SemaOverload.cpp revision 80ad52f327b532bded5c5b0ee38779d841c6cd35
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/Overload.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/CXXInheritance.h" 17#include "clang/AST/DeclObjC.h" 18#include "clang/AST/Expr.h" 19#include "clang/AST/ExprCXX.h" 20#include "clang/AST/ExprObjC.h" 21#include "clang/AST/TypeOrdering.h" 22#include "clang/Basic/Diagnostic.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "clang/Lex/Preprocessor.h" 25#include "clang/Sema/Initialization.h" 26#include "clang/Sema/Lookup.h" 27#include "clang/Sema/SemaInternal.h" 28#include "clang/Sema/Template.h" 29#include "clang/Sema/TemplateDeduction.h" 30#include "llvm/ADT/DenseSet.h" 31#include "llvm/ADT/STLExtras.h" 32#include "llvm/ADT/SmallPtrSet.h" 33#include "llvm/ADT/SmallString.h" 34#include <algorithm> 35 36namespace clang { 37using namespace sema; 38 39/// A convenience routine for creating a decayed reference to a 40/// function. 41static ExprResult 42CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates, 43 SourceLocation Loc = SourceLocation(), 44 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ 45 DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(), 46 VK_LValue, Loc, LocInfo); 47 if (HadMultipleCandidates) 48 DRE->setHadMultipleCandidates(true); 49 ExprResult E = S.Owned(DRE); 50 E = S.DefaultFunctionArrayConversion(E.take()); 51 if (E.isInvalid()) 52 return ExprError(); 53 return E; 54} 55 56static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 57 bool InOverloadResolution, 58 StandardConversionSequence &SCS, 59 bool CStyle, 60 bool AllowObjCWritebackConversion); 61 62static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 63 QualType &ToType, 64 bool InOverloadResolution, 65 StandardConversionSequence &SCS, 66 bool CStyle); 67static OverloadingResult 68IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 69 UserDefinedConversionSequence& User, 70 OverloadCandidateSet& Conversions, 71 bool AllowExplicit); 72 73 74static ImplicitConversionSequence::CompareKind 75CompareStandardConversionSequences(Sema &S, 76 const StandardConversionSequence& SCS1, 77 const StandardConversionSequence& SCS2); 78 79static ImplicitConversionSequence::CompareKind 80CompareQualificationConversions(Sema &S, 81 const StandardConversionSequence& SCS1, 82 const StandardConversionSequence& SCS2); 83 84static ImplicitConversionSequence::CompareKind 85CompareDerivedToBaseConversions(Sema &S, 86 const StandardConversionSequence& SCS1, 87 const StandardConversionSequence& SCS2); 88 89 90 91/// GetConversionCategory - Retrieve the implicit conversion 92/// category corresponding to the given implicit conversion kind. 93ImplicitConversionCategory 94GetConversionCategory(ImplicitConversionKind Kind) { 95 static const ImplicitConversionCategory 96 Category[(int)ICK_Num_Conversion_Kinds] = { 97 ICC_Identity, 98 ICC_Lvalue_Transformation, 99 ICC_Lvalue_Transformation, 100 ICC_Lvalue_Transformation, 101 ICC_Identity, 102 ICC_Qualification_Adjustment, 103 ICC_Promotion, 104 ICC_Promotion, 105 ICC_Promotion, 106 ICC_Conversion, 107 ICC_Conversion, 108 ICC_Conversion, 109 ICC_Conversion, 110 ICC_Conversion, 111 ICC_Conversion, 112 ICC_Conversion, 113 ICC_Conversion, 114 ICC_Conversion, 115 ICC_Conversion, 116 ICC_Conversion, 117 ICC_Conversion, 118 ICC_Conversion 119 }; 120 return Category[(int)Kind]; 121} 122 123/// GetConversionRank - Retrieve the implicit conversion rank 124/// corresponding to the given implicit conversion kind. 125ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 126 static const ImplicitConversionRank 127 Rank[(int)ICK_Num_Conversion_Kinds] = { 128 ICR_Exact_Match, 129 ICR_Exact_Match, 130 ICR_Exact_Match, 131 ICR_Exact_Match, 132 ICR_Exact_Match, 133 ICR_Exact_Match, 134 ICR_Promotion, 135 ICR_Promotion, 136 ICR_Promotion, 137 ICR_Conversion, 138 ICR_Conversion, 139 ICR_Conversion, 140 ICR_Conversion, 141 ICR_Conversion, 142 ICR_Conversion, 143 ICR_Conversion, 144 ICR_Conversion, 145 ICR_Conversion, 146 ICR_Conversion, 147 ICR_Conversion, 148 ICR_Complex_Real_Conversion, 149 ICR_Conversion, 150 ICR_Conversion, 151 ICR_Writeback_Conversion 152 }; 153 return Rank[(int)Kind]; 154} 155 156/// GetImplicitConversionName - Return the name of this kind of 157/// implicit conversion. 158const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 159 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 160 "No conversion", 161 "Lvalue-to-rvalue", 162 "Array-to-pointer", 163 "Function-to-pointer", 164 "Noreturn adjustment", 165 "Qualification", 166 "Integral promotion", 167 "Floating point promotion", 168 "Complex promotion", 169 "Integral conversion", 170 "Floating conversion", 171 "Complex conversion", 172 "Floating-integral conversion", 173 "Pointer conversion", 174 "Pointer-to-member conversion", 175 "Boolean conversion", 176 "Compatible-types conversion", 177 "Derived-to-base conversion", 178 "Vector conversion", 179 "Vector splat", 180 "Complex-real conversion", 181 "Block Pointer conversion", 182 "Transparent Union Conversion" 183 "Writeback conversion" 184 }; 185 return Name[Kind]; 186} 187 188/// StandardConversionSequence - Set the standard conversion 189/// sequence to the identity conversion. 190void StandardConversionSequence::setAsIdentityConversion() { 191 First = ICK_Identity; 192 Second = ICK_Identity; 193 Third = ICK_Identity; 194 DeprecatedStringLiteralToCharPtr = false; 195 QualificationIncludesObjCLifetime = false; 196 ReferenceBinding = false; 197 DirectBinding = false; 198 IsLvalueReference = true; 199 BindsToFunctionLvalue = false; 200 BindsToRvalue = false; 201 BindsImplicitObjectArgumentWithoutRefQualifier = false; 202 ObjCLifetimeConversionBinding = false; 203 CopyConstructor = 0; 204} 205 206/// getRank - Retrieve the rank of this standard conversion sequence 207/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 208/// implicit conversions. 209ImplicitConversionRank StandardConversionSequence::getRank() const { 210 ImplicitConversionRank Rank = ICR_Exact_Match; 211 if (GetConversionRank(First) > Rank) 212 Rank = GetConversionRank(First); 213 if (GetConversionRank(Second) > Rank) 214 Rank = GetConversionRank(Second); 215 if (GetConversionRank(Third) > Rank) 216 Rank = GetConversionRank(Third); 217 return Rank; 218} 219 220/// isPointerConversionToBool - Determines whether this conversion is 221/// a conversion of a pointer or pointer-to-member to bool. This is 222/// used as part of the ranking of standard conversion sequences 223/// (C++ 13.3.3.2p4). 224bool StandardConversionSequence::isPointerConversionToBool() const { 225 // Note that FromType has not necessarily been transformed by the 226 // array-to-pointer or function-to-pointer implicit conversions, so 227 // check for their presence as well as checking whether FromType is 228 // a pointer. 229 if (getToType(1)->isBooleanType() && 230 (getFromType()->isPointerType() || 231 getFromType()->isObjCObjectPointerType() || 232 getFromType()->isBlockPointerType() || 233 getFromType()->isNullPtrType() || 234 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 235 return true; 236 237 return false; 238} 239 240/// isPointerConversionToVoidPointer - Determines whether this 241/// conversion is a conversion of a pointer to a void pointer. This is 242/// used as part of the ranking of standard conversion sequences (C++ 243/// 13.3.3.2p4). 244bool 245StandardConversionSequence:: 246isPointerConversionToVoidPointer(ASTContext& Context) const { 247 QualType FromType = getFromType(); 248 QualType ToType = getToType(1); 249 250 // Note that FromType has not necessarily been transformed by the 251 // array-to-pointer implicit conversion, so check for its presence 252 // and redo the conversion to get a pointer. 253 if (First == ICK_Array_To_Pointer) 254 FromType = Context.getArrayDecayedType(FromType); 255 256 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 257 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 258 return ToPtrType->getPointeeType()->isVoidType(); 259 260 return false; 261} 262 263/// Skip any implicit casts which could be either part of a narrowing conversion 264/// or after one in an implicit conversion. 265static const Expr *IgnoreNarrowingConversion(const Expr *Converted) { 266 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { 267 switch (ICE->getCastKind()) { 268 case CK_NoOp: 269 case CK_IntegralCast: 270 case CK_IntegralToBoolean: 271 case CK_IntegralToFloating: 272 case CK_FloatingToIntegral: 273 case CK_FloatingToBoolean: 274 case CK_FloatingCast: 275 Converted = ICE->getSubExpr(); 276 continue; 277 278 default: 279 return Converted; 280 } 281 } 282 283 return Converted; 284} 285 286/// Check if this standard conversion sequence represents a narrowing 287/// conversion, according to C++11 [dcl.init.list]p7. 288/// 289/// \param Ctx The AST context. 290/// \param Converted The result of applying this standard conversion sequence. 291/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the 292/// value of the expression prior to the narrowing conversion. 293/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the 294/// type of the expression prior to the narrowing conversion. 295NarrowingKind 296StandardConversionSequence::getNarrowingKind(ASTContext &Ctx, 297 const Expr *Converted, 298 APValue &ConstantValue, 299 QualType &ConstantType) const { 300 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"); 301 302 // C++11 [dcl.init.list]p7: 303 // A narrowing conversion is an implicit conversion ... 304 QualType FromType = getToType(0); 305 QualType ToType = getToType(1); 306 switch (Second) { 307 // -- from a floating-point type to an integer type, or 308 // 309 // -- from an integer type or unscoped enumeration type to a floating-point 310 // type, except where the source is a constant expression and the actual 311 // value after conversion will fit into the target type and will produce 312 // the original value when converted back to the original type, or 313 case ICK_Floating_Integral: 314 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { 315 return NK_Type_Narrowing; 316 } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) { 317 llvm::APSInt IntConstantValue; 318 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 319 if (Initializer && 320 Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) { 321 // Convert the integer to the floating type. 322 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); 323 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(), 324 llvm::APFloat::rmNearestTiesToEven); 325 // And back. 326 llvm::APSInt ConvertedValue = IntConstantValue; 327 bool ignored; 328 Result.convertToInteger(ConvertedValue, 329 llvm::APFloat::rmTowardZero, &ignored); 330 // If the resulting value is different, this was a narrowing conversion. 331 if (IntConstantValue != ConvertedValue) { 332 ConstantValue = APValue(IntConstantValue); 333 ConstantType = Initializer->getType(); 334 return NK_Constant_Narrowing; 335 } 336 } else { 337 // Variables are always narrowings. 338 return NK_Variable_Narrowing; 339 } 340 } 341 return NK_Not_Narrowing; 342 343 // -- from long double to double or float, or from double to float, except 344 // where the source is a constant expression and the actual value after 345 // conversion is within the range of values that can be represented (even 346 // if it cannot be represented exactly), or 347 case ICK_Floating_Conversion: 348 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && 349 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { 350 // FromType is larger than ToType. 351 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 352 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { 353 // Constant! 354 assert(ConstantValue.isFloat()); 355 llvm::APFloat FloatVal = ConstantValue.getFloat(); 356 // Convert the source value into the target type. 357 bool ignored; 358 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( 359 Ctx.getFloatTypeSemantics(ToType), 360 llvm::APFloat::rmNearestTiesToEven, &ignored); 361 // If there was no overflow, the source value is within the range of 362 // values that can be represented. 363 if (ConvertStatus & llvm::APFloat::opOverflow) { 364 ConstantType = Initializer->getType(); 365 return NK_Constant_Narrowing; 366 } 367 } else { 368 return NK_Variable_Narrowing; 369 } 370 } 371 return NK_Not_Narrowing; 372 373 // -- from an integer type or unscoped enumeration type to an integer type 374 // that cannot represent all the values of the original type, except where 375 // the source is a constant expression and the actual value after 376 // conversion will fit into the target type and will produce the original 377 // value when converted back to the original type. 378 case ICK_Boolean_Conversion: // Bools are integers too. 379 if (!FromType->isIntegralOrUnscopedEnumerationType()) { 380 // Boolean conversions can be from pointers and pointers to members 381 // [conv.bool], and those aren't considered narrowing conversions. 382 return NK_Not_Narrowing; 383 } // Otherwise, fall through to the integral case. 384 case ICK_Integral_Conversion: { 385 assert(FromType->isIntegralOrUnscopedEnumerationType()); 386 assert(ToType->isIntegralOrUnscopedEnumerationType()); 387 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); 388 const unsigned FromWidth = Ctx.getIntWidth(FromType); 389 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); 390 const unsigned ToWidth = Ctx.getIntWidth(ToType); 391 392 if (FromWidth > ToWidth || 393 (FromWidth == ToWidth && FromSigned != ToSigned) || 394 (FromSigned && !ToSigned)) { 395 // Not all values of FromType can be represented in ToType. 396 llvm::APSInt InitializerValue; 397 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 398 if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) { 399 // Such conversions on variables are always narrowing. 400 return NK_Variable_Narrowing; 401 } 402 bool Narrowing = false; 403 if (FromWidth < ToWidth) { 404 // Negative -> unsigned is narrowing. Otherwise, more bits is never 405 // narrowing. 406 if (InitializerValue.isSigned() && InitializerValue.isNegative()) 407 Narrowing = true; 408 } else { 409 // Add a bit to the InitializerValue so we don't have to worry about 410 // signed vs. unsigned comparisons. 411 InitializerValue = InitializerValue.extend( 412 InitializerValue.getBitWidth() + 1); 413 // Convert the initializer to and from the target width and signed-ness. 414 llvm::APSInt ConvertedValue = InitializerValue; 415 ConvertedValue = ConvertedValue.trunc(ToWidth); 416 ConvertedValue.setIsSigned(ToSigned); 417 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); 418 ConvertedValue.setIsSigned(InitializerValue.isSigned()); 419 // If the result is different, this was a narrowing conversion. 420 if (ConvertedValue != InitializerValue) 421 Narrowing = true; 422 } 423 if (Narrowing) { 424 ConstantType = Initializer->getType(); 425 ConstantValue = APValue(InitializerValue); 426 return NK_Constant_Narrowing; 427 } 428 } 429 return NK_Not_Narrowing; 430 } 431 432 default: 433 // Other kinds of conversions are not narrowings. 434 return NK_Not_Narrowing; 435 } 436} 437 438/// DebugPrint - Print this standard conversion sequence to standard 439/// error. Useful for debugging overloading issues. 440void StandardConversionSequence::DebugPrint() const { 441 raw_ostream &OS = llvm::errs(); 442 bool PrintedSomething = false; 443 if (First != ICK_Identity) { 444 OS << GetImplicitConversionName(First); 445 PrintedSomething = true; 446 } 447 448 if (Second != ICK_Identity) { 449 if (PrintedSomething) { 450 OS << " -> "; 451 } 452 OS << GetImplicitConversionName(Second); 453 454 if (CopyConstructor) { 455 OS << " (by copy constructor)"; 456 } else if (DirectBinding) { 457 OS << " (direct reference binding)"; 458 } else if (ReferenceBinding) { 459 OS << " (reference binding)"; 460 } 461 PrintedSomething = true; 462 } 463 464 if (Third != ICK_Identity) { 465 if (PrintedSomething) { 466 OS << " -> "; 467 } 468 OS << GetImplicitConversionName(Third); 469 PrintedSomething = true; 470 } 471 472 if (!PrintedSomething) { 473 OS << "No conversions required"; 474 } 475} 476 477/// DebugPrint - Print this user-defined conversion sequence to standard 478/// error. Useful for debugging overloading issues. 479void UserDefinedConversionSequence::DebugPrint() const { 480 raw_ostream &OS = llvm::errs(); 481 if (Before.First || Before.Second || Before.Third) { 482 Before.DebugPrint(); 483 OS << " -> "; 484 } 485 if (ConversionFunction) 486 OS << '\'' << *ConversionFunction << '\''; 487 else 488 OS << "aggregate initialization"; 489 if (After.First || After.Second || After.Third) { 490 OS << " -> "; 491 After.DebugPrint(); 492 } 493} 494 495/// DebugPrint - Print this implicit conversion sequence to standard 496/// error. Useful for debugging overloading issues. 497void ImplicitConversionSequence::DebugPrint() const { 498 raw_ostream &OS = llvm::errs(); 499 switch (ConversionKind) { 500 case StandardConversion: 501 OS << "Standard conversion: "; 502 Standard.DebugPrint(); 503 break; 504 case UserDefinedConversion: 505 OS << "User-defined conversion: "; 506 UserDefined.DebugPrint(); 507 break; 508 case EllipsisConversion: 509 OS << "Ellipsis conversion"; 510 break; 511 case AmbiguousConversion: 512 OS << "Ambiguous conversion"; 513 break; 514 case BadConversion: 515 OS << "Bad conversion"; 516 break; 517 } 518 519 OS << "\n"; 520} 521 522void AmbiguousConversionSequence::construct() { 523 new (&conversions()) ConversionSet(); 524} 525 526void AmbiguousConversionSequence::destruct() { 527 conversions().~ConversionSet(); 528} 529 530void 531AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 532 FromTypePtr = O.FromTypePtr; 533 ToTypePtr = O.ToTypePtr; 534 new (&conversions()) ConversionSet(O.conversions()); 535} 536 537namespace { 538 // Structure used by OverloadCandidate::DeductionFailureInfo to store 539 // template parameter and template argument information. 540 struct DFIParamWithArguments { 541 TemplateParameter Param; 542 TemplateArgument FirstArg; 543 TemplateArgument SecondArg; 544 }; 545} 546 547/// \brief Convert from Sema's representation of template deduction information 548/// to the form used in overload-candidate information. 549OverloadCandidate::DeductionFailureInfo 550static MakeDeductionFailureInfo(ASTContext &Context, 551 Sema::TemplateDeductionResult TDK, 552 TemplateDeductionInfo &Info) { 553 OverloadCandidate::DeductionFailureInfo Result; 554 Result.Result = static_cast<unsigned>(TDK); 555 Result.HasDiagnostic = false; 556 Result.Data = 0; 557 switch (TDK) { 558 case Sema::TDK_Success: 559 case Sema::TDK_Invalid: 560 case Sema::TDK_InstantiationDepth: 561 case Sema::TDK_TooManyArguments: 562 case Sema::TDK_TooFewArguments: 563 break; 564 565 case Sema::TDK_Incomplete: 566 case Sema::TDK_InvalidExplicitArguments: 567 Result.Data = Info.Param.getOpaqueValue(); 568 break; 569 570 case Sema::TDK_Inconsistent: 571 case Sema::TDK_Underqualified: { 572 // FIXME: Should allocate from normal heap so that we can free this later. 573 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 574 Saved->Param = Info.Param; 575 Saved->FirstArg = Info.FirstArg; 576 Saved->SecondArg = Info.SecondArg; 577 Result.Data = Saved; 578 break; 579 } 580 581 case Sema::TDK_SubstitutionFailure: 582 Result.Data = Info.take(); 583 if (Info.hasSFINAEDiagnostic()) { 584 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( 585 SourceLocation(), PartialDiagnostic::NullDiagnostic()); 586 Info.takeSFINAEDiagnostic(*Diag); 587 Result.HasDiagnostic = true; 588 } 589 break; 590 591 case Sema::TDK_NonDeducedMismatch: 592 case Sema::TDK_FailedOverloadResolution: 593 break; 594 } 595 596 return Result; 597} 598 599void OverloadCandidate::DeductionFailureInfo::Destroy() { 600 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 601 case Sema::TDK_Success: 602 case Sema::TDK_Invalid: 603 case Sema::TDK_InstantiationDepth: 604 case Sema::TDK_Incomplete: 605 case Sema::TDK_TooManyArguments: 606 case Sema::TDK_TooFewArguments: 607 case Sema::TDK_InvalidExplicitArguments: 608 break; 609 610 case Sema::TDK_Inconsistent: 611 case Sema::TDK_Underqualified: 612 // FIXME: Destroy the data? 613 Data = 0; 614 break; 615 616 case Sema::TDK_SubstitutionFailure: 617 // FIXME: Destroy the template argument list? 618 Data = 0; 619 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 620 Diag->~PartialDiagnosticAt(); 621 HasDiagnostic = false; 622 } 623 break; 624 625 // Unhandled 626 case Sema::TDK_NonDeducedMismatch: 627 case Sema::TDK_FailedOverloadResolution: 628 break; 629 } 630} 631 632PartialDiagnosticAt * 633OverloadCandidate::DeductionFailureInfo::getSFINAEDiagnostic() { 634 if (HasDiagnostic) 635 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); 636 return 0; 637} 638 639TemplateParameter 640OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 641 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 642 case Sema::TDK_Success: 643 case Sema::TDK_Invalid: 644 case Sema::TDK_InstantiationDepth: 645 case Sema::TDK_TooManyArguments: 646 case Sema::TDK_TooFewArguments: 647 case Sema::TDK_SubstitutionFailure: 648 return TemplateParameter(); 649 650 case Sema::TDK_Incomplete: 651 case Sema::TDK_InvalidExplicitArguments: 652 return TemplateParameter::getFromOpaqueValue(Data); 653 654 case Sema::TDK_Inconsistent: 655 case Sema::TDK_Underqualified: 656 return static_cast<DFIParamWithArguments*>(Data)->Param; 657 658 // Unhandled 659 case Sema::TDK_NonDeducedMismatch: 660 case Sema::TDK_FailedOverloadResolution: 661 break; 662 } 663 664 return TemplateParameter(); 665} 666 667TemplateArgumentList * 668OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 669 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 670 case Sema::TDK_Success: 671 case Sema::TDK_Invalid: 672 case Sema::TDK_InstantiationDepth: 673 case Sema::TDK_TooManyArguments: 674 case Sema::TDK_TooFewArguments: 675 case Sema::TDK_Incomplete: 676 case Sema::TDK_InvalidExplicitArguments: 677 case Sema::TDK_Inconsistent: 678 case Sema::TDK_Underqualified: 679 return 0; 680 681 case Sema::TDK_SubstitutionFailure: 682 return static_cast<TemplateArgumentList*>(Data); 683 684 // Unhandled 685 case Sema::TDK_NonDeducedMismatch: 686 case Sema::TDK_FailedOverloadResolution: 687 break; 688 } 689 690 return 0; 691} 692 693const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 694 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 695 case Sema::TDK_Success: 696 case Sema::TDK_Invalid: 697 case Sema::TDK_InstantiationDepth: 698 case Sema::TDK_Incomplete: 699 case Sema::TDK_TooManyArguments: 700 case Sema::TDK_TooFewArguments: 701 case Sema::TDK_InvalidExplicitArguments: 702 case Sema::TDK_SubstitutionFailure: 703 return 0; 704 705 case Sema::TDK_Inconsistent: 706 case Sema::TDK_Underqualified: 707 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 708 709 // Unhandled 710 case Sema::TDK_NonDeducedMismatch: 711 case Sema::TDK_FailedOverloadResolution: 712 break; 713 } 714 715 return 0; 716} 717 718const TemplateArgument * 719OverloadCandidate::DeductionFailureInfo::getSecondArg() { 720 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 721 case Sema::TDK_Success: 722 case Sema::TDK_Invalid: 723 case Sema::TDK_InstantiationDepth: 724 case Sema::TDK_Incomplete: 725 case Sema::TDK_TooManyArguments: 726 case Sema::TDK_TooFewArguments: 727 case Sema::TDK_InvalidExplicitArguments: 728 case Sema::TDK_SubstitutionFailure: 729 return 0; 730 731 case Sema::TDK_Inconsistent: 732 case Sema::TDK_Underqualified: 733 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 734 735 // Unhandled 736 case Sema::TDK_NonDeducedMismatch: 737 case Sema::TDK_FailedOverloadResolution: 738 break; 739 } 740 741 return 0; 742} 743 744void OverloadCandidateSet::destroyCandidates() { 745 for (iterator i = begin(), e = end(); i != e; ++i) { 746 for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii) 747 i->Conversions[ii].~ImplicitConversionSequence(); 748 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) 749 i->DeductionFailure.Destroy(); 750 } 751} 752 753void OverloadCandidateSet::clear() { 754 destroyCandidates(); 755 NumInlineSequences = 0; 756 Candidates.clear(); 757 Functions.clear(); 758} 759 760namespace { 761 class UnbridgedCastsSet { 762 struct Entry { 763 Expr **Addr; 764 Expr *Saved; 765 }; 766 SmallVector<Entry, 2> Entries; 767 768 public: 769 void save(Sema &S, Expr *&E) { 770 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 771 Entry entry = { &E, E }; 772 Entries.push_back(entry); 773 E = S.stripARCUnbridgedCast(E); 774 } 775 776 void restore() { 777 for (SmallVectorImpl<Entry>::iterator 778 i = Entries.begin(), e = Entries.end(); i != e; ++i) 779 *i->Addr = i->Saved; 780 } 781 }; 782} 783 784/// checkPlaceholderForOverload - Do any interesting placeholder-like 785/// preprocessing on the given expression. 786/// 787/// \param unbridgedCasts a collection to which to add unbridged casts; 788/// without this, they will be immediately diagnosed as errors 789/// 790/// Return true on unrecoverable error. 791static bool checkPlaceholderForOverload(Sema &S, Expr *&E, 792 UnbridgedCastsSet *unbridgedCasts = 0) { 793 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { 794 // We can't handle overloaded expressions here because overload 795 // resolution might reasonably tweak them. 796 if (placeholder->getKind() == BuiltinType::Overload) return false; 797 798 // If the context potentially accepts unbridged ARC casts, strip 799 // the unbridged cast and add it to the collection for later restoration. 800 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && 801 unbridgedCasts) { 802 unbridgedCasts->save(S, E); 803 return false; 804 } 805 806 // Go ahead and check everything else. 807 ExprResult result = S.CheckPlaceholderExpr(E); 808 if (result.isInvalid()) 809 return true; 810 811 E = result.take(); 812 return false; 813 } 814 815 // Nothing to do. 816 return false; 817} 818 819/// checkArgPlaceholdersForOverload - Check a set of call operands for 820/// placeholders. 821static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args, 822 unsigned numArgs, 823 UnbridgedCastsSet &unbridged) { 824 for (unsigned i = 0; i != numArgs; ++i) 825 if (checkPlaceholderForOverload(S, args[i], &unbridged)) 826 return true; 827 828 return false; 829} 830 831// IsOverload - Determine whether the given New declaration is an 832// overload of the declarations in Old. This routine returns false if 833// New and Old cannot be overloaded, e.g., if New has the same 834// signature as some function in Old (C++ 1.3.10) or if the Old 835// declarations aren't functions (or function templates) at all. When 836// it does return false, MatchedDecl will point to the decl that New 837// cannot be overloaded with. This decl may be a UsingShadowDecl on 838// top of the underlying declaration. 839// 840// Example: Given the following input: 841// 842// void f(int, float); // #1 843// void f(int, int); // #2 844// int f(int, int); // #3 845// 846// When we process #1, there is no previous declaration of "f", 847// so IsOverload will not be used. 848// 849// When we process #2, Old contains only the FunctionDecl for #1. By 850// comparing the parameter types, we see that #1 and #2 are overloaded 851// (since they have different signatures), so this routine returns 852// false; MatchedDecl is unchanged. 853// 854// When we process #3, Old is an overload set containing #1 and #2. We 855// compare the signatures of #3 to #1 (they're overloaded, so we do 856// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 857// identical (return types of functions are not part of the 858// signature), IsOverload returns false and MatchedDecl will be set to 859// point to the FunctionDecl for #2. 860// 861// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 862// into a class by a using declaration. The rules for whether to hide 863// shadow declarations ignore some properties which otherwise figure 864// into a function template's signature. 865Sema::OverloadKind 866Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 867 NamedDecl *&Match, bool NewIsUsingDecl) { 868 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 869 I != E; ++I) { 870 NamedDecl *OldD = *I; 871 872 bool OldIsUsingDecl = false; 873 if (isa<UsingShadowDecl>(OldD)) { 874 OldIsUsingDecl = true; 875 876 // We can always introduce two using declarations into the same 877 // context, even if they have identical signatures. 878 if (NewIsUsingDecl) continue; 879 880 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 881 } 882 883 // If either declaration was introduced by a using declaration, 884 // we'll need to use slightly different rules for matching. 885 // Essentially, these rules are the normal rules, except that 886 // function templates hide function templates with different 887 // return types or template parameter lists. 888 bool UseMemberUsingDeclRules = 889 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 890 891 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 892 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 893 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 894 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 895 continue; 896 } 897 898 Match = *I; 899 return Ovl_Match; 900 } 901 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 902 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 903 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 904 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 905 continue; 906 } 907 908 Match = *I; 909 return Ovl_Match; 910 } 911 } else if (isa<UsingDecl>(OldD)) { 912 // We can overload with these, which can show up when doing 913 // redeclaration checks for UsingDecls. 914 assert(Old.getLookupKind() == LookupUsingDeclName); 915 } else if (isa<TagDecl>(OldD)) { 916 // We can always overload with tags by hiding them. 917 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 918 // Optimistically assume that an unresolved using decl will 919 // overload; if it doesn't, we'll have to diagnose during 920 // template instantiation. 921 } else { 922 // (C++ 13p1): 923 // Only function declarations can be overloaded; object and type 924 // declarations cannot be overloaded. 925 Match = *I; 926 return Ovl_NonFunction; 927 } 928 } 929 930 return Ovl_Overload; 931} 932 933static bool canBeOverloaded(const FunctionDecl &D) { 934 if (D.getAttr<OverloadableAttr>()) 935 return true; 936 if (D.hasCLanguageLinkage()) 937 return false; 938 return true; 939} 940 941bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 942 bool UseUsingDeclRules) { 943 // If both of the functions are extern "C", then they are not 944 // overloads. 945 if (!canBeOverloaded(*Old) && !canBeOverloaded(*New)) 946 return false; 947 948 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 949 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 950 951 // C++ [temp.fct]p2: 952 // A function template can be overloaded with other function templates 953 // and with normal (non-template) functions. 954 if ((OldTemplate == 0) != (NewTemplate == 0)) 955 return true; 956 957 // Is the function New an overload of the function Old? 958 QualType OldQType = Context.getCanonicalType(Old->getType()); 959 QualType NewQType = Context.getCanonicalType(New->getType()); 960 961 // Compare the signatures (C++ 1.3.10) of the two functions to 962 // determine whether they are overloads. If we find any mismatch 963 // in the signature, they are overloads. 964 965 // If either of these functions is a K&R-style function (no 966 // prototype), then we consider them to have matching signatures. 967 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 968 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 969 return false; 970 971 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 972 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 973 974 // The signature of a function includes the types of its 975 // parameters (C++ 1.3.10), which includes the presence or absence 976 // of the ellipsis; see C++ DR 357). 977 if (OldQType != NewQType && 978 (OldType->getNumArgs() != NewType->getNumArgs() || 979 OldType->isVariadic() != NewType->isVariadic() || 980 !FunctionArgTypesAreEqual(OldType, NewType))) 981 return true; 982 983 // C++ [temp.over.link]p4: 984 // The signature of a function template consists of its function 985 // signature, its return type and its template parameter list. The names 986 // of the template parameters are significant only for establishing the 987 // relationship between the template parameters and the rest of the 988 // signature. 