SemaOverload.cpp revision 5edbdcc62098e305cd55654814dcf783a3f3c477
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "SemaInit.h" 17#include "clang/Basic/Diagnostic.h" 18#include "clang/Lex/Preprocessor.h" 19#include "clang/AST/ASTContext.h" 20#include "clang/AST/CXXInheritance.h" 21#include "clang/AST/Expr.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/TypeOrdering.h" 24#include "clang/Basic/PartialDiagnostic.h" 25#include "llvm/ADT/SmallPtrSet.h" 26#include "llvm/ADT/STLExtras.h" 27#include <algorithm> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Identity, 42 ICC_Qualification_Adjustment, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Promotion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion, 55 ICC_Conversion, 56 ICC_Conversion, 57 ICC_Conversion 58 }; 59 return Category[(int)Kind]; 60} 61 62/// GetConversionRank - Retrieve the implicit conversion rank 63/// corresponding to the given implicit conversion kind. 64ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 65 static const ImplicitConversionRank 66 Rank[(int)ICK_Num_Conversion_Kinds] = { 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Exact_Match, 70 ICR_Exact_Match, 71 ICR_Exact_Match, 72 ICR_Exact_Match, 73 ICR_Promotion, 74 ICR_Promotion, 75 ICR_Promotion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion, 82 ICR_Conversion, 83 ICR_Conversion, 84 ICR_Conversion, 85 ICR_Conversion, 86 ICR_Conversion, 87 ICR_Complex_Real_Conversion 88 }; 89 return Rank[(int)Kind]; 90} 91 92/// GetImplicitConversionName - Return the name of this kind of 93/// implicit conversion. 94const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 95 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 96 "No conversion", 97 "Lvalue-to-rvalue", 98 "Array-to-pointer", 99 "Function-to-pointer", 100 "Noreturn adjustment", 101 "Qualification", 102 "Integral promotion", 103 "Floating point promotion", 104 "Complex promotion", 105 "Integral conversion", 106 "Floating conversion", 107 "Complex conversion", 108 "Floating-integral conversion", 109 "Pointer conversion", 110 "Pointer-to-member conversion", 111 "Boolean conversion", 112 "Compatible-types conversion", 113 "Derived-to-base conversion", 114 "Vector conversion", 115 "Vector splat", 116 "Complex-real conversion" 117 }; 118 return Name[Kind]; 119} 120 121/// StandardConversionSequence - Set the standard conversion 122/// sequence to the identity conversion. 123void StandardConversionSequence::setAsIdentityConversion() { 124 First = ICK_Identity; 125 Second = ICK_Identity; 126 Third = ICK_Identity; 127 DeprecatedStringLiteralToCharPtr = false; 128 ReferenceBinding = false; 129 DirectBinding = false; 130 RRefBinding = false; 131 CopyConstructor = 0; 132} 133 134/// getRank - Retrieve the rank of this standard conversion sequence 135/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 136/// implicit conversions. 137ImplicitConversionRank StandardConversionSequence::getRank() const { 138 ImplicitConversionRank Rank = ICR_Exact_Match; 139 if (GetConversionRank(First) > Rank) 140 Rank = GetConversionRank(First); 141 if (GetConversionRank(Second) > Rank) 142 Rank = GetConversionRank(Second); 143 if (GetConversionRank(Third) > Rank) 144 Rank = GetConversionRank(Third); 145 return Rank; 146} 147 148/// isPointerConversionToBool - Determines whether this conversion is 149/// a conversion of a pointer or pointer-to-member to bool. This is 150/// used as part of the ranking of standard conversion sequences 151/// (C++ 13.3.3.2p4). 152bool StandardConversionSequence::isPointerConversionToBool() const { 153 // Note that FromType has not necessarily been transformed by the 154 // array-to-pointer or function-to-pointer implicit conversions, so 155 // check for their presence as well as checking whether FromType is 156 // a pointer. 157 if (getToType(1)->isBooleanType() && 158 (getFromType()->isPointerType() || getFromType()->isBlockPointerType() || 159 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 160 return true; 161 162 return false; 163} 164 165/// isPointerConversionToVoidPointer - Determines whether this 166/// conversion is a conversion of a pointer to a void pointer. This is 167/// used as part of the ranking of standard conversion sequences (C++ 168/// 13.3.3.2p4). 169bool 170StandardConversionSequence:: 171isPointerConversionToVoidPointer(ASTContext& Context) const { 172 QualType FromType = getFromType(); 173 QualType ToType = getToType(1); 174 175 // Note that FromType has not necessarily been transformed by the 176 // array-to-pointer implicit conversion, so check for its presence 177 // and redo the conversion to get a pointer. 178 if (First == ICK_Array_To_Pointer) 179 FromType = Context.getArrayDecayedType(FromType); 180 181 if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) 182 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 183 return ToPtrType->getPointeeType()->isVoidType(); 184 185 return false; 186} 187 188/// DebugPrint - Print this standard conversion sequence to standard 189/// error. Useful for debugging overloading issues. 190void StandardConversionSequence::DebugPrint() const { 191 llvm::raw_ostream &OS = llvm::errs(); 192 bool PrintedSomething = false; 193 if (First != ICK_Identity) { 194 OS << GetImplicitConversionName(First); 195 PrintedSomething = true; 196 } 197 198 if (Second != ICK_Identity) { 199 if (PrintedSomething) { 200 OS << " -> "; 201 } 202 OS << GetImplicitConversionName(Second); 203 204 if (CopyConstructor) { 205 OS << " (by copy constructor)"; 206 } else if (DirectBinding) { 207 OS << " (direct reference binding)"; 208 } else if (ReferenceBinding) { 209 OS << " (reference binding)"; 210 } 211 PrintedSomething = true; 212 } 213 214 if (Third != ICK_Identity) { 215 if (PrintedSomething) { 216 OS << " -> "; 217 } 218 OS << GetImplicitConversionName(Third); 219 PrintedSomething = true; 220 } 221 222 if (!PrintedSomething) { 223 OS << "No conversions required"; 224 } 225} 226 227/// DebugPrint - Print this user-defined conversion sequence to standard 228/// error. Useful for debugging overloading issues. 229void UserDefinedConversionSequence::DebugPrint() const { 230 llvm::raw_ostream &OS = llvm::errs(); 231 if (Before.First || Before.Second || Before.Third) { 232 Before.DebugPrint(); 233 OS << " -> "; 234 } 235 OS << '\'' << ConversionFunction << '\''; 236 if (After.First || After.Second || After.Third) { 237 OS << " -> "; 238 After.DebugPrint(); 239 } 240} 241 242/// DebugPrint - Print this implicit conversion sequence to standard 243/// error. Useful for debugging overloading issues. 244void ImplicitConversionSequence::DebugPrint() const { 245 llvm::raw_ostream &OS = llvm::errs(); 246 switch (ConversionKind) { 247 case StandardConversion: 248 OS << "Standard conversion: "; 249 Standard.DebugPrint(); 250 break; 251 case UserDefinedConversion: 252 OS << "User-defined conversion: "; 253 UserDefined.DebugPrint(); 254 break; 255 case EllipsisConversion: 256 OS << "Ellipsis conversion"; 257 break; 258 case AmbiguousConversion: 259 OS << "Ambiguous conversion"; 260 break; 261 case BadConversion: 262 OS << "Bad conversion"; 263 break; 264 } 265 266 OS << "\n"; 267} 268 269void AmbiguousConversionSequence::construct() { 270 new (&conversions()) ConversionSet(); 271} 272 273void AmbiguousConversionSequence::destruct() { 274 conversions().~ConversionSet(); 275} 276 277void 278AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 279 FromTypePtr = O.FromTypePtr; 280 ToTypePtr = O.ToTypePtr; 281 new (&conversions()) ConversionSet(O.conversions()); 282} 283 284namespace { 285 // Structure used by OverloadCandidate::DeductionFailureInfo to store 286 // template parameter and template argument information. 287 struct DFIParamWithArguments { 288 TemplateParameter Param; 289 TemplateArgument FirstArg; 290 TemplateArgument SecondArg; 291 }; 292} 293 294/// \brief Convert from Sema's representation of template deduction information 295/// to the form used in overload-candidate information. 296OverloadCandidate::DeductionFailureInfo 297static MakeDeductionFailureInfo(ASTContext &Context, 298 Sema::TemplateDeductionResult TDK, 299 Sema::TemplateDeductionInfo &Info) { 300 OverloadCandidate::DeductionFailureInfo Result; 301 Result.Result = static_cast<unsigned>(TDK); 302 Result.Data = 0; 303 switch (TDK) { 304 case Sema::TDK_Success: 305 case Sema::TDK_InstantiationDepth: 306 case Sema::TDK_TooManyArguments: 307 case Sema::TDK_TooFewArguments: 308 break; 309 310 case Sema::TDK_Incomplete: 311 case Sema::TDK_InvalidExplicitArguments: 312 Result.Data = Info.Param.getOpaqueValue(); 313 break; 314 315 case Sema::TDK_Inconsistent: 316 case Sema::TDK_InconsistentQuals: { 317 // FIXME: Should allocate from normal heap so that we can free this later. 318 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 319 Saved->Param = Info.Param; 320 Saved->FirstArg = Info.FirstArg; 321 Saved->SecondArg = Info.SecondArg; 322 Result.Data = Saved; 323 break; 324 } 325 326 case Sema::TDK_SubstitutionFailure: 327 Result.Data = Info.take(); 328 break; 329 330 case Sema::TDK_NonDeducedMismatch: 331 case Sema::TDK_FailedOverloadResolution: 332 break; 333 } 334 335 return Result; 336} 337 338void OverloadCandidate::DeductionFailureInfo::Destroy() { 339 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 340 case Sema::TDK_Success: 341 case Sema::TDK_InstantiationDepth: 342 case Sema::TDK_Incomplete: 343 case Sema::TDK_TooManyArguments: 344 case Sema::TDK_TooFewArguments: 345 case Sema::TDK_InvalidExplicitArguments: 346 break; 347 348 case Sema::TDK_Inconsistent: 349 case Sema::TDK_InconsistentQuals: 350 // FIXME: Destroy the data? 351 Data = 0; 352 break; 353 354 case Sema::TDK_SubstitutionFailure: 355 // FIXME: Destroy the template arugment list? 356 Data = 0; 357 break; 358 359 // Unhandled 360 case Sema::TDK_NonDeducedMismatch: 361 case Sema::TDK_FailedOverloadResolution: 362 break; 363 } 364} 365 366TemplateParameter 367OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 368 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 369 case Sema::TDK_Success: 370 case Sema::TDK_InstantiationDepth: 371 case Sema::TDK_TooManyArguments: 372 case Sema::TDK_TooFewArguments: 373 case Sema::TDK_SubstitutionFailure: 374 return TemplateParameter(); 375 376 case Sema::TDK_Incomplete: 377 case Sema::TDK_InvalidExplicitArguments: 378 return TemplateParameter::getFromOpaqueValue(Data); 379 380 case Sema::TDK_Inconsistent: 381 case Sema::TDK_InconsistentQuals: 382 return static_cast<DFIParamWithArguments*>(Data)->Param; 383 384 // Unhandled 385 case Sema::TDK_NonDeducedMismatch: 386 case Sema::TDK_FailedOverloadResolution: 387 break; 388 } 389 390 return TemplateParameter(); 391} 392 393TemplateArgumentList * 394OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 395 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 396 case Sema::TDK_Success: 397 case Sema::TDK_InstantiationDepth: 398 case Sema::TDK_TooManyArguments: 399 case Sema::TDK_TooFewArguments: 400 case Sema::TDK_Incomplete: 401 case Sema::TDK_InvalidExplicitArguments: 402 case Sema::TDK_Inconsistent: 403 case Sema::TDK_InconsistentQuals: 404 return 0; 405 406 case Sema::TDK_SubstitutionFailure: 407 return static_cast<TemplateArgumentList*>(Data); 408 409 // Unhandled 410 case Sema::TDK_NonDeducedMismatch: 411 case Sema::TDK_FailedOverloadResolution: 412 break; 413 } 414 415 return 0; 416} 417 418const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 419 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 420 case Sema::TDK_Success: 421 case Sema::TDK_InstantiationDepth: 422 case Sema::TDK_Incomplete: 423 case Sema::TDK_TooManyArguments: 424 case Sema::TDK_TooFewArguments: 425 case Sema::TDK_InvalidExplicitArguments: 426 case Sema::TDK_SubstitutionFailure: 427 return 0; 428 429 case Sema::TDK_Inconsistent: 430 case Sema::TDK_InconsistentQuals: 431 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 432 433 // Unhandled 434 case Sema::TDK_NonDeducedMismatch: 435 case Sema::TDK_FailedOverloadResolution: 436 break; 437 } 438 439 return 0; 440} 441 442const TemplateArgument * 443OverloadCandidate::DeductionFailureInfo::getSecondArg() { 444 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 445 case Sema::TDK_Success: 446 case Sema::TDK_InstantiationDepth: 447 case Sema::TDK_Incomplete: 448 case Sema::TDK_TooManyArguments: 449 case Sema::TDK_TooFewArguments: 450 case Sema::TDK_InvalidExplicitArguments: 451 case Sema::TDK_SubstitutionFailure: 452 return 0; 453 454 case Sema::TDK_Inconsistent: 455 case Sema::TDK_InconsistentQuals: 456 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 457 458 // Unhandled 459 case Sema::TDK_NonDeducedMismatch: 460 case Sema::TDK_FailedOverloadResolution: 461 break; 462 } 463 464 return 0; 465} 466 467void OverloadCandidateSet::clear() { 468 inherited::clear(); 469 Functions.clear(); 470} 471 472// IsOverload - Determine whether the given New declaration is an 473// overload of the declarations in Old. This routine returns false if 474// New and Old cannot be overloaded, e.g., if New has the same 475// signature as some function in Old (C++ 1.3.10) or if the Old 476// declarations aren't functions (or function templates) at all. When 477// it does return false, MatchedDecl will point to the decl that New 478// cannot be overloaded with. This decl may be a UsingShadowDecl on 479// top of the underlying declaration. 480// 481// Example: Given the following input: 482// 483// void f(int, float); // #1 484// void f(int, int); // #2 485// int f(int, int); // #3 486// 487// When we process #1, there is no previous declaration of "f", 488// so IsOverload will not be used. 489// 490// When we process #2, Old contains only the FunctionDecl for #1. By 491// comparing the parameter types, we see that #1 and #2 are overloaded 492// (since they have different signatures), so this routine returns 493// false; MatchedDecl is unchanged. 494// 495// When we process #3, Old is an overload set containing #1 and #2. We 496// compare the signatures of #3 to #1 (they're overloaded, so we do 497// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 498// identical (return types of functions are not part of the 499// signature), IsOverload returns false and MatchedDecl will be set to 500// point to the FunctionDecl for #2. 501Sema::OverloadKind 502Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old, 503 NamedDecl *&Match) { 504 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 505 I != E; ++I) { 506 NamedDecl *OldD = (*I)->getUnderlyingDecl(); 507 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 508 if (!IsOverload(New, OldT->getTemplatedDecl())) { 509 Match = *I; 510 return Ovl_Match; 511 } 512 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 513 if (!IsOverload(New, OldF)) { 514 Match = *I; 515 return Ovl_Match; 516 } 517 } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { 518 // We can overload with these, which can show up when doing 519 // redeclaration checks for UsingDecls. 520 assert(Old.getLookupKind() == LookupUsingDeclName); 521 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 522 // Optimistically assume that an unresolved using decl will 523 // overload; if it doesn't, we'll have to diagnose during 524 // template instantiation. 525 } else { 526 // (C++ 13p1): 527 // Only function declarations can be overloaded; object and type 528 // declarations cannot be overloaded. 529 Match = *I; 530 return Ovl_NonFunction; 531 } 532 } 533 534 return Ovl_Overload; 535} 536 537bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) { 538 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 539 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 540 541 // C++ [temp.fct]p2: 542 // A function template can be overloaded with other function templates 543 // and with normal (non-template) functions. 544 if ((OldTemplate == 0) != (NewTemplate == 0)) 545 return true; 546 547 // Is the function New an overload of the function Old? 548 QualType OldQType = Context.getCanonicalType(Old->getType()); 549 QualType NewQType = Context.getCanonicalType(New->getType()); 550 551 // Compare the signatures (C++ 1.3.10) of the two functions to 552 // determine whether they are overloads. If we find any mismatch 553 // in the signature, they are overloads. 554 555 // If either of these functions is a K&R-style function (no 556 // prototype), then we consider them to have matching signatures. 557 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 558 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 559 return false; 560 561 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 562 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 563 564 // The signature of a function includes the types of its 565 // parameters (C++ 1.3.10), which includes the presence or absence 566 // of the ellipsis; see C++ DR 357). 567 if (OldQType != NewQType && 568 (OldType->getNumArgs() != NewType->getNumArgs() || 569 OldType->isVariadic() != NewType->isVariadic() || 570 !FunctionArgTypesAreEqual(OldType, NewType))) 571 return true; 572 573 // C++ [temp.over.link]p4: 574 // The signature of a function template consists of its function 575 // signature, its return type and its template parameter list. The names 576 // of the template parameters are significant only for establishing the 577 // relationship between the template parameters and the rest of the 578 // signature. 579 // 580 // We check the return type and template parameter lists for function 581 // templates first; the remaining checks follow. 582 if (NewTemplate && 583 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 584 OldTemplate->getTemplateParameters(), 585 false, TPL_TemplateMatch) || 586 OldType->getResultType() != NewType->getResultType())) 587 return true; 588 589 // If the function is a class member, its signature includes the 590 // cv-qualifiers (if any) on the function itself. 591 // 592 // As part of this, also check whether one of the member functions 593 // is static, in which case they are not overloads (C++ 594 // 13.1p2). While not part of the definition of the signature, 595 // this check is important to determine whether these functions 596 // can be overloaded. 597 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 598 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 599 if (OldMethod && NewMethod && 600 !OldMethod->isStatic() && !NewMethod->isStatic() && 601 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 602 return true; 603 604 // The signatures match; this is not an overload. 605 return false; 606} 607 608/// TryImplicitConversion - Attempt to perform an implicit conversion 609/// from the given expression (Expr) to the given type (ToType). This 610/// function returns an implicit conversion sequence that can be used 611/// to perform the initialization. Given 612/// 613/// void f(float f); 614/// void g(int i) { f(i); } 615/// 616/// this routine would produce an implicit conversion sequence to 617/// describe the initialization of f from i, which will be a standard 618/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 619/// 4.1) followed by a floating-integral conversion (C++ 4.9). 620// 621/// Note that this routine only determines how the conversion can be 622/// performed; it does not actually perform the conversion. As such, 623/// it will not produce any diagnostics if no conversion is available, 624/// but will instead return an implicit conversion sequence of kind 625/// "BadConversion". 626/// 627/// If @p SuppressUserConversions, then user-defined conversions are 628/// not permitted. 629/// If @p AllowExplicit, then explicit user-defined conversions are 630/// permitted. 631ImplicitConversionSequence 632Sema::TryImplicitConversion(Expr* From, QualType ToType, 633 bool SuppressUserConversions, 634 bool AllowExplicit, 635 bool InOverloadResolution) { 636 ImplicitConversionSequence ICS; 637 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) { 638 ICS.setStandard(); 639 return ICS; 640 } 641 642 if (!getLangOptions().CPlusPlus) { 643 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 644 return ICS; 645 } 646 647 if (SuppressUserConversions) { 648 // C++ [over.ics.user]p4: 649 // A conversion of an expression of class type to the same class 650 // type is given Exact Match rank, and a conversion of an 651 // expression of class type to a base class of that type is 652 // given Conversion rank, in spite of the fact that a copy/move 653 // constructor (i.e., a user-defined conversion function) is 654 // called for those cases. 655 QualType FromType = From->getType(); 656 if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() || 657 !(Context.hasSameUnqualifiedType(FromType, ToType) || 658 IsDerivedFrom(FromType, ToType))) { 659 // We're not in the case above, so there is no conversion that 660 // we can perform. 661 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 662 return ICS; 663 } 664 665 ICS.setStandard(); 666 ICS.Standard.setAsIdentityConversion(); 667 ICS.Standard.setFromType(FromType); 668 ICS.Standard.setAllToTypes(ToType); 669 670 // We don't actually check at this point whether there is a valid 671 // copy/move constructor, since overloading just assumes that it 672 // exists. When we actually perform initialization, we'll find the 673 // appropriate constructor to copy the returned object, if needed. 674 ICS.Standard.CopyConstructor = 0; 675 676 // Determine whether this is considered a derived-to-base conversion. 677 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 678 ICS.Standard.Second = ICK_Derived_To_Base; 679 680 return ICS; 681 } 682 683 // Attempt user-defined conversion. 684 OverloadCandidateSet Conversions(From->getExprLoc()); 685 OverloadingResult UserDefResult 686 = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions, 687 AllowExplicit); 688 689 if (UserDefResult == OR_Success) { 690 ICS.setUserDefined(); 691 // C++ [over.ics.user]p4: 692 // A conversion of an expression of class type to the same class 693 // type is given Exact Match rank, and a conversion of an 694 // expression of class type to a base class of that type is 695 // given Conversion rank, in spite of the fact that a copy 696 // constructor (i.e., a user-defined conversion function) is 697 // called for those cases. 698 if (CXXConstructorDecl *Constructor 699 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 700 QualType FromCanon 701 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 702 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 703 if (Constructor->isCopyConstructor() && 704 (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) { 705 // Turn this into a "standard" conversion sequence, so that it 706 // gets ranked with standard conversion sequences. 707 ICS.setStandard(); 708 ICS.Standard.setAsIdentityConversion(); 709 ICS.Standard.setFromType(From->getType()); 710 ICS.Standard.setAllToTypes(ToType); 711 ICS.Standard.CopyConstructor = Constructor; 712 if (ToCanon != FromCanon) 713 ICS.Standard.Second = ICK_Derived_To_Base; 714 } 715 } 716 717 // C++ [over.best.ics]p4: 718 // However, when considering the argument of a user-defined 719 // conversion function that is a candidate by 13.3.1.3 when 720 // invoked for the copying of the temporary in the second step 721 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 722 // 13.3.1.6 in all cases, only standard conversion sequences and 723 // ellipsis conversion sequences are allowed. 724 if (SuppressUserConversions && ICS.isUserDefined()) { 725 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 726 } 727 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 728 ICS.setAmbiguous(); 729 ICS.Ambiguous.setFromType(From->getType()); 730 ICS.Ambiguous.setToType(ToType); 731 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 732 Cand != Conversions.end(); ++Cand) 733 if (Cand->Viable) 734 ICS.Ambiguous.addConversion(Cand->Function); 735 } else { 736 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 737 } 738 739 return ICS; 740} 741 742/// PerformImplicitConversion - Perform an implicit conversion of the 743/// expression From to the type ToType. Returns true if there was an 744/// error, false otherwise. The expression From is replaced with the 745/// converted expression. Flavor is the kind of conversion we're 746/// performing, used in the error message. If @p AllowExplicit, 747/// explicit user-defined conversions are permitted. 748bool 749Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 750 AssignmentAction Action, bool AllowExplicit) { 751 ImplicitConversionSequence ICS; 752 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 753} 754 755bool 756Sema::PerformImplicitConversion(Expr *&From, QualType ToType, 757 AssignmentAction Action, bool AllowExplicit, 758 ImplicitConversionSequence& ICS) { 759 ICS = TryImplicitConversion(From, ToType, 760 /*SuppressUserConversions=*/false, 761 AllowExplicit, 762 /*InOverloadResolution=*/false); 763 return PerformImplicitConversion(From, ToType, ICS, Action); 764} 765 766/// \brief Determine whether the conversion from FromType to ToType is a valid 767/// conversion that strips "noreturn" off the nested function type. 768static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 769 QualType ToType, QualType &ResultTy) { 770 if (Context.hasSameUnqualifiedType(FromType, ToType)) 771 return false; 772 773 // Strip the noreturn off the type we're converting from; noreturn can 774 // safely be removed. 775 FromType = Context.getNoReturnType(FromType, false); 776 if (!Context.hasSameUnqualifiedType(FromType, ToType)) 777 return false; 778 779 ResultTy = FromType; 780 return true; 781} 782 783/// \brief Determine whether the conversion from FromType to ToType is a valid 784/// vector conversion. 785/// 786/// \param ICK Will be set to the vector conversion kind, if this is a vector 787/// conversion. 788static bool IsVectorConversion(ASTContext &Context, QualType FromType, 789 QualType ToType, ImplicitConversionKind &ICK) { 790 // We need at least one of these types to be a vector type to have a vector 791 // conversion. 792 if (!ToType->isVectorType() && !FromType->isVectorType()) 793 return false; 794 795 // Identical types require no conversions. 796 if (Context.hasSameUnqualifiedType(FromType, ToType)) 797 return false; 798 799 // There are no conversions between extended vector types, only identity. 800 if (ToType->isExtVectorType()) { 801 // There are no conversions between extended vector types other than the 802 // identity conversion. 803 if (FromType->isExtVectorType()) 804 return false; 805 806 // Vector splat from any arithmetic type to a vector. 807 if (!FromType->isVectorType() && FromType->isArithmeticType()) { 808 ICK = ICK_Vector_Splat; 809 return true; 810 } 811 } 812 813 // If lax vector conversions are permitted and the vector types are of the 814 // same size, we can perform the conversion. 815 if (Context.getLangOptions().LaxVectorConversions && 816 FromType->isVectorType() && ToType->isVectorType() && 817 Context.getTypeSize(FromType) == Context.getTypeSize(ToType)) { 818 ICK = ICK_Vector_Conversion; 819 return true; 820 } 821 822 return false; 823} 824 825/// IsStandardConversion - Determines whether there is a standard 826/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 827/// expression From to the type ToType. Standard conversion sequences 828/// only consider non-class types; for conversions that involve class 829/// types, use TryImplicitConversion. If a conversion exists, SCS will 830/// contain the standard conversion sequence required to perform this 831/// conversion and this routine will return true. Otherwise, this 832/// routine will return false and the value of SCS is unspecified. 833bool 834Sema::IsStandardConversion(Expr* From, QualType ToType, 835 bool InOverloadResolution, 836 StandardConversionSequence &SCS) { 837 QualType FromType = From->getType(); 838 839 // Standard conversions (C++ [conv]) 840 SCS.setAsIdentityConversion(); 841 SCS.DeprecatedStringLiteralToCharPtr = false; 842 SCS.IncompatibleObjC = false; 843 SCS.setFromType(FromType); 844 SCS.CopyConstructor = 0; 845 846 // There are no standard conversions for class types in C++, so 847 // abort early. When overloading in C, however, we do permit 848 if (FromType->isRecordType() || ToType->isRecordType()) { 849 if (getLangOptions().CPlusPlus) 850 return false; 851 852 // When we're overloading in C, we allow, as standard conversions, 853 } 854 855 // The first conversion can be an lvalue-to-rvalue conversion, 856 // array-to-pointer conversion, or function-to-pointer conversion 857 // (C++ 4p1). 858 859 if (FromType == Context.OverloadTy) { 860 DeclAccessPair AccessPair; 861 if (FunctionDecl *Fn 862 = ResolveAddressOfOverloadedFunction(From, ToType, false, 863 AccessPair)) { 864 // We were able to resolve the address of the overloaded function, 865 // so we can convert to the type of that function. 866 FromType = Fn->getType(); 867 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 868 if (!Method->isStatic()) { 869 Type *ClassType 870 = Context.getTypeDeclType(Method->getParent()).getTypePtr(); 871 FromType = Context.getMemberPointerType(FromType, ClassType); 872 } 873 } 874 875 // If the "from" expression takes the address of the overloaded 876 // function, update the type of the resulting expression accordingly. 877 if (FromType->getAs<FunctionType>()) 878 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) 879 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 880 FromType = Context.getPointerType(FromType); 881 882 // Check that we've computed the proper type after overload resolution. 883 assert(Context.hasSameType(FromType, 884 FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 885 } else { 886 return false; 887 } 888 } 889 // Lvalue-to-rvalue conversion (C++ 4.1): 890 // An lvalue (3.10) of a non-function, non-array type T can be 891 // converted to an rvalue. 892 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 893 if (argIsLvalue == Expr::LV_Valid && 894 !FromType->isFunctionType() && !FromType->isArrayType() && 895 Context.getCanonicalType(FromType) != Context.OverloadTy) { 896 SCS.First = ICK_Lvalue_To_Rvalue; 897 898 // If T is a non-class type, the type of the rvalue is the 899 // cv-unqualified version of T. Otherwise, the type of the rvalue 900 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 901 // just strip the qualifiers because they don't matter. 902 FromType = FromType.getUnqualifiedType(); 903 } else if (FromType->isArrayType()) { 904 // Array-to-pointer conversion (C++ 4.2) 905 SCS.First = ICK_Array_To_Pointer; 906 907 // An lvalue or rvalue of type "array of N T" or "array of unknown 908 // bound of T" can be converted to an rvalue of type "pointer to 909 // T" (C++ 4.2p1). 910 FromType = Context.getArrayDecayedType(FromType); 911 912 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 913 // This conversion is deprecated. (C++ D.4). 914 SCS.DeprecatedStringLiteralToCharPtr = true; 915 916 // For the purpose of ranking in overload resolution 917 // (13.3.3.1.1), this conversion is considered an 918 // array-to-pointer conversion followed by a qualification 919 // conversion (4.4). (C++ 4.2p2) 920 SCS.Second = ICK_Identity; 921 SCS.Third = ICK_Qualification; 922 SCS.setAllToTypes(FromType); 923 return true; 924 } 925 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 926 // Function-to-pointer conversion (C++ 4.3). 927 SCS.First = ICK_Function_To_Pointer; 928 929 // An lvalue of function type T can be converted to an rvalue of 930 // type "pointer to T." The result is a pointer to the 931 // function. (C++ 4.3p1). 932 FromType = Context.getPointerType(FromType); 933 } else { 934 // We don't require any conversions for the first step. 935 SCS.First = ICK_Identity; 936 } 937 SCS.setToType(0, FromType); 938 939 // The second conversion can be an integral promotion, floating 940 // point promotion, integral conversion, floating point conversion, 941 // floating-integral conversion, pointer conversion, 942 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 943 // For overloading in C, this can also be a "compatible-type" 944 // conversion. 945 bool IncompatibleObjC = false; 946 ImplicitConversionKind SecondICK = ICK_Identity; 947 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 948 // The unqualified versions of the types are the same: there's no 949 // conversion to do. 950 SCS.Second = ICK_Identity; 951 } else if (IsIntegralPromotion(From, FromType, ToType)) { 952 // Integral promotion (C++ 4.5). 953 SCS.Second = ICK_Integral_Promotion; 954 FromType = ToType.getUnqualifiedType(); 955 } else if (IsFloatingPointPromotion(FromType, ToType)) { 956 // Floating point promotion (C++ 4.6). 957 SCS.Second = ICK_Floating_Promotion; 958 FromType = ToType.getUnqualifiedType(); 959 } else if (IsComplexPromotion(FromType, ToType)) { 960 // Complex promotion (Clang extension) 961 SCS.Second = ICK_Complex_Promotion; 962 FromType = ToType.getUnqualifiedType(); 963 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 964 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 965 // Integral conversions (C++ 4.7). 966 SCS.Second = ICK_Integral_Conversion; 967 FromType = ToType.getUnqualifiedType(); 968 } else if (FromType->isComplexType() && ToType->isComplexType()) { 969 // Complex conversions (C99 6.3.1.6) 970 SCS.Second = ICK_Complex_Conversion; 971 FromType = ToType.getUnqualifiedType(); 972 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 973 (ToType->isComplexType() && FromType->isArithmeticType())) { 974 // Complex-real conversions (C99 6.3.1.7) 975 SCS.Second = ICK_Complex_Real; 976 FromType = ToType.getUnqualifiedType(); 977 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 978 // Floating point conversions (C++ 4.8). 979 SCS.Second = ICK_Floating_Conversion; 980 FromType = ToType.getUnqualifiedType(); 981 } else if ((FromType->isFloatingType() && 982 ToType->isIntegralType() && (!ToType->isBooleanType() && 983 !ToType->isEnumeralType())) || 984 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 985 ToType->isFloatingType())) { 986 // Floating-integral conversions (C++ 4.9). 987 SCS.Second = ICK_Floating_Integral; 988 FromType = ToType.getUnqualifiedType(); 989 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 990 FromType, IncompatibleObjC)) { 991 // Pointer conversions (C++ 4.10). 992 SCS.Second = ICK_Pointer_Conversion; 993 SCS.IncompatibleObjC = IncompatibleObjC; 994 } else if (IsMemberPointerConversion(From, FromType, ToType, 995 InOverloadResolution, FromType)) { 996 // Pointer to member conversions (4.11). 997 SCS.Second = ICK_Pointer_Member; 998 } else if (ToType->isBooleanType() && 999 (FromType->isArithmeticType() || 1000 FromType->isEnumeralType() || 1001 FromType->isAnyPointerType() || 1002 FromType->isBlockPointerType() || 1003 FromType->isMemberPointerType() || 1004 FromType->isNullPtrType())) { 1005 // Boolean conversions (C++ 4.12). 1006 SCS.Second = ICK_Boolean_Conversion; 1007 FromType = Context.BoolTy; 1008 } else if (IsVectorConversion(Context, FromType, ToType, SecondICK)) { 1009 SCS.Second = SecondICK; 1010 FromType = ToType.getUnqualifiedType(); 1011 } else if (!getLangOptions().CPlusPlus && 1012 Context.typesAreCompatible(ToType, FromType)) { 1013 // Compatible conversions (Clang extension for C function overloading) 1014 SCS.Second = ICK_Compatible_Conversion; 1015 FromType = ToType.getUnqualifiedType(); 1016 } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) { 1017 // Treat a conversion that strips "noreturn" as an identity conversion. 