SemaOverload.cpp revision 6f68027af2b6ce294a2706f23a1d3cb7ca1b8d37
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33  static const ImplicitConversionCategory
34    Category[(int)ICK_Num_Conversion_Kinds] = {
35    ICC_Identity,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Qualification_Adjustment,
40    ICC_Promotion,
41    ICC_Promotion,
42    ICC_Promotion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion
53  };
54  return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60  static const ImplicitConversionRank
61    Rank[(int)ICK_Num_Conversion_Kinds] = {
62    ICR_Exact_Match,
63    ICR_Exact_Match,
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Promotion,
68    ICR_Promotion,
69    ICR_Promotion,
70    ICR_Conversion,
71    ICR_Conversion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion
80  };
81  return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88    "No conversion",
89    "Lvalue-to-rvalue",
90    "Array-to-pointer",
91    "Function-to-pointer",
92    "Qualification",
93    "Integral promotion",
94    "Floating point promotion",
95    "Complex promotion",
96    "Integral conversion",
97    "Floating conversion",
98    "Complex conversion",
99    "Floating-integral conversion",
100    "Complex-real conversion",
101    "Pointer conversion",
102    "Pointer-to-member conversion",
103    "Boolean conversion",
104    "Compatible-types conversion",
105    "Derived-to-base conversion"
106  };
107  return Name[Kind];
108}
109
110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113  First = ICK_Identity;
114  Second = ICK_Identity;
115  Third = ICK_Identity;
116  Deprecated = false;
117  ReferenceBinding = false;
118  DirectBinding = false;
119  RRefBinding = false;
120  CopyConstructor = 0;
121}
122
123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127  ImplicitConversionRank Rank = ICR_Exact_Match;
128  if  (GetConversionRank(First) > Rank)
129    Rank = GetConversionRank(First);
130  if  (GetConversionRank(Second) > Rank)
131    Rank = GetConversionRank(Second);
132  if  (GetConversionRank(Third) > Rank)
133    Rank = GetConversionRank(Third);
134  return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146  // Note that FromType has not necessarily been transformed by the
147  // array-to-pointer or function-to-pointer implicit conversions, so
148  // check for their presence as well as checking whether FromType is
149  // a pointer.
150  if (ToType->isBooleanType() &&
151      (FromType->isPointerType() || FromType->isBlockPointerType() ||
152       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153    return true;
154
155  return false;
156}
157
158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290    // Is this new function an overload of every function in the
291    // overload set?
292    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293                                           FuncEnd = Ovl->function_end();
294    for (; Func != FuncEnd; ++Func) {
295      if (!IsOverload(New, *Func, MatchedDecl)) {
296        MatchedDecl = Func;
297        return false;
298      }
299    }
300
301    // This function overloads every function in the overload set.
302    return true;
303  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
304    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
305  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
306    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
307    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
308
309    // C++ [temp.fct]p2:
310    //   A function template can be overloaded with other function templates
311    //   and with normal (non-template) functions.
312    if ((OldTemplate == 0) != (NewTemplate == 0))
313      return true;
314
315    // Is the function New an overload of the function Old?
316    QualType OldQType = Context.getCanonicalType(Old->getType());
317    QualType NewQType = Context.getCanonicalType(New->getType());
318
319    // Compare the signatures (C++ 1.3.10) of the two functions to
320    // determine whether they are overloads. If we find any mismatch
321    // in the signature, they are overloads.
322
323    // If either of these functions is a K&R-style function (no
324    // prototype), then we consider them to have matching signatures.
325    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
326        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
327      return false;
328
329    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
330    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
331
332    // The signature of a function includes the types of its
333    // parameters (C++ 1.3.10), which includes the presence or absence
334    // of the ellipsis; see C++ DR 357).
335    if (OldQType != NewQType &&
336        (OldType->getNumArgs() != NewType->getNumArgs() ||
337         OldType->isVariadic() != NewType->isVariadic() ||
338         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
339                     NewType->arg_type_begin())))
340      return true;
341
342    // C++ [temp.over.link]p4:
343    //   The signature of a function template consists of its function
344    //   signature, its return type and its template parameter list. The names
345    //   of the template parameters are significant only for establishing the
346    //   relationship between the template parameters and the rest of the
347    //   signature.
348    //
349    // We check the return type and template parameter lists for function
350    // templates first; the remaining checks follow.
351    if (NewTemplate &&
352        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
353                                         OldTemplate->getTemplateParameters(),
354                                         false, false, SourceLocation()) ||
355         OldType->getResultType() != NewType->getResultType()))
356      return true;
357
358    // If the function is a class member, its signature includes the
359    // cv-qualifiers (if any) on the function itself.
360    //
361    // As part of this, also check whether one of the member functions
362    // is static, in which case they are not overloads (C++
363    // 13.1p2). While not part of the definition of the signature,
364    // this check is important to determine whether these functions
365    // can be overloaded.
366    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
367    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
368    if (OldMethod && NewMethod &&
369        !OldMethod->isStatic() && !NewMethod->isStatic() &&
370        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
371      return true;
372
373    // The signatures match; this is not an overload.
374    return false;
375  } else {
376    // (C++ 13p1):
377    //   Only function declarations can be overloaded; object and type
378    //   declarations cannot be overloaded.
379    return false;
380  }
381}
382
383/// TryImplicitConversion - Attempt to perform an implicit conversion
384/// from the given expression (Expr) to the given type (ToType). This
385/// function returns an implicit conversion sequence that can be used
386/// to perform the initialization. Given
387///
388///   void f(float f);
389///   void g(int i) { f(i); }
390///
391/// this routine would produce an implicit conversion sequence to
392/// describe the initialization of f from i, which will be a standard
393/// conversion sequence containing an lvalue-to-rvalue conversion (C++
394/// 4.1) followed by a floating-integral conversion (C++ 4.9).
395//
396/// Note that this routine only determines how the conversion can be
397/// performed; it does not actually perform the conversion. As such,
398/// it will not produce any diagnostics if no conversion is available,
399/// but will instead return an implicit conversion sequence of kind
400/// "BadConversion".
401///
402/// If @p SuppressUserConversions, then user-defined conversions are
403/// not permitted.
404/// If @p AllowExplicit, then explicit user-defined conversions are
405/// permitted.
406/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
407/// no matter its actual lvalueness.
408ImplicitConversionSequence
409Sema::TryImplicitConversion(Expr* From, QualType ToType,
410                            bool SuppressUserConversions,
411                            bool AllowExplicit, bool ForceRValue)
412{
413  ImplicitConversionSequence ICS;
414  if (IsStandardConversion(From, ToType, ICS.Standard))
415    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
416  else if (getLangOptions().CPlusPlus &&
417           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
418                                   !SuppressUserConversions, AllowExplicit,
419                                   ForceRValue)) {
420    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
421    // C++ [over.ics.user]p4:
422    //   A conversion of an expression of class type to the same class
423    //   type is given Exact Match rank, and a conversion of an
424    //   expression of class type to a base class of that type is
425    //   given Conversion rank, in spite of the fact that a copy
426    //   constructor (i.e., a user-defined conversion function) is
427    //   called for those cases.
428    if (CXXConstructorDecl *Constructor
429          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
430      QualType FromCanon
431        = Context.getCanonicalType(From->getType().getUnqualifiedType());
432      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
433      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
434        // Turn this into a "standard" conversion sequence, so that it
435        // gets ranked with standard conversion sequences.
436        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
437        ICS.Standard.setAsIdentityConversion();
438        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
439        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
440        ICS.Standard.CopyConstructor = Constructor;
441        if (ToCanon != FromCanon)
442          ICS.Standard.Second = ICK_Derived_To_Base;
443      }
444    }
445
446    // C++ [over.best.ics]p4:
447    //   However, when considering the argument of a user-defined
448    //   conversion function that is a candidate by 13.3.1.3 when
449    //   invoked for the copying of the temporary in the second step
450    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
451    //   13.3.1.6 in all cases, only standard conversion sequences and
452    //   ellipsis conversion sequences are allowed.
453    if (SuppressUserConversions &&
454        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
455      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
456  } else
457    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
458
459  return ICS;
460}
461
462/// IsStandardConversion - Determines whether there is a standard
463/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
464/// expression From to the type ToType. Standard conversion sequences
465/// only consider non-class types; for conversions that involve class
466/// types, use TryImplicitConversion. If a conversion exists, SCS will
467/// contain the standard conversion sequence required to perform this
468/// conversion and this routine will return true. Otherwise, this
469/// routine will return false and the value of SCS is unspecified.
470bool
471Sema::IsStandardConversion(Expr* From, QualType ToType,
472                           StandardConversionSequence &SCS)
473{
474  QualType FromType = From->getType();
475
476  // Standard conversions (C++ [conv])
477  SCS.setAsIdentityConversion();
478  SCS.Deprecated = false;
479  SCS.IncompatibleObjC = false;
480  SCS.FromTypePtr = FromType.getAsOpaquePtr();
481  SCS.CopyConstructor = 0;
482
483  // There are no standard conversions for class types in C++, so
484  // abort early. When overloading in C, however, we do permit
485  if (FromType->isRecordType() || ToType->isRecordType()) {
486    if (getLangOptions().CPlusPlus)
487      return false;
488
489    // When we're overloading in C, we allow, as standard conversions,
490  }
491
492  // The first conversion can be an lvalue-to-rvalue conversion,
493  // array-to-pointer conversion, or function-to-pointer conversion
494  // (C++ 4p1).
495
496  // Lvalue-to-rvalue conversion (C++ 4.1):
497  //   An lvalue (3.10) of a non-function, non-array type T can be
498  //   converted to an rvalue.
499  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
500  if (argIsLvalue == Expr::LV_Valid &&
501      !FromType->isFunctionType() && !FromType->isArrayType() &&
502      Context.getCanonicalType(FromType) != Context.OverloadTy) {
503    SCS.First = ICK_Lvalue_To_Rvalue;
504
505    // If T is a non-class type, the type of the rvalue is the
506    // cv-unqualified version of T. Otherwise, the type of the rvalue
507    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
508    // just strip the qualifiers because they don't matter.
509
510    // FIXME: Doesn't see through to qualifiers behind a typedef!
511    FromType = FromType.getUnqualifiedType();
512  } else if (FromType->isArrayType()) {
513    // Array-to-pointer conversion (C++ 4.2)
514    SCS.First = ICK_Array_To_Pointer;
515
516    // An lvalue or rvalue of type "array of N T" or "array of unknown
517    // bound of T" can be converted to an rvalue of type "pointer to
518    // T" (C++ 4.2p1).
519    FromType = Context.getArrayDecayedType(FromType);
520
521    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
522      // This conversion is deprecated. (C++ D.4).
523      SCS.Deprecated = true;
524
525      // For the purpose of ranking in overload resolution
526      // (13.3.3.1.1), this conversion is considered an
527      // array-to-pointer conversion followed by a qualification
528      // conversion (4.4). (C++ 4.2p2)
529      SCS.Second = ICK_Identity;
530      SCS.Third = ICK_Qualification;
531      SCS.ToTypePtr = ToType.getAsOpaquePtr();
532      return true;
533    }
534  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
535    // Function-to-pointer conversion (C++ 4.3).
536    SCS.First = ICK_Function_To_Pointer;
537
538    // An lvalue of function type T can be converted to an rvalue of
539    // type "pointer to T." The result is a pointer to the
540    // function. (C++ 4.3p1).
541    FromType = Context.getPointerType(FromType);
542  } else if (FunctionDecl *Fn
543             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
544    // Address of overloaded function (C++ [over.over]).
545    SCS.First = ICK_Function_To_Pointer;
546
547    // We were able to resolve the address of the overloaded function,
548    // so we can convert to the type of that function.
549    FromType = Fn->getType();
550    if (ToType->isLValueReferenceType())
551      FromType = Context.getLValueReferenceType(FromType);
552    else if (ToType->isRValueReferenceType())
553      FromType = Context.getRValueReferenceType(FromType);
554    else if (ToType->isMemberPointerType()) {
555      // Resolve address only succeeds if both sides are member pointers,
556      // but it doesn't have to be the same class. See DR 247.
557      // Note that this means that the type of &Derived::fn can be
558      // Ret (Base::*)(Args) if the fn overload actually found is from the
559      // base class, even if it was brought into the derived class via a
560      // using declaration. The standard isn't clear on this issue at all.
561      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
562      FromType = Context.getMemberPointerType(FromType,
563                    Context.getTypeDeclType(M->getParent()).getTypePtr());
564    } else
565      FromType = Context.getPointerType(FromType);
566  } else {
567    // We don't require any conversions for the first step.
568    SCS.First = ICK_Identity;
569  }
570
571  // The second conversion can be an integral promotion, floating
572  // point promotion, integral conversion, floating point conversion,
573  // floating-integral conversion, pointer conversion,
574  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
575  // For overloading in C, this can also be a "compatible-type"
576  // conversion.
577  bool IncompatibleObjC = false;
578  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
579    // The unqualified versions of the types are the same: there's no
580    // conversion to do.
581    SCS.Second = ICK_Identity;
582  } else if (IsIntegralPromotion(From, FromType, ToType)) {
583    // Integral promotion (C++ 4.5).
584    SCS.Second = ICK_Integral_Promotion;
585    FromType = ToType.getUnqualifiedType();
586  } else if (IsFloatingPointPromotion(FromType, ToType)) {
587    // Floating point promotion (C++ 4.6).
588    SCS.Second = ICK_Floating_Promotion;
589    FromType = ToType.getUnqualifiedType();
590  } else if (IsComplexPromotion(FromType, ToType)) {
591    // Complex promotion (Clang extension)
592    SCS.Second = ICK_Complex_Promotion;
593    FromType = ToType.getUnqualifiedType();
594  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
595           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
596    // Integral conversions (C++ 4.7).
597    // FIXME: isIntegralType shouldn't be true for enums in C++.
598    SCS.Second = ICK_Integral_Conversion;
599    FromType = ToType.getUnqualifiedType();
600  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
601    // Floating point conversions (C++ 4.8).
602    SCS.Second = ICK_Floating_Conversion;
603    FromType = ToType.getUnqualifiedType();
604  } else if (FromType->isComplexType() && ToType->isComplexType()) {
605    // Complex conversions (C99 6.3.1.6)
606    SCS.Second = ICK_Complex_Conversion;
607    FromType = ToType.getUnqualifiedType();
608  } else if ((FromType->isFloatingType() &&
609              ToType->isIntegralType() && (!ToType->isBooleanType() &&
610                                           !ToType->isEnumeralType())) ||
611             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
612              ToType->isFloatingType())) {
613    // Floating-integral conversions (C++ 4.9).
614    // FIXME: isIntegralType shouldn't be true for enums in C++.
615    SCS.Second = ICK_Floating_Integral;
616    FromType = ToType.getUnqualifiedType();
617  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
618             (ToType->isComplexType() && FromType->isArithmeticType())) {
619    // Complex-real conversions (C99 6.3.1.7)
620    SCS.Second = ICK_Complex_Real;
621    FromType = ToType.getUnqualifiedType();
622  } else if (IsPointerConversion(From, FromType, ToType, FromType,
623                                 IncompatibleObjC)) {
624    // Pointer conversions (C++ 4.10).
625    SCS.Second = ICK_Pointer_Conversion;
626    SCS.IncompatibleObjC = IncompatibleObjC;
627  } else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
628    // Pointer to member conversions (4.11).
629    SCS.Second = ICK_Pointer_Member;
630  } else if (ToType->isBooleanType() &&
631             (FromType->isArithmeticType() ||
632              FromType->isEnumeralType() ||
633              FromType->isPointerType() ||
634              FromType->isBlockPointerType() ||
635              FromType->isMemberPointerType() ||
636              FromType->isNullPtrType())) {
637    // Boolean conversions (C++ 4.12).
638    SCS.Second = ICK_Boolean_Conversion;
639    FromType = Context.BoolTy;
640  } else if (!getLangOptions().CPlusPlus &&
641             Context.typesAreCompatible(ToType, FromType)) {
642    // Compatible conversions (Clang extension for C function overloading)
643    SCS.Second = ICK_Compatible_Conversion;
644  } else {
645    // No second conversion required.
646    SCS.Second = ICK_Identity;
647  }
648
649  QualType CanonFrom;
650  QualType CanonTo;
651  // The third conversion can be a qualification conversion (C++ 4p1).
652  if (IsQualificationConversion(FromType, ToType)) {
653    SCS.Third = ICK_Qualification;
654    FromType = ToType;
655    CanonFrom = Context.getCanonicalType(FromType);
656    CanonTo = Context.getCanonicalType(ToType);
657  } else {
658    // No conversion required
659    SCS.Third = ICK_Identity;
660
661    // C++ [over.best.ics]p6:
662    //   [...] Any difference in top-level cv-qualification is
663    //   subsumed by the initialization itself and does not constitute
664    //   a conversion. [...]
665    CanonFrom = Context.getCanonicalType(FromType);
666    CanonTo = Context.getCanonicalType(ToType);
667    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
668        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
669      FromType = ToType;
670      CanonFrom = CanonTo;
671    }
672  }
673
674  // If we have not converted the argument type to the parameter type,
675  // this is a bad conversion sequence.
676  if (CanonFrom != CanonTo)
677    return false;
678
679  SCS.ToTypePtr = FromType.getAsOpaquePtr();
680  return true;
681}
682
683/// IsIntegralPromotion - Determines whether the conversion from the
684/// expression From (whose potentially-adjusted type is FromType) to
685/// ToType is an integral promotion (C++ 4.5). If so, returns true and
686/// sets PromotedType to the promoted type.
687bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
688{
689  const BuiltinType *To = ToType->getAsBuiltinType();
690  // All integers are built-in.
691  if (!To) {
692    return false;
693  }
694
695  // An rvalue of type char, signed char, unsigned char, short int, or
696  // unsigned short int can be converted to an rvalue of type int if
697  // int can represent all the values of the source type; otherwise,
698  // the source rvalue can be converted to an rvalue of type unsigned
699  // int (C++ 4.5p1).
700  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
701    if (// We can promote any signed, promotable integer type to an int
702        (FromType->isSignedIntegerType() ||
703         // We can promote any unsigned integer type whose size is
704         // less than int to an int.
705         (!FromType->isSignedIntegerType() &&
706          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
707      return To->getKind() == BuiltinType::Int;
708    }
709
710    return To->getKind() == BuiltinType::UInt;
711  }
712
713  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
714  // can be converted to an rvalue of the first of the following types
715  // that can represent all the values of its underlying type: int,
716  // unsigned int, long, or unsigned long (C++ 4.5p2).
717  if ((FromType->isEnumeralType() || FromType->isWideCharType())
718      && ToType->isIntegerType()) {
719    // Determine whether the type we're converting from is signed or
720    // unsigned.
721    bool FromIsSigned;
722    uint64_t FromSize = Context.getTypeSize(FromType);
723    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
724      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
725      FromIsSigned = UnderlyingType->isSignedIntegerType();
726    } else {
727      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
728      FromIsSigned = true;
729    }
730
731    // The types we'll try to promote to, in the appropriate
732    // order. Try each of these types.
