType; 1572 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1573 ToPointeeType = ToCPtr->getPointeeType(); 1574 else if (const BlockPointerType *ToBlockPtr = 1575 ToType->getAs<BlockPointerType>()) { 1576 // Objective C++: We're able to convert from a pointer to any object 1577 // to a block pointer type. 1578 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1579 ConvertedType = ToType; 1580 return true; 1581 } 1582 ToPointeeType = ToBlockPtr->getPointeeType(); 1583 } 1584 else if (FromType->getAs<BlockPointerType>() && 1585 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1586 // Objective C++: We're able to convert from a block pointer type to a 1587 // pointer to any object. 1588 ConvertedType = ToType; 1589 return true; 1590 } 1591 else 1592 return false; 1593 1594 QualType FromPointeeType; 1595 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1596 FromPointeeType = FromCPtr->getPointeeType(); 1597 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1598 FromPointeeType = FromBlockPtr->getPointeeType(); 1599 else 1600 return false; 1601 1602 // If we have pointers to pointers, recursively check whether this 1603 // is an Objective-C conversion. 1604 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1605 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1606 IncompatibleObjC)) { 1607 // We always complain about this conversion. 1608 IncompatibleObjC = true; 1609 ConvertedType = ToType; 1610 return true; 1611 } 1612 // Allow conversion of pointee being objective-c pointer to another one; 1613 // as in I* to id. 1614 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1615 ToPointeeType->getAs<ObjCObjectPointerType>() && 1616 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1617 IncompatibleObjC)) { 1618 ConvertedType = ToType; 1619 return true; 1620 } 1621 1622 // If we have pointers to functions or blocks, check whether the only 1623 // differences in the argument and result types are in Objective-C 1624 // pointer conversions. If so, we permit the conversion (but 1625 // complain about it). 1626 const FunctionProtoType *FromFunctionType 1627 = FromPointeeType->getAs<FunctionProtoType>(); 1628 const FunctionProtoType *ToFunctionType 1629 = ToPointeeType->getAs<FunctionProtoType>(); 1630 if (FromFunctionType && ToFunctionType) { 1631 // If the function types are exactly the same, this isn't an 1632 // Objective-C pointer conversion. 1633 if (Context.getCanonicalType(FromPointeeType) 1634 == Context.getCanonicalType(ToPointeeType)) 1635 return false; 1636 1637 // Perform the quick checks that will tell us whether these 1638 // function types are obviously different. 1639 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1640 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1641 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1642 return false; 1643 1644 bool HasObjCConversion = false; 1645 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1646 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1647 // Okay, the types match exactly. Nothing to do. 1648 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1649 ToFunctionType->getResultType(), 1650 ConvertedType, IncompatibleObjC)) { 1651 // Okay, we have an Objective-C pointer conversion. 1652 HasObjCConversion = true; 1653 } else { 1654 // Function types are too different. Abort. 1655 return false; 1656 } 1657 1658 // Check argument types. 1659 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1660 ArgIdx != NumArgs; ++ArgIdx) { 1661 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1662 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1663 if (Context.getCanonicalType(FromArgType) 1664 == Context.getCanonicalType(ToArgType)) { 1665 // Okay, the types match exactly. Nothing to do. 1666 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1667 ConvertedType, IncompatibleObjC)) { 1668 // Okay, we have an Objective-C pointer conversion. 1669 HasObjCConversion = true; 1670 } else { 1671 // Argument types are too different. Abort. 1672 return false; 1673 } 1674 } 1675 1676 if (HasObjCConversion) { 1677 // We had an Objective-C conversion. Allow this pointer 1678 // conversion, but complain about it. 1679 ConvertedType = ToType; 1680 IncompatibleObjC = true; 1681 return true; 1682 } 1683 } 1684 1685 return false; 1686} 1687 1688/// FunctionArgTypesAreEqual - This routine checks two function proto types 1689/// for equlity of their argument types. Caller has already checked that 1690/// they have same number of arguments. This routine assumes that Objective-C 1691/// pointer types which only differ in their protocol qualifiers are equal. 1692bool Sema::FunctionArgTypesAreEqual(FunctionProtoType* OldType, 1693 FunctionProtoType* NewType){ 1694 if (!getLangOptions().ObjC1) 1695 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 1696 NewType->arg_type_begin()); 1697 1698 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 1699 N = NewType->arg_type_begin(), 1700 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 1701 QualType ToType = (*O); 1702 QualType FromType = (*N); 1703 if (ToType != FromType) { 1704 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 1705 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 1706 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 1707 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 1708 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 1709 PTFr->getPointeeType()->isObjCQualifiedClassType())) 1710 continue; 1711 } 1712 else if (const ObjCObjectPointerType *PTTo = 1713 ToType->getAs<ObjCObjectPointerType>()) { 1714 if (const ObjCObjectPointerType *PTFr = 1715 FromType->getAs<ObjCObjectPointerType>()) 1716 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 1717 continue; 1718 } 1719 return false; 1720 } 1721 } 1722 return true; 1723} 1724 1725/// CheckPointerConversion - Check the pointer conversion from the 1726/// expression From to the type ToType. This routine checks for 1727/// ambiguous or inaccessible derived-to-base pointer 1728/// conversions for which IsPointerConversion has already returned 1729/// true. It returns true and produces a diagnostic if there was an 1730/// error, or returns false otherwise. 1731bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1732 CastKind &Kind, 1733 CXXCastPath& BasePath, 1734 bool IgnoreBaseAccess) { 1735 QualType FromType = From->getType(); 1736 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 1737 1738 if (CXXBoolLiteralExpr* LitBool 1739 = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens())) 1740 if (!IsCStyleOrFunctionalCast && LitBool->getValue() == false) 1741 Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false) 1742 << ToType; 1743 1744 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1745 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1746 QualType FromPointeeType = FromPtrType->getPointeeType(), 1747 ToPointeeType = ToPtrType->getPointeeType(); 1748 1749 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1750 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 1751 // We must have a derived-to-base conversion. Check an 1752 // ambiguous or inaccessible conversion. 1753 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1754 From->getExprLoc(), 1755 From->getSourceRange(), &BasePath, 1756 IgnoreBaseAccess)) 1757 return true; 1758 1759 // The conversion was successful. 1760 Kind = CK_DerivedToBase; 1761 } 1762 } 1763 if (const ObjCObjectPointerType *FromPtrType = 1764 FromType->getAs<ObjCObjectPointerType>()) 1765 if (const ObjCObjectPointerType *ToPtrType = 1766 ToType->getAs<ObjCObjectPointerType>()) { 1767 // Objective-C++ conversions are always okay. 1768 // FIXME: We should have a different class of conversions for the 1769 // Objective-C++ implicit conversions. 1770 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1771 return false; 1772 1773 } 1774 return false; 1775} 1776 1777/// IsMemberPointerConversion - Determines whether the conversion of the 1778/// expression From, which has the (possibly adjusted) type FromType, can be 1779/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1780/// If so, returns true and places the converted type (that might differ from 1781/// ToType in its cv-qualifiers at some level) into ConvertedType. 1782bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1783 QualType ToType, 1784 bool InOverloadResolution, 1785 QualType &ConvertedType) { 1786 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1787 if (!ToTypePtr) 1788 return false; 1789 1790 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1791 if (From->isNullPointerConstant(Context, 1792 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1793 : Expr::NPC_ValueDependentIsNull)) { 1794 ConvertedType = ToType; 1795 return true; 1796 } 1797 1798 // Otherwise, both types have to be member pointers. 1799 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1800 if (!FromTypePtr) 1801 return false; 1802 1803 // A pointer to member of B can be converted to a pointer to member of D, 1804 // where D is derived from B (C++ 4.11p2). 1805 QualType FromClass(FromTypePtr->getClass(), 0); 1806 QualType ToClass(ToTypePtr->getClass(), 0); 1807 // FIXME: What happens when these are dependent? Is this function even called? 1808 1809 if (IsDerivedFrom(ToClass, FromClass)) { 1810 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1811 ToClass.getTypePtr()); 1812 return true; 1813 } 1814 1815 return false; 1816} 1817 1818/// CheckMemberPointerConversion - Check the member pointer conversion from the 1819/// expression From to the type ToType. This routine checks for ambiguous or 1820/// virtual or inaccessible base-to-derived member pointer conversions 1821/// for which IsMemberPointerConversion has already returned true. It returns 1822/// true and produces a diagnostic if there was an error, or returns false 1823/// otherwise. 1824bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1825 CastKind &Kind, 1826 CXXCastPath &BasePath, 1827 bool IgnoreBaseAccess) { 1828 QualType FromType = From->getType(); 1829 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1830 if (!FromPtrType) { 1831 // This must be a null pointer to member pointer conversion 1832 assert(From->isNullPointerConstant(Context, 1833 Expr::NPC_ValueDependentIsNull) && 1834 "Expr must be null pointer constant!"); 1835 Kind = CK_NullToMemberPointer; 1836 return false; 1837 } 1838 1839 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1840 assert(ToPtrType && "No member pointer cast has a target type " 1841 "that is not a member pointer."); 1842 1843 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1844 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1845 1846 // FIXME: What about dependent types? 1847 assert(FromClass->isRecordType() && "Pointer into non-class."); 1848 assert(ToClass->isRecordType() && "Pointer into non-class."); 1849 1850 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1851 /*DetectVirtual=*/true); 1852 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1853 assert(DerivationOkay && 1854 "Should not have been called if derivation isn't OK."); 1855 (void)DerivationOkay; 1856 1857 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1858 getUnqualifiedType())) { 1859 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1860 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1861 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1862 return true; 1863 } 1864 1865 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1866 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1867 << FromClass << ToClass << QualType(VBase, 0) 1868 << From->getSourceRange(); 1869 return true; 1870 } 1871 1872 if (!IgnoreBaseAccess) 1873 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 1874 Paths.front(), 1875 diag::err_downcast_from_inaccessible_base); 1876 1877 // Must be a base to derived member conversion. 1878 BuildBasePathArray(Paths, BasePath); 1879 Kind = CK_BaseToDerivedMemberPointer; 1880 return false; 1881} 1882 1883/// IsQualificationConversion - Determines whether the conversion from 1884/// an rvalue of type FromType to ToType is a qualification conversion 1885/// (C++ 4.4). 1886bool 1887Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1888 FromType = Context.getCanonicalType(FromType); 1889 ToType = Context.getCanonicalType(ToType); 1890 1891 // If FromType and ToType are the same type, this is not a 1892 // qualification conversion. 1893 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 1894 return false; 1895 1896 // (C++ 4.4p4): 1897 // A conversion can add cv-qualifiers at levels other than the first 1898 // in multi-level pointers, subject to the following rules: [...] 1899 bool PreviousToQualsIncludeConst = true; 1900 bool UnwrappedAnyPointer = false; 1901 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 1902 // Within each iteration of the loop, we check the qualifiers to 1903 // determine if this still looks like a qualification 1904 // conversion. Then, if all is well, we unwrap one more level of 1905 // pointers or pointers-to-members and do it all again 1906 // until there are no more pointers or pointers-to-members left to 1907 // unwrap. 1908 UnwrappedAnyPointer = true; 1909 1910 // -- for every j > 0, if const is in cv 1,j then const is in cv 1911 // 2,j, and similarly for volatile. 1912 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1913 return false; 1914 1915 // -- if the cv 1,j and cv 2,j are different, then const is in 1916 // every cv for 0 < k < j. 1917 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1918 && !PreviousToQualsIncludeConst) 1919 return false; 1920 1921 // Keep track of whether all prior cv-qualifiers in the "to" type 1922 // include const. 1923 PreviousToQualsIncludeConst 1924 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1925 } 1926 1927 // We are left with FromType and ToType being the pointee types 1928 // after unwrapping the original FromType and ToType the same number 1929 // of types. If we unwrapped any pointers, and if FromType and 1930 // ToType have the same unqualified type (since we checked 1931 // qualifiers above), then this is a qualification conversion. 1932 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1933} 1934 1935/// Determines whether there is a user-defined conversion sequence 1936/// (C++ [over.ics.user]) that converts expression From to the type 1937/// ToType. If such a conversion exists, User will contain the 1938/// user-defined conversion sequence that performs such a conversion 1939/// and this routine will return true. Otherwise, this routine returns 1940/// false and User is unspecified. 1941/// 1942/// \param AllowExplicit true if the conversion should consider C++0x 1943/// "explicit" conversion functions as well as non-explicit conversion 1944/// functions (C++0x [class.conv.fct]p2). 1945static OverloadingResult 1946IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 1947 UserDefinedConversionSequence& User, 1948 OverloadCandidateSet& CandidateSet, 1949 bool AllowExplicit) { 1950 // Whether we will only visit constructors. 1951 bool ConstructorsOnly = false; 1952 1953 // If the type we are conversion to is a class type, enumerate its 1954 // constructors. 1955 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1956 // C++ [over.match.ctor]p1: 1957 // When objects of class type are direct-initialized (8.5), or 1958 // copy-initialized from an expression of the same or a 1959 // derived class type (8.5), overload resolution selects the 1960 // constructor. [...] For copy-initialization, the candidate 1961 // functions are all the converting constructors (12.3.1) of 1962 // that class. The argument list is the expression-list within 1963 // the parentheses of the initializer. 1964 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 1965 (From->getType()->getAs<RecordType>() && 1966 S.IsDerivedFrom(From->getType(), ToType))) 1967 ConstructorsOnly = true; 1968 1969 if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) { 1970 // We're not going to find any constructors. 1971 } else if (CXXRecordDecl *ToRecordDecl 1972 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1973 DeclContext::lookup_iterator Con, ConEnd; 1974 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); 1975 Con != ConEnd; ++Con) { 1976 NamedDecl *D = *Con; 1977 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 1978 1979 // Find the constructor (which may be a template). 1980 CXXConstructorDecl *Constructor = 0; 1981 FunctionTemplateDecl *ConstructorTmpl 1982 = dyn_cast<FunctionTemplateDecl>(D); 1983 if (ConstructorTmpl) 1984 Constructor 1985 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1986 else 1987 Constructor = cast<CXXConstructorDecl>(D); 1988 1989 if (!Constructor->isInvalidDecl() && 1990 Constructor->isConvertingConstructor(AllowExplicit)) { 1991 if (ConstructorTmpl) 1992 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 1993 /*ExplicitArgs*/ 0, 1994 &From, 1, CandidateSet, 1995 /*SuppressUserConversions=*/ 1996 !ConstructorsOnly); 1997 else 1998 // Allow one user-defined conversion when user specifies a 1999 // From->ToType conversion via an static cast (c-style, etc). 2000 S.AddOverloadCandidate(Constructor, FoundDecl, 2001 &From, 1, CandidateSet, 2002 /*SuppressUserConversions=*/ 2003 !ConstructorsOnly); 2004 } 2005 } 2006 } 2007 } 2008 2009 // Enumerate conversion functions, if we're allowed to. 2010 if (ConstructorsOnly) { 2011 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 2012 S.PDiag(0) << From->getSourceRange())) { 2013 // No conversion functions from incomplete types. 2014 } else if (const RecordType *FromRecordType 2015 = From->getType()->getAs<RecordType>()) { 2016 if (CXXRecordDecl *FromRecordDecl 2017 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 2018 // Add all of the conversion functions as candidates. 2019 const UnresolvedSetImpl *Conversions 2020 = FromRecordDecl->getVisibleConversionFunctions(); 2021 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2022 E = Conversions->end(); I != E; ++I) { 2023 DeclAccessPair FoundDecl = I.getPair(); 2024 NamedDecl *D = FoundDecl.getDecl(); 2025 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 2026 if (isa<UsingShadowDecl>(D)) 2027 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2028 2029 CXXConversionDecl *Conv; 2030 FunctionTemplateDecl *ConvTemplate; 2031 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 2032 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2033 else 2034 Conv = cast<CXXConversionDecl>(D); 2035 2036 if (AllowExplicit || !Conv->isExplicit()) { 2037 if (ConvTemplate) 2038 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 2039 ActingContext, From, ToType, 2040 CandidateSet); 2041 else 2042 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 2043 From, ToType, CandidateSet); 2044 } 2045 } 2046 } 2047 } 2048 2049 OverloadCandidateSet::iterator Best; 2050 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2051 case OR_Success: 2052 // Record the standard conversion we used and the conversion function. 2053 if (CXXConstructorDecl *Constructor 2054 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 2055 // C++ [over.ics.user]p1: 2056 // If the user-defined conversion is specified by a 2057 // constructor (12.3.1), the initial standard conversion 2058 // sequence converts the source type to the type required by 2059 // the argument of the constructor. 2060 // 2061 QualType ThisType = Constructor->getThisType(S.Context); 2062 if (Best->Conversions[0].isEllipsis()) 2063 User.EllipsisConversion = true; 2064 else { 2065 User.Before = Best->Conversions[0].Standard; 2066 User.EllipsisConversion = false; 2067 } 2068 User.ConversionFunction = Constructor; 2069 User.After.setAsIdentityConversion(); 2070 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2071 User.After.setAllToTypes(ToType); 2072 return OR_Success; 2073 } else if (CXXConversionDecl *Conversion 2074 = dyn_cast<CXXConversionDecl>(Best->Function)) { 2075 // C++ [over.ics.user]p1: 2076 // 2077 // [...] If the user-defined conversion is specified by a 2078 // conversion function (12.3.2), the initial standard 2079 // conversion sequence converts the source type to the 2080 // implicit object parameter of the conversion function. 2081 User.Before = Best->Conversions[0].Standard; 2082 User.ConversionFunction = Conversion; 2083 User.EllipsisConversion = false; 2084 2085 // C++ [over.ics.user]p2: 2086 // The second standard conversion sequence converts the 2087 // result of the user-defined conversion to the target type 2088 // for the sequence. Since an implicit conversion sequence 2089 // is an initialization, the special rules for 2090 // initialization by user-defined conversion apply when 2091 // selecting the best user-defined conversion for a 2092 // user-defined conversion sequence (see 13.3.3 and 2093 // 13.3.3.1). 2094 User.After = Best->FinalConversion; 2095 return OR_Success; 2096 } else { 2097 llvm_unreachable("Not a constructor or conversion function?"); 2098 return OR_No_Viable_Function; 2099 } 2100 2101 case OR_No_Viable_Function: 2102 return OR_No_Viable_Function; 2103 case OR_Deleted: 2104 // No conversion here! We're done. 2105 return OR_Deleted; 2106 2107 case OR_Ambiguous: 2108 return OR_Ambiguous; 2109 } 2110 2111 return OR_No_Viable_Function; 2112} 2113 2114bool 2115Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2116 ImplicitConversionSequence ICS; 2117 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2118 OverloadingResult OvResult = 2119 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 2120 CandidateSet, false); 2121 if (OvResult == OR_Ambiguous) 2122 Diag(From->getSourceRange().getBegin(), 2123 diag::err_typecheck_ambiguous_condition) 2124 << From->getType() << ToType << From->getSourceRange(); 2125 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2126 Diag(From->getSourceRange().getBegin(), 2127 diag::err_typecheck_nonviable_condition) 2128 << From->getType() << ToType << From->getSourceRange(); 2129 else 2130 return false; 2131 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); 2132 return true; 2133} 2134 2135/// CompareImplicitConversionSequences - Compare two implicit 2136/// conversion sequences to determine whether one is better than the 2137/// other or if they are indistinguishable (C++ 13.3.3.2). 2138static ImplicitConversionSequence::CompareKind 2139CompareImplicitConversionSequences(Sema &S, 2140 const ImplicitConversionSequence& ICS1, 2141 const ImplicitConversionSequence& ICS2) 2142{ 2143 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2144 // conversion sequences (as defined in 13.3.3.1) 2145 // -- a standard conversion sequence (13.3.3.1.1) is a better 2146 // conversion sequence than a user-defined conversion sequence or 2147 // an ellipsis conversion sequence, and 2148 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2149 // conversion sequence than an ellipsis conversion sequence 2150 // (13.3.3.1.3). 2151 // 2152 // C++0x [over.best.ics]p10: 2153 // For the purpose of ranking implicit conversion sequences as 2154 // described in 13.3.3.2, the ambiguous conversion sequence is 2155 // treated as a user-defined sequence that is indistinguishable 2156 // from any other user-defined conversion sequence. 2157 if (ICS1.getKindRank() < ICS2.getKindRank()) 2158 return ImplicitConversionSequence::Better; 2159 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2160 return ImplicitConversionSequence::Worse; 2161 2162 // The following checks require both conversion sequences to be of 2163 // the same kind. 2164 if (ICS1.getKind() != ICS2.getKind()) 2165 return ImplicitConversionSequence::Indistinguishable; 2166 2167 // Two implicit conversion sequences of the same form are 2168 // indistinguishable conversion sequences unless one of the 2169 // following rules apply: (C++ 13.3.3.2p3): 2170 if (ICS1.isStandard()) 2171 return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard); 2172 else if (ICS1.isUserDefined()) { 2173 // User-defined conversion sequence U1 is a better conversion 2174 // sequence than another user-defined conversion sequence U2 if 2175 // they contain the same user-defined conversion function or 2176 // constructor and if the second standard conversion sequence of 2177 // U1 is better than the second standard conversion sequence of 2178 // U2 (C++ 13.3.3.2p3). 2179 if (ICS1.UserDefined.ConversionFunction == 2180 ICS2.UserDefined.ConversionFunction) 2181 return CompareStandardConversionSequences(S, 2182 ICS1.UserDefined.After, 2183 ICS2.UserDefined.After); 2184 } 2185 2186 return ImplicitConversionSequence::Indistinguishable; 2187} 2188 2189static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2190 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2191 Qualifiers Quals; 2192 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2193 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2194 } 2195 2196 return Context.hasSameUnqualifiedType(T1, T2); 2197} 2198 2199// Per 13.3.3.2p3, compare the given standard conversion sequences to 2200// determine if one is a proper subset of the other. 2201static ImplicitConversionSequence::CompareKind 2202compareStandardConversionSubsets(ASTContext &Context, 2203 const StandardConversionSequence& SCS1, 2204 const StandardConversionSequence& SCS2) { 2205 ImplicitConversionSequence::CompareKind Result 2206 = ImplicitConversionSequence::Indistinguishable; 2207 2208 // the identity conversion sequence is considered to be a subsequence of 2209 // any non-identity conversion sequence 2210 if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) { 2211 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2212 return ImplicitConversionSequence::Better; 2213 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2214 return ImplicitConversionSequence::Worse; 2215 } 2216 2217 if (SCS1.Second != SCS2.Second) { 2218 if (SCS1.Second == ICK_Identity) 2219 Result = ImplicitConversionSequence::Better; 2220 else if (SCS2.Second == ICK_Identity) 2221 Result = ImplicitConversionSequence::Worse; 2222 else 2223 return ImplicitConversionSequence::Indistinguishable; 2224 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2225 return ImplicitConversionSequence::Indistinguishable; 2226 2227 if (SCS1.Third == SCS2.Third) { 2228 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2229 : ImplicitConversionSequence::Indistinguishable; 2230 } 2231 2232 if (SCS1.Third == ICK_Identity) 2233 return Result == ImplicitConversionSequence::Worse 2234 ? ImplicitConversionSequence::Indistinguishable 2235 : ImplicitConversionSequence::Better; 2236 2237 if (SCS2.Third == ICK_Identity) 2238 return Result == ImplicitConversionSequence::Better 2239 ? ImplicitConversionSequence::Indistinguishable 2240 : ImplicitConversionSequence::Worse; 2241 2242 return ImplicitConversionSequence::Indistinguishable; 2243} 2244 2245/// CompareStandardConversionSequences - Compare two standard 2246/// conversion sequences to determine whether one is better than the 2247/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2248static ImplicitConversionSequence::CompareKind 2249CompareStandardConversionSequences(Sema &S, 2250 const StandardConversionSequence& SCS1, 2251 const StandardConversionSequence& SCS2) 2252{ 2253 // Standard conversion sequence S1 is a better conversion sequence 2254 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2255 2256 // -- S1 is a proper subsequence of S2 (comparing the conversion 2257 // sequences in the canonical form defined by 13.3.3.1.1, 2258 // excluding any Lvalue Transformation; the identity conversion 2259 // sequence is considered to be a subsequence of any 2260 // non-identity conversion sequence) or, if not that, 2261 if (ImplicitConversionSequence::CompareKind CK 2262 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 2263 return CK; 2264 2265 // -- the rank of S1 is better than the rank of S2 (by the rules 2266 // defined below), or, if not that, 2267 ImplicitConversionRank Rank1 = SCS1.getRank(); 2268 ImplicitConversionRank Rank2 = SCS2.getRank(); 2269 if (Rank1 < Rank2) 2270 return ImplicitConversionSequence::Better; 2271 else if (Rank2 < Rank1) 2272 return ImplicitConversionSequence::Worse; 2273 2274 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2275 // are indistinguishable unless one of the following rules 2276 // applies: 2277 2278 // A conversion that is not a conversion of a pointer, or 2279 // pointer to member, to bool is better than another conversion 2280 // that is such a conversion. 2281 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2282 return SCS2.isPointerConversionToBool() 2283 ? ImplicitConversionSequence::Better 2284 : ImplicitConversionSequence::Worse; 2285 2286 // C++ [over.ics.rank]p4b2: 2287 // 2288 // If class B is derived directly or indirectly from class A, 2289 // conversion of B* to A* is better than conversion of B* to 2290 // void*, and conversion of A* to void* is better than conversion 2291 // of B* to void*. 2292 bool SCS1ConvertsToVoid 2293 = SCS1.isPointerConversionToVoidPointer(S.Context); 2294 bool SCS2ConvertsToVoid 2295 = SCS2.isPointerConversionToVoidPointer(S.Context); 2296 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2297 // Exactly one of the conversion sequences is a conversion to 2298 // a void pointer; it's the worse conversion. 2299 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2300 : ImplicitConversionSequence::Worse; 2301 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2302 // Neither conversion sequence converts to a void pointer; compare 2303 // their derived-to-base conversions. 2304 if (ImplicitConversionSequence::CompareKind DerivedCK 2305 = CompareDerivedToBaseConversions(S, SCS1, SCS2)) 2306 return DerivedCK; 2307 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 2308 // Both conversion sequences are conversions to void 2309 // pointers. Compare the source types to determine if there's an 2310 // inheritance relationship in their sources. 