1018 SCS.Second = ICK_NoReturn_Adjustment; 1019 } else { 1020 // No second conversion required. 1021 SCS.Second = ICK_Identity; 1022 } 1023 SCS.setToType(1, FromType); 1024 1025 QualType CanonFrom; 1026 QualType CanonTo; 1027 // The third conversion can be a qualification conversion (C++ 4p1). 1028 if (IsQualificationConversion(FromType, ToType)) { 1029 SCS.Third = ICK_Qualification; 1030 FromType = ToType; 1031 CanonFrom = Context.getCanonicalType(FromType); 1032 CanonTo = Context.getCanonicalType(ToType); 1033 } else { 1034 // No conversion required 1035 SCS.Third = ICK_Identity; 1036 1037 // C++ [over.best.ics]p6: 1038 // [...] Any difference in top-level cv-qualification is 1039 // subsumed by the initialization itself and does not constitute 1040 // a conversion. [...] 1041 CanonFrom = Context.getCanonicalType(FromType); 1042 CanonTo = Context.getCanonicalType(ToType); 1043 if (CanonFrom.getLocalUnqualifiedType() 1044 == CanonTo.getLocalUnqualifiedType() && 1045 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1046 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) { 1047 FromType = ToType; 1048 CanonFrom = CanonTo; 1049 } 1050 } 1051 SCS.setToType(2, FromType); 1052 1053 // If we have not converted the argument type to the parameter type, 1054 // this is a bad conversion sequence. 1055 if (CanonFrom != CanonTo) 1056 return false; 1057 1058 return true; 1059} 1060 1061/// IsIntegralPromotion - Determines whether the conversion from the 1062/// expression From (whose potentially-adjusted type is FromType) to 1063/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1064/// sets PromotedType to the promoted type. 1065bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1066 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1067 // All integers are built-in. 1068 if (!To) { 1069 return false; 1070 } 1071 1072 // An rvalue of type char, signed char, unsigned char, short int, or 1073 // unsigned short int can be converted to an rvalue of type int if 1074 // int can represent all the values of the source type; otherwise, 1075 // the source rvalue can be converted to an rvalue of type unsigned 1076 // int (C++ 4.5p1). 1077 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1078 !FromType->isEnumeralType()) { 1079 if (// We can promote any signed, promotable integer type to an int 1080 (FromType->isSignedIntegerType() || 1081 // We can promote any unsigned integer type whose size is 1082 // less than int to an int. 1083 (!FromType->isSignedIntegerType() && 1084 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1085 return To->getKind() == BuiltinType::Int; 1086 } 1087 1088 return To->getKind() == BuiltinType::UInt; 1089 } 1090 1091 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 1092 // can be converted to an rvalue of the first of the following types 1093 // that can represent all the values of its underlying type: int, 1094 // unsigned int, long, or unsigned long (C++ 4.5p2). 1095 1096 // We pre-calculate the promotion type for enum types. 1097 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) 1098 if (ToType->isIntegerType()) 1099 return Context.hasSameUnqualifiedType(ToType, 1100 FromEnumType->getDecl()->getPromotionType()); 1101 1102 if (FromType->isWideCharType() && ToType->isIntegerType()) { 1103 // Determine whether the type we're converting from is signed or 1104 // unsigned. 1105 bool FromIsSigned; 1106 uint64_t FromSize = Context.getTypeSize(FromType); 1107 1108 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 1109 FromIsSigned = true; 1110 1111 // The types we'll try to promote to, in the appropriate 1112 // order. Try each of these types. 1113 QualType PromoteTypes[6] = { 1114 Context.IntTy, Context.UnsignedIntTy, 1115 Context.LongTy, Context.UnsignedLongTy , 1116 Context.LongLongTy, Context.UnsignedLongLongTy 1117 }; 1118 for (int Idx = 0; Idx < 6; ++Idx) { 1119 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1120 if (FromSize < ToSize || 1121 (FromSize == ToSize && 1122 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1123 // We found the type that we can promote to. If this is the 1124 // type we wanted, we have a promotion. Otherwise, no 1125 // promotion. 1126 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1127 } 1128 } 1129 } 1130 1131 // An rvalue for an integral bit-field (9.6) can be converted to an 1132 // rvalue of type int if int can represent all the values of the 1133 // bit-field; otherwise, it can be converted to unsigned int if 1134 // unsigned int can represent all the values of the bit-field. If 1135 // the bit-field is larger yet, no integral promotion applies to 1136 // it. If the bit-field has an enumerated type, it is treated as any 1137 // other value of that type for promotion purposes (C++ 4.5p3). 1138 // FIXME: We should delay checking of bit-fields until we actually perform the 1139 // conversion. 1140 using llvm::APSInt; 1141 if (From) 1142 if (FieldDecl *MemberDecl = From->getBitField()) { 1143 APSInt BitWidth; 1144 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 1145 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1146 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1147 ToSize = Context.getTypeSize(ToType); 1148 1149 // Are we promoting to an int from a bitfield that fits in an int? 1150 if (BitWidth < ToSize || 1151 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1152 return To->getKind() == BuiltinType::Int; 1153 } 1154 1155 // Are we promoting to an unsigned int from an unsigned bitfield 1156 // that fits into an unsigned int? 1157 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1158 return To->getKind() == BuiltinType::UInt; 1159 } 1160 1161 return false; 1162 } 1163 } 1164 1165 // An rvalue of type bool can be converted to an rvalue of type int, 1166 // with false becoming zero and true becoming one (C++ 4.5p4). 1167 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1168 return true; 1169 } 1170 1171 return false; 1172} 1173 1174/// IsFloatingPointPromotion - Determines whether the conversion from 1175/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1176/// returns true and sets PromotedType to the promoted type. 1177bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1178 /// An rvalue of type float can be converted to an rvalue of type 1179 /// double. (C++ 4.6p1). 1180 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1181 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1182 if (FromBuiltin->getKind() == BuiltinType::Float && 1183 ToBuiltin->getKind() == BuiltinType::Double) 1184 return true; 1185 1186 // C99 6.3.1.5p1: 1187 // When a float is promoted to double or long double, or a 1188 // double is promoted to long double [...]. 1189 if (!getLangOptions().CPlusPlus && 1190 (FromBuiltin->getKind() == BuiltinType::Float || 1191 FromBuiltin->getKind() == BuiltinType::Double) && 1192 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1193 return true; 1194 } 1195 1196 return false; 1197} 1198 1199/// \brief Determine if a conversion is a complex promotion. 1200/// 1201/// A complex promotion is defined as a complex -> complex conversion 1202/// where the conversion between the underlying real types is a 1203/// floating-point or integral promotion. 1204bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1205 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1206 if (!FromComplex) 1207 return false; 1208 1209 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1210 if (!ToComplex) 1211 return false; 1212 1213 return IsFloatingPointPromotion(FromComplex->getElementType(), 1214 ToComplex->getElementType()) || 1215 IsIntegralPromotion(0, FromComplex->getElementType(), 1216 ToComplex->getElementType()); 1217} 1218 1219/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1220/// the pointer type FromPtr to a pointer to type ToPointee, with the 1221/// same type qualifiers as FromPtr has on its pointee type. ToType, 1222/// if non-empty, will be a pointer to ToType that may or may not have 1223/// the right set of qualifiers on its pointee. 1224static QualType 1225BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 1226 QualType ToPointee, QualType ToType, 1227 ASTContext &Context) { 1228 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 1229 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1230 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1231 1232 // Exact qualifier match -> return the pointer type we're converting to. 1233 if (CanonToPointee.getLocalQualifiers() == Quals) { 1234 // ToType is exactly what we need. Return it. 1235 if (!ToType.isNull()) 1236 return ToType.getUnqualifiedType(); 1237 1238 // Build a pointer to ToPointee. It has the right qualifiers 1239 // already. 1240 return Context.getPointerType(ToPointee); 1241 } 1242 1243 // Just build a canonical type that has the right qualifiers. 1244 return Context.getPointerType( 1245 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 1246 Quals)); 1247} 1248 1249/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from 1250/// the FromType, which is an objective-c pointer, to ToType, which may or may 1251/// not have the right set of qualifiers. 1252static QualType 1253BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, 1254 QualType ToType, 1255 ASTContext &Context) { 1256 QualType CanonFromType = Context.getCanonicalType(FromType); 1257 QualType CanonToType = Context.getCanonicalType(ToType); 1258 Qualifiers Quals = CanonFromType.getQualifiers(); 1259 1260 // Exact qualifier match -> return the pointer type we're converting to. 1261 if (CanonToType.getLocalQualifiers() == Quals) 1262 return ToType; 1263 1264 // Just build a canonical type that has the right qualifiers. 1265 return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); 1266} 1267 1268static bool isNullPointerConstantForConversion(Expr *Expr, 1269 bool InOverloadResolution, 1270 ASTContext &Context) { 1271 // Handle value-dependent integral null pointer constants correctly. 1272 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1273 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1274 Expr->getType()->isIntegralType()) 1275 return !InOverloadResolution; 1276 1277 return Expr->isNullPointerConstant(Context, 1278 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1279 : Expr::NPC_ValueDependentIsNull); 1280} 1281 1282/// IsPointerConversion - Determines whether the conversion of the 1283/// expression From, which has the (possibly adjusted) type FromType, 1284/// can be converted to the type ToType via a pointer conversion (C++ 1285/// 4.10). If so, returns true and places the converted type (that 1286/// might differ from ToType in its cv-qualifiers at some level) into 1287/// ConvertedType. 1288/// 1289/// This routine also supports conversions to and from block pointers 1290/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1291/// pointers to interfaces. FIXME: Once we've determined the 1292/// appropriate overloading rules for Objective-C, we may want to 1293/// split the Objective-C checks into a different routine; however, 1294/// GCC seems to consider all of these conversions to be pointer 1295/// conversions, so for now they live here. IncompatibleObjC will be 1296/// set if the conversion is an allowed Objective-C conversion that 1297/// should result in a warning. 1298bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1299 bool InOverloadResolution, 1300 QualType& ConvertedType, 1301 bool &IncompatibleObjC) { 1302 IncompatibleObjC = false; 1303 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 1304 return true; 1305 1306 // Conversion from a null pointer constant to any Objective-C pointer type. 1307 if (ToType->isObjCObjectPointerType() && 1308 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1309 ConvertedType = ToType; 1310 return true; 1311 } 1312 1313 // Blocks: Block pointers can be converted to void*. 1314 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1315 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1316 ConvertedType = ToType; 1317 return true; 1318 } 1319 // Blocks: A null pointer constant can be converted to a block 1320 // pointer type. 1321 if (ToType->isBlockPointerType() && 1322 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1323 ConvertedType = ToType; 1324 return true; 1325 } 1326 1327 // If the left-hand-side is nullptr_t, the right side can be a null 1328 // pointer constant. 1329 if (ToType->isNullPtrType() && 1330 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1331 ConvertedType = ToType; 1332 return true; 1333 } 1334 1335 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1336 if (!ToTypePtr) 1337 return false; 1338 1339 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1340 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1341 ConvertedType = ToType; 1342 return true; 1343 } 1344 1345 // Beyond this point, both types need to be pointers 1346 // , including objective-c pointers. 1347 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1348 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { 1349 ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, 1350 ToType, Context); 1351 return true; 1352 1353 } 1354 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1355 if (!FromTypePtr) 1356 return false; 1357 1358 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1359 1360 // An rvalue of type "pointer to cv T," where T is an object type, 1361 // can be converted to an rvalue of type "pointer to cv void" (C++ 1362 // 4.10p2). 1363 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 1364 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1365 ToPointeeType, 1366 ToType, Context); 1367 return true; 1368 } 1369 1370 // When we're overloading in C, we allow a special kind of pointer 1371 // conversion for compatible-but-not-identical pointee types. 1372 if (!getLangOptions().CPlusPlus && 1373 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1374 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1375 ToPointeeType, 1376 ToType, Context); 1377 return true; 1378 } 1379 1380 // C++ [conv.ptr]p3: 1381 // 1382 // An rvalue of type "pointer to cv D," where D is a class type, 1383 // can be converted to an rvalue of type "pointer to cv B," where 1384 // B is a base class (clause 10) of D. If B is an inaccessible 1385 // (clause 11) or ambiguous (10.2) base class of D, a program that 1386 // necessitates this conversion is ill-formed. The result of the 1387 // conversion is a pointer to the base class sub-object of the 1388 // derived class object. The null pointer value is converted to 1389 // the null pointer value of the destination type. 1390 // 1391 // Note that we do not check for ambiguity or inaccessibility 1392 // here. That is handled by CheckPointerConversion. 1393 if (getLangOptions().CPlusPlus && 1394 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1395 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1396 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1397 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1398 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1399 ToPointeeType, 1400 ToType, Context); 1401 return true; 1402 } 1403 1404 return false; 1405} 1406 1407/// isObjCPointerConversion - Determines whether this is an 1408/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1409/// with the same arguments and return values. 1410bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1411 QualType& ConvertedType, 1412 bool &IncompatibleObjC) { 1413 if (!getLangOptions().ObjC1) 1414 return false; 1415 1416 // First, we handle all conversions on ObjC object pointer types. 1417 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1418 const ObjCObjectPointerType *FromObjCPtr = 1419 FromType->getAs<ObjCObjectPointerType>(); 1420 1421 if (ToObjCPtr && FromObjCPtr) { 1422 // Objective C++: We're able to convert between "id" or "Class" and a 1423 // pointer to any interface (in both directions). 1424 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1425 ConvertedType = ToType; 1426 return true; 1427 } 1428 // Conversions with Objective-C's id<...>. 1429 if ((FromObjCPtr->isObjCQualifiedIdType() || 1430 ToObjCPtr->isObjCQualifiedIdType()) && 1431 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1432 /*compare=*/false)) { 1433 ConvertedType = ToType; 1434 return true; 1435 } 1436 // Objective C++: We're able to convert from a pointer to an 1437 // interface to a pointer to a different interface. 1438 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1439 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1440 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1441 if (getLangOptions().CPlusPlus && LHS && RHS && 1442 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1443 FromObjCPtr->getPointeeType())) 1444 return false; 1445 ConvertedType = ToType; 1446 return true; 1447 } 1448 1449 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1450 // Okay: this is some kind of implicit downcast of Objective-C 1451 // interfaces, which is permitted. However, we're going to 1452 // complain about it. 1453 IncompatibleObjC = true; 1454 ConvertedType = FromType; 1455 return true; 1456 } 1457 } 1458 // Beyond this point, both types need to be C pointers or block pointers. 1459 QualType ToPointeeType; 1460 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1461 ToPointeeType = ToCPtr->getPointeeType(); 1462 else if (const BlockPointerType *ToBlockPtr = 1463 ToType->getAs<BlockPointerType>()) { 1464 // Objective C++: We're able to convert from a pointer to any object 1465 // to a block pointer type. 1466 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1467 ConvertedType = ToType; 1468 return true; 1469 } 1470 ToPointeeType = ToBlockPtr->getPointeeType(); 1471 } 1472 else if (FromType->getAs<BlockPointerType>() && 1473 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1474 // Objective C++: We're able to convert from a block pointer type to a 1475 // pointer to any object. 1476 ConvertedType = ToType; 1477 return true; 1478 } 1479 else 1480 return false; 1481 1482 QualType FromPointeeType; 1483 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1484 FromPointeeType = FromCPtr->getPointeeType(); 1485 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1486 FromPointeeType = FromBlockPtr->getPointeeType(); 1487 else 1488 return false; 1489 1490 // If we have pointers to pointers, recursively check whether this 1491 // is an Objective-C conversion. 1492 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1493 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1494 IncompatibleObjC)) { 1495 // We always complain about this conversion. 1496 IncompatibleObjC = true; 1497 ConvertedType = ToType; 1498 return true; 1499 } 1500 // Allow conversion of pointee being objective-c pointer to another one; 1501 // as in I* to id. 1502 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1503 ToPointeeType->getAs<ObjCObjectPointerType>() && 1504 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1505 IncompatibleObjC)) { 1506 ConvertedType = ToType; 1507 return true; 1508 } 1509 1510 // If we have pointers to functions or blocks, check whether the only 1511 // differences in the argument and result types are in Objective-C 1512 // pointer conversions. If so, we permit the conversion (but 1513 // complain about it). 1514 const FunctionProtoType *FromFunctionType 1515 = FromPointeeType->getAs<FunctionProtoType>(); 1516 const FunctionProtoType *ToFunctionType 1517 = ToPointeeType->getAs<FunctionProtoType>(); 1518 if (FromFunctionType && ToFunctionType) { 1519 // If the function types are exactly the same, this isn't an 1520 // Objective-C pointer conversion. 1521 if (Context.getCanonicalType(FromPointeeType) 1522 == Context.getCanonicalType(ToPointeeType)) 1523 return false; 1524 1525 // Perform the quick checks that will tell us whether these 1526 // function types are obviously different. 1527 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1528 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1529 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1530 return false; 1531 1532 bool HasObjCConversion = false; 1533 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1534 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1535 // Okay, the types match exactly. Nothing to do. 1536 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1537 ToFunctionType->getResultType(), 1538 ConvertedType, IncompatibleObjC)) { 1539 // Okay, we have an Objective-C pointer conversion. 1540 HasObjCConversion = true; 1541 } else { 1542 // Function types are too different. Abort. 1543 return false; 1544 } 1545 1546 // Check argument types. 1547 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1548 ArgIdx != NumArgs; ++ArgIdx) { 1549 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1550 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1551 if (Context.getCanonicalType(FromArgType) 1552 == Context.getCanonicalType(ToArgType)) { 1553 // Okay, the types match exactly. Nothing to do. 1554 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1555 ConvertedType, IncompatibleObjC)) { 1556 // Okay, we have an Objective-C pointer conversion. 1557 HasObjCConversion = true; 1558 } else { 1559 // Argument types are too different. Abort. 1560 return false; 1561 } 1562 } 1563 1564 if (HasObjCConversion) { 1565 // We had an Objective-C conversion. Allow this pointer 1566 // conversion, but complain about it. 1567 ConvertedType = ToType; 1568 IncompatibleObjC = true; 1569 return true; 1570 } 1571 } 1572 1573 return false; 1574} 1575 1576/// FunctionArgTypesAreEqual - This routine checks two function proto types 1577/// for equlity of their argument types. Caller has already checked that 1578/// they have same number of arguments. This routine assumes that Objective-C 1579/// pointer types which only differ in their protocol qualifiers are equal. 1580bool Sema::FunctionArgTypesAreEqual(FunctionProtoType* OldType, 1581 FunctionProtoType* NewType){ 1582 if (!getLangOptions().ObjC1) 1583 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 1584 NewType->arg_type_begin()); 1585 1586 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 1587 N = NewType->arg_type_begin(), 1588 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 1589 QualType ToType = (*O); 1590 QualType FromType = (*N); 1591 if (ToType != FromType) { 1592 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 1593 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 1594 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 1595 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 1596 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 1597 PTFr->getPointeeType()->isObjCQualifiedClassType())) 1598 continue; 1599 } 1600 else if (const ObjCObjectPointerType *PTTo = 1601 ToType->getAs<ObjCObjectPointerType>()) { 1602 if (const ObjCObjectPointerType *PTFr = 1603 FromType->getAs<ObjCObjectPointerType>()) 1604 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 1605 continue; 1606 } 1607 return false; 1608 } 1609 } 1610 return true; 1611} 1612 1613/// CheckPointerConversion - Check the pointer conversion from the 1614/// expression From to the type ToType. This routine checks for 1615/// ambiguous or inaccessible derived-to-base pointer 1616/// conversions for which IsPointerConversion has already returned 1617/// true. It returns true and produces a diagnostic if there was an 1618/// error, or returns false otherwise. 1619bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1620 CastExpr::CastKind &Kind, 1621 CXXBaseSpecifierArray& BasePath, 1622 bool IgnoreBaseAccess) { 1623 QualType FromType = From->getType(); 1624 1625 if (CXXBoolLiteralExpr* LitBool 1626 = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens())) 1627 if (LitBool->getValue() == false) 1628 Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false) 1629 << ToType; 1630 1631 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1632 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1633 QualType FromPointeeType = FromPtrType->getPointeeType(), 1634 ToPointeeType = ToPtrType->getPointeeType(); 1635 1636 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1637 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 1638 // We must have a derived-to-base conversion. Check an 1639 // ambiguous or inaccessible conversion. 1640 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1641 From->getExprLoc(), 1642 From->getSourceRange(), &BasePath, 1643 IgnoreBaseAccess)) 1644 return true; 1645 1646 // The conversion was successful. 1647 Kind = CastExpr::CK_DerivedToBase; 1648 } 1649 } 1650 if (const ObjCObjectPointerType *FromPtrType = 1651 FromType->getAs<ObjCObjectPointerType>()) 1652 if (const ObjCObjectPointerType *ToPtrType = 1653 ToType->getAs<ObjCObjectPointerType>()) { 1654 // Objective-C++ conversions are always okay. 1655 // FIXME: We should have a different class of conversions for the 1656 // Objective-C++ implicit conversions. 1657 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1658 return false; 1659 1660 } 1661 return false; 1662} 1663 1664/// IsMemberPointerConversion - Determines whether the conversion of the 1665/// expression From, which has the (possibly adjusted) type FromType, can be 1666/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1667/// If so, returns true and places the converted type (that might differ from 1668/// ToType in its cv-qualifiers at some level) into ConvertedType. 1669bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1670 QualType ToType, 1671 bool InOverloadResolution, 1672 QualType &ConvertedType) { 1673 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1674 if (!ToTypePtr) 1675 return false; 1676 1677 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1678 if (From->isNullPointerConstant(Context, 1679 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1680 : Expr::NPC_ValueDependentIsNull)) { 1681 ConvertedType = ToType; 1682 return true; 1683 } 1684 1685 // Otherwise, both types have to be member pointers. 1686 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1687 if (!FromTypePtr) 1688 return false; 1689 1690 // A pointer to member of B can be converted to a pointer to member of D, 1691 // where D is derived from B (C++ 4.11p2). 1692 QualType FromClass(FromTypePtr->getClass(), 0); 1693 QualType ToClass(ToTypePtr->getClass(), 0); 1694 // FIXME: What happens when these are dependent? Is this function even called? 1695 1696 if (IsDerivedFrom(ToClass, FromClass)) { 1697 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1698 ToClass.getTypePtr()); 1699 return true; 1700 } 1701 1702 return false; 1703} 1704 1705/// CheckMemberPointerConversion - Check the member pointer conversion from the 1706/// expression From to the type ToType. This routine checks for ambiguous or 1707/// virtual or inaccessible base-to-derived member pointer conversions 1708/// for which IsMemberPointerConversion has already returned true. It returns 1709/// true and produces a diagnostic if there was an error, or returns false 1710/// otherwise. 1711bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1712 CastExpr::CastKind &Kind, 1713 CXXBaseSpecifierArray &BasePath, 1714 bool IgnoreBaseAccess) { 1715 QualType FromType = From->getType(); 1716 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1717 if (!FromPtrType) { 1718 // This must be a null pointer to member pointer conversion 1719 assert(From->isNullPointerConstant(Context, 1720 Expr::NPC_ValueDependentIsNull) && 1721 "Expr must be null pointer constant!"); 1722 Kind = CastExpr::CK_NullToMemberPointer; 1723 return false; 1724 } 1725 1726 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1727 assert(ToPtrType && "No member pointer cast has a target type " 1728 "that is not a member pointer."); 1729 1730 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1731 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1732 1733 // FIXME: What about dependent types? 1734 assert(FromClass->isRecordType() && "Pointer into non-class."); 1735 assert(ToClass->isRecordType() && "Pointer into non-class."); 1736 1737 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1738 /*DetectVirtual=*/true); 1739 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1740 assert(DerivationOkay && 1741 "Should not have been called if derivation isn't OK."); 1742 (void)DerivationOkay; 1743 1744 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1745 getUnqualifiedType())) { 1746 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1747 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1748 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1749 return true; 1750 } 1751 1752 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1753 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1754 << FromClass << ToClass << QualType(VBase, 0) 1755 << From->getSourceRange(); 1756 return true; 1757 } 1758 1759 if (!IgnoreBaseAccess) 1760 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 1761 Paths.front(), 1762 diag::err_downcast_from_inaccessible_base); 1763 1764 // Must be a base to derived member conversion. 1765 BuildBasePathArray(Paths, BasePath); 1766 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1767 return false; 1768} 1769 1770/// IsQualificationConversion - Determines whether the conversion from 1771/// an rvalue of type FromType to ToType is a qualification conversion 1772/// (C++ 4.4). 1773bool 1774Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1775 FromType = Context.getCanonicalType(FromType); 1776 ToType = Context.getCanonicalType(ToType); 1777 1778 // If FromType and ToType are the same type, this is not a 1779 // qualification conversion. 1780 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 1781 return false; 1782 1783 // (C++ 4.4p4): 1784 // A conversion can add cv-qualifiers at levels other than the first 1785 // in multi-level pointers, subject to the following rules: [...] 1786 bool PreviousToQualsIncludeConst = true; 1787 bool UnwrappedAnyPointer = false; 1788 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 1789 // Within each iteration of the loop, we check the qualifiers to 1790 // determine if this still looks like a qualification 1791 // conversion. Then, if all is well, we unwrap one more level of 1792 // pointers or pointers-to-members and do it all again 1793 // until there are no more pointers or pointers-to-members left to 1794 // unwrap. 1795 UnwrappedAnyPointer = true; 1796 1797 // -- for every j > 0, if const is in cv 1,j then const is in cv 1798 // 2,j, and similarly for volatile. 1799 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1800 return false; 1801 1802 // -- if the cv 1,j and cv 2,j are different, then const is in 1803 // every cv for 0 < k < j. 1804 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1805 && !PreviousToQualsIncludeConst) 1806 return false; 1807 1808 // Keep track of whether all prior cv-qualifiers in the "to" type 1809 // include const. 1810 PreviousToQualsIncludeConst 1811 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1812 } 1813 1814 // We are left with FromType and ToType being the pointee types 1815 // after unwrapping the original FromType and ToType the same number 1816 // of types. If we unwrapped any pointers, and if FromType and 1817 // ToType have the same unqualified type (since we checked 1818 // qualifiers above), then this is a qualification conversion. 1819 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1820} 1821 1822/// Determines whether there is a user-defined conversion sequence 1823/// (C++ [over.ics.user]) that converts expression From to the type 1824/// ToType. If such a conversion exists, User will contain the 1825/// user-defined conversion sequence that performs such a conversion 1826/// and this routine will return true. Otherwise, this routine returns 1827/// false and User is unspecified. 1828/// 1829/// \param AllowExplicit true if the conversion should consider C++0x 1830/// "explicit" conversion functions as well as non-explicit conversion 1831/// functions (C++0x [class.conv.fct]p2). 1832OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType, 1833 UserDefinedConversionSequence& User, 1834 OverloadCandidateSet& CandidateSet, 1835 bool AllowExplicit) { 1836 // Whether we will only visit constructors. 1837 bool ConstructorsOnly = false; 1838 1839 // If the type we are conversion to is a class type, enumerate its 1840 // constructors. 1841 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1842 // C++ [over.match.ctor]p1: 1843 // When objects of class type are direct-initialized (8.5), or 1844 // copy-initialized from an expression of the same or a 1845 // derived class type (8.5), overload resolution selects the 1846 // constructor. [...] For copy-initialization, the candidate 1847 // functions are all the converting constructors (12.3.1) of 1848 // that class. The argument list is the expression-list within 1849 // the parentheses of the initializer. 1850 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1851 (From->getType()->getAs<RecordType>() && 1852 IsDerivedFrom(From->getType(), ToType))) 1853 ConstructorsOnly = true; 1854 1855 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1856 // We're not going to find any constructors. 1857 } else if (CXXRecordDecl *ToRecordDecl 1858 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1859 DeclarationName ConstructorName 1860 = Context.DeclarationNames.getCXXConstructorName( 1861 Context.getCanonicalType(ToType).getUnqualifiedType()); 1862 DeclContext::lookup_iterator Con, ConEnd; 1863 for (llvm::tie(Con, ConEnd) 1864 = ToRecordDecl->lookup(ConstructorName); 1865 Con != ConEnd; ++Con) { 1866 NamedDecl *D = *Con; 1867 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 1868 1869 // Find the constructor (which may be a template). 1870 CXXConstructorDecl *Constructor = 0; 1871 FunctionTemplateDecl *ConstructorTmpl 1872 = dyn_cast<FunctionTemplateDecl>(D); 1873 if (ConstructorTmpl) 1874 Constructor 1875 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1876 else 1877 Constructor = cast<CXXConstructorDecl>(D); 1878 1879 if (!Constructor->isInvalidDecl() && 1880 Constructor->isConvertingConstructor(AllowExplicit)) { 1881 if (ConstructorTmpl) 1882 AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 1883 /*ExplicitArgs*/ 0, 1884 &From, 1, CandidateSet, 1885 /*SuppressUserConversions=*/!ConstructorsOnly); 1886 else 1887 // Allow one user-defined conversion when user specifies a 1888 // From->ToType conversion via an static cast (c-style, etc). 1889 AddOverloadCandidate(Constructor, FoundDecl, 1890 &From, 1, CandidateSet, 1891 /*SuppressUserConversions=*/!ConstructorsOnly); 1892 } 1893 } 1894 } 1895 } 1896 1897 // Enumerate conversion functions, if we're allowed to. 1898 if (ConstructorsOnly) { 1899 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1900 PDiag(0) << From->getSourceRange())) { 1901 // No conversion functions from incomplete types. 1902 } else if (const RecordType *FromRecordType 1903 = From->getType()->getAs<RecordType>()) { 1904 if (CXXRecordDecl *FromRecordDecl 1905 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1906 // Add all of the conversion functions as candidates. 