989 // 990 // We check the return type and template parameter lists for function 991 // templates first; the remaining checks follow. 992 // 993 // However, we don't consider either of these when deciding whether 994 // a member introduced by a shadow declaration is hidden. 995 if (!UseUsingDeclRules && NewTemplate && 996 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 997 OldTemplate->getTemplateParameters(), 998 false, TPL_TemplateMatch) || 999 OldType->getResultType() != NewType->getResultType())) 1000 return true; 1001 1002 // If the function is a class member, its signature includes the 1003 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 1004 // 1005 // As part of this, also check whether one of the member functions 1006 // is static, in which case they are not overloads (C++ 1007 // 13.1p2). While not part of the definition of the signature, 1008 // this check is important to determine whether these functions 1009 // can be overloaded. 1010 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 1011 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 1012 if (OldMethod && NewMethod && 1013 !OldMethod->isStatic() && !NewMethod->isStatic() && 1014 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() || 1015 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) { 1016 if (!UseUsingDeclRules && 1017 OldMethod->getRefQualifier() != NewMethod->getRefQualifier() && 1018 (OldMethod->getRefQualifier() == RQ_None || 1019 NewMethod->getRefQualifier() == RQ_None)) { 1020 // C++0x [over.load]p2: 1021 // - Member function declarations with the same name and the same 1022 // parameter-type-list as well as member function template 1023 // declarations with the same name, the same parameter-type-list, and 1024 // the same template parameter lists cannot be overloaded if any of 1025 // them, but not all, have a ref-qualifier (8.3.5). 1026 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 1027 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 1028 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 1029 } 1030 1031 return true; 1032 } 1033 1034 // The signatures match; this is not an overload. 1035 return false; 1036} 1037 1038/// \brief Checks availability of the function depending on the current 1039/// function context. Inside an unavailable function, unavailability is ignored. 1040/// 1041/// \returns true if \arg FD is unavailable and current context is inside 1042/// an available function, false otherwise. 1043bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) { 1044 return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable(); 1045} 1046 1047/// \brief Tries a user-defined conversion from From to ToType. 1048/// 1049/// Produces an implicit conversion sequence for when a standard conversion 1050/// is not an option. See TryImplicitConversion for more information. 1051static ImplicitConversionSequence 1052TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 1053 bool SuppressUserConversions, 1054 bool AllowExplicit, 1055 bool InOverloadResolution, 1056 bool CStyle, 1057 bool AllowObjCWritebackConversion) { 1058 ImplicitConversionSequence ICS; 1059 1060 if (SuppressUserConversions) { 1061 // We're not in the case above, so there is no conversion that 1062 // we can perform. 1063 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1064 return ICS; 1065 } 1066 1067 // Attempt user-defined conversion. 1068 OverloadCandidateSet Conversions(From->getExprLoc()); 1069 OverloadingResult UserDefResult 1070 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, 1071 AllowExplicit); 1072 1073 if (UserDefResult == OR_Success) { 1074 ICS.setUserDefined(); 1075 // C++ [over.ics.user]p4: 1076 // A conversion of an expression of class type to the same class 1077 // type is given Exact Match rank, and a conversion of an 1078 // expression of class type to a base class of that type is 1079 // given Conversion rank, in spite of the fact that a copy 1080 // constructor (i.e., a user-defined conversion function) is 1081 // called for those cases. 1082 if (CXXConstructorDecl *Constructor 1083 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 1084 QualType FromCanon 1085 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 1086 QualType ToCanon 1087 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 1088 if (Constructor->isCopyConstructor() && 1089 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { 1090 // Turn this into a "standard" conversion sequence, so that it 1091 // gets ranked with standard conversion sequences. 1092 ICS.setStandard(); 1093 ICS.Standard.setAsIdentityConversion(); 1094 ICS.Standard.setFromType(From->getType()); 1095 ICS.Standard.setAllToTypes(ToType); 1096 ICS.Standard.CopyConstructor = Constructor; 1097 if (ToCanon != FromCanon) 1098 ICS.Standard.Second = ICK_Derived_To_Base; 1099 } 1100 } 1101 1102 // C++ [over.best.ics]p4: 1103 // However, when considering the argument of a user-defined 1104 // conversion function that is a candidate by 13.3.1.3 when 1105 // invoked for the copying of the temporary in the second step 1106 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 1107 // 13.3.1.6 in all cases, only standard conversion sequences and 1108 // ellipsis conversion sequences are allowed. 1109 if (SuppressUserConversions && ICS.isUserDefined()) { 1110 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 1111 } 1112 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 1113 ICS.setAmbiguous(); 1114 ICS.Ambiguous.setFromType(From->getType()); 1115 ICS.Ambiguous.setToType(ToType); 1116 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 1117 Cand != Conversions.end(); ++Cand) 1118 if (Cand->Viable) 1119 ICS.Ambiguous.addConversion(Cand->Function); 1120 } else { 1121 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1122 } 1123 1124 return ICS; 1125} 1126 1127/// TryImplicitConversion - Attempt to perform an implicit conversion 1128/// from the given expression (Expr) to the given type (ToType). This 1129/// function returns an implicit conversion sequence that can be used 1130/// to perform the initialization. Given 1131/// 1132/// void f(float f); 1133/// void g(int i) { f(i); } 1134/// 1135/// this routine would produce an implicit conversion sequence to 1136/// describe the initialization of f from i, which will be a standard 1137/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 1138/// 4.1) followed by a floating-integral conversion (C++ 4.9). 1139// 1140/// Note that this routine only determines how the conversion can be 1141/// performed; it does not actually perform the conversion. As such, 1142/// it will not produce any diagnostics if no conversion is available, 1143/// but will instead return an implicit conversion sequence of kind 1144/// "BadConversion". 1145/// 1146/// If @p SuppressUserConversions, then user-defined conversions are 1147/// not permitted. 1148/// If @p AllowExplicit, then explicit user-defined conversions are 1149/// permitted. 1150/// 1151/// \param AllowObjCWritebackConversion Whether we allow the Objective-C 1152/// writeback conversion, which allows __autoreleasing id* parameters to 1153/// be initialized with __strong id* or __weak id* arguments. 1154static ImplicitConversionSequence 1155TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 1156 bool SuppressUserConversions, 1157 bool AllowExplicit, 1158 bool InOverloadResolution, 1159 bool CStyle, 1160 bool AllowObjCWritebackConversion) { 1161 ImplicitConversionSequence ICS; 1162 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 1163 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 1164 ICS.setStandard(); 1165 return ICS; 1166 } 1167 1168 if (!S.getLangOpts().CPlusPlus) { 1169 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1170 return ICS; 1171 } 1172 1173 // C++ [over.ics.user]p4: 1174 // A conversion of an expression of class type to the same class 1175 // type is given Exact Match rank, and a conversion of an 1176 // expression of class type to a base class of that type is 1177 // given Conversion rank, in spite of the fact that a copy/move 1178 // constructor (i.e., a user-defined conversion function) is 1179 // called for those cases. 1180 QualType FromType = From->getType(); 1181 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 1182 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 1183 S.IsDerivedFrom(FromType, ToType))) { 1184 ICS.setStandard(); 1185 ICS.Standard.setAsIdentityConversion(); 1186 ICS.Standard.setFromType(FromType); 1187 ICS.Standard.setAllToTypes(ToType); 1188 1189 // We don't actually check at this point whether there is a valid 1190 // copy/move constructor, since overloading just assumes that it 1191 // exists. When we actually perform initialization, we'll find the 1192 // appropriate constructor to copy the returned object, if needed. 1193 ICS.Standard.CopyConstructor = 0; 1194 1195 // Determine whether this is considered a derived-to-base conversion. 1196 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 1197 ICS.Standard.Second = ICK_Derived_To_Base; 1198 1199 return ICS; 1200 } 1201 1202 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 1203 AllowExplicit, InOverloadResolution, CStyle, 1204 AllowObjCWritebackConversion); 1205} 1206 1207ImplicitConversionSequence 1208Sema::TryImplicitConversion(Expr *From, QualType ToType, 1209 bool SuppressUserConversions, 1210 bool AllowExplicit, 1211 bool InOverloadResolution, 1212 bool CStyle, 1213 bool AllowObjCWritebackConversion) { 1214 return clang::TryImplicitConversion(*this, From, ToType, 1215 SuppressUserConversions, AllowExplicit, 1216 InOverloadResolution, CStyle, 1217 AllowObjCWritebackConversion); 1218} 1219 1220/// PerformImplicitConversion - Perform an implicit conversion of the 1221/// expression From to the type ToType. Returns the 1222/// converted expression. Flavor is the kind of conversion we're 1223/// performing, used in the error message. If @p AllowExplicit, 1224/// explicit user-defined conversions are permitted. 1225ExprResult 1226Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1227 AssignmentAction Action, bool AllowExplicit) { 1228 ImplicitConversionSequence ICS; 1229 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 1230} 1231 1232ExprResult 1233Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1234 AssignmentAction Action, bool AllowExplicit, 1235 ImplicitConversionSequence& ICS) { 1236 if (checkPlaceholderForOverload(*this, From)) 1237 return ExprError(); 1238 1239 // Objective-C ARC: Determine whether we will allow the writeback conversion. 1240 bool AllowObjCWritebackConversion 1241 = getLangOpts().ObjCAutoRefCount && 1242 (Action == AA_Passing || Action == AA_Sending); 1243 1244 ICS = clang::TryImplicitConversion(*this, From, ToType, 1245 /*SuppressUserConversions=*/false, 1246 AllowExplicit, 1247 /*InOverloadResolution=*/false, 1248 /*CStyle=*/false, 1249 AllowObjCWritebackConversion); 1250 return PerformImplicitConversion(From, ToType, ICS, Action); 1251} 1252 1253/// \brief Determine whether the conversion from FromType to ToType is a valid 1254/// conversion that strips "noreturn" off the nested function type. 1255bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType, 1256 QualType &ResultTy) { 1257 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1258 return false; 1259 1260 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 1261 // where F adds one of the following at most once: 1262 // - a pointer 1263 // - a member pointer 1264 // - a block pointer 1265 CanQualType CanTo = Context.getCanonicalType(ToType); 1266 CanQualType CanFrom = Context.getCanonicalType(FromType); 1267 Type::TypeClass TyClass = CanTo->getTypeClass(); 1268 if (TyClass != CanFrom->getTypeClass()) return false; 1269 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 1270 if (TyClass == Type::Pointer) { 1271 CanTo = CanTo.getAs<PointerType>()->getPointeeType(); 1272 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); 1273 } else if (TyClass == Type::BlockPointer) { 1274 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); 1275 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); 1276 } else if (TyClass == Type::MemberPointer) { 1277 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType(); 1278 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType(); 1279 } else { 1280 return false; 1281 } 1282 1283 TyClass = CanTo->getTypeClass(); 1284 if (TyClass != CanFrom->getTypeClass()) return false; 1285 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 1286 return false; 1287 } 1288 1289 const FunctionType *FromFn = cast<FunctionType>(CanFrom); 1290 FunctionType::ExtInfo EInfo = FromFn->getExtInfo(); 1291 if (!EInfo.getNoReturn()) return false; 1292 1293 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false)); 1294 assert(QualType(FromFn, 0).isCanonical()); 1295 if (QualType(FromFn, 0) != CanTo) return false; 1296 1297 ResultTy = ToType; 1298 return true; 1299} 1300 1301/// \brief Determine whether the conversion from FromType to ToType is a valid 1302/// vector conversion. 1303/// 1304/// \param ICK Will be set to the vector conversion kind, if this is a vector 1305/// conversion. 1306static bool IsVectorConversion(ASTContext &Context, QualType FromType, 1307 QualType ToType, ImplicitConversionKind &ICK) { 1308 // We need at least one of these types to be a vector type to have a vector 1309 // conversion. 1310 if (!ToType->isVectorType() && !FromType->isVectorType()) 1311 return false; 1312 1313 // Identical types require no conversions. 1314 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1315 return false; 1316 1317 // There are no conversions between extended vector types, only identity. 1318 if (ToType->isExtVectorType()) { 1319 // There are no conversions between extended vector types other than the 1320 // identity conversion. 1321 if (FromType->isExtVectorType()) 1322 return false; 1323 1324 // Vector splat from any arithmetic type to a vector. 1325 if (FromType->isArithmeticType()) { 1326 ICK = ICK_Vector_Splat; 1327 return true; 1328 } 1329 } 1330 1331 // We can perform the conversion between vector types in the following cases: 1332 // 1)vector types are equivalent AltiVec and GCC vector types 1333 // 2)lax vector conversions are permitted and the vector types are of the 1334 // same size 1335 if (ToType->isVectorType() && FromType->isVectorType()) { 1336 if (Context.areCompatibleVectorTypes(FromType, ToType) || 1337 (Context.getLangOpts().LaxVectorConversions && 1338 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 1339 ICK = ICK_Vector_Conversion; 1340 return true; 1341 } 1342 } 1343 1344 return false; 1345} 1346 1347static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 1348 bool InOverloadResolution, 1349 StandardConversionSequence &SCS, 1350 bool CStyle); 1351 1352/// IsStandardConversion - Determines whether there is a standard 1353/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1354/// expression From to the type ToType. Standard conversion sequences 1355/// only consider non-class types; for conversions that involve class 1356/// types, use TryImplicitConversion. If a conversion exists, SCS will 1357/// contain the standard conversion sequence required to perform this 1358/// conversion and this routine will return true. Otherwise, this 1359/// routine will return false and the value of SCS is unspecified. 1360static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1361 bool InOverloadResolution, 1362 StandardConversionSequence &SCS, 1363 bool CStyle, 1364 bool AllowObjCWritebackConversion) { 1365 QualType FromType = From->getType(); 1366 1367 // Standard conversions (C++ [conv]) 1368 SCS.setAsIdentityConversion(); 1369 SCS.DeprecatedStringLiteralToCharPtr = false; 1370 SCS.IncompatibleObjC = false; 1371 SCS.setFromType(FromType); 1372 SCS.CopyConstructor = 0; 1373 1374 // There are no standard conversions for class types in C++, so 1375 // abort early. When overloading in C, however, we do permit 1376 if (FromType->isRecordType() || ToType->isRecordType()) { 1377 if (S.getLangOpts().CPlusPlus) 1378 return false; 1379 1380 // When we're overloading in C, we allow, as standard conversions, 1381 } 1382 1383 // The first conversion can be an lvalue-to-rvalue conversion, 1384 // array-to-pointer conversion, or function-to-pointer conversion 1385 // (C++ 4p1). 1386 1387 if (FromType == S.Context.OverloadTy) { 1388 DeclAccessPair AccessPair; 1389 if (FunctionDecl *Fn 1390 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1391 AccessPair)) { 1392 // We were able to resolve the address of the overloaded function, 1393 // so we can convert to the type of that function. 1394 FromType = Fn->getType(); 1395 1396 // we can sometimes resolve &foo<int> regardless of ToType, so check 1397 // if the type matches (identity) or we are converting to bool 1398 if (!S.Context.hasSameUnqualifiedType( 1399 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1400 QualType resultTy; 1401 // if the function type matches except for [[noreturn]], it's ok 1402 if (!S.IsNoReturnConversion(FromType, 1403 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1404 // otherwise, only a boolean conversion is standard 1405 if (!ToType->isBooleanType()) 1406 return false; 1407 } 1408 1409 // Check if the "from" expression is taking the address of an overloaded 1410 // function and recompute the FromType accordingly. Take advantage of the 1411 // fact that non-static member functions *must* have such an address-of 1412 // expression. 1413 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1414 if (Method && !Method->isStatic()) { 1415 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1416 "Non-unary operator on non-static member address"); 1417 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1418 == UO_AddrOf && 1419 "Non-address-of operator on non-static member address"); 1420 const Type *ClassType 1421 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1422 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1423 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1424 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1425 UO_AddrOf && 1426 "Non-address-of operator for overloaded function expression"); 1427 FromType = S.Context.getPointerType(FromType); 1428 } 1429 1430 // Check that we've computed the proper type after overload resolution. 1431 assert(S.Context.hasSameType( 1432 FromType, 1433 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1434 } else { 1435 return false; 1436 } 1437 } 1438 // Lvalue-to-rvalue conversion (C++11 4.1): 1439 // A glvalue (3.10) of a non-function, non-array type T can 1440 // be converted to a prvalue. 1441 bool argIsLValue = From->isGLValue(); 1442 if (argIsLValue && 1443 !FromType->isFunctionType() && !FromType->isArrayType() && 1444 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1445 SCS.First = ICK_Lvalue_To_Rvalue; 1446 1447 // C11 6.3.2.1p2: 1448 // ... if the lvalue has atomic type, the value has the non-atomic version 1449 // of the type of the lvalue ... 1450 if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) 1451 FromType = Atomic->getValueType(); 1452 1453 // If T is a non-class type, the type of the rvalue is the 1454 // cv-unqualified version of T. Otherwise, the type of the rvalue 1455 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1456 // just strip the qualifiers because they don't matter. 1457 FromType = FromType.getUnqualifiedType(); 1458 } else if (FromType->isArrayType()) { 1459 // Array-to-pointer conversion (C++ 4.2) 1460 SCS.First = ICK_Array_To_Pointer; 1461 1462 // An lvalue or rvalue of type "array of N T" or "array of unknown 1463 // bound of T" can be converted to an rvalue of type "pointer to 1464 // T" (C++ 4.2p1). 1465 FromType = S.Context.getArrayDecayedType(FromType); 1466 1467 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1468 // This conversion is deprecated. (C++ D.4). 1469 SCS.DeprecatedStringLiteralToCharPtr = true; 1470 1471 // For the purpose of ranking in overload resolution 1472 // (13.3.3.1.1), this conversion is considered an 1473 // array-to-pointer conversion followed by a qualification 1474 // conversion (4.4). (C++ 4.2p2) 1475 SCS.Second = ICK_Identity; 1476 SCS.Third = ICK_Qualification; 1477 SCS.QualificationIncludesObjCLifetime = false; 1478 SCS.setAllToTypes(FromType); 1479 return true; 1480 } 1481 } else if (FromType->isFunctionType() && argIsLValue) { 1482 // Function-to-pointer conversion (C++ 4.3). 1483 SCS.First = ICK_Function_To_Pointer; 1484 1485 // An lvalue of function type T can be converted to an rvalue of 1486 // type "pointer to T." The result is a pointer to the 1487 // function. (C++ 4.3p1). 1488 FromType = S.Context.getPointerType(FromType); 1489 } else { 1490 // We don't require any conversions for the first step. 1491 SCS.First = ICK_Identity; 1492 } 1493 SCS.setToType(0, FromType); 1494 1495 // The second conversion can be an integral promotion, floating 1496 // point promotion, integral conversion, floating point conversion, 1497 // floating-integral conversion, pointer conversion, 1498 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1499 // For overloading in C, this can also be a "compatible-type" 1500 // conversion. 1501 bool IncompatibleObjC = false; 1502 ImplicitConversionKind SecondICK = ICK_Identity; 1503 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1504 // The unqualified versions of the types are the same: there's no 1505 // conversion to do. 1506 SCS.Second = ICK_Identity; 1507 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1508 // Integral promotion (C++ 4.5). 1509 SCS.Second = ICK_Integral_Promotion; 1510 FromType = ToType.getUnqualifiedType(); 1511 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1512 // Floating point promotion (C++ 4.6). 1513 SCS.Second = ICK_Floating_Promotion; 1514 FromType = ToType.getUnqualifiedType(); 1515 } else if (S.IsComplexPromotion(FromType, ToType)) { 1516 // Complex promotion (Clang extension) 1517 SCS.Second = ICK_Complex_Promotion; 1518 FromType = ToType.getUnqualifiedType(); 1519 } else if (ToType->isBooleanType() && 1520 (FromType->isArithmeticType() || 1521 FromType->isAnyPointerType() || 1522 FromType->isBlockPointerType() || 1523 FromType->isMemberPointerType() || 1524 FromType->isNullPtrType())) { 1525 // Boolean conversions (C++ 4.12). 1526 SCS.Second = ICK_Boolean_Conversion; 1527 FromType = S.Context.BoolTy; 1528 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1529 ToType->isIntegralType(S.Context)) { 1530 // Integral conversions (C++ 4.7). 1531 SCS.Second = ICK_Integral_Conversion; 1532 FromType = ToType.getUnqualifiedType(); 1533 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) { 1534 // Complex conversions (C99 6.3.1.6) 1535 SCS.Second = ICK_Complex_Conversion; 1536 FromType = ToType.getUnqualifiedType(); 1537 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1538 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1539 // Complex-real conversions (C99 6.3.1.7) 1540 SCS.Second = ICK_Complex_Real; 1541 FromType = ToType.getUnqualifiedType(); 1542 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1543 // Floating point conversions (C++ 4.8). 1544 SCS.Second = ICK_Floating_Conversion; 1545 FromType = ToType.getUnqualifiedType(); 1546 } else if ((FromType->isRealFloatingType() && 1547 ToType->isIntegralType(S.Context)) || 1548 (FromType->isIntegralOrUnscopedEnumerationType() && 1549 ToType->isRealFloatingType())) { 1550 // Floating-integral conversions (C++ 4.9). 1551 SCS.Second = ICK_Floating_Integral; 1552 FromType = ToType.getUnqualifiedType(); 1553 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1554 SCS.Second = ICK_Block_Pointer_Conversion; 1555 } else if (AllowObjCWritebackConversion && 1556 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 1557 SCS.Second = ICK_Writeback_Conversion; 1558 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1559 FromType, IncompatibleObjC)) { 1560 // Pointer conversions (C++ 4.10). 1561 SCS.Second = ICK_Pointer_Conversion; 1562 SCS.IncompatibleObjC = IncompatibleObjC; 1563 FromType = FromType.getUnqualifiedType(); 1564 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1565 InOverloadResolution, FromType)) { 1566 // Pointer to member conversions (4.11). 1567 SCS.Second = ICK_Pointer_Member; 1568 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { 1569 SCS.Second = SecondICK; 1570 FromType = ToType.getUnqualifiedType(); 1571 } else if (!S.getLangOpts().CPlusPlus && 1572 S.Context.typesAreCompatible(ToType, FromType)) { 1573 // Compatible conversions (Clang extension for C function overloading) 1574 SCS.Second = ICK_Compatible_Conversion; 1575 FromType = ToType.getUnqualifiedType(); 1576 } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) { 1577 // Treat a conversion that strips "noreturn" as an identity conversion. 1578 SCS.Second = ICK_NoReturn_Adjustment; 1579 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 1580 InOverloadResolution, 1581 SCS, CStyle)) { 1582 SCS.Second = ICK_TransparentUnionConversion; 1583 FromType = ToType; 1584 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, 1585 CStyle)) { 1586 // tryAtomicConversion has updated the standard conversion sequence 1587 // appropriately. 1588 return true; 1589 } else { 1590 // No second conversion required. 1591 SCS.Second = ICK_Identity; 1592 } 1593 SCS.setToType(1, FromType); 1594 1595 QualType CanonFrom; 1596 QualType CanonTo; 1597 // The third conversion can be a qualification conversion (C++ 4p1). 1598 bool ObjCLifetimeConversion; 1599 if (S.IsQualificationConversion(FromType, ToType, CStyle, 1600 ObjCLifetimeConversion)) { 1601 SCS.Third = ICK_Qualification; 1602 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 1603 FromType = ToType; 1604 CanonFrom = S.Context.getCanonicalType(FromType); 1605 CanonTo = S.Context.getCanonicalType(ToType); 1606 } else { 1607 // No conversion required 1608 SCS.Third = ICK_Identity; 1609 1610 // C++ [over.best.ics]p6: 1611 // [...] Any difference in top-level cv-qualification is 1612 // subsumed by the initialization itself and does not constitute 1613 // a conversion. [...] 1614 CanonFrom = S.Context.getCanonicalType(FromType); 1615 CanonTo = S.Context.getCanonicalType(ToType); 1616 if (CanonFrom.getLocalUnqualifiedType() 1617 == CanonTo.getLocalUnqualifiedType() && 1618 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1619 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr() 1620 || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) { 1621 FromType = ToType; 1622 CanonFrom = CanonTo; 1623 } 1624 } 1625 SCS.setToType(2, FromType); 1626 1627 // If we have not converted the argument type to the parameter type, 1628 // this is a bad conversion sequence. 1629 if (CanonFrom != CanonTo) 1630 return false; 1631 1632 return true; 1633} 1634 1635static bool 1636IsTransparentUnionStandardConversion(Sema &S, Expr* From, 1637 QualType &ToType, 1638 bool InOverloadResolution, 1639 StandardConversionSequence &SCS, 1640 bool CStyle) { 1641 1642 const RecordType *UT = ToType->getAsUnionType(); 1643 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 1644 return false; 1645 // The field to initialize within the transparent union. 1646 RecordDecl *UD = UT->getDecl(); 1647 // It's compatible if the expression matches any of the fields. 1648 for (RecordDecl::field_iterator it = UD->field_begin(), 1649 itend = UD->field_end(); 1650 it != itend; ++it) { 1651 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 1652 CStyle, /*ObjCWritebackConversion=*/false)) { 1653 ToType = it->getType(); 1654 return true; 1655 } 1656 } 1657 return false; 1658} 1659 1660/// IsIntegralPromotion - Determines whether the conversion from the 1661/// expression From (whose potentially-adjusted type is FromType) to 1662/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1663/// sets PromotedType to the promoted type. 1664bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1665 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1666 // All integers are built-in. 1667 if (!To) { 1668 return false; 1669 } 1670 1671 // An rvalue of type char, signed char, unsigned char, short int, or 1672 // unsigned short int can be converted to an rvalue of type int if 1673 // int can represent all the values of the source type; otherwise, 1674 // the source rvalue can be converted to an rvalue of type unsigned 1675 // int (C++ 4.5p1). 1676 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1677 !FromType->isEnumeralType()) { 1678 if (// We can promote any signed, promotable integer type to an int 1679 (FromType->isSignedIntegerType() || 1680 // We can promote any unsigned integer type whose size is 1681 // less than int to an int. 1682 (!FromType->isSignedIntegerType() && 1683 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1684 return To->getKind() == BuiltinType::Int; 1685 } 1686 1687 return To->getKind() == BuiltinType::UInt; 1688 } 1689 1690 // C++11 [conv.prom]p3: 1691 // A prvalue of an unscoped enumeration type whose underlying type is not 1692 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 1693 // following types that can represent all the values of the enumeration 1694 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 1695 // unsigned int, long int, unsigned long int, long long int, or unsigned 1696 // long long int. If none of the types in that list can represent all the 1697 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 1698 // type can be converted to an rvalue a prvalue of the extended integer type 1699 // with lowest integer conversion rank (4.13) greater than the rank of long 1700 // long in which all the values of the enumeration can be represented. If 1701 // there are two such extended types, the signed one is chosen. 1702 // C++11 [conv.prom]p4: 1703 // A prvalue of an unscoped enumeration type whose underlying type is fixed 1704 // can be converted to a prvalue of its underlying type. Moreover, if 1705 // integral promotion can be applied to its underlying type, a prvalue of an 1706 // unscoped enumeration type whose underlying type is fixed can also be 1707 // converted to a prvalue of the promoted underlying type. 1708 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1709 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1710 // provided for a scoped enumeration. 1711 if (FromEnumType->getDecl()->isScoped()) 1712 return false; 1713 1714 // We can perform an integral promotion to the underlying type of the enum, 1715 // even if that's not the promoted type. 1716 if (FromEnumType->getDecl()->isFixed()) { 1717 QualType Underlying = FromEnumType->getDecl()->getIntegerType(); 1718 return Context.hasSameUnqualifiedType(Underlying, ToType) || 1719 IsIntegralPromotion(From, Underlying, ToType); 1720 } 1721 1722 // We have already pre-calculated the promotion type, so this is trivial. 1723 if (ToType->isIntegerType() && 1724 !RequireCompleteType(From->getLocStart(), FromType, 0)) 1725 return Context.hasSameUnqualifiedType(ToType, 1726 FromEnumType->getDecl()->getPromotionType()); 1727 } 1728 1729 // C++0x [conv.prom]p2: 1730 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 1731 // to an rvalue a prvalue of the first of the following types that can 1732 // represent all the values of its underlying type: int, unsigned int, 1733 // long int, unsigned long int, long long int, or unsigned long long int. 1734 // If none of the types in that list can represent all the values of its 1735 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 1736 // or wchar_t can be converted to an rvalue a prvalue of its underlying 1737 // type. 1738 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 1739 ToType->isIntegerType()) { 1740 // Determine whether the type we're converting from is signed or 1741 // unsigned. 1742 bool FromIsSigned = FromType->isSignedIntegerType(); 1743 uint64_t FromSize = Context.getTypeSize(FromType); 1744 1745 // The types we'll try to promote to, in the appropriate 1746 // order. Try each of these types. 1747 QualType PromoteTypes[6] = { 1748 Context.IntTy, Context.UnsignedIntTy, 1749 Context.LongTy, Context.UnsignedLongTy , 1750 Context.LongLongTy, Context.UnsignedLongLongTy 1751 }; 1752 for (int Idx = 0; Idx < 6; ++Idx) { 1753 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1754 if (FromSize < ToSize || 1755 (FromSize == ToSize && 1756 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1757 // We found the type that we can promote to. If this is the 1758 // type we wanted, we have a promotion. Otherwise, no 1759 // promotion. 