2311 QualType FromType1 = SCS1.getFromType(); 2312 QualType FromType2 = SCS2.getFromType(); 2313 2314 // Adjust the types we're converting from via the array-to-pointer 2315 // conversion, if we need to. 2316 if (SCS1.First == ICK_Array_To_Pointer) 2317 FromType1 = S.Context.getArrayDecayedType(FromType1); 2318 if (SCS2.First == ICK_Array_To_Pointer) 2319 FromType2 = S.Context.getArrayDecayedType(FromType2); 2320 2321 QualType FromPointee1 2322 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2323 QualType FromPointee2 2324 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2325 2326 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2327 return ImplicitConversionSequence::Better; 2328 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2329 return ImplicitConversionSequence::Worse; 2330 2331 // Objective-C++: If one interface is more specific than the 2332 // other, it is the better one. 2333 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2334 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2335 if (FromIface1 && FromIface1) { 2336 if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2337 return ImplicitConversionSequence::Better; 2338 else if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2339 return ImplicitConversionSequence::Worse; 2340 } 2341 } 2342 2343 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2344 // bullet 3). 2345 if (ImplicitConversionSequence::CompareKind QualCK 2346 = CompareQualificationConversions(S, SCS1, SCS2)) 2347 return QualCK; 2348 2349 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2350 // C++0x [over.ics.rank]p3b4: 2351 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2352 // implicit object parameter of a non-static member function declared 2353 // without a ref-qualifier, and S1 binds an rvalue reference to an 2354 // rvalue and S2 binds an lvalue reference. 2355 // FIXME: We don't know if we're dealing with the implicit object parameter, 2356 // or if the member function in this case has a ref qualifier. 2357 // (Of course, we don't have ref qualifiers yet.) 2358 if (SCS1.RRefBinding != SCS2.RRefBinding) 2359 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 2360 : ImplicitConversionSequence::Worse; 2361 2362 // C++ [over.ics.rank]p3b4: 2363 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2364 // which the references refer are the same type except for 2365 // top-level cv-qualifiers, and the type to which the reference 2366 // initialized by S2 refers is more cv-qualified than the type 2367 // to which the reference initialized by S1 refers. 2368 QualType T1 = SCS1.getToType(2); 2369 QualType T2 = SCS2.getToType(2); 2370 T1 = S.Context.getCanonicalType(T1); 2371 T2 = S.Context.getCanonicalType(T2); 2372 Qualifiers T1Quals, T2Quals; 2373 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2374 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2375 if (UnqualT1 == UnqualT2) { 2376 // If the type is an array type, promote the element qualifiers to the type 2377 // for comparison. 2378 if (isa<ArrayType>(T1) && T1Quals) 2379 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2380 if (isa<ArrayType>(T2) && T2Quals) 2381 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2382 if (T2.isMoreQualifiedThan(T1)) 2383 return ImplicitConversionSequence::Better; 2384 else if (T1.isMoreQualifiedThan(T2)) 2385 return ImplicitConversionSequence::Worse; 2386 } 2387 } 2388 2389 return ImplicitConversionSequence::Indistinguishable; 2390} 2391 2392/// CompareQualificationConversions - Compares two standard conversion 2393/// sequences to determine whether they can be ranked based on their 2394/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2395ImplicitConversionSequence::CompareKind 2396CompareQualificationConversions(Sema &S, 2397 const StandardConversionSequence& SCS1, 2398 const StandardConversionSequence& SCS2) { 2399 // C++ 13.3.3.2p3: 2400 // -- S1 and S2 differ only in their qualification conversion and 2401 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2402 // cv-qualification signature of type T1 is a proper subset of 2403 // the cv-qualification signature of type T2, and S1 is not the 2404 // deprecated string literal array-to-pointer conversion (4.2). 2405 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2406 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2407 return ImplicitConversionSequence::Indistinguishable; 2408 2409 // FIXME: the example in the standard doesn't use a qualification 2410 // conversion (!) 2411 QualType T1 = SCS1.getToType(2); 2412 QualType T2 = SCS2.getToType(2); 2413 T1 = S.Context.getCanonicalType(T1); 2414 T2 = S.Context.getCanonicalType(T2); 2415 Qualifiers T1Quals, T2Quals; 2416 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2417 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2418 2419 // If the types are the same, we won't learn anything by unwrapped 2420 // them. 2421 if (UnqualT1 == UnqualT2) 2422 return ImplicitConversionSequence::Indistinguishable; 2423 2424 // If the type is an array type, promote the element qualifiers to the type 2425 // for comparison. 2426 if (isa<ArrayType>(T1) && T1Quals) 2427 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2428 if (isa<ArrayType>(T2) && T2Quals) 2429 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2430 2431 ImplicitConversionSequence::CompareKind Result 2432 = ImplicitConversionSequence::Indistinguishable; 2433 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 2434 // Within each iteration of the loop, we check the qualifiers to 2435 // determine if this still looks like a qualification 2436 // conversion. Then, if all is well, we unwrap one more level of 2437 // pointers or pointers-to-members and do it all again 2438 // until there are no more pointers or pointers-to-members left 2439 // to unwrap. This essentially mimics what 2440 // IsQualificationConversion does, but here we're checking for a 2441 // strict subset of qualifiers. 2442 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2443 // The qualifiers are the same, so this doesn't tell us anything 2444 // about how the sequences rank. 2445 ; 2446 else if (T2.isMoreQualifiedThan(T1)) { 2447 // T1 has fewer qualifiers, so it could be the better sequence. 2448 if (Result == ImplicitConversionSequence::Worse) 2449 // Neither has qualifiers that are a subset of the other's 2450 // qualifiers. 2451 return ImplicitConversionSequence::Indistinguishable; 2452 2453 Result = ImplicitConversionSequence::Better; 2454 } else if (T1.isMoreQualifiedThan(T2)) { 2455 // T2 has fewer qualifiers, so it could be the better sequence. 2456 if (Result == ImplicitConversionSequence::Better) 2457 // Neither has qualifiers that are a subset of the other's 2458 // qualifiers. 2459 return ImplicitConversionSequence::Indistinguishable; 2460 2461 Result = ImplicitConversionSequence::Worse; 2462 } else { 2463 // Qualifiers are disjoint. 2464 return ImplicitConversionSequence::Indistinguishable; 2465 } 2466 2467 // If the types after this point are equivalent, we're done. 2468 if (S.Context.hasSameUnqualifiedType(T1, T2)) 2469 break; 2470 } 2471 2472 // Check that the winning standard conversion sequence isn't using 2473 // the deprecated string literal array to pointer conversion. 2474 switch (Result) { 2475 case ImplicitConversionSequence::Better: 2476 if (SCS1.DeprecatedStringLiteralToCharPtr) 2477 Result = ImplicitConversionSequence::Indistinguishable; 2478 break; 2479 2480 case ImplicitConversionSequence::Indistinguishable: 2481 break; 2482 2483 case ImplicitConversionSequence::Worse: 2484 if (SCS2.DeprecatedStringLiteralToCharPtr) 2485 Result = ImplicitConversionSequence::Indistinguishable; 2486 break; 2487 } 2488 2489 return Result; 2490} 2491 2492/// CompareDerivedToBaseConversions - Compares two standard conversion 2493/// sequences to determine whether they can be ranked based on their 2494/// various kinds of derived-to-base conversions (C++ 2495/// [over.ics.rank]p4b3). As part of these checks, we also look at 2496/// conversions between Objective-C interface types. 2497ImplicitConversionSequence::CompareKind 2498CompareDerivedToBaseConversions(Sema &S, 2499 const StandardConversionSequence& SCS1, 2500 const StandardConversionSequence& SCS2) { 2501 QualType FromType1 = SCS1.getFromType(); 2502 QualType ToType1 = SCS1.getToType(1); 2503 QualType FromType2 = SCS2.getFromType(); 2504 QualType ToType2 = SCS2.getToType(1); 2505 2506 // Adjust the types we're converting from via the array-to-pointer 2507 // conversion, if we need to. 2508 if (SCS1.First == ICK_Array_To_Pointer) 2509 FromType1 = S.Context.getArrayDecayedType(FromType1); 2510 if (SCS2.First == ICK_Array_To_Pointer) 2511 FromType2 = S.Context.getArrayDecayedType(FromType2); 2512 2513 // Canonicalize all of the types. 2514 FromType1 = S.Context.getCanonicalType(FromType1); 2515 ToType1 = S.Context.getCanonicalType(ToType1); 2516 FromType2 = S.Context.getCanonicalType(FromType2); 2517 ToType2 = S.Context.getCanonicalType(ToType2); 2518 2519 // C++ [over.ics.rank]p4b3: 2520 // 2521 // If class B is derived directly or indirectly from class A and 2522 // class C is derived directly or indirectly from B, 2523 // 2524 // For Objective-C, we let A, B, and C also be Objective-C 2525 // interfaces. 2526 2527 // Compare based on pointer conversions. 2528 if (SCS1.Second == ICK_Pointer_Conversion && 2529 SCS2.Second == ICK_Pointer_Conversion && 2530 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2531 FromType1->isPointerType() && FromType2->isPointerType() && 2532 ToType1->isPointerType() && ToType2->isPointerType()) { 2533 QualType FromPointee1 2534 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2535 QualType ToPointee1 2536 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2537 QualType FromPointee2 2538 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2539 QualType ToPointee2 2540 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2541 2542 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2543 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2544 const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>(); 2545 const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>(); 2546 2547 // -- conversion of C* to B* is better than conversion of C* to A*, 2548 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2549 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 2550 return ImplicitConversionSequence::Better; 2551 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 2552 return ImplicitConversionSequence::Worse; 2553 2554 if (ToIface1 && ToIface2) { 2555 if (S.Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 2556 return ImplicitConversionSequence::Better; 2557 else if (S.Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 2558 return ImplicitConversionSequence::Worse; 2559 } 2560 } 2561 2562 // -- conversion of B* to A* is better than conversion of C* to A*, 2563 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2564 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2565 return ImplicitConversionSequence::Better; 2566 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2567 return ImplicitConversionSequence::Worse; 2568 2569 if (FromIface1 && FromIface2) { 2570 if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2571 return ImplicitConversionSequence::Better; 2572 else if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2573 return ImplicitConversionSequence::Worse; 2574 } 2575 } 2576 } 2577 2578 // Ranking of member-pointer types. 2579 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2580 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2581 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2582 const MemberPointerType * FromMemPointer1 = 2583 FromType1->getAs<MemberPointerType>(); 2584 const MemberPointerType * ToMemPointer1 = 2585 ToType1->getAs<MemberPointerType>(); 2586 const MemberPointerType * FromMemPointer2 = 2587 FromType2->getAs<MemberPointerType>(); 2588 const MemberPointerType * ToMemPointer2 = 2589 ToType2->getAs<MemberPointerType>(); 2590 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2591 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2592 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2593 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2594 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2595 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2596 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2597 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2598 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2599 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2600 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 2601 return ImplicitConversionSequence::Worse; 2602 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 2603 return ImplicitConversionSequence::Better; 2604 } 2605 // conversion of B::* to C::* is better than conversion of A::* to C::* 2606 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2607 if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2608 return ImplicitConversionSequence::Better; 2609 else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2610 return ImplicitConversionSequence::Worse; 2611 } 2612 } 2613 2614 if (SCS1.Second == ICK_Derived_To_Base) { 2615 // -- conversion of C to B is better than conversion of C to A, 2616 // -- binding of an expression of type C to a reference of type 2617 // B& is better than binding an expression of type C to a 2618 // reference of type A&, 2619 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 2620 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2621 if (S.IsDerivedFrom(ToType1, ToType2)) 2622 return ImplicitConversionSequence::Better; 2623 else if (S.IsDerivedFrom(ToType2, ToType1)) 2624 return ImplicitConversionSequence::Worse; 2625 } 2626 2627 // -- conversion of B to A is better than conversion of C to A. 2628 // -- binding of an expression of type B to a reference of type 2629 // A& is better than binding an expression of type C to a 2630 // reference of type A&, 2631 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 2632 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2633 if (S.IsDerivedFrom(FromType2, FromType1)) 2634 return ImplicitConversionSequence::Better; 2635 else if (S.IsDerivedFrom(FromType1, FromType2)) 2636 return ImplicitConversionSequence::Worse; 2637 } 2638 } 2639 2640 return ImplicitConversionSequence::Indistinguishable; 2641} 2642 2643/// CompareReferenceRelationship - Compare the two types T1 and T2 to 2644/// determine whether they are reference-related, 2645/// reference-compatible, reference-compatible with added 2646/// qualification, or incompatible, for use in C++ initialization by 2647/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 2648/// type, and the first type (T1) is the pointee type of the reference 2649/// type being initialized. 2650Sema::ReferenceCompareResult 2651Sema::CompareReferenceRelationship(SourceLocation Loc, 2652 QualType OrigT1, QualType OrigT2, 2653 bool &DerivedToBase, 2654 bool &ObjCConversion) { 2655 assert(!OrigT1->isReferenceType() && 2656 "T1 must be the pointee type of the reference type"); 2657 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 2658 2659 QualType T1 = Context.getCanonicalType(OrigT1); 2660 QualType T2 = Context.getCanonicalType(OrigT2); 2661 Qualifiers T1Quals, T2Quals; 2662 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2663 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2664 2665 // C++ [dcl.init.ref]p4: 2666 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 2667 // reference-related to "cv2 T2" if T1 is the same type as T2, or 2668 // T1 is a base class of T2. 2669 DerivedToBase = false; 2670 ObjCConversion = false; 2671 if (UnqualT1 == UnqualT2) { 2672 // Nothing to do. 2673 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 2674 IsDerivedFrom(UnqualT2, UnqualT1)) 2675 DerivedToBase = true; 2676 else if (UnqualT1->isObjCObjectOrInterfaceType() && 2677 UnqualT2->isObjCObjectOrInterfaceType() && 2678 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 2679 ObjCConversion = true; 2680 else 2681 return Ref_Incompatible; 2682 2683 // At this point, we know that T1 and T2 are reference-related (at 2684 // least). 2685 2686 // If the type is an array type, promote the element qualifiers to the type 2687 // for comparison. 2688 if (isa<ArrayType>(T1) && T1Quals) 2689 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2690 if (isa<ArrayType>(T2) && T2Quals) 2691 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2692 2693 // C++ [dcl.init.ref]p4: 2694 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 2695 // reference-related to T2 and cv1 is the same cv-qualification 2696 // as, or greater cv-qualification than, cv2. For purposes of 2697 // overload resolution, cases for which cv1 is greater 2698 // cv-qualification than cv2 are identified as 2699 // reference-compatible with added qualification (see 13.3.3.2). 2700 if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) 2701 return Ref_Compatible; 2702 else if (T1.isMoreQualifiedThan(T2)) 2703 return Ref_Compatible_With_Added_Qualification; 2704 else 2705 return Ref_Related; 2706} 2707 2708/// \brief Look for a user-defined conversion to an value reference-compatible 2709/// with DeclType. Return true if something definite is found. 2710static bool 2711FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 2712 QualType DeclType, SourceLocation DeclLoc, 2713 Expr *Init, QualType T2, bool AllowRvalues, 2714 bool AllowExplicit) { 2715 assert(T2->isRecordType() && "Can only find conversions of record types."); 2716 CXXRecordDecl *T2RecordDecl 2717 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 2718 2719 QualType ToType 2720 = AllowRvalues? DeclType->getAs<ReferenceType>()->getPointeeType() 2721 : DeclType; 2722 2723 OverloadCandidateSet CandidateSet(DeclLoc); 2724 const UnresolvedSetImpl *Conversions 2725 = T2RecordDecl->getVisibleConversionFunctions(); 2726 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2727 E = Conversions->end(); I != E; ++I) { 2728 NamedDecl *D = *I; 2729 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 2730 if (isa<UsingShadowDecl>(D)) 2731 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2732 2733 FunctionTemplateDecl *ConvTemplate 2734 = dyn_cast<FunctionTemplateDecl>(D); 2735 CXXConversionDecl *Conv; 2736 if (ConvTemplate) 2737 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2738 else 2739 Conv = cast<CXXConversionDecl>(D); 2740 2741 // If this is an explicit conversion, and we're not allowed to consider 2742 // explicit conversions, skip it. 2743 if (!AllowExplicit && Conv->isExplicit()) 2744 continue; 2745 2746 if (AllowRvalues) { 2747 bool DerivedToBase = false; 2748 bool ObjCConversion = false; 2749 if (!ConvTemplate && 2750 S.CompareReferenceRelationship(DeclLoc, 2751 Conv->getConversionType().getNonReferenceType().getUnqualifiedType(), 2752 DeclType.getNonReferenceType().getUnqualifiedType(), 2753 DerivedToBase, ObjCConversion) 2754 == Sema::Ref_Incompatible) 2755 continue; 2756 } else { 2757 // If the conversion function doesn't return a reference type, 2758 // it can't be considered for this conversion. An rvalue reference 2759 // is only acceptable if its referencee is a function type. 2760 2761 const ReferenceType *RefType = 2762 Conv->getConversionType()->getAs<ReferenceType>(); 2763 if (!RefType || 2764 (!RefType->isLValueReferenceType() && 2765 !RefType->getPointeeType()->isFunctionType())) 2766 continue; 2767 } 2768 2769 if (ConvTemplate) 2770 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 2771 Init, ToType, CandidateSet); 2772 else 2773 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 2774 ToType, CandidateSet); 2775 } 2776 2777 OverloadCandidateSet::iterator Best; 2778 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 2779 case OR_Success: 2780 // C++ [over.ics.ref]p1: 2781 // 2782 // [...] If the parameter binds directly to the result of 2783 // applying a conversion function to the argument 2784 // expression, the implicit conversion sequence is a 2785 // user-defined conversion sequence (13.3.3.1.2), with the 2786 // second standard conversion sequence either an identity 2787 // conversion or, if the conversion function returns an 2788 // entity of a type that is a derived class of the parameter 2789 // type, a derived-to-base Conversion. 2790 if (!Best->FinalConversion.DirectBinding) 2791 return false; 2792 2793 ICS.setUserDefined(); 2794 ICS.UserDefined.Before = Best->Conversions[0].Standard; 2795 ICS.UserDefined.After = Best->FinalConversion; 2796 ICS.UserDefined.ConversionFunction = Best->Function; 2797 ICS.UserDefined.EllipsisConversion = false; 2798 assert(ICS.UserDefined.After.ReferenceBinding && 2799 ICS.UserDefined.After.DirectBinding && 2800 "Expected a direct reference binding!"); 2801 return true; 2802 2803 case OR_Ambiguous: 2804 ICS.setAmbiguous(); 2805 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 2806 Cand != CandidateSet.end(); ++Cand) 2807 if (Cand->Viable) 2808 ICS.Ambiguous.addConversion(Cand->Function); 2809 return true; 2810 2811 case OR_No_Viable_Function: 2812 case OR_Deleted: 2813 // There was no suitable conversion, or we found a deleted 2814 // conversion; continue with other checks. 2815 return false; 2816 } 2817 2818 return false; 2819} 2820 2821/// \brief Compute an implicit conversion sequence for reference 2822/// initialization. 2823static ImplicitConversionSequence 2824TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 2825 SourceLocation DeclLoc, 2826 bool SuppressUserConversions, 2827 bool AllowExplicit) { 2828 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 2829 2830 // Most paths end in a failed conversion. 2831 ImplicitConversionSequence ICS; 2832 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 2833 2834 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 2835 QualType T2 = Init->getType(); 2836 2837 // If the initializer is the address of an overloaded function, try 2838 // to resolve the overloaded function. If all goes well, T2 is the 2839 // type of the resulting function. 2840 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 2841 DeclAccessPair Found; 2842 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 2843 false, Found)) 2844 T2 = Fn->getType(); 2845 } 2846 2847 // Compute some basic properties of the types and the initializer. 2848 bool isRValRef = DeclType->isRValueReferenceType(); 2849 bool DerivedToBase = false; 2850 bool ObjCConversion = false; 2851 Expr::Classification InitCategory = Init->Classify(S.Context); 2852 Sema::ReferenceCompareResult RefRelationship 2853 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 2854 ObjCConversion); 2855 2856 2857 // C++0x [dcl.init.ref]p5: 2858 // A reference to type "cv1 T1" is initialized by an expression 2859 // of type "cv2 T2" as follows: 2860 2861 // -- If reference is an lvalue reference and the initializer expression 2862 // The next bullet point (T1 is a function) is pretty much equivalent to this 2863 // one, so it's handled here. 2864 if (!isRValRef || T1->isFunctionType()) { 2865 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 2866 // reference-compatible with "cv2 T2," or 2867 // 2868 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 2869 if (InitCategory.isLValue() && 2870 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2871 // C++ [over.ics.ref]p1: 2872 // When a parameter of reference type binds directly (8.5.3) 2873 // to an argument expression, the implicit conversion sequence 2874 // is the identity conversion, unless the argument expression 2875 // has a type that is a derived class of the parameter type, 2876 // in which case the implicit conversion sequence is a 2877 // derived-to-base Conversion (13.3.3.1). 2878 ICS.setStandard(); 2879 ICS.Standard.First = ICK_Identity; 2880 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 2881 : ObjCConversion? ICK_Compatible_Conversion 2882 : ICK_Identity; 2883 ICS.Standard.Third = ICK_Identity; 2884 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2885 ICS.Standard.setToType(0, T2); 2886 ICS.Standard.setToType(1, T1); 2887 ICS.Standard.setToType(2, T1); 2888 ICS.Standard.ReferenceBinding = true; 2889 ICS.Standard.DirectBinding = true; 2890 ICS.Standard.RRefBinding = isRValRef; 2891 ICS.Standard.CopyConstructor = 0; 2892 2893 // Nothing more to do: the inaccessibility/ambiguity check for 2894 // derived-to-base conversions is suppressed when we're 2895 // computing the implicit conversion sequence (C++ 2896 // [over.best.ics]p2). 2897 return ICS; 2898 } 2899 2900 // -- has a class type (i.e., T2 is a class type), where T1 is 2901 // not reference-related to T2, and can be implicitly 2902 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 2903 // is reference-compatible with "cv3 T3" 92) (this 2904 // conversion is selected by enumerating the applicable 2905 // conversion functions (13.3.1.6) and choosing the best 2906 // one through overload resolution (13.3)), 2907 if (!SuppressUserConversions && T2->isRecordType() && 2908 !S.RequireCompleteType(DeclLoc, T2, 0) && 2909 RefRelationship == Sema::Ref_Incompatible) { 2910 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 2911 Init, T2, /*AllowRvalues=*/false, 2912 AllowExplicit)) 2913 return ICS; 2914 } 2915 } 2916 2917 // -- Otherwise, the reference shall be an lvalue reference to a 2918 // non-volatile const type (i.e., cv1 shall be const), or the reference 2919 // shall be an rvalue reference and the initializer expression shall be 2920 // an rvalue or have a function type. 2921 // 2922 // We actually handle one oddity of C++ [over.ics.ref] at this 2923 // point, which is that, due to p2 (which short-circuits reference 2924 // binding by only attempting a simple conversion for non-direct 2925 // bindings) and p3's strange wording, we allow a const volatile 2926 // reference to bind to an rvalue. Hence the check for the presence 2927 // of "const" rather than checking for "const" being the only 2928 // qualifier. 2929 // This is also the point where rvalue references and lvalue inits no longer 2930 // go together. 2931 if ((!isRValRef && !T1.isConstQualified()) || 2932 (isRValRef && InitCategory.isLValue())) 2933 return ICS; 2934 2935 // -- If T1 is a function type, then 2936 // -- if T2 is the same type as T1, the reference is bound to the 2937 // initializer expression lvalue; 2938 // -- if T2 is a class type and the initializer expression can be 2939 // implicitly converted to an lvalue of type T1 [...], the 2940 // reference is bound to the function lvalue that is the result 2941 // of the conversion; 2942 // This is the same as for the lvalue case above, so it was handled there. 2943 // -- otherwise, the program is ill-formed. 2944 // This is the one difference to the lvalue case. 2945 if (T1->isFunctionType()) 2946 return ICS; 2947 2948 // -- Otherwise, if T2 is a class type and 2949 // -- the initializer expression is an rvalue and "cv1 T1" 2950 // is reference-compatible with "cv2 T2," or 2951 // 2952 // -- T1 is not reference-related to T2 and the initializer 2953 // expression can be implicitly converted to an rvalue 2954 // of type "cv3 T3" (this conversion is selected by 2955 // enumerating the applicable conversion functions 2956 // (13.3.1.6) and choosing the best one through overload 2957 // resolution (13.3)), 2958 // 2959 // then the reference is bound to the initializer 2960 // expression rvalue in the first case and to the object 2961 // that is the result of the conversion in the second case 2962 // (or, in either case, to the appropriate base class 2963 // subobject of the object). 2964 if (T2->isRecordType()) { 2965 // First case: "cv1 T1" is reference-compatible with "cv2 T2". This is a 2966 // direct binding in C++0x but not in C++03. 2967 if (InitCategory.isRValue() && 2968 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2969 ICS.setStandard(); 2970 ICS.Standard.First = ICK_Identity; 2971 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 2972 : ObjCConversion? ICK_Compatible_Conversion 2973 : ICK_Identity; 2974 ICS.Standard.Third = ICK_Identity; 2975 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2976 ICS.Standard.setToType(0, T2); 2977 ICS.Standard.setToType(1, T1); 2978 ICS.Standard.setToType(2, T1); 2979 ICS.Standard.ReferenceBinding = true; 2980 ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x; 2981 ICS.Standard.RRefBinding = isRValRef; 2982 ICS.Standard.CopyConstructor = 0; 2983 return ICS; 2984 } 2985 2986 // Second case: not reference-related. 2987 if (RefRelationship == Sema::Ref_Incompatible && 2988 !S.RequireCompleteType(DeclLoc, T2, 0) && 2989 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 2990 Init, T2, /*AllowRvalues=*/true, 2991 AllowExplicit)) 2992 return ICS; 2993 } 2994 2995 // -- Otherwise, a temporary of type "cv1 T1" is created and 2996 // initialized from the initializer expression using the 2997 // rules for a non-reference copy initialization (8.5). The 2998 // reference is then bound to the temporary. If T1 is 2999 // reference-related to T2, cv1 must be the same 3000 // cv-qualification as, or greater cv-qualification than, 3001 // cv2; otherwise, the program is ill-formed. 3002 if (RefRelationship == Sema::Ref_Related) { 3003 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 3004 // we would be reference-compatible or reference-compatible with 3005 // added qualification. But that wasn't the case, so the reference 3006 // initialization fails. 3007 return ICS; 3008 } 3009 3010 // If at least one of the types is a class type, the types are not 3011 // related, and we aren't allowed any user conversions, the 3012 // reference binding fails. This case is important for breaking 3013 // recursion, since TryImplicitConversion below will attempt to 3014 // create a temporary through the use of a copy constructor. 3015 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3016 (T1->isRecordType() || T2->isRecordType())) 3017 return ICS; 3018 3019 // C++ [over.ics.ref]p2: 3020 // When a parameter of reference type is not bound directly to 3021 // an argument expression, the conversion sequence is the one 3022 // required to convert the argument expression to the 3023 // underlying type of the reference according to 3024 // 13.3.3.1. Conceptually, this conversion sequence corresponds 3025 // to copy-initializing a temporary of the underlying type with 3026 // the argument expression. Any difference in top-level 3027 // cv-qualification is subsumed by the initialization itself 3028 // and does not constitute a conversion. 3029 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 3030 /*AllowExplicit=*/false, 3031 /*InOverloadResolution=*/false); 3032 3033 // Of course, that's still a reference binding. 