1907 const UnresolvedSetImpl *Conversions 1908 = FromRecordDecl->getVisibleConversionFunctions(); 1909 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 1910 E = Conversions->end(); I != E; ++I) { 1911 DeclAccessPair FoundDecl = I.getPair(); 1912 NamedDecl *D = FoundDecl.getDecl(); 1913 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 1914 if (isa<UsingShadowDecl>(D)) 1915 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1916 1917 CXXConversionDecl *Conv; 1918 FunctionTemplateDecl *ConvTemplate; 1919 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 1920 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1921 else 1922 Conv = cast<CXXConversionDecl>(D); 1923 1924 if (AllowExplicit || !Conv->isExplicit()) { 1925 if (ConvTemplate) 1926 AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 1927 ActingContext, From, ToType, 1928 CandidateSet); 1929 else 1930 AddConversionCandidate(Conv, FoundDecl, ActingContext, 1931 From, ToType, CandidateSet); 1932 } 1933 } 1934 } 1935 } 1936 1937 OverloadCandidateSet::iterator Best; 1938 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1939 case OR_Success: 1940 // Record the standard conversion we used and the conversion function. 1941 if (CXXConstructorDecl *Constructor 1942 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1943 // C++ [over.ics.user]p1: 1944 // If the user-defined conversion is specified by a 1945 // constructor (12.3.1), the initial standard conversion 1946 // sequence converts the source type to the type required by 1947 // the argument of the constructor. 1948 // 1949 QualType ThisType = Constructor->getThisType(Context); 1950 if (Best->Conversions[0].isEllipsis()) 1951 User.EllipsisConversion = true; 1952 else { 1953 User.Before = Best->Conversions[0].Standard; 1954 User.EllipsisConversion = false; 1955 } 1956 User.ConversionFunction = Constructor; 1957 User.After.setAsIdentityConversion(); 1958 User.After.setFromType( 1959 ThisType->getAs<PointerType>()->getPointeeType()); 1960 User.After.setAllToTypes(ToType); 1961 return OR_Success; 1962 } else if (CXXConversionDecl *Conversion 1963 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1964 // C++ [over.ics.user]p1: 1965 // 1966 // [...] If the user-defined conversion is specified by a 1967 // conversion function (12.3.2), the initial standard 1968 // conversion sequence converts the source type to the 1969 // implicit object parameter of the conversion function. 1970 User.Before = Best->Conversions[0].Standard; 1971 User.ConversionFunction = Conversion; 1972 User.EllipsisConversion = false; 1973 1974 // C++ [over.ics.user]p2: 1975 // The second standard conversion sequence converts the 1976 // result of the user-defined conversion to the target type 1977 // for the sequence. Since an implicit conversion sequence 1978 // is an initialization, the special rules for 1979 // initialization by user-defined conversion apply when 1980 // selecting the best user-defined conversion for a 1981 // user-defined conversion sequence (see 13.3.3 and 1982 // 13.3.3.1). 1983 User.After = Best->FinalConversion; 1984 return OR_Success; 1985 } else { 1986 assert(false && "Not a constructor or conversion function?"); 1987 return OR_No_Viable_Function; 1988 } 1989 1990 case OR_No_Viable_Function: 1991 return OR_No_Viable_Function; 1992 case OR_Deleted: 1993 // No conversion here! We're done. 1994 return OR_Deleted; 1995 1996 case OR_Ambiguous: 1997 return OR_Ambiguous; 1998 } 1999 2000 return OR_No_Viable_Function; 2001} 2002 2003bool 2004Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2005 ImplicitConversionSequence ICS; 2006 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2007 OverloadingResult OvResult = 2008 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 2009 CandidateSet, false); 2010 if (OvResult == OR_Ambiguous) 2011 Diag(From->getSourceRange().getBegin(), 2012 diag::err_typecheck_ambiguous_condition) 2013 << From->getType() << ToType << From->getSourceRange(); 2014 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2015 Diag(From->getSourceRange().getBegin(), 2016 diag::err_typecheck_nonviable_condition) 2017 << From->getType() << ToType << From->getSourceRange(); 2018 else 2019 return false; 2020 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1); 2021 return true; 2022} 2023 2024/// CompareImplicitConversionSequences - Compare two implicit 2025/// conversion sequences to determine whether one is better than the 2026/// other or if they are indistinguishable (C++ 13.3.3.2). 2027ImplicitConversionSequence::CompareKind 2028Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 2029 const ImplicitConversionSequence& ICS2) 2030{ 2031 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2032 // conversion sequences (as defined in 13.3.3.1) 2033 // -- a standard conversion sequence (13.3.3.1.1) is a better 2034 // conversion sequence than a user-defined conversion sequence or 2035 // an ellipsis conversion sequence, and 2036 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2037 // conversion sequence than an ellipsis conversion sequence 2038 // (13.3.3.1.3). 2039 // 2040 // C++0x [over.best.ics]p10: 2041 // For the purpose of ranking implicit conversion sequences as 2042 // described in 13.3.3.2, the ambiguous conversion sequence is 2043 // treated as a user-defined sequence that is indistinguishable 2044 // from any other user-defined conversion sequence. 2045 if (ICS1.getKindRank() < ICS2.getKindRank()) 2046 return ImplicitConversionSequence::Better; 2047 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2048 return ImplicitConversionSequence::Worse; 2049 2050 // The following checks require both conversion sequences to be of 2051 // the same kind. 2052 if (ICS1.getKind() != ICS2.getKind()) 2053 return ImplicitConversionSequence::Indistinguishable; 2054 2055 // Two implicit conversion sequences of the same form are 2056 // indistinguishable conversion sequences unless one of the 2057 // following rules apply: (C++ 13.3.3.2p3): 2058 if (ICS1.isStandard()) 2059 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 2060 else if (ICS1.isUserDefined()) { 2061 // User-defined conversion sequence U1 is a better conversion 2062 // sequence than another user-defined conversion sequence U2 if 2063 // they contain the same user-defined conversion function or 2064 // constructor and if the second standard conversion sequence of 2065 // U1 is better than the second standard conversion sequence of 2066 // U2 (C++ 13.3.3.2p3). 2067 if (ICS1.UserDefined.ConversionFunction == 2068 ICS2.UserDefined.ConversionFunction) 2069 return CompareStandardConversionSequences(ICS1.UserDefined.After, 2070 ICS2.UserDefined.After); 2071 } 2072 2073 return ImplicitConversionSequence::Indistinguishable; 2074} 2075 2076static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2077 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2078 Qualifiers Quals; 2079 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2080 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2081 } 2082 2083 return Context.hasSameUnqualifiedType(T1, T2); 2084} 2085 2086// Per 13.3.3.2p3, compare the given standard conversion sequences to 2087// determine if one is a proper subset of the other. 2088static ImplicitConversionSequence::CompareKind 2089compareStandardConversionSubsets(ASTContext &Context, 2090 const StandardConversionSequence& SCS1, 2091 const StandardConversionSequence& SCS2) { 2092 ImplicitConversionSequence::CompareKind Result 2093 = ImplicitConversionSequence::Indistinguishable; 2094 2095 // the identity conversion sequence is considered to be a subsequence of 2096 // any non-identity conversion sequence 2097 if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) { 2098 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2099 return ImplicitConversionSequence::Better; 2100 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2101 return ImplicitConversionSequence::Worse; 2102 } 2103 2104 if (SCS1.Second != SCS2.Second) { 2105 if (SCS1.Second == ICK_Identity) 2106 Result = ImplicitConversionSequence::Better; 2107 else if (SCS2.Second == ICK_Identity) 2108 Result = ImplicitConversionSequence::Worse; 2109 else 2110 return ImplicitConversionSequence::Indistinguishable; 2111 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2112 return ImplicitConversionSequence::Indistinguishable; 2113 2114 if (SCS1.Third == SCS2.Third) { 2115 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2116 : ImplicitConversionSequence::Indistinguishable; 2117 } 2118 2119 if (SCS1.Third == ICK_Identity) 2120 return Result == ImplicitConversionSequence::Worse 2121 ? ImplicitConversionSequence::Indistinguishable 2122 : ImplicitConversionSequence::Better; 2123 2124 if (SCS2.Third == ICK_Identity) 2125 return Result == ImplicitConversionSequence::Better 2126 ? ImplicitConversionSequence::Indistinguishable 2127 : ImplicitConversionSequence::Worse; 2128 2129 return ImplicitConversionSequence::Indistinguishable; 2130} 2131 2132/// CompareStandardConversionSequences - Compare two standard 2133/// conversion sequences to determine whether one is better than the 2134/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2135ImplicitConversionSequence::CompareKind 2136Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 2137 const StandardConversionSequence& SCS2) 2138{ 2139 // Standard conversion sequence S1 is a better conversion sequence 2140 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2141 2142 // -- S1 is a proper subsequence of S2 (comparing the conversion 2143 // sequences in the canonical form defined by 13.3.3.1.1, 2144 // excluding any Lvalue Transformation; the identity conversion 2145 // sequence is considered to be a subsequence of any 2146 // non-identity conversion sequence) or, if not that, 2147 if (ImplicitConversionSequence::CompareKind CK 2148 = compareStandardConversionSubsets(Context, SCS1, SCS2)) 2149 return CK; 2150 2151 // -- the rank of S1 is better than the rank of S2 (by the rules 2152 // defined below), or, if not that, 2153 ImplicitConversionRank Rank1 = SCS1.getRank(); 2154 ImplicitConversionRank Rank2 = SCS2.getRank(); 2155 if (Rank1 < Rank2) 2156 return ImplicitConversionSequence::Better; 2157 else if (Rank2 < Rank1) 2158 return ImplicitConversionSequence::Worse; 2159 2160 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2161 // are indistinguishable unless one of the following rules 2162 // applies: 2163 2164 // A conversion that is not a conversion of a pointer, or 2165 // pointer to member, to bool is better than another conversion 2166 // that is such a conversion. 2167 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2168 return SCS2.isPointerConversionToBool() 2169 ? ImplicitConversionSequence::Better 2170 : ImplicitConversionSequence::Worse; 2171 2172 // C++ [over.ics.rank]p4b2: 2173 // 2174 // If class B is derived directly or indirectly from class A, 2175 // conversion of B* to A* is better than conversion of B* to 2176 // void*, and conversion of A* to void* is better than conversion 2177 // of B* to void*. 2178 bool SCS1ConvertsToVoid 2179 = SCS1.isPointerConversionToVoidPointer(Context); 2180 bool SCS2ConvertsToVoid 2181 = SCS2.isPointerConversionToVoidPointer(Context); 2182 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2183 // Exactly one of the conversion sequences is a conversion to 2184 // a void pointer; it's the worse conversion. 2185 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2186 : ImplicitConversionSequence::Worse; 2187 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2188 // Neither conversion sequence converts to a void pointer; compare 2189 // their derived-to-base conversions. 2190 if (ImplicitConversionSequence::CompareKind DerivedCK 2191 = CompareDerivedToBaseConversions(SCS1, SCS2)) 2192 return DerivedCK; 2193 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 2194 // Both conversion sequences are conversions to void 2195 // pointers. Compare the source types to determine if there's an 2196 // inheritance relationship in their sources. 2197 QualType FromType1 = SCS1.getFromType(); 2198 QualType FromType2 = SCS2.getFromType(); 2199 2200 // Adjust the types we're converting from via the array-to-pointer 2201 // conversion, if we need to. 2202 if (SCS1.First == ICK_Array_To_Pointer) 2203 FromType1 = Context.getArrayDecayedType(FromType1); 2204 if (SCS2.First == ICK_Array_To_Pointer) 2205 FromType2 = Context.getArrayDecayedType(FromType2); 2206 2207 QualType FromPointee1 2208 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2209 QualType FromPointee2 2210 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2211 2212 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2213 return ImplicitConversionSequence::Better; 2214 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2215 return ImplicitConversionSequence::Worse; 2216 2217 // Objective-C++: If one interface is more specific than the 2218 // other, it is the better one. 2219 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2220 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2221 if (FromIface1 && FromIface1) { 2222 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2223 return ImplicitConversionSequence::Better; 2224 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2225 return ImplicitConversionSequence::Worse; 2226 } 2227 } 2228 2229 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2230 // bullet 3). 2231 if (ImplicitConversionSequence::CompareKind QualCK 2232 = CompareQualificationConversions(SCS1, SCS2)) 2233 return QualCK; 2234 2235 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2236 // C++0x [over.ics.rank]p3b4: 2237 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2238 // implicit object parameter of a non-static member function declared 2239 // without a ref-qualifier, and S1 binds an rvalue reference to an 2240 // rvalue and S2 binds an lvalue reference. 2241 // FIXME: We don't know if we're dealing with the implicit object parameter, 2242 // or if the member function in this case has a ref qualifier. 2243 // (Of course, we don't have ref qualifiers yet.) 2244 if (SCS1.RRefBinding != SCS2.RRefBinding) 2245 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 2246 : ImplicitConversionSequence::Worse; 2247 2248 // C++ [over.ics.rank]p3b4: 2249 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2250 // which the references refer are the same type except for 2251 // top-level cv-qualifiers, and the type to which the reference 2252 // initialized by S2 refers is more cv-qualified than the type 2253 // to which the reference initialized by S1 refers. 2254 QualType T1 = SCS1.getToType(2); 2255 QualType T2 = SCS2.getToType(2); 2256 T1 = Context.getCanonicalType(T1); 2257 T2 = Context.getCanonicalType(T2); 2258 Qualifiers T1Quals, T2Quals; 2259 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2260 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2261 if (UnqualT1 == UnqualT2) { 2262 // If the type is an array type, promote the element qualifiers to the type 2263 // for comparison. 2264 if (isa<ArrayType>(T1) && T1Quals) 2265 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2266 if (isa<ArrayType>(T2) && T2Quals) 2267 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2268 if (T2.isMoreQualifiedThan(T1)) 2269 return ImplicitConversionSequence::Better; 2270 else if (T1.isMoreQualifiedThan(T2)) 2271 return ImplicitConversionSequence::Worse; 2272 } 2273 } 2274 2275 return ImplicitConversionSequence::Indistinguishable; 2276} 2277 2278/// CompareQualificationConversions - Compares two standard conversion 2279/// sequences to determine whether they can be ranked based on their 2280/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2281ImplicitConversionSequence::CompareKind 2282Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 2283 const StandardConversionSequence& SCS2) { 2284 // C++ 13.3.3.2p3: 2285 // -- S1 and S2 differ only in their qualification conversion and 2286 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2287 // cv-qualification signature of type T1 is a proper subset of 2288 // the cv-qualification signature of type T2, and S1 is not the 2289 // deprecated string literal array-to-pointer conversion (4.2). 2290 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2291 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2292 return ImplicitConversionSequence::Indistinguishable; 2293 2294 // FIXME: the example in the standard doesn't use a qualification 2295 // conversion (!) 2296 QualType T1 = SCS1.getToType(2); 2297 QualType T2 = SCS2.getToType(2); 2298 T1 = Context.getCanonicalType(T1); 2299 T2 = Context.getCanonicalType(T2); 2300 Qualifiers T1Quals, T2Quals; 2301 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2302 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2303 2304 // If the types are the same, we won't learn anything by unwrapped 2305 // them. 2306 if (UnqualT1 == UnqualT2) 2307 return ImplicitConversionSequence::Indistinguishable; 2308 2309 // If the type is an array type, promote the element qualifiers to the type 2310 // for comparison. 2311 if (isa<ArrayType>(T1) && T1Quals) 2312 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2313 if (isa<ArrayType>(T2) && T2Quals) 2314 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2315 2316 ImplicitConversionSequence::CompareKind Result 2317 = ImplicitConversionSequence::Indistinguishable; 2318 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2319 // Within each iteration of the loop, we check the qualifiers to 2320 // determine if this still looks like a qualification 2321 // conversion. Then, if all is well, we unwrap one more level of 2322 // pointers or pointers-to-members and do it all again 2323 // until there are no more pointers or pointers-to-members left 2324 // to unwrap. This essentially mimics what 2325 // IsQualificationConversion does, but here we're checking for a 2326 // strict subset of qualifiers. 2327 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2328 // The qualifiers are the same, so this doesn't tell us anything 2329 // about how the sequences rank. 2330 ; 2331 else if (T2.isMoreQualifiedThan(T1)) { 2332 // T1 has fewer qualifiers, so it could be the better sequence. 2333 if (Result == ImplicitConversionSequence::Worse) 2334 // Neither has qualifiers that are a subset of the other's 2335 // qualifiers. 2336 return ImplicitConversionSequence::Indistinguishable; 2337 2338 Result = ImplicitConversionSequence::Better; 2339 } else if (T1.isMoreQualifiedThan(T2)) { 2340 // T2 has fewer qualifiers, so it could be the better sequence. 2341 if (Result == ImplicitConversionSequence::Better) 2342 // Neither has qualifiers that are a subset of the other's 2343 // qualifiers. 2344 return ImplicitConversionSequence::Indistinguishable; 2345 2346 Result = ImplicitConversionSequence::Worse; 2347 } else { 2348 // Qualifiers are disjoint. 2349 return ImplicitConversionSequence::Indistinguishable; 2350 } 2351 2352 // If the types after this point are equivalent, we're done. 2353 if (Context.hasSameUnqualifiedType(T1, T2)) 2354 break; 2355 } 2356 2357 // Check that the winning standard conversion sequence isn't using 2358 // the deprecated string literal array to pointer conversion. 2359 switch (Result) { 2360 case ImplicitConversionSequence::Better: 2361 if (SCS1.DeprecatedStringLiteralToCharPtr) 2362 Result = ImplicitConversionSequence::Indistinguishable; 2363 break; 2364 2365 case ImplicitConversionSequence::Indistinguishable: 2366 break; 2367 2368 case ImplicitConversionSequence::Worse: 2369 if (SCS2.DeprecatedStringLiteralToCharPtr) 2370 Result = ImplicitConversionSequence::Indistinguishable; 2371 break; 2372 } 2373 2374 return Result; 2375} 2376 2377/// CompareDerivedToBaseConversions - Compares two standard conversion 2378/// sequences to determine whether they can be ranked based on their 2379/// various kinds of derived-to-base conversions (C++ 2380/// [over.ics.rank]p4b3). As part of these checks, we also look at 2381/// conversions between Objective-C interface types. 2382ImplicitConversionSequence::CompareKind 2383Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 2384 const StandardConversionSequence& SCS2) { 2385 QualType FromType1 = SCS1.getFromType(); 2386 QualType ToType1 = SCS1.getToType(1); 2387 QualType FromType2 = SCS2.getFromType(); 2388 QualType ToType2 = SCS2.getToType(1); 2389 2390 // Adjust the types we're converting from via the array-to-pointer 2391 // conversion, if we need to. 2392 if (SCS1.First == ICK_Array_To_Pointer) 2393 FromType1 = Context.getArrayDecayedType(FromType1); 2394 if (SCS2.First == ICK_Array_To_Pointer) 2395 FromType2 = Context.getArrayDecayedType(FromType2); 2396 2397 // Canonicalize all of the types. 2398 FromType1 = Context.getCanonicalType(FromType1); 2399 ToType1 = Context.getCanonicalType(ToType1); 2400 FromType2 = Context.getCanonicalType(FromType2); 2401 ToType2 = Context.getCanonicalType(ToType2); 2402 2403 // C++ [over.ics.rank]p4b3: 2404 // 2405 // If class B is derived directly or indirectly from class A and 2406 // class C is derived directly or indirectly from B, 2407 // 2408 // For Objective-C, we let A, B, and C also be Objective-C 2409 // interfaces. 2410 2411 // Compare based on pointer conversions. 2412 if (SCS1.Second == ICK_Pointer_Conversion && 2413 SCS2.Second == ICK_Pointer_Conversion && 2414 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 2415 FromType1->isPointerType() && FromType2->isPointerType() && 2416 ToType1->isPointerType() && ToType2->isPointerType()) { 2417 QualType FromPointee1 2418 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2419 QualType ToPointee1 2420 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2421 QualType FromPointee2 2422 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2423 QualType ToPointee2 2424 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 2425 2426 const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>(); 2427 const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>(); 2428 const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>(); 2429 const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>(); 2430 2431 // -- conversion of C* to B* is better than conversion of C* to A*, 2432 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2433 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2434 return ImplicitConversionSequence::Better; 2435 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2436 return ImplicitConversionSequence::Worse; 2437 2438 if (ToIface1 && ToIface2) { 2439 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 2440 return ImplicitConversionSequence::Better; 2441 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 2442 return ImplicitConversionSequence::Worse; 2443 } 2444 } 2445 2446 // -- conversion of B* to A* is better than conversion of C* to A*, 2447 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 2448 if (IsDerivedFrom(FromPointee2, FromPointee1)) 2449 return ImplicitConversionSequence::Better; 2450 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 2451 return ImplicitConversionSequence::Worse; 2452 2453 if (FromIface1 && FromIface2) { 2454 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 2455 return ImplicitConversionSequence::Better; 2456 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 2457 return ImplicitConversionSequence::Worse; 2458 } 2459 } 2460 } 2461 2462 // Ranking of member-pointer types. 2463 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 2464 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 2465 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 2466 const MemberPointerType * FromMemPointer1 = 2467 FromType1->getAs<MemberPointerType>(); 2468 const MemberPointerType * ToMemPointer1 = 2469 ToType1->getAs<MemberPointerType>(); 2470 const MemberPointerType * FromMemPointer2 = 2471 FromType2->getAs<MemberPointerType>(); 2472 const MemberPointerType * ToMemPointer2 = 2473 ToType2->getAs<MemberPointerType>(); 2474 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 2475 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 2476 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 2477 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 2478 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 2479 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 2480 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 2481 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 2482 // conversion of A::* to B::* is better than conversion of A::* to C::*, 2483 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 2484 if (IsDerivedFrom(ToPointee1, ToPointee2)) 2485 return ImplicitConversionSequence::Worse; 2486 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 2487 return ImplicitConversionSequence::Better; 2488 } 2489 // conversion of B::* to C::* is better than conversion of A::* to C::* 2490 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 2491 if (IsDerivedFrom(FromPointee1, FromPointee2)) 2492 return ImplicitConversionSequence::Better; 2493 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 2494 return ImplicitConversionSequence::Worse; 2495 } 2496 } 2497 2498 if (SCS1.Second == ICK_Derived_To_Base) { 2499 // -- conversion of C to B is better than conversion of C to A, 2500 // -- binding of an expression of type C to a reference of type 2501 // B& is better than binding an expression of type C to a 2502 // reference of type A&, 2503 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2504 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2505 if (IsDerivedFrom(ToType1, ToType2)) 2506 return ImplicitConversionSequence::Better; 2507 else if (IsDerivedFrom(ToType2, ToType1)) 2508 return ImplicitConversionSequence::Worse; 2509 } 2510 2511 // -- conversion of B to A is better than conversion of C to A. 2512 // -- binding of an expression of type B to a reference of type 2513 // A& is better than binding an expression of type C to a 2514 // reference of type A&, 2515 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2516 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2517 if (IsDerivedFrom(FromType2, FromType1)) 2518 return ImplicitConversionSequence::Better; 2519 else if (IsDerivedFrom(FromType1, FromType2)) 2520 return ImplicitConversionSequence::Worse; 2521 } 2522 } 2523 2524 return ImplicitConversionSequence::Indistinguishable; 2525} 2526 2527/// CompareReferenceRelationship - Compare the two types T1 and T2 to 2528/// determine whether they are reference-related, 2529/// reference-compatible, reference-compatible with added 2530/// qualification, or incompatible, for use in C++ initialization by 2531/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 2532/// type, and the first type (T1) is the pointee type of the reference 2533/// type being initialized. 2534Sema::ReferenceCompareResult 2535Sema::CompareReferenceRelationship(SourceLocation Loc, 2536 QualType OrigT1, QualType OrigT2, 2537 bool& DerivedToBase) { 2538 assert(!OrigT1->isReferenceType() && 2539 "T1 must be the pointee type of the reference type"); 2540 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 2541 2542 QualType T1 = Context.getCanonicalType(OrigT1); 2543 QualType T2 = Context.getCanonicalType(OrigT2); 2544 Qualifiers T1Quals, T2Quals; 2545 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 2546 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 2547 2548 // C++ [dcl.init.ref]p4: 2549 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 2550 // reference-related to "cv2 T2" if T1 is the same type as T2, or 2551 // T1 is a base class of T2. 2552 if (UnqualT1 == UnqualT2) 2553 DerivedToBase = false; 2554 else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 2555 IsDerivedFrom(UnqualT2, UnqualT1)) 2556 DerivedToBase = true; 2557 else 2558 return Ref_Incompatible; 2559 2560 // At this point, we know that T1 and T2 are reference-related (at 2561 // least). 2562 2563 // If the type is an array type, promote the element qualifiers to the type 2564 // for comparison. 2565 if (isa<ArrayType>(T1) && T1Quals) 2566 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 2567 if (isa<ArrayType>(T2) && T2Quals) 2568 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 2569 2570 // C++ [dcl.init.ref]p4: 2571 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 2572 // reference-related to T2 and cv1 is the same cv-qualification 2573 // as, or greater cv-qualification than, cv2. For purposes of 2574 // overload resolution, cases for which cv1 is greater 2575 // cv-qualification than cv2 are identified as 2576 // reference-compatible with added qualification (see 13.3.3.2). 2577 if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) 2578 return Ref_Compatible; 2579 else if (T1.isMoreQualifiedThan(T2)) 2580 return Ref_Compatible_With_Added_Qualification; 2581 else 2582 return Ref_Related; 2583} 2584 2585/// \brief Compute an implicit conversion sequence for reference 2586/// initialization. 2587static ImplicitConversionSequence 2588TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 2589 SourceLocation DeclLoc, 2590 bool SuppressUserConversions, 2591 bool AllowExplicit) { 2592 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 2593 2594 // Most paths end in a failed conversion. 2595 ImplicitConversionSequence ICS; 2596 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 2597 2598 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 2599 QualType T2 = Init->getType(); 2600 2601 // If the initializer is the address of an overloaded function, try 2602 // to resolve the overloaded function. If all goes well, T2 is the 2603 // type of the resulting function. 2604 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 2605 DeclAccessPair Found; 2606 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 2607 false, Found)) 2608 T2 = Fn->getType(); 2609 } 2610 2611 // Compute some basic properties of the types and the initializer. 2612 bool isRValRef = DeclType->isRValueReferenceType(); 2613 bool DerivedToBase = false; 2614 Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context); 2615 Sema::ReferenceCompareResult RefRelationship 2616 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase); 2617 2618 2619 // C++ [over.ics.ref]p3: 2620 // Except for an implicit object parameter, for which see 13.3.1, 2621 // a standard conversion sequence cannot be formed if it requires 2622 // binding an lvalue reference to non-const to an rvalue or 2623 // binding an rvalue reference to an lvalue. 2624 // 2625 // FIXME: DPG doesn't trust this code. It seems far too early to 2626 // abort because of a binding of an rvalue reference to an lvalue. 2627 if (isRValRef && InitLvalue == Expr::LV_Valid) 2628 return ICS; 2629 2630 // C++0x [dcl.init.ref]p16: 2631 // A reference to type "cv1 T1" is initialized by an expression 2632 // of type "cv2 T2" as follows: 2633 2634 // -- If the initializer expression 2635 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 2636 // reference-compatible with "cv2 T2," or 2637 // 2638 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 2639 if (InitLvalue == Expr::LV_Valid && 2640 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2641 // C++ [over.ics.ref]p1: 2642 // When a parameter of reference type binds directly (8.5.3) 2643 // to an argument expression, the implicit conversion sequence 2644 // is the identity conversion, unless the argument expression 2645 // has a type that is a derived class of the parameter type, 2646 // in which case the implicit conversion sequence is a 2647 // derived-to-base Conversion (13.3.3.1). 2648 ICS.setStandard(); 2649 ICS.Standard.First = ICK_Identity; 2650 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; 2651 ICS.Standard.Third = ICK_Identity; 2652 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2653 ICS.Standard.setToType(0, T2); 2654 ICS.Standard.setToType(1, T1); 2655 ICS.Standard.setToType(2, T1); 2656 ICS.Standard.ReferenceBinding = true; 2657 ICS.Standard.DirectBinding = true; 2658 ICS.Standard.RRefBinding = false; 2659 ICS.Standard.CopyConstructor = 0; 2660 2661 // Nothing more to do: the inaccessibility/ambiguity check for 2662 // derived-to-base conversions is suppressed when we're 2663 // computing the implicit conversion sequence (C++ 2664 // [over.best.ics]p2). 2665 return ICS; 2666 } 2667 2668 // -- has a class type (i.e., T2 is a class type), where T1 is 2669 // not reference-related to T2, and can be implicitly 2670 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 2671 // is reference-compatible with "cv3 T3" 92) (this 2672 // conversion is selected by enumerating the applicable 2673 // conversion functions (13.3.1.6) and choosing the best 2674 // one through overload resolution (13.3)), 2675 if (!isRValRef && !SuppressUserConversions && T2->isRecordType() && 2676 !S.RequireCompleteType(DeclLoc, T2, 0) && 2677 RefRelationship == Sema::Ref_Incompatible) { 2678 CXXRecordDecl *T2RecordDecl 2679 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 2680 2681 OverloadCandidateSet CandidateSet(DeclLoc); 2682 const UnresolvedSetImpl *Conversions 2683 = T2RecordDecl->getVisibleConversionFunctions(); 2684 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2685 E = Conversions->end(); I != E; ++I) { 2686 NamedDecl *D = *I; 2687 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 2688 if (isa<UsingShadowDecl>(D)) 2689 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2690 2691 FunctionTemplateDecl *ConvTemplate 2692 = dyn_cast<FunctionTemplateDecl>(D); 2693 CXXConversionDecl *Conv; 2694 if (ConvTemplate) 2695 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2696 else 2697 Conv = cast<CXXConversionDecl>(D); 2698 2699 // If the conversion function doesn't return a reference type, 2700 // it can't be considered for this conversion. 2701 if (Conv->getConversionType()->isLValueReferenceType() && 2702 (AllowExplicit || !Conv->isExplicit())) { 2703 if (ConvTemplate) 2704 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 2705 Init, DeclType, CandidateSet); 2706 else 2707 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 2708 DeclType, CandidateSet); 2709 } 2710 } 2711 2712 OverloadCandidateSet::iterator Best; 2713 switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) { 2714 case OR_Success: 2715 // C++ [over.ics.ref]p1: 2716 // 2717 // [...] If the parameter binds directly to the result of 2718 // applying a conversion function to the argument 2719 // expression, the implicit conversion sequence is a 2720 // user-defined conversion sequence (13.3.3.1.2), with the 2721 // second standard conversion sequence either an identity 2722 // conversion or, if the conversion function returns an 2723 // entity of a type that is a derived class of the parameter 2724 // type, a derived-to-base Conversion. 2725 if (!Best->FinalConversion.DirectBinding) 2726 break; 2727 2728 ICS.setUserDefined(); 2729 ICS.UserDefined.Before = Best->Conversions[0].Standard; 2730 ICS.UserDefined.After = Best->FinalConversion; 2731 ICS.UserDefined.ConversionFunction = Best->Function; 2732 ICS.UserDefined.EllipsisConversion = false; 2733 assert(ICS.UserDefined.After.ReferenceBinding && 2734 ICS.UserDefined.After.DirectBinding && 2735 "Expected a direct reference binding!"); 2736 return ICS; 2737 2738 case OR_Ambiguous: 2739 ICS.setAmbiguous(); 2740 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 2741 Cand != CandidateSet.end(); ++Cand) 2742 if (Cand->Viable) 2743 ICS.Ambiguous.addConversion(Cand->Function); 2744 return ICS; 2745 2746 case OR_No_Viable_Function: 2747 case OR_Deleted: 2748 // There was no suitable conversion, or we found a deleted 2749 // conversion; continue with other checks. 