1760 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1761 } 1762 } 1763 } 1764 1765 // An rvalue for an integral bit-field (9.6) can be converted to an 1766 // rvalue of type int if int can represent all the values of the 1767 // bit-field; otherwise, it can be converted to unsigned int if 1768 // unsigned int can represent all the values of the bit-field. If 1769 // the bit-field is larger yet, no integral promotion applies to 1770 // it. If the bit-field has an enumerated type, it is treated as any 1771 // other value of that type for promotion purposes (C++ 4.5p3). 1772 // FIXME: We should delay checking of bit-fields until we actually perform the 1773 // conversion. 1774 using llvm::APSInt; 1775 if (From) 1776 if (FieldDecl *MemberDecl = From->getBitField()) { 1777 APSInt BitWidth; 1778 if (FromType->isIntegralType(Context) && 1779 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1780 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1781 ToSize = Context.getTypeSize(ToType); 1782 1783 // Are we promoting to an int from a bitfield that fits in an int? 1784 if (BitWidth < ToSize || 1785 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1786 return To->getKind() == BuiltinType::Int; 1787 } 1788 1789 // Are we promoting to an unsigned int from an unsigned bitfield 1790 // that fits into an unsigned int? 1791 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1792 return To->getKind() == BuiltinType::UInt; 1793 } 1794 1795 return false; 1796 } 1797 } 1798 1799 // An rvalue of type bool can be converted to an rvalue of type int, 1800 // with false becoming zero and true becoming one (C++ 4.5p4). 1801 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1802 return true; 1803 } 1804 1805 return false; 1806} 1807 1808/// IsFloatingPointPromotion - Determines whether the conversion from 1809/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1810/// returns true and sets PromotedType to the promoted type. 1811bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1812 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1813 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1814 /// An rvalue of type float can be converted to an rvalue of type 1815 /// double. (C++ 4.6p1). 1816 if (FromBuiltin->getKind() == BuiltinType::Float && 1817 ToBuiltin->getKind() == BuiltinType::Double) 1818 return true; 1819 1820 // C99 6.3.1.5p1: 1821 // When a float is promoted to double or long double, or a 1822 // double is promoted to long double [...]. 1823 if (!getLangOpts().CPlusPlus && 1824 (FromBuiltin->getKind() == BuiltinType::Float || 1825 FromBuiltin->getKind() == BuiltinType::Double) && 1826 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1827 return true; 1828 1829 // Half can be promoted to float. 1830 if (FromBuiltin->getKind() == BuiltinType::Half && 1831 ToBuiltin->getKind() == BuiltinType::Float) 1832 return true; 1833 } 1834 1835 return false; 1836} 1837 1838/// \brief Determine if a conversion is a complex promotion. 1839/// 1840/// A complex promotion is defined as a complex -> complex conversion 1841/// where the conversion between the underlying real types is a 1842/// floating-point or integral promotion. 1843bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1844 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1845 if (!FromComplex) 1846 return false; 1847 1848 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1849 if (!ToComplex) 1850 return false; 1851 1852 return IsFloatingPointPromotion(FromComplex->getElementType(), 1853 ToComplex->getElementType()) || 1854 IsIntegralPromotion(0, FromComplex->getElementType(), 1855 ToComplex->getElementType()); 1856} 1857 1858/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1859/// the pointer type FromPtr to a pointer to type ToPointee, with the 1860/// same type qualifiers as FromPtr has on its pointee type. ToType, 1861/// if non-empty, will be a pointer to ToType that may or may not have 1862/// the right set of qualifiers on its pointee. 1863/// 1864static QualType 1865BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 1866 QualType ToPointee, QualType ToType, 1867 ASTContext &Context, 1868 bool StripObjCLifetime = false) { 1869 assert((FromPtr->getTypeClass() == Type::Pointer || 1870 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 1871 "Invalid similarly-qualified pointer type"); 1872 1873 /// Conversions to 'id' subsume cv-qualifier conversions. 1874 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 1875 return ToType.getUnqualifiedType(); 1876 1877 QualType CanonFromPointee 1878 = Context.getCanonicalType(FromPtr->getPointeeType()); 1879 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1880 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1881 1882 if (StripObjCLifetime) 1883 Quals.removeObjCLifetime(); 1884 1885 // Exact qualifier match -> return the pointer type we're converting to. 1886 if (CanonToPointee.getLocalQualifiers() == Quals) { 1887 // ToType is exactly what we need. Return it. 1888 if (!ToType.isNull()) 1889 return ToType.getUnqualifiedType(); 1890 1891 // Build a pointer to ToPointee. It has the right qualifiers 1892 // already. 1893 if (isa<ObjCObjectPointerType>(ToType)) 1894 return Context.getObjCObjectPointerType(ToPointee); 1895 return Context.getPointerType(ToPointee); 1896 } 1897 1898 // Just build a canonical type that has the right qualifiers. 1899 QualType QualifiedCanonToPointee 1900 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 1901 1902 if (isa<ObjCObjectPointerType>(ToType)) 1903 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 1904 return Context.getPointerType(QualifiedCanonToPointee); 1905} 1906 1907static bool isNullPointerConstantForConversion(Expr *Expr, 1908 bool InOverloadResolution, 1909 ASTContext &Context) { 1910 // Handle value-dependent integral null pointer constants correctly. 1911 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1912 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1913 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1914 return !InOverloadResolution; 1915 1916 return Expr->isNullPointerConstant(Context, 1917 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1918 : Expr::NPC_ValueDependentIsNull); 1919} 1920 1921/// IsPointerConversion - Determines whether the conversion of the 1922/// expression From, which has the (possibly adjusted) type FromType, 1923/// can be converted to the type ToType via a pointer conversion (C++ 1924/// 4.10). If so, returns true and places the converted type (that 1925/// might differ from ToType in its cv-qualifiers at some level) into 1926/// ConvertedType. 1927/// 1928/// This routine also supports conversions to and from block pointers 1929/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1930/// pointers to interfaces. FIXME: Once we've determined the 1931/// appropriate overloading rules for Objective-C, we may want to 1932/// split the Objective-C checks into a different routine; however, 1933/// GCC seems to consider all of these conversions to be pointer 1934/// conversions, so for now they live here. IncompatibleObjC will be 1935/// set if the conversion is an allowed Objective-C conversion that 1936/// should result in a warning. 1937bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1938 bool InOverloadResolution, 1939 QualType& ConvertedType, 1940 bool &IncompatibleObjC) { 1941 IncompatibleObjC = false; 1942 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 1943 IncompatibleObjC)) 1944 return true; 1945 1946 // Conversion from a null pointer constant to any Objective-C pointer type. 1947 if (ToType->isObjCObjectPointerType() && 1948 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1949 ConvertedType = ToType; 1950 return true; 1951 } 1952 1953 // Blocks: Block pointers can be converted to void*. 1954 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1955 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1956 ConvertedType = ToType; 1957 return true; 1958 } 1959 // Blocks: A null pointer constant can be converted to a block 1960 // pointer type. 1961 if (ToType->isBlockPointerType() && 1962 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1963 ConvertedType = ToType; 1964 return true; 1965 } 1966 1967 // If the left-hand-side is nullptr_t, the right side can be a null 1968 // pointer constant. 1969 if (ToType->isNullPtrType() && 1970 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1971 ConvertedType = ToType; 1972 return true; 1973 } 1974 1975 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1976 if (!ToTypePtr) 1977 return false; 1978 1979 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1980 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1981 ConvertedType = ToType; 1982 return true; 1983 } 1984 1985 // Beyond this point, both types need to be pointers 1986 // , including objective-c pointers. 1987 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1988 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 1989 !getLangOpts().ObjCAutoRefCount) { 1990 ConvertedType = BuildSimilarlyQualifiedPointerType( 1991 FromType->getAs<ObjCObjectPointerType>(), 1992 ToPointeeType, 1993 ToType, Context); 1994 return true; 1995 } 1996 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1997 if (!FromTypePtr) 1998 return false; 1999 2000 QualType FromPointeeType = FromTypePtr->getPointeeType(); 2001 2002 // If the unqualified pointee types are the same, this can't be a 2003 // pointer conversion, so don't do all of the work below. 2004 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 2005 return false; 2006 2007 // An rvalue of type "pointer to cv T," where T is an object type, 2008 // can be converted to an rvalue of type "pointer to cv void" (C++ 2009 // 4.10p2). 2010 if (FromPointeeType->isIncompleteOrObjectType() && 2011 ToPointeeType->isVoidType()) { 2012 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2013 ToPointeeType, 2014 ToType, Context, 2015 /*StripObjCLifetime=*/true); 2016 return true; 2017 } 2018 2019 // MSVC allows implicit function to void* type conversion. 2020 if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() && 2021 ToPointeeType->isVoidType()) { 2022 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2023 ToPointeeType, 2024 ToType, Context); 2025 return true; 2026 } 2027 2028 // When we're overloading in C, we allow a special kind of pointer 2029 // conversion for compatible-but-not-identical pointee types. 2030 if (!getLangOpts().CPlusPlus && 2031 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 2032 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2033 ToPointeeType, 2034 ToType, Context); 2035 return true; 2036 } 2037 2038 // C++ [conv.ptr]p3: 2039 // 2040 // An rvalue of type "pointer to cv D," where D is a class type, 2041 // can be converted to an rvalue of type "pointer to cv B," where 2042 // B is a base class (clause 10) of D. If B is an inaccessible 2043 // (clause 11) or ambiguous (10.2) base class of D, a program that 2044 // necessitates this conversion is ill-formed. The result of the 2045 // conversion is a pointer to the base class sub-object of the 2046 // derived class object. The null pointer value is converted to 2047 // the null pointer value of the destination type. 2048 // 2049 // Note that we do not check for ambiguity or inaccessibility 2050 // here. That is handled by CheckPointerConversion. 2051 if (getLangOpts().CPlusPlus && 2052 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 2053 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 2054 !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) && 2055 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 2056 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2057 ToPointeeType, 2058 ToType, Context); 2059 return true; 2060 } 2061 2062 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 2063 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 2064 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2065 ToPointeeType, 2066 ToType, Context); 2067 return true; 2068 } 2069 2070 return false; 2071} 2072 2073/// \brief Adopt the given qualifiers for the given type. 2074static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 2075 Qualifiers TQs = T.getQualifiers(); 2076 2077 // Check whether qualifiers already match. 2078 if (TQs == Qs) 2079 return T; 2080 2081 if (Qs.compatiblyIncludes(TQs)) 2082 return Context.getQualifiedType(T, Qs); 2083 2084 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 2085} 2086 2087/// isObjCPointerConversion - Determines whether this is an 2088/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 2089/// with the same arguments and return values. 2090bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 2091 QualType& ConvertedType, 2092 bool &IncompatibleObjC) { 2093 if (!getLangOpts().ObjC1) 2094 return false; 2095 2096 // The set of qualifiers on the type we're converting from. 2097 Qualifiers FromQualifiers = FromType.getQualifiers(); 2098 2099 // First, we handle all conversions on ObjC object pointer types. 2100 const ObjCObjectPointerType* ToObjCPtr = 2101 ToType->getAs<ObjCObjectPointerType>(); 2102 const ObjCObjectPointerType *FromObjCPtr = 2103 FromType->getAs<ObjCObjectPointerType>(); 2104 2105 if (ToObjCPtr && FromObjCPtr) { 2106 // If the pointee types are the same (ignoring qualifications), 2107 // then this is not a pointer conversion. 2108 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 2109 FromObjCPtr->getPointeeType())) 2110 return false; 2111 2112 // Check for compatible 2113 // Objective C++: We're able to convert between "id" or "Class" and a 2114 // pointer to any interface (in both directions). 2115 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 2116 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2117 return true; 2118 } 2119 // Conversions with Objective-C's id<...>. 2120 if ((FromObjCPtr->isObjCQualifiedIdType() || 2121 ToObjCPtr->isObjCQualifiedIdType()) && 2122 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 2123 /*compare=*/false)) { 2124 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2125 return true; 2126 } 2127 // Objective C++: We're able to convert from a pointer to an 2128 // interface to a pointer to a different interface. 2129 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 2130 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 2131 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 2132 if (getLangOpts().CPlusPlus && LHS && RHS && 2133 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 2134 FromObjCPtr->getPointeeType())) 2135 return false; 2136 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2137 ToObjCPtr->getPointeeType(), 2138 ToType, Context); 2139 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2140 return true; 2141 } 2142 2143 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 2144 // Okay: this is some kind of implicit downcast of Objective-C 2145 // interfaces, which is permitted. However, we're going to 2146 // complain about it. 2147 IncompatibleObjC = true; 2148 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2149 ToObjCPtr->getPointeeType(), 2150 ToType, Context); 2151 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2152 return true; 2153 } 2154 } 2155 // Beyond this point, both types need to be C pointers or block pointers. 2156 QualType ToPointeeType; 2157 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 2158 ToPointeeType = ToCPtr->getPointeeType(); 2159 else if (const BlockPointerType *ToBlockPtr = 2160 ToType->getAs<BlockPointerType>()) { 2161 // Objective C++: We're able to convert from a pointer to any object 2162 // to a block pointer type. 2163 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 2164 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2165 return true; 2166 } 2167 ToPointeeType = ToBlockPtr->getPointeeType(); 2168 } 2169 else if (FromType->getAs<BlockPointerType>() && 2170 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 2171 // Objective C++: We're able to convert from a block pointer type to a 2172 // pointer to any object. 2173 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2174 return true; 2175 } 2176 else 2177 return false; 2178 2179 QualType FromPointeeType; 2180 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 2181 FromPointeeType = FromCPtr->getPointeeType(); 2182 else if (const BlockPointerType *FromBlockPtr = 2183 FromType->getAs<BlockPointerType>()) 2184 FromPointeeType = FromBlockPtr->getPointeeType(); 2185 else 2186 return false; 2187 2188 // If we have pointers to pointers, recursively check whether this 2189 // is an Objective-C conversion. 2190 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 2191 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2192 IncompatibleObjC)) { 2193 // We always complain about this conversion. 2194 IncompatibleObjC = true; 2195 ConvertedType = Context.getPointerType(ConvertedType); 2196 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2197 return true; 2198 } 2199 // Allow conversion of pointee being objective-c pointer to another one; 2200 // as in I* to id. 2201 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 2202 ToPointeeType->getAs<ObjCObjectPointerType>() && 2203 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2204 IncompatibleObjC)) { 2205 2206 ConvertedType = Context.getPointerType(ConvertedType); 2207 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2208 return true; 2209 } 2210 2211 // If we have pointers to functions or blocks, check whether the only 2212 // differences in the argument and result types are in Objective-C 2213 // pointer conversions. If so, we permit the conversion (but 2214 // complain about it). 2215 const FunctionProtoType *FromFunctionType 2216 = FromPointeeType->getAs<FunctionProtoType>(); 2217 const FunctionProtoType *ToFunctionType 2218 = ToPointeeType->getAs<FunctionProtoType>(); 2219 if (FromFunctionType && ToFunctionType) { 2220 // If the function types are exactly the same, this isn't an 2221 // Objective-C pointer conversion. 2222 if (Context.getCanonicalType(FromPointeeType) 2223 == Context.getCanonicalType(ToPointeeType)) 2224 return false; 2225 2226 // Perform the quick checks that will tell us whether these 2227 // function types are obviously different. 2228 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 2229 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 2230 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 2231 return false; 2232 2233 bool HasObjCConversion = false; 2234 if (Context.getCanonicalType(FromFunctionType->getResultType()) 2235 == Context.getCanonicalType(ToFunctionType->getResultType())) { 2236 // Okay, the types match exactly. Nothing to do. 2237 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 2238 ToFunctionType->getResultType(), 2239 ConvertedType, IncompatibleObjC)) { 2240 // Okay, we have an Objective-C pointer conversion. 2241 HasObjCConversion = true; 2242 } else { 2243 // Function types are too different. Abort. 2244 return false; 2245 } 2246 2247 // Check argument types. 2248 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 2249 ArgIdx != NumArgs; ++ArgIdx) { 2250 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 2251 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 2252 if (Context.getCanonicalType(FromArgType) 2253 == Context.getCanonicalType(ToArgType)) { 2254 // Okay, the types match exactly. Nothing to do. 2255 } else if (isObjCPointerConversion(FromArgType, ToArgType, 2256 ConvertedType, IncompatibleObjC)) { 2257 // Okay, we have an Objective-C pointer conversion. 2258 HasObjCConversion = true; 2259 } else { 2260 // Argument types are too different. Abort. 2261 return false; 2262 } 2263 } 2264 2265 if (HasObjCConversion) { 2266 // We had an Objective-C conversion. Allow this pointer 2267 // conversion, but complain about it. 2268 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2269 IncompatibleObjC = true; 2270 return true; 2271 } 2272 } 2273 2274 return false; 2275} 2276 2277/// \brief Determine whether this is an Objective-C writeback conversion, 2278/// used for parameter passing when performing automatic reference counting. 2279/// 2280/// \param FromType The type we're converting form. 2281/// 2282/// \param ToType The type we're converting to. 2283/// 2284/// \param ConvertedType The type that will be produced after applying 2285/// this conversion. 2286bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 2287 QualType &ConvertedType) { 2288 if (!getLangOpts().ObjCAutoRefCount || 2289 Context.hasSameUnqualifiedType(FromType, ToType)) 2290 return false; 2291 2292 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 2293 QualType ToPointee; 2294 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 2295 ToPointee = ToPointer->getPointeeType(); 2296 else 2297 return false; 2298 2299 Qualifiers ToQuals = ToPointee.getQualifiers(); 2300 if (!ToPointee->isObjCLifetimeType() || 2301 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 2302 !ToQuals.withoutObjCLifetime().empty()) 2303 return false; 2304 2305 // Argument must be a pointer to __strong to __weak. 2306 QualType FromPointee; 2307 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 2308 FromPointee = FromPointer->getPointeeType(); 2309 else 2310 return false; 2311 2312 Qualifiers FromQuals = FromPointee.getQualifiers(); 2313 if (!FromPointee->isObjCLifetimeType() || 2314 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 2315 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 2316 return false; 2317 2318 // Make sure that we have compatible qualifiers. 2319 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 2320 if (!ToQuals.compatiblyIncludes(FromQuals)) 2321 return false; 2322 2323 // Remove qualifiers from the pointee type we're converting from; they 2324 // aren't used in the compatibility check belong, and we'll be adding back 2325 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 2326 FromPointee = FromPointee.getUnqualifiedType(); 2327 2328 // The unqualified form of the pointee types must be compatible. 2329 ToPointee = ToPointee.getUnqualifiedType(); 2330 bool IncompatibleObjC; 2331 if (Context.typesAreCompatible(FromPointee, ToPointee)) 2332 FromPointee = ToPointee; 2333 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 2334 IncompatibleObjC)) 2335 return false; 2336 2337 /// \brief Construct the type we're converting to, which is a pointer to 2338 /// __autoreleasing pointee. 2339 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 2340 ConvertedType = Context.getPointerType(FromPointee); 2341 return true; 2342} 2343 2344bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 2345 QualType& ConvertedType) { 2346 QualType ToPointeeType; 2347 if (const BlockPointerType *ToBlockPtr = 2348 ToType->getAs<BlockPointerType>()) 2349 ToPointeeType = ToBlockPtr->getPointeeType(); 2350 else 2351 return false; 2352 2353 QualType FromPointeeType; 2354 if (const BlockPointerType *FromBlockPtr = 2355 FromType->getAs<BlockPointerType>()) 2356 FromPointeeType = FromBlockPtr->getPointeeType(); 2357 else 2358 return false; 2359 // We have pointer to blocks, check whether the only 2360 // differences in the argument and result types are in Objective-C 2361 // pointer conversions. If so, we permit the conversion. 2362 2363 const FunctionProtoType *FromFunctionType 2364 = FromPointeeType->getAs<FunctionProtoType>(); 2365 const FunctionProtoType *ToFunctionType 2366 = ToPointeeType->getAs<FunctionProtoType>(); 2367 2368 if (!FromFunctionType || !ToFunctionType) 2369 return false; 2370 2371 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2372 return true; 2373 2374 // Perform the quick checks that will tell us whether these 2375 // function types are obviously different. 2376 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 2377 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2378 return false; 2379 2380 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2381 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2382 if (FromEInfo != ToEInfo) 2383 return false; 2384 2385 bool IncompatibleObjC = false; 2386 if (Context.hasSameType(FromFunctionType->getResultType(), 2387 ToFunctionType->getResultType())) { 2388 // Okay, the types match exactly. Nothing to do. 2389 } else { 2390 QualType RHS = FromFunctionType->getResultType(); 2391 QualType LHS = ToFunctionType->getResultType(); 2392 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && 2393 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2394 LHS = LHS.getUnqualifiedType(); 2395 2396 if (Context.hasSameType(RHS,LHS)) { 2397 // OK exact match. 2398 } else if (isObjCPointerConversion(RHS, LHS, 2399 ConvertedType, IncompatibleObjC)) { 2400 if (IncompatibleObjC) 2401 return false; 2402 // Okay, we have an Objective-C pointer conversion. 2403 } 2404 else 2405 return false; 2406 } 2407 2408 // Check argument types. 2409 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 2410 ArgIdx != NumArgs; ++ArgIdx) { 2411 IncompatibleObjC = false; 2412 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 2413 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 2414 if (Context.hasSameType(FromArgType, ToArgType)) { 2415 // Okay, the types match exactly. Nothing to do. 2416 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2417 ConvertedType, IncompatibleObjC)) { 2418 if (IncompatibleObjC) 2419 return false; 2420 // Okay, we have an Objective-C pointer conversion. 2421 } else 2422 // Argument types are too different. Abort. 2423 return false; 2424 } 2425 if (LangOpts.ObjCAutoRefCount && 2426 !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType, 2427 ToFunctionType)) 2428 return false; 2429 2430 ConvertedType = ToType; 2431 return true; 2432} 2433 2434enum { 2435 ft_default, 2436 ft_different_class, 2437 ft_parameter_arity, 2438 ft_parameter_mismatch, 2439 ft_return_type, 2440 ft_qualifer_mismatch 2441}; 2442 2443/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing 2444/// function types. Catches different number of parameter, mismatch in 2445/// parameter types, and different return types. 2446void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, 2447 QualType FromType, QualType ToType) { 2448 // If either type is not valid, include no extra info. 2449 if (FromType.isNull() || ToType.isNull()) { 2450 PDiag << ft_default; 2451 return; 2452 } 2453 2454 // Get the function type from the pointers. 2455 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { 2456 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(), 2457 *ToMember = ToType->getAs<MemberPointerType>(); 2458 if (FromMember->getClass() != ToMember->getClass()) { 2459 PDiag << ft_different_class << QualType(ToMember->getClass(), 0) 2460 << QualType(FromMember->getClass(), 0); 2461 return; 2462 } 2463 FromType = FromMember->getPointeeType(); 2464 ToType = ToMember->getPointeeType(); 2465 } 2466 2467 if (FromType->isPointerType()) 2468 FromType = FromType->getPointeeType(); 2469 if (ToType->isPointerType()) 2470 ToType = ToType->getPointeeType(); 2471 2472 // Remove references. 2473 FromType = FromType.getNonReferenceType(); 2474 ToType = ToType.getNonReferenceType(); 2475 2476 // Don't print extra info for non-specialized template functions. 2477 if (FromType->isInstantiationDependentType() && 2478 !FromType->getAs<TemplateSpecializationType>()) { 2479 PDiag << ft_default; 2480 return; 2481 } 2482 2483 // No extra info for same types. 2484 if (Context.hasSameType(FromType, ToType)) { 2485 PDiag << ft_default; 2486 return; 2487 } 2488 2489 const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(), 2490 *ToFunction = ToType->getAs<FunctionProtoType>(); 2491 2492 // Both types need to be function types. 2493 if (!FromFunction || !ToFunction) { 2494 PDiag << ft_default; 2495 return; 2496 } 2497 2498 if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) { 2499 PDiag << ft_parameter_arity << ToFunction->getNumArgs() 2500 << FromFunction->getNumArgs(); 2501 return; 2502 } 2503 2504 // Handle different parameter types. 2505 unsigned ArgPos; 2506 if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { 2507 PDiag << ft_parameter_mismatch << ArgPos + 1 2508 << ToFunction->getArgType(ArgPos) 2509 << FromFunction->getArgType(ArgPos); 2510 return; 2511 } 2512 2513 // Handle different return type. 2514 if (!Context.hasSameType(FromFunction->getResultType(), 2515 ToFunction->getResultType())) { 2516 PDiag << ft_return_type << ToFunction->getResultType() 2517 << FromFunction->getResultType(); 2518 return; 2519 } 2520 2521 unsigned FromQuals = FromFunction->getTypeQuals(), 2522 ToQuals = ToFunction->getTypeQuals(); 2523 if (FromQuals != ToQuals) { 2524 PDiag << ft_qualifer_mismatch << ToQuals << FromQuals; 2525 return; 2526 } 2527 2528 // Unable to find a difference, so add no extra info. 2529 PDiag << ft_default; 2530} 2531 2532/// FunctionArgTypesAreEqual - This routine checks two function proto types 2533/// for equality of their argument types. Caller has already checked that 2534/// they have same number of arguments. This routine assumes that Objective-C 2535/// pointer types which only differ in their protocol qualifiers are equal. 2536/// If the parameters are different, ArgPos will have the parameter index 2537/// of the first different parameter. 2538bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType, 2539 const FunctionProtoType *NewType, 2540 unsigned *ArgPos) { 2541 if (!getLangOpts().ObjC1) { 2542 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 2543 N = NewType->arg_type_begin(), 2544 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 2545 if (!Context.hasSameType(*O, *N)) { 2546 if (ArgPos) *ArgPos = O - OldType->arg_type_begin(); 2547 return false; 2548 } 2549 } 2550 return true; 2551 } 2552 2553 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 2554 N = NewType->arg_type_begin(), 2555 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 2556 QualType ToType = (*O); 2557 QualType FromType = (*N); 2558 if (!Context.hasSameType(ToType, FromType)) { 2559 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 2560 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 2561 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 2562 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 2563 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 2564 PTFr->getPointeeType()->isObjCQualifiedClassType())) 2565 continue; 2566 } 2567 else if (const ObjCObjectPointerType *PTTo = 2568 ToType->getAs<ObjCObjectPointerType>()) { 2569 if (const ObjCObjectPointerType *PTFr = 2570 FromType->getAs<ObjCObjectPointerType>()) 2571 if (Context.hasSameUnqualifiedType( 2572 PTTo->getObjectType()->getBaseType(), 2573 PTFr->getObjectType()->getBaseType())) 2574 continue; 2575 } 2576 if (ArgPos) *ArgPos = O - OldType->arg_type_begin(); 2577 return false; 2578 } 2579 } 2580 return true; 2581} 2582 2583/// CheckPointerConversion - Check the pointer conversion from the 2584/// expression From to the type ToType. This routine checks for 2585/// ambiguous or inaccessible derived-to-base pointer 2586/// conversions for which IsPointerConversion has already returned 2587/// true. It returns true and produces a diagnostic if there was an 2588/// error, or returns false otherwise. 2589bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 2590 CastKind &Kind, 2591 CXXCastPath& BasePath, 2592 bool IgnoreBaseAccess) { 2593 QualType FromType = From->getType(); 2594 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 2595 2596 Kind = CK_BitCast; 2597 2598 if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && 2599 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == 2600 Expr::NPCK_ZeroExpression) { 2601 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) 2602 DiagRuntimeBehavior(From->getExprLoc(), From, 2603 PDiag(diag::warn_impcast_bool_to_null_pointer) 2604 << ToType << From->getSourceRange()); 2605 else if (!isUnevaluatedContext()) 2606 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) 2607 << ToType << From->getSourceRange(); 2608 } 2609 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 2610 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { 2611 QualType FromPointeeType = FromPtrType->getPointeeType(), 2612 ToPointeeType = ToPtrType->getPointeeType(); 2613 2614 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 2615 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 2616 // We must have a derived-to-base conversion. Check an 2617 // ambiguous or inaccessible conversion. 2618 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 2619 From->getExprLoc(), 2620 From->getSourceRange(), &BasePath, 2621 IgnoreBaseAccess)) 2622 return true; 2623 2624 // The conversion was successful. 