SemaOverload.cpp revision 761695fec3e4fe5aaae1544d489389bcf6cd9be4
1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Overload.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/Diagnostic.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/SemaInternal.h"
28#include "clang/Sema/Template.h"
29#include "clang/Sema/TemplateDeduction.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallString.h"
34#include <algorithm>
35
36namespace clang {
37using namespace sema;
38
39/// A convenience routine for creating a decayed reference to a function.
40static ExprResult
41CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
42                      bool HadMultipleCandidates,
43                      SourceLocation Loc = SourceLocation(),
44                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
45  if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
46    return ExprError();
47  // If FoundDecl is different from Fn (such as if one is a template
48  // and the other a specialization), make sure DiagnoseUseOfDecl is
49  // called on both.
50  // FIXME: This would be more comprehensively addressed by modifying
51  // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
52  // being used.
53  if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
54    return ExprError();
55  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
56                                                 VK_LValue, Loc, LocInfo);
57  if (HadMultipleCandidates)
58    DRE->setHadMultipleCandidates(true);
59
60  S.MarkDeclRefReferenced(DRE);
61
62  ExprResult E = S.Owned(DRE);
63  E = S.DefaultFunctionArrayConversion(E.take());
64  if (E.isInvalid())
65    return ExprError();
66  return E;
67}
68
69static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
70                                 bool InOverloadResolution,
71                                 StandardConversionSequence &SCS,
72                                 bool CStyle,
73                                 bool AllowObjCWritebackConversion);
74
75static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
76                                                 QualType &ToType,
77                                                 bool InOverloadResolution,
78                                                 StandardConversionSequence &SCS,
79                                                 bool CStyle);
80static OverloadingResult
81IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
82                        UserDefinedConversionSequence& User,
83                        OverloadCandidateSet& Conversions,
84                        bool AllowExplicit);
85
86
87static ImplicitConversionSequence::CompareKind
88CompareStandardConversionSequences(Sema &S,
89                                   const StandardConversionSequence& SCS1,
90                                   const StandardConversionSequence& SCS2);
91
92static ImplicitConversionSequence::CompareKind
93CompareQualificationConversions(Sema &S,
94                                const StandardConversionSequence& SCS1,
95                                const StandardConversionSequence& SCS2);
96
97static ImplicitConversionSequence::CompareKind
98CompareDerivedToBaseConversions(Sema &S,
99                                const StandardConversionSequence& SCS1,
100                                const StandardConversionSequence& SCS2);
101
102
103
104/// GetConversionCategory - Retrieve the implicit conversion
105/// category corresponding to the given implicit conversion kind.
106ImplicitConversionCategory
107GetConversionCategory(ImplicitConversionKind Kind) {
108  static const ImplicitConversionCategory
109    Category[(int)ICK_Num_Conversion_Kinds] = {
110    ICC_Identity,
111    ICC_Lvalue_Transformation,
112    ICC_Lvalue_Transformation,
113    ICC_Lvalue_Transformation,
114    ICC_Identity,
115    ICC_Qualification_Adjustment,
116    ICC_Promotion,
117    ICC_Promotion,
118    ICC_Promotion,
119    ICC_Conversion,
120    ICC_Conversion,
121    ICC_Conversion,
122    ICC_Conversion,
123    ICC_Conversion,
124    ICC_Conversion,
125    ICC_Conversion,
126    ICC_Conversion,
127    ICC_Conversion,
128    ICC_Conversion,
129    ICC_Conversion,
130    ICC_Conversion,
131    ICC_Conversion
132  };
133  return Category[(int)Kind];
134}
135
136/// GetConversionRank - Retrieve the implicit conversion rank
137/// corresponding to the given implicit conversion kind.
138ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
139  static const ImplicitConversionRank
140    Rank[(int)ICK_Num_Conversion_Kinds] = {
141    ICR_Exact_Match,
142    ICR_Exact_Match,
143    ICR_Exact_Match,
144    ICR_Exact_Match,
145    ICR_Exact_Match,
146    ICR_Exact_Match,
147    ICR_Promotion,
148    ICR_Promotion,
149    ICR_Promotion,
150    ICR_Conversion,
151    ICR_Conversion,
152    ICR_Conversion,
153    ICR_Conversion,
154    ICR_Conversion,
155    ICR_Conversion,
156    ICR_Conversion,
157    ICR_Conversion,
158    ICR_Conversion,
159    ICR_Conversion,
160    ICR_Conversion,
161    ICR_Complex_Real_Conversion,
162    ICR_Conversion,
163    ICR_Conversion,
164    ICR_Writeback_Conversion
165  };
166  return Rank[(int)Kind];
167}
168
169/// GetImplicitConversionName - Return the name of this kind of
170/// implicit conversion.
171const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
172  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
173    "No conversion",
174    "Lvalue-to-rvalue",
175    "Array-to-pointer",
176    "Function-to-pointer",
177    "Noreturn adjustment",
178    "Qualification",
179    "Integral promotion",
180    "Floating point promotion",
181    "Complex promotion",
182    "Integral conversion",
183    "Floating conversion",
184    "Complex conversion",
185    "Floating-integral conversion",
186    "Pointer conversion",
187    "Pointer-to-member conversion",
188    "Boolean conversion",
189    "Compatible-types conversion",
190    "Derived-to-base conversion",
191    "Vector conversion",
192    "Vector splat",
193    "Complex-real conversion",
194    "Block Pointer conversion",
195    "Transparent Union Conversion"
196    "Writeback conversion"
197  };
198  return Name[Kind];
199}
200
201/// StandardConversionSequence - Set the standard conversion
202/// sequence to the identity conversion.
203void StandardConversionSequence::setAsIdentityConversion() {
204  First = ICK_Identity;
205  Second = ICK_Identity;
206  Third = ICK_Identity;
207  DeprecatedStringLiteralToCharPtr = false;
208  QualificationIncludesObjCLifetime = false;
209  ReferenceBinding = false;
210  DirectBinding = false;
211  IsLvalueReference = true;
212  BindsToFunctionLvalue = false;
213  BindsToRvalue = false;
214  BindsImplicitObjectArgumentWithoutRefQualifier = false;
215  ObjCLifetimeConversionBinding = false;
216  CopyConstructor = 0;
217}
218
219/// getRank - Retrieve the rank of this standard conversion sequence
220/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
221/// implicit conversions.
222ImplicitConversionRank StandardConversionSequence::getRank() const {
223  ImplicitConversionRank Rank = ICR_Exact_Match;
224  if  (GetConversionRank(First) > Rank)
225    Rank = GetConversionRank(First);
226  if  (GetConversionRank(Second) > Rank)
227    Rank = GetConversionRank(Second);
228  if  (GetConversionRank(Third) > Rank)
229    Rank = GetConversionRank(Third);
230  return Rank;
231}
232
233/// isPointerConversionToBool - Determines whether this conversion is
234/// a conversion of a pointer or pointer-to-member to bool. This is
235/// used as part of the ranking of standard conversion sequences
236/// (C++ 13.3.3.2p4).
237bool StandardConversionSequence::isPointerConversionToBool() const {
238  // Note that FromType has not necessarily been transformed by the
239  // array-to-pointer or function-to-pointer implicit conversions, so
240  // check for their presence as well as checking whether FromType is
241  // a pointer.
242  if (getToType(1)->isBooleanType() &&
243      (getFromType()->isPointerType() ||
244       getFromType()->isObjCObjectPointerType() ||
245       getFromType()->isBlockPointerType() ||
246       getFromType()->isNullPtrType() ||
247       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
248    return true;
249
250  return false;
251}
252
253/// isPointerConversionToVoidPointer - Determines whether this
254/// conversion is a conversion of a pointer to a void pointer. This is
255/// used as part of the ranking of standard conversion sequences (C++
256/// 13.3.3.2p4).
257bool
258StandardConversionSequence::
259isPointerConversionToVoidPointer(ASTContext& Context) const {
260  QualType FromType = getFromType();
261  QualType ToType = getToType(1);
262
263  // Note that FromType has not necessarily been transformed by the
264  // array-to-pointer implicit conversion, so check for its presence
265  // and redo the conversion to get a pointer.
266  if (First == ICK_Array_To_Pointer)
267    FromType = Context.getArrayDecayedType(FromType);
268
269  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
270    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
271      return ToPtrType->getPointeeType()->isVoidType();
272
273  return false;
274}
275
276/// Skip any implicit casts which could be either part of a narrowing conversion
277/// or after one in an implicit conversion.
278static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
279  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
280    switch (ICE->getCastKind()) {
281    case CK_NoOp:
282    case CK_IntegralCast:
283    case CK_IntegralToBoolean:
284    case CK_IntegralToFloating:
285    case CK_FloatingToIntegral:
286    case CK_FloatingToBoolean:
287    case CK_FloatingCast:
288      Converted = ICE->getSubExpr();
289      continue;
290
291    default:
292      return Converted;
293    }
294  }
295
296  return Converted;
297}
298
299/// Check if this standard conversion sequence represents a narrowing
300/// conversion, according to C++11 [dcl.init.list]p7.
301///
302/// \param Ctx  The AST context.
303/// \param Converted  The result of applying this standard conversion sequence.
304/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
305///        value of the expression prior to the narrowing conversion.
306/// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
307///        type of the expression prior to the narrowing conversion.
308NarrowingKind
309StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
310                                             const Expr *Converted,
311                                             APValue &ConstantValue,
312                                             QualType &ConstantType) const {
313  assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
314
315  // C++11 [dcl.init.list]p7:
316  //   A narrowing conversion is an implicit conversion ...
317  QualType FromType = getToType(0);
318  QualType ToType = getToType(1);
319  switch (Second) {
320  // -- from a floating-point type to an integer type, or
321  //
322  // -- from an integer type or unscoped enumeration type to a floating-point
323  //    type, except where the source is a constant expression and the actual
324  //    value after conversion will fit into the target type and will produce
325  //    the original value when converted back to the original type, or
326  case ICK_Floating_Integral:
327    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
328      return NK_Type_Narrowing;
329    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
330      llvm::APSInt IntConstantValue;
331      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
332      if (Initializer &&
333          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
334        // Convert the integer to the floating type.
335        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
336        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
337                                llvm::APFloat::rmNearestTiesToEven);
338        // And back.
339        llvm::APSInt ConvertedValue = IntConstantValue;
340        bool ignored;
341        Result.convertToInteger(ConvertedValue,
342                                llvm::APFloat::rmTowardZero, &ignored);
343        // If the resulting value is different, this was a narrowing conversion.
344        if (IntConstantValue != ConvertedValue) {
345          ConstantValue = APValue(IntConstantValue);
346          ConstantType = Initializer->getType();
347          return NK_Constant_Narrowing;
348        }
349      } else {
350        // Variables are always narrowings.
351        return NK_Variable_Narrowing;
352      }
353    }
354    return NK_Not_Narrowing;
355
356  // -- from long double to double or float, or from double to float, except
357  //    where the source is a constant expression and the actual value after
358  //    conversion is within the range of values that can be represented (even
359  //    if it cannot be represented exactly), or
360  case ICK_Floating_Conversion:
361    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
362        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
363      // FromType is larger than ToType.
364      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
365      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
366        // Constant!
367        assert(ConstantValue.isFloat());
368        llvm::APFloat FloatVal = ConstantValue.getFloat();
369        // Convert the source value into the target type.
370        bool ignored;
371        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
372          Ctx.getFloatTypeSemantics(ToType),
373          llvm::APFloat::rmNearestTiesToEven, &ignored);
374        // If there was no overflow, the source value is within the range of
375        // values that can be represented.
376        if (ConvertStatus & llvm::APFloat::opOverflow) {
377          ConstantType = Initializer->getType();
378          return NK_Constant_Narrowing;
379        }
380      } else {
381        return NK_Variable_Narrowing;
382      }
383    }
384    return NK_Not_Narrowing;
385
386  // -- from an integer type or unscoped enumeration type to an integer type
387  //    that cannot represent all the values of the original type, except where
388  //    the source is a constant expression and the actual value after
389  //    conversion will fit into the target type and will produce the original
390  //    value when converted back to the original type.
391  case ICK_Boolean_Conversion:  // Bools are integers too.
392    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
393      // Boolean conversions can be from pointers and pointers to members
394      // [conv.bool], and those aren't considered narrowing conversions.
395      return NK_Not_Narrowing;
396    }  // Otherwise, fall through to the integral case.
397  case ICK_Integral_Conversion: {
398    assert(FromType->isIntegralOrUnscopedEnumerationType());
399    assert(ToType->isIntegralOrUnscopedEnumerationType());
400    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
401    const unsigned FromWidth = Ctx.getIntWidth(FromType);
402    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
403    const unsigned ToWidth = Ctx.getIntWidth(ToType);
404
405    if (FromWidth > ToWidth ||
406        (FromWidth == ToWidth && FromSigned != ToSigned) ||
407        (FromSigned && !ToSigned)) {
408      // Not all values of FromType can be represented in ToType.
409      llvm::APSInt InitializerValue;
410      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
411      if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
412        // Such conversions on variables are always narrowing.
413        return NK_Variable_Narrowing;
414      }
415      bool Narrowing = false;
416      if (FromWidth < ToWidth) {
417        // Negative -> unsigned is narrowing. Otherwise, more bits is never
418        // narrowing.
419        if (InitializerValue.isSigned() && InitializerValue.isNegative())
420          Narrowing = true;
421      } else {
422        // Add a bit to the InitializerValue so we don't have to worry about
423        // signed vs. unsigned comparisons.
424        InitializerValue = InitializerValue.extend(
425          InitializerValue.getBitWidth() + 1);
426        // Convert the initializer to and from the target width and signed-ness.
427        llvm::APSInt ConvertedValue = InitializerValue;
428        ConvertedValue = ConvertedValue.trunc(ToWidth);
429        ConvertedValue.setIsSigned(ToSigned);
430        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
431        ConvertedValue.setIsSigned(InitializerValue.isSigned());
432        // If the result is different, this was a narrowing conversion.
433        if (ConvertedValue != InitializerValue)
434          Narrowing = true;
435      }
436      if (Narrowing) {
437        ConstantType = Initializer->getType();
438        ConstantValue = APValue(InitializerValue);
439        return NK_Constant_Narrowing;
440      }
441    }
442    return NK_Not_Narrowing;
443  }
444
445  default:
446    // Other kinds of conversions are not narrowings.
447    return NK_Not_Narrowing;
448  }
449}
450
451/// DebugPrint - Print this standard conversion sequence to standard
452/// error. Useful for debugging overloading issues.
453void StandardConversionSequence::DebugPrint() const {
454  raw_ostream &OS = llvm::errs();
455  bool PrintedSomething = false;
456  if (First != ICK_Identity) {
457    OS << GetImplicitConversionName(First);
458    PrintedSomething = true;
459  }
460
461  if (Second != ICK_Identity) {
462    if (PrintedSomething) {
463      OS << " -> ";
464    }
465    OS << GetImplicitConversionName(Second);
466
467    if (CopyConstructor) {
468      OS << " (by copy constructor)";
469    } else if (DirectBinding) {
470      OS << " (direct reference binding)";
471    } else if (ReferenceBinding) {
472      OS << " (reference binding)";
473    }
474    PrintedSomething = true;
475  }
476
477  if (Third != ICK_Identity) {
478    if (PrintedSomething) {
479      OS << " -> ";
480    }
481    OS << GetImplicitConversionName(Third);
482    PrintedSomething = true;
483  }
484
485  if (!PrintedSomething) {
486    OS << "No conversions required";
487  }
488}
489
490/// DebugPrint - Print this user-defined conversion sequence to standard
491/// error. Useful for debugging overloading issues.
492void UserDefinedConversionSequence::DebugPrint() const {
493  raw_ostream &OS = llvm::errs();
494  if (Before.First || Before.Second || Before.Third) {
495    Before.DebugPrint();
496    OS << " -> ";
497  }
498  if (ConversionFunction)
499    OS << '\'' << *ConversionFunction << '\'';
500  else
501    OS << "aggregate initialization";
502  if (After.First || After.Second || After.Third) {
503    OS << " -> ";
504    After.DebugPrint();
505  }
506}
507
508/// DebugPrint - Print this implicit conversion sequence to standard
509/// error. Useful for debugging overloading issues.
510void ImplicitConversionSequence::DebugPrint() const {
511  raw_ostream &OS = llvm::errs();
512  switch (ConversionKind) {
513  case StandardConversion:
514    OS << "Standard conversion: ";
515    Standard.DebugPrint();
516    break;
517  case UserDefinedConversion:
518    OS << "User-defined conversion: ";
519    UserDefined.DebugPrint();
520    break;
521  case EllipsisConversion:
522    OS << "Ellipsis conversion";
523    break;
524  case AmbiguousConversion:
525    OS << "Ambiguous conversion";
526    break;
527  case BadConversion:
528    OS << "Bad conversion";
529    break;
530  }
531
532  OS << "\n";
533}
534
535void AmbiguousConversionSequence::construct() {
536  new (&conversions()) ConversionSet();
537}
538
539void AmbiguousConversionSequence::destruct() {
540  conversions().~ConversionSet();
541}
542
543void
544AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
545  FromTypePtr = O.FromTypePtr;
546  ToTypePtr = O.ToTypePtr;
547  new (&conversions()) ConversionSet(O.conversions());
548}
549
550namespace {
551  // Structure used by OverloadCandidate::DeductionFailureInfo to store
552  // template argument information.
553  struct DFIArguments {
554    TemplateArgument FirstArg;
555    TemplateArgument SecondArg;
556  };
557  // Structure used by OverloadCandidate::DeductionFailureInfo to store
558  // template parameter and template argument information.
559  struct DFIParamWithArguments : DFIArguments {
560    TemplateParameter Param;
561  };
562}
563
564/// \brief Convert from Sema's representation of template deduction information
565/// to the form used in overload-candidate information.
566OverloadCandidate::DeductionFailureInfo
567static MakeDeductionFailureInfo(ASTContext &Context,
568                                Sema::TemplateDeductionResult TDK,
569                                TemplateDeductionInfo &Info) {
570  OverloadCandidate::DeductionFailureInfo Result;
571  Result.Result = static_cast<unsigned>(TDK);
572  Result.HasDiagnostic = false;
573  Result.Data = 0;
574  switch (TDK) {
575  case Sema::TDK_Success:
576  case Sema::TDK_Invalid:
577  case Sema::TDK_InstantiationDepth:
578  case Sema::TDK_TooManyArguments:
579  case Sema::TDK_TooFewArguments:
580    break;
581
582  case Sema::TDK_Incomplete:
583  case Sema::TDK_InvalidExplicitArguments:
584    Result.Data = Info.Param.getOpaqueValue();
585    break;
586
587  case Sema::TDK_NonDeducedMismatch: {
588    // FIXME: Should allocate from normal heap so that we can free this later.
589    DFIArguments *Saved = new (Context) DFIArguments;
590    Saved->FirstArg = Info.FirstArg;
591    Saved->SecondArg = Info.SecondArg;
592    Result.Data = Saved;
593    break;
594  }
595
596  case Sema::TDK_Inconsistent:
597  case Sema::TDK_Underqualified: {
598    // FIXME: Should allocate from normal heap so that we can free this later.
599    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
600    Saved->Param = Info.Param;
601    Saved->FirstArg = Info.FirstArg;
602    Saved->SecondArg = Info.SecondArg;
603    Result.Data = Saved;
604    break;
605  }
606
607  case Sema::TDK_SubstitutionFailure:
608    Result.Data = Info.take();
609    if (Info.hasSFINAEDiagnostic()) {
610      PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
611          SourceLocation(), PartialDiagnostic::NullDiagnostic());
612      Info.takeSFINAEDiagnostic(*Diag);
613      Result.HasDiagnostic = true;
614    }
615    break;
616
617  case Sema::TDK_FailedOverloadResolution:
618    Result.Data = Info.Expression;
619    break;
620
621  case Sema::TDK_MiscellaneousDeductionFailure:
622    break;
623  }
624
625  return Result;
626}
627
628void OverloadCandidate::DeductionFailureInfo::Destroy() {
629  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
630  case Sema::TDK_Success:
631  case Sema::TDK_Invalid:
632  case Sema::TDK_InstantiationDepth:
633  case Sema::TDK_Incomplete:
634  case Sema::TDK_TooManyArguments:
635  case Sema::TDK_TooFewArguments:
636  case Sema::TDK_InvalidExplicitArguments:
637  case Sema::TDK_FailedOverloadResolution:
638    break;
639
640  case Sema::TDK_Inconsistent:
641  case Sema::TDK_Underqualified:
642  case Sema::TDK_NonDeducedMismatch:
643    // FIXME: Destroy the data?
644    Data = 0;
645    break;
646
647  case Sema::TDK_SubstitutionFailure:
648    // FIXME: Destroy the template argument list?
649    Data = 0;
650    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
651      Diag->~PartialDiagnosticAt();
652      HasDiagnostic = false;
653    }
654    break;
655
656  // Unhandled
657  case Sema::TDK_MiscellaneousDeductionFailure:
658    break;
659  }
660}
661
662PartialDiagnosticAt *
663OverloadCandidate::DeductionFailureInfo::getSFINAEDiagnostic() {
664  if (HasDiagnostic)
665    return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
666  return 0;
667}
668
669TemplateParameter
670OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
671  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
672  case Sema::TDK_Success:
673  case Sema::TDK_Invalid:
674  case Sema::TDK_InstantiationDepth:
675  case Sema::TDK_TooManyArguments:
676  case Sema::TDK_TooFewArguments:
677  case Sema::TDK_SubstitutionFailure:
678  case Sema::TDK_NonDeducedMismatch:
679  case Sema::TDK_FailedOverloadResolution:
680    return TemplateParameter();
681
682  case Sema::TDK_Incomplete:
683  case Sema::TDK_InvalidExplicitArguments:
684    return TemplateParameter::getFromOpaqueValue(Data);
685
686  case Sema::TDK_Inconsistent:
687  case Sema::TDK_Underqualified:
688    return static_cast<DFIParamWithArguments*>(Data)->Param;
689
690  // Unhandled
691  case Sema::TDK_MiscellaneousDeductionFailure:
692    break;
693  }
694
695  return TemplateParameter();
696}
697
698TemplateArgumentList *
699OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
700  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
701  case Sema::TDK_Success:
702  case Sema::TDK_Invalid:
703  case Sema::TDK_InstantiationDepth:
704  case Sema::TDK_TooManyArguments:
705  case Sema::TDK_TooFewArguments:
706  case Sema::TDK_Incomplete:
707  case Sema::TDK_InvalidExplicitArguments:
708  case Sema::TDK_Inconsistent:
709  case Sema::TDK_Underqualified:
710  case Sema::TDK_NonDeducedMismatch:
711  case Sema::TDK_FailedOverloadResolution:
712    return 0;
713
714  case Sema::TDK_SubstitutionFailure:
715    return static_cast<TemplateArgumentList*>(Data);
716
717  // Unhandled
718  case Sema::TDK_MiscellaneousDeductionFailure:
719    break;
720  }
721
722  return 0;
723}
724
725const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
726  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
727  case Sema::TDK_Success:
728  case Sema::TDK_Invalid:
729  case Sema::TDK_InstantiationDepth:
730  case Sema::TDK_Incomplete:
731  case Sema::TDK_TooManyArguments:
732  case Sema::TDK_TooFewArguments:
733  case Sema::TDK_InvalidExplicitArguments:
734  case Sema::TDK_SubstitutionFailure:
735  case Sema::TDK_FailedOverloadResolution:
736    return 0;
737
738  case Sema::TDK_Inconsistent:
739  case Sema::TDK_Underqualified:
740  case Sema::TDK_NonDeducedMismatch:
741    return &static_cast<DFIArguments*>(Data)->FirstArg;
742
743  // Unhandled
744  case Sema::TDK_MiscellaneousDeductionFailure:
745    break;
746  }
747
748  return 0;
749}
750
751const TemplateArgument *
752OverloadCandidate::DeductionFailureInfo::getSecondArg() {
753  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
754  case Sema::TDK_Success:
755  case Sema::TDK_Invalid:
756  case Sema::TDK_InstantiationDepth:
757  case Sema::TDK_Incomplete:
758  case Sema::TDK_TooManyArguments:
759  case Sema::TDK_TooFewArguments:
760  case Sema::TDK_InvalidExplicitArguments:
761  case Sema::TDK_SubstitutionFailure:
762  case Sema::TDK_FailedOverloadResolution:
763    return 0;
764
765  case Sema::TDK_Inconsistent:
766  case Sema::TDK_Underqualified:
767  case Sema::TDK_NonDeducedMismatch:
768    return &static_cast<DFIArguments*>(Data)->SecondArg;
769
770  // Unhandled
771  case Sema::TDK_MiscellaneousDeductionFailure:
772    break;
773  }
774
775  return 0;
776}
777
778Expr *
779OverloadCandidate::DeductionFailureInfo::getExpr() {
780  if (static_cast<Sema::TemplateDeductionResult>(Result) ==
781        Sema::TDK_FailedOverloadResolution)
782    return static_cast<Expr*>(Data);
783
784  return 0;
785}
786
787void OverloadCandidateSet::destroyCandidates() {
788  for (iterator i = begin(), e = end(); i != e; ++i) {
789    for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
790      i->Conversions[ii].~ImplicitConversionSequence();
791    if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
792      i->DeductionFailure.Destroy();
793  }
794}
795
796void OverloadCandidateSet::clear() {
797  destroyCandidates();
798  NumInlineSequences = 0;
799  Candidates.clear();
800  Functions.clear();
801}
802
803namespace {
804  class UnbridgedCastsSet {
805    struct Entry {
806      Expr **Addr;
807      Expr *Saved;
808    };
809    SmallVector<Entry, 2> Entries;
810
811  public:
812    void save(Sema &S, Expr *&E) {
813      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
814      Entry entry = { &E, E };
815      Entries.push_back(entry);
816      E = S.stripARCUnbridgedCast(E);
817    }
818
819    void restore() {
820      for (SmallVectorImpl<Entry>::iterator
821             i = Entries.begin(), e = Entries.end(); i != e; ++i)
822        *i->Addr = i->Saved;
823    }
824  };
825}
826
827/// checkPlaceholderForOverload - Do any interesting placeholder-like
828/// preprocessing on the given expression.
829///
830/// \param unbridgedCasts a collection to which to add unbridged casts;
831///   without this, they will be immediately diagnosed as errors
832///
833/// Return true on unrecoverable error.
834static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
835                                        UnbridgedCastsSet *unbridgedCasts = 0) {
836  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
837    // We can't handle overloaded expressions here because overload
838    // resolution might reasonably tweak them.
839    if (placeholder->getKind() == BuiltinType::Overload) return false;
840
841    // If the context potentially accepts unbridged ARC casts, strip
842    // the unbridged cast and add it to the collection for later restoration.
843    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
844        unbridgedCasts) {
845      unbridgedCasts->save(S, E);
846      return false;
847    }
848
849    // Go ahead and check everything else.
850    ExprResult result = S.CheckPlaceholderExpr(E);
851    if (result.isInvalid())
852      return true;
853
854    E = result.take();
855    return false;
856  }
857
858  // Nothing to do.
859  return false;
860}
861
862/// checkArgPlaceholdersForOverload - Check a set of call operands for
863/// placeholders.
864static bool checkArgPlaceholdersForOverload(Sema &S,
865                                            MultiExprArg Args,
866                                            UnbridgedCastsSet &unbridged) {
867  for (unsigned i = 0, e = Args.size(); i != e; ++i)
868    if (checkPlaceholderForOverload(S, Args[i], &unbridged))
869      return true;
870
871  return false;
872}
873
874// IsOverload - Determine whether the given New declaration is an
875// overload of the declarations in Old. This routine returns false if
876// New and Old cannot be overloaded, e.g., if New has the same
877// signature as some function in Old (C++ 1.3.10) or if the Old
878// declarations aren't functions (or function templates) at all. When
879// it does return false, MatchedDecl will point to the decl that New
880// cannot be overloaded with.  This decl may be a UsingShadowDecl on
881// top of the underlying declaration.
882//
883// Example: Given the following input:
884//
885//   void f(int, float); // #1
886//   void f(int, int); // #2
887//   int f(int, int); // #3
888//
889// When we process #1, there is no previous declaration of "f",
890// so IsOverload will not be used.
891//
892// When we process #2, Old contains only the FunctionDecl for #1.  By
893// comparing the parameter types, we see that #1 and #2 are overloaded
894// (since they have different signatures), so this routine returns
895// false; MatchedDecl is unchanged.
896//
897// When we process #3, Old is an overload set containing #1 and #2. We
898// compare the signatures of #3 to #1 (they're overloaded, so we do
899// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
900// identical (return types of functions are not part of the
901// signature), IsOverload returns false and MatchedDecl will be set to
902// point to the FunctionDecl for #2.
903//
904// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
905// into a class by a using declaration.  The rules for whether to hide
906// shadow declarations ignore some properties which otherwise figure
907// into a function template's signature.
908Sema::OverloadKind
909Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
910                    NamedDecl *&Match, bool NewIsUsingDecl) {
911  for (LookupResult::iterator I = Old.begin(), E = Old.end();
912         I != E; ++I) {
913    NamedDecl *OldD = *I;
914
915    bool OldIsUsingDecl = false;
916    if (isa<UsingShadowDecl>(OldD)) {
917      OldIsUsingDecl = true;
918
919      // We can always introduce two using declarations into the same
920      // context, even if they have identical signatures.
921      if (NewIsUsingDecl) continue;
922
923      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
924    }
925
926    // If either declaration was introduced by a using declaration,
927    // we'll need to use slightly different rules for matching.
928    // Essentially, these rules are the normal rules, except that
929    // function templates hide function templates with different
930    // return types or template parameter lists.
931    bool UseMemberUsingDeclRules =
932      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
933      !New->getFriendObjectKind();
934
935    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
936      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
937        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
938          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
939          continue;
940        }
941
942        Match = *I;
943        return Ovl_Match;
944      }
945    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
946      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
947        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
948          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
949          continue;
950        }
951
952        if (!shouldLinkPossiblyHiddenDecl(*I, New))
953          continue;
954
955        Match = *I;
956        return Ovl_Match;
957      }
958    } else if (isa<UsingDecl>(OldD)) {
959      // We can overload with these, which can show up when doing
960      // redeclaration checks for UsingDecls.
961      assert(Old.getLookupKind() == LookupUsingDeclName);
962    } else if (isa<TagDecl>(OldD)) {
963      // We can always overload with tags by hiding them.
964    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
965      // Optimistically assume that an unresolved using decl will
966      // overload; if it doesn't, we'll have to diagnose during
967      // template instantiation.
968    } else {
969      // (C++ 13p1):
970      //   Only function declarations can be overloaded; object and type
971      //   declarations cannot be overloaded.
972      Match = *I;
973      return Ovl_NonFunction;
974    }
975  }
976
977  return Ovl_Overload;
978}
979
980bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
981                      bool UseUsingDeclRules) {
982  // C++ [basic.start.main]p2: This function shall not be overloaded.
983  if (New->isMain())
984    return false;
985
986  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
987  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
988
989  // C++ [temp.fct]p2:
990  //   A function template can be overloaded with other function templates
991  //   and with normal (non-template) functions.
992  if ((OldTemplate == 0) != (NewTemplate == 0))
993    return true;
994
995  // Is the function New an overload of the function Old?
996  QualType OldQType = Context.getCanonicalType(Old->getType());
997  QualType NewQType = Context.getCanonicalType(New->getType());
998
999  // Compare the signatures (C++ 1.3.10) of the two functions to
1000  // determine whether they are overloads. If we find any mismatch
1001  // in the signature, they are overloads.
1002
1003  // If either of these functions is a K&R-style function (no
1004  // prototype), then we consider them to have matching signatures.
1005  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1006      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1007    return false;
1008
1009  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
1010  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
1011
1012  // The signature of a function includes the types of its
1013  // parameters (C++ 1.3.10), which includes the presence or absence
1014  // of the ellipsis; see C++ DR 357).
1015  if (OldQType != NewQType &&
1016      (OldType->getNumArgs() != NewType->getNumArgs() ||
1017       OldType->isVariadic() != NewType->isVariadic() ||
1018       !FunctionArgTypesAreEqual(OldType, NewType)))
1019    return true;
1020
1021  // C++ [temp.over.link]p4:
1022  //   The signature of a function template consists of its function
1023  //   signature, its return type and its template parameter list. The names
1024  //   of the template parameters are significant only for establishing the
1025  //   relationship between the template parameters and the rest of the
1026  //   signature.
1027  //
1028  // We check the return type and template parameter lists for function
1029  // templates first; the remaining checks follow.
1030  //
1031  // However, we don't consider either of these when deciding whether
1032  // a member introduced by a shadow declaration is hidden.
1033  if (!UseUsingDeclRules && NewTemplate &&
1034      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1035                                       OldTemplate->getTemplateParameters(),
1036                                       false, TPL_TemplateMatch) ||
1037       OldType->getResultType() != NewType->getResultType()))
1038    return true;
1039
1040  // If the function is a class member, its signature includes the
1041  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1042  //
1043  // As part of this, also check whether one of the member functions
1044  // is static, in which case they are not overloads (C++
1045  // 13.1p2). While not part of the definition of the signature,
1046  // this check is important to determine whether these functions
1047  // can be overloaded.
1048  CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1049  CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1050  if (OldMethod && NewMethod &&
1051      !OldMethod->isStatic() && !NewMethod->isStatic()) {
1052    if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1053      if (!UseUsingDeclRules &&
1054          (OldMethod->getRefQualifier() == RQ_None ||
1055           NewMethod->getRefQualifier() == RQ_None)) {
1056        // C++0x [over.load]p2:
1057        //   - Member function declarations with the same name and the same
1058        //     parameter-type-list as well as member function template
1059        //     declarations with the same name, the same parameter-type-list, and
1060        //     the same template parameter lists cannot be overloaded if any of
1061        //     them, but not all, have a ref-qualifier (8.3.5).
1062        Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1063          << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1064        Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1065      }
1066      return true;
1067    }
1068
1069    // We may not have applied the implicit const for a constexpr member
1070    // function yet (because we haven't yet resolved whether this is a static
1071    // or non-static member function). Add it now, on the assumption that this
1072    // is a redeclaration of OldMethod.
1073    unsigned NewQuals = NewMethod->getTypeQualifiers();
1074    if (!getLangOpts().CPlusPlus1y && NewMethod->isConstexpr() &&
1075        !isa<CXXConstructorDecl>(NewMethod))
1076      NewQuals |= Qualifiers::Const;
1077    if (OldMethod->getTypeQualifiers() != NewQuals)
1078      return true;
1079  }
1080
1081  // The signatures match; this is not an overload.
1082  return false;
1083}
1084
1085/// \brief Checks availability of the function depending on the current
1086/// function context. Inside an unavailable function, unavailability is ignored.
1087///
1088/// \returns true if \arg FD is unavailable and current context is inside
1089/// an available function, false otherwise.
1090bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1091  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
1092}
1093
1094/// \brief Tries a user-defined conversion from From to ToType.
1095///
1096/// Produces an implicit conversion sequence for when a standard conversion
1097/// is not an option. See TryImplicitConversion for more information.
1098static ImplicitConversionSequence
1099TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1100                         bool SuppressUserConversions,
1101                         bool AllowExplicit,
1102                         bool InOverloadResolution,
1103                         bool CStyle,
1104                         bool AllowObjCWritebackConversion) {
1105  ImplicitConversionSequence ICS;
1106
1107  if (SuppressUserConversions) {
1108    // We're not in the case above, so there is no conversion that
1109    // we can perform.
1110    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1111    return ICS;
1112  }
1113
1114  // Attempt user-defined conversion.
1115  OverloadCandidateSet Conversions(From->getExprLoc());
1116  OverloadingResult UserDefResult
1117    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1118                              AllowExplicit);
1119
1120  if (UserDefResult == OR_Success) {
1121    ICS.setUserDefined();
1122    // C++ [over.ics.user]p4:
1123    //   A conversion of an expression of class type to the same class
1124    //   type is given Exact Match rank, and a conversion of an
1125    //   expression of class type to a base class of that type is
1126    //   given Conversion rank, in spite of the fact that a copy
1127    //   constructor (i.e., a user-defined conversion function) is
1128    //   called for those cases.
1129    if (CXXConstructorDecl *Constructor
1130          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1131      QualType FromCanon
1132        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1133      QualType ToCanon
1134        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1135      if (Constructor->isCopyConstructor() &&
1136          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1137        // Turn this into a "standard" conversion sequence, so that it
1138        // gets ranked with standard conversion sequences.
1139        ICS.setStandard();
1140        ICS.Standard.setAsIdentityConversion();
1141        ICS.Standard.setFromType(From->getType());
1142        ICS.Standard.setAllToTypes(ToType);
1143        ICS.Standard.CopyConstructor = Constructor;
1144        if (ToCanon != FromCanon)
1145          ICS.Standard.Second = ICK_Derived_To_Base;
1146      }
1147    }
1148
1149    // C++ [over.best.ics]p4:
1150    //   However, when considering the argument of a user-defined
1151    //   conversion function that is a candidate by 13.3.1.3 when
1152    //   invoked for the copying of the temporary in the second step
1153    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1154    //   13.3.1.6 in all cases, only standard conversion sequences and
1155    //   ellipsis conversion sequences are allowed.
1156    if (SuppressUserConversions && ICS.isUserDefined()) {
1157      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1158    }
1159  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1160    ICS.setAmbiguous();
1161    ICS.Ambiguous.setFromType(From->getType());
1162    ICS.Ambiguous.setToType(ToType);
1163    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1164         Cand != Conversions.end(); ++Cand)
1165      if (Cand->Viable)
1166        ICS.Ambiguous.addConversion(Cand->Function);
1167  } else {
1168    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1169  }
1170
1171  return ICS;
1172}
1173
1174/// TryImplicitConversion - Attempt to perform an implicit conversion
1175/// from the given expression (Expr) to the given type (ToType). This
1176/// function returns an implicit conversion sequence that can be used
1177/// to perform the initialization. Given
1178///
1179///   void f(float f);
1180///   void g(int i) { f(i); }
1181///
1182/// this routine would produce an implicit conversion sequence to
1183/// describe the initialization of f from i, which will be a standard
1184/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1185/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1186//
1187/// Note that this routine only determines how the conversion can be
1188/// performed; it does not actually perform the conversion. As such,
1189/// it will not produce any diagnostics if no conversion is available,
1190/// but will instead return an implicit conversion sequence of kind
1191/// "BadConversion".
1192///
1193/// If @p SuppressUserConversions, then user-defined conversions are
1194/// not permitted.
1195/// If @p AllowExplicit, then explicit user-defined conversions are
1196/// permitted.
1197///
1198/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1199/// writeback conversion, which allows __autoreleasing id* parameters to
1200/// be initialized with __strong id* or __weak id* arguments.
1201static ImplicitConversionSequence
1202TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1203                      bool SuppressUserConversions,
1204                      bool AllowExplicit,
1205                      bool InOverloadResolution,
1206                      bool CStyle,
1207                      bool AllowObjCWritebackConversion) {
1208  ImplicitConversionSequence ICS;
1209  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1210                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1211    ICS.setStandard();
1212    return ICS;
1213  }
1214
1215  if (!S.getLangOpts().CPlusPlus) {
1216    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1217    return ICS;
1218  }
1219
1220  // C++ [over.ics.user]p4:
1221  //   A conversion of an expression of class type to the same class
1222  //   type is given Exact Match rank, and a conversion of an
1223  //   expression of class type to a base class of that type is
1224  //   given Conversion rank, in spite of the fact that a copy/move
1225  //   constructor (i.e., a user-defined conversion function) is
1226  //   called for those cases.
1227  QualType FromType = From->getType();
1228  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1229      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1230       S.IsDerivedFrom(FromType, ToType))) {
1231    ICS.setStandard();
1232    ICS.Standard.setAsIdentityConversion();
1233    ICS.Standard.setFromType(FromType);
1234    ICS.Standard.setAllToTypes(ToType);
1235
1236    // We don't actually check at this point whether there is a valid
1237    // copy/move constructor, since overloading just assumes that it
1238    // exists. When we actually perform initialization, we'll find the
1239    // appropriate constructor to copy the returned object, if needed.
1240    ICS.Standard.CopyConstructor = 0;
1241
1242    // Determine whether this is considered a derived-to-base conversion.
1243    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1244      ICS.Standard.Second = ICK_Derived_To_Base;
1245
1246    return ICS;
1247  }
1248
1249  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1250                                  AllowExplicit, InOverloadResolution, CStyle,
1251                                  AllowObjCWritebackConversion);
1252}
1253
1254ImplicitConversionSequence
1255Sema::TryImplicitConversion(Expr *From, QualType ToType,
1256                            bool SuppressUserConversions,
1257                            bool AllowExplicit,
1258                            bool InOverloadResolution,
1259                            bool CStyle,
1260                            bool AllowObjCWritebackConversion) {
1261  return clang::TryImplicitConversion(*this, From, ToType,
1262                                      SuppressUserConversions, AllowExplicit,
1263                                      InOverloadResolution, CStyle,
1264                                      AllowObjCWritebackConversion);
1265}
1266
1267/// PerformImplicitConversion - Perform an implicit conversion of the
1268/// expression From to the type ToType. Returns the
1269/// converted expression. Flavor is the kind of conversion we're
1270/// performing, used in the error message. If @p AllowExplicit,
1271/// explicit user-defined conversions are permitted.
1272ExprResult
1273Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1274                                AssignmentAction Action, bool AllowExplicit) {
1275  ImplicitConversionSequence ICS;
1276  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1277}
1278
1279ExprResult
1280Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1281                                AssignmentAction Action, bool AllowExplicit,
1282                                ImplicitConversionSequence& ICS) {
1283  if (checkPlaceholderForOverload(*this, From))
1284    return ExprError();
1285
1286  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1287  bool AllowObjCWritebackConversion
1288    = getLangOpts().ObjCAutoRefCount &&
1289      (Action == AA_Passing || Action == AA_Sending);
1290
1291  ICS = clang::TryImplicitConversion(*this, From, ToType,
1292                                     /*SuppressUserConversions=*/false,
1293                                     AllowExplicit,
1294                                     /*InOverloadResolution=*/false,
1295                                     /*CStyle=*/false,
1296                                     AllowObjCWritebackConversion);
1297  return PerformImplicitConversion(From, ToType, ICS, Action);
1298}
1299
1300/// \brief Determine whether the conversion from FromType to ToType is a valid
1301/// conversion that strips "noreturn" off the nested function type.
1302bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1303                                QualType &ResultTy) {
1304  if (Context.hasSameUnqualifiedType(FromType, ToType))
1305    return false;
1306
1307  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1308  // where F adds one of the following at most once:
1309  //   - a pointer
1310  //   - a member pointer
1311  //   - a block pointer
1312  CanQualType CanTo = Context.getCanonicalType(ToType);
1313  CanQualType CanFrom = Context.getCanonicalType(FromType);
1314  Type::TypeClass TyClass = CanTo->getTypeClass();
1315  if (TyClass != CanFrom->getTypeClass()) return false;
1316  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1317    if (TyClass == Type::Pointer) {
1318      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1319      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1320    } else if (TyClass == Type::BlockPointer) {
1321      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1322      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1323    } else if (TyClass == Type::MemberPointer) {
1324      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1325      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1326    } else {
1327      return false;
1328    }
1329
1330    TyClass = CanTo->getTypeClass();
1331    if (TyClass != CanFrom->getTypeClass()) return false;
1332    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1333      return false;
1334  }
1335
1336  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1337  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1338  if (!EInfo.getNoReturn()) return false;
1339
1340  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1341  assert(QualType(FromFn, 0).isCanonical());
1342  if (QualType(FromFn, 0) != CanTo) return false;
1343
1344  ResultTy = ToType;
1345  return true;
1346}
1347
1348/// \brief Determine whether the conversion from FromType to ToType is a valid
1349/// vector conversion.
1350///
1351/// \param ICK Will be set to the vector conversion kind, if this is a vector
1352/// conversion.
1353static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1354                               QualType ToType, ImplicitConversionKind &ICK) {
1355  // We need at least one of these types to be a vector type to have a vector
1356  // conversion.
1357  if (!ToType->isVectorType() && !FromType->isVectorType())
1358    return false;
1359
1360  // Identical types require no conversions.
1361  if (Context.hasSameUnqualifiedType(FromType, ToType))
1362    return false;
1363
1364  // There are no conversions between extended vector types, only identity.
1365  if (ToType->isExtVectorType()) {
1366    // There are no conversions between extended vector types other than the
1367    // identity conversion.
1368    if (FromType->isExtVectorType())
1369      return false;
1370
1371    // Vector splat from any arithmetic type to a vector.
1372    if (FromType->isArithmeticType()) {
1373      ICK = ICK_Vector_Splat;
1374      return true;
1375    }
1376  }
1377
1378  // We can perform the conversion between vector types in the following cases:
1379  // 1)vector types are equivalent AltiVec and GCC vector types
1380  // 2)lax vector conversions are permitted and the vector types are of the
1381  //   same size
1382  if (ToType->isVectorType() && FromType->isVectorType()) {
1383    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1384        (Context.getLangOpts().LaxVectorConversions &&
1385         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1386      ICK = ICK_Vector_Conversion;
1387      return true;
1388    }
1389  }
1390
1391  return false;
1392}
1393
1394static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1395                                bool InOverloadResolution,
1396                                StandardConversionSequence &SCS,
1397                                bool CStyle);
1398
1399/// IsStandardConversion - Determines whether there is a standard
1400/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1401/// expression From to the type ToType. Standard conversion sequences
1402/// only consider non-class types; for conversions that involve class
1403/// types, use TryImplicitConversion. If a conversion exists, SCS will
1404/// contain the standard conversion sequence required to perform this
1405/// conversion and this routine will return true. Otherwise, this
1406/// routine will return false and the value of SCS is unspecified.
1407static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1408                                 bool InOverloadResolution,
1409                                 StandardConversionSequence &SCS,
1410                                 bool CStyle,
1411                                 bool AllowObjCWritebackConversion) {
1412  QualType FromType = From->getType();
1413
1414  // Standard conversions (C++ [conv])
1415  SCS.setAsIdentityConversion();
1416  SCS.DeprecatedStringLiteralToCharPtr = false;
1417  SCS.IncompatibleObjC = false;
1418  SCS.setFromType(FromType);
1419  SCS.CopyConstructor = 0;
1420
1421  // There are no standard conversions for class types in C++, so
1422  // abort early. When overloading in C, however, we do permit
1423  if (FromType->isRecordType() || ToType->isRecordType()) {
1424    if (S.getLangOpts().CPlusPlus)
1425      return false;
1426
1427    // When we're overloading in C, we allow, as standard conversions,
1428  }
1429
1430  // The first conversion can be an lvalue-to-rvalue conversion,
1431  // array-to-pointer conversion, or function-to-pointer conversion
1432  // (C++ 4p1).
1433
1434  if (FromType == S.Context.OverloadTy) {
1435    DeclAccessPair AccessPair;
1436    if (FunctionDecl *Fn
1437          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1438                                                 AccessPair)) {
1439      // We were able to resolve the address of the overloaded function,
1440      // so we can convert to the type of that function.
1441      FromType = Fn->getType();
1442
1443      // we can sometimes resolve &foo<int> regardless of ToType, so check
1444      // if the type matches (identity) or we are converting to bool
1445      if (!S.Context.hasSameUnqualifiedType(
1446                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1447        QualType resultTy;
1448        // if the function type matches except for [[noreturn]], it's ok
1449        if (!S.IsNoReturnConversion(FromType,
1450              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1451          // otherwise, only a boolean conversion is standard
1452          if (!ToType->isBooleanType())
1453            return false;
1454      }
1455
1456      // Check if the "from" expression is taking the address of an overloaded
1457      // function and recompute the FromType accordingly. Take advantage of the
1458      // fact that non-static member functions *must* have such an address-of
1459      // expression.
1460      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1461      if (Method && !Method->isStatic()) {
1462        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1463               "Non-unary operator on non-static member address");
1464        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1465               == UO_AddrOf &&
1466               "Non-address-of operator on non-static member address");
1467        const Type *ClassType
1468          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1469        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1470      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1471        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1472               UO_AddrOf &&
1473               "Non-address-of operator for overloaded function expression");
1474        FromType = S.Context.getPointerType(FromType);
1475      }
1476
1477      // Check that we've computed the proper type after overload resolution.
1478      assert(S.Context.hasSameType(
1479        FromType,
1480        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1481    } else {
1482      return false;
1483    }
1484  }
1485  // Lvalue-to-rvalue conversion (C++11 4.1):
1486  //   A glvalue (3.10) of a non-function, non-array type T can
1487  //   be converted to a prvalue.
1488  bool argIsLValue = From->isGLValue();
1489  if (argIsLValue &&
1490      !FromType->isFunctionType() && !FromType->isArrayType() &&
1491      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1492    SCS.First = ICK_Lvalue_To_Rvalue;
1493
1494    // C11 6.3.2.1p2:
1495    //   ... if the lvalue has atomic type, the value has the non-atomic version
1496    //   of the type of the lvalue ...
1497    if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1498      FromType = Atomic->getValueType();
1499
1500    // If T is a non-class type, the type of the rvalue is the
1501    // cv-unqualified version of T. Otherwise, the type of the rvalue
1502    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1503    // just strip the qualifiers because they don't matter.
1504    FromType = FromType.getUnqualifiedType();
1505  } else if (FromType->isArrayType()) {
1506    // Array-to-pointer conversion (C++ 4.2)
1507    SCS.First = ICK_Array_To_Pointer;
1508
1509    // An lvalue or rvalue of type "array of N T" or "array of unknown
1510    // bound of T" can be converted to an rvalue of type "pointer to
1511    // T" (C++ 4.2p1).
1512    FromType = S.Context.getArrayDecayedType(FromType);
1513
1514    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1515      // This conversion is deprecated. (C++ D.4).
1516      SCS.DeprecatedStringLiteralToCharPtr = true;
1517
1518      // For the purpose of ranking in overload resolution
1519      // (13.3.3.1.1), this conversion is considered an
1520      // array-to-pointer conversion followed by a qualification
1521      // conversion (4.4). (C++ 4.2p2)
1522      SCS.Second = ICK_Identity;
1523      SCS.Third = ICK_Qualification;
1524      SCS.QualificationIncludesObjCLifetime = false;
1525      SCS.setAllToTypes(FromType);
1526      return true;
1527    }
1528  } else if (FromType->isFunctionType() && argIsLValue) {
1529    // Function-to-pointer conversion (C++ 4.3).