3034 if (ICS.isStandard()) { 3035 ICS.Standard.ReferenceBinding = true; 3036 ICS.Standard.RRefBinding = isRValRef; 3037 } else if (ICS.isUserDefined()) { 3038 ICS.UserDefined.After.ReferenceBinding = true; 3039 ICS.UserDefined.After.RRefBinding = isRValRef; 3040 } 3041 return ICS; 3042} 3043 3044/// TryCopyInitialization - Try to copy-initialize a value of type 3045/// ToType from the expression From. Return the implicit conversion 3046/// sequence required to pass this argument, which may be a bad 3047/// conversion sequence (meaning that the argument cannot be passed to 3048/// a parameter of this type). If @p SuppressUserConversions, then we 3049/// do not permit any user-defined conversion sequences. 3050static ImplicitConversionSequence 3051TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 3052 bool SuppressUserConversions, 3053 bool InOverloadResolution) { 3054 if (ToType->isReferenceType()) 3055 return TryReferenceInit(S, From, ToType, 3056 /*FIXME:*/From->getLocStart(), 3057 SuppressUserConversions, 3058 /*AllowExplicit=*/false); 3059 3060 return TryImplicitConversion(S, From, ToType, 3061 SuppressUserConversions, 3062 /*AllowExplicit=*/false, 3063 InOverloadResolution); 3064} 3065 3066/// TryObjectArgumentInitialization - Try to initialize the object 3067/// parameter of the given member function (@c Method) from the 3068/// expression @p From. 3069static ImplicitConversionSequence 3070TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, 3071 CXXMethodDecl *Method, 3072 CXXRecordDecl *ActingContext) { 3073 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 3074 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 3075 // const volatile object. 3076 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 3077 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 3078 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 3079 3080 // Set up the conversion sequence as a "bad" conversion, to allow us 3081 // to exit early. 3082 ImplicitConversionSequence ICS; 3083 3084 // We need to have an object of class type. 3085 QualType FromType = OrigFromType; 3086 if (const PointerType *PT = FromType->getAs<PointerType>()) 3087 FromType = PT->getPointeeType(); 3088 3089 assert(FromType->isRecordType()); 3090 3091 // The implicit object parameter is has the type "reference to cv X", 3092 // where X is the class of which the function is a member 3093 // (C++ [over.match.funcs]p4). However, when finding an implicit 3094 // conversion sequence for the argument, we are not allowed to 3095 // create temporaries or perform user-defined conversions 3096 // (C++ [over.match.funcs]p5). We perform a simplified version of 3097 // reference binding here, that allows class rvalues to bind to 3098 // non-constant references. 3099 3100 // First check the qualifiers. We don't care about lvalue-vs-rvalue 3101 // with the implicit object parameter (C++ [over.match.funcs]p5). 3102 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 3103 if (ImplicitParamType.getCVRQualifiers() 3104 != FromTypeCanon.getLocalCVRQualifiers() && 3105 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 3106 ICS.setBad(BadConversionSequence::bad_qualifiers, 3107 OrigFromType, ImplicitParamType); 3108 return ICS; 3109 } 3110 3111 // Check that we have either the same type or a derived type. It 3112 // affects the conversion rank. 3113 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 3114 ImplicitConversionKind SecondKind; 3115 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 3116 SecondKind = ICK_Identity; 3117 } else if (S.IsDerivedFrom(FromType, ClassType)) 3118 SecondKind = ICK_Derived_To_Base; 3119 else { 3120 ICS.setBad(BadConversionSequence::unrelated_class, 3121 FromType, ImplicitParamType); 3122 return ICS; 3123 } 3124 3125 // Success. Mark this as a reference binding. 3126 ICS.setStandard(); 3127 ICS.Standard.setAsIdentityConversion(); 3128 ICS.Standard.Second = SecondKind; 3129 ICS.Standard.setFromType(FromType); 3130 ICS.Standard.setAllToTypes(ImplicitParamType); 3131 ICS.Standard.ReferenceBinding = true; 3132 ICS.Standard.DirectBinding = true; 3133 ICS.Standard.RRefBinding = false; 3134 return ICS; 3135} 3136 3137/// PerformObjectArgumentInitialization - Perform initialization of 3138/// the implicit object parameter for the given Method with the given 3139/// expression. 3140bool 3141Sema::PerformObjectArgumentInitialization(Expr *&From, 3142 NestedNameSpecifier *Qualifier, 3143 NamedDecl *FoundDecl, 3144 CXXMethodDecl *Method) { 3145 QualType FromRecordType, DestType; 3146 QualType ImplicitParamRecordType = 3147 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 3148 3149 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 3150 FromRecordType = PT->getPointeeType(); 3151 DestType = Method->getThisType(Context); 3152 } else { 3153 FromRecordType = From->getType(); 3154 DestType = ImplicitParamRecordType; 3155 } 3156 3157 // Note that we always use the true parent context when performing 3158 // the actual argument initialization. 3159 ImplicitConversionSequence ICS 3160 = TryObjectArgumentInitialization(*this, From->getType(), Method, 3161 Method->getParent()); 3162 if (ICS.isBad()) 3163 return Diag(From->getSourceRange().getBegin(), 3164 diag::err_implicit_object_parameter_init) 3165 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 3166 3167 if (ICS.Standard.Second == ICK_Derived_To_Base) 3168 return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 3169 3170 if (!Context.hasSameType(From->getType(), DestType)) 3171 ImpCastExprToType(From, DestType, CK_NoOp, 3172 From->getType()->isPointerType() ? VK_RValue : VK_LValue); 3173 return false; 3174} 3175 3176/// TryContextuallyConvertToBool - Attempt to contextually convert the 3177/// expression From to bool (C++0x [conv]p3). 3178static ImplicitConversionSequence 3179TryContextuallyConvertToBool(Sema &S, Expr *From) { 3180 // FIXME: This is pretty broken. 3181 return TryImplicitConversion(S, From, S.Context.BoolTy, 3182 // FIXME: Are these flags correct? 3183 /*SuppressUserConversions=*/false, 3184 /*AllowExplicit=*/true, 3185 /*InOverloadResolution=*/false); 3186} 3187 3188/// PerformContextuallyConvertToBool - Perform a contextual conversion 3189/// of the expression From to bool (C++0x [conv]p3). 3190bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 3191 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 3192 if (!ICS.isBad()) 3193 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 3194 3195 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 3196 return Diag(From->getSourceRange().getBegin(), 3197 diag::err_typecheck_bool_condition) 3198 << From->getType() << From->getSourceRange(); 3199 return true; 3200} 3201 3202/// TryContextuallyConvertToObjCId - Attempt to contextually convert the 3203/// expression From to 'id'. 3204static ImplicitConversionSequence 3205TryContextuallyConvertToObjCId(Sema &S, Expr *From) { 3206 QualType Ty = S.Context.getObjCIdType(); 3207 return TryImplicitConversion(S, From, Ty, 3208 // FIXME: Are these flags correct? 3209 /*SuppressUserConversions=*/false, 3210 /*AllowExplicit=*/true, 3211 /*InOverloadResolution=*/false); 3212} 3213 3214/// PerformContextuallyConvertToObjCId - Perform a contextual conversion 3215/// of the expression From to 'id'. 3216bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { 3217 QualType Ty = Context.getObjCIdType(); 3218 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From); 3219 if (!ICS.isBad()) 3220 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 3221 return true; 3222} 3223 3224/// \brief Attempt to convert the given expression to an integral or 3225/// enumeration type. 3226/// 3227/// This routine will attempt to convert an expression of class type to an 3228/// integral or enumeration type, if that class type only has a single 3229/// conversion to an integral or enumeration type. 3230/// 3231/// \param Loc The source location of the construct that requires the 3232/// conversion. 3233/// 3234/// \param FromE The expression we're converting from. 3235/// 3236/// \param NotIntDiag The diagnostic to be emitted if the expression does not 3237/// have integral or enumeration type. 3238/// 3239/// \param IncompleteDiag The diagnostic to be emitted if the expression has 3240/// incomplete class type. 3241/// 3242/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 3243/// explicit conversion function (because no implicit conversion functions 3244/// were available). This is a recovery mode. 3245/// 3246/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 3247/// showing which conversion was picked. 3248/// 3249/// \param AmbigDiag The diagnostic to be emitted if there is more than one 3250/// conversion function that could convert to integral or enumeration type. 3251/// 3252/// \param AmbigNote The note to be emitted with \p AmbigDiag for each 3253/// usable conversion function. 3254/// 3255/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 3256/// function, which may be an extension in this case. 3257/// 3258/// \returns The expression, converted to an integral or enumeration type if 3259/// successful. 3260ExprResult 3261Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, 3262 const PartialDiagnostic &NotIntDiag, 3263 const PartialDiagnostic &IncompleteDiag, 3264 const PartialDiagnostic &ExplicitConvDiag, 3265 const PartialDiagnostic &ExplicitConvNote, 3266 const PartialDiagnostic &AmbigDiag, 3267 const PartialDiagnostic &AmbigNote, 3268 const PartialDiagnostic &ConvDiag) { 3269 // We can't perform any more checking for type-dependent expressions. 3270 if (From->isTypeDependent()) 3271 return Owned(From); 3272 3273 // If the expression already has integral or enumeration type, we're golden. 3274 QualType T = From->getType(); 3275 if (T->isIntegralOrEnumerationType()) 3276 return Owned(From); 3277 3278 // FIXME: Check for missing '()' if T is a function type? 3279 3280 // If we don't have a class type in C++, there's no way we can get an 3281 // expression of integral or enumeration type. 3282 const RecordType *RecordTy = T->getAs<RecordType>(); 3283 if (!RecordTy || !getLangOptions().CPlusPlus) { 3284 Diag(Loc, NotIntDiag) 3285 << T << From->getSourceRange(); 3286 return Owned(From); 3287 } 3288 3289 // We must have a complete class type. 3290 if (RequireCompleteType(Loc, T, IncompleteDiag)) 3291 return Owned(From); 3292 3293 // Look for a conversion to an integral or enumeration type. 3294 UnresolvedSet<4> ViableConversions; 3295 UnresolvedSet<4> ExplicitConversions; 3296 const UnresolvedSetImpl *Conversions 3297 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 3298 3299 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3300 E = Conversions->end(); 3301 I != E; 3302 ++I) { 3303 if (CXXConversionDecl *Conversion 3304 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) 3305 if (Conversion->getConversionType().getNonReferenceType() 3306 ->isIntegralOrEnumerationType()) { 3307 if (Conversion->isExplicit()) 3308 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 3309 else 3310 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 3311 } 3312 } 3313 3314 switch (ViableConversions.size()) { 3315 case 0: 3316 if (ExplicitConversions.size() == 1) { 3317 DeclAccessPair Found = ExplicitConversions[0]; 3318 CXXConversionDecl *Conversion 3319 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3320 3321 // The user probably meant to invoke the given explicit 3322 // conversion; use it. 3323 QualType ConvTy 3324 = Conversion->getConversionType().getNonReferenceType(); 3325 std::string TypeStr; 3326 ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy); 3327 3328 Diag(Loc, ExplicitConvDiag) 3329 << T << ConvTy 3330 << FixItHint::CreateInsertion(From->getLocStart(), 3331 "static_cast<" + TypeStr + ">(") 3332 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 3333 ")"); 3334 Diag(Conversion->getLocation(), ExplicitConvNote) 3335 << ConvTy->isEnumeralType() << ConvTy; 3336 3337 // If we aren't in a SFINAE context, build a call to the 3338 // explicit conversion function. 3339 if (isSFINAEContext()) 3340 return ExprError(); 3341 3342 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3343 From = BuildCXXMemberCallExpr(From, Found, Conversion); 3344 } 3345 3346 // We'll complain below about a non-integral condition type. 3347 break; 3348 3349 case 1: { 3350 // Apply this conversion. 3351 DeclAccessPair Found = ViableConversions[0]; 3352 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 3353 3354 CXXConversionDecl *Conversion 3355 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 3356 QualType ConvTy 3357 = Conversion->getConversionType().getNonReferenceType(); 3358 if (ConvDiag.getDiagID()) { 3359 if (isSFINAEContext()) 3360 return ExprError(); 3361 3362 Diag(Loc, ConvDiag) 3363 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 3364 } 3365 3366 From = BuildCXXMemberCallExpr(From, Found, 3367 cast<CXXConversionDecl>(Found->getUnderlyingDecl())); 3368 break; 3369 } 3370 3371 default: 3372 Diag(Loc, AmbigDiag) 3373 << T << From->getSourceRange(); 3374 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 3375 CXXConversionDecl *Conv 3376 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 3377 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 3378 Diag(Conv->getLocation(), AmbigNote) 3379 << ConvTy->isEnumeralType() << ConvTy; 3380 } 3381 return Owned(From); 3382 } 3383 3384 if (!From->getType()->isIntegralOrEnumerationType()) 3385 Diag(Loc, NotIntDiag) 3386 << From->getType() << From->getSourceRange(); 3387 3388 return Owned(From); 3389} 3390 3391/// AddOverloadCandidate - Adds the given function to the set of 3392/// candidate functions, using the given function call arguments. If 3393/// @p SuppressUserConversions, then don't allow user-defined 3394/// conversions via constructors or conversion operators. 3395/// 3396/// \para PartialOverloading true if we are performing "partial" overloading 3397/// based on an incomplete set of function arguments. This feature is used by 3398/// code completion. 3399void 3400Sema::AddOverloadCandidate(FunctionDecl *Function, 3401 DeclAccessPair FoundDecl, 3402 Expr **Args, unsigned NumArgs, 3403 OverloadCandidateSet& CandidateSet, 3404 bool SuppressUserConversions, 3405 bool PartialOverloading) { 3406 const FunctionProtoType* Proto 3407 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 3408 assert(Proto && "Functions without a prototype cannot be overloaded"); 3409 assert(!Function->getDescribedFunctionTemplate() && 3410 "Use AddTemplateOverloadCandidate for function templates"); 3411 3412 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3413 if (!isa<CXXConstructorDecl>(Method)) { 3414 // If we get here, it's because we're calling a member function 3415 // that is named without a member access expression (e.g., 3416 // "this->f") that was either written explicitly or created 3417 // implicitly. This can happen with a qualified call to a member 3418 // function, e.g., X::f(). We use an empty type for the implied 3419 // object argument (C++ [over.call.func]p3), and the acting context 3420 // is irrelevant. 3421 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 3422 QualType(), Args, NumArgs, CandidateSet, 3423 SuppressUserConversions); 3424 return; 3425 } 3426 // We treat a constructor like a non-member function, since its object 3427 // argument doesn't participate in overload resolution. 3428 } 3429 3430 if (!CandidateSet.isNewCandidate(Function)) 3431 return; 3432 3433 // Overload resolution is always an unevaluated context. 3434 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3435 3436 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 3437 // C++ [class.copy]p3: 3438 // A member function template is never instantiated to perform the copy 3439 // of a class object to an object of its class type. 3440 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 3441 if (NumArgs == 1 && 3442 Constructor->isCopyConstructorLikeSpecialization() && 3443 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 3444 IsDerivedFrom(Args[0]->getType(), ClassType))) 3445 return; 3446 } 3447 3448 // Add this candidate 3449 CandidateSet.push_back(OverloadCandidate()); 3450 OverloadCandidate& Candidate = CandidateSet.back(); 3451 Candidate.FoundDecl = FoundDecl; 3452 Candidate.Function = Function; 3453 Candidate.Viable = true; 3454 Candidate.IsSurrogate = false; 3455 Candidate.IgnoreObjectArgument = false; 3456 3457 unsigned NumArgsInProto = Proto->getNumArgs(); 3458 3459 // (C++ 13.3.2p2): A candidate function having fewer than m 3460 // parameters is viable only if it has an ellipsis in its parameter 3461 // list (8.3.5). 3462 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 3463 !Proto->isVariadic()) { 3464 Candidate.Viable = false; 3465 Candidate.FailureKind = ovl_fail_too_many_arguments; 3466 return; 3467 } 3468 3469 // (C++ 13.3.2p2): A candidate function having more than m parameters 3470 // is viable only if the (m+1)st parameter has a default argument 3471 // (8.3.6). For the purposes of overload resolution, the 3472 // parameter list is truncated on the right, so that there are 3473 // exactly m parameters. 3474 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 3475 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 3476 // Not enough arguments. 3477 Candidate.Viable = false; 3478 Candidate.FailureKind = ovl_fail_too_few_arguments; 3479 return; 3480 } 3481 3482 // Determine the implicit conversion sequences for each of the 3483 // arguments. 3484 Candidate.Conversions.resize(NumArgs); 3485 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3486 if (ArgIdx < NumArgsInProto) { 3487 // (C++ 13.3.2p3): for F to be a viable function, there shall 3488 // exist for each argument an implicit conversion sequence 3489 // (13.3.3.1) that converts that argument to the corresponding 3490 // parameter of F. 3491 QualType ParamType = Proto->getArgType(ArgIdx); 3492 Candidate.Conversions[ArgIdx] 3493 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3494 SuppressUserConversions, 3495 /*InOverloadResolution=*/true); 3496 if (Candidate.Conversions[ArgIdx].isBad()) { 3497 Candidate.Viable = false; 3498 Candidate.FailureKind = ovl_fail_bad_conversion; 3499 break; 3500 } 3501 } else { 3502 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3503 // argument for which there is no corresponding parameter is 3504 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3505 Candidate.Conversions[ArgIdx].setEllipsis(); 3506 } 3507 } 3508} 3509 3510/// \brief Add all of the function declarations in the given function set to 3511/// the overload canddiate set. 3512void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 3513 Expr **Args, unsigned NumArgs, 3514 OverloadCandidateSet& CandidateSet, 3515 bool SuppressUserConversions) { 3516 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 3517 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 3518 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3519 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 3520 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 3521 cast<CXXMethodDecl>(FD)->getParent(), 3522 Args[0]->getType(), Args + 1, NumArgs - 1, 3523 CandidateSet, SuppressUserConversions); 3524 else 3525 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 3526 SuppressUserConversions); 3527 } else { 3528 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 3529 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 3530 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 3531 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 3532 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 3533 /*FIXME: explicit args */ 0, 3534 Args[0]->getType(), Args + 1, NumArgs - 1, 3535 CandidateSet, 3536 SuppressUserConversions); 3537 else 3538 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 3539 /*FIXME: explicit args */ 0, 3540 Args, NumArgs, CandidateSet, 3541 SuppressUserConversions); 3542 } 3543 } 3544} 3545 3546/// AddMethodCandidate - Adds a named decl (which is some kind of 3547/// method) as a method candidate to the given overload set. 3548void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 3549 QualType ObjectType, 3550 Expr **Args, unsigned NumArgs, 3551 OverloadCandidateSet& CandidateSet, 3552 bool SuppressUserConversions) { 3553 NamedDecl *Decl = FoundDecl.getDecl(); 3554 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 3555 3556 if (isa<UsingShadowDecl>(Decl)) 3557 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 3558 3559 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 3560 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 3561 "Expected a member function template"); 3562 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 3563 /*ExplicitArgs*/ 0, 3564 ObjectType, Args, NumArgs, 3565 CandidateSet, 3566 SuppressUserConversions); 3567 } else { 3568 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 3569 ObjectType, Args, NumArgs, 3570 CandidateSet, SuppressUserConversions); 3571 } 3572} 3573 3574/// AddMethodCandidate - Adds the given C++ member function to the set 3575/// of candidate functions, using the given function call arguments 3576/// and the object argument (@c Object). For example, in a call 3577/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 3578/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 3579/// allow user-defined conversions via constructors or conversion 3580/// operators. 3581void 3582Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 3583 CXXRecordDecl *ActingContext, QualType ObjectType, 3584 Expr **Args, unsigned NumArgs, 3585 OverloadCandidateSet& CandidateSet, 3586 bool SuppressUserConversions) { 3587 const FunctionProtoType* Proto 3588 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 3589 assert(Proto && "Methods without a prototype cannot be overloaded"); 3590 assert(!isa<CXXConstructorDecl>(Method) && 3591 "Use AddOverloadCandidate for constructors"); 3592 3593 if (!CandidateSet.isNewCandidate(Method)) 3594 return; 3595 3596 // Overload resolution is always an unevaluated context. 3597 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3598 3599 // Add this candidate 3600 CandidateSet.push_back(OverloadCandidate()); 3601 OverloadCandidate& Candidate = CandidateSet.back(); 3602 Candidate.FoundDecl = FoundDecl; 3603 Candidate.Function = Method; 3604 Candidate.IsSurrogate = false; 3605 Candidate.IgnoreObjectArgument = false; 3606 3607 unsigned NumArgsInProto = Proto->getNumArgs(); 3608 3609 // (C++ 13.3.2p2): A candidate function having fewer than m 3610 // parameters is viable only if it has an ellipsis in its parameter 3611 // list (8.3.5). 3612 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3613 Candidate.Viable = false; 3614 Candidate.FailureKind = ovl_fail_too_many_arguments; 3615 return; 3616 } 3617 3618 // (C++ 13.3.2p2): A candidate function having more than m parameters 3619 // is viable only if the (m+1)st parameter has a default argument 3620 // (8.3.6). For the purposes of overload resolution, the 3621 // parameter list is truncated on the right, so that there are 3622 // exactly m parameters. 3623 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 3624 if (NumArgs < MinRequiredArgs) { 3625 // Not enough arguments. 3626 Candidate.Viable = false; 3627 Candidate.FailureKind = ovl_fail_too_few_arguments; 3628 return; 3629 } 3630 3631 Candidate.Viable = true; 3632 Candidate.Conversions.resize(NumArgs + 1); 3633 3634 if (Method->isStatic() || ObjectType.isNull()) 3635 // The implicit object argument is ignored. 3636 Candidate.IgnoreObjectArgument = true; 3637 else { 3638 // Determine the implicit conversion sequence for the object 3639 // parameter. 3640 Candidate.Conversions[0] 3641 = TryObjectArgumentInitialization(*this, ObjectType, Method, 3642 ActingContext); 3643 if (Candidate.Conversions[0].isBad()) { 3644 Candidate.Viable = false; 3645 Candidate.FailureKind = ovl_fail_bad_conversion; 3646 return; 3647 } 3648 } 3649 3650 // Determine the implicit conversion sequences for each of the 3651 // arguments. 3652 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3653 if (ArgIdx < NumArgsInProto) { 3654 // (C++ 13.3.2p3): for F to be a viable function, there shall 3655 // exist for each argument an implicit conversion sequence 3656 // (13.3.3.1) that converts that argument to the corresponding 3657 // parameter of F. 3658 QualType ParamType = Proto->getArgType(ArgIdx); 3659 Candidate.Conversions[ArgIdx + 1] 3660 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3661 SuppressUserConversions, 3662 /*InOverloadResolution=*/true); 3663 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3664 Candidate.Viable = false; 3665 Candidate.FailureKind = ovl_fail_bad_conversion; 3666 break; 3667 } 3668 } else { 3669 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3670 // argument for which there is no corresponding parameter is 3671 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3672 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3673 } 3674 } 3675} 3676 3677/// \brief Add a C++ member function template as a candidate to the candidate 3678/// set, using template argument deduction to produce an appropriate member 3679/// function template specialization. 3680void 3681Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 3682 DeclAccessPair FoundDecl, 3683 CXXRecordDecl *ActingContext, 3684 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3685 QualType ObjectType, 3686 Expr **Args, unsigned NumArgs, 3687 OverloadCandidateSet& CandidateSet, 3688 bool SuppressUserConversions) { 3689 if (!CandidateSet.isNewCandidate(MethodTmpl)) 3690 return; 3691 3692 // C++ [over.match.funcs]p7: 3693 // In each case where a candidate is a function template, candidate 3694 // function template specializations are generated using template argument 3695 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3696 // candidate functions in the usual way.113) A given name can refer to one 3697 // or more function templates and also to a set of overloaded non-template 3698 // functions. In such a case, the candidate functions generated from each 3699 // function template are combined with the set of non-template candidate 3700 // functions. 3701 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3702 FunctionDecl *Specialization = 0; 3703 if (TemplateDeductionResult Result 3704 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 3705 Args, NumArgs, Specialization, Info)) { 3706 CandidateSet.push_back(OverloadCandidate()); 3707 OverloadCandidate &Candidate = CandidateSet.back(); 3708 Candidate.FoundDecl = FoundDecl; 3709 Candidate.Function = MethodTmpl->getTemplatedDecl(); 3710 Candidate.Viable = false; 3711 Candidate.FailureKind = ovl_fail_bad_deduction; 3712 Candidate.IsSurrogate = false; 3713 Candidate.IgnoreObjectArgument = false; 3714 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3715 Info); 3716 return; 3717 } 3718 3719 // Add the function template specialization produced by template argument 3720 // deduction as a candidate. 3721 assert(Specialization && "Missing member function template specialization?"); 3722 assert(isa<CXXMethodDecl>(Specialization) && 3723 "Specialization is not a member function?"); 3724 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 3725 ActingContext, ObjectType, Args, NumArgs, 3726 CandidateSet, SuppressUserConversions); 3727} 3728 3729/// \brief Add a C++ function template specialization as a candidate 3730/// in the candidate set, using template argument deduction to produce 3731/// an appropriate function template specialization. 3732void 3733Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 3734 DeclAccessPair FoundDecl, 3735 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3736 Expr **Args, unsigned NumArgs, 3737 OverloadCandidateSet& CandidateSet, 3738 bool SuppressUserConversions) { 3739 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3740 return; 3741 3742 // C++ [over.match.funcs]p7: 3743 // In each case where a candidate is a function template, candidate 3744 // function template specializations are generated using template argument 3745 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3746 // candidate functions in the usual way.113) A given name can refer to one 3747 // or more function templates and also to a set of overloaded non-template 3748 // functions. In such a case, the candidate functions generated from each 3749 // function template are combined with the set of non-template candidate 3750 // functions. 3751 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3752 FunctionDecl *Specialization = 0; 3753 if (TemplateDeductionResult Result 3754 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 3755 Args, NumArgs, Specialization, Info)) { 3756 CandidateSet.push_back(OverloadCandidate()); 3757 OverloadCandidate &Candidate = CandidateSet.back(); 3758 Candidate.FoundDecl = FoundDecl; 3759 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3760 Candidate.Viable = false; 3761 Candidate.FailureKind = ovl_fail_bad_deduction; 3762 Candidate.IsSurrogate = false; 3763 Candidate.IgnoreObjectArgument = false; 3764 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3765 Info); 3766 return; 3767 } 3768 3769 // Add the function template specialization produced by template argument 3770 // deduction as a candidate. 3771 assert(Specialization && "Missing function template specialization?"); 3772 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 3773 SuppressUserConversions); 3774} 3775 3776/// AddConversionCandidate - Add a C++ conversion function as a 3777/// candidate in the candidate set (C++ [over.match.conv], 3778/// C++ [over.match.copy]). From is the expression we're converting from, 3779/// and ToType is the type that we're eventually trying to convert to 3780/// (which may or may not be the same type as the type that the 3781/// conversion function produces). 3782void 3783Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 3784 DeclAccessPair FoundDecl, 3785 CXXRecordDecl *ActingContext, 3786 Expr *From, QualType ToType, 3787 OverloadCandidateSet& CandidateSet) { 3788 assert(!Conversion->getDescribedFunctionTemplate() && 3789 "Conversion function templates use AddTemplateConversionCandidate"); 3790 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 3791 if (!CandidateSet.isNewCandidate(Conversion)) 3792 return; 3793 3794 // Overload resolution is always an unevaluated context. 