2625 Kind = CK_DerivedToBase; 2626 } 2627 } 2628 } else if (const ObjCObjectPointerType *ToPtrType = 2629 ToType->getAs<ObjCObjectPointerType>()) { 2630 if (const ObjCObjectPointerType *FromPtrType = 2631 FromType->getAs<ObjCObjectPointerType>()) { 2632 // Objective-C++ conversions are always okay. 2633 // FIXME: We should have a different class of conversions for the 2634 // Objective-C++ implicit conversions. 2635 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 2636 return false; 2637 } else if (FromType->isBlockPointerType()) { 2638 Kind = CK_BlockPointerToObjCPointerCast; 2639 } else { 2640 Kind = CK_CPointerToObjCPointerCast; 2641 } 2642 } else if (ToType->isBlockPointerType()) { 2643 if (!FromType->isBlockPointerType()) 2644 Kind = CK_AnyPointerToBlockPointerCast; 2645 } 2646 2647 // We shouldn't fall into this case unless it's valid for other 2648 // reasons. 2649 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 2650 Kind = CK_NullToPointer; 2651 2652 return false; 2653} 2654 2655/// IsMemberPointerConversion - Determines whether the conversion of the 2656/// expression From, which has the (possibly adjusted) type FromType, can be 2657/// converted to the type ToType via a member pointer conversion (C++ 4.11). 2658/// If so, returns true and places the converted type (that might differ from 2659/// ToType in its cv-qualifiers at some level) into ConvertedType. 2660bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 2661 QualType ToType, 2662 bool InOverloadResolution, 2663 QualType &ConvertedType) { 2664 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 2665 if (!ToTypePtr) 2666 return false; 2667 2668 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 2669 if (From->isNullPointerConstant(Context, 2670 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2671 : Expr::NPC_ValueDependentIsNull)) { 2672 ConvertedType = ToType; 2673 return true; 2674 } 2675 2676 // Otherwise, both types have to be member pointers. 2677 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 2678 if (!FromTypePtr) 2679 return false; 2680 2681 // A pointer to member of B can be converted to a pointer to member of D, 2682 // where D is derived from B (C++ 4.11p2). 2683 QualType FromClass(FromTypePtr->getClass(), 0); 2684 QualType ToClass(ToTypePtr->getClass(), 0); 2685 2686 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 2687 !RequireCompleteType(From->getLocStart(), ToClass, 0) && 2688 IsDerivedFrom(ToClass, FromClass)) { 2689 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 2690 ToClass.getTypePtr()); 2691 return true; 2692 } 2693 2694 return false; 2695} 2696 2697/// CheckMemberPointerConversion - Check the member pointer conversion from the 2698/// expression From to the type ToType. This routine checks for ambiguous or 2699/// virtual or inaccessible base-to-derived member pointer conversions 2700/// for which IsMemberPointerConversion has already returned true. It returns 2701/// true and produces a diagnostic if there was an error, or returns false 2702/// otherwise. 2703bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 2704 CastKind &Kind, 2705 CXXCastPath &BasePath, 2706 bool IgnoreBaseAccess) { 2707 QualType FromType = From->getType(); 2708 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 2709 if (!FromPtrType) { 2710 // This must be a null pointer to member pointer conversion 2711 assert(From->isNullPointerConstant(Context, 2712 Expr::NPC_ValueDependentIsNull) && 2713 "Expr must be null pointer constant!"); 2714 Kind = CK_NullToMemberPointer; 2715 return false; 2716 } 2717 2718 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 2719 assert(ToPtrType && "No member pointer cast has a target type " 2720 "that is not a member pointer."); 2721 2722 QualType FromClass = QualType(FromPtrType->getClass(), 0); 2723 QualType ToClass = QualType(ToPtrType->getClass(), 0); 2724 2725 // FIXME: What about dependent types? 2726 assert(FromClass->isRecordType() && "Pointer into non-class."); 2727 assert(ToClass->isRecordType() && "Pointer into non-class."); 2728 2729 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2730 /*DetectVirtual=*/true); 2731 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 2732 assert(DerivationOkay && 2733 "Should not have been called if derivation isn't OK."); 2734 (void)DerivationOkay; 2735 2736 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 2737 getUnqualifiedType())) { 2738 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2739 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 2740 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 2741 return true; 2742 } 2743 2744 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 2745 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 2746 << FromClass << ToClass << QualType(VBase, 0) 2747 << From->getSourceRange(); 2748 return true; 2749 } 2750 2751 if (!IgnoreBaseAccess) 2752 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 2753 Paths.front(), 2754 diag::err_downcast_from_inaccessible_base); 2755 2756 // Must be a base to derived member conversion. 2757 BuildBasePathArray(Paths, BasePath); 2758 Kind = CK_BaseToDerivedMemberPointer; 2759 return false; 2760} 2761 2762/// IsQualificationConversion - Determines whether the conversion from 2763/// an rvalue of type FromType to ToType is a qualification conversion 2764/// (C++ 4.4). 2765/// 2766/// \param ObjCLifetimeConversion Output parameter that will be set to indicate 2767/// when the qualification conversion involves a change in the Objective-C 2768/// object lifetime. 2769bool 2770Sema::IsQualificationConversion(QualType FromType, QualType ToType, 2771 bool CStyle, bool &ObjCLifetimeConversion) { 2772 FromType = Context.getCanonicalType(FromType); 2773 ToType = Context.getCanonicalType(ToType); 2774 ObjCLifetimeConversion = false; 2775 2776 // If FromType and ToType are the same type, this is not a 2777 // qualification conversion. 2778 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 2779 return false; 2780 2781 // (C++ 4.4p4): 2782 // A conversion can add cv-qualifiers at levels other than the first 2783 // in multi-level pointers, subject to the following rules: [...] 2784 bool PreviousToQualsIncludeConst = true; 2785 bool UnwrappedAnyPointer = false; 2786 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 2787 // Within each iteration of the loop, we check the qualifiers to 2788 // determine if this still looks like a qualification 2789 // conversion. Then, if all is well, we unwrap one more level of 2790 // pointers or pointers-to-members and do it all again 2791 // until there are no more pointers or pointers-to-members left to 2792 // unwrap. 2793 UnwrappedAnyPointer = true; 2794 2795 Qualifiers FromQuals = FromType.getQualifiers(); 2796 Qualifiers ToQuals = ToType.getQualifiers(); 2797 2798 // Objective-C ARC: 2799 // Check Objective-C lifetime conversions. 2800 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() && 2801 UnwrappedAnyPointer) { 2802 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 2803 ObjCLifetimeConversion = true; 2804 FromQuals.removeObjCLifetime(); 2805 ToQuals.removeObjCLifetime(); 2806 } else { 2807 // Qualification conversions cannot cast between different 2808 // Objective-C lifetime qualifiers. 2809 return false; 2810 } 2811 } 2812 2813 // Allow addition/removal of GC attributes but not changing GC attributes. 2814 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 2815 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 2816 FromQuals.removeObjCGCAttr(); 2817 ToQuals.removeObjCGCAttr(); 2818 } 2819 2820 // -- for every j > 0, if const is in cv 1,j then const is in cv 2821 // 2,j, and similarly for volatile. 2822 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 2823 return false; 2824 2825 // -- if the cv 1,j and cv 2,j are different, then const is in 2826 // every cv for 0 < k < j. 2827 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() 2828 && !PreviousToQualsIncludeConst) 2829 return false; 2830 2831 // Keep track of whether all prior cv-qualifiers in the "to" type 2832 // include const. 2833 PreviousToQualsIncludeConst 2834 = PreviousToQualsIncludeConst && ToQuals.hasConst(); 2835 } 2836 2837 // We are left with FromType and ToType being the pointee types 2838 // after unwrapping the original FromType and ToType the same number 2839 // of types. If we unwrapped any pointers, and if FromType and 2840 // ToType have the same unqualified type (since we checked 2841 // qualifiers above), then this is a qualification conversion. 2842 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 2843} 2844 2845/// \brief - Determine whether this is a conversion from a scalar type to an 2846/// atomic type. 2847/// 2848/// If successful, updates \c SCS's second and third steps in the conversion 2849/// sequence to finish the conversion. 2850static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 2851 bool InOverloadResolution, 2852 StandardConversionSequence &SCS, 2853 bool CStyle) { 2854 const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); 2855 if (!ToAtomic) 2856 return false; 2857 2858 StandardConversionSequence InnerSCS; 2859 if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 2860 InOverloadResolution, InnerSCS, 2861 CStyle, /*AllowObjCWritebackConversion=*/false)) 2862 return false; 2863 2864 SCS.Second = InnerSCS.Second; 2865 SCS.setToType(1, InnerSCS.getToType(1)); 2866 SCS.Third = InnerSCS.Third; 2867 SCS.QualificationIncludesObjCLifetime 2868 = InnerSCS.QualificationIncludesObjCLifetime; 2869 SCS.setToType(2, InnerSCS.getToType(2)); 2870 return true; 2871} 2872 2873static bool isFirstArgumentCompatibleWithType(ASTContext &Context, 2874 CXXConstructorDecl *Constructor, 2875 QualType Type) { 2876 const FunctionProtoType *CtorType = 2877 Constructor->getType()->getAs<FunctionProtoType>(); 2878 if (CtorType->getNumArgs() > 0) { 2879 QualType FirstArg = CtorType->getArgType(0); 2880 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) 2881 return true; 2882 } 2883 return false; 2884} 2885 2886static OverloadingResult 2887IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, 2888 CXXRecordDecl *To, 2889 UserDefinedConversionSequence &User, 2890 OverloadCandidateSet &CandidateSet, 2891 bool AllowExplicit) { 2892 DeclContext::lookup_result R = S.LookupConstructors(To); 2893 for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end(); 2894 Con != ConEnd; ++Con) { 2895 NamedDecl *D = *Con; 2896 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2897 2898 // Find the constructor (which may be a template). 2899 CXXConstructorDecl *Constructor = 0; 2900 FunctionTemplateDecl *ConstructorTmpl 2901 = dyn_cast<FunctionTemplateDecl>(D); 2902 if (ConstructorTmpl) 2903 Constructor 2904 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 2905 else 2906 Constructor = cast<CXXConstructorDecl>(D); 2907 2908 bool Usable = !Constructor->isInvalidDecl() && 2909 S.isInitListConstructor(Constructor) && 2910 (AllowExplicit || !Constructor->isExplicit()); 2911 if (Usable) { 2912 // If the first argument is (a reference to) the target type, 2913 // suppress conversions. 2914 bool SuppressUserConversions = 2915 isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType); 2916 if (ConstructorTmpl) 2917 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2918 /*ExplicitArgs*/ 0, 2919 From, CandidateSet, 2920 SuppressUserConversions); 2921 else 2922 S.AddOverloadCandidate(Constructor, FoundDecl, 2923 From, CandidateSet, 2924 SuppressUserConversions); 2925 } 2926 } 2927 2928 bool HadMultipleCandidates = (CandidateSet.size() > 1); 2929 2930 OverloadCandidateSet::iterator Best; 2931 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2932 case OR_Success: { 2933 // Record the standard conversion we used and the conversion function. 2934 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 2935 QualType ThisType = Constructor->getThisType(S.Context); 2936 // Initializer lists don't have conversions as such. 2937 User.Before.setAsIdentityConversion(); 2938 User.HadMultipleCandidates = HadMultipleCandidates; 2939 User.ConversionFunction = Constructor; 2940 User.FoundConversionFunction = Best->FoundDecl; 2941 User.After.setAsIdentityConversion(); 2942 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2943 User.After.setAllToTypes(ToType); 2944 return OR_Success; 2945 } 2946 2947 case OR_No_Viable_Function: 2948 return OR_No_Viable_Function; 2949 case OR_Deleted: 2950 return OR_Deleted; 2951 case OR_Ambiguous: 2952 return OR_Ambiguous; 2953 } 2954 2955 llvm_unreachable("Invalid OverloadResult!"); 2956} 2957 2958/// Determines whether there is a user-defined conversion sequence 2959/// (C++ [over.ics.user]) that converts expression From to the type 2960/// ToType. If such a conversion exists, User will contain the 2961/// user-defined conversion sequence that performs such a conversion 2962/// and this routine will return true. Otherwise, this routine returns 2963/// false and User is unspecified. 2964/// 2965/// \param AllowExplicit true if the conversion should consider C++0x 2966/// "explicit" conversion functions as well as non-explicit conversion 2967/// functions (C++0x [class.conv.fct]p2). 2968static OverloadingResult 2969IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 2970 UserDefinedConversionSequence &User, 2971 OverloadCandidateSet &CandidateSet, 2972 bool AllowExplicit) { 2973 // Whether we will only visit constructors. 2974 bool ConstructorsOnly = false; 2975 2976 // If the type we are conversion to is a class type, enumerate its 2977 // constructors. 2978 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 2979 // C++ [over.match.ctor]p1: 2980 // When objects of class type are direct-initialized (8.5), or 2981 // copy-initialized from an expression of the same or a 2982 // derived class type (8.5), overload resolution selects the 2983 // constructor. [...] For copy-initialization, the candidate 2984 // functions are all the converting constructors (12.3.1) of 2985 // that class. The argument list is the expression-list within 2986 // the parentheses of the initializer. 2987 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 2988 (From->getType()->getAs<RecordType>() && 2989 S.IsDerivedFrom(From->getType(), ToType))) 2990 ConstructorsOnly = true; 2991 2992 S.RequireCompleteType(From->getExprLoc(), ToType, 0); 2993 // RequireCompleteType may have returned true due to some invalid decl 2994 // during template instantiation, but ToType may be complete enough now 2995 // to try to recover. 2996 if (ToType->isIncompleteType()) { 2997 // We're not going to find any constructors. 2998 } else if (CXXRecordDecl *ToRecordDecl 2999 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 3000 3001 Expr **Args = &From; 3002 unsigned NumArgs = 1; 3003 bool ListInitializing = false; 3004 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { 3005 // But first, see if there is an init-list-contructor that will work. 3006 OverloadingResult Result = IsInitializerListConstructorConversion( 3007 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit); 3008 if (Result != OR_No_Viable_Function) 3009 return Result; 3010 // Never mind. 3011 CandidateSet.clear(); 3012 3013 // If we're list-initializing, we pass the individual elements as 3014 // arguments, not the entire list. 3015 Args = InitList->getInits(); 3016 NumArgs = InitList->getNumInits(); 3017 ListInitializing = true; 3018 } 3019 3020 DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl); 3021 for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end(); 3022 Con != ConEnd; ++Con) { 3023 NamedDecl *D = *Con; 3024 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3025 3026 // Find the constructor (which may be a template). 3027 CXXConstructorDecl *Constructor = 0; 3028 FunctionTemplateDecl *ConstructorTmpl 3029 = dyn_cast<FunctionTemplateDecl>(D); 3030 if (ConstructorTmpl) 3031 Constructor 3032 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 3033 else 3034 Constructor = cast<CXXConstructorDecl>(D); 3035 3036 bool Usable = !Constructor->isInvalidDecl(); 3037 if (ListInitializing) 3038 Usable = Usable && (AllowExplicit || !Constructor->isExplicit()); 3039 else 3040 Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit); 3041 if (Usable) { 3042 bool SuppressUserConversions = !ConstructorsOnly; 3043 if (SuppressUserConversions && ListInitializing) { 3044 SuppressUserConversions = false; 3045 if (NumArgs == 1) { 3046 // If the first argument is (a reference to) the target type, 3047 // suppress conversions. 3048 SuppressUserConversions = isFirstArgumentCompatibleWithType( 3049 S.Context, Constructor, ToType); 3050 } 3051 } 3052 if (ConstructorTmpl) 3053 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3054 /*ExplicitArgs*/ 0, 3055 llvm::makeArrayRef(Args, NumArgs), 3056 CandidateSet, SuppressUserConversions); 3057 else 3058 // Allow one user-defined conversion when user specifies a 3059 // From->ToType conversion via an static cast (c-style, etc). 3060 S.AddOverloadCandidate(Constructor, FoundDecl, 3061 llvm::makeArrayRef(Args, NumArgs), 3062 CandidateSet, SuppressUserConversions); 3063 } 3064 } 3065 } 3066 } 3067 3068 // Enumerate conversion functions, if we're allowed to. 3069 if (ConstructorsOnly || isa<InitListExpr>(From)) { 3070 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) { 3071 // No conversion functions from incomplete types. 3072 } else if (const RecordType *FromRecordType 3073 = From->getType()->getAs<RecordType>()) { 3074 if (CXXRecordDecl *FromRecordDecl 3075 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 3076 // Add all of the conversion functions as candidates. 3077 std::pair<CXXRecordDecl::conversion_iterator, 3078 CXXRecordDecl::conversion_iterator> 3079 Conversions = FromRecordDecl->getVisibleConversionFunctions(); 3080 for (CXXRecordDecl::conversion_iterator 3081 I = Conversions.first, E = Conversions.second; I != E; ++I) { 3082 DeclAccessPair FoundDecl = I.getPair(); 3083 NamedDecl *D = FoundDecl.getDecl(); 3084 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 3085 if (isa<UsingShadowDecl>(D)) 3086 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3087 3088 CXXConversionDecl *Conv; 3089 FunctionTemplateDecl *ConvTemplate; 3090 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 3091 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3092 else 3093 Conv = cast<CXXConversionDecl>(D); 3094 3095 if (AllowExplicit || !Conv->isExplicit()) { 3096 if (ConvTemplate) 3097 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 3098 ActingContext, From, ToType, 3099 CandidateSet); 3100 else 3101 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 3102 From, ToType, CandidateSet); 3103 } 3104 } 3105 } 3106 } 3107 3108 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3109 3110 OverloadCandidateSet::iterator Best; 3111 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 3112 case OR_Success: 3113 // Record the standard conversion we used and the conversion function. 3114 if (CXXConstructorDecl *Constructor 3115 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 3116 // C++ [over.ics.user]p1: 3117 // If the user-defined conversion is specified by a 3118 // constructor (12.3.1), the initial standard conversion 3119 // sequence converts the source type to the type required by 3120 // the argument of the constructor. 3121 // 3122 QualType ThisType = Constructor->getThisType(S.Context); 3123 if (isa<InitListExpr>(From)) { 3124 // Initializer lists don't have conversions as such. 3125 User.Before.setAsIdentityConversion(); 3126 } else { 3127 if (Best->Conversions[0].isEllipsis()) 3128 User.EllipsisConversion = true; 3129 else { 3130 User.Before = Best->Conversions[0].Standard; 3131 User.EllipsisConversion = false; 3132 } 3133 } 3134 User.HadMultipleCandidates = HadMultipleCandidates; 3135 User.ConversionFunction = Constructor; 3136 User.FoundConversionFunction = Best->FoundDecl; 3137 User.After.setAsIdentityConversion(); 3138 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 3139 User.After.setAllToTypes(ToType); 3140 return OR_Success; 3141 } 3142 if (CXXConversionDecl *Conversion 3143 = dyn_cast<CXXConversionDecl>(Best->Function)) { 3144 // C++ [over.ics.user]p1: 3145 // 3146 // [...] If the user-defined conversion is specified by a 3147 // conversion function (12.3.2), the initial standard 3148 // conversion sequence converts the source type to the 3149 // implicit object parameter of the conversion function. 3150 User.Before = Best->Conversions[0].Standard; 3151 User.HadMultipleCandidates = HadMultipleCandidates; 3152 User.ConversionFunction = Conversion; 3153 User.FoundConversionFunction = Best->FoundDecl; 3154 User.EllipsisConversion = false; 3155 3156 // C++ [over.ics.user]p2: 3157 // The second standard conversion sequence converts the 3158 // result of the user-defined conversion to the target type 3159 // for the sequence. Since an implicit conversion sequence 3160 // is an initialization, the special rules for 3161 // initialization by user-defined conversion apply when 3162 // selecting the best user-defined conversion for a 3163 // user-defined conversion sequence (see 13.3.3 and 3164 // 13.3.3.1). 3165 User.After = Best->FinalConversion; 3166 return OR_Success; 3167 } 3168 llvm_unreachable("Not a constructor or conversion function?"); 3169 3170 case OR_No_Viable_Function: 3171 return OR_No_Viable_Function; 3172 case OR_Deleted: 3173 // No conversion here! We're done. 3174 return OR_Deleted; 3175 3176 case OR_Ambiguous: 3177 return OR_Ambiguous; 3178 } 3179 3180 llvm_unreachable("Invalid OverloadResult!"); 3181} 3182 3183bool 3184Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 3185 ImplicitConversionSequence ICS; 3186 OverloadCandidateSet CandidateSet(From->getExprLoc()); 3187 OverloadingResult OvResult = 3188 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 3189 CandidateSet, false); 3190 if (OvResult == OR_Ambiguous) 3191 Diag(From->getLocStart(), 3192 diag::err_typecheck_ambiguous_condition) 3193 << From->getType() << ToType << From->getSourceRange(); 3194 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 3195 Diag(From->getLocStart(), 3196 diag::err_typecheck_nonviable_condition) 3197 << From->getType() << ToType << From->getSourceRange(); 3198 else 3199 return false; 3200 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From); 3201 return true; 3202} 3203 3204/// \brief Compare the user-defined conversion functions or constructors 3205/// of two user-defined conversion sequences to determine whether any ordering 3206/// is possible. 3207static ImplicitConversionSequence::CompareKind 3208compareConversionFunctions(Sema &S, 3209 FunctionDecl *Function1, 3210 FunctionDecl *Function2) { 3211 if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11) 3212 return ImplicitConversionSequence::Indistinguishable; 3213 3214 // Objective-C++: 3215 // If both conversion functions are implicitly-declared conversions from 3216 // a lambda closure type to a function pointer and a block pointer, 3217 // respectively, always prefer the conversion to a function pointer, 3218 // because the function pointer is more lightweight and is more likely 3219 // to keep code working. 3220 CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1); 3221 if (!Conv1) 3222 return ImplicitConversionSequence::Indistinguishable; 3223 3224 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2); 3225 if (!Conv2) 3226 return ImplicitConversionSequence::Indistinguishable; 3227 3228 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) { 3229 bool Block1 = Conv1->getConversionType()->isBlockPointerType(); 3230 bool Block2 = Conv2->getConversionType()->isBlockPointerType(); 3231 if (Block1 != Block2) 3232 return Block1? ImplicitConversionSequence::Worse 3233 : ImplicitConversionSequence::Better; 3234 } 3235 3236 return ImplicitConversionSequence::Indistinguishable; 3237} 3238 3239/// CompareImplicitConversionSequences - Compare two implicit 3240/// conversion sequences to determine whether one is better than the 3241/// other or if they are indistinguishable (C++ 13.3.3.2). 3242static ImplicitConversionSequence::CompareKind 3243CompareImplicitConversionSequences(Sema &S, 3244 const ImplicitConversionSequence& ICS1, 3245 const ImplicitConversionSequence& ICS2) 3246{ 3247 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 3248 // conversion sequences (as defined in 13.3.3.1) 3249 // -- a standard conversion sequence (13.3.3.1.1) is a better 3250 // conversion sequence than a user-defined conversion sequence or 3251 // an ellipsis conversion sequence, and 3252 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 3253 // conversion sequence than an ellipsis conversion sequence 3254 // (13.3.3.1.3). 3255 // 3256 // C++0x [over.best.ics]p10: 3257 // For the purpose of ranking implicit conversion sequences as 3258 // described in 13.3.3.2, the ambiguous conversion sequence is 3259 // treated as a user-defined sequence that is indistinguishable 3260 // from any other user-defined conversion sequence. 3261 if (ICS1.getKindRank() < ICS2.getKindRank()) 3262 return ImplicitConversionSequence::Better; 3263 if (ICS2.getKindRank() < ICS1.getKindRank()) 3264 return ImplicitConversionSequence::Worse; 3265 3266 // The following checks require both conversion sequences to be of 3267 // the same kind. 3268 if (ICS1.getKind() != ICS2.getKind()) 3269 return ImplicitConversionSequence::Indistinguishable; 3270 3271 ImplicitConversionSequence::CompareKind Result = 3272 ImplicitConversionSequence::Indistinguishable; 3273 3274 // Two implicit conversion sequences of the same form are 3275 // indistinguishable conversion sequences unless one of the 3276 // following rules apply: (C++ 13.3.3.2p3): 3277 if (ICS1.isStandard()) 3278 Result = CompareStandardConversionSequences(S, 3279 ICS1.Standard, ICS2.Standard); 3280 else if (ICS1.isUserDefined()) { 3281 // User-defined conversion sequence U1 is a better conversion 3282 // sequence than another user-defined conversion sequence U2 if 3283 // they contain the same user-defined conversion function or 3284 // constructor and if the second standard conversion sequence of 3285 // U1 is better than the second standard conversion sequence of 3286 // U2 (C++ 13.3.3.2p3). 3287 if (ICS1.UserDefined.ConversionFunction == 3288 ICS2.UserDefined.ConversionFunction) 3289 Result = CompareStandardConversionSequences(S, 3290 ICS1.UserDefined.After, 3291 ICS2.UserDefined.After); 3292 else 3293 Result = compareConversionFunctions(S, 3294 ICS1.UserDefined.ConversionFunction, 3295 ICS2.UserDefined.ConversionFunction); 3296 } 3297 3298 // List-initialization sequence L1 is a better conversion sequence than 3299 // list-initialization sequence L2 if L1 converts to std::initializer_list<X> 3300 // for some X and L2 does not. 3301 if (Result == ImplicitConversionSequence::Indistinguishable && 3302 !ICS1.isBad() && 3303 ICS1.isListInitializationSequence() && 3304 ICS2.isListInitializationSequence()) { 3305 if (ICS1.isStdInitializerListElement() && 3306 !ICS2.isStdInitializerListElement()) 3307 return ImplicitConversionSequence::Better; 3308 if (!ICS1.isStdInitializerListElement() && 3309 ICS2.isStdInitializerListElement()) 3310 return ImplicitConversionSequence::Worse; 3311 } 3312 3313 return Result; 3314} 3315 3316static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 3317 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 3318 Qualifiers Quals; 3319 T1 = Context.getUnqualifiedArrayType(T1, Quals); 3320 T2 = Context.getUnqualifiedArrayType(T2, Quals); 3321 } 3322 3323 return Context.hasSameUnqualifiedType(T1, T2); 3324} 3325 3326// Per 13.3.3.2p3, compare the given standard conversion sequences to 3327// determine if one is a proper subset of the other. 3328static ImplicitConversionSequence::CompareKind 3329compareStandardConversionSubsets(ASTContext &Context, 3330 const StandardConversionSequence& SCS1, 3331 const StandardConversionSequence& SCS2) { 3332 ImplicitConversionSequence::CompareKind Result 3333 = ImplicitConversionSequence::Indistinguishable; 3334 3335 // the identity conversion sequence is considered to be a subsequence of 3336 // any non-identity conversion sequence 3337 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 3338 return ImplicitConversionSequence::Better; 3339 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 3340 return ImplicitConversionSequence::Worse; 3341 3342 if (SCS1.Second != SCS2.Second) { 3343 if (SCS1.Second == ICK_Identity) 3344 Result = ImplicitConversionSequence::Better; 3345 else if (SCS2.Second == ICK_Identity) 3346 Result = ImplicitConversionSequence::Worse; 3347 else 3348 return ImplicitConversionSequence::Indistinguishable; 3349 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 3350 return ImplicitConversionSequence::Indistinguishable; 3351 3352 if (SCS1.Third == SCS2.Third) { 3353 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 3354 : ImplicitConversionSequence::Indistinguishable; 3355 } 3356 3357 if (SCS1.Third == ICK_Identity) 3358 return Result == ImplicitConversionSequence::Worse 3359 ? ImplicitConversionSequence::Indistinguishable 3360 : ImplicitConversionSequence::Better; 3361 3362 if (SCS2.Third == ICK_Identity) 3363 return Result == ImplicitConversionSequence::Better 3364 ? ImplicitConversionSequence::Indistinguishable 3365 : ImplicitConversionSequence::Worse; 3366 3367 return ImplicitConversionSequence::Indistinguishable; 3368} 3369 3370/// \brief Determine whether one of the given reference bindings is better 3371/// than the other based on what kind of bindings they are. 3372static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 3373 const StandardConversionSequence &SCS2) { 3374 // C++0x [over.ics.rank]p3b4: 3375 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 3376 // implicit object parameter of a non-static member function declared 3377 // without a ref-qualifier, and *either* S1 binds an rvalue reference 3378 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 3379 // lvalue reference to a function lvalue and S2 binds an rvalue 3380 // reference*. 3381 // 3382 // FIXME: Rvalue references. We're going rogue with the above edits, 3383 // because the semantics in the current C++0x working paper (N3225 at the 3384 // time of this writing) break the standard definition of std::forward 3385 // and std::reference_wrapper when dealing with references to functions. 3386 // Proposed wording changes submitted to CWG for consideration. 3387 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 3388 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 3389 return false; 3390 3391 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 3392 SCS2.IsLvalueReference) || 3393 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 3394 !SCS2.IsLvalueReference); 3395} 3396 3397/// CompareStandardConversionSequences - Compare two standard 3398/// conversion sequences to determine whether one is better than the 3399/// other or if they are indistinguishable (C++ 13.3.3.2p3). 3400static ImplicitConversionSequence::CompareKind 3401CompareStandardConversionSequences(Sema &S, 3402 const StandardConversionSequence& SCS1, 3403 const StandardConversionSequence& SCS2) 3404{ 3405 // Standard conversion sequence S1 is a better conversion sequence 3406 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 3407 3408 // -- S1 is a proper subsequence of S2 (comparing the conversion 3409 // sequences in the canonical form defined by 13.3.3.1.1, 3410 // excluding any Lvalue Transformation; the identity conversion 3411 // sequence is considered to be a subsequence of any 3412 // non-identity conversion sequence) or, if not that, 3413 if (ImplicitConversionSequence::CompareKind CK 3414 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 3415 return CK; 3416 3417 // -- the rank of S1 is better than the rank of S2 (by the rules 3418 // defined below), or, if not that, 3419 ImplicitConversionRank Rank1 = SCS1.getRank(); 3420 ImplicitConversionRank Rank2 = SCS2.getRank(); 3421 if (Rank1 < Rank2) 3422 return ImplicitConversionSequence::Better; 3423 else if (Rank2 < Rank1) 3424 return ImplicitConversionSequence::Worse; 3425 3426 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 3427 // are indistinguishable unless one of the following rules 3428 // applies: 3429 3430 // A conversion that is not a conversion of a pointer, or 3431 // pointer to member, to bool is better than another conversion 3432 // that is such a conversion. 3433 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 3434 return SCS2.isPointerConversionToBool() 3435 ? ImplicitConversionSequence::Better 3436 : ImplicitConversionSequence::Worse; 3437 3438 // C++ [over.ics.rank]p4b2: 3439 // 3440 // If class B is derived directly or indirectly from class A, 3441 // conversion of B* to A* is better than conversion of B* to 3442 // void*, and conversion of A* to void* is better than conversion 3443 // of B* to void*. 