733    QualType PromoteTypes[6] = {
734      Context.IntTy, Context.UnsignedIntTy,
735      Context.LongTy, Context.UnsignedLongTy ,
736      Context.LongLongTy, Context.UnsignedLongLongTy
737    };
738    for (int Idx = 0; Idx < 6; ++Idx) {
739      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
740      if (FromSize < ToSize ||
741          (FromSize == ToSize &&
742           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
743        // We found the type that we can promote to. If this is the
744        // type we wanted, we have a promotion. Otherwise, no
745        // promotion.
746        return Context.getCanonicalType(ToType).getUnqualifiedType()
747          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
748      }
749    }
750  }
751
752  // An rvalue for an integral bit-field (9.6) can be converted to an
753  // rvalue of type int if int can represent all the values of the
754  // bit-field; otherwise, it can be converted to unsigned int if
755  // unsigned int can represent all the values of the bit-field. If
756  // the bit-field is larger yet, no integral promotion applies to
757  // it. If the bit-field has an enumerated type, it is treated as any
758  // other value of that type for promotion purposes (C++ 4.5p3).
759  // FIXME: We should delay checking of bit-fields until we actually perform the
760  // conversion.
761  using llvm::APSInt;
762  if (From)
763    if (FieldDecl *MemberDecl = From->getBitField()) {
764      APSInt BitWidth;
765      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
766          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
767        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
768        ToSize = Context.getTypeSize(ToType);
769
770        // Are we promoting to an int from a bitfield that fits in an int?
771        if (BitWidth < ToSize ||
772            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
773          return To->getKind() == BuiltinType::Int;
774        }
775
776        // Are we promoting to an unsigned int from an unsigned bitfield
777        // that fits into an unsigned int?
778        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
779          return To->getKind() == BuiltinType::UInt;
780        }
781
782        return false;
783      }
784    }
785
786  // An rvalue of type bool can be converted to an rvalue of type int,
787  // with false becoming zero and true becoming one (C++ 4.5p4).
788  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
789    return true;
790  }
791
792  return false;
793}
794
795/// IsFloatingPointPromotion - Determines whether the conversion from
796/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
797/// returns true and sets PromotedType to the promoted type.
798bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
799{
800  /// An rvalue of type float can be converted to an rvalue of type
801  /// double. (C++ 4.6p1).
802  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
803    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
804      if (FromBuiltin->getKind() == BuiltinType::Float &&
805          ToBuiltin->getKind() == BuiltinType::Double)
806        return true;
807
808      // C99 6.3.1.5p1:
809      //   When a float is promoted to double or long double, or a
810      //   double is promoted to long double [...].
811      if (!getLangOptions().CPlusPlus &&
812          (FromBuiltin->getKind() == BuiltinType::Float ||
813           FromBuiltin->getKind() == BuiltinType::Double) &&
814          (ToBuiltin->getKind() == BuiltinType::LongDouble))
815        return true;
816    }
817
818  return false;
819}
820
821/// \brief Determine if a conversion is a complex promotion.
822///
823/// A complex promotion is defined as a complex -> complex conversion
824/// where the conversion between the underlying real types is a
825/// floating-point or integral promotion.
826bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
827  const ComplexType *FromComplex = FromType->getAsComplexType();
828  if (!FromComplex)
829    return false;
830
831  const ComplexType *ToComplex = ToType->getAsComplexType();
832  if (!ToComplex)
833    return false;
834
835  return IsFloatingPointPromotion(FromComplex->getElementType(),
836                                  ToComplex->getElementType()) ||
837    IsIntegralPromotion(0, FromComplex->getElementType(),
838                        ToComplex->getElementType());
839}
840
841/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
842/// the pointer type FromPtr to a pointer to type ToPointee, with the
843/// same type qualifiers as FromPtr has on its pointee type. ToType,
844/// if non-empty, will be a pointer to ToType that may or may not have
845/// the right set of qualifiers on its pointee.
846static QualType
847BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
848                                   QualType ToPointee, QualType ToType,
849                                   ASTContext &Context) {
850  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
851  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
852  unsigned Quals = CanonFromPointee.getCVRQualifiers();
853
854  // Exact qualifier match -> return the pointer type we're converting to.
855  if (CanonToPointee.getCVRQualifiers() == Quals) {
856    // ToType is exactly what we need. Return it.
857    if (ToType.getTypePtr())
858      return ToType;
859
860    // Build a pointer to ToPointee. It has the right qualifiers
861    // already.
862    return Context.getPointerType(ToPointee);
863  }
864
865  // Just build a canonical type that has the right qualifiers.
866  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
867}
868
869/// IsPointerConversion - Determines whether the conversion of the
870/// expression From, which has the (possibly adjusted) type FromType,
871/// can be converted to the type ToType via a pointer conversion (C++
872/// 4.10). If so, returns true and places the converted type (that
873/// might differ from ToType in its cv-qualifiers at some level) into
874/// ConvertedType.
875///
876/// This routine also supports conversions to and from block pointers
877/// and conversions with Objective-C's 'id', 'id<protocols...>', and
878/// pointers to interfaces. FIXME: Once we've determined the
879/// appropriate overloading rules for Objective-C, we may want to
880/// split the Objective-C checks into a different routine; however,
881/// GCC seems to consider all of these conversions to be pointer
882/// conversions, so for now they live here. IncompatibleObjC will be
883/// set if the conversion is an allowed Objective-C conversion that
884/// should result in a warning.
885bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
886                               QualType& ConvertedType,
887                               bool &IncompatibleObjC)
888{
889  IncompatibleObjC = false;
890  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
891    return true;
892
893  // Conversion from a null pointer constant to any Objective-C pointer type.
894  if (ToType->isObjCObjectPointerType() &&
895      From->isNullPointerConstant(Context)) {
896    ConvertedType = ToType;
897    return true;
898  }
899
900  // Blocks: Block pointers can be converted to void*.
901  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
902      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
903    ConvertedType = ToType;
904    return true;
905  }
906  // Blocks: A null pointer constant can be converted to a block
907  // pointer type.
908  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
909    ConvertedType = ToType;
910    return true;
911  }
912
913  // If the left-hand-side is nullptr_t, the right side can be a null
914  // pointer constant.
915  if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
916    ConvertedType = ToType;
917    return true;
918  }
919
920  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
921  if (!ToTypePtr)
922    return false;
923
924  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
925  if (From->isNullPointerConstant(Context)) {
926    ConvertedType = ToType;
927    return true;
928  }
929
930  // Beyond this point, both types need to be pointers.
931  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
932  if (!FromTypePtr)
933    return false;
934
935  QualType FromPointeeType = FromTypePtr->getPointeeType();
936  QualType ToPointeeType = ToTypePtr->getPointeeType();
937
938  // An rvalue of type "pointer to cv T," where T is an object type,
939  // can be converted to an rvalue of type "pointer to cv void" (C++
940  // 4.10p2).
941  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
942    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
943                                                       ToPointeeType,
944                                                       ToType, Context);
945    return true;
946  }
947
948  // When we're overloading in C, we allow a special kind of pointer
949  // conversion for compatible-but-not-identical pointee types.
950  if (!getLangOptions().CPlusPlus &&
951      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
952    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
953                                                       ToPointeeType,
954                                                       ToType, Context);
955    return true;
956  }
957
958  // C++ [conv.ptr]p3:
959  //
960  //   An rvalue of type "pointer to cv D," where D is a class type,
961  //   can be converted to an rvalue of type "pointer to cv B," where
962  //   B is a base class (clause 10) of D. If B is an inaccessible
963  //   (clause 11) or ambiguous (10.2) base class of D, a program that
964  //   necessitates this conversion is ill-formed. The result of the
965  //   conversion is a pointer to the base class sub-object of the
966  //   derived class object. The null pointer value is converted to
967  //   the null pointer value of the destination type.
968  //
969  // Note that we do not check for ambiguity or inaccessibility
970  // here. That is handled by CheckPointerConversion.
971  if (getLangOptions().CPlusPlus &&
972      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
973      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
974    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
975                                                       ToPointeeType,
976                                                       ToType, Context);
977    return true;
978  }
979
980  return false;
981}
982
983/// isObjCPointerConversion - Determines whether this is an
984/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
985/// with the same arguments and return values.
986bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
987                                   QualType& ConvertedType,
988                                   bool &IncompatibleObjC) {
989  if (!getLangOptions().ObjC1)
990    return false;
991
992  // First, we handle all conversions on ObjC object pointer types.
993  const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
994  const ObjCObjectPointerType *FromObjCPtr =
995    FromType->getAsObjCObjectPointerType();
996
997  if (ToObjCPtr && FromObjCPtr) {
998    // Objective C++: We're able to convert between "id" or "Class" and a
999    // pointer to any interface (in both directions).
1000    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1001      ConvertedType = ToType;
1002      return true;
1003    }
1004    // Conversions with Objective-C's id<...>.
1005    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1006         ToObjCPtr->isObjCQualifiedIdType()) &&
1007        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1008                                                  /*compare=*/false)) {
1009      ConvertedType = ToType;
1010      return true;
1011    }
1012    // Objective C++: We're able to convert from a pointer to an
1013    // interface to a pointer to a different interface.
1014    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1015      ConvertedType = ToType;
1016      return true;
1017    }
1018
1019    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1020      // Okay: this is some kind of implicit downcast of Objective-C
1021      // interfaces, which is permitted. However, we're going to
1022      // complain about it.
1023      IncompatibleObjC = true;
1024      ConvertedType = FromType;
1025      return true;
1026    }
1027  }
1028  // Beyond this point, both types need to be C pointers or block pointers.
1029  QualType ToPointeeType;
1030  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1031    ToPointeeType = ToCPtr->getPointeeType();
1032  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1033    ToPointeeType = ToBlockPtr->getPointeeType();
1034  else
1035    return false;
1036
1037  QualType FromPointeeType;
1038  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1039    FromPointeeType = FromCPtr->getPointeeType();
1040  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1041    FromPointeeType = FromBlockPtr->getPointeeType();
1042  else
1043    return false;
1044
1045  // If we have pointers to pointers, recursively check whether this
1046  // is an Objective-C conversion.
1047  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1048      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1049                              IncompatibleObjC)) {
1050    // We always complain about this conversion.
1051    IncompatibleObjC = true;
1052    ConvertedType = ToType;
1053    return true;
1054  }
1055  // If we have pointers to functions or blocks, check whether the only
1056  // differences in the argument and result types are in Objective-C
1057  // pointer conversions. If so, we permit the conversion (but
1058  // complain about it).
1059  const FunctionProtoType *FromFunctionType
1060    = FromPointeeType->getAsFunctionProtoType();
1061  const FunctionProtoType *ToFunctionType
1062    = ToPointeeType->getAsFunctionProtoType();
1063  if (FromFunctionType && ToFunctionType) {
1064    // If the function types are exactly the same, this isn't an
1065    // Objective-C pointer conversion.
1066    if (Context.getCanonicalType(FromPointeeType)
1067          == Context.getCanonicalType(ToPointeeType))
1068      return false;
1069
1070    // Perform the quick checks that will tell us whether these
1071    // function types are obviously different.
1072    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1073        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1074        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1075      return false;
1076
1077    bool HasObjCConversion = false;
1078    if (Context.getCanonicalType(FromFunctionType->getResultType())
1079          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1080      // Okay, the types match exactly. Nothing to do.
1081    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1082                                       ToFunctionType->getResultType(),
1083                                       ConvertedType, IncompatibleObjC)) {
1084      // Okay, we have an Objective-C pointer conversion.
1085      HasObjCConversion = true;
1086    } else {
1087      // Function types are too different. Abort.
1088      return false;
1089    }
1090
1091    // Check argument types.
1092    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1093         ArgIdx != NumArgs; ++ArgIdx) {
1094      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1095      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1096      if (Context.getCanonicalType(FromArgType)
1097            == Context.getCanonicalType(ToArgType)) {
1098        // Okay, the types match exactly. Nothing to do.
1099      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1100                                         ConvertedType, IncompatibleObjC)) {
1101        // Okay, we have an Objective-C pointer conversion.
1102        HasObjCConversion = true;
1103      } else {
1104        // Argument types are too different. Abort.
1105        return false;
1106      }
1107    }
1108
1109    if (HasObjCConversion) {
1110      // We had an Objective-C conversion. Allow this pointer
1111      // conversion, but complain about it.
1112      ConvertedType = ToType;
1113      IncompatibleObjC = true;
1114      return true;
1115    }
1116  }
1117
1118  return false;
1119}
1120
1121/// CheckPointerConversion - Check the pointer conversion from the
1122/// expression From to the type ToType. This routine checks for
1123/// ambiguous or inaccessible derived-to-base pointer
1124/// conversions for which IsPointerConversion has already returned
1125/// true. It returns true and produces a diagnostic if there was an
1126/// error, or returns false otherwise.
1127bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1128  QualType FromType = From->getType();
1129
1130  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1131    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1132      QualType FromPointeeType = FromPtrType->getPointeeType(),
1133               ToPointeeType   = ToPtrType->getPointeeType();
1134
1135      if (FromPointeeType->isRecordType() &&
1136          ToPointeeType->isRecordType()) {
1137        // We must have a derived-to-base conversion. Check an
1138        // ambiguous or inaccessible conversion.
1139        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1140                                            From->getExprLoc(),
1141                                            From->getSourceRange());
1142      }
1143    }
1144  if (const ObjCObjectPointerType *FromPtrType =
1145        FromType->getAsObjCObjectPointerType())
1146    if (const ObjCObjectPointerType *ToPtrType =
1147          ToType->getAsObjCObjectPointerType()) {
1148      // Objective-C++ conversions are always okay.
1149      // FIXME: We should have a different class of conversions for the
1150      // Objective-C++ implicit conversions.
1151      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1152        return false;
1153
1154  }
1155  return false;
1156}
1157
1158/// IsMemberPointerConversion - Determines whether the conversion of the
1159/// expression From, which has the (possibly adjusted) type FromType, can be
1160/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1161/// If so, returns true and places the converted type (that might differ from
1162/// ToType in its cv-qualifiers at some level) into ConvertedType.
1163bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1164                                     QualType ToType, QualType &ConvertedType)
1165{
1166  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1167  if (!ToTypePtr)
1168    return false;
1169
1170  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1171  if (From->isNullPointerConstant(Context)) {
1172    ConvertedType = ToType;
1173    return true;
1174  }
1175
1176  // Otherwise, both types have to be member pointers.
1177  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1178  if (!FromTypePtr)
1179    return false;
1180
1181  // A pointer to member of B can be converted to a pointer to member of D,
1182  // where D is derived from B (C++ 4.11p2).
1183  QualType FromClass(FromTypePtr->getClass(), 0);
1184  QualType ToClass(ToTypePtr->getClass(), 0);
1185  // FIXME: What happens when these are dependent? Is this function even called?
1186
1187  if (IsDerivedFrom(ToClass, FromClass)) {
1188    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1189                                                 ToClass.getTypePtr());
1190    return true;
1191  }
1192
1193  return false;
1194}
1195
1196/// CheckMemberPointerConversion - Check the member pointer conversion from the
1197/// expression From to the type ToType. This routine checks for ambiguous or
1198/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1199/// for which IsMemberPointerConversion has already returned true. It returns
1200/// true and produces a diagnostic if there was an error, or returns false
1201/// otherwise.
1202bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1203  QualType FromType = From->getType();
1204  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1205  if (!FromPtrType)
1206    return false;
1207
1208  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1209  assert(ToPtrType && "No member pointer cast has a target type "
1210                      "that is not a member pointer.");
1211
1212  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1213  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1214
1215  // FIXME: What about dependent types?
1216  assert(FromClass->isRecordType() && "Pointer into non-class.");
1217  assert(ToClass->isRecordType() && "Pointer into non-class.");
1218
1219  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1220                  /*DetectVirtual=*/true);
1221  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1222  assert(DerivationOkay &&
1223         "Should not have been called if derivation isn't OK.");
1224  (void)DerivationOkay;
1225
1226  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1227                                  getUnqualifiedType())) {
1228    // Derivation is ambiguous. Redo the check to find the exact paths.
1229    Paths.clear();
1230    Paths.setRecordingPaths(true);
1231    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1232    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1233    (void)StillOkay;
1234
1235    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1236    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1237      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1238    return true;
1239  }
1240
1241  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1242    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1243      << FromClass << ToClass << QualType(VBase, 0)
1244      << From->getSourceRange();
1245    return true;
1246  }
1247
1248  return false;
1249}
1250
1251/// IsQualificationConversion - Determines whether the conversion from
1252/// an rvalue of type FromType to ToType is a qualification conversion
1253/// (C++ 4.4).
1254bool
1255Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1256{
1257  FromType = Context.getCanonicalType(FromType);
1258  ToType = Context.getCanonicalType(ToType);
1259
1260  // If FromType and ToType are the same type, this is not a
1261  // qualification conversion.
1262  if (FromType == ToType)
1263    return false;
1264
1265  // (C++ 4.4p4):
1266  //   A conversion can add cv-qualifiers at levels other than the first
1267  //   in multi-level pointers, subject to the following rules: [...]
1268  bool PreviousToQualsIncludeConst = true;
1269  bool UnwrappedAnyPointer = false;
1270  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1271    // Within each iteration of the loop, we check the qualifiers to
1272    // determine if this still looks like a qualification
1273    // conversion. Then, if all is well, we unwrap one more level of
1274    // pointers or pointers-to-members and do it all again
1275    // until there are no more pointers or pointers-to-members left to
1276    // unwrap.
1277    UnwrappedAnyPointer = true;
1278
1279    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1280    //      2,j, and similarly for volatile.
1281    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1282      return false;
1283
1284    //   -- if the cv 1,j and cv 2,j are different, then const is in
1285    //      every cv for 0 < k < j.
1286    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1287        && !PreviousToQualsIncludeConst)
1288      return false;
1289
1290    // Keep track of whether all prior cv-qualifiers in the "to" type
1291    // include const.
1292    PreviousToQualsIncludeConst
1293      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1294  }
1295
1296  // We are left with FromType and ToType being the pointee types
1297  // after unwrapping the original FromType and ToType the same number
1298  // of types. If we unwrapped any pointers, and if FromType and
1299  // ToType have the same unqualified type (since we checked
1300  // qualifiers above), then this is a qualification conversion.
1301  return UnwrappedAnyPointer &&
1302    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1303}
1304
1305/// Determines whether there is a user-defined conversion sequence
1306/// (C++ [over.ics.user]) that converts expression From to the type
1307/// ToType. If such a conversion exists, User will contain the
1308/// user-defined conversion sequence that performs such a conversion
1309/// and this routine will return true. Otherwise, this routine returns
1310/// false and User is unspecified.
1311///
1312/// \param AllowConversionFunctions true if the conversion should
1313/// consider conversion functions at all. If false, only constructors
1314/// will be considered.
1315///
1316/// \param AllowExplicit  true if the conversion should consider C++0x
1317/// "explicit" conversion functions as well as non-explicit conversion
1318/// functions (C++0x [class.conv.fct]p2).
1319///
1320/// \param ForceRValue  true if the expression should be treated as an rvalue
1321/// for overload resolution.