3795 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3796 3797 // Add this candidate 3798 CandidateSet.push_back(OverloadCandidate()); 3799 OverloadCandidate& Candidate = CandidateSet.back(); 3800 Candidate.FoundDecl = FoundDecl; 3801 Candidate.Function = Conversion; 3802 Candidate.IsSurrogate = false; 3803 Candidate.IgnoreObjectArgument = false; 3804 Candidate.FinalConversion.setAsIdentityConversion(); 3805 Candidate.FinalConversion.setFromType(ConvType); 3806 Candidate.FinalConversion.setAllToTypes(ToType); 3807 Candidate.Viable = true; 3808 Candidate.Conversions.resize(1); 3809 3810 // C++ [over.match.funcs]p4: 3811 // For conversion functions, the function is considered to be a member of 3812 // the class of the implicit implied object argument for the purpose of 3813 // defining the type of the implicit object parameter. 3814 // 3815 // Determine the implicit conversion sequence for the implicit 3816 // object parameter. 3817 QualType ImplicitParamType = From->getType(); 3818 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 3819 ImplicitParamType = FromPtrType->getPointeeType(); 3820 CXXRecordDecl *ConversionContext 3821 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 3822 3823 Candidate.Conversions[0] 3824 = TryObjectArgumentInitialization(*this, From->getType(), Conversion, 3825 ConversionContext); 3826 3827 if (Candidate.Conversions[0].isBad()) { 3828 Candidate.Viable = false; 3829 Candidate.FailureKind = ovl_fail_bad_conversion; 3830 return; 3831 } 3832 3833 // We won't go through a user-define type conversion function to convert a 3834 // derived to base as such conversions are given Conversion Rank. They only 3835 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 3836 QualType FromCanon 3837 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 3838 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 3839 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 3840 Candidate.Viable = false; 3841 Candidate.FailureKind = ovl_fail_trivial_conversion; 3842 return; 3843 } 3844 3845 // To determine what the conversion from the result of calling the 3846 // conversion function to the type we're eventually trying to 3847 // convert to (ToType), we need to synthesize a call to the 3848 // conversion function and attempt copy initialization from it. This 3849 // makes sure that we get the right semantics with respect to 3850 // lvalues/rvalues and the type. Fortunately, we can allocate this 3851 // call on the stack and we don't need its arguments to be 3852 // well-formed. 3853 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 3854 From->getLocStart()); 3855 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 3856 Context.getPointerType(Conversion->getType()), 3857 CK_FunctionToPointerDecay, 3858 &ConversionRef, VK_RValue); 3859 3860 // Note that it is safe to allocate CallExpr on the stack here because 3861 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 3862 // allocator). 3863 CallExpr Call(Context, &ConversionFn, 0, 0, 3864 Conversion->getConversionType().getNonLValueExprType(Context), 3865 From->getLocStart()); 3866 ImplicitConversionSequence ICS = 3867 TryCopyInitialization(*this, &Call, ToType, 3868 /*SuppressUserConversions=*/true, 3869 /*InOverloadResolution=*/false); 3870 3871 switch (ICS.getKind()) { 3872 case ImplicitConversionSequence::StandardConversion: 3873 Candidate.FinalConversion = ICS.Standard; 3874 3875 // C++ [over.ics.user]p3: 3876 // If the user-defined conversion is specified by a specialization of a 3877 // conversion function template, the second standard conversion sequence 3878 // shall have exact match rank. 3879 if (Conversion->getPrimaryTemplate() && 3880 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 3881 Candidate.Viable = false; 3882 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 3883 } 3884 3885 break; 3886 3887 case ImplicitConversionSequence::BadConversion: 3888 Candidate.Viable = false; 3889 Candidate.FailureKind = ovl_fail_bad_final_conversion; 3890 break; 3891 3892 default: 3893 assert(false && 3894 "Can only end up with a standard conversion sequence or failure"); 3895 } 3896} 3897 3898/// \brief Adds a conversion function template specialization 3899/// candidate to the overload set, using template argument deduction 3900/// to deduce the template arguments of the conversion function 3901/// template from the type that we are converting to (C++ 3902/// [temp.deduct.conv]). 3903void 3904Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 3905 DeclAccessPair FoundDecl, 3906 CXXRecordDecl *ActingDC, 3907 Expr *From, QualType ToType, 3908 OverloadCandidateSet &CandidateSet) { 3909 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 3910 "Only conversion function templates permitted here"); 3911 3912 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3913 return; 3914 3915 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3916 CXXConversionDecl *Specialization = 0; 3917 if (TemplateDeductionResult Result 3918 = DeduceTemplateArguments(FunctionTemplate, ToType, 3919 Specialization, Info)) { 3920 CandidateSet.push_back(OverloadCandidate()); 3921 OverloadCandidate &Candidate = CandidateSet.back(); 3922 Candidate.FoundDecl = FoundDecl; 3923 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3924 Candidate.Viable = false; 3925 Candidate.FailureKind = ovl_fail_bad_deduction; 3926 Candidate.IsSurrogate = false; 3927 Candidate.IgnoreObjectArgument = false; 3928 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3929 Info); 3930 return; 3931 } 3932 3933 // Add the conversion function template specialization produced by 3934 // template argument deduction as a candidate. 3935 assert(Specialization && "Missing function template specialization?"); 3936 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 3937 CandidateSet); 3938} 3939 3940/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 3941/// converts the given @c Object to a function pointer via the 3942/// conversion function @c Conversion, and then attempts to call it 3943/// with the given arguments (C++ [over.call.object]p2-4). Proto is 3944/// the type of function that we'll eventually be calling. 3945void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 3946 DeclAccessPair FoundDecl, 3947 CXXRecordDecl *ActingContext, 3948 const FunctionProtoType *Proto, 3949 QualType ObjectType, 3950 Expr **Args, unsigned NumArgs, 3951 OverloadCandidateSet& CandidateSet) { 3952 if (!CandidateSet.isNewCandidate(Conversion)) 3953 return; 3954 3955 // Overload resolution is always an unevaluated context. 3956 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3957 3958 CandidateSet.push_back(OverloadCandidate()); 3959 OverloadCandidate& Candidate = CandidateSet.back(); 3960 Candidate.FoundDecl = FoundDecl; 3961 Candidate.Function = 0; 3962 Candidate.Surrogate = Conversion; 3963 Candidate.Viable = true; 3964 Candidate.IsSurrogate = true; 3965 Candidate.IgnoreObjectArgument = false; 3966 Candidate.Conversions.resize(NumArgs + 1); 3967 3968 // Determine the implicit conversion sequence for the implicit 3969 // object parameter. 3970 ImplicitConversionSequence ObjectInit 3971 = TryObjectArgumentInitialization(*this, ObjectType, Conversion, 3972 ActingContext); 3973 if (ObjectInit.isBad()) { 3974 Candidate.Viable = false; 3975 Candidate.FailureKind = ovl_fail_bad_conversion; 3976 Candidate.Conversions[0] = ObjectInit; 3977 return; 3978 } 3979 3980 // The first conversion is actually a user-defined conversion whose 3981 // first conversion is ObjectInit's standard conversion (which is 3982 // effectively a reference binding). Record it as such. 3983 Candidate.Conversions[0].setUserDefined(); 3984 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 3985 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 3986 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 3987 Candidate.Conversions[0].UserDefined.After 3988 = Candidate.Conversions[0].UserDefined.Before; 3989 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 3990 3991 // Find the 3992 unsigned NumArgsInProto = Proto->getNumArgs(); 3993 3994 // (C++ 13.3.2p2): A candidate function having fewer than m 3995 // parameters is viable only if it has an ellipsis in its parameter 3996 // list (8.3.5). 3997 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3998 Candidate.Viable = false; 3999 Candidate.FailureKind = ovl_fail_too_many_arguments; 4000 return; 4001 } 4002 4003 // Function types don't have any default arguments, so just check if 4004 // we have enough arguments. 4005 if (NumArgs < NumArgsInProto) { 4006 // Not enough arguments. 4007 Candidate.Viable = false; 4008 Candidate.FailureKind = ovl_fail_too_few_arguments; 4009 return; 4010 } 4011 4012 // Determine the implicit conversion sequences for each of the 4013 // arguments. 4014 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4015 if (ArgIdx < NumArgsInProto) { 4016 // (C++ 13.3.2p3): for F to be a viable function, there shall 4017 // exist for each argument an implicit conversion sequence 4018 // (13.3.3.1) that converts that argument to the corresponding 4019 // parameter of F. 4020 QualType ParamType = Proto->getArgType(ArgIdx); 4021 Candidate.Conversions[ArgIdx + 1] 4022 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4023 /*SuppressUserConversions=*/false, 4024 /*InOverloadResolution=*/false); 4025 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 4026 Candidate.Viable = false; 4027 Candidate.FailureKind = ovl_fail_bad_conversion; 4028 break; 4029 } 4030 } else { 4031 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4032 // argument for which there is no corresponding parameter is 4033 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4034 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 4035 } 4036 } 4037} 4038 4039/// \brief Add overload candidates for overloaded operators that are 4040/// member functions. 4041/// 4042/// Add the overloaded operator candidates that are member functions 4043/// for the operator Op that was used in an operator expression such 4044/// as "x Op y". , Args/NumArgs provides the operator arguments, and 4045/// CandidateSet will store the added overload candidates. (C++ 4046/// [over.match.oper]). 4047void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 4048 SourceLocation OpLoc, 4049 Expr **Args, unsigned NumArgs, 4050 OverloadCandidateSet& CandidateSet, 4051 SourceRange OpRange) { 4052 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4053 4054 // C++ [over.match.oper]p3: 4055 // For a unary operator @ with an operand of a type whose 4056 // cv-unqualified version is T1, and for a binary operator @ with 4057 // a left operand of a type whose cv-unqualified version is T1 and 4058 // a right operand of a type whose cv-unqualified version is T2, 4059 // three sets of candidate functions, designated member 4060 // candidates, non-member candidates and built-in candidates, are 4061 // constructed as follows: 4062 QualType T1 = Args[0]->getType(); 4063 4064 // -- If T1 is a class type, the set of member candidates is the 4065 // result of the qualified lookup of T1::operator@ 4066 // (13.3.1.1.1); otherwise, the set of member candidates is 4067 // empty. 4068 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 4069 // Complete the type if it can be completed. Otherwise, we're done. 4070 if (RequireCompleteType(OpLoc, T1, PDiag())) 4071 return; 4072 4073 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 4074 LookupQualifiedName(Operators, T1Rec->getDecl()); 4075 Operators.suppressDiagnostics(); 4076 4077 for (LookupResult::iterator Oper = Operators.begin(), 4078 OperEnd = Operators.end(); 4079 Oper != OperEnd; 4080 ++Oper) 4081 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 4082 Args + 1, NumArgs - 1, CandidateSet, 4083 /* SuppressUserConversions = */ false); 4084 } 4085} 4086 4087/// AddBuiltinCandidate - Add a candidate for a built-in 4088/// operator. ResultTy and ParamTys are the result and parameter types 4089/// of the built-in candidate, respectively. Args and NumArgs are the 4090/// arguments being passed to the candidate. IsAssignmentOperator 4091/// should be true when this built-in candidate is an assignment 4092/// operator. NumContextualBoolArguments is the number of arguments 4093/// (at the beginning of the argument list) that will be contextually 4094/// converted to bool. 4095void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 4096 Expr **Args, unsigned NumArgs, 4097 OverloadCandidateSet& CandidateSet, 4098 bool IsAssignmentOperator, 4099 unsigned NumContextualBoolArguments) { 4100 // Overload resolution is always an unevaluated context. 4101 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4102 4103 // Add this candidate 4104 CandidateSet.push_back(OverloadCandidate()); 4105 OverloadCandidate& Candidate = CandidateSet.back(); 4106 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 4107 Candidate.Function = 0; 4108 Candidate.IsSurrogate = false; 4109 Candidate.IgnoreObjectArgument = false; 4110 Candidate.BuiltinTypes.ResultTy = ResultTy; 4111 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4112 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 4113 4114 // Determine the implicit conversion sequences for each of the 4115 // arguments. 4116 Candidate.Viable = true; 4117 Candidate.Conversions.resize(NumArgs); 4118 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4119 // C++ [over.match.oper]p4: 4120 // For the built-in assignment operators, conversions of the 4121 // left operand are restricted as follows: 4122 // -- no temporaries are introduced to hold the left operand, and 4123 // -- no user-defined conversions are applied to the left 4124 // operand to achieve a type match with the left-most 4125 // parameter of a built-in candidate. 4126 // 4127 // We block these conversions by turning off user-defined 4128 // conversions, since that is the only way that initialization of 4129 // a reference to a non-class type can occur from something that 4130 // is not of the same type. 4131 if (ArgIdx < NumContextualBoolArguments) { 4132 assert(ParamTys[ArgIdx] == Context.BoolTy && 4133 "Contextual conversion to bool requires bool type"); 4134 Candidate.Conversions[ArgIdx] 4135 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 4136 } else { 4137 Candidate.Conversions[ArgIdx] 4138 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 4139 ArgIdx == 0 && IsAssignmentOperator, 4140 /*InOverloadResolution=*/false); 4141 } 4142 if (Candidate.Conversions[ArgIdx].isBad()) { 4143 Candidate.Viable = false; 4144 Candidate.FailureKind = ovl_fail_bad_conversion; 4145 break; 4146 } 4147 } 4148} 4149 4150/// BuiltinCandidateTypeSet - A set of types that will be used for the 4151/// candidate operator functions for built-in operators (C++ 4152/// [over.built]). The types are separated into pointer types and 4153/// enumeration types. 4154class BuiltinCandidateTypeSet { 4155 /// TypeSet - A set of types. 4156 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 4157 4158 /// PointerTypes - The set of pointer types that will be used in the 4159 /// built-in candidates. 4160 TypeSet PointerTypes; 4161 4162 /// MemberPointerTypes - The set of member pointer types that will be 4163 /// used in the built-in candidates. 4164 TypeSet MemberPointerTypes; 4165 4166 /// EnumerationTypes - The set of enumeration types that will be 4167 /// used in the built-in candidates. 4168 TypeSet EnumerationTypes; 4169 4170 /// \brief The set of vector types that will be used in the built-in 4171 /// candidates. 4172 TypeSet VectorTypes; 4173 4174 /// Sema - The semantic analysis instance where we are building the 4175 /// candidate type set. 4176 Sema &SemaRef; 4177 4178 /// Context - The AST context in which we will build the type sets. 4179 ASTContext &Context; 4180 4181 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4182 const Qualifiers &VisibleQuals); 4183 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 4184 4185public: 4186 /// iterator - Iterates through the types that are part of the set. 4187 typedef TypeSet::iterator iterator; 4188 4189 BuiltinCandidateTypeSet(Sema &SemaRef) 4190 : SemaRef(SemaRef), Context(SemaRef.Context) { } 4191 4192 void AddTypesConvertedFrom(QualType Ty, 4193 SourceLocation Loc, 4194 bool AllowUserConversions, 4195 bool AllowExplicitConversions, 4196 const Qualifiers &VisibleTypeConversionsQuals); 4197 4198 /// pointer_begin - First pointer type found; 4199 iterator pointer_begin() { return PointerTypes.begin(); } 4200 4201 /// pointer_end - Past the last pointer type found; 4202 iterator pointer_end() { return PointerTypes.end(); } 4203 4204 /// member_pointer_begin - First member pointer type found; 4205 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 4206 4207 /// member_pointer_end - Past the last member pointer type found; 4208 iterator member_pointer_end() { return MemberPointerTypes.end(); } 4209 4210 /// enumeration_begin - First enumeration type found; 4211 iterator enumeration_begin() { return EnumerationTypes.begin(); } 4212 4213 /// enumeration_end - Past the last enumeration type found; 4214 iterator enumeration_end() { return EnumerationTypes.end(); } 4215 4216 iterator vector_begin() { return VectorTypes.begin(); } 4217 iterator vector_end() { return VectorTypes.end(); } 4218}; 4219 4220/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 4221/// the set of pointer types along with any more-qualified variants of 4222/// that type. For example, if @p Ty is "int const *", this routine 4223/// will add "int const *", "int const volatile *", "int const 4224/// restrict *", and "int const volatile restrict *" to the set of 4225/// pointer types. Returns true if the add of @p Ty itself succeeded, 4226/// false otherwise. 4227/// 4228/// FIXME: what to do about extended qualifiers? 4229bool 4230BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4231 const Qualifiers &VisibleQuals) { 4232 4233 // Insert this type. 4234 if (!PointerTypes.insert(Ty)) 4235 return false; 4236 4237 QualType PointeeTy; 4238 const PointerType *PointerTy = Ty->getAs<PointerType>(); 4239 bool buildObjCPtr = false; 4240 if (!PointerTy) { 4241 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) { 4242 PointeeTy = PTy->getPointeeType(); 4243 buildObjCPtr = true; 4244 } 4245 else 4246 assert(false && "type was not a pointer type!"); 4247 } 4248 else 4249 PointeeTy = PointerTy->getPointeeType(); 4250 4251 // Don't add qualified variants of arrays. For one, they're not allowed 4252 // (the qualifier would sink to the element type), and for another, the 4253 // only overload situation where it matters is subscript or pointer +- int, 4254 // and those shouldn't have qualifier variants anyway. 4255 if (PointeeTy->isArrayType()) 4256 return true; 4257 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4258 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 4259 BaseCVR = Array->getElementType().getCVRQualifiers(); 4260 bool hasVolatile = VisibleQuals.hasVolatile(); 4261 bool hasRestrict = VisibleQuals.hasRestrict(); 4262 4263 // Iterate through all strict supersets of BaseCVR. 4264 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4265 if ((CVR | BaseCVR) != CVR) continue; 4266 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 4267 // in the types. 4268 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 4269 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 4270 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4271 if (!buildObjCPtr) 4272 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 4273 else 4274 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); 4275 } 4276 4277 return true; 4278} 4279 4280/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 4281/// to the set of pointer types along with any more-qualified variants of 4282/// that type. For example, if @p Ty is "int const *", this routine 4283/// will add "int const *", "int const volatile *", "int const 4284/// restrict *", and "int const volatile restrict *" to the set of 4285/// pointer types. Returns true if the add of @p Ty itself succeeded, 4286/// false otherwise. 4287/// 4288/// FIXME: what to do about extended qualifiers? 4289bool 4290BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 4291 QualType Ty) { 4292 // Insert this type. 4293 if (!MemberPointerTypes.insert(Ty)) 4294 return false; 4295 4296 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 4297 assert(PointerTy && "type was not a member pointer type!"); 4298 4299 QualType PointeeTy = PointerTy->getPointeeType(); 4300 // Don't add qualified variants of arrays. For one, they're not allowed 4301 // (the qualifier would sink to the element type), and for another, the 4302 // only overload situation where it matters is subscript or pointer +- int, 4303 // and those shouldn't have qualifier variants anyway. 4304 if (PointeeTy->isArrayType()) 4305 return true; 4306 const Type *ClassTy = PointerTy->getClass(); 4307 4308 // Iterate through all strict supersets of the pointee type's CVR 4309 // qualifiers. 4310 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 4311 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 4312 if ((CVR | BaseCVR) != CVR) continue; 4313 4314 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 4315 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 4316 } 4317 4318 return true; 4319} 4320 4321/// AddTypesConvertedFrom - Add each of the types to which the type @p 4322/// Ty can be implicit converted to the given set of @p Types. We're 4323/// primarily interested in pointer types and enumeration types. We also 4324/// take member pointer types, for the conditional operator. 4325/// AllowUserConversions is true if we should look at the conversion 4326/// functions of a class type, and AllowExplicitConversions if we 4327/// should also include the explicit conversion functions of a class 4328/// type. 4329void 4330BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 4331 SourceLocation Loc, 4332 bool AllowUserConversions, 4333 bool AllowExplicitConversions, 4334 const Qualifiers &VisibleQuals) { 4335 // Only deal with canonical types. 4336 Ty = Context.getCanonicalType(Ty); 4337 4338 // Look through reference types; they aren't part of the type of an 4339 // expression for the purposes of conversions. 4340 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 4341 Ty = RefTy->getPointeeType(); 4342 4343 // We don't care about qualifiers on the type. 4344 Ty = Ty.getLocalUnqualifiedType(); 4345 4346 // If we're dealing with an array type, decay to the pointer. 4347 if (Ty->isArrayType()) 4348 Ty = SemaRef.Context.getArrayDecayedType(Ty); 4349 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 4350 PointerTypes.insert(Ty); 4351 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 4352 // Insert our type, and its more-qualified variants, into the set 4353 // of types. 4354 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 4355 return; 4356 } else if (Ty->isMemberPointerType()) { 4357 // Member pointers are far easier, since the pointee can't be converted. 4358 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 4359 return; 4360 } else if (Ty->isEnumeralType()) { 4361 EnumerationTypes.insert(Ty); 4362 } else if (Ty->isVectorType()) { 4363 VectorTypes.insert(Ty); 4364 } else if (AllowUserConversions) { 4365 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 4366 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 4367 // No conversion functions in incomplete types. 4368 return; 4369 } 4370 4371 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4372 const UnresolvedSetImpl *Conversions 4373 = ClassDecl->getVisibleConversionFunctions(); 4374 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4375 E = Conversions->end(); I != E; ++I) { 4376 NamedDecl *D = I.getDecl(); 4377 if (isa<UsingShadowDecl>(D)) 4378 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4379 4380 // Skip conversion function templates; they don't tell us anything 4381 // about which builtin types we can convert to. 4382 if (isa<FunctionTemplateDecl>(D)) 4383 continue; 4384 4385 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 4386 if (AllowExplicitConversions || !Conv->isExplicit()) { 4387 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 4388 VisibleQuals); 4389 } 4390 } 4391 } 4392 } 4393} 4394 4395/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 4396/// the volatile- and non-volatile-qualified assignment operators for the 4397/// given type to the candidate set. 4398static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 4399 QualType T, 4400 Expr **Args, 4401 unsigned NumArgs, 4402 OverloadCandidateSet &CandidateSet) { 4403 QualType ParamTypes[2]; 4404 4405 // T& operator=(T&, T) 4406 ParamTypes[0] = S.Context.getLValueReferenceType(T); 4407 ParamTypes[1] = T; 4408 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4409 /*IsAssignmentOperator=*/true); 4410 4411 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 4412 // volatile T& operator=(volatile T&, T) 4413 ParamTypes[0] 4414 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 4415 ParamTypes[1] = T; 4416 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4417 /*IsAssignmentOperator=*/true); 4418 } 4419} 4420 4421/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 4422/// if any, found in visible type conversion functions found in ArgExpr's type. 4423static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 4424 Qualifiers VRQuals; 4425 const RecordType *TyRec; 4426 if (const MemberPointerType *RHSMPType = 4427 ArgExpr->getType()->getAs<MemberPointerType>()) 4428 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 4429 else 4430 TyRec = ArgExpr->getType()->getAs<RecordType>(); 4431 if (!TyRec) { 4432 // Just to be safe, assume the worst case. 4433 VRQuals.addVolatile(); 4434 VRQuals.addRestrict(); 4435 return VRQuals; 4436 } 4437 4438 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4439 if (!ClassDecl->hasDefinition()) 4440 return VRQuals; 4441 4442 const UnresolvedSetImpl *Conversions = 4443 ClassDecl->getVisibleConversionFunctions(); 4444 4445 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4446 E = Conversions->end(); I != E; ++I) { 4447 NamedDecl *D = I.getDecl(); 4448 if (isa<UsingShadowDecl>(D)) 4449 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4450 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 4451 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 4452 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 4453 CanTy = ResTypeRef->getPointeeType(); 4454 // Need to go down the pointer/mempointer chain and add qualifiers 4455 // as see them. 4456 bool done = false; 4457 while (!done) { 4458 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 4459 CanTy = ResTypePtr->getPointeeType(); 4460 else if (const MemberPointerType *ResTypeMPtr = 4461 CanTy->getAs<MemberPointerType>()) 4462 CanTy = ResTypeMPtr->getPointeeType(); 4463 else 4464 done = true; 4465 if (CanTy.isVolatileQualified()) 4466 VRQuals.addVolatile(); 4467 if (CanTy.isRestrictQualified()) 4468 VRQuals.addRestrict(); 4469 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 4470 return VRQuals; 4471 } 4472 } 4473 } 4474 return VRQuals; 4475} 4476 4477/// AddBuiltinOperatorCandidates - Add the appropriate built-in 4478/// operator overloads to the candidate set (C++ [over.built]), based 4479/// on the operator @p Op and the arguments given. For example, if the 4480/// operator is a binary '+', this routine might add "int 4481/// operator+(int, int)" to cover integer addition. 4482void 4483Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 4484 SourceLocation OpLoc, 4485 Expr **Args, unsigned NumArgs, 4486 OverloadCandidateSet& CandidateSet) { 4487 // The set of "promoted arithmetic types", which are the arithmetic 4488 // types are that preserved by promotion (C++ [over.built]p2). Note 4489 // that the first few of these types are the promoted integral 4490 // types; these types need to be first. 4491 // FIXME: What about complex? 4492 const unsigned FirstIntegralType = 0; 4493 const unsigned LastIntegralType = 13; 4494 const unsigned FirstPromotedIntegralType = 7, 4495 LastPromotedIntegralType = 13; 4496 const unsigned FirstPromotedArithmeticType = 7, 4497 LastPromotedArithmeticType = 16; 4498 const unsigned NumArithmeticTypes = 16; 4499 QualType ArithmeticTypes[NumArithmeticTypes] = { 4500 Context.BoolTy, Context.CharTy, Context.WCharTy, 4501// FIXME: Context.Char16Ty, Context.Char32Ty, 4502 Context.SignedCharTy, Context.ShortTy, 4503 Context.UnsignedCharTy, Context.UnsignedShortTy, 4504 Context.IntTy, Context.LongTy, Context.LongLongTy, 4505 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 4506 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 4507 }; 4508 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 4509 "Invalid first promoted integral type"); 4510 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 4511 == Context.UnsignedLongLongTy && 4512 "Invalid last promoted integral type"); 4513 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 4514 "Invalid first promoted arithmetic type"); 4515 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 4516 == Context.LongDoubleTy && 4517 "Invalid last promoted arithmetic type"); 4518 4519 // Find all of the types that the arguments can convert to, but only 4520 // if the operator we're looking at has built-in operator candidates 4521 // that make use of these types. 4522 Qualifiers VisibleTypeConversionsQuals; 4523 VisibleTypeConversionsQuals.addConst(); 4524 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4525 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 4526 4527 BuiltinCandidateTypeSet CandidateTypes(*this); 4528 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4529 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 4530 OpLoc, 4531 true, 4532 (Op == OO_Exclaim || 4533 Op == OO_AmpAmp || 4534 Op == OO_PipePipe), 4535 VisibleTypeConversionsQuals); 4536 4537 // C++ [over.built]p1: 4538 // If there is a user-written candidate with the same name and parameter 4539 // types as a built-in candidate operator function, the built-in operator 4540 // function is hidden and is not included in the set of candidate functions. 