3444 bool SCS1ConvertsToVoid 3445 = SCS1.isPointerConversionToVoidPointer(S.Context); 3446 bool SCS2ConvertsToVoid 3447 = SCS2.isPointerConversionToVoidPointer(S.Context); 3448 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 3449 // Exactly one of the conversion sequences is a conversion to 3450 // a void pointer; it's the worse conversion. 3451 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 3452 : ImplicitConversionSequence::Worse; 3453 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 3454 // Neither conversion sequence converts to a void pointer; compare 3455 // their derived-to-base conversions. 3456 if (ImplicitConversionSequence::CompareKind DerivedCK 3457 = CompareDerivedToBaseConversions(S, SCS1, SCS2)) 3458 return DerivedCK; 3459 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 3460 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 3461 // Both conversion sequences are conversions to void 3462 // pointers. Compare the source types to determine if there's an 3463 // inheritance relationship in their sources. 3464 QualType FromType1 = SCS1.getFromType(); 3465 QualType FromType2 = SCS2.getFromType(); 3466 3467 // Adjust the types we're converting from via the array-to-pointer 3468 // conversion, if we need to. 3469 if (SCS1.First == ICK_Array_To_Pointer) 3470 FromType1 = S.Context.getArrayDecayedType(FromType1); 3471 if (SCS2.First == ICK_Array_To_Pointer) 3472 FromType2 = S.Context.getArrayDecayedType(FromType2); 3473 3474 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 3475 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 3476 3477 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3478 return ImplicitConversionSequence::Better; 3479 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3480 return ImplicitConversionSequence::Worse; 3481 3482 // Objective-C++: If one interface is more specific than the 3483 // other, it is the better one. 3484 const ObjCObjectPointerType* FromObjCPtr1 3485 = FromType1->getAs<ObjCObjectPointerType>(); 3486 const ObjCObjectPointerType* FromObjCPtr2 3487 = FromType2->getAs<ObjCObjectPointerType>(); 3488 if (FromObjCPtr1 && FromObjCPtr2) { 3489 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 3490 FromObjCPtr2); 3491 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 3492 FromObjCPtr1); 3493 if (AssignLeft != AssignRight) { 3494 return AssignLeft? ImplicitConversionSequence::Better 3495 : ImplicitConversionSequence::Worse; 3496 } 3497 } 3498 } 3499 3500 // Compare based on qualification conversions (C++ 13.3.3.2p3, 3501 // bullet 3). 3502 if (ImplicitConversionSequence::CompareKind QualCK 3503 = CompareQualificationConversions(S, SCS1, SCS2)) 3504 return QualCK; 3505 3506 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 3507 // Check for a better reference binding based on the kind of bindings. 3508 if (isBetterReferenceBindingKind(SCS1, SCS2)) 3509 return ImplicitConversionSequence::Better; 3510 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 3511 return ImplicitConversionSequence::Worse; 3512 3513 // C++ [over.ics.rank]p3b4: 3514 // -- S1 and S2 are reference bindings (8.5.3), and the types to 3515 // which the references refer are the same type except for 3516 // top-level cv-qualifiers, and the type to which the reference 3517 // initialized by S2 refers is more cv-qualified than the type 3518 // to which the reference initialized by S1 refers. 3519 QualType T1 = SCS1.getToType(2); 3520 QualType T2 = SCS2.getToType(2); 3521 T1 = S.Context.getCanonicalType(T1); 3522 T2 = S.Context.getCanonicalType(T2); 3523 Qualifiers T1Quals, T2Quals; 3524 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 3525 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 3526 if (UnqualT1 == UnqualT2) { 3527 // Objective-C++ ARC: If the references refer to objects with different 3528 // lifetimes, prefer bindings that don't change lifetime. 3529 if (SCS1.ObjCLifetimeConversionBinding != 3530 SCS2.ObjCLifetimeConversionBinding) { 3531 return SCS1.ObjCLifetimeConversionBinding 3532 ? ImplicitConversionSequence::Worse 3533 : ImplicitConversionSequence::Better; 3534 } 3535 3536 // If the type is an array type, promote the element qualifiers to the 3537 // type for comparison. 3538 if (isa<ArrayType>(T1) && T1Quals) 3539 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 3540 if (isa<ArrayType>(T2) && T2Quals) 3541 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 3542 if (T2.isMoreQualifiedThan(T1)) 3543 return ImplicitConversionSequence::Better; 3544 else if (T1.isMoreQualifiedThan(T2)) 3545 return ImplicitConversionSequence::Worse; 3546 } 3547 } 3548 3549 // In Microsoft mode, prefer an integral conversion to a 3550 // floating-to-integral conversion if the integral conversion 3551 // is between types of the same size. 3552 // For example: 3553 // void f(float); 3554 // void f(int); 3555 // int main { 3556 // long a; 3557 // f(a); 3558 // } 3559 // Here, MSVC will call f(int) instead of generating a compile error 3560 // as clang will do in standard mode. 3561 if (S.getLangOpts().MicrosoftMode && 3562 SCS1.Second == ICK_Integral_Conversion && 3563 SCS2.Second == ICK_Floating_Integral && 3564 S.Context.getTypeSize(SCS1.getFromType()) == 3565 S.Context.getTypeSize(SCS1.getToType(2))) 3566 return ImplicitConversionSequence::Better; 3567 3568 return ImplicitConversionSequence::Indistinguishable; 3569} 3570 3571/// CompareQualificationConversions - Compares two standard conversion 3572/// sequences to determine whether they can be ranked based on their 3573/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 3574ImplicitConversionSequence::CompareKind 3575CompareQualificationConversions(Sema &S, 3576 const StandardConversionSequence& SCS1, 3577 const StandardConversionSequence& SCS2) { 3578 // C++ 13.3.3.2p3: 3579 // -- S1 and S2 differ only in their qualification conversion and 3580 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 3581 // cv-qualification signature of type T1 is a proper subset of 3582 // the cv-qualification signature of type T2, and S1 is not the 3583 // deprecated string literal array-to-pointer conversion (4.2). 3584 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 3585 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 3586 return ImplicitConversionSequence::Indistinguishable; 3587 3588 // FIXME: the example in the standard doesn't use a qualification 3589 // conversion (!) 3590 QualType T1 = SCS1.getToType(2); 3591 QualType T2 = SCS2.getToType(2); 3592 T1 = S.Context.getCanonicalType(T1); 3593 T2 = S.Context.getCanonicalType(T2); 3594 Qualifiers T1Quals, T2Quals; 3595 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 3596 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 3597 3598 // If the types are the same, we won't learn anything by unwrapped 3599 // them. 3600 if (UnqualT1 == UnqualT2) 3601 return ImplicitConversionSequence::Indistinguishable; 3602 3603 // If the type is an array type, promote the element qualifiers to the type 3604 // for comparison. 3605 if (isa<ArrayType>(T1) && T1Quals) 3606 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 3607 if (isa<ArrayType>(T2) && T2Quals) 3608 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 3609 3610 ImplicitConversionSequence::CompareKind Result 3611 = ImplicitConversionSequence::Indistinguishable; 3612 3613 // Objective-C++ ARC: 3614 // Prefer qualification conversions not involving a change in lifetime 3615 // to qualification conversions that do not change lifetime. 3616 if (SCS1.QualificationIncludesObjCLifetime != 3617 SCS2.QualificationIncludesObjCLifetime) { 3618 Result = SCS1.QualificationIncludesObjCLifetime 3619 ? ImplicitConversionSequence::Worse 3620 : ImplicitConversionSequence::Better; 3621 } 3622 3623 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 3624 // Within each iteration of the loop, we check the qualifiers to 3625 // determine if this still looks like a qualification 3626 // conversion. Then, if all is well, we unwrap one more level of 3627 // pointers or pointers-to-members and do it all again 3628 // until there are no more pointers or pointers-to-members left 3629 // to unwrap. This essentially mimics what 3630 // IsQualificationConversion does, but here we're checking for a 3631 // strict subset of qualifiers. 3632 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 3633 // The qualifiers are the same, so this doesn't tell us anything 3634 // about how the sequences rank. 3635 ; 3636 else if (T2.isMoreQualifiedThan(T1)) { 3637 // T1 has fewer qualifiers, so it could be the better sequence. 3638 if (Result == ImplicitConversionSequence::Worse) 3639 // Neither has qualifiers that are a subset of the other's 3640 // qualifiers. 3641 return ImplicitConversionSequence::Indistinguishable; 3642 3643 Result = ImplicitConversionSequence::Better; 3644 } else if (T1.isMoreQualifiedThan(T2)) { 3645 // T2 has fewer qualifiers, so it could be the better sequence. 3646 if (Result == ImplicitConversionSequence::Better) 3647 // Neither has qualifiers that are a subset of the other's 3648 // qualifiers. 3649 return ImplicitConversionSequence::Indistinguishable; 3650 3651 Result = ImplicitConversionSequence::Worse; 3652 } else { 3653 // Qualifiers are disjoint. 3654 return ImplicitConversionSequence::Indistinguishable; 3655 } 3656 3657 // If the types after this point are equivalent, we're done. 3658 if (S.Context.hasSameUnqualifiedType(T1, T2)) 3659 break; 3660 } 3661 3662 // Check that the winning standard conversion sequence isn't using 3663 // the deprecated string literal array to pointer conversion. 3664 switch (Result) { 3665 case ImplicitConversionSequence::Better: 3666 if (SCS1.DeprecatedStringLiteralToCharPtr) 3667 Result = ImplicitConversionSequence::Indistinguishable; 3668 break; 3669 3670 case ImplicitConversionSequence::Indistinguishable: 3671 break; 3672 3673 case ImplicitConversionSequence::Worse: 3674 if (SCS2.DeprecatedStringLiteralToCharPtr) 3675 Result = ImplicitConversionSequence::Indistinguishable; 3676 break; 3677 } 3678 3679 return Result; 3680} 3681 3682/// CompareDerivedToBaseConversions - Compares two standard conversion 3683/// sequences to determine whether they can be ranked based on their 3684/// various kinds of derived-to-base conversions (C++ 3685/// [over.ics.rank]p4b3). As part of these checks, we also look at 3686/// conversions between Objective-C interface types. 3687ImplicitConversionSequence::CompareKind 3688CompareDerivedToBaseConversions(Sema &S, 3689 const StandardConversionSequence& SCS1, 3690 const StandardConversionSequence& SCS2) { 3691 QualType FromType1 = SCS1.getFromType(); 3692 QualType ToType1 = SCS1.getToType(1); 3693 QualType FromType2 = SCS2.getFromType(); 3694 QualType ToType2 = SCS2.getToType(1); 3695 3696 // Adjust the types we're converting from via the array-to-pointer 3697 // conversion, if we need to. 3698 if (SCS1.First == ICK_Array_To_Pointer) 3699 FromType1 = S.Context.getArrayDecayedType(FromType1); 3700 if (SCS2.First == ICK_Array_To_Pointer) 3701 FromType2 = S.Context.getArrayDecayedType(FromType2); 3702 3703 // Canonicalize all of the types. 3704 FromType1 = S.Context.getCanonicalType(FromType1); 3705 ToType1 = S.Context.getCanonicalType(ToType1); 3706 FromType2 = S.Context.getCanonicalType(FromType2); 3707 ToType2 = S.Context.getCanonicalType(ToType2); 3708 3709 // C++ [over.ics.rank]p4b3: 3710 // 3711 // If class B is derived directly or indirectly from class A and 3712 // class C is derived directly or indirectly from B, 3713 // 3714 // Compare based on pointer conversions. 3715 if (SCS1.Second == ICK_Pointer_Conversion && 3716 SCS2.Second == ICK_Pointer_Conversion && 3717 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 3718 FromType1->isPointerType() && FromType2->isPointerType() && 3719 ToType1->isPointerType() && ToType2->isPointerType()) { 3720 QualType FromPointee1 3721 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3722 QualType ToPointee1 3723 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3724 QualType FromPointee2 3725 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3726 QualType ToPointee2 3727 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3728 3729 // -- conversion of C* to B* is better than conversion of C* to A*, 3730 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3731 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3732 return ImplicitConversionSequence::Better; 3733 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3734 return ImplicitConversionSequence::Worse; 3735 } 3736 3737 // -- conversion of B* to A* is better than conversion of C* to A*, 3738 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 3739 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3740 return ImplicitConversionSequence::Better; 3741 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3742 return ImplicitConversionSequence::Worse; 3743 } 3744 } else if (SCS1.Second == ICK_Pointer_Conversion && 3745 SCS2.Second == ICK_Pointer_Conversion) { 3746 const ObjCObjectPointerType *FromPtr1 3747 = FromType1->getAs<ObjCObjectPointerType>(); 3748 const ObjCObjectPointerType *FromPtr2 3749 = FromType2->getAs<ObjCObjectPointerType>(); 3750 const ObjCObjectPointerType *ToPtr1 3751 = ToType1->getAs<ObjCObjectPointerType>(); 3752 const ObjCObjectPointerType *ToPtr2 3753 = ToType2->getAs<ObjCObjectPointerType>(); 3754 3755 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 3756 // Apply the same conversion ranking rules for Objective-C pointer types 3757 // that we do for C++ pointers to class types. However, we employ the 3758 // Objective-C pseudo-subtyping relationship used for assignment of 3759 // Objective-C pointer types. 3760 bool FromAssignLeft 3761 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 3762 bool FromAssignRight 3763 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 3764 bool ToAssignLeft 3765 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 3766 bool ToAssignRight 3767 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 3768 3769 // A conversion to an a non-id object pointer type or qualified 'id' 3770 // type is better than a conversion to 'id'. 3771 if (ToPtr1->isObjCIdType() && 3772 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 3773 return ImplicitConversionSequence::Worse; 3774 if (ToPtr2->isObjCIdType() && 3775 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 3776 return ImplicitConversionSequence::Better; 3777 3778 // A conversion to a non-id object pointer type is better than a 3779 // conversion to a qualified 'id' type 3780 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 3781 return ImplicitConversionSequence::Worse; 3782 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 3783 return ImplicitConversionSequence::Better; 3784 3785 // A conversion to an a non-Class object pointer type or qualified 'Class' 3786 // type is better than a conversion to 'Class'. 3787 if (ToPtr1->isObjCClassType() && 3788 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 3789 return ImplicitConversionSequence::Worse; 3790 if (ToPtr2->isObjCClassType() && 3791 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 3792 return ImplicitConversionSequence::Better; 3793 3794 // A conversion to a non-Class object pointer type is better than a 3795 // conversion to a qualified 'Class' type. 3796 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 3797 return ImplicitConversionSequence::Worse; 3798 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 3799 return ImplicitConversionSequence::Better; 3800 3801 // -- "conversion of C* to B* is better than conversion of C* to A*," 3802 if (S.Context.hasSameType(FromType1, FromType2) && 3803 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 3804 (ToAssignLeft != ToAssignRight)) 3805 return ToAssignLeft? ImplicitConversionSequence::Worse 3806 : ImplicitConversionSequence::Better; 3807 3808 // -- "conversion of B* to A* is better than conversion of C* to A*," 3809 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 3810 (FromAssignLeft != FromAssignRight)) 3811 return FromAssignLeft? ImplicitConversionSequence::Better 3812 : ImplicitConversionSequence::Worse; 3813 } 3814 } 3815 3816 // Ranking of member-pointer types. 3817 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 3818 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 3819 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 3820 const MemberPointerType * FromMemPointer1 = 3821 FromType1->getAs<MemberPointerType>(); 3822 const MemberPointerType * ToMemPointer1 = 3823 ToType1->getAs<MemberPointerType>(); 3824 const MemberPointerType * FromMemPointer2 = 3825 FromType2->getAs<MemberPointerType>(); 3826 const MemberPointerType * ToMemPointer2 = 3827 ToType2->getAs<MemberPointerType>(); 3828 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 3829 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 3830 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 3831 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 3832 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 3833 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 3834 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 3835 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 3836 // conversion of A::* to B::* is better than conversion of A::* to C::*, 3837 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3838 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3839 return ImplicitConversionSequence::Worse; 3840 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3841 return ImplicitConversionSequence::Better; 3842 } 3843 // conversion of B::* to C::* is better than conversion of A::* to C::* 3844 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 3845 if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3846 return ImplicitConversionSequence::Better; 3847 else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3848 return ImplicitConversionSequence::Worse; 3849 } 3850 } 3851 3852 if (SCS1.Second == ICK_Derived_To_Base) { 3853 // -- conversion of C to B is better than conversion of C to A, 3854 // -- binding of an expression of type C to a reference of type 3855 // B& is better than binding an expression of type C to a 3856 // reference of type A&, 3857 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3858 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3859 if (S.IsDerivedFrom(ToType1, ToType2)) 3860 return ImplicitConversionSequence::Better; 3861 else if (S.IsDerivedFrom(ToType2, ToType1)) 3862 return ImplicitConversionSequence::Worse; 3863 } 3864 3865 // -- conversion of B to A is better than conversion of C to A. 3866 // -- binding of an expression of type B to a reference of type 3867 // A& is better than binding an expression of type C to a 3868 // reference of type A&, 3869 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3870 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3871 if (S.IsDerivedFrom(FromType2, FromType1)) 3872 return ImplicitConversionSequence::Better; 3873 else if (S.IsDerivedFrom(FromType1, FromType2)) 3874 return ImplicitConversionSequence::Worse; 3875 } 3876 } 3877 3878 return ImplicitConversionSequence::Indistinguishable; 3879} 3880 3881/// CompareReferenceRelationship - Compare the two types T1 and T2 to 3882/// determine whether they are reference-related, 3883/// reference-compatible, reference-compatible with added 3884/// qualification, or incompatible, for use in C++ initialization by 3885/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 3886/// type, and the first type (T1) is the pointee type of the reference 3887/// type being initialized. 3888Sema::ReferenceCompareResult 3889Sema::CompareReferenceRelationship(SourceLocation Loc, 3890 QualType OrigT1, QualType OrigT2, 3891 bool &DerivedToBase, 3892 bool &ObjCConversion, 3893 bool &ObjCLifetimeConversion) { 3894 assert(!OrigT1->isReferenceType() && 3895 "T1 must be the pointee type of the reference type"); 3896 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 3897 3898 QualType T1 = Context.getCanonicalType(OrigT1); 3899 QualType T2 = Context.getCanonicalType(OrigT2); 3900 Qualifiers T1Quals, T2Quals; 3901 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 3902 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 3903 3904 // C++ [dcl.init.ref]p4: 3905 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 3906 // reference-related to "cv2 T2" if T1 is the same type as T2, or 3907 // T1 is a base class of T2. 3908 DerivedToBase = false; 3909 ObjCConversion = false; 3910 ObjCLifetimeConversion = false; 3911 if (UnqualT1 == UnqualT2) { 3912 // Nothing to do. 3913 } else if (!RequireCompleteType(Loc, OrigT2, 0) && 3914 IsDerivedFrom(UnqualT2, UnqualT1)) 3915 DerivedToBase = true; 3916 else if (UnqualT1->isObjCObjectOrInterfaceType() && 3917 UnqualT2->isObjCObjectOrInterfaceType() && 3918 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 3919 ObjCConversion = true; 3920 else 3921 return Ref_Incompatible; 3922 3923 // At this point, we know that T1 and T2 are reference-related (at 3924 // least). 3925 3926 // If the type is an array type, promote the element qualifiers to the type 3927 // for comparison. 3928 if (isa<ArrayType>(T1) && T1Quals) 3929 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 3930 if (isa<ArrayType>(T2) && T2Quals) 3931 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 3932 3933 // C++ [dcl.init.ref]p4: 3934 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 3935 // reference-related to T2 and cv1 is the same cv-qualification 3936 // as, or greater cv-qualification than, cv2. For purposes of 3937 // overload resolution, cases for which cv1 is greater 3938 // cv-qualification than cv2 are identified as 3939 // reference-compatible with added qualification (see 13.3.3.2). 3940 // 3941 // Note that we also require equivalence of Objective-C GC and address-space 3942 // qualifiers when performing these computations, so that e.g., an int in 3943 // address space 1 is not reference-compatible with an int in address 3944 // space 2. 3945 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() && 3946 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) { 3947 T1Quals.removeObjCLifetime(); 3948 T2Quals.removeObjCLifetime(); 3949 ObjCLifetimeConversion = true; 3950 } 3951 3952 if (T1Quals == T2Quals) 3953 return Ref_Compatible; 3954 else if (T1Quals.compatiblyIncludes(T2Quals)) 3955 return Ref_Compatible_With_Added_Qualification; 3956 else 3957 return Ref_Related; 3958} 3959 3960/// \brief Look for a user-defined conversion to an value reference-compatible 3961/// with DeclType. Return true if something definite is found. 3962static bool 3963FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 3964 QualType DeclType, SourceLocation DeclLoc, 3965 Expr *Init, QualType T2, bool AllowRvalues, 3966 bool AllowExplicit) { 3967 assert(T2->isRecordType() && "Can only find conversions of record types."); 3968 CXXRecordDecl *T2RecordDecl 3969 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 3970 3971 OverloadCandidateSet CandidateSet(DeclLoc); 3972 std::pair<CXXRecordDecl::conversion_iterator, 3973 CXXRecordDecl::conversion_iterator> 3974 Conversions = T2RecordDecl->getVisibleConversionFunctions(); 3975 for (CXXRecordDecl::conversion_iterator 3976 I = Conversions.first, E = Conversions.second; I != E; ++I) { 3977 NamedDecl *D = *I; 3978 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3979 if (isa<UsingShadowDecl>(D)) 3980 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3981 3982 FunctionTemplateDecl *ConvTemplate 3983 = dyn_cast<FunctionTemplateDecl>(D); 3984 CXXConversionDecl *Conv; 3985 if (ConvTemplate) 3986 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3987 else 3988 Conv = cast<CXXConversionDecl>(D); 3989 3990 // If this is an explicit conversion, and we're not allowed to consider 3991 // explicit conversions, skip it. 3992 if (!AllowExplicit && Conv->isExplicit()) 3993 continue; 3994 3995 if (AllowRvalues) { 3996 bool DerivedToBase = false; 3997 bool ObjCConversion = false; 3998 bool ObjCLifetimeConversion = false; 3999 4000 // If we are initializing an rvalue reference, don't permit conversion 4001 // functions that return lvalues. 4002 if (!ConvTemplate && DeclType->isRValueReferenceType()) { 4003 const ReferenceType *RefType 4004 = Conv->getConversionType()->getAs<LValueReferenceType>(); 4005 if (RefType && !RefType->getPointeeType()->isFunctionType()) 4006 continue; 4007 } 4008 4009 if (!ConvTemplate && 4010 S.CompareReferenceRelationship( 4011 DeclLoc, 4012 Conv->getConversionType().getNonReferenceType() 4013 .getUnqualifiedType(), 4014 DeclType.getNonReferenceType().getUnqualifiedType(), 4015 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) == 4016 Sema::Ref_Incompatible) 4017 continue; 4018 } else { 4019 // If the conversion function doesn't return a reference type, 4020 // it can't be considered for this conversion. An rvalue reference 4021 // is only acceptable if its referencee is a function type. 4022 4023 const ReferenceType *RefType = 4024 Conv->getConversionType()->getAs<ReferenceType>(); 4025 if (!RefType || 4026 (!RefType->isLValueReferenceType() && 4027 !RefType->getPointeeType()->isFunctionType())) 4028 continue; 4029 } 4030 4031 if (ConvTemplate) 4032 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 4033 Init, DeclType, CandidateSet); 4034 else 4035 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 4036 DeclType, CandidateSet); 4037 } 4038 4039 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4040 4041 OverloadCandidateSet::iterator Best; 4042 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 4043 case OR_Success: 4044 // C++ [over.ics.ref]p1: 4045 // 4046 // [...] If the parameter binds directly to the result of 4047 // applying a conversion function to the argument 4048 // expression, the implicit conversion sequence is a 4049 // user-defined conversion sequence (13.3.3.1.2), with the 4050 // second standard conversion sequence either an identity 4051 // conversion or, if the conversion function returns an 4052 // entity of a type that is a derived class of the parameter 4053 // type, a derived-to-base Conversion. 4054 if (!Best->FinalConversion.DirectBinding) 4055 return false; 4056 4057 ICS.setUserDefined(); 4058 ICS.UserDefined.Before = Best->Conversions[0].Standard; 4059 ICS.UserDefined.After = Best->FinalConversion; 4060 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; 4061 ICS.UserDefined.ConversionFunction = Best->Function; 4062 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 4063 ICS.UserDefined.EllipsisConversion = false; 4064 assert(ICS.UserDefined.After.ReferenceBinding && 4065 ICS.UserDefined.After.DirectBinding && 4066 "Expected a direct reference binding!"); 4067 return true; 4068 4069 case OR_Ambiguous: 4070 ICS.setAmbiguous(); 4071 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4072 Cand != CandidateSet.end(); ++Cand) 4073 if (Cand->Viable) 4074 ICS.Ambiguous.addConversion(Cand->Function); 4075 return true; 4076 4077 case OR_No_Viable_Function: 4078 case OR_Deleted: 4079 // There was no suitable conversion, or we found a deleted 4080 // conversion; continue with other checks. 4081 return false; 4082 } 4083 4084 llvm_unreachable("Invalid OverloadResult!"); 4085} 4086 4087/// \brief Compute an implicit conversion sequence for reference 4088/// initialization. 4089static ImplicitConversionSequence 4090TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, 4091 SourceLocation DeclLoc, 4092 bool SuppressUserConversions, 4093 bool AllowExplicit) { 4094 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 4095 4096 // Most paths end in a failed conversion. 4097 ImplicitConversionSequence ICS; 4098 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4099 4100 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 4101 QualType T2 = Init->getType(); 4102 4103 // If the initializer is the address of an overloaded function, try 4104 // to resolve the overloaded function. If all goes well, T2 is the 4105 // type of the resulting function. 4106 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4107 DeclAccessPair Found; 4108 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 4109 false, Found)) 4110 T2 = Fn->getType(); 4111 } 4112 4113 // Compute some basic properties of the types and the initializer. 4114 bool isRValRef = DeclType->isRValueReferenceType(); 4115 bool DerivedToBase = false; 4116 bool ObjCConversion = false; 4117 bool ObjCLifetimeConversion = false; 4118 Expr::Classification InitCategory = Init->Classify(S.Context); 4119 Sema::ReferenceCompareResult RefRelationship 4120 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 4121 ObjCConversion, ObjCLifetimeConversion); 4122 4123 4124 // C++0x [dcl.init.ref]p5: 4125 // A reference to type "cv1 T1" is initialized by an expression 4126 // of type "cv2 T2" as follows: 4127 4128 // -- If reference is an lvalue reference and the initializer expression 4129 if (!isRValRef) { 4130 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 4131 // reference-compatible with "cv2 T2," or 4132 // 4133 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 4134 if (InitCategory.isLValue() && 4135 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 4136 // C++ [over.ics.ref]p1: 4137 // When a parameter of reference type binds directly (8.5.3) 4138 // to an argument expression, the implicit conversion sequence 4139 // is the identity conversion, unless the argument expression 4140 // has a type that is a derived class of the parameter type, 4141 // in which case the implicit conversion sequence is a 4142 // derived-to-base Conversion (13.3.3.1). 4143 ICS.setStandard(); 4144 ICS.Standard.First = ICK_Identity; 4145 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 4146 : ObjCConversion? ICK_Compatible_Conversion 4147 : ICK_Identity; 4148 ICS.Standard.Third = ICK_Identity; 4149 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 4150 ICS.Standard.setToType(0, T2); 4151 ICS.Standard.setToType(1, T1); 4152 ICS.Standard.setToType(2, T1); 4153 ICS.Standard.ReferenceBinding = true; 4154 ICS.Standard.DirectBinding = true; 4155 ICS.Standard.IsLvalueReference = !isRValRef; 4156 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4157 ICS.Standard.BindsToRvalue = false; 4158 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4159 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 4160 ICS.Standard.CopyConstructor = 0; 4161 4162 // Nothing more to do: the inaccessibility/ambiguity check for 4163 // derived-to-base conversions is suppressed when we're 4164 // computing the implicit conversion sequence (C++ 4165 // [over.best.ics]p2). 4166 return ICS; 4167 } 4168 4169 // -- has a class type (i.e., T2 is a class type), where T1 is 4170 // not reference-related to T2, and can be implicitly 4171 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 4172 // is reference-compatible with "cv3 T3" 92) (this 4173 // conversion is selected by enumerating the applicable 4174 // conversion functions (13.3.1.6) and choosing the best 4175 // one through overload resolution (13.3)), 4176 if (!SuppressUserConversions && T2->isRecordType() && 4177 !S.RequireCompleteType(DeclLoc, T2, 0) && 4178 RefRelationship == Sema::Ref_Incompatible) { 4179 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4180 Init, T2, /*AllowRvalues=*/false, 4181 AllowExplicit)) 4182 return ICS; 4183 } 4184 } 4185 4186 // -- Otherwise, the reference shall be an lvalue reference to a 4187 // non-volatile const type (i.e., cv1 shall be const), or the reference 4188 // shall be an rvalue reference. 4189 // 4190 // We actually handle one oddity of C++ [over.ics.ref] at this 4191 // point, which is that, due to p2 (which short-circuits reference 4192 // binding by only attempting a simple conversion for non-direct 4193 // bindings) and p3's strange wording, we allow a const volatile 4194 // reference to bind to an rvalue. Hence the check for the presence 4195 // of "const" rather than checking for "const" being the only 4196 // qualifier. 4197 // This is also the point where rvalue references and lvalue inits no longer 4198 // go together. 