1530    SCS.First = ICK_Function_To_Pointer;
1531
1532    // An lvalue of function type T can be converted to an rvalue of
1533    // type "pointer to T." The result is a pointer to the
1534    // function. (C++ 4.3p1).
1535    FromType = S.Context.getPointerType(FromType);
1536  } else {
1537    // We don't require any conversions for the first step.
1538    SCS.First = ICK_Identity;
1539  }
1540  SCS.setToType(0, FromType);
1541
1542  // The second conversion can be an integral promotion, floating
1543  // point promotion, integral conversion, floating point conversion,
1544  // floating-integral conversion, pointer conversion,
1545  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1546  // For overloading in C, this can also be a "compatible-type"
1547  // conversion.
1548  bool IncompatibleObjC = false;
1549  ImplicitConversionKind SecondICK = ICK_Identity;
1550  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1551    // The unqualified versions of the types are the same: there's no
1552    // conversion to do.
1553    SCS.Second = ICK_Identity;
1554  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1555    // Integral promotion (C++ 4.5).
1556    SCS.Second = ICK_Integral_Promotion;
1557    FromType = ToType.getUnqualifiedType();
1558  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1559    // Floating point promotion (C++ 4.6).
1560    SCS.Second = ICK_Floating_Promotion;
1561    FromType = ToType.getUnqualifiedType();
1562  } else if (S.IsComplexPromotion(FromType, ToType)) {
1563    // Complex promotion (Clang extension)
1564    SCS.Second = ICK_Complex_Promotion;
1565    FromType = ToType.getUnqualifiedType();
1566  } else if (ToType->isBooleanType() &&
1567             (FromType->isArithmeticType() ||
1568              FromType->isAnyPointerType() ||
1569              FromType->isBlockPointerType() ||
1570              FromType->isMemberPointerType() ||
1571              FromType->isNullPtrType())) {
1572    // Boolean conversions (C++ 4.12).
1573    SCS.Second = ICK_Boolean_Conversion;
1574    FromType = S.Context.BoolTy;
1575  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1576             ToType->isIntegralType(S.Context)) {
1577    // Integral conversions (C++ 4.7).
1578    SCS.Second = ICK_Integral_Conversion;
1579    FromType = ToType.getUnqualifiedType();
1580  } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1581    // Complex conversions (C99 6.3.1.6)
1582    SCS.Second = ICK_Complex_Conversion;
1583    FromType = ToType.getUnqualifiedType();
1584  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1585             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1586    // Complex-real conversions (C99 6.3.1.7)
1587    SCS.Second = ICK_Complex_Real;
1588    FromType = ToType.getUnqualifiedType();
1589  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1590    // Floating point conversions (C++ 4.8).
1591    SCS.Second = ICK_Floating_Conversion;
1592    FromType = ToType.getUnqualifiedType();
1593  } else if ((FromType->isRealFloatingType() &&
1594              ToType->isIntegralType(S.Context)) ||
1595             (FromType->isIntegralOrUnscopedEnumerationType() &&
1596              ToType->isRealFloatingType())) {
1597    // Floating-integral conversions (C++ 4.9).
1598    SCS.Second = ICK_Floating_Integral;
1599    FromType = ToType.getUnqualifiedType();
1600  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1601    SCS.Second = ICK_Block_Pointer_Conversion;
1602  } else if (AllowObjCWritebackConversion &&
1603             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1604    SCS.Second = ICK_Writeback_Conversion;
1605  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1606                                   FromType, IncompatibleObjC)) {
1607    // Pointer conversions (C++ 4.10).
1608    SCS.Second = ICK_Pointer_Conversion;
1609    SCS.IncompatibleObjC = IncompatibleObjC;
1610    FromType = FromType.getUnqualifiedType();
1611  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1612                                         InOverloadResolution, FromType)) {
1613    // Pointer to member conversions (4.11).
1614    SCS.Second = ICK_Pointer_Member;
1615  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1616    SCS.Second = SecondICK;
1617    FromType = ToType.getUnqualifiedType();
1618  } else if (!S.getLangOpts().CPlusPlus &&
1619             S.Context.typesAreCompatible(ToType, FromType)) {
1620    // Compatible conversions (Clang extension for C function overloading)
1621    SCS.Second = ICK_Compatible_Conversion;
1622    FromType = ToType.getUnqualifiedType();
1623  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1624    // Treat a conversion that strips "noreturn" as an identity conversion.
1625    SCS.Second = ICK_NoReturn_Adjustment;
1626  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1627                                             InOverloadResolution,
1628                                             SCS, CStyle)) {
1629    SCS.Second = ICK_TransparentUnionConversion;
1630    FromType = ToType;
1631  } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1632                                 CStyle)) {
1633    // tryAtomicConversion has updated the standard conversion sequence
1634    // appropriately.
1635    return true;
1636  } else if (ToType->isEventT() &&
1637             From->isIntegerConstantExpr(S.getASTContext()) &&
1638             (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1639    SCS.Second = ICK_Zero_Event_Conversion;
1640    FromType = ToType;
1641  } else {
1642    // No second conversion required.
1643    SCS.Second = ICK_Identity;
1644  }
1645  SCS.setToType(1, FromType);
1646
1647  QualType CanonFrom;
1648  QualType CanonTo;
1649  // The third conversion can be a qualification conversion (C++ 4p1).
1650  bool ObjCLifetimeConversion;
1651  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1652                                  ObjCLifetimeConversion)) {
1653    SCS.Third = ICK_Qualification;
1654    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1655    FromType = ToType;
1656    CanonFrom = S.Context.getCanonicalType(FromType);
1657    CanonTo = S.Context.getCanonicalType(ToType);
1658  } else {
1659    // No conversion required
1660    SCS.Third = ICK_Identity;
1661
1662    // C++ [over.best.ics]p6:
1663    //   [...] Any difference in top-level cv-qualification is
1664    //   subsumed by the initialization itself and does not constitute
1665    //   a conversion. [...]
1666    CanonFrom = S.Context.getCanonicalType(FromType);
1667    CanonTo = S.Context.getCanonicalType(ToType);
1668    if (CanonFrom.getLocalUnqualifiedType()
1669                                       == CanonTo.getLocalUnqualifiedType() &&
1670        CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1671      FromType = ToType;
1672      CanonFrom = CanonTo;
1673    }
1674  }
1675  SCS.setToType(2, FromType);
1676
1677  // If we have not converted the argument type to the parameter type,
1678  // this is a bad conversion sequence.
1679  if (CanonFrom != CanonTo)
1680    return false;
1681
1682  return true;
1683}
1684
1685static bool
1686IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1687                                     QualType &ToType,
1688                                     bool InOverloadResolution,
1689                                     StandardConversionSequence &SCS,
1690                                     bool CStyle) {
1691
1692  const RecordType *UT = ToType->getAsUnionType();
1693  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1694    return false;
1695  // The field to initialize within the transparent union.
1696  RecordDecl *UD = UT->getDecl();
1697  // It's compatible if the expression matches any of the fields.
1698  for (RecordDecl::field_iterator it = UD->field_begin(),
1699       itend = UD->field_end();
1700       it != itend; ++it) {
1701    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1702                             CStyle, /*ObjCWritebackConversion=*/false)) {
1703      ToType = it->getType();
1704      return true;
1705    }
1706  }
1707  return false;
1708}
1709
1710/// IsIntegralPromotion - Determines whether the conversion from the
1711/// expression From (whose potentially-adjusted type is FromType) to
1712/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1713/// sets PromotedType to the promoted type.
1714bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1715  const BuiltinType *To = ToType->getAs<BuiltinType>();
1716  // All integers are built-in.
1717  if (!To) {
1718    return false;
1719  }
1720
1721  // An rvalue of type char, signed char, unsigned char, short int, or
1722  // unsigned short int can be converted to an rvalue of type int if
1723  // int can represent all the values of the source type; otherwise,
1724  // the source rvalue can be converted to an rvalue of type unsigned
1725  // int (C++ 4.5p1).
1726  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1727      !FromType->isEnumeralType()) {
1728    if (// We can promote any signed, promotable integer type to an int
1729        (FromType->isSignedIntegerType() ||
1730         // We can promote any unsigned integer type whose size is
1731         // less than int to an int.
1732         (!FromType->isSignedIntegerType() &&
1733          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1734      return To->getKind() == BuiltinType::Int;
1735    }
1736
1737    return To->getKind() == BuiltinType::UInt;
1738  }
1739
1740  // C++11 [conv.prom]p3:
1741  //   A prvalue of an unscoped enumeration type whose underlying type is not
1742  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1743  //   following types that can represent all the values of the enumeration
1744  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1745  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1746  //   long long int. If none of the types in that list can represent all the
1747  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1748  //   type can be converted to an rvalue a prvalue of the extended integer type
1749  //   with lowest integer conversion rank (4.13) greater than the rank of long
1750  //   long in which all the values of the enumeration can be represented. If
1751  //   there are two such extended types, the signed one is chosen.
1752  // C++11 [conv.prom]p4:
1753  //   A prvalue of an unscoped enumeration type whose underlying type is fixed
1754  //   can be converted to a prvalue of its underlying type. Moreover, if
1755  //   integral promotion can be applied to its underlying type, a prvalue of an
1756  //   unscoped enumeration type whose underlying type is fixed can also be
1757  //   converted to a prvalue of the promoted underlying type.
1758  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1759    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1760    // provided for a scoped enumeration.
1761    if (FromEnumType->getDecl()->isScoped())
1762      return false;
1763
1764    // We can perform an integral promotion to the underlying type of the enum,
1765    // even if that's not the promoted type.
1766    if (FromEnumType->getDecl()->isFixed()) {
1767      QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1768      return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1769             IsIntegralPromotion(From, Underlying, ToType);
1770    }
1771
1772    // We have already pre-calculated the promotion type, so this is trivial.
1773    if (ToType->isIntegerType() &&
1774        !RequireCompleteType(From->getLocStart(), FromType, 0))
1775      return Context.hasSameUnqualifiedType(ToType,
1776                                FromEnumType->getDecl()->getPromotionType());
1777  }
1778
1779  // C++0x [conv.prom]p2:
1780  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1781  //   to an rvalue a prvalue of the first of the following types that can
1782  //   represent all the values of its underlying type: int, unsigned int,
1783  //   long int, unsigned long int, long long int, or unsigned long long int.
1784  //   If none of the types in that list can represent all the values of its
1785  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1786  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1787  //   type.
1788  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1789      ToType->isIntegerType()) {
1790    // Determine whether the type we're converting from is signed or
1791    // unsigned.
1792    bool FromIsSigned = FromType->isSignedIntegerType();
1793    uint64_t FromSize = Context.getTypeSize(FromType);
1794
1795    // The types we'll try to promote to, in the appropriate
1796    // order. Try each of these types.
1797    QualType PromoteTypes[6] = {
1798      Context.IntTy, Context.UnsignedIntTy,
1799      Context.LongTy, Context.UnsignedLongTy ,
1800      Context.LongLongTy, Context.UnsignedLongLongTy
1801    };
1802    for (int Idx = 0; Idx < 6; ++Idx) {
1803      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1804      if (FromSize < ToSize ||
1805          (FromSize == ToSize &&
1806           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1807        // We found the type that we can promote to. If this is the
1808        // type we wanted, we have a promotion. Otherwise, no
1809        // promotion.
1810        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1811      }
1812    }
1813  }
1814
1815  // An rvalue for an integral bit-field (9.6) can be converted to an
1816  // rvalue of type int if int can represent all the values of the
1817  // bit-field; otherwise, it can be converted to unsigned int if
1818  // unsigned int can represent all the values of the bit-field. If
1819  // the bit-field is larger yet, no integral promotion applies to
1820  // it. If the bit-field has an enumerated type, it is treated as any
1821  // other value of that type for promotion purposes (C++ 4.5p3).
1822  // FIXME: We should delay checking of bit-fields until we actually perform the
1823  // conversion.
1824  using llvm::APSInt;
1825  if (From)
1826    if (FieldDecl *MemberDecl = From->getSourceBitField()) {
1827      APSInt BitWidth;
1828      if (FromType->isIntegralType(Context) &&
1829          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1830        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1831        ToSize = Context.getTypeSize(ToType);
1832
1833        // Are we promoting to an int from a bitfield that fits in an int?
1834        if (BitWidth < ToSize ||
1835            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1836          return To->getKind() == BuiltinType::Int;
1837        }
1838
1839        // Are we promoting to an unsigned int from an unsigned bitfield
1840        // that fits into an unsigned int?
1841        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1842          return To->getKind() == BuiltinType::UInt;
1843        }
1844
1845        return false;
1846      }
1847    }
1848
1849  // An rvalue of type bool can be converted to an rvalue of type int,
1850  // with false becoming zero and true becoming one (C++ 4.5p4).
1851  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1852    return true;
1853  }
1854
1855  return false;
1856}
1857
1858/// IsFloatingPointPromotion - Determines whether the conversion from
1859/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1860/// returns true and sets PromotedType to the promoted type.
1861bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1862  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1863    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1864      /// An rvalue of type float can be converted to an rvalue of type
1865      /// double. (C++ 4.6p1).
1866      if (FromBuiltin->getKind() == BuiltinType::Float &&
1867          ToBuiltin->getKind() == BuiltinType::Double)
1868        return true;
1869
1870      // C99 6.3.1.5p1:
1871      //   When a float is promoted to double or long double, or a
1872      //   double is promoted to long double [...].
1873      if (!getLangOpts().CPlusPlus &&
1874          (FromBuiltin->getKind() == BuiltinType::Float ||
1875           FromBuiltin->getKind() == BuiltinType::Double) &&
1876          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1877        return true;
1878
1879      // Half can be promoted to float.
1880      if (!getLangOpts().NativeHalfType &&
1881           FromBuiltin->getKind() == BuiltinType::Half &&
1882          ToBuiltin->getKind() == BuiltinType::Float)
1883        return true;
1884    }
1885
1886  return false;
1887}
1888
1889/// \brief Determine if a conversion is a complex promotion.
1890///
1891/// A complex promotion is defined as a complex -> complex conversion
1892/// where the conversion between the underlying real types is a
1893/// floating-point or integral promotion.
1894bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1895  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1896  if (!FromComplex)
1897    return false;
1898
1899  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1900  if (!ToComplex)
1901    return false;
1902
1903  return IsFloatingPointPromotion(FromComplex->getElementType(),
1904                                  ToComplex->getElementType()) ||
1905    IsIntegralPromotion(0, FromComplex->getElementType(),
1906                        ToComplex->getElementType());
1907}
1908
1909/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1910/// the pointer type FromPtr to a pointer to type ToPointee, with the
1911/// same type qualifiers as FromPtr has on its pointee type. ToType,
1912/// if non-empty, will be a pointer to ToType that may or may not have
1913/// the right set of qualifiers on its pointee.
1914///
1915static QualType
1916BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1917                                   QualType ToPointee, QualType ToType,
1918                                   ASTContext &Context,
1919                                   bool StripObjCLifetime = false) {
1920  assert((FromPtr->getTypeClass() == Type::Pointer ||
1921          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1922         "Invalid similarly-qualified pointer type");
1923
1924  /// Conversions to 'id' subsume cv-qualifier conversions.
1925  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1926    return ToType.getUnqualifiedType();
1927
1928  QualType CanonFromPointee
1929    = Context.getCanonicalType(FromPtr->getPointeeType());
1930  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1931  Qualifiers Quals = CanonFromPointee.getQualifiers();
1932
1933  if (StripObjCLifetime)
1934    Quals.removeObjCLifetime();
1935
1936  // Exact qualifier match -> return the pointer type we're converting to.
1937  if (CanonToPointee.getLocalQualifiers() == Quals) {
1938    // ToType is exactly what we need. Return it.
1939    if (!ToType.isNull())
1940      return ToType.getUnqualifiedType();
1941
1942    // Build a pointer to ToPointee. It has the right qualifiers
1943    // already.
1944    if (isa<ObjCObjectPointerType>(ToType))
1945      return Context.getObjCObjectPointerType(ToPointee);
1946    return Context.getPointerType(ToPointee);
1947  }
1948
1949  // Just build a canonical type that has the right qualifiers.
1950  QualType QualifiedCanonToPointee
1951    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1952
1953  if (isa<ObjCObjectPointerType>(ToType))
1954    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1955  return Context.getPointerType(QualifiedCanonToPointee);
1956}
1957
1958static bool isNullPointerConstantForConversion(Expr *Expr,
1959                                               bool InOverloadResolution,
1960                                               ASTContext &Context) {
1961  // Handle value-dependent integral null pointer constants correctly.
1962  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1963  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1964      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1965    return !InOverloadResolution;
1966
1967  return Expr->isNullPointerConstant(Context,
1968                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1969                                        : Expr::NPC_ValueDependentIsNull);
1970}
1971
1972/// IsPointerConversion - Determines whether the conversion of the
1973/// expression From, which has the (possibly adjusted) type FromType,
1974/// can be converted to the type ToType via a pointer conversion (C++
1975/// 4.10). If so, returns true and places the converted type (that
1976/// might differ from ToType in its cv-qualifiers at some level) into
1977/// ConvertedType.
1978///
1979/// This routine also supports conversions to and from block pointers
1980/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1981/// pointers to interfaces. FIXME: Once we've determined the
1982/// appropriate overloading rules for Objective-C, we may want to
1983/// split the Objective-C checks into a different routine; however,
1984/// GCC seems to consider all of these conversions to be pointer
1985/// conversions, so for now they live here. IncompatibleObjC will be
1986/// set if the conversion is an allowed Objective-C conversion that
1987/// should result in a warning.
1988bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1989                               bool InOverloadResolution,
1990                               QualType& ConvertedType,
1991                               bool &IncompatibleObjC) {
1992  IncompatibleObjC = false;
1993  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1994                              IncompatibleObjC))
1995    return true;
1996
1997  // Conversion from a null pointer constant to any Objective-C pointer type.
1998  if (ToType->isObjCObjectPointerType() &&
1999      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2000    ConvertedType = ToType;
2001    return true;
2002  }
2003
2004  // Blocks: Block pointers can be converted to void*.
2005  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2006      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2007    ConvertedType = ToType;
2008    return true;
2009  }
2010  // Blocks: A null pointer constant can be converted to a block
2011  // pointer type.
2012  if (ToType->isBlockPointerType() &&
2013      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2014    ConvertedType = ToType;
2015    return true;
2016  }
2017
2018  // If the left-hand-side is nullptr_t, the right side can be a null
2019  // pointer constant.
2020  if (ToType->isNullPtrType() &&
2021      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2022    ConvertedType = ToType;
2023    return true;
2024  }
2025
2026  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2027  if (!ToTypePtr)
2028    return false;
2029
2030  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2031  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2032    ConvertedType = ToType;
2033    return true;
2034  }
2035
2036  // Beyond this point, both types need to be pointers
2037  // , including objective-c pointers.
2038  QualType ToPointeeType = ToTypePtr->getPointeeType();
2039  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2040      !getLangOpts().ObjCAutoRefCount) {
2041    ConvertedType = BuildSimilarlyQualifiedPointerType(
2042                                      FromType->getAs<ObjCObjectPointerType>(),
2043                                                       ToPointeeType,
2044                                                       ToType, Context);
2045    return true;
2046  }
2047  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2048  if (!FromTypePtr)
2049    return false;
2050
2051  QualType FromPointeeType = FromTypePtr->getPointeeType();
2052
2053  // If the unqualified pointee types are the same, this can't be a
2054  // pointer conversion, so don't do all of the work below.
2055  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2056    return false;
2057
2058  // An rvalue of type "pointer to cv T," where T is an object type,
2059  // can be converted to an rvalue of type "pointer to cv void" (C++
2060  // 4.10p2).
2061  if (FromPointeeType->isIncompleteOrObjectType() &&
2062      ToPointeeType->isVoidType()) {
2063    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2064                                                       ToPointeeType,
2065                                                       ToType, Context,
2066                                                   /*StripObjCLifetime=*/true);
2067    return true;
2068  }
2069
2070  // MSVC allows implicit function to void* type conversion.
2071  if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
2072      ToPointeeType->isVoidType()) {
2073    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2074                                                       ToPointeeType,
2075                                                       ToType, Context);
2076    return true;
2077  }
2078
2079  // When we're overloading in C, we allow a special kind of pointer
2080  // conversion for compatible-but-not-identical pointee types.
2081  if (!getLangOpts().CPlusPlus &&
2082      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2083    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2084                                                       ToPointeeType,
2085                                                       ToType, Context);
2086    return true;
2087  }
2088
2089  // C++ [conv.ptr]p3:
2090  //
2091  //   An rvalue of type "pointer to cv D," where D is a class type,
2092  //   can be converted to an rvalue of type "pointer to cv B," where
2093  //   B is a base class (clause 10) of D. If B is an inaccessible
2094  //   (clause 11) or ambiguous (10.2) base class of D, a program that
2095  //   necessitates this conversion is ill-formed. The result of the
2096  //   conversion is a pointer to the base class sub-object of the
2097  //   derived class object. The null pointer value is converted to
2098  //   the null pointer value of the destination type.
2099  //
2100  // Note that we do not check for ambiguity or inaccessibility
2101  // here. That is handled by CheckPointerConversion.
2102  if (getLangOpts().CPlusPlus &&
2103      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2104      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2105      !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
2106      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
2107    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2108                                                       ToPointeeType,
2109                                                       ToType, Context);
2110    return true;
2111  }
2112
2113  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2114      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2115    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2116                                                       ToPointeeType,
2117                                                       ToType, Context);
2118    return true;
2119  }
2120
2121  return false;
2122}
2123
2124/// \brief Adopt the given qualifiers for the given type.
2125static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2126  Qualifiers TQs = T.getQualifiers();
2127
2128  // Check whether qualifiers already match.
2129  if (TQs == Qs)
2130    return T;
2131
2132  if (Qs.compatiblyIncludes(TQs))
2133    return Context.getQualifiedType(T, Qs);
2134
2135  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2136}
2137
2138/// isObjCPointerConversion - Determines whether this is an
2139/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2140/// with the same arguments and return values.
2141bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2142                                   QualType& ConvertedType,
2143                                   bool &IncompatibleObjC) {
2144  if (!getLangOpts().ObjC1)
2145    return false;
2146
2147  // The set of qualifiers on the type we're converting from.
2148  Qualifiers FromQualifiers = FromType.getQualifiers();
2149
2150  // First, we handle all conversions on ObjC object pointer types.
2151  const ObjCObjectPointerType* ToObjCPtr =
2152    ToType->getAs<ObjCObjectPointerType>();
2153  const ObjCObjectPointerType *FromObjCPtr =
2154    FromType->getAs<ObjCObjectPointerType>();
2155
2156  if (ToObjCPtr && FromObjCPtr) {
2157    // If the pointee types are the same (ignoring qualifications),
2158    // then this is not a pointer conversion.
2159    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2160                                       FromObjCPtr->getPointeeType()))
2161      return false;
2162
2163    // Check for compatible
2164    // Objective C++: We're able to convert between "id" or "Class" and a
2165    // pointer to any interface (in both directions).
2166    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2167      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2168      return true;
2169    }
2170    // Conversions with Objective-C's id<...>.
2171    if ((FromObjCPtr->isObjCQualifiedIdType() ||
2172         ToObjCPtr->isObjCQualifiedIdType()) &&
2173        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2174                                                  /*compare=*/false)) {
2175      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2176      return true;
2177    }
2178    // Objective C++: We're able to convert from a pointer to an
2179    // interface to a pointer to a different interface.
2180    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2181      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2182      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2183      if (getLangOpts().CPlusPlus && LHS && RHS &&
2184          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2185                                                FromObjCPtr->getPointeeType()))
2186        return false;
2187      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2188                                                   ToObjCPtr->getPointeeType(),
2189                                                         ToType, Context);
2190      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2191      return true;
2192    }
2193
2194    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2195      // Okay: this is some kind of implicit downcast of Objective-C
2196      // interfaces, which is permitted. However, we're going to
2197      // complain about it.
2198      IncompatibleObjC = true;
2199      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2200                                                   ToObjCPtr->getPointeeType(),
2201                                                         ToType, Context);
2202      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2203      return true;
2204    }
2205  }
2206  // Beyond this point, both types need to be C pointers or block pointers.
2207  QualType ToPointeeType;
2208  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2209    ToPointeeType = ToCPtr->getPointeeType();
2210  else if (const BlockPointerType *ToBlockPtr =
2211            ToType->getAs<BlockPointerType>()) {
2212    // Objective C++: We're able to convert from a pointer to any object
2213    // to a block pointer type.
2214    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2215      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2216      return true;
2217    }
2218    ToPointeeType = ToBlockPtr->getPointeeType();
2219  }
2220  else if (FromType->getAs<BlockPointerType>() &&
2221           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2222    // Objective C++: We're able to convert from a block pointer type to a
2223    // pointer to any object.
2224    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2225    return true;
2226  }
2227  else
2228    return false;
2229
2230  QualType FromPointeeType;
2231  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2232    FromPointeeType = FromCPtr->getPointeeType();
2233  else if (const BlockPointerType *FromBlockPtr =
2234           FromType->getAs<BlockPointerType>())
2235    FromPointeeType = FromBlockPtr->getPointeeType();
2236  else
2237    return false;
2238
2239  // If we have pointers to pointers, recursively check whether this
2240  // is an Objective-C conversion.
2241  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2242      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2243                              IncompatibleObjC)) {
2244    // We always complain about this conversion.
2245    IncompatibleObjC = true;
2246    ConvertedType = Context.getPointerType(ConvertedType);
2247    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2248    return true;
2249  }
2250  // Allow conversion of pointee being objective-c pointer to another one;
2251  // as in I* to id.
2252  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2253      ToPointeeType->getAs<ObjCObjectPointerType>() &&
2254      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2255                              IncompatibleObjC)) {
2256
2257    ConvertedType = Context.getPointerType(ConvertedType);
2258    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2259    return true;
2260  }
2261
2262  // If we have pointers to functions or blocks, check whether the only
2263  // differences in the argument and result types are in Objective-C
2264  // pointer conversions. If so, we permit the conversion (but
2265  // complain about it).
2266  const FunctionProtoType *FromFunctionType
2267    = FromPointeeType->getAs<FunctionProtoType>();
2268  const FunctionProtoType *ToFunctionType
2269    = ToPointeeType->getAs<FunctionProtoType>();
2270  if (FromFunctionType && ToFunctionType) {
2271    // If the function types are exactly the same, this isn't an
2272    // Objective-C pointer conversion.
2273    if (Context.getCanonicalType(FromPointeeType)
2274          == Context.getCanonicalType(ToPointeeType))
2275      return false;
2276
2277    // Perform the quick checks that will tell us whether these
2278    // function types are obviously different.
2279    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2280        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2281        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2282      return false;
2283
2284    bool HasObjCConversion = false;
2285    if (Context.getCanonicalType(FromFunctionType->getResultType())
2286          == Context.getCanonicalType(ToFunctionType->getResultType())) {
2287      // Okay, the types match exactly. Nothing to do.
2288    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2289                                       ToFunctionType->getResultType(),
2290                                       ConvertedType, IncompatibleObjC)) {
2291      // Okay, we have an Objective-C pointer conversion.
2292      HasObjCConversion = true;
2293    } else {
2294      // Function types are too different. Abort.
2295      return false;
2296    }
2297
2298    // Check argument types.
2299    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2300         ArgIdx != NumArgs; ++ArgIdx) {
2301      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2302      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2303      if (Context.getCanonicalType(FromArgType)
2304            == Context.getCanonicalType(ToArgType)) {
2305        // Okay, the types match exactly. Nothing to do.
2306      } else if (isObjCPointerConversion(FromArgType, ToArgType,
2307                                         ConvertedType, IncompatibleObjC)) {
2308        // Okay, we have an Objective-C pointer conversion.
2309        HasObjCConversion = true;
2310      } else {
2311        // Argument types are too different. Abort.
2312        return false;
2313      }
2314    }
2315
2316    if (HasObjCConversion) {
2317      // We had an Objective-C conversion. Allow this pointer
2318      // conversion, but complain about it.
2319      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2320      IncompatibleObjC = true;
2321      return true;
2322    }
2323  }
2324
2325  return false;
2326}
2327
2328/// \brief Determine whether this is an Objective-C writeback conversion,
2329/// used for parameter passing when performing automatic reference counting.
2330///
2331/// \param FromType The type we're converting form.
2332///
2333/// \param ToType The type we're converting to.
2334///
2335/// \param ConvertedType The type that will be produced after applying
2336/// this conversion.
2337bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2338                                     QualType &ConvertedType) {
2339  if (!getLangOpts().ObjCAutoRefCount ||
2340      Context.hasSameUnqualifiedType(FromType, ToType))
2341    return false;
2342
2343  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2344  QualType ToPointee;
2345  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2346    ToPointee = ToPointer->getPointeeType();
2347  else
2348    return false;
2349
2350  Qualifiers ToQuals = ToPointee.getQualifiers();
2351  if (!ToPointee->isObjCLifetimeType() ||
2352      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2353      !ToQuals.withoutObjCLifetime().empty())
2354    return false;
2355
2356  // Argument must be a pointer to __strong to __weak.
2357  QualType FromPointee;
2358  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2359    FromPointee = FromPointer->getPointeeType();
2360  else
2361    return false;
2362
2363  Qualifiers FromQuals = FromPointee.getQualifiers();
2364  if (!FromPointee->isObjCLifetimeType() ||
2365      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2366       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2367    return false;
2368
2369  // Make sure that we have compatible qualifiers.
2370  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2371  if (!ToQuals.compatiblyIncludes(FromQuals))
2372    return false;
2373
2374  // Remove qualifiers from the pointee type we're converting from; they
2375  // aren't used in the compatibility check belong, and we'll be adding back
2376  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2377  FromPointee = FromPointee.getUnqualifiedType();
2378
2379  // The unqualified form of the pointee types must be compatible.
2380  ToPointee = ToPointee.getUnqualifiedType();
2381  bool IncompatibleObjC;
2382  if (Context.typesAreCompatible(FromPointee, ToPointee))
2383    FromPointee = ToPointee;
2384  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2385                                    IncompatibleObjC))
2386    return false;
2387
2388  /// \brief Construct the type we're converting to, which is a pointer to
2389  /// __autoreleasing pointee.
2390  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2391  ConvertedType = Context.getPointerType(FromPointee);
2392  return true;
2393}
2394
2395bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2396                                    QualType& ConvertedType) {
2397  QualType ToPointeeType;
2398  if (const BlockPointerType *ToBlockPtr =
2399        ToType->getAs<BlockPointerType>())
2400    ToPointeeType = ToBlockPtr->getPointeeType();
2401  else
2402    return false;
2403
2404  QualType FromPointeeType;
2405  if (const BlockPointerType *FromBlockPtr =
2406      FromType->getAs<BlockPointerType>())
2407    FromPointeeType = FromBlockPtr->getPointeeType();
2408  else
2409    return false;
2410  // We have pointer to blocks, check whether the only
2411  // differences in the argument and result types are in Objective-C
2412  // pointer conversions. If so, we permit the conversion.
2413
2414  const FunctionProtoType *FromFunctionType
2415    = FromPointeeType->getAs<FunctionProtoType>();
2416  const FunctionProtoType *ToFunctionType
2417    = ToPointeeType->getAs<FunctionProtoType>();
2418
2419  if (!FromFunctionType || !ToFunctionType)
2420    return false;
2421
2422  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2423    return true;
2424
2425  // Perform the quick checks that will tell us whether these
2426  // function types are obviously different.
2427  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2428      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2429    return false;
2430
2431  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2432  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2433  if (FromEInfo != ToEInfo)
2434    return false;
2435
2436  bool IncompatibleObjC = false;
2437  if (Context.hasSameType(FromFunctionType->getResultType(),
2438                          ToFunctionType->getResultType())) {
2439    // Okay, the types match exactly. Nothing to do.
2440  } else {
2441    QualType RHS = FromFunctionType->getResultType();
2442    QualType LHS = ToFunctionType->getResultType();
2443    if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2444        !RHS.hasQualifiers() && LHS.hasQualifiers())
2445       LHS = LHS.getUnqualifiedType();
2446
2447     if (Context.hasSameType(RHS,LHS)) {
2448       // OK exact match.
2449     } else if (isObjCPointerConversion(RHS, LHS,
2450                                        ConvertedType, IncompatibleObjC)) {
2451     if (IncompatibleObjC)
2452       return false;
2453     // Okay, we have an Objective-C pointer conversion.
2454     }
2455     else
2456       return false;
2457   }
2458
2459   // Check argument types.
2460   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2461        ArgIdx != NumArgs; ++ArgIdx) {
2462     IncompatibleObjC = false;
2463     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2464     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2465     if (Context.hasSameType(FromArgType, ToArgType)) {
2466       // Okay, the types match exactly. Nothing to do.
2467     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2468                                        ConvertedType, IncompatibleObjC)) {
2469       if (IncompatibleObjC)
2470         return false;
2471       // Okay, we have an Objective-C pointer conversion.
2472     } else
2473       // Argument types are too different. Abort.
2474       return false;
2475   }
2476   if (LangOpts.ObjCAutoRefCount &&
2477       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2478                                                    ToFunctionType))
2479     return false;
2480
2481   ConvertedType = ToType;
2482   return true;
2483}
2484
2485enum {
2486  ft_default,
2487  ft_different_class,
2488  ft_parameter_arity,
2489  ft_parameter_mismatch,
2490  ft_return_type,
2491  ft_qualifer_mismatch
2492};
2493
2494/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2495/// function types.  Catches different number of parameter, mismatch in
2496/// parameter types, and different return types.
2497void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2498                                      QualType FromType, QualType ToType) {
2499  // If either type is not valid, include no extra info.
2500  if (FromType.isNull() || ToType.isNull()) {
2501    PDiag << ft_default;
2502    return;
2503  }
2504
2505  // Get the function type from the pointers.
2506  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2507    const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2508                            *ToMember = ToType->getAs<MemberPointerType>();
2509    if (FromMember->getClass() != ToMember->getClass()) {
2510      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2511            << QualType(FromMember->getClass(), 0);
2512      return;
2513    }
2514    FromType = FromMember->getPointeeType();
2515    ToType = ToMember->getPointeeType();
2516  }
2517
2518  if (FromType->isPointerType())
2519    FromType = FromType->getPointeeType();
2520  if (ToType->isPointerType())
2521    ToType = ToType->getPointeeType();
2522
2523  // Remove references.
2524  FromType = FromType.getNonReferenceType();
2525  ToType = ToType.getNonReferenceType();
2526
2527  // Don't print extra info for non-specialized template functions.
2528  if (FromType->isInstantiationDependentType() &&
2529      !FromType->getAs<TemplateSpecializationType>()) {
2530    PDiag << ft_default;
2531    return;
2532  }
2533
2534  // No extra info for same types.
2535  if (Context.hasSameType(FromType, ToType)) {
2536    PDiag << ft_default;
2537    return;
2538  }
2539
2540  const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2541                          *ToFunction = ToType->getAs<FunctionProtoType>();
2542
2543  // Both types need to be function types.
2544  if (!FromFunction || !ToFunction) {
2545    PDiag << ft_default;
2546    return;
2547  }
2548
2549  if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2550    PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2551          << FromFunction->getNumArgs();
2552    return;
2553  }
2554
2555  // Handle different parameter types.
2556  unsigned ArgPos;
2557  if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2558    PDiag << ft_parameter_mismatch << ArgPos + 1
2559          << ToFunction->getArgType(ArgPos)
2560          << FromFunction->getArgType(ArgPos);
2561    return;
2562  }
2563
2564  // Handle different return type.
2565  if (!Context.hasSameType(FromFunction->getResultType(),
2566                           ToFunction->getResultType())) {
2567    PDiag << ft_return_type << ToFunction->getResultType()
2568          << FromFunction->getResultType();
2569    return;
2570  }
2571
2572  unsigned FromQuals = FromFunction->getTypeQuals(),
2573           ToQuals = ToFunction->getTypeQuals();
2574  if (FromQuals != ToQuals) {
2575    PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2576    return;
2577  }
2578
2579  // Unable to find a difference, so add no extra info.
2580  PDiag << ft_default;
2581}
2582
2583/// FunctionArgTypesAreEqual - This routine checks two function proto types
2584/// for equality of their argument types. Caller has already checked that
2585/// they have same number of arguments.  If the parameters are different,
2586/// ArgPos will have the parameter index of the first different parameter.
2587bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2588                                    const FunctionProtoType *NewType,
2589                                    unsigned *ArgPos) {
2590  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2591       N = NewType->arg_type_begin(),
2592       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2593    if (!Context.hasSameType(*O, *N)) {
2594      if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2595      return false;
2596    }
2597  }
2598  return true;
2599}
2600
2601/// CheckPointerConversion - Check the pointer conversion from the
2602/// expression From to the type ToType. This routine checks for
2603/// ambiguous or inaccessible derived-to-base pointer
2604/// conversions for which IsPointerConversion has already returned
2605/// true. It returns true and produces a diagnostic if there was an
2606/// error, or returns false otherwise.
2607bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2608                                  CastKind &Kind,
2609                                  CXXCastPath& BasePath,
2610                                  bool IgnoreBaseAccess) {
2611  QualType FromType = From->getType();
2612  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2613
2614  Kind = CK_BitCast;
2615
2616  if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2617      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2618      Expr::NPCK_ZeroExpression) {
2619    if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2620      DiagRuntimeBehavior(From->getExprLoc(), From,
2621                          PDiag(diag::warn_impcast_bool_to_null_pointer)
2622                            << ToType << From->getSourceRange());
2623    else if (!isUnevaluatedContext())
2624      Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2625        << ToType << From->getSourceRange();
2626  }
2627  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2628    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2629      QualType FromPointeeType = FromPtrType->getPointeeType(),
2630               ToPointeeType   = ToPtrType->getPointeeType();
2631
2632      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2633          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2634        // We must have a derived-to-base conversion. Check an
2635        // ambiguous or inaccessible conversion.
2636        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2637                                         From->getExprLoc(),
2638                                         From->getSourceRange(), &BasePath,
2639                                         IgnoreBaseAccess))
2640          return true;
2641
2642        // The conversion was successful.
2643        Kind = CK_DerivedToBase;
2644      }
2645    }
2646  } else if (const ObjCObjectPointerType *ToPtrType =
2647               ToType->getAs<ObjCObjectPointerType>()) {
2648    if (const ObjCObjectPointerType *FromPtrType =
2649          FromType->getAs<ObjCObjectPointerType>()) {
2650      // Objective-C++ conversions are always okay.
2651      // FIXME: We should have a different class of conversions for the
2652      // Objective-C++ implicit conversions.
2653      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2654        return false;
2655    } else if (FromType->isBlockPointerType()) {
2656      Kind = CK_BlockPointerToObjCPointerCast;
2657    } else {
2658      Kind = CK_CPointerToObjCPointerCast;
2659    }
2660  } else if (ToType->isBlockPointerType()) {
2661    if (!FromType->isBlockPointerType())
2662      Kind = CK_AnyPointerToBlockPointerCast;
2663  }
2664
2665  // We shouldn't fall into this case unless it's valid for other
2666  // reasons.
2667  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2668    Kind = CK_NullToPointer;
2669
2670  return false;
2671}
2672
2673/// IsMemberPointerConversion - Determines whether the conversion of the
2674/// expression From, which has the (possibly adjusted) type FromType, can be
2675/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2676/// If so, returns true and places the converted type (that might differ from
2677/// ToType in its cv-qualifiers at some level) into ConvertedType.
2678bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2679                                     QualType ToType,
2680                                     bool InOverloadResolution,
2681                                     QualType &ConvertedType) {
2682  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2683  if (!ToTypePtr)
2684    return false;
2685
2686  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2687  if (From->isNullPointerConstant(Context,
2688                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2689                                        : Expr::NPC_ValueDependentIsNull)) {
2690    ConvertedType = ToType;
2691    return true;
2692  }
2693
2694  // Otherwise, both types have to be member pointers.
2695  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2696  if (!FromTypePtr)
2697    return false;
2698
2699  // A pointer to member of B can be converted to a pointer to member of D,
2700  // where D is derived from B (C++ 4.11p2).
2701  QualType FromClass(FromTypePtr->getClass(), 0);
2702  QualType ToClass(ToTypePtr->getClass(), 0);
2703
2704  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2705      !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
2706      IsDerivedFrom(ToClass, FromClass)) {
2707    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2708                                                 ToClass.getTypePtr());
2709    return true;
2710  }
2711
2712  return false;
2713}
2714
2715/// CheckMemberPointerConversion - Check the member pointer conversion from the
2716/// expression From to the type ToType. This routine checks for ambiguous or
2717/// virtual or inaccessible base-to-derived member pointer conversions
2718/// for which IsMemberPointerConversion has already returned true. It returns
2719/// true and produces a diagnostic if there was an error, or returns false
2720/// otherwise.
2721bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2722                                        CastKind &Kind,
2723                                        CXXCastPath &BasePath,
2724                                        bool IgnoreBaseAccess) {
2725  QualType FromType = From->getType();
2726  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2727  if (!FromPtrType) {
2728    // This must be a null pointer to member pointer conversion
2729    assert(From->isNullPointerConstant(Context,
2730                                       Expr::NPC_ValueDependentIsNull) &&
2731           "Expr must be null pointer constant!");
2732    Kind = CK_NullToMemberPointer;
2733    return false;
2734  }
2735
2736  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2737  assert(ToPtrType && "No member pointer cast has a target type "
2738                      "that is not a member pointer.");
2739
2740  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2741  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2742
2743  // FIXME: What about dependent types?
2744  assert(FromClass->isRecordType() && "Pointer into non-class.");
2745  assert(ToClass->isRecordType() && "Pointer into non-class.");
2746
2747  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2748                     /*DetectVirtual=*/true);
2749  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2750  assert(DerivationOkay &&
2751         "Should not have been called if derivation isn't OK.");
2752  (void)DerivationOkay;
2753
2754  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2755                                  getUnqualifiedType())) {
2756    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2757    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2758      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2759    return true;
2760  }
2761
2762  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2763    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2764      << FromClass << ToClass << QualType(VBase, 0)
2765      << From->getSourceRange();
2766    return true;
2767  }
2768
2769  if (!IgnoreBaseAccess)
2770    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2771                         Paths.front(),
2772                         diag::err_downcast_from_inaccessible_base);
2773
2774  // Must be a base to derived member conversion.
2775  BuildBasePathArray(Paths, BasePath);
2776  Kind = CK_BaseToDerivedMemberPointer;
2777  return false;
2778}
2779
2780/// IsQualificationConversion - Determines whether the conversion from
2781/// an rvalue of type FromType to ToType is a qualification conversion
2782/// (C++ 4.4).
2783///
2784/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2785/// when the qualification conversion involves a change in the Objective-C
2786/// object lifetime.
2787bool
2788Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2789                                bool CStyle, bool &ObjCLifetimeConversion) {
2790  FromType = Context.getCanonicalType(FromType);
2791  ToType = Context.getCanonicalType(ToType);
2792  ObjCLifetimeConversion = false;
2793
2794  // If FromType and ToType are the same type, this is not a
2795  // qualification conversion.
2796  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2797    return false;
2798
2799  // (C++ 4.4p4):
2800  //   A conversion can add cv-qualifiers at levels other than the first
2801  //   in multi-level pointers, subject to the following rules: [...]
2802  bool PreviousToQualsIncludeConst = true;
2803  bool UnwrappedAnyPointer = false;
2804  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2805    // Within each iteration of the loop, we check the qualifiers to
2806    // determine if this still looks like a qualification
2807    // conversion. Then, if all is well, we unwrap one more level of
2808    // pointers or pointers-to-members and do it all again
2809    // until there are no more pointers or pointers-to-members left to
2810    // unwrap.
2811    UnwrappedAnyPointer = true;
2812
2813    Qualifiers FromQuals = FromType.getQualifiers();
2814    Qualifiers ToQuals = ToType.getQualifiers();
2815
2816    // Objective-C ARC:
2817    //   Check Objective-C lifetime conversions.
2818    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2819        UnwrappedAnyPointer) {
2820      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2821        ObjCLifetimeConversion = true;
2822        FromQuals.removeObjCLifetime();
2823        ToQuals.removeObjCLifetime();
2824      } else {
2825        // Qualification conversions cannot cast between different
2826        // Objective-C lifetime qualifiers.
2827        return false;
2828      }
2829    }
2830
2831    // Allow addition/removal of GC attributes but not changing GC attributes.
2832    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2833        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2834      FromQuals.removeObjCGCAttr();
2835      ToQuals.removeObjCGCAttr();
2836    }
2837
2838    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2839    //      2,j, and similarly for volatile.
2840    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2841      return false;
2842
2843    //   -- if the cv 1,j and cv 2,j are different, then const is in
2844    //      every cv for 0 < k < j.
2845    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2846        && !PreviousToQualsIncludeConst)
2847      return false;
2848
2849    // Keep track of whether all prior cv-qualifiers in the "to" type
2850    // include const.
2851    PreviousToQualsIncludeConst
2852      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2853  }
2854
2855  // We are left with FromType and ToType being the pointee types
2856  // after unwrapping the original FromType and ToType the same number
2857  // of types. If we unwrapped any pointers, and if FromType and
2858  // ToType have the same unqualified type (since we checked
2859  // qualifiers above), then this is a qualification conversion.
2860  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2861}
2862
2863/// \brief - Determine whether this is a conversion from a scalar type to an
2864/// atomic type.
2865///
2866/// If successful, updates \c SCS's second and third steps in the conversion
2867/// sequence to finish the conversion.
2868static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2869                                bool InOverloadResolution,
2870                                StandardConversionSequence &SCS,
2871                                bool CStyle) {
2872  const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2873  if (!ToAtomic)
2874    return false;
2875
2876  StandardConversionSequence InnerSCS;
2877  if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
2878                            InOverloadResolution, InnerSCS,
2879                            CStyle, /*AllowObjCWritebackConversion=*/false))
2880    return false;
2881
2882  SCS.Second = InnerSCS.Second;
2883  SCS.setToType(1, InnerSCS.getToType(1));
2884  SCS.Third = InnerSCS.Third;
2885  SCS.QualificationIncludesObjCLifetime
2886    = InnerSCS.QualificationIncludesObjCLifetime;
2887  SCS.setToType(2, InnerSCS.getToType(2));
2888  return true;
2889}
2890
2891static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2892                                              CXXConstructorDecl *Constructor,
2893                                              QualType Type) {
2894  const FunctionProtoType *CtorType =
2895      Constructor->getType()->getAs<FunctionProtoType>();
2896  if (CtorType->getNumArgs() > 0) {
2897    QualType FirstArg = CtorType->getArgType(0);
2898    if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2899      return true;
2900  }
2901  return false;
2902}
2903
2904static OverloadingResult
2905IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2906                                       CXXRecordDecl *To,
2907                                       UserDefinedConversionSequence &User,
2908                                       OverloadCandidateSet &CandidateSet,
2909                                       bool AllowExplicit) {
2910  DeclContext::lookup_result R = S.LookupConstructors(To);
2911  for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
2912       Con != ConEnd; ++Con) {
2913    NamedDecl *D = *Con;
2914    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2915
2916    // Find the constructor (which may be a template).
2917    CXXConstructorDecl *Constructor = 0;
2918    FunctionTemplateDecl *ConstructorTmpl
2919      = dyn_cast<FunctionTemplateDecl>(D);
2920    if (ConstructorTmpl)
2921      Constructor
2922        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2923    else
2924      Constructor = cast<CXXConstructorDecl>(D);
2925
2926    bool Usable = !Constructor->isInvalidDecl() &&
2927                  S.isInitListConstructor(Constructor) &&
2928                  (AllowExplicit || !Constructor->isExplicit());
2929    if (Usable) {
2930      // If the first argument is (a reference to) the target type,
2931      // suppress conversions.
2932      bool SuppressUserConversions =
2933          isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2934      if (ConstructorTmpl)
2935        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2936                                       /*ExplicitArgs*/ 0,
2937                                       From, CandidateSet,
2938                                       SuppressUserConversions);
2939      else
2940        S.AddOverloadCandidate(Constructor, FoundDecl,
2941                               From, CandidateSet,
2942                               SuppressUserConversions);
2943    }
2944  }
2945
2946  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2947
2948  OverloadCandidateSet::iterator Best;
2949  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2950  case OR_Success: {
2951    // Record the standard conversion we used and the conversion function.
2952    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2953    QualType ThisType = Constructor->getThisType(S.Context);
2954    // Initializer lists don't have conversions as such.
2955    User.Before.setAsIdentityConversion();
2956    User.HadMultipleCandidates = HadMultipleCandidates;
2957    User.ConversionFunction = Constructor;
2958    User.FoundConversionFunction = Best->FoundDecl;
2959    User.After.setAsIdentityConversion();
2960    User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2961    User.After.setAllToTypes(ToType);
2962    return OR_Success;
2963  }
2964
2965  case OR_No_Viable_Function:
2966    return OR_No_Viable_Function;
2967  case OR_Deleted:
2968    return OR_Deleted;
2969  case OR_Ambiguous:
2970    return OR_Ambiguous;
2971  }
2972
2973  llvm_unreachable("Invalid OverloadResult!");
2974}
2975
2976/// Determines whether there is a user-defined conversion sequence
2977/// (C++ [over.ics.user]) that converts expression From to the type
2978/// ToType. If such a conversion exists, User will contain the
2979/// user-defined conversion sequence that performs such a conversion
2980/// and this routine will return true. Otherwise, this routine returns
2981/// false and User is unspecified.
2982///
2983/// \param AllowExplicit  true if the conversion should consider C++0x
2984/// "explicit" conversion functions as well as non-explicit conversion
2985/// functions (C++0x [class.conv.fct]p2).
2986static OverloadingResult
2987IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2988                        UserDefinedConversionSequence &User,
2989                        OverloadCandidateSet &CandidateSet,
2990                        bool AllowExplicit) {
2991  // Whether we will only visit constructors.
2992  bool ConstructorsOnly = false;
2993
2994  // If the type we are conversion to is a class type, enumerate its
2995  // constructors.
2996  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2997    // C++ [over.match.ctor]p1:
2998    //   When objects of class type are direct-initialized (8.5), or
2999    //   copy-initialized from an expression of the same or a
3000    //   derived class type (8.5), overload resolution selects the
3001    //   constructor. [...] For copy-initialization, the candidate
3002    //   functions are all the converting constructors (12.3.1) of
3003    //   that class. The argument list is the expression-list within
3004    //   the parentheses of the initializer.