1322bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1323                                   UserDefinedConversionSequence& User,
1324                                   bool AllowConversionFunctions,
1325                                   bool AllowExplicit, bool ForceRValue)
1326{
1327  OverloadCandidateSet CandidateSet;
1328  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1329    if (CXXRecordDecl *ToRecordDecl
1330          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1331      // C++ [over.match.ctor]p1:
1332      //   When objects of class type are direct-initialized (8.5), or
1333      //   copy-initialized from an expression of the same or a
1334      //   derived class type (8.5), overload resolution selects the
1335      //   constructor. [...] For copy-initialization, the candidate
1336      //   functions are all the converting constructors (12.3.1) of
1337      //   that class. The argument list is the expression-list within
1338      //   the parentheses of the initializer.
1339      DeclarationName ConstructorName
1340        = Context.DeclarationNames.getCXXConstructorName(
1341                          Context.getCanonicalType(ToType).getUnqualifiedType());
1342      DeclContext::lookup_iterator Con, ConEnd;
1343      for (llvm::tie(Con, ConEnd)
1344             = ToRecordDecl->lookup(ConstructorName);
1345           Con != ConEnd; ++Con) {
1346        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1347        if (!Constructor->isInvalidDecl() &&
1348            Constructor->isConvertingConstructor())
1349          AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1350                               /*SuppressUserConversions=*/true, ForceRValue);
1351      }
1352    }
1353  }
1354
1355  if (!AllowConversionFunctions) {
1356    // Don't allow any conversion functions to enter the overload set.
1357  } else if (const RecordType *FromRecordType
1358               = From->getType()->getAs<RecordType>()) {
1359    if (CXXRecordDecl *FromRecordDecl
1360          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1361      // Add all of the conversion functions as candidates.
1362      // FIXME: Look for conversions in base classes!
1363      OverloadedFunctionDecl *Conversions
1364        = FromRecordDecl->getConversionFunctions();
1365      for (OverloadedFunctionDecl::function_iterator Func
1366             = Conversions->function_begin();
1367           Func != Conversions->function_end(); ++Func) {
1368        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1369        if (AllowExplicit || !Conv->isExplicit())
1370          AddConversionCandidate(Conv, From, ToType, CandidateSet);
1371      }
1372    }
1373  }
1374
1375  OverloadCandidateSet::iterator Best;
1376  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1377    case OR_Success:
1378      // Record the standard conversion we used and the conversion function.
1379      if (CXXConstructorDecl *Constructor
1380            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1381        // C++ [over.ics.user]p1:
1382        //   If the user-defined conversion is specified by a
1383        //   constructor (12.3.1), the initial standard conversion
1384        //   sequence converts the source type to the type required by
1385        //   the argument of the constructor.
1386        //
1387        // FIXME: What about ellipsis conversions?
1388        QualType ThisType = Constructor->getThisType(Context);
1389        User.Before = Best->Conversions[0].Standard;
1390        User.ConversionFunction = Constructor;
1391        User.After.setAsIdentityConversion();
1392        User.After.FromTypePtr
1393          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1394        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1395        return true;
1396      } else if (CXXConversionDecl *Conversion
1397                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1398        // C++ [over.ics.user]p1:
1399        //
1400        //   [...] If the user-defined conversion is specified by a
1401        //   conversion function (12.3.2), the initial standard
1402        //   conversion sequence converts the source type to the
1403        //   implicit object parameter of the conversion function.
1404        User.Before = Best->Conversions[0].Standard;
1405        User.ConversionFunction = Conversion;
1406
1407        // C++ [over.ics.user]p2:
1408        //   The second standard conversion sequence converts the
1409        //   result of the user-defined conversion to the target type
1410        //   for the sequence. Since an implicit conversion sequence
1411        //   is an initialization, the special rules for
1412        //   initialization by user-defined conversion apply when
1413        //   selecting the best user-defined conversion for a
1414        //   user-defined conversion sequence (see 13.3.3 and
1415        //   13.3.3.1).
1416        User.After = Best->FinalConversion;
1417        return true;
1418      } else {
1419        assert(false && "Not a constructor or conversion function?");
1420        return false;
1421      }
1422
1423    case OR_No_Viable_Function:
1424    case OR_Deleted:
1425      // No conversion here! We're done.
1426      return false;
1427
1428    case OR_Ambiguous:
1429      // FIXME: See C++ [over.best.ics]p10 for the handling of
1430      // ambiguous conversion sequences.
1431      return false;
1432    }
1433
1434  return false;
1435}
1436
1437/// CompareImplicitConversionSequences - Compare two implicit
1438/// conversion sequences to determine whether one is better than the
1439/// other or if they are indistinguishable (C++ 13.3.3.2).
1440ImplicitConversionSequence::CompareKind
1441Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1442                                         const ImplicitConversionSequence& ICS2)
1443{
1444  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1445  // conversion sequences (as defined in 13.3.3.1)
1446  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1447  //      conversion sequence than a user-defined conversion sequence or
1448  //      an ellipsis conversion sequence, and
1449  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1450  //      conversion sequence than an ellipsis conversion sequence
1451  //      (13.3.3.1.3).
1452  //
1453  if (ICS1.ConversionKind < ICS2.ConversionKind)
1454    return ImplicitConversionSequence::Better;
1455  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1456    return ImplicitConversionSequence::Worse;
1457
1458  // Two implicit conversion sequences of the same form are
1459  // indistinguishable conversion sequences unless one of the
1460  // following rules apply: (C++ 13.3.3.2p3):
1461  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1462    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1463  else if (ICS1.ConversionKind ==
1464             ImplicitConversionSequence::UserDefinedConversion) {
1465    // User-defined conversion sequence U1 is a better conversion
1466    // sequence than another user-defined conversion sequence U2 if
1467    // they contain the same user-defined conversion function or
1468    // constructor and if the second standard conversion sequence of
1469    // U1 is better than the second standard conversion sequence of
1470    // U2 (C++ 13.3.3.2p3).
1471    if (ICS1.UserDefined.ConversionFunction ==
1472          ICS2.UserDefined.ConversionFunction)
1473      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1474                                                ICS2.UserDefined.After);
1475  }
1476
1477  return ImplicitConversionSequence::Indistinguishable;
1478}
1479
1480/// CompareStandardConversionSequences - Compare two standard
1481/// conversion sequences to determine whether one is better than the
1482/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1483ImplicitConversionSequence::CompareKind
1484Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1485                                         const StandardConversionSequence& SCS2)
1486{
1487  // Standard conversion sequence S1 is a better conversion sequence
1488  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1489
1490  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1491  //     sequences in the canonical form defined by 13.3.3.1.1,
1492  //     excluding any Lvalue Transformation; the identity conversion
1493  //     sequence is considered to be a subsequence of any
1494  //     non-identity conversion sequence) or, if not that,
1495  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1496    // Neither is a proper subsequence of the other. Do nothing.
1497    ;
1498  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1499           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1500           (SCS1.Second == ICK_Identity &&
1501            SCS1.Third == ICK_Identity))
1502    // SCS1 is a proper subsequence of SCS2.
1503    return ImplicitConversionSequence::Better;
1504  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1505           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1506           (SCS2.Second == ICK_Identity &&
1507            SCS2.Third == ICK_Identity))
1508    // SCS2 is a proper subsequence of SCS1.
1509    return ImplicitConversionSequence::Worse;
1510
1511  //  -- the rank of S1 is better than the rank of S2 (by the rules
1512  //     defined below), or, if not that,
1513  ImplicitConversionRank Rank1 = SCS1.getRank();
1514  ImplicitConversionRank Rank2 = SCS2.getRank();
1515  if (Rank1 < Rank2)
1516    return ImplicitConversionSequence::Better;
1517  else if (Rank2 < Rank1)
1518    return ImplicitConversionSequence::Worse;
1519
1520  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1521  // are indistinguishable unless one of the following rules
1522  // applies:
1523
1524  //   A conversion that is not a conversion of a pointer, or
1525  //   pointer to member, to bool is better than another conversion
1526  //   that is such a conversion.
1527  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1528    return SCS2.isPointerConversionToBool()
1529             ? ImplicitConversionSequence::Better
1530             : ImplicitConversionSequence::Worse;
1531
1532  // C++ [over.ics.rank]p4b2:
1533  //
1534  //   If class B is derived directly or indirectly from class A,
1535  //   conversion of B* to A* is better than conversion of B* to
1536  //   void*, and conversion of A* to void* is better than conversion
1537  //   of B* to void*.
1538  bool SCS1ConvertsToVoid
1539    = SCS1.isPointerConversionToVoidPointer(Context);
1540  bool SCS2ConvertsToVoid
1541    = SCS2.isPointerConversionToVoidPointer(Context);
1542  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1543    // Exactly one of the conversion sequences is a conversion to
1544    // a void pointer; it's the worse conversion.
1545    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1546                              : ImplicitConversionSequence::Worse;
1547  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1548    // Neither conversion sequence converts to a void pointer; compare
1549    // their derived-to-base conversions.
1550    if (ImplicitConversionSequence::CompareKind DerivedCK
1551          = CompareDerivedToBaseConversions(SCS1, SCS2))
1552      return DerivedCK;
1553  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1554    // Both conversion sequences are conversions to void
1555    // pointers. Compare the source types to determine if there's an
1556    // inheritance relationship in their sources.
1557    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1558    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1559
1560    // Adjust the types we're converting from via the array-to-pointer
1561    // conversion, if we need to.
1562    if (SCS1.First == ICK_Array_To_Pointer)
1563      FromType1 = Context.getArrayDecayedType(FromType1);
1564    if (SCS2.First == ICK_Array_To_Pointer)
1565      FromType2 = Context.getArrayDecayedType(FromType2);
1566
1567    QualType FromPointee1
1568      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1569    QualType FromPointee2
1570      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1571
1572    if (IsDerivedFrom(FromPointee2, FromPointee1))
1573      return ImplicitConversionSequence::Better;
1574    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1575      return ImplicitConversionSequence::Worse;
1576
1577    // Objective-C++: If one interface is more specific than the
1578    // other, it is the better one.
1579    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1580    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1581    if (FromIface1 && FromIface1) {
1582      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1583        return ImplicitConversionSequence::Better;
1584      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1585        return ImplicitConversionSequence::Worse;
1586    }
1587  }
1588
1589  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1590  // bullet 3).
1591  if (ImplicitConversionSequence::CompareKind QualCK
1592        = CompareQualificationConversions(SCS1, SCS2))
1593    return QualCK;
1594
1595  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1596    // C++0x [over.ics.rank]p3b4:
1597    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1598    //      implicit object parameter of a non-static member function declared
1599    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1600    //      rvalue and S2 binds an lvalue reference.
1601    // FIXME: We don't know if we're dealing with the implicit object parameter,
1602    // or if the member function in this case has a ref qualifier.
1603    // (Of course, we don't have ref qualifiers yet.)
1604    if (SCS1.RRefBinding != SCS2.RRefBinding)
1605      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1606                              : ImplicitConversionSequence::Worse;
1607
1608    // C++ [over.ics.rank]p3b4:
1609    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1610    //      which the references refer are the same type except for
1611    //      top-level cv-qualifiers, and the type to which the reference
1612    //      initialized by S2 refers is more cv-qualified than the type
1613    //      to which the reference initialized by S1 refers.
1614    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1615    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1616    T1 = Context.getCanonicalType(T1);
1617    T2 = Context.getCanonicalType(T2);
1618    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1619      if (T2.isMoreQualifiedThan(T1))
1620        return ImplicitConversionSequence::Better;
1621      else if (T1.isMoreQualifiedThan(T2))
1622        return ImplicitConversionSequence::Worse;
1623    }
1624  }
1625
1626  return ImplicitConversionSequence::Indistinguishable;
1627}
1628
1629/// CompareQualificationConversions - Compares two standard conversion
1630/// sequences to determine whether they can be ranked based on their
1631/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1632ImplicitConversionSequence::CompareKind
1633Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1634                                      const StandardConversionSequence& SCS2)
1635{
1636  // C++ 13.3.3.2p3:
1637  //  -- S1 and S2 differ only in their qualification conversion and
1638  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1639  //     cv-qualification signature of type T1 is a proper subset of
1640  //     the cv-qualification signature of type T2, and S1 is not the
1641  //     deprecated string literal array-to-pointer conversion (4.2).
1642  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1643      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1644    return ImplicitConversionSequence::Indistinguishable;
1645
1646  // FIXME: the example in the standard doesn't use a qualification
1647  // conversion (!)
1648  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1649  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1650  T1 = Context.getCanonicalType(T1);
1651  T2 = Context.getCanonicalType(T2);
1652
1653  // If the types are the same, we won't learn anything by unwrapped
1654  // them.
1655  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1656    return ImplicitConversionSequence::Indistinguishable;
1657
1658  ImplicitConversionSequence::CompareKind Result
1659    = ImplicitConversionSequence::Indistinguishable;
1660  while (UnwrapSimilarPointerTypes(T1, T2)) {
1661    // Within each iteration of the loop, we check the qualifiers to
1662    // determine if this still looks like a qualification
1663    // conversion. Then, if all is well, we unwrap one more level of
1664    // pointers or pointers-to-members and do it all again
1665    // until there are no more pointers or pointers-to-members left
1666    // to unwrap. This essentially mimics what
1667    // IsQualificationConversion does, but here we're checking for a
1668    // strict subset of qualifiers.
1669    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1670      // The qualifiers are the same, so this doesn't tell us anything
1671      // about how the sequences rank.
1672      ;
1673    else if (T2.isMoreQualifiedThan(T1)) {
1674      // T1 has fewer qualifiers, so it could be the better sequence.
1675      if (Result == ImplicitConversionSequence::Worse)
1676        // Neither has qualifiers that are a subset of the other's
1677        // qualifiers.
1678        return ImplicitConversionSequence::Indistinguishable;
1679
1680      Result = ImplicitConversionSequence::Better;
1681    } else if (T1.isMoreQualifiedThan(T2)) {
1682      // T2 has fewer qualifiers, so it could be the better sequence.
1683      if (Result == ImplicitConversionSequence::Better)
1684        // Neither has qualifiers that are a subset of the other's
1685        // qualifiers.
1686        return ImplicitConversionSequence::Indistinguishable;
1687
1688      Result = ImplicitConversionSequence::Worse;
1689    } else {
1690      // Qualifiers are disjoint.
1691      return ImplicitConversionSequence::Indistinguishable;
1692    }
1693
1694    // If the types after this point are equivalent, we're done.
1695    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1696      break;
1697  }
1698
1699  // Check that the winning standard conversion sequence isn't using
1700  // the deprecated string literal array to pointer conversion.
1701  switch (Result) {
1702  case ImplicitConversionSequence::Better:
1703    if (SCS1.Deprecated)
1704      Result = ImplicitConversionSequence::Indistinguishable;
1705    break;
1706
1707  case ImplicitConversionSequence::Indistinguishable:
1708    break;
1709
1710  case ImplicitConversionSequence::Worse:
1711    if (SCS2.Deprecated)
1712      Result = ImplicitConversionSequence::Indistinguishable;
1713    break;
1714  }
1715
1716  return Result;
1717}
1718
1719/// CompareDerivedToBaseConversions - Compares two standard conversion
1720/// sequences to determine whether they can be ranked based on their
1721/// various kinds of derived-to-base conversions (C++
1722/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1723/// conversions between Objective-C interface types.
1724ImplicitConversionSequence::CompareKind
1725Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1726                                      const StandardConversionSequence& SCS2) {
1727  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1728  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1729  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1730  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1731
1732  // Adjust the types we're converting from via the array-to-pointer
1733  // conversion, if we need to.
1734  if (SCS1.First == ICK_Array_To_Pointer)
1735    FromType1 = Context.getArrayDecayedType(FromType1);
1736  if (SCS2.First == ICK_Array_To_Pointer)
1737    FromType2 = Context.getArrayDecayedType(FromType2);
1738
1739  // Canonicalize all of the types.
1740  FromType1 = Context.getCanonicalType(FromType1);
1741  ToType1 = Context.getCanonicalType(ToType1);
1742  FromType2 = Context.getCanonicalType(FromType2);
1743  ToType2 = Context.getCanonicalType(ToType2);
1744
1745  // C++ [over.ics.rank]p4b3:
1746  //
1747  //   If class B is derived directly or indirectly from class A and
1748  //   class C is derived directly or indirectly from B,
1749  //
1750  // For Objective-C, we let A, B, and C also be Objective-C
1751  // interfaces.
1752
1753  // Compare based on pointer conversions.
1754  if (SCS1.Second == ICK_Pointer_Conversion &&
1755      SCS2.Second == ICK_Pointer_Conversion &&
1756      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1757      FromType1->isPointerType() && FromType2->isPointerType() &&
1758      ToType1->isPointerType() && ToType2->isPointerType()) {
1759    QualType FromPointee1
1760      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1761    QualType ToPointee1
1762      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1763    QualType FromPointee2
1764      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1765    QualType ToPointee2
1766      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1767
1768    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1769    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1770    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1771    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1772
1773    //   -- conversion of C* to B* is better than conversion of C* to A*,
1774    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1775      if (IsDerivedFrom(ToPointee1, ToPointee2))
1776        return ImplicitConversionSequence::Better;
1777      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1778        return ImplicitConversionSequence::Worse;
1779
1780      if (ToIface1 && ToIface2) {
1781        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1782          return ImplicitConversionSequence::Better;
1783        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1784          return ImplicitConversionSequence::Worse;
1785      }
1786    }
1787
1788    //   -- conversion of B* to A* is better than conversion of C* to A*,
1789    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1790      if (IsDerivedFrom(FromPointee2, FromPointee1))
1791        return ImplicitConversionSequence::Better;
1792      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1793        return ImplicitConversionSequence::Worse;
1794
1795      if (FromIface1 && FromIface2) {
1796        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1797          return ImplicitConversionSequence::Better;
1798        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1799          return ImplicitConversionSequence::Worse;
1800      }
1801    }
1802  }
1803
1804  // Compare based on reference bindings.
1805  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1806      SCS1.Second == ICK_Derived_To_Base) {
1807    //   -- binding of an expression of type C to a reference of type
1808    //      B& is better than binding an expression of type C to a
1809    //      reference of type A&,
1810    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1811        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1812      if (IsDerivedFrom(ToType1, ToType2))
1813        return ImplicitConversionSequence::Better;
1814      else if (IsDerivedFrom(ToType2, ToType1))
1815        return ImplicitConversionSequence::Worse;
1816    }
1817
1818    //   -- binding of an expression of type B to a reference of type
1819    //      A& is better than binding an expression of type C to a
1820    //      reference of type A&,
1821    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1822        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1823      if (IsDerivedFrom(FromType2, FromType1))
1824        return ImplicitConversionSequence::Better;
1825      else if (IsDerivedFrom(FromType1, FromType2))
1826        return ImplicitConversionSequence::Worse;
1827    }
1828  }
1829
1830
1831  // FIXME: conversion of A::* to B::* is better than conversion of
1832  // A::* to C::*,
1833
1834  // FIXME: conversion of B::* to C::* is better than conversion of
1835  // A::* to C::*, and
1836
1837  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1838      SCS1.Second == ICK_Derived_To_Base) {
1839    //   -- conversion of C to B is better than conversion of C to A,
1840    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1841        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1842      if (IsDerivedFrom(ToType1, ToType2))
1843        return ImplicitConversionSequence::Better;
1844      else if (IsDerivedFrom(ToType2, ToType1))
1845        return ImplicitConversionSequence::Worse;
1846    }
1847
1848    //   -- conversion of B to A is better than conversion of C to A.