2750 break; 2751 } 2752 } 2753 2754 // -- Otherwise, the reference shall be to a non-volatile const 2755 // type (i.e., cv1 shall be const), or the reference shall be an 2756 // rvalue reference and the initializer expression shall be an rvalue. 2757 // 2758 // We actually handle one oddity of C++ [over.ics.ref] at this 2759 // point, which is that, due to p2 (which short-circuits reference 2760 // binding by only attempting a simple conversion for non-direct 2761 // bindings) and p3's strange wording, we allow a const volatile 2762 // reference to bind to an rvalue. Hence the check for the presence 2763 // of "const" rather than checking for "const" being the only 2764 // qualifier. 2765 if (!isRValRef && !T1.isConstQualified()) 2766 return ICS; 2767 2768 // -- if T2 is a class type and 2769 // -- the initializer expression is an rvalue and "cv1 T1" 2770 // is reference-compatible with "cv2 T2," or 2771 // 2772 // -- T1 is not reference-related to T2 and the initializer 2773 // expression can be implicitly converted to an rvalue 2774 // of type "cv3 T3" (this conversion is selected by 2775 // enumerating the applicable conversion functions 2776 // (13.3.1.6) and choosing the best one through overload 2777 // resolution (13.3)), 2778 // 2779 // then the reference is bound to the initializer 2780 // expression rvalue in the first case and to the object 2781 // that is the result of the conversion in the second case 2782 // (or, in either case, to the appropriate base class 2783 // subobject of the object). 2784 // 2785 // We're only checking the first case here, which is a direct 2786 // binding in C++0x but not in C++03. 2787 if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && 2788 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 2789 ICS.setStandard(); 2790 ICS.Standard.First = ICK_Identity; 2791 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; 2792 ICS.Standard.Third = ICK_Identity; 2793 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 2794 ICS.Standard.setToType(0, T2); 2795 ICS.Standard.setToType(1, T1); 2796 ICS.Standard.setToType(2, T1); 2797 ICS.Standard.ReferenceBinding = true; 2798 ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x; 2799 ICS.Standard.RRefBinding = isRValRef; 2800 ICS.Standard.CopyConstructor = 0; 2801 return ICS; 2802 } 2803 2804 // -- Otherwise, a temporary of type "cv1 T1" is created and 2805 // initialized from the initializer expression using the 2806 // rules for a non-reference copy initialization (8.5). The 2807 // reference is then bound to the temporary. If T1 is 2808 // reference-related to T2, cv1 must be the same 2809 // cv-qualification as, or greater cv-qualification than, 2810 // cv2; otherwise, the program is ill-formed. 2811 if (RefRelationship == Sema::Ref_Related) { 2812 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 2813 // we would be reference-compatible or reference-compatible with 2814 // added qualification. But that wasn't the case, so the reference 2815 // initialization fails. 2816 return ICS; 2817 } 2818 2819 // If at least one of the types is a class type, the types are not 2820 // related, and we aren't allowed any user conversions, the 2821 // reference binding fails. This case is important for breaking 2822 // recursion, since TryImplicitConversion below will attempt to 2823 // create a temporary through the use of a copy constructor. 2824 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 2825 (T1->isRecordType() || T2->isRecordType())) 2826 return ICS; 2827 2828 // C++ [over.ics.ref]p2: 2829 // When a parameter of reference type is not bound directly to 2830 // an argument expression, the conversion sequence is the one 2831 // required to convert the argument expression to the 2832 // underlying type of the reference according to 2833 // 13.3.3.1. Conceptually, this conversion sequence corresponds 2834 // to copy-initializing a temporary of the underlying type with 2835 // the argument expression. Any difference in top-level 2836 // cv-qualification is subsumed by the initialization itself 2837 // and does not constitute a conversion. 2838 ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions, 2839 /*AllowExplicit=*/false, 2840 /*InOverloadResolution=*/false); 2841 2842 // Of course, that's still a reference binding. 2843 if (ICS.isStandard()) { 2844 ICS.Standard.ReferenceBinding = true; 2845 ICS.Standard.RRefBinding = isRValRef; 2846 } else if (ICS.isUserDefined()) { 2847 ICS.UserDefined.After.ReferenceBinding = true; 2848 ICS.UserDefined.After.RRefBinding = isRValRef; 2849 } 2850 return ICS; 2851} 2852 2853/// TryCopyInitialization - Try to copy-initialize a value of type 2854/// ToType from the expression From. Return the implicit conversion 2855/// sequence required to pass this argument, which may be a bad 2856/// conversion sequence (meaning that the argument cannot be passed to 2857/// a parameter of this type). If @p SuppressUserConversions, then we 2858/// do not permit any user-defined conversion sequences. 2859static ImplicitConversionSequence 2860TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 2861 bool SuppressUserConversions, 2862 bool InOverloadResolution) { 2863 if (ToType->isReferenceType()) 2864 return TryReferenceInit(S, From, ToType, 2865 /*FIXME:*/From->getLocStart(), 2866 SuppressUserConversions, 2867 /*AllowExplicit=*/false); 2868 2869 return S.TryImplicitConversion(From, ToType, 2870 SuppressUserConversions, 2871 /*AllowExplicit=*/false, 2872 InOverloadResolution); 2873} 2874 2875/// TryObjectArgumentInitialization - Try to initialize the object 2876/// parameter of the given member function (@c Method) from the 2877/// expression @p From. 2878ImplicitConversionSequence 2879Sema::TryObjectArgumentInitialization(QualType OrigFromType, 2880 CXXMethodDecl *Method, 2881 CXXRecordDecl *ActingContext) { 2882 QualType ClassType = Context.getTypeDeclType(ActingContext); 2883 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 2884 // const volatile object. 2885 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 2886 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 2887 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); 2888 2889 // Set up the conversion sequence as a "bad" conversion, to allow us 2890 // to exit early. 2891 ImplicitConversionSequence ICS; 2892 2893 // We need to have an object of class type. 2894 QualType FromType = OrigFromType; 2895 if (const PointerType *PT = FromType->getAs<PointerType>()) 2896 FromType = PT->getPointeeType(); 2897 2898 assert(FromType->isRecordType()); 2899 2900 // The implicit object parameter is has the type "reference to cv X", 2901 // where X is the class of which the function is a member 2902 // (C++ [over.match.funcs]p4). However, when finding an implicit 2903 // conversion sequence for the argument, we are not allowed to 2904 // create temporaries or perform user-defined conversions 2905 // (C++ [over.match.funcs]p5). We perform a simplified version of 2906 // reference binding here, that allows class rvalues to bind to 2907 // non-constant references. 2908 2909 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2910 // with the implicit object parameter (C++ [over.match.funcs]p5). 2911 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2912 if (ImplicitParamType.getCVRQualifiers() 2913 != FromTypeCanon.getLocalCVRQualifiers() && 2914 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 2915 ICS.setBad(BadConversionSequence::bad_qualifiers, 2916 OrigFromType, ImplicitParamType); 2917 return ICS; 2918 } 2919 2920 // Check that we have either the same type or a derived type. It 2921 // affects the conversion rank. 2922 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2923 ImplicitConversionKind SecondKind; 2924 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 2925 SecondKind = ICK_Identity; 2926 } else if (IsDerivedFrom(FromType, ClassType)) 2927 SecondKind = ICK_Derived_To_Base; 2928 else { 2929 ICS.setBad(BadConversionSequence::unrelated_class, 2930 FromType, ImplicitParamType); 2931 return ICS; 2932 } 2933 2934 // Success. Mark this as a reference binding. 2935 ICS.setStandard(); 2936 ICS.Standard.setAsIdentityConversion(); 2937 ICS.Standard.Second = SecondKind; 2938 ICS.Standard.setFromType(FromType); 2939 ICS.Standard.setAllToTypes(ImplicitParamType); 2940 ICS.Standard.ReferenceBinding = true; 2941 ICS.Standard.DirectBinding = true; 2942 ICS.Standard.RRefBinding = false; 2943 return ICS; 2944} 2945 2946/// PerformObjectArgumentInitialization - Perform initialization of 2947/// the implicit object parameter for the given Method with the given 2948/// expression. 2949bool 2950Sema::PerformObjectArgumentInitialization(Expr *&From, 2951 NestedNameSpecifier *Qualifier, 2952 NamedDecl *FoundDecl, 2953 CXXMethodDecl *Method) { 2954 QualType FromRecordType, DestType; 2955 QualType ImplicitParamRecordType = 2956 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2957 2958 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2959 FromRecordType = PT->getPointeeType(); 2960 DestType = Method->getThisType(Context); 2961 } else { 2962 FromRecordType = From->getType(); 2963 DestType = ImplicitParamRecordType; 2964 } 2965 2966 // Note that we always use the true parent context when performing 2967 // the actual argument initialization. 2968 ImplicitConversionSequence ICS 2969 = TryObjectArgumentInitialization(From->getType(), Method, 2970 Method->getParent()); 2971 if (ICS.isBad()) 2972 return Diag(From->getSourceRange().getBegin(), 2973 diag::err_implicit_object_parameter_init) 2974 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2975 2976 if (ICS.Standard.Second == ICK_Derived_To_Base) 2977 return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 2978 2979 if (!Context.hasSameType(From->getType(), DestType)) 2980 ImpCastExprToType(From, DestType, CastExpr::CK_NoOp, 2981 /*isLvalue=*/!From->getType()->isPointerType()); 2982 return false; 2983} 2984 2985/// TryContextuallyConvertToBool - Attempt to contextually convert the 2986/// expression From to bool (C++0x [conv]p3). 2987ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2988 // FIXME: This is pretty broken. 2989 return TryImplicitConversion(From, Context.BoolTy, 2990 // FIXME: Are these flags correct? 2991 /*SuppressUserConversions=*/false, 2992 /*AllowExplicit=*/true, 2993 /*InOverloadResolution=*/false); 2994} 2995 2996/// PerformContextuallyConvertToBool - Perform a contextual conversion 2997/// of the expression From to bool (C++0x [conv]p3). 2998bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2999 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 3000 if (!ICS.isBad()) 3001 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 3002 3003 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 3004 return Diag(From->getSourceRange().getBegin(), 3005 diag::err_typecheck_bool_condition) 3006 << From->getType() << From->getSourceRange(); 3007 return true; 3008} 3009 3010/// TryContextuallyConvertToObjCId - Attempt to contextually convert the 3011/// expression From to 'id'. 3012ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) { 3013 QualType Ty = Context.getObjCIdType(); 3014 return TryImplicitConversion(From, Ty, 3015 // FIXME: Are these flags correct? 3016 /*SuppressUserConversions=*/false, 3017 /*AllowExplicit=*/true, 3018 /*InOverloadResolution=*/false); 3019} 3020 3021/// PerformContextuallyConvertToObjCId - Perform a contextual conversion 3022/// of the expression From to 'id'. 3023bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) { 3024 QualType Ty = Context.getObjCIdType(); 3025 ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From); 3026 if (!ICS.isBad()) 3027 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 3028 return true; 3029} 3030 3031/// AddOverloadCandidate - Adds the given function to the set of 3032/// candidate functions, using the given function call arguments. If 3033/// @p SuppressUserConversions, then don't allow user-defined 3034/// conversions via constructors or conversion operators. 3035/// 3036/// \para PartialOverloading true if we are performing "partial" overloading 3037/// based on an incomplete set of function arguments. This feature is used by 3038/// code completion. 3039void 3040Sema::AddOverloadCandidate(FunctionDecl *Function, 3041 DeclAccessPair FoundDecl, 3042 Expr **Args, unsigned NumArgs, 3043 OverloadCandidateSet& CandidateSet, 3044 bool SuppressUserConversions, 3045 bool PartialOverloading) { 3046 const FunctionProtoType* Proto 3047 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 3048 assert(Proto && "Functions without a prototype cannot be overloaded"); 3049 assert(!Function->getDescribedFunctionTemplate() && 3050 "Use AddTemplateOverloadCandidate for function templates"); 3051 3052 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3053 if (!isa<CXXConstructorDecl>(Method)) { 3054 // If we get here, it's because we're calling a member function 3055 // that is named without a member access expression (e.g., 3056 // "this->f") that was either written explicitly or created 3057 // implicitly. This can happen with a qualified call to a member 3058 // function, e.g., X::f(). We use an empty type for the implied 3059 // object argument (C++ [over.call.func]p3), and the acting context 3060 // is irrelevant. 3061 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 3062 QualType(), Args, NumArgs, CandidateSet, 3063 SuppressUserConversions); 3064 return; 3065 } 3066 // We treat a constructor like a non-member function, since its object 3067 // argument doesn't participate in overload resolution. 3068 } 3069 3070 if (!CandidateSet.isNewCandidate(Function)) 3071 return; 3072 3073 // Overload resolution is always an unevaluated context. 3074 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3075 3076 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 3077 // C++ [class.copy]p3: 3078 // A member function template is never instantiated to perform the copy 3079 // of a class object to an object of its class type. 3080 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 3081 if (NumArgs == 1 && 3082 Constructor->isCopyConstructorLikeSpecialization() && 3083 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 3084 IsDerivedFrom(Args[0]->getType(), ClassType))) 3085 return; 3086 } 3087 3088 // Add this candidate 3089 CandidateSet.push_back(OverloadCandidate()); 3090 OverloadCandidate& Candidate = CandidateSet.back(); 3091 Candidate.FoundDecl = FoundDecl; 3092 Candidate.Function = Function; 3093 Candidate.Viable = true; 3094 Candidate.IsSurrogate = false; 3095 Candidate.IgnoreObjectArgument = false; 3096 3097 unsigned NumArgsInProto = Proto->getNumArgs(); 3098 3099 // (C++ 13.3.2p2): A candidate function having fewer than m 3100 // parameters is viable only if it has an ellipsis in its parameter 3101 // list (8.3.5). 3102 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 3103 !Proto->isVariadic()) { 3104 Candidate.Viable = false; 3105 Candidate.FailureKind = ovl_fail_too_many_arguments; 3106 return; 3107 } 3108 3109 // (C++ 13.3.2p2): A candidate function having more than m parameters 3110 // is viable only if the (m+1)st parameter has a default argument 3111 // (8.3.6). For the purposes of overload resolution, the 3112 // parameter list is truncated on the right, so that there are 3113 // exactly m parameters. 3114 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 3115 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 3116 // Not enough arguments. 3117 Candidate.Viable = false; 3118 Candidate.FailureKind = ovl_fail_too_few_arguments; 3119 return; 3120 } 3121 3122 // Determine the implicit conversion sequences for each of the 3123 // arguments. 3124 Candidate.Conversions.resize(NumArgs); 3125 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3126 if (ArgIdx < NumArgsInProto) { 3127 // (C++ 13.3.2p3): for F to be a viable function, there shall 3128 // exist for each argument an implicit conversion sequence 3129 // (13.3.3.1) that converts that argument to the corresponding 3130 // parameter of F. 3131 QualType ParamType = Proto->getArgType(ArgIdx); 3132 Candidate.Conversions[ArgIdx] 3133 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3134 SuppressUserConversions, 3135 /*InOverloadResolution=*/true); 3136 if (Candidate.Conversions[ArgIdx].isBad()) { 3137 Candidate.Viable = false; 3138 Candidate.FailureKind = ovl_fail_bad_conversion; 3139 break; 3140 } 3141 } else { 3142 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3143 // argument for which there is no corresponding parameter is 3144 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3145 Candidate.Conversions[ArgIdx].setEllipsis(); 3146 } 3147 } 3148} 3149 3150/// \brief Add all of the function declarations in the given function set to 3151/// the overload canddiate set. 3152void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 3153 Expr **Args, unsigned NumArgs, 3154 OverloadCandidateSet& CandidateSet, 3155 bool SuppressUserConversions) { 3156 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 3157 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 3158 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3159 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 3160 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 3161 cast<CXXMethodDecl>(FD)->getParent(), 3162 Args[0]->getType(), Args + 1, NumArgs - 1, 3163 CandidateSet, SuppressUserConversions); 3164 else 3165 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 3166 SuppressUserConversions); 3167 } else { 3168 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 3169 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 3170 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 3171 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 3172 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 3173 /*FIXME: explicit args */ 0, 3174 Args[0]->getType(), Args + 1, NumArgs - 1, 3175 CandidateSet, 3176 SuppressUserConversions); 3177 else 3178 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 3179 /*FIXME: explicit args */ 0, 3180 Args, NumArgs, CandidateSet, 3181 SuppressUserConversions); 3182 } 3183 } 3184} 3185 3186/// AddMethodCandidate - Adds a named decl (which is some kind of 3187/// method) as a method candidate to the given overload set. 3188void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 3189 QualType ObjectType, 3190 Expr **Args, unsigned NumArgs, 3191 OverloadCandidateSet& CandidateSet, 3192 bool SuppressUserConversions) { 3193 NamedDecl *Decl = FoundDecl.getDecl(); 3194 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 3195 3196 if (isa<UsingShadowDecl>(Decl)) 3197 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 3198 3199 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 3200 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 3201 "Expected a member function template"); 3202 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 3203 /*ExplicitArgs*/ 0, 3204 ObjectType, Args, NumArgs, 3205 CandidateSet, 3206 SuppressUserConversions); 3207 } else { 3208 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 3209 ObjectType, Args, NumArgs, 3210 CandidateSet, SuppressUserConversions); 3211 } 3212} 3213 3214/// AddMethodCandidate - Adds the given C++ member function to the set 3215/// of candidate functions, using the given function call arguments 3216/// and the object argument (@c Object). For example, in a call 3217/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 3218/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 3219/// allow user-defined conversions via constructors or conversion 3220/// operators. 3221void 3222Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 3223 CXXRecordDecl *ActingContext, QualType ObjectType, 3224 Expr **Args, unsigned NumArgs, 3225 OverloadCandidateSet& CandidateSet, 3226 bool SuppressUserConversions) { 3227 const FunctionProtoType* Proto 3228 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 3229 assert(Proto && "Methods without a prototype cannot be overloaded"); 3230 assert(!isa<CXXConstructorDecl>(Method) && 3231 "Use AddOverloadCandidate for constructors"); 3232 3233 if (!CandidateSet.isNewCandidate(Method)) 3234 return; 3235 3236 // Overload resolution is always an unevaluated context. 3237 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3238 3239 // Add this candidate 3240 CandidateSet.push_back(OverloadCandidate()); 3241 OverloadCandidate& Candidate = CandidateSet.back(); 3242 Candidate.FoundDecl = FoundDecl; 3243 Candidate.Function = Method; 3244 Candidate.IsSurrogate = false; 3245 Candidate.IgnoreObjectArgument = false; 3246 3247 unsigned NumArgsInProto = Proto->getNumArgs(); 3248 3249 // (C++ 13.3.2p2): A candidate function having fewer than m 3250 // parameters is viable only if it has an ellipsis in its parameter 3251 // list (8.3.5). 3252 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3253 Candidate.Viable = false; 3254 Candidate.FailureKind = ovl_fail_too_many_arguments; 3255 return; 3256 } 3257 3258 // (C++ 13.3.2p2): A candidate function having more than m parameters 3259 // is viable only if the (m+1)st parameter has a default argument 3260 // (8.3.6). For the purposes of overload resolution, the 3261 // parameter list is truncated on the right, so that there are 3262 // exactly m parameters. 3263 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 3264 if (NumArgs < MinRequiredArgs) { 3265 // Not enough arguments. 3266 Candidate.Viable = false; 3267 Candidate.FailureKind = ovl_fail_too_few_arguments; 3268 return; 3269 } 3270 3271 Candidate.Viable = true; 3272 Candidate.Conversions.resize(NumArgs + 1); 3273 3274 if (Method->isStatic() || ObjectType.isNull()) 3275 // The implicit object argument is ignored. 3276 Candidate.IgnoreObjectArgument = true; 3277 else { 3278 // Determine the implicit conversion sequence for the object 3279 // parameter. 3280 Candidate.Conversions[0] 3281 = TryObjectArgumentInitialization(ObjectType, Method, ActingContext); 3282 if (Candidate.Conversions[0].isBad()) { 3283 Candidate.Viable = false; 3284 Candidate.FailureKind = ovl_fail_bad_conversion; 3285 return; 3286 } 3287 } 3288 3289 // Determine the implicit conversion sequences for each of the 3290 // arguments. 3291 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3292 if (ArgIdx < NumArgsInProto) { 3293 // (C++ 13.3.2p3): for F to be a viable function, there shall 3294 // exist for each argument an implicit conversion sequence 3295 // (13.3.3.1) that converts that argument to the corresponding 3296 // parameter of F. 3297 QualType ParamType = Proto->getArgType(ArgIdx); 3298 Candidate.Conversions[ArgIdx + 1] 3299 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3300 SuppressUserConversions, 3301 /*InOverloadResolution=*/true); 3302 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3303 Candidate.Viable = false; 3304 Candidate.FailureKind = ovl_fail_bad_conversion; 3305 break; 3306 } 3307 } else { 3308 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3309 // argument for which there is no corresponding parameter is 3310 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3311 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3312 } 3313 } 3314} 3315 3316/// \brief Add a C++ member function template as a candidate to the candidate 3317/// set, using template argument deduction to produce an appropriate member 3318/// function template specialization. 3319void 3320Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 3321 DeclAccessPair FoundDecl, 3322 CXXRecordDecl *ActingContext, 3323 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3324 QualType ObjectType, 3325 Expr **Args, unsigned NumArgs, 3326 OverloadCandidateSet& CandidateSet, 3327 bool SuppressUserConversions) { 3328 if (!CandidateSet.isNewCandidate(MethodTmpl)) 3329 return; 3330 3331 // C++ [over.match.funcs]p7: 3332 // In each case where a candidate is a function template, candidate 3333 // function template specializations are generated using template argument 3334 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3335 // candidate functions in the usual way.113) A given name can refer to one 3336 // or more function templates and also to a set of overloaded non-template 3337 // functions. In such a case, the candidate functions generated from each 3338 // function template are combined with the set of non-template candidate 3339 // functions. 3340 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3341 FunctionDecl *Specialization = 0; 3342 if (TemplateDeductionResult Result 3343 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 3344 Args, NumArgs, Specialization, Info)) { 3345 CandidateSet.push_back(OverloadCandidate()); 3346 OverloadCandidate &Candidate = CandidateSet.back(); 3347 Candidate.FoundDecl = FoundDecl; 3348 Candidate.Function = MethodTmpl->getTemplatedDecl(); 3349 Candidate.Viable = false; 3350 Candidate.FailureKind = ovl_fail_bad_deduction; 3351 Candidate.IsSurrogate = false; 3352 Candidate.IgnoreObjectArgument = false; 3353 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3354 Info); 3355 return; 3356 } 3357 3358 // Add the function template specialization produced by template argument 3359 // deduction as a candidate. 3360 assert(Specialization && "Missing member function template specialization?"); 3361 assert(isa<CXXMethodDecl>(Specialization) && 3362 "Specialization is not a member function?"); 3363 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 3364 ActingContext, ObjectType, Args, NumArgs, 3365 CandidateSet, SuppressUserConversions); 3366} 3367 3368/// \brief Add a C++ function template specialization as a candidate 3369/// in the candidate set, using template argument deduction to produce 3370/// an appropriate function template specialization. 3371void 3372Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 3373 DeclAccessPair FoundDecl, 3374 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3375 Expr **Args, unsigned NumArgs, 3376 OverloadCandidateSet& CandidateSet, 3377 bool SuppressUserConversions) { 3378 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3379 return; 3380 3381 // C++ [over.match.funcs]p7: 3382 // In each case where a candidate is a function template, candidate 3383 // function template specializations are generated using template argument 3384 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 3385 // candidate functions in the usual way.113) A given name can refer to one 3386 // or more function templates and also to a set of overloaded non-template 3387 // functions. In such a case, the candidate functions generated from each 3388 // function template are combined with the set of non-template candidate 3389 // functions. 3390 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3391 FunctionDecl *Specialization = 0; 3392 if (TemplateDeductionResult Result 3393 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 3394 Args, NumArgs, Specialization, Info)) { 3395 CandidateSet.push_back(OverloadCandidate()); 3396 OverloadCandidate &Candidate = CandidateSet.back(); 3397 Candidate.FoundDecl = FoundDecl; 3398 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3399 Candidate.Viable = false; 3400 Candidate.FailureKind = ovl_fail_bad_deduction; 3401 Candidate.IsSurrogate = false; 3402 Candidate.IgnoreObjectArgument = false; 3403 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3404 Info); 3405 return; 3406 } 3407 3408 // Add the function template specialization produced by template argument 3409 // deduction as a candidate. 3410 assert(Specialization && "Missing function template specialization?"); 3411 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 3412 SuppressUserConversions); 3413} 3414 3415/// AddConversionCandidate - Add a C++ conversion function as a 3416/// candidate in the candidate set (C++ [over.match.conv], 3417/// C++ [over.match.copy]). From is the expression we're converting from, 3418/// and ToType is the type that we're eventually trying to convert to 3419/// (which may or may not be the same type as the type that the 3420/// conversion function produces). 3421void 3422Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 3423 DeclAccessPair FoundDecl, 3424 CXXRecordDecl *ActingContext, 3425 Expr *From, QualType ToType, 3426 OverloadCandidateSet& CandidateSet) { 3427 assert(!Conversion->getDescribedFunctionTemplate() && 3428 "Conversion function templates use AddTemplateConversionCandidate"); 3429 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 3430 if (!CandidateSet.isNewCandidate(Conversion)) 3431 return; 3432 3433 // Overload resolution is always an unevaluated context. 3434 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3435 3436 // Add this candidate 3437 CandidateSet.push_back(OverloadCandidate()); 3438 OverloadCandidate& Candidate = CandidateSet.back(); 3439 Candidate.FoundDecl = FoundDecl; 3440 Candidate.Function = Conversion; 3441 Candidate.IsSurrogate = false; 3442 Candidate.IgnoreObjectArgument = false; 3443 Candidate.FinalConversion.setAsIdentityConversion(); 3444 Candidate.FinalConversion.setFromType(ConvType); 3445 Candidate.FinalConversion.setAllToTypes(ToType); 3446 3447 // Determine the implicit conversion sequence for the implicit 3448 // object parameter. 3449 Candidate.Viable = true; 3450 Candidate.Conversions.resize(1); 3451 Candidate.Conversions[0] 3452 = TryObjectArgumentInitialization(From->getType(), Conversion, 3453 ActingContext); 3454 // Conversion functions to a different type in the base class is visible in 3455 // the derived class. So, a derived to base conversion should not participate 3456 // in overload resolution. 3457 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 3458 Candidate.Conversions[0].Standard.Second = ICK_Identity; 3459 if (Candidate.Conversions[0].isBad()) { 3460 Candidate.Viable = false; 3461 Candidate.FailureKind = ovl_fail_bad_conversion; 3462 return; 3463 } 3464 3465 // We won't go through a user-define type conversion function to convert a 3466 // derived to base as such conversions are given Conversion Rank. They only 3467 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 3468 QualType FromCanon 3469 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 3470 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 3471 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 3472 Candidate.Viable = false; 3473 Candidate.FailureKind = ovl_fail_trivial_conversion; 3474 return; 3475 } 3476 3477 // To determine what the conversion from the result of calling the 3478 // conversion function to the type we're eventually trying to 3479 // convert to (ToType), we need to synthesize a call to the 3480 // conversion function and attempt copy initialization from it. This 3481 // makes sure that we get the right semantics with respect to 3482 // lvalues/rvalues and the type. Fortunately, we can allocate this 3483 // call on the stack and we don't need its arguments to be 3484 // well-formed. 3485 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 3486 From->getLocStart()); 3487 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 3488 CastExpr::CK_FunctionToPointerDecay, 3489 &ConversionRef, CXXBaseSpecifierArray(), false); 3490 3491 // Note that it is safe to allocate CallExpr on the stack here because 3492 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 3493 // allocator). 3494 CallExpr Call(Context, &ConversionFn, 0, 0, 3495 Conversion->getConversionType().getNonReferenceType(), 3496 From->getLocStart()); 3497 ImplicitConversionSequence ICS = 3498 TryCopyInitialization(*this, &Call, ToType, 3499 /*SuppressUserConversions=*/true, 3500 /*InOverloadResolution=*/false); 3501 3502 switch (ICS.getKind()) { 3503 case ImplicitConversionSequence::StandardConversion: 3504 Candidate.FinalConversion = ICS.Standard; 3505 3506 // C++ [over.ics.user]p3: 3507 // If the user-defined conversion is specified by a specialization of a 3508 // conversion function template, the second standard conversion sequence 3509 // shall have exact match rank. 3510 if (Conversion->getPrimaryTemplate() && 3511 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 3512 Candidate.Viable = false; 3513 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 3514 } 3515 3516 break; 3517 3518 case ImplicitConversionSequence::BadConversion: 3519 Candidate.Viable = false; 3520 Candidate.FailureKind = ovl_fail_bad_final_conversion; 3521 break; 3522 3523 default: 3524 assert(false && 3525 "Can only end up with a standard conversion sequence or failure"); 3526 } 3527} 3528 3529/// \brief Adds a conversion function template specialization 3530/// candidate to the overload set, using template argument deduction 3531/// to deduce the template arguments of the conversion function 3532/// template from the type that we are converting to (C++ 3533/// [temp.deduct.conv]). 3534void 3535Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 3536 DeclAccessPair FoundDecl, 3537 CXXRecordDecl *ActingDC, 3538 Expr *From, QualType ToType, 3539 OverloadCandidateSet &CandidateSet) { 3540 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 3541 "Only conversion function templates permitted here"); 3542 3543 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 3544 return; 3545 3546 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 3547 CXXConversionDecl *Specialization = 0; 3548 if (TemplateDeductionResult Result 3549 = DeduceTemplateArguments(FunctionTemplate, ToType, 3550 Specialization, Info)) { 3551 CandidateSet.push_back(OverloadCandidate()); 3552 OverloadCandidate &Candidate = CandidateSet.back(); 3553 Candidate.FoundDecl = FoundDecl; 3554 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 3555 Candidate.Viable = false; 3556 Candidate.FailureKind = ovl_fail_bad_deduction; 3557 Candidate.IsSurrogate = false; 3558 Candidate.IgnoreObjectArgument = false; 3559 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 3560 Info); 3561 return; 3562 } 3563 3564 // Add the conversion function template specialization produced by 3565 // template argument deduction as a candidate. 3566 assert(Specialization && "Missing function template specialization?"); 3567 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 3568 CandidateSet); 3569} 3570 3571/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 3572/// converts the given @c Object to a function pointer via the 3573/// conversion function @c Conversion, and then attempts to call it 3574/// with the given arguments (C++ [over.call.object]p2-4). Proto is 3575/// the type of function that we'll eventually be calling. 3576void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 3577 DeclAccessPair FoundDecl, 3578 CXXRecordDecl *ActingContext, 3579 const FunctionProtoType *Proto, 3580 QualType ObjectType, 3581 Expr **Args, unsigned NumArgs, 3582 OverloadCandidateSet& CandidateSet) { 3583 if (!CandidateSet.isNewCandidate(Conversion)) 3584 return; 3585 3586 // Overload resolution is always an unevaluated context. 