4541 // 4542 // The text is actually in a note, but if we don't implement it then we end 4543 // up with ambiguities when the user provides an overloaded operator for 4544 // an enumeration type. Note that only enumeration types have this problem, 4545 // so we track which enumeration types we've seen operators for. 4546 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 4547 UserDefinedBinaryOperators; 4548 4549 if (CandidateTypes.enumeration_begin() != CandidateTypes.enumeration_end()) { 4550 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 4551 CEnd = CandidateSet.end(); 4552 C != CEnd; ++C) { 4553 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 4554 continue; 4555 4556 // Check if the first parameter is of enumeration type. 4557 QualType FirstParamType 4558 = C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 4559 if (!FirstParamType->isEnumeralType()) 4560 continue; 4561 4562 // Check if the second parameter is of enumeration type. 4563 QualType SecondParamType 4564 = C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 4565 if (!SecondParamType->isEnumeralType()) 4566 continue; 4567 4568 // Add this operator to the set of known user-defined operators. 4569 UserDefinedBinaryOperators.insert( 4570 std::make_pair(Context.getCanonicalType(FirstParamType), 4571 Context.getCanonicalType(SecondParamType))); 4572 } 4573 } 4574 4575 bool isComparison = false; 4576 switch (Op) { 4577 case OO_None: 4578 case NUM_OVERLOADED_OPERATORS: 4579 assert(false && "Expected an overloaded operator"); 4580 break; 4581 4582 case OO_Star: // '*' is either unary or binary 4583 if (NumArgs == 1) 4584 goto UnaryStar; 4585 else 4586 goto BinaryStar; 4587 break; 4588 4589 case OO_Plus: // '+' is either unary or binary 4590 if (NumArgs == 1) 4591 goto UnaryPlus; 4592 else 4593 goto BinaryPlus; 4594 break; 4595 4596 case OO_Minus: // '-' is either unary or binary 4597 if (NumArgs == 1) 4598 goto UnaryMinus; 4599 else 4600 goto BinaryMinus; 4601 break; 4602 4603 case OO_Amp: // '&' is either unary or binary 4604 if (NumArgs == 1) 4605 goto UnaryAmp; 4606 else 4607 goto BinaryAmp; 4608 4609 case OO_PlusPlus: 4610 case OO_MinusMinus: 4611 // C++ [over.built]p3: 4612 // 4613 // For every pair (T, VQ), where T is an arithmetic type, and VQ 4614 // is either volatile or empty, there exist candidate operator 4615 // functions of the form 4616 // 4617 // VQ T& operator++(VQ T&); 4618 // T operator++(VQ T&, int); 4619 // 4620 // C++ [over.built]p4: 4621 // 4622 // For every pair (T, VQ), where T is an arithmetic type other 4623 // than bool, and VQ is either volatile or empty, there exist 4624 // candidate operator functions of the form 4625 // 4626 // VQ T& operator--(VQ T&); 4627 // T operator--(VQ T&, int); 4628 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 4629 Arith < NumArithmeticTypes; ++Arith) { 4630 QualType ArithTy = ArithmeticTypes[Arith]; 4631 QualType ParamTypes[2] 4632 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 4633 4634 // Non-volatile version. 4635 if (NumArgs == 1) 4636 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4637 else 4638 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4639 // heuristic to reduce number of builtin candidates in the set. 4640 // Add volatile version only if there are conversions to a volatile type. 4641 if (VisibleTypeConversionsQuals.hasVolatile()) { 4642 // Volatile version 4643 ParamTypes[0] 4644 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 4645 if (NumArgs == 1) 4646 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4647 else 4648 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4649 } 4650 } 4651 4652 // C++ [over.built]p5: 4653 // 4654 // For every pair (T, VQ), where T is a cv-qualified or 4655 // cv-unqualified object type, and VQ is either volatile or 4656 // empty, there exist candidate operator functions of the form 4657 // 4658 // T*VQ& operator++(T*VQ&); 4659 // T*VQ& operator--(T*VQ&); 4660 // T* operator++(T*VQ&, int); 4661 // T* operator--(T*VQ&, int); 4662 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4663 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4664 // Skip pointer types that aren't pointers to object types. 4665 if (!(*Ptr)->getPointeeType()->isIncompleteOrObjectType()) 4666 continue; 4667 4668 QualType ParamTypes[2] = { 4669 Context.getLValueReferenceType(*Ptr), Context.IntTy 4670 }; 4671 4672 // Without volatile 4673 if (NumArgs == 1) 4674 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4675 else 4676 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4677 4678 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4679 VisibleTypeConversionsQuals.hasVolatile()) { 4680 // With volatile 4681 ParamTypes[0] 4682 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4683 if (NumArgs == 1) 4684 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4685 else 4686 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4687 } 4688 } 4689 break; 4690 4691 UnaryStar: 4692 // C++ [over.built]p6: 4693 // For every cv-qualified or cv-unqualified object type T, there 4694 // exist candidate operator functions of the form 4695 // 4696 // T& operator*(T*); 4697 // 4698 // C++ [over.built]p7: 4699 // For every function type T, there exist candidate operator 4700 // functions of the form 4701 // T& operator*(T*); 4702 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4703 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4704 QualType ParamTy = *Ptr; 4705 QualType PointeeTy = ParamTy->getPointeeType(); 4706 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 4707 &ParamTy, Args, 1, CandidateSet); 4708 } 4709 break; 4710 4711 UnaryPlus: 4712 // C++ [over.built]p8: 4713 // For every type T, there exist candidate operator functions of 4714 // the form 4715 // 4716 // T* operator+(T*); 4717 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4718 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4719 QualType ParamTy = *Ptr; 4720 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 4721 } 4722 4723 // Fall through 4724 4725 UnaryMinus: 4726 // C++ [over.built]p9: 4727 // For every promoted arithmetic type T, there exist candidate 4728 // operator functions of the form 4729 // 4730 // T operator+(T); 4731 // T operator-(T); 4732 for (unsigned Arith = FirstPromotedArithmeticType; 4733 Arith < LastPromotedArithmeticType; ++Arith) { 4734 QualType ArithTy = ArithmeticTypes[Arith]; 4735 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 4736 } 4737 4738 // Extension: We also add these operators for vector types. 4739 for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), 4740 VecEnd = CandidateTypes.vector_end(); 4741 Vec != VecEnd; ++Vec) { 4742 QualType VecTy = *Vec; 4743 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4744 } 4745 break; 4746 4747 case OO_Tilde: 4748 // C++ [over.built]p10: 4749 // For every promoted integral type T, there exist candidate 4750 // operator functions of the form 4751 // 4752 // T operator~(T); 4753 for (unsigned Int = FirstPromotedIntegralType; 4754 Int < LastPromotedIntegralType; ++Int) { 4755 QualType IntTy = ArithmeticTypes[Int]; 4756 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 4757 } 4758 4759 // Extension: We also add this operator for vector types. 4760 for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), 4761 VecEnd = CandidateTypes.vector_end(); 4762 Vec != VecEnd; ++Vec) { 4763 QualType VecTy = *Vec; 4764 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4765 } 4766 break; 4767 4768 case OO_New: 4769 case OO_Delete: 4770 case OO_Array_New: 4771 case OO_Array_Delete: 4772 case OO_Call: 4773 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 4774 break; 4775 4776 case OO_Comma: 4777 UnaryAmp: 4778 case OO_Arrow: 4779 // C++ [over.match.oper]p3: 4780 // -- For the operator ',', the unary operator '&', or the 4781 // operator '->', the built-in candidates set is empty. 4782 break; 4783 4784 case OO_EqualEqual: 4785 case OO_ExclaimEqual: 4786 // C++ [over.match.oper]p16: 4787 // For every pointer to member type T, there exist candidate operator 4788 // functions of the form 4789 // 4790 // bool operator==(T,T); 4791 // bool operator!=(T,T); 4792 for (BuiltinCandidateTypeSet::iterator 4793 MemPtr = CandidateTypes.member_pointer_begin(), 4794 MemPtrEnd = CandidateTypes.member_pointer_end(); 4795 MemPtr != MemPtrEnd; 4796 ++MemPtr) { 4797 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 4798 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4799 } 4800 4801 // Fall through 4802 4803 case OO_Less: 4804 case OO_Greater: 4805 case OO_LessEqual: 4806 case OO_GreaterEqual: 4807 // C++ [over.built]p15: 4808 // 4809 // For every pointer or enumeration type T, there exist 4810 // candidate operator functions of the form 4811 // 4812 // bool operator<(T, T); 4813 // bool operator>(T, T); 4814 // bool operator<=(T, T); 4815 // bool operator>=(T, T); 4816 // bool operator==(T, T); 4817 // bool operator!=(T, T); 4818 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4819 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4820 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4821 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4822 } 4823 for (BuiltinCandidateTypeSet::iterator Enum 4824 = CandidateTypes.enumeration_begin(); 4825 Enum != CandidateTypes.enumeration_end(); ++Enum) { 4826 QualType ParamTypes[2] = { *Enum, *Enum }; 4827 CanQualType CanonType = Context.getCanonicalType(*Enum); 4828 if (!UserDefinedBinaryOperators.count( 4829 std::make_pair(CanonType, CanonType))) 4830 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4831 } 4832 4833 // Fall through. 4834 isComparison = true; 4835 4836 BinaryPlus: 4837 BinaryMinus: 4838 if (!isComparison) { 4839 // We didn't fall through, so we must have OO_Plus or OO_Minus. 4840 4841 // C++ [over.built]p13: 4842 // 4843 // For every cv-qualified or cv-unqualified object type T 4844 // there exist candidate operator functions of the form 4845 // 4846 // T* operator+(T*, ptrdiff_t); 4847 // T& operator[](T*, ptrdiff_t); [BELOW] 4848 // T* operator-(T*, ptrdiff_t); 4849 // T* operator+(ptrdiff_t, T*); 4850 // T& operator[](ptrdiff_t, T*); [BELOW] 4851 // 4852 // C++ [over.built]p14: 4853 // 4854 // For every T, where T is a pointer to object type, there 4855 // exist candidate operator functions of the form 4856 // 4857 // ptrdiff_t operator-(T, T); 4858 for (BuiltinCandidateTypeSet::iterator Ptr 4859 = CandidateTypes.pointer_begin(); 4860 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4861 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 4862 4863 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 4864 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4865 4866 if (Op == OO_Plus) { 4867 // T* operator+(ptrdiff_t, T*); 4868 ParamTypes[0] = ParamTypes[1]; 4869 ParamTypes[1] = *Ptr; 4870 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4871 } else { 4872 // ptrdiff_t operator-(T, T); 4873 ParamTypes[1] = *Ptr; 4874 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 4875 Args, 2, CandidateSet); 4876 } 4877 } 4878 } 4879 // Fall through 4880 4881 case OO_Slash: 4882 BinaryStar: 4883 Conditional: 4884 // C++ [over.built]p12: 4885 // 4886 // For every pair of promoted arithmetic types L and R, there 4887 // exist candidate operator functions of the form 4888 // 4889 // LR operator*(L, R); 4890 // LR operator/(L, R); 4891 // LR operator+(L, R); 4892 // LR operator-(L, R); 4893 // bool operator<(L, R); 4894 // bool operator>(L, R); 4895 // bool operator<=(L, R); 4896 // bool operator>=(L, R); 4897 // bool operator==(L, R); 4898 // bool operator!=(L, R); 4899 // 4900 // where LR is the result of the usual arithmetic conversions 4901 // between types L and R. 4902 // 4903 // C++ [over.built]p24: 4904 // 4905 // For every pair of promoted arithmetic types L and R, there exist 4906 // candidate operator functions of the form 4907 // 4908 // LR operator?(bool, L, R); 4909 // 4910 // where LR is the result of the usual arithmetic conversions 4911 // between types L and R. 4912 // Our candidates ignore the first parameter. 4913 for (unsigned Left = FirstPromotedArithmeticType; 4914 Left < LastPromotedArithmeticType; ++Left) { 4915 for (unsigned Right = FirstPromotedArithmeticType; 4916 Right < LastPromotedArithmeticType; ++Right) { 4917 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4918 QualType Result 4919 = isComparison 4920 ? Context.BoolTy 4921 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4922 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4923 } 4924 } 4925 4926 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 4927 // conditional operator for vector types. 4928 for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), 4929 Vec1End = CandidateTypes.vector_end(); 4930 Vec1 != Vec1End; ++Vec1) 4931 for (BuiltinCandidateTypeSet::iterator 4932 Vec2 = CandidateTypes.vector_begin(), 4933 Vec2End = CandidateTypes.vector_end(); 4934 Vec2 != Vec2End; ++Vec2) { 4935 QualType LandR[2] = { *Vec1, *Vec2 }; 4936 QualType Result; 4937 if (isComparison) 4938 Result = Context.BoolTy; 4939 else { 4940 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 4941 Result = *Vec1; 4942 else 4943 Result = *Vec2; 4944 } 4945 4946 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4947 } 4948 4949 break; 4950 4951 case OO_Percent: 4952 BinaryAmp: 4953 case OO_Caret: 4954 case OO_Pipe: 4955 case OO_LessLess: 4956 case OO_GreaterGreater: 4957 // C++ [over.built]p17: 4958 // 4959 // For every pair of promoted integral types L and R, there 4960 // exist candidate operator functions of the form 4961 // 4962 // LR operator%(L, R); 4963 // LR operator&(L, R); 4964 // LR operator^(L, R); 4965 // LR operator|(L, R); 4966 // L operator<<(L, R); 4967 // L operator>>(L, R); 4968 // 4969 // where LR is the result of the usual arithmetic conversions 4970 // between types L and R. 4971 for (unsigned Left = FirstPromotedIntegralType; 4972 Left < LastPromotedIntegralType; ++Left) { 4973 for (unsigned Right = FirstPromotedIntegralType; 4974 Right < LastPromotedIntegralType; ++Right) { 4975 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4976 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 4977 ? LandR[0] 4978 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4979 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4980 } 4981 } 4982 break; 4983 4984 case OO_Equal: 4985 // C++ [over.built]p20: 4986 // 4987 // For every pair (T, VQ), where T is an enumeration or 4988 // pointer to member type and VQ is either volatile or 4989 // empty, there exist candidate operator functions of the form 4990 // 4991 // VQ T& operator=(VQ T&, T); 4992 for (BuiltinCandidateTypeSet::iterator 4993 Enum = CandidateTypes.enumeration_begin(), 4994 EnumEnd = CandidateTypes.enumeration_end(); 4995 Enum != EnumEnd; ++Enum) 4996 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 4997 CandidateSet); 4998 for (BuiltinCandidateTypeSet::iterator 4999 MemPtr = CandidateTypes.member_pointer_begin(), 5000 MemPtrEnd = CandidateTypes.member_pointer_end(); 5001 MemPtr != MemPtrEnd; ++MemPtr) 5002 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 5003 CandidateSet); 5004 5005 // Fall through. 5006 5007 case OO_PlusEqual: 5008 case OO_MinusEqual: 5009 // C++ [over.built]p19: 5010 // 5011 // For every pair (T, VQ), where T is any type and VQ is either 5012 // volatile or empty, there exist candidate operator functions 5013 // of the form 5014 // 5015 // T*VQ& operator=(T*VQ&, T*); 5016 // 5017 // C++ [over.built]p21: 5018 // 5019 // For every pair (T, VQ), where T is a cv-qualified or 5020 // cv-unqualified object type and VQ is either volatile or 5021 // empty, there exist candidate operator functions of the form 5022 // 5023 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 5024 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 5025 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 5026 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 5027 QualType ParamTypes[2]; 5028 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 5029 5030 // non-volatile version 5031 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 5032 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5033 /*IsAssigmentOperator=*/Op == OO_Equal); 5034 5035 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 5036 VisibleTypeConversionsQuals.hasVolatile()) { 5037 // volatile version 5038 ParamTypes[0] 5039 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 5040 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5041 /*IsAssigmentOperator=*/Op == OO_Equal); 5042 } 5043 } 5044 // Fall through. 5045 5046 case OO_StarEqual: 5047 case OO_SlashEqual: 5048 // C++ [over.built]p18: 5049 // 5050 // For every triple (L, VQ, R), where L is an arithmetic type, 5051 // VQ is either volatile or empty, and R is a promoted 5052 // arithmetic type, there exist candidate operator functions of 5053 // the form 5054 // 5055 // VQ L& operator=(VQ L&, R); 5056 // VQ L& operator*=(VQ L&, R); 5057 // VQ L& operator/=(VQ L&, R); 5058 // VQ L& operator+=(VQ L&, R); 5059 // VQ L& operator-=(VQ L&, R); 5060 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 5061 for (unsigned Right = FirstPromotedArithmeticType; 5062 Right < LastPromotedArithmeticType; ++Right) { 5063 QualType ParamTypes[2]; 5064 ParamTypes[1] = ArithmeticTypes[Right]; 5065 5066 // Add this built-in operator as a candidate (VQ is empty). 5067 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 5068 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5069 /*IsAssigmentOperator=*/Op == OO_Equal); 5070 5071 // Add this built-in operator as a candidate (VQ is 'volatile'). 5072 if (VisibleTypeConversionsQuals.hasVolatile()) { 5073 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 5074 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 5075 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5076 /*IsAssigmentOperator=*/Op == OO_Equal); 5077 } 5078 } 5079 } 5080 5081 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 5082 for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), 5083 Vec1End = CandidateTypes.vector_end(); 5084 Vec1 != Vec1End; ++Vec1) 5085 for (BuiltinCandidateTypeSet::iterator 5086 Vec2 = CandidateTypes.vector_begin(), 5087 Vec2End = CandidateTypes.vector_end(); 5088 Vec2 != Vec2End; ++Vec2) { 5089 QualType ParamTypes[2]; 5090 ParamTypes[1] = *Vec2; 5091 // Add this built-in operator as a candidate (VQ is empty). 5092 ParamTypes[0] = Context.getLValueReferenceType(*Vec1); 5093 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5094 /*IsAssigmentOperator=*/Op == OO_Equal); 5095 5096 // Add this built-in operator as a candidate (VQ is 'volatile'). 5097 if (VisibleTypeConversionsQuals.hasVolatile()) { 5098 ParamTypes[0] = Context.getVolatileType(*Vec1); 5099 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 5100 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5101 /*IsAssigmentOperator=*/Op == OO_Equal); 5102 } 5103 } 5104 break; 5105 5106 case OO_PercentEqual: 5107 case OO_LessLessEqual: 5108 case OO_GreaterGreaterEqual: 5109 case OO_AmpEqual: 5110 case OO_CaretEqual: 5111 case OO_PipeEqual: 5112 // C++ [over.built]p22: 5113 // 5114 // For every triple (L, VQ, R), where L is an integral type, VQ 5115 // is either volatile or empty, and R is a promoted integral 5116 // type, there exist candidate operator functions of the form 5117 // 5118 // VQ L& operator%=(VQ L&, R); 5119 // VQ L& operator<<=(VQ L&, R); 5120 // VQ L& operator>>=(VQ L&, R); 5121 // VQ L& operator&=(VQ L&, R); 5122 // VQ L& operator^=(VQ L&, R); 5123 // VQ L& operator|=(VQ L&, R); 5124 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 5125 for (unsigned Right = FirstPromotedIntegralType; 5126 Right < LastPromotedIntegralType; ++Right) { 5127 QualType ParamTypes[2]; 5128 ParamTypes[1] = ArithmeticTypes[Right]; 5129 5130 // Add this built-in operator as a candidate (VQ is empty). 5131 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 5132 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 5133 if (VisibleTypeConversionsQuals.hasVolatile()) { 5134 // Add this built-in operator as a candidate (VQ is 'volatile'). 5135 ParamTypes[0] = ArithmeticTypes[Left]; 5136 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 5137 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 5138 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 5139 } 5140 } 5141 } 5142 break; 5143 5144 case OO_Exclaim: { 5145 // C++ [over.operator]p23: 5146 // 5147 // There also exist candidate operator functions of the form 5148 // 5149 // bool operator!(bool); 5150 // bool operator&&(bool, bool); [BELOW] 5151 // bool operator||(bool, bool); [BELOW] 5152 QualType ParamTy = Context.BoolTy; 5153 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 5154 /*IsAssignmentOperator=*/false, 5155 /*NumContextualBoolArguments=*/1); 5156 break; 5157 } 5158 5159 case OO_AmpAmp: 5160 case OO_PipePipe: { 5161 // C++ [over.operator]p23: 5162 // 5163 // There also exist candidate operator functions of the form 5164 // 5165 // bool operator!(bool); [ABOVE] 5166 // bool operator&&(bool, bool); 5167 // bool operator||(bool, bool); 5168 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 5169 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 5170 /*IsAssignmentOperator=*/false, 5171 /*NumContextualBoolArguments=*/2); 5172 break; 5173 } 5174 5175 case OO_Subscript: 5176 // C++ [over.built]p13: 5177 // 5178 // For every cv-qualified or cv-unqualified object type T there 5179 // exist candidate operator functions of the form 5180 // 5181 // T* operator+(T*, ptrdiff_t); [ABOVE] 5182 // T& operator[](T*, ptrdiff_t); 5183 // T* operator-(T*, ptrdiff_t); [ABOVE] 5184 // T* operator+(ptrdiff_t, T*); [ABOVE] 5185 // T& operator[](ptrdiff_t, T*); 5186 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 5187 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 5188 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 5189 QualType PointeeType = (*Ptr)->getPointeeType(); 5190 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 5191 5192 // T& operator[](T*, ptrdiff_t) 5193 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5194 5195 // T& operator[](ptrdiff_t, T*); 5196 ParamTypes[0] = ParamTypes[1]; 5197 ParamTypes[1] = *Ptr; 5198 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5199 } 5200 break; 5201 5202 case OO_ArrowStar: 5203 // C++ [over.built]p11: 5204 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 5205 // C1 is the same type as C2 or is a derived class of C2, T is an object 5206 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 5207 // there exist candidate operator functions of the form 5208 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 5209 // where CV12 is the union of CV1 and CV2. 5210 { 5211 for (BuiltinCandidateTypeSet::iterator Ptr = 5212 CandidateTypes.pointer_begin(); 5213 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 5214 QualType C1Ty = (*Ptr); 5215 QualType C1; 5216 QualifierCollector Q1; 5217 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 5218 if (!isa<RecordType>(C1)) 5219 continue; 5220 // heuristic to reduce number of builtin candidates in the set. 5221 // Add volatile/restrict version only if there are conversions to a 5222 // volatile/restrict type. 5223 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 5224 continue; 5225 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 5226 continue; 5227 for (BuiltinCandidateTypeSet::iterator 5228 MemPtr = CandidateTypes.member_pointer_begin(), 5229 MemPtrEnd = CandidateTypes.member_pointer_end(); 5230 MemPtr != MemPtrEnd; ++MemPtr) { 5231 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 5232 QualType C2 = QualType(mptr->getClass(), 0); 5233 C2 = C2.getUnqualifiedType(); 5234 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 5235 break; 5236 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 5237 // build CV12 T& 5238 QualType T = mptr->getPointeeType(); 5239 if (!VisibleTypeConversionsQuals.hasVolatile() && 5240 T.isVolatileQualified()) 5241 continue; 5242 if (!VisibleTypeConversionsQuals.hasRestrict() && 5243 T.isRestrictQualified()) 5244 continue; 5245 T = Q1.apply(T); 5246 QualType ResultTy = Context.getLValueReferenceType(T); 5247 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 5248 } 5249 } 5250 } 5251 break; 5252 5253 case OO_Conditional: 5254 // Note that we don't consider the first argument, since it has been 5255 // contextually converted to bool long ago. The candidates below are 5256 // therefore added as binary. 5257 // 5258 // C++ [over.built]p25: 5259 // For every type T, where T is a pointer, pointer-to-member, or scoped 5260 // enumeration type, there exist candidate operator functions of the form 5261 // 5262 // T operator?(bool, T, T); 5263 // 5264 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 5265 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 5266 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5267 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5268 } 5269 for (BuiltinCandidateTypeSet::iterator Ptr = 5270 CandidateTypes.member_pointer_begin(), 5271 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 5272 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5273 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 5274 } 5275 if (getLangOptions().CPlusPlus0x) 5276 for (BuiltinCandidateTypeSet::iterator Enum = 5277 CandidateTypes.enumeration_begin(), 5278 E = CandidateTypes.enumeration_end(); Enum != E; ++Enum) { 5279 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 5280 continue; 5281 QualType ParamTypes[2] = { *Enum, *Enum }; 5282 AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); 5283 } 5284 goto Conditional; 5285 } 5286} 5287 5288/// \brief Add function candidates found via argument-dependent lookup 5289/// to the set of overloading candidates. 5290/// 5291/// This routine performs argument-dependent name lookup based on the 5292/// given function name (which may also be an operator name) and adds 5293/// all of the overload candidates found by ADL to the overload 5294/// candidate set (C++ [basic.lookup.argdep]). 5295void 5296Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 5297 bool Operator, 5298 Expr **Args, unsigned NumArgs, 5299 const TemplateArgumentListInfo *ExplicitTemplateArgs, 5300 OverloadCandidateSet& CandidateSet, 5301 bool PartialOverloading) { 5302 ADLResult Fns; 5303 5304 // FIXME: This approach for uniquing ADL results (and removing 5305 // redundant candidates from the set) relies on pointer-equality, 5306 // which means we need to key off the canonical decl. However, 5307 // always going back to the canonical decl might not get us the 5308 // right set of default arguments. What default arguments are 5309 // we supposed to consider on ADL candidates, anyway? 5310 5311 // FIXME: Pass in the explicit template arguments? 5312 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); 5313 5314 // Erase all of the candidates we already knew about. 5315 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 5316 CandEnd = CandidateSet.end(); 5317 Cand != CandEnd; ++Cand) 5318 if (Cand->Function) { 5319 Fns.erase(Cand->Function); 5320 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 5321 Fns.erase(FunTmpl); 5322 } 5323 5324 // For each of the ADL candidates we found, add it to the overload 5325 // set. 5326 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 5327 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 5328 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 5329 if (ExplicitTemplateArgs) 5330 continue; 5331 5332 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 5333 false, PartialOverloading); 5334 } else 5335 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 5336 FoundDecl, ExplicitTemplateArgs, 5337 Args, NumArgs, CandidateSet); 5338 } 5339} 5340 5341/// isBetterOverloadCandidate - Determines whether the first overload 5342/// candidate is a better candidate than the second (C++ 13.3.3p1). 5343bool 5344isBetterOverloadCandidate(Sema &S, 5345 const OverloadCandidate& Cand1, 5346 const OverloadCandidate& Cand2, 5347 SourceLocation Loc, 5348 bool UserDefinedConversion) { 5349 // Define viable functions to be better candidates than non-viable 5350 // functions. 5351 if (!Cand2.Viable) 5352 return Cand1.Viable; 5353 else if (!Cand1.Viable) 5354 return false; 5355 5356 // C++ [over.match.best]p1: 5357 // 5358 // -- if F is a static member function, ICS1(F) is defined such 5359 // that ICS1(F) is neither better nor worse than ICS1(G) for 5360 // any function G, and, symmetrically, ICS1(G) is neither 5361 // better nor worse than ICS1(F). 5362 unsigned StartArg = 0; 5363 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 5364 StartArg = 1; 5365 5366 // C++ [over.match.best]p1: 5367 // A viable function F1 is defined to be a better function than another 5368 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 5369 // conversion sequence than ICSi(F2), and then... 5370 unsigned NumArgs = Cand1.Conversions.size(); 5371 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 5372 bool HasBetterConversion = false; 5373 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 5374 switch (CompareImplicitConversionSequences(S, 5375 Cand1.Conversions[ArgIdx], 5376 Cand2.Conversions[ArgIdx])) { 5377 case ImplicitConversionSequence::Better: 5378 // Cand1 has a better conversion sequence. 5379 HasBetterConversion = true; 5380 break; 5381 5382 case ImplicitConversionSequence::Worse: 5383 // Cand1 can't be better than Cand2. 5384 return false; 5385 5386 case ImplicitConversionSequence::Indistinguishable: 5387 // Do nothing. 5388 break; 5389 } 5390 } 5391 5392 // -- for some argument j, ICSj(F1) is a better conversion sequence than 5393 // ICSj(F2), or, if not that, 5394 if (HasBetterConversion) 5395 return true; 5396 5397 // - F1 is a non-template function and F2 is a function template 5398 // specialization, or, if not that, 5399 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 5400 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 5401 return true; 5402 5403 // -- F1 and F2 are function template specializations, and the function 5404 // template for F1 is more specialized than the template for F2 5405 // according to the partial ordering rules described in 14.5.5.2, or, 5406 // if not that, 5407 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 5408 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 5409 if (FunctionTemplateDecl *BetterTemplate 5410 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 5411 Cand2.Function->getPrimaryTemplate(), 5412 Loc, 5413 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 5414 : TPOC_Call)) 5415 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 5416 5417 // -- the context is an initialization by user-defined conversion 5418 // (see 8.5, 13.3.1.5) and the standard conversion sequence 5419 // from the return type of F1 to the destination type (i.e., 5420 // the type of the entity being initialized) is a better 5421 // conversion sequence than the standard conversion sequence 5422 // from the return type of F2 to the destination type. 5423 if (UserDefinedConversion && Cand1.Function && Cand2.Function && 5424 isa<CXXConversionDecl>(Cand1.Function) && 5425 isa<CXXConversionDecl>(Cand2.Function)) { 5426 switch (CompareStandardConversionSequences(S, 5427 Cand1.FinalConversion, 5428 Cand2.FinalConversion)) { 5429 case ImplicitConversionSequence::Better: 5430 // Cand1 has a better conversion sequence. 