1849    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1850        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1851      if (IsDerivedFrom(FromType2, FromType1))
1852        return ImplicitConversionSequence::Better;
1853      else if (IsDerivedFrom(FromType1, FromType2))
1854        return ImplicitConversionSequence::Worse;
1855    }
1856  }
1857
1858  return ImplicitConversionSequence::Indistinguishable;
1859}
1860
1861/// TryCopyInitialization - Try to copy-initialize a value of type
1862/// ToType from the expression From. Return the implicit conversion
1863/// sequence required to pass this argument, which may be a bad
1864/// conversion sequence (meaning that the argument cannot be passed to
1865/// a parameter of this type). If @p SuppressUserConversions, then we
1866/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1867/// then we treat @p From as an rvalue, even if it is an lvalue.
1868ImplicitConversionSequence
1869Sema::TryCopyInitialization(Expr *From, QualType ToType,
1870                            bool SuppressUserConversions, bool ForceRValue) {
1871  if (ToType->isReferenceType()) {
1872    ImplicitConversionSequence ICS;
1873    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1874                       /*AllowExplicit=*/false, ForceRValue);
1875    return ICS;
1876  } else {
1877    return TryImplicitConversion(From, ToType, SuppressUserConversions,
1878                                 ForceRValue);
1879  }
1880}
1881
1882/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1883/// the expression @p From. Returns true (and emits a diagnostic) if there was
1884/// an error, returns false if the initialization succeeded. Elidable should
1885/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1886/// differently in C++0x for this case.
1887bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1888                                     const char* Flavor, bool Elidable) {
1889  if (!getLangOptions().CPlusPlus) {
1890    // In C, argument passing is the same as performing an assignment.
1891    QualType FromType = From->getType();
1892
1893    AssignConvertType ConvTy =
1894      CheckSingleAssignmentConstraints(ToType, From);
1895    if (ConvTy != Compatible &&
1896        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1897      ConvTy = Compatible;
1898
1899    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1900                                    FromType, From, Flavor);
1901  }
1902
1903  if (ToType->isReferenceType())
1904    return CheckReferenceInit(From, ToType);
1905
1906  if (!PerformImplicitConversion(From, ToType, Flavor,
1907                                 /*AllowExplicit=*/false, Elidable))
1908    return false;
1909
1910  return Diag(From->getSourceRange().getBegin(),
1911              diag::err_typecheck_convert_incompatible)
1912    << ToType << From->getType() << Flavor << From->getSourceRange();
1913}
1914
1915/// TryObjectArgumentInitialization - Try to initialize the object
1916/// parameter of the given member function (@c Method) from the
1917/// expression @p From.
1918ImplicitConversionSequence
1919Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1920  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1921  unsigned MethodQuals = Method->getTypeQualifiers();
1922  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1923
1924  // Set up the conversion sequence as a "bad" conversion, to allow us
1925  // to exit early.
1926  ImplicitConversionSequence ICS;
1927  ICS.Standard.setAsIdentityConversion();
1928  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1929
1930  // We need to have an object of class type.
1931  QualType FromType = From->getType();
1932  if (const PointerType *PT = FromType->getAs<PointerType>())
1933    FromType = PT->getPointeeType();
1934
1935  assert(FromType->isRecordType());
1936
1937  // The implicit object parmeter is has the type "reference to cv X",
1938  // where X is the class of which the function is a member
1939  // (C++ [over.match.funcs]p4). However, when finding an implicit
1940  // conversion sequence for the argument, we are not allowed to
1941  // create temporaries or perform user-defined conversions
1942  // (C++ [over.match.funcs]p5). We perform a simplified version of
1943  // reference binding here, that allows class rvalues to bind to
1944  // non-constant references.
1945
1946  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1947  // with the implicit object parameter (C++ [over.match.funcs]p5).
1948  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1949  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1950      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1951    return ICS;
1952
1953  // Check that we have either the same type or a derived type. It
1954  // affects the conversion rank.
1955  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1956  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1957    ICS.Standard.Second = ICK_Identity;
1958  else if (IsDerivedFrom(FromType, ClassType))
1959    ICS.Standard.Second = ICK_Derived_To_Base;
1960  else
1961    return ICS;
1962
1963  // Success. Mark this as a reference binding.
1964  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1965  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1966  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1967  ICS.Standard.ReferenceBinding = true;
1968  ICS.Standard.DirectBinding = true;
1969  ICS.Standard.RRefBinding = false;
1970  return ICS;
1971}
1972
1973/// PerformObjectArgumentInitialization - Perform initialization of
1974/// the implicit object parameter for the given Method with the given
1975/// expression.
1976bool
1977Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1978  QualType FromRecordType, DestType;
1979  QualType ImplicitParamRecordType  =
1980    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
1981
1982  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
1983    FromRecordType = PT->getPointeeType();
1984    DestType = Method->getThisType(Context);
1985  } else {
1986    FromRecordType = From->getType();
1987    DestType = ImplicitParamRecordType;
1988  }
1989
1990  ImplicitConversionSequence ICS
1991    = TryObjectArgumentInitialization(From, Method);
1992  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1993    return Diag(From->getSourceRange().getBegin(),
1994                diag::err_implicit_object_parameter_init)
1995       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
1996
1997  if (ICS.Standard.Second == ICK_Derived_To_Base &&
1998      CheckDerivedToBaseConversion(FromRecordType,
1999                                   ImplicitParamRecordType,
2000                                   From->getSourceRange().getBegin(),
2001                                   From->getSourceRange()))
2002    return true;
2003
2004  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2005                    /*isLvalue=*/true);
2006  return false;
2007}
2008
2009/// TryContextuallyConvertToBool - Attempt to contextually convert the
2010/// expression From to bool (C++0x [conv]p3).
2011ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2012  return TryImplicitConversion(From, Context.BoolTy, false, true);
2013}
2014
2015/// PerformContextuallyConvertToBool - Perform a contextual conversion
2016/// of the expression From to bool (C++0x [conv]p3).
2017bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2018  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2019  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2020    return false;
2021
2022  return Diag(From->getSourceRange().getBegin(),
2023              diag::err_typecheck_bool_condition)
2024    << From->getType() << From->getSourceRange();
2025}
2026
2027/// AddOverloadCandidate - Adds the given function to the set of
2028/// candidate functions, using the given function call arguments.  If
2029/// @p SuppressUserConversions, then don't allow user-defined
2030/// conversions via constructors or conversion operators.
2031/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2032/// hacky way to implement the overloading rules for elidable copy
2033/// initialization in C++0x (C++0x 12.8p15).
2034void
2035Sema::AddOverloadCandidate(FunctionDecl *Function,
2036                           Expr **Args, unsigned NumArgs,
2037                           OverloadCandidateSet& CandidateSet,
2038                           bool SuppressUserConversions,
2039                           bool ForceRValue)
2040{
2041  const FunctionProtoType* Proto
2042    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2043  assert(Proto && "Functions without a prototype cannot be overloaded");
2044  assert(!isa<CXXConversionDecl>(Function) &&
2045         "Use AddConversionCandidate for conversion functions");
2046  assert(!Function->getDescribedFunctionTemplate() &&
2047         "Use AddTemplateOverloadCandidate for function templates");
2048
2049  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2050    if (!isa<CXXConstructorDecl>(Method)) {
2051      // If we get here, it's because we're calling a member function
2052      // that is named without a member access expression (e.g.,
2053      // "this->f") that was either written explicitly or created
2054      // implicitly. This can happen with a qualified call to a member
2055      // function, e.g., X::f(). We use a NULL object as the implied
2056      // object argument (C++ [over.call.func]p3).
2057      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2058                         SuppressUserConversions, ForceRValue);
2059      return;
2060    }
2061    // We treat a constructor like a non-member function, since its object
2062    // argument doesn't participate in overload resolution.
2063  }
2064
2065
2066  // Add this candidate
2067  CandidateSet.push_back(OverloadCandidate());
2068  OverloadCandidate& Candidate = CandidateSet.back();
2069  Candidate.Function = Function;
2070  Candidate.Viable = true;
2071  Candidate.IsSurrogate = false;
2072  Candidate.IgnoreObjectArgument = false;
2073
2074  unsigned NumArgsInProto = Proto->getNumArgs();
2075
2076  // (C++ 13.3.2p2): A candidate function having fewer than m
2077  // parameters is viable only if it has an ellipsis in its parameter
2078  // list (8.3.5).
2079  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2080    Candidate.Viable = false;
2081    return;
2082  }
2083
2084  // (C++ 13.3.2p2): A candidate function having more than m parameters
2085  // is viable only if the (m+1)st parameter has a default argument
2086  // (8.3.6). For the purposes of overload resolution, the
2087  // parameter list is truncated on the right, so that there are
2088  // exactly m parameters.
2089  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2090  if (NumArgs < MinRequiredArgs) {
2091    // Not enough arguments.
2092    Candidate.Viable = false;
2093    return;
2094  }
2095
2096  // Determine the implicit conversion sequences for each of the
2097  // arguments.
2098  Candidate.Conversions.resize(NumArgs);
2099  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2100    if (ArgIdx < NumArgsInProto) {
2101      // (C++ 13.3.2p3): for F to be a viable function, there shall
2102      // exist for each argument an implicit conversion sequence
2103      // (13.3.3.1) that converts that argument to the corresponding
2104      // parameter of F.
2105      QualType ParamType = Proto->getArgType(ArgIdx);
2106      Candidate.Conversions[ArgIdx]
2107        = TryCopyInitialization(Args[ArgIdx], ParamType,
2108                                SuppressUserConversions, ForceRValue);
2109      if (Candidate.Conversions[ArgIdx].ConversionKind
2110            == ImplicitConversionSequence::BadConversion) {
2111        Candidate.Viable = false;
2112        break;
2113      }
2114    } else {
2115      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2116      // argument for which there is no corresponding parameter is
2117      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2118      Candidate.Conversions[ArgIdx].ConversionKind
2119        = ImplicitConversionSequence::EllipsisConversion;
2120    }
2121  }
2122}
2123
2124/// \brief Add all of the function declarations in the given function set to
2125/// the overload canddiate set.
2126void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2127                                 Expr **Args, unsigned NumArgs,
2128                                 OverloadCandidateSet& CandidateSet,
2129                                 bool SuppressUserConversions) {
2130  for (FunctionSet::const_iterator F = Functions.begin(),
2131                                FEnd = Functions.end();
2132       F != FEnd; ++F) {
2133    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2134      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2135                           SuppressUserConversions);
2136    else
2137      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2138                                   /*FIXME: explicit args */false, 0, 0,
2139                                   Args, NumArgs, CandidateSet,
2140                                   SuppressUserConversions);
2141  }
2142}
2143
2144/// AddMethodCandidate - Adds the given C++ member function to the set
2145/// of candidate functions, using the given function call arguments
2146/// and the object argument (@c Object). For example, in a call
2147/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2148/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2149/// allow user-defined conversions via constructors or conversion
2150/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2151/// a slightly hacky way to implement the overloading rules for elidable copy
2152/// initialization in C++0x (C++0x 12.8p15).
2153void
2154Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2155                         Expr **Args, unsigned NumArgs,
2156                         OverloadCandidateSet& CandidateSet,
2157                         bool SuppressUserConversions, bool ForceRValue)
2158{
2159  const FunctionProtoType* Proto
2160    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2161  assert(Proto && "Methods without a prototype cannot be overloaded");
2162  assert(!isa<CXXConversionDecl>(Method) &&
2163         "Use AddConversionCandidate for conversion functions");
2164  assert(!isa<CXXConstructorDecl>(Method) &&
2165         "Use AddOverloadCandidate for constructors");
2166
2167  // Add this candidate
2168  CandidateSet.push_back(OverloadCandidate());
2169  OverloadCandidate& Candidate = CandidateSet.back();
2170  Candidate.Function = Method;
2171  Candidate.IsSurrogate = false;
2172  Candidate.IgnoreObjectArgument = false;
2173
2174  unsigned NumArgsInProto = Proto->getNumArgs();
2175
2176  // (C++ 13.3.2p2): A candidate function having fewer than m
2177  // parameters is viable only if it has an ellipsis in its parameter
2178  // list (8.3.5).
2179  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2180    Candidate.Viable = false;
2181    return;
2182  }
2183
2184  // (C++ 13.3.2p2): A candidate function having more than m parameters
2185  // is viable only if the (m+1)st parameter has a default argument
2186  // (8.3.6). For the purposes of overload resolution, the
2187  // parameter list is truncated on the right, so that there are
2188  // exactly m parameters.
2189  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2190  if (NumArgs < MinRequiredArgs) {
2191    // Not enough arguments.
2192    Candidate.Viable = false;
2193    return;
2194  }
2195
2196  Candidate.Viable = true;
2197  Candidate.Conversions.resize(NumArgs + 1);
2198
2199  if (Method->isStatic() || !Object)
2200    // The implicit object argument is ignored.
2201    Candidate.IgnoreObjectArgument = true;
2202  else {
2203    // Determine the implicit conversion sequence for the object
2204    // parameter.
2205    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2206    if (Candidate.Conversions[0].ConversionKind
2207          == ImplicitConversionSequence::BadConversion) {
2208      Candidate.Viable = false;
2209      return;
2210    }
2211  }
2212
2213  // Determine the implicit conversion sequences for each of the
2214  // arguments.
2215  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2216    if (ArgIdx < NumArgsInProto) {
2217      // (C++ 13.3.2p3): for F to be a viable function, there shall
2218      // exist for each argument an implicit conversion sequence
2219      // (13.3.3.1) that converts that argument to the corresponding
2220      // parameter of F.
2221      QualType ParamType = Proto->getArgType(ArgIdx);
2222      Candidate.Conversions[ArgIdx + 1]
2223        = TryCopyInitialization(Args[ArgIdx], ParamType,
2224                                SuppressUserConversions, ForceRValue);
2225      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2226            == ImplicitConversionSequence::BadConversion) {
2227        Candidate.Viable = false;
2228        break;
2229      }
2230    } else {
2231      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2232      // argument for which there is no corresponding parameter is
2233      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2234      Candidate.Conversions[ArgIdx + 1].ConversionKind
2235        = ImplicitConversionSequence::EllipsisConversion;
2236    }
2237  }
2238}
2239
2240/// \brief Add a C++ function template as a candidate in the candidate set,
2241/// using template argument deduction to produce an appropriate function
2242/// template specialization.
2243void
2244Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2245                                   bool HasExplicitTemplateArgs,
2246                                 const TemplateArgument *ExplicitTemplateArgs,
2247                                   unsigned NumExplicitTemplateArgs,
2248                                   Expr **Args, unsigned NumArgs,
2249                                   OverloadCandidateSet& CandidateSet,
2250                                   bool SuppressUserConversions,
2251                                   bool ForceRValue) {
2252  // C++ [over.match.funcs]p7:
2253  //   In each case where a candidate is a function template, candidate
2254  //   function template specializations are generated using template argument
2255  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2256  //   candidate functions in the usual way.113) A given name can refer to one
2257  //   or more function templates and also to a set of overloaded non-template
2258  //   functions. In such a case, the candidate functions generated from each
2259  //   function template are combined with the set of non-template candidate
2260  //   functions.
2261  TemplateDeductionInfo Info(Context);
2262  FunctionDecl *Specialization = 0;
2263  if (TemplateDeductionResult Result
2264        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2265                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2266                                  Args, NumArgs, Specialization, Info)) {
2267    // FIXME: Record what happened with template argument deduction, so
2268    // that we can give the user a beautiful diagnostic.
2269    (void)Result;
2270    return;
2271  }
2272
2273  // Add the function template specialization produced by template argument
2274  // deduction as a candidate.
2275  assert(Specialization && "Missing function template specialization?");
2276  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2277                       SuppressUserConversions, ForceRValue);
2278}
2279
2280/// AddConversionCandidate - Add a C++ conversion function as a
2281/// candidate in the candidate set (C++ [over.match.conv],
2282/// C++ [over.match.copy]). From is the expression we're converting from,
2283/// and ToType is the type that we're eventually trying to convert to
2284/// (which may or may not be the same type as the type that the
2285/// conversion function produces).
2286void
2287Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2288                             Expr *From, QualType ToType,
2289                             OverloadCandidateSet& CandidateSet) {
2290  // Add this candidate
2291  CandidateSet.push_back(OverloadCandidate());
2292  OverloadCandidate& Candidate = CandidateSet.back();
2293  Candidate.Function = Conversion;
2294  Candidate.IsSurrogate = false;
2295  Candidate.IgnoreObjectArgument = false;
2296  Candidate.FinalConversion.setAsIdentityConversion();
2297  Candidate.FinalConversion.FromTypePtr
2298    = Conversion->getConversionType().getAsOpaquePtr();
2299  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2300
2301  // Determine the implicit conversion sequence for the implicit
2302  // object parameter.
2303  Candidate.Viable = true;
2304  Candidate.Conversions.resize(1);
2305  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2306
2307  if (Candidate.Conversions[0].ConversionKind
2308      == ImplicitConversionSequence::BadConversion) {
2309    Candidate.Viable = false;
2310    return;
2311  }
2312
2313  // To determine what the conversion from the result of calling the
2314  // conversion function to the type we're eventually trying to
2315  // convert to (ToType), we need to synthesize a call to the
2316  // conversion function and attempt copy initialization from it. This
2317  // makes sure that we get the right semantics with respect to
2318  // lvalues/rvalues and the type. Fortunately, we can allocate this
2319  // call on the stack and we don't need its arguments to be
2320  // well-formed.
2321  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2322                            SourceLocation());
2323  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2324                                CastExpr::CK_Unknown,
2325                                &ConversionRef, false);
2326
2327  // Note that it is safe to allocate CallExpr on the stack here because
2328  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2329  // allocator).
2330  CallExpr Call(Context, &ConversionFn, 0, 0,
2331                Conversion->getConversionType().getNonReferenceType(),
2332                SourceLocation());
2333  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2334  switch (ICS.ConversionKind) {
2335  case ImplicitConversionSequence::StandardConversion:
2336    Candidate.FinalConversion = ICS.Standard;
2337    break;
2338
2339  case ImplicitConversionSequence::BadConversion:
2340    Candidate.Viable = false;
2341    break;
2342
2343  default:
2344    assert(false &&
2345           "Can only end up with a standard conversion sequence or failure");
2346  }
2347}
2348
2349/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2350/// converts the given @c Object to a function pointer via the
2351/// conversion function @c Conversion, and then attempts to call it
2352/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2353/// the type of function that we'll eventually be calling.