3587 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3588 3589 CandidateSet.push_back(OverloadCandidate()); 3590 OverloadCandidate& Candidate = CandidateSet.back(); 3591 Candidate.FoundDecl = FoundDecl; 3592 Candidate.Function = 0; 3593 Candidate.Surrogate = Conversion; 3594 Candidate.Viable = true; 3595 Candidate.IsSurrogate = true; 3596 Candidate.IgnoreObjectArgument = false; 3597 Candidate.Conversions.resize(NumArgs + 1); 3598 3599 // Determine the implicit conversion sequence for the implicit 3600 // object parameter. 3601 ImplicitConversionSequence ObjectInit 3602 = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext); 3603 if (ObjectInit.isBad()) { 3604 Candidate.Viable = false; 3605 Candidate.FailureKind = ovl_fail_bad_conversion; 3606 Candidate.Conversions[0] = ObjectInit; 3607 return; 3608 } 3609 3610 // The first conversion is actually a user-defined conversion whose 3611 // first conversion is ObjectInit's standard conversion (which is 3612 // effectively a reference binding). Record it as such. 3613 Candidate.Conversions[0].setUserDefined(); 3614 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 3615 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 3616 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 3617 Candidate.Conversions[0].UserDefined.After 3618 = Candidate.Conversions[0].UserDefined.Before; 3619 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 3620 3621 // Find the 3622 unsigned NumArgsInProto = Proto->getNumArgs(); 3623 3624 // (C++ 13.3.2p2): A candidate function having fewer than m 3625 // parameters is viable only if it has an ellipsis in its parameter 3626 // list (8.3.5). 3627 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 3628 Candidate.Viable = false; 3629 Candidate.FailureKind = ovl_fail_too_many_arguments; 3630 return; 3631 } 3632 3633 // Function types don't have any default arguments, so just check if 3634 // we have enough arguments. 3635 if (NumArgs < NumArgsInProto) { 3636 // Not enough arguments. 3637 Candidate.Viable = false; 3638 Candidate.FailureKind = ovl_fail_too_few_arguments; 3639 return; 3640 } 3641 3642 // Determine the implicit conversion sequences for each of the 3643 // arguments. 3644 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3645 if (ArgIdx < NumArgsInProto) { 3646 // (C++ 13.3.2p3): for F to be a viable function, there shall 3647 // exist for each argument an implicit conversion sequence 3648 // (13.3.3.1) that converts that argument to the corresponding 3649 // parameter of F. 3650 QualType ParamType = Proto->getArgType(ArgIdx); 3651 Candidate.Conversions[ArgIdx + 1] 3652 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 3653 /*SuppressUserConversions=*/false, 3654 /*InOverloadResolution=*/false); 3655 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 3656 Candidate.Viable = false; 3657 Candidate.FailureKind = ovl_fail_bad_conversion; 3658 break; 3659 } 3660 } else { 3661 // (C++ 13.3.2p2): For the purposes of overload resolution, any 3662 // argument for which there is no corresponding parameter is 3663 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 3664 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 3665 } 3666 } 3667} 3668 3669/// \brief Add overload candidates for overloaded operators that are 3670/// member functions. 3671/// 3672/// Add the overloaded operator candidates that are member functions 3673/// for the operator Op that was used in an operator expression such 3674/// as "x Op y". , Args/NumArgs provides the operator arguments, and 3675/// CandidateSet will store the added overload candidates. (C++ 3676/// [over.match.oper]). 3677void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 3678 SourceLocation OpLoc, 3679 Expr **Args, unsigned NumArgs, 3680 OverloadCandidateSet& CandidateSet, 3681 SourceRange OpRange) { 3682 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3683 3684 // C++ [over.match.oper]p3: 3685 // For a unary operator @ with an operand of a type whose 3686 // cv-unqualified version is T1, and for a binary operator @ with 3687 // a left operand of a type whose cv-unqualified version is T1 and 3688 // a right operand of a type whose cv-unqualified version is T2, 3689 // three sets of candidate functions, designated member 3690 // candidates, non-member candidates and built-in candidates, are 3691 // constructed as follows: 3692 QualType T1 = Args[0]->getType(); 3693 QualType T2; 3694 if (NumArgs > 1) 3695 T2 = Args[1]->getType(); 3696 3697 // -- If T1 is a class type, the set of member candidates is the 3698 // result of the qualified lookup of T1::operator@ 3699 // (13.3.1.1.1); otherwise, the set of member candidates is 3700 // empty. 3701 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 3702 // Complete the type if it can be completed. Otherwise, we're done. 3703 if (RequireCompleteType(OpLoc, T1, PDiag())) 3704 return; 3705 3706 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 3707 LookupQualifiedName(Operators, T1Rec->getDecl()); 3708 Operators.suppressDiagnostics(); 3709 3710 for (LookupResult::iterator Oper = Operators.begin(), 3711 OperEnd = Operators.end(); 3712 Oper != OperEnd; 3713 ++Oper) 3714 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 3715 Args + 1, NumArgs - 1, CandidateSet, 3716 /* SuppressUserConversions = */ false); 3717 } 3718} 3719 3720/// AddBuiltinCandidate - Add a candidate for a built-in 3721/// operator. ResultTy and ParamTys are the result and parameter types 3722/// of the built-in candidate, respectively. Args and NumArgs are the 3723/// arguments being passed to the candidate. IsAssignmentOperator 3724/// should be true when this built-in candidate is an assignment 3725/// operator. NumContextualBoolArguments is the number of arguments 3726/// (at the beginning of the argument list) that will be contextually 3727/// converted to bool. 3728void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 3729 Expr **Args, unsigned NumArgs, 3730 OverloadCandidateSet& CandidateSet, 3731 bool IsAssignmentOperator, 3732 unsigned NumContextualBoolArguments) { 3733 // Overload resolution is always an unevaluated context. 3734 EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); 3735 3736 // Add this candidate 3737 CandidateSet.push_back(OverloadCandidate()); 3738 OverloadCandidate& Candidate = CandidateSet.back(); 3739 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 3740 Candidate.Function = 0; 3741 Candidate.IsSurrogate = false; 3742 Candidate.IgnoreObjectArgument = false; 3743 Candidate.BuiltinTypes.ResultTy = ResultTy; 3744 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3745 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 3746 3747 // Determine the implicit conversion sequences for each of the 3748 // arguments. 3749 Candidate.Viable = true; 3750 Candidate.Conversions.resize(NumArgs); 3751 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 3752 // C++ [over.match.oper]p4: 3753 // For the built-in assignment operators, conversions of the 3754 // left operand are restricted as follows: 3755 // -- no temporaries are introduced to hold the left operand, and 3756 // -- no user-defined conversions are applied to the left 3757 // operand to achieve a type match with the left-most 3758 // parameter of a built-in candidate. 3759 // 3760 // We block these conversions by turning off user-defined 3761 // conversions, since that is the only way that initialization of 3762 // a reference to a non-class type can occur from something that 3763 // is not of the same type. 3764 if (ArgIdx < NumContextualBoolArguments) { 3765 assert(ParamTys[ArgIdx] == Context.BoolTy && 3766 "Contextual conversion to bool requires bool type"); 3767 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 3768 } else { 3769 Candidate.Conversions[ArgIdx] 3770 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 3771 ArgIdx == 0 && IsAssignmentOperator, 3772 /*InOverloadResolution=*/false); 3773 } 3774 if (Candidate.Conversions[ArgIdx].isBad()) { 3775 Candidate.Viable = false; 3776 Candidate.FailureKind = ovl_fail_bad_conversion; 3777 break; 3778 } 3779 } 3780} 3781 3782/// BuiltinCandidateTypeSet - A set of types that will be used for the 3783/// candidate operator functions for built-in operators (C++ 3784/// [over.built]). The types are separated into pointer types and 3785/// enumeration types. 3786class BuiltinCandidateTypeSet { 3787 /// TypeSet - A set of types. 3788 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 3789 3790 /// PointerTypes - The set of pointer types that will be used in the 3791 /// built-in candidates. 3792 TypeSet PointerTypes; 3793 3794 /// MemberPointerTypes - The set of member pointer types that will be 3795 /// used in the built-in candidates. 3796 TypeSet MemberPointerTypes; 3797 3798 /// EnumerationTypes - The set of enumeration types that will be 3799 /// used in the built-in candidates. 3800 TypeSet EnumerationTypes; 3801 3802 /// \brief The set of vector types that will be used in the built-in 3803 /// candidates. 3804 TypeSet VectorTypes; 3805 3806 /// Sema - The semantic analysis instance where we are building the 3807 /// candidate type set. 3808 Sema &SemaRef; 3809 3810 /// Context - The AST context in which we will build the type sets. 3811 ASTContext &Context; 3812 3813 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3814 const Qualifiers &VisibleQuals); 3815 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 3816 3817public: 3818 /// iterator - Iterates through the types that are part of the set. 3819 typedef TypeSet::iterator iterator; 3820 3821 BuiltinCandidateTypeSet(Sema &SemaRef) 3822 : SemaRef(SemaRef), Context(SemaRef.Context) { } 3823 3824 void AddTypesConvertedFrom(QualType Ty, 3825 SourceLocation Loc, 3826 bool AllowUserConversions, 3827 bool AllowExplicitConversions, 3828 const Qualifiers &VisibleTypeConversionsQuals); 3829 3830 /// pointer_begin - First pointer type found; 3831 iterator pointer_begin() { return PointerTypes.begin(); } 3832 3833 /// pointer_end - Past the last pointer type found; 3834 iterator pointer_end() { return PointerTypes.end(); } 3835 3836 /// member_pointer_begin - First member pointer type found; 3837 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 3838 3839 /// member_pointer_end - Past the last member pointer type found; 3840 iterator member_pointer_end() { return MemberPointerTypes.end(); } 3841 3842 /// enumeration_begin - First enumeration type found; 3843 iterator enumeration_begin() { return EnumerationTypes.begin(); } 3844 3845 /// enumeration_end - Past the last enumeration type found; 3846 iterator enumeration_end() { return EnumerationTypes.end(); } 3847 3848 iterator vector_begin() { return VectorTypes.begin(); } 3849 iterator vector_end() { return VectorTypes.end(); } 3850}; 3851 3852/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 3853/// the set of pointer types along with any more-qualified variants of 3854/// that type. For example, if @p Ty is "int const *", this routine 3855/// will add "int const *", "int const volatile *", "int const 3856/// restrict *", and "int const volatile restrict *" to the set of 3857/// pointer types. Returns true if the add of @p Ty itself succeeded, 3858/// false otherwise. 3859/// 3860/// FIXME: what to do about extended qualifiers? 3861bool 3862BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3863 const Qualifiers &VisibleQuals) { 3864 3865 // Insert this type. 3866 if (!PointerTypes.insert(Ty)) 3867 return false; 3868 3869 const PointerType *PointerTy = Ty->getAs<PointerType>(); 3870 assert(PointerTy && "type was not a pointer type!"); 3871 3872 QualType PointeeTy = PointerTy->getPointeeType(); 3873 // Don't add qualified variants of arrays. For one, they're not allowed 3874 // (the qualifier would sink to the element type), and for another, the 3875 // only overload situation where it matters is subscript or pointer +- int, 3876 // and those shouldn't have qualifier variants anyway. 3877 if (PointeeTy->isArrayType()) 3878 return true; 3879 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3880 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 3881 BaseCVR = Array->getElementType().getCVRQualifiers(); 3882 bool hasVolatile = VisibleQuals.hasVolatile(); 3883 bool hasRestrict = VisibleQuals.hasRestrict(); 3884 3885 // Iterate through all strict supersets of BaseCVR. 3886 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3887 if ((CVR | BaseCVR) != CVR) continue; 3888 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 3889 // in the types. 3890 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 3891 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 3892 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3893 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 3894 } 3895 3896 return true; 3897} 3898 3899/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 3900/// to the set of pointer types along with any more-qualified variants of 3901/// that type. For example, if @p Ty is "int const *", this routine 3902/// will add "int const *", "int const volatile *", "int const 3903/// restrict *", and "int const volatile restrict *" to the set of 3904/// pointer types. Returns true if the add of @p Ty itself succeeded, 3905/// false otherwise. 3906/// 3907/// FIXME: what to do about extended qualifiers? 3908bool 3909BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 3910 QualType Ty) { 3911 // Insert this type. 3912 if (!MemberPointerTypes.insert(Ty)) 3913 return false; 3914 3915 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 3916 assert(PointerTy && "type was not a member pointer type!"); 3917 3918 QualType PointeeTy = PointerTy->getPointeeType(); 3919 // Don't add qualified variants of arrays. For one, they're not allowed 3920 // (the qualifier would sink to the element type), and for another, the 3921 // only overload situation where it matters is subscript or pointer +- int, 3922 // and those shouldn't have qualifier variants anyway. 3923 if (PointeeTy->isArrayType()) 3924 return true; 3925 const Type *ClassTy = PointerTy->getClass(); 3926 3927 // Iterate through all strict supersets of the pointee type's CVR 3928 // qualifiers. 3929 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3930 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3931 if ((CVR | BaseCVR) != CVR) continue; 3932 3933 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3934 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 3935 } 3936 3937 return true; 3938} 3939 3940/// AddTypesConvertedFrom - Add each of the types to which the type @p 3941/// Ty can be implicit converted to the given set of @p Types. We're 3942/// primarily interested in pointer types and enumeration types. We also 3943/// take member pointer types, for the conditional operator. 3944/// AllowUserConversions is true if we should look at the conversion 3945/// functions of a class type, and AllowExplicitConversions if we 3946/// should also include the explicit conversion functions of a class 3947/// type. 3948void 3949BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 3950 SourceLocation Loc, 3951 bool AllowUserConversions, 3952 bool AllowExplicitConversions, 3953 const Qualifiers &VisibleQuals) { 3954 // Only deal with canonical types. 3955 Ty = Context.getCanonicalType(Ty); 3956 3957 // Look through reference types; they aren't part of the type of an 3958 // expression for the purposes of conversions. 3959 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3960 Ty = RefTy->getPointeeType(); 3961 3962 // We don't care about qualifiers on the type. 3963 Ty = Ty.getLocalUnqualifiedType(); 3964 3965 // If we're dealing with an array type, decay to the pointer. 3966 if (Ty->isArrayType()) 3967 Ty = SemaRef.Context.getArrayDecayedType(Ty); 3968 3969 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3970 QualType PointeeTy = PointerTy->getPointeeType(); 3971 3972 // Insert our type, and its more-qualified variants, into the set 3973 // of types. 3974 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3975 return; 3976 } else if (Ty->isMemberPointerType()) { 3977 // Member pointers are far easier, since the pointee can't be converted. 3978 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3979 return; 3980 } else if (Ty->isEnumeralType()) { 3981 EnumerationTypes.insert(Ty); 3982 } else if (Ty->isVectorType()) { 3983 VectorTypes.insert(Ty); 3984 } else if (AllowUserConversions) { 3985 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3986 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 3987 // No conversion functions in incomplete types. 3988 return; 3989 } 3990 3991 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3992 const UnresolvedSetImpl *Conversions 3993 = ClassDecl->getVisibleConversionFunctions(); 3994 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3995 E = Conversions->end(); I != E; ++I) { 3996 NamedDecl *D = I.getDecl(); 3997 if (isa<UsingShadowDecl>(D)) 3998 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3999 4000 // Skip conversion function templates; they don't tell us anything 4001 // about which builtin types we can convert to. 4002 if (isa<FunctionTemplateDecl>(D)) 4003 continue; 4004 4005 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 4006 if (AllowExplicitConversions || !Conv->isExplicit()) { 4007 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 4008 VisibleQuals); 4009 } 4010 } 4011 } 4012 } 4013} 4014 4015/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 4016/// the volatile- and non-volatile-qualified assignment operators for the 4017/// given type to the candidate set. 4018static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 4019 QualType T, 4020 Expr **Args, 4021 unsigned NumArgs, 4022 OverloadCandidateSet &CandidateSet) { 4023 QualType ParamTypes[2]; 4024 4025 // T& operator=(T&, T) 4026 ParamTypes[0] = S.Context.getLValueReferenceType(T); 4027 ParamTypes[1] = T; 4028 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4029 /*IsAssignmentOperator=*/true); 4030 4031 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 4032 // volatile T& operator=(volatile T&, T) 4033 ParamTypes[0] 4034 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 4035 ParamTypes[1] = T; 4036 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4037 /*IsAssignmentOperator=*/true); 4038 } 4039} 4040 4041/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 4042/// if any, found in visible type conversion functions found in ArgExpr's type. 4043static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 4044 Qualifiers VRQuals; 4045 const RecordType *TyRec; 4046 if (const MemberPointerType *RHSMPType = 4047 ArgExpr->getType()->getAs<MemberPointerType>()) 4048 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 4049 else 4050 TyRec = ArgExpr->getType()->getAs<RecordType>(); 4051 if (!TyRec) { 4052 // Just to be safe, assume the worst case. 4053 VRQuals.addVolatile(); 4054 VRQuals.addRestrict(); 4055 return VRQuals; 4056 } 4057 4058 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 4059 if (!ClassDecl->hasDefinition()) 4060 return VRQuals; 4061 4062 const UnresolvedSetImpl *Conversions = 4063 ClassDecl->getVisibleConversionFunctions(); 4064 4065 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4066 E = Conversions->end(); I != E; ++I) { 4067 NamedDecl *D = I.getDecl(); 4068 if (isa<UsingShadowDecl>(D)) 4069 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4070 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 4071 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 4072 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 4073 CanTy = ResTypeRef->getPointeeType(); 4074 // Need to go down the pointer/mempointer chain and add qualifiers 4075 // as see them. 4076 bool done = false; 4077 while (!done) { 4078 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 4079 CanTy = ResTypePtr->getPointeeType(); 4080 else if (const MemberPointerType *ResTypeMPtr = 4081 CanTy->getAs<MemberPointerType>()) 4082 CanTy = ResTypeMPtr->getPointeeType(); 4083 else 4084 done = true; 4085 if (CanTy.isVolatileQualified()) 4086 VRQuals.addVolatile(); 4087 if (CanTy.isRestrictQualified()) 4088 VRQuals.addRestrict(); 4089 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 4090 return VRQuals; 4091 } 4092 } 4093 } 4094 return VRQuals; 4095} 4096 4097/// AddBuiltinOperatorCandidates - Add the appropriate built-in 4098/// operator overloads to the candidate set (C++ [over.built]), based 4099/// on the operator @p Op and the arguments given. For example, if the 4100/// operator is a binary '+', this routine might add "int 4101/// operator+(int, int)" to cover integer addition. 4102void 4103Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 4104 SourceLocation OpLoc, 4105 Expr **Args, unsigned NumArgs, 4106 OverloadCandidateSet& CandidateSet) { 4107 // The set of "promoted arithmetic types", which are the arithmetic 4108 // types are that preserved by promotion (C++ [over.built]p2). Note 4109 // that the first few of these types are the promoted integral 4110 // types; these types need to be first. 4111 // FIXME: What about complex? 4112 const unsigned FirstIntegralType = 0; 4113 const unsigned LastIntegralType = 13; 4114 const unsigned FirstPromotedIntegralType = 7, 4115 LastPromotedIntegralType = 13; 4116 const unsigned FirstPromotedArithmeticType = 7, 4117 LastPromotedArithmeticType = 16; 4118 const unsigned NumArithmeticTypes = 16; 4119 QualType ArithmeticTypes[NumArithmeticTypes] = { 4120 Context.BoolTy, Context.CharTy, Context.WCharTy, 4121// FIXME: Context.Char16Ty, Context.Char32Ty, 4122 Context.SignedCharTy, Context.ShortTy, 4123 Context.UnsignedCharTy, Context.UnsignedShortTy, 4124 Context.IntTy, Context.LongTy, Context.LongLongTy, 4125 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 4126 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 4127 }; 4128 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 4129 "Invalid first promoted integral type"); 4130 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 4131 == Context.UnsignedLongLongTy && 4132 "Invalid last promoted integral type"); 4133 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 4134 "Invalid first promoted arithmetic type"); 4135 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 4136 == Context.LongDoubleTy && 4137 "Invalid last promoted arithmetic type"); 4138 4139 // Find all of the types that the arguments can convert to, but only 4140 // if the operator we're looking at has built-in operator candidates 4141 // that make use of these types. 4142 Qualifiers VisibleTypeConversionsQuals; 4143 VisibleTypeConversionsQuals.addConst(); 4144 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4145 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 4146 4147 BuiltinCandidateTypeSet CandidateTypes(*this); 4148 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4149 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 4150 OpLoc, 4151 true, 4152 (Op == OO_Exclaim || 4153 Op == OO_AmpAmp || 4154 Op == OO_PipePipe), 4155 VisibleTypeConversionsQuals); 4156 4157 bool isComparison = false; 4158 switch (Op) { 4159 case OO_None: 4160 case NUM_OVERLOADED_OPERATORS: 4161 assert(false && "Expected an overloaded operator"); 4162 break; 4163 4164 case OO_Star: // '*' is either unary or binary 4165 if (NumArgs == 1) 4166 goto UnaryStar; 4167 else 4168 goto BinaryStar; 4169 break; 4170 4171 case OO_Plus: // '+' is either unary or binary 4172 if (NumArgs == 1) 4173 goto UnaryPlus; 4174 else 4175 goto BinaryPlus; 4176 break; 4177 4178 case OO_Minus: // '-' is either unary or binary 4179 if (NumArgs == 1) 4180 goto UnaryMinus; 4181 else 4182 goto BinaryMinus; 4183 break; 4184 4185 case OO_Amp: // '&' is either unary or binary 4186 if (NumArgs == 1) 4187 goto UnaryAmp; 4188 else 4189 goto BinaryAmp; 4190 4191 case OO_PlusPlus: 4192 case OO_MinusMinus: 4193 // C++ [over.built]p3: 4194 // 4195 // For every pair (T, VQ), where T is an arithmetic type, and VQ 4196 // is either volatile or empty, there exist candidate operator 4197 // functions of the form 4198 // 4199 // VQ T& operator++(VQ T&); 4200 // T operator++(VQ T&, int); 4201 // 4202 // C++ [over.built]p4: 4203 // 4204 // For every pair (T, VQ), where T is an arithmetic type other 4205 // than bool, and VQ is either volatile or empty, there exist 4206 // candidate operator functions of the form 4207 // 4208 // VQ T& operator--(VQ T&); 4209 // T operator--(VQ T&, int); 4210 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 4211 Arith < NumArithmeticTypes; ++Arith) { 4212 QualType ArithTy = ArithmeticTypes[Arith]; 4213 QualType ParamTypes[2] 4214 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 4215 4216 // Non-volatile version. 4217 if (NumArgs == 1) 4218 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4219 else 4220 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4221 // heuristic to reduce number of builtin candidates in the set. 4222 // Add volatile version only if there are conversions to a volatile type. 4223 if (VisibleTypeConversionsQuals.hasVolatile()) { 4224 // Volatile version 4225 ParamTypes[0] 4226 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 4227 if (NumArgs == 1) 4228 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4229 else 4230 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 4231 } 4232 } 4233 4234 // C++ [over.built]p5: 4235 // 4236 // For every pair (T, VQ), where T is a cv-qualified or 4237 // cv-unqualified object type, and VQ is either volatile or 4238 // empty, there exist candidate operator functions of the form 4239 // 4240 // T*VQ& operator++(T*VQ&); 4241 // T*VQ& operator--(T*VQ&); 4242 // T* operator++(T*VQ&, int); 4243 // T* operator--(T*VQ&, int); 4244 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4245 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4246 // Skip pointer types that aren't pointers to object types. 4247 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 4248 continue; 4249 4250 QualType ParamTypes[2] = { 4251 Context.getLValueReferenceType(*Ptr), Context.IntTy 4252 }; 4253 4254 // Without volatile 4255 if (NumArgs == 1) 4256 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4257 else 4258 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4259 4260 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4261 VisibleTypeConversionsQuals.hasVolatile()) { 4262 // With volatile 4263 ParamTypes[0] 4264 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4265 if (NumArgs == 1) 4266 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 4267 else 4268 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4269 } 4270 } 4271 break; 4272 4273 UnaryStar: 4274 // C++ [over.built]p6: 4275 // For every cv-qualified or cv-unqualified object type T, there 4276 // exist candidate operator functions of the form 4277 // 4278 // T& operator*(T*); 4279 // 4280 // C++ [over.built]p7: 4281 // For every function type T, there exist candidate operator 4282 // functions of the form 4283 // T& operator*(T*); 4284 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4285 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4286 QualType ParamTy = *Ptr; 4287 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 4288 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 4289 &ParamTy, Args, 1, CandidateSet); 4290 } 4291 break; 4292 4293 UnaryPlus: 4294 // C++ [over.built]p8: 4295 // For every type T, there exist candidate operator functions of 4296 // the form 4297 // 4298 // T* operator+(T*); 4299 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4300 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4301 QualType ParamTy = *Ptr; 4302 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 4303 } 4304 4305 // Fall through 4306 4307 UnaryMinus: 4308 // C++ [over.built]p9: 4309 // For every promoted arithmetic type T, there exist candidate 4310 // operator functions of the form 4311 // 4312 // T operator+(T); 4313 // T operator-(T); 4314 for (unsigned Arith = FirstPromotedArithmeticType; 4315 Arith < LastPromotedArithmeticType; ++Arith) { 4316 QualType ArithTy = ArithmeticTypes[Arith]; 4317 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 4318 } 4319 4320 // Extension: We also add these operators for vector types. 4321 for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), 4322 VecEnd = CandidateTypes.vector_end(); 4323 Vec != VecEnd; ++Vec) { 4324 QualType VecTy = *Vec; 4325 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4326 } 4327 break; 4328 4329 case OO_Tilde: 4330 // C++ [over.built]p10: 4331 // For every promoted integral type T, there exist candidate 4332 // operator functions of the form 4333 // 4334 // T operator~(T); 4335 for (unsigned Int = FirstPromotedIntegralType; 4336 Int < LastPromotedIntegralType; ++Int) { 4337 QualType IntTy = ArithmeticTypes[Int]; 4338 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 4339 } 4340 4341 // Extension: We also add this operator for vector types. 4342 for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(), 4343 VecEnd = CandidateTypes.vector_end(); 4344 Vec != VecEnd; ++Vec) { 4345 QualType VecTy = *Vec; 4346 AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 4347 } 4348 break; 4349 4350 case OO_New: 4351 case OO_Delete: 4352 case OO_Array_New: 4353 case OO_Array_Delete: 4354 case OO_Call: 4355 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 4356 break; 4357 4358 case OO_Comma: 4359 UnaryAmp: 4360 case OO_Arrow: 4361 // C++ [over.match.oper]p3: 4362 // -- For the operator ',', the unary operator '&', or the 4363 // operator '->', the built-in candidates set is empty. 4364 break; 4365 4366 case OO_EqualEqual: 4367 case OO_ExclaimEqual: 4368 // C++ [over.match.oper]p16: 4369 // For every pointer to member type T, there exist candidate operator 4370 // functions of the form 4371 // 4372 // bool operator==(T,T); 4373 // bool operator!=(T,T); 4374 for (BuiltinCandidateTypeSet::iterator 4375 MemPtr = CandidateTypes.member_pointer_begin(), 4376 MemPtrEnd = CandidateTypes.member_pointer_end(); 4377 MemPtr != MemPtrEnd; 4378 ++MemPtr) { 4379 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 4380 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4381 } 4382 4383 // Fall through 4384 4385 case OO_Less: 4386 case OO_Greater: 4387 case OO_LessEqual: 4388 case OO_GreaterEqual: 4389 // C++ [over.built]p15: 4390 // 4391 // For every pointer or enumeration type T, there exist 4392 // candidate operator functions of the form 4393 // 4394 // bool operator<(T, T); 4395 // bool operator>(T, T); 4396 // bool operator<=(T, T); 4397 // bool operator>=(T, T); 4398 // bool operator==(T, T); 4399 // bool operator!=(T, T); 4400 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4401 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4402 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4403 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4404 } 4405 for (BuiltinCandidateTypeSet::iterator Enum 4406 = CandidateTypes.enumeration_begin(); 4407 Enum != CandidateTypes.enumeration_end(); ++Enum) { 4408 QualType ParamTypes[2] = { *Enum, *Enum }; 4409 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 4410 } 4411 4412 // Fall through. 4413 isComparison = true; 4414 4415 BinaryPlus: 4416 BinaryMinus: 4417 if (!isComparison) { 4418 // We didn't fall through, so we must have OO_Plus or OO_Minus. 4419 4420 // C++ [over.built]p13: 4421 // 4422 // For every cv-qualified or cv-unqualified object type T 4423 // there exist candidate operator functions of the form 4424 // 4425 // T* operator+(T*, ptrdiff_t); 4426 // T& operator[](T*, ptrdiff_t); [BELOW] 4427 // T* operator-(T*, ptrdiff_t); 4428 // T* operator+(ptrdiff_t, T*); 4429 // T& operator[](ptrdiff_t, T*); [BELOW] 4430 // 4431 // C++ [over.built]p14: 4432 // 4433 // For every T, where T is a pointer to object type, there 4434 // exist candidate operator functions of the form 4435 // 4436 // ptrdiff_t operator-(T, T); 4437 for (BuiltinCandidateTypeSet::iterator Ptr 4438 = CandidateTypes.pointer_begin(); 4439 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4440 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 4441 4442 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 4443 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4444 4445 if (Op == OO_Plus) { 4446 // T* operator+(ptrdiff_t, T*); 4447 ParamTypes[0] = ParamTypes[1]; 4448 ParamTypes[1] = *Ptr; 4449 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4450 } else { 4451 // ptrdiff_t operator-(T, T); 4452 ParamTypes[1] = *Ptr; 4453 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 4454 Args, 2, CandidateSet); 4455 } 4456 } 4457 } 4458 // Fall through 4459 4460 case OO_Slash: 4461 BinaryStar: 4462 Conditional: 4463 // C++ [over.built]p12: 4464 // 4465 // For every pair of promoted arithmetic types L and R, there 4466 // exist candidate operator functions of the form 4467 // 4468 // LR operator*(L, R); 4469 // LR operator/(L, R); 4470 // LR operator+(L, R); 4471 // LR operator-(L, R); 4472 // bool operator<(L, R); 4473 // bool operator>(L, R); 4474 // bool operator<=(L, R); 4475 // bool operator>=(L, R); 4476 // bool operator==(L, R); 4477 // bool operator!=(L, R); 4478 // 4479 // where LR is the result of the usual arithmetic conversions 4480 // between types L and R. 4481 // 4482 // C++ [over.built]p24: 4483 // 4484 // For every pair of promoted arithmetic types L and R, there exist 4485 // candidate operator functions of the form 4486 // 4487 // LR operator?(bool, L, R); 4488 // 4489 // where LR is the result of the usual arithmetic conversions 4490 // between types L and R. 4491 // Our candidates ignore the first parameter. 4492 for (unsigned Left = FirstPromotedArithmeticType; 4493 Left < LastPromotedArithmeticType; ++Left) { 4494 for (unsigned Right = FirstPromotedArithmeticType; 4495 Right < LastPromotedArithmeticType; ++Right) { 4496 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4497 QualType Result 4498 = isComparison 4499 ? Context.BoolTy 4500 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4501 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4502 } 4503 } 4504 4505 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 4506 // conditional operator for vector types. 