4199 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) 4200 return ICS; 4201 4202 // -- If the initializer expression 4203 // 4204 // -- is an xvalue, class prvalue, array prvalue or function 4205 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 4206 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification && 4207 (InitCategory.isXValue() || 4208 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || 4209 (InitCategory.isLValue() && T2->isFunctionType()))) { 4210 ICS.setStandard(); 4211 ICS.Standard.First = ICK_Identity; 4212 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 4213 : ObjCConversion? ICK_Compatible_Conversion 4214 : ICK_Identity; 4215 ICS.Standard.Third = ICK_Identity; 4216 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 4217 ICS.Standard.setToType(0, T2); 4218 ICS.Standard.setToType(1, T1); 4219 ICS.Standard.setToType(2, T1); 4220 ICS.Standard.ReferenceBinding = true; 4221 // In C++0x, this is always a direct binding. In C++98/03, it's a direct 4222 // binding unless we're binding to a class prvalue. 4223 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 4224 // allow the use of rvalue references in C++98/03 for the benefit of 4225 // standard library implementors; therefore, we need the xvalue check here. 4226 ICS.Standard.DirectBinding = 4227 S.getLangOpts().CPlusPlus11 || 4228 (InitCategory.isPRValue() && !T2->isRecordType()); 4229 ICS.Standard.IsLvalueReference = !isRValRef; 4230 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4231 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 4232 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4233 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 4234 ICS.Standard.CopyConstructor = 0; 4235 return ICS; 4236 } 4237 4238 // -- has a class type (i.e., T2 is a class type), where T1 is not 4239 // reference-related to T2, and can be implicitly converted to 4240 // an xvalue, class prvalue, or function lvalue of type 4241 // "cv3 T3", where "cv1 T1" is reference-compatible with 4242 // "cv3 T3", 4243 // 4244 // then the reference is bound to the value of the initializer 4245 // expression in the first case and to the result of the conversion 4246 // in the second case (or, in either case, to an appropriate base 4247 // class subobject). 4248 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4249 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && 4250 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4251 Init, T2, /*AllowRvalues=*/true, 4252 AllowExplicit)) { 4253 // In the second case, if the reference is an rvalue reference 4254 // and the second standard conversion sequence of the 4255 // user-defined conversion sequence includes an lvalue-to-rvalue 4256 // conversion, the program is ill-formed. 4257 if (ICS.isUserDefined() && isRValRef && 4258 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 4259 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4260 4261 return ICS; 4262 } 4263 4264 // -- Otherwise, a temporary of type "cv1 T1" is created and 4265 // initialized from the initializer expression using the 4266 // rules for a non-reference copy initialization (8.5). The 4267 // reference is then bound to the temporary. If T1 is 4268 // reference-related to T2, cv1 must be the same 4269 // cv-qualification as, or greater cv-qualification than, 4270 // cv2; otherwise, the program is ill-formed. 4271 if (RefRelationship == Sema::Ref_Related) { 4272 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 4273 // we would be reference-compatible or reference-compatible with 4274 // added qualification. But that wasn't the case, so the reference 4275 // initialization fails. 4276 // 4277 // Note that we only want to check address spaces and cvr-qualifiers here. 4278 // ObjC GC and lifetime qualifiers aren't important. 4279 Qualifiers T1Quals = T1.getQualifiers(); 4280 Qualifiers T2Quals = T2.getQualifiers(); 4281 T1Quals.removeObjCGCAttr(); 4282 T1Quals.removeObjCLifetime(); 4283 T2Quals.removeObjCGCAttr(); 4284 T2Quals.removeObjCLifetime(); 4285 if (!T1Quals.compatiblyIncludes(T2Quals)) 4286 return ICS; 4287 } 4288 4289 // If at least one of the types is a class type, the types are not 4290 // related, and we aren't allowed any user conversions, the 4291 // reference binding fails. This case is important for breaking 4292 // recursion, since TryImplicitConversion below will attempt to 4293 // create a temporary through the use of a copy constructor. 4294 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4295 (T1->isRecordType() || T2->isRecordType())) 4296 return ICS; 4297 4298 // If T1 is reference-related to T2 and the reference is an rvalue 4299 // reference, the initializer expression shall not be an lvalue. 4300 if (RefRelationship >= Sema::Ref_Related && 4301 isRValRef && Init->Classify(S.Context).isLValue()) 4302 return ICS; 4303 4304 // C++ [over.ics.ref]p2: 4305 // When a parameter of reference type is not bound directly to 4306 // an argument expression, the conversion sequence is the one 4307 // required to convert the argument expression to the 4308 // underlying type of the reference according to 4309 // 13.3.3.1. Conceptually, this conversion sequence corresponds 4310 // to copy-initializing a temporary of the underlying type with 4311 // the argument expression. Any difference in top-level 4312 // cv-qualification is subsumed by the initialization itself 4313 // and does not constitute a conversion. 4314 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 4315 /*AllowExplicit=*/false, 4316 /*InOverloadResolution=*/false, 4317 /*CStyle=*/false, 4318 /*AllowObjCWritebackConversion=*/false); 4319 4320 // Of course, that's still a reference binding. 4321 if (ICS.isStandard()) { 4322 ICS.Standard.ReferenceBinding = true; 4323 ICS.Standard.IsLvalueReference = !isRValRef; 4324 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4325 ICS.Standard.BindsToRvalue = true; 4326 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4327 ICS.Standard.ObjCLifetimeConversionBinding = false; 4328 } else if (ICS.isUserDefined()) { 4329 // Don't allow rvalue references to bind to lvalues. 4330 if (DeclType->isRValueReferenceType()) { 4331 if (const ReferenceType *RefType 4332 = ICS.UserDefined.ConversionFunction->getResultType() 4333 ->getAs<LValueReferenceType>()) { 4334 if (!RefType->getPointeeType()->isFunctionType()) { 4335 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, 4336 DeclType); 4337 return ICS; 4338 } 4339 } 4340 } 4341 4342 ICS.UserDefined.After.ReferenceBinding = true; 4343 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 4344 ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType(); 4345 ICS.UserDefined.After.BindsToRvalue = true; 4346 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4347 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 4348 } 4349 4350 return ICS; 4351} 4352 4353static ImplicitConversionSequence 4354TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4355 bool SuppressUserConversions, 4356 bool InOverloadResolution, 4357 bool AllowObjCWritebackConversion, 4358 bool AllowExplicit = false); 4359 4360/// TryListConversion - Try to copy-initialize a value of type ToType from the 4361/// initializer list From. 4362static ImplicitConversionSequence 4363TryListConversion(Sema &S, InitListExpr *From, QualType ToType, 4364 bool SuppressUserConversions, 4365 bool InOverloadResolution, 4366 bool AllowObjCWritebackConversion) { 4367 // C++11 [over.ics.list]p1: 4368 // When an argument is an initializer list, it is not an expression and 4369 // special rules apply for converting it to a parameter type. 4370 4371 ImplicitConversionSequence Result; 4372 Result.setBad(BadConversionSequence::no_conversion, From, ToType); 4373 Result.setListInitializationSequence(); 4374 4375 // We need a complete type for what follows. Incomplete types can never be 4376 // initialized from init lists. 4377 if (S.RequireCompleteType(From->getLocStart(), ToType, 0)) 4378 return Result; 4379 4380 // C++11 [over.ics.list]p2: 4381 // If the parameter type is std::initializer_list<X> or "array of X" and 4382 // all the elements can be implicitly converted to X, the implicit 4383 // conversion sequence is the worst conversion necessary to convert an 4384 // element of the list to X. 4385 bool toStdInitializerList = false; 4386 QualType X; 4387 if (ToType->isArrayType()) 4388 X = S.Context.getAsArrayType(ToType)->getElementType(); 4389 else 4390 toStdInitializerList = S.isStdInitializerList(ToType, &X); 4391 if (!X.isNull()) { 4392 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { 4393 Expr *Init = From->getInit(i); 4394 ImplicitConversionSequence ICS = 4395 TryCopyInitialization(S, Init, X, SuppressUserConversions, 4396 InOverloadResolution, 4397 AllowObjCWritebackConversion); 4398 // If a single element isn't convertible, fail. 4399 if (ICS.isBad()) { 4400 Result = ICS; 4401 break; 4402 } 4403 // Otherwise, look for the worst conversion. 4404 if (Result.isBad() || 4405 CompareImplicitConversionSequences(S, ICS, Result) == 4406 ImplicitConversionSequence::Worse) 4407 Result = ICS; 4408 } 4409 4410 // For an empty list, we won't have computed any conversion sequence. 4411 // Introduce the identity conversion sequence. 4412 if (From->getNumInits() == 0) { 4413 Result.setStandard(); 4414 Result.Standard.setAsIdentityConversion(); 4415 Result.Standard.setFromType(ToType); 4416 Result.Standard.setAllToTypes(ToType); 4417 } 4418 4419 Result.setListInitializationSequence(); 4420 Result.setStdInitializerListElement(toStdInitializerList); 4421 return Result; 4422 } 4423 4424 // C++11 [over.ics.list]p3: 4425 // Otherwise, if the parameter is a non-aggregate class X and overload 4426 // resolution chooses a single best constructor [...] the implicit 4427 // conversion sequence is a user-defined conversion sequence. If multiple 4428 // constructors are viable but none is better than the others, the 4429 // implicit conversion sequence is a user-defined conversion sequence. 4430 if (ToType->isRecordType() && !ToType->isAggregateType()) { 4431 // This function can deal with initializer lists. 4432 Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 4433 /*AllowExplicit=*/false, 4434 InOverloadResolution, /*CStyle=*/false, 4435 AllowObjCWritebackConversion); 4436 Result.setListInitializationSequence(); 4437 return Result; 4438 } 4439 4440 // C++11 [over.ics.list]p4: 4441 // Otherwise, if the parameter has an aggregate type which can be 4442 // initialized from the initializer list [...] the implicit conversion 4443 // sequence is a user-defined conversion sequence. 4444 if (ToType->isAggregateType()) { 4445 // Type is an aggregate, argument is an init list. At this point it comes 4446 // down to checking whether the initialization works. 4447 // FIXME: Find out whether this parameter is consumed or not. 4448 InitializedEntity Entity = 4449 InitializedEntity::InitializeParameter(S.Context, ToType, 4450 /*Consumed=*/false); 4451 if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) { 4452 Result.setUserDefined(); 4453 Result.UserDefined.Before.setAsIdentityConversion(); 4454 // Initializer lists don't have a type. 4455 Result.UserDefined.Before.setFromType(QualType()); 4456 Result.UserDefined.Before.setAllToTypes(QualType()); 4457 4458 Result.UserDefined.After.setAsIdentityConversion(); 4459 Result.UserDefined.After.setFromType(ToType); 4460 Result.UserDefined.After.setAllToTypes(ToType); 4461 Result.UserDefined.ConversionFunction = 0; 4462 } 4463 return Result; 4464 } 4465 4466 // C++11 [over.ics.list]p5: 4467 // Otherwise, if the parameter is a reference, see 13.3.3.1.4. 4468 if (ToType->isReferenceType()) { 4469 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't 4470 // mention initializer lists in any way. So we go by what list- 4471 // initialization would do and try to extrapolate from that. 4472 4473 QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType(); 4474 4475 // If the initializer list has a single element that is reference-related 4476 // to the parameter type, we initialize the reference from that. 4477 if (From->getNumInits() == 1) { 4478 Expr *Init = From->getInit(0); 4479 4480 QualType T2 = Init->getType(); 4481 4482 // If the initializer is the address of an overloaded function, try 4483 // to resolve the overloaded function. If all goes well, T2 is the 4484 // type of the resulting function. 4485 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4486 DeclAccessPair Found; 4487 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( 4488 Init, ToType, false, Found)) 4489 T2 = Fn->getType(); 4490 } 4491 4492 // Compute some basic properties of the types and the initializer. 4493 bool dummy1 = false; 4494 bool dummy2 = false; 4495 bool dummy3 = false; 4496 Sema::ReferenceCompareResult RefRelationship 4497 = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1, 4498 dummy2, dummy3); 4499 4500 if (RefRelationship >= Sema::Ref_Related) 4501 return TryReferenceInit(S, Init, ToType, 4502 /*FIXME:*/From->getLocStart(), 4503 SuppressUserConversions, 4504 /*AllowExplicit=*/false); 4505 } 4506 4507 // Otherwise, we bind the reference to a temporary created from the 4508 // initializer list. 4509 Result = TryListConversion(S, From, T1, SuppressUserConversions, 4510 InOverloadResolution, 4511 AllowObjCWritebackConversion); 4512 if (Result.isFailure()) 4513 return Result; 4514 assert(!Result.isEllipsis() && 4515 "Sub-initialization cannot result in ellipsis conversion."); 4516 4517 // Can we even bind to a temporary? 4518 if (ToType->isRValueReferenceType() || 4519 (T1.isConstQualified() && !T1.isVolatileQualified())) { 4520 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : 4521 Result.UserDefined.After; 4522 SCS.ReferenceBinding = true; 4523 SCS.IsLvalueReference = ToType->isLValueReferenceType(); 4524 SCS.BindsToRvalue = true; 4525 SCS.BindsToFunctionLvalue = false; 4526 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4527 SCS.ObjCLifetimeConversionBinding = false; 4528 } else 4529 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, 4530 From, ToType); 4531 return Result; 4532 } 4533 4534 // C++11 [over.ics.list]p6: 4535 // Otherwise, if the parameter type is not a class: 4536 if (!ToType->isRecordType()) { 4537 // - if the initializer list has one element, the implicit conversion 4538 // sequence is the one required to convert the element to the 4539 // parameter type. 4540 unsigned NumInits = From->getNumInits(); 4541 if (NumInits == 1) 4542 Result = TryCopyInitialization(S, From->getInit(0), ToType, 4543 SuppressUserConversions, 4544 InOverloadResolution, 4545 AllowObjCWritebackConversion); 4546 // - if the initializer list has no elements, the implicit conversion 4547 // sequence is the identity conversion. 4548 else if (NumInits == 0) { 4549 Result.setStandard(); 4550 Result.Standard.setAsIdentityConversion(); 4551 Result.Standard.setFromType(ToType); 4552 Result.Standard.setAllToTypes(ToType); 4553 } 4554 Result.setListInitializationSequence(); 4555 return Result; 4556 } 4557 4558 // C++11 [over.ics.list]p7: 4559 // In all cases other than those enumerated above, no conversion is possible 4560 return Result; 4561} 4562 4563/// TryCopyInitialization - Try to copy-initialize a value of type 4564/// ToType from the expression From. Return the implicit conversion 4565/// sequence required to pass this argument, which may be a bad 4566/// conversion sequence (meaning that the argument cannot be passed to 4567/// a parameter of this type). If @p SuppressUserConversions, then we 4568/// do not permit any user-defined conversion sequences. 4569static ImplicitConversionSequence 4570TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4571 bool SuppressUserConversions, 4572 bool InOverloadResolution, 4573 bool AllowObjCWritebackConversion, 4574 bool AllowExplicit) { 4575 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) 4576 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, 4577 InOverloadResolution,AllowObjCWritebackConversion); 4578 4579 if (ToType->isReferenceType()) 4580 return TryReferenceInit(S, From, ToType, 4581 /*FIXME:*/From->getLocStart(), 4582 SuppressUserConversions, 4583 AllowExplicit); 4584 4585 return TryImplicitConversion(S, From, ToType, 4586 SuppressUserConversions, 4587 /*AllowExplicit=*/false, 4588 InOverloadResolution, 4589 /*CStyle=*/false, 4590 AllowObjCWritebackConversion); 4591} 4592 4593static bool TryCopyInitialization(const CanQualType FromQTy, 4594 const CanQualType ToQTy, 4595 Sema &S, 4596 SourceLocation Loc, 4597 ExprValueKind FromVK) { 4598 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 4599 ImplicitConversionSequence ICS = 4600 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 4601 4602 return !ICS.isBad(); 4603} 4604 4605/// TryObjectArgumentInitialization - Try to initialize the object 4606/// parameter of the given member function (@c Method) from the 4607/// expression @p From. 4608static ImplicitConversionSequence 4609TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, 4610 Expr::Classification FromClassification, 4611 CXXMethodDecl *Method, 4612 CXXRecordDecl *ActingContext) { 4613 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 4614 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 4615 // const volatile object. 4616 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 4617 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 4618 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 4619 4620 // Set up the conversion sequence as a "bad" conversion, to allow us 4621 // to exit early. 4622 ImplicitConversionSequence ICS; 4623 4624 // We need to have an object of class type. 4625 QualType FromType = OrigFromType; 4626 if (const PointerType *PT = FromType->getAs<PointerType>()) { 4627 FromType = PT->getPointeeType(); 4628 4629 // When we had a pointer, it's implicitly dereferenced, so we 4630 // better have an lvalue. 4631 assert(FromClassification.isLValue()); 4632 } 4633 4634 assert(FromType->isRecordType()); 4635 4636 // C++0x [over.match.funcs]p4: 4637 // For non-static member functions, the type of the implicit object 4638 // parameter is 4639 // 4640 // - "lvalue reference to cv X" for functions declared without a 4641 // ref-qualifier or with the & ref-qualifier 4642 // - "rvalue reference to cv X" for functions declared with the && 4643 // ref-qualifier 4644 // 4645 // where X is the class of which the function is a member and cv is the 4646 // cv-qualification on the member function declaration. 4647 // 4648 // However, when finding an implicit conversion sequence for the argument, we 4649 // are not allowed to create temporaries or perform user-defined conversions 4650 // (C++ [over.match.funcs]p5). We perform a simplified version of 4651 // reference binding here, that allows class rvalues to bind to 4652 // non-constant references. 4653 4654 // First check the qualifiers. 4655 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 4656 if (ImplicitParamType.getCVRQualifiers() 4657 != FromTypeCanon.getLocalCVRQualifiers() && 4658 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 4659 ICS.setBad(BadConversionSequence::bad_qualifiers, 4660 OrigFromType, ImplicitParamType); 4661 return ICS; 4662 } 4663 4664 // Check that we have either the same type or a derived type. It 4665 // affects the conversion rank. 4666 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 4667 ImplicitConversionKind SecondKind; 4668 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 4669 SecondKind = ICK_Identity; 4670 } else if (S.IsDerivedFrom(FromType, ClassType)) 4671 SecondKind = ICK_Derived_To_Base; 4672 else { 4673 ICS.setBad(BadConversionSequence::unrelated_class, 4674 FromType, ImplicitParamType); 4675 return ICS; 4676 } 4677 4678 // Check the ref-qualifier. 4679 switch (Method->getRefQualifier()) { 4680 case RQ_None: 4681 // Do nothing; we don't care about lvalueness or rvalueness. 4682 break; 4683 4684 case RQ_LValue: 4685 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { 4686 // non-const lvalue reference cannot bind to an rvalue 4687 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 4688 ImplicitParamType); 4689 return ICS; 4690 } 4691 break; 4692 4693 case RQ_RValue: 4694 if (!FromClassification.isRValue()) { 4695 // rvalue reference cannot bind to an lvalue 4696 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 4697 ImplicitParamType); 4698 return ICS; 4699 } 4700 break; 4701 } 4702 4703 // Success. Mark this as a reference binding. 4704 ICS.setStandard(); 4705 ICS.Standard.setAsIdentityConversion(); 4706 ICS.Standard.Second = SecondKind; 4707 ICS.Standard.setFromType(FromType); 4708 ICS.Standard.setAllToTypes(ImplicitParamType); 4709 ICS.Standard.ReferenceBinding = true; 4710 ICS.Standard.DirectBinding = true; 4711 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 4712 ICS.Standard.BindsToFunctionLvalue = false; 4713 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 4714 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 4715 = (Method->getRefQualifier() == RQ_None); 4716 return ICS; 4717} 4718 4719/// PerformObjectArgumentInitialization - Perform initialization of 4720/// the implicit object parameter for the given Method with the given 4721/// expression. 4722ExprResult 4723Sema::PerformObjectArgumentInitialization(Expr *From, 4724 NestedNameSpecifier *Qualifier, 4725 NamedDecl *FoundDecl, 4726 CXXMethodDecl *Method) { 4727 QualType FromRecordType, DestType; 4728 QualType ImplicitParamRecordType = 4729 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 4730 4731 Expr::Classification FromClassification; 4732 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 4733 FromRecordType = PT->getPointeeType(); 4734 DestType = Method->getThisType(Context); 4735 FromClassification = Expr::Classification::makeSimpleLValue(); 4736 } else { 4737 FromRecordType = From->getType(); 4738 DestType = ImplicitParamRecordType; 4739 FromClassification = From->Classify(Context); 4740 } 4741 4742 // Note that we always use the true parent context when performing 4743 // the actual argument initialization. 4744 ImplicitConversionSequence ICS 4745 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification, 4746 Method, Method->getParent()); 4747 if (ICS.isBad()) { 4748 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { 4749 Qualifiers FromQs = FromRecordType.getQualifiers(); 4750 Qualifiers ToQs = DestType.getQualifiers(); 4751 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 4752 if (CVR) { 4753 Diag(From->getLocStart(), 4754 diag::err_member_function_call_bad_cvr) 4755 << Method->getDeclName() << FromRecordType << (CVR - 1) 4756 << From->getSourceRange(); 4757 Diag(Method->getLocation(), diag::note_previous_decl) 4758 << Method->getDeclName(); 4759 return ExprError(); 4760 } 4761 } 4762 4763 return Diag(From->getLocStart(), 4764 diag::err_implicit_object_parameter_init) 4765 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 4766 } 4767 4768 if (ICS.Standard.Second == ICK_Derived_To_Base) { 4769 ExprResult FromRes = 4770 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 4771 if (FromRes.isInvalid()) 4772 return ExprError(); 4773 From = FromRes.take(); 4774 } 4775 4776 if (!Context.hasSameType(From->getType(), DestType)) 4777 From = ImpCastExprToType(From, DestType, CK_NoOp, 4778 From->getValueKind()).take(); 4779 return Owned(From); 4780} 4781 4782/// TryContextuallyConvertToBool - Attempt to contextually convert the 4783/// expression From to bool (C++0x [conv]p3). 4784static ImplicitConversionSequence 4785TryContextuallyConvertToBool(Sema &S, Expr *From) { 4786 // FIXME: This is pretty broken. 4787 return TryImplicitConversion(S, From, S.Context.BoolTy, 4788 // FIXME: Are these flags correct? 4789 /*SuppressUserConversions=*/false, 4790 /*AllowExplicit=*/true, 4791 /*InOverloadResolution=*/false, 4792 /*CStyle=*/false, 4793 /*AllowObjCWritebackConversion=*/false); 4794} 4795 4796/// PerformContextuallyConvertToBool - Perform a contextual conversion 4797/// of the expression From to bool (C++0x [conv]p3). 4798ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 4799 if (checkPlaceholderForOverload(*this, From)) 4800 return ExprError(); 4801 4802 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 4803 if (!ICS.isBad()) 4804 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 4805 4806 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 4807 return Diag(From->getLocStart(), 4808 diag::err_typecheck_bool_condition) 4809 << From->getType() << From->getSourceRange(); 4810 return ExprError(); 4811} 4812 4813/// Check that the specified conversion is permitted in a converted constant 4814/// expression, according to C++11 [expr.const]p3. Return true if the conversion 4815/// is acceptable. 4816static bool CheckConvertedConstantConversions(Sema &S, 4817 StandardConversionSequence &SCS) { 4818 // Since we know that the target type is an integral or unscoped enumeration 4819 // type, most conversion kinds are impossible. All possible First and Third 4820 // conversions are fine. 4821 switch (SCS.Second) { 4822 case ICK_Identity: 4823 case ICK_Integral_Promotion: 4824 case ICK_Integral_Conversion: 4825 return true; 4826 4827 case ICK_Boolean_Conversion: 4828 // Conversion from an integral or unscoped enumeration type to bool is 4829 // classified as ICK_Boolean_Conversion, but it's also an integral 4830 // conversion, so it's permitted in a converted constant expression. 4831 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && 4832 SCS.getToType(2)->isBooleanType(); 4833 4834 case ICK_Floating_Integral: 4835 case ICK_Complex_Real: 4836 return false; 4837 4838 case ICK_Lvalue_To_Rvalue: 4839 case ICK_Array_To_Pointer: 4840 case ICK_Function_To_Pointer: 4841 case ICK_NoReturn_Adjustment: 4842 case ICK_Qualification: 4843 case ICK_Compatible_Conversion: 4844 case ICK_Vector_Conversion: 4845 case ICK_Vector_Splat: 4846 case ICK_Derived_To_Base: 4847 case ICK_Pointer_Conversion: 4848 case ICK_Pointer_Member: 4849 case ICK_Block_Pointer_Conversion: 4850 case ICK_Writeback_Conversion: 4851 case ICK_Floating_Promotion: 4852 case ICK_Complex_Promotion: 4853 case ICK_Complex_Conversion: 4854 case ICK_Floating_Conversion: 4855 case ICK_TransparentUnionConversion: 4856 llvm_unreachable("unexpected second conversion kind"); 4857 4858 case ICK_Num_Conversion_Kinds: 4859 break; 4860 } 4861 4862 llvm_unreachable("unknown conversion kind"); 4863} 4864 4865/// CheckConvertedConstantExpression - Check that the expression From is a 4866/// converted constant expression of type T, perform the conversion and produce 4867/// the converted expression, per C++11 [expr.const]p3. 4868ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 4869 llvm::APSInt &Value, 4870 CCEKind CCE) { 4871 assert(LangOpts.CPlusPlus11 && "converted constant expression outside C++11"); 4872 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); 4873 4874 if (checkPlaceholderForOverload(*this, From)) 4875 return ExprError(); 4876 4877 // C++11 [expr.const]p3 with proposed wording fixes: 4878 // A converted constant expression of type T is a core constant expression, 4879 // implicitly converted to a prvalue of type T, where the converted 4880 // expression is a literal constant expression and the implicit conversion 4881 // sequence contains only user-defined conversions, lvalue-to-rvalue 4882 // conversions, integral promotions, and integral conversions other than 4883 // narrowing conversions. 4884 ImplicitConversionSequence ICS = 4885 TryImplicitConversion(From, T, 4886 /*SuppressUserConversions=*/false, 4887 /*AllowExplicit=*/false, 4888 /*InOverloadResolution=*/false, 4889 /*CStyle=*/false, 4890 /*AllowObjcWritebackConversion=*/false); 4891 StandardConversionSequence *SCS = 0; 4892 switch (ICS.getKind()) { 4893 case ImplicitConversionSequence::StandardConversion: 4894 if (!CheckConvertedConstantConversions(*this, ICS.Standard)) 4895 return Diag(From->getLocStart(), 4896 diag::err_typecheck_converted_constant_expression_disallowed) 4897 << From->getType() << From->getSourceRange() << T; 4898 SCS = &ICS.Standard; 4899 break; 4900 case ImplicitConversionSequence::UserDefinedConversion: 4901 // We are converting from class type to an integral or enumeration type, so 4902 // the Before sequence must be trivial. 4903 if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After)) 4904 return Diag(From->getLocStart(), 4905 diag::err_typecheck_converted_constant_expression_disallowed) 4906 << From->getType() << From->getSourceRange() << T; 4907 SCS = &ICS.UserDefined.After; 4908 break; 4909 case ImplicitConversionSequence::AmbiguousConversion: 4910 case ImplicitConversionSequence::BadConversion: 4911 if (!DiagnoseMultipleUserDefinedConversion(From, T)) 4912 return Diag(From->getLocStart(), 4913 diag::err_typecheck_converted_constant_expression) 4914 << From->getType() << From->getSourceRange() << T; 4915 return ExprError(); 4916 4917 case ImplicitConversionSequence::EllipsisConversion: 4918 llvm_unreachable("ellipsis conversion in converted constant expression"); 4919 } 4920 4921 ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting); 4922 if (Result.isInvalid()) 4923 return Result; 4924 4925 // Check for a narrowing implicit conversion. 4926 APValue PreNarrowingValue; 4927 QualType PreNarrowingType; 4928 switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue, 4929 PreNarrowingType)) { 4930 case NK_Variable_Narrowing: 4931 // Implicit conversion to a narrower type, and the value is not a constant 4932 // expression. We'll diagnose this in a moment. 4933 case NK_Not_Narrowing: 4934 break; 4935 4936 case NK_Constant_Narrowing: 4937 Diag(From->getLocStart(), 4938 isSFINAEContext() ? diag::err_cce_narrowing_sfinae : 4939 diag::err_cce_narrowing) 4940 << CCE << /*Constant*/1 4941 << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T; 4942 break; 4943 4944 case NK_Type_Narrowing: 4945 Diag(From->getLocStart(), 4946 isSFINAEContext() ? diag::err_cce_narrowing_sfinae : 4947 diag::err_cce_narrowing) 4948 << CCE << /*Constant*/0 << From->getType() << T; 4949 break; 4950 } 4951 4952 // Check the expression is a constant expression. 4953 llvm::SmallVector<PartialDiagnosticAt, 8> Notes; 4954 Expr::EvalResult Eval; 4955 Eval.Diag = &Notes; 4956 4957 if (!Result.get()->EvaluateAsRValue(Eval, Context)) { 4958 // The expression can't be folded, so we can't keep it at this position in 4959 // the AST. 4960 Result = ExprError(); 4961 } else { 4962 Value = Eval.Val.getInt(); 4963 4964 if (Notes.empty()) { 4965 // It's a constant expression. 4966 return Result; 4967 } 4968 } 4969 4970 // It's not a constant expression. Produce an appropriate diagnostic. 4971 if (Notes.size() == 1 && 4972 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) 4973 Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; 4974 else { 4975 Diag(From->getLocStart(), diag::err_expr_not_cce) 4976 << CCE << From->getSourceRange(); 4977 for (unsigned I = 0; I < Notes.size(); ++I) 4978 Diag(Notes[I].first, Notes[I].second); 4979 } 4980 return Result; 4981} 4982 4983/// dropPointerConversions - If the given standard conversion sequence 4984/// involves any pointer conversions, remove them. This may change 4985/// the result type of the conversion sequence. 4986static void dropPointerConversion(StandardConversionSequence &SCS) { 4987 if (SCS.Second == ICK_Pointer_Conversion) { 4988 SCS.Second = ICK_Identity; 4989 SCS.Third = ICK_Identity; 4990 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 4991 } 4992} 4993 4994/// TryContextuallyConvertToObjCPointer - Attempt to contextually 4995/// convert the expression From to an Objective-C pointer type. 4996static ImplicitConversionSequence 4997TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 4998 // Do an implicit conversion to 'id'. 4999 QualType Ty = S.Context.getObjCIdType(); 5000 ImplicitConversionSequence ICS 5001 = TryImplicitConversion(S, From, Ty, 5002 // FIXME: Are these flags correct? 5003 /*SuppressUserConversions=*/false, 5004 /*AllowExplicit=*/true, 5005 /*InOverloadResolution=*/false, 5006 /*CStyle=*/false, 5007 /*AllowObjCWritebackConversion=*/false); 5008 5009 // Strip off any final conversions to 'id'. 5010 switch (ICS.getKind()) { 5011 case ImplicitConversionSequence::BadConversion: 5012 case ImplicitConversionSequence::AmbiguousConversion: 5013 case ImplicitConversionSequence::EllipsisConversion: 5014 break; 5015 5016 case ImplicitConversionSequence::UserDefinedConversion: 5017 dropPointerConversion(ICS.UserDefined.After); 5018 break; 5019 5020 case ImplicitConversionSequence::StandardConversion: 5021 dropPointerConversion(ICS.Standard); 5022 break; 5023 } 5024 5025 return ICS; 5026} 5027 5028/// PerformContextuallyConvertToObjCPointer - Perform a contextual 5029/// conversion of the expression From to an Objective-C pointer type. 5030ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 5031 if (checkPlaceholderForOverload(*this, From)) 5032 return ExprError(); 5033 5034 QualType Ty = Context.getObjCIdType(); 5035 ImplicitConversionSequence ICS = 5036 TryContextuallyConvertToObjCPointer(*this, From); 5037 if (!ICS.isBad()) 5038 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 5039 return ExprError(); 5040} 5041 5042/// Determine whether the provided type is an integral type, or an enumeration 5043/// type of a permitted flavor. 