3005    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3006        (From->getType()->getAs<RecordType>() &&
3007         S.IsDerivedFrom(From->getType(), ToType)))
3008      ConstructorsOnly = true;
3009
3010    S.RequireCompleteType(From->getExprLoc(), ToType, 0);
3011    // RequireCompleteType may have returned true due to some invalid decl
3012    // during template instantiation, but ToType may be complete enough now
3013    // to try to recover.
3014    if (ToType->isIncompleteType()) {
3015      // We're not going to find any constructors.
3016    } else if (CXXRecordDecl *ToRecordDecl
3017                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3018
3019      Expr **Args = &From;
3020      unsigned NumArgs = 1;
3021      bool ListInitializing = false;
3022      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3023        // But first, see if there is an init-list-contructor that will work.
3024        OverloadingResult Result = IsInitializerListConstructorConversion(
3025            S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3026        if (Result != OR_No_Viable_Function)
3027          return Result;
3028        // Never mind.
3029        CandidateSet.clear();
3030
3031        // If we're list-initializing, we pass the individual elements as
3032        // arguments, not the entire list.
3033        Args = InitList->getInits();
3034        NumArgs = InitList->getNumInits();
3035        ListInitializing = true;
3036      }
3037
3038      DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
3039      for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
3040           Con != ConEnd; ++Con) {
3041        NamedDecl *D = *Con;
3042        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3043
3044        // Find the constructor (which may be a template).
3045        CXXConstructorDecl *Constructor = 0;
3046        FunctionTemplateDecl *ConstructorTmpl
3047          = dyn_cast<FunctionTemplateDecl>(D);
3048        if (ConstructorTmpl)
3049          Constructor
3050            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3051        else
3052          Constructor = cast<CXXConstructorDecl>(D);
3053
3054        bool Usable = !Constructor->isInvalidDecl();
3055        if (ListInitializing)
3056          Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
3057        else
3058          Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
3059        if (Usable) {
3060          bool SuppressUserConversions = !ConstructorsOnly;
3061          if (SuppressUserConversions && ListInitializing) {
3062            SuppressUserConversions = false;
3063            if (NumArgs == 1) {
3064              // If the first argument is (a reference to) the target type,
3065              // suppress conversions.
3066              SuppressUserConversions = isFirstArgumentCompatibleWithType(
3067                                                S.Context, Constructor, ToType);
3068            }
3069          }
3070          if (ConstructorTmpl)
3071            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3072                                           /*ExplicitArgs*/ 0,
3073                                           llvm::makeArrayRef(Args, NumArgs),
3074                                           CandidateSet, SuppressUserConversions);
3075          else
3076            // Allow one user-defined conversion when user specifies a
3077            // From->ToType conversion via an static cast (c-style, etc).
3078            S.AddOverloadCandidate(Constructor, FoundDecl,
3079                                   llvm::makeArrayRef(Args, NumArgs),
3080                                   CandidateSet, SuppressUserConversions);
3081        }
3082      }
3083    }
3084  }
3085
3086  // Enumerate conversion functions, if we're allowed to.
3087  if (ConstructorsOnly || isa<InitListExpr>(From)) {
3088  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
3089    // No conversion functions from incomplete types.
3090  } else if (const RecordType *FromRecordType
3091                                   = From->getType()->getAs<RecordType>()) {
3092    if (CXXRecordDecl *FromRecordDecl
3093         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3094      // Add all of the conversion functions as candidates.
3095      std::pair<CXXRecordDecl::conversion_iterator,
3096                CXXRecordDecl::conversion_iterator>
3097        Conversions = FromRecordDecl->getVisibleConversionFunctions();
3098      for (CXXRecordDecl::conversion_iterator
3099             I = Conversions.first, E = Conversions.second; I != E; ++I) {
3100        DeclAccessPair FoundDecl = I.getPair();
3101        NamedDecl *D = FoundDecl.getDecl();
3102        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3103        if (isa<UsingShadowDecl>(D))
3104          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3105
3106        CXXConversionDecl *Conv;
3107        FunctionTemplateDecl *ConvTemplate;
3108        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3109          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3110        else
3111          Conv = cast<CXXConversionDecl>(D);
3112
3113        if (AllowExplicit || !Conv->isExplicit()) {
3114          if (ConvTemplate)
3115            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3116                                             ActingContext, From, ToType,
3117                                             CandidateSet);
3118          else
3119            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3120                                     From, ToType, CandidateSet);
3121        }
3122      }
3123    }
3124  }
3125
3126  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3127
3128  OverloadCandidateSet::iterator Best;
3129  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
3130  case OR_Success:
3131    // Record the standard conversion we used and the conversion function.
3132    if (CXXConstructorDecl *Constructor
3133          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3134      // C++ [over.ics.user]p1:
3135      //   If the user-defined conversion is specified by a
3136      //   constructor (12.3.1), the initial standard conversion
3137      //   sequence converts the source type to the type required by
3138      //   the argument of the constructor.
3139      //
3140      QualType ThisType = Constructor->getThisType(S.Context);
3141      if (isa<InitListExpr>(From)) {
3142        // Initializer lists don't have conversions as such.
3143        User.Before.setAsIdentityConversion();
3144      } else {
3145        if (Best->Conversions[0].isEllipsis())
3146          User.EllipsisConversion = true;
3147        else {
3148          User.Before = Best->Conversions[0].Standard;
3149          User.EllipsisConversion = false;
3150        }
3151      }
3152      User.HadMultipleCandidates = HadMultipleCandidates;
3153      User.ConversionFunction = Constructor;
3154      User.FoundConversionFunction = Best->FoundDecl;
3155      User.After.setAsIdentityConversion();
3156      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3157      User.After.setAllToTypes(ToType);
3158      return OR_Success;
3159    }
3160    if (CXXConversionDecl *Conversion
3161                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3162      // C++ [over.ics.user]p1:
3163      //
3164      //   [...] If the user-defined conversion is specified by a
3165      //   conversion function (12.3.2), the initial standard
3166      //   conversion sequence converts the source type to the
3167      //   implicit object parameter of the conversion function.
3168      User.Before = Best->Conversions[0].Standard;
3169      User.HadMultipleCandidates = HadMultipleCandidates;
3170      User.ConversionFunction = Conversion;
3171      User.FoundConversionFunction = Best->FoundDecl;
3172      User.EllipsisConversion = false;
3173
3174      // C++ [over.ics.user]p2:
3175      //   The second standard conversion sequence converts the
3176      //   result of the user-defined conversion to the target type
3177      //   for the sequence. Since an implicit conversion sequence
3178      //   is an initialization, the special rules for
3179      //   initialization by user-defined conversion apply when
3180      //   selecting the best user-defined conversion for a
3181      //   user-defined conversion sequence (see 13.3.3 and
3182      //   13.3.3.1).
3183      User.After = Best->FinalConversion;
3184      return OR_Success;
3185    }
3186    llvm_unreachable("Not a constructor or conversion function?");
3187
3188  case OR_No_Viable_Function:
3189    return OR_No_Viable_Function;
3190  case OR_Deleted:
3191    // No conversion here! We're done.
3192    return OR_Deleted;
3193
3194  case OR_Ambiguous:
3195    return OR_Ambiguous;
3196  }
3197
3198  llvm_unreachable("Invalid OverloadResult!");
3199}
3200
3201bool
3202Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3203  ImplicitConversionSequence ICS;
3204  OverloadCandidateSet CandidateSet(From->getExprLoc());
3205  OverloadingResult OvResult =
3206    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3207                            CandidateSet, false);
3208  if (OvResult == OR_Ambiguous)
3209    Diag(From->getLocStart(),
3210         diag::err_typecheck_ambiguous_condition)
3211          << From->getType() << ToType << From->getSourceRange();
3212  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
3213    if (!RequireCompleteType(From->getLocStart(), ToType,
3214                          diag::err_typecheck_nonviable_condition_incomplete,
3215                             From->getType(), From->getSourceRange()))
3216      Diag(From->getLocStart(),
3217           diag::err_typecheck_nonviable_condition)
3218           << From->getType() << From->getSourceRange() << ToType;
3219  }
3220  else
3221    return false;
3222  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3223  return true;
3224}
3225
3226/// \brief Compare the user-defined conversion functions or constructors
3227/// of two user-defined conversion sequences to determine whether any ordering
3228/// is possible.
3229static ImplicitConversionSequence::CompareKind
3230compareConversionFunctions(Sema &S,
3231                           FunctionDecl *Function1,
3232                           FunctionDecl *Function2) {
3233  if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
3234    return ImplicitConversionSequence::Indistinguishable;
3235
3236  // Objective-C++:
3237  //   If both conversion functions are implicitly-declared conversions from
3238  //   a lambda closure type to a function pointer and a block pointer,
3239  //   respectively, always prefer the conversion to a function pointer,
3240  //   because the function pointer is more lightweight and is more likely
3241  //   to keep code working.
3242  CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
3243  if (!Conv1)
3244    return ImplicitConversionSequence::Indistinguishable;
3245
3246  CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3247  if (!Conv2)
3248    return ImplicitConversionSequence::Indistinguishable;
3249
3250  if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3251    bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3252    bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3253    if (Block1 != Block2)
3254      return Block1? ImplicitConversionSequence::Worse
3255                   : ImplicitConversionSequence::Better;
3256  }
3257
3258  return ImplicitConversionSequence::Indistinguishable;
3259}
3260
3261/// CompareImplicitConversionSequences - Compare two implicit
3262/// conversion sequences to determine whether one is better than the
3263/// other or if they are indistinguishable (C++ 13.3.3.2).
3264static ImplicitConversionSequence::CompareKind
3265CompareImplicitConversionSequences(Sema &S,
3266                                   const ImplicitConversionSequence& ICS1,
3267                                   const ImplicitConversionSequence& ICS2)
3268{
3269  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3270  // conversion sequences (as defined in 13.3.3.1)
3271  //   -- a standard conversion sequence (13.3.3.1.1) is a better
3272  //      conversion sequence than a user-defined conversion sequence or
3273  //      an ellipsis conversion sequence, and
3274  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3275  //      conversion sequence than an ellipsis conversion sequence
3276  //      (13.3.3.1.3).
3277  //
3278  // C++0x [over.best.ics]p10:
3279  //   For the purpose of ranking implicit conversion sequences as
3280  //   described in 13.3.3.2, the ambiguous conversion sequence is
3281  //   treated as a user-defined sequence that is indistinguishable
3282  //   from any other user-defined conversion sequence.
3283  if (ICS1.getKindRank() < ICS2.getKindRank())
3284    return ImplicitConversionSequence::Better;
3285  if (ICS2.getKindRank() < ICS1.getKindRank())
3286    return ImplicitConversionSequence::Worse;
3287
3288  // The following checks require both conversion sequences to be of
3289  // the same kind.
3290  if (ICS1.getKind() != ICS2.getKind())
3291    return ImplicitConversionSequence::Indistinguishable;
3292
3293  ImplicitConversionSequence::CompareKind Result =
3294      ImplicitConversionSequence::Indistinguishable;
3295
3296  // Two implicit conversion sequences of the same form are
3297  // indistinguishable conversion sequences unless one of the
3298  // following rules apply: (C++ 13.3.3.2p3):
3299  if (ICS1.isStandard())
3300    Result = CompareStandardConversionSequences(S,
3301                                                ICS1.Standard, ICS2.Standard);
3302  else if (ICS1.isUserDefined()) {
3303    // User-defined conversion sequence U1 is a better conversion
3304    // sequence than another user-defined conversion sequence U2 if
3305    // they contain the same user-defined conversion function or
3306    // constructor and if the second standard conversion sequence of
3307    // U1 is better than the second standard conversion sequence of
3308    // U2 (C++ 13.3.3.2p3).
3309    if (ICS1.UserDefined.ConversionFunction ==
3310          ICS2.UserDefined.ConversionFunction)
3311      Result = CompareStandardConversionSequences(S,
3312                                                  ICS1.UserDefined.After,
3313                                                  ICS2.UserDefined.After);
3314    else
3315      Result = compareConversionFunctions(S,
3316                                          ICS1.UserDefined.ConversionFunction,
3317                                          ICS2.UserDefined.ConversionFunction);
3318  }
3319
3320  // List-initialization sequence L1 is a better conversion sequence than
3321  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3322  // for some X and L2 does not.
3323  if (Result == ImplicitConversionSequence::Indistinguishable &&
3324      !ICS1.isBad() &&
3325      ICS1.isListInitializationSequence() &&
3326      ICS2.isListInitializationSequence()) {
3327    if (ICS1.isStdInitializerListElement() &&
3328        !ICS2.isStdInitializerListElement())
3329      return ImplicitConversionSequence::Better;
3330    if (!ICS1.isStdInitializerListElement() &&
3331        ICS2.isStdInitializerListElement())
3332      return ImplicitConversionSequence::Worse;
3333  }
3334
3335  return Result;
3336}
3337
3338static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3339  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3340    Qualifiers Quals;
3341    T1 = Context.getUnqualifiedArrayType(T1, Quals);
3342    T2 = Context.getUnqualifiedArrayType(T2, Quals);
3343  }
3344
3345  return Context.hasSameUnqualifiedType(T1, T2);
3346}
3347
3348// Per 13.3.3.2p3, compare the given standard conversion sequences to
3349// determine if one is a proper subset of the other.
3350static ImplicitConversionSequence::CompareKind
3351compareStandardConversionSubsets(ASTContext &Context,
3352                                 const StandardConversionSequence& SCS1,
3353                                 const StandardConversionSequence& SCS2) {
3354  ImplicitConversionSequence::CompareKind Result
3355    = ImplicitConversionSequence::Indistinguishable;
3356
3357  // the identity conversion sequence is considered to be a subsequence of
3358  // any non-identity conversion sequence
3359  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3360    return ImplicitConversionSequence::Better;
3361  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3362    return ImplicitConversionSequence::Worse;
3363
3364  if (SCS1.Second != SCS2.Second) {
3365    if (SCS1.Second == ICK_Identity)
3366      Result = ImplicitConversionSequence::Better;
3367    else if (SCS2.Second == ICK_Identity)
3368      Result = ImplicitConversionSequence::Worse;
3369    else
3370      return ImplicitConversionSequence::Indistinguishable;
3371  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3372    return ImplicitConversionSequence::Indistinguishable;
3373
3374  if (SCS1.Third == SCS2.Third) {
3375    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3376                             : ImplicitConversionSequence::Indistinguishable;
3377  }
3378
3379  if (SCS1.Third == ICK_Identity)
3380    return Result == ImplicitConversionSequence::Worse
3381             ? ImplicitConversionSequence::Indistinguishable
3382             : ImplicitConversionSequence::Better;
3383
3384  if (SCS2.Third == ICK_Identity)
3385    return Result == ImplicitConversionSequence::Better
3386             ? ImplicitConversionSequence::Indistinguishable
3387             : ImplicitConversionSequence::Worse;
3388
3389  return ImplicitConversionSequence::Indistinguishable;
3390}
3391
3392/// \brief Determine whether one of the given reference bindings is better
3393/// than the other based on what kind of bindings they are.
3394static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3395                                       const StandardConversionSequence &SCS2) {
3396  // C++0x [over.ics.rank]p3b4:
3397  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3398  //      implicit object parameter of a non-static member function declared
3399  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3400  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3401  //      lvalue reference to a function lvalue and S2 binds an rvalue
3402  //      reference*.
3403  //
3404  // FIXME: Rvalue references. We're going rogue with the above edits,
3405  // because the semantics in the current C++0x working paper (N3225 at the
3406  // time of this writing) break the standard definition of std::forward
3407  // and std::reference_wrapper when dealing with references to functions.
3408  // Proposed wording changes submitted to CWG for consideration.
3409  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3410      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3411    return false;
3412
3413  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3414          SCS2.IsLvalueReference) ||
3415         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3416          !SCS2.IsLvalueReference);
3417}
3418
3419/// CompareStandardConversionSequences - Compare two standard
3420/// conversion sequences to determine whether one is better than the
3421/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3422static ImplicitConversionSequence::CompareKind
3423CompareStandardConversionSequences(Sema &S,
3424                                   const StandardConversionSequence& SCS1,
3425                                   const StandardConversionSequence& SCS2)
3426{
3427  // Standard conversion sequence S1 is a better conversion sequence
3428  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3429
3430  //  -- S1 is a proper subsequence of S2 (comparing the conversion
3431  //     sequences in the canonical form defined by 13.3.3.1.1,
3432  //     excluding any Lvalue Transformation; the identity conversion
3433  //     sequence is considered to be a subsequence of any
3434  //     non-identity conversion sequence) or, if not that,
3435  if (ImplicitConversionSequence::CompareKind CK
3436        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3437    return CK;
3438
3439  //  -- the rank of S1 is better than the rank of S2 (by the rules
3440  //     defined below), or, if not that,
3441  ImplicitConversionRank Rank1 = SCS1.getRank();
3442  ImplicitConversionRank Rank2 = SCS2.getRank();
3443  if (Rank1 < Rank2)
3444    return ImplicitConversionSequence::Better;
3445  else if (Rank2 < Rank1)
3446    return ImplicitConversionSequence::Worse;
3447
3448  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3449  // are indistinguishable unless one of the following rules
3450  // applies:
3451
3452  //   A conversion that is not a conversion of a pointer, or
3453  //   pointer to member, to bool is better than another conversion
3454  //   that is such a conversion.
3455  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3456    return SCS2.isPointerConversionToBool()
3457             ? ImplicitConversionSequence::Better
3458             : ImplicitConversionSequence::Worse;
3459
3460  // C++ [over.ics.rank]p4b2:
3461  //
3462  //   If class B is derived directly or indirectly from class A,
3463  //   conversion of B* to A* is better than conversion of B* to
3464  //   void*, and conversion of A* to void* is better than conversion
3465  //   of B* to void*.
3466  bool SCS1ConvertsToVoid
3467    = SCS1.isPointerConversionToVoidPointer(S.Context);
3468  bool SCS2ConvertsToVoid
3469    = SCS2.isPointerConversionToVoidPointer(S.Context);
3470  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3471    // Exactly one of the conversion sequences is a conversion to
3472    // a void pointer; it's the worse conversion.
3473    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3474                              : ImplicitConversionSequence::Worse;
3475  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3476    // Neither conversion sequence converts to a void pointer; compare
3477    // their derived-to-base conversions.
3478    if (ImplicitConversionSequence::CompareKind DerivedCK
3479          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3480      return DerivedCK;
3481  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3482             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3483    // Both conversion sequences are conversions to void
3484    // pointers. Compare the source types to determine if there's an
3485    // inheritance relationship in their sources.
3486    QualType FromType1 = SCS1.getFromType();
3487    QualType FromType2 = SCS2.getFromType();
3488
3489    // Adjust the types we're converting from via the array-to-pointer
3490    // conversion, if we need to.
3491    if (SCS1.First == ICK_Array_To_Pointer)
3492      FromType1 = S.Context.getArrayDecayedType(FromType1);
3493    if (SCS2.First == ICK_Array_To_Pointer)
3494      FromType2 = S.Context.getArrayDecayedType(FromType2);
3495
3496    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3497    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3498
3499    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3500      return ImplicitConversionSequence::Better;
3501    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3502      return ImplicitConversionSequence::Worse;
3503
3504    // Objective-C++: If one interface is more specific than the
3505    // other, it is the better one.
3506    const ObjCObjectPointerType* FromObjCPtr1
3507      = FromType1->getAs<ObjCObjectPointerType>();
3508    const ObjCObjectPointerType* FromObjCPtr2
3509      = FromType2->getAs<ObjCObjectPointerType>();
3510    if (FromObjCPtr1 && FromObjCPtr2) {
3511      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3512                                                          FromObjCPtr2);
3513      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3514                                                           FromObjCPtr1);
3515      if (AssignLeft != AssignRight) {
3516        return AssignLeft? ImplicitConversionSequence::Better
3517                         : ImplicitConversionSequence::Worse;
3518      }
3519    }
3520  }
3521
3522  // Compare based on qualification conversions (C++ 13.3.3.2p3,
3523  // bullet 3).
3524  if (ImplicitConversionSequence::CompareKind QualCK
3525        = CompareQualificationConversions(S, SCS1, SCS2))
3526    return QualCK;
3527
3528  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3529    // Check for a better reference binding based on the kind of bindings.
3530    if (isBetterReferenceBindingKind(SCS1, SCS2))
3531      return ImplicitConversionSequence::Better;
3532    else if (isBetterReferenceBindingKind(SCS2, SCS1))
3533      return ImplicitConversionSequence::Worse;
3534
3535    // C++ [over.ics.rank]p3b4:
3536    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3537    //      which the references refer are the same type except for
3538    //      top-level cv-qualifiers, and the type to which the reference
3539    //      initialized by S2 refers is more cv-qualified than the type
3540    //      to which the reference initialized by S1 refers.
3541    QualType T1 = SCS1.getToType(2);
3542    QualType T2 = SCS2.getToType(2);
3543    T1 = S.Context.getCanonicalType(T1);
3544    T2 = S.Context.getCanonicalType(T2);
3545    Qualifiers T1Quals, T2Quals;
3546    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3547    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3548    if (UnqualT1 == UnqualT2) {
3549      // Objective-C++ ARC: If the references refer to objects with different
3550      // lifetimes, prefer bindings that don't change lifetime.
3551      if (SCS1.ObjCLifetimeConversionBinding !=
3552                                          SCS2.ObjCLifetimeConversionBinding) {
3553        return SCS1.ObjCLifetimeConversionBinding
3554                                           ? ImplicitConversionSequence::Worse
3555                                           : ImplicitConversionSequence::Better;
3556      }
3557
3558      // If the type is an array type, promote the element qualifiers to the
3559      // type for comparison.
3560      if (isa<ArrayType>(T1) && T1Quals)
3561        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3562      if (isa<ArrayType>(T2) && T2Quals)
3563        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3564      if (T2.isMoreQualifiedThan(T1))
3565        return ImplicitConversionSequence::Better;
3566      else if (T1.isMoreQualifiedThan(T2))
3567        return ImplicitConversionSequence::Worse;
3568    }
3569  }
3570
3571  // In Microsoft mode, prefer an integral conversion to a
3572  // floating-to-integral conversion if the integral conversion
3573  // is between types of the same size.
3574  // For example:
3575  // void f(float);
3576  // void f(int);
3577  // int main {
3578  //    long a;
3579  //    f(a);
3580  // }
3581  // Here, MSVC will call f(int) instead of generating a compile error
3582  // as clang will do in standard mode.
3583  if (S.getLangOpts().MicrosoftMode &&
3584      SCS1.Second == ICK_Integral_Conversion &&
3585      SCS2.Second == ICK_Floating_Integral &&
3586      S.Context.getTypeSize(SCS1.getFromType()) ==
3587      S.Context.getTypeSize(SCS1.getToType(2)))
3588    return ImplicitConversionSequence::Better;
3589
3590  return ImplicitConversionSequence::Indistinguishable;
3591}
3592
3593/// CompareQualificationConversions - Compares two standard conversion
3594/// sequences to determine whether they can be ranked based on their
3595/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3596ImplicitConversionSequence::CompareKind
3597CompareQualificationConversions(Sema &S,
3598                                const StandardConversionSequence& SCS1,
3599                                const StandardConversionSequence& SCS2) {
3600  // C++ 13.3.3.2p3:
3601  //  -- S1 and S2 differ only in their qualification conversion and
3602  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3603  //     cv-qualification signature of type T1 is a proper subset of
3604  //     the cv-qualification signature of type T2, and S1 is not the
3605  //     deprecated string literal array-to-pointer conversion (4.2).
3606  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3607      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3608    return ImplicitConversionSequence::Indistinguishable;
3609
3610  // FIXME: the example in the standard doesn't use a qualification
3611  // conversion (!)
3612  QualType T1 = SCS1.getToType(2);
3613  QualType T2 = SCS2.getToType(2);
3614  T1 = S.Context.getCanonicalType(T1);
3615  T2 = S.Context.getCanonicalType(T2);
3616  Qualifiers T1Quals, T2Quals;
3617  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3618  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3619
3620  // If the types are the same, we won't learn anything by unwrapped
3621  // them.
3622  if (UnqualT1 == UnqualT2)
3623    return ImplicitConversionSequence::Indistinguishable;
3624
3625  // If the type is an array type, promote the element qualifiers to the type
3626  // for comparison.
3627  if (isa<ArrayType>(T1) && T1Quals)
3628    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3629  if (isa<ArrayType>(T2) && T2Quals)
3630    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3631
3632  ImplicitConversionSequence::CompareKind Result
3633    = ImplicitConversionSequence::Indistinguishable;
3634
3635  // Objective-C++ ARC:
3636  //   Prefer qualification conversions not involving a change in lifetime
3637  //   to qualification conversions that do not change lifetime.
3638  if (SCS1.QualificationIncludesObjCLifetime !=
3639                                      SCS2.QualificationIncludesObjCLifetime) {
3640    Result = SCS1.QualificationIncludesObjCLifetime
3641               ? ImplicitConversionSequence::Worse
3642               : ImplicitConversionSequence::Better;
3643  }
3644
3645  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3646    // Within each iteration of the loop, we check the qualifiers to
3647    // determine if this still looks like a qualification
3648    // conversion. Then, if all is well, we unwrap one more level of
3649    // pointers or pointers-to-members and do it all again
3650    // until there are no more pointers or pointers-to-members left
3651    // to unwrap. This essentially mimics what
3652    // IsQualificationConversion does, but here we're checking for a
3653    // strict subset of qualifiers.
3654    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3655      // The qualifiers are the same, so this doesn't tell us anything
3656      // about how the sequences rank.
3657      ;
3658    else if (T2.isMoreQualifiedThan(T1)) {
3659      // T1 has fewer qualifiers, so it could be the better sequence.
3660      if (Result == ImplicitConversionSequence::Worse)
3661        // Neither has qualifiers that are a subset of the other's
3662        // qualifiers.
3663        return ImplicitConversionSequence::Indistinguishable;
3664
3665      Result = ImplicitConversionSequence::Better;
3666    } else if (T1.isMoreQualifiedThan(T2)) {
3667      // T2 has fewer qualifiers, so it could be the better sequence.
3668      if (Result == ImplicitConversionSequence::Better)
3669        // Neither has qualifiers that are a subset of the other's
3670        // qualifiers.
3671        return ImplicitConversionSequence::Indistinguishable;
3672
3673      Result = ImplicitConversionSequence::Worse;
3674    } else {
3675      // Qualifiers are disjoint.
3676      return ImplicitConversionSequence::Indistinguishable;
3677    }
3678
3679    // If the types after this point are equivalent, we're done.
3680    if (S.Context.hasSameUnqualifiedType(T1, T2))
3681      break;
3682  }
3683
3684  // Check that the winning standard conversion sequence isn't using
3685  // the deprecated string literal array to pointer conversion.
3686  switch (Result) {
3687  case ImplicitConversionSequence::Better:
3688    if (SCS1.DeprecatedStringLiteralToCharPtr)
3689      Result = ImplicitConversionSequence::Indistinguishable;
3690    break;
3691
3692  case ImplicitConversionSequence::Indistinguishable:
3693    break;
3694
3695  case ImplicitConversionSequence::Worse:
3696    if (SCS2.DeprecatedStringLiteralToCharPtr)
3697      Result = ImplicitConversionSequence::Indistinguishable;
3698    break;
3699  }
3700
3701  return Result;
3702}
3703
3704/// CompareDerivedToBaseConversions - Compares two standard conversion
3705/// sequences to determine whether they can be ranked based on their
3706/// various kinds of derived-to-base conversions (C++
3707/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3708/// conversions between Objective-C interface types.
3709ImplicitConversionSequence::CompareKind
3710CompareDerivedToBaseConversions(Sema &S,
3711                                const StandardConversionSequence& SCS1,
3712                                const StandardConversionSequence& SCS2) {
3713  QualType FromType1 = SCS1.getFromType();
3714  QualType ToType1 = SCS1.getToType(1);
3715  QualType FromType2 = SCS2.getFromType();
3716  QualType ToType2 = SCS2.getToType(1);
3717
3718  // Adjust the types we're converting from via the array-to-pointer
3719  // conversion, if we need to.
3720  if (SCS1.First == ICK_Array_To_Pointer)
3721    FromType1 = S.Context.getArrayDecayedType(FromType1);
3722  if (SCS2.First == ICK_Array_To_Pointer)
3723    FromType2 = S.Context.getArrayDecayedType(FromType2);
3724
3725  // Canonicalize all of the types.
3726  FromType1 = S.Context.getCanonicalType(FromType1);
3727  ToType1 = S.Context.getCanonicalType(ToType1);
3728  FromType2 = S.Context.getCanonicalType(FromType2);
3729  ToType2 = S.Context.getCanonicalType(ToType2);
3730
3731  // C++ [over.ics.rank]p4b3:
3732  //
3733  //   If class B is derived directly or indirectly from class A and
3734  //   class C is derived directly or indirectly from B,
3735  //
3736  // Compare based on pointer conversions.
3737  if (SCS1.Second == ICK_Pointer_Conversion &&
3738      SCS2.Second == ICK_Pointer_Conversion &&
3739      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3740      FromType1->isPointerType() && FromType2->isPointerType() &&
3741      ToType1->isPointerType() && ToType2->isPointerType()) {
3742    QualType FromPointee1
3743      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3744    QualType ToPointee1
3745      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3746    QualType FromPointee2
3747      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3748    QualType ToPointee2
3749      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3750
3751    //   -- conversion of C* to B* is better than conversion of C* to A*,
3752    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3753      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3754        return ImplicitConversionSequence::Better;
3755      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3756        return ImplicitConversionSequence::Worse;
3757    }
3758
3759    //   -- conversion of B* to A* is better than conversion of C* to A*,
3760    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3761      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3762        return ImplicitConversionSequence::Better;
3763      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3764        return ImplicitConversionSequence::Worse;
3765    }
3766  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3767             SCS2.Second == ICK_Pointer_Conversion) {
3768    const ObjCObjectPointerType *FromPtr1
3769      = FromType1->getAs<ObjCObjectPointerType>();
3770    const ObjCObjectPointerType *FromPtr2
3771      = FromType2->getAs<ObjCObjectPointerType>();
3772    const ObjCObjectPointerType *ToPtr1
3773      = ToType1->getAs<ObjCObjectPointerType>();
3774    const ObjCObjectPointerType *ToPtr2
3775      = ToType2->getAs<ObjCObjectPointerType>();
3776
3777    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3778      // Apply the same conversion ranking rules for Objective-C pointer types
3779      // that we do for C++ pointers to class types. However, we employ the
3780      // Objective-C pseudo-subtyping relationship used for assignment of
3781      // Objective-C pointer types.
3782      bool FromAssignLeft
3783        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3784      bool FromAssignRight
3785        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3786      bool ToAssignLeft
3787        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3788      bool ToAssignRight
3789        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3790
3791      // A conversion to an a non-id object pointer type or qualified 'id'
3792      // type is better than a conversion to 'id'.
3793      if (ToPtr1->isObjCIdType() &&
3794          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3795        return ImplicitConversionSequence::Worse;
3796      if (ToPtr2->isObjCIdType() &&
3797          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3798        return ImplicitConversionSequence::Better;
3799
3800      // A conversion to a non-id object pointer type is better than a
3801      // conversion to a qualified 'id' type
3802      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3803        return ImplicitConversionSequence::Worse;
3804      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3805        return ImplicitConversionSequence::Better;
3806
3807      // A conversion to an a non-Class object pointer type or qualified 'Class'
3808      // type is better than a conversion to 'Class'.
3809      if (ToPtr1->isObjCClassType() &&
3810          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3811        return ImplicitConversionSequence::Worse;
3812      if (ToPtr2->isObjCClassType() &&
3813          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3814        return ImplicitConversionSequence::Better;
3815
3816      // A conversion to a non-Class object pointer type is better than a
3817      // conversion to a qualified 'Class' type.
3818      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3819        return ImplicitConversionSequence::Worse;
3820      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3821        return ImplicitConversionSequence::Better;
3822
3823      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3824      if (S.Context.hasSameType(FromType1, FromType2) &&
3825          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3826          (ToAssignLeft != ToAssignRight))
3827        return ToAssignLeft? ImplicitConversionSequence::Worse
3828                           : ImplicitConversionSequence::Better;
3829
3830      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3831      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3832          (FromAssignLeft != FromAssignRight))
3833        return FromAssignLeft? ImplicitConversionSequence::Better
3834        : ImplicitConversionSequence::Worse;
3835    }
3836  }
3837
3838  // Ranking of member-pointer types.
3839  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3840      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3841      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3842    const MemberPointerType * FromMemPointer1 =
3843                                        FromType1->getAs<MemberPointerType>();
3844    const MemberPointerType * ToMemPointer1 =
3845                                          ToType1->getAs<MemberPointerType>();
3846    const MemberPointerType * FromMemPointer2 =
3847                                          FromType2->getAs<MemberPointerType>();
3848    const MemberPointerType * ToMemPointer2 =
3849                                          ToType2->getAs<MemberPointerType>();
3850    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3851    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3852    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3853    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3854    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3855    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3856    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3857    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3858    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3859    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3860      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3861        return ImplicitConversionSequence::Worse;
3862      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3863        return ImplicitConversionSequence::Better;
3864    }
3865    // conversion of B::* to C::* is better than conversion of A::* to C::*
3866    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3867      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3868        return ImplicitConversionSequence::Better;
3869      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3870        return ImplicitConversionSequence::Worse;
3871    }
3872  }
3873
3874  if (SCS1.Second == ICK_Derived_To_Base) {
3875    //   -- conversion of C to B is better than conversion of C to A,
3876    //   -- binding of an expression of type C to a reference of type
3877    //      B& is better than binding an expression of type C to a
3878    //      reference of type A&,
3879    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3880        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3881      if (S.IsDerivedFrom(ToType1, ToType2))
3882        return ImplicitConversionSequence::Better;
3883      else if (S.IsDerivedFrom(ToType2, ToType1))
3884        return ImplicitConversionSequence::Worse;
3885    }
3886
3887    //   -- conversion of B to A is better than conversion of C to A.
3888    //   -- binding of an expression of type B to a reference of type
3889    //      A& is better than binding an expression of type C to a
3890    //      reference of type A&,
3891    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3892        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3893      if (S.IsDerivedFrom(FromType2, FromType1))
3894        return ImplicitConversionSequence::Better;
3895      else if (S.IsDerivedFrom(FromType1, FromType2))
3896        return ImplicitConversionSequence::Worse;
3897    }
3898  }
3899
3900  return ImplicitConversionSequence::Indistinguishable;
3901}
3902
3903/// \brief Determine whether the given type is valid, e.g., it is not an invalid
3904/// C++ class.
3905static bool isTypeValid(QualType T) {
3906  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3907    return !Record->isInvalidDecl();
3908
3909  return true;
3910}
3911
3912/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3913/// determine whether they are reference-related,
3914/// reference-compatible, reference-compatible with added
3915/// qualification, or incompatible, for use in C++ initialization by
3916/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3917/// type, and the first type (T1) is the pointee type of the reference
3918/// type being initialized.
3919Sema::ReferenceCompareResult
3920Sema::CompareReferenceRelationship(SourceLocation Loc,
3921                                   QualType OrigT1, QualType OrigT2,
3922                                   bool &DerivedToBase,
3923                                   bool &ObjCConversion,
3924                                   bool &ObjCLifetimeConversion) {
3925  assert(!OrigT1->isReferenceType() &&
3926    "T1 must be the pointee type of the reference type");
3927  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3928
3929  QualType T1 = Context.getCanonicalType(OrigT1);
3930  QualType T2 = Context.getCanonicalType(OrigT2);
3931  Qualifiers T1Quals, T2Quals;
3932  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3933  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3934
3935  // C++ [dcl.init.ref]p4:
3936  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3937  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3938  //   T1 is a base class of T2.
3939  DerivedToBase = false;
3940  ObjCConversion = false;
3941  ObjCLifetimeConversion = false;
3942  if (UnqualT1 == UnqualT2) {
3943    // Nothing to do.
3944  } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
3945             isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
3946             IsDerivedFrom(UnqualT2, UnqualT1))
3947    DerivedToBase = true;
3948  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3949           UnqualT2->isObjCObjectOrInterfaceType() &&
3950           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3951    ObjCConversion = true;
3952  else
3953    return Ref_Incompatible;
3954
3955  // At this point, we know that T1 and T2 are reference-related (at
3956  // least).
3957
3958  // If the type is an array type, promote the element qualifiers to the type
3959  // for comparison.
3960  if (isa<ArrayType>(T1) && T1Quals)
3961    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3962  if (isa<ArrayType>(T2) && T2Quals)
3963    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3964
3965  // C++ [dcl.init.ref]p4:
3966  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3967  //   reference-related to T2 and cv1 is the same cv-qualification
3968  //   as, or greater cv-qualification than, cv2. For purposes of
3969  //   overload resolution, cases for which cv1 is greater
3970  //   cv-qualification than cv2 are identified as
3971  //   reference-compatible with added qualification (see 13.3.3.2).
3972  //
3973  // Note that we also require equivalence of Objective-C GC and address-space
3974  // qualifiers when performing these computations, so that e.g., an int in
3975  // address space 1 is not reference-compatible with an int in address
3976  // space 2.
3977  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3978      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3979    T1Quals.removeObjCLifetime();
3980    T2Quals.removeObjCLifetime();
3981    ObjCLifetimeConversion = true;
3982  }
3983
3984  if (T1Quals == T2Quals)
3985    return Ref_Compatible;
3986  else if (T1Quals.compatiblyIncludes(T2Quals))
3987    return Ref_Compatible_With_Added_Qualification;
3988  else
3989    return Ref_Related;
3990}
3991
3992/// \brief Look for a user-defined conversion to an value reference-compatible
3993///        with DeclType. Return true if something definite is found.
3994static bool
3995FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3996                         QualType DeclType, SourceLocation DeclLoc,
3997                         Expr *Init, QualType T2, bool AllowRvalues,
3998                         bool AllowExplicit) {
3999  assert(T2->isRecordType() && "Can only find conversions of record types.");
4000  CXXRecordDecl *T2RecordDecl
4001    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4002
4003  OverloadCandidateSet CandidateSet(DeclLoc);
4004  std::pair<CXXRecordDecl::conversion_iterator,
4005            CXXRecordDecl::conversion_iterator>
4006    Conversions = T2RecordDecl->getVisibleConversionFunctions();
4007  for (CXXRecordDecl::conversion_iterator
4008         I = Conversions.first, E = Conversions.second; I != E; ++I) {
4009    NamedDecl *D = *I;
4010    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4011    if (isa<UsingShadowDecl>(D))
4012      D = cast<UsingShadowDecl>(D)->getTargetDecl();
4013
4014    FunctionTemplateDecl *ConvTemplate
4015      = dyn_cast<FunctionTemplateDecl>(D);
4016    CXXConversionDecl *Conv;
4017    if (ConvTemplate)
4018      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4019    else
4020      Conv = cast<CXXConversionDecl>(D);
4021
4022    // If this is an explicit conversion, and we're not allowed to consider
4023    // explicit conversions, skip it.
4024    if (!AllowExplicit && Conv->isExplicit())
4025      continue;
4026
4027    if (AllowRvalues) {
4028      bool DerivedToBase = false;
4029      bool ObjCConversion = false;
4030      bool ObjCLifetimeConversion = false;
4031
4032      // If we are initializing an rvalue reference, don't permit conversion
4033      // functions that return lvalues.
4034      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4035        const ReferenceType *RefType
4036          = Conv->getConversionType()->getAs<LValueReferenceType>();
4037        if (RefType && !RefType->getPointeeType()->isFunctionType())
4038          continue;
4039      }
4040
4041      if (!ConvTemplate &&
4042          S.CompareReferenceRelationship(
4043            DeclLoc,
4044            Conv->getConversionType().getNonReferenceType()
4045              .getUnqualifiedType(),
4046            DeclType.getNonReferenceType().getUnqualifiedType(),
4047            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4048          Sema::Ref_Incompatible)
4049        continue;
4050    } else {
4051      // If the conversion function doesn't return a reference type,
4052      // it can't be considered for this conversion. An rvalue reference
4053      // is only acceptable if its referencee is a function type.
4054
4055      const ReferenceType *RefType =
4056        Conv->getConversionType()->getAs<ReferenceType>();
4057      if (!RefType ||
4058          (!RefType->isLValueReferenceType() &&
4059           !RefType->getPointeeType()->isFunctionType()))
4060        continue;
4061    }
4062
4063    if (ConvTemplate)
4064      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4065                                       Init, DeclType, CandidateSet);
4066    else
4067      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4068                               DeclType, CandidateSet);
4069  }
4070
4071  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4072
4073  OverloadCandidateSet::iterator Best;
4074  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4075  case OR_Success:
4076    // C++ [over.ics.ref]p1:
4077    //
4078    //   [...] If the parameter binds directly to the result of
4079    //   applying a conversion function to the argument
4080    //   expression, the implicit conversion sequence is a
4081    //   user-defined conversion sequence (13.3.3.1.2), with the
4082    //   second standard conversion sequence either an identity
4083    //   conversion or, if the conversion function returns an
4084    //   entity of a type that is a derived class of the parameter
4085    //   type, a derived-to-base Conversion.
4086    if (!Best->FinalConversion.DirectBinding)
4087      return false;
4088
4089    ICS.setUserDefined();
4090    ICS.UserDefined.Before = Best->Conversions[0].Standard;
4091    ICS.UserDefined.After = Best->FinalConversion;
4092    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4093    ICS.UserDefined.ConversionFunction = Best->Function;
4094    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4095    ICS.UserDefined.EllipsisConversion = false;
4096    assert(ICS.UserDefined.After.ReferenceBinding &&
4097           ICS.UserDefined.After.DirectBinding &&
4098           "Expected a direct reference binding!");
4099    return true;
4100
4101  case OR_Ambiguous:
4102    ICS.setAmbiguous();
4103    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4104         Cand != CandidateSet.end(); ++Cand)
4105      if (Cand->Viable)
4106        ICS.Ambiguous.addConversion(Cand->Function);
4107    return true;
4108
4109  case OR_No_Viable_Function:
4110  case OR_Deleted:
4111    // There was no suitable conversion, or we found a deleted
4112    // conversion; continue with other checks.
4113    return false;
4114  }
4115
4116  llvm_unreachable("Invalid OverloadResult!");
4117}
4118
4119/// \brief Compute an implicit conversion sequence for reference
4120/// initialization.
4121static ImplicitConversionSequence
4122TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4123                 SourceLocation DeclLoc,
4124                 bool SuppressUserConversions,
4125                 bool AllowExplicit) {
4126  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4127
4128  // Most paths end in a failed conversion.
4129  ImplicitConversionSequence ICS;
4130  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4131
4132  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4133  QualType T2 = Init->getType();
4134
4135  // If the initializer is the address of an overloaded function, try
4136  // to resolve the overloaded function. If all goes well, T2 is the
4137  // type of the resulting function.
4138  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4139    DeclAccessPair Found;
4140    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4141                                                                false, Found))
4142      T2 = Fn->getType();
4143  }
4144
4145  // Compute some basic properties of the types and the initializer.
4146  bool isRValRef = DeclType->isRValueReferenceType();
4147  bool DerivedToBase = false;
4148  bool ObjCConversion = false;
4149  bool ObjCLifetimeConversion = false;
4150  Expr::Classification InitCategory = Init->Classify(S.Context);
4151  Sema::ReferenceCompareResult RefRelationship
4152    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4153                                     ObjCConversion, ObjCLifetimeConversion);
4154
4155
4156  // C++0x [dcl.init.ref]p5:
4157  //   A reference to type "cv1 T1" is initialized by an expression
4158  //   of type "cv2 T2" as follows:
4159
4160  //     -- If reference is an lvalue reference and the initializer expression
4161  if (!isRValRef) {
4162    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4163    //        reference-compatible with "cv2 T2," or
4164    //
4165    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4166    if (InitCategory.isLValue() &&
4167        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4168      // C++ [over.ics.ref]p1:
4169      //   When a parameter of reference type binds directly (8.5.3)
4170      //   to an argument expression, the implicit conversion sequence
4171      //   is the identity conversion, unless the argument expression
4172      //   has a type that is a derived class of the parameter type,
4173      //   in which case the implicit conversion sequence is a
4174      //   derived-to-base Conversion (13.3.3.1).
4175      ICS.setStandard();
4176      ICS.Standard.First = ICK_Identity;
4177      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4178                         : ObjCConversion? ICK_Compatible_Conversion
4179                         : ICK_Identity;
4180      ICS.Standard.Third = ICK_Identity;
4181      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4182      ICS.Standard.setToType(0, T2);
4183      ICS.Standard.setToType(1, T1);
4184      ICS.Standard.setToType(2, T1);
4185      ICS.Standard.ReferenceBinding = true;
4186      ICS.Standard.DirectBinding = true;
4187      ICS.Standard.IsLvalueReference = !isRValRef;
4188      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4189      ICS.Standard.BindsToRvalue = false;
4190      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4191      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4192      ICS.Standard.CopyConstructor = 0;
4193
4194      // Nothing more to do: the inaccessibility/ambiguity check for
4195      // derived-to-base conversions is suppressed when we're
4196      // computing the implicit conversion sequence (C++
4197      // [over.best.ics]p2).
4198      return ICS;
4199    }
4200
4201    //       -- has a class type (i.e., T2 is a class type), where T1 is
4202    //          not reference-related to T2, and can be implicitly
4203    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4204    //          is reference-compatible with "cv3 T3" 92) (this
4205    //          conversion is selected by enumerating the applicable
4206    //          conversion functions (13.3.1.6) and choosing the best
4207    //          one through overload resolution (13.3)),
4208    if (!SuppressUserConversions && T2->isRecordType() &&
4209        !S.RequireCompleteType(DeclLoc, T2, 0) &&
4210        RefRelationship == Sema::Ref_Incompatible) {
4211      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4212                                   Init, T2, /*AllowRvalues=*/false,
4213                                   AllowExplicit))
4214        return ICS;
4215    }
4216  }
4217
4218  //     -- Otherwise, the reference shall be an lvalue reference to a
4219  //        non-volatile const type (i.e., cv1 shall be const), or the reference
4220  //        shall be an rvalue reference.
4221  //
4222  // We actually handle one oddity of C++ [over.ics.ref] at this
4223  // point, which is that, due to p2 (which short-circuits reference
4224  // binding by only attempting a simple conversion for non-direct
4225  // bindings) and p3's strange wording, we allow a const volatile
4226  // reference to bind to an rvalue. Hence the check for the presence
4227  // of "const" rather than checking for "const" being the only
4228  // qualifier.
4229  // This is also the point where rvalue references and lvalue inits no longer
4230  // go together.
4231  if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4232    return ICS;
4233
4234  //       -- If the initializer expression
4235  //
4236  //            -- is an xvalue, class prvalue, array prvalue or function
4237  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4238  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4239      (InitCategory.isXValue() ||
4240      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4241      (InitCategory.isLValue() && T2->isFunctionType()))) {
4242    ICS.setStandard();
4243    ICS.Standard.First = ICK_Identity;
4244    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4245                      : ObjCConversion? ICK_Compatible_Conversion
4246                      : ICK_Identity;
4247    ICS.Standard.Third = ICK_Identity;
4248    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4249    ICS.Standard.setToType(0, T2);
4250    ICS.Standard.setToType(1, T1);
4251    ICS.Standard.setToType(2, T1);
4252    ICS.Standard.ReferenceBinding = true;
4253    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4254    // binding unless we're binding to a class prvalue.
4255    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4256    // allow the use of rvalue references in C++98/03 for the benefit of
4257    // standard library implementors; therefore, we need the xvalue check here.
4258    ICS.Standard.DirectBinding =
4259      S.getLangOpts().CPlusPlus11 ||
4260      (InitCategory.isPRValue() && !T2->isRecordType());
4261    ICS.Standard.IsLvalueReference = !isRValRef;
4262    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4263    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4264    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4265    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4266    ICS.Standard.CopyConstructor = 0;
4267    return ICS;
4268  }
4269
4270  //            -- has a class type (i.e., T2 is a class type), where T1 is not
4271  //               reference-related to T2, and can be implicitly converted to
4272  //               an xvalue, class prvalue, or function lvalue of type
4273  //               "cv3 T3", where "cv1 T1" is reference-compatible with
4274  //               "cv3 T3",
4275  //
4276  //          then the reference is bound to the value of the initializer
4277  //          expression in the first case and to the result of the conversion
4278  //          in the second case (or, in either case, to an appropriate base
4279  //          class subobject).
4280  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4281      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4282      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4283                               Init, T2, /*AllowRvalues=*/true,
4284                               AllowExplicit)) {
4285    // In the second case, if the reference is an rvalue reference
4286    // and the second standard conversion sequence of the
4287    // user-defined conversion sequence includes an lvalue-to-rvalue
4288    // conversion, the program is ill-formed.
4289    if (ICS.isUserDefined() && isRValRef &&
4290        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4291      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4292
4293    return ICS;
4294  }
4295
4296  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4297  //          initialized from the initializer expression using the
4298  //          rules for a non-reference copy initialization (8.5). The
4299  //          reference is then bound to the temporary. If T1 is
4300  //          reference-related to T2, cv1 must be the same
4301  //          cv-qualification as, or greater cv-qualification than,
4302  //          cv2; otherwise, the program is ill-formed.
4303  if (RefRelationship == Sema::Ref_Related) {
4304    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4305    // we would be reference-compatible or reference-compatible with
4306    // added qualification. But that wasn't the case, so the reference
4307    // initialization fails.
4308    //
4309    // Note that we only want to check address spaces and cvr-qualifiers here.
4310    // ObjC GC and lifetime qualifiers aren't important.
4311    Qualifiers T1Quals = T1.getQualifiers();
4312    Qualifiers T2Quals = T2.getQualifiers();
4313    T1Quals.removeObjCGCAttr();
4314    T1Quals.removeObjCLifetime();
4315    T2Quals.removeObjCGCAttr();
4316    T2Quals.removeObjCLifetime();
4317    if (!T1Quals.compatiblyIncludes(T2Quals))
4318      return ICS;
4319  }
4320
4321  // If at least one of the types is a class type, the types are not
4322  // related, and we aren't allowed any user conversions, the
4323  // reference binding fails. This case is important for breaking
4324  // recursion, since TryImplicitConversion below will attempt to
4325  // create a temporary through the use of a copy constructor.
4326  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4327      (T1->isRecordType() || T2->isRecordType()))
4328    return ICS;
4329
4330  // If T1 is reference-related to T2 and the reference is an rvalue
4331  // reference, the initializer expression shall not be an lvalue.