2354void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2355                                 const FunctionProtoType *Proto,
2356                                 Expr *Object, Expr **Args, unsigned NumArgs,
2357                                 OverloadCandidateSet& CandidateSet) {
2358  CandidateSet.push_back(OverloadCandidate());
2359  OverloadCandidate& Candidate = CandidateSet.back();
2360  Candidate.Function = 0;
2361  Candidate.Surrogate = Conversion;
2362  Candidate.Viable = true;
2363  Candidate.IsSurrogate = true;
2364  Candidate.IgnoreObjectArgument = false;
2365  Candidate.Conversions.resize(NumArgs + 1);
2366
2367  // Determine the implicit conversion sequence for the implicit
2368  // object parameter.
2369  ImplicitConversionSequence ObjectInit
2370    = TryObjectArgumentInitialization(Object, Conversion);
2371  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2372    Candidate.Viable = false;
2373    return;
2374  }
2375
2376  // The first conversion is actually a user-defined conversion whose
2377  // first conversion is ObjectInit's standard conversion (which is
2378  // effectively a reference binding). Record it as such.
2379  Candidate.Conversions[0].ConversionKind
2380    = ImplicitConversionSequence::UserDefinedConversion;
2381  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2382  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2383  Candidate.Conversions[0].UserDefined.After
2384    = Candidate.Conversions[0].UserDefined.Before;
2385  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2386
2387  // Find the
2388  unsigned NumArgsInProto = Proto->getNumArgs();
2389
2390  // (C++ 13.3.2p2): A candidate function having fewer than m
2391  // parameters is viable only if it has an ellipsis in its parameter
2392  // list (8.3.5).
2393  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2394    Candidate.Viable = false;
2395    return;
2396  }
2397
2398  // Function types don't have any default arguments, so just check if
2399  // we have enough arguments.
2400  if (NumArgs < NumArgsInProto) {
2401    // Not enough arguments.
2402    Candidate.Viable = false;
2403    return;
2404  }
2405
2406  // Determine the implicit conversion sequences for each of the
2407  // arguments.
2408  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2409    if (ArgIdx < NumArgsInProto) {
2410      // (C++ 13.3.2p3): for F to be a viable function, there shall
2411      // exist for each argument an implicit conversion sequence
2412      // (13.3.3.1) that converts that argument to the corresponding
2413      // parameter of F.
2414      QualType ParamType = Proto->getArgType(ArgIdx);
2415      Candidate.Conversions[ArgIdx + 1]
2416        = TryCopyInitialization(Args[ArgIdx], ParamType,
2417                                /*SuppressUserConversions=*/false);
2418      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2419            == ImplicitConversionSequence::BadConversion) {
2420        Candidate.Viable = false;
2421        break;
2422      }
2423    } else {
2424      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2425      // argument for which there is no corresponding parameter is
2426      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2427      Candidate.Conversions[ArgIdx + 1].ConversionKind
2428        = ImplicitConversionSequence::EllipsisConversion;
2429    }
2430  }
2431}
2432
2433// FIXME: This will eventually be removed, once we've migrated all of the
2434// operator overloading logic over to the scheme used by binary operators, which
2435// works for template instantiation.
2436void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2437                                 SourceLocation OpLoc,
2438                                 Expr **Args, unsigned NumArgs,
2439                                 OverloadCandidateSet& CandidateSet,
2440                                 SourceRange OpRange) {
2441
2442  FunctionSet Functions;
2443
2444  QualType T1 = Args[0]->getType();
2445  QualType T2;
2446  if (NumArgs > 1)
2447    T2 = Args[1]->getType();
2448
2449  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2450  if (S)
2451    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2452  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2453  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2454  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2455  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2456}
2457
2458/// \brief Add overload candidates for overloaded operators that are
2459/// member functions.
2460///
2461/// Add the overloaded operator candidates that are member functions
2462/// for the operator Op that was used in an operator expression such
2463/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2464/// CandidateSet will store the added overload candidates. (C++
2465/// [over.match.oper]).
2466void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2467                                       SourceLocation OpLoc,
2468                                       Expr **Args, unsigned NumArgs,
2469                                       OverloadCandidateSet& CandidateSet,
2470                                       SourceRange OpRange) {
2471  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2472
2473  // C++ [over.match.oper]p3:
2474  //   For a unary operator @ with an operand of a type whose
2475  //   cv-unqualified version is T1, and for a binary operator @ with
2476  //   a left operand of a type whose cv-unqualified version is T1 and
2477  //   a right operand of a type whose cv-unqualified version is T2,
2478  //   three sets of candidate functions, designated member
2479  //   candidates, non-member candidates and built-in candidates, are
2480  //   constructed as follows:
2481  QualType T1 = Args[0]->getType();
2482  QualType T2;
2483  if (NumArgs > 1)
2484    T2 = Args[1]->getType();
2485
2486  //     -- If T1 is a class type, the set of member candidates is the
2487  //        result of the qualified lookup of T1::operator@
2488  //        (13.3.1.1.1); otherwise, the set of member candidates is
2489  //        empty.
2490  // FIXME: Lookup in base classes, too!
2491  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2492    DeclContext::lookup_const_iterator Oper, OperEnd;
2493    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
2494         Oper != OperEnd; ++Oper)
2495      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2496                         Args+1, NumArgs - 1, CandidateSet,
2497                         /*SuppressUserConversions=*/false);
2498  }
2499}
2500
2501/// AddBuiltinCandidate - Add a candidate for a built-in
2502/// operator. ResultTy and ParamTys are the result and parameter types
2503/// of the built-in candidate, respectively. Args and NumArgs are the
2504/// arguments being passed to the candidate. IsAssignmentOperator
2505/// should be true when this built-in candidate is an assignment
2506/// operator. NumContextualBoolArguments is the number of arguments
2507/// (at the beginning of the argument list) that will be contextually
2508/// converted to bool.
2509void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2510                               Expr **Args, unsigned NumArgs,
2511                               OverloadCandidateSet& CandidateSet,
2512                               bool IsAssignmentOperator,
2513                               unsigned NumContextualBoolArguments) {
2514  // Add this candidate
2515  CandidateSet.push_back(OverloadCandidate());
2516  OverloadCandidate& Candidate = CandidateSet.back();
2517  Candidate.Function = 0;
2518  Candidate.IsSurrogate = false;
2519  Candidate.IgnoreObjectArgument = false;
2520  Candidate.BuiltinTypes.ResultTy = ResultTy;
2521  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2522    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2523
2524  // Determine the implicit conversion sequences for each of the
2525  // arguments.
2526  Candidate.Viable = true;
2527  Candidate.Conversions.resize(NumArgs);
2528  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2529    // C++ [over.match.oper]p4:
2530    //   For the built-in assignment operators, conversions of the
2531    //   left operand are restricted as follows:
2532    //     -- no temporaries are introduced to hold the left operand, and
2533    //     -- no user-defined conversions are applied to the left
2534    //        operand to achieve a type match with the left-most
2535    //        parameter of a built-in candidate.
2536    //
2537    // We block these conversions by turning off user-defined
2538    // conversions, since that is the only way that initialization of
2539    // a reference to a non-class type can occur from something that
2540    // is not of the same type.
2541    if (ArgIdx < NumContextualBoolArguments) {
2542      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2543             "Contextual conversion to bool requires bool type");
2544      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2545    } else {
2546      Candidate.Conversions[ArgIdx]
2547        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2548                                ArgIdx == 0 && IsAssignmentOperator);
2549    }
2550    if (Candidate.Conversions[ArgIdx].ConversionKind
2551        == ImplicitConversionSequence::BadConversion) {
2552      Candidate.Viable = false;
2553      break;
2554    }
2555  }
2556}
2557
2558/// BuiltinCandidateTypeSet - A set of types that will be used for the
2559/// candidate operator functions for built-in operators (C++
2560/// [over.built]). The types are separated into pointer types and
2561/// enumeration types.
2562class BuiltinCandidateTypeSet  {
2563  /// TypeSet - A set of types.
2564  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2565
2566  /// PointerTypes - The set of pointer types that will be used in the
2567  /// built-in candidates.
2568  TypeSet PointerTypes;
2569
2570  /// MemberPointerTypes - The set of member pointer types that will be
2571  /// used in the built-in candidates.
2572  TypeSet MemberPointerTypes;
2573
2574  /// EnumerationTypes - The set of enumeration types that will be
2575  /// used in the built-in candidates.
2576  TypeSet EnumerationTypes;
2577
2578  /// Context - The AST context in which we will build the type sets.
2579  ASTContext &Context;
2580
2581  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2582  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2583
2584public:
2585  /// iterator - Iterates through the types that are part of the set.
2586  typedef TypeSet::iterator iterator;
2587
2588  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2589
2590  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2591                             bool AllowExplicitConversions);
2592
2593  /// pointer_begin - First pointer type found;
2594  iterator pointer_begin() { return PointerTypes.begin(); }
2595
2596  /// pointer_end - Past the last pointer type found;
2597  iterator pointer_end() { return PointerTypes.end(); }
2598
2599  /// member_pointer_begin - First member pointer type found;
2600  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2601
2602  /// member_pointer_end - Past the last member pointer type found;
2603  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2604
2605  /// enumeration_begin - First enumeration type found;
2606  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2607
2608  /// enumeration_end - Past the last enumeration type found;
2609  iterator enumeration_end() { return EnumerationTypes.end(); }
2610};
2611
2612/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2613/// the set of pointer types along with any more-qualified variants of
2614/// that type. For example, if @p Ty is "int const *", this routine
2615/// will add "int const *", "int const volatile *", "int const
2616/// restrict *", and "int const volatile restrict *" to the set of
2617/// pointer types. Returns true if the add of @p Ty itself succeeded,
2618/// false otherwise.
2619bool
2620BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2621  // Insert this type.
2622  if (!PointerTypes.insert(Ty))
2623    return false;
2624
2625  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2626    QualType PointeeTy = PointerTy->getPointeeType();
2627    // FIXME: Optimize this so that we don't keep trying to add the same types.
2628
2629    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2630    // pointer conversions that don't cast away constness?
2631    if (!PointeeTy.isConstQualified())
2632      AddPointerWithMoreQualifiedTypeVariants
2633        (Context.getPointerType(PointeeTy.withConst()));
2634    if (!PointeeTy.isVolatileQualified())
2635      AddPointerWithMoreQualifiedTypeVariants
2636        (Context.getPointerType(PointeeTy.withVolatile()));
2637    if (!PointeeTy.isRestrictQualified())
2638      AddPointerWithMoreQualifiedTypeVariants
2639        (Context.getPointerType(PointeeTy.withRestrict()));
2640  }
2641
2642  return true;
2643}
2644
2645/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2646/// to the set of pointer types along with any more-qualified variants of
2647/// that type. For example, if @p Ty is "int const *", this routine
2648/// will add "int const *", "int const volatile *", "int const
2649/// restrict *", and "int const volatile restrict *" to the set of
2650/// pointer types. Returns true if the add of @p Ty itself succeeded,
2651/// false otherwise.
2652bool
2653BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2654    QualType Ty) {
2655  // Insert this type.
2656  if (!MemberPointerTypes.insert(Ty))
2657    return false;
2658
2659  if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
2660    QualType PointeeTy = PointerTy->getPointeeType();
2661    const Type *ClassTy = PointerTy->getClass();
2662    // FIXME: Optimize this so that we don't keep trying to add the same types.
2663
2664    if (!PointeeTy.isConstQualified())
2665      AddMemberPointerWithMoreQualifiedTypeVariants
2666        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2667    if (!PointeeTy.isVolatileQualified())
2668      AddMemberPointerWithMoreQualifiedTypeVariants
2669        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2670    if (!PointeeTy.isRestrictQualified())
2671      AddMemberPointerWithMoreQualifiedTypeVariants
2672        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2673  }
2674
2675  return true;
2676}
2677
2678/// AddTypesConvertedFrom - Add each of the types to which the type @p
2679/// Ty can be implicit converted to the given set of @p Types. We're
2680/// primarily interested in pointer types and enumeration types. We also
2681/// take member pointer types, for the conditional operator.
2682/// AllowUserConversions is true if we should look at the conversion
2683/// functions of a class type, and AllowExplicitConversions if we
2684/// should also include the explicit conversion functions of a class
2685/// type.
2686void
2687BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2688                                               bool AllowUserConversions,
2689                                               bool AllowExplicitConversions) {
2690  // Only deal with canonical types.
2691  Ty = Context.getCanonicalType(Ty);
2692
2693  // Look through reference types; they aren't part of the type of an
2694  // expression for the purposes of conversions.
2695  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
2696    Ty = RefTy->getPointeeType();
2697
2698  // We don't care about qualifiers on the type.
2699  Ty = Ty.getUnqualifiedType();
2700
2701  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2702    QualType PointeeTy = PointerTy->getPointeeType();
2703
2704    // Insert our type, and its more-qualified variants, into the set
2705    // of types.
2706    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2707      return;
2708
2709    // Add 'cv void*' to our set of types.
2710    if (!Ty->isVoidType()) {
2711      QualType QualVoid
2712        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2713      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2714    }
2715
2716    // If this is a pointer to a class type, add pointers to its bases
2717    // (with the same level of cv-qualification as the original
2718    // derived class, of course).
2719    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
2720      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2721      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2722           Base != ClassDecl->bases_end(); ++Base) {
2723        QualType BaseTy = Context.getCanonicalType(Base->getType());
2724        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2725
2726        // Add the pointer type, recursively, so that we get all of
2727        // the indirect base classes, too.
2728        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2729      }
2730    }
2731  } else if (Ty->isMemberPointerType()) {
2732    // Member pointers are far easier, since the pointee can't be converted.
2733    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2734      return;
2735  } else if (Ty->isEnumeralType()) {
2736    EnumerationTypes.insert(Ty);
2737  } else if (AllowUserConversions) {
2738    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
2739      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2740      // FIXME: Visit conversion functions in the base classes, too.
2741      OverloadedFunctionDecl *Conversions
2742        = ClassDecl->getConversionFunctions();
2743      for (OverloadedFunctionDecl::function_iterator Func
2744             = Conversions->function_begin();
2745           Func != Conversions->function_end(); ++Func) {
2746        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2747        if (AllowExplicitConversions || !Conv->isExplicit())
2748          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2749      }
2750    }
2751  }
2752}
2753
2754/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2755/// operator overloads to the candidate set (C++ [over.built]), based
2756/// on the operator @p Op and the arguments given. For example, if the
2757/// operator is a binary '+', this routine might add "int
2758/// operator+(int, int)" to cover integer addition.
2759void
2760Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2761                                   Expr **Args, unsigned NumArgs,
2762                                   OverloadCandidateSet& CandidateSet) {
2763  // The set of "promoted arithmetic types", which are the arithmetic
2764  // types are that preserved by promotion (C++ [over.built]p2). Note
2765  // that the first few of these types are the promoted integral
2766  // types; these types need to be first.
2767  // FIXME: What about complex?
2768  const unsigned FirstIntegralType = 0;
2769  const unsigned LastIntegralType = 13;
2770  const unsigned FirstPromotedIntegralType = 7,
2771                 LastPromotedIntegralType = 13;
2772  const unsigned FirstPromotedArithmeticType = 7,
2773                 LastPromotedArithmeticType = 16;
2774  const unsigned NumArithmeticTypes = 16;
2775  QualType ArithmeticTypes[NumArithmeticTypes] = {
2776    Context.BoolTy, Context.CharTy, Context.WCharTy,
2777//    Context.Char16Ty, Context.Char32Ty,
2778    Context.SignedCharTy, Context.ShortTy,
2779    Context.UnsignedCharTy, Context.UnsignedShortTy,
2780    Context.IntTy, Context.LongTy, Context.LongLongTy,
2781    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2782    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2783  };
2784
2785  // Find all of the types that the arguments can convert to, but only
2786  // if the operator we're looking at has built-in operator candidates
2787  // that make use of these types.
2788  BuiltinCandidateTypeSet CandidateTypes(Context);
2789  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2790      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2791      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2792      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2793      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2794      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
2795    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2796      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2797                                           true,
2798                                           (Op == OO_Exclaim ||
2799                                            Op == OO_AmpAmp ||
2800                                            Op == OO_PipePipe));
2801  }
2802
2803  bool isComparison = false;
2804  switch (Op) {
2805  case OO_None:
2806  case NUM_OVERLOADED_OPERATORS:
2807    assert(false && "Expected an overloaded operator");
2808    break;
2809
2810  case OO_Star: // '*' is either unary or binary
2811    if (NumArgs == 1)
2812      goto UnaryStar;
2813    else
2814      goto BinaryStar;
2815    break;
2816
2817  case OO_Plus: // '+' is either unary or binary
2818    if (NumArgs == 1)
2819      goto UnaryPlus;
2820    else
2821      goto BinaryPlus;
2822    break;
2823
2824  case OO_Minus: // '-' is either unary or binary
2825    if (NumArgs == 1)
2826      goto UnaryMinus;
2827    else
2828      goto BinaryMinus;
2829    break;
2830
2831  case OO_Amp: // '&' is either unary or binary
2832    if (NumArgs == 1)
2833      goto UnaryAmp;
2834    else
2835      goto BinaryAmp;
2836
2837  case OO_PlusPlus:
2838  case OO_MinusMinus:
2839    // C++ [over.built]p3:
2840    //
2841    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2842    //   is either volatile or empty, there exist candidate operator
2843    //   functions of the form
2844    //
2845    //       VQ T&      operator++(VQ T&);
2846    //       T          operator++(VQ T&, int);
2847    //
2848    // C++ [over.built]p4:
2849    //
2850    //   For every pair (T, VQ), where T is an arithmetic type other
2851    //   than bool, and VQ is either volatile or empty, there exist
2852    //   candidate operator functions of the form
2853    //
2854    //       VQ T&      operator--(VQ T&);
2855    //       T          operator--(VQ T&, int);
2856    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2857         Arith < NumArithmeticTypes; ++Arith) {
2858      QualType ArithTy = ArithmeticTypes[Arith];
2859      QualType ParamTypes[2]
2860        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
2861
2862      // Non-volatile version.
2863      if (NumArgs == 1)
2864        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2865      else
2866        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2867
2868      // Volatile version
2869      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
2870      if (NumArgs == 1)
2871        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2872      else
2873        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2874    }
2875
2876    // C++ [over.built]p5:
2877    //
2878    //   For every pair (T, VQ), where T is a cv-qualified or
2879    //   cv-unqualified object type, and VQ is either volatile or
2880    //   empty, there exist candidate operator functions of the form
2881    //
2882    //       T*VQ&      operator++(T*VQ&);
2883    //       T*VQ&      operator--(T*VQ&);
2884    //       T*         operator++(T*VQ&, int);
2885    //       T*         operator--(T*VQ&, int);
2886    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2887         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2888      // Skip pointer types that aren't pointers to object types.