4507 for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), 4508 Vec1End = CandidateTypes.vector_end(); 4509 Vec1 != Vec1End; ++Vec1) 4510 for (BuiltinCandidateTypeSet::iterator 4511 Vec2 = CandidateTypes.vector_begin(), 4512 Vec2End = CandidateTypes.vector_end(); 4513 Vec2 != Vec2End; ++Vec2) { 4514 QualType LandR[2] = { *Vec1, *Vec2 }; 4515 QualType Result; 4516 if (isComparison) 4517 Result = Context.BoolTy; 4518 else { 4519 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 4520 Result = *Vec1; 4521 else 4522 Result = *Vec2; 4523 } 4524 4525 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4526 } 4527 4528 break; 4529 4530 case OO_Percent: 4531 BinaryAmp: 4532 case OO_Caret: 4533 case OO_Pipe: 4534 case OO_LessLess: 4535 case OO_GreaterGreater: 4536 // C++ [over.built]p17: 4537 // 4538 // For every pair of promoted integral types L and R, there 4539 // exist candidate operator functions of the form 4540 // 4541 // LR operator%(L, R); 4542 // LR operator&(L, R); 4543 // LR operator^(L, R); 4544 // LR operator|(L, R); 4545 // L operator<<(L, R); 4546 // L operator>>(L, R); 4547 // 4548 // where LR is the result of the usual arithmetic conversions 4549 // between types L and R. 4550 for (unsigned Left = FirstPromotedIntegralType; 4551 Left < LastPromotedIntegralType; ++Left) { 4552 for (unsigned Right = FirstPromotedIntegralType; 4553 Right < LastPromotedIntegralType; ++Right) { 4554 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 4555 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 4556 ? LandR[0] 4557 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 4558 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 4559 } 4560 } 4561 break; 4562 4563 case OO_Equal: 4564 // C++ [over.built]p20: 4565 // 4566 // For every pair (T, VQ), where T is an enumeration or 4567 // pointer to member type and VQ is either volatile or 4568 // empty, there exist candidate operator functions of the form 4569 // 4570 // VQ T& operator=(VQ T&, T); 4571 for (BuiltinCandidateTypeSet::iterator 4572 Enum = CandidateTypes.enumeration_begin(), 4573 EnumEnd = CandidateTypes.enumeration_end(); 4574 Enum != EnumEnd; ++Enum) 4575 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 4576 CandidateSet); 4577 for (BuiltinCandidateTypeSet::iterator 4578 MemPtr = CandidateTypes.member_pointer_begin(), 4579 MemPtrEnd = CandidateTypes.member_pointer_end(); 4580 MemPtr != MemPtrEnd; ++MemPtr) 4581 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 4582 CandidateSet); 4583 4584 // Fall through. 4585 4586 case OO_PlusEqual: 4587 case OO_MinusEqual: 4588 // C++ [over.built]p19: 4589 // 4590 // For every pair (T, VQ), where T is any type and VQ is either 4591 // volatile or empty, there exist candidate operator functions 4592 // of the form 4593 // 4594 // T*VQ& operator=(T*VQ&, T*); 4595 // 4596 // C++ [over.built]p21: 4597 // 4598 // For every pair (T, VQ), where T is a cv-qualified or 4599 // cv-unqualified object type and VQ is either volatile or 4600 // empty, there exist candidate operator functions of the form 4601 // 4602 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 4603 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 4604 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4605 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4606 QualType ParamTypes[2]; 4607 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 4608 4609 // non-volatile version 4610 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 4611 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4612 /*IsAssigmentOperator=*/Op == OO_Equal); 4613 4614 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 4615 VisibleTypeConversionsQuals.hasVolatile()) { 4616 // volatile version 4617 ParamTypes[0] 4618 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 4619 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4620 /*IsAssigmentOperator=*/Op == OO_Equal); 4621 } 4622 } 4623 // Fall through. 4624 4625 case OO_StarEqual: 4626 case OO_SlashEqual: 4627 // C++ [over.built]p18: 4628 // 4629 // For every triple (L, VQ, R), where L is an arithmetic type, 4630 // VQ is either volatile or empty, and R is a promoted 4631 // arithmetic type, there exist candidate operator functions of 4632 // the form 4633 // 4634 // VQ L& operator=(VQ L&, R); 4635 // VQ L& operator*=(VQ L&, R); 4636 // VQ L& operator/=(VQ L&, R); 4637 // VQ L& operator+=(VQ L&, R); 4638 // VQ L& operator-=(VQ L&, R); 4639 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 4640 for (unsigned Right = FirstPromotedArithmeticType; 4641 Right < LastPromotedArithmeticType; ++Right) { 4642 QualType ParamTypes[2]; 4643 ParamTypes[1] = ArithmeticTypes[Right]; 4644 4645 // Add this built-in operator as a candidate (VQ is empty). 4646 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 4647 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4648 /*IsAssigmentOperator=*/Op == OO_Equal); 4649 4650 // Add this built-in operator as a candidate (VQ is 'volatile'). 4651 if (VisibleTypeConversionsQuals.hasVolatile()) { 4652 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 4653 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4654 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4655 /*IsAssigmentOperator=*/Op == OO_Equal); 4656 } 4657 } 4658 } 4659 4660 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 4661 for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(), 4662 Vec1End = CandidateTypes.vector_end(); 4663 Vec1 != Vec1End; ++Vec1) 4664 for (BuiltinCandidateTypeSet::iterator 4665 Vec2 = CandidateTypes.vector_begin(), 4666 Vec2End = CandidateTypes.vector_end(); 4667 Vec2 != Vec2End; ++Vec2) { 4668 QualType ParamTypes[2]; 4669 ParamTypes[1] = *Vec2; 4670 // Add this built-in operator as a candidate (VQ is empty). 4671 ParamTypes[0] = Context.getLValueReferenceType(*Vec1); 4672 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4673 /*IsAssigmentOperator=*/Op == OO_Equal); 4674 4675 // Add this built-in operator as a candidate (VQ is 'volatile'). 4676 if (VisibleTypeConversionsQuals.hasVolatile()) { 4677 ParamTypes[0] = Context.getVolatileType(*Vec1); 4678 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4679 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 4680 /*IsAssigmentOperator=*/Op == OO_Equal); 4681 } 4682 } 4683 break; 4684 4685 case OO_PercentEqual: 4686 case OO_LessLessEqual: 4687 case OO_GreaterGreaterEqual: 4688 case OO_AmpEqual: 4689 case OO_CaretEqual: 4690 case OO_PipeEqual: 4691 // C++ [over.built]p22: 4692 // 4693 // For every triple (L, VQ, R), where L is an integral type, VQ 4694 // is either volatile or empty, and R is a promoted integral 4695 // type, there exist candidate operator functions of the form 4696 // 4697 // VQ L& operator%=(VQ L&, R); 4698 // VQ L& operator<<=(VQ L&, R); 4699 // VQ L& operator>>=(VQ L&, R); 4700 // VQ L& operator&=(VQ L&, R); 4701 // VQ L& operator^=(VQ L&, R); 4702 // VQ L& operator|=(VQ L&, R); 4703 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 4704 for (unsigned Right = FirstPromotedIntegralType; 4705 Right < LastPromotedIntegralType; ++Right) { 4706 QualType ParamTypes[2]; 4707 ParamTypes[1] = ArithmeticTypes[Right]; 4708 4709 // Add this built-in operator as a candidate (VQ is empty). 4710 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 4711 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 4712 if (VisibleTypeConversionsQuals.hasVolatile()) { 4713 // Add this built-in operator as a candidate (VQ is 'volatile'). 4714 ParamTypes[0] = ArithmeticTypes[Left]; 4715 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 4716 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 4717 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 4718 } 4719 } 4720 } 4721 break; 4722 4723 case OO_Exclaim: { 4724 // C++ [over.operator]p23: 4725 // 4726 // There also exist candidate operator functions of the form 4727 // 4728 // bool operator!(bool); 4729 // bool operator&&(bool, bool); [BELOW] 4730 // bool operator||(bool, bool); [BELOW] 4731 QualType ParamTy = Context.BoolTy; 4732 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 4733 /*IsAssignmentOperator=*/false, 4734 /*NumContextualBoolArguments=*/1); 4735 break; 4736 } 4737 4738 case OO_AmpAmp: 4739 case OO_PipePipe: { 4740 // C++ [over.operator]p23: 4741 // 4742 // There also exist candidate operator functions of the form 4743 // 4744 // bool operator!(bool); [ABOVE] 4745 // bool operator&&(bool, bool); 4746 // bool operator||(bool, bool); 4747 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 4748 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 4749 /*IsAssignmentOperator=*/false, 4750 /*NumContextualBoolArguments=*/2); 4751 break; 4752 } 4753 4754 case OO_Subscript: 4755 // C++ [over.built]p13: 4756 // 4757 // For every cv-qualified or cv-unqualified object type T there 4758 // exist candidate operator functions of the form 4759 // 4760 // T* operator+(T*, ptrdiff_t); [ABOVE] 4761 // T& operator[](T*, ptrdiff_t); 4762 // T* operator-(T*, ptrdiff_t); [ABOVE] 4763 // T* operator+(ptrdiff_t, T*); [ABOVE] 4764 // T& operator[](ptrdiff_t, T*); 4765 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 4766 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4767 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 4768 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 4769 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 4770 4771 // T& operator[](T*, ptrdiff_t) 4772 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4773 4774 // T& operator[](ptrdiff_t, T*); 4775 ParamTypes[0] = ParamTypes[1]; 4776 ParamTypes[1] = *Ptr; 4777 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4778 } 4779 break; 4780 4781 case OO_ArrowStar: 4782 // C++ [over.built]p11: 4783 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 4784 // C1 is the same type as C2 or is a derived class of C2, T is an object 4785 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 4786 // there exist candidate operator functions of the form 4787 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 4788 // where CV12 is the union of CV1 and CV2. 4789 { 4790 for (BuiltinCandidateTypeSet::iterator Ptr = 4791 CandidateTypes.pointer_begin(); 4792 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 4793 QualType C1Ty = (*Ptr); 4794 QualType C1; 4795 QualifierCollector Q1; 4796 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 4797 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 4798 if (!isa<RecordType>(C1)) 4799 continue; 4800 // heuristic to reduce number of builtin candidates in the set. 4801 // Add volatile/restrict version only if there are conversions to a 4802 // volatile/restrict type. 4803 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 4804 continue; 4805 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 4806 continue; 4807 } 4808 for (BuiltinCandidateTypeSet::iterator 4809 MemPtr = CandidateTypes.member_pointer_begin(), 4810 MemPtrEnd = CandidateTypes.member_pointer_end(); 4811 MemPtr != MemPtrEnd; ++MemPtr) { 4812 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 4813 QualType C2 = QualType(mptr->getClass(), 0); 4814 C2 = C2.getUnqualifiedType(); 4815 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 4816 break; 4817 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 4818 // build CV12 T& 4819 QualType T = mptr->getPointeeType(); 4820 if (!VisibleTypeConversionsQuals.hasVolatile() && 4821 T.isVolatileQualified()) 4822 continue; 4823 if (!VisibleTypeConversionsQuals.hasRestrict() && 4824 T.isRestrictQualified()) 4825 continue; 4826 T = Q1.apply(T); 4827 QualType ResultTy = Context.getLValueReferenceType(T); 4828 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 4829 } 4830 } 4831 } 4832 break; 4833 4834 case OO_Conditional: 4835 // Note that we don't consider the first argument, since it has been 4836 // contextually converted to bool long ago. The candidates below are 4837 // therefore added as binary. 4838 // 4839 // C++ [over.built]p24: 4840 // For every type T, where T is a pointer or pointer-to-member type, 4841 // there exist candidate operator functions of the form 4842 // 4843 // T operator?(bool, T, T); 4844 // 4845 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 4846 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 4847 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4848 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4849 } 4850 for (BuiltinCandidateTypeSet::iterator Ptr = 4851 CandidateTypes.member_pointer_begin(), 4852 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 4853 QualType ParamTypes[2] = { *Ptr, *Ptr }; 4854 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 4855 } 4856 goto Conditional; 4857 } 4858} 4859 4860/// \brief Add function candidates found via argument-dependent lookup 4861/// to the set of overloading candidates. 4862/// 4863/// This routine performs argument-dependent name lookup based on the 4864/// given function name (which may also be an operator name) and adds 4865/// all of the overload candidates found by ADL to the overload 4866/// candidate set (C++ [basic.lookup.argdep]). 4867void 4868Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 4869 bool Operator, 4870 Expr **Args, unsigned NumArgs, 4871 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4872 OverloadCandidateSet& CandidateSet, 4873 bool PartialOverloading) { 4874 ADLResult Fns; 4875 4876 // FIXME: This approach for uniquing ADL results (and removing 4877 // redundant candidates from the set) relies on pointer-equality, 4878 // which means we need to key off the canonical decl. However, 4879 // always going back to the canonical decl might not get us the 4880 // right set of default arguments. What default arguments are 4881 // we supposed to consider on ADL candidates, anyway? 4882 4883 // FIXME: Pass in the explicit template arguments? 4884 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); 4885 4886 // Erase all of the candidates we already knew about. 4887 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4888 CandEnd = CandidateSet.end(); 4889 Cand != CandEnd; ++Cand) 4890 if (Cand->Function) { 4891 Fns.erase(Cand->Function); 4892 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 4893 Fns.erase(FunTmpl); 4894 } 4895 4896 // For each of the ADL candidates we found, add it to the overload 4897 // set. 4898 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 4899 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 4900 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 4901 if (ExplicitTemplateArgs) 4902 continue; 4903 4904 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 4905 false, PartialOverloading); 4906 } else 4907 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 4908 FoundDecl, ExplicitTemplateArgs, 4909 Args, NumArgs, CandidateSet); 4910 } 4911} 4912 4913/// isBetterOverloadCandidate - Determines whether the first overload 4914/// candidate is a better candidate than the second (C++ 13.3.3p1). 4915bool 4916Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 4917 const OverloadCandidate& Cand2, 4918 SourceLocation Loc) { 4919 // Define viable functions to be better candidates than non-viable 4920 // functions. 4921 if (!Cand2.Viable) 4922 return Cand1.Viable; 4923 else if (!Cand1.Viable) 4924 return false; 4925 4926 // C++ [over.match.best]p1: 4927 // 4928 // -- if F is a static member function, ICS1(F) is defined such 4929 // that ICS1(F) is neither better nor worse than ICS1(G) for 4930 // any function G, and, symmetrically, ICS1(G) is neither 4931 // better nor worse than ICS1(F). 4932 unsigned StartArg = 0; 4933 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 4934 StartArg = 1; 4935 4936 // C++ [over.match.best]p1: 4937 // A viable function F1 is defined to be a better function than another 4938 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 4939 // conversion sequence than ICSi(F2), and then... 4940 unsigned NumArgs = Cand1.Conversions.size(); 4941 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 4942 bool HasBetterConversion = false; 4943 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 4944 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 4945 Cand2.Conversions[ArgIdx])) { 4946 case ImplicitConversionSequence::Better: 4947 // Cand1 has a better conversion sequence. 4948 HasBetterConversion = true; 4949 break; 4950 4951 case ImplicitConversionSequence::Worse: 4952 // Cand1 can't be better than Cand2. 4953 return false; 4954 4955 case ImplicitConversionSequence::Indistinguishable: 4956 // Do nothing. 4957 break; 4958 } 4959 } 4960 4961 // -- for some argument j, ICSj(F1) is a better conversion sequence than 4962 // ICSj(F2), or, if not that, 4963 if (HasBetterConversion) 4964 return true; 4965 4966 // - F1 is a non-template function and F2 is a function template 4967 // specialization, or, if not that, 4968 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 4969 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4970 return true; 4971 4972 // -- F1 and F2 are function template specializations, and the function 4973 // template for F1 is more specialized than the template for F2 4974 // according to the partial ordering rules described in 14.5.5.2, or, 4975 // if not that, 4976 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 4977 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4978 if (FunctionTemplateDecl *BetterTemplate 4979 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 4980 Cand2.Function->getPrimaryTemplate(), 4981 Loc, 4982 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 4983 : TPOC_Call)) 4984 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 4985 4986 // -- the context is an initialization by user-defined conversion 4987 // (see 8.5, 13.3.1.5) and the standard conversion sequence 4988 // from the return type of F1 to the destination type (i.e., 4989 // the type of the entity being initialized) is a better 4990 // conversion sequence than the standard conversion sequence 4991 // from the return type of F2 to the destination type. 4992 if (Cand1.Function && Cand2.Function && 4993 isa<CXXConversionDecl>(Cand1.Function) && 4994 isa<CXXConversionDecl>(Cand2.Function)) { 4995 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 4996 Cand2.FinalConversion)) { 4997 case ImplicitConversionSequence::Better: 4998 // Cand1 has a better conversion sequence. 4999 return true; 5000 5001 case ImplicitConversionSequence::Worse: 5002 // Cand1 can't be better than Cand2. 5003 return false; 5004 5005 case ImplicitConversionSequence::Indistinguishable: 5006 // Do nothing 5007 break; 5008 } 5009 } 5010 5011 return false; 5012} 5013 5014/// \brief Computes the best viable function (C++ 13.3.3) 5015/// within an overload candidate set. 5016/// 5017/// \param CandidateSet the set of candidate functions. 5018/// 5019/// \param Loc the location of the function name (or operator symbol) for 5020/// which overload resolution occurs. 5021/// 5022/// \param Best f overload resolution was successful or found a deleted 5023/// function, Best points to the candidate function found. 5024/// 5025/// \returns The result of overload resolution. 5026OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 5027 SourceLocation Loc, 5028 OverloadCandidateSet::iterator& Best) { 5029 // Find the best viable function. 5030 Best = CandidateSet.end(); 5031 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 5032 Cand != CandidateSet.end(); ++Cand) { 5033 if (Cand->Viable) { 5034 if (Best == CandidateSet.end() || 5035 isBetterOverloadCandidate(*Cand, *Best, Loc)) 5036 Best = Cand; 5037 } 5038 } 5039 5040 // If we didn't find any viable functions, abort. 5041 if (Best == CandidateSet.end()) 5042 return OR_No_Viable_Function; 5043 5044 // Make sure that this function is better than every other viable 5045 // function. If not, we have an ambiguity. 5046 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 5047 Cand != CandidateSet.end(); ++Cand) { 5048 if (Cand->Viable && 5049 Cand != Best && 5050 !isBetterOverloadCandidate(*Best, *Cand, Loc)) { 5051 Best = CandidateSet.end(); 5052 return OR_Ambiguous; 5053 } 5054 } 5055 5056 // Best is the best viable function. 5057 if (Best->Function && 5058 (Best->Function->isDeleted() || 5059 Best->Function->getAttr<UnavailableAttr>())) 5060 return OR_Deleted; 5061 5062 // C++ [basic.def.odr]p2: 5063 // An overloaded function is used if it is selected by overload resolution 5064 // when referred to from a potentially-evaluated expression. [Note: this 5065 // covers calls to named functions (5.2.2), operator overloading 5066 // (clause 13), user-defined conversions (12.3.2), allocation function for 5067 // placement new (5.3.4), as well as non-default initialization (8.5). 5068 if (Best->Function) 5069 MarkDeclarationReferenced(Loc, Best->Function); 5070 return OR_Success; 5071} 5072 5073namespace { 5074 5075enum OverloadCandidateKind { 5076 oc_function, 5077 oc_method, 5078 oc_constructor, 5079 oc_function_template, 5080 oc_method_template, 5081 oc_constructor_template, 5082 oc_implicit_default_constructor, 5083 oc_implicit_copy_constructor, 5084 oc_implicit_copy_assignment 5085}; 5086 5087OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 5088 FunctionDecl *Fn, 5089 std::string &Description) { 5090 bool isTemplate = false; 5091 5092 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 5093 isTemplate = true; 5094 Description = S.getTemplateArgumentBindingsText( 5095 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 5096 } 5097 5098 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 5099 if (!Ctor->isImplicit()) 5100 return isTemplate ? oc_constructor_template : oc_constructor; 5101 5102 return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor 5103 : oc_implicit_default_constructor; 5104 } 5105 5106 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 5107 // This actually gets spelled 'candidate function' for now, but 5108 // it doesn't hurt to split it out. 5109 if (!Meth->isImplicit()) 5110 return isTemplate ? oc_method_template : oc_method; 5111 5112 assert(Meth->isCopyAssignment() 5113 && "implicit method is not copy assignment operator?"); 5114 return oc_implicit_copy_assignment; 5115 } 5116 5117 return isTemplate ? oc_function_template : oc_function; 5118} 5119 5120} // end anonymous namespace 5121 5122// Notes the location of an overload candidate. 5123void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 5124 std::string FnDesc; 5125 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 5126 Diag(Fn->getLocation(), diag::note_ovl_candidate) 5127 << (unsigned) K << FnDesc; 5128} 5129 5130/// Diagnoses an ambiguous conversion. The partial diagnostic is the 5131/// "lead" diagnostic; it will be given two arguments, the source and 5132/// target types of the conversion. 5133void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS, 5134 SourceLocation CaretLoc, 5135 const PartialDiagnostic &PDiag) { 5136 Diag(CaretLoc, PDiag) 5137 << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType(); 5138 for (AmbiguousConversionSequence::const_iterator 5139 I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) { 5140 NoteOverloadCandidate(*I); 5141 } 5142} 5143 5144namespace { 5145 5146void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 5147 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 5148 assert(Conv.isBad()); 5149 assert(Cand->Function && "for now, candidate must be a function"); 5150 FunctionDecl *Fn = Cand->Function; 5151 5152 // There's a conversion slot for the object argument if this is a 5153 // non-constructor method. Note that 'I' corresponds the 5154 // conversion-slot index. 5155 bool isObjectArgument = false; 5156 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 5157 if (I == 0) 5158 isObjectArgument = true; 5159 else 5160 I--; 5161 } 5162 5163 std::string FnDesc; 5164 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5165 5166 Expr *FromExpr = Conv.Bad.FromExpr; 5167 QualType FromTy = Conv.Bad.getFromType(); 5168 QualType ToTy = Conv.Bad.getToType(); 5169 5170 if (FromTy == S.Context.OverloadTy) { 5171 assert(FromExpr && "overload set argument came from implicit argument?"); 5172 Expr *E = FromExpr->IgnoreParens(); 5173 if (isa<UnaryOperator>(E)) 5174 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 5175 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 5176 5177 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 5178 << (unsigned) FnKind << FnDesc 5179 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5180 << ToTy << Name << I+1; 5181 return; 5182 } 5183 5184 // Do some hand-waving analysis to see if the non-viability is due 5185 // to a qualifier mismatch. 5186 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 5187 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 5188 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 5189 CToTy = RT->getPointeeType(); 5190 else { 5191 // TODO: detect and diagnose the full richness of const mismatches. 5192 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 5193 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 5194 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 5195 } 5196 5197 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 5198 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 5199 // It is dumb that we have to do this here. 5200 while (isa<ArrayType>(CFromTy)) 5201 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 5202 while (isa<ArrayType>(CToTy)) 5203 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 5204 5205 Qualifiers FromQs = CFromTy.getQualifiers(); 5206 Qualifiers ToQs = CToTy.getQualifiers(); 5207 5208 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 5209 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 5210 << (unsigned) FnKind << FnDesc 5211 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5212 << FromTy 5213 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 5214 << (unsigned) isObjectArgument << I+1; 5215 return; 5216 } 5217 5218 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5219 assert(CVR && "unexpected qualifiers mismatch"); 5220 5221 if (isObjectArgument) { 5222 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 5223 << (unsigned) FnKind << FnDesc 5224 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5225 << FromTy << (CVR - 1); 5226 } else { 5227 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 5228 << (unsigned) FnKind << FnDesc 5229 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5230 << FromTy << (CVR - 1) << I+1; 5231 } 5232 return; 5233 } 5234 5235 // Diagnose references or pointers to incomplete types differently, 5236 // since it's far from impossible that the incompleteness triggered 5237 // the failure. 5238 QualType TempFromTy = FromTy.getNonReferenceType(); 5239 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 5240 TempFromTy = PTy->getPointeeType(); 5241 if (TempFromTy->isIncompleteType()) { 5242 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 5243 << (unsigned) FnKind << FnDesc 5244 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5245 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5246 return; 5247 } 5248 5249 // TODO: specialize more based on the kind of mismatch 5250 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) 5251 << (unsigned) FnKind << FnDesc 5252 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 5253 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 5254} 5255 5256void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 5257 unsigned NumFormalArgs) { 5258 // TODO: treat calls to a missing default constructor as a special case 5259 5260 FunctionDecl *Fn = Cand->Function; 5261 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 5262 5263 unsigned MinParams = Fn->getMinRequiredArguments(); 5264 5265 // at least / at most / exactly 5266 // FIXME: variadic templates "at most" should account for parameter packs 5267 unsigned mode, modeCount; 5268 if (NumFormalArgs < MinParams) { 5269 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 5270 (Cand->FailureKind == ovl_fail_bad_deduction && 5271 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 5272 if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) 5273 mode = 0; // "at least" 5274 else 5275 mode = 2; // "exactly" 5276 modeCount = MinParams; 5277 } else { 5278 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 5279 (Cand->FailureKind == ovl_fail_bad_deduction && 5280 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 5281 if (MinParams != FnTy->getNumArgs()) 5282 mode = 1; // "at most" 5283 else 5284 mode = 2; // "exactly" 5285 modeCount = FnTy->getNumArgs(); 5286 } 5287 5288 std::string Description; 5289 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 5290 5291 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 5292 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 5293 << modeCount << NumFormalArgs; 5294} 5295 5296/// Diagnose a failed template-argument deduction. 5297void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 5298 Expr **Args, unsigned NumArgs) { 5299 FunctionDecl *Fn = Cand->Function; // pattern 5300 5301 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 5302 NamedDecl *ParamD; 5303 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 5304 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 5305 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 5306 switch (Cand->DeductionFailure.Result) { 5307 case Sema::TDK_Success: 5308 llvm_unreachable("TDK_success while diagnosing bad deduction"); 5309 5310 case Sema::TDK_Incomplete: { 5311 assert(ParamD && "no parameter found for incomplete deduction result"); 5312 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 5313 << ParamD->getDeclName(); 5314 return; 5315 } 5316 5317 case Sema::TDK_Inconsistent: 5318 case Sema::TDK_InconsistentQuals: { 5319 assert(ParamD && "no parameter found for inconsistent deduction result"); 5320 int which = 0; 5321 if (isa<TemplateTypeParmDecl>(ParamD)) 5322 which = 0; 5323 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 5324 which = 1; 5325 else { 5326 which = 2; 5327 } 5328 5329 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 5330 << which << ParamD->getDeclName() 5331 << *Cand->DeductionFailure.getFirstArg() 5332 << *Cand->DeductionFailure.getSecondArg(); 5333 return; 5334 } 5335 5336 case Sema::TDK_InvalidExplicitArguments: 5337 assert(ParamD && "no parameter found for invalid explicit arguments"); 5338 if (ParamD->getDeclName()) 5339 S.Diag(Fn->getLocation(), 5340 diag::note_ovl_candidate_explicit_arg_mismatch_named) 5341 << ParamD->getDeclName(); 5342 else { 5343 int index = 0; 5344 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 5345 index = TTP->getIndex(); 5346 else if (NonTypeTemplateParmDecl *NTTP 5347 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 5348 index = NTTP->getIndex(); 5349 else 5350 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 5351 S.Diag(Fn->getLocation(), 5352 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 5353 << (index + 1); 5354 } 5355 return; 5356 5357 case Sema::TDK_TooManyArguments: 5358 case Sema::TDK_TooFewArguments: 5359 DiagnoseArityMismatch(S, Cand, NumArgs); 5360 return; 5361 5362 case Sema::TDK_InstantiationDepth: 5363 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 5364 return; 5365 5366 case Sema::TDK_SubstitutionFailure: { 5367 std::string ArgString; 5368 if (TemplateArgumentList *Args 5369 = Cand->DeductionFailure.getTemplateArgumentList()) 5370 ArgString = S.getTemplateArgumentBindingsText( 5371 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 5372 *Args); 5373 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 5374 << ArgString; 5375 return; 5376 } 5377 5378 // TODO: diagnose these individually, then kill off 5379 // note_ovl_candidate_bad_deduction, which is uselessly vague. 5380 case Sema::TDK_NonDeducedMismatch: 5381 case Sema::TDK_FailedOverloadResolution: 5382 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 5383 return; 5384 } 5385} 5386 5387/// Generates a 'note' diagnostic for an overload candidate. We've 5388/// already generated a primary error at the call site. 5389/// 5390/// It really does need to be a single diagnostic with its caret 5391/// pointed at the candidate declaration. Yes, this creates some 5392/// major challenges of technical writing. Yes, this makes pointing 5393/// out problems with specific arguments quite awkward. It's still 5394/// better than generating twenty screens of text for every failed 5395/// overload. 5396/// 5397/// It would be great to be able to express per-candidate problems 5398/// more richly for those diagnostic clients that cared, but we'd 5399/// still have to be just as careful with the default diagnostics. 5400void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 5401 Expr **Args, unsigned NumArgs) { 5402 FunctionDecl *Fn = Cand->Function; 5403 5404 // Note deleted candidates, but only if they're viable. 5405 if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { 5406 std::string FnDesc; 5407 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 5408 5409 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 5410 << FnKind << FnDesc << Fn->isDeleted(); 5411 return; 5412 } 5413 5414 // We don't really have anything else to say about viable candidates. 5415 if (Cand->Viable) { 5416 S.NoteOverloadCandidate(Fn); 5417 return; 5418 } 5419 5420 switch (Cand->FailureKind) { 5421 case ovl_fail_too_many_arguments: 5422 case ovl_fail_too_few_arguments: 5423 return DiagnoseArityMismatch(S, Cand, NumArgs); 5424 5425 case ovl_fail_bad_deduction: 5426 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 5427 5428 case ovl_fail_trivial_conversion: 5429 case ovl_fail_bad_final_conversion: 5430 case ovl_fail_final_conversion_not_exact: 5431 return S.NoteOverloadCandidate(Fn); 5432 5433 case ovl_fail_bad_conversion: { 5434 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 5435 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 5436 if (Cand->Conversions[I].isBad()) 5437 return DiagnoseBadConversion(S, Cand, I); 5438 5439 // FIXME: this currently happens when we're called from SemaInit 5440 // when user-conversion overload fails. Figure out how to handle 5441 // those conditions and diagnose them well. 5442 return S.NoteOverloadCandidate(Fn); 5443 } 5444 } 5445} 5446 5447void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 5448 // Desugar the type of the surrogate down to a function type, 5449 // retaining as many typedefs as possible while still showing 5450 // the function type (and, therefore, its parameter types). 5451 QualType FnType = Cand->Surrogate->getConversionType(); 5452 bool isLValueReference = false; 5453 bool isRValueReference = false; 5454 bool isPointer = false; 5455 if (const LValueReferenceType *FnTypeRef = 5456 FnType->getAs<LValueReferenceType>()) { 5457 FnType = FnTypeRef->getPointeeType(); 5458 isLValueReference = true; 5459 } else if (const RValueReferenceType *FnTypeRef = 5460 FnType->getAs<RValueReferenceType>()) { 5461 FnType = FnTypeRef->getPointeeType(); 5462 isRValueReference = true; 5463 } 5464 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 5465 FnType = FnTypePtr->getPointeeType(); 5466 isPointer = true; 5467 } 5468 // Desugar down to a function type. 5469 FnType = QualType(FnType->getAs<FunctionType>(), 0); 5470 // Reconstruct the pointer/reference as appropriate. 5471 if (isPointer) FnType = S.Context.getPointerType(FnType); 5472 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 5473 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 5474 5475 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 5476 << FnType; 5477} 5478 5479void NoteBuiltinOperatorCandidate(Sema &S, 5480 const char *Opc, 5481 SourceLocation OpLoc, 5482 OverloadCandidate *Cand) { 5483 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 5484 std::string TypeStr("operator"); 5485 TypeStr += Opc; 5486 TypeStr += "("; 5487 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 5488 if (Cand->Conversions.size() == 1) { 5489 TypeStr += ")"; 5490 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 5491 } else { 5492 TypeStr += ", "; 5493 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 5494 TypeStr += ")"; 5495 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 5496 } 5497} 5498 5499void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 5500 OverloadCandidate *Cand) { 5501 unsigned NoOperands = Cand->Conversions.size(); 5502 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 5503 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 5504 if (ICS.isBad()) break; // all meaningless after first invalid 5505 if (!ICS.isAmbiguous()) continue; 5506 5507 S.DiagnoseAmbiguousConversion(ICS, OpLoc, 5508 S.PDiag(diag::note_ambiguous_type_conversion)); 5509 } 5510} 5511 5512SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 5513 if (Cand->Function) 5514 return Cand->Function->getLocation(); 5515 if (Cand->IsSurrogate) 5516 return Cand->Surrogate->getLocation(); 5517 return SourceLocation(); 5518} 5519 5520struct CompareOverloadCandidatesForDisplay { 5521 Sema &S; 5522 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 5523 5524 bool operator()(const OverloadCandidate *L, 5525 const OverloadCandidate *R) { 5526 // Fast-path this check. 