4332  if (RefRelationship >= Sema::Ref_Related &&
4333      isRValRef && Init->Classify(S.Context).isLValue())
4334    return ICS;
4335
4336  // C++ [over.ics.ref]p2:
4337  //   When a parameter of reference type is not bound directly to
4338  //   an argument expression, the conversion sequence is the one
4339  //   required to convert the argument expression to the
4340  //   underlying type of the reference according to
4341  //   13.3.3.1. Conceptually, this conversion sequence corresponds
4342  //   to copy-initializing a temporary of the underlying type with
4343  //   the argument expression. Any difference in top-level
4344  //   cv-qualification is subsumed by the initialization itself
4345  //   and does not constitute a conversion.
4346  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4347                              /*AllowExplicit=*/false,
4348                              /*InOverloadResolution=*/false,
4349                              /*CStyle=*/false,
4350                              /*AllowObjCWritebackConversion=*/false);
4351
4352  // Of course, that's still a reference binding.
4353  if (ICS.isStandard()) {
4354    ICS.Standard.ReferenceBinding = true;
4355    ICS.Standard.IsLvalueReference = !isRValRef;
4356    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4357    ICS.Standard.BindsToRvalue = true;
4358    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4359    ICS.Standard.ObjCLifetimeConversionBinding = false;
4360  } else if (ICS.isUserDefined()) {
4361    // Don't allow rvalue references to bind to lvalues.
4362    if (DeclType->isRValueReferenceType()) {
4363      if (const ReferenceType *RefType
4364            = ICS.UserDefined.ConversionFunction->getResultType()
4365                ->getAs<LValueReferenceType>()) {
4366        if (!RefType->getPointeeType()->isFunctionType()) {
4367          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4368                     DeclType);
4369          return ICS;
4370        }
4371      }
4372    }
4373
4374    ICS.UserDefined.After.ReferenceBinding = true;
4375    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4376    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4377    ICS.UserDefined.After.BindsToRvalue = true;
4378    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4379    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4380  }
4381
4382  return ICS;
4383}
4384
4385static ImplicitConversionSequence
4386TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4387                      bool SuppressUserConversions,
4388                      bool InOverloadResolution,
4389                      bool AllowObjCWritebackConversion,
4390                      bool AllowExplicit = false);
4391
4392/// TryListConversion - Try to copy-initialize a value of type ToType from the
4393/// initializer list From.
4394static ImplicitConversionSequence
4395TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4396                  bool SuppressUserConversions,
4397                  bool InOverloadResolution,
4398                  bool AllowObjCWritebackConversion) {
4399  // C++11 [over.ics.list]p1:
4400  //   When an argument is an initializer list, it is not an expression and
4401  //   special rules apply for converting it to a parameter type.
4402
4403  ImplicitConversionSequence Result;
4404  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4405  Result.setListInitializationSequence();
4406
4407  // We need a complete type for what follows. Incomplete types can never be
4408  // initialized from init lists.
4409  if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
4410    return Result;
4411
4412  // C++11 [over.ics.list]p2:
4413  //   If the parameter type is std::initializer_list<X> or "array of X" and
4414  //   all the elements can be implicitly converted to X, the implicit
4415  //   conversion sequence is the worst conversion necessary to convert an
4416  //   element of the list to X.
4417  bool toStdInitializerList = false;
4418  QualType X;
4419  if (ToType->isArrayType())
4420    X = S.Context.getAsArrayType(ToType)->getElementType();
4421  else
4422    toStdInitializerList = S.isStdInitializerList(ToType, &X);
4423  if (!X.isNull()) {
4424    for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4425      Expr *Init = From->getInit(i);
4426      ImplicitConversionSequence ICS =
4427          TryCopyInitialization(S, Init, X, SuppressUserConversions,
4428                                InOverloadResolution,
4429                                AllowObjCWritebackConversion);
4430      // If a single element isn't convertible, fail.
4431      if (ICS.isBad()) {
4432        Result = ICS;
4433        break;
4434      }
4435      // Otherwise, look for the worst conversion.
4436      if (Result.isBad() ||
4437          CompareImplicitConversionSequences(S, ICS, Result) ==
4438              ImplicitConversionSequence::Worse)
4439        Result = ICS;
4440    }
4441
4442    // For an empty list, we won't have computed any conversion sequence.
4443    // Introduce the identity conversion sequence.
4444    if (From->getNumInits() == 0) {
4445      Result.setStandard();
4446      Result.Standard.setAsIdentityConversion();
4447      Result.Standard.setFromType(ToType);
4448      Result.Standard.setAllToTypes(ToType);
4449    }
4450
4451    Result.setListInitializationSequence();
4452    Result.setStdInitializerListElement(toStdInitializerList);
4453    return Result;
4454  }
4455
4456  // C++11 [over.ics.list]p3:
4457  //   Otherwise, if the parameter is a non-aggregate class X and overload
4458  //   resolution chooses a single best constructor [...] the implicit
4459  //   conversion sequence is a user-defined conversion sequence. If multiple
4460  //   constructors are viable but none is better than the others, the
4461  //   implicit conversion sequence is a user-defined conversion sequence.
4462  if (ToType->isRecordType() && !ToType->isAggregateType()) {
4463    // This function can deal with initializer lists.
4464    Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4465                                      /*AllowExplicit=*/false,
4466                                      InOverloadResolution, /*CStyle=*/false,
4467                                      AllowObjCWritebackConversion);
4468    Result.setListInitializationSequence();
4469    return Result;
4470  }
4471
4472  // C++11 [over.ics.list]p4:
4473  //   Otherwise, if the parameter has an aggregate type which can be
4474  //   initialized from the initializer list [...] the implicit conversion
4475  //   sequence is a user-defined conversion sequence.
4476  if (ToType->isAggregateType()) {
4477    // Type is an aggregate, argument is an init list. At this point it comes
4478    // down to checking whether the initialization works.
4479    // FIXME: Find out whether this parameter is consumed or not.
4480    InitializedEntity Entity =
4481        InitializedEntity::InitializeParameter(S.Context, ToType,
4482                                               /*Consumed=*/false);
4483    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4484      Result.setUserDefined();
4485      Result.UserDefined.Before.setAsIdentityConversion();
4486      // Initializer lists don't have a type.
4487      Result.UserDefined.Before.setFromType(QualType());
4488      Result.UserDefined.Before.setAllToTypes(QualType());
4489
4490      Result.UserDefined.After.setAsIdentityConversion();
4491      Result.UserDefined.After.setFromType(ToType);
4492      Result.UserDefined.After.setAllToTypes(ToType);
4493      Result.UserDefined.ConversionFunction = 0;
4494    }
4495    return Result;
4496  }
4497
4498  // C++11 [over.ics.list]p5:
4499  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4500  if (ToType->isReferenceType()) {
4501    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4502    // mention initializer lists in any way. So we go by what list-
4503    // initialization would do and try to extrapolate from that.
4504
4505    QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4506
4507    // If the initializer list has a single element that is reference-related
4508    // to the parameter type, we initialize the reference from that.
4509    if (From->getNumInits() == 1) {
4510      Expr *Init = From->getInit(0);
4511
4512      QualType T2 = Init->getType();
4513
4514      // If the initializer is the address of an overloaded function, try
4515      // to resolve the overloaded function. If all goes well, T2 is the
4516      // type of the resulting function.
4517      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4518        DeclAccessPair Found;
4519        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4520                                   Init, ToType, false, Found))
4521          T2 = Fn->getType();
4522      }
4523
4524      // Compute some basic properties of the types and the initializer.
4525      bool dummy1 = false;
4526      bool dummy2 = false;
4527      bool dummy3 = false;
4528      Sema::ReferenceCompareResult RefRelationship
4529        = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4530                                         dummy2, dummy3);
4531
4532      if (RefRelationship >= Sema::Ref_Related)
4533        return TryReferenceInit(S, Init, ToType,
4534                                /*FIXME:*/From->getLocStart(),
4535                                SuppressUserConversions,
4536                                /*AllowExplicit=*/false);
4537    }
4538
4539    // Otherwise, we bind the reference to a temporary created from the
4540    // initializer list.
4541    Result = TryListConversion(S, From, T1, SuppressUserConversions,
4542                               InOverloadResolution,
4543                               AllowObjCWritebackConversion);
4544    if (Result.isFailure())
4545      return Result;
4546    assert(!Result.isEllipsis() &&
4547           "Sub-initialization cannot result in ellipsis conversion.");
4548
4549    // Can we even bind to a temporary?
4550    if (ToType->isRValueReferenceType() ||
4551        (T1.isConstQualified() && !T1.isVolatileQualified())) {
4552      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4553                                            Result.UserDefined.After;
4554      SCS.ReferenceBinding = true;
4555      SCS.IsLvalueReference = ToType->isLValueReferenceType();
4556      SCS.BindsToRvalue = true;
4557      SCS.BindsToFunctionLvalue = false;
4558      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4559      SCS.ObjCLifetimeConversionBinding = false;
4560    } else
4561      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4562                    From, ToType);
4563    return Result;
4564  }
4565
4566  // C++11 [over.ics.list]p6:
4567  //   Otherwise, if the parameter type is not a class:
4568  if (!ToType->isRecordType()) {
4569    //    - if the initializer list has one element, the implicit conversion
4570    //      sequence is the one required to convert the element to the
4571    //      parameter type.
4572    unsigned NumInits = From->getNumInits();
4573    if (NumInits == 1)
4574      Result = TryCopyInitialization(S, From->getInit(0), ToType,
4575                                     SuppressUserConversions,
4576                                     InOverloadResolution,
4577                                     AllowObjCWritebackConversion);
4578    //    - if the initializer list has no elements, the implicit conversion
4579    //      sequence is the identity conversion.
4580    else if (NumInits == 0) {
4581      Result.setStandard();
4582      Result.Standard.setAsIdentityConversion();
4583      Result.Standard.setFromType(ToType);
4584      Result.Standard.setAllToTypes(ToType);
4585    }
4586    Result.setListInitializationSequence();
4587    return Result;
4588  }
4589
4590  // C++11 [over.ics.list]p7:
4591  //   In all cases other than those enumerated above, no conversion is possible
4592  return Result;
4593}
4594
4595/// TryCopyInitialization - Try to copy-initialize a value of type
4596/// ToType from the expression From. Return the implicit conversion
4597/// sequence required to pass this argument, which may be a bad
4598/// conversion sequence (meaning that the argument cannot be passed to
4599/// a parameter of this type). If @p SuppressUserConversions, then we
4600/// do not permit any user-defined conversion sequences.
4601static ImplicitConversionSequence
4602TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4603                      bool SuppressUserConversions,
4604                      bool InOverloadResolution,
4605                      bool AllowObjCWritebackConversion,
4606                      bool AllowExplicit) {
4607  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4608    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4609                             InOverloadResolution,AllowObjCWritebackConversion);
4610
4611  if (ToType->isReferenceType())
4612    return TryReferenceInit(S, From, ToType,
4613                            /*FIXME:*/From->getLocStart(),
4614                            SuppressUserConversions,
4615                            AllowExplicit);
4616
4617  return TryImplicitConversion(S, From, ToType,
4618                               SuppressUserConversions,
4619                               /*AllowExplicit=*/false,
4620                               InOverloadResolution,
4621                               /*CStyle=*/false,
4622                               AllowObjCWritebackConversion);
4623}
4624
4625static bool TryCopyInitialization(const CanQualType FromQTy,
4626                                  const CanQualType ToQTy,
4627                                  Sema &S,
4628                                  SourceLocation Loc,
4629                                  ExprValueKind FromVK) {
4630  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4631  ImplicitConversionSequence ICS =
4632    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4633
4634  return !ICS.isBad();
4635}
4636
4637/// TryObjectArgumentInitialization - Try to initialize the object
4638/// parameter of the given member function (@c Method) from the
4639/// expression @p From.
4640static ImplicitConversionSequence
4641TryObjectArgumentInitialization(Sema &S, QualType FromType,
4642                                Expr::Classification FromClassification,
4643                                CXXMethodDecl *Method,
4644                                CXXRecordDecl *ActingContext) {
4645  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4646  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4647  //                 const volatile object.
4648  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4649    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4650  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4651
4652  // Set up the conversion sequence as a "bad" conversion, to allow us
4653  // to exit early.
4654  ImplicitConversionSequence ICS;
4655
4656  // We need to have an object of class type.
4657  if (const PointerType *PT = FromType->getAs<PointerType>()) {
4658    FromType = PT->getPointeeType();
4659
4660    // When we had a pointer, it's implicitly dereferenced, so we
4661    // better have an lvalue.
4662    assert(FromClassification.isLValue());
4663  }
4664
4665  assert(FromType->isRecordType());
4666
4667  // C++0x [over.match.funcs]p4:
4668  //   For non-static member functions, the type of the implicit object
4669  //   parameter is
4670  //
4671  //     - "lvalue reference to cv X" for functions declared without a
4672  //        ref-qualifier or with the & ref-qualifier
4673  //     - "rvalue reference to cv X" for functions declared with the &&
4674  //        ref-qualifier
4675  //
4676  // where X is the class of which the function is a member and cv is the
4677  // cv-qualification on the member function declaration.
4678  //
4679  // However, when finding an implicit conversion sequence for the argument, we
4680  // are not allowed to create temporaries or perform user-defined conversions
4681  // (C++ [over.match.funcs]p5). We perform a simplified version of
4682  // reference binding here, that allows class rvalues to bind to
4683  // non-constant references.
4684
4685  // First check the qualifiers.
4686  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4687  if (ImplicitParamType.getCVRQualifiers()
4688                                    != FromTypeCanon.getLocalCVRQualifiers() &&
4689      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4690    ICS.setBad(BadConversionSequence::bad_qualifiers,
4691               FromType, ImplicitParamType);
4692    return ICS;
4693  }
4694
4695  // Check that we have either the same type or a derived type. It
4696  // affects the conversion rank.
4697  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4698  ImplicitConversionKind SecondKind;
4699  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4700    SecondKind = ICK_Identity;
4701  } else if (S.IsDerivedFrom(FromType, ClassType))
4702    SecondKind = ICK_Derived_To_Base;
4703  else {
4704    ICS.setBad(BadConversionSequence::unrelated_class,
4705               FromType, ImplicitParamType);
4706    return ICS;
4707  }
4708
4709  // Check the ref-qualifier.
4710  switch (Method->getRefQualifier()) {
4711  case RQ_None:
4712    // Do nothing; we don't care about lvalueness or rvalueness.
4713    break;
4714
4715  case RQ_LValue:
4716    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4717      // non-const lvalue reference cannot bind to an rvalue
4718      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4719                 ImplicitParamType);
4720      return ICS;
4721    }
4722    break;
4723
4724  case RQ_RValue:
4725    if (!FromClassification.isRValue()) {
4726      // rvalue reference cannot bind to an lvalue
4727      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4728                 ImplicitParamType);
4729      return ICS;
4730    }
4731    break;
4732  }
4733
4734  // Success. Mark this as a reference binding.
4735  ICS.setStandard();
4736  ICS.Standard.setAsIdentityConversion();
4737  ICS.Standard.Second = SecondKind;
4738  ICS.Standard.setFromType(FromType);
4739  ICS.Standard.setAllToTypes(ImplicitParamType);
4740  ICS.Standard.ReferenceBinding = true;
4741  ICS.Standard.DirectBinding = true;
4742  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4743  ICS.Standard.BindsToFunctionLvalue = false;
4744  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4745  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4746    = (Method->getRefQualifier() == RQ_None);
4747  return ICS;
4748}
4749
4750/// PerformObjectArgumentInitialization - Perform initialization of
4751/// the implicit object parameter for the given Method with the given
4752/// expression.
4753ExprResult
4754Sema::PerformObjectArgumentInitialization(Expr *From,
4755                                          NestedNameSpecifier *Qualifier,
4756                                          NamedDecl *FoundDecl,
4757                                          CXXMethodDecl *Method) {
4758  QualType FromRecordType, DestType;
4759  QualType ImplicitParamRecordType  =
4760    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4761
4762  Expr::Classification FromClassification;
4763  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4764    FromRecordType = PT->getPointeeType();
4765    DestType = Method->getThisType(Context);
4766    FromClassification = Expr::Classification::makeSimpleLValue();
4767  } else {
4768    FromRecordType = From->getType();
4769    DestType = ImplicitParamRecordType;
4770    FromClassification = From->Classify(Context);
4771  }
4772
4773  // Note that we always use the true parent context when performing
4774  // the actual argument initialization.
4775  ImplicitConversionSequence ICS
4776    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4777                                      Method, Method->getParent());
4778  if (ICS.isBad()) {
4779    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4780      Qualifiers FromQs = FromRecordType.getQualifiers();
4781      Qualifiers ToQs = DestType.getQualifiers();
4782      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4783      if (CVR) {
4784        Diag(From->getLocStart(),
4785             diag::err_member_function_call_bad_cvr)
4786          << Method->getDeclName() << FromRecordType << (CVR - 1)
4787          << From->getSourceRange();
4788        Diag(Method->getLocation(), diag::note_previous_decl)
4789          << Method->getDeclName();
4790        return ExprError();
4791      }
4792    }
4793
4794    return Diag(From->getLocStart(),
4795                diag::err_implicit_object_parameter_init)
4796       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4797  }
4798
4799  if (ICS.Standard.Second == ICK_Derived_To_Base) {
4800    ExprResult FromRes =
4801      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4802    if (FromRes.isInvalid())
4803      return ExprError();
4804    From = FromRes.take();
4805  }
4806
4807  if (!Context.hasSameType(From->getType(), DestType))
4808    From = ImpCastExprToType(From, DestType, CK_NoOp,
4809                             From->getValueKind()).take();
4810  return Owned(From);
4811}
4812
4813/// TryContextuallyConvertToBool - Attempt to contextually convert the
4814/// expression From to bool (C++0x [conv]p3).
4815static ImplicitConversionSequence
4816TryContextuallyConvertToBool(Sema &S, Expr *From) {
4817  // FIXME: This is pretty broken.
4818  return TryImplicitConversion(S, From, S.Context.BoolTy,
4819                               // FIXME: Are these flags correct?
4820                               /*SuppressUserConversions=*/false,
4821                               /*AllowExplicit=*/true,
4822                               /*InOverloadResolution=*/false,
4823                               /*CStyle=*/false,
4824                               /*AllowObjCWritebackConversion=*/false);
4825}
4826
4827/// PerformContextuallyConvertToBool - Perform a contextual conversion
4828/// of the expression From to bool (C++0x [conv]p3).
4829ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4830  if (checkPlaceholderForOverload(*this, From))
4831    return ExprError();
4832
4833  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4834  if (!ICS.isBad())
4835    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4836
4837  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4838    return Diag(From->getLocStart(),
4839                diag::err_typecheck_bool_condition)
4840                  << From->getType() << From->getSourceRange();
4841  return ExprError();
4842}
4843
4844/// Check that the specified conversion is permitted in a converted constant
4845/// expression, according to C++11 [expr.const]p3. Return true if the conversion
4846/// is acceptable.
4847static bool CheckConvertedConstantConversions(Sema &S,
4848                                              StandardConversionSequence &SCS) {
4849  // Since we know that the target type is an integral or unscoped enumeration
4850  // type, most conversion kinds are impossible. All possible First and Third
4851  // conversions are fine.
4852  switch (SCS.Second) {
4853  case ICK_Identity:
4854  case ICK_Integral_Promotion:
4855  case ICK_Integral_Conversion:
4856  case ICK_Zero_Event_Conversion:
4857    return true;
4858
4859  case ICK_Boolean_Conversion:
4860    // Conversion from an integral or unscoped enumeration type to bool is
4861    // classified as ICK_Boolean_Conversion, but it's also an integral
4862    // conversion, so it's permitted in a converted constant expression.
4863    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4864           SCS.getToType(2)->isBooleanType();
4865
4866  case ICK_Floating_Integral:
4867  case ICK_Complex_Real:
4868    return false;
4869
4870  case ICK_Lvalue_To_Rvalue:
4871  case ICK_Array_To_Pointer:
4872  case ICK_Function_To_Pointer:
4873  case ICK_NoReturn_Adjustment:
4874  case ICK_Qualification:
4875  case ICK_Compatible_Conversion:
4876  case ICK_Vector_Conversion:
4877  case ICK_Vector_Splat:
4878  case ICK_Derived_To_Base:
4879  case ICK_Pointer_Conversion:
4880  case ICK_Pointer_Member:
4881  case ICK_Block_Pointer_Conversion:
4882  case ICK_Writeback_Conversion:
4883  case ICK_Floating_Promotion:
4884  case ICK_Complex_Promotion:
4885  case ICK_Complex_Conversion:
4886  case ICK_Floating_Conversion:
4887  case ICK_TransparentUnionConversion:
4888    llvm_unreachable("unexpected second conversion kind");
4889
4890  case ICK_Num_Conversion_Kinds:
4891    break;
4892  }
4893
4894  llvm_unreachable("unknown conversion kind");
4895}
4896
4897/// CheckConvertedConstantExpression - Check that the expression From is a
4898/// converted constant expression of type T, perform the conversion and produce
4899/// the converted expression, per C++11 [expr.const]p3.
4900ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4901                                                  llvm::APSInt &Value,
4902                                                  CCEKind CCE) {
4903  assert(LangOpts.CPlusPlus11 && "converted constant expression outside C++11");
4904  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4905
4906  if (checkPlaceholderForOverload(*this, From))
4907    return ExprError();
4908
4909  // C++11 [expr.const]p3 with proposed wording fixes:
4910  //  A converted constant expression of type T is a core constant expression,
4911  //  implicitly converted to a prvalue of type T, where the converted
4912  //  expression is a literal constant expression and the implicit conversion
4913  //  sequence contains only user-defined conversions, lvalue-to-rvalue
4914  //  conversions, integral promotions, and integral conversions other than
4915  //  narrowing conversions.
4916  ImplicitConversionSequence ICS =
4917    TryImplicitConversion(From, T,
4918                          /*SuppressUserConversions=*/false,
4919                          /*AllowExplicit=*/false,
4920                          /*InOverloadResolution=*/false,
4921                          /*CStyle=*/false,
4922                          /*AllowObjcWritebackConversion=*/false);
4923  StandardConversionSequence *SCS = 0;
4924  switch (ICS.getKind()) {
4925  case ImplicitConversionSequence::StandardConversion:
4926    if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4927      return Diag(From->getLocStart(),
4928                  diag::err_typecheck_converted_constant_expression_disallowed)
4929               << From->getType() << From->getSourceRange() << T;
4930    SCS = &ICS.Standard;
4931    break;
4932  case ImplicitConversionSequence::UserDefinedConversion:
4933    // We are converting from class type to an integral or enumeration type, so
4934    // the Before sequence must be trivial.
4935    if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4936      return Diag(From->getLocStart(),
4937                  diag::err_typecheck_converted_constant_expression_disallowed)
4938               << From->getType() << From->getSourceRange() << T;
4939    SCS = &ICS.UserDefined.After;
4940    break;
4941  case ImplicitConversionSequence::AmbiguousConversion:
4942  case ImplicitConversionSequence::BadConversion:
4943    if (!DiagnoseMultipleUserDefinedConversion(From, T))
4944      return Diag(From->getLocStart(),
4945                  diag::err_typecheck_converted_constant_expression)
4946                    << From->getType() << From->getSourceRange() << T;
4947    return ExprError();
4948
4949  case ImplicitConversionSequence::EllipsisConversion:
4950    llvm_unreachable("ellipsis conversion in converted constant expression");
4951  }
4952
4953  ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4954  if (Result.isInvalid())
4955    return Result;
4956
4957  // Check for a narrowing implicit conversion.
4958  APValue PreNarrowingValue;
4959  QualType PreNarrowingType;
4960  switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
4961                                PreNarrowingType)) {
4962  case NK_Variable_Narrowing:
4963    // Implicit conversion to a narrower type, and the value is not a constant
4964    // expression. We'll diagnose this in a moment.
4965  case NK_Not_Narrowing:
4966    break;
4967
4968  case NK_Constant_Narrowing:
4969    Diag(From->getLocStart(),
4970         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4971                             diag::err_cce_narrowing)
4972      << CCE << /*Constant*/1
4973      << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
4974    break;
4975
4976  case NK_Type_Narrowing:
4977    Diag(From->getLocStart(),
4978         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4979                             diag::err_cce_narrowing)
4980      << CCE << /*Constant*/0 << From->getType() << T;
4981    break;
4982  }
4983
4984  // Check the expression is a constant expression.
4985  SmallVector<PartialDiagnosticAt, 8> Notes;
4986  Expr::EvalResult Eval;
4987  Eval.Diag = &Notes;
4988
4989  if (!Result.get()->EvaluateAsRValue(Eval, Context) || !Eval.Val.isInt()) {
4990    // The expression can't be folded, so we can't keep it at this position in
4991    // the AST.
4992    Result = ExprError();
4993  } else {
4994    Value = Eval.Val.getInt();
4995
4996    if (Notes.empty()) {
4997      // It's a constant expression.
4998      return Result;
4999    }
5000  }
5001
5002  // It's not a constant expression. Produce an appropriate diagnostic.
5003  if (Notes.size() == 1 &&
5004      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5005    Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5006  else {
5007    Diag(From->getLocStart(), diag::err_expr_not_cce)
5008      << CCE << From->getSourceRange();
5009    for (unsigned I = 0; I < Notes.size(); ++I)
5010      Diag(Notes[I].first, Notes[I].second);
5011  }
5012  return Result;
5013}
5014
5015/// dropPointerConversions - If the given standard conversion sequence
5016/// involves any pointer conversions, remove them.  This may change
5017/// the result type of the conversion sequence.
5018static void dropPointerConversion(StandardConversionSequence &SCS) {
5019  if (SCS.Second == ICK_Pointer_Conversion) {
5020    SCS.Second = ICK_Identity;
5021    SCS.Third = ICK_Identity;
5022    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5023  }
5024}
5025
5026/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5027/// convert the expression From to an Objective-C pointer type.
5028static ImplicitConversionSequence
5029TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5030  // Do an implicit conversion to 'id'.
5031  QualType Ty = S.Context.getObjCIdType();
5032  ImplicitConversionSequence ICS
5033    = TryImplicitConversion(S, From, Ty,
5034                            // FIXME: Are these flags correct?
5035                            /*SuppressUserConversions=*/false,
5036                            /*AllowExplicit=*/true,
5037                            /*InOverloadResolution=*/false,
5038                            /*CStyle=*/false,
5039                            /*AllowObjCWritebackConversion=*/false);
5040
5041  // Strip off any final conversions to 'id'.
5042  switch (ICS.getKind()) {
5043  case ImplicitConversionSequence::BadConversion:
5044  case ImplicitConversionSequence::AmbiguousConversion:
5045  case ImplicitConversionSequence::EllipsisConversion:
5046    break;
5047
5048  case ImplicitConversionSequence::UserDefinedConversion:
5049    dropPointerConversion(ICS.UserDefined.After);
5050    break;
5051
5052  case ImplicitConversionSequence::StandardConversion:
5053    dropPointerConversion(ICS.Standard);
5054    break;
5055  }
5056
5057  return ICS;
5058}
5059
5060/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5061/// conversion of the expression From to an Objective-C pointer type.
5062ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5063  if (checkPlaceholderForOverload(*this, From))
5064    return ExprError();
5065
5066  QualType Ty = Context.getObjCIdType();
5067  ImplicitConversionSequence ICS =
5068    TryContextuallyConvertToObjCPointer(*this, From);
5069  if (!ICS.isBad())
5070    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5071  return ExprError();
5072}
5073
5074/// Determine whether the provided type is an integral type, or an enumeration
5075/// type of a permitted flavor.
5076bool Sema::ICEConvertDiagnoser::match(QualType T) {
5077  return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5078                                 : T->isIntegralOrUnscopedEnumerationType();
5079}
5080
5081static ExprResult
5082diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5083                            Sema::ContextualImplicitConverter &Converter,
5084                            QualType T, UnresolvedSetImpl &ViableConversions) {
5085
5086  if (Converter.Suppress)
5087    return ExprError();
5088
5089  Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5090  for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5091    CXXConversionDecl *Conv =
5092        cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5093    QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5094    Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5095  }
5096  return SemaRef.Owned(From);
5097}
5098
5099static bool
5100diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5101                           Sema::ContextualImplicitConverter &Converter,
5102                           QualType T, bool HadMultipleCandidates,
5103                           UnresolvedSetImpl &ExplicitConversions) {
5104  if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5105    DeclAccessPair Found = ExplicitConversions[0];
5106    CXXConversionDecl *Conversion =
5107        cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5108
5109    // The user probably meant to invoke the given explicit
5110    // conversion; use it.
5111    QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5112    std::string TypeStr;
5113    ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5114
5115    Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5116        << FixItHint::CreateInsertion(From->getLocStart(),
5117                                      "static_cast<" + TypeStr + ">(")
5118        << FixItHint::CreateInsertion(
5119               SemaRef.PP.getLocForEndOfToken(From->getLocEnd()), ")");
5120    Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5121
5122    // If we aren't in a SFINAE context, build a call to the
5123    // explicit conversion function.
5124    if (SemaRef.isSFINAEContext())
5125      return true;
5126
5127    SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5128    ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5129                                                       HadMultipleCandidates);
5130    if (Result.isInvalid())
5131      return true;
5132    // Record usage of conversion in an implicit cast.
5133    From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5134                                    CK_UserDefinedConversion, Result.get(), 0,
5135                                    Result.get()->getValueKind());
5136  }
5137  return false;
5138}
5139
5140static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5141                             Sema::ContextualImplicitConverter &Converter,
5142                             QualType T, bool HadMultipleCandidates,
5143                             DeclAccessPair &Found) {
5144  CXXConversionDecl *Conversion =
5145      cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5146  SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5147
5148  QualType ToType = Conversion->getConversionType().getNonReferenceType();
5149  if (!Converter.SuppressConversion) {
5150    if (SemaRef.isSFINAEContext())
5151      return true;
5152
5153    Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5154        << From->getSourceRange();
5155  }
5156
5157  ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5158                                                     HadMultipleCandidates);
5159  if (Result.isInvalid())
5160    return true;
5161  // Record usage of conversion in an implicit cast.
5162  From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5163                                  CK_UserDefinedConversion, Result.get(), 0,
5164                                  Result.get()->getValueKind());
5165  return false;
5166}
5167
5168static ExprResult finishContextualImplicitConversion(
5169    Sema &SemaRef, SourceLocation Loc, Expr *From,
5170    Sema::ContextualImplicitConverter &Converter) {
5171  if (!Converter.match(From->getType()) && !Converter.Suppress)
5172    Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5173        << From->getSourceRange();
5174
5175  return SemaRef.DefaultLvalueConversion(From);
5176}
5177
5178static void
5179collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5180                                  UnresolvedSetImpl &ViableConversions,
5181                                  OverloadCandidateSet &CandidateSet) {
5182  for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5183    DeclAccessPair FoundDecl = ViableConversions[I];
5184    NamedDecl *D = FoundDecl.getDecl();
5185    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5186    if (isa<UsingShadowDecl>(D))
5187      D = cast<UsingShadowDecl>(D)->getTargetDecl();
5188
5189    CXXConversionDecl *Conv;
5190    FunctionTemplateDecl *ConvTemplate;
5191    if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5192      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5193    else
5194      Conv = cast<CXXConversionDecl>(D);
5195
5196    if (ConvTemplate)
5197      SemaRef.AddTemplateConversionCandidate(
5198          ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet);
5199    else
5200      SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5201                                     ToType, CandidateSet);
5202  }
5203}
5204
5205/// \brief Attempt to convert the given expression to a type which is accepted
5206/// by the given converter.
5207///
5208/// This routine will attempt to convert an expression of class type to a
5209/// type accepted by the specified converter. In C++11 and before, the class
5210/// must have a single non-explicit conversion function converting to a matching
5211/// type. In C++1y, there can be multiple such conversion functions, but only
5212/// one target type.
5213///
5214/// \param Loc The source location of the construct that requires the
5215/// conversion.
5216///
5217/// \param From The expression we're converting from.
5218///
5219/// \param Converter Used to control and diagnose the conversion process.
5220///
5221/// \returns The expression, converted to an integral or enumeration type if
5222/// successful.
5223ExprResult Sema::PerformContextualImplicitConversion(
5224    SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5225  // We can't perform any more checking for type-dependent expressions.
5226  if (From->isTypeDependent())
5227    return Owned(From);
5228
5229  // Process placeholders immediately.
5230  if (From->hasPlaceholderType()) {
5231    ExprResult result = CheckPlaceholderExpr(From);
5232    if (result.isInvalid())
5233      return result;
5234    From = result.take();
5235  }
5236
5237  // If the expression already has a matching type, we're golden.
5238  QualType T = From->getType();
5239  if (Converter.match(T))
5240    return DefaultLvalueConversion(From);
5241
5242  // FIXME: Check for missing '()' if T is a function type?
5243
5244  // We can only perform contextual implicit conversions on objects of class
5245  // type.
5246  const RecordType *RecordTy = T->getAs<RecordType>();
5247  if (!RecordTy || !getLangOpts().CPlusPlus) {
5248    if (!Converter.Suppress)
5249      Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5250    return Owned(From);
5251  }
5252
5253  // We must have a complete class type.
5254  struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5255    ContextualImplicitConverter &Converter;
5256    Expr *From;
5257
5258    TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5259        : TypeDiagnoser(Converter.Suppress), Converter(Converter), From(From) {}
5260
5261    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
5262      Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5263    }
5264  } IncompleteDiagnoser(Converter, From);
5265
5266  if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
5267    return Owned(From);
5268
5269  // Look for a conversion to an integral or enumeration type.
5270  UnresolvedSet<4>
5271      ViableConversions; // These are *potentially* viable in C++1y.
5272  UnresolvedSet<4> ExplicitConversions;
5273  std::pair<CXXRecordDecl::conversion_iterator,
5274            CXXRecordDecl::conversion_iterator> Conversions =
5275      cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5276
5277  bool HadMultipleCandidates =
5278      (std::distance(Conversions.first, Conversions.second) > 1);
5279
5280  // To check that there is only one target type, in C++1y:
5281  QualType ToType;
5282  bool HasUniqueTargetType = true;
5283
5284  // Collect explicit or viable (potentially in C++1y) conversions.
5285  for (CXXRecordDecl::conversion_iterator I = Conversions.first,
5286                                          E = Conversions.second;
5287       I != E; ++I) {
5288    NamedDecl *D = (*I)->getUnderlyingDecl();
5289    CXXConversionDecl *Conversion;
5290    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5291    if (ConvTemplate) {
5292      if (getLangOpts().CPlusPlus1y)
5293        Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5294      else
5295        continue; // C++11 does not consider conversion operator templates(?).
5296    } else
5297      Conversion = cast<CXXConversionDecl>(D);
5298
5299    assert((!ConvTemplate || getLangOpts().CPlusPlus1y) &&
5300           "Conversion operator templates are considered potentially "
5301           "viable in C++1y");
5302
5303    QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5304    if (Converter.match(CurToType) || ConvTemplate) {
5305
5306      if (Conversion->isExplicit()) {
5307        // FIXME: For C++1y, do we need this restriction?
5308        // cf. diagnoseNoViableConversion()
5309        if (!ConvTemplate)
5310          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5311      } else {
5312        if (!ConvTemplate && getLangOpts().CPlusPlus1y) {
5313          if (ToType.isNull())
5314            ToType = CurToType.getUnqualifiedType();
5315          else if (HasUniqueTargetType &&
5316                   (CurToType.getUnqualifiedType() != ToType))
5317            HasUniqueTargetType = false;
5318        }
5319        ViableConversions.addDecl(I.getDecl(), I.getAccess());
5320      }
5321    }
5322  }
5323
5324  if (getLangOpts().CPlusPlus1y) {
5325    // C++1y [conv]p6:
5326    // ... An expression e of class type E appearing in such a context
5327    // is said to be contextually implicitly converted to a specified
5328    // type T and is well-formed if and only if e can be implicitly
5329    // converted to a type T that is determined as follows: E is searched
5330    // for conversion functions whose return type is cv T or reference to
5331    // cv T such that T is allowed by the context. There shall be
5332    // exactly one such T.
5333
5334    // If no unique T is found:
5335    if (ToType.isNull()) {
5336      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5337                                     HadMultipleCandidates,
5338                                     ExplicitConversions))
5339        return ExprError();
5340      return finishContextualImplicitConversion(*this, Loc, From, Converter);
5341    }
5342
5343    // If more than one unique Ts are found:
5344    if (!HasUniqueTargetType)
5345      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5346                                         ViableConversions);
5347
5348    // If one unique T is found:
5349    // First, build a candidate set from the previously recorded
5350    // potentially viable conversions.
5351    OverloadCandidateSet CandidateSet(Loc);
5352    collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5353                                      CandidateSet);
5354
5355    // Then, perform overload resolution over the candidate set.
5356    OverloadCandidateSet::iterator Best;
5357    switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5358    case OR_Success: {
5359      // Apply this conversion.
5360      DeclAccessPair Found =
5361          DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5362      if (recordConversion(*this, Loc, From, Converter, T,
5363                           HadMultipleCandidates, Found))
5364        return ExprError();
5365      break;
5366    }
5367    case OR_Ambiguous:
5368      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5369                                         ViableConversions);
5370    case OR_No_Viable_Function:
5371      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5372                                     HadMultipleCandidates,
5373                                     ExplicitConversions))
5374        return ExprError();
5375    // fall through 'OR_Deleted' case.
5376    case OR_Deleted:
5377      // We'll complain below about a non-integral condition type.
5378      break;
5379    }
5380  } else {
5381    switch (ViableConversions.size()) {
5382    case 0: {
5383      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5384                                     HadMultipleCandidates,
5385                                     ExplicitConversions))
5386        return ExprError();
5387
5388      // We'll complain below about a non-integral condition type.
5389      break;
5390    }
5391    case 1: {
5392      // Apply this conversion.
5393      DeclAccessPair Found = ViableConversions[0];
5394      if (recordConversion(*this, Loc, From, Converter, T,
5395                           HadMultipleCandidates, Found))
5396        return ExprError();
5397      break;
5398    }
5399    default:
5400      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5401                                         ViableConversions);
5402    }
5403  }
5404
5405  return finishContextualImplicitConversion(*this, Loc, From, Converter);
5406}
5407
5408/// AddOverloadCandidate - Adds the given function to the set of
5409/// candidate functions, using the given function call arguments.  If
5410/// @p SuppressUserConversions, then don't allow user-defined
5411/// conversions via constructors or conversion operators.
5412///
5413/// \param PartialOverloading true if we are performing "partial" overloading
5414/// based on an incomplete set of function arguments. This feature is used by
5415/// code completion.
5416void
5417Sema::AddOverloadCandidate(FunctionDecl *Function,
5418                           DeclAccessPair FoundDecl,
5419                           ArrayRef<Expr *> Args,
5420                           OverloadCandidateSet& CandidateSet,
5421                           bool SuppressUserConversions,
5422                           bool PartialOverloading,
5423                           bool AllowExplicit) {
5424  const FunctionProtoType* Proto
5425    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5426  assert(Proto && "Functions without a prototype cannot be overloaded");
5427  assert(!Function->getDescribedFunctionTemplate() &&
5428         "Use AddTemplateOverloadCandidate for function templates");
5429
5430  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5431    if (!isa<CXXConstructorDecl>(Method)) {
5432      // If we get here, it's because we're calling a member function
5433      // that is named without a member access expression (e.g.,
5434      // "this->f") that was either written explicitly or created
5435      // implicitly. This can happen with a qualified call to a member
5436      // function, e.g., X::f(). We use an empty type for the implied
5437      // object argument (C++ [over.call.func]p3), and the acting context
5438      // is irrelevant.
5439      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5440                         QualType(), Expr::Classification::makeSimpleLValue(),
5441                         Args, CandidateSet, SuppressUserConversions);
5442      return;
5443    }
5444    // We treat a constructor like a non-member function, since its object
5445    // argument doesn't participate in overload resolution.
5446  }
5447
5448  if (!CandidateSet.isNewCandidate(Function))
5449    return;
5450
5451  // Overload resolution is always an unevaluated context.
5452  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5453
5454  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
5455    // C++ [class.copy]p3:
5456    //   A member function template is never instantiated to perform the copy
5457    //   of a class object to an object of its class type.
5458    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5459    if (Args.size() == 1 &&
5460        Constructor->isSpecializationCopyingObject() &&
5461        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5462         IsDerivedFrom(Args[0]->getType(), ClassType)))
5463      return;
5464  }
5465
5466  // Add this candidate
5467  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5468  Candidate.FoundDecl = FoundDecl;
5469  Candidate.Function = Function;
5470  Candidate.Viable = true;
5471  Candidate.IsSurrogate = false;
5472  Candidate.IgnoreObjectArgument = false;
5473  Candidate.ExplicitCallArguments = Args.size();
5474
5475  unsigned NumArgsInProto = Proto->getNumArgs();
5476
5477  // (C++ 13.3.2p2): A candidate function having fewer than m
5478  // parameters is viable only if it has an ellipsis in its parameter
5479  // list (8.3.5).
5480  if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
5481      !Proto->isVariadic()) {
5482    Candidate.Viable = false;
5483    Candidate.FailureKind = ovl_fail_too_many_arguments;
5484    return;
5485  }
5486
5487  // (C++ 13.3.2p2): A candidate function having more than m parameters
5488  // is viable only if the (m+1)st parameter has a default argument
5489  // (8.3.6). For the purposes of overload resolution, the
5490  // parameter list is truncated on the right, so that there are
5491  // exactly m parameters.
5492  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5493  if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5494    // Not enough arguments.
5495    Candidate.Viable = false;
5496    Candidate.FailureKind = ovl_fail_too_few_arguments;
5497    return;
5498  }
5499
5500  // (CUDA B.1): Check for invalid calls between targets.
5501  if (getLangOpts().CUDA)
5502    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5503      if (CheckCUDATarget(Caller, Function)) {
5504        Candidate.Viable = false;
5505        Candidate.FailureKind = ovl_fail_bad_target;
5506        return;
5507      }
5508
5509  // Determine the implicit conversion sequences for each of the
5510  // arguments.
5511  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5512    if (ArgIdx < NumArgsInProto) {
5513      // (C++ 13.3.2p3): for F to be a viable function, there shall
5514      // exist for each argument an implicit conversion sequence
5515      // (13.3.3.1) that converts that argument to the corresponding
5516      // parameter of F.
5517      QualType ParamType = Proto->getArgType(ArgIdx);
5518      Candidate.Conversions[ArgIdx]
5519        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5520                                SuppressUserConversions,
5521                                /*InOverloadResolution=*/true,
5522                                /*AllowObjCWritebackConversion=*/
5523                                  getLangOpts().ObjCAutoRefCount,
5524                                AllowExplicit);
5525      if (Candidate.Conversions[ArgIdx].isBad()) {
5526        Candidate.Viable = false;
5527        Candidate.FailureKind = ovl_fail_bad_conversion;
5528        break;
5529      }
5530    } else {
5531      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5532      // argument for which there is no corresponding parameter is
5533      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5534      Candidate.Conversions[ArgIdx].setEllipsis();
5535    }
5536  }
5537}
5538
5539/// \brief Add all of the function declarations in the given function set to
5540/// the overload canddiate set.
5541void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5542                                 ArrayRef<Expr *> Args,
5543                                 OverloadCandidateSet& CandidateSet,
5544                                 bool SuppressUserConversions,
5545                               TemplateArgumentListInfo *ExplicitTemplateArgs) {
5546  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5547    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5548    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5549      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5550        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5551                           cast<CXXMethodDecl>(FD)->getParent(),
5552                           Args[0]->getType(), Args[0]->Classify(Context),
5553                           Args.slice(1), CandidateSet,
5554                           SuppressUserConversions);
5555      else
5556        AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5557                             SuppressUserConversions);
5558    } else {
5559      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5560      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5561          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5562        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5563                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5564                                   ExplicitTemplateArgs,
5565                                   Args[0]->getType(),
5566                                   Args[0]->Classify(Context), Args.slice(1),
5567                                   CandidateSet, SuppressUserConversions);
5568      else
5569        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5570                                     ExplicitTemplateArgs, Args,
5571                                     CandidateSet, SuppressUserConversions);
5572    }
5573  }
5574}
5575
5576/// AddMethodCandidate - Adds a named decl (which is some kind of
5577/// method) as a method candidate to the given overload set.
5578void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5579                              QualType ObjectType,
5580                              Expr::Classification ObjectClassification,
5581                              ArrayRef<Expr *> Args,
5582                              OverloadCandidateSet& CandidateSet,
5583                              bool SuppressUserConversions) {
5584  NamedDecl *Decl = FoundDecl.getDecl();
5585  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5586
5587  if (isa<UsingShadowDecl>(Decl))
5588    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5589
5590  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5591    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5592           "Expected a member function template");
5593    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5594                               /*ExplicitArgs*/ 0,
5595                               ObjectType, ObjectClassification,
5596                               Args, CandidateSet,
5597                               SuppressUserConversions);
5598  } else {
5599    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5600                       ObjectType, ObjectClassification,
5601                       Args,
5602                       CandidateSet, SuppressUserConversions);
5603  }
5604}
5605
5606/// AddMethodCandidate - Adds the given C++ member function to the set
5607/// of candidate functions, using the given function call arguments
5608/// and the object argument (@c Object). For example, in a call
5609/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5610/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5611/// allow user-defined conversions via constructors or conversion
5612/// operators.
5613void
5614Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5615                         CXXRecordDecl *ActingContext, QualType ObjectType,
5616                         Expr::Classification ObjectClassification,
5617                         ArrayRef<Expr *> Args,
5618                         OverloadCandidateSet& CandidateSet,
5619                         bool SuppressUserConversions) {
5620  const FunctionProtoType* Proto
5621    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5622  assert(Proto && "Methods without a prototype cannot be overloaded");
5623  assert(!isa<CXXConstructorDecl>(Method) &&
5624         "Use AddOverloadCandidate for constructors");
5625
5626  if (!CandidateSet.isNewCandidate(Method))
5627    return;
5628
5629  // Overload resolution is always an unevaluated context.
5630  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5631
5632  // Add this candidate
5633  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5634  Candidate.FoundDecl = FoundDecl;
5635  Candidate.Function = Method;
5636  Candidate.IsSurrogate = false;
5637  Candidate.IgnoreObjectArgument = false;
5638  Candidate.ExplicitCallArguments = Args.size();
5639
5640  unsigned NumArgsInProto = Proto->getNumArgs();
5641
5642  // (C++ 13.3.2p2): A candidate function having fewer than m
5643  // parameters is viable only if it has an ellipsis in its parameter
5644  // list (8.3.5).
5645  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5646    Candidate.Viable = false;
5647    Candidate.FailureKind = ovl_fail_too_many_arguments;
5648    return;
5649  }
5650
5651  // (C++ 13.3.2p2): A candidate function having more than m parameters
5652  // is viable only if the (m+1)st parameter has a default argument
5653  // (8.3.6). For the purposes of overload resolution, the
5654  // parameter list is truncated on the right, so that there are
5655  // exactly m parameters.
5656  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5657  if (Args.size() < MinRequiredArgs) {
5658    // Not enough arguments.
5659    Candidate.Viable = false;
5660    Candidate.FailureKind = ovl_fail_too_few_arguments;
5661    return;
5662  }
5663
5664  Candidate.Viable = true;
5665
5666  if (Method->isStatic() || ObjectType.isNull())
5667    // The implicit object argument is ignored.
5668    Candidate.IgnoreObjectArgument = true;
5669  else {
5670    // Determine the implicit conversion sequence for the object
5671    // parameter.
5672    Candidate.Conversions[0]
5673      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5674                                        Method, ActingContext);
5675    if (Candidate.Conversions[0].isBad()) {
5676      Candidate.Viable = false;
5677      Candidate.FailureKind = ovl_fail_bad_conversion;
5678      return;
5679    }
5680  }
5681
5682  // Determine the implicit conversion sequences for each of the
5683  // arguments.
5684  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5685    if (ArgIdx < NumArgsInProto) {
5686      // (C++ 13.3.2p3): for F to be a viable function, there shall
5687      // exist for each argument an implicit conversion sequence
5688      // (13.3.3.1) that converts that argument to the corresponding
5689      // parameter of F.
5690      QualType ParamType = Proto->getArgType(ArgIdx);
5691      Candidate.Conversions[ArgIdx + 1]
5692        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5693                                SuppressUserConversions,
5694                                /*InOverloadResolution=*/true,
5695                                /*AllowObjCWritebackConversion=*/
5696                                  getLangOpts().ObjCAutoRefCount);
5697      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5698        Candidate.Viable = false;
5699        Candidate.FailureKind = ovl_fail_bad_conversion;
5700        break;
5701      }
5702    } else {
5703      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5704      // argument for which there is no corresponding parameter is
5705      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5706      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5707    }
5708  }
5709}
5710
5711/// \brief Add a C++ member function template as a candidate to the candidate
5712/// set, using template argument deduction to produce an appropriate member
5713/// function template specialization.
5714void
5715Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5716                                 DeclAccessPair FoundDecl,
5717                                 CXXRecordDecl *ActingContext,
5718                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5719                                 QualType ObjectType,
5720                                 Expr::Classification ObjectClassification,
5721                                 ArrayRef<Expr *> Args,
5722                                 OverloadCandidateSet& CandidateSet,
5723                                 bool SuppressUserConversions) {
5724  if (!CandidateSet.isNewCandidate(MethodTmpl))
5725    return;
5726
5727  // C++ [over.match.funcs]p7:
5728  //   In each case where a candidate is a function template, candidate
5729  //   function template specializations are generated using template argument
5730  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5731  //   candidate functions in the usual way.113) A given name can refer to one
5732  //   or more function templates and also to a set of overloaded non-template
5733  //   functions. In such a case, the candidate functions generated from each
5734  //   function template are combined with the set of non-template candidate
5735  //   functions.
5736  TemplateDeductionInfo Info(CandidateSet.getLocation());
5737  FunctionDecl *Specialization = 0;
5738  if (TemplateDeductionResult Result
5739      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
5740                                Specialization, Info)) {
5741    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5742    Candidate.FoundDecl = FoundDecl;
5743    Candidate.Function = MethodTmpl->getTemplatedDecl();
5744    Candidate.Viable = false;
5745    Candidate.FailureKind = ovl_fail_bad_deduction;
5746    Candidate.IsSurrogate = false;
5747    Candidate.IgnoreObjectArgument = false;
5748    Candidate.ExplicitCallArguments = Args.size();
5749    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5750                                                          Info);
5751    return;
5752  }
5753
5754  // Add the function template specialization produced by template argument
5755  // deduction as a candidate.