2889      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
2890        continue;
2891
2892      QualType ParamTypes[2] = {
2893        Context.getLValueReferenceType(*Ptr), Context.IntTy
2894      };
2895
2896      // Without volatile
2897      if (NumArgs == 1)
2898        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2899      else
2900        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2901
2902      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2903        // With volatile
2904        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
2905        if (NumArgs == 1)
2906          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2907        else
2908          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2909      }
2910    }
2911    break;
2912
2913  UnaryStar:
2914    // C++ [over.built]p6:
2915    //   For every cv-qualified or cv-unqualified object type T, there
2916    //   exist candidate operator functions of the form
2917    //
2918    //       T&         operator*(T*);
2919    //
2920    // C++ [over.built]p7:
2921    //   For every function type T, there exist candidate operator
2922    //   functions of the form
2923    //       T&         operator*(T*);
2924    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2925         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2926      QualType ParamTy = *Ptr;
2927      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
2928      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
2929                          &ParamTy, Args, 1, CandidateSet);
2930    }
2931    break;
2932
2933  UnaryPlus:
2934    // C++ [over.built]p8:
2935    //   For every type T, there exist candidate operator functions of
2936    //   the form
2937    //
2938    //       T*         operator+(T*);
2939    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2940         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2941      QualType ParamTy = *Ptr;
2942      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2943    }
2944
2945    // Fall through
2946
2947  UnaryMinus:
2948    // C++ [over.built]p9:
2949    //  For every promoted arithmetic type T, there exist candidate
2950    //  operator functions of the form
2951    //
2952    //       T         operator+(T);
2953    //       T         operator-(T);
2954    for (unsigned Arith = FirstPromotedArithmeticType;
2955         Arith < LastPromotedArithmeticType; ++Arith) {
2956      QualType ArithTy = ArithmeticTypes[Arith];
2957      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2958    }
2959    break;
2960
2961  case OO_Tilde:
2962    // C++ [over.built]p10:
2963    //   For every promoted integral type T, there exist candidate
2964    //   operator functions of the form
2965    //
2966    //        T         operator~(T);
2967    for (unsigned Int = FirstPromotedIntegralType;
2968         Int < LastPromotedIntegralType; ++Int) {
2969      QualType IntTy = ArithmeticTypes[Int];
2970      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2971    }
2972    break;
2973
2974  case OO_New:
2975  case OO_Delete:
2976  case OO_Array_New:
2977  case OO_Array_Delete:
2978  case OO_Call:
2979    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2980    break;
2981
2982  case OO_Comma:
2983  UnaryAmp:
2984  case OO_Arrow:
2985    // C++ [over.match.oper]p3:
2986    //   -- For the operator ',', the unary operator '&', or the
2987    //      operator '->', the built-in candidates set is empty.
2988    break;
2989
2990  case OO_Less:
2991  case OO_Greater:
2992  case OO_LessEqual:
2993  case OO_GreaterEqual:
2994  case OO_EqualEqual:
2995  case OO_ExclaimEqual:
2996    // C++ [over.built]p15:
2997    //
2998    //   For every pointer or enumeration type T, there exist
2999    //   candidate operator functions of the form
3000    //
3001    //        bool       operator<(T, T);
3002    //        bool       operator>(T, T);
3003    //        bool       operator<=(T, T);
3004    //        bool       operator>=(T, T);
3005    //        bool       operator==(T, T);
3006    //        bool       operator!=(T, T);
3007    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3008         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3009      QualType ParamTypes[2] = { *Ptr, *Ptr };
3010      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3011    }
3012    for (BuiltinCandidateTypeSet::iterator Enum
3013           = CandidateTypes.enumeration_begin();
3014         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3015      QualType ParamTypes[2] = { *Enum, *Enum };
3016      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3017    }
3018
3019    // Fall through.
3020    isComparison = true;
3021
3022  BinaryPlus:
3023  BinaryMinus:
3024    if (!isComparison) {
3025      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3026
3027      // C++ [over.built]p13:
3028      //
3029      //   For every cv-qualified or cv-unqualified object type T
3030      //   there exist candidate operator functions of the form
3031      //
3032      //      T*         operator+(T*, ptrdiff_t);
3033      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3034      //      T*         operator-(T*, ptrdiff_t);
3035      //      T*         operator+(ptrdiff_t, T*);
3036      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3037      //
3038      // C++ [over.built]p14:
3039      //
3040      //   For every T, where T is a pointer to object type, there
3041      //   exist candidate operator functions of the form
3042      //
3043      //      ptrdiff_t  operator-(T, T);
3044      for (BuiltinCandidateTypeSet::iterator Ptr
3045             = CandidateTypes.pointer_begin();
3046           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3047        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3048
3049        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3050        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3051
3052        if (Op == OO_Plus) {
3053          // T* operator+(ptrdiff_t, T*);
3054          ParamTypes[0] = ParamTypes[1];
3055          ParamTypes[1] = *Ptr;
3056          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3057        } else {
3058          // ptrdiff_t operator-(T, T);
3059          ParamTypes[1] = *Ptr;
3060          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3061                              Args, 2, CandidateSet);
3062        }
3063      }
3064    }
3065    // Fall through
3066
3067  case OO_Slash:
3068  BinaryStar:
3069  Conditional:
3070    // C++ [over.built]p12:
3071    //
3072    //   For every pair of promoted arithmetic types L and R, there
3073    //   exist candidate operator functions of the form
3074    //
3075    //        LR         operator*(L, R);
3076    //        LR         operator/(L, R);
3077    //        LR         operator+(L, R);
3078    //        LR         operator-(L, R);
3079    //        bool       operator<(L, R);
3080    //        bool       operator>(L, R);
3081    //        bool       operator<=(L, R);
3082    //        bool       operator>=(L, R);
3083    //        bool       operator==(L, R);
3084    //        bool       operator!=(L, R);
3085    //
3086    //   where LR is the result of the usual arithmetic conversions
3087    //   between types L and R.
3088    //
3089    // C++ [over.built]p24:
3090    //
3091    //   For every pair of promoted arithmetic types L and R, there exist
3092    //   candidate operator functions of the form
3093    //
3094    //        LR       operator?(bool, L, R);
3095    //
3096    //   where LR is the result of the usual arithmetic conversions
3097    //   between types L and R.
3098    // Our candidates ignore the first parameter.
3099    for (unsigned Left = FirstPromotedArithmeticType;
3100         Left < LastPromotedArithmeticType; ++Left) {
3101      for (unsigned Right = FirstPromotedArithmeticType;
3102           Right < LastPromotedArithmeticType; ++Right) {
3103        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3104        QualType Result
3105          = isComparison? Context.BoolTy
3106                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3107        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3108      }
3109    }
3110    break;
3111
3112  case OO_Percent:
3113  BinaryAmp:
3114  case OO_Caret:
3115  case OO_Pipe:
3116  case OO_LessLess:
3117  case OO_GreaterGreater:
3118    // C++ [over.built]p17:
3119    //
3120    //   For every pair of promoted integral types L and R, there
3121    //   exist candidate operator functions of the form
3122    //
3123    //      LR         operator%(L, R);
3124    //      LR         operator&(L, R);
3125    //      LR         operator^(L, R);
3126    //      LR         operator|(L, R);
3127    //      L          operator<<(L, R);
3128    //      L          operator>>(L, R);
3129    //
3130    //   where LR is the result of the usual arithmetic conversions
3131    //   between types L and R.
3132    for (unsigned Left = FirstPromotedIntegralType;
3133         Left < LastPromotedIntegralType; ++Left) {
3134      for (unsigned Right = FirstPromotedIntegralType;
3135           Right < LastPromotedIntegralType; ++Right) {
3136        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3137        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3138            ? LandR[0]
3139            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3140        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3141      }
3142    }
3143    break;
3144
3145  case OO_Equal:
3146    // C++ [over.built]p20:
3147    //
3148    //   For every pair (T, VQ), where T is an enumeration or
3149    //   (FIXME:) pointer to member type and VQ is either volatile or
3150    //   empty, there exist candidate operator functions of the form
3151    //
3152    //        VQ T&      operator=(VQ T&, T);
3153    for (BuiltinCandidateTypeSet::iterator Enum
3154           = CandidateTypes.enumeration_begin();
3155         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3156      QualType ParamTypes[2];
3157
3158      // T& operator=(T&, T)
3159      ParamTypes[0] = Context.getLValueReferenceType(*Enum);
3160      ParamTypes[1] = *Enum;
3161      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3162                          /*IsAssignmentOperator=*/false);
3163
3164      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3165        // volatile T& operator=(volatile T&, T)
3166        ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
3167        ParamTypes[1] = *Enum;
3168        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3169                            /*IsAssignmentOperator=*/false);
3170      }
3171    }
3172    // Fall through.
3173
3174  case OO_PlusEqual:
3175  case OO_MinusEqual:
3176    // C++ [over.built]p19:
3177    //
3178    //   For every pair (T, VQ), where T is any type and VQ is either
3179    //   volatile or empty, there exist candidate operator functions
3180    //   of the form
3181    //
3182    //        T*VQ&      operator=(T*VQ&, T*);
3183    //
3184    // C++ [over.built]p21:
3185    //
3186    //   For every pair (T, VQ), where T is a cv-qualified or
3187    //   cv-unqualified object type and VQ is either volatile or
3188    //   empty, there exist candidate operator functions of the form
3189    //
3190    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3191    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3192    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3193         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3194      QualType ParamTypes[2];
3195      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3196
3197      // non-volatile version
3198      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3199      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3200                          /*IsAssigmentOperator=*/Op == OO_Equal);
3201
3202      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3203        // volatile version
3204        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3205        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3206                            /*IsAssigmentOperator=*/Op == OO_Equal);
3207      }
3208    }
3209    // Fall through.
3210
3211  case OO_StarEqual:
3212  case OO_SlashEqual:
3213    // C++ [over.built]p18:
3214    //
3215    //   For every triple (L, VQ, R), where L is an arithmetic type,
3216    //   VQ is either volatile or empty, and R is a promoted
3217    //   arithmetic type, there exist candidate operator functions of
3218    //   the form
3219    //
3220    //        VQ L&      operator=(VQ L&, R);
3221    //        VQ L&      operator*=(VQ L&, R);
3222    //        VQ L&      operator/=(VQ L&, R);
3223    //        VQ L&      operator+=(VQ L&, R);
3224    //        VQ L&      operator-=(VQ L&, R);
3225    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3226      for (unsigned Right = FirstPromotedArithmeticType;
3227           Right < LastPromotedArithmeticType; ++Right) {
3228        QualType ParamTypes[2];
3229        ParamTypes[1] = ArithmeticTypes[Right];
3230
3231        // Add this built-in operator as a candidate (VQ is empty).
3232        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3233        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3234                            /*IsAssigmentOperator=*/Op == OO_Equal);
3235
3236        // Add this built-in operator as a candidate (VQ is 'volatile').
3237        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3238        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3239        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3240                            /*IsAssigmentOperator=*/Op == OO_Equal);
3241      }
3242    }
3243    break;
3244
3245  case OO_PercentEqual:
3246  case OO_LessLessEqual:
3247  case OO_GreaterGreaterEqual:
3248  case OO_AmpEqual:
3249  case OO_CaretEqual:
3250  case OO_PipeEqual:
3251    // C++ [over.built]p22:
3252    //
3253    //   For every triple (L, VQ, R), where L is an integral type, VQ
3254    //   is either volatile or empty, and R is a promoted integral
3255    //   type, there exist candidate operator functions of the form
3256    //
3257    //        VQ L&       operator%=(VQ L&, R);
3258    //        VQ L&       operator<<=(VQ L&, R);
3259    //        VQ L&       operator>>=(VQ L&, R);
3260    //        VQ L&       operator&=(VQ L&, R);
3261    //        VQ L&       operator^=(VQ L&, R);
3262    //        VQ L&       operator|=(VQ L&, R);
3263    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3264      for (unsigned Right = FirstPromotedIntegralType;
3265           Right < LastPromotedIntegralType; ++Right) {
3266        QualType ParamTypes[2];
3267        ParamTypes[1] = ArithmeticTypes[Right];
3268
3269        // Add this built-in operator as a candidate (VQ is empty).
3270        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3271        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3272
3273        // Add this built-in operator as a candidate (VQ is 'volatile').
3274        ParamTypes[0] = ArithmeticTypes[Left];
3275        ParamTypes[0].addVolatile();
3276        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3277        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3278      }
3279    }
3280    break;
3281
3282  case OO_Exclaim: {
3283    // C++ [over.operator]p23:
3284    //
3285    //   There also exist candidate operator functions of the form
3286    //
3287    //        bool        operator!(bool);
3288    //        bool        operator&&(bool, bool);     [BELOW]
3289    //        bool        operator||(bool, bool);     [BELOW]
3290    QualType ParamTy = Context.BoolTy;
3291    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3292                        /*IsAssignmentOperator=*/false,
3293                        /*NumContextualBoolArguments=*/1);
3294    break;
3295  }
3296
3297  case OO_AmpAmp:
3298  case OO_PipePipe: {
3299    // C++ [over.operator]p23:
3300    //
3301    //   There also exist candidate operator functions of the form
3302    //
3303    //        bool        operator!(bool);            [ABOVE]
3304    //        bool        operator&&(bool, bool);
3305    //        bool        operator||(bool, bool);
3306    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3307    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3308                        /*IsAssignmentOperator=*/false,
3309                        /*NumContextualBoolArguments=*/2);
3310    break;
3311  }
3312
3313  case OO_Subscript:
3314    // C++ [over.built]p13:
3315    //
3316    //   For every cv-qualified or cv-unqualified object type T there
3317    //   exist candidate operator functions of the form
3318    //
3319    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3320    //        T&         operator[](T*, ptrdiff_t);
3321    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3322    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3323    //        T&         operator[](ptrdiff_t, T*);
3324    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3325         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3326      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3327      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3328      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3329
3330      // T& operator[](T*, ptrdiff_t)
3331      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3332
3333      // T& operator[](ptrdiff_t, T*);
3334      ParamTypes[0] = ParamTypes[1];
3335      ParamTypes[1] = *Ptr;
3336      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3337    }
3338    break;
3339
3340  case OO_ArrowStar:
3341    // FIXME: No support for pointer-to-members yet.
3342    break;
3343
3344  case OO_Conditional:
3345    // Note that we don't consider the first argument, since it has been
3346    // contextually converted to bool long ago. The candidates below are
3347    // therefore added as binary.
3348    //
3349    // C++ [over.built]p24:
3350    //   For every type T, where T is a pointer or pointer-to-member type,
3351    //   there exist candidate operator functions of the form
3352    //
3353    //        T        operator?(bool, T, T);
3354    //
3355    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3356         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3357      QualType ParamTypes[2] = { *Ptr, *Ptr };
3358      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3359    }
3360    for (BuiltinCandidateTypeSet::iterator Ptr =
3361           CandidateTypes.member_pointer_begin(),
3362         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3363      QualType ParamTypes[2] = { *Ptr, *Ptr };
3364      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3365    }
3366    goto Conditional;
3367  }
3368}
3369
3370/// \brief Add function candidates found via argument-dependent lookup
3371/// to the set of overloading candidates.
3372///
3373/// This routine performs argument-dependent name lookup based on the
3374/// given function name (which may also be an operator name) and adds
3375/// all of the overload candidates found by ADL to the overload
3376/// candidate set (C++ [basic.lookup.argdep]).
3377void
3378Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3379                                           Expr **Args, unsigned NumArgs,
3380                                           OverloadCandidateSet& CandidateSet) {
3381  FunctionSet Functions;
3382
3383  // Record all of the function candidates that we've already
3384  // added to the overload set, so that we don't add those same
3385  // candidates a second time.
3386  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3387                                   CandEnd = CandidateSet.end();
3388       Cand != CandEnd; ++Cand)
3389    if (Cand->Function) {
3390      Functions.insert(Cand->Function);
3391      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3392        Functions.insert(FunTmpl);
3393    }
3394
3395  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3396
3397  // Erase all of the candidates we already knew about.
3398  // FIXME: This is suboptimal. Is there a better way?
3399  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3400                                   CandEnd = CandidateSet.end();
3401       Cand != CandEnd; ++Cand)
3402    if (Cand->Function) {
3403      Functions.erase(Cand->Function);
3404      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3405        Functions.erase(FunTmpl);
3406    }
3407
3408  // For each of the ADL candidates we found, add it to the overload
3409  // set.
3410  for (FunctionSet::iterator Func = Functions.begin(),
3411                          FuncEnd = Functions.end();
3412       Func != FuncEnd; ++Func) {
3413    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3414      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3415    else
3416      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3417                                   /*FIXME: explicit args */false, 0, 0,
3418                                   Args, NumArgs, CandidateSet);
3419  }
3420}
3421
3422/// isBetterOverloadCandidate - Determines whether the first overload
3423/// candidate is a better candidate than the second (C++ 13.3.3p1).
3424bool
3425Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3426                                const OverloadCandidate& Cand2)
3427{
3428  // Define viable functions to be better candidates than non-viable
3429  // functions.
3430  if (!Cand2.Viable)
3431    return Cand1.Viable;
3432  else if (!Cand1.Viable)
3433    return false;
3434
3435  // C++ [over.match.best]p1:
3436  //
3437  //   -- if F is a static member function, ICS1(F) is defined such
3438  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3439  //      any function G, and, symmetrically, ICS1(G) is neither
3440  //      better nor worse than ICS1(F).
3441  unsigned StartArg = 0;
3442  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3443    StartArg = 1;
3444
3445  // C++ [over.match.best]p1:
3446  //   A viable function F1 is defined to be a better function than another
3447  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3448  //   conversion sequence than ICSi(F2), and then...
3449  unsigned NumArgs = Cand1.Conversions.size();
3450  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3451  bool HasBetterConversion = false;
3452  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3453    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3454                                               Cand2.Conversions[ArgIdx])) {
3455    case ImplicitConversionSequence::Better:
3456      // Cand1 has a better conversion sequence.
3457      HasBetterConversion = true;
3458      break;
3459
3460    case ImplicitConversionSequence::Worse:
3461      // Cand1 can't be better than Cand2.
3462      return false;
3463
3464    case ImplicitConversionSequence::Indistinguishable:
3465      // Do nothing.
3466      break;
3467    }
3468  }
3469
3470  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3471  //       ICSj(F2), or, if not that,
3472  if (HasBetterConversion)
3473    return true;
3474
3475  //     - F1 is a non-template function and F2 is a function template
3476  //       specialization, or, if not that,
3477  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3478      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3479    return true;
3480
3481  //   -- F1 and F2 are function template specializations, and the function
3482  //      template for F1 is more specialized than the template for F2
3483  //      according to the partial ordering rules described in 14.5.5.2, or,
3484  //      if not that,
3485  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
3486      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3487    // FIXME: Implement partial ordering of function templates.
3488    Diag(SourceLocation(), diag::unsup_function_template_partial_ordering);
3489
3490  //   -- the context is an initialization by user-defined conversion
3491  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3492  //      from the return type of F1 to the destination type (i.e.,
3493  //      the type of the entity being initialized) is a better
3494  //      conversion sequence than the standard conversion sequence
3495  //      from the return type of F2 to the destination type.
3496  if (Cand1.Function && Cand2.Function &&
3497      isa<CXXConversionDecl>(Cand1.Function) &&
3498      isa<CXXConversionDecl>(Cand2.Function)) {
3499    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3500                                               Cand2.FinalConversion)) {
3501    case ImplicitConversionSequence::Better:
3502      // Cand1 has a better conversion sequence.