5527 if (L == R) return false; 5528 5529 // Order first by viability. 5530 if (L->Viable) { 5531 if (!R->Viable) return true; 5532 5533 // TODO: introduce a tri-valued comparison for overload 5534 // candidates. Would be more worthwhile if we had a sort 5535 // that could exploit it. 5536 if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true; 5537 if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false; 5538 } else if (R->Viable) 5539 return false; 5540 5541 assert(L->Viable == R->Viable); 5542 5543 // Criteria by which we can sort non-viable candidates: 5544 if (!L->Viable) { 5545 // 1. Arity mismatches come after other candidates. 5546 if (L->FailureKind == ovl_fail_too_many_arguments || 5547 L->FailureKind == ovl_fail_too_few_arguments) 5548 return false; 5549 if (R->FailureKind == ovl_fail_too_many_arguments || 5550 R->FailureKind == ovl_fail_too_few_arguments) 5551 return true; 5552 5553 // 2. Bad conversions come first and are ordered by the number 5554 // of bad conversions and quality of good conversions. 5555 if (L->FailureKind == ovl_fail_bad_conversion) { 5556 if (R->FailureKind != ovl_fail_bad_conversion) 5557 return true; 5558 5559 // If there's any ordering between the defined conversions... 5560 // FIXME: this might not be transitive. 5561 assert(L->Conversions.size() == R->Conversions.size()); 5562 5563 int leftBetter = 0; 5564 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 5565 for (unsigned E = L->Conversions.size(); I != E; ++I) { 5566 switch (S.CompareImplicitConversionSequences(L->Conversions[I], 5567 R->Conversions[I])) { 5568 case ImplicitConversionSequence::Better: 5569 leftBetter++; 5570 break; 5571 5572 case ImplicitConversionSequence::Worse: 5573 leftBetter--; 5574 break; 5575 5576 case ImplicitConversionSequence::Indistinguishable: 5577 break; 5578 } 5579 } 5580 if (leftBetter > 0) return true; 5581 if (leftBetter < 0) return false; 5582 5583 } else if (R->FailureKind == ovl_fail_bad_conversion) 5584 return false; 5585 5586 // TODO: others? 5587 } 5588 5589 // Sort everything else by location. 5590 SourceLocation LLoc = GetLocationForCandidate(L); 5591 SourceLocation RLoc = GetLocationForCandidate(R); 5592 5593 // Put candidates without locations (e.g. builtins) at the end. 5594 if (LLoc.isInvalid()) return false; 5595 if (RLoc.isInvalid()) return true; 5596 5597 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 5598 } 5599}; 5600 5601/// CompleteNonViableCandidate - Normally, overload resolution only 5602/// computes up to the first 5603void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 5604 Expr **Args, unsigned NumArgs) { 5605 assert(!Cand->Viable); 5606 5607 // Don't do anything on failures other than bad conversion. 5608 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 5609 5610 // Skip forward to the first bad conversion. 5611 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 5612 unsigned ConvCount = Cand->Conversions.size(); 5613 while (true) { 5614 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 5615 ConvIdx++; 5616 if (Cand->Conversions[ConvIdx - 1].isBad()) 5617 break; 5618 } 5619 5620 if (ConvIdx == ConvCount) 5621 return; 5622 5623 assert(!Cand->Conversions[ConvIdx].isInitialized() && 5624 "remaining conversion is initialized?"); 5625 5626 // FIXME: this should probably be preserved from the overload 5627 // operation somehow. 5628 bool SuppressUserConversions = false; 5629 5630 const FunctionProtoType* Proto; 5631 unsigned ArgIdx = ConvIdx; 5632 5633 if (Cand->IsSurrogate) { 5634 QualType ConvType 5635 = Cand->Surrogate->getConversionType().getNonReferenceType(); 5636 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5637 ConvType = ConvPtrType->getPointeeType(); 5638 Proto = ConvType->getAs<FunctionProtoType>(); 5639 ArgIdx--; 5640 } else if (Cand->Function) { 5641 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 5642 if (isa<CXXMethodDecl>(Cand->Function) && 5643 !isa<CXXConstructorDecl>(Cand->Function)) 5644 ArgIdx--; 5645 } else { 5646 // Builtin binary operator with a bad first conversion. 5647 assert(ConvCount <= 3); 5648 for (; ConvIdx != ConvCount; ++ConvIdx) 5649 Cand->Conversions[ConvIdx] 5650 = TryCopyInitialization(S, Args[ConvIdx], 5651 Cand->BuiltinTypes.ParamTypes[ConvIdx], 5652 SuppressUserConversions, 5653 /*InOverloadResolution*/ true); 5654 return; 5655 } 5656 5657 // Fill in the rest of the conversions. 5658 unsigned NumArgsInProto = Proto->getNumArgs(); 5659 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 5660 if (ArgIdx < NumArgsInProto) 5661 Cand->Conversions[ConvIdx] 5662 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 5663 SuppressUserConversions, 5664 /*InOverloadResolution=*/true); 5665 else 5666 Cand->Conversions[ConvIdx].setEllipsis(); 5667 } 5668} 5669 5670} // end anonymous namespace 5671 5672/// PrintOverloadCandidates - When overload resolution fails, prints 5673/// diagnostic messages containing the candidates in the candidate 5674/// set. 5675void 5676Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 5677 OverloadCandidateDisplayKind OCD, 5678 Expr **Args, unsigned NumArgs, 5679 const char *Opc, 5680 SourceLocation OpLoc) { 5681 // Sort the candidates by viability and position. Sorting directly would 5682 // be prohibitive, so we make a set of pointers and sort those. 5683 llvm::SmallVector<OverloadCandidate*, 32> Cands; 5684 if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size()); 5685 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 5686 LastCand = CandidateSet.end(); 5687 Cand != LastCand; ++Cand) { 5688 if (Cand->Viable) 5689 Cands.push_back(Cand); 5690 else if (OCD == OCD_AllCandidates) { 5691 CompleteNonViableCandidate(*this, Cand, Args, NumArgs); 5692 if (Cand->Function || Cand->IsSurrogate) 5693 Cands.push_back(Cand); 5694 // Otherwise, this a non-viable builtin candidate. We do not, in general, 5695 // want to list every possible builtin candidate. 5696 } 5697 } 5698 5699 std::sort(Cands.begin(), Cands.end(), 5700 CompareOverloadCandidatesForDisplay(*this)); 5701 5702 bool ReportedAmbiguousConversions = false; 5703 5704 llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; 5705 const Diagnostic::OverloadsShown ShowOverloads = Diags.getShowOverloads(); 5706 unsigned CandsShown = 0; 5707 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 5708 OverloadCandidate *Cand = *I; 5709 5710 // Set an arbitrary limit on the number of candidate functions we'll spam 5711 // the user with. FIXME: This limit should depend on details of the 5712 // candidate list. 5713 if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) { 5714 break; 5715 } 5716 ++CandsShown; 5717 5718 if (Cand->Function) 5719 NoteFunctionCandidate(*this, Cand, Args, NumArgs); 5720 else if (Cand->IsSurrogate) 5721 NoteSurrogateCandidate(*this, Cand); 5722 else { 5723 assert(Cand->Viable && 5724 "Non-viable built-in candidates are not added to Cands."); 5725 // Generally we only see ambiguities including viable builtin 5726 // operators if overload resolution got screwed up by an 5727 // ambiguous user-defined conversion. 5728 // 5729 // FIXME: It's quite possible for different conversions to see 5730 // different ambiguities, though. 5731 if (!ReportedAmbiguousConversions) { 5732 NoteAmbiguousUserConversions(*this, OpLoc, Cand); 5733 ReportedAmbiguousConversions = true; 5734 } 5735 5736 // If this is a viable builtin, print it. 5737 NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand); 5738 } 5739 } 5740 5741 if (I != E) 5742 Diag(OpLoc, diag::note_ovl_too_many_candidates) << E - I; 5743} 5744 5745static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { 5746 if (isa<UnresolvedLookupExpr>(E)) 5747 return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D); 5748 5749 return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D); 5750} 5751 5752/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 5753/// an overloaded function (C++ [over.over]), where @p From is an 5754/// expression with overloaded function type and @p ToType is the type 5755/// we're trying to resolve to. For example: 5756/// 5757/// @code 5758/// int f(double); 5759/// int f(int); 5760/// 5761/// int (*pfd)(double) = f; // selects f(double) 5762/// @endcode 5763/// 5764/// This routine returns the resulting FunctionDecl if it could be 5765/// resolved, and NULL otherwise. When @p Complain is true, this 5766/// routine will emit diagnostics if there is an error. 5767FunctionDecl * 5768Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 5769 bool Complain, 5770 DeclAccessPair &FoundResult) { 5771 QualType FunctionType = ToType; 5772 bool IsMember = false; 5773 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 5774 FunctionType = ToTypePtr->getPointeeType(); 5775 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 5776 FunctionType = ToTypeRef->getPointeeType(); 5777 else if (const MemberPointerType *MemTypePtr = 5778 ToType->getAs<MemberPointerType>()) { 5779 FunctionType = MemTypePtr->getPointeeType(); 5780 IsMember = true; 5781 } 5782 5783 // C++ [over.over]p1: 5784 // [...] [Note: any redundant set of parentheses surrounding the 5785 // overloaded function name is ignored (5.1). ] 5786 // C++ [over.over]p1: 5787 // [...] The overloaded function name can be preceded by the & 5788 // operator. 5789 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 5790 TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; 5791 if (OvlExpr->hasExplicitTemplateArgs()) { 5792 OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); 5793 ExplicitTemplateArgs = &ETABuffer; 5794 } 5795 5796 // We expect a pointer or reference to function, or a function pointer. 5797 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 5798 if (!FunctionType->isFunctionType()) { 5799 if (Complain) 5800 Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 5801 << OvlExpr->getName() << ToType; 5802 5803 return 0; 5804 } 5805 5806 assert(From->getType() == Context.OverloadTy); 5807 5808 // Look through all of the overloaded functions, searching for one 5809 // whose type matches exactly. 5810 llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 5811 llvm::SmallVector<FunctionDecl *, 4> NonMatches; 5812 5813 bool FoundNonTemplateFunction = false; 5814 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 5815 E = OvlExpr->decls_end(); I != E; ++I) { 5816 // Look through any using declarations to find the underlying function. 5817 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 5818 5819 // C++ [over.over]p3: 5820 // Non-member functions and static member functions match 5821 // targets of type "pointer-to-function" or "reference-to-function." 5822 // Nonstatic member functions match targets of 5823 // type "pointer-to-member-function." 5824 // Note that according to DR 247, the containing class does not matter. 5825 5826 if (FunctionTemplateDecl *FunctionTemplate 5827 = dyn_cast<FunctionTemplateDecl>(Fn)) { 5828 if (CXXMethodDecl *Method 5829 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 5830 // Skip non-static function templates when converting to pointer, and 5831 // static when converting to member pointer. 5832 if (Method->isStatic() == IsMember) 5833 continue; 5834 } else if (IsMember) 5835 continue; 5836 5837 // C++ [over.over]p2: 5838 // If the name is a function template, template argument deduction is 5839 // done (14.8.2.2), and if the argument deduction succeeds, the 5840 // resulting template argument list is used to generate a single 5841 // function template specialization, which is added to the set of 5842 // overloaded functions considered. 5843 // FIXME: We don't really want to build the specialization here, do we? 5844 FunctionDecl *Specialization = 0; 5845 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 5846 if (TemplateDeductionResult Result 5847 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 5848 FunctionType, Specialization, Info)) { 5849 // FIXME: make a note of the failed deduction for diagnostics. 5850 (void)Result; 5851 } else { 5852 // FIXME: If the match isn't exact, shouldn't we just drop this as 5853 // a candidate? Find a testcase before changing the code. 5854 assert(FunctionType 5855 == Context.getCanonicalType(Specialization->getType())); 5856 Matches.push_back(std::make_pair(I.getPair(), 5857 cast<FunctionDecl>(Specialization->getCanonicalDecl()))); 5858 } 5859 5860 continue; 5861 } 5862 5863 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5864 // Skip non-static functions when converting to pointer, and static 5865 // when converting to member pointer. 5866 if (Method->isStatic() == IsMember) 5867 continue; 5868 5869 // If we have explicit template arguments, skip non-templates. 5870 if (OvlExpr->hasExplicitTemplateArgs()) 5871 continue; 5872 } else if (IsMember) 5873 continue; 5874 5875 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 5876 QualType ResultTy; 5877 if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || 5878 IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 5879 ResultTy)) { 5880 Matches.push_back(std::make_pair(I.getPair(), 5881 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 5882 FoundNonTemplateFunction = true; 5883 } 5884 } 5885 } 5886 5887 // If there were 0 or 1 matches, we're done. 5888 if (Matches.empty()) { 5889 if (Complain) { 5890 Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) 5891 << OvlExpr->getName() << FunctionType; 5892 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 5893 E = OvlExpr->decls_end(); 5894 I != E; ++I) 5895 if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 5896 NoteOverloadCandidate(F); 5897 } 5898 5899 return 0; 5900 } else if (Matches.size() == 1) { 5901 FunctionDecl *Result = Matches[0].second; 5902 FoundResult = Matches[0].first; 5903 MarkDeclarationReferenced(From->getLocStart(), Result); 5904 if (Complain) 5905 CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); 5906 return Result; 5907 } 5908 5909 // C++ [over.over]p4: 5910 // If more than one function is selected, [...] 5911 if (!FoundNonTemplateFunction) { 5912 // [...] and any given function template specialization F1 is 5913 // eliminated if the set contains a second function template 5914 // specialization whose function template is more specialized 5915 // than the function template of F1 according to the partial 5916 // ordering rules of 14.5.5.2. 5917 5918 // The algorithm specified above is quadratic. We instead use a 5919 // two-pass algorithm (similar to the one used to identify the 5920 // best viable function in an overload set) that identifies the 5921 // best function template (if it exists). 5922 5923 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 5924 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 5925 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 5926 5927 UnresolvedSetIterator Result = 5928 getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 5929 TPOC_Other, From->getLocStart(), 5930 PDiag(), 5931 PDiag(diag::err_addr_ovl_ambiguous) 5932 << Matches[0].second->getDeclName(), 5933 PDiag(diag::note_ovl_candidate) 5934 << (unsigned) oc_function_template); 5935 assert(Result != MatchesCopy.end() && "no most-specialized template"); 5936 MarkDeclarationReferenced(From->getLocStart(), *Result); 5937 FoundResult = Matches[Result - MatchesCopy.begin()].first; 5938 if (Complain) { 5939 CheckUnresolvedAccess(*this, OvlExpr, FoundResult); 5940 DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc()); 5941 } 5942 return cast<FunctionDecl>(*Result); 5943 } 5944 5945 // [...] any function template specializations in the set are 5946 // eliminated if the set also contains a non-template function, [...] 5947 for (unsigned I = 0, N = Matches.size(); I != N; ) { 5948 if (Matches[I].second->getPrimaryTemplate() == 0) 5949 ++I; 5950 else { 5951 Matches[I] = Matches[--N]; 5952 Matches.set_size(N); 5953 } 5954 } 5955 5956 // [...] After such eliminations, if any, there shall remain exactly one 5957 // selected function. 5958 if (Matches.size() == 1) { 5959 MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); 5960 FoundResult = Matches[0].first; 5961 if (Complain) { 5962 CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); 5963 DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc()); 5964 } 5965 return cast<FunctionDecl>(Matches[0].second); 5966 } 5967 5968 // FIXME: We should probably return the same thing that BestViableFunction 5969 // returns (even if we issue the diagnostics here). 5970 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 5971 << Matches[0].second->getDeclName(); 5972 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 5973 NoteOverloadCandidate(Matches[I].second); 5974 return 0; 5975} 5976 5977/// \brief Given an expression that refers to an overloaded function, try to 5978/// resolve that overloaded function expression down to a single function. 5979/// 5980/// This routine can only resolve template-ids that refer to a single function 5981/// template, where that template-id refers to a single template whose template 5982/// arguments are either provided by the template-id or have defaults, 5983/// as described in C++0x [temp.arg.explicit]p3. 5984FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { 5985 // C++ [over.over]p1: 5986 // [...] [Note: any redundant set of parentheses surrounding the 5987 // overloaded function name is ignored (5.1). ] 5988 // C++ [over.over]p1: 5989 // [...] The overloaded function name can be preceded by the & 5990 // operator. 5991 5992 if (From->getType() != Context.OverloadTy) 5993 return 0; 5994 5995 OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); 5996 5997 // If we didn't actually find any template-ids, we're done. 5998 if (!OvlExpr->hasExplicitTemplateArgs()) 5999 return 0; 6000 6001 TemplateArgumentListInfo ExplicitTemplateArgs; 6002 OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 6003 6004 // Look through all of the overloaded functions, searching for one 6005 // whose type matches exactly. 6006 FunctionDecl *Matched = 0; 6007 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6008 E = OvlExpr->decls_end(); I != E; ++I) { 6009 // C++0x [temp.arg.explicit]p3: 6010 // [...] In contexts where deduction is done and fails, or in contexts 6011 // where deduction is not done, if a template argument list is 6012 // specified and it, along with any default template arguments, 6013 // identifies a single function template specialization, then the 6014 // template-id is an lvalue for the function template specialization. 6015 FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I); 6016 6017 // C++ [over.over]p2: 6018 // If the name is a function template, template argument deduction is 6019 // done (14.8.2.2), and if the argument deduction succeeds, the 6020 // resulting template argument list is used to generate a single 6021 // function template specialization, which is added to the set of 6022 // overloaded functions considered. 6023 FunctionDecl *Specialization = 0; 6024 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 6025 if (TemplateDeductionResult Result 6026 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 6027 Specialization, Info)) { 6028 // FIXME: make a note of the failed deduction for diagnostics. 6029 (void)Result; 6030 continue; 6031 } 6032 6033 // Multiple matches; we can't resolve to a single declaration. 6034 if (Matched) 6035 return 0; 6036 6037 Matched = Specialization; 6038 } 6039 6040 return Matched; 6041} 6042 6043/// \brief Add a single candidate to the overload set. 6044static void AddOverloadedCallCandidate(Sema &S, 6045 DeclAccessPair FoundDecl, 6046 const TemplateArgumentListInfo *ExplicitTemplateArgs, 6047 Expr **Args, unsigned NumArgs, 6048 OverloadCandidateSet &CandidateSet, 6049 bool PartialOverloading) { 6050 NamedDecl *Callee = FoundDecl.getDecl(); 6051 if (isa<UsingShadowDecl>(Callee)) 6052 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 6053 6054 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 6055 assert(!ExplicitTemplateArgs && "Explicit template arguments?"); 6056 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 6057 false, PartialOverloading); 6058 return; 6059 } 6060 6061 if (FunctionTemplateDecl *FuncTemplate 6062 = dyn_cast<FunctionTemplateDecl>(Callee)) { 6063 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 6064 ExplicitTemplateArgs, 6065 Args, NumArgs, CandidateSet); 6066 return; 6067 } 6068 6069 assert(false && "unhandled case in overloaded call candidate"); 6070 6071 // do nothing? 6072} 6073 6074/// \brief Add the overload candidates named by callee and/or found by argument 6075/// dependent lookup to the given overload set. 6076void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 6077 Expr **Args, unsigned NumArgs, 6078 OverloadCandidateSet &CandidateSet, 6079 bool PartialOverloading) { 6080 6081#ifndef NDEBUG 6082 // Verify that ArgumentDependentLookup is consistent with the rules 6083 // in C++0x [basic.lookup.argdep]p3: 6084 // 6085 // Let X be the lookup set produced by unqualified lookup (3.4.1) 6086 // and let Y be the lookup set produced by argument dependent 6087 // lookup (defined as follows). If X contains 6088 // 6089 // -- a declaration of a class member, or 6090 // 6091 // -- a block-scope function declaration that is not a 6092 // using-declaration, or 6093 // 6094 // -- a declaration that is neither a function or a function 6095 // template 6096 // 6097 // then Y is empty. 6098 6099 if (ULE->requiresADL()) { 6100 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6101 E = ULE->decls_end(); I != E; ++I) { 6102 assert(!(*I)->getDeclContext()->isRecord()); 6103 assert(isa<UsingShadowDecl>(*I) || 6104 !(*I)->getDeclContext()->isFunctionOrMethod()); 6105 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 6106 } 6107 } 6108#endif 6109 6110 // It would be nice to avoid this copy. 6111 TemplateArgumentListInfo TABuffer; 6112 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6113 if (ULE->hasExplicitTemplateArgs()) { 6114 ULE->copyTemplateArgumentsInto(TABuffer); 6115 ExplicitTemplateArgs = &TABuffer; 6116 } 6117 6118 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 6119 E = ULE->decls_end(); I != E; ++I) 6120 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 6121 Args, NumArgs, CandidateSet, 6122 PartialOverloading); 6123 6124 if (ULE->requiresADL()) 6125 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 6126 Args, NumArgs, 6127 ExplicitTemplateArgs, 6128 CandidateSet, 6129 PartialOverloading); 6130} 6131 6132static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn, 6133 Expr **Args, unsigned NumArgs) { 6134 Fn->Destroy(SemaRef.Context); 6135 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 6136 Args[Arg]->Destroy(SemaRef.Context); 6137 return SemaRef.ExprError(); 6138} 6139 6140/// Attempts to recover from a call where no functions were found. 6141/// 6142/// Returns true if new candidates were found. 6143static Sema::OwningExprResult 6144BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 6145 UnresolvedLookupExpr *ULE, 6146 SourceLocation LParenLoc, 6147 Expr **Args, unsigned NumArgs, 6148 SourceLocation *CommaLocs, 6149 SourceLocation RParenLoc) { 6150 6151 CXXScopeSpec SS; 6152 if (ULE->getQualifier()) { 6153 SS.setScopeRep(ULE->getQualifier()); 6154 SS.setRange(ULE->getQualifierRange()); 6155 } 6156 6157 TemplateArgumentListInfo TABuffer; 6158 const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 6159 if (ULE->hasExplicitTemplateArgs()) { 6160 ULE->copyTemplateArgumentsInto(TABuffer); 6161 ExplicitTemplateArgs = &TABuffer; 6162 } 6163 6164 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 6165 Sema::LookupOrdinaryName); 6166 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression)) 6167 return Destroy(SemaRef, Fn, Args, NumArgs); 6168 6169 assert(!R.empty() && "lookup results empty despite recovery"); 6170 6171 // Build an implicit member call if appropriate. Just drop the 6172 // casts and such from the call, we don't really care. 6173 Sema::OwningExprResult NewFn = SemaRef.ExprError(); 6174 if ((*R.begin())->isCXXClassMember()) 6175 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); 6176 else if (ExplicitTemplateArgs) 6177 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 6178 else 6179 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 6180 6181 if (NewFn.isInvalid()) 6182 return Destroy(SemaRef, Fn, Args, NumArgs); 6183 6184 Fn->Destroy(SemaRef.Context); 6185 6186 // This shouldn't cause an infinite loop because we're giving it 6187 // an expression with non-empty lookup results, which should never 6188 // end up here. 6189 return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc, 6190 Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs), 6191 CommaLocs, RParenLoc); 6192} 6193 6194/// ResolveOverloadedCallFn - Given the call expression that calls Fn 6195/// (which eventually refers to the declaration Func) and the call 6196/// arguments Args/NumArgs, attempt to resolve the function call down 6197/// to a specific function. If overload resolution succeeds, returns 6198/// the function declaration produced by overload 6199/// resolution. Otherwise, emits diagnostics, deletes all of the 6200/// arguments and Fn, and returns NULL. 6201Sema::OwningExprResult 6202Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 6203 SourceLocation LParenLoc, 6204 Expr **Args, unsigned NumArgs, 6205 SourceLocation *CommaLocs, 6206 SourceLocation RParenLoc) { 6207#ifndef NDEBUG 6208 if (ULE->requiresADL()) { 6209 // To do ADL, we must have found an unqualified name. 6210 assert(!ULE->getQualifier() && "qualified name with ADL"); 6211 6212 // We don't perform ADL for implicit declarations of builtins. 6213 // Verify that this was correctly set up. 6214 FunctionDecl *F; 6215 if (ULE->decls_begin() + 1 == ULE->decls_end() && 6216 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 6217 F->getBuiltinID() && F->isImplicit()) 6218 assert(0 && "performing ADL for builtin"); 6219 6220 // We don't perform ADL in C. 6221 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 6222 } 6223#endif 6224 6225 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 6226 6227 // Add the functions denoted by the callee to the set of candidate 6228 // functions, including those from argument-dependent lookup. 6229 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 6230 6231 // If we found nothing, try to recover. 6232 // AddRecoveryCallCandidates diagnoses the error itself, so we just 6233 // bailout out if it fails. 6234 if (CandidateSet.empty()) 6235 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 6236 CommaLocs, RParenLoc); 6237 6238 OverloadCandidateSet::iterator Best; 6239 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 6240 case OR_Success: { 6241 FunctionDecl *FDecl = Best->Function; 6242 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 6243 DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc()); 6244 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 6245 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); 6246 } 6247 6248 case OR_No_Viable_Function: 6249 Diag(Fn->getSourceRange().getBegin(), 6250 diag::err_ovl_no_viable_function_in_call) 6251 << ULE->getName() << Fn->getSourceRange(); 6252 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6253 break; 6254 6255 case OR_Ambiguous: 6256 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 6257 << ULE->getName() << Fn->getSourceRange(); 6258 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 6259 break; 6260 6261 case OR_Deleted: 6262 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 6263 << Best->Function->isDeleted() 6264 << ULE->getName() 6265 << Fn->getSourceRange(); 6266 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6267 break; 6268 } 6269 6270 // Overload resolution failed. Destroy all of the subexpressions and 6271 // return NULL. 6272 Fn->Destroy(Context); 6273 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 6274 Args[Arg]->Destroy(Context); 6275 return ExprError(); 6276} 6277 6278static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 6279 return Functions.size() > 1 || 6280 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 6281} 6282 6283/// \brief Create a unary operation that may resolve to an overloaded 6284/// operator. 6285/// 6286/// \param OpLoc The location of the operator itself (e.g., '*'). 6287/// 6288/// \param OpcIn The UnaryOperator::Opcode that describes this 6289/// operator. 6290/// 6291/// \param Functions The set of non-member functions that will be 6292/// considered by overload resolution. The caller needs to build this 6293/// set based on the context using, e.g., 6294/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6295/// set should not contain any member functions; those will be added 6296/// by CreateOverloadedUnaryOp(). 6297/// 6298/// \param input The input argument. 6299Sema::OwningExprResult 6300Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 6301 const UnresolvedSetImpl &Fns, 6302 ExprArg input) { 6303 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 6304 Expr *Input = (Expr *)input.get(); 6305 6306 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 6307 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 6308 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6309 6310 Expr *Args[2] = { Input, 0 }; 6311 unsigned NumArgs = 1; 6312 6313 // For post-increment and post-decrement, add the implicit '0' as 6314 // the second argument, so that we know this is a post-increment or 6315 // post-decrement. 6316 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 6317 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 6318 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 6319 SourceLocation()); 6320 NumArgs = 2; 6321 } 6322 6323 if (Input->isTypeDependent()) { 6324 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6325 UnresolvedLookupExpr *Fn 6326 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6327 0, SourceRange(), OpName, OpLoc, 6328 /*ADL*/ true, IsOverloaded(Fns), 6329 Fns.begin(), Fns.end()); 6330 input.release(); 6331 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 6332 &Args[0], NumArgs, 6333 Context.DependentTy, 6334 OpLoc)); 6335 } 6336 6337 // Build an empty overload set. 6338 OverloadCandidateSet CandidateSet(OpLoc); 6339 6340 // Add the candidates from the given function set. 6341 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 6342 6343 // Add operator candidates that are member functions. 6344 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6345 6346 // Add candidates from ADL. 6347 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 6348 Args, NumArgs, 6349 /*ExplicitTemplateArgs*/ 0, 6350 CandidateSet); 6351 6352 // Add builtin operator candidates. 6353 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 6354 6355 // Perform overload resolution. 6356 OverloadCandidateSet::iterator Best; 6357 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6358 case OR_Success: { 6359 // We found a built-in operator or an overloaded operator. 6360 FunctionDecl *FnDecl = Best->Function; 6361 6362 if (FnDecl) { 6363 // We matched an overloaded operator. Build a call to that 6364 // operator. 6365 6366 // Convert the arguments. 6367 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 6368 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 6369 6370 if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 6371 Best->FoundDecl, Method)) 6372 return ExprError(); 6373 } else { 6374 // Convert the arguments. 6375 OwningExprResult InputInit 6376 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 6377 FnDecl->getParamDecl(0)), 6378 SourceLocation(), 6379 move(input)); 6380 if (InputInit.isInvalid()) 6381 return ExprError(); 6382 6383 input = move(InputInit); 6384 Input = (Expr *)input.get(); 6385 } 6386 6387 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 6388 6389 // Determine the result type 6390 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 6391 6392 // Build the actual expression node. 6393 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6394 SourceLocation()); 6395 UsualUnaryConversions(FnExpr); 6396 6397 input.release(); 6398 Args[0] = Input; 6399 ExprOwningPtr<CallExpr> TheCall(this, 6400 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 6401 Args, NumArgs, ResultTy, OpLoc)); 6402 6403 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 6404 FnDecl)) 6405 return ExprError(); 6406 6407 return MaybeBindToTemporary(TheCall.release()); 6408 } else { 6409 // We matched a built-in operator. Convert the arguments, then 6410 // break out so that we will build the appropriate built-in 6411 // operator node. 6412 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 6413 Best->Conversions[0], AA_Passing)) 6414 return ExprError(); 6415 6416 break; 6417 } 6418 } 6419 6420 case OR_No_Viable_Function: 6421 // No viable function; fall through to handling this as a 6422 // built-in operator, which will produce an error message for us. 6423 break; 6424 6425 case OR_Ambiguous: 6426 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6427 << UnaryOperator::getOpcodeStr(Opc) 6428 << Input->getSourceRange(); 6429 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs, 6430 UnaryOperator::getOpcodeStr(Opc), OpLoc); 6431 return ExprError(); 6432 6433 case OR_Deleted: 6434 Diag(OpLoc, diag::err_ovl_deleted_oper) 6435 << Best->Function->isDeleted() 6436 << UnaryOperator::getOpcodeStr(Opc) 6437 << Input->getSourceRange(); 6438 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6439 return ExprError(); 6440 } 6441 6442 // Either we found no viable overloaded operator or we matched a 6443 // built-in operator. In either case, fall through to trying to 6444 // build a built-in operation. 6445 input.release(); 6446 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 6447} 6448 6449/// \brief Create a binary operation that may resolve to an overloaded 6450/// operator. 6451/// 6452/// \param OpLoc The location of the operator itself (e.g., '+'). 6453/// 6454/// \param OpcIn The BinaryOperator::Opcode that describes this 6455/// operator. 6456/// 6457/// \param Functions The set of non-member functions that will be 6458/// considered by overload resolution. The caller needs to build this 6459/// set based on the context using, e.g., 6460/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 6461/// set should not contain any member functions; those will be added 6462/// by CreateOverloadedBinOp(). 6463/// 6464/// \param LHS Left-hand argument. 6465/// \param RHS Right-hand argument. 