5756  assert(Specialization && "Missing member function template specialization?");
5757  assert(isa<CXXMethodDecl>(Specialization) &&
5758         "Specialization is not a member function?");
5759  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5760                     ActingContext, ObjectType, ObjectClassification, Args,
5761                     CandidateSet, SuppressUserConversions);
5762}
5763
5764/// \brief Add a C++ function template specialization as a candidate
5765/// in the candidate set, using template argument deduction to produce
5766/// an appropriate function template specialization.
5767void
5768Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5769                                   DeclAccessPair FoundDecl,
5770                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5771                                   ArrayRef<Expr *> Args,
5772                                   OverloadCandidateSet& CandidateSet,
5773                                   bool SuppressUserConversions) {
5774  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5775    return;
5776
5777  // C++ [over.match.funcs]p7:
5778  //   In each case where a candidate is a function template, candidate
5779  //   function template specializations are generated using template argument
5780  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5781  //   candidate functions in the usual way.113) A given name can refer to one
5782  //   or more function templates and also to a set of overloaded non-template
5783  //   functions. In such a case, the candidate functions generated from each
5784  //   function template are combined with the set of non-template candidate
5785  //   functions.
5786  TemplateDeductionInfo Info(CandidateSet.getLocation());
5787  FunctionDecl *Specialization = 0;
5788  if (TemplateDeductionResult Result
5789        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
5790                                  Specialization, Info)) {
5791    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5792    Candidate.FoundDecl = FoundDecl;
5793    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5794    Candidate.Viable = false;
5795    Candidate.FailureKind = ovl_fail_bad_deduction;
5796    Candidate.IsSurrogate = false;
5797    Candidate.IgnoreObjectArgument = false;
5798    Candidate.ExplicitCallArguments = Args.size();
5799    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5800                                                          Info);
5801    return;
5802  }
5803
5804  // Add the function template specialization produced by template argument
5805  // deduction as a candidate.
5806  assert(Specialization && "Missing function template specialization?");
5807  AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
5808                       SuppressUserConversions);
5809}
5810
5811/// AddConversionCandidate - Add a C++ conversion function as a
5812/// candidate in the candidate set (C++ [over.match.conv],
5813/// C++ [over.match.copy]). From is the expression we're converting from,
5814/// and ToType is the type that we're eventually trying to convert to
5815/// (which may or may not be the same type as the type that the
5816/// conversion function produces).
5817void
5818Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5819                             DeclAccessPair FoundDecl,
5820                             CXXRecordDecl *ActingContext,
5821                             Expr *From, QualType ToType,
5822                             OverloadCandidateSet& CandidateSet) {
5823  assert(!Conversion->getDescribedFunctionTemplate() &&
5824         "Conversion function templates use AddTemplateConversionCandidate");
5825  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5826  if (!CandidateSet.isNewCandidate(Conversion))
5827    return;
5828
5829  // If the conversion function has an undeduced return type, trigger its
5830  // deduction now.
5831  if (getLangOpts().CPlusPlus1y && ConvType->isUndeducedType()) {
5832    if (DeduceReturnType(Conversion, From->getExprLoc()))
5833      return;
5834    ConvType = Conversion->getConversionType().getNonReferenceType();
5835  }
5836
5837  // Overload resolution is always an unevaluated context.
5838  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5839
5840  // Add this candidate
5841  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5842  Candidate.FoundDecl = FoundDecl;
5843  Candidate.Function = Conversion;
5844  Candidate.IsSurrogate = false;
5845  Candidate.IgnoreObjectArgument = false;
5846  Candidate.FinalConversion.setAsIdentityConversion();
5847  Candidate.FinalConversion.setFromType(ConvType);
5848  Candidate.FinalConversion.setAllToTypes(ToType);
5849  Candidate.Viable = true;
5850  Candidate.ExplicitCallArguments = 1;
5851
5852  // C++ [over.match.funcs]p4:
5853  //   For conversion functions, the function is considered to be a member of
5854  //   the class of the implicit implied object argument for the purpose of
5855  //   defining the type of the implicit object parameter.
5856  //
5857  // Determine the implicit conversion sequence for the implicit
5858  // object parameter.
5859  QualType ImplicitParamType = From->getType();
5860  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5861    ImplicitParamType = FromPtrType->getPointeeType();
5862  CXXRecordDecl *ConversionContext
5863    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5864
5865  Candidate.Conversions[0]
5866    = TryObjectArgumentInitialization(*this, From->getType(),
5867                                      From->Classify(Context),
5868                                      Conversion, ConversionContext);
5869
5870  if (Candidate.Conversions[0].isBad()) {
5871    Candidate.Viable = false;
5872    Candidate.FailureKind = ovl_fail_bad_conversion;
5873    return;
5874  }
5875
5876  // We won't go through a user-define type conversion function to convert a
5877  // derived to base as such conversions are given Conversion Rank. They only
5878  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5879  QualType FromCanon
5880    = Context.getCanonicalType(From->getType().getUnqualifiedType());
5881  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5882  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5883    Candidate.Viable = false;
5884    Candidate.FailureKind = ovl_fail_trivial_conversion;
5885    return;
5886  }
5887
5888  // To determine what the conversion from the result of calling the
5889  // conversion function to the type we're eventually trying to
5890  // convert to (ToType), we need to synthesize a call to the
5891  // conversion function and attempt copy initialization from it. This
5892  // makes sure that we get the right semantics with respect to
5893  // lvalues/rvalues and the type. Fortunately, we can allocate this
5894  // call on the stack and we don't need its arguments to be
5895  // well-formed.
5896  DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
5897                            VK_LValue, From->getLocStart());
5898  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5899                                Context.getPointerType(Conversion->getType()),
5900                                CK_FunctionToPointerDecay,
5901                                &ConversionRef, VK_RValue);
5902
5903  QualType ConversionType = Conversion->getConversionType();
5904  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5905    Candidate.Viable = false;
5906    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5907    return;
5908  }
5909
5910  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5911
5912  // Note that it is safe to allocate CallExpr on the stack here because
5913  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5914  // allocator).
5915  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
5916  CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
5917                From->getLocStart());
5918  ImplicitConversionSequence ICS =
5919    TryCopyInitialization(*this, &Call, ToType,
5920                          /*SuppressUserConversions=*/true,
5921                          /*InOverloadResolution=*/false,
5922                          /*AllowObjCWritebackConversion=*/false);
5923
5924  switch (ICS.getKind()) {
5925  case ImplicitConversionSequence::StandardConversion:
5926    Candidate.FinalConversion = ICS.Standard;
5927
5928    // C++ [over.ics.user]p3:
5929    //   If the user-defined conversion is specified by a specialization of a
5930    //   conversion function template, the second standard conversion sequence
5931    //   shall have exact match rank.
5932    if (Conversion->getPrimaryTemplate() &&
5933        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
5934      Candidate.Viable = false;
5935      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
5936    }
5937
5938    // C++0x [dcl.init.ref]p5:
5939    //    In the second case, if the reference is an rvalue reference and
5940    //    the second standard conversion sequence of the user-defined
5941    //    conversion sequence includes an lvalue-to-rvalue conversion, the
5942    //    program is ill-formed.
5943    if (ToType->isRValueReferenceType() &&
5944        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5945      Candidate.Viable = false;
5946      Candidate.FailureKind = ovl_fail_bad_final_conversion;
5947    }
5948    break;
5949
5950  case ImplicitConversionSequence::BadConversion:
5951    Candidate.Viable = false;
5952    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5953    break;
5954
5955  default:
5956    llvm_unreachable(
5957           "Can only end up with a standard conversion sequence or failure");
5958  }
5959}
5960
5961/// \brief Adds a conversion function template specialization
5962/// candidate to the overload set, using template argument deduction
5963/// to deduce the template arguments of the conversion function
5964/// template from the type that we are converting to (C++
5965/// [temp.deduct.conv]).
5966void
5967Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
5968                                     DeclAccessPair FoundDecl,
5969                                     CXXRecordDecl *ActingDC,
5970                                     Expr *From, QualType ToType,
5971                                     OverloadCandidateSet &CandidateSet) {
5972  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
5973         "Only conversion function templates permitted here");
5974
5975  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5976    return;
5977
5978  TemplateDeductionInfo Info(CandidateSet.getLocation());
5979  CXXConversionDecl *Specialization = 0;
5980  if (TemplateDeductionResult Result
5981        = DeduceTemplateArguments(FunctionTemplate, ToType,
5982                                  Specialization, Info)) {
5983    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5984    Candidate.FoundDecl = FoundDecl;
5985    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5986    Candidate.Viable = false;
5987    Candidate.FailureKind = ovl_fail_bad_deduction;
5988    Candidate.IsSurrogate = false;
5989    Candidate.IgnoreObjectArgument = false;
5990    Candidate.ExplicitCallArguments = 1;
5991    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5992                                                          Info);
5993    return;
5994  }
5995
5996  // Add the conversion function template specialization produced by
5997  // template argument deduction as a candidate.
5998  assert(Specialization && "Missing function template specialization?");
5999  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
6000                         CandidateSet);
6001}
6002
6003/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
6004/// converts the given @c Object to a function pointer via the
6005/// conversion function @c Conversion, and then attempts to call it
6006/// with the given arguments (C++ [over.call.object]p2-4). Proto is
6007/// the type of function that we'll eventually be calling.
6008void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
6009                                 DeclAccessPair FoundDecl,
6010                                 CXXRecordDecl *ActingContext,
6011                                 const FunctionProtoType *Proto,
6012                                 Expr *Object,
6013                                 ArrayRef<Expr *> Args,
6014                                 OverloadCandidateSet& CandidateSet) {
6015  if (!CandidateSet.isNewCandidate(Conversion))
6016    return;
6017
6018  // Overload resolution is always an unevaluated context.
6019  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6020
6021  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6022  Candidate.FoundDecl = FoundDecl;
6023  Candidate.Function = 0;
6024  Candidate.Surrogate = Conversion;
6025  Candidate.Viable = true;
6026  Candidate.IsSurrogate = true;
6027  Candidate.IgnoreObjectArgument = false;
6028  Candidate.ExplicitCallArguments = Args.size();
6029
6030  // Determine the implicit conversion sequence for the implicit
6031  // object parameter.
6032  ImplicitConversionSequence ObjectInit
6033    = TryObjectArgumentInitialization(*this, Object->getType(),
6034                                      Object->Classify(Context),
6035                                      Conversion, ActingContext);
6036  if (ObjectInit.isBad()) {
6037    Candidate.Viable = false;
6038    Candidate.FailureKind = ovl_fail_bad_conversion;
6039    Candidate.Conversions[0] = ObjectInit;
6040    return;
6041  }
6042
6043  // The first conversion is actually a user-defined conversion whose
6044  // first conversion is ObjectInit's standard conversion (which is
6045  // effectively a reference binding). Record it as such.
6046  Candidate.Conversions[0].setUserDefined();
6047  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
6048  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
6049  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
6050  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
6051  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
6052  Candidate.Conversions[0].UserDefined.After
6053    = Candidate.Conversions[0].UserDefined.Before;
6054  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
6055
6056  // Find the
6057  unsigned NumArgsInProto = Proto->getNumArgs();
6058
6059  // (C++ 13.3.2p2): A candidate function having fewer than m
6060  // parameters is viable only if it has an ellipsis in its parameter
6061  // list (8.3.5).
6062  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
6063    Candidate.Viable = false;
6064    Candidate.FailureKind = ovl_fail_too_many_arguments;
6065    return;
6066  }
6067
6068  // Function types don't have any default arguments, so just check if
6069  // we have enough arguments.
6070  if (Args.size() < NumArgsInProto) {
6071    // Not enough arguments.
6072    Candidate.Viable = false;
6073    Candidate.FailureKind = ovl_fail_too_few_arguments;
6074    return;
6075  }
6076
6077  // Determine the implicit conversion sequences for each of the
6078  // arguments.
6079  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6080    if (ArgIdx < NumArgsInProto) {
6081      // (C++ 13.3.2p3): for F to be a viable function, there shall
6082      // exist for each argument an implicit conversion sequence
6083      // (13.3.3.1) that converts that argument to the corresponding
6084      // parameter of F.
6085      QualType ParamType = Proto->getArgType(ArgIdx);
6086      Candidate.Conversions[ArgIdx + 1]
6087        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6088                                /*SuppressUserConversions=*/false,
6089                                /*InOverloadResolution=*/false,
6090                                /*AllowObjCWritebackConversion=*/
6091                                  getLangOpts().ObjCAutoRefCount);
6092      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6093        Candidate.Viable = false;
6094        Candidate.FailureKind = ovl_fail_bad_conversion;
6095        break;
6096      }
6097    } else {
6098      // (C++ 13.3.2p2): For the purposes of overload resolution, any
6099      // argument for which there is no corresponding parameter is
6100      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6101      Candidate.Conversions[ArgIdx + 1].setEllipsis();
6102    }
6103  }
6104}
6105
6106/// \brief Add overload candidates for overloaded operators that are
6107/// member functions.
6108///
6109/// Add the overloaded operator candidates that are member functions
6110/// for the operator Op that was used in an operator expression such
6111/// as "x Op y". , Args/NumArgs provides the operator arguments, and
6112/// CandidateSet will store the added overload candidates. (C++
6113/// [over.match.oper]).
6114void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
6115                                       SourceLocation OpLoc,
6116                                       ArrayRef<Expr *> Args,
6117                                       OverloadCandidateSet& CandidateSet,
6118                                       SourceRange OpRange) {
6119  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6120
6121  // C++ [over.match.oper]p3:
6122  //   For a unary operator @ with an operand of a type whose
6123  //   cv-unqualified version is T1, and for a binary operator @ with
6124  //   a left operand of a type whose cv-unqualified version is T1 and
6125  //   a right operand of a type whose cv-unqualified version is T2,
6126  //   three sets of candidate functions, designated member
6127  //   candidates, non-member candidates and built-in candidates, are
6128  //   constructed as follows:
6129  QualType T1 = Args[0]->getType();
6130
6131  //     -- If T1 is a complete class type or a class currently being
6132  //        defined, the set of member candidates is the result of the
6133  //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
6134  //        the set of member candidates is empty.
6135  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
6136    // Complete the type if it can be completed.
6137    RequireCompleteType(OpLoc, T1, 0);
6138    // If the type is neither complete nor being defined, bail out now.
6139    if (!T1Rec->getDecl()->getDefinition())
6140      return;
6141
6142    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
6143    LookupQualifiedName(Operators, T1Rec->getDecl());
6144    Operators.suppressDiagnostics();
6145
6146    for (LookupResult::iterator Oper = Operators.begin(),
6147                             OperEnd = Operators.end();
6148         Oper != OperEnd;
6149         ++Oper)
6150      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
6151                         Args[0]->Classify(Context),
6152                         Args.slice(1),
6153                         CandidateSet,
6154                         /* SuppressUserConversions = */ false);
6155  }
6156}
6157
6158/// AddBuiltinCandidate - Add a candidate for a built-in
6159/// operator. ResultTy and ParamTys are the result and parameter types
6160/// of the built-in candidate, respectively. Args and NumArgs are the
6161/// arguments being passed to the candidate. IsAssignmentOperator
6162/// should be true when this built-in candidate is an assignment
6163/// operator. NumContextualBoolArguments is the number of arguments
6164/// (at the beginning of the argument list) that will be contextually
6165/// converted to bool.
6166void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
6167                               ArrayRef<Expr *> Args,
6168                               OverloadCandidateSet& CandidateSet,
6169                               bool IsAssignmentOperator,
6170                               unsigned NumContextualBoolArguments) {
6171  // Overload resolution is always an unevaluated context.
6172  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6173
6174  // Add this candidate
6175  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
6176  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
6177  Candidate.Function = 0;
6178  Candidate.IsSurrogate = false;
6179  Candidate.IgnoreObjectArgument = false;
6180  Candidate.BuiltinTypes.ResultTy = ResultTy;
6181  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
6182    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
6183
6184  // Determine the implicit conversion sequences for each of the
6185  // arguments.
6186  Candidate.Viable = true;
6187  Candidate.ExplicitCallArguments = Args.size();
6188  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6189    // C++ [over.match.oper]p4:
6190    //   For the built-in assignment operators, conversions of the
6191    //   left operand are restricted as follows:
6192    //     -- no temporaries are introduced to hold the left operand, and
6193    //     -- no user-defined conversions are applied to the left
6194    //        operand to achieve a type match with the left-most
6195    //        parameter of a built-in candidate.
6196    //
6197    // We block these conversions by turning off user-defined
6198    // conversions, since that is the only way that initialization of
6199    // a reference to a non-class type can occur from something that
6200    // is not of the same type.
6201    if (ArgIdx < NumContextualBoolArguments) {
6202      assert(ParamTys[ArgIdx] == Context.BoolTy &&
6203             "Contextual conversion to bool requires bool type");
6204      Candidate.Conversions[ArgIdx]
6205        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6206    } else {
6207      Candidate.Conversions[ArgIdx]
6208        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6209                                ArgIdx == 0 && IsAssignmentOperator,
6210                                /*InOverloadResolution=*/false,
6211                                /*AllowObjCWritebackConversion=*/
6212                                  getLangOpts().ObjCAutoRefCount);
6213    }
6214    if (Candidate.Conversions[ArgIdx].isBad()) {
6215      Candidate.Viable = false;
6216      Candidate.FailureKind = ovl_fail_bad_conversion;
6217      break;
6218    }
6219  }
6220}
6221
6222namespace {
6223
6224/// BuiltinCandidateTypeSet - A set of types that will be used for the
6225/// candidate operator functions for built-in operators (C++
6226/// [over.built]). The types are separated into pointer types and
6227/// enumeration types.
6228class BuiltinCandidateTypeSet  {
6229  /// TypeSet - A set of types.
6230  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
6231
6232  /// PointerTypes - The set of pointer types that will be used in the
6233  /// built-in candidates.
6234  TypeSet PointerTypes;
6235
6236  /// MemberPointerTypes - The set of member pointer types that will be
6237  /// used in the built-in candidates.
6238  TypeSet MemberPointerTypes;
6239
6240  /// EnumerationTypes - The set of enumeration types that will be
6241  /// used in the built-in candidates.
6242  TypeSet EnumerationTypes;
6243
6244  /// \brief The set of vector types that will be used in the built-in
6245  /// candidates.
6246  TypeSet VectorTypes;
6247
6248  /// \brief A flag indicating non-record types are viable candidates
6249  bool HasNonRecordTypes;
6250
6251  /// \brief A flag indicating whether either arithmetic or enumeration types
6252  /// were present in the candidate set.
6253  bool HasArithmeticOrEnumeralTypes;
6254
6255  /// \brief A flag indicating whether the nullptr type was present in the
6256  /// candidate set.
6257  bool HasNullPtrType;
6258
6259  /// Sema - The semantic analysis instance where we are building the
6260  /// candidate type set.
6261  Sema &SemaRef;
6262
6263  /// Context - The AST context in which we will build the type sets.
6264  ASTContext &Context;
6265
6266  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6267                                               const Qualifiers &VisibleQuals);
6268  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6269
6270public:
6271  /// iterator - Iterates through the types that are part of the set.
6272  typedef TypeSet::iterator iterator;
6273
6274  BuiltinCandidateTypeSet(Sema &SemaRef)
6275    : HasNonRecordTypes(false),
6276      HasArithmeticOrEnumeralTypes(false),
6277      HasNullPtrType(false),
6278      SemaRef(SemaRef),
6279      Context(SemaRef.Context) { }
6280
6281  void AddTypesConvertedFrom(QualType Ty,
6282                             SourceLocation Loc,
6283                             bool AllowUserConversions,
6284                             bool AllowExplicitConversions,
6285                             const Qualifiers &VisibleTypeConversionsQuals);
6286
6287  /// pointer_begin - First pointer type found;
6288  iterator pointer_begin() { return PointerTypes.begin(); }
6289
6290  /// pointer_end - Past the last pointer type found;
6291  iterator pointer_end() { return PointerTypes.end(); }
6292
6293  /// member_pointer_begin - First member pointer type found;
6294  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6295
6296  /// member_pointer_end - Past the last member pointer type found;
6297  iterator member_pointer_end() { return MemberPointerTypes.end(); }
6298
6299  /// enumeration_begin - First enumeration type found;
6300  iterator enumeration_begin() { return EnumerationTypes.begin(); }
6301
6302  /// enumeration_end - Past the last enumeration type found;
6303  iterator enumeration_end() { return EnumerationTypes.end(); }
6304
6305  iterator vector_begin() { return VectorTypes.begin(); }
6306  iterator vector_end() { return VectorTypes.end(); }
6307
6308  bool hasNonRecordTypes() { return HasNonRecordTypes; }
6309  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
6310  bool hasNullPtrType() const { return HasNullPtrType; }
6311};
6312
6313} // end anonymous namespace
6314
6315/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6316/// the set of pointer types along with any more-qualified variants of
6317/// that type. For example, if @p Ty is "int const *", this routine
6318/// will add "int const *", "int const volatile *", "int const
6319/// restrict *", and "int const volatile restrict *" to the set of
6320/// pointer types. Returns true if the add of @p Ty itself succeeded,
6321/// false otherwise.
6322///
6323/// FIXME: what to do about extended qualifiers?
6324bool
6325BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6326                                             const Qualifiers &VisibleQuals) {
6327
6328  // Insert this type.
6329  if (!PointerTypes.insert(Ty))
6330    return false;
6331
6332  QualType PointeeTy;
6333  const PointerType *PointerTy = Ty->getAs<PointerType>();
6334  bool buildObjCPtr = false;
6335  if (!PointerTy) {
6336    const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6337    PointeeTy = PTy->getPointeeType();
6338    buildObjCPtr = true;
6339  } else {
6340    PointeeTy = PointerTy->getPointeeType();
6341  }
6342
6343  // Don't add qualified variants of arrays. For one, they're not allowed
6344  // (the qualifier would sink to the element type), and for another, the
6345  // only overload situation where it matters is subscript or pointer +- int,
6346  // and those shouldn't have qualifier variants anyway.
6347  if (PointeeTy->isArrayType())
6348    return true;
6349
6350  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6351  bool hasVolatile = VisibleQuals.hasVolatile();
6352  bool hasRestrict = VisibleQuals.hasRestrict();
6353
6354  // Iterate through all strict supersets of BaseCVR.
6355  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6356    if ((CVR | BaseCVR) != CVR) continue;
6357    // Skip over volatile if no volatile found anywhere in the types.
6358    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6359
6360    // Skip over restrict if no restrict found anywhere in the types, or if
6361    // the type cannot be restrict-qualified.
6362    if ((CVR & Qualifiers::Restrict) &&
6363        (!hasRestrict ||
6364         (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6365      continue;
6366
6367    // Build qualified pointee type.
6368    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6369
6370    // Build qualified pointer type.
6371    QualType QPointerTy;
6372    if (!buildObjCPtr)
6373      QPointerTy = Context.getPointerType(QPointeeTy);
6374    else
6375      QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6376
6377    // Insert qualified pointer type.
6378    PointerTypes.insert(QPointerTy);
6379  }
6380
6381  return true;
6382}
6383
6384/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6385/// to the set of pointer types along with any more-qualified variants of
6386/// that type. For example, if @p Ty is "int const *", this routine
6387/// will add "int const *", "int const volatile *", "int const
6388/// restrict *", and "int const volatile restrict *" to the set of
6389/// pointer types. Returns true if the add of @p Ty itself succeeded,
6390/// false otherwise.
6391///
6392/// FIXME: what to do about extended qualifiers?
6393bool
6394BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6395    QualType Ty) {
6396  // Insert this type.
6397  if (!MemberPointerTypes.insert(Ty))
6398    return false;
6399
6400  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6401  assert(PointerTy && "type was not a member pointer type!");
6402
6403  QualType PointeeTy = PointerTy->getPointeeType();
6404  // Don't add qualified variants of arrays. For one, they're not allowed
6405  // (the qualifier would sink to the element type), and for another, the
6406  // only overload situation where it matters is subscript or pointer +- int,
6407  // and those shouldn't have qualifier variants anyway.
6408  if (PointeeTy->isArrayType())
6409    return true;
6410  const Type *ClassTy = PointerTy->getClass();
6411
6412  // Iterate through all strict supersets of the pointee type's CVR
6413  // qualifiers.
6414  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6415  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6416    if ((CVR | BaseCVR) != CVR) continue;
6417
6418    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6419    MemberPointerTypes.insert(
6420      Context.getMemberPointerType(QPointeeTy, ClassTy));
6421  }
6422
6423  return true;
6424}
6425
6426/// AddTypesConvertedFrom - Add each of the types to which the type @p
6427/// Ty can be implicit converted to the given set of @p Types. We're
6428/// primarily interested in pointer types and enumeration types. We also
6429/// take member pointer types, for the conditional operator.
6430/// AllowUserConversions is true if we should look at the conversion
6431/// functions of a class type, and AllowExplicitConversions if we
6432/// should also include the explicit conversion functions of a class
6433/// type.
6434void
6435BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6436                                               SourceLocation Loc,
6437                                               bool AllowUserConversions,
6438                                               bool AllowExplicitConversions,
6439                                               const Qualifiers &VisibleQuals) {
6440  // Only deal with canonical types.
6441  Ty = Context.getCanonicalType(Ty);
6442
6443  // Look through reference types; they aren't part of the type of an
6444  // expression for the purposes of conversions.
6445  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6446    Ty = RefTy->getPointeeType();
6447
6448  // If we're dealing with an array type, decay to the pointer.
6449  if (Ty->isArrayType())
6450    Ty = SemaRef.Context.getArrayDecayedType(Ty);
6451
6452  // Otherwise, we don't care about qualifiers on the type.
6453  Ty = Ty.getLocalUnqualifiedType();
6454
6455  // Flag if we ever add a non-record type.
6456  const RecordType *TyRec = Ty->getAs<RecordType>();
6457  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6458
6459  // Flag if we encounter an arithmetic type.
6460  HasArithmeticOrEnumeralTypes =
6461    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6462
6463  if (Ty->isObjCIdType() || Ty->isObjCClassType())
6464    PointerTypes.insert(Ty);
6465  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6466    // Insert our type, and its more-qualified variants, into the set
6467    // of types.
6468    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6469      return;
6470  } else if (Ty->isMemberPointerType()) {
6471    // Member pointers are far easier, since the pointee can't be converted.
6472    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6473      return;
6474  } else if (Ty->isEnumeralType()) {
6475    HasArithmeticOrEnumeralTypes = true;
6476    EnumerationTypes.insert(Ty);
6477  } else if (Ty->isVectorType()) {
6478    // We treat vector types as arithmetic types in many contexts as an
6479    // extension.
6480    HasArithmeticOrEnumeralTypes = true;
6481    VectorTypes.insert(Ty);
6482  } else if (Ty->isNullPtrType()) {
6483    HasNullPtrType = true;
6484  } else if (AllowUserConversions && TyRec) {
6485    // No conversion functions in incomplete types.
6486    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6487      return;
6488
6489    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6490    std::pair<CXXRecordDecl::conversion_iterator,
6491              CXXRecordDecl::conversion_iterator>
6492      Conversions = ClassDecl->getVisibleConversionFunctions();
6493    for (CXXRecordDecl::conversion_iterator
6494           I = Conversions.first, E = Conversions.second; I != E; ++I) {
6495      NamedDecl *D = I.getDecl();
6496      if (isa<UsingShadowDecl>(D))
6497        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6498
6499      // Skip conversion function templates; they don't tell us anything
6500      // about which builtin types we can convert to.
6501      if (isa<FunctionTemplateDecl>(D))
6502        continue;
6503
6504      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6505      if (AllowExplicitConversions || !Conv->isExplicit()) {
6506        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6507                              VisibleQuals);
6508      }
6509    }
6510  }
6511}
6512
6513/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6514/// the volatile- and non-volatile-qualified assignment operators for the
6515/// given type to the candidate set.
6516static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6517                                                   QualType T,
6518                                                   ArrayRef<Expr *> Args,
6519                                    OverloadCandidateSet &CandidateSet) {
6520  QualType ParamTypes[2];
6521
6522  // T& operator=(T&, T)
6523  ParamTypes[0] = S.Context.getLValueReferenceType(T);
6524  ParamTypes[1] = T;
6525  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6526                        /*IsAssignmentOperator=*/true);
6527
6528  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6529    // volatile T& operator=(volatile T&, T)
6530    ParamTypes[0]
6531      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6532    ParamTypes[1] = T;
6533    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6534                          /*IsAssignmentOperator=*/true);
6535  }
6536}
6537
6538/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6539/// if any, found in visible type conversion functions found in ArgExpr's type.
6540static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6541    Qualifiers VRQuals;
6542    const RecordType *TyRec;
6543    if (const MemberPointerType *RHSMPType =
6544        ArgExpr->getType()->getAs<MemberPointerType>())
6545      TyRec = RHSMPType->getClass()->getAs<RecordType>();
6546    else
6547      TyRec = ArgExpr->getType()->getAs<RecordType>();
6548    if (!TyRec) {
6549      // Just to be safe, assume the worst case.
6550      VRQuals.addVolatile();
6551      VRQuals.addRestrict();
6552      return VRQuals;
6553    }
6554
6555    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6556    if (!ClassDecl->hasDefinition())
6557      return VRQuals;
6558
6559    std::pair<CXXRecordDecl::conversion_iterator,
6560              CXXRecordDecl::conversion_iterator>
6561      Conversions = ClassDecl->getVisibleConversionFunctions();
6562
6563    for (CXXRecordDecl::conversion_iterator
6564           I = Conversions.first, E = Conversions.second; I != E; ++I) {
6565      NamedDecl *D = I.getDecl();
6566      if (isa<UsingShadowDecl>(D))
6567        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6568      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6569        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6570        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6571          CanTy = ResTypeRef->getPointeeType();
6572        // Need to go down the pointer/mempointer chain and add qualifiers
6573        // as see them.
6574        bool done = false;
6575        while (!done) {
6576          if (CanTy.isRestrictQualified())
6577            VRQuals.addRestrict();
6578          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6579            CanTy = ResTypePtr->getPointeeType();
6580          else if (const MemberPointerType *ResTypeMPtr =
6581                CanTy->getAs<MemberPointerType>())
6582            CanTy = ResTypeMPtr->getPointeeType();
6583          else
6584            done = true;
6585          if (CanTy.isVolatileQualified())
6586            VRQuals.addVolatile();
6587          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6588            return VRQuals;
6589        }
6590      }
6591    }
6592    return VRQuals;
6593}
6594
6595namespace {
6596
6597/// \brief Helper class to manage the addition of builtin operator overload
6598/// candidates. It provides shared state and utility methods used throughout
6599/// the process, as well as a helper method to add each group of builtin
6600/// operator overloads from the standard to a candidate set.
6601class BuiltinOperatorOverloadBuilder {
6602  // Common instance state available to all overload candidate addition methods.
6603  Sema &S;
6604  ArrayRef<Expr *> Args;
6605  Qualifiers VisibleTypeConversionsQuals;
6606  bool HasArithmeticOrEnumeralCandidateType;
6607  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6608  OverloadCandidateSet &CandidateSet;
6609
6610  // Define some constants used to index and iterate over the arithemetic types
6611  // provided via the getArithmeticType() method below.
6612  // The "promoted arithmetic types" are the arithmetic
6613  // types are that preserved by promotion (C++ [over.built]p2).
6614  static const unsigned FirstIntegralType = 3;
6615  static const unsigned LastIntegralType = 20;
6616  static const unsigned FirstPromotedIntegralType = 3,
6617                        LastPromotedIntegralType = 11;
6618  static const unsigned FirstPromotedArithmeticType = 0,
6619                        LastPromotedArithmeticType = 11;
6620  static const unsigned NumArithmeticTypes = 20;
6621
6622  /// \brief Get the canonical type for a given arithmetic type index.
6623  CanQualType getArithmeticType(unsigned index) {
6624    assert(index < NumArithmeticTypes);
6625    static CanQualType ASTContext::* const
6626      ArithmeticTypes[NumArithmeticTypes] = {
6627      // Start of promoted types.
6628      &ASTContext::FloatTy,
6629      &ASTContext::DoubleTy,
6630      &ASTContext::LongDoubleTy,
6631
6632      // Start of integral types.
6633      &ASTContext::IntTy,
6634      &ASTContext::LongTy,
6635      &ASTContext::LongLongTy,
6636      &ASTContext::Int128Ty,
6637      &ASTContext::UnsignedIntTy,
6638      &ASTContext::UnsignedLongTy,
6639      &ASTContext::UnsignedLongLongTy,
6640      &ASTContext::UnsignedInt128Ty,
6641      // End of promoted types.
6642
6643      &ASTContext::BoolTy,
6644      &ASTContext::CharTy,
6645      &ASTContext::WCharTy,
6646      &ASTContext::Char16Ty,
6647      &ASTContext::Char32Ty,
6648      &ASTContext::SignedCharTy,
6649      &ASTContext::ShortTy,
6650      &ASTContext::UnsignedCharTy,
6651      &ASTContext::UnsignedShortTy,
6652      // End of integral types.
6653      // FIXME: What about complex? What about half?
6654    };
6655    return S.Context.*ArithmeticTypes[index];
6656  }
6657
6658  /// \brief Gets the canonical type resulting from the usual arithemetic
6659  /// converions for the given arithmetic types.
6660  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6661    // Accelerator table for performing the usual arithmetic conversions.
6662    // The rules are basically:
6663    //   - if either is floating-point, use the wider floating-point
6664    //   - if same signedness, use the higher rank
6665    //   - if same size, use unsigned of the higher rank
6666    //   - use the larger type
6667    // These rules, together with the axiom that higher ranks are
6668    // never smaller, are sufficient to precompute all of these results
6669    // *except* when dealing with signed types of higher rank.
6670    // (we could precompute SLL x UI for all known platforms, but it's
6671    // better not to make any assumptions).
6672    // We assume that int128 has a higher rank than long long on all platforms.
6673    enum PromotedType {
6674            Dep=-1,
6675            Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
6676    };
6677    static const PromotedType ConversionsTable[LastPromotedArithmeticType]
6678                                        [LastPromotedArithmeticType] = {
6679/* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
6680/* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
6681/*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6682/*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
6683/*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
6684/* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
6685/*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
6686/*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
6687/*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
6688/* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
6689/*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
6690    };
6691
6692    assert(L < LastPromotedArithmeticType);
6693    assert(R < LastPromotedArithmeticType);
6694    int Idx = ConversionsTable[L][R];
6695
6696    // Fast path: the table gives us a concrete answer.
6697    if (Idx != Dep) return getArithmeticType(Idx);
6698
6699    // Slow path: we need to compare widths.
6700    // An invariant is that the signed type has higher rank.
6701    CanQualType LT = getArithmeticType(L),
6702                RT = getArithmeticType(R);
6703    unsigned LW = S.Context.getIntWidth(LT),
6704             RW = S.Context.getIntWidth(RT);
6705
6706    // If they're different widths, use the signed type.
6707    if (LW > RW) return LT;
6708    else if (LW < RW) return RT;
6709
6710    // Otherwise, use the unsigned type of the signed type's rank.
6711    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6712    assert(L == SLL || R == SLL);
6713    return S.Context.UnsignedLongLongTy;
6714  }
6715
6716  /// \brief Helper method to factor out the common pattern of adding overloads
6717  /// for '++' and '--' builtin operators.
6718  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6719                                           bool HasVolatile,
6720                                           bool HasRestrict) {
6721    QualType ParamTypes[2] = {
6722      S.Context.getLValueReferenceType(CandidateTy),
6723      S.Context.IntTy
6724    };
6725
6726    // Non-volatile version.
6727    if (Args.size() == 1)
6728      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6729    else
6730      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6731
6732    // Use a heuristic to reduce number of builtin candidates in the set:
6733    // add volatile version only if there are conversions to a volatile type.
6734    if (HasVolatile) {
6735      ParamTypes[0] =
6736        S.Context.getLValueReferenceType(
6737          S.Context.getVolatileType(CandidateTy));
6738      if (Args.size() == 1)
6739        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6740      else
6741        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6742    }
6743
6744    // Add restrict version only if there are conversions to a restrict type
6745    // and our candidate type is a non-restrict-qualified pointer.
6746    if (HasRestrict && CandidateTy->isAnyPointerType() &&
6747        !CandidateTy.isRestrictQualified()) {
6748      ParamTypes[0]
6749        = S.Context.getLValueReferenceType(
6750            S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
6751      if (Args.size() == 1)
6752        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6753      else
6754        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6755
6756      if (HasVolatile) {
6757        ParamTypes[0]
6758          = S.Context.getLValueReferenceType(
6759              S.Context.getCVRQualifiedType(CandidateTy,
6760                                            (Qualifiers::Volatile |
6761                                             Qualifiers::Restrict)));
6762        if (Args.size() == 1)
6763          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6764        else
6765          S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6766      }
6767    }
6768
6769  }
6770
6771public:
6772  BuiltinOperatorOverloadBuilder(
6773    Sema &S, ArrayRef<Expr *> Args,
6774    Qualifiers VisibleTypeConversionsQuals,
6775    bool HasArithmeticOrEnumeralCandidateType,
6776    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6777    OverloadCandidateSet &CandidateSet)
6778    : S(S), Args(Args),
6779      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6780      HasArithmeticOrEnumeralCandidateType(
6781        HasArithmeticOrEnumeralCandidateType),
6782      CandidateTypes(CandidateTypes),
6783      CandidateSet(CandidateSet) {
6784    // Validate some of our static helper constants in debug builds.
6785    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6786           "Invalid first promoted integral type");
6787    assert(getArithmeticType(LastPromotedIntegralType - 1)
6788             == S.Context.UnsignedInt128Ty &&
6789           "Invalid last promoted integral type");
6790    assert(getArithmeticType(FirstPromotedArithmeticType)
6791             == S.Context.FloatTy &&
6792           "Invalid first promoted arithmetic type");
6793    assert(getArithmeticType(LastPromotedArithmeticType - 1)
6794             == S.Context.UnsignedInt128Ty &&
6795           "Invalid last promoted arithmetic type");
6796  }
6797
6798  // C++ [over.built]p3:
6799  //
6800  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
6801  //   is either volatile or empty, there exist candidate operator
6802  //   functions of the form
6803  //
6804  //       VQ T&      operator++(VQ T&);
6805  //       T          operator++(VQ T&, int);
6806  //
6807  // C++ [over.built]p4:
6808  //
6809  //   For every pair (T, VQ), where T is an arithmetic type other
6810  //   than bool, and VQ is either volatile or empty, there exist
6811  //   candidate operator functions of the form
6812  //
6813  //       VQ T&      operator--(VQ T&);
6814  //       T          operator--(VQ T&, int);
6815  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6816    if (!HasArithmeticOrEnumeralCandidateType)
6817      return;
6818
6819    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6820         Arith < NumArithmeticTypes; ++Arith) {
6821      addPlusPlusMinusMinusStyleOverloads(
6822        getArithmeticType(Arith),
6823        VisibleTypeConversionsQuals.hasVolatile(),
6824        VisibleTypeConversionsQuals.hasRestrict());
6825    }
6826  }
6827
6828  // C++ [over.built]p5:
6829  //
6830  //   For every pair (T, VQ), where T is a cv-qualified or
6831  //   cv-unqualified object type, and VQ is either volatile or
6832  //   empty, there exist candidate operator functions of the form
6833  //
6834  //       T*VQ&      operator++(T*VQ&);
6835  //       T*VQ&      operator--(T*VQ&);
6836  //       T*         operator++(T*VQ&, int);
6837  //       T*         operator--(T*VQ&, int);
6838  void addPlusPlusMinusMinusPointerOverloads() {
6839    for (BuiltinCandidateTypeSet::iterator
6840              Ptr = CandidateTypes[0].pointer_begin(),
6841           PtrEnd = CandidateTypes[0].pointer_end();
6842         Ptr != PtrEnd; ++Ptr) {
6843      // Skip pointer types that aren't pointers to object types.
6844      if (!(*Ptr)->getPointeeType()->isObjectType())
6845        continue;
6846
6847      addPlusPlusMinusMinusStyleOverloads(*Ptr,
6848        (!(*Ptr).isVolatileQualified() &&
6849         VisibleTypeConversionsQuals.hasVolatile()),
6850        (!(*Ptr).isRestrictQualified() &&
6851         VisibleTypeConversionsQuals.hasRestrict()));
6852    }
6853  }
6854
6855  // C++ [over.built]p6:
6856  //   For every cv-qualified or cv-unqualified object type T, there
6857  //   exist candidate operator functions of the form
6858  //
6859  //       T&         operator*(T*);
6860  //
6861  // C++ [over.built]p7:
6862  //   For every function type T that does not have cv-qualifiers or a
6863  //   ref-qualifier, there exist candidate operator functions of the form
6864  //       T&         operator*(T*);
6865  void addUnaryStarPointerOverloads() {
6866    for (BuiltinCandidateTypeSet::iterator
6867              Ptr = CandidateTypes[0].pointer_begin(),
6868           PtrEnd = CandidateTypes[0].pointer_end();
6869         Ptr != PtrEnd; ++Ptr) {
6870      QualType ParamTy = *Ptr;
6871      QualType PointeeTy = ParamTy->getPointeeType();
6872      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6873        continue;
6874
6875      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6876        if (Proto->getTypeQuals() || Proto->getRefQualifier())
6877          continue;
6878
6879      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6880                            &ParamTy, Args, CandidateSet);
6881    }
6882  }
6883
6884  // C++ [over.built]p9:
6885  //  For every promoted arithmetic type T, there exist candidate
6886  //  operator functions of the form
6887  //
6888  //       T         operator+(T);
6889  //       T         operator-(T);
6890  void addUnaryPlusOrMinusArithmeticOverloads() {
6891    if (!HasArithmeticOrEnumeralCandidateType)
6892      return;
6893
6894    for (unsigned Arith = FirstPromotedArithmeticType;
6895         Arith < LastPromotedArithmeticType; ++Arith) {
6896      QualType ArithTy = getArithmeticType(Arith);
6897      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
6898    }
6899
6900    // Extension: We also add these operators for vector types.
6901    for (BuiltinCandidateTypeSet::iterator
6902              Vec = CandidateTypes[0].vector_begin(),
6903           VecEnd = CandidateTypes[0].vector_end();
6904         Vec != VecEnd; ++Vec) {
6905      QualType VecTy = *Vec;
6906      S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
6907    }
6908  }
6909
6910  // C++ [over.built]p8:
6911  //   For every type T, there exist candidate operator functions of
6912  //   the form
6913  //
6914  //       T*         operator+(T*);
6915  void addUnaryPlusPointerOverloads() {
6916    for (BuiltinCandidateTypeSet::iterator
6917              Ptr = CandidateTypes[0].pointer_begin(),
6918           PtrEnd = CandidateTypes[0].pointer_end();
6919         Ptr != PtrEnd; ++Ptr) {
6920      QualType ParamTy = *Ptr;
6921      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
6922    }
6923  }
6924
6925  // C++ [over.built]p10:
6926  //   For every promoted integral type T, there exist candidate
6927  //   operator functions of the form
6928  //
6929  //        T         operator~(T);
6930  void addUnaryTildePromotedIntegralOverloads() {
6931    if (!HasArithmeticOrEnumeralCandidateType)
6932      return;
6933
6934    for (unsigned Int = FirstPromotedIntegralType;
6935         Int < LastPromotedIntegralType; ++Int) {
6936      QualType IntTy = getArithmeticType(Int);
6937      S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
6938    }
6939
6940    // Extension: We also add this operator for vector types.
6941    for (BuiltinCandidateTypeSet::iterator
6942              Vec = CandidateTypes[0].vector_begin(),
6943           VecEnd = CandidateTypes[0].vector_end();
6944         Vec != VecEnd; ++Vec) {
6945      QualType VecTy = *Vec;
6946      S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
6947    }
6948  }
6949
6950  // C++ [over.match.oper]p16:
6951  //   For every pointer to member type T, there exist candidate operator
6952  //   functions of the form
6953  //
6954  //        bool operator==(T,T);
6955  //        bool operator!=(T,T);
6956  void addEqualEqualOrNotEqualMemberPointerOverloads() {
6957    /// Set of (canonical) types that we've already handled.
6958    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6959
6960    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6961      for (BuiltinCandidateTypeSet::iterator
6962                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6963             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6964           MemPtr != MemPtrEnd;
6965           ++MemPtr) {
6966        // Don't add the same builtin candidate twice.
6967        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6968          continue;
6969
6970        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6971        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
6972      }
6973    }
6974  }
6975
6976  // C++ [over.built]p15:
6977  //
6978  //   For every T, where T is an enumeration type, a pointer type, or
6979  //   std::nullptr_t, there exist candidate operator functions of the form
6980  //
6981  //        bool       operator<(T, T);
6982  //        bool       operator>(T, T);
6983  //        bool       operator<=(T, T);
6984  //        bool       operator>=(T, T);
6985  //        bool       operator==(T, T);
6986  //        bool       operator!=(T, T);
6987  void addRelationalPointerOrEnumeralOverloads() {
6988    // C++ [over.match.oper]p3:
6989    //   [...]the built-in candidates include all of the candidate operator
6990    //   functions defined in 13.6 that, compared to the given operator, [...]
6991    //   do not have the same parameter-type-list as any non-template non-member
6992    //   candidate.
6993    //
6994    // Note that in practice, this only affects enumeration types because there
6995    // aren't any built-in candidates of record type, and a user-defined operator
6996    // must have an operand of record or enumeration type. Also, the only other
6997    // overloaded operator with enumeration arguments, operator=,
6998    // cannot be overloaded for enumeration types, so this is the only place
6999    // where we must suppress candidates like this.
7000    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
7001      UserDefinedBinaryOperators;
7002
7003    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7004      if (CandidateTypes[ArgIdx].enumeration_begin() !=
7005          CandidateTypes[ArgIdx].enumeration_end()) {
7006        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
7007                                         CEnd = CandidateSet.end();
7008             C != CEnd; ++C) {
7009          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
7010            continue;
7011
7012          if (C->Function->isFunctionTemplateSpecialization())
7013            continue;
7014
7015          QualType FirstParamType =
7016            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
7017          QualType SecondParamType =
7018            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
7019
7020          // Skip if either parameter isn't of enumeral type.
7021          if (!FirstParamType->isEnumeralType() ||
7022              !SecondParamType->isEnumeralType())
7023            continue;
7024
7025          // Add this operator to the set of known user-defined operators.
7026          UserDefinedBinaryOperators.insert(
7027            std::make_pair(S.Context.getCanonicalType(FirstParamType),
7028                           S.Context.getCanonicalType(SecondParamType)));
7029        }
7030      }
7031    }
7032
7033    /// Set of (canonical) types that we've already handled.
7034    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7035
7036    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7037      for (BuiltinCandidateTypeSet::iterator
7038                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7039             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7040           Ptr != PtrEnd; ++Ptr) {
7041        // Don't add the same builtin candidate twice.
7042        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7043          continue;
7044
7045        QualType ParamTypes[2] = { *Ptr, *Ptr };
7046        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7047      }
7048      for (BuiltinCandidateTypeSet::iterator
7049                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7050             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7051           Enum != EnumEnd; ++Enum) {
7052        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
7053
7054        // Don't add the same builtin candidate twice, or if a user defined
7055        // candidate exists.
7056        if (!AddedTypes.insert(CanonType) ||
7057            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
7058                                                            CanonType)))
7059          continue;
7060
7061        QualType ParamTypes[2] = { *Enum, *Enum };
7062        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7063      }
7064
7065      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
7066        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
7067        if (AddedTypes.insert(NullPtrTy) &&
7068            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
7069                                                             NullPtrTy))) {
7070          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
7071          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
7072                                CandidateSet);
7073        }
7074      }
7075    }
7076  }
7077
7078  // C++ [over.built]p13:
7079  //
7080  //   For every cv-qualified or cv-unqualified object type T
7081  //   there exist candidate operator functions of the form
7082  //
7083  //      T*         operator+(T*, ptrdiff_t);
7084  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
7085  //      T*         operator-(T*, ptrdiff_t);
7086  //      T*         operator+(ptrdiff_t, T*);
7087  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
7088  //
7089  // C++ [over.built]p14:
7090  //
7091  //   For every T, where T is a pointer to object type, there
7092  //   exist candidate operator functions of the form
7093  //
7094  //      ptrdiff_t  operator-(T, T);
7095  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
7096    /// Set of (canonical) types that we've already handled.
7097    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7098
7099    for (int Arg = 0; Arg < 2; ++Arg) {
7100      QualType AsymetricParamTypes[2] = {
7101        S.Context.getPointerDiffType(),
7102        S.Context.getPointerDiffType(),
7103      };
7104      for (BuiltinCandidateTypeSet::iterator
7105                Ptr = CandidateTypes[Arg].pointer_begin(),
7106             PtrEnd = CandidateTypes[Arg].pointer_end();
7107           Ptr != PtrEnd; ++Ptr) {
7108        QualType PointeeTy = (*Ptr)->getPointeeType();
7109        if (!PointeeTy->isObjectType())
7110          continue;
7111
7112        AsymetricParamTypes[Arg] = *Ptr;
7113        if (Arg == 0 || Op == OO_Plus) {
7114          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
7115          // T* operator+(ptrdiff_t, T*);
7116          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, CandidateSet);
7117        }
7118        if (Op == OO_Minus) {
7119          // ptrdiff_t operator-(T, T);
7120          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7121            continue;
7122
7123          QualType ParamTypes[2] = { *Ptr, *Ptr };
7124          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
7125                                Args, CandidateSet);
7126        }
7127      }
7128    }
7129  }
7130
7131  // C++ [over.built]p12:
7132  //
7133  //   For every pair of promoted arithmetic types L and R, there
7134  //   exist candidate operator functions of the form
7135  //
7136  //        LR         operator*(L, R);
7137  //        LR         operator/(L, R);
7138  //        LR         operator+(L, R);
7139  //        LR         operator-(L, R);
7140  //        bool       operator<(L, R);
7141  //        bool       operator>(L, R);
7142  //        bool       operator<=(L, R);
7143  //        bool       operator>=(L, R);
7144  //        bool       operator==(L, R);
7145  //        bool       operator!=(L, R);
7146  //
7147  //   where LR is the result of the usual arithmetic conversions
7148  //   between types L and R.
7149  //
7150  // C++ [over.built]p24:
7151  //
7152  //   For every pair of promoted arithmetic types L and R, there exist
7153  //   candidate operator functions of the form
7154  //
7155  //        LR       operator?(bool, L, R);
7156  //
7157  //   where LR is the result of the usual arithmetic conversions
7158  //   between types L and R.
7159  // Our candidates ignore the first parameter.