5044static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) { 5045 return AllowScopedEnum ? T->isIntegralOrEnumerationType() 5046 : T->isIntegralOrUnscopedEnumerationType(); 5047} 5048 5049/// \brief Attempt to convert the given expression to an integral or 5050/// enumeration type. 5051/// 5052/// This routine will attempt to convert an expression of class type to an 5053/// integral or enumeration type, if that class type only has a single 5054/// conversion to an integral or enumeration type. 5055/// 5056/// \param Loc The source location of the construct that requires the 5057/// conversion. 5058/// 5059/// \param From The expression we're converting from. 5060/// 5061/// \param Diagnoser Used to output any diagnostics. 5062/// 5063/// \param AllowScopedEnumerations Specifies whether conversions to scoped 5064/// enumerations should be considered. 5065/// 5066/// \returns The expression, converted to an integral or enumeration type if 5067/// successful. 5068ExprResult 5069Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, 5070 ICEConvertDiagnoser &Diagnoser, 5071 bool AllowScopedEnumerations) { 5072 // We can't perform any more checking for type-dependent expressions. 5073 if (From->isTypeDependent()) 5074 return Owned(From); 5075 5076 // Process placeholders immediately. 5077 if (From->hasPlaceholderType()) { 5078 ExprResult result = CheckPlaceholderExpr(From); 5079 if (result.isInvalid()) return result; 5080 From = result.take(); 5081 } 5082 5083 // If the expression already has integral or enumeration type, we're golden. 5084 QualType T = From->getType(); 5085 if (isIntegralOrEnumerationType(T, AllowScopedEnumerations)) 5086 return DefaultLvalueConversion(From); 5087 5088 // FIXME: Check for missing '()' if T is a function type? 5089 5090 // If we don't have a class type in C++, there's no way we can get an 5091 // expression of integral or enumeration type. 5092 const RecordType *RecordTy = T->getAs<RecordType>(); 5093 if (!RecordTy || !getLangOpts().CPlusPlus) { 5094 if (!Diagnoser.Suppress) 5095 Diagnoser.diagnoseNotInt(*this, Loc, T) << From->getSourceRange(); 5096 return Owned(From); 5097 } 5098 5099 // We must have a complete class type. 5100 struct TypeDiagnoserPartialDiag : TypeDiagnoser { 5101 ICEConvertDiagnoser &Diagnoser; 5102 Expr *From; 5103 5104 TypeDiagnoserPartialDiag(ICEConvertDiagnoser &Diagnoser, Expr *From) 5105 : TypeDiagnoser(Diagnoser.Suppress), Diagnoser(Diagnoser), From(From) {} 5106 5107 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) { 5108 Diagnoser.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); 5109 } 5110 } IncompleteDiagnoser(Diagnoser, From); 5111 5112 if (RequireCompleteType(Loc, T, IncompleteDiagnoser)) 5113 return Owned(From); 5114 5115 // Look for a conversion to an integral or enumeration type. 5116 UnresolvedSet<4> ViableConversions; 5117 UnresolvedSet<4> ExplicitConversions; 5118 std::pair<CXXRecordDecl::conversion_iterator, 5119 CXXRecordDecl::conversion_iterator> Conversions 5120 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 5121 5122 bool HadMultipleCandidates 5123 = (std::distance(Conversions.first, Conversions.second) > 1); 5124 5125 for (CXXRecordDecl::conversion_iterator 5126 I = Conversions.first, E = Conversions.second; I != E; ++I) { 5127 if (CXXConversionDecl *Conversion 5128 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) { 5129 if (isIntegralOrEnumerationType( 5130 Conversion->getConversionType().getNonReferenceType(), 5131 AllowScopedEnumerations)) { 5132 if (Conversion->isExplicit()) 5133 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 5134 else 5135 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 5136 } 5137 } 5138 } 5139 5140 switch (ViableConversions.size()) { 5141 case 0: 5142 if (ExplicitConversions.size() == 1 && !Diagnoser.Suppress) { 5143 DeclAccessPair Found = ExplicitConversions[0]; 5144 CXXConversionDecl *Conversion 5145 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5146 5147 // The user probably meant to invoke the given explicit 5148 // conversion; use it. 5149 QualType ConvTy 5150 = Conversion->getConversionType().getNonReferenceType(); 5151 std::string TypeStr; 5152 ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy()); 5153 5154 Diagnoser.diagnoseExplicitConv(*this, Loc, T, ConvTy) 5155 << FixItHint::CreateInsertion(From->getLocStart(), 5156 "static_cast<" + TypeStr + ">(") 5157 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 5158 ")"); 5159 Diagnoser.noteExplicitConv(*this, Conversion, ConvTy); 5160 5161 // If we aren't in a SFINAE context, build a call to the 5162 // explicit conversion function. 5163 if (isSFINAEContext()) 5164 return ExprError(); 5165 5166 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 5167 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion, 5168 HadMultipleCandidates); 5169 if (Result.isInvalid()) 5170 return ExprError(); 5171 // Record usage of conversion in an implicit cast. 5172 From = ImplicitCastExpr::Create(Context, Result.get()->getType(), 5173 CK_UserDefinedConversion, 5174 Result.get(), 0, 5175 Result.get()->getValueKind()); 5176 } 5177 5178 // We'll complain below about a non-integral condition type. 5179 break; 5180 5181 case 1: { 5182 // Apply this conversion. 5183 DeclAccessPair Found = ViableConversions[0]; 5184 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 5185 5186 CXXConversionDecl *Conversion 5187 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5188 QualType ConvTy 5189 = Conversion->getConversionType().getNonReferenceType(); 5190 if (!Diagnoser.SuppressConversion) { 5191 if (isSFINAEContext()) 5192 return ExprError(); 5193 5194 Diagnoser.diagnoseConversion(*this, Loc, T, ConvTy) 5195 << From->getSourceRange(); 5196 } 5197 5198 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion, 5199 HadMultipleCandidates); 5200 if (Result.isInvalid()) 5201 return ExprError(); 5202 // Record usage of conversion in an implicit cast. 5203 From = ImplicitCastExpr::Create(Context, Result.get()->getType(), 5204 CK_UserDefinedConversion, 5205 Result.get(), 0, 5206 Result.get()->getValueKind()); 5207 break; 5208 } 5209 5210 default: 5211 if (Diagnoser.Suppress) 5212 return ExprError(); 5213 5214 Diagnoser.diagnoseAmbiguous(*this, Loc, T) << From->getSourceRange(); 5215 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5216 CXXConversionDecl *Conv 5217 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 5218 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 5219 Diagnoser.noteAmbiguous(*this, Conv, ConvTy); 5220 } 5221 return Owned(From); 5222 } 5223 5224 if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) && 5225 !Diagnoser.Suppress) { 5226 Diagnoser.diagnoseNotInt(*this, Loc, From->getType()) 5227 << From->getSourceRange(); 5228 } 5229 5230 return DefaultLvalueConversion(From); 5231} 5232 5233/// AddOverloadCandidate - Adds the given function to the set of 5234/// candidate functions, using the given function call arguments. If 5235/// @p SuppressUserConversions, then don't allow user-defined 5236/// conversions via constructors or conversion operators. 5237/// 5238/// \param PartialOverloading true if we are performing "partial" overloading 5239/// based on an incomplete set of function arguments. This feature is used by 5240/// code completion. 5241void 5242Sema::AddOverloadCandidate(FunctionDecl *Function, 5243 DeclAccessPair FoundDecl, 5244 llvm::ArrayRef<Expr *> Args, 5245 OverloadCandidateSet& CandidateSet, 5246 bool SuppressUserConversions, 5247 bool PartialOverloading, 5248 bool AllowExplicit) { 5249 const FunctionProtoType* Proto 5250 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 5251 assert(Proto && "Functions without a prototype cannot be overloaded"); 5252 assert(!Function->getDescribedFunctionTemplate() && 5253 "Use AddTemplateOverloadCandidate for function templates"); 5254 5255 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 5256 if (!isa<CXXConstructorDecl>(Method)) { 5257 // If we get here, it's because we're calling a member function 5258 // that is named without a member access expression (e.g., 5259 // "this->f") that was either written explicitly or created 5260 // implicitly. This can happen with a qualified call to a member 5261 // function, e.g., X::f(). We use an empty type for the implied 5262 // object argument (C++ [over.call.func]p3), and the acting context 5263 // is irrelevant. 5264 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 5265 QualType(), Expr::Classification::makeSimpleLValue(), 5266 Args, CandidateSet, SuppressUserConversions); 5267 return; 5268 } 5269 // We treat a constructor like a non-member function, since its object 5270 // argument doesn't participate in overload resolution. 5271 } 5272 5273 if (!CandidateSet.isNewCandidate(Function)) 5274 return; 5275 5276 // Overload resolution is always an unevaluated context. 5277 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5278 5279 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 5280 // C++ [class.copy]p3: 5281 // A member function template is never instantiated to perform the copy 5282 // of a class object to an object of its class type. 5283 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 5284 if (Args.size() == 1 && 5285 Constructor->isSpecializationCopyingObject() && 5286 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 5287 IsDerivedFrom(Args[0]->getType(), ClassType))) 5288 return; 5289 } 5290 5291 // Add this candidate 5292 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); 5293 Candidate.FoundDecl = FoundDecl; 5294 Candidate.Function = Function; 5295 Candidate.Viable = true; 5296 Candidate.IsSurrogate = false; 5297 Candidate.IgnoreObjectArgument = false; 5298 Candidate.ExplicitCallArguments = Args.size(); 5299 5300 unsigned NumArgsInProto = Proto->getNumArgs(); 5301 5302 // (C++ 13.3.2p2): A candidate function having fewer than m 5303 // parameters is viable only if it has an ellipsis in its parameter 5304 // list (8.3.5). 5305 if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto && 5306 !Proto->isVariadic()) { 5307 Candidate.Viable = false; 5308 Candidate.FailureKind = ovl_fail_too_many_arguments; 5309 return; 5310 } 5311 5312 // (C++ 13.3.2p2): A candidate function having more than m parameters 5313 // is viable only if the (m+1)st parameter has a default argument 5314 // (8.3.6). For the purposes of overload resolution, the 5315 // parameter list is truncated on the right, so that there are 5316 // exactly m parameters. 5317 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 5318 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 5319 // Not enough arguments. 5320 Candidate.Viable = false; 5321 Candidate.FailureKind = ovl_fail_too_few_arguments; 5322 return; 5323 } 5324 5325 // (CUDA B.1): Check for invalid calls between targets. 5326 if (getLangOpts().CUDA) 5327 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 5328 if (CheckCUDATarget(Caller, Function)) { 5329 Candidate.Viable = false; 5330 Candidate.FailureKind = ovl_fail_bad_target; 5331 return; 5332 } 5333 5334 // Determine the implicit conversion sequences for each of the 5335 // arguments. 5336 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 5337 if (ArgIdx < NumArgsInProto) { 5338 // (C++ 13.3.2p3): for F to be a viable function, there shall 5339 // exist for each argument an implicit conversion sequence 5340 // (13.3.3.1) that converts that argument to the corresponding 5341 // parameter of F. 5342 QualType ParamType = Proto->getArgType(ArgIdx); 5343 Candidate.Conversions[ArgIdx] 5344 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 5345 SuppressUserConversions, 5346 /*InOverloadResolution=*/true, 5347 /*AllowObjCWritebackConversion=*/ 5348 getLangOpts().ObjCAutoRefCount, 5349 AllowExplicit); 5350 if (Candidate.Conversions[ArgIdx].isBad()) { 5351 Candidate.Viable = false; 5352 Candidate.FailureKind = ovl_fail_bad_conversion; 5353 break; 5354 } 5355 } else { 5356 // (C++ 13.3.2p2): For the purposes of overload resolution, any 5357 // argument for which there is no corresponding parameter is 5358 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 5359 Candidate.Conversions[ArgIdx].setEllipsis(); 5360 } 5361 } 5362} 5363 5364/// \brief Add all of the function declarations in the given function set to 5365/// the overload canddiate set. 5366void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 5367 llvm::ArrayRef<Expr *> Args, 5368 OverloadCandidateSet& CandidateSet, 5369 bool SuppressUserConversions, 5370 TemplateArgumentListInfo *ExplicitTemplateArgs) { 5371 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 5372 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 5373 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5374 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 5375 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 5376 cast<CXXMethodDecl>(FD)->getParent(), 5377 Args[0]->getType(), Args[0]->Classify(Context), 5378 Args.slice(1), CandidateSet, 5379 SuppressUserConversions); 5380 else 5381 AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet, 5382 SuppressUserConversions); 5383 } else { 5384 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 5385 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 5386 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 5387 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 5388 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 5389 ExplicitTemplateArgs, 5390 Args[0]->getType(), 5391 Args[0]->Classify(Context), Args.slice(1), 5392 CandidateSet, SuppressUserConversions); 5393 else 5394 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 5395 ExplicitTemplateArgs, Args, 5396 CandidateSet, SuppressUserConversions); 5397 } 5398 } 5399} 5400 5401/// AddMethodCandidate - Adds a named decl (which is some kind of 5402/// method) as a method candidate to the given overload set. 5403void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 5404 QualType ObjectType, 5405 Expr::Classification ObjectClassification, 5406 Expr **Args, unsigned NumArgs, 5407 OverloadCandidateSet& CandidateSet, 5408 bool SuppressUserConversions) { 5409 NamedDecl *Decl = FoundDecl.getDecl(); 5410 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 5411 5412 if (isa<UsingShadowDecl>(Decl)) 5413 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 5414 5415 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 5416 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 5417 "Expected a member function template"); 5418 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 5419 /*ExplicitArgs*/ 0, 5420 ObjectType, ObjectClassification, 5421 llvm::makeArrayRef(Args, NumArgs), CandidateSet, 5422 SuppressUserConversions); 5423 } else { 5424 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 5425 ObjectType, ObjectClassification, 5426 llvm::makeArrayRef(Args, NumArgs), 5427 CandidateSet, SuppressUserConversions); 5428 } 5429} 5430 5431/// AddMethodCandidate - Adds the given C++ member function to the set 5432/// of candidate functions, using the given function call arguments 5433/// and the object argument (@c Object). For example, in a call 5434/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 5435/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 5436/// allow user-defined conversions via constructors or conversion 5437/// operators. 5438void 5439Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 5440 CXXRecordDecl *ActingContext, QualType ObjectType, 5441 Expr::Classification ObjectClassification, 5442 llvm::ArrayRef<Expr *> Args, 5443 OverloadCandidateSet& CandidateSet, 5444 bool SuppressUserConversions) { 5445 const FunctionProtoType* Proto 5446 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 5447 assert(Proto && "Methods without a prototype cannot be overloaded"); 5448 assert(!isa<CXXConstructorDecl>(Method) && 5449 "Use AddOverloadCandidate for constructors"); 5450 5451 if (!CandidateSet.isNewCandidate(Method)) 5452 return; 5453 5454 // Overload resolution is always an unevaluated context. 5455 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5456 5457 // Add this candidate 5458 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); 5459 Candidate.FoundDecl = FoundDecl; 5460 Candidate.Function = Method; 5461 Candidate.IsSurrogate = false; 5462 Candidate.IgnoreObjectArgument = false; 5463 Candidate.ExplicitCallArguments = Args.size(); 5464 5465 unsigned NumArgsInProto = Proto->getNumArgs(); 5466 5467 // (C++ 13.3.2p2): A candidate function having fewer than m 5468 // parameters is viable only if it has an ellipsis in its parameter 5469 // list (8.3.5). 5470 if (Args.size() > NumArgsInProto && !Proto->isVariadic()) { 5471 Candidate.Viable = false; 5472 Candidate.FailureKind = ovl_fail_too_many_arguments; 5473 return; 5474 } 5475 5476 // (C++ 13.3.2p2): A candidate function having more than m parameters 5477 // is viable only if the (m+1)st parameter has a default argument 5478 // (8.3.6). For the purposes of overload resolution, the 5479 // parameter list is truncated on the right, so that there are 5480 // exactly m parameters. 5481 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 5482 if (Args.size() < MinRequiredArgs) { 5483 // Not enough arguments. 5484 Candidate.Viable = false; 5485 Candidate.FailureKind = ovl_fail_too_few_arguments; 5486 return; 5487 } 5488 5489 Candidate.Viable = true; 5490 5491 if (Method->isStatic() || ObjectType.isNull()) 5492 // The implicit object argument is ignored. 5493 Candidate.IgnoreObjectArgument = true; 5494 else { 5495 // Determine the implicit conversion sequence for the object 5496 // parameter. 5497 Candidate.Conversions[0] 5498 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification, 5499 Method, ActingContext); 5500 if (Candidate.Conversions[0].isBad()) { 5501 Candidate.Viable = false; 5502 Candidate.FailureKind = ovl_fail_bad_conversion; 5503 return; 5504 } 5505 } 5506 5507 // Determine the implicit conversion sequences for each of the 5508 // arguments. 5509 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 5510 if (ArgIdx < NumArgsInProto) { 5511 // (C++ 13.3.2p3): for F to be a viable function, there shall 5512 // exist for each argument an implicit conversion sequence 5513 // (13.3.3.1) that converts that argument to the corresponding 5514 // parameter of F. 5515 QualType ParamType = Proto->getArgType(ArgIdx); 5516 Candidate.Conversions[ArgIdx + 1] 5517 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 5518 SuppressUserConversions, 5519 /*InOverloadResolution=*/true, 5520 /*AllowObjCWritebackConversion=*/ 5521 getLangOpts().ObjCAutoRefCount); 5522 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 5523 Candidate.Viable = false; 5524 Candidate.FailureKind = ovl_fail_bad_conversion; 5525 break; 5526 } 5527 } else { 5528 // (C++ 13.3.2p2): For the purposes of overload resolution, any 5529 // argument for which there is no corresponding parameter is 5530 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 5531 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 5532 } 5533 } 5534} 5535 5536/// \brief Add a C++ member function template as a candidate to the candidate 5537/// set, using template argument deduction to produce an appropriate member 5538/// function template specialization. 5539void 5540Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 5541 DeclAccessPair FoundDecl, 5542 CXXRecordDecl *ActingContext, 5543 TemplateArgumentListInfo *ExplicitTemplateArgs, 5544 QualType ObjectType, 5545 Expr::Classification ObjectClassification, 5546 llvm::ArrayRef<Expr *> Args, 5547 OverloadCandidateSet& CandidateSet, 5548 bool SuppressUserConversions) { 5549 if (!CandidateSet.isNewCandidate(MethodTmpl)) 5550 return; 5551 5552 // C++ [over.match.funcs]p7: 5553 // In each case where a candidate is a function template, candidate 5554 // function template specializations are generated using template argument 5555 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 5556 // candidate functions in the usual way.113) A given name can refer to one 5557 // or more function templates and also to a set of overloaded non-template 5558 // functions. In such a case, the candidate functions generated from each 5559 // function template are combined with the set of non-template candidate 5560 // functions. 5561 TemplateDeductionInfo Info(CandidateSet.getLocation()); 5562 FunctionDecl *Specialization = 0; 5563 if (TemplateDeductionResult Result 5564 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args, 5565 Specialization, Info)) { 5566 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 5567 Candidate.FoundDecl = FoundDecl; 5568 Candidate.Function = MethodTmpl->getTemplatedDecl(); 5569 Candidate.Viable = false; 5570 Candidate.FailureKind = ovl_fail_bad_deduction; 5571 Candidate.IsSurrogate = false; 5572 Candidate.IgnoreObjectArgument = false; 5573 Candidate.ExplicitCallArguments = Args.size(); 5574 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 5575 Info); 5576 return; 5577 } 5578 5579 // Add the function template specialization produced by template argument 5580 // deduction as a candidate. 5581 assert(Specialization && "Missing member function template specialization?"); 5582 assert(isa<CXXMethodDecl>(Specialization) && 5583 "Specialization is not a member function?"); 5584 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 5585 ActingContext, ObjectType, ObjectClassification, Args, 5586 CandidateSet, SuppressUserConversions); 5587} 5588 5589/// \brief Add a C++ function template specialization as a candidate 5590/// in the candidate set, using template argument deduction to produce 5591/// an appropriate function template specialization. 5592void 5593Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 5594 DeclAccessPair FoundDecl, 5595 TemplateArgumentListInfo *ExplicitTemplateArgs, 5596 llvm::ArrayRef<Expr *> Args, 5597 OverloadCandidateSet& CandidateSet, 5598 bool SuppressUserConversions) { 5599 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 5600 return; 5601 5602 // C++ [over.match.funcs]p7: 5603 // In each case where a candidate is a function template, candidate 5604 // function template specializations are generated using template argument 5605 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 5606 // candidate functions in the usual way.113) A given name can refer to one 5607 // or more function templates and also to a set of overloaded non-template 5608 // functions. In such a case, the candidate functions generated from each 5609 // function template are combined with the set of non-template candidate 5610 // functions. 5611 TemplateDeductionInfo Info(CandidateSet.getLocation()); 5612 FunctionDecl *Specialization = 0; 5613 if (TemplateDeductionResult Result 5614 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args, 5615 Specialization, Info)) { 5616 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 5617 Candidate.FoundDecl = FoundDecl; 5618 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 5619 Candidate.Viable = false; 5620 Candidate.FailureKind = ovl_fail_bad_deduction; 5621 Candidate.IsSurrogate = false; 5622 Candidate.IgnoreObjectArgument = false; 5623 Candidate.ExplicitCallArguments = Args.size(); 5624 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 5625 Info); 5626 return; 5627 } 5628 5629 // Add the function template specialization produced by template argument 5630 // deduction as a candidate. 5631 assert(Specialization && "Missing function template specialization?"); 5632 AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet, 5633 SuppressUserConversions); 5634} 5635 5636/// AddConversionCandidate - Add a C++ conversion function as a 5637/// candidate in the candidate set (C++ [over.match.conv], 5638/// C++ [over.match.copy]). From is the expression we're converting from, 5639/// and ToType is the type that we're eventually trying to convert to 5640/// (which may or may not be the same type as the type that the 5641/// conversion function produces). 5642void 5643Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 5644 DeclAccessPair FoundDecl, 5645 CXXRecordDecl *ActingContext, 5646 Expr *From, QualType ToType, 5647 OverloadCandidateSet& CandidateSet) { 5648 assert(!Conversion->getDescribedFunctionTemplate() && 5649 "Conversion function templates use AddTemplateConversionCandidate"); 5650 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 5651 if (!CandidateSet.isNewCandidate(Conversion)) 5652 return; 5653 5654 // Overload resolution is always an unevaluated context. 5655 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5656 5657 // Add this candidate 5658 OverloadCandidate &Candidate = CandidateSet.addCandidate(1); 5659 Candidate.FoundDecl = FoundDecl; 5660 Candidate.Function = Conversion; 5661 Candidate.IsSurrogate = false; 5662 Candidate.IgnoreObjectArgument = false; 5663 Candidate.FinalConversion.setAsIdentityConversion(); 5664 Candidate.FinalConversion.setFromType(ConvType); 5665 Candidate.FinalConversion.setAllToTypes(ToType); 5666 Candidate.Viable = true; 5667 Candidate.ExplicitCallArguments = 1; 5668 5669 // C++ [over.match.funcs]p4: 5670 // For conversion functions, the function is considered to be a member of 5671 // the class of the implicit implied object argument for the purpose of 5672 // defining the type of the implicit object parameter. 5673 // 5674 // Determine the implicit conversion sequence for the implicit 5675 // object parameter. 5676 QualType ImplicitParamType = From->getType(); 5677 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 5678 ImplicitParamType = FromPtrType->getPointeeType(); 5679 CXXRecordDecl *ConversionContext 5680 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 5681 5682 Candidate.Conversions[0] 5683 = TryObjectArgumentInitialization(*this, From->getType(), 5684 From->Classify(Context), 5685 Conversion, ConversionContext); 5686 5687 if (Candidate.Conversions[0].isBad()) { 5688 Candidate.Viable = false; 5689 Candidate.FailureKind = ovl_fail_bad_conversion; 5690 return; 5691 } 5692 5693 // We won't go through a user-define type conversion function to convert a 5694 // derived to base as such conversions are given Conversion Rank. They only 5695 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 5696 QualType FromCanon 5697 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 5698 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 5699 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 5700 Candidate.Viable = false; 5701 Candidate.FailureKind = ovl_fail_trivial_conversion; 5702 return; 5703 } 5704 5705 // To determine what the conversion from the result of calling the 5706 // conversion function to the type we're eventually trying to 5707 // convert to (ToType), we need to synthesize a call to the 5708 // conversion function and attempt copy initialization from it. This 5709 // makes sure that we get the right semantics with respect to 5710 // lvalues/rvalues and the type. Fortunately, we can allocate this 5711 // call on the stack and we don't need its arguments to be 5712 // well-formed. 5713 DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(), 5714 VK_LValue, From->getLocStart()); 5715 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 5716 Context.getPointerType(Conversion->getType()), 5717 CK_FunctionToPointerDecay, 5718 &ConversionRef, VK_RValue); 5719 5720 QualType ConversionType = Conversion->getConversionType(); 5721 if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) { 5722 Candidate.Viable = false; 5723 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5724 return; 5725 } 5726 5727 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 5728 5729 // Note that it is safe to allocate CallExpr on the stack here because 5730 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 5731 // allocator). 5732 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 5733 CallExpr Call(Context, &ConversionFn, MultiExprArg(), CallResultType, VK, 5734 From->getLocStart()); 5735 ImplicitConversionSequence ICS = 5736 TryCopyInitialization(*this, &Call, ToType, 5737 /*SuppressUserConversions=*/true, 5738 /*InOverloadResolution=*/false, 5739 /*AllowObjCWritebackConversion=*/false); 5740 5741 switch (ICS.getKind()) { 5742 case ImplicitConversionSequence::StandardConversion: 5743 Candidate.FinalConversion = ICS.Standard; 5744 5745 // C++ [over.ics.user]p3: 5746 // If the user-defined conversion is specified by a specialization of a 5747 // conversion function template, the second standard conversion sequence 5748 // shall have exact match rank. 5749 if (Conversion->getPrimaryTemplate() && 5750 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 5751 Candidate.Viable = false; 5752 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 5753 } 5754 5755 // C++0x [dcl.init.ref]p5: 5756 // In the second case, if the reference is an rvalue reference and 5757 // the second standard conversion sequence of the user-defined 5758 // conversion sequence includes an lvalue-to-rvalue conversion, the 5759 // program is ill-formed. 5760 if (ToType->isRValueReferenceType() && 5761 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5762 Candidate.Viable = false; 5763 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5764 } 5765 break; 5766 5767 case ImplicitConversionSequence::BadConversion: 5768 Candidate.Viable = false; 5769 Candidate.FailureKind = ovl_fail_bad_final_conversion; 5770 break; 5771 5772 default: 5773 llvm_unreachable( 5774 "Can only end up with a standard conversion sequence or failure"); 5775 } 5776} 5777 5778/// \brief Adds a conversion function template specialization 5779/// candidate to the overload set, using template argument deduction 5780/// to deduce the template arguments of the conversion function 5781/// template from the type that we are converting to (C++ 5782/// [temp.deduct.conv]). 5783void 5784Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 5785 DeclAccessPair FoundDecl, 5786 CXXRecordDecl *ActingDC, 5787 Expr *From, QualType ToType, 5788 OverloadCandidateSet &CandidateSet) { 5789 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 5790 "Only conversion function templates permitted here"); 5791 5792 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 5793 return; 5794 5795 TemplateDeductionInfo Info(CandidateSet.getLocation()); 5796 CXXConversionDecl *Specialization = 0; 5797 if (TemplateDeductionResult Result 5798 = DeduceTemplateArguments(FunctionTemplate, ToType, 5799 Specialization, Info)) { 5800 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 5801 Candidate.FoundDecl = FoundDecl; 5802 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 5803 Candidate.Viable = false; 5804 Candidate.FailureKind = ovl_fail_bad_deduction; 5805 Candidate.IsSurrogate = false; 5806 Candidate.IgnoreObjectArgument = false; 5807 Candidate.ExplicitCallArguments = 1; 5808 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 5809 Info); 5810 return; 5811 } 5812 5813 // Add the conversion function template specialization produced by 5814 // template argument deduction as a candidate. 5815 assert(Specialization && "Missing function template specialization?"); 5816 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 5817 CandidateSet); 5818} 5819 5820/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 5821/// converts the given @c Object to a function pointer via the 5822/// conversion function @c Conversion, and then attempts to call it 5823/// with the given arguments (C++ [over.call.object]p2-4). Proto is 5824/// the type of function that we'll eventually be calling. 5825void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 5826 DeclAccessPair FoundDecl, 5827 CXXRecordDecl *ActingContext, 5828 const FunctionProtoType *Proto, 5829 Expr *Object, 5830 llvm::ArrayRef<Expr *> Args, 5831 OverloadCandidateSet& CandidateSet) { 5832 if (!CandidateSet.isNewCandidate(Conversion)) 5833 return; 5834 5835 // Overload resolution is always an unevaluated context. 5836 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5837 5838 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); 5839 Candidate.FoundDecl = FoundDecl; 5840 Candidate.Function = 0; 5841 Candidate.Surrogate = Conversion; 5842 Candidate.Viable = true; 5843 Candidate.IsSurrogate = true; 5844 Candidate.IgnoreObjectArgument = false; 5845 Candidate.ExplicitCallArguments = Args.size(); 5846 5847 // Determine the implicit conversion sequence for the implicit 5848 // object parameter. 