6466Sema::OwningExprResult 6467Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 6468 unsigned OpcIn, 6469 const UnresolvedSetImpl &Fns, 6470 Expr *LHS, Expr *RHS) { 6471 Expr *Args[2] = { LHS, RHS }; 6472 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 6473 6474 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 6475 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 6476 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 6477 6478 // If either side is type-dependent, create an appropriate dependent 6479 // expression. 6480 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 6481 if (Fns.empty()) { 6482 // If there are no functions to store, just build a dependent 6483 // BinaryOperator or CompoundAssignment. 6484 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 6485 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 6486 Context.DependentTy, OpLoc)); 6487 6488 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 6489 Context.DependentTy, 6490 Context.DependentTy, 6491 Context.DependentTy, 6492 OpLoc)); 6493 } 6494 6495 // FIXME: save results of ADL from here? 6496 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6497 UnresolvedLookupExpr *Fn 6498 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6499 0, SourceRange(), OpName, OpLoc, 6500 /*ADL*/ true, IsOverloaded(Fns), 6501 Fns.begin(), Fns.end()); 6502 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 6503 Args, 2, 6504 Context.DependentTy, 6505 OpLoc)); 6506 } 6507 6508 // If this is the .* operator, which is not overloadable, just 6509 // create a built-in binary operator. 6510 if (Opc == BinaryOperator::PtrMemD) 6511 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6512 6513 // If this is the assignment operator, we only perform overload resolution 6514 // if the left-hand side is a class or enumeration type. This is actually 6515 // a hack. The standard requires that we do overload resolution between the 6516 // various built-in candidates, but as DR507 points out, this can lead to 6517 // problems. So we do it this way, which pretty much follows what GCC does. 6518 // Note that we go the traditional code path for compound assignment forms. 6519 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) 6520 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6521 6522 // Build an empty overload set. 6523 OverloadCandidateSet CandidateSet(OpLoc); 6524 6525 // Add the candidates from the given function set. 6526 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 6527 6528 // Add operator candidates that are member functions. 6529 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 6530 6531 // Add candidates from ADL. 6532 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 6533 Args, 2, 6534 /*ExplicitTemplateArgs*/ 0, 6535 CandidateSet); 6536 6537 // Add builtin operator candidates. 6538 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 6539 6540 // Perform overload resolution. 6541 OverloadCandidateSet::iterator Best; 6542 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 6543 case OR_Success: { 6544 // We found a built-in operator or an overloaded operator. 6545 FunctionDecl *FnDecl = Best->Function; 6546 6547 if (FnDecl) { 6548 // We matched an overloaded operator. Build a call to that 6549 // operator. 6550 6551 // Convert the arguments. 6552 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 6553 // Best->Access is only meaningful for class members. 6554 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 6555 6556 OwningExprResult Arg1 6557 = PerformCopyInitialization( 6558 InitializedEntity::InitializeParameter( 6559 FnDecl->getParamDecl(0)), 6560 SourceLocation(), 6561 Owned(Args[1])); 6562 if (Arg1.isInvalid()) 6563 return ExprError(); 6564 6565 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 6566 Best->FoundDecl, Method)) 6567 return ExprError(); 6568 6569 Args[1] = RHS = Arg1.takeAs<Expr>(); 6570 } else { 6571 // Convert the arguments. 6572 OwningExprResult Arg0 6573 = PerformCopyInitialization( 6574 InitializedEntity::InitializeParameter( 6575 FnDecl->getParamDecl(0)), 6576 SourceLocation(), 6577 Owned(Args[0])); 6578 if (Arg0.isInvalid()) 6579 return ExprError(); 6580 6581 OwningExprResult Arg1 6582 = PerformCopyInitialization( 6583 InitializedEntity::InitializeParameter( 6584 FnDecl->getParamDecl(1)), 6585 SourceLocation(), 6586 Owned(Args[1])); 6587 if (Arg1.isInvalid()) 6588 return ExprError(); 6589 Args[0] = LHS = Arg0.takeAs<Expr>(); 6590 Args[1] = RHS = Arg1.takeAs<Expr>(); 6591 } 6592 6593 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 6594 6595 // Determine the result type 6596 QualType ResultTy 6597 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 6598 ResultTy = ResultTy.getNonReferenceType(); 6599 6600 // Build the actual expression node. 6601 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6602 OpLoc); 6603 UsualUnaryConversions(FnExpr); 6604 6605 ExprOwningPtr<CXXOperatorCallExpr> 6606 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 6607 Args, 2, ResultTy, 6608 OpLoc)); 6609 6610 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 6611 FnDecl)) 6612 return ExprError(); 6613 6614 return MaybeBindToTemporary(TheCall.release()); 6615 } else { 6616 // We matched a built-in operator. Convert the arguments, then 6617 // break out so that we will build the appropriate built-in 6618 // operator node. 6619 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 6620 Best->Conversions[0], AA_Passing) || 6621 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 6622 Best->Conversions[1], AA_Passing)) 6623 return ExprError(); 6624 6625 break; 6626 } 6627 } 6628 6629 case OR_No_Viable_Function: { 6630 // C++ [over.match.oper]p9: 6631 // If the operator is the operator , [...] and there are no 6632 // viable functions, then the operator is assumed to be the 6633 // built-in operator and interpreted according to clause 5. 6634 if (Opc == BinaryOperator::Comma) 6635 break; 6636 6637 // For class as left operand for assignment or compound assigment operator 6638 // do not fall through to handling in built-in, but report that no overloaded 6639 // assignment operator found 6640 OwningExprResult Result = ExprError(); 6641 if (Args[0]->getType()->isRecordType() && 6642 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 6643 Diag(OpLoc, diag::err_ovl_no_viable_oper) 6644 << BinaryOperator::getOpcodeStr(Opc) 6645 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6646 } else { 6647 // No viable function; try to create a built-in operation, which will 6648 // produce an error. Then, show the non-viable candidates. 6649 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6650 } 6651 assert(Result.isInvalid() && 6652 "C++ binary operator overloading is missing candidates!"); 6653 if (Result.isInvalid()) 6654 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 6655 BinaryOperator::getOpcodeStr(Opc), OpLoc); 6656 return move(Result); 6657 } 6658 6659 case OR_Ambiguous: 6660 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 6661 << BinaryOperator::getOpcodeStr(Opc) 6662 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6663 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 6664 BinaryOperator::getOpcodeStr(Opc), OpLoc); 6665 return ExprError(); 6666 6667 case OR_Deleted: 6668 Diag(OpLoc, diag::err_ovl_deleted_oper) 6669 << Best->Function->isDeleted() 6670 << BinaryOperator::getOpcodeStr(Opc) 6671 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6672 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2); 6673 return ExprError(); 6674 } 6675 6676 // We matched a built-in operator; build it. 6677 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 6678} 6679 6680Action::OwningExprResult 6681Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 6682 SourceLocation RLoc, 6683 ExprArg Base, ExprArg Idx) { 6684 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 6685 static_cast<Expr*>(Idx.get()) }; 6686 DeclarationName OpName = 6687 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 6688 6689 // If either side is type-dependent, create an appropriate dependent 6690 // expression. 6691 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 6692 6693 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 6694 UnresolvedLookupExpr *Fn 6695 = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, 6696 0, SourceRange(), OpName, LLoc, 6697 /*ADL*/ true, /*Overloaded*/ false, 6698 UnresolvedSetIterator(), 6699 UnresolvedSetIterator()); 6700 // Can't add any actual overloads yet 6701 6702 Base.release(); 6703 Idx.release(); 6704 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 6705 Args, 2, 6706 Context.DependentTy, 6707 RLoc)); 6708 } 6709 6710 // Build an empty overload set. 6711 OverloadCandidateSet CandidateSet(LLoc); 6712 6713 // Subscript can only be overloaded as a member function. 6714 6715 // Add operator candidates that are member functions. 6716 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 6717 6718 // Add builtin operator candidates. 6719 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 6720 6721 // Perform overload resolution. 6722 OverloadCandidateSet::iterator Best; 6723 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 6724 case OR_Success: { 6725 // We found a built-in operator or an overloaded operator. 6726 FunctionDecl *FnDecl = Best->Function; 6727 6728 if (FnDecl) { 6729 // We matched an overloaded operator. Build a call to that 6730 // operator. 6731 6732 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 6733 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 6734 6735 // Convert the arguments. 6736 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 6737 if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 6738 Best->FoundDecl, Method)) 6739 return ExprError(); 6740 6741 // Convert the arguments. 6742 OwningExprResult InputInit 6743 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 6744 FnDecl->getParamDecl(0)), 6745 SourceLocation(), 6746 Owned(Args[1])); 6747 if (InputInit.isInvalid()) 6748 return ExprError(); 6749 6750 Args[1] = InputInit.takeAs<Expr>(); 6751 6752 // Determine the result type 6753 QualType ResultTy 6754 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 6755 ResultTy = ResultTy.getNonReferenceType(); 6756 6757 // Build the actual expression node. 6758 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 6759 LLoc); 6760 UsualUnaryConversions(FnExpr); 6761 6762 Base.release(); 6763 Idx.release(); 6764 ExprOwningPtr<CXXOperatorCallExpr> 6765 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 6766 FnExpr, Args, 2, 6767 ResultTy, RLoc)); 6768 6769 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 6770 FnDecl)) 6771 return ExprError(); 6772 6773 return MaybeBindToTemporary(TheCall.release()); 6774 } else { 6775 // We matched a built-in operator. Convert the arguments, then 6776 // break out so that we will build the appropriate built-in 6777 // operator node. 6778 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 6779 Best->Conversions[0], AA_Passing) || 6780 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 6781 Best->Conversions[1], AA_Passing)) 6782 return ExprError(); 6783 6784 break; 6785 } 6786 } 6787 6788 case OR_No_Viable_Function: { 6789 if (CandidateSet.empty()) 6790 Diag(LLoc, diag::err_ovl_no_oper) 6791 << Args[0]->getType() << /*subscript*/ 0 6792 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6793 else 6794 Diag(LLoc, diag::err_ovl_no_viable_subscript) 6795 << Args[0]->getType() 6796 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6797 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 6798 "[]", LLoc); 6799 return ExprError(); 6800 } 6801 6802 case OR_Ambiguous: 6803 Diag(LLoc, diag::err_ovl_ambiguous_oper) 6804 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6805 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, 6806 "[]", LLoc); 6807 return ExprError(); 6808 6809 case OR_Deleted: 6810 Diag(LLoc, diag::err_ovl_deleted_oper) 6811 << Best->Function->isDeleted() << "[]" 6812 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 6813 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, 6814 "[]", LLoc); 6815 return ExprError(); 6816 } 6817 6818 // We matched a built-in operator; build it. 6819 Base.release(); 6820 Idx.release(); 6821 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 6822 Owned(Args[1]), RLoc); 6823} 6824 6825/// BuildCallToMemberFunction - Build a call to a member 6826/// function. MemExpr is the expression that refers to the member 6827/// function (and includes the object parameter), Args/NumArgs are the 6828/// arguments to the function call (not including the object 6829/// parameter). The caller needs to validate that the member 6830/// expression refers to a member function or an overloaded member 6831/// function. 6832Sema::OwningExprResult 6833Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 6834 SourceLocation LParenLoc, Expr **Args, 6835 unsigned NumArgs, SourceLocation *CommaLocs, 6836 SourceLocation RParenLoc) { 6837 // Dig out the member expression. This holds both the object 6838 // argument and the member function we're referring to. 6839 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 6840 6841 MemberExpr *MemExpr; 6842 CXXMethodDecl *Method = 0; 6843 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 6844 NestedNameSpecifier *Qualifier = 0; 6845 if (isa<MemberExpr>(NakedMemExpr)) { 6846 MemExpr = cast<MemberExpr>(NakedMemExpr); 6847 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 6848 FoundDecl = MemExpr->getFoundDecl(); 6849 Qualifier = MemExpr->getQualifier(); 6850 } else { 6851 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 6852 Qualifier = UnresExpr->getQualifier(); 6853 6854 QualType ObjectType = UnresExpr->getBaseType(); 6855 6856 // Add overload candidates 6857 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 6858 6859 // FIXME: avoid copy. 6860 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 6861 if (UnresExpr->hasExplicitTemplateArgs()) { 6862 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 6863 TemplateArgs = &TemplateArgsBuffer; 6864 } 6865 6866 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 6867 E = UnresExpr->decls_end(); I != E; ++I) { 6868 6869 NamedDecl *Func = *I; 6870 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 6871 if (isa<UsingShadowDecl>(Func)) 6872 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 6873 6874 if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 6875 // If explicit template arguments were provided, we can't call a 6876 // non-template member function. 6877 if (TemplateArgs) 6878 continue; 6879 6880 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 6881 Args, NumArgs, 6882 CandidateSet, /*SuppressUserConversions=*/false); 6883 } else { 6884 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 6885 I.getPair(), ActingDC, TemplateArgs, 6886 ObjectType, Args, NumArgs, 6887 CandidateSet, 6888 /*SuppressUsedConversions=*/false); 6889 } 6890 } 6891 6892 DeclarationName DeclName = UnresExpr->getMemberName(); 6893 6894 OverloadCandidateSet::iterator Best; 6895 switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { 6896 case OR_Success: 6897 Method = cast<CXXMethodDecl>(Best->Function); 6898 FoundDecl = Best->FoundDecl; 6899 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 6900 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 6901 break; 6902 6903 case OR_No_Viable_Function: 6904 Diag(UnresExpr->getMemberLoc(), 6905 diag::err_ovl_no_viable_member_function_in_call) 6906 << DeclName << MemExprE->getSourceRange(); 6907 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6908 // FIXME: Leaking incoming expressions! 6909 return ExprError(); 6910 6911 case OR_Ambiguous: 6912 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 6913 << DeclName << MemExprE->getSourceRange(); 6914 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6915 // FIXME: Leaking incoming expressions! 6916 return ExprError(); 6917 6918 case OR_Deleted: 6919 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 6920 << Best->Function->isDeleted() 6921 << DeclName << MemExprE->getSourceRange(); 6922 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 6923 // FIXME: Leaking incoming expressions! 6924 return ExprError(); 6925 } 6926 6927 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 6928 6929 // If overload resolution picked a static member, build a 6930 // non-member call based on that function. 6931 if (Method->isStatic()) { 6932 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 6933 Args, NumArgs, RParenLoc); 6934 } 6935 6936 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 6937 } 6938 6939 assert(Method && "Member call to something that isn't a method?"); 6940 ExprOwningPtr<CXXMemberCallExpr> 6941 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args, 6942 NumArgs, 6943 Method->getResultType().getNonReferenceType(), 6944 RParenLoc)); 6945 6946 // Check for a valid return type. 6947 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 6948 TheCall.get(), Method)) 6949 return ExprError(); 6950 6951 // Convert the object argument (for a non-static member function call). 6952 // We only need to do this if there was actually an overload; otherwise 6953 // it was done at lookup. 6954 Expr *ObjectArg = MemExpr->getBase(); 6955 if (!Method->isStatic() && 6956 PerformObjectArgumentInitialization(ObjectArg, Qualifier, 6957 FoundDecl, Method)) 6958 return ExprError(); 6959 MemExpr->setBase(ObjectArg); 6960 6961 // Convert the rest of the arguments 6962 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 6963 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 6964 RParenLoc)) 6965 return ExprError(); 6966 6967 if (CheckFunctionCall(Method, TheCall.get())) 6968 return ExprError(); 6969 6970 return MaybeBindToTemporary(TheCall.release()); 6971} 6972 6973/// BuildCallToObjectOfClassType - Build a call to an object of class 6974/// type (C++ [over.call.object]), which can end up invoking an 6975/// overloaded function call operator (@c operator()) or performing a 6976/// user-defined conversion on the object argument. 6977Sema::ExprResult 6978Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 6979 SourceLocation LParenLoc, 6980 Expr **Args, unsigned NumArgs, 6981 SourceLocation *CommaLocs, 6982 SourceLocation RParenLoc) { 6983 assert(Object->getType()->isRecordType() && "Requires object type argument"); 6984 const RecordType *Record = Object->getType()->getAs<RecordType>(); 6985 6986 // C++ [over.call.object]p1: 6987 // If the primary-expression E in the function call syntax 6988 // evaluates to a class object of type "cv T", then the set of 6989 // candidate functions includes at least the function call 6990 // operators of T. The function call operators of T are obtained by 6991 // ordinary lookup of the name operator() in the context of 6992 // (E).operator(). 6993 OverloadCandidateSet CandidateSet(LParenLoc); 6994 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 6995 6996 if (RequireCompleteType(LParenLoc, Object->getType(), 6997 PDiag(diag::err_incomplete_object_call) 6998 << Object->getSourceRange())) 6999 return true; 7000 7001 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 7002 LookupQualifiedName(R, Record->getDecl()); 7003 R.suppressDiagnostics(); 7004 7005 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7006 Oper != OperEnd; ++Oper) { 7007 AddMethodCandidate(Oper.getPair(), Object->getType(), 7008 Args, NumArgs, CandidateSet, 7009 /*SuppressUserConversions=*/ false); 7010 } 7011 7012 // C++ [over.call.object]p2: 7013 // In addition, for each conversion function declared in T of the 7014 // form 7015 // 7016 // operator conversion-type-id () cv-qualifier; 7017 // 7018 // where cv-qualifier is the same cv-qualification as, or a 7019 // greater cv-qualification than, cv, and where conversion-type-id 7020 // denotes the type "pointer to function of (P1,...,Pn) returning 7021 // R", or the type "reference to pointer to function of 7022 // (P1,...,Pn) returning R", or the type "reference to function 7023 // of (P1,...,Pn) returning R", a surrogate call function [...] 7024 // is also considered as a candidate function. Similarly, 7025 // surrogate call functions are added to the set of candidate 7026 // functions for each conversion function declared in an 7027 // accessible base class provided the function is not hidden 7028 // within T by another intervening declaration. 7029 const UnresolvedSetImpl *Conversions 7030 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 7031 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 7032 E = Conversions->end(); I != E; ++I) { 7033 NamedDecl *D = *I; 7034 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 7035 if (isa<UsingShadowDecl>(D)) 7036 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 7037 7038 // Skip over templated conversion functions; they aren't 7039 // surrogates. 7040 if (isa<FunctionTemplateDecl>(D)) 7041 continue; 7042 7043 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 7044 7045 // Strip the reference type (if any) and then the pointer type (if 7046 // any) to get down to what might be a function type. 7047 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 7048 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 7049 ConvType = ConvPtrType->getPointeeType(); 7050 7051 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 7052 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 7053 Object->getType(), Args, NumArgs, 7054 CandidateSet); 7055 } 7056 7057 // Perform overload resolution. 7058 OverloadCandidateSet::iterator Best; 7059 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 7060 case OR_Success: 7061 // Overload resolution succeeded; we'll build the appropriate call 7062 // below. 7063 break; 7064 7065 case OR_No_Viable_Function: 7066 if (CandidateSet.empty()) 7067 Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) 7068 << Object->getType() << /*call*/ 1 7069 << Object->getSourceRange(); 7070 else 7071 Diag(Object->getSourceRange().getBegin(), 7072 diag::err_ovl_no_viable_object_call) 7073 << Object->getType() << Object->getSourceRange(); 7074 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7075 break; 7076 7077 case OR_Ambiguous: 7078 Diag(Object->getSourceRange().getBegin(), 7079 diag::err_ovl_ambiguous_object_call) 7080 << Object->getType() << Object->getSourceRange(); 7081 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); 7082 break; 7083 7084 case OR_Deleted: 7085 Diag(Object->getSourceRange().getBegin(), 7086 diag::err_ovl_deleted_object_call) 7087 << Best->Function->isDeleted() 7088 << Object->getType() << Object->getSourceRange(); 7089 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); 7090 break; 7091 } 7092 7093 if (Best == CandidateSet.end()) { 7094 // We had an error; delete all of the subexpressions and return 7095 // the error. 7096 Object->Destroy(Context); 7097 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7098 Args[ArgIdx]->Destroy(Context); 7099 return true; 7100 } 7101 7102 if (Best->Function == 0) { 7103 // Since there is no function declaration, this is one of the 7104 // surrogate candidates. Dig out the conversion function. 7105 CXXConversionDecl *Conv 7106 = cast<CXXConversionDecl>( 7107 Best->Conversions[0].UserDefined.ConversionFunction); 7108 7109 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7110 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7111 7112 // We selected one of the surrogate functions that converts the 7113 // object parameter to a function pointer. Perform the conversion 7114 // on the object argument, then let ActOnCallExpr finish the job. 7115 7116 // Create an implicit member expr to refer to the conversion operator. 7117 // and then call it. 7118 CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl, 7119 Conv); 7120 7121 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 7122 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 7123 CommaLocs, RParenLoc).result(); 7124 } 7125 7126 CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); 7127 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 7128 7129 // We found an overloaded operator(). Build a CXXOperatorCallExpr 7130 // that calls this method, using Object for the implicit object 7131 // parameter and passing along the remaining arguments. 7132 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7133 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 7134 7135 unsigned NumArgsInProto = Proto->getNumArgs(); 7136 unsigned NumArgsToCheck = NumArgs; 7137 7138 // Build the full argument list for the method call (the 7139 // implicit object parameter is placed at the beginning of the 7140 // list). 7141 Expr **MethodArgs; 7142 if (NumArgs < NumArgsInProto) { 7143 NumArgsToCheck = NumArgsInProto; 7144 MethodArgs = new Expr*[NumArgsInProto + 1]; 7145 } else { 7146 MethodArgs = new Expr*[NumArgs + 1]; 7147 } 7148 MethodArgs[0] = Object; 7149 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7150 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 7151 7152 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 7153 SourceLocation()); 7154 UsualUnaryConversions(NewFn); 7155 7156 // Once we've built TheCall, all of the expressions are properly 7157 // owned. 7158 QualType ResultTy = Method->getResultType().getNonReferenceType(); 7159 ExprOwningPtr<CXXOperatorCallExpr> 7160 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 7161 MethodArgs, NumArgs + 1, 7162 ResultTy, RParenLoc)); 7163 delete [] MethodArgs; 7164 7165 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 7166 Method)) 7167 return true; 7168 7169 // We may have default arguments. If so, we need to allocate more 7170 // slots in the call for them. 7171 if (NumArgs < NumArgsInProto) 7172 TheCall->setNumArgs(Context, NumArgsInProto + 1); 7173 else if (NumArgs > NumArgsInProto) 7174 NumArgsToCheck = NumArgsInProto; 7175 7176 bool IsError = false; 7177 7178 // Initialize the implicit object parameter. 7179 IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, 7180 Best->FoundDecl, Method); 7181 TheCall->setArg(0, Object); 7182 7183 7184 // Check the argument types. 7185 for (unsigned i = 0; i != NumArgsToCheck; i++) { 7186 Expr *Arg; 7187 if (i < NumArgs) { 7188 Arg = Args[i]; 7189 7190 // Pass the argument. 7191 7192 OwningExprResult InputInit 7193 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 7194 Method->getParamDecl(i)), 7195 SourceLocation(), Owned(Arg)); 7196 7197 IsError |= InputInit.isInvalid(); 7198 Arg = InputInit.takeAs<Expr>(); 7199 } else { 7200 OwningExprResult DefArg 7201 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 7202 if (DefArg.isInvalid()) { 7203 IsError = true; 7204 break; 7205 } 7206 7207 Arg = DefArg.takeAs<Expr>(); 7208 } 7209 7210 TheCall->setArg(i + 1, Arg); 7211 } 7212 7213 // If this is a variadic call, handle args passed through "...". 7214 if (Proto->isVariadic()) { 7215 // Promote the arguments (C99 6.5.2.2p7). 7216 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 7217 Expr *Arg = Args[i]; 7218 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0); 7219 TheCall->setArg(i + 1, Arg); 7220 } 7221 } 7222 7223 if (IsError) return true; 7224 7225 if (CheckFunctionCall(Method, TheCall.get())) 7226 return true; 7227 7228 return MaybeBindToTemporary(TheCall.release()).result(); 7229} 7230 7231/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 7232/// (if one exists), where @c Base is an expression of class type and 7233/// @c Member is the name of the member we're trying to find. 7234Sema::OwningExprResult 7235Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 7236 Expr *Base = static_cast<Expr *>(BaseIn.get()); 7237 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 7238 7239 SourceLocation Loc = Base->getExprLoc(); 7240 7241 // C++ [over.ref]p1: 7242 // 7243 // [...] An expression x->m is interpreted as (x.operator->())->m 7244 // for a class object x of type T if T::operator->() exists and if 7245 // the operator is selected as the best match function by the 7246 // overload resolution mechanism (13.3). 7247 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 7248 OverloadCandidateSet CandidateSet(Loc); 7249 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 7250 7251 if (RequireCompleteType(Loc, Base->getType(), 7252 PDiag(diag::err_typecheck_incomplete_tag) 7253 << Base->getSourceRange())) 7254 return ExprError(); 7255 7256 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 7257 LookupQualifiedName(R, BaseRecord->getDecl()); 7258 R.suppressDiagnostics(); 7259 7260 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 7261 Oper != OperEnd; ++Oper) { 7262 AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet, 7263 /*SuppressUserConversions=*/false); 7264 } 7265 7266 // Perform overload resolution. 7267 OverloadCandidateSet::iterator Best; 7268 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 7269 case OR_Success: 7270 // Overload resolution succeeded; we'll build the call below. 7271 break; 7272 7273 case OR_No_Viable_Function: 7274 if (CandidateSet.empty()) 7275 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7276 << Base->getType() << Base->getSourceRange(); 7277 else 7278 Diag(OpLoc, diag::err_ovl_no_viable_oper) 7279 << "operator->" << Base->getSourceRange(); 7280 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 7281 return ExprError(); 7282 7283 case OR_Ambiguous: 7284 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 7285 << "->" << Base->getSourceRange(); 7286 PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1); 7287 return ExprError(); 7288 7289 case OR_Deleted: 7290 Diag(OpLoc, diag::err_ovl_deleted_oper) 7291 << Best->Function->isDeleted() 7292 << "->" << Base->getSourceRange(); 7293 PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); 7294 return ExprError(); 7295 } 7296 7297 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 7298 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 7299 7300 // Convert the object parameter. 7301 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 7302 if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 7303 Best->FoundDecl, Method)) 7304 return ExprError(); 7305 7306 // No concerns about early exits now. 7307 BaseIn.release(); 7308 7309 // Build the operator call. 7310 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 7311 SourceLocation()); 7312 UsualUnaryConversions(FnExpr); 7313 7314 QualType ResultTy = Method->getResultType().getNonReferenceType(); 7315 ExprOwningPtr<CXXOperatorCallExpr> 7316 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 7317 &Base, 1, ResultTy, OpLoc)); 7318 7319 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 7320 Method)) 7321 return ExprError(); 7322 return move(TheCall); 7323} 7324 7325/// FixOverloadedFunctionReference - E is an expression that refers to 7326/// a C++ overloaded function (possibly with some parentheses and 7327/// perhaps a '&' around it). We have resolved the overloaded function 7328/// to the function declaration Fn, so patch up the expression E to 7329/// refer (possibly indirectly) to Fn. Returns the new expr. 7330Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 7331 FunctionDecl *Fn) { 7332 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7333 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 7334 Found, Fn); 7335 if (SubExpr == PE->getSubExpr()) 7336 return PE->Retain(); 7337 7338 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 7339 } 7340 7341 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 7342 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 7343 Found, Fn); 7344 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 7345 SubExpr->getType()) && 7346 "Implicit cast type cannot be determined from overload"); 7347 if (SubExpr == ICE->getSubExpr()) 7348 return ICE->Retain(); 7349 7350 return new (Context) ImplicitCastExpr(ICE->getType(), 7351 ICE->getCastKind(), 7352 SubExpr, CXXBaseSpecifierArray(), 7353 ICE->isLvalueCast()); 7354 } 7355 7356 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 7357 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 7358 "Can only take the address of an overloaded function"); 7359 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7360 if (Method->isStatic()) { 7361 // Do nothing: static member functions aren't any different 7362 // from non-member functions. 7363 } else { 7364 // Fix the sub expression, which really has to be an 7365 // UnresolvedLookupExpr holding an overloaded member function 7366 // or template. 7367 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7368 Found, Fn); 7369 if (SubExpr == UnOp->getSubExpr()) 7370 return UnOp->Retain(); 7371 7372 assert(isa<DeclRefExpr>(SubExpr) 7373 && "fixed to something other than a decl ref"); 7374 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 7375 && "fixed to a member ref with no nested name qualifier"); 7376 7377 // We have taken the address of a pointer to member 7378 // function. Perform the computation here so that we get the 7379 // appropriate pointer to member type. 7380 QualType ClassType 7381 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 7382 QualType MemPtrType 7383 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 7384 7385 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 7386 MemPtrType, UnOp->getOperatorLoc()); 7387 } 7388 } 7389 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 7390 Found, Fn); 7391 if (SubExpr == UnOp->getSubExpr()) 7392 return UnOp->Retain(); 7393 7394 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 7395 Context.getPointerType(SubExpr->getType()), 7396 UnOp->getOperatorLoc()); 7397 } 7398 7399 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 7400 // FIXME: avoid copy. 7401 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7402 if (ULE->hasExplicitTemplateArgs()) { 7403 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 7404 TemplateArgs = &TemplateArgsBuffer; 7405 } 7406 7407 return DeclRefExpr::Create(Context, 7408 ULE->getQualifier(), 7409 ULE->getQualifierRange(), 7410 Fn, 7411 ULE->getNameLoc(), 7412 Fn->getType(), 7413 TemplateArgs); 7414 } 7415 7416 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 7417 // FIXME: avoid copy. 7418 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 7419 if (MemExpr->hasExplicitTemplateArgs()) { 7420 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 7421 TemplateArgs = &TemplateArgsBuffer; 7422 } 7423 7424 Expr *Base; 7425 7426 // If we're filling in 7427 if (MemExpr->isImplicitAccess()) { 7428 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 7429 return DeclRefExpr::Create(Context, 7430 MemExpr->getQualifier(), 7431 MemExpr->getQualifierRange(), 7432 Fn, 7433 MemExpr->getMemberLoc(), 7434 Fn->getType(), 7435 TemplateArgs); 7436 } else { 7437 SourceLocation Loc = MemExpr->getMemberLoc(); 7438 if (MemExpr->getQualifier()) 7439 Loc = MemExpr->getQualifierRange().getBegin(); 7440 Base = new (Context) CXXThisExpr(Loc, 7441 MemExpr->getBaseType(), 7442 /*isImplicit=*/true); 7443 } 7444 } else 7445 Base = MemExpr->getBase()->Retain(); 7446 7447 return MemberExpr::Create(Context, Base, 7448 MemExpr->isArrow(), 7449 MemExpr->getQualifier(), 7450 MemExpr->getQualifierRange(), 7451 Fn, 7452 Found, 7453 MemExpr->getMemberLoc(), 7454 TemplateArgs, 7455 Fn->getType()); 7456 } 7457 7458 assert(false && "Invalid reference to overloaded function"); 7459 return E->Retain(); 7460} 7461 7462Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E, 7463 DeclAccessPair Found, 7464 FunctionDecl *Fn) { 7465 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 7466} 7467 7468} // end namespace clang 7469