7160  void addGenericBinaryArithmeticOverloads(bool isComparison) {
7161    if (!HasArithmeticOrEnumeralCandidateType)
7162      return;
7163
7164    for (unsigned Left = FirstPromotedArithmeticType;
7165         Left < LastPromotedArithmeticType; ++Left) {
7166      for (unsigned Right = FirstPromotedArithmeticType;
7167           Right < LastPromotedArithmeticType; ++Right) {
7168        QualType LandR[2] = { getArithmeticType(Left),
7169                              getArithmeticType(Right) };
7170        QualType Result =
7171          isComparison ? S.Context.BoolTy
7172                       : getUsualArithmeticConversions(Left, Right);
7173        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7174      }
7175    }
7176
7177    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
7178    // conditional operator for vector types.
7179    for (BuiltinCandidateTypeSet::iterator
7180              Vec1 = CandidateTypes[0].vector_begin(),
7181           Vec1End = CandidateTypes[0].vector_end();
7182         Vec1 != Vec1End; ++Vec1) {
7183      for (BuiltinCandidateTypeSet::iterator
7184                Vec2 = CandidateTypes[1].vector_begin(),
7185             Vec2End = CandidateTypes[1].vector_end();
7186           Vec2 != Vec2End; ++Vec2) {
7187        QualType LandR[2] = { *Vec1, *Vec2 };
7188        QualType Result = S.Context.BoolTy;
7189        if (!isComparison) {
7190          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
7191            Result = *Vec1;
7192          else
7193            Result = *Vec2;
7194        }
7195
7196        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7197      }
7198    }
7199  }
7200
7201  // C++ [over.built]p17:
7202  //
7203  //   For every pair of promoted integral types L and R, there
7204  //   exist candidate operator functions of the form
7205  //
7206  //      LR         operator%(L, R);
7207  //      LR         operator&(L, R);
7208  //      LR         operator^(L, R);
7209  //      LR         operator|(L, R);
7210  //      L          operator<<(L, R);
7211  //      L          operator>>(L, R);
7212  //
7213  //   where LR is the result of the usual arithmetic conversions
7214  //   between types L and R.
7215  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7216    if (!HasArithmeticOrEnumeralCandidateType)
7217      return;
7218
7219    for (unsigned Left = FirstPromotedIntegralType;
7220         Left < LastPromotedIntegralType; ++Left) {
7221      for (unsigned Right = FirstPromotedIntegralType;
7222           Right < LastPromotedIntegralType; ++Right) {
7223        QualType LandR[2] = { getArithmeticType(Left),
7224                              getArithmeticType(Right) };
7225        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7226            ? LandR[0]
7227            : getUsualArithmeticConversions(Left, Right);
7228        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7229      }
7230    }
7231  }
7232
7233  // C++ [over.built]p20:
7234  //
7235  //   For every pair (T, VQ), where T is an enumeration or
7236  //   pointer to member type and VQ is either volatile or
7237  //   empty, there exist candidate operator functions of the form
7238  //
7239  //        VQ T&      operator=(VQ T&, T);
7240  void addAssignmentMemberPointerOrEnumeralOverloads() {
7241    /// Set of (canonical) types that we've already handled.
7242    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7243
7244    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7245      for (BuiltinCandidateTypeSet::iterator
7246                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7247             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7248           Enum != EnumEnd; ++Enum) {
7249        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7250          continue;
7251
7252        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
7253      }
7254
7255      for (BuiltinCandidateTypeSet::iterator
7256                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7257             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7258           MemPtr != MemPtrEnd; ++MemPtr) {
7259        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7260          continue;
7261
7262        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
7263      }
7264    }
7265  }
7266
7267  // C++ [over.built]p19:
7268  //
7269  //   For every pair (T, VQ), where T is any type and VQ is either
7270  //   volatile or empty, there exist candidate operator functions
7271  //   of the form
7272  //
7273  //        T*VQ&      operator=(T*VQ&, T*);
7274  //
7275  // C++ [over.built]p21:
7276  //
7277  //   For every pair (T, VQ), where T is a cv-qualified or
7278  //   cv-unqualified object type and VQ is either volatile or
7279  //   empty, there exist candidate operator functions of the form
7280  //
7281  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
7282  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
7283  void addAssignmentPointerOverloads(bool isEqualOp) {
7284    /// Set of (canonical) types that we've already handled.
7285    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7286
7287    for (BuiltinCandidateTypeSet::iterator
7288              Ptr = CandidateTypes[0].pointer_begin(),
7289           PtrEnd = CandidateTypes[0].pointer_end();
7290         Ptr != PtrEnd; ++Ptr) {
7291      // If this is operator=, keep track of the builtin candidates we added.
7292      if (isEqualOp)
7293        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7294      else if (!(*Ptr)->getPointeeType()->isObjectType())
7295        continue;
7296
7297      // non-volatile version
7298      QualType ParamTypes[2] = {
7299        S.Context.getLValueReferenceType(*Ptr),
7300        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7301      };
7302      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7303                            /*IsAssigmentOperator=*/ isEqualOp);
7304
7305      bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7306                          VisibleTypeConversionsQuals.hasVolatile();
7307      if (NeedVolatile) {
7308        // volatile version
7309        ParamTypes[0] =
7310          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7311        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7312                              /*IsAssigmentOperator=*/isEqualOp);
7313      }
7314
7315      if (!(*Ptr).isRestrictQualified() &&
7316          VisibleTypeConversionsQuals.hasRestrict()) {
7317        // restrict version
7318        ParamTypes[0]
7319          = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7320        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7321                              /*IsAssigmentOperator=*/isEqualOp);
7322
7323        if (NeedVolatile) {
7324          // volatile restrict version
7325          ParamTypes[0]
7326            = S.Context.getLValueReferenceType(
7327                S.Context.getCVRQualifiedType(*Ptr,
7328                                              (Qualifiers::Volatile |
7329                                               Qualifiers::Restrict)));
7330          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7331                                /*IsAssigmentOperator=*/isEqualOp);
7332        }
7333      }
7334    }
7335
7336    if (isEqualOp) {
7337      for (BuiltinCandidateTypeSet::iterator
7338                Ptr = CandidateTypes[1].pointer_begin(),
7339             PtrEnd = CandidateTypes[1].pointer_end();
7340           Ptr != PtrEnd; ++Ptr) {
7341        // Make sure we don't add the same candidate twice.
7342        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7343          continue;
7344
7345        QualType ParamTypes[2] = {
7346          S.Context.getLValueReferenceType(*Ptr),
7347          *Ptr,
7348        };
7349
7350        // non-volatile version
7351        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7352                              /*IsAssigmentOperator=*/true);
7353
7354        bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7355                           VisibleTypeConversionsQuals.hasVolatile();
7356        if (NeedVolatile) {
7357          // volatile version
7358          ParamTypes[0] =
7359            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7360          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7361                                /*IsAssigmentOperator=*/true);
7362        }
7363
7364        if (!(*Ptr).isRestrictQualified() &&
7365            VisibleTypeConversionsQuals.hasRestrict()) {
7366          // restrict version
7367          ParamTypes[0]
7368            = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7369          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7370                                /*IsAssigmentOperator=*/true);
7371
7372          if (NeedVolatile) {
7373            // volatile restrict version
7374            ParamTypes[0]
7375              = S.Context.getLValueReferenceType(
7376                  S.Context.getCVRQualifiedType(*Ptr,
7377                                                (Qualifiers::Volatile |
7378                                                 Qualifiers::Restrict)));
7379            S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7380                                  /*IsAssigmentOperator=*/true);
7381          }
7382        }
7383      }
7384    }
7385  }
7386
7387  // C++ [over.built]p18:
7388  //
7389  //   For every triple (L, VQ, R), where L is an arithmetic type,
7390  //   VQ is either volatile or empty, and R is a promoted
7391  //   arithmetic type, there exist candidate operator functions of
7392  //   the form
7393  //
7394  //        VQ L&      operator=(VQ L&, R);
7395  //        VQ L&      operator*=(VQ L&, R);
7396  //        VQ L&      operator/=(VQ L&, R);
7397  //        VQ L&      operator+=(VQ L&, R);
7398  //        VQ L&      operator-=(VQ L&, R);
7399  void addAssignmentArithmeticOverloads(bool isEqualOp) {
7400    if (!HasArithmeticOrEnumeralCandidateType)
7401      return;
7402
7403    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7404      for (unsigned Right = FirstPromotedArithmeticType;
7405           Right < LastPromotedArithmeticType; ++Right) {
7406        QualType ParamTypes[2];
7407        ParamTypes[1] = getArithmeticType(Right);
7408
7409        // Add this built-in operator as a candidate (VQ is empty).
7410        ParamTypes[0] =
7411          S.Context.getLValueReferenceType(getArithmeticType(Left));
7412        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7413                              /*IsAssigmentOperator=*/isEqualOp);
7414
7415        // Add this built-in operator as a candidate (VQ is 'volatile').
7416        if (VisibleTypeConversionsQuals.hasVolatile()) {
7417          ParamTypes[0] =
7418            S.Context.getVolatileType(getArithmeticType(Left));
7419          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7420          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7421                                /*IsAssigmentOperator=*/isEqualOp);
7422        }
7423      }
7424    }
7425
7426    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7427    for (BuiltinCandidateTypeSet::iterator
7428              Vec1 = CandidateTypes[0].vector_begin(),
7429           Vec1End = CandidateTypes[0].vector_end();
7430         Vec1 != Vec1End; ++Vec1) {
7431      for (BuiltinCandidateTypeSet::iterator
7432                Vec2 = CandidateTypes[1].vector_begin(),
7433             Vec2End = CandidateTypes[1].vector_end();
7434           Vec2 != Vec2End; ++Vec2) {
7435        QualType ParamTypes[2];
7436        ParamTypes[1] = *Vec2;
7437        // Add this built-in operator as a candidate (VQ is empty).
7438        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7439        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7440                              /*IsAssigmentOperator=*/isEqualOp);
7441
7442        // Add this built-in operator as a candidate (VQ is 'volatile').
7443        if (VisibleTypeConversionsQuals.hasVolatile()) {
7444          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7445          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7446          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7447                                /*IsAssigmentOperator=*/isEqualOp);
7448        }
7449      }
7450    }
7451  }
7452
7453  // C++ [over.built]p22:
7454  //
7455  //   For every triple (L, VQ, R), where L is an integral type, VQ
7456  //   is either volatile or empty, and R is a promoted integral
7457  //   type, there exist candidate operator functions of the form
7458  //
7459  //        VQ L&       operator%=(VQ L&, R);
7460  //        VQ L&       operator<<=(VQ L&, R);
7461  //        VQ L&       operator>>=(VQ L&, R);
7462  //        VQ L&       operator&=(VQ L&, R);
7463  //        VQ L&       operator^=(VQ L&, R);
7464  //        VQ L&       operator|=(VQ L&, R);
7465  void addAssignmentIntegralOverloads() {
7466    if (!HasArithmeticOrEnumeralCandidateType)
7467      return;
7468
7469    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7470      for (unsigned Right = FirstPromotedIntegralType;
7471           Right < LastPromotedIntegralType; ++Right) {
7472        QualType ParamTypes[2];
7473        ParamTypes[1] = getArithmeticType(Right);
7474
7475        // Add this built-in operator as a candidate (VQ is empty).
7476        ParamTypes[0] =
7477          S.Context.getLValueReferenceType(getArithmeticType(Left));
7478        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7479        if (VisibleTypeConversionsQuals.hasVolatile()) {
7480          // Add this built-in operator as a candidate (VQ is 'volatile').
7481          ParamTypes[0] = getArithmeticType(Left);
7482          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7483          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7484          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7485        }
7486      }
7487    }
7488  }
7489
7490  // C++ [over.operator]p23:
7491  //
7492  //   There also exist candidate operator functions of the form
7493  //
7494  //        bool        operator!(bool);
7495  //        bool        operator&&(bool, bool);
7496  //        bool        operator||(bool, bool);
7497  void addExclaimOverload() {
7498    QualType ParamTy = S.Context.BoolTy;
7499    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
7500                          /*IsAssignmentOperator=*/false,
7501                          /*NumContextualBoolArguments=*/1);
7502  }
7503  void addAmpAmpOrPipePipeOverload() {
7504    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7505    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
7506                          /*IsAssignmentOperator=*/false,
7507                          /*NumContextualBoolArguments=*/2);
7508  }
7509
7510  // C++ [over.built]p13:
7511  //
7512  //   For every cv-qualified or cv-unqualified object type T there
7513  //   exist candidate operator functions of the form
7514  //
7515  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
7516  //        T&         operator[](T*, ptrdiff_t);
7517  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
7518  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
7519  //        T&         operator[](ptrdiff_t, T*);
7520  void addSubscriptOverloads() {
7521    for (BuiltinCandidateTypeSet::iterator
7522              Ptr = CandidateTypes[0].pointer_begin(),
7523           PtrEnd = CandidateTypes[0].pointer_end();
7524         Ptr != PtrEnd; ++Ptr) {
7525      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7526      QualType PointeeType = (*Ptr)->getPointeeType();
7527      if (!PointeeType->isObjectType())
7528        continue;
7529
7530      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7531
7532      // T& operator[](T*, ptrdiff_t)
7533      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7534    }
7535
7536    for (BuiltinCandidateTypeSet::iterator
7537              Ptr = CandidateTypes[1].pointer_begin(),
7538           PtrEnd = CandidateTypes[1].pointer_end();
7539         Ptr != PtrEnd; ++Ptr) {
7540      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7541      QualType PointeeType = (*Ptr)->getPointeeType();
7542      if (!PointeeType->isObjectType())
7543        continue;
7544
7545      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7546
7547      // T& operator[](ptrdiff_t, T*)
7548      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7549    }
7550  }
7551
7552  // C++ [over.built]p11:
7553  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7554  //    C1 is the same type as C2 or is a derived class of C2, T is an object
7555  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7556  //    there exist candidate operator functions of the form
7557  //
7558  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7559  //
7560  //    where CV12 is the union of CV1 and CV2.
7561  void addArrowStarOverloads() {
7562    for (BuiltinCandidateTypeSet::iterator
7563             Ptr = CandidateTypes[0].pointer_begin(),
7564           PtrEnd = CandidateTypes[0].pointer_end();
7565         Ptr != PtrEnd; ++Ptr) {
7566      QualType C1Ty = (*Ptr);
7567      QualType C1;
7568      QualifierCollector Q1;
7569      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7570      if (!isa<RecordType>(C1))
7571        continue;
7572      // heuristic to reduce number of builtin candidates in the set.
7573      // Add volatile/restrict version only if there are conversions to a
7574      // volatile/restrict type.
7575      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7576        continue;
7577      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7578        continue;
7579      for (BuiltinCandidateTypeSet::iterator
7580                MemPtr = CandidateTypes[1].member_pointer_begin(),
7581             MemPtrEnd = CandidateTypes[1].member_pointer_end();
7582           MemPtr != MemPtrEnd; ++MemPtr) {
7583        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7584        QualType C2 = QualType(mptr->getClass(), 0);
7585        C2 = C2.getUnqualifiedType();
7586        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7587          break;
7588        QualType ParamTypes[2] = { *Ptr, *MemPtr };
7589        // build CV12 T&
7590        QualType T = mptr->getPointeeType();
7591        if (!VisibleTypeConversionsQuals.hasVolatile() &&
7592            T.isVolatileQualified())
7593          continue;
7594        if (!VisibleTypeConversionsQuals.hasRestrict() &&
7595            T.isRestrictQualified())
7596          continue;
7597        T = Q1.apply(S.Context, T);
7598        QualType ResultTy = S.Context.getLValueReferenceType(T);
7599        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7600      }
7601    }
7602  }
7603
7604  // Note that we don't consider the first argument, since it has been
7605  // contextually converted to bool long ago. The candidates below are
7606  // therefore added as binary.
7607  //
7608  // C++ [over.built]p25:
7609  //   For every type T, where T is a pointer, pointer-to-member, or scoped
7610  //   enumeration type, there exist candidate operator functions of the form
7611  //
7612  //        T        operator?(bool, T, T);
7613  //
7614  void addConditionalOperatorOverloads() {
7615    /// Set of (canonical) types that we've already handled.
7616    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7617
7618    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7619      for (BuiltinCandidateTypeSet::iterator
7620                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7621             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7622           Ptr != PtrEnd; ++Ptr) {
7623        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7624          continue;
7625
7626        QualType ParamTypes[2] = { *Ptr, *Ptr };
7627        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
7628      }
7629
7630      for (BuiltinCandidateTypeSet::iterator
7631                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7632             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7633           MemPtr != MemPtrEnd; ++MemPtr) {
7634        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7635          continue;
7636
7637        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7638        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
7639      }
7640
7641      if (S.getLangOpts().CPlusPlus11) {
7642        for (BuiltinCandidateTypeSet::iterator
7643                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7644               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7645             Enum != EnumEnd; ++Enum) {
7646          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7647            continue;
7648
7649          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7650            continue;
7651
7652          QualType ParamTypes[2] = { *Enum, *Enum };
7653          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
7654        }
7655      }
7656    }
7657  }
7658};
7659
7660} // end anonymous namespace
7661
7662/// AddBuiltinOperatorCandidates - Add the appropriate built-in
7663/// operator overloads to the candidate set (C++ [over.built]), based
7664/// on the operator @p Op and the arguments given. For example, if the
7665/// operator is a binary '+', this routine might add "int
7666/// operator+(int, int)" to cover integer addition.
7667void
7668Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7669                                   SourceLocation OpLoc,
7670                                   llvm::ArrayRef<Expr *> Args,
7671                                   OverloadCandidateSet& CandidateSet) {
7672  // Find all of the types that the arguments can convert to, but only
7673  // if the operator we're looking at has built-in operator candidates
7674  // that make use of these types. Also record whether we encounter non-record
7675  // candidate types or either arithmetic or enumeral candidate types.
7676  Qualifiers VisibleTypeConversionsQuals;
7677  VisibleTypeConversionsQuals.addConst();
7678  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
7679    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7680
7681  bool HasNonRecordCandidateType = false;
7682  bool HasArithmeticOrEnumeralCandidateType = false;
7683  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7684  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7685    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7686    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7687                                                 OpLoc,
7688                                                 true,
7689                                                 (Op == OO_Exclaim ||
7690                                                  Op == OO_AmpAmp ||
7691                                                  Op == OO_PipePipe),
7692                                                 VisibleTypeConversionsQuals);
7693    HasNonRecordCandidateType = HasNonRecordCandidateType ||
7694        CandidateTypes[ArgIdx].hasNonRecordTypes();
7695    HasArithmeticOrEnumeralCandidateType =
7696        HasArithmeticOrEnumeralCandidateType ||
7697        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7698  }
7699
7700  // Exit early when no non-record types have been added to the candidate set
7701  // for any of the arguments to the operator.
7702  //
7703  // We can't exit early for !, ||, or &&, since there we have always have
7704  // 'bool' overloads.
7705  if (!HasNonRecordCandidateType &&
7706      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7707    return;
7708
7709  // Setup an object to manage the common state for building overloads.
7710  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
7711                                           VisibleTypeConversionsQuals,
7712                                           HasArithmeticOrEnumeralCandidateType,
7713                                           CandidateTypes, CandidateSet);
7714
7715  // Dispatch over the operation to add in only those overloads which apply.
7716  switch (Op) {
7717  case OO_None:
7718  case NUM_OVERLOADED_OPERATORS:
7719    llvm_unreachable("Expected an overloaded operator");
7720
7721  case OO_New:
7722  case OO_Delete:
7723  case OO_Array_New:
7724  case OO_Array_Delete:
7725  case OO_Call:
7726    llvm_unreachable(
7727                    "Special operators don't use AddBuiltinOperatorCandidates");
7728
7729  case OO_Comma:
7730  case OO_Arrow:
7731    // C++ [over.match.oper]p3:
7732    //   -- For the operator ',', the unary operator '&', or the
7733    //      operator '->', the built-in candidates set is empty.
7734    break;
7735
7736  case OO_Plus: // '+' is either unary or binary
7737    if (Args.size() == 1)
7738      OpBuilder.addUnaryPlusPointerOverloads();
7739    // Fall through.
7740
7741  case OO_Minus: // '-' is either unary or binary
7742    if (Args.size() == 1) {
7743      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7744    } else {
7745      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7746      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7747    }
7748    break;
7749
7750  case OO_Star: // '*' is either unary or binary
7751    if (Args.size() == 1)
7752      OpBuilder.addUnaryStarPointerOverloads();
7753    else
7754      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7755    break;
7756
7757  case OO_Slash:
7758    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7759    break;
7760
7761  case OO_PlusPlus:
7762  case OO_MinusMinus:
7763    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7764    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7765    break;
7766
7767  case OO_EqualEqual:
7768  case OO_ExclaimEqual:
7769    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7770    // Fall through.
7771
7772  case OO_Less:
7773  case OO_Greater:
7774  case OO_LessEqual:
7775  case OO_GreaterEqual:
7776    OpBuilder.addRelationalPointerOrEnumeralOverloads();
7777    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7778    break;
7779
7780  case OO_Percent:
7781  case OO_Caret:
7782  case OO_Pipe:
7783  case OO_LessLess:
7784  case OO_GreaterGreater:
7785    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7786    break;
7787
7788  case OO_Amp: // '&' is either unary or binary
7789    if (Args.size() == 1)
7790      // C++ [over.match.oper]p3:
7791      //   -- For the operator ',', the unary operator '&', or the
7792      //      operator '->', the built-in candidates set is empty.
7793      break;
7794
7795    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7796    break;
7797
7798  case OO_Tilde:
7799    OpBuilder.addUnaryTildePromotedIntegralOverloads();
7800    break;
7801
7802  case OO_Equal:
7803    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7804    // Fall through.
7805
7806  case OO_PlusEqual:
7807  case OO_MinusEqual:
7808    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7809    // Fall through.
7810
7811  case OO_StarEqual:
7812  case OO_SlashEqual:
7813    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7814    break;
7815
7816  case OO_PercentEqual:
7817  case OO_LessLessEqual:
7818  case OO_GreaterGreaterEqual:
7819  case OO_AmpEqual:
7820  case OO_CaretEqual:
7821  case OO_PipeEqual:
7822    OpBuilder.addAssignmentIntegralOverloads();
7823    break;
7824
7825  case OO_Exclaim:
7826    OpBuilder.addExclaimOverload();
7827    break;
7828
7829  case OO_AmpAmp:
7830  case OO_PipePipe:
7831    OpBuilder.addAmpAmpOrPipePipeOverload();
7832    break;
7833
7834  case OO_Subscript:
7835    OpBuilder.addSubscriptOverloads();
7836    break;
7837
7838  case OO_ArrowStar:
7839    OpBuilder.addArrowStarOverloads();
7840    break;
7841
7842  case OO_Conditional:
7843    OpBuilder.addConditionalOperatorOverloads();
7844    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7845    break;
7846  }
7847}
7848
7849/// \brief Add function candidates found via argument-dependent lookup
7850/// to the set of overloading candidates.
7851///
7852/// This routine performs argument-dependent name lookup based on the
7853/// given function name (which may also be an operator name) and adds
7854/// all of the overload candidates found by ADL to the overload
7855/// candidate set (C++ [basic.lookup.argdep]).
7856void
7857Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7858                                           bool Operator, SourceLocation Loc,
7859                                           ArrayRef<Expr *> Args,
7860                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7861                                           OverloadCandidateSet& CandidateSet,
7862                                           bool PartialOverloading) {
7863  ADLResult Fns;
7864
7865  // FIXME: This approach for uniquing ADL results (and removing
7866  // redundant candidates from the set) relies on pointer-equality,
7867  // which means we need to key off the canonical decl.  However,
7868  // always going back to the canonical decl might not get us the
7869  // right set of default arguments.  What default arguments are
7870  // we supposed to consider on ADL candidates, anyway?
7871
7872  // FIXME: Pass in the explicit template arguments?
7873  ArgumentDependentLookup(Name, Operator, Loc, Args, Fns);
7874
7875  // Erase all of the candidates we already knew about.
7876  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7877                                   CandEnd = CandidateSet.end();
7878       Cand != CandEnd; ++Cand)
7879    if (Cand->Function) {
7880      Fns.erase(Cand->Function);
7881      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7882        Fns.erase(FunTmpl);
7883    }
7884
7885  // For each of the ADL candidates we found, add it to the overload
7886  // set.
7887  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7888    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7889    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7890      if (ExplicitTemplateArgs)
7891        continue;
7892
7893      AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
7894                           PartialOverloading);
7895    } else
7896      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7897                                   FoundDecl, ExplicitTemplateArgs,
7898                                   Args, CandidateSet);
7899  }
7900}
7901
7902/// isBetterOverloadCandidate - Determines whether the first overload
7903/// candidate is a better candidate than the second (C++ 13.3.3p1).
7904bool
7905isBetterOverloadCandidate(Sema &S,
7906                          const OverloadCandidate &Cand1,
7907                          const OverloadCandidate &Cand2,
7908                          SourceLocation Loc,
7909                          bool UserDefinedConversion) {
7910  // Define viable functions to be better candidates than non-viable
7911  // functions.
7912  if (!Cand2.Viable)
7913    return Cand1.Viable;
7914  else if (!Cand1.Viable)
7915    return false;
7916
7917  // C++ [over.match.best]p1:
7918  //
7919  //   -- if F is a static member function, ICS1(F) is defined such
7920  //      that ICS1(F) is neither better nor worse than ICS1(G) for
7921  //      any function G, and, symmetrically, ICS1(G) is neither
7922  //      better nor worse than ICS1(F).
7923  unsigned StartArg = 0;
7924  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
7925    StartArg = 1;
7926
7927  // C++ [over.match.best]p1:
7928  //   A viable function F1 is defined to be a better function than another
7929  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
7930  //   conversion sequence than ICSi(F2), and then...
7931  unsigned NumArgs = Cand1.NumConversions;
7932  assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
7933  bool HasBetterConversion = false;
7934  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
7935    switch (CompareImplicitConversionSequences(S,
7936                                               Cand1.Conversions[ArgIdx],
7937                                               Cand2.Conversions[ArgIdx])) {
7938    case ImplicitConversionSequence::Better:
7939      // Cand1 has a better conversion sequence.
7940      HasBetterConversion = true;
7941      break;
7942
7943    case ImplicitConversionSequence::Worse:
7944      // Cand1 can't be better than Cand2.
7945      return false;
7946
7947    case ImplicitConversionSequence::Indistinguishable:
7948      // Do nothing.
7949      break;
7950    }
7951  }
7952
7953  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
7954  //       ICSj(F2), or, if not that,
7955  if (HasBetterConversion)
7956    return true;
7957
7958  //     - F1 is a non-template function and F2 is a function template
7959  //       specialization, or, if not that,
7960  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
7961      Cand2.Function && Cand2.Function->getPrimaryTemplate())
7962    return true;
7963
7964  //   -- F1 and F2 are function template specializations, and the function
7965  //      template for F1 is more specialized than the template for F2
7966  //      according to the partial ordering rules described in 14.5.5.2, or,
7967  //      if not that,
7968  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
7969      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
7970    if (FunctionTemplateDecl *BetterTemplate
7971          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
7972                                         Cand2.Function->getPrimaryTemplate(),
7973                                         Loc,
7974                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
7975                                                             : TPOC_Call,
7976                                         Cand1.ExplicitCallArguments))
7977      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
7978  }
7979
7980  //   -- the context is an initialization by user-defined conversion
7981  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
7982  //      from the return type of F1 to the destination type (i.e.,
7983  //      the type of the entity being initialized) is a better
7984  //      conversion sequence than the standard conversion sequence
7985  //      from the return type of F2 to the destination type.
7986  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
7987      isa<CXXConversionDecl>(Cand1.Function) &&
7988      isa<CXXConversionDecl>(Cand2.Function)) {
7989    // First check whether we prefer one of the conversion functions over the
7990    // other. This only distinguishes the results in non-standard, extension
7991    // cases such as the conversion from a lambda closure type to a function
7992    // pointer or block.
7993    ImplicitConversionSequence::CompareKind FuncResult
7994      = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
7995    if (FuncResult != ImplicitConversionSequence::Indistinguishable)
7996      return FuncResult;
7997
7998    switch (CompareStandardConversionSequences(S,
7999                                               Cand1.FinalConversion,
8000                                               Cand2.FinalConversion)) {
8001    case ImplicitConversionSequence::Better:
8002      // Cand1 has a better conversion sequence.
8003      return true;
8004
8005    case ImplicitConversionSequence::Worse:
8006      // Cand1 can't be better than Cand2.
8007      return false;
8008
8009    case ImplicitConversionSequence::Indistinguishable:
8010      // Do nothing
8011      break;
8012    }
8013  }
8014
8015  return false;
8016}
8017
8018/// \brief Computes the best viable function (C++ 13.3.3)
8019/// within an overload candidate set.
8020///
8021/// \param Loc The location of the function name (or operator symbol) for
8022/// which overload resolution occurs.
8023///
8024/// \param Best If overload resolution was successful or found a deleted
8025/// function, \p Best points to the candidate function found.
8026///
8027/// \returns The result of overload resolution.
8028OverloadingResult
8029OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
8030                                         iterator &Best,
8031                                         bool UserDefinedConversion) {
8032  // Find the best viable function.
8033  Best = end();
8034  for (iterator Cand = begin(); Cand != end(); ++Cand) {
8035    if (Cand->Viable)
8036      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
8037                                                     UserDefinedConversion))
8038        Best = Cand;
8039  }
8040
8041  // If we didn't find any viable functions, abort.
8042  if (Best == end())
8043    return OR_No_Viable_Function;
8044
8045  // Make sure that this function is better than every other viable
8046  // function. If not, we have an ambiguity.
8047  for (iterator Cand = begin(); Cand != end(); ++Cand) {
8048    if (Cand->Viable &&
8049        Cand != Best &&
8050        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
8051                                   UserDefinedConversion)) {
8052      Best = end();
8053      return OR_Ambiguous;
8054    }
8055  }
8056
8057  // Best is the best viable function.
8058  if (Best->Function &&
8059      (Best->Function->isDeleted() ||
8060       S.isFunctionConsideredUnavailable(Best->Function)))
8061    return OR_Deleted;
8062
8063  return OR_Success;
8064}
8065
8066namespace {
8067
8068enum OverloadCandidateKind {
8069  oc_function,
8070  oc_method,
8071  oc_constructor,
8072  oc_function_template,
8073  oc_method_template,
8074  oc_constructor_template,
8075  oc_implicit_default_constructor,
8076  oc_implicit_copy_constructor,
8077  oc_implicit_move_constructor,
8078  oc_implicit_copy_assignment,
8079  oc_implicit_move_assignment,
8080  oc_implicit_inherited_constructor
8081};
8082
8083OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
8084                                                FunctionDecl *Fn,
8085                                                std::string &Description) {
8086  bool isTemplate = false;
8087
8088  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
8089    isTemplate = true;
8090    Description = S.getTemplateArgumentBindingsText(
8091      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
8092  }
8093
8094  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
8095    if (!Ctor->isImplicit())
8096      return isTemplate ? oc_constructor_template : oc_constructor;
8097
8098    if (Ctor->getInheritedConstructor())
8099      return oc_implicit_inherited_constructor;
8100
8101    if (Ctor->isDefaultConstructor())
8102      return oc_implicit_default_constructor;
8103
8104    if (Ctor->isMoveConstructor())
8105      return oc_implicit_move_constructor;
8106
8107    assert(Ctor->isCopyConstructor() &&
8108           "unexpected sort of implicit constructor");
8109    return oc_implicit_copy_constructor;
8110  }
8111
8112  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
8113    // This actually gets spelled 'candidate function' for now, but
8114    // it doesn't hurt to split it out.
8115    if (!Meth->isImplicit())
8116      return isTemplate ? oc_method_template : oc_method;
8117
8118    if (Meth->isMoveAssignmentOperator())
8119      return oc_implicit_move_assignment;
8120
8121    if (Meth->isCopyAssignmentOperator())
8122      return oc_implicit_copy_assignment;
8123
8124    assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
8125    return oc_method;
8126  }
8127
8128  return isTemplate ? oc_function_template : oc_function;
8129}
8130
8131void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
8132  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
8133  if (!Ctor) return;
8134
8135  Ctor = Ctor->getInheritedConstructor();
8136  if (!Ctor) return;
8137
8138  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
8139}
8140
8141} // end anonymous namespace
8142
8143// Notes the location of an overload candidate.
8144void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
8145  std::string FnDesc;
8146  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
8147  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
8148                             << (unsigned) K << FnDesc;
8149  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
8150  Diag(Fn->getLocation(), PD);
8151  MaybeEmitInheritedConstructorNote(*this, Fn);
8152}
8153
8154//Notes the location of all overload candidates designated through
8155// OverloadedExpr
8156void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
8157  assert(OverloadedExpr->getType() == Context.OverloadTy);
8158
8159  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
8160  OverloadExpr *OvlExpr = Ovl.Expression;
8161
8162  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8163                            IEnd = OvlExpr->decls_end();
8164       I != IEnd; ++I) {
8165    if (FunctionTemplateDecl *FunTmpl =
8166                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
8167      NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
8168    } else if (FunctionDecl *Fun
8169                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
8170      NoteOverloadCandidate(Fun, DestType);
8171    }
8172  }
8173}
8174
8175/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
8176/// "lead" diagnostic; it will be given two arguments, the source and
8177/// target types of the conversion.
8178void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
8179                                 Sema &S,
8180                                 SourceLocation CaretLoc,
8181                                 const PartialDiagnostic &PDiag) const {
8182  S.Diag(CaretLoc, PDiag)
8183    << Ambiguous.getFromType() << Ambiguous.getToType();
8184  // FIXME: The note limiting machinery is borrowed from
8185  // OverloadCandidateSet::NoteCandidates; there's an opportunity for
8186  // refactoring here.
8187  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
8188  unsigned CandsShown = 0;
8189  AmbiguousConversionSequence::const_iterator I, E;
8190  for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
8191    if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
8192      break;
8193    ++CandsShown;
8194    S.NoteOverloadCandidate(*I);
8195  }
8196  if (I != E)
8197    S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
8198}
8199
8200namespace {
8201
8202void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
8203  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
8204  assert(Conv.isBad());
8205  assert(Cand->Function && "for now, candidate must be a function");
8206  FunctionDecl *Fn = Cand->Function;
8207
8208  // There's a conversion slot for the object argument if this is a
8209  // non-constructor method.  Note that 'I' corresponds the
8210  // conversion-slot index.
8211  bool isObjectArgument = false;
8212  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
8213    if (I == 0)
8214      isObjectArgument = true;
8215    else
8216      I--;
8217  }
8218
8219  std::string FnDesc;
8220  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8221
8222  Expr *FromExpr = Conv.Bad.FromExpr;
8223  QualType FromTy = Conv.Bad.getFromType();
8224  QualType ToTy = Conv.Bad.getToType();
8225
8226  if (FromTy == S.Context.OverloadTy) {
8227    assert(FromExpr && "overload set argument came from implicit argument?");
8228    Expr *E = FromExpr->IgnoreParens();
8229    if (isa<UnaryOperator>(E))
8230      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
8231    DeclarationName Name = cast<OverloadExpr>(E)->getName();
8232
8233    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
8234      << (unsigned) FnKind << FnDesc
8235      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8236      << ToTy << Name << I+1;
8237    MaybeEmitInheritedConstructorNote(S, Fn);
8238    return;
8239  }
8240
8241  // Do some hand-waving analysis to see if the non-viability is due
8242  // to a qualifier mismatch.
8243  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
8244  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
8245  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
8246    CToTy = RT->getPointeeType();
8247  else {
8248    // TODO: detect and diagnose the full richness of const mismatches.
8249    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
8250      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
8251        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
8252  }
8253
8254  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8255      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
8256    Qualifiers FromQs = CFromTy.getQualifiers();
8257    Qualifiers ToQs = CToTy.getQualifiers();
8258
8259    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
8260      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
8261        << (unsigned) FnKind << FnDesc
8262        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8263        << FromTy
8264        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
8265        << (unsigned) isObjectArgument << I+1;
8266      MaybeEmitInheritedConstructorNote(S, Fn);
8267      return;
8268    }
8269
8270    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8271      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
8272        << (unsigned) FnKind << FnDesc
8273        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8274        << FromTy
8275        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
8276        << (unsigned) isObjectArgument << I+1;
8277      MaybeEmitInheritedConstructorNote(S, Fn);
8278      return;
8279    }
8280
8281    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
8282      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
8283      << (unsigned) FnKind << FnDesc
8284      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8285      << FromTy
8286      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
8287      << (unsigned) isObjectArgument << I+1;
8288      MaybeEmitInheritedConstructorNote(S, Fn);
8289      return;
8290    }
8291
8292    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
8293    assert(CVR && "unexpected qualifiers mismatch");
8294
8295    if (isObjectArgument) {
8296      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
8297        << (unsigned) FnKind << FnDesc
8298        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8299        << FromTy << (CVR - 1);
8300    } else {
8301      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
8302        << (unsigned) FnKind << FnDesc
8303        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8304        << FromTy << (CVR - 1) << I+1;
8305    }
8306    MaybeEmitInheritedConstructorNote(S, Fn);
8307    return;
8308  }
8309
8310  // Special diagnostic for failure to convert an initializer list, since
8311  // telling the user that it has type void is not useful.
8312  if (FromExpr && isa<InitListExpr>(FromExpr)) {
8313    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
8314      << (unsigned) FnKind << FnDesc
8315      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8316      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8317    MaybeEmitInheritedConstructorNote(S, Fn);
8318    return;
8319  }
8320
8321  // Diagnose references or pointers to incomplete types differently,
8322  // since it's far from impossible that the incompleteness triggered
8323  // the failure.
8324  QualType TempFromTy = FromTy.getNonReferenceType();
8325  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8326    TempFromTy = PTy->getPointeeType();
8327  if (TempFromTy->isIncompleteType()) {
8328    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8329      << (unsigned) FnKind << FnDesc
8330      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8331      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8332    MaybeEmitInheritedConstructorNote(S, Fn);
8333    return;
8334  }
8335
8336  // Diagnose base -> derived pointer conversions.
8337  unsigned BaseToDerivedConversion = 0;
8338  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8339    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8340      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8341                                               FromPtrTy->getPointeeType()) &&
8342          !FromPtrTy->getPointeeType()->isIncompleteType() &&
8343          !ToPtrTy->getPointeeType()->isIncompleteType() &&
8344          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8345                          FromPtrTy->getPointeeType()))
8346        BaseToDerivedConversion = 1;
8347    }
8348  } else if (const ObjCObjectPointerType *FromPtrTy
8349                                    = FromTy->getAs<ObjCObjectPointerType>()) {
8350    if (const ObjCObjectPointerType *ToPtrTy
8351                                        = ToTy->getAs<ObjCObjectPointerType>())
8352      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8353        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8354          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8355                                                FromPtrTy->getPointeeType()) &&
8356              FromIface->isSuperClassOf(ToIface))
8357            BaseToDerivedConversion = 2;
8358  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8359    if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8360        !FromTy->isIncompleteType() &&
8361        !ToRefTy->getPointeeType()->isIncompleteType() &&
8362        S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
8363      BaseToDerivedConversion = 3;
8364    } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
8365               ToTy.getNonReferenceType().getCanonicalType() ==
8366               FromTy.getNonReferenceType().getCanonicalType()) {
8367      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
8368        << (unsigned) FnKind << FnDesc
8369        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8370        << (unsigned) isObjectArgument << I + 1;
8371      MaybeEmitInheritedConstructorNote(S, Fn);
8372      return;
8373    }
8374  }
8375
8376  if (BaseToDerivedConversion) {
8377    S.Diag(Fn->getLocation(),
8378           diag::note_ovl_candidate_bad_base_to_derived_conv)
8379      << (unsigned) FnKind << FnDesc
8380      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8381      << (BaseToDerivedConversion - 1)
8382      << FromTy << ToTy << I+1;
8383    MaybeEmitInheritedConstructorNote(S, Fn);
8384    return;
8385  }
8386
8387  if (isa<ObjCObjectPointerType>(CFromTy) &&
8388      isa<PointerType>(CToTy)) {
8389      Qualifiers FromQs = CFromTy.getQualifiers();
8390      Qualifiers ToQs = CToTy.getQualifiers();
8391      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8392        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8393        << (unsigned) FnKind << FnDesc
8394        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8395        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8396        MaybeEmitInheritedConstructorNote(S, Fn);
8397        return;
8398      }
8399  }
8400
8401  // Emit the generic diagnostic and, optionally, add the hints to it.
8402  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8403  FDiag << (unsigned) FnKind << FnDesc
8404    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8405    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8406    << (unsigned) (Cand->Fix.Kind);
8407
8408  // If we can fix the conversion, suggest the FixIts.
8409  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8410       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8411    FDiag << *HI;
8412  S.Diag(Fn->getLocation(), FDiag);
8413
8414  MaybeEmitInheritedConstructorNote(S, Fn);
8415}
8416
8417void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8418                           unsigned NumFormalArgs) {
8419  // TODO: treat calls to a missing default constructor as a special case
8420
8421  FunctionDecl *Fn = Cand->Function;
8422  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8423
8424  unsigned MinParams = Fn->getMinRequiredArguments();
8425
8426  // With invalid overloaded operators, it's possible that we think we
8427  // have an arity mismatch when it fact it looks like we have the
8428  // right number of arguments, because only overloaded operators have
8429  // the weird behavior of overloading member and non-member functions.
8430  // Just don't report anything.
8431  if (Fn->isInvalidDecl() &&
8432      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8433    return;
8434
8435  // at least / at most / exactly
8436  unsigned mode, modeCount;
8437  if (NumFormalArgs < MinParams) {
8438    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8439           (Cand->FailureKind == ovl_fail_bad_deduction &&
8440            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8441    if (MinParams != FnTy->getNumArgs() ||
8442        FnTy->isVariadic() || FnTy->isTemplateVariadic())
8443      mode = 0; // "at least"
8444    else
8445      mode = 2; // "exactly"
8446    modeCount = MinParams;
8447  } else {
8448    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8449           (Cand->FailureKind == ovl_fail_bad_deduction &&
8450            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8451    if (MinParams != FnTy->getNumArgs())
8452      mode = 1; // "at most"
8453    else
8454      mode = 2; // "exactly"
8455    modeCount = FnTy->getNumArgs();
8456  }
8457
8458  std::string Description;
8459  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8460
8461  if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
8462    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
8463      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8464      << Fn->getParamDecl(0) << NumFormalArgs;
8465  else
8466    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8467      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8468      << modeCount << NumFormalArgs;
8469  MaybeEmitInheritedConstructorNote(S, Fn);
8470}
8471
8472/// Diagnose a failed template-argument deduction.
8473void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
8474                          unsigned NumArgs) {
8475  FunctionDecl *Fn = Cand->Function; // pattern
8476
8477  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
8478  NamedDecl *ParamD;
8479  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8480  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8481  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
8482  switch (Cand->DeductionFailure.Result) {
8483  case Sema::TDK_Success:
8484    llvm_unreachable("TDK_success while diagnosing bad deduction");
8485
8486  case Sema::TDK_Incomplete: {
8487    assert(ParamD && "no parameter found for incomplete deduction result");
8488    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
8489      << ParamD->getDeclName();
8490    MaybeEmitInheritedConstructorNote(S, Fn);
8491    return;
8492  }
8493
8494  case Sema::TDK_Underqualified: {
8495    assert(ParamD && "no parameter found for bad qualifiers deduction result");
8496    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
8497
8498    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
8499
8500    // Param will have been canonicalized, but it should just be a
8501    // qualified version of ParamD, so move the qualifiers to that.
8502    QualifierCollector Qs;
8503    Qs.strip(Param);
8504    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
8505    assert(S.Context.hasSameType(Param, NonCanonParam));
8506
8507    // Arg has also been canonicalized, but there's nothing we can do
8508    // about that.  It also doesn't matter as much, because it won't
8509    // have any template parameters in it (because deduction isn't
8510    // done on dependent types).
8511    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
8512
8513    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
8514      << ParamD->getDeclName() << Arg << NonCanonParam;
8515    MaybeEmitInheritedConstructorNote(S, Fn);
8516    return;
8517  }
8518
8519  case Sema::TDK_Inconsistent: {
8520    assert(ParamD && "no parameter found for inconsistent deduction result");
8521    int which = 0;
8522    if (isa<TemplateTypeParmDecl>(ParamD))
8523      which = 0;
8524    else if (isa<NonTypeTemplateParmDecl>(ParamD))
8525      which = 1;
8526    else {
8527      which = 2;
8528    }
8529
8530    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
8531      << which << ParamD->getDeclName()
8532      << *Cand->DeductionFailure.getFirstArg()
8533      << *Cand->DeductionFailure.getSecondArg();
8534    MaybeEmitInheritedConstructorNote(S, Fn);
8535    return;
8536  }
8537
8538  case Sema::TDK_InvalidExplicitArguments:
8539    assert(ParamD && "no parameter found for invalid explicit arguments");
8540    if (ParamD->getDeclName())
8541      S.Diag(Fn->getLocation(),
8542             diag::note_ovl_candidate_explicit_arg_mismatch_named)
8543        << ParamD->getDeclName();
8544    else {
8545      int index = 0;
8546      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
8547        index = TTP->getIndex();
8548      else if (NonTypeTemplateParmDecl *NTTP
8549                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
8550        index = NTTP->getIndex();
8551      else
8552        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
8553      S.Diag(Fn->getLocation(),
8554             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
8555        << (index + 1);
8556    }
8557    MaybeEmitInheritedConstructorNote(S, Fn);
8558    return;
8559
8560  case Sema::TDK_TooManyArguments:
8561  case Sema::TDK_TooFewArguments:
8562    DiagnoseArityMismatch(S, Cand, NumArgs);
8563    return;
8564
8565  case Sema::TDK_InstantiationDepth:
8566    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
8567    MaybeEmitInheritedConstructorNote(S, Fn);
8568    return;
8569
8570  case Sema::TDK_SubstitutionFailure: {
8571    // Format the template argument list into the argument string.
8572    SmallString<128> TemplateArgString;
8573    if (TemplateArgumentList *Args =
8574          Cand->DeductionFailure.getTemplateArgumentList()) {
8575      TemplateArgString = " ";
8576      TemplateArgString += S.getTemplateArgumentBindingsText(
8577          Fn->getDescribedFunctionTemplate()->getTemplateParameters(), *Args);
8578    }
8579
8580    // If this candidate was disabled by enable_if, say so.
8581    PartialDiagnosticAt *PDiag = Cand->DeductionFailure.getSFINAEDiagnostic();
8582    if (PDiag && PDiag->second.getDiagID() ==
8583          diag::err_typename_nested_not_found_enable_if) {
8584      // FIXME: Use the source range of the condition, and the fully-qualified
8585      //        name of the enable_if template. These are both present in PDiag.
8586      S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
8587        << "'enable_if'" << TemplateArgString;
8588      return;
8589    }
8590
8591    // Format the SFINAE diagnostic into the argument string.
8592    // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
8593    //        formatted message in another diagnostic.
8594    SmallString<128> SFINAEArgString;
8595    SourceRange R;
8596    if (PDiag) {
8597      SFINAEArgString = ": ";
8598      R = SourceRange(PDiag->first, PDiag->first);
8599      PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
8600    }
8601
8602    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
8603      << TemplateArgString << SFINAEArgString << R;
8604    MaybeEmitInheritedConstructorNote(S, Fn);
8605    return;
8606  }
8607
8608  case Sema::TDK_FailedOverloadResolution: {
8609    OverloadExpr::FindResult R =
8610        OverloadExpr::find(Cand->DeductionFailure.getExpr());
8611    S.Diag(Fn->getLocation(),
8612           diag::note_ovl_candidate_failed_overload_resolution)
8613      << R.Expression->getName();
8614    return;
8615  }
8616
8617  case Sema::TDK_NonDeducedMismatch: {
8618    // FIXME: Provide a source location to indicate what we couldn't match.
8619    TemplateArgument FirstTA = *Cand->DeductionFailure.getFirstArg();
8620    TemplateArgument SecondTA = *Cand->DeductionFailure.getSecondArg();
8621    if (FirstTA.getKind() == TemplateArgument::Template &&
8622        SecondTA.getKind() == TemplateArgument::Template) {
8623      TemplateName FirstTN = FirstTA.getAsTemplate();
8624      TemplateName SecondTN = SecondTA.getAsTemplate();
8625      if (FirstTN.getKind() == TemplateName::Template &&
8626          SecondTN.getKind() == TemplateName::Template) {
8627        if (FirstTN.getAsTemplateDecl()->getName() ==
8628            SecondTN.getAsTemplateDecl()->getName()) {
8629          // FIXME: This fixes a bad diagnostic where both templates are named
8630          // the same.  This particular case is a bit difficult since:
8631          // 1) It is passed as a string to the diagnostic printer.
8632          // 2) The diagnostic printer only attempts to find a better
8633          //    name for types, not decls.
8634          // Ideally, this should folded into the diagnostic printer.
8635          S.Diag(Fn->getLocation(),
8636                 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
8637              << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
8638          return;
8639        }
8640      }
8641    }
8642    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_non_deduced_mismatch)
8643      << FirstTA << SecondTA;
8644    return;
8645  }
8646  // TODO: diagnose these individually, then kill off
8647  // note_ovl_candidate_bad_deduction, which is uselessly vague.
8648  case Sema::TDK_MiscellaneousDeductionFailure:
8649    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
8650    MaybeEmitInheritedConstructorNote(S, Fn);
8651    return;
8652  }
8653}
8654
8655/// CUDA: diagnose an invalid call across targets.
8656void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8657  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8658  FunctionDecl *Callee = Cand->Function;
8659
8660  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8661                           CalleeTarget = S.IdentifyCUDATarget(Callee);
8662
8663  std::string FnDesc;
8664  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8665
8666  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8667      << (unsigned) FnKind << CalleeTarget << CallerTarget;
8668}
8669
8670/// Generates a 'note' diagnostic for an overload candidate.  We've
8671/// already generated a primary error at the call site.
8672///
8673/// It really does need to be a single diagnostic with its caret
8674/// pointed at the candidate declaration.  Yes, this creates some
8675/// major challenges of technical writing.  Yes, this makes pointing
8676/// out problems with specific arguments quite awkward.  It's still
8677/// better than generating twenty screens of text for every failed
8678/// overload.
8679///
8680/// It would be great to be able to express per-candidate problems
8681/// more richly for those diagnostic clients that cared, but we'd
8682/// still have to be just as careful with the default diagnostics.
8683void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8684                           unsigned NumArgs) {
8685  FunctionDecl *Fn = Cand->Function;
8686
8687  // Note deleted candidates, but only if they're viable.