5431 return true; 5432 5433 case ImplicitConversionSequence::Worse: 5434 // Cand1 can't be better than Cand2. 5435 return false; 5436 5437 case ImplicitConversionSequence::Indistinguishable: 5438 // Do nothing 5439 break; 5440 } 5441 } 5442 5443 return false; 5444} 5445 5446/// \brief Computes the best viable function (C++ 13.3.3) 5447/// within an overload candidate set. 5448/// 5449/// \param CandidateSet the set of candidate functions. 5450/// 5451/// \param Loc the location of the function name (or operator symbol) for 5452/// which overload resolution occurs. 5453/// 5454/// \param Best f overload resolution was successful or found a deleted 5455/// function, Best points to the candidate function found. 5456/// 5457/// \returns The result of overload resolution. 5458OverloadingResult 5459OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 5460 iterator& Best, 5461 bool UserDefinedConversion) { 5462 // Find the best viable function. 5463 Best = end(); 5464 for (iterator Cand = begin(); Cand != end(); ++Cand) { 5465 if (Cand->Viable) 5466 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, 5467 UserDefinedConversion)) 5468 Best = Cand; 5469 } 5470 5471 // If we didn't find any viable functions, abort. 5472 if (Best == end()) 5473 return OR_No_Viable_Function; 5474 5475 // Make sure that this function is better than every other viable 5476 // function. If not, we have an ambiguity. 5477 for (iterator Cand = begin(); Cand != end(); ++Cand) { 5478 if (Cand->Viable && 5479 Cand != Best && 5480 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, 5481 UserDefinedConversion)) { 5482 Best = end(); 5483 return OR_Ambiguous; 5484 } 5485 } 5486 5487 // Best is the best viable function. 5488 if (Best->Function && 5489 (Best->Function->isDeleted() || 5490 Best->Function->getAttr<UnavailableAttr>())) 5491 return OR_Deleted; 5492 5493 // C++ [basic.def.odr]p2: 5494 // An overloaded function is used if it is selected by overload resolution 5495 // when referred to from a potentially-evaluated expression. [Note: this 5496 // covers calls to named functions (5.2.2), operator overloading 5497 // (clause 13), user-defined conversions (12.3.2), allocation function for 5498 // placement new (5.3.4), as well as non-default initialization (8.5). 5499 if (Best->Function) 5500 S.MarkDeclarationReferenced(Loc, Best->Function); 5501 5502 return OR_Success; 5503} 5504 5505namespace { 5506 5507enum OverloadCandidateKind { 5508 oc_function, 5509 oc_method, 5510 oc_constructor, 5511 oc_function_template, 5512 oc_method_template, 5513 oc_constructor_template, 5514 oc_implicit_default_constructor, 5515 oc_implicit_copy_constructor, 5516 oc_implicit_copy_assignment 5517}; 5518 5519OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 5520 FunctionDecl *Fn, 5521 std::string &Description) { 5522 bool isTemplate = false; 5523 5524 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 5525 isTemplate = true; 5526 Description = S.getTemplateArgumentBindingsText( 5527 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 5528 } 5529 5530 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 5531 if (!Ctor->isImplicit()) 5532 return isTemplate ? oc_constructor_template : oc_constructor; 5533 5534 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 5535 : oc_implicit_default_constructor; 5536 } 5537 5538 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 5539 // This actually gets spelled 'candidate function' for now, but 5540 // it doesn't hurt to split it out. 5541 if (!Meth->isImplicit()) 5542 return isTemplate ? oc_method_template : oc_method; 5543 5544 assert(Meth->isCopyAssignmentOperator() 5545 && "implicit method is not copy assignment operator?"); 5546 return oc_implicit_copy_assignment; 5547 } 5548 5549 return isTemplate ? oc_function_template : oc_function; 5550} 5551 5552} // end anonymous namespace 5553 5554// Notes the location of an overload candidate. 5555void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 5556 std::string FnDesc; 5557 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 5558 Diag(Fn->getLocation(), diag::note_ovl_candidate) 5559 << (unsigned) K << FnDesc; 5560} 5561 5562/// Diagnoses an ambiguous conversion. The partial diagnostic is the 5563/// "lead" diagnostic; it will be given two arguments, the source and 5564/// target types of the conversion. 5565void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 5566 Sema &S, 5567 SourceLocation CaretLoc, 5568 const PartialDiagnostic &PDiag) const { 5569 S.Diag(CaretLoc, PDiag) 5570 << Ambiguous.getFromType() << Ambiguous.getToType(); 5571 for (AmbiguousConversionSequence::const_iterator 5572 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 5573 S.NoteOverloadCandidate(*I); 5574 } 5575} 5576 5577namespace { 5578 5579void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 5580 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 5581 assert(Conv.isBad()); 5582 assert(Cand->Function && "for now, candidate must be a function"); 5583 FunctionDecl *Fn = Cand->Function; 5584 5585 // There's a conversion slot for the object argument if this is a 5586 // non-constructor method. Note that 'I' corresponds the 5587 // conversion-slot index. 5588 bool isObjectArgument = false; 5589 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 5590 if (I == 0) 5591 isObjectArgument = true; 5592 else 5593 I--; 5594 } 5595 5596 std::string FnDesc; 5597 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5598 5599 Expr *FromExpr = Conv.Bad.FromExpr; 5600 QualType FromTy = Conv.Bad.getFromType(); 5601 QualType ToTy = Conv.Bad.getToType(); 5602 5603 if (FromTy == S.Context.OverloadTy) { 5604 assert(FromExpr && "overload set argument came from implicit argument?"); 5605 Expr *E = FromExpr->IgnoreParens(); 5606 if (isa<UnaryOperator>(E)) 5607 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 5608 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 5609 5610 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 5611 << (unsigned) FnKind << FnDesc 5612 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5613 << ToTy << Name << I+1; 5614 return; 5615 } 5616 5617 // Do some hand-waving analysis to see if the non-viability is due 5618 // to a qualifier mismatch. 5619 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 5620 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 5621 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 5622 CToTy = RT->getPointeeType(); 5623 else { 5624 // TODO: detect and diagnose the full richness of const mismatches. 5625 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 5626 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 5627 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 5628 } 5629 5630 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 5631 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 5632 // It is dumb that we have to do this here. 5633 while (isa<ArrayType>(CFromTy)) 5634 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 5635 while (isa<ArrayType>(CToTy)) 5636 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 5637 5638 Qualifiers FromQs = CFromTy.getQualifiers(); 5639 Qualifiers ToQs = CToTy.getQualifiers(); 5640 5641 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 5642 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 5643 << (unsigned) FnKind << FnDesc 5644 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5645 << FromTy 5646 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 5647 << (unsigned) isObjectArgument << I+1; 5648 return; 5649 } 5650 5651 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5652 assert(CVR && "unexpected qualifiers mismatch"); 5653 5654 if (isObjectArgument) { 5655 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 5656 << (unsigned) FnKind << FnDesc 5657 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5658 << FromTy << (CVR - 1); 5659 } else { 5660 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 5661 << (unsigned) FnKind << FnDesc 5662 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5663 << FromTy << (CVR - 1) << I+1; 5664 } 5665 return; 5666 } 5667 5668 // Diagnose references or pointers to incomplete types differently, 5669 // since it's far from impossible that the incompleteness triggered 5670 // the failure. 5671 QualType TempFromTy = FromTy.getNonReferenceType(); 5672 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 5673 TempFromTy = PTy->getPointeeType(); 5674 if (TempFromTy->isIncompleteType()) { 5675 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 5676 << (unsigned) FnKind << FnDesc 5677 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5678 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5679 return; 5680 } 5681 5682 // Diagnose base -> derived pointer conversions. 5683 unsigned BaseToDerivedConversion = 0; 5684 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 5685 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 5686 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 5687 FromPtrTy->getPointeeType()) && 5688 !FromPtrTy->getPointeeType()->isIncompleteType() && 5689 !ToPtrTy->getPointeeType()->isIncompleteType() && 5690 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 5691 FromPtrTy->getPointeeType())) 5692 BaseToDerivedConversion = 1; 5693 } 5694 } else if (const ObjCObjectPointerType *FromPtrTy 5695 = FromTy->getAs<ObjCObjectPointerType>()) { 5696 if (const ObjCObjectPointerType *ToPtrTy 5697 = ToTy->getAs<ObjCObjectPointerType>()) 5698 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 5699 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 5700 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 5701 FromPtrTy->getPointeeType()) && 5702 FromIface->isSuperClassOf(ToIface)) 5703 BaseToDerivedConversion = 2; 5704 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 5705 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 5706 !FromTy->isIncompleteType() && 5707 !ToRefTy->getPointeeType()->isIncompleteType() && 5708 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 5709 BaseToDerivedConversion = 3; 5710 } 5711 5712 if (BaseToDerivedConversion) { 5713 S.Diag(Fn->getLocation(), 5714 diag::note_ovl_candidate_bad_base_to_derived_conv) 5715 << (unsigned) FnKind << FnDesc 5716 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5717 << (BaseToDerivedConversion - 1) 5718 << FromTy << ToTy << I+1; 5719 return; 5720 } 5721 5722 // TODO: specialize more based on the kind of mismatch 5723 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 5724 << (unsigned) FnKind << FnDesc 5725 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5726 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5727} 5728 5729void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 5730 unsigned NumFormalArgs) { 5731 // TODO: treat calls to a missing default constructor as a special case 5732 5733 FunctionDecl *Fn = Cand->Function; 5734 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 5735 5736 unsigned MinParams = Fn->getMinRequiredArguments(); 5737 5738 // at least / at most / exactly 5739 // FIXME: variadic templates "at most" should account for parameter packs 5740 unsigned mode, modeCount; 5741 if (NumFormalArgs < MinParams) { 5742 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 5743 (Cand->FailureKind == ovl_fail_bad_deduction && 5744 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 5745 if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) 5746 mode = 0; // "at least" 5747 else 5748 mode = 2; // "exactly" 5749 modeCount = MinParams; 5750 } else { 5751 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 5752 (Cand->FailureKind == ovl_fail_bad_deduction && 5753 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 5754 if (MinParams != FnTy->getNumArgs()) 5755 mode = 1; // "at most" 5756 else 5757 mode = 2; // "exactly" 5758 modeCount = FnTy->getNumArgs(); 5759 } 5760 5761 std::string Description; 5762 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 5763 5764 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 5765 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 5766 << modeCount << NumFormalArgs; 5767} 5768 5769/// Diagnose a failed template-argument deduction. 5770void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 5771 Expr **Args, unsigned NumArgs) { 5772 FunctionDecl *Fn = Cand->Function; // pattern 5773 5774 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 5775 NamedDecl *ParamD; 5776 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 5777 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 5778 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 5779 switch (Cand->DeductionFailure.Result) { 5780 case Sema::TDK_Success: 5781 llvm_unreachable("TDK_success while diagnosing bad deduction"); 5782 5783 case Sema::TDK_Incomplete: { 5784 assert(ParamD && "no parameter found for incomplete deduction result"); 5785 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 5786 << ParamD->getDeclName(); 5787 return; 5788 } 5789 5790 case Sema::TDK_Underqualified: { 5791 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 5792 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 5793 5794 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 5795 5796 // Param will have been canonicalized, but it should just be a 5797 // qualified version of ParamD, so move the qualifiers to that. 5798 QualifierCollector Qs(S.Context); 5799 Qs.strip(Param); 5800 QualType NonCanonParam = Qs.apply(TParam->getTypeForDecl()); 5801 assert(S.Context.hasSameType(Param, NonCanonParam)); 5802 5803 // Arg has also been canonicalized, but there's nothing we can do 5804 // about that. It also doesn't matter as much, because it won't 5805 // have any template parameters in it (because deduction isn't 5806 // done on dependent types). 5807 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 5808 5809 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 5810 << ParamD->getDeclName() << Arg << NonCanonParam; 5811 return; 5812 } 5813 5814 case Sema::TDK_Inconsistent: { 5815 assert(ParamD && "no parameter found for inconsistent deduction result"); 5816 int which = 0; 5817 if (isa<TemplateTypeParmDecl>(ParamD)) 5818 which = 0; 5819 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 5820 which = 1; 5821 else { 5822 which = 2; 5823 } 5824 5825 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 5826 << which << ParamD->getDeclName() 5827 << *Cand->DeductionFailure.getFirstArg() 5828 << *Cand->DeductionFailure.getSecondArg(); 5829 return; 5830 } 5831 5832 case Sema::TDK_InvalidExplicitArguments: 5833 assert(ParamD && "no parameter found for invalid explicit arguments"); 5834 if (ParamD->getDeclName()) 5835 S.Diag(Fn->getLocation(), 5836 diag::note_ovl_candidate_explicit_arg_mismatch_named) 5837 << ParamD->getDeclName(); 5838 else { 5839 int index = 0; 5840 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 5841 index = TTP->getIndex(); 5842 else if (NonTypeTemplateParmDecl *NTTP 5843 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 5844 index = NTTP->getIndex(); 5845 else 5846 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 5847 S.Diag(Fn->getLocation(), 5848 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 5849 << (index + 1); 5850 } 5851 return; 5852 5853 case Sema::TDK_TooManyArguments: 5854 case Sema::TDK_TooFewArguments: 5855 DiagnoseArityMismatch(S, Cand, NumArgs); 5856 return; 5857 5858 case Sema::TDK_InstantiationDepth: 5859 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 5860 return; 5861 5862 case Sema::TDK_SubstitutionFailure: { 5863 std::string ArgString; 5864 if (TemplateArgumentList *Args 5865 = Cand->DeductionFailure.getTemplateArgumentList()) 5866 ArgString = S.getTemplateArgumentBindingsText( 5867 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 5868 *Args); 5869 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 5870 << ArgString; 5871 return; 5872 } 5873 5874 // TODO: diagnose these individually, then kill off 5875 // note_ovl_candidate_bad_deduction, which is uselessly vague. 5876 case Sema::TDK_NonDeducedMismatch: 5877 case Sema::TDK_FailedOverloadResolution: 5878 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 5879 return; 5880 } 5881} 5882 5883/// Generates a 'note' diagnostic for an overload candidate. We've 5884/// already generated a primary error at the call site. 5885/// 5886/// It really does need to be a single diagnostic with its caret 5887/// pointed at the candidate declaration. Yes, this creates some 5888/// major challenges of technical writing. Yes, this makes pointing 5889/// out problems with specific arguments quite awkward. It's still 5890/// better than generating twenty screens of text for every failed 5891/// overload. 5892/// 5893/// It would be great to be able to express per-candidate problems 5894/// more richly for those diagnostic clients that cared, but we'd 5895/// still have to be just as careful with the default diagnostics. 5896void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 5897 Expr **Args, unsigned NumArgs) { 5898 FunctionDecl *Fn = Cand->Function; 5899 5900 // Note deleted candidates, but only if they're viable. 5901 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 5902 std::string FnDesc; 5903 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5904 5905 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 5906 << FnKind << FnDesc << Fn->isDeleted(); 5907 return; 5908 } 5909 5910 // We don't really have anything else to say about viable candidates. 5911 if (Cand->Viable) { 5912 S.NoteOverloadCandidate(Fn); 5913 return; 5914 } 5915 5916 switch (Cand->FailureKind) { 5917 case ovl_fail_too_many_arguments: 5918 case ovl_fail_too_few_arguments: 5919 return DiagnoseArityMismatch(S, Cand, NumArgs); 5920 5921 case ovl_fail_bad_deduction: 5922 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 5923 5924 case ovl_fail_trivial_conversion: 5925 case ovl_fail_bad_final_conversion: 5926 case ovl_fail_final_conversion_not_exact: 5927 return S.NoteOverloadCandidate(Fn); 5928 5929 case ovl_fail_bad_conversion: { 5930 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 5931 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 5932 if (Cand->Conversions[I].isBad()) 5933 return DiagnoseBadConversion(S, Cand, I); 5934 5935 // FIXME: this currently happens when we're called from SemaInit 5936 // when user-conversion overload fails. Figure out how to handle 5937 // those conditions and diagnose them well. 5938 return S.NoteOverloadCandidate(Fn); 5939 } 5940 } 5941} 5942 5943void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 5944 // Desugar the type of the surrogate down to a function type, 5945 // retaining as many typedefs as possible while still showing 5946 // the function type (and, therefore, its parameter types). 5947 QualType FnType = Cand->Surrogate->getConversionType(); 5948 bool isLValueReference = false; 5949 bool isRValueReference = false; 5950 bool isPointer = false; 5951 if (const LValueReferenceType *FnTypeRef = 5952 FnType->getAs<LValueReferenceType>()) { 5953 FnType = FnTypeRef->getPointeeType(); 5954 isLValueReference = true; 5955 } else if (const RValueReferenceType *FnTypeRef = 5956 FnType->getAs<RValueReferenceType>()) { 5957 FnType = FnTypeRef->getPointeeType(); 5958 isRValueReference = true; 5959 } 5960 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 5961 FnType = FnTypePtr->getPointeeType(); 5962 isPointer = true; 5963 } 5964 // Desugar down to a function type. 5965 FnType = QualType(FnType->getAs<FunctionType>(), 0); 5966 // Reconstruct the pointer/reference as appropriate. 5967 if (isPointer) FnType = S.Context.getPointerType(FnType); 5968 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 5969 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 5970 5971 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 5972 << FnType; 5973} 5974 5975void NoteBuiltinOperatorCandidate(Sema &S, 5976 const char *Opc, 5977 SourceLocation OpLoc, 5978 OverloadCandidate *Cand) { 5979 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 5980 std::string TypeStr("operator"); 5981 TypeStr += Opc; 5982 TypeStr += "("; 5983 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 5984 if (Cand->Conversions.size() == 1) { 5985 TypeStr += ")"; 5986 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 5987 } else { 5988 TypeStr += ", "; 5989 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 5990 TypeStr += ")"; 5991 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 5992 } 5993} 5994 5995void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 5996 OverloadCandidate *Cand) { 5997 unsigned NoOperands = Cand->Conversions.size(); 5998 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 5999 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 6000 if (ICS.isBad()) break; // all meaningless after first invalid 6001 if (!ICS.isAmbiguous()) continue; 6002 6003 ICS.DiagnoseAmbiguousConversion(S, OpLoc, 6004 S.PDiag(diag::note_ambiguous_type_conversion)); 6005 } 6006} 6007 6008SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 6009 if (Cand->Function) 6010 return Cand->Function->getLocation(); 6011 if (Cand->IsSurrogate) 6012 return Cand->Surrogate->getLocation(); 6013 return SourceLocation(); 6014} 6015 6016struct CompareOverloadCandidatesForDisplay { 6017 Sema &S; 6018 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 6019 6020 bool operator()(const OverloadCandidate *L, 6021 const OverloadCandidate *R) { 6022 // Fast-path this check. 6023 if (L == R) return false; 6024 6025 // Order first by viability. 6026 if (L->Viable) { 6027 if (!R->Viable) return true; 6028 6029 // TODO: introduce a tri-valued comparison for overload 6030 // candidates. Would be more worthwhile if we had a sort 6031 // that could exploit it. 6032 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; 6033 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; 6034 } else if (R->Viable) 6035 return false; 6036 6037 assert(L->Viable == R->Viable); 6038 6039 // Criteria by which we can sort non-viable candidates: 6040 if (!L->Viable) { 6041 // 1. Arity mismatches come after other candidates. 6042 if (L->FailureKind == ovl_fail_too_many_arguments || 6043 L->FailureKind == ovl_fail_too_few_arguments) 6044 return false; 6045 if (R->FailureKind == ovl_fail_too_many_arguments || 6046 R->FailureKind == ovl_fail_too_few_arguments) 6047 return true; 6048 6049 // 2. Bad conversions come first and are ordered by the number 6050 // of bad conversions and quality of good conversions. 6051 if (L->FailureKind == ovl_fail_bad_conversion) { 6052 if (R->FailureKind != ovl_fail_bad_conversion) 6053 return true; 6054 6055 // If there's any ordering between the defined conversions... 6056 // FIXME: this might not be transitive. 6057 assert(L->Conversions.size() == R->Conversions.size()); 6058 6059 int leftBetter = 0; 6060 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 6061 for (unsigned E = L->Conversions.size(); I != E; ++I) { 6062 switch (CompareImplicitConversionSequences(S, 6063 L->Conversions[I], 6064 R->Conversions[I])) { 6065 case ImplicitConversionSequence::Better: 6066 leftBetter++; 6067 break; 6068 6069 case ImplicitConversionSequence::Worse: 6070 leftBetter--; 6071 break; 6072 6073 case ImplicitConversionSequence::Indistinguishable: 6074 break; 6075 } 6076 } 6077 if (leftBetter > 0) return true; 6078 if (leftBetter < 0) return false; 6079 6080 } else if (R->FailureKind == ovl_fail_bad_conversion) 6081 return false; 6082 6083 // TODO: others? 6084 } 6085 6086 // Sort everything else by location. 6087 SourceLocation LLoc = GetLocationForCandidate(L); 6088 SourceLocation RLoc = GetLocationForCandidate(R); 6089 6090 // Put candidates without locations (e.g. builtins) at the end. 6091 if (LLoc.isInvalid()) return false; 6092 if (RLoc.isInvalid()) return true; 6093 6094 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 6095 } 6096}; 6097 6098/// CompleteNonViableCandidate - Normally, overload resolution only 6099/// computes up to the first 6100void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 6101 Expr **Args, unsigned NumArgs) { 6102 assert(!Cand->Viable); 6103 6104 // Don't do anything on failures other than bad conversion. 6105 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 6106 6107 // Skip forward to the first bad conversion. 6108 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 6109 unsigned ConvCount = Cand->Conversions.size(); 6110 while (true) { 6111 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 6112 ConvIdx++; 6113 if (Cand->Conversions[ConvIdx - 1].isBad()) 6114 break; 6115 } 6116 6117 if (ConvIdx == ConvCount) 6118 return; 6119 6120 assert(!Cand->Conversions[ConvIdx].isInitialized() && 6121 "remaining conversion is initialized?"); 6122 6123 // FIXME: this should probably be preserved from the overload 6124 // operation somehow. 6125 bool SuppressUserConversions = false; 6126 6127 const FunctionProtoType* Proto; 6128 unsigned ArgIdx = ConvIdx; 6129 6130 if (Cand->IsSurrogate) { 6131 QualType ConvType 6132 = Cand->Surrogate->getConversionType().getNonReferenceType(); 6133 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 6134 ConvType = ConvPtrType->getPointeeType(); 6135 Proto = ConvType->getAs<FunctionProtoType>(); 6136 ArgIdx--; 6137 } else if (Cand->Function) { 6138 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 6139 if (isa<CXXMethodDecl>(Cand->Function) && 6140 !isa<CXXConstructorDecl>(Cand->Function)) 6141 ArgIdx--; 6142 } else { 6143 // Builtin binary operator with a bad first conversion. 6144 assert(ConvCount <= 3); 6145 for (; ConvIdx != ConvCount; ++ConvIdx) 6146 Cand->Conversions[ConvIdx] 6147 = TryCopyInitialization(S, Args[ConvIdx], 6148 Cand->BuiltinTypes.ParamTypes[ConvIdx], 6149 SuppressUserConversions, 6150 /*InOverloadResolution*/ true); 6151 return; 6152 } 6153 6154 // Fill in the rest of the conversions. 6155 unsigned NumArgsInProto = Proto->getNumArgs(); 6156 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 6157 if (ArgIdx < NumArgsInProto) 6158 Cand->Conversions[ConvIdx] 6159 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 6160 SuppressUserConversions, 6161 /*InOverloadResolution=*/true); 6162 else 6163 Cand->Conversions[ConvIdx].setEllipsis(); 6164 } 6165} 6166 6167} // end anonymous namespace 6168 6169/// PrintOverloadCandidates - When overload resolution fails, prints 6170/// diagnostic messages containing the candidates in the candidate 6171/// set. 6172void OverloadCandidateSet::NoteCandidates(Sema &S, 6173 OverloadCandidateDisplayKind OCD, 6174 Expr **Args, unsigned NumArgs, 6175 const char *Opc, 6176 SourceLocation OpLoc) { 6177 // Sort the candidates by viability and position. Sorting directly would 6178 // be prohibitive, so we make a set of pointers and sort those. 6179 llvm::SmallVector<OverloadCandidate*, 32> Cands; 6180 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 6181 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 6182 if (Cand->Viable) 6183 Cands.push_back(Cand); 6184 else if (OCD == OCD_AllCandidates) { 6185 CompleteNonViableCandidate(S, Cand, Args, NumArgs); 6186 if (Cand->Function || Cand->IsSurrogate) 6187 Cands.push_back(Cand); 6188 // Otherwise, this a non-viable builtin candidate. We do not, in general, 6189 // want to list every possible builtin candidate. 6190 } 6191 } 6192 6193 std::sort(Cands.begin(), Cands.end(), 6194 CompareOverloadCandidatesForDisplay(S)); 6195 6196 bool ReportedAmbiguousConversions = false; 6197 6198 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 6199 const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 6200 unsigned CandsShown = 0; 6201 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 6202 OverloadCandidate *Cand = *I; 6203 6204 // Set an arbitrary limit on the number of candidate functions we'll spam 6205 // the user with. FIXME: This limit should depend on details of the 6206 // candidate list. 6207 if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { 6208 break; 6209 } 6210 ++CandsShown; 6211 6212 if (Cand->Function) 6213 NoteFunctionCandidate(S, Cand, Args, NumArgs); 6214 else if (Cand->IsSurrogate) 6215 NoteSurrogateCandidate(S, Cand); 6216 else { 6217 assert(Cand->Viable && 6218 "Non-viable built-in candidates are not added to Cands."); 6219 // Generally we only see ambiguities including viable builtin 6220 // operators if overload resolution got screwed up by an 6221 // ambiguous user-defined conversion. 6222 // 6223 // FIXME: It's quite possible for different conversions to see 6224 // different ambiguities, though. 6225 if (!ReportedAmbiguousConversions) { 6226 NoteAmbiguousUserConversions(S, OpLoc, Cand); 6227 ReportedAmbiguousConversions = true; 6228 } 6229 6230 // If this is a viable builtin, print it. 6231 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 6232 } 6233 } 6234 6235 if (I != E) 6236 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 6237} 6238 6239static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { 6240 if (isa<UnresolvedLookupExpr>(E)) 6241 return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D); 6242 6243 return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D); 6244} 6245 6246/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 6247/// an overloaded function (C++ [over.over]), where @p From is an 6248/// expression with overloaded function type and @p ToType is the type 6249/// we're trying to resolve to. For example: 6250/// 6251/// @code 6252/// int f(double); 6253/// int f(int); 6254/// 6255/// int (*pfd)(double) = f; // selects f(double) 6256/// @endcode 6257/// 6258/// This routine returns the resulting FunctionDecl if it could be 6259/// resolved, and NULL otherwise. When @p Complain is true, this 6260/// routine will emit diagnostics if there is an error. 