3503      return true;
3504
3505    case ImplicitConversionSequence::Worse:
3506      // Cand1 can't be better than Cand2.
3507      return false;
3508
3509    case ImplicitConversionSequence::Indistinguishable:
3510      // Do nothing
3511      break;
3512    }
3513  }
3514
3515  return false;
3516}
3517
3518/// \brief Computes the best viable function (C++ 13.3.3)
3519/// within an overload candidate set.
3520///
3521/// \param CandidateSet the set of candidate functions.
3522///
3523/// \param Loc the location of the function name (or operator symbol) for
3524/// which overload resolution occurs.
3525///
3526/// \param Best f overload resolution was successful or found a deleted
3527/// function, Best points to the candidate function found.
3528///
3529/// \returns The result of overload resolution.
3530Sema::OverloadingResult
3531Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3532                         SourceLocation Loc,
3533                         OverloadCandidateSet::iterator& Best)
3534{
3535  // Find the best viable function.
3536  Best = CandidateSet.end();
3537  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3538       Cand != CandidateSet.end(); ++Cand) {
3539    if (Cand->Viable) {
3540      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3541        Best = Cand;
3542    }
3543  }
3544
3545  // If we didn't find any viable functions, abort.
3546  if (Best == CandidateSet.end())
3547    return OR_No_Viable_Function;
3548
3549  // Make sure that this function is better than every other viable
3550  // function. If not, we have an ambiguity.
3551  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3552       Cand != CandidateSet.end(); ++Cand) {
3553    if (Cand->Viable &&
3554        Cand != Best &&
3555        !isBetterOverloadCandidate(*Best, *Cand)) {
3556      Best = CandidateSet.end();
3557      return OR_Ambiguous;
3558    }
3559  }
3560
3561  // Best is the best viable function.
3562  if (Best->Function &&
3563      (Best->Function->isDeleted() ||
3564       Best->Function->getAttr<UnavailableAttr>()))
3565    return OR_Deleted;
3566
3567  // C++ [basic.def.odr]p2:
3568  //   An overloaded function is used if it is selected by overload resolution
3569  //   when referred to from a potentially-evaluated expression. [Note: this
3570  //   covers calls to named functions (5.2.2), operator overloading
3571  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3572  //   placement new (5.3.4), as well as non-default initialization (8.5).
3573  if (Best->Function)
3574    MarkDeclarationReferenced(Loc, Best->Function);
3575  return OR_Success;
3576}
3577
3578/// PrintOverloadCandidates - When overload resolution fails, prints
3579/// diagnostic messages containing the candidates in the candidate
3580/// set. If OnlyViable is true, only viable candidates will be printed.
3581void
3582Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3583                              bool OnlyViable)
3584{
3585  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3586                             LastCand = CandidateSet.end();
3587  for (; Cand != LastCand; ++Cand) {
3588    if (Cand->Viable || !OnlyViable) {
3589      if (Cand->Function) {
3590        if (Cand->Function->isDeleted() ||
3591            Cand->Function->getAttr<UnavailableAttr>()) {
3592          // Deleted or "unavailable" function.
3593          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3594            << Cand->Function->isDeleted();
3595        } else {
3596          // Normal function
3597          // FIXME: Give a better reason!
3598          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3599        }
3600      } else if (Cand->IsSurrogate) {
3601        // Desugar the type of the surrogate down to a function type,
3602        // retaining as many typedefs as possible while still showing
3603        // the function type (and, therefore, its parameter types).
3604        QualType FnType = Cand->Surrogate->getConversionType();
3605        bool isLValueReference = false;
3606        bool isRValueReference = false;
3607        bool isPointer = false;
3608        if (const LValueReferenceType *FnTypeRef =
3609              FnType->getAs<LValueReferenceType>()) {
3610          FnType = FnTypeRef->getPointeeType();
3611          isLValueReference = true;
3612        } else if (const RValueReferenceType *FnTypeRef =
3613                     FnType->getAs<RValueReferenceType>()) {
3614          FnType = FnTypeRef->getPointeeType();
3615          isRValueReference = true;
3616        }
3617        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
3618          FnType = FnTypePtr->getPointeeType();
3619          isPointer = true;
3620        }
3621        // Desugar down to a function type.
3622        FnType = QualType(FnType->getAsFunctionType(), 0);
3623        // Reconstruct the pointer/reference as appropriate.
3624        if (isPointer) FnType = Context.getPointerType(FnType);
3625        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3626        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3627
3628        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3629          << FnType;
3630      } else {
3631        // FIXME: We need to get the identifier in here
3632        // FIXME: Do we want the error message to point at the operator?
3633        // (built-ins won't have a location)
3634        QualType FnType
3635          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3636                                    Cand->BuiltinTypes.ParamTypes,
3637                                    Cand->Conversions.size(),
3638                                    false, 0);
3639
3640        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3641      }
3642    }
3643  }
3644}
3645
3646/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3647/// an overloaded function (C++ [over.over]), where @p From is an
3648/// expression with overloaded function type and @p ToType is the type
3649/// we're trying to resolve to. For example:
3650///
3651/// @code
3652/// int f(double);
3653/// int f(int);
3654///
3655/// int (*pfd)(double) = f; // selects f(double)
3656/// @endcode
3657///
3658/// This routine returns the resulting FunctionDecl if it could be
3659/// resolved, and NULL otherwise. When @p Complain is true, this
3660/// routine will emit diagnostics if there is an error.
3661FunctionDecl *
3662Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3663                                         bool Complain) {
3664  QualType FunctionType = ToType;
3665  bool IsMember = false;
3666  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
3667    FunctionType = ToTypePtr->getPointeeType();
3668  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
3669    FunctionType = ToTypeRef->getPointeeType();
3670  else if (const MemberPointerType *MemTypePtr =
3671                    ToType->getAs<MemberPointerType>()) {
3672    FunctionType = MemTypePtr->getPointeeType();
3673    IsMember = true;
3674  }
3675
3676  // We only look at pointers or references to functions.
3677  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3678  if (!FunctionType->isFunctionType())
3679    return 0;
3680
3681  // Find the actual overloaded function declaration.
3682  OverloadedFunctionDecl *Ovl = 0;
3683
3684  // C++ [over.over]p1:
3685  //   [...] [Note: any redundant set of parentheses surrounding the
3686  //   overloaded function name is ignored (5.1). ]
3687  Expr *OvlExpr = From->IgnoreParens();
3688
3689  // C++ [over.over]p1:
3690  //   [...] The overloaded function name can be preceded by the &
3691  //   operator.
3692  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3693    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3694      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3695  }
3696
3697  // Try to dig out the overloaded function.
3698  FunctionTemplateDecl *FunctionTemplate = 0;
3699  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
3700    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3701    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3702  }
3703
3704  // If there's no overloaded function declaration or function template,
3705  // we're done.
3706  if (!Ovl && !FunctionTemplate)
3707    return 0;
3708
3709  OverloadIterator Fun;
3710  if (Ovl)
3711    Fun = Ovl;
3712  else
3713    Fun = FunctionTemplate;
3714
3715  // Look through all of the overloaded functions, searching for one
3716  // whose type matches exactly.
3717  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3718
3719  bool FoundNonTemplateFunction = false;
3720  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
3721    // C++ [over.over]p3:
3722    //   Non-member functions and static member functions match
3723    //   targets of type "pointer-to-function" or "reference-to-function."
3724    //   Nonstatic member functions match targets of
3725    //   type "pointer-to-member-function."
3726    // Note that according to DR 247, the containing class does not matter.
3727
3728    if (FunctionTemplateDecl *FunctionTemplate
3729          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3730      if (CXXMethodDecl *Method
3731            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3732        // Skip non-static function templates when converting to pointer, and
3733        // static when converting to member pointer.
3734        if (Method->isStatic() == IsMember)
3735          continue;
3736      } else if (IsMember)
3737        continue;
3738
3739      // C++ [over.over]p2:
3740      //   If the name is a function template, template argument deduction is
3741      //   done (14.8.2.2), and if the argument deduction succeeds, the
3742      //   resulting template argument list is used to generate a single
3743      //   function template specialization, which is added to the set of
3744      //   overloaded functions considered.
3745      FunctionDecl *Specialization = 0;
3746      TemplateDeductionInfo Info(Context);
3747      if (TemplateDeductionResult Result
3748            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3749                                      /*FIXME:*/0, /*FIXME:*/0,
3750                                      FunctionType, Specialization, Info)) {
3751        // FIXME: make a note of the failed deduction for diagnostics.
3752        (void)Result;
3753      } else {
3754        assert(FunctionType
3755                 == Context.getCanonicalType(Specialization->getType()));
3756        Matches.insert(
3757                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
3758      }
3759    }
3760
3761    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3762      // Skip non-static functions when converting to pointer, and static
3763      // when converting to member pointer.
3764      if (Method->isStatic() == IsMember)
3765        continue;
3766    } else if (IsMember)
3767      continue;
3768
3769    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3770      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
3771        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
3772        FoundNonTemplateFunction = true;
3773      }
3774    }
3775  }
3776
3777  // If there were 0 or 1 matches, we're done.
3778  if (Matches.empty())
3779    return 0;
3780  else if (Matches.size() == 1)
3781    return *Matches.begin();
3782
3783  // C++ [over.over]p4:
3784  //   If more than one function is selected, [...]
3785  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
3786  if (FoundNonTemplateFunction) {
3787    // [...] any function template specializations in the set are eliminated
3788    // if the set also contains a non-template function, [...]
3789    for (llvm::SmallPtrSet<FunctionDecl *, 4>::iterator M = Matches.begin(),
3790                                                     MEnd = Matches.end();
3791         M != MEnd; ++M)
3792      if ((*M)->getPrimaryTemplate() == 0)
3793        RemainingMatches.push_back(*M);
3794  } else {
3795    // [...] and any given function template specialization F1 is eliminated
3796    // if the set contains a second function template specialization whose
3797    // function template is more specialized than the function template of F1
3798    // according to the partial ordering rules of 14.5.5.2.
3799    // FIXME: Implement this!
3800    RemainingMatches.append(Matches.begin(), Matches.end());
3801  }
3802
3803  // [...] After such eliminations, if any, there shall remain exactly one
3804  // selected function.
3805  if (RemainingMatches.size() == 1)
3806    return RemainingMatches.front();
3807
3808  // FIXME: We should probably return the same thing that BestViableFunction
3809  // returns (even if we issue the diagnostics here).
3810  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
3811    << RemainingMatches[0]->getDeclName();
3812  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
3813    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
3814  return 0;
3815}
3816
3817/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3818/// (which eventually refers to the declaration Func) and the call
3819/// arguments Args/NumArgs, attempt to resolve the function call down
3820/// to a specific function. If overload resolution succeeds, returns
3821/// the function declaration produced by overload
3822/// resolution. Otherwise, emits diagnostics, deletes all of the
3823/// arguments and Fn, and returns NULL.
3824FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
3825                                            DeclarationName UnqualifiedName,
3826                                            bool HasExplicitTemplateArgs,
3827                                 const TemplateArgument *ExplicitTemplateArgs,
3828                                            unsigned NumExplicitTemplateArgs,
3829                                            SourceLocation LParenLoc,
3830                                            Expr **Args, unsigned NumArgs,
3831                                            SourceLocation *CommaLocs,
3832                                            SourceLocation RParenLoc,
3833                                            bool &ArgumentDependentLookup) {
3834  OverloadCandidateSet CandidateSet;
3835
3836  // Add the functions denoted by Callee to the set of candidate
3837  // functions. While we're doing so, track whether argument-dependent
3838  // lookup still applies, per:
3839  //
3840  // C++0x [basic.lookup.argdep]p3:
3841  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3842  //   and let Y be the lookup set produced by argument dependent
3843  //   lookup (defined as follows). If X contains
3844  //
3845  //     -- a declaration of a class member, or
3846  //
3847  //     -- a block-scope function declaration that is not a
3848  //        using-declaration, or
3849  //
3850  //     -- a declaration that is neither a function or a function
3851  //        template
3852  //
3853  //   then Y is empty.
3854  if (OverloadedFunctionDecl *Ovl
3855        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3856    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3857                                                FuncEnd = Ovl->function_end();
3858         Func != FuncEnd; ++Func) {
3859      DeclContext *Ctx = 0;
3860      if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
3861        if (HasExplicitTemplateArgs)
3862          continue;
3863
3864        AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
3865        Ctx = FunDecl->getDeclContext();
3866      } else {
3867        FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
3868        AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
3869                                     ExplicitTemplateArgs,
3870                                     NumExplicitTemplateArgs,
3871                                     Args, NumArgs, CandidateSet);
3872        Ctx = FunTmpl->getDeclContext();
3873      }
3874
3875
3876      if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
3877        ArgumentDependentLookup = false;
3878    }
3879  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3880    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
3881    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3882
3883    if (Func->getDeclContext()->isRecord() ||
3884        Func->getDeclContext()->isFunctionOrMethod())
3885      ArgumentDependentLookup = false;
3886  } else if (FunctionTemplateDecl *FuncTemplate
3887               = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
3888    AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
3889                                 ExplicitTemplateArgs,
3890                                 NumExplicitTemplateArgs,
3891                                 Args, NumArgs, CandidateSet);
3892
3893    if (FuncTemplate->getDeclContext()->isRecord())
3894      ArgumentDependentLookup = false;
3895  }
3896
3897  if (Callee)
3898    UnqualifiedName = Callee->getDeclName();
3899
3900  // FIXME: Pass explicit template arguments through for ADL
3901  if (ArgumentDependentLookup)
3902    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
3903                                         CandidateSet);
3904
3905  OverloadCandidateSet::iterator Best;
3906  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
3907  case OR_Success:
3908    return Best->Function;
3909
3910  case OR_No_Viable_Function:
3911    Diag(Fn->getSourceRange().getBegin(),
3912         diag::err_ovl_no_viable_function_in_call)
3913      << UnqualifiedName << Fn->getSourceRange();
3914    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3915    break;
3916
3917  case OR_Ambiguous:
3918    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3919      << UnqualifiedName << Fn->getSourceRange();
3920    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3921    break;
3922
3923  case OR_Deleted:
3924    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3925      << Best->Function->isDeleted()
3926      << UnqualifiedName
3927      << Fn->getSourceRange();
3928    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3929    break;
3930  }
3931
3932  // Overload resolution failed. Destroy all of the subexpressions and
3933  // return NULL.
3934  Fn->Destroy(Context);
3935  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3936    Args[Arg]->Destroy(Context);
3937  return 0;
3938}
3939
3940/// \brief Create a unary operation that may resolve to an overloaded
3941/// operator.
3942///
3943/// \param OpLoc The location of the operator itself (e.g., '*').
3944///
3945/// \param OpcIn The UnaryOperator::Opcode that describes this
3946/// operator.
3947///
3948/// \param Functions The set of non-member functions that will be
3949/// considered by overload resolution. The caller needs to build this
3950/// set based on the context using, e.g.,
3951/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3952/// set should not contain any member functions; those will be added
3953/// by CreateOverloadedUnaryOp().
3954///
3955/// \param input The input argument.
3956Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3957                                                     unsigned OpcIn,
3958                                                     FunctionSet &Functions,
3959                                                     ExprArg input) {
3960  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3961  Expr *Input = (Expr *)input.get();
3962
3963  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3964  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3965  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3966
3967  Expr *Args[2] = { Input, 0 };
3968  unsigned NumArgs = 1;
3969
3970  // For post-increment and post-decrement, add the implicit '0' as
3971  // the second argument, so that we know this is a post-increment or
3972  // post-decrement.
3973  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3974    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3975    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3976                                           SourceLocation());
3977    NumArgs = 2;
3978  }
3979
3980  if (Input->isTypeDependent()) {
3981    OverloadedFunctionDecl *Overloads
3982      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3983    for (FunctionSet::iterator Func = Functions.begin(),
3984                            FuncEnd = Functions.end();
3985         Func != FuncEnd; ++Func)
3986      Overloads->addOverload(*Func);
3987
3988    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3989                                                OpLoc, false, false);
3990
3991    input.release();
3992    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3993                                                   &Args[0], NumArgs,
3994                                                   Context.DependentTy,
3995                                                   OpLoc));
3996  }
3997
3998  // Build an empty overload set.
3999  OverloadCandidateSet CandidateSet;
4000
4001  // Add the candidates from the given function set.
4002  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4003
4004  // Add operator candidates that are member functions.
4005  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4006
4007  // Add builtin operator candidates.
4008  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4009
4010  // Perform overload resolution.
4011  OverloadCandidateSet::iterator Best;
4012  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4013  case OR_Success: {
4014    // We found a built-in operator or an overloaded operator.
4015    FunctionDecl *FnDecl = Best->Function;
4016
4017    if (FnDecl) {
4018      // We matched an overloaded operator. Build a call to that
4019      // operator.
4020
4021      // Convert the arguments.
4022      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4023        if (PerformObjectArgumentInitialization(Input, Method))
4024          return ExprError();
4025      } else {
4026        // Convert the arguments.
4027        if (PerformCopyInitialization(Input,
4028                                      FnDecl->getParamDecl(0)->getType(),
4029                                      "passing"))
4030          return ExprError();
4031      }
4032
4033      // Determine the result type
4034      QualType ResultTy
4035        = FnDecl->getType()->getAsFunctionType()->getResultType();
4036      ResultTy = ResultTy.getNonReferenceType();
4037
4038      // Build the actual expression node.
4039      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4040                                               SourceLocation());
4041      UsualUnaryConversions(FnExpr);
4042
4043      input.release();
4044      return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4045                                                     &Input, 1, ResultTy,
4046                                                     OpLoc));
4047    } else {
4048      // We matched a built-in operator. Convert the arguments, then
4049      // break out so that we will build the appropriate built-in
4050      // operator node.
4051        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4052                                      Best->Conversions[0], "passing"))
4053          return ExprError();
4054
4055        break;
4056      }
4057    }
4058
4059    case OR_No_Viable_Function:
4060      // No viable function; fall through to handling this as a
4061      // built-in operator, which will produce an error message for us.
4062      break;
4063
4064    case OR_Ambiguous:
4065      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4066          << UnaryOperator::getOpcodeStr(Opc)
4067          << Input->getSourceRange();
4068      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4069      return ExprError();
4070
4071    case OR_Deleted:
4072      Diag(OpLoc, diag::err_ovl_deleted_oper)
4073        << Best->Function->isDeleted()
4074        << UnaryOperator::getOpcodeStr(Opc)
4075        << Input->getSourceRange();
4076      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4077      return ExprError();
4078    }
4079
4080  // Either we found no viable overloaded operator or we matched a
4081  // built-in operator. In either case, fall through to trying to
4082  // build a built-in operation.
4083  input.release();
4084  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4085}
4086
4087/// \brief Create a binary operation that may resolve to an overloaded
4088/// operator.
4089///
4090/// \param OpLoc The location of the operator itself (e.g., '+').
4091///
4092/// \param OpcIn The BinaryOperator::Opcode that describes this
4093/// operator.