8688  if (Cand->Viable && (Fn->isDeleted() ||
8689      S.isFunctionConsideredUnavailable(Fn))) {
8690    std::string FnDesc;
8691    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8692
8693    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8694      << FnKind << FnDesc
8695      << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
8696    MaybeEmitInheritedConstructorNote(S, Fn);
8697    return;
8698  }
8699
8700  // We don't really have anything else to say about viable candidates.
8701  if (Cand->Viable) {
8702    S.NoteOverloadCandidate(Fn);
8703    return;
8704  }
8705
8706  switch (Cand->FailureKind) {
8707  case ovl_fail_too_many_arguments:
8708  case ovl_fail_too_few_arguments:
8709    return DiagnoseArityMismatch(S, Cand, NumArgs);
8710
8711  case ovl_fail_bad_deduction:
8712    return DiagnoseBadDeduction(S, Cand, NumArgs);
8713
8714  case ovl_fail_trivial_conversion:
8715  case ovl_fail_bad_final_conversion:
8716  case ovl_fail_final_conversion_not_exact:
8717    return S.NoteOverloadCandidate(Fn);
8718
8719  case ovl_fail_bad_conversion: {
8720    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8721    for (unsigned N = Cand->NumConversions; I != N; ++I)
8722      if (Cand->Conversions[I].isBad())
8723        return DiagnoseBadConversion(S, Cand, I);
8724
8725    // FIXME: this currently happens when we're called from SemaInit
8726    // when user-conversion overload fails.  Figure out how to handle
8727    // those conditions and diagnose them well.
8728    return S.NoteOverloadCandidate(Fn);
8729  }
8730
8731  case ovl_fail_bad_target:
8732    return DiagnoseBadTarget(S, Cand);
8733  }
8734}
8735
8736void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8737  // Desugar the type of the surrogate down to a function type,
8738  // retaining as many typedefs as possible while still showing
8739  // the function type (and, therefore, its parameter types).
8740  QualType FnType = Cand->Surrogate->getConversionType();
8741  bool isLValueReference = false;
8742  bool isRValueReference = false;
8743  bool isPointer = false;
8744  if (const LValueReferenceType *FnTypeRef =
8745        FnType->getAs<LValueReferenceType>()) {
8746    FnType = FnTypeRef->getPointeeType();
8747    isLValueReference = true;
8748  } else if (const RValueReferenceType *FnTypeRef =
8749               FnType->getAs<RValueReferenceType>()) {
8750    FnType = FnTypeRef->getPointeeType();
8751    isRValueReference = true;
8752  }
8753  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8754    FnType = FnTypePtr->getPointeeType();
8755    isPointer = true;
8756  }
8757  // Desugar down to a function type.
8758  FnType = QualType(FnType->getAs<FunctionType>(), 0);
8759  // Reconstruct the pointer/reference as appropriate.
8760  if (isPointer) FnType = S.Context.getPointerType(FnType);
8761  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8762  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8763
8764  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8765    << FnType;
8766  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8767}
8768
8769void NoteBuiltinOperatorCandidate(Sema &S,
8770                                  StringRef Opc,
8771                                  SourceLocation OpLoc,
8772                                  OverloadCandidate *Cand) {
8773  assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8774  std::string TypeStr("operator");
8775  TypeStr += Opc;
8776  TypeStr += "(";
8777  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8778  if (Cand->NumConversions == 1) {
8779    TypeStr += ")";
8780    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8781  } else {
8782    TypeStr += ", ";
8783    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8784    TypeStr += ")";
8785    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8786  }
8787}
8788
8789void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8790                                  OverloadCandidate *Cand) {
8791  unsigned NoOperands = Cand->NumConversions;
8792  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8793    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8794    if (ICS.isBad()) break; // all meaningless after first invalid
8795    if (!ICS.isAmbiguous()) continue;
8796
8797    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8798                              S.PDiag(diag::note_ambiguous_type_conversion));
8799  }
8800}
8801
8802SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8803  if (Cand->Function)
8804    return Cand->Function->getLocation();
8805  if (Cand->IsSurrogate)
8806    return Cand->Surrogate->getLocation();
8807  return SourceLocation();
8808}
8809
8810static unsigned
8811RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
8812  switch ((Sema::TemplateDeductionResult)DFI.Result) {
8813  case Sema::TDK_Success:
8814    llvm_unreachable("TDK_success while diagnosing bad deduction");
8815
8816  case Sema::TDK_Invalid:
8817  case Sema::TDK_Incomplete:
8818    return 1;
8819
8820  case Sema::TDK_Underqualified:
8821  case Sema::TDK_Inconsistent:
8822    return 2;
8823
8824  case Sema::TDK_SubstitutionFailure:
8825  case Sema::TDK_NonDeducedMismatch:
8826  case Sema::TDK_MiscellaneousDeductionFailure:
8827    return 3;
8828
8829  case Sema::TDK_InstantiationDepth:
8830  case Sema::TDK_FailedOverloadResolution:
8831    return 4;
8832
8833  case Sema::TDK_InvalidExplicitArguments:
8834    return 5;
8835
8836  case Sema::TDK_TooManyArguments:
8837  case Sema::TDK_TooFewArguments:
8838    return 6;
8839  }
8840  llvm_unreachable("Unhandled deduction result");
8841}
8842
8843struct CompareOverloadCandidatesForDisplay {
8844  Sema &S;
8845  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8846
8847  bool operator()(const OverloadCandidate *L,
8848                  const OverloadCandidate *R) {
8849    // Fast-path this check.
8850    if (L == R) return false;
8851
8852    // Order first by viability.
8853    if (L->Viable) {
8854      if (!R->Viable) return true;
8855
8856      // TODO: introduce a tri-valued comparison for overload
8857      // candidates.  Would be more worthwhile if we had a sort
8858      // that could exploit it.
8859      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8860      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8861    } else if (R->Viable)
8862      return false;
8863
8864    assert(L->Viable == R->Viable);
8865
8866    // Criteria by which we can sort non-viable candidates:
8867    if (!L->Viable) {
8868      // 1. Arity mismatches come after other candidates.
8869      if (L->FailureKind == ovl_fail_too_many_arguments ||
8870          L->FailureKind == ovl_fail_too_few_arguments)
8871        return false;
8872      if (R->FailureKind == ovl_fail_too_many_arguments ||
8873          R->FailureKind == ovl_fail_too_few_arguments)
8874        return true;
8875
8876      // 2. Bad conversions come first and are ordered by the number
8877      // of bad conversions and quality of good conversions.
8878      if (L->FailureKind == ovl_fail_bad_conversion) {
8879        if (R->FailureKind != ovl_fail_bad_conversion)
8880          return true;
8881
8882        // The conversion that can be fixed with a smaller number of changes,
8883        // comes first.
8884        unsigned numLFixes = L->Fix.NumConversionsFixed;
8885        unsigned numRFixes = R->Fix.NumConversionsFixed;
8886        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
8887        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
8888        if (numLFixes != numRFixes) {
8889          if (numLFixes < numRFixes)
8890            return true;
8891          else
8892            return false;
8893        }
8894
8895        // If there's any ordering between the defined conversions...
8896        // FIXME: this might not be transitive.
8897        assert(L->NumConversions == R->NumConversions);
8898
8899        int leftBetter = 0;
8900        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
8901        for (unsigned E = L->NumConversions; I != E; ++I) {
8902          switch (CompareImplicitConversionSequences(S,
8903                                                     L->Conversions[I],
8904                                                     R->Conversions[I])) {
8905          case ImplicitConversionSequence::Better:
8906            leftBetter++;
8907            break;
8908
8909          case ImplicitConversionSequence::Worse:
8910            leftBetter--;
8911            break;
8912
8913          case ImplicitConversionSequence::Indistinguishable:
8914            break;
8915          }
8916        }
8917        if (leftBetter > 0) return true;
8918        if (leftBetter < 0) return false;
8919
8920      } else if (R->FailureKind == ovl_fail_bad_conversion)
8921        return false;
8922
8923      if (L->FailureKind == ovl_fail_bad_deduction) {
8924        if (R->FailureKind != ovl_fail_bad_deduction)
8925          return true;
8926
8927        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
8928          return RankDeductionFailure(L->DeductionFailure)
8929               < RankDeductionFailure(R->DeductionFailure);
8930      } else if (R->FailureKind == ovl_fail_bad_deduction)
8931        return false;
8932
8933      // TODO: others?
8934    }
8935
8936    // Sort everything else by location.
8937    SourceLocation LLoc = GetLocationForCandidate(L);
8938    SourceLocation RLoc = GetLocationForCandidate(R);
8939
8940    // Put candidates without locations (e.g. builtins) at the end.
8941    if (LLoc.isInvalid()) return false;
8942    if (RLoc.isInvalid()) return true;
8943
8944    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
8945  }
8946};
8947
8948/// CompleteNonViableCandidate - Normally, overload resolution only
8949/// computes up to the first. Produces the FixIt set if possible.
8950void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
8951                                ArrayRef<Expr *> Args) {
8952  assert(!Cand->Viable);
8953
8954  // Don't do anything on failures other than bad conversion.
8955  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
8956
8957  // We only want the FixIts if all the arguments can be corrected.
8958  bool Unfixable = false;
8959  // Use a implicit copy initialization to check conversion fixes.
8960  Cand->Fix.setConversionChecker(TryCopyInitialization);
8961
8962  // Skip forward to the first bad conversion.
8963  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
8964  unsigned ConvCount = Cand->NumConversions;
8965  while (true) {
8966    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
8967    ConvIdx++;
8968    if (Cand->Conversions[ConvIdx - 1].isBad()) {
8969      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
8970      break;
8971    }
8972  }
8973
8974  if (ConvIdx == ConvCount)
8975    return;
8976
8977  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
8978         "remaining conversion is initialized?");
8979
8980  // FIXME: this should probably be preserved from the overload
8981  // operation somehow.
8982  bool SuppressUserConversions = false;
8983
8984  const FunctionProtoType* Proto;
8985  unsigned ArgIdx = ConvIdx;
8986
8987  if (Cand->IsSurrogate) {
8988    QualType ConvType
8989      = Cand->Surrogate->getConversionType().getNonReferenceType();
8990    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8991      ConvType = ConvPtrType->getPointeeType();
8992    Proto = ConvType->getAs<FunctionProtoType>();
8993    ArgIdx--;
8994  } else if (Cand->Function) {
8995    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
8996    if (isa<CXXMethodDecl>(Cand->Function) &&
8997        !isa<CXXConstructorDecl>(Cand->Function))
8998      ArgIdx--;
8999  } else {
9000    // Builtin binary operator with a bad first conversion.
9001    assert(ConvCount <= 3);
9002    for (; ConvIdx != ConvCount; ++ConvIdx)
9003      Cand->Conversions[ConvIdx]
9004        = TryCopyInitialization(S, Args[ConvIdx],
9005                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
9006                                SuppressUserConversions,
9007                                /*InOverloadResolution*/ true,
9008                                /*AllowObjCWritebackConversion=*/
9009                                  S.getLangOpts().ObjCAutoRefCount);
9010    return;
9011  }
9012
9013  // Fill in the rest of the conversions.
9014  unsigned NumArgsInProto = Proto->getNumArgs();
9015  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
9016    if (ArgIdx < NumArgsInProto) {
9017      Cand->Conversions[ConvIdx]
9018        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
9019                                SuppressUserConversions,
9020                                /*InOverloadResolution=*/true,
9021                                /*AllowObjCWritebackConversion=*/
9022                                  S.getLangOpts().ObjCAutoRefCount);
9023      // Store the FixIt in the candidate if it exists.
9024      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
9025        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
9026    }
9027    else
9028      Cand->Conversions[ConvIdx].setEllipsis();
9029  }
9030}
9031
9032} // end anonymous namespace
9033
9034/// PrintOverloadCandidates - When overload resolution fails, prints
9035/// diagnostic messages containing the candidates in the candidate
9036/// set.
9037void OverloadCandidateSet::NoteCandidates(Sema &S,
9038                                          OverloadCandidateDisplayKind OCD,
9039                                          ArrayRef<Expr *> Args,
9040                                          StringRef Opc,
9041                                          SourceLocation OpLoc) {
9042  // Sort the candidates by viability and position.  Sorting directly would
9043  // be prohibitive, so we make a set of pointers and sort those.
9044  SmallVector<OverloadCandidate*, 32> Cands;
9045  if (OCD == OCD_AllCandidates) Cands.reserve(size());
9046  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9047    if (Cand->Viable)
9048      Cands.push_back(Cand);
9049    else if (OCD == OCD_AllCandidates) {
9050      CompleteNonViableCandidate(S, Cand, Args);
9051      if (Cand->Function || Cand->IsSurrogate)
9052        Cands.push_back(Cand);
9053      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
9054      // want to list every possible builtin candidate.
9055    }
9056  }
9057
9058  std::sort(Cands.begin(), Cands.end(),
9059            CompareOverloadCandidatesForDisplay(S));
9060
9061  bool ReportedAmbiguousConversions = false;
9062
9063  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
9064  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9065  unsigned CandsShown = 0;
9066  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9067    OverloadCandidate *Cand = *I;
9068
9069    // Set an arbitrary limit on the number of candidate functions we'll spam
9070    // the user with.  FIXME: This limit should depend on details of the
9071    // candidate list.
9072    if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
9073      break;
9074    }
9075    ++CandsShown;
9076
9077    if (Cand->Function)
9078      NoteFunctionCandidate(S, Cand, Args.size());
9079    else if (Cand->IsSurrogate)
9080      NoteSurrogateCandidate(S, Cand);
9081    else {
9082      assert(Cand->Viable &&
9083             "Non-viable built-in candidates are not added to Cands.");
9084      // Generally we only see ambiguities including viable builtin
9085      // operators if overload resolution got screwed up by an
9086      // ambiguous user-defined conversion.
9087      //
9088      // FIXME: It's quite possible for different conversions to see
9089      // different ambiguities, though.
9090      if (!ReportedAmbiguousConversions) {
9091        NoteAmbiguousUserConversions(S, OpLoc, Cand);
9092        ReportedAmbiguousConversions = true;
9093      }
9094
9095      // If this is a viable builtin, print it.
9096      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
9097    }
9098  }
9099
9100  if (I != E)
9101    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
9102}
9103
9104// [PossiblyAFunctionType]  -->   [Return]
9105// NonFunctionType --> NonFunctionType
9106// R (A) --> R(A)
9107// R (*)(A) --> R (A)
9108// R (&)(A) --> R (A)
9109// R (S::*)(A) --> R (A)
9110QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
9111  QualType Ret = PossiblyAFunctionType;
9112  if (const PointerType *ToTypePtr =
9113    PossiblyAFunctionType->getAs<PointerType>())
9114    Ret = ToTypePtr->getPointeeType();
9115  else if (const ReferenceType *ToTypeRef =
9116    PossiblyAFunctionType->getAs<ReferenceType>())
9117    Ret = ToTypeRef->getPointeeType();
9118  else if (const MemberPointerType *MemTypePtr =
9119    PossiblyAFunctionType->getAs<MemberPointerType>())
9120    Ret = MemTypePtr->getPointeeType();
9121  Ret =
9122    Context.getCanonicalType(Ret).getUnqualifiedType();
9123  return Ret;
9124}
9125
9126// A helper class to help with address of function resolution
9127// - allows us to avoid passing around all those ugly parameters
9128class AddressOfFunctionResolver
9129{
9130  Sema& S;
9131  Expr* SourceExpr;
9132  const QualType& TargetType;
9133  QualType TargetFunctionType; // Extracted function type from target type
9134
9135  bool Complain;
9136  //DeclAccessPair& ResultFunctionAccessPair;
9137  ASTContext& Context;
9138
9139  bool TargetTypeIsNonStaticMemberFunction;
9140  bool FoundNonTemplateFunction;
9141
9142  OverloadExpr::FindResult OvlExprInfo;
9143  OverloadExpr *OvlExpr;
9144  TemplateArgumentListInfo OvlExplicitTemplateArgs;
9145  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
9146
9147public:
9148  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
9149                            const QualType& TargetType, bool Complain)
9150    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
9151      Complain(Complain), Context(S.getASTContext()),
9152      TargetTypeIsNonStaticMemberFunction(
9153                                    !!TargetType->getAs<MemberPointerType>()),
9154      FoundNonTemplateFunction(false),
9155      OvlExprInfo(OverloadExpr::find(SourceExpr)),
9156      OvlExpr(OvlExprInfo.Expression)
9157  {
9158    ExtractUnqualifiedFunctionTypeFromTargetType();
9159
9160    if (!TargetFunctionType->isFunctionType()) {
9161      if (OvlExpr->hasExplicitTemplateArgs()) {
9162        DeclAccessPair dap;
9163        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
9164                                            OvlExpr, false, &dap) ) {
9165
9166          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9167            if (!Method->isStatic()) {
9168              // If the target type is a non-function type and the function
9169              // found is a non-static member function, pretend as if that was
9170              // the target, it's the only possible type to end up with.
9171              TargetTypeIsNonStaticMemberFunction = true;
9172
9173              // And skip adding the function if its not in the proper form.
9174              // We'll diagnose this due to an empty set of functions.
9175              if (!OvlExprInfo.HasFormOfMemberPointer)
9176                return;
9177            }
9178          }
9179
9180          Matches.push_back(std::make_pair(dap,Fn));
9181        }
9182      }
9183      return;
9184    }
9185
9186    if (OvlExpr->hasExplicitTemplateArgs())
9187      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
9188
9189    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
9190      // C++ [over.over]p4:
9191      //   If more than one function is selected, [...]
9192      if (Matches.size() > 1) {
9193        if (FoundNonTemplateFunction)
9194          EliminateAllTemplateMatches();
9195        else
9196          EliminateAllExceptMostSpecializedTemplate();
9197      }
9198    }
9199  }
9200
9201private:
9202  bool isTargetTypeAFunction() const {
9203    return TargetFunctionType->isFunctionType();
9204  }
9205
9206  // [ToType]     [Return]
9207
9208  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
9209  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
9210  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
9211  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
9212    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
9213  }
9214
9215  // return true if any matching specializations were found
9216  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
9217                                   const DeclAccessPair& CurAccessFunPair) {
9218    if (CXXMethodDecl *Method
9219              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
9220      // Skip non-static function templates when converting to pointer, and
9221      // static when converting to member pointer.
9222      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9223        return false;
9224    }
9225    else if (TargetTypeIsNonStaticMemberFunction)
9226      return false;
9227
9228    // C++ [over.over]p2:
9229    //   If the name is a function template, template argument deduction is
9230    //   done (14.8.2.2), and if the argument deduction succeeds, the
9231    //   resulting template argument list is used to generate a single
9232    //   function template specialization, which is added to the set of
9233    //   overloaded functions considered.
9234    FunctionDecl *Specialization = 0;
9235    TemplateDeductionInfo Info(OvlExpr->getNameLoc());
9236    if (Sema::TemplateDeductionResult Result
9237          = S.DeduceTemplateArguments(FunctionTemplate,
9238                                      &OvlExplicitTemplateArgs,
9239                                      TargetFunctionType, Specialization,
9240                                      Info, /*InOverloadResolution=*/true)) {
9241      // FIXME: make a note of the failed deduction for diagnostics.
9242      (void)Result;
9243      return false;
9244    }
9245
9246    // Template argument deduction ensures that we have an exact match or
9247    // compatible pointer-to-function arguments that would be adjusted by ICS.
9248    // This function template specicalization works.
9249    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
9250    assert(S.isSameOrCompatibleFunctionType(
9251              Context.getCanonicalType(Specialization->getType()),
9252              Context.getCanonicalType(TargetFunctionType)));
9253    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
9254    return true;
9255  }
9256
9257  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
9258                                      const DeclAccessPair& CurAccessFunPair) {
9259    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9260      // Skip non-static functions when converting to pointer, and static
9261      // when converting to member pointer.
9262      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9263        return false;
9264    }
9265    else if (TargetTypeIsNonStaticMemberFunction)
9266      return false;
9267
9268    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
9269      if (S.getLangOpts().CUDA)
9270        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
9271          if (S.CheckCUDATarget(Caller, FunDecl))
9272            return false;
9273
9274      // If any candidate has a placeholder return type, trigger its deduction
9275      // now.
9276      if (S.getLangOpts().CPlusPlus1y &&
9277          FunDecl->getResultType()->isUndeducedType() &&
9278          S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain))
9279        return false;
9280
9281      QualType ResultTy;
9282      if (Context.hasSameUnqualifiedType(TargetFunctionType,
9283                                         FunDecl->getType()) ||
9284          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
9285                                 ResultTy)) {
9286        Matches.push_back(std::make_pair(CurAccessFunPair,
9287          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
9288        FoundNonTemplateFunction = true;
9289        return true;
9290      }
9291    }
9292
9293    return false;
9294  }
9295
9296  bool FindAllFunctionsThatMatchTargetTypeExactly() {
9297    bool Ret = false;
9298
9299    // If the overload expression doesn't have the form of a pointer to
9300    // member, don't try to convert it to a pointer-to-member type.
9301    if (IsInvalidFormOfPointerToMemberFunction())
9302      return false;
9303
9304    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9305                               E = OvlExpr->decls_end();
9306         I != E; ++I) {
9307      // Look through any using declarations to find the underlying function.
9308      NamedDecl *Fn = (*I)->getUnderlyingDecl();
9309
9310      // C++ [over.over]p3:
9311      //   Non-member functions and static member functions match
9312      //   targets of type "pointer-to-function" or "reference-to-function."
9313      //   Nonstatic member functions match targets of
9314      //   type "pointer-to-member-function."
9315      // Note that according to DR 247, the containing class does not matter.
9316      if (FunctionTemplateDecl *FunctionTemplate
9317                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
9318        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
9319          Ret = true;
9320      }
9321      // If we have explicit template arguments supplied, skip non-templates.
9322      else if (!OvlExpr->hasExplicitTemplateArgs() &&
9323               AddMatchingNonTemplateFunction(Fn, I.getPair()))
9324        Ret = true;
9325    }
9326    assert(Ret || Matches.empty());
9327    return Ret;
9328  }
9329
9330  void EliminateAllExceptMostSpecializedTemplate() {
9331    //   [...] and any given function template specialization F1 is
9332    //   eliminated if the set contains a second function template
9333    //   specialization whose function template is more specialized
9334    //   than the function template of F1 according to the partial
9335    //   ordering rules of 14.5.5.2.
9336
9337    // The algorithm specified above is quadratic. We instead use a
9338    // two-pass algorithm (similar to the one used to identify the
9339    // best viable function in an overload set) that identifies the
9340    // best function template (if it exists).
9341
9342    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
9343    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
9344      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
9345
9346    UnresolvedSetIterator Result =
9347      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
9348                           TPOC_Other, 0, SourceExpr->getLocStart(),
9349                           S.PDiag(),
9350                           S.PDiag(diag::err_addr_ovl_ambiguous)
9351                             << Matches[0].second->getDeclName(),
9352                           S.PDiag(diag::note_ovl_candidate)
9353                             << (unsigned) oc_function_template,
9354                           Complain, TargetFunctionType);
9355
9356    if (Result != MatchesCopy.end()) {
9357      // Make it the first and only element
9358      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
9359      Matches[0].second = cast<FunctionDecl>(*Result);
9360      Matches.resize(1);
9361    }
9362  }
9363
9364  void EliminateAllTemplateMatches() {
9365    //   [...] any function template specializations in the set are
9366    //   eliminated if the set also contains a non-template function, [...]
9367    for (unsigned I = 0, N = Matches.size(); I != N; ) {
9368      if (Matches[I].second->getPrimaryTemplate() == 0)
9369        ++I;
9370      else {
9371        Matches[I] = Matches[--N];
9372        Matches.set_size(N);
9373      }
9374    }
9375  }
9376
9377public:
9378  void ComplainNoMatchesFound() const {
9379    assert(Matches.empty());
9380    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
9381        << OvlExpr->getName() << TargetFunctionType
9382        << OvlExpr->getSourceRange();
9383    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9384  }
9385
9386  bool IsInvalidFormOfPointerToMemberFunction() const {
9387    return TargetTypeIsNonStaticMemberFunction &&
9388      !OvlExprInfo.HasFormOfMemberPointer;
9389  }
9390
9391  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
9392      // TODO: Should we condition this on whether any functions might
9393      // have matched, or is it more appropriate to do that in callers?
9394      // TODO: a fixit wouldn't hurt.
9395      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
9396        << TargetType << OvlExpr->getSourceRange();
9397  }
9398
9399  void ComplainOfInvalidConversion() const {
9400    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
9401      << OvlExpr->getName() << TargetType;
9402  }
9403
9404  void ComplainMultipleMatchesFound() const {
9405    assert(Matches.size() > 1);
9406    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
9407      << OvlExpr->getName()
9408      << OvlExpr->getSourceRange();
9409    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9410  }
9411
9412  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
9413
9414  int getNumMatches() const { return Matches.size(); }
9415
9416  FunctionDecl* getMatchingFunctionDecl() const {
9417    if (Matches.size() != 1) return 0;
9418    return Matches[0].second;
9419  }
9420
9421  const DeclAccessPair* getMatchingFunctionAccessPair() const {
9422    if (Matches.size() != 1) return 0;
9423    return &Matches[0].first;
9424  }
9425};
9426
9427/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
9428/// an overloaded function (C++ [over.over]), where @p From is an
9429/// expression with overloaded function type and @p ToType is the type
9430/// we're trying to resolve to. For example:
9431///
9432/// @code
9433/// int f(double);
9434/// int f(int);
9435///
9436/// int (*pfd)(double) = f; // selects f(double)
9437/// @endcode
9438///
9439/// This routine returns the resulting FunctionDecl if it could be
9440/// resolved, and NULL otherwise. When @p Complain is true, this
9441/// routine will emit diagnostics if there is an error.
9442FunctionDecl *
9443Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
9444                                         QualType TargetType,
9445                                         bool Complain,
9446                                         DeclAccessPair &FoundResult,
9447                                         bool *pHadMultipleCandidates) {
9448  assert(AddressOfExpr->getType() == Context.OverloadTy);
9449
9450  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
9451                                     Complain);
9452  int NumMatches = Resolver.getNumMatches();
9453  FunctionDecl* Fn = 0;
9454  if (NumMatches == 0 && Complain) {
9455    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
9456      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
9457    else
9458      Resolver.ComplainNoMatchesFound();
9459  }
9460  else if (NumMatches > 1 && Complain)
9461    Resolver.ComplainMultipleMatchesFound();
9462  else if (NumMatches == 1) {
9463    Fn = Resolver.getMatchingFunctionDecl();
9464    assert(Fn);
9465    FoundResult = *Resolver.getMatchingFunctionAccessPair();
9466    if (Complain)
9467      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
9468  }
9469
9470  if (pHadMultipleCandidates)
9471    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
9472  return Fn;
9473}
9474
9475/// \brief Given an expression that refers to an overloaded function, try to
9476/// resolve that overloaded function expression down to a single function.
9477///
9478/// This routine can only resolve template-ids that refer to a single function
9479/// template, where that template-id refers to a single template whose template
9480/// arguments are either provided by the template-id or have defaults,
9481/// as described in C++0x [temp.arg.explicit]p3.
9482FunctionDecl *
9483Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
9484                                                  bool Complain,
9485                                                  DeclAccessPair *FoundResult) {
9486  // C++ [over.over]p1:
9487  //   [...] [Note: any redundant set of parentheses surrounding the
9488  //   overloaded function name is ignored (5.1). ]
9489  // C++ [over.over]p1:
9490  //   [...] The overloaded function name can be preceded by the &
9491  //   operator.
9492
9493  // If we didn't actually find any template-ids, we're done.
9494  if (!ovl->hasExplicitTemplateArgs())
9495    return 0;
9496
9497  TemplateArgumentListInfo ExplicitTemplateArgs;
9498  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
9499
9500  // Look through all of the overloaded functions, searching for one
9501  // whose type matches exactly.
9502  FunctionDecl *Matched = 0;
9503  for (UnresolvedSetIterator I = ovl->decls_begin(),
9504         E = ovl->decls_end(); I != E; ++I) {
9505    // C++0x [temp.arg.explicit]p3:
9506    //   [...] In contexts where deduction is done and fails, or in contexts
9507    //   where deduction is not done, if a template argument list is
9508    //   specified and it, along with any default template arguments,
9509    //   identifies a single function template specialization, then the
9510    //   template-id is an lvalue for the function template specialization.
9511    FunctionTemplateDecl *FunctionTemplate
9512      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
9513
9514    // C++ [over.over]p2:
9515    //   If the name is a function template, template argument deduction is
9516    //   done (14.8.2.2), and if the argument deduction succeeds, the
9517    //   resulting template argument list is used to generate a single
9518    //   function template specialization, which is added to the set of
9519    //   overloaded functions considered.
9520    FunctionDecl *Specialization = 0;
9521    TemplateDeductionInfo Info(ovl->getNameLoc());
9522    if (TemplateDeductionResult Result
9523          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
9524                                    Specialization, Info,
9525                                    /*InOverloadResolution=*/true)) {
9526      // FIXME: make a note of the failed deduction for diagnostics.
9527      (void)Result;
9528      continue;
9529    }
9530
9531    assert(Specialization && "no specialization and no error?");
9532
9533    // Multiple matches; we can't resolve to a single declaration.
9534    if (Matched) {
9535      if (Complain) {
9536        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
9537          << ovl->getName();
9538        NoteAllOverloadCandidates(ovl);
9539      }
9540      return 0;
9541    }
9542
9543    Matched = Specialization;
9544    if (FoundResult) *FoundResult = I.getPair();
9545  }
9546
9547  if (Matched && getLangOpts().CPlusPlus1y &&
9548      Matched->getResultType()->isUndeducedType() &&
9549      DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
9550    return 0;
9551
9552  return Matched;
9553}
9554
9555
9556
9557
9558// Resolve and fix an overloaded expression that can be resolved
9559// because it identifies a single function template specialization.
9560//
9561// Last three arguments should only be supplied if Complain = true
9562//
9563// Return true if it was logically possible to so resolve the
9564// expression, regardless of whether or not it succeeded.  Always
9565// returns true if 'complain' is set.
9566bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
9567                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
9568                   bool complain, const SourceRange& OpRangeForComplaining,
9569                                           QualType DestTypeForComplaining,
9570                                            unsigned DiagIDForComplaining) {
9571  assert(SrcExpr.get()->getType() == Context.OverloadTy);
9572
9573  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
9574
9575  DeclAccessPair found;
9576  ExprResult SingleFunctionExpression;
9577  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
9578                           ovl.Expression, /*complain*/ false, &found)) {
9579    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
9580      SrcExpr = ExprError();
9581      return true;
9582    }
9583
9584    // It is only correct to resolve to an instance method if we're
9585    // resolving a form that's permitted to be a pointer to member.
9586    // Otherwise we'll end up making a bound member expression, which
9587    // is illegal in all the contexts we resolve like this.
9588    if (!ovl.HasFormOfMemberPointer &&
9589        isa<CXXMethodDecl>(fn) &&
9590        cast<CXXMethodDecl>(fn)->isInstance()) {
9591      if (!complain) return false;
9592
9593      Diag(ovl.Expression->getExprLoc(),
9594           diag::err_bound_member_function)
9595        << 0 << ovl.Expression->getSourceRange();
9596
9597      // TODO: I believe we only end up here if there's a mix of
9598      // static and non-static candidates (otherwise the expression
9599      // would have 'bound member' type, not 'overload' type).
9600      // Ideally we would note which candidate was chosen and why
9601      // the static candidates were rejected.
9602      SrcExpr = ExprError();
9603      return true;
9604    }
9605
9606    // Fix the expression to refer to 'fn'.
9607    SingleFunctionExpression =
9608      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
9609
9610    // If desired, do function-to-pointer decay.
9611    if (doFunctionPointerConverion) {
9612      SingleFunctionExpression =
9613        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
9614      if (SingleFunctionExpression.isInvalid()) {
9615        SrcExpr = ExprError();
9616        return true;
9617      }
9618    }
9619  }
9620
9621  if (!SingleFunctionExpression.isUsable()) {
9622    if (complain) {
9623      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
9624        << ovl.Expression->getName()
9625        << DestTypeForComplaining
9626        << OpRangeForComplaining
9627        << ovl.Expression->getQualifierLoc().getSourceRange();
9628      NoteAllOverloadCandidates(SrcExpr.get());
9629
9630      SrcExpr = ExprError();
9631      return true;
9632    }
9633
9634    return false;
9635  }
9636
9637  SrcExpr = SingleFunctionExpression;
9638  return true;
9639}
9640
9641/// \brief Add a single candidate to the overload set.
9642static void AddOverloadedCallCandidate(Sema &S,
9643                                       DeclAccessPair FoundDecl,
9644                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
9645                                       ArrayRef<Expr *> Args,
9646                                       OverloadCandidateSet &CandidateSet,
9647                                       bool PartialOverloading,
9648                                       bool KnownValid) {
9649  NamedDecl *Callee = FoundDecl.getDecl();
9650  if (isa<UsingShadowDecl>(Callee))
9651    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
9652
9653  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
9654    if (ExplicitTemplateArgs) {
9655      assert(!KnownValid && "Explicit template arguments?");
9656      return;
9657    }
9658    S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
9659                           PartialOverloading);
9660    return;
9661  }
9662
9663  if (FunctionTemplateDecl *FuncTemplate
9664      = dyn_cast<FunctionTemplateDecl>(Callee)) {
9665    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9666                                   ExplicitTemplateArgs, Args, CandidateSet);
9667    return;
9668  }
9669
9670  assert(!KnownValid && "unhandled case in overloaded call candidate");
9671}
9672
9673/// \brief Add the overload candidates named by callee and/or found by argument
9674/// dependent lookup to the given overload set.
9675void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9676                                       ArrayRef<Expr *> Args,
9677                                       OverloadCandidateSet &CandidateSet,
9678                                       bool PartialOverloading) {
9679
9680#ifndef NDEBUG
9681  // Verify that ArgumentDependentLookup is consistent with the rules
9682  // in C++0x [basic.lookup.argdep]p3:
9683  //
9684  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
9685  //   and let Y be the lookup set produced by argument dependent
9686  //   lookup (defined as follows). If X contains
9687  //
9688  //     -- a declaration of a class member, or
9689  //
9690  //     -- a block-scope function declaration that is not a
9691  //        using-declaration, or
9692  //
9693  //     -- a declaration that is neither a function or a function
9694  //        template
9695  //
9696  //   then Y is empty.
9697
9698  if (ULE->requiresADL()) {
9699    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9700           E = ULE->decls_end(); I != E; ++I) {
9701      assert(!(*I)->getDeclContext()->isRecord());
9702      assert(isa<UsingShadowDecl>(*I) ||
9703             !(*I)->getDeclContext()->isFunctionOrMethod());
9704      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9705    }
9706  }
9707#endif
9708
9709  // It would be nice to avoid this copy.
9710  TemplateArgumentListInfo TABuffer;
9711  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9712  if (ULE->hasExplicitTemplateArgs()) {
9713    ULE->copyTemplateArgumentsInto(TABuffer);
9714    ExplicitTemplateArgs = &TABuffer;
9715  }
9716
9717  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9718         E = ULE->decls_end(); I != E; ++I)
9719    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
9720                               CandidateSet, PartialOverloading,
9721                               /*KnownValid*/ true);
9722
9723  if (ULE->requiresADL())
9724    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
9725                                         ULE->getExprLoc(),
9726                                         Args, ExplicitTemplateArgs,
9727                                         CandidateSet, PartialOverloading);
9728}
9729
9730/// Determine whether a declaration with the specified name could be moved into
9731/// a different namespace.
9732static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
9733  switch (Name.getCXXOverloadedOperator()) {
9734  case OO_New: case OO_Array_New:
9735  case OO_Delete: case OO_Array_Delete:
9736    return false;
9737
9738  default:
9739    return true;
9740  }
9741}
9742
9743/// Attempt to recover from an ill-formed use of a non-dependent name in a
9744/// template, where the non-dependent name was declared after the template
9745/// was defined. This is common in code written for a compilers which do not
9746/// correctly implement two-stage name lookup.
9747///
9748/// Returns true if a viable candidate was found and a diagnostic was issued.
9749static bool
9750DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
9751                       const CXXScopeSpec &SS, LookupResult &R,
9752                       TemplateArgumentListInfo *ExplicitTemplateArgs,
9753                       ArrayRef<Expr *> Args) {
9754  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
9755    return false;
9756
9757  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
9758    if (DC->isTransparentContext())
9759      continue;
9760
9761    SemaRef.LookupQualifiedName(R, DC);
9762
9763    if (!R.empty()) {
9764      R.suppressDiagnostics();
9765
9766      if (isa<CXXRecordDecl>(DC)) {
9767        // Don't diagnose names we find in classes; we get much better
9768        // diagnostics for these from DiagnoseEmptyLookup.
9769        R.clear();
9770        return false;
9771      }
9772
9773      OverloadCandidateSet Candidates(FnLoc);
9774      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
9775        AddOverloadedCallCandidate(SemaRef, I.getPair(),
9776                                   ExplicitTemplateArgs, Args,
9777                                   Candidates, false, /*KnownValid*/ false);
9778
9779      OverloadCandidateSet::iterator Best;
9780      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
9781        // No viable functions. Don't bother the user with notes for functions
9782        // which don't work and shouldn't be found anyway.
9783        R.clear();
9784        return false;
9785      }
9786
9787      // Find the namespaces where ADL would have looked, and suggest
9788      // declaring the function there instead.
9789      Sema::AssociatedNamespaceSet AssociatedNamespaces;
9790      Sema::AssociatedClassSet AssociatedClasses;
9791      SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
9792                                                 AssociatedNamespaces,
9793                                                 AssociatedClasses);
9794      Sema::AssociatedNamespaceSet SuggestedNamespaces;
9795      if (canBeDeclaredInNamespace(R.getLookupName())) {
9796        DeclContext *Std = SemaRef.getStdNamespace();
9797        for (Sema::AssociatedNamespaceSet::iterator
9798               it = AssociatedNamespaces.begin(),
9799               end = AssociatedNamespaces.end(); it != end; ++it) {
9800          // Never suggest declaring a function within namespace 'std'.
9801          if (Std && Std->Encloses(*it))
9802            continue;
9803
9804          // Never suggest declaring a function within a namespace with a
9805          // reserved name, like __gnu_cxx.
9806          NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
9807          if (NS &&
9808              NS->getQualifiedNameAsString().find("__") != std::string::npos)
9809            continue;
9810
9811          SuggestedNamespaces.insert(*it);
9812        }
9813      }
9814
9815      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
9816        << R.getLookupName();
9817      if (SuggestedNamespaces.empty()) {
9818        SemaRef.Diag(Best->Function->getLocation(),
9819                     diag::note_not_found_by_two_phase_lookup)
9820          << R.getLookupName() << 0;
9821      } else if (SuggestedNamespaces.size() == 1) {
9822        SemaRef.Diag(Best->Function->getLocation(),
9823                     diag::note_not_found_by_two_phase_lookup)
9824          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
9825      } else {
9826        // FIXME: It would be useful to list the associated namespaces here,
9827        // but the diagnostics infrastructure doesn't provide a way to produce
9828        // a localized representation of a list of items.
9829        SemaRef.Diag(Best->Function->getLocation(),
9830                     diag::note_not_found_by_two_phase_lookup)
9831          << R.getLookupName() << 2;
9832      }
9833
9834      // Try to recover by calling this function.
9835      return true;
9836    }
9837
9838    R.clear();
9839  }
9840
9841  return false;
9842}
9843
9844/// Attempt to recover from ill-formed use of a non-dependent operator in a
9845/// template, where the non-dependent operator was declared after the template
9846/// was defined.
9847///
9848/// Returns true if a viable candidate was found and a diagnostic was issued.
9849static bool
9850DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
9851                               SourceLocation OpLoc,
9852                               ArrayRef<Expr *> Args) {
9853  DeclarationName OpName =
9854    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
9855  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
9856  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
9857                                /*ExplicitTemplateArgs=*/0, Args);
9858}
9859
9860namespace {
9861class BuildRecoveryCallExprRAII {
9862  Sema &SemaRef;
9863public:
9864  BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
9865    assert(SemaRef.IsBuildingRecoveryCallExpr == false);
9866    SemaRef.IsBuildingRecoveryCallExpr = true;
9867  }
9868
9869  ~BuildRecoveryCallExprRAII() {
9870    SemaRef.IsBuildingRecoveryCallExpr = false;
9871  }
9872};
9873
9874}
9875
9876/// Attempts to recover from a call where no functions were found.
9877///
9878/// Returns true if new candidates were found.
9879static ExprResult
9880BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9881                      UnresolvedLookupExpr *ULE,
9882                      SourceLocation LParenLoc,
9883                      llvm::MutableArrayRef<Expr *> Args,
9884                      SourceLocation RParenLoc,
9885                      bool EmptyLookup, bool AllowTypoCorrection) {
9886  // Do not try to recover if it is already building a recovery call.
9887  // This stops infinite loops for template instantiations like
9888  //
9889  // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
9890  // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
9891  //
9892  if (SemaRef.IsBuildingRecoveryCallExpr)
9893    return ExprError();
9894  BuildRecoveryCallExprRAII RCE(SemaRef);
9895
9896  CXXScopeSpec SS;
9897  SS.Adopt(ULE->getQualifierLoc());
9898  SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
9899
9900  TemplateArgumentListInfo TABuffer;
9901  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9902  if (ULE->hasExplicitTemplateArgs()) {
9903    ULE->copyTemplateArgumentsInto(TABuffer);
9904    ExplicitTemplateArgs = &TABuffer;
9905  }
9906
9907  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
9908                 Sema::LookupOrdinaryName);
9909  FunctionCallFilterCCC Validator(SemaRef, Args.size(),
9910                                  ExplicitTemplateArgs != 0);
9911  NoTypoCorrectionCCC RejectAll;
9912  CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
9913      (CorrectionCandidateCallback*)&Validator :
9914      (CorrectionCandidateCallback*)&RejectAll;
9915  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
9916                              ExplicitTemplateArgs, Args) &&
9917      (!EmptyLookup ||
9918       SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
9919                                   ExplicitTemplateArgs, Args)))
9920    return ExprError();
9921
9922  assert(!R.empty() && "lookup results empty despite recovery");
9923
9924  // Build an implicit member call if appropriate.  Just drop the
9925  // casts and such from the call, we don't really care.
9926  ExprResult NewFn = ExprError();
9927  if ((*R.begin())->isCXXClassMember())
9928    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
9929                                                    R, ExplicitTemplateArgs);
9930  else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
9931    NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
9932                                        ExplicitTemplateArgs);
9933  else
9934    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
9935
9936  if (NewFn.isInvalid())
9937    return ExprError();
9938
9939  // This shouldn't cause an infinite loop because we're giving it
9940  // an expression with viable lookup results, which should never
9941  // end up here.
9942  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
9943                               MultiExprArg(Args.data(), Args.size()),
9944                               RParenLoc);
9945}
9946
9947/// \brief Constructs and populates an OverloadedCandidateSet from
9948/// the given function.
9949/// \returns true when an the ExprResult output parameter has been set.
9950bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
9951                                  UnresolvedLookupExpr *ULE,
9952                                  MultiExprArg Args,
9953                                  SourceLocation RParenLoc,
9954                                  OverloadCandidateSet *CandidateSet,
9955                                  ExprResult *Result) {
9956#ifndef NDEBUG
9957  if (ULE->requiresADL()) {
9958    // To do ADL, we must have found an unqualified name.
9959    assert(!ULE->getQualifier() && "qualified name with ADL");
9960
9961    // We don't perform ADL for implicit declarations of builtins.
9962    // Verify that this was correctly set up.
9963    FunctionDecl *F;
9964    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
9965        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
9966        F->getBuiltinID() && F->isImplicit())
9967      llvm_unreachable("performing ADL for builtin");
9968
9969    // We don't perform ADL in C.
9970    assert(getLangOpts().CPlusPlus && "ADL enabled in C");
9971  }
9972#endif
9973
9974  UnbridgedCastsSet UnbridgedCasts;
9975  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
9976    *Result = ExprError();
9977    return true;
9978  }
9979
9980  // Add the functions denoted by the callee to the set of candidate
9981  // functions, including those from argument-dependent lookup.
9982  AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
9983
9984  // If we found nothing, try to recover.
9985  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
9986  // out if it fails.
9987  if (CandidateSet->empty()) {
9988    // In Microsoft mode, if we are inside a template class member function then
9989    // create a type dependent CallExpr. The goal is to postpone name lookup
9990    // to instantiation time to be able to search into type dependent base
9991    // classes.
9992    if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
9993        (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
9994      CallExpr *CE = new (Context) CallExpr(Context, Fn, Args,
9995                                            Context.DependentTy, VK_RValue,
9996                                            RParenLoc);
9997      CE->setTypeDependent(true);
9998      *Result = Owned(CE);
9999      return true;
10000    }
10001    return false;
10002  }
10003
10004  UnbridgedCasts.restore();
10005  return false;
10006}
10007
10008/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
10009/// the completed call expression. If overload resolution fails, emits
10010/// diagnostics and returns ExprError()
10011static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10012                                           UnresolvedLookupExpr *ULE,
10013                                           SourceLocation LParenLoc,
10014                                           MultiExprArg Args,
10015                                           SourceLocation RParenLoc,
10016                                           Expr *ExecConfig,
10017                                           OverloadCandidateSet *CandidateSet,
10018                                           OverloadCandidateSet::iterator *Best,
10019                                           OverloadingResult OverloadResult,
10020                                           bool AllowTypoCorrection) {
10021  if (CandidateSet->empty())
10022    return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
10023                                 RParenLoc, /*EmptyLookup=*/true,
10024                                 AllowTypoCorrection);
10025
10026  switch (OverloadResult) {
10027  case OR_Success: {
10028    FunctionDecl *FDecl = (*Best)->Function;
10029    SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
10030    if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
10031      return ExprError();
10032    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10033    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10034                                         ExecConfig);
10035  }
10036
10037  case OR_No_Viable_Function: {
10038    // Try to recover by looking for viable functions which the user might
10039    // have meant to call.
10040    ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
10041                                                Args, RParenLoc,
10042                                                /*EmptyLookup=*/false,
10043                                                AllowTypoCorrection);
10044    if (!Recovery.isInvalid())
10045      return Recovery;
10046
10047    SemaRef.Diag(Fn->getLocStart(),
10048         diag::err_ovl_no_viable_function_in_call)
10049      << ULE->getName() << Fn->getSourceRange();
10050    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10051    break;
10052  }
10053
10054  case OR_Ambiguous:
10055    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
10056      << ULE->getName() << Fn->getSourceRange();
10057    CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
10058    break;
10059
10060  case OR_Deleted: {
10061    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
10062      << (*Best)->Function->isDeleted()
10063      << ULE->getName()
10064      << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
10065      << Fn->getSourceRange();
10066    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10067
10068    // We emitted an error for the unvailable/deleted function call but keep
10069    // the call in the AST.
10070    FunctionDecl *FDecl = (*Best)->Function;
10071    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10072    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10073                                         ExecConfig);
10074  }
10075  }
10076
10077  // Overload resolution failed.
10078  return ExprError();
10079}
10080
10081/// BuildOverloadedCallExpr - Given the call expression that calls Fn
10082/// (which eventually refers to the declaration Func) and the call
10083/// arguments Args/NumArgs, attempt to resolve the function call down
10084/// to a specific function. If overload resolution succeeds, returns
10085/// the call expression produced by overload resolution.
10086/// Otherwise, emits diagnostics and returns ExprError.
10087ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
10088                                         UnresolvedLookupExpr *ULE,
10089                                         SourceLocation LParenLoc,
10090                                         MultiExprArg Args,
10091                                         SourceLocation RParenLoc,
10092                                         Expr *ExecConfig,
10093                                         bool AllowTypoCorrection) {
10094  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
10095  ExprResult result;
10096
10097  if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
10098                             &result))
10099    return result;
10100
10101  OverloadCandidateSet::iterator Best;
10102  OverloadingResult OverloadResult =
10103      CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
10104
10105  return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
10106                                  RParenLoc, ExecConfig, &CandidateSet,
10107                                  &Best, OverloadResult,
10108                                  AllowTypoCorrection);
10109}
10110
10111static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
10112  return Functions.size() > 1 ||
10113    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
10114}
10115
10116/// \brief Create a unary operation that may resolve to an overloaded
10117/// operator.
10118///
10119/// \param OpLoc The location of the operator itself (e.g., '*').
10120///
10121/// \param OpcIn The UnaryOperator::Opcode that describes this
10122/// operator.
10123///
10124/// \param Fns The set of non-member functions that will be
10125/// considered by overload resolution. The caller needs to build this
10126/// set based on the context using, e.g.,
10127/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10128/// set should not contain any member functions; those will be added
10129/// by CreateOverloadedUnaryOp().
10130///
10131/// \param Input The input argument.
10132ExprResult
10133Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
10134                              const UnresolvedSetImpl &Fns,
10135                              Expr *Input) {
10136  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
10137
10138  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
10139  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
10140  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10141  // TODO: provide better source location info.
10142  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10143
10144  if (checkPlaceholderForOverload(*this, Input))
10145    return ExprError();
10146
10147  Expr *Args[2] = { Input, 0 };
10148  unsigned NumArgs = 1;
10149
10150  // For post-increment and post-decrement, add the implicit '0' as
10151  // the second argument, so that we know this is a post-increment or
10152  // post-decrement.
10153  if (Opc == UO_PostInc || Opc == UO_PostDec) {
10154    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
10155    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
10156                                     SourceLocation());
10157    NumArgs = 2;
10158  }
10159
10160  ArrayRef<Expr *> ArgsArray(Args, NumArgs);
10161
10162  if (Input->isTypeDependent()) {
10163    if (Fns.empty())
10164      return Owned(new (Context) UnaryOperator(Input,
10165                                               Opc,
10166                                               Context.DependentTy,
10167                                               VK_RValue, OK_Ordinary,
10168                                               OpLoc));
10169
10170    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10171    UnresolvedLookupExpr *Fn
10172      = UnresolvedLookupExpr::Create(Context, NamingClass,
10173                                     NestedNameSpecifierLoc(), OpNameInfo,
10174                                     /*ADL*/ true, IsOverloaded(Fns),
10175                                     Fns.begin(), Fns.end());
10176    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, ArgsArray,
10177                                                   Context.DependentTy,
10178                                                   VK_RValue,
10179                                                   OpLoc, false));
10180  }
10181
10182  // Build an empty overload set.
10183  OverloadCandidateSet CandidateSet(OpLoc);
10184
10185  // Add the candidates from the given function set.