6261FunctionDecl * 6262Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 6263 bool Complain, 6264 DeclAccessPair &FoundResult) { 6265 QualType FunctionType = ToType; 6266 bool IsMember = false; 6267 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 6268 FunctionType = ToTypePtr->getPointeeType(); 6269 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 6270 FunctionType = ToTypeRef->getPointeeType(); 6271 else if (const MemberPointerType *MemTypePtr = 6272 ToType->getAs<MemberPointerType>()) { 6273 FunctionType = MemTypePtr->getPointeeType(); 6274 IsMember = true; 6275 } 6276 6277 // C++ [over.over]p1: 6278 // [...] [Note: any redundant set of parentheses surrounding the 6279 // overloaded function name is ignored (5.1). ] 6280 // C++ [over.over]p1: 6281 // [...] The overloaded function name can be preceded by the & 6282 // operator. 6283 // However, remember whether the expression has member-pointer form: 6284 // C++ [expr.unary.op]p4: 6285 // A pointer to member is only formed when an explicit & is used 6286 // and its operand is a qualified-id not enclosed in 6287 // parentheses. 6288 OverloadExpr::FindResult Ovl = OverloadExpr::find(From); 6289 OverloadExpr *OvlExpr = Ovl.Expression; 6290 6291 // We expect a pointer or reference to function, or a function pointer. 6292 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 6293 if (!FunctionType->isFunctionType()) { 6294 if (Complain) 6295 Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 6296 << OvlExpr->getName() << ToType; 6297 6298 return 0; 6299 } 6300 6301 // If the overload expression doesn't have the form of a pointer to 6302 // member, don't try to convert it to a pointer-to-member type. 6303 if (IsMember && !Ovl.HasFormOfMemberPointer) { 6304 if (!Complain) return 0; 6305 6306 // TODO: Should we condition this on whether any functions might 6307 // have matched, or is it more appropriate to do that in callers? 6308 // TODO: a fixit wouldn't hurt. 6309 Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 6310 << ToType << OvlExpr->getSourceRange(); 6311 return 0; 6312 } 6313 6314 TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; 6315 if (OvlExpr->hasExplicitTemplateArgs()) { 6316 OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); 6317 ExplicitTemplateArgs = &ETABuffer; 6318 } 6319 6320 assert(From->getType() == Context.OverloadTy); 6321 6322 // Look through all of the overloaded functions, searching for one 6323 // whose type matches exactly. 6324 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 6325 llvm::SmallVector<FunctionDecl *, 4> NonMatches; 6326 6327 bool FoundNonTemplateFunction = false; 6328 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6329 E = OvlExpr->decls_end(); I != E; ++I) { 6330 // Look through any using declarations to find the underlying function. 6331 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 6332 6333 // C++ [over.over]p3: 6334 // Non-member functions and static member functions match 6335 // targets of type "pointer-to-function" or "reference-to-function." 6336 // Nonstatic member functions match targets of 6337 // type "pointer-to-member-function." 6338 // Note that according to DR 247, the containing class does not matter. 6339 6340 if (FunctionTemplateDecl *FunctionTemplate 6341 = dyn_cast<FunctionTemplateDecl>(Fn)) { 6342 if (CXXMethodDecl *Method 6343 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 6344 // Skip non-static function templates when converting to pointer, and 6345 // static when converting to member pointer. 6346 if (Method->isStatic() == IsMember) 6347 continue; 6348 } else if (IsMember) 6349 continue; 6350 6351 // C++ [over.over]p2: 6352 // If the name is a function template, template argument deduction is 6353 // done (14.8.2.2), and if the argument deduction succeeds, the 6354 // resulting template argument list is used to generate a single 6355 // function template specialization, which is added to the set of 6356 // overloaded functions considered. 6357 FunctionDecl *Specialization = 0; 6358 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6359 if (TemplateDeductionResult Result 6360 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 6361 FunctionType, Specialization, Info)) { 6362 // FIXME: make a note of the failed deduction for diagnostics. 6363 (void)Result; 6364 } else { 6365 // Template argument deduction ensures that we have an exact match. 6366 // This function template specicalization works. 6367 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); 6368 assert(FunctionType 6369 == Context.getCanonicalType(Specialization->getType())); 6370 Matches.push_back(std::make_pair(I.getPair(), Specialization)); 6371 } 6372 6373 continue; 6374 } 6375 6376 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 6377 // Skip non-static functions when converting to pointer, and static 6378 // when converting to member pointer. 6379 if (Method->isStatic() == IsMember) 6380 continue; 6381 6382 // If we have explicit template arguments, skip non-templates. 6383 if (OvlExpr->hasExplicitTemplateArgs()) 6384 continue; 6385 } else if (IsMember) 6386 continue; 6387 6388 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 6389 QualType ResultTy; 6390 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 6391 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 6392 ResultTy)) { 6393 Matches.push_back(std::make_pair(I.getPair(), 6394 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 6395 FoundNonTemplateFunction = true; 6396 } 6397 } 6398 } 6399 6400 // If there were 0 or 1 matches, we're done. 6401 if (Matches.empty()) { 6402 if (Complain) { 6403 Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) 6404 << OvlExpr->getName() << FunctionType; 6405 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6406 E = OvlExpr->decls_end(); 6407 I != E; ++I) 6408 if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 6409 NoteOverloadCandidate(F); 6410 } 6411 6412 return 0; 6413 } else if (Matches.size() == 1) { 6414 FunctionDecl *Result = Matches[0].second; 6415 FoundResult = Matches[0].first; 6416 MarkDeclarationReferenced(From->getLocStart(), Result); 6417 if (Complain) { 6418 CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); 6419 } 6420 return Result; 6421 } 6422 6423 // C++ [over.over]p4: 6424 // If more than one function is selected, [...] 6425 if (!FoundNonTemplateFunction) { 6426 // [...] and any given function template specialization F1 is 6427 // eliminated if the set contains a second function template 6428 // specialization whose function template is more specialized 6429 // than the function template of F1 according to the partial 6430 // ordering rules of 14.5.5.2. 6431 6432 // The algorithm specified above is quadratic. We instead use a 6433 // two-pass algorithm (similar to the one used to identify the 6434 // best viable function in an overload set) that identifies the 6435 // best function template (if it exists). 6436 6437 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 6438 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 6439 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 6440 6441 UnresolvedSetIterator Result = 6442 getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 6443 TPOC_Other, From->getLocStart(), 6444 PDiag(), 6445 PDiag(diag::err_addr_ovl_ambiguous) 6446 << Matches[0].second->getDeclName(), 6447 PDiag(diag::note_ovl_candidate) 6448 << (unsigned) oc_function_template); 6449 if (Result == MatchesCopy.end()) 6450 return 0; 6451 6452 MarkDeclarationReferenced(From->getLocStart(), *Result); 6453 FoundResult = Matches[Result - MatchesCopy.begin()].first; 6454 if (Complain) 6455 CheckUnresolvedAccess(*this, OvlExpr, FoundResult); 6456 return cast<FunctionDecl>(*Result); 6457 } 6458 6459 // [...] any function template specializations in the set are 6460 // eliminated if the set also contains a non-template function, [...] 6461 for (unsigned I = 0, N = Matches.size(); I != N; ) { 6462 if (Matches[I].second->getPrimaryTemplate() == 0) 6463 ++I; 6464 else { 6465 Matches[I] = Matches[--N]; 6466 Matches.set_size(N); 6467 } 6468 } 6469 6470 // [...] After such eliminations, if any, there shall remain exactly one 6471 // selected function. 6472 if (Matches.size() == 1) { 6473 MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); 6474 FoundResult = Matches[0].first; 6475 if (Complain) 6476 CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); 6477 return cast<FunctionDecl>(Matches[0].second); 6478 } 6479 6480 // FIXME: We should probably return the same thing that BestViableFunction 6481 // returns (even if we issue the diagnostics here). 6482 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 6483 << Matches[0].second->getDeclName(); 6484 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 6485 NoteOverloadCandidate(Matches[I].second); 6486 return 0; 6487} 6488 6489/// \brief Given an expression that refers to an overloaded function, try to 6490/// resolve that overloaded function expression down to a single function. 6491/// 6492/// This routine can only resolve template-ids that refer to a single function 6493/// template, where that template-id refers to a single template whose template 6494/// arguments are either provided by the template-id or have defaults, 6495/// as described in C++0x [temp.arg.explicit]p3. 6496FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 6497 // C++ [over.over]p1: 6498 // [...] [Note: any redundant set of parentheses surrounding the 6499 // overloaded function name is ignored (5.1). ] 6500 // C++ [over.over]p1: 6501 // [...] The overloaded function name can be preceded by the & 6502 // operator. 6503 6504 if (From->getType() != Context.OverloadTy) 6505 return 0; 6506 6507 OverloadExpr *OvlExpr = OverloadExpr::find(From).Expression; 6508 6509 // If we didn't actually find any template-ids, we're done. 6510 if (!OvlExpr->hasExplicitTemplateArgs()) 6511 return 0; 6512 6513 TemplateArgumentListInfo ExplicitTemplateArgs; 6514 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 6515 6516 // Look through all of the overloaded functions, searching for one 6517 // whose type matches exactly. 6518 FunctionDecl *Matched = 0; 6519 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6520 E = OvlExpr->decls_end(); I != E; ++I) { 6521 // C++0x [temp.arg.explicit]p3: 6522 // [...] In contexts where deduction is done and fails, or in contexts 6523 // where deduction is not done, if a template argument list is 6524 // specified and it, along with any default template arguments, 6525 // identifies a single function template specialization, then the 6526 // template-id is an lvalue for the function template specialization. 6527 FunctionTemplateDecl *FunctionTemplate 6528 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 6529 6530 // C++ [over.over]p2: 6531 // If the name is a function template, template argument deduction is 6532 // done (14.8.2.2), and if the argument deduction succeeds, the 6533 // resulting template argument list is used to generate a single 6534 // function template specialization, which is added to the set of 6535 // overloaded functions considered. 6536 FunctionDecl *Specialization = 0; 6537 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6538 if (TemplateDeductionResult Result 6539 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 6540 Specialization, Info)) { 6541 // FIXME: make a note of the failed deduction for diagnostics. 6542 (void)Result; 6543 continue; 6544 } 6545 6546 // Multiple matches; we can't resolve to a single declaration. 6547 if (Matched) 6548 return 0; 6549 6550 Matched = Specialization; 6551 } 6552 6553 return Matched; 6554} 6555 6556/// \brief Add a single candidate to the overload set. 6557static void AddOverloadedCallCandidate(Sema &S, 6558 DeclAccessPair FoundDecl, 6559 const TemplateArgumentListInfo *ExplicitTemplateArgs, 6560 Expr **Args, unsigned NumArgs, 6561 OverloadCandidateSet &CandidateSet, 6562 bool PartialOverloading) { 6563 NamedDecl *Callee = FoundDecl.getDecl(); 6564 if (isa<UsingShadowDecl>(Callee)) 6565 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 6566 6567 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 6568 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 6569 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 6570 false, PartialOverloading); 6571 return; 6572 } 6573 6574 if (FunctionTemplateDecl *FuncTemplate 6575 = dyn_cast<FunctionTemplateDecl>(Callee)) { 6576 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 6577 ExplicitTemplateArgs, 6578 Args, NumArgs, CandidateSet); 6579 return; 6580 } 6581 6582 assert(false && "unhandled case in overloaded call candidate"); 6583 6584 // do nothing? 6585} 6586 6587/// \brief Add the overload candidates named by callee and/or found by argument 6588/// dependent lookup to the given overload set. 6589void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 6590 Expr **Args, unsigned NumArgs, 6591 OverloadCandidateSet &CandidateSet, 6592 bool PartialOverloading) { 6593 6594#ifndef NDEBUG 6595 // Verify that ArgumentDependentLookup is consistent with the rules 6596 // in C++0x [basic.lookup.argdep]p3: 6597 // 6598 // Let X be the lookup set produced by unqualified lookup (3.4.1) 6599 // and let Y be the lookup set produced by argument dependent 6600 // lookup (defined as follows). If X contains 6601 // 6602 // -- a declaration of a class member, or 6603 // 6604 // -- a block-scope function declaration that is not a 6605 // using-declaration, or 6606 // 6607 // -- a declaration that is neither a function or a function 6608 // template 6609 // 6610 // then Y is empty. 6611 6612 if (ULE->requiresADL()) { 6613 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6614 E = ULE->decls_end(); I != E; ++I) { 6615 assert(!(*I)->getDeclContext()->isRecord()); 6616 assert(isa<UsingShadowDecl>(*I) || 6617 !(*I)->getDeclContext()->isFunctionOrMethod()); 6618 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 6619 } 6620 } 6621#endif 6622 6623 // It would be nice to avoid this copy. 6624 TemplateArgumentListInfo TABuffer; 6625 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6626 if (ULE->hasExplicitTemplateArgs()) { 6627 ULE->copyTemplateArgumentsInto(TABuffer); 6628 ExplicitTemplateArgs = &TABuffer; 6629 } 6630 6631 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6632 E = ULE->decls_end(); I != E; ++I) 6633 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 6634 Args, NumArgs, CandidateSet, 6635 PartialOverloading); 6636 6637 if (ULE->requiresADL()) 6638 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 6639 Args, NumArgs, 6640 ExplicitTemplateArgs, 6641 CandidateSet, 6642 PartialOverloading); 6643} 6644 6645/// Attempts to recover from a call where no functions were found. 6646/// 6647/// Returns true if new candidates were found. 6648static ExprResult 6649BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 6650 UnresolvedLookupExpr *ULE, 6651 SourceLocation LParenLoc, 6652 Expr **Args, unsigned NumArgs, 6653 SourceLocation RParenLoc) { 6654 6655 CXXScopeSpec SS; 6656 if (ULE->getQualifier()) { 6657 SS.setScopeRep(ULE->getQualifier()); 6658 SS.setRange(ULE->getQualifierRange()); 6659 } 6660 6661 TemplateArgumentListInfo TABuffer; 6662 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6663 if (ULE->hasExplicitTemplateArgs()) { 6664 ULE->copyTemplateArgumentsInto(TABuffer); 6665 ExplicitTemplateArgs = &TABuffer; 6666 } 6667 6668 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 6669 Sema::LookupOrdinaryName); 6670 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)) 6671 return ExprError(); 6672 6673 assert(!R.empty() && "lookup results empty despite recovery"); 6674 6675 // Build an implicit member call if appropriate. Just drop the 6676 // casts and such from the call, we don't really care. 6677 ExprResult NewFn = ExprError(); 6678 if ((*R.begin())->isCXXClassMember()) 6679 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); 6680 else if (ExplicitTemplateArgs) 6681 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 6682 else 6683 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 6684 6685 if (NewFn.isInvalid()) 6686 return ExprError(); 6687 6688 // This shouldn't cause an infinite loop because we're giving it 6689 // an expression with non-empty lookup results, which should never 6690 // end up here. 6691 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, 6692 MultiExprArg(Args, NumArgs), RParenLoc); 6693} 6694 6695/// ResolveOverloadedCallFn - Given the call expression that calls Fn 6696/// (which eventually refers to the declaration Func) and the call 6697/// arguments Args/NumArgs, attempt to resolve the function call down 6698/// to a specific function. If overload resolution succeeds, returns 6699/// the function declaration produced by overload 6700/// resolution. Otherwise, emits diagnostics, deletes all of the 6701/// arguments and Fn, and returns NULL. 6702ExprResult 6703Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 6704 SourceLocation LParenLoc, 6705 Expr **Args, unsigned NumArgs, 6706 SourceLocation RParenLoc) { 6707#ifndef NDEBUG 6708 if (ULE->requiresADL()) { 6709 // To do ADL, we must have found an unqualified name. 6710 assert(!ULE->getQualifier() && "qualified name with ADL"); 6711 6712 // We don't perform ADL for implicit declarations of builtins. 6713 // Verify that this was correctly set up. 6714 FunctionDecl *F; 6715 if (ULE->decls_begin() + 1 == ULE->decls_end() && 6716 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 6717 F->getBuiltinID() && F->isImplicit()) 6718 assert(0 && "performing ADL for builtin"); 6719 6720 // We don't perform ADL in C. 6721 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 6722 } 6723#endif 6724 6725 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 6726 6727 // Add the functions denoted by the callee to the set of candidate 6728 // functions, including those from argument-dependent lookup. 6729 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 6730 6731 // If we found nothing, try to recover. 6732 // AddRecoveryCallCandidates diagnoses the error itself, so we just 6733 // bailout out if it fails. 6734 if (CandidateSet.empty()) 6735 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 6736 RParenLoc); 6737 6738 OverloadCandidateSet::iterator Best; 6739 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { 6740 case OR_Success: { 6741 FunctionDecl *FDecl = Best->Function; 6742 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 6743 DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(), ULE->getNameLoc()); 6744 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 6745 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); 6746 } 6747 6748 case OR_No_Viable_Function: 6749 Diag(Fn->getSourceRange().getBegin(), 6750 diag::err_ovl_no_viable_function_in_call) 6751 << ULE->getName() << Fn->getSourceRange(); 6752 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 6753 break; 6754 6755 case OR_Ambiguous: 6756 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 6757 << ULE->getName() << Fn->getSourceRange(); 6758 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 6759 break; 6760 6761 case OR_Deleted: 6762 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 6763 << Best->Function->isDeleted() 6764 << ULE->getName() 6765 << Fn->getSourceRange(); 6766 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 6767 break; 6768 } 6769 6770 // Overload resolution failed. 6771 return ExprError(); 6772} 6773 6774static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 6775 return Functions.size() > 1 || 6776 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 6777} 6778 6779/// \brief Create a unary operation that may resolve to an overloaded 6780/// operator. 6781/// 6782/// \param OpLoc The location of the operator itself (e.g., '*'). 6783/// 6784/// \param OpcIn The UnaryOperator::Opcode that describes this 6785/// operator. 6786/// 6787/// \param Functions The set of non-member functions that will be 6788/// considered by overload resolution. The caller needs to build this 6789/// set based on the context using, e.g., 6790/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6791/// set should not contain any member functions; those will be added 6792/// by CreateOverloadedUnaryOp(). 6793/// 6794/// \param input The input argument. 6795ExprResult 6796Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 6797 const UnresolvedSetImpl &Fns, 6798 Expr *Input) { 6799 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 6800 6801 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 6802 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 6803 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6804 // TODO: provide better source location info. 6805 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 6806 6807 Expr *Args[2] = { Input, 0 }; 6808 unsigned NumArgs = 1; 6809 6810 // For post-increment and post-decrement, add the implicit '0' as 6811 // the second argument, so that we know this is a post-increment or 6812 // post-decrement. 6813 if (Opc == UO_PostInc || Opc == UO_PostDec) { 6814 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 6815 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 6816 SourceLocation()); 6817 NumArgs = 2; 6818 } 6819 6820 if (Input->isTypeDependent()) { 6821 if (Fns.empty()) 6822 return Owned(new (Context) UnaryOperator(Input, 6823 Opc, 6824 Context.DependentTy, 6825 OpLoc)); 6826 6827 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6828 UnresolvedLookupExpr *Fn 6829 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6830 0, SourceRange(), OpNameInfo, 6831 /*ADL*/ true, IsOverloaded(Fns), 6832 Fns.begin(), Fns.end()); 6833 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 6834 &Args[0], NumArgs, 6835 Context.DependentTy, 6836 OpLoc)); 6837 } 6838 6839 // Build an empty overload set. 6840 OverloadCandidateSet CandidateSet(OpLoc); 6841 6842 // Add the candidates from the given function set. 6843 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 6844 6845 // Add operator candidates that are member functions. 6846 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6847 6848 // Add candidates from ADL. 6849 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 6850 Args, NumArgs, 6851 /*ExplicitTemplateArgs*/ 0, 6852 CandidateSet); 6853 6854 // Add builtin operator candidates. 6855 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6856 6857 // Perform overload resolution. 6858 OverloadCandidateSet::iterator Best; 6859 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 6860 case OR_Success: { 6861 // We found a built-in operator or an overloaded operator. 6862 FunctionDecl *FnDecl = Best->Function; 6863 6864 if (FnDecl) { 6865 // We matched an overloaded operator. Build a call to that 6866 // operator. 6867 6868 // Convert the arguments. 6869 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 6870 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 6871 6872 if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 6873 Best->FoundDecl, Method)) 6874 return ExprError(); 6875 } else { 6876 // Convert the arguments. 6877 ExprResult InputInit 6878 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 6879 Context, 6880 FnDecl->getParamDecl(0)), 6881 SourceLocation(), 6882 Input); 6883 if (InputInit.isInvalid()) 6884 return ExprError(); 6885 Input = InputInit.take(); 6886 } 6887 6888 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 6889 6890 // Determine the result type 6891 QualType ResultTy = FnDecl->getCallResultType(); 6892 6893 // Build the actual expression node. 6894 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6895 SourceLocation()); 6896 UsualUnaryConversions(FnExpr); 6897 6898 Args[0] = Input; 6899 CallExpr *TheCall = 6900 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 6901 Args, NumArgs, ResultTy, OpLoc); 6902 6903 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 6904 FnDecl)) 6905 return ExprError(); 6906 6907 return MaybeBindToTemporary(TheCall); 6908 } else { 6909 // We matched a built-in operator. Convert the arguments, then 6910 // break out so that we will build the appropriate built-in 6911 // operator node. 6912 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 6913 Best->Conversions[0], AA_Passing)) 6914 return ExprError(); 6915 6916 break; 6917 } 6918 } 6919 6920 case OR_No_Viable_Function: 6921 // No viable function; fall through to handling this as a 6922 // built-in operator, which will produce an error message for us. 6923 break; 6924 6925 case OR_Ambiguous: 6926 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6927 << UnaryOperator::getOpcodeStr(Opc) 6928 << Input->getSourceRange(); 6929 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, 6930 Args, NumArgs, 6931 UnaryOperator::getOpcodeStr(Opc), OpLoc); 6932 return ExprError(); 6933 6934 case OR_Deleted: 6935 Diag(OpLoc, diag::err_ovl_deleted_oper) 6936 << Best->Function->isDeleted() 6937 << UnaryOperator::getOpcodeStr(Opc) 6938 << Input->getSourceRange(); 6939 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 6940 return ExprError(); 6941 } 6942 6943 // Either we found no viable overloaded operator or we matched a 6944 // built-in operator. In either case, fall through to trying to 6945 // build a built-in operation. 6946 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 6947} 6948 6949/// \brief Create a binary operation that may resolve to an overloaded 6950/// operator. 6951/// 6952/// \param OpLoc The location of the operator itself (e.g., '+'). 6953/// 6954/// \param OpcIn The BinaryOperator::Opcode that describes this 6955/// operator. 6956/// 6957/// \param Functions The set of non-member functions that will be 6958/// considered by overload resolution. The caller needs to build this 6959/// set based on the context using, e.g., 6960/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6961/// set should not contain any member functions; those will be added 6962/// by CreateOverloadedBinOp(). 6963/// 6964/// \param LHS Left-hand argument. 6965/// \param RHS Right-hand argument. 6966ExprResult 6967Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 6968 unsigned OpcIn, 6969 const UnresolvedSetImpl &Fns, 6970 Expr *LHS, Expr *RHS) { 6971 Expr *Args[2] = { LHS, RHS }; 6972 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 6973 6974 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 6975 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 6976 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6977 6978 // If either side is type-dependent, create an appropriate dependent 6979 // expression. 6980 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 6981 if (Fns.empty()) { 6982 // If there are no functions to store, just build a dependent 6983 // BinaryOperator or CompoundAssignment. 6984 if (Opc <= BO_Assign || Opc > BO_OrAssign) 6985 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 6986 Context.DependentTy, OpLoc)); 6987 6988 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 6989 Context.DependentTy, 6990 Context.DependentTy, 6991 Context.DependentTy, 6992 OpLoc)); 6993 } 6994 6995 // FIXME: save results of ADL from here? 6996 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6997 // TODO: provide better source location info in DNLoc component. 6998 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 6999 UnresolvedLookupExpr *Fn 7000 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 7001 0, SourceRange(), OpNameInfo, 7002 /*ADL*/ true, IsOverloaded(Fns), 7003 Fns.begin(), Fns.end()); 7004 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 7005 Args, 2, 7006 Context.DependentTy, 7007 OpLoc)); 7008 } 7009 7010 // If this is the .* operator, which is not overloadable, just 7011 // create a built-in binary operator. 7012 if (Opc == BO_PtrMemD) 7013 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7014 7015 // If this is the assignment operator, we only perform overload resolution 7016 // if the left-hand side is a class or enumeration type. This is actually 7017 // a hack. The standard requires that we do overload resolution between the 7018 // various built-in candidates, but as DR507 points out, this can lead to 7019 // problems. So we do it this way, which pretty much follows what GCC does. 7020 // Note that we go the traditional code path for compound assignment forms. 7021 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 7022 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7023 7024 // Build an empty overload set. 7025 OverloadCandidateSet CandidateSet(OpLoc); 7026 7027 // Add the candidates from the given function set. 7028 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 7029 7030 // Add operator candidates that are member functions. 7031 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 7032 7033 // Add candidates from ADL. 7034 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 7035 Args, 2, 7036 /*ExplicitTemplateArgs*/ 0, 7037 CandidateSet); 7038 7039 // Add builtin operator candidates. 7040 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 7041 7042 // Perform overload resolution. 7043 OverloadCandidateSet::iterator Best; 7044 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 7045 case OR_Success: { 7046 // We found a built-in operator or an overloaded operator. 7047 FunctionDecl *FnDecl = Best->Function; 7048 7049 if (FnDecl) { 7050 // We matched an overloaded operator. Build a call to that 7051 // operator. 7052 7053 // Convert the arguments. 7054 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 7055 // Best->Access is only meaningful for class members. 7056 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 7057 7058 ExprResult Arg1 7059 = PerformCopyInitialization( 7060 InitializedEntity::InitializeParameter( 7061 Context, 7062 FnDecl->getParamDecl(0)), 7063 SourceLocation(), 7064 Owned(Args[1])); 7065 if (Arg1.isInvalid()) 7066 return ExprError(); 7067 7068 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 7069 Best->FoundDecl, Method)) 7070 return ExprError(); 7071 7072 Args[1] = RHS = Arg1.takeAs<Expr>(); 7073 } else { 7074 // Convert the arguments. 