4094///
4095/// \param Functions The set of non-member functions that will be
4096/// considered by overload resolution. The caller needs to build this
4097/// set based on the context using, e.g.,
4098/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4099/// set should not contain any member functions; those will be added
4100/// by CreateOverloadedBinOp().
4101///
4102/// \param LHS Left-hand argument.
4103/// \param RHS Right-hand argument.
4104Sema::OwningExprResult
4105Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4106                            unsigned OpcIn,
4107                            FunctionSet &Functions,
4108                            Expr *LHS, Expr *RHS) {
4109  Expr *Args[2] = { LHS, RHS };
4110
4111  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4112  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4113  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4114
4115  // If either side is type-dependent, create an appropriate dependent
4116  // expression.
4117  if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
4118    // .* cannot be overloaded.
4119    if (Opc == BinaryOperator::PtrMemD)
4120      return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
4121                                                Context.DependentTy, OpLoc));
4122
4123    OverloadedFunctionDecl *Overloads
4124      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4125    for (FunctionSet::iterator Func = Functions.begin(),
4126                            FuncEnd = Functions.end();
4127         Func != FuncEnd; ++Func)
4128      Overloads->addOverload(*Func);
4129
4130    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4131                                                OpLoc, false, false);
4132
4133    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4134                                                   Args, 2,
4135                                                   Context.DependentTy,
4136                                                   OpLoc));
4137  }
4138
4139  // If this is the .* operator, which is not overloadable, just
4140  // create a built-in binary operator.
4141  if (Opc == BinaryOperator::PtrMemD)
4142    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4143
4144  // If this is one of the assignment operators, we only perform
4145  // overload resolution if the left-hand side is a class or
4146  // enumeration type (C++ [expr.ass]p3).
4147  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4148      !LHS->getType()->isOverloadableType())
4149    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4150
4151  // Build an empty overload set.
4152  OverloadCandidateSet CandidateSet;
4153
4154  // Add the candidates from the given function set.
4155  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4156
4157  // Add operator candidates that are member functions.
4158  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4159
4160  // Add builtin operator candidates.
4161  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4162
4163  // Perform overload resolution.
4164  OverloadCandidateSet::iterator Best;
4165  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4166    case OR_Success: {
4167      // We found a built-in operator or an overloaded operator.
4168      FunctionDecl *FnDecl = Best->Function;
4169
4170      if (FnDecl) {
4171        // We matched an overloaded operator. Build a call to that
4172        // operator.
4173
4174        // Convert the arguments.
4175        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4176          if (PerformObjectArgumentInitialization(LHS, Method) ||
4177              PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
4178                                        "passing"))
4179            return ExprError();
4180        } else {
4181          // Convert the arguments.
4182          if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
4183                                        "passing") ||
4184              PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
4185                                        "passing"))
4186            return ExprError();
4187        }
4188
4189        // Determine the result type
4190        QualType ResultTy
4191          = FnDecl->getType()->getAsFunctionType()->getResultType();
4192        ResultTy = ResultTy.getNonReferenceType();
4193
4194        // Build the actual expression node.
4195        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4196                                                 OpLoc);
4197        UsualUnaryConversions(FnExpr);
4198
4199        return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4200                                                       Args, 2, ResultTy,
4201                                                       OpLoc));
4202      } else {
4203        // We matched a built-in operator. Convert the arguments, then
4204        // break out so that we will build the appropriate built-in
4205        // operator node.
4206        if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4207                                      Best->Conversions[0], "passing") ||
4208            PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4209                                      Best->Conversions[1], "passing"))
4210          return ExprError();
4211
4212        break;
4213      }
4214    }
4215
4216    case OR_No_Viable_Function:
4217      // For class as left operand for assignment or compound assigment operator
4218      // do not fall through to handling in built-in, but report that no overloaded
4219      // assignment operator found
4220      if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4221        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4222             << BinaryOperator::getOpcodeStr(Opc)
4223             << LHS->getSourceRange() << RHS->getSourceRange();
4224        return ExprError();
4225      }
4226      // No viable function; fall through to handling this as a
4227      // built-in operator, which will produce an error message for us.
4228      break;
4229
4230    case OR_Ambiguous:
4231      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4232          << BinaryOperator::getOpcodeStr(Opc)
4233          << LHS->getSourceRange() << RHS->getSourceRange();
4234      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4235      return ExprError();
4236
4237    case OR_Deleted:
4238      Diag(OpLoc, diag::err_ovl_deleted_oper)
4239        << Best->Function->isDeleted()
4240        << BinaryOperator::getOpcodeStr(Opc)
4241        << LHS->getSourceRange() << RHS->getSourceRange();
4242      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4243      return ExprError();
4244    }
4245
4246  // Either we found no viable overloaded operator or we matched a
4247  // built-in operator. In either case, try to build a built-in
4248  // operation.
4249  return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4250}
4251
4252/// BuildCallToMemberFunction - Build a call to a member
4253/// function. MemExpr is the expression that refers to the member
4254/// function (and includes the object parameter), Args/NumArgs are the
4255/// arguments to the function call (not including the object
4256/// parameter). The caller needs to validate that the member
4257/// expression refers to a member function or an overloaded member
4258/// function.
4259Sema::ExprResult
4260Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4261                                SourceLocation LParenLoc, Expr **Args,
4262                                unsigned NumArgs, SourceLocation *CommaLocs,
4263                                SourceLocation RParenLoc) {
4264  // Dig out the member expression. This holds both the object
4265  // argument and the member function we're referring to.
4266  MemberExpr *MemExpr = 0;
4267  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4268    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4269  else
4270    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4271  assert(MemExpr && "Building member call without member expression");
4272
4273  // Extract the object argument.
4274  Expr *ObjectArg = MemExpr->getBase();
4275
4276  CXXMethodDecl *Method = 0;
4277  if (OverloadedFunctionDecl *Ovl
4278        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4279    // Add overload candidates
4280    OverloadCandidateSet CandidateSet;
4281    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4282                                                FuncEnd = Ovl->function_end();
4283         Func != FuncEnd; ++Func) {
4284      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4285      Method = cast<CXXMethodDecl>(*Func);
4286      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4287                         /*SuppressUserConversions=*/false);
4288    }
4289
4290    OverloadCandidateSet::iterator Best;
4291    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4292    case OR_Success:
4293      Method = cast<CXXMethodDecl>(Best->Function);
4294      break;
4295
4296    case OR_No_Viable_Function:
4297      Diag(MemExpr->getSourceRange().getBegin(),
4298           diag::err_ovl_no_viable_member_function_in_call)
4299        << Ovl->getDeclName() << MemExprE->getSourceRange();
4300      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4301      // FIXME: Leaking incoming expressions!
4302      return true;
4303
4304    case OR_Ambiguous:
4305      Diag(MemExpr->getSourceRange().getBegin(),
4306           diag::err_ovl_ambiguous_member_call)
4307        << Ovl->getDeclName() << MemExprE->getSourceRange();
4308      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4309      // FIXME: Leaking incoming expressions!
4310      return true;
4311
4312    case OR_Deleted:
4313      Diag(MemExpr->getSourceRange().getBegin(),
4314           diag::err_ovl_deleted_member_call)
4315        << Best->Function->isDeleted()
4316        << Ovl->getDeclName() << MemExprE->getSourceRange();
4317      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4318      // FIXME: Leaking incoming expressions!
4319      return true;
4320    }
4321
4322    FixOverloadedFunctionReference(MemExpr, Method);
4323  } else {
4324    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4325  }
4326
4327  assert(Method && "Member call to something that isn't a method?");
4328  ExprOwningPtr<CXXMemberCallExpr>
4329    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4330                                                  NumArgs,
4331                                  Method->getResultType().getNonReferenceType(),
4332                                  RParenLoc));
4333
4334  // Convert the object argument (for a non-static member function call).
4335  if (!Method->isStatic() &&
4336      PerformObjectArgumentInitialization(ObjectArg, Method))
4337    return true;
4338  MemExpr->setBase(ObjectArg);
4339
4340  // Convert the rest of the arguments
4341  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4342  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4343                              RParenLoc))
4344    return true;
4345
4346  if (CheckFunctionCall(Method, TheCall.get()))
4347    return true;
4348
4349  return MaybeBindToTemporary(TheCall.release()).release();
4350}
4351
4352/// BuildCallToObjectOfClassType - Build a call to an object of class
4353/// type (C++ [over.call.object]), which can end up invoking an
4354/// overloaded function call operator (@c operator()) or performing a
4355/// user-defined conversion on the object argument.
4356Sema::ExprResult
4357Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4358                                   SourceLocation LParenLoc,
4359                                   Expr **Args, unsigned NumArgs,
4360                                   SourceLocation *CommaLocs,
4361                                   SourceLocation RParenLoc) {
4362  assert(Object->getType()->isRecordType() && "Requires object type argument");
4363  const RecordType *Record = Object->getType()->getAs<RecordType>();
4364
4365  // C++ [over.call.object]p1:
4366  //  If the primary-expression E in the function call syntax
4367  //  evaluates to a class object of type "cv T", then the set of
4368  //  candidate functions includes at least the function call
4369  //  operators of T. The function call operators of T are obtained by
4370  //  ordinary lookup of the name operator() in the context of
4371  //  (E).operator().
4372  OverloadCandidateSet CandidateSet;
4373  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4374  DeclContext::lookup_const_iterator Oper, OperEnd;
4375  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4376       Oper != OperEnd; ++Oper)
4377    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4378                       CandidateSet, /*SuppressUserConversions=*/false);
4379
4380  // C++ [over.call.object]p2:
4381  //   In addition, for each conversion function declared in T of the
4382  //   form
4383  //
4384  //        operator conversion-type-id () cv-qualifier;
4385  //
4386  //   where cv-qualifier is the same cv-qualification as, or a
4387  //   greater cv-qualification than, cv, and where conversion-type-id
4388  //   denotes the type "pointer to function of (P1,...,Pn) returning
4389  //   R", or the type "reference to pointer to function of
4390  //   (P1,...,Pn) returning R", or the type "reference to function
4391  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4392  //   is also considered as a candidate function. Similarly,
4393  //   surrogate call functions are added to the set of candidate
4394  //   functions for each conversion function declared in an
4395  //   accessible base class provided the function is not hidden
4396  //   within T by another intervening declaration.
4397  //
4398  // FIXME: Look in base classes for more conversion operators!
4399  OverloadedFunctionDecl *Conversions
4400    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4401  for (OverloadedFunctionDecl::function_iterator
4402         Func = Conversions->function_begin(),
4403         FuncEnd = Conversions->function_end();
4404       Func != FuncEnd; ++Func) {
4405    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4406
4407    // Strip the reference type (if any) and then the pointer type (if
4408    // any) to get down to what might be a function type.
4409    QualType ConvType = Conv->getConversionType().getNonReferenceType();
4410    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4411      ConvType = ConvPtrType->getPointeeType();
4412
4413    if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4414      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4415  }
4416
4417  // Perform overload resolution.
4418  OverloadCandidateSet::iterator Best;
4419  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4420  case OR_Success:
4421    // Overload resolution succeeded; we'll build the appropriate call
4422    // below.
4423    break;
4424
4425  case OR_No_Viable_Function:
4426    Diag(Object->getSourceRange().getBegin(),
4427         diag::err_ovl_no_viable_object_call)
4428      << Object->getType() << Object->getSourceRange();
4429    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4430    break;
4431
4432  case OR_Ambiguous:
4433    Diag(Object->getSourceRange().getBegin(),
4434         diag::err_ovl_ambiguous_object_call)
4435      << Object->getType() << Object->getSourceRange();
4436    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4437    break;
4438
4439  case OR_Deleted:
4440    Diag(Object->getSourceRange().getBegin(),
4441         diag::err_ovl_deleted_object_call)
4442      << Best->Function->isDeleted()
4443      << Object->getType() << Object->getSourceRange();
4444    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4445    break;
4446  }
4447
4448  if (Best == CandidateSet.end()) {
4449    // We had an error; delete all of the subexpressions and return
4450    // the error.
4451    Object->Destroy(Context);
4452    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4453      Args[ArgIdx]->Destroy(Context);
4454    return true;
4455  }
4456
4457  if (Best->Function == 0) {
4458    // Since there is no function declaration, this is one of the
4459    // surrogate candidates. Dig out the conversion function.
4460    CXXConversionDecl *Conv
4461      = cast<CXXConversionDecl>(
4462                         Best->Conversions[0].UserDefined.ConversionFunction);
4463
4464    // We selected one of the surrogate functions that converts the
4465    // object parameter to a function pointer. Perform the conversion
4466    // on the object argument, then let ActOnCallExpr finish the job.
4467    // FIXME: Represent the user-defined conversion in the AST!
4468    ImpCastExprToType(Object,
4469                      Conv->getConversionType().getNonReferenceType(),
4470                      CastExpr::CK_Unknown,
4471                      Conv->getConversionType()->isLValueReferenceType());
4472    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4473                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4474                         CommaLocs, RParenLoc).release();
4475  }
4476
4477  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4478  // that calls this method, using Object for the implicit object
4479  // parameter and passing along the remaining arguments.
4480  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4481  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4482
4483  unsigned NumArgsInProto = Proto->getNumArgs();
4484  unsigned NumArgsToCheck = NumArgs;
4485
4486  // Build the full argument list for the method call (the
4487  // implicit object parameter is placed at the beginning of the
4488  // list).
4489  Expr **MethodArgs;
4490  if (NumArgs < NumArgsInProto) {
4491    NumArgsToCheck = NumArgsInProto;
4492    MethodArgs = new Expr*[NumArgsInProto + 1];
4493  } else {
4494    MethodArgs = new Expr*[NumArgs + 1];
4495  }
4496  MethodArgs[0] = Object;
4497  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4498    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4499
4500  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4501                                          SourceLocation());
4502  UsualUnaryConversions(NewFn);
4503
4504  // Once we've built TheCall, all of the expressions are properly
4505  // owned.
4506  QualType ResultTy = Method->getResultType().getNonReferenceType();
4507  ExprOwningPtr<CXXOperatorCallExpr>
4508    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4509                                                    MethodArgs, NumArgs + 1,
4510                                                    ResultTy, RParenLoc));
4511  delete [] MethodArgs;
4512
4513  // We may have default arguments. If so, we need to allocate more
4514  // slots in the call for them.
4515  if (NumArgs < NumArgsInProto)
4516    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4517  else if (NumArgs > NumArgsInProto)
4518    NumArgsToCheck = NumArgsInProto;
4519
4520  bool IsError = false;
4521
4522  // Initialize the implicit object parameter.
4523  IsError |= PerformObjectArgumentInitialization(Object, Method);
4524  TheCall->setArg(0, Object);
4525
4526
4527  // Check the argument types.
4528  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4529    Expr *Arg;
4530    if (i < NumArgs) {
4531      Arg = Args[i];
4532
4533      // Pass the argument.
4534      QualType ProtoArgType = Proto->getArgType(i);
4535      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4536    } else {
4537      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
4538    }
4539
4540    TheCall->setArg(i + 1, Arg);
4541  }
4542
4543  // If this is a variadic call, handle args passed through "...".
4544  if (Proto->isVariadic()) {
4545    // Promote the arguments (C99 6.5.2.2p7).
4546    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4547      Expr *Arg = Args[i];
4548      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4549      TheCall->setArg(i + 1, Arg);
4550    }
4551  }
4552
4553  if (IsError) return true;
4554
4555  if (CheckFunctionCall(Method, TheCall.get()))
4556    return true;
4557
4558  return TheCall.release();
4559}
4560
4561/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4562///  (if one exists), where @c Base is an expression of class type and
4563/// @c Member is the name of the member we're trying to find.
4564Sema::OwningExprResult
4565Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
4566  Expr *Base = static_cast<Expr *>(BaseIn.get());
4567  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4568
4569  // C++ [over.ref]p1:
4570  //
4571  //   [...] An expression x->m is interpreted as (x.operator->())->m
4572  //   for a class object x of type T if T::operator->() exists and if
4573  //   the operator is selected as the best match function by the
4574  //   overload resolution mechanism (13.3).
4575  // FIXME: look in base classes.
4576  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4577  OverloadCandidateSet CandidateSet;
4578  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
4579
4580  DeclContext::lookup_const_iterator Oper, OperEnd;
4581  for (llvm::tie(Oper, OperEnd)
4582         = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
4583    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4584                       /*SuppressUserConversions=*/false);
4585
4586  // Perform overload resolution.
4587  OverloadCandidateSet::iterator Best;
4588  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4589  case OR_Success:
4590    // Overload resolution succeeded; we'll build the call below.
4591    break;
4592
4593  case OR_No_Viable_Function:
4594    if (CandidateSet.empty())
4595      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4596        << Base->getType() << Base->getSourceRange();
4597    else
4598      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4599        << "operator->" << Base->getSourceRange();
4600    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4601    return ExprError();
4602
4603  case OR_Ambiguous:
4604    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4605      << "operator->" << Base->getSourceRange();
4606    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4607    return ExprError();
4608
4609  case OR_Deleted:
4610    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4611      << Best->Function->isDeleted()
4612      << "operator->" << Base->getSourceRange();
4613    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4614    return ExprError();
4615  }
4616
4617  // Convert the object parameter.
4618  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4619  if (PerformObjectArgumentInitialization(Base, Method))
4620    return ExprError();
4621
4622  // No concerns about early exits now.
4623  BaseIn.release();
4624
4625  // Build the operator call.
4626  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4627                                           SourceLocation());
4628  UsualUnaryConversions(FnExpr);
4629  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4630                                 Method->getResultType().getNonReferenceType(),
4631                                 OpLoc);
4632  return Owned(Base);
4633}
4634
4635/// FixOverloadedFunctionReference - E is an expression that refers to
4636/// a C++ overloaded function (possibly with some parentheses and
4637/// perhaps a '&' around it). We have resolved the overloaded function
4638/// to the function declaration Fn, so patch up the expression E to
4639/// refer (possibly indirectly) to Fn.
4640void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4641  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4642    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4643    E->setType(PE->getSubExpr()->getType());
4644  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4645    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4646           "Can only take the address of an overloaded function");
4647    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4648      if (Method->isStatic()) {
4649        // Do nothing: static member functions aren't any different
4650        // from non-member functions.
4651      } else if (QualifiedDeclRefExpr *DRE
4652                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4653        // We have taken the address of a pointer to member
4654        // function. Perform the computation here so that we get the
4655        // appropriate pointer to member type.
4656        DRE->setDecl(Fn);
4657        DRE->setType(Fn->getType());
4658        QualType ClassType
4659          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4660        E->setType(Context.getMemberPointerType(Fn->getType(),
4661                                                ClassType.getTypePtr()));
4662        return;
4663      }
4664    }
4665    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4666    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4667  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4668    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4669            isa<FunctionTemplateDecl>(DR->getDecl())) &&
4670           "Expected overloaded function or function template");
4671    DR->setDecl(Fn);
4672    E->setType(Fn->getType());
4673  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4674    MemExpr->setMemberDecl(Fn);
4675    E->setType(Fn->getType());
4676  } else {
4677    assert(false && "Invalid reference to overloaded function");
4678  }
4679}
4680
4681} // end namespace clang
4682