10186  AddFunctionCandidates(Fns, ArgsArray, CandidateSet, false);
10187
10188  // Add operator candidates that are member functions.
10189  AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10190
10191  // Add candidates from ADL.
10192  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, OpLoc,
10193                                       ArgsArray, /*ExplicitTemplateArgs*/ 0,
10194                                       CandidateSet);
10195
10196  // Add builtin operator candidates.
10197  AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10198
10199  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10200
10201  // Perform overload resolution.
10202  OverloadCandidateSet::iterator Best;
10203  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10204  case OR_Success: {
10205    // We found a built-in operator or an overloaded operator.
10206    FunctionDecl *FnDecl = Best->Function;
10207
10208    if (FnDecl) {
10209      // We matched an overloaded operator. Build a call to that
10210      // operator.
10211
10212      // Convert the arguments.
10213      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10214        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
10215
10216        ExprResult InputRes =
10217          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
10218                                              Best->FoundDecl, Method);
10219        if (InputRes.isInvalid())
10220          return ExprError();
10221        Input = InputRes.take();
10222      } else {
10223        // Convert the arguments.
10224        ExprResult InputInit
10225          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10226                                                      Context,
10227                                                      FnDecl->getParamDecl(0)),
10228                                      SourceLocation(),
10229                                      Input);
10230        if (InputInit.isInvalid())
10231          return ExprError();
10232        Input = InputInit.take();
10233      }
10234
10235      // Determine the result type.
10236      QualType ResultTy = FnDecl->getResultType();
10237      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10238      ResultTy = ResultTy.getNonLValueExprType(Context);
10239
10240      // Build the actual expression node.
10241      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
10242                                                HadMultipleCandidates, OpLoc);
10243      if (FnExpr.isInvalid())
10244        return ExprError();
10245
10246      Args[0] = Input;
10247      CallExpr *TheCall =
10248        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), ArgsArray,
10249                                          ResultTy, VK, OpLoc, false);
10250
10251      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10252                              FnDecl))
10253        return ExprError();
10254
10255      return MaybeBindToTemporary(TheCall);
10256    } else {
10257      // We matched a built-in operator. Convert the arguments, then
10258      // break out so that we will build the appropriate built-in
10259      // operator node.
10260      ExprResult InputRes =
10261        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
10262                                  Best->Conversions[0], AA_Passing);
10263      if (InputRes.isInvalid())
10264        return ExprError();
10265      Input = InputRes.take();
10266      break;
10267    }
10268  }
10269
10270  case OR_No_Viable_Function:
10271    // This is an erroneous use of an operator which can be overloaded by
10272    // a non-member function. Check for non-member operators which were
10273    // defined too late to be candidates.
10274    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
10275      // FIXME: Recover by calling the found function.
10276      return ExprError();
10277
10278    // No viable function; fall through to handling this as a
10279    // built-in operator, which will produce an error message for us.
10280    break;
10281
10282  case OR_Ambiguous:
10283    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
10284        << UnaryOperator::getOpcodeStr(Opc)
10285        << Input->getType()
10286        << Input->getSourceRange();
10287    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
10288                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10289    return ExprError();
10290
10291  case OR_Deleted:
10292    Diag(OpLoc, diag::err_ovl_deleted_oper)
10293      << Best->Function->isDeleted()
10294      << UnaryOperator::getOpcodeStr(Opc)
10295      << getDeletedOrUnavailableSuffix(Best->Function)
10296      << Input->getSourceRange();
10297    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
10298                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10299    return ExprError();
10300  }
10301
10302  // Either we found no viable overloaded operator or we matched a
10303  // built-in operator. In either case, fall through to trying to
10304  // build a built-in operation.
10305  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10306}
10307
10308/// \brief Create a binary operation that may resolve to an overloaded
10309/// operator.
10310///
10311/// \param OpLoc The location of the operator itself (e.g., '+').
10312///
10313/// \param OpcIn The BinaryOperator::Opcode that describes this
10314/// operator.
10315///
10316/// \param Fns The set of non-member functions that will be
10317/// considered by overload resolution. The caller needs to build this
10318/// set based on the context using, e.g.,
10319/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10320/// set should not contain any member functions; those will be added
10321/// by CreateOverloadedBinOp().
10322///
10323/// \param LHS Left-hand argument.
10324/// \param RHS Right-hand argument.
10325ExprResult
10326Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
10327                            unsigned OpcIn,
10328                            const UnresolvedSetImpl &Fns,
10329                            Expr *LHS, Expr *RHS) {
10330  Expr *Args[2] = { LHS, RHS };
10331  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
10332
10333  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
10334  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
10335  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10336
10337  // If either side is type-dependent, create an appropriate dependent
10338  // expression.
10339  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10340    if (Fns.empty()) {
10341      // If there are no functions to store, just build a dependent
10342      // BinaryOperator or CompoundAssignment.
10343      if (Opc <= BO_Assign || Opc > BO_OrAssign)
10344        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
10345                                                  Context.DependentTy,
10346                                                  VK_RValue, OK_Ordinary,
10347                                                  OpLoc,
10348                                                  FPFeatures.fp_contract));
10349
10350      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
10351                                                        Context.DependentTy,
10352                                                        VK_LValue,
10353                                                        OK_Ordinary,
10354                                                        Context.DependentTy,
10355                                                        Context.DependentTy,
10356                                                        OpLoc,
10357                                                        FPFeatures.fp_contract));
10358    }
10359
10360    // FIXME: save results of ADL from here?
10361    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10362    // TODO: provide better source location info in DNLoc component.
10363    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10364    UnresolvedLookupExpr *Fn
10365      = UnresolvedLookupExpr::Create(Context, NamingClass,
10366                                     NestedNameSpecifierLoc(), OpNameInfo,
10367                                     /*ADL*/ true, IsOverloaded(Fns),
10368                                     Fns.begin(), Fns.end());
10369    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, Args,
10370                                                Context.DependentTy, VK_RValue,
10371                                                OpLoc, FPFeatures.fp_contract));
10372  }
10373
10374  // Always do placeholder-like conversions on the RHS.
10375  if (checkPlaceholderForOverload(*this, Args[1]))
10376    return ExprError();
10377
10378  // Do placeholder-like conversion on the LHS; note that we should
10379  // not get here with a PseudoObject LHS.
10380  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
10381  if (checkPlaceholderForOverload(*this, Args[0]))
10382    return ExprError();
10383
10384  // If this is the assignment operator, we only perform overload resolution
10385  // if the left-hand side is a class or enumeration type. This is actually
10386  // a hack. The standard requires that we do overload resolution between the
10387  // various built-in candidates, but as DR507 points out, this can lead to
10388  // problems. So we do it this way, which pretty much follows what GCC does.
10389  // Note that we go the traditional code path for compound assignment forms.
10390  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
10391    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10392
10393  // If this is the .* operator, which is not overloadable, just
10394  // create a built-in binary operator.
10395  if (Opc == BO_PtrMemD)
10396    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10397
10398  // Build an empty overload set.
10399  OverloadCandidateSet CandidateSet(OpLoc);
10400
10401  // Add the candidates from the given function set.
10402  AddFunctionCandidates(Fns, Args, CandidateSet, false);
10403
10404  // Add operator candidates that are member functions.
10405  AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
10406
10407  // Add candidates from ADL.
10408  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
10409                                       OpLoc, Args,
10410                                       /*ExplicitTemplateArgs*/ 0,
10411                                       CandidateSet);
10412
10413  // Add builtin operator candidates.
10414  AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
10415
10416  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10417
10418  // Perform overload resolution.
10419  OverloadCandidateSet::iterator Best;
10420  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10421    case OR_Success: {
10422      // We found a built-in operator or an overloaded operator.
10423      FunctionDecl *FnDecl = Best->Function;
10424
10425      if (FnDecl) {
10426        // We matched an overloaded operator. Build a call to that
10427        // operator.
10428
10429        // Convert the arguments.
10430        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10431          // Best->Access is only meaningful for class members.
10432          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
10433
10434          ExprResult Arg1 =
10435            PerformCopyInitialization(
10436              InitializedEntity::InitializeParameter(Context,
10437                                                     FnDecl->getParamDecl(0)),
10438              SourceLocation(), Owned(Args[1]));
10439          if (Arg1.isInvalid())
10440            return ExprError();
10441
10442          ExprResult Arg0 =
10443            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10444                                                Best->FoundDecl, Method);
10445          if (Arg0.isInvalid())
10446            return ExprError();
10447          Args[0] = Arg0.takeAs<Expr>();
10448          Args[1] = RHS = Arg1.takeAs<Expr>();
10449        } else {
10450          // Convert the arguments.
10451          ExprResult Arg0 = PerformCopyInitialization(
10452            InitializedEntity::InitializeParameter(Context,
10453                                                   FnDecl->getParamDecl(0)),
10454            SourceLocation(), Owned(Args[0]));
10455          if (Arg0.isInvalid())
10456            return ExprError();
10457
10458          ExprResult Arg1 =
10459            PerformCopyInitialization(
10460              InitializedEntity::InitializeParameter(Context,
10461                                                     FnDecl->getParamDecl(1)),
10462              SourceLocation(), Owned(Args[1]));
10463          if (Arg1.isInvalid())
10464            return ExprError();
10465          Args[0] = LHS = Arg0.takeAs<Expr>();
10466          Args[1] = RHS = Arg1.takeAs<Expr>();
10467        }
10468
10469        // Determine the result type.
10470        QualType ResultTy = FnDecl->getResultType();
10471        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10472        ResultTy = ResultTy.getNonLValueExprType(Context);
10473
10474        // Build the actual expression node.
10475        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10476                                                  Best->FoundDecl,
10477                                                  HadMultipleCandidates, OpLoc);
10478        if (FnExpr.isInvalid())
10479          return ExprError();
10480
10481        CXXOperatorCallExpr *TheCall =
10482          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10483                                            Args, ResultTy, VK, OpLoc,
10484                                            FPFeatures.fp_contract);
10485
10486        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10487                                FnDecl))
10488          return ExprError();
10489
10490        ArrayRef<const Expr *> ArgsArray(Args, 2);
10491        // Cut off the implicit 'this'.
10492        if (isa<CXXMethodDecl>(FnDecl))
10493          ArgsArray = ArgsArray.slice(1);
10494        checkCall(FnDecl, ArgsArray, 0, isa<CXXMethodDecl>(FnDecl), OpLoc,
10495                  TheCall->getSourceRange(), VariadicDoesNotApply);
10496
10497        return MaybeBindToTemporary(TheCall);
10498      } else {
10499        // We matched a built-in operator. Convert the arguments, then
10500        // break out so that we will build the appropriate built-in
10501        // operator node.
10502        ExprResult ArgsRes0 =
10503          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10504                                    Best->Conversions[0], AA_Passing);
10505        if (ArgsRes0.isInvalid())
10506          return ExprError();
10507        Args[0] = ArgsRes0.take();
10508
10509        ExprResult ArgsRes1 =
10510          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10511                                    Best->Conversions[1], AA_Passing);
10512        if (ArgsRes1.isInvalid())
10513          return ExprError();
10514        Args[1] = ArgsRes1.take();
10515        break;
10516      }
10517    }
10518
10519    case OR_No_Viable_Function: {
10520      // C++ [over.match.oper]p9:
10521      //   If the operator is the operator , [...] and there are no
10522      //   viable functions, then the operator is assumed to be the
10523      //   built-in operator and interpreted according to clause 5.
10524      if (Opc == BO_Comma)
10525        break;
10526
10527      // For class as left operand for assignment or compound assigment
10528      // operator do not fall through to handling in built-in, but report that
10529      // no overloaded assignment operator found
10530      ExprResult Result = ExprError();
10531      if (Args[0]->getType()->isRecordType() &&
10532          Opc >= BO_Assign && Opc <= BO_OrAssign) {
10533        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
10534             << BinaryOperator::getOpcodeStr(Opc)
10535             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10536      } else {
10537        // This is an erroneous use of an operator which can be overloaded by
10538        // a non-member function. Check for non-member operators which were
10539        // defined too late to be candidates.
10540        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
10541          // FIXME: Recover by calling the found function.
10542          return ExprError();
10543
10544        // No viable function; try to create a built-in operation, which will
10545        // produce an error. Then, show the non-viable candidates.
10546        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10547      }
10548      assert(Result.isInvalid() &&
10549             "C++ binary operator overloading is missing candidates!");
10550      if (Result.isInvalid())
10551        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10552                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
10553      return Result;
10554    }
10555
10556    case OR_Ambiguous:
10557      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
10558          << BinaryOperator::getOpcodeStr(Opc)
10559          << Args[0]->getType() << Args[1]->getType()
10560          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10561      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10562                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10563      return ExprError();
10564
10565    case OR_Deleted:
10566      if (isImplicitlyDeleted(Best->Function)) {
10567        CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10568        Diag(OpLoc, diag::err_ovl_deleted_special_oper)
10569          << Context.getRecordType(Method->getParent())
10570          << getSpecialMember(Method);
10571
10572        // The user probably meant to call this special member. Just
10573        // explain why it's deleted.
10574        NoteDeletedFunction(Method);
10575        return ExprError();
10576      } else {
10577        Diag(OpLoc, diag::err_ovl_deleted_oper)
10578          << Best->Function->isDeleted()
10579          << BinaryOperator::getOpcodeStr(Opc)
10580          << getDeletedOrUnavailableSuffix(Best->Function)
10581          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10582      }
10583      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10584                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10585      return ExprError();
10586  }
10587
10588  // We matched a built-in operator; build it.
10589  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10590}
10591
10592ExprResult
10593Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
10594                                         SourceLocation RLoc,
10595                                         Expr *Base, Expr *Idx) {
10596  Expr *Args[2] = { Base, Idx };
10597  DeclarationName OpName =
10598      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
10599
10600  // If either side is type-dependent, create an appropriate dependent
10601  // expression.
10602  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10603
10604    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10605    // CHECKME: no 'operator' keyword?
10606    DeclarationNameInfo OpNameInfo(OpName, LLoc);
10607    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10608    UnresolvedLookupExpr *Fn
10609      = UnresolvedLookupExpr::Create(Context, NamingClass,
10610                                     NestedNameSpecifierLoc(), OpNameInfo,
10611                                     /*ADL*/ true, /*Overloaded*/ false,
10612                                     UnresolvedSetIterator(),
10613                                     UnresolvedSetIterator());
10614    // Can't add any actual overloads yet
10615
10616    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
10617                                                   Args,
10618                                                   Context.DependentTy,
10619                                                   VK_RValue,
10620                                                   RLoc, false));
10621  }
10622
10623  // Handle placeholders on both operands.
10624  if (checkPlaceholderForOverload(*this, Args[0]))
10625    return ExprError();
10626  if (checkPlaceholderForOverload(*this, Args[1]))
10627    return ExprError();
10628
10629  // Build an empty overload set.
10630  OverloadCandidateSet CandidateSet(LLoc);
10631
10632  // Subscript can only be overloaded as a member function.
10633
10634  // Add operator candidates that are member functions.
10635  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
10636
10637  // Add builtin operator candidates.
10638  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
10639
10640  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10641
10642  // Perform overload resolution.
10643  OverloadCandidateSet::iterator Best;
10644  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
10645    case OR_Success: {
10646      // We found a built-in operator or an overloaded operator.
10647      FunctionDecl *FnDecl = Best->Function;
10648
10649      if (FnDecl) {
10650        // We matched an overloaded operator. Build a call to that
10651        // operator.
10652
10653        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
10654
10655        // Convert the arguments.
10656        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
10657        ExprResult Arg0 =
10658          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10659                                              Best->FoundDecl, Method);
10660        if (Arg0.isInvalid())
10661          return ExprError();
10662        Args[0] = Arg0.take();
10663
10664        // Convert the arguments.
10665        ExprResult InputInit
10666          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10667                                                      Context,
10668                                                      FnDecl->getParamDecl(0)),
10669                                      SourceLocation(),
10670                                      Owned(Args[1]));
10671        if (InputInit.isInvalid())
10672          return ExprError();
10673
10674        Args[1] = InputInit.takeAs<Expr>();
10675
10676        // Determine the result type
10677        QualType ResultTy = FnDecl->getResultType();
10678        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10679        ResultTy = ResultTy.getNonLValueExprType(Context);
10680
10681        // Build the actual expression node.
10682        DeclarationNameInfo OpLocInfo(OpName, LLoc);
10683        OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10684        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10685                                                  Best->FoundDecl,
10686                                                  HadMultipleCandidates,
10687                                                  OpLocInfo.getLoc(),
10688                                                  OpLocInfo.getInfo());
10689        if (FnExpr.isInvalid())
10690          return ExprError();
10691
10692        CXXOperatorCallExpr *TheCall =
10693          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
10694                                            FnExpr.take(), Args,
10695                                            ResultTy, VK, RLoc,
10696                                            false);
10697
10698        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10699                                FnDecl))
10700          return ExprError();
10701
10702        return MaybeBindToTemporary(TheCall);
10703      } else {
10704        // We matched a built-in operator. Convert the arguments, then
10705        // break out so that we will build the appropriate built-in
10706        // operator node.
10707        ExprResult ArgsRes0 =
10708          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10709                                    Best->Conversions[0], AA_Passing);
10710        if (ArgsRes0.isInvalid())
10711          return ExprError();
10712        Args[0] = ArgsRes0.take();
10713
10714        ExprResult ArgsRes1 =
10715          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10716                                    Best->Conversions[1], AA_Passing);
10717        if (ArgsRes1.isInvalid())
10718          return ExprError();
10719        Args[1] = ArgsRes1.take();
10720
10721        break;
10722      }
10723    }
10724
10725    case OR_No_Viable_Function: {
10726      if (CandidateSet.empty())
10727        Diag(LLoc, diag::err_ovl_no_oper)
10728          << Args[0]->getType() << /*subscript*/ 0
10729          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10730      else
10731        Diag(LLoc, diag::err_ovl_no_viable_subscript)
10732          << Args[0]->getType()
10733          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10734      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10735                                  "[]", LLoc);
10736      return ExprError();
10737    }
10738
10739    case OR_Ambiguous:
10740      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
10741          << "[]"
10742          << Args[0]->getType() << Args[1]->getType()
10743          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10744      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10745                                  "[]", LLoc);
10746      return ExprError();
10747
10748    case OR_Deleted:
10749      Diag(LLoc, diag::err_ovl_deleted_oper)
10750        << Best->Function->isDeleted() << "[]"
10751        << getDeletedOrUnavailableSuffix(Best->Function)
10752        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10753      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10754                                  "[]", LLoc);
10755      return ExprError();
10756    }
10757
10758  // We matched a built-in operator; build it.
10759  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
10760}
10761
10762/// BuildCallToMemberFunction - Build a call to a member
10763/// function. MemExpr is the expression that refers to the member
10764/// function (and includes the object parameter), Args/NumArgs are the
10765/// arguments to the function call (not including the object
10766/// parameter). The caller needs to validate that the member
10767/// expression refers to a non-static member function or an overloaded
10768/// member function.
10769ExprResult
10770Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
10771                                SourceLocation LParenLoc,
10772                                MultiExprArg Args,
10773                                SourceLocation RParenLoc) {
10774  assert(MemExprE->getType() == Context.BoundMemberTy ||
10775         MemExprE->getType() == Context.OverloadTy);
10776
10777  // Dig out the member expression. This holds both the object
10778  // argument and the member function we're referring to.
10779  Expr *NakedMemExpr = MemExprE->IgnoreParens();
10780
10781  // Determine whether this is a call to a pointer-to-member function.
10782  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
10783    assert(op->getType() == Context.BoundMemberTy);
10784    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
10785
10786    QualType fnType =
10787      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
10788
10789    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
10790    QualType resultType = proto->getCallResultType(Context);
10791    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
10792
10793    // Check that the object type isn't more qualified than the
10794    // member function we're calling.
10795    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
10796
10797    QualType objectType = op->getLHS()->getType();
10798    if (op->getOpcode() == BO_PtrMemI)
10799      objectType = objectType->castAs<PointerType>()->getPointeeType();
10800    Qualifiers objectQuals = objectType.getQualifiers();
10801
10802    Qualifiers difference = objectQuals - funcQuals;
10803    difference.removeObjCGCAttr();
10804    difference.removeAddressSpace();
10805    if (difference) {
10806      std::string qualsString = difference.getAsString();
10807      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
10808        << fnType.getUnqualifiedType()
10809        << qualsString
10810        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
10811    }
10812
10813    CXXMemberCallExpr *call
10814      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
10815                                        resultType, valueKind, RParenLoc);
10816
10817    if (CheckCallReturnType(proto->getResultType(),
10818                            op->getRHS()->getLocStart(),
10819                            call, 0))
10820      return ExprError();
10821
10822    if (ConvertArgumentsForCall(call, op, 0, proto, Args, RParenLoc))
10823      return ExprError();
10824
10825    if (CheckOtherCall(call, proto))
10826      return ExprError();
10827
10828    return MaybeBindToTemporary(call);
10829  }
10830
10831  UnbridgedCastsSet UnbridgedCasts;
10832  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
10833    return ExprError();
10834
10835  MemberExpr *MemExpr;
10836  CXXMethodDecl *Method = 0;
10837  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
10838  NestedNameSpecifier *Qualifier = 0;
10839  if (isa<MemberExpr>(NakedMemExpr)) {
10840    MemExpr = cast<MemberExpr>(NakedMemExpr);
10841    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
10842    FoundDecl = MemExpr->getFoundDecl();
10843    Qualifier = MemExpr->getQualifier();
10844    UnbridgedCasts.restore();
10845  } else {
10846    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
10847    Qualifier = UnresExpr->getQualifier();
10848
10849    QualType ObjectType = UnresExpr->getBaseType();
10850    Expr::Classification ObjectClassification
10851      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
10852                            : UnresExpr->getBase()->Classify(Context);
10853
10854    // Add overload candidates
10855    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
10856
10857    // FIXME: avoid copy.
10858    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10859    if (UnresExpr->hasExplicitTemplateArgs()) {
10860      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10861      TemplateArgs = &TemplateArgsBuffer;
10862    }
10863
10864    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
10865           E = UnresExpr->decls_end(); I != E; ++I) {
10866
10867      NamedDecl *Func = *I;
10868      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
10869      if (isa<UsingShadowDecl>(Func))
10870        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
10871
10872
10873      // Microsoft supports direct constructor calls.
10874      if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
10875        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
10876                             Args, CandidateSet);
10877      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
10878        // If explicit template arguments were provided, we can't call a
10879        // non-template member function.
10880        if (TemplateArgs)
10881          continue;
10882
10883        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
10884                           ObjectClassification, Args, CandidateSet,
10885                           /*SuppressUserConversions=*/false);
10886      } else {
10887        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
10888                                   I.getPair(), ActingDC, TemplateArgs,
10889                                   ObjectType,  ObjectClassification,
10890                                   Args, CandidateSet,
10891                                   /*SuppressUsedConversions=*/false);
10892      }
10893    }
10894
10895    DeclarationName DeclName = UnresExpr->getMemberName();
10896
10897    UnbridgedCasts.restore();
10898
10899    OverloadCandidateSet::iterator Best;
10900    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
10901                                            Best)) {
10902    case OR_Success:
10903      Method = cast<CXXMethodDecl>(Best->Function);
10904      FoundDecl = Best->FoundDecl;
10905      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
10906      if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
10907        return ExprError();
10908      // If FoundDecl is different from Method (such as if one is a template
10909      // and the other a specialization), make sure DiagnoseUseOfDecl is
10910      // called on both.
10911      // FIXME: This would be more comprehensively addressed by modifying
10912      // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
10913      // being used.
10914      if (Method != FoundDecl.getDecl() &&
10915                      DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
10916        return ExprError();
10917      break;
10918
10919    case OR_No_Viable_Function:
10920      Diag(UnresExpr->getMemberLoc(),
10921           diag::err_ovl_no_viable_member_function_in_call)
10922        << DeclName << MemExprE->getSourceRange();
10923      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
10924      // FIXME: Leaking incoming expressions!
10925      return ExprError();
10926
10927    case OR_Ambiguous:
10928      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
10929        << DeclName << MemExprE->getSourceRange();
10930      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
10931      // FIXME: Leaking incoming expressions!
10932      return ExprError();
10933
10934    case OR_Deleted:
10935      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
10936        << Best->Function->isDeleted()
10937        << DeclName
10938        << getDeletedOrUnavailableSuffix(Best->Function)
10939        << MemExprE->getSourceRange();
10940      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
10941      // FIXME: Leaking incoming expressions!
10942      return ExprError();
10943    }
10944
10945    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
10946
10947    // If overload resolution picked a static member, build a
10948    // non-member call based on that function.
10949    if (Method->isStatic()) {
10950      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
10951                                   RParenLoc);
10952    }
10953
10954    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
10955  }
10956
10957  QualType ResultType = Method->getResultType();
10958  ExprValueKind VK = Expr::getValueKindForType(ResultType);
10959  ResultType = ResultType.getNonLValueExprType(Context);
10960
10961  assert(Method && "Member call to something that isn't a method?");
10962  CXXMemberCallExpr *TheCall =
10963    new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
10964                                    ResultType, VK, RParenLoc);
10965
10966  // Check for a valid return type.
10967  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
10968                          TheCall, Method))
10969    return ExprError();
10970
10971  // Convert the object argument (for a non-static member function call).
10972  // We only need to do this if there was actually an overload; otherwise
10973  // it was done at lookup.
10974  if (!Method->isStatic()) {
10975    ExprResult ObjectArg =
10976      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
10977                                          FoundDecl, Method);
10978    if (ObjectArg.isInvalid())
10979      return ExprError();
10980    MemExpr->setBase(ObjectArg.take());
10981  }
10982
10983  // Convert the rest of the arguments
10984  const FunctionProtoType *Proto =
10985    Method->getType()->getAs<FunctionProtoType>();
10986  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
10987                              RParenLoc))
10988    return ExprError();
10989
10990  DiagnoseSentinelCalls(Method, LParenLoc, Args);
10991
10992  if (CheckFunctionCall(Method, TheCall, Proto))
10993    return ExprError();
10994
10995  if ((isa<CXXConstructorDecl>(CurContext) ||
10996       isa<CXXDestructorDecl>(CurContext)) &&
10997      TheCall->getMethodDecl()->isPure()) {
10998    const CXXMethodDecl *MD = TheCall->getMethodDecl();
10999
11000    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
11001      Diag(MemExpr->getLocStart(),
11002           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
11003        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
11004        << MD->getParent()->getDeclName();
11005
11006      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
11007    }
11008  }
11009  return MaybeBindToTemporary(TheCall);
11010}
11011
11012/// BuildCallToObjectOfClassType - Build a call to an object of class
11013/// type (C++ [over.call.object]), which can end up invoking an
11014/// overloaded function call operator (@c operator()) or performing a
11015/// user-defined conversion on the object argument.
11016ExprResult
11017Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
11018                                   SourceLocation LParenLoc,
11019                                   MultiExprArg Args,
11020                                   SourceLocation RParenLoc) {
11021  if (checkPlaceholderForOverload(*this, Obj))
11022    return ExprError();
11023  ExprResult Object = Owned(Obj);
11024
11025  UnbridgedCastsSet UnbridgedCasts;
11026  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11027    return ExprError();
11028
11029  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
11030  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
11031
11032  // C++ [over.call.object]p1:
11033  //  If the primary-expression E in the function call syntax
11034  //  evaluates to a class object of type "cv T", then the set of
11035  //  candidate functions includes at least the function call
11036  //  operators of T. The function call operators of T are obtained by
11037  //  ordinary lookup of the name operator() in the context of
11038  //  (E).operator().
11039  OverloadCandidateSet CandidateSet(LParenLoc);
11040  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
11041
11042  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
11043                          diag::err_incomplete_object_call, Object.get()))
11044    return true;
11045
11046  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
11047  LookupQualifiedName(R, Record->getDecl());
11048  R.suppressDiagnostics();
11049
11050  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11051       Oper != OperEnd; ++Oper) {
11052    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
11053                       Object.get()->Classify(Context),
11054                       Args, CandidateSet,
11055                       /*SuppressUserConversions=*/ false);
11056  }
11057
11058  // C++ [over.call.object]p2:
11059  //   In addition, for each (non-explicit in C++0x) conversion function
11060  //   declared in T of the form
11061  //
11062  //        operator conversion-type-id () cv-qualifier;
11063  //
11064  //   where cv-qualifier is the same cv-qualification as, or a
11065  //   greater cv-qualification than, cv, and where conversion-type-id
11066  //   denotes the type "pointer to function of (P1,...,Pn) returning
11067  //   R", or the type "reference to pointer to function of
11068  //   (P1,...,Pn) returning R", or the type "reference to function
11069  //   of (P1,...,Pn) returning R", a surrogate call function [...]
11070  //   is also considered as a candidate function. Similarly,
11071  //   surrogate call functions are added to the set of candidate
11072  //   functions for each conversion function declared in an
11073  //   accessible base class provided the function is not hidden
11074  //   within T by another intervening declaration.
11075  std::pair<CXXRecordDecl::conversion_iterator,
11076            CXXRecordDecl::conversion_iterator> Conversions
11077    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
11078  for (CXXRecordDecl::conversion_iterator
11079         I = Conversions.first, E = Conversions.second; I != E; ++I) {
11080    NamedDecl *D = *I;
11081    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
11082    if (isa<UsingShadowDecl>(D))
11083      D = cast<UsingShadowDecl>(D)->getTargetDecl();
11084
11085    // Skip over templated conversion functions; they aren't
11086    // surrogates.
11087    if (isa<FunctionTemplateDecl>(D))
11088      continue;
11089
11090    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
11091    if (!Conv->isExplicit()) {
11092      // Strip the reference type (if any) and then the pointer type (if
11093      // any) to get down to what might be a function type.
11094      QualType ConvType = Conv->getConversionType().getNonReferenceType();
11095      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11096        ConvType = ConvPtrType->getPointeeType();
11097
11098      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
11099      {
11100        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
11101                              Object.get(), Args, CandidateSet);
11102      }
11103    }
11104  }
11105
11106  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11107
11108  // Perform overload resolution.
11109  OverloadCandidateSet::iterator Best;
11110  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
11111                             Best)) {
11112  case OR_Success:
11113    // Overload resolution succeeded; we'll build the appropriate call
11114    // below.
11115    break;
11116
11117  case OR_No_Viable_Function:
11118    if (CandidateSet.empty())
11119      Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
11120        << Object.get()->getType() << /*call*/ 1
11121        << Object.get()->getSourceRange();
11122    else
11123      Diag(Object.get()->getLocStart(),
11124           diag::err_ovl_no_viable_object_call)
11125        << Object.get()->getType() << Object.get()->getSourceRange();
11126    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11127    break;
11128
11129  case OR_Ambiguous:
11130    Diag(Object.get()->getLocStart(),
11131         diag::err_ovl_ambiguous_object_call)
11132      << Object.get()->getType() << Object.get()->getSourceRange();
11133    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11134    break;
11135
11136  case OR_Deleted:
11137    Diag(Object.get()->getLocStart(),
11138         diag::err_ovl_deleted_object_call)
11139      << Best->Function->isDeleted()
11140      << Object.get()->getType()
11141      << getDeletedOrUnavailableSuffix(Best->Function)
11142      << Object.get()->getSourceRange();
11143    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11144    break;
11145  }
11146
11147  if (Best == CandidateSet.end())
11148    return true;
11149
11150  UnbridgedCasts.restore();
11151
11152  if (Best->Function == 0) {
11153    // Since there is no function declaration, this is one of the
11154    // surrogate candidates. Dig out the conversion function.
11155    CXXConversionDecl *Conv
11156      = cast<CXXConversionDecl>(
11157                         Best->Conversions[0].UserDefined.ConversionFunction);
11158
11159    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
11160    if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
11161      return ExprError();
11162    assert(Conv == Best->FoundDecl.getDecl() &&
11163             "Found Decl & conversion-to-functionptr should be same, right?!");
11164    // We selected one of the surrogate functions that converts the
11165    // object parameter to a function pointer. Perform the conversion
11166    // on the object argument, then let ActOnCallExpr finish the job.
11167
11168    // Create an implicit member expr to refer to the conversion operator.
11169    // and then call it.
11170    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
11171                                             Conv, HadMultipleCandidates);
11172    if (Call.isInvalid())
11173      return ExprError();
11174    // Record usage of conversion in an implicit cast.
11175    Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
11176                                          CK_UserDefinedConversion,
11177                                          Call.get(), 0, VK_RValue));
11178
11179    return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
11180  }
11181
11182  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
11183
11184  // We found an overloaded operator(). Build a CXXOperatorCallExpr
11185  // that calls this method, using Object for the implicit object
11186  // parameter and passing along the remaining arguments.
11187  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11188
11189  // An error diagnostic has already been printed when parsing the declaration.
11190  if (Method->isInvalidDecl())
11191    return ExprError();
11192
11193  const FunctionProtoType *Proto =
11194    Method->getType()->getAs<FunctionProtoType>();
11195
11196  unsigned NumArgsInProto = Proto->getNumArgs();
11197  unsigned NumArgsToCheck = Args.size();
11198
11199  // Build the full argument list for the method call (the
11200  // implicit object parameter is placed at the beginning of the
11201  // list).
11202  Expr **MethodArgs;
11203  if (Args.size() < NumArgsInProto) {
11204    NumArgsToCheck = NumArgsInProto;
11205    MethodArgs = new Expr*[NumArgsInProto + 1];
11206  } else {
11207    MethodArgs = new Expr*[Args.size() + 1];
11208  }
11209  MethodArgs[0] = Object.get();
11210  for (unsigned ArgIdx = 0, e = Args.size(); ArgIdx != e; ++ArgIdx)
11211    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
11212
11213  DeclarationNameInfo OpLocInfo(
11214               Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
11215  OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
11216  ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
11217                                           HadMultipleCandidates,
11218                                           OpLocInfo.getLoc(),
11219                                           OpLocInfo.getInfo());
11220  if (NewFn.isInvalid())
11221    return true;
11222
11223  // Once we've built TheCall, all of the expressions are properly
11224  // owned.
11225  QualType ResultTy = Method->getResultType();
11226  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11227  ResultTy = ResultTy.getNonLValueExprType(Context);
11228
11229  CXXOperatorCallExpr *TheCall =
11230    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
11231                                      llvm::makeArrayRef(MethodArgs, Args.size()+1),
11232                                      ResultTy, VK, RParenLoc, false);
11233  delete [] MethodArgs;
11234
11235  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
11236                          Method))
11237    return true;
11238
11239  // We may have default arguments. If so, we need to allocate more
11240  // slots in the call for them.
11241  if (Args.size() < NumArgsInProto)
11242    TheCall->setNumArgs(Context, NumArgsInProto + 1);
11243  else if (Args.size() > NumArgsInProto)
11244    NumArgsToCheck = NumArgsInProto;
11245
11246  bool IsError = false;
11247
11248  // Initialize the implicit object parameter.
11249  ExprResult ObjRes =
11250    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
11251                                        Best->FoundDecl, Method);
11252  if (ObjRes.isInvalid())
11253    IsError = true;
11254  else
11255    Object = ObjRes;
11256  TheCall->setArg(0, Object.take());
11257
11258  // Check the argument types.
11259  for (unsigned i = 0; i != NumArgsToCheck; i++) {
11260    Expr *Arg;
11261    if (i < Args.size()) {
11262      Arg = Args[i];
11263
11264      // Pass the argument.
11265
11266      ExprResult InputInit
11267        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11268                                                    Context,
11269                                                    Method->getParamDecl(i)),
11270                                    SourceLocation(), Arg);
11271
11272      IsError |= InputInit.isInvalid();
11273      Arg = InputInit.takeAs<Expr>();
11274    } else {
11275      ExprResult DefArg
11276        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
11277      if (DefArg.isInvalid()) {
11278        IsError = true;
11279        break;
11280      }
11281
11282      Arg = DefArg.takeAs<Expr>();
11283    }
11284
11285    TheCall->setArg(i + 1, Arg);
11286  }
11287
11288  // If this is a variadic call, handle args passed through "...".
11289  if (Proto->isVariadic()) {
11290    // Promote the arguments (C99 6.5.2.2p7).
11291    for (unsigned i = NumArgsInProto, e = Args.size(); i < e; i++) {
11292      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
11293      IsError |= Arg.isInvalid();
11294      TheCall->setArg(i + 1, Arg.take());
11295    }
11296  }
11297
11298  if (IsError) return true;
11299
11300  DiagnoseSentinelCalls(Method, LParenLoc, Args);
11301
11302  if (CheckFunctionCall(Method, TheCall, Proto))
11303    return true;
11304
11305  return MaybeBindToTemporary(TheCall);
11306}
11307
11308/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
11309///  (if one exists), where @c Base is an expression of class type and
11310/// @c Member is the name of the member we're trying to find.
11311ExprResult
11312Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
11313  assert(Base->getType()->isRecordType() &&
11314         "left-hand side must have class type");
11315
11316  if (checkPlaceholderForOverload(*this, Base))
11317    return ExprError();
11318
11319  SourceLocation Loc = Base->getExprLoc();
11320
11321  // C++ [over.ref]p1:
11322  //
11323  //   [...] An expression x->m is interpreted as (x.operator->())->m
11324  //   for a class object x of type T if T::operator->() exists and if
11325  //   the operator is selected as the best match function by the
11326  //   overload resolution mechanism (13.3).
11327  DeclarationName OpName =
11328    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
11329  OverloadCandidateSet CandidateSet(Loc);
11330  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
11331
11332  if (RequireCompleteType(Loc, Base->getType(),
11333                          diag::err_typecheck_incomplete_tag, Base))
11334    return ExprError();
11335
11336  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
11337  LookupQualifiedName(R, BaseRecord->getDecl());
11338  R.suppressDiagnostics();
11339
11340  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11341       Oper != OperEnd; ++Oper) {
11342    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
11343                       None, CandidateSet, /*SuppressUserConversions=*/false);
11344  }
11345
11346  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11347
11348  // Perform overload resolution.
11349  OverloadCandidateSet::iterator Best;
11350  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11351  case OR_Success:
11352    // Overload resolution succeeded; we'll build the call below.
11353    break;
11354
11355  case OR_No_Viable_Function:
11356    if (CandidateSet.empty())
11357      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
11358        << Base->getType() << Base->getSourceRange();
11359    else
11360      Diag(OpLoc, diag::err_ovl_no_viable_oper)
11361        << "operator->" << Base->getSourceRange();
11362    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11363    return ExprError();
11364
11365  case OR_Ambiguous:
11366    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
11367      << "->" << Base->getType() << Base->getSourceRange();
11368    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
11369    return ExprError();
11370
11371  case OR_Deleted:
11372    Diag(OpLoc,  diag::err_ovl_deleted_oper)
11373      << Best->Function->isDeleted()
11374      << "->"
11375      << getDeletedOrUnavailableSuffix(Best->Function)
11376      << Base->getSourceRange();
11377    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11378    return ExprError();
11379  }
11380
11381  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
11382
11383  // Convert the object parameter.
11384  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11385  ExprResult BaseResult =
11386    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
11387                                        Best->FoundDecl, Method);
11388  if (BaseResult.isInvalid())
11389    return ExprError();
11390  Base = BaseResult.take();
11391
11392  // Build the operator call.
11393  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
11394                                            HadMultipleCandidates, OpLoc);
11395  if (FnExpr.isInvalid())
11396    return ExprError();
11397
11398  QualType ResultTy = Method->getResultType();
11399  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11400  ResultTy = ResultTy.getNonLValueExprType(Context);
11401  CXXOperatorCallExpr *TheCall =
11402    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
11403                                      Base, ResultTy, VK, OpLoc, false);
11404
11405  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
11406                          Method))
11407          return ExprError();
11408
11409  return MaybeBindToTemporary(TheCall);
11410}
11411
11412/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
11413/// a literal operator described by the provided lookup results.
11414ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
11415                                          DeclarationNameInfo &SuffixInfo,
11416                                          ArrayRef<Expr*> Args,
11417                                          SourceLocation LitEndLoc,
11418                                       TemplateArgumentListInfo *TemplateArgs) {
11419  SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
11420
11421  OverloadCandidateSet CandidateSet(UDSuffixLoc);
11422  AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
11423                        TemplateArgs);
11424
11425  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11426
11427  // Perform overload resolution. This will usually be trivial, but might need
11428  // to perform substitutions for a literal operator template.
11429  OverloadCandidateSet::iterator Best;
11430  switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
11431  case OR_Success:
11432  case OR_Deleted:
11433    break;
11434
11435  case OR_No_Viable_Function:
11436    Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
11437      << R.getLookupName();
11438    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11439    return ExprError();
11440
11441  case OR_Ambiguous:
11442    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
11443    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11444    return ExprError();
11445  }
11446
11447  FunctionDecl *FD = Best->Function;
11448  ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
11449                                        HadMultipleCandidates,
11450                                        SuffixInfo.getLoc(),
11451                                        SuffixInfo.getInfo());
11452  if (Fn.isInvalid())
11453    return true;
11454
11455  // Check the argument types. This should almost always be a no-op, except
11456  // that array-to-pointer decay is applied to string literals.
11457  Expr *ConvArgs[2];
11458  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
11459    ExprResult InputInit = PerformCopyInitialization(
11460      InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
11461      SourceLocation(), Args[ArgIdx]);
11462    if (InputInit.isInvalid())
11463      return true;
11464    ConvArgs[ArgIdx] = InputInit.take();
11465  }
11466
11467  QualType ResultTy = FD->getResultType();
11468  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11469  ResultTy = ResultTy.getNonLValueExprType(Context);
11470
11471  UserDefinedLiteral *UDL =
11472    new (Context) UserDefinedLiteral(Context, Fn.take(),
11473                                     llvm::makeArrayRef(ConvArgs, Args.size()),
11474                                     ResultTy, VK, LitEndLoc, UDSuffixLoc);
11475
11476  if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
11477    return ExprError();
11478
11479  if (CheckFunctionCall(FD, UDL, NULL))
11480    return ExprError();
11481
11482  return MaybeBindToTemporary(UDL);
11483}
11484
11485/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
11486/// given LookupResult is non-empty, it is assumed to describe a member which
11487/// will be invoked. Otherwise, the function will be found via argument
11488/// dependent lookup.
11489/// CallExpr is set to a valid expression and FRS_Success returned on success,
11490/// otherwise CallExpr is set to ExprError() and some non-success value
11491/// is returned.
11492Sema::ForRangeStatus
11493Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
11494                                SourceLocation RangeLoc, VarDecl *Decl,
11495                                BeginEndFunction BEF,
11496                                const DeclarationNameInfo &NameInfo,
11497                                LookupResult &MemberLookup,
11498                                OverloadCandidateSet *CandidateSet,
11499                                Expr *Range, ExprResult *CallExpr) {
11500  CandidateSet->clear();
11501  if (!MemberLookup.empty()) {
11502    ExprResult MemberRef =
11503        BuildMemberReferenceExpr(Range, Range->getType(), Loc,
11504                                 /*IsPtr=*/false, CXXScopeSpec(),
11505                                 /*TemplateKWLoc=*/SourceLocation(),
11506                                 /*FirstQualifierInScope=*/0,
11507                                 MemberLookup,
11508                                 /*TemplateArgs=*/0);
11509    if (MemberRef.isInvalid()) {
11510      *CallExpr = ExprError();
11511      Diag(Range->getLocStart(), diag::note_in_for_range)
11512          << RangeLoc << BEF << Range->getType();
11513      return FRS_DiagnosticIssued;
11514    }
11515    *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, 0);
11516    if (CallExpr->isInvalid()) {
11517      *CallExpr = ExprError();
11518      Diag(Range->getLocStart(), diag::note_in_for_range)
11519          << RangeLoc << BEF << Range->getType();
11520      return FRS_DiagnosticIssued;
11521    }
11522  } else {
11523    UnresolvedSet<0> FoundNames;
11524    UnresolvedLookupExpr *Fn =
11525      UnresolvedLookupExpr::Create(Context, /*NamingClass=*/0,
11526                                   NestedNameSpecifierLoc(), NameInfo,
11527                                   /*NeedsADL=*/true, /*Overloaded=*/false,
11528                                   FoundNames.begin(), FoundNames.end());
11529
11530    bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
11531                                                    CandidateSet, CallExpr);
11532    if (CandidateSet->empty() || CandidateSetError) {
11533      *CallExpr = ExprError();
11534      return FRS_NoViableFunction;
11535    }
11536    OverloadCandidateSet::iterator Best;
11537    OverloadingResult OverloadResult =
11538        CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
11539
11540    if (OverloadResult == OR_No_Viable_Function) {
11541      *CallExpr = ExprError();
11542      return FRS_NoViableFunction;
11543    }
11544    *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
11545                                         Loc, 0, CandidateSet, &Best,
11546                                         OverloadResult,
11547                                         /*AllowTypoCorrection=*/false);
11548    if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
11549      *CallExpr = ExprError();
11550      Diag(Range->getLocStart(), diag::note_in_for_range)
11551          << RangeLoc << BEF << Range->getType();
11552      return FRS_DiagnosticIssued;
11553    }
11554  }
11555  return FRS_Success;
11556}
11557
11558
11559/// FixOverloadedFunctionReference - E is an expression that refers to
11560/// a C++ overloaded function (possibly with some parentheses and
11561/// perhaps a '&' around it). We have resolved the overloaded function
11562/// to the function declaration Fn, so patch up the expression E to
11563/// refer (possibly indirectly) to Fn. Returns the new expr.
11564Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
11565                                           FunctionDecl *Fn) {
11566  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
11567    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
11568                                                   Found, Fn);
11569    if (SubExpr == PE->getSubExpr())
11570      return PE;
11571
11572    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
11573  }
11574
11575  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11576    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
11577                                                   Found, Fn);
11578    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
11579                               SubExpr->getType()) &&
11580           "Implicit cast type cannot be determined from overload");
11581    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
11582    if (SubExpr == ICE->getSubExpr())
11583      return ICE;
11584
11585    return ImplicitCastExpr::Create(Context, ICE->getType(),
11586                                    ICE->getCastKind(),
11587                                    SubExpr, 0,
11588                                    ICE->getValueKind());
11589  }
11590
11591  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
11592    assert(UnOp->getOpcode() == UO_AddrOf &&
11593           "Can only take the address of an overloaded function");
11594    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11595      if (Method->isStatic()) {
11596        // Do nothing: static member functions aren't any different
11597        // from non-member functions.
11598      } else {
11599        // Fix the sub expression, which really has to be an
11600        // UnresolvedLookupExpr holding an overloaded member function
11601        // or template.
11602        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11603                                                       Found, Fn);
11604        if (SubExpr == UnOp->getSubExpr())
11605          return UnOp;
11606
11607        assert(isa<DeclRefExpr>(SubExpr)
11608               && "fixed to something other than a decl ref");
11609        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
11610               && "fixed to a member ref with no nested name qualifier");
11611
11612        // We have taken the address of a pointer to member
11613        // function. Perform the computation here so that we get the
11614        // appropriate pointer to member type.
11615        QualType ClassType
11616          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
11617        QualType MemPtrType
11618          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
11619
11620        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
11621                                           VK_RValue, OK_Ordinary,
11622                                           UnOp->getOperatorLoc());
11623      }
11624    }
11625    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11626                                                   Found, Fn);
11627    if (SubExpr == UnOp->getSubExpr())
11628      return UnOp;
11629
11630    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
11631                                     Context.getPointerType(SubExpr->getType()),
11632                                       VK_RValue, OK_Ordinary,
11633                                       UnOp->getOperatorLoc());
11634  }
11635
11636  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11637    // FIXME: avoid copy.
11638    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11639    if (ULE->hasExplicitTemplateArgs()) {
11640      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
11641      TemplateArgs = &TemplateArgsBuffer;
11642    }
11643
11644    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11645                                           ULE->getQualifierLoc(),
11646                                           ULE->getTemplateKeywordLoc(),
11647                                           Fn,
11648                                           /*enclosing*/ false, // FIXME?
11649                                           ULE->getNameLoc(),
11650                                           Fn->getType(),
11651                                           VK_LValue,
11652                                           Found.getDecl(),
11653                                           TemplateArgs);
11654    MarkDeclRefReferenced(DRE);
11655    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
11656    return DRE;
11657  }
11658
11659  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
11660    // FIXME: avoid copy.
11661    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11662    if (MemExpr->hasExplicitTemplateArgs()) {
11663      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11664      TemplateArgs = &TemplateArgsBuffer;
11665    }
11666
11667    Expr *Base;
11668
11669    // If we're filling in a static method where we used to have an
11670    // implicit member access, rewrite to a simple decl ref.
11671    if (MemExpr->isImplicitAccess()) {
11672      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11673        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11674                                               MemExpr->getQualifierLoc(),
11675                                               MemExpr->getTemplateKeywordLoc(),
11676                                               Fn,
11677                                               /*enclosing*/ false,
11678                                               MemExpr->getMemberLoc(),
11679                                               Fn->getType(),
11680                                               VK_LValue,
11681                                               Found.getDecl(),
11682                                               TemplateArgs);
11683        MarkDeclRefReferenced(DRE);
11684        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
11685        return DRE;
11686      } else {
11687        SourceLocation Loc = MemExpr->getMemberLoc();
11688        if (MemExpr->getQualifier())
11689          Loc = MemExpr->getQualifierLoc().getBeginLoc();
11690        CheckCXXThisCapture(Loc);
11691        Base = new (Context) CXXThisExpr(Loc,
11692                                         MemExpr->getBaseType(),
11693                                         /*isImplicit=*/true);
11694      }
11695    } else
11696      Base = MemExpr->getBase();
11697
11698    ExprValueKind valueKind;
11699    QualType type;
11700    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11701      valueKind = VK_LValue;
11702      type = Fn->getType();
11703    } else {
11704      valueKind = VK_RValue;
11705      type = Context.BoundMemberTy;
11706    }
11707
11708    MemberExpr *ME = MemberExpr::Create(Context, Base,
11709                                        MemExpr->isArrow(),
11710                                        MemExpr->getQualifierLoc(),
11711                                        MemExpr->getTemplateKeywordLoc(),
11712                                        Fn,
11713                                        Found,
11714                                        MemExpr->getMemberNameInfo(),
11715                                        TemplateArgs,
11716                                        type, valueKind, OK_Ordinary);
11717    ME->setHadMultipleCandidates(true);
11718    MarkMemberReferenced(ME);
11719    return ME;
11720  }
11721
11722  llvm_unreachable("Invalid reference to overloaded function");
11723}
11724
11725ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
11726                                                DeclAccessPair Found,
11727                                                FunctionDecl *Fn) {
11728  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
11729}
11730
11731} // end namespace clang
11732