7075 ExprResult Arg0 7076 = PerformCopyInitialization( 7077 InitializedEntity::InitializeParameter( 7078 Context, 7079 FnDecl->getParamDecl(0)), 7080 SourceLocation(), 7081 Owned(Args[0])); 7082 if (Arg0.isInvalid()) 7083 return ExprError(); 7084 7085 ExprResult Arg1 7086 = PerformCopyInitialization( 7087 InitializedEntity::InitializeParameter( 7088 Context, 7089 FnDecl->getParamDecl(1)), 7090 SourceLocation(), 7091 Owned(Args[1])); 7092 if (Arg1.isInvalid()) 7093 return ExprError(); 7094 Args[0] = LHS = Arg0.takeAs<Expr>(); 7095 Args[1] = RHS = Arg1.takeAs<Expr>(); 7096 } 7097 7098 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7099 7100 // Determine the result type 7101 QualType ResultTy 7102 = FnDecl->getType()->getAs<FunctionType>() 7103 ->getCallResultType(Context); 7104 7105 // Build the actual expression node. 7106 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 7107 OpLoc); 7108 UsualUnaryConversions(FnExpr); 7109 7110 CXXOperatorCallExpr *TheCall = 7111 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 7112 Args, 2, ResultTy, OpLoc); 7113 7114 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 7115 FnDecl)) 7116 return ExprError(); 7117 7118 return MaybeBindToTemporary(TheCall); 7119 } else { 7120 // We matched a built-in operator. Convert the arguments, then 7121 // break out so that we will build the appropriate built-in 7122 // operator node. 7123 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 7124 Best->Conversions[0], AA_Passing) || 7125 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 7126 Best->Conversions[1], AA_Passing)) 7127 return ExprError(); 7128 7129 break; 7130 } 7131 } 7132 7133 case OR_No_Viable_Function: { 7134 // C++ [over.match.oper]p9: 7135 // If the operator is the operator , [...] and there are no 7136 // viable functions, then the operator is assumed to be the 7137 // built-in operator and interpreted according to clause 5. 7138 if (Opc == BO_Comma) 7139 break; 7140 7141 // For class as left operand for assignment or compound assigment operator 7142 // do not fall through to handling in built-in, but report that no overloaded 7143 // assignment operator found 7144 ExprResult Result = ExprError(); 7145 if (Args[0]->getType()->isRecordType() && 7146 Opc >= BO_Assign && Opc <= BO_OrAssign) { 7147 Diag(OpLoc, diag::err_ovl_no_viable_oper) 7148 << BinaryOperator::getOpcodeStr(Opc) 7149 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7150 } else { 7151 // No viable function; try to create a built-in operation, which will 7152 // produce an error. Then, show the non-viable candidates. 7153 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7154 } 7155 assert(Result.isInvalid() && 7156 "C++ binary operator overloading is missing candidates!"); 7157 if (Result.isInvalid()) 7158 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 7159 BinaryOperator::getOpcodeStr(Opc), OpLoc); 7160 return move(Result); 7161 } 7162 7163 case OR_Ambiguous: 7164 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 7165 << BinaryOperator::getOpcodeStr(Opc) 7166 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7167 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 7168 BinaryOperator::getOpcodeStr(Opc), OpLoc); 7169 return ExprError(); 7170 7171 case OR_Deleted: 7172 Diag(OpLoc, diag::err_ovl_deleted_oper) 7173 << Best->Function->isDeleted() 7174 << BinaryOperator::getOpcodeStr(Opc) 7175 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7176 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2); 7177 return ExprError(); 7178 } 7179 7180 // We matched a built-in operator; build it. 7181 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 7182} 7183 7184ExprResult 7185Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 7186 SourceLocation RLoc, 7187 Expr *Base, Expr *Idx) { 7188 Expr *Args[2] = { Base, Idx }; 7189 DeclarationName OpName = 7190 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 7191 7192 // If either side is type-dependent, create an appropriate dependent 7193 // expression. 7194 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 7195 7196 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 7197 // CHECKME: no 'operator' keyword? 7198 DeclarationNameInfo OpNameInfo(OpName, LLoc); 7199 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 7200 UnresolvedLookupExpr *Fn 7201 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 7202 0, SourceRange(), OpNameInfo, 7203 /*ADL*/ true, /*Overloaded*/ false, 7204 UnresolvedSetIterator(), 7205 UnresolvedSetIterator()); 7206 // Can't add any actual overloads yet 7207 7208 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 7209 Args, 2, 7210 Context.DependentTy, 7211 RLoc)); 7212 } 7213 7214 // Build an empty overload set. 7215 OverloadCandidateSet CandidateSet(LLoc); 7216 7217 // Subscript can only be overloaded as a member function. 7218 7219 // Add operator candidates that are member functions. 7220 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 7221 7222 // Add builtin operator candidates. 7223 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 7224 7225 // Perform overload resolution. 7226 OverloadCandidateSet::iterator Best; 7227 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 7228 case OR_Success: { 7229 // We found a built-in operator or an overloaded operator. 7230 FunctionDecl *FnDecl = Best->Function; 7231 7232 if (FnDecl) { 7233 // We matched an overloaded operator. Build a call to that 7234 // operator. 7235 7236 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 7237 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 7238 7239 // Convert the arguments. 7240 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 7241 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 7242 Best->FoundDecl, Method)) 7243 return ExprError(); 7244 7245 // Convert the arguments. 7246 ExprResult InputInit 7247 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7248 Context, 7249 FnDecl->getParamDecl(0)), 7250 SourceLocation(), 7251 Owned(Args[1])); 7252 if (InputInit.isInvalid()) 7253 return ExprError(); 7254 7255 Args[1] = InputInit.takeAs<Expr>(); 7256 7257 // Determine the result type 7258 QualType ResultTy 7259 = FnDecl->getType()->getAs<FunctionType>() 7260 ->getCallResultType(Context); 7261 7262 // Build the actual expression node. 7263 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 7264 LLoc); 7265 UsualUnaryConversions(FnExpr); 7266 7267 CXXOperatorCallExpr *TheCall = 7268 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 7269 FnExpr, Args, 2, 7270 ResultTy, RLoc); 7271 7272 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, 7273 FnDecl)) 7274 return ExprError(); 7275 7276 return MaybeBindToTemporary(TheCall); 7277 } else { 7278 // We matched a built-in operator. Convert the arguments, then 7279 // break out so that we will build the appropriate built-in 7280 // operator node. 7281 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 7282 Best->Conversions[0], AA_Passing) || 7283 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 7284 Best->Conversions[1], AA_Passing)) 7285 return ExprError(); 7286 7287 break; 7288 } 7289 } 7290 7291 case OR_No_Viable_Function: { 7292 if (CandidateSet.empty()) 7293 Diag(LLoc, diag::err_ovl_no_oper) 7294 << Args[0]->getType() << /*subscript*/ 0 7295 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7296 else 7297 Diag(LLoc, diag::err_ovl_no_viable_subscript) 7298 << Args[0]->getType() 7299 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7300 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 7301 "[]", LLoc); 7302 return ExprError(); 7303 } 7304 7305 case OR_Ambiguous: 7306 Diag(LLoc, diag::err_ovl_ambiguous_oper) 7307 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7308 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 7309 "[]", LLoc); 7310 return ExprError(); 7311 7312 case OR_Deleted: 7313 Diag(LLoc, diag::err_ovl_deleted_oper) 7314 << Best->Function->isDeleted() << "[]" 7315 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 7316 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 7317 "[]", LLoc); 7318 return ExprError(); 7319 } 7320 7321 // We matched a built-in operator; build it. 7322 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 7323} 7324 7325/// BuildCallToMemberFunction - Build a call to a member 7326/// function. MemExpr is the expression that refers to the member 7327/// function (and includes the object parameter), Args/NumArgs are the 7328/// arguments to the function call (not including the object 7329/// parameter). The caller needs to validate that the member 7330/// expression refers to a member function or an overloaded member 7331/// function. 7332ExprResult 7333Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 7334 SourceLocation LParenLoc, Expr **Args, 7335 unsigned NumArgs, SourceLocation RParenLoc) { 7336 // Dig out the member expression. This holds both the object 7337 // argument and the member function we're referring to. 7338 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 7339 7340 MemberExpr *MemExpr; 7341 CXXMethodDecl *Method = 0; 7342 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 7343 NestedNameSpecifier *Qualifier = 0; 7344 if (isa<MemberExpr>(NakedMemExpr)) { 7345 MemExpr = cast<MemberExpr>(NakedMemExpr); 7346 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 7347 FoundDecl = MemExpr->getFoundDecl(); 7348 Qualifier = MemExpr->getQualifier(); 7349 } else { 7350 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 7351 Qualifier = UnresExpr->getQualifier(); 7352 7353 QualType ObjectType = UnresExpr->getBaseType(); 7354 7355 // Add overload candidates 7356 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 7357 7358 // FIXME: avoid copy. 7359 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7360 if (UnresExpr->hasExplicitTemplateArgs()) { 7361 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 7362 TemplateArgs = &TemplateArgsBuffer; 7363 } 7364 7365 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 7366 E = UnresExpr->decls_end(); I != E; ++I) { 7367 7368 NamedDecl *Func = *I; 7369 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 7370 if (isa<UsingShadowDecl>(Func)) 7371 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 7372 7373 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 7374 // If explicit template arguments were provided, we can't call a 7375 // non-template member function. 7376 if (TemplateArgs) 7377 continue; 7378 7379 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 7380 Args, NumArgs, 7381 CandidateSet, /*SuppressUserConversions=*/false); 7382 } else { 7383 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 7384 I.getPair(), ActingDC, TemplateArgs, 7385 ObjectType, Args, NumArgs, 7386 CandidateSet, 7387 /*SuppressUsedConversions=*/false); 7388 } 7389 } 7390 7391 DeclarationName DeclName = UnresExpr->getMemberName(); 7392 7393 OverloadCandidateSet::iterator Best; 7394 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 7395 Best)) { 7396 case OR_Success: 7397 Method = cast<CXXMethodDecl>(Best->Function); 7398 FoundDecl = Best->FoundDecl; 7399 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 7400 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 7401 break; 7402 7403 case OR_No_Viable_Function: 7404 Diag(UnresExpr->getMemberLoc(), 7405 diag::err_ovl_no_viable_member_function_in_call) 7406 << DeclName << MemExprE->getSourceRange(); 7407 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7408 // FIXME: Leaking incoming expressions! 7409 return ExprError(); 7410 7411 case OR_Ambiguous: 7412 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 7413 << DeclName << MemExprE->getSourceRange(); 7414 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7415 // FIXME: Leaking incoming expressions! 7416 return ExprError(); 7417 7418 case OR_Deleted: 7419 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 7420 << Best->Function->isDeleted() 7421 << DeclName << MemExprE->getSourceRange(); 7422 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7423 // FIXME: Leaking incoming expressions! 7424 return ExprError(); 7425 } 7426 7427 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 7428 7429 // If overload resolution picked a static member, build a 7430 // non-member call based on that function. 7431 if (Method->isStatic()) { 7432 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 7433 Args, NumArgs, RParenLoc); 7434 } 7435 7436 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 7437 } 7438 7439 assert(Method && "Member call to something that isn't a method?"); 7440 CXXMemberCallExpr *TheCall = 7441 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 7442 Method->getCallResultType(), 7443 RParenLoc); 7444 7445 // Check for a valid return type. 7446 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 7447 TheCall, Method)) 7448 return ExprError(); 7449 7450 // Convert the object argument (for a non-static member function call). 7451 // We only need to do this if there was actually an overload; otherwise 7452 // it was done at lookup. 7453 Expr *ObjectArg = MemExpr->getBase(); 7454 if (!Method->isStatic() && 7455 PerformObjectArgumentInitialization(ObjectArg, Qualifier, 7456 FoundDecl, Method)) 7457 return ExprError(); 7458 MemExpr->setBase(ObjectArg); 7459 7460 // Convert the rest of the arguments 7461 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 7462 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, 7463 RParenLoc)) 7464 return ExprError(); 7465 7466 if (CheckFunctionCall(Method, TheCall)) 7467 return ExprError(); 7468 7469 return MaybeBindToTemporary(TheCall); 7470} 7471 7472/// BuildCallToObjectOfClassType - Build a call to an object of class 7473/// type (C++ [over.call.object]), which can end up invoking an 7474/// overloaded function call operator (@c operator()) or performing a 7475/// user-defined conversion on the object argument. 7476ExprResult 7477Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 7478 SourceLocation LParenLoc, 7479 Expr **Args, unsigned NumArgs, 7480 SourceLocation RParenLoc) { 7481 assert(Object->getType()->isRecordType() && "Requires object type argument"); 7482 const RecordType *Record = Object->getType()->getAs<RecordType>(); 7483 7484 // C++ [over.call.object]p1: 7485 // If the primary-expression E in the function call syntax 7486 // evaluates to a class object of type "cv T", then the set of 7487 // candidate functions includes at least the function call 7488 // operators of T. The function call operators of T are obtained by 7489 // ordinary lookup of the name operator() in the context of 7490 // (E).operator(). 7491 OverloadCandidateSet CandidateSet(LParenLoc); 7492 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 7493 7494 if (RequireCompleteType(LParenLoc, Object->getType(), 7495 PDiag(diag::err_incomplete_object_call) 7496 << Object->getSourceRange())) 7497 return true; 7498 7499 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 7500 LookupQualifiedName(R, Record->getDecl()); 7501 R.suppressDiagnostics(); 7502 7503 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7504 Oper != OperEnd; ++Oper) { 7505 AddMethodCandidate(Oper.getPair(), Object->getType(), 7506 Args, NumArgs, CandidateSet, 7507 /*SuppressUserConversions=*/ false); 7508 } 7509 7510 // C++ [over.call.object]p2: 7511 // In addition, for each conversion function declared in T of the 7512 // form 7513 // 7514 // operator conversion-type-id () cv-qualifier; 7515 // 7516 // where cv-qualifier is the same cv-qualification as, or a 7517 // greater cv-qualification than, cv, and where conversion-type-id 7518 // denotes the type "pointer to function of (P1,...,Pn) returning 7519 // R", or the type "reference to pointer to function of 7520 // (P1,...,Pn) returning R", or the type "reference to function 7521 // of (P1,...,Pn) returning R", a surrogate call function [...] 7522 // is also considered as a candidate function. Similarly, 7523 // surrogate call functions are added to the set of candidate 7524 // functions for each conversion function declared in an 7525 // accessible base class provided the function is not hidden 7526 // within T by another intervening declaration. 7527 const UnresolvedSetImpl *Conversions 7528 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 7529 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 7530 E = Conversions->end(); I != E; ++I) { 7531 NamedDecl *D = *I; 7532 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 7533 if (isa<UsingShadowDecl>(D)) 7534 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 7535 7536 // Skip over templated conversion functions; they aren't 7537 // surrogates. 7538 if (isa<FunctionTemplateDecl>(D)) 7539 continue; 7540 7541 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 7542 7543 // Strip the reference type (if any) and then the pointer type (if 7544 // any) to get down to what might be a function type. 7545 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 7546 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 7547 ConvType = ConvPtrType->getPointeeType(); 7548 7549 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 7550 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 7551 Object->getType(), Args, NumArgs, 7552 CandidateSet); 7553 } 7554 7555 // Perform overload resolution. 7556 OverloadCandidateSet::iterator Best; 7557 switch (CandidateSet.BestViableFunction(*this, Object->getLocStart(), 7558 Best)) { 7559 case OR_Success: 7560 // Overload resolution succeeded; we'll build the appropriate call 7561 // below. 7562 break; 7563 7564 case OR_No_Viable_Function: 7565 if (CandidateSet.empty()) 7566 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 7567 << Object->getType() << /*call*/ 1 7568 << Object->getSourceRange(); 7569 else 7570 Diag(Object->getSourceRange().getBegin(), 7571 diag::err_ovl_no_viable_object_call) 7572 << Object->getType() << Object->getSourceRange(); 7573 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7574 break; 7575 7576 case OR_Ambiguous: 7577 Diag(Object->getSourceRange().getBegin(), 7578 diag::err_ovl_ambiguous_object_call) 7579 << Object->getType() << Object->getSourceRange(); 7580 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 7581 break; 7582 7583 case OR_Deleted: 7584 Diag(Object->getSourceRange().getBegin(), 7585 diag::err_ovl_deleted_object_call) 7586 << Best->Function->isDeleted() 7587 << Object->getType() << Object->getSourceRange(); 7588 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 7589 break; 7590 } 7591 7592 if (Best == CandidateSet.end()) 7593 return true; 7594 7595 if (Best->Function == 0) { 7596 // Since there is no function declaration, this is one of the 7597 // surrogate candidates. Dig out the conversion function. 7598 CXXConversionDecl *Conv 7599 = cast<CXXConversionDecl>( 7600 Best->Conversions[0].UserDefined.ConversionFunction); 7601 7602 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7603 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7604 7605 // We selected one of the surrogate functions that converts the 7606 // object parameter to a function pointer. Perform the conversion 7607 // on the object argument, then let ActOnCallExpr finish the job. 7608 7609 // Create an implicit member expr to refer to the conversion operator. 7610 // and then call it. 7611 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl, 7612 Conv); 7613 7614 return ActOnCallExpr(S, CE, LParenLoc, MultiExprArg(Args, NumArgs), 7615 RParenLoc); 7616 } 7617 7618 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7619 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7620 7621 // We found an overloaded operator(). Build a CXXOperatorCallExpr 7622 // that calls this method, using Object for the implicit object 7623 // parameter and passing along the remaining arguments. 7624 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7625 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 7626 7627 unsigned NumArgsInProto = Proto->getNumArgs(); 7628 unsigned NumArgsToCheck = NumArgs; 7629 7630 // Build the full argument list for the method call (the 7631 // implicit object parameter is placed at the beginning of the 7632 // list). 7633 Expr **MethodArgs; 7634 if (NumArgs < NumArgsInProto) { 7635 NumArgsToCheck = NumArgsInProto; 7636 MethodArgs = new Expr*[NumArgsInProto + 1]; 7637 } else { 7638 MethodArgs = new Expr*[NumArgs + 1]; 7639 } 7640 MethodArgs[0] = Object; 7641 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7642 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 7643 7644 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 7645 SourceLocation()); 7646 UsualUnaryConversions(NewFn); 7647 7648 // Once we've built TheCall, all of the expressions are properly 7649 // owned. 7650 QualType ResultTy = Method->getCallResultType(); 7651 CXXOperatorCallExpr *TheCall = 7652 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 7653 MethodArgs, NumArgs + 1, 7654 ResultTy, RParenLoc); 7655 delete [] MethodArgs; 7656 7657 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, 7658 Method)) 7659 return true; 7660 7661 // We may have default arguments. If so, we need to allocate more 7662 // slots in the call for them. 7663 if (NumArgs < NumArgsInProto) 7664 TheCall->setNumArgs(Context, NumArgsInProto + 1); 7665 else if (NumArgs > NumArgsInProto) 7666 NumArgsToCheck = NumArgsInProto; 7667 7668 bool IsError = false; 7669 7670 // Initialize the implicit object parameter. 7671 IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, 7672 Best->FoundDecl, Method); 7673 TheCall->setArg(0, Object); 7674 7675 7676 // Check the argument types. 7677 for (unsigned i = 0; i != NumArgsToCheck; i++) { 7678 Expr *Arg; 7679 if (i < NumArgs) { 7680 Arg = Args[i]; 7681 7682 // Pass the argument. 7683 7684 ExprResult InputInit 7685 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7686 Context, 7687 Method->getParamDecl(i)), 7688 SourceLocation(), Arg); 7689 7690 IsError |= InputInit.isInvalid(); 7691 Arg = InputInit.takeAs<Expr>(); 7692 } else { 7693 ExprResult DefArg 7694 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 7695 if (DefArg.isInvalid()) { 7696 IsError = true; 7697 break; 7698 } 7699 7700 Arg = DefArg.takeAs<Expr>(); 7701 } 7702 7703 TheCall->setArg(i + 1, Arg); 7704 } 7705 7706 // If this is a variadic call, handle args passed through "...". 7707 if (Proto->isVariadic()) { 7708 // Promote the arguments (C99 6.5.2.2p7). 7709 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 7710 Expr *Arg = Args[i]; 7711 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0); 7712 TheCall->setArg(i + 1, Arg); 7713 } 7714 } 7715 7716 if (IsError) return true; 7717 7718 if (CheckFunctionCall(Method, TheCall)) 7719 return true; 7720 7721 return MaybeBindToTemporary(TheCall); 7722} 7723 7724/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 7725/// (if one exists), where @c Base is an expression of class type and 7726/// @c Member is the name of the member we're trying to find. 7727ExprResult 7728Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { 7729 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 7730 7731 SourceLocation Loc = Base->getExprLoc(); 7732 7733 // C++ [over.ref]p1: 7734 // 7735 // [...] An expression x->m is interpreted as (x.operator->())->m 7736 // for a class object x of type T if T::operator->() exists and if 7737 // the operator is selected as the best match function by the 7738 // overload resolution mechanism (13.3). 7739 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 7740 OverloadCandidateSet CandidateSet(Loc); 7741 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 7742 7743 if (RequireCompleteType(Loc, Base->getType(), 7744 PDiag(diag::err_typecheck_incomplete_tag) 7745 << Base->getSourceRange())) 7746 return ExprError(); 7747 7748 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 7749 LookupQualifiedName(R, BaseRecord->getDecl()); 7750 R.suppressDiagnostics(); 7751 7752 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7753 Oper != OperEnd; ++Oper) { 7754 AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet, 7755 /*SuppressUserConversions=*/false); 7756 } 7757 7758 // Perform overload resolution. 7759 OverloadCandidateSet::iterator Best; 7760 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 7761 case OR_Success: 7762 // Overload resolution succeeded; we'll build the call below. 7763 break; 7764 7765 case OR_No_Viable_Function: 7766 if (CandidateSet.empty()) 7767 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7768 << Base->getType() << Base->getSourceRange(); 7769 else 7770 Diag(OpLoc, diag::err_ovl_no_viable_oper) 7771 << "operator->" << Base->getSourceRange(); 7772 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 7773 return ExprError(); 7774 7775 case OR_Ambiguous: 7776 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 7777 << "->" << Base->getSourceRange(); 7778 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); 7779 return ExprError(); 7780 7781 case OR_Deleted: 7782 Diag(OpLoc, diag::err_ovl_deleted_oper) 7783 << Best->Function->isDeleted() 7784 << "->" << Base->getSourceRange(); 7785 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 7786 return ExprError(); 7787 } 7788 7789 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 7790 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7791 7792 // Convert the object parameter. 7793 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7794 if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 7795 Best->FoundDecl, Method)) 7796 return ExprError(); 7797 7798 // Build the operator call. 7799 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 7800 SourceLocation()); 7801 UsualUnaryConversions(FnExpr); 7802 7803 QualType ResultTy = Method->getCallResultType(); 7804 CXXOperatorCallExpr *TheCall = 7805 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 7806 &Base, 1, ResultTy, OpLoc); 7807 7808 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, 7809 Method)) 7810 return ExprError(); 7811 return Owned(TheCall); 7812} 7813 7814/// FixOverloadedFunctionReference - E is an expression that refers to 7815/// a C++ overloaded function (possibly with some parentheses and 7816/// perhaps a '&' around it). We have resolved the overloaded function 7817/// to the function declaration Fn, so patch up the expression E to 7818/// refer (possibly indirectly) to Fn. Returns the new expr. 7819Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 7820 FunctionDecl *Fn) { 7821 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7822 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 7823 Found, Fn); 7824 if (SubExpr == PE->getSubExpr()) 7825 return PE->Retain(); 7826 7827 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 7828 } 7829 7830 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 7831 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 7832 Found, Fn); 7833 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 7834 SubExpr->getType()) && 7835 "Implicit cast type cannot be determined from overload"); 7836 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 7837 if (SubExpr == ICE->getSubExpr()) 7838 return ICE->Retain(); 7839 7840 return ImplicitCastExpr::Create(Context, ICE->getType(), 7841 ICE->getCastKind(), 7842 SubExpr, 0, 7843 ICE->getValueKind()); 7844 } 7845 7846 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 7847 assert(UnOp->getOpcode() == UO_AddrOf && 7848 "Can only take the address of an overloaded function"); 7849 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7850 if (Method->isStatic()) { 7851 // Do nothing: static member functions aren't any different 7852 // from non-member functions. 7853 } else { 7854 // Fix the sub expression, which really has to be an 7855 // UnresolvedLookupExpr holding an overloaded member function 7856 // or template. 7857 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7858 Found, Fn); 7859 if (SubExpr == UnOp->getSubExpr()) 7860 return UnOp->Retain(); 7861 7862 assert(isa<DeclRefExpr>(SubExpr) 7863 && "fixed to something other than a decl ref"); 7864 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 7865 && "fixed to a member ref with no nested name qualifier"); 7866 7867 // We have taken the address of a pointer to member 7868 // function. Perform the computation here so that we get the 7869 // appropriate pointer to member type. 7870 QualType ClassType 7871 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 7872 QualType MemPtrType 7873 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 7874 7875 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 7876 MemPtrType, UnOp->getOperatorLoc()); 7877 } 7878 } 7879 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7880 Found, Fn); 7881 if (SubExpr == UnOp->getSubExpr()) 7882 return UnOp->Retain(); 7883 7884 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 7885 Context.getPointerType(SubExpr->getType()), 7886 UnOp->getOperatorLoc()); 7887 } 7888 7889 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 7890 // FIXME: avoid copy. 7891 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7892 if (ULE->hasExplicitTemplateArgs()) { 7893 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 7894 TemplateArgs = &TemplateArgsBuffer; 7895 } 7896 7897 return DeclRefExpr::Create(Context, 7898 ULE->getQualifier(), 7899 ULE->getQualifierRange(), 7900 Fn, 7901 ULE->getNameLoc(), 7902 Fn->getType(), 7903 TemplateArgs); 7904 } 7905 7906 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 7907 // FIXME: avoid copy. 7908 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7909 if (MemExpr->hasExplicitTemplateArgs()) { 7910 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 7911 TemplateArgs = &TemplateArgsBuffer; 7912 } 7913 7914 Expr *Base; 7915 7916 // If we're filling in 7917 if (MemExpr->isImplicitAccess()) { 7918 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 7919 return DeclRefExpr::Create(Context, 7920 MemExpr->getQualifier(), 7921 MemExpr->getQualifierRange(), 7922 Fn, 7923 MemExpr->getMemberLoc(), 7924 Fn->getType(), 7925 TemplateArgs); 7926 } else { 7927 SourceLocation Loc = MemExpr->getMemberLoc(); 7928 if (MemExpr->getQualifier()) 7929 Loc = MemExpr->getQualifierRange().getBegin(); 7930 Base = new (Context) CXXThisExpr(Loc, 7931 MemExpr->getBaseType(), 7932 /*isImplicit=*/true); 7933 } 7934 } else 7935 Base = MemExpr->getBase()->Retain(); 7936 7937 return MemberExpr::Create(Context, Base, 7938 MemExpr->isArrow(), 7939 MemExpr->getQualifier(), 7940 MemExpr->getQualifierRange(), 7941 Fn, 7942 Found, 7943 MemExpr->getMemberNameInfo(), 7944 TemplateArgs, 7945 Fn->getType()); 7946 } 7947 7948 assert(false && "Invalid reference to overloaded function"); 7949 return E->Retain(); 7950} 7951 7952ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 7953 DeclAccessPair Found, 7954 FunctionDecl *Fn) { 7955 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 7956} 7957 7958} // end namespace clang 7959