5849 ImplicitConversionSequence ObjectInit 5850 = TryObjectArgumentInitialization(*this, Object->getType(), 5851 Object->Classify(Context), 5852 Conversion, ActingContext); 5853 if (ObjectInit.isBad()) { 5854 Candidate.Viable = false; 5855 Candidate.FailureKind = ovl_fail_bad_conversion; 5856 Candidate.Conversions[0] = ObjectInit; 5857 return; 5858 } 5859 5860 // The first conversion is actually a user-defined conversion whose 5861 // first conversion is ObjectInit's standard conversion (which is 5862 // effectively a reference binding). Record it as such. 5863 Candidate.Conversions[0].setUserDefined(); 5864 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 5865 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 5866 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; 5867 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 5868 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; 5869 Candidate.Conversions[0].UserDefined.After 5870 = Candidate.Conversions[0].UserDefined.Before; 5871 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 5872 5873 // Find the 5874 unsigned NumArgsInProto = Proto->getNumArgs(); 5875 5876 // (C++ 13.3.2p2): A candidate function having fewer than m 5877 // parameters is viable only if it has an ellipsis in its parameter 5878 // list (8.3.5). 5879 if (Args.size() > NumArgsInProto && !Proto->isVariadic()) { 5880 Candidate.Viable = false; 5881 Candidate.FailureKind = ovl_fail_too_many_arguments; 5882 return; 5883 } 5884 5885 // Function types don't have any default arguments, so just check if 5886 // we have enough arguments. 5887 if (Args.size() < NumArgsInProto) { 5888 // Not enough arguments. 5889 Candidate.Viable = false; 5890 Candidate.FailureKind = ovl_fail_too_few_arguments; 5891 return; 5892 } 5893 5894 // Determine the implicit conversion sequences for each of the 5895 // arguments. 5896 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 5897 if (ArgIdx < NumArgsInProto) { 5898 // (C++ 13.3.2p3): for F to be a viable function, there shall 5899 // exist for each argument an implicit conversion sequence 5900 // (13.3.3.1) that converts that argument to the corresponding 5901 // parameter of F. 5902 QualType ParamType = Proto->getArgType(ArgIdx); 5903 Candidate.Conversions[ArgIdx + 1] 5904 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 5905 /*SuppressUserConversions=*/false, 5906 /*InOverloadResolution=*/false, 5907 /*AllowObjCWritebackConversion=*/ 5908 getLangOpts().ObjCAutoRefCount); 5909 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 5910 Candidate.Viable = false; 5911 Candidate.FailureKind = ovl_fail_bad_conversion; 5912 break; 5913 } 5914 } else { 5915 // (C++ 13.3.2p2): For the purposes of overload resolution, any 5916 // argument for which there is no corresponding parameter is 5917 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 5918 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 5919 } 5920 } 5921} 5922 5923/// \brief Add overload candidates for overloaded operators that are 5924/// member functions. 5925/// 5926/// Add the overloaded operator candidates that are member functions 5927/// for the operator Op that was used in an operator expression such 5928/// as "x Op y". , Args/NumArgs provides the operator arguments, and 5929/// CandidateSet will store the added overload candidates. (C++ 5930/// [over.match.oper]). 5931void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 5932 SourceLocation OpLoc, 5933 Expr **Args, unsigned NumArgs, 5934 OverloadCandidateSet& CandidateSet, 5935 SourceRange OpRange) { 5936 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 5937 5938 // C++ [over.match.oper]p3: 5939 // For a unary operator @ with an operand of a type whose 5940 // cv-unqualified version is T1, and for a binary operator @ with 5941 // a left operand of a type whose cv-unqualified version is T1 and 5942 // a right operand of a type whose cv-unqualified version is T2, 5943 // three sets of candidate functions, designated member 5944 // candidates, non-member candidates and built-in candidates, are 5945 // constructed as follows: 5946 QualType T1 = Args[0]->getType(); 5947 5948 // -- If T1 is a class type, the set of member candidates is the 5949 // result of the qualified lookup of T1::operator@ 5950 // (13.3.1.1.1); otherwise, the set of member candidates is 5951 // empty. 5952 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 5953 // Complete the type if it can be completed. Otherwise, we're done. 5954 if (RequireCompleteType(OpLoc, T1, 0)) 5955 return; 5956 5957 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 5958 LookupQualifiedName(Operators, T1Rec->getDecl()); 5959 Operators.suppressDiagnostics(); 5960 5961 for (LookupResult::iterator Oper = Operators.begin(), 5962 OperEnd = Operators.end(); 5963 Oper != OperEnd; 5964 ++Oper) 5965 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 5966 Args[0]->Classify(Context), Args + 1, NumArgs - 1, 5967 CandidateSet, 5968 /* SuppressUserConversions = */ false); 5969 } 5970} 5971 5972/// AddBuiltinCandidate - Add a candidate for a built-in 5973/// operator. ResultTy and ParamTys are the result and parameter types 5974/// of the built-in candidate, respectively. Args and NumArgs are the 5975/// arguments being passed to the candidate. IsAssignmentOperator 5976/// should be true when this built-in candidate is an assignment 5977/// operator. NumContextualBoolArguments is the number of arguments 5978/// (at the beginning of the argument list) that will be contextually 5979/// converted to bool. 5980void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 5981 Expr **Args, unsigned NumArgs, 5982 OverloadCandidateSet& CandidateSet, 5983 bool IsAssignmentOperator, 5984 unsigned NumContextualBoolArguments) { 5985 // Overload resolution is always an unevaluated context. 5986 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 5987 5988 // Add this candidate 5989 OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs); 5990 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 5991 Candidate.Function = 0; 5992 Candidate.IsSurrogate = false; 5993 Candidate.IgnoreObjectArgument = false; 5994 Candidate.BuiltinTypes.ResultTy = ResultTy; 5995 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5996 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 5997 5998 // Determine the implicit conversion sequences for each of the 5999 // arguments. 6000 Candidate.Viable = true; 6001 Candidate.ExplicitCallArguments = NumArgs; 6002 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6003 // C++ [over.match.oper]p4: 6004 // For the built-in assignment operators, conversions of the 6005 // left operand are restricted as follows: 6006 // -- no temporaries are introduced to hold the left operand, and 6007 // -- no user-defined conversions are applied to the left 6008 // operand to achieve a type match with the left-most 6009 // parameter of a built-in candidate. 6010 // 6011 // We block these conversions by turning off user-defined 6012 // conversions, since that is the only way that initialization of 6013 // a reference to a non-class type can occur from something that 6014 // is not of the same type. 6015 if (ArgIdx < NumContextualBoolArguments) { 6016 assert(ParamTys[ArgIdx] == Context.BoolTy && 6017 "Contextual conversion to bool requires bool type"); 6018 Candidate.Conversions[ArgIdx] 6019 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 6020 } else { 6021 Candidate.Conversions[ArgIdx] 6022 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 6023 ArgIdx == 0 && IsAssignmentOperator, 6024 /*InOverloadResolution=*/false, 6025 /*AllowObjCWritebackConversion=*/ 6026 getLangOpts().ObjCAutoRefCount); 6027 } 6028 if (Candidate.Conversions[ArgIdx].isBad()) { 6029 Candidate.Viable = false; 6030 Candidate.FailureKind = ovl_fail_bad_conversion; 6031 break; 6032 } 6033 } 6034} 6035 6036/// BuiltinCandidateTypeSet - A set of types that will be used for the 6037/// candidate operator functions for built-in operators (C++ 6038/// [over.built]). The types are separated into pointer types and 6039/// enumeration types. 6040class BuiltinCandidateTypeSet { 6041 /// TypeSet - A set of types. 6042 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 6043 6044 /// PointerTypes - The set of pointer types that will be used in the 6045 /// built-in candidates. 6046 TypeSet PointerTypes; 6047 6048 /// MemberPointerTypes - The set of member pointer types that will be 6049 /// used in the built-in candidates. 6050 TypeSet MemberPointerTypes; 6051 6052 /// EnumerationTypes - The set of enumeration types that will be 6053 /// used in the built-in candidates. 6054 TypeSet EnumerationTypes; 6055 6056 /// \brief The set of vector types that will be used in the built-in 6057 /// candidates. 6058 TypeSet VectorTypes; 6059 6060 /// \brief A flag indicating non-record types are viable candidates 6061 bool HasNonRecordTypes; 6062 6063 /// \brief A flag indicating whether either arithmetic or enumeration types 6064 /// were present in the candidate set. 6065 bool HasArithmeticOrEnumeralTypes; 6066 6067 /// \brief A flag indicating whether the nullptr type was present in the 6068 /// candidate set. 6069 bool HasNullPtrType; 6070 6071 /// Sema - The semantic analysis instance where we are building the 6072 /// candidate type set. 6073 Sema &SemaRef; 6074 6075 /// Context - The AST context in which we will build the type sets. 6076 ASTContext &Context; 6077 6078 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 6079 const Qualifiers &VisibleQuals); 6080 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 6081 6082public: 6083 /// iterator - Iterates through the types that are part of the set. 6084 typedef TypeSet::iterator iterator; 6085 6086 BuiltinCandidateTypeSet(Sema &SemaRef) 6087 : HasNonRecordTypes(false), 6088 HasArithmeticOrEnumeralTypes(false), 6089 HasNullPtrType(false), 6090 SemaRef(SemaRef), 6091 Context(SemaRef.Context) { } 6092 6093 void AddTypesConvertedFrom(QualType Ty, 6094 SourceLocation Loc, 6095 bool AllowUserConversions, 6096 bool AllowExplicitConversions, 6097 const Qualifiers &VisibleTypeConversionsQuals); 6098 6099 /// pointer_begin - First pointer type found; 6100 iterator pointer_begin() { return PointerTypes.begin(); } 6101 6102 /// pointer_end - Past the last pointer type found; 6103 iterator pointer_end() { return PointerTypes.end(); } 6104 6105 /// member_pointer_begin - First member pointer type found; 6106 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 6107 6108 /// member_pointer_end - Past the last member pointer type found; 6109 iterator member_pointer_end() { return MemberPointerTypes.end(); } 6110 6111 /// enumeration_begin - First enumeration type found; 6112 iterator enumeration_begin() { return EnumerationTypes.begin(); } 6113 6114 /// enumeration_end - Past the last enumeration type found; 6115 iterator enumeration_end() { return EnumerationTypes.end(); } 6116 6117 iterator vector_begin() { return VectorTypes.begin(); } 6118 iterator vector_end() { return VectorTypes.end(); } 6119 6120 bool hasNonRecordTypes() { return HasNonRecordTypes; } 6121 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 6122 bool hasNullPtrType() const { return HasNullPtrType; } 6123}; 6124 6125/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 6126/// the set of pointer types along with any more-qualified variants of 6127/// that type. For example, if @p Ty is "int const *", this routine 6128/// will add "int const *", "int const volatile *", "int const 6129/// restrict *", and "int const volatile restrict *" to the set of 6130/// pointer types. Returns true if the add of @p Ty itself succeeded, 6131/// false otherwise. 6132/// 6133/// FIXME: what to do about extended qualifiers? 6134bool 6135BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 6136 const Qualifiers &VisibleQuals) { 6137 6138 // Insert this type. 6139 if (!PointerTypes.insert(Ty)) 6140 return false; 6141 6142 QualType PointeeTy; 6143 const PointerType *PointerTy = Ty->getAs<PointerType>(); 6144 bool buildObjCPtr = false; 6145 if (!PointerTy) { 6146 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); 6147 PointeeTy = PTy->getPointeeType(); 6148 buildObjCPtr = true; 6149 } else { 6150 PointeeTy = PointerTy->getPointeeType(); 6151 } 6152 6153 // Don't add qualified variants of arrays. For one, they're not allowed 6154 // (the qualifier would sink to the element type), and for another, the 6155 // only overload situation where it matters is subscript or pointer +- int, 6156 // and those shouldn't have qualifier variants anyway. 6157 if (PointeeTy->isArrayType()) 6158 return true; 6159 6160 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 6161 bool hasVolatile = VisibleQuals.hasVolatile(); 6162 bool hasRestrict = VisibleQuals.hasRestrict(); 6163 6164 // Iterate through all strict supersets of BaseCVR. 6165 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 6166 if ((CVR | BaseCVR) != CVR) continue; 6167 // Skip over volatile if no volatile found anywhere in the types. 6168 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 6169 6170 // Skip over restrict if no restrict found anywhere in the types, or if 6171 // the type cannot be restrict-qualified. 6172 if ((CVR & Qualifiers::Restrict) && 6173 (!hasRestrict || 6174 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) 6175 continue; 6176 6177 // Build qualified pointee type. 6178 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 6179 6180 // Build qualified pointer type. 6181 QualType QPointerTy; 6182 if (!buildObjCPtr) 6183 QPointerTy = Context.getPointerType(QPointeeTy); 6184 else 6185 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); 6186 6187 // Insert qualified pointer type. 6188 PointerTypes.insert(QPointerTy); 6189 } 6190 6191 return true; 6192} 6193 6194/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 6195/// to the set of pointer types along with any more-qualified variants of 6196/// that type. For example, if @p Ty is "int const *", this routine 6197/// will add "int const *", "int const volatile *", "int const 6198/// restrict *", and "int const volatile restrict *" to the set of 6199/// pointer types. Returns true if the add of @p Ty itself succeeded, 6200/// false otherwise. 6201/// 6202/// FIXME: what to do about extended qualifiers? 6203bool 6204BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 6205 QualType Ty) { 6206 // Insert this type. 6207 if (!MemberPointerTypes.insert(Ty)) 6208 return false; 6209 6210 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 6211 assert(PointerTy && "type was not a member pointer type!"); 6212 6213 QualType PointeeTy = PointerTy->getPointeeType(); 6214 // Don't add qualified variants of arrays. For one, they're not allowed 6215 // (the qualifier would sink to the element type), and for another, the 6216 // only overload situation where it matters is subscript or pointer +- int, 6217 // and those shouldn't have qualifier variants anyway. 6218 if (PointeeTy->isArrayType()) 6219 return true; 6220 const Type *ClassTy = PointerTy->getClass(); 6221 6222 // Iterate through all strict supersets of the pointee type's CVR 6223 // qualifiers. 6224 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 6225 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 6226 if ((CVR | BaseCVR) != CVR) continue; 6227 6228 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 6229 MemberPointerTypes.insert( 6230 Context.getMemberPointerType(QPointeeTy, ClassTy)); 6231 } 6232 6233 return true; 6234} 6235 6236/// AddTypesConvertedFrom - Add each of the types to which the type @p 6237/// Ty can be implicit converted to the given set of @p Types. We're 6238/// primarily interested in pointer types and enumeration types. We also 6239/// take member pointer types, for the conditional operator. 6240/// AllowUserConversions is true if we should look at the conversion 6241/// functions of a class type, and AllowExplicitConversions if we 6242/// should also include the explicit conversion functions of a class 6243/// type. 6244void 6245BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 6246 SourceLocation Loc, 6247 bool AllowUserConversions, 6248 bool AllowExplicitConversions, 6249 const Qualifiers &VisibleQuals) { 6250 // Only deal with canonical types. 6251 Ty = Context.getCanonicalType(Ty); 6252 6253 // Look through reference types; they aren't part of the type of an 6254 // expression for the purposes of conversions. 6255 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 6256 Ty = RefTy->getPointeeType(); 6257 6258 // If we're dealing with an array type, decay to the pointer. 6259 if (Ty->isArrayType()) 6260 Ty = SemaRef.Context.getArrayDecayedType(Ty); 6261 6262 // Otherwise, we don't care about qualifiers on the type. 6263 Ty = Ty.getLocalUnqualifiedType(); 6264 6265 // Flag if we ever add a non-record type. 6266 const RecordType *TyRec = Ty->getAs<RecordType>(); 6267 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 6268 6269 // Flag if we encounter an arithmetic type. 6270 HasArithmeticOrEnumeralTypes = 6271 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 6272 6273 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 6274 PointerTypes.insert(Ty); 6275 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 6276 // Insert our type, and its more-qualified variants, into the set 6277 // of types. 6278 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 6279 return; 6280 } else if (Ty->isMemberPointerType()) { 6281 // Member pointers are far easier, since the pointee can't be converted. 6282 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 6283 return; 6284 } else if (Ty->isEnumeralType()) { 6285 HasArithmeticOrEnumeralTypes = true; 6286 EnumerationTypes.insert(Ty); 6287 } else if (Ty->isVectorType()) { 6288 // We treat vector types as arithmetic types in many contexts as an 6289 // extension. 6290 HasArithmeticOrEnumeralTypes = true; 6291 VectorTypes.insert(Ty); 6292 } else if (Ty->isNullPtrType()) { 6293 HasNullPtrType = true; 6294 } else if (AllowUserConversions && TyRec) { 6295 // No conversion functions in incomplete types. 6296 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) 6297 return; 6298 6299 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 6300 std::pair<CXXRecordDecl::conversion_iterator, 6301 CXXRecordDecl::conversion_iterator> 6302 Conversions = ClassDecl->getVisibleConversionFunctions(); 6303 for (CXXRecordDecl::conversion_iterator 6304 I = Conversions.first, E = Conversions.second; I != E; ++I) { 6305 NamedDecl *D = I.getDecl(); 6306 if (isa<UsingShadowDecl>(D)) 6307 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6308 6309 // Skip conversion function templates; they don't tell us anything 6310 // about which builtin types we can convert to. 6311 if (isa<FunctionTemplateDecl>(D)) 6312 continue; 6313 6314 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 6315 if (AllowExplicitConversions || !Conv->isExplicit()) { 6316 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 6317 VisibleQuals); 6318 } 6319 } 6320 } 6321} 6322 6323/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 6324/// the volatile- and non-volatile-qualified assignment operators for the 6325/// given type to the candidate set. 6326static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 6327 QualType T, 6328 Expr **Args, 6329 unsigned NumArgs, 6330 OverloadCandidateSet &CandidateSet) { 6331 QualType ParamTypes[2]; 6332 6333 // T& operator=(T&, T) 6334 ParamTypes[0] = S.Context.getLValueReferenceType(T); 6335 ParamTypes[1] = T; 6336 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6337 /*IsAssignmentOperator=*/true); 6338 6339 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 6340 // volatile T& operator=(volatile T&, T) 6341 ParamTypes[0] 6342 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 6343 ParamTypes[1] = T; 6344 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6345 /*IsAssignmentOperator=*/true); 6346 } 6347} 6348 6349/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 6350/// if any, found in visible type conversion functions found in ArgExpr's type. 6351static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 6352 Qualifiers VRQuals; 6353 const RecordType *TyRec; 6354 if (const MemberPointerType *RHSMPType = 6355 ArgExpr->getType()->getAs<MemberPointerType>()) 6356 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 6357 else 6358 TyRec = ArgExpr->getType()->getAs<RecordType>(); 6359 if (!TyRec) { 6360 // Just to be safe, assume the worst case. 6361 VRQuals.addVolatile(); 6362 VRQuals.addRestrict(); 6363 return VRQuals; 6364 } 6365 6366 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 6367 if (!ClassDecl->hasDefinition()) 6368 return VRQuals; 6369 6370 std::pair<CXXRecordDecl::conversion_iterator, 6371 CXXRecordDecl::conversion_iterator> 6372 Conversions = ClassDecl->getVisibleConversionFunctions(); 6373 6374 for (CXXRecordDecl::conversion_iterator 6375 I = Conversions.first, E = Conversions.second; I != E; ++I) { 6376 NamedDecl *D = I.getDecl(); 6377 if (isa<UsingShadowDecl>(D)) 6378 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6379 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 6380 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 6381 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 6382 CanTy = ResTypeRef->getPointeeType(); 6383 // Need to go down the pointer/mempointer chain and add qualifiers 6384 // as see them. 6385 bool done = false; 6386 while (!done) { 6387 if (CanTy.isRestrictQualified()) 6388 VRQuals.addRestrict(); 6389 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 6390 CanTy = ResTypePtr->getPointeeType(); 6391 else if (const MemberPointerType *ResTypeMPtr = 6392 CanTy->getAs<MemberPointerType>()) 6393 CanTy = ResTypeMPtr->getPointeeType(); 6394 else 6395 done = true; 6396 if (CanTy.isVolatileQualified()) 6397 VRQuals.addVolatile(); 6398 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 6399 return VRQuals; 6400 } 6401 } 6402 } 6403 return VRQuals; 6404} 6405 6406namespace { 6407 6408/// \brief Helper class to manage the addition of builtin operator overload 6409/// candidates. It provides shared state and utility methods used throughout 6410/// the process, as well as a helper method to add each group of builtin 6411/// operator overloads from the standard to a candidate set. 6412class BuiltinOperatorOverloadBuilder { 6413 // Common instance state available to all overload candidate addition methods. 6414 Sema &S; 6415 Expr **Args; 6416 unsigned NumArgs; 6417 Qualifiers VisibleTypeConversionsQuals; 6418 bool HasArithmeticOrEnumeralCandidateType; 6419 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 6420 OverloadCandidateSet &CandidateSet; 6421 6422 // Define some constants used to index and iterate over the arithemetic types 6423 // provided via the getArithmeticType() method below. 6424 // The "promoted arithmetic types" are the arithmetic 6425 // types are that preserved by promotion (C++ [over.built]p2). 6426 static const unsigned FirstIntegralType = 3; 6427 static const unsigned LastIntegralType = 20; 6428 static const unsigned FirstPromotedIntegralType = 3, 6429 LastPromotedIntegralType = 11; 6430 static const unsigned FirstPromotedArithmeticType = 0, 6431 LastPromotedArithmeticType = 11; 6432 static const unsigned NumArithmeticTypes = 20; 6433 6434 /// \brief Get the canonical type for a given arithmetic type index. 6435 CanQualType getArithmeticType(unsigned index) { 6436 assert(index < NumArithmeticTypes); 6437 static CanQualType ASTContext::* const 6438 ArithmeticTypes[NumArithmeticTypes] = { 6439 // Start of promoted types. 6440 &ASTContext::FloatTy, 6441 &ASTContext::DoubleTy, 6442 &ASTContext::LongDoubleTy, 6443 6444 // Start of integral types. 6445 &ASTContext::IntTy, 6446 &ASTContext::LongTy, 6447 &ASTContext::LongLongTy, 6448 &ASTContext::Int128Ty, 6449 &ASTContext::UnsignedIntTy, 6450 &ASTContext::UnsignedLongTy, 6451 &ASTContext::UnsignedLongLongTy, 6452 &ASTContext::UnsignedInt128Ty, 6453 // End of promoted types. 6454 6455 &ASTContext::BoolTy, 6456 &ASTContext::CharTy, 6457 &ASTContext::WCharTy, 6458 &ASTContext::Char16Ty, 6459 &ASTContext::Char32Ty, 6460 &ASTContext::SignedCharTy, 6461 &ASTContext::ShortTy, 6462 &ASTContext::UnsignedCharTy, 6463 &ASTContext::UnsignedShortTy, 6464 // End of integral types. 6465 // FIXME: What about complex? What about half? 6466 }; 6467 return S.Context.*ArithmeticTypes[index]; 6468 } 6469 6470 /// \brief Gets the canonical type resulting from the usual arithemetic 6471 /// converions for the given arithmetic types. 6472 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) { 6473 // Accelerator table for performing the usual arithmetic conversions. 6474 // The rules are basically: 6475 // - if either is floating-point, use the wider floating-point 6476 // - if same signedness, use the higher rank 6477 // - if same size, use unsigned of the higher rank 6478 // - use the larger type 6479 // These rules, together with the axiom that higher ranks are 6480 // never smaller, are sufficient to precompute all of these results 6481 // *except* when dealing with signed types of higher rank. 6482 // (we could precompute SLL x UI for all known platforms, but it's 6483 // better not to make any assumptions). 6484 // We assume that int128 has a higher rank than long long on all platforms. 6485 enum PromotedType { 6486 Dep=-1, 6487 Flt, Dbl, LDbl, SI, SL, SLL, S128, UI, UL, ULL, U128 6488 }; 6489 static const PromotedType ConversionsTable[LastPromotedArithmeticType] 6490 [LastPromotedArithmeticType] = { 6491/* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt, Flt, Flt }, 6492/* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl }, 6493/*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, 6494/* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, S128, UI, UL, ULL, U128 }, 6495/* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, S128, Dep, UL, ULL, U128 }, 6496/* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, S128, Dep, Dep, ULL, U128 }, 6497/*S128*/ { Flt, Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 }, 6498/* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, S128, UI, UL, ULL, U128 }, 6499/* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, S128, UL, UL, ULL, U128 }, 6500/* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, S128, ULL, ULL, ULL, U128 }, 6501/*U128*/ { Flt, Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 }, 6502 }; 6503 6504 assert(L < LastPromotedArithmeticType); 6505 assert(R < LastPromotedArithmeticType); 6506 int Idx = ConversionsTable[L][R]; 6507 6508 // Fast path: the table gives us a concrete answer. 6509 if (Idx != Dep) return getArithmeticType(Idx); 6510 6511 // Slow path: we need to compare widths. 6512 // An invariant is that the signed type has higher rank. 6513 CanQualType LT = getArithmeticType(L), 6514 RT = getArithmeticType(R); 6515 unsigned LW = S.Context.getIntWidth(LT), 6516 RW = S.Context.getIntWidth(RT); 6517 6518 // If they're different widths, use the signed type. 6519 if (LW > RW) return LT; 6520 else if (LW < RW) return RT; 6521 6522 // Otherwise, use the unsigned type of the signed type's rank. 6523 if (L == SL || R == SL) return S.Context.UnsignedLongTy; 6524 assert(L == SLL || R == SLL); 6525 return S.Context.UnsignedLongLongTy; 6526 } 6527 6528 /// \brief Helper method to factor out the common pattern of adding overloads 6529 /// for '++' and '--' builtin operators. 6530 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 6531 bool HasVolatile, 6532 bool HasRestrict) { 6533 QualType ParamTypes[2] = { 6534 S.Context.getLValueReferenceType(CandidateTy), 6535 S.Context.IntTy 6536 }; 6537 6538 // Non-volatile version. 6539 if (NumArgs == 1) 6540 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 6541 else 6542 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 6543 6544 // Use a heuristic to reduce number of builtin candidates in the set: 6545 // add volatile version only if there are conversions to a volatile type. 6546 if (HasVolatile) { 6547 ParamTypes[0] = 6548 S.Context.getLValueReferenceType( 6549 S.Context.getVolatileType(CandidateTy)); 6550 if (NumArgs == 1) 6551 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 6552 else 6553 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 6554 } 6555 6556 // Add restrict version only if there are conversions to a restrict type 6557 // and our candidate type is a non-restrict-qualified pointer. 6558 if (HasRestrict && CandidateTy->isAnyPointerType() && 6559 !CandidateTy.isRestrictQualified()) { 6560 ParamTypes[0] 6561 = S.Context.getLValueReferenceType( 6562 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); 6563 if (NumArgs == 1) 6564 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 6565 else 6566 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 6567 6568 if (HasVolatile) { 6569 ParamTypes[0] 6570 = S.Context.getLValueReferenceType( 6571 S.Context.getCVRQualifiedType(CandidateTy, 6572 (Qualifiers::Volatile | 6573 Qualifiers::Restrict))); 6574 if (NumArgs == 1) 6575 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, 6576 CandidateSet); 6577 else 6578 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 6579 } 6580 } 6581 6582 } 6583 6584public: 6585 BuiltinOperatorOverloadBuilder( 6586 Sema &S, Expr **Args, unsigned NumArgs, 6587 Qualifiers VisibleTypeConversionsQuals, 6588 bool HasArithmeticOrEnumeralCandidateType, 6589 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 6590 OverloadCandidateSet &CandidateSet) 6591 : S(S), Args(Args), NumArgs(NumArgs), 6592 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 6593 HasArithmeticOrEnumeralCandidateType( 6594 HasArithmeticOrEnumeralCandidateType), 6595 CandidateTypes(CandidateTypes), 6596 CandidateSet(CandidateSet) { 6597 // Validate some of our static helper constants in debug builds. 6598 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy && 6599 "Invalid first promoted integral type"); 6600 assert(getArithmeticType(LastPromotedIntegralType - 1) 6601 == S.Context.UnsignedInt128Ty && 6602 "Invalid last promoted integral type"); 6603 assert(getArithmeticType(FirstPromotedArithmeticType) 6604 == S.Context.FloatTy && 6605 "Invalid first promoted arithmetic type"); 6606 assert(getArithmeticType(LastPromotedArithmeticType - 1) 6607 == S.Context.UnsignedInt128Ty && 6608 "Invalid last promoted arithmetic type"); 6609 } 6610 6611 // C++ [over.built]p3: 6612 // 6613 // For every pair (T, VQ), where T is an arithmetic type, and VQ 6614 // is either volatile or empty, there exist candidate operator 6615 // functions of the form 6616 // 6617 // VQ T& operator++(VQ T&); 6618 // T operator++(VQ T&, int); 6619 // 6620 // C++ [over.built]p4: 6621 // 6622 // For every pair (T, VQ), where T is an arithmetic type other 6623 // than bool, and VQ is either volatile or empty, there exist 6624 // candidate operator functions of the form 6625 // 6626 // VQ T& operator--(VQ T&); 6627 // T operator--(VQ T&, int); 6628 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 6629 if (!HasArithmeticOrEnumeralCandidateType) 6630 return; 6631 6632 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 6633 Arith < NumArithmeticTypes; ++Arith) { 6634 addPlusPlusMinusMinusStyleOverloads( 6635 getArithmeticType(Arith), 6636 VisibleTypeConversionsQuals.hasVolatile(), 6637 VisibleTypeConversionsQuals.hasRestrict()); 6638 } 6639 } 6640 6641 // C++ [over.built]p5: 6642 // 6643 // For every pair (T, VQ), where T is a cv-qualified or 6644 // cv-unqualified object type, and VQ is either volatile or 6645 // empty, there exist candidate operator functions of the form 6646 // 6647 // T*VQ& operator++(T*VQ&); 6648 // T*VQ& operator--(T*VQ&); 6649 // T* operator++(T*VQ&, int); 6650 // T* operator--(T*VQ&, int); 6651 void addPlusPlusMinusMinusPointerOverloads() { 6652 for (BuiltinCandidateTypeSet::iterator 6653 Ptr = CandidateTypes[0].pointer_begin(), 6654 PtrEnd = CandidateTypes[0].pointer_end(); 6655 Ptr != PtrEnd; ++Ptr) { 6656 // Skip pointer types that aren't pointers to object types. 6657 if (!(*Ptr)->getPointeeType()->isObjectType()) 6658 continue; 6659 6660 addPlusPlusMinusMinusStyleOverloads(*Ptr, 6661 (!(*Ptr).isVolatileQualified() && 6662 VisibleTypeConversionsQuals.hasVolatile()), 6663 (!(*Ptr).isRestrictQualified() && 6664 VisibleTypeConversionsQuals.hasRestrict())); 6665 } 6666 } 6667 6668 // C++ [over.built]p6: 6669 // For every cv-qualified or cv-unqualified object type T, there 6670 // exist candidate operator functions of the form 6671 // 6672 // T& operator*(T*); 6673 // 6674 // C++ [over.built]p7: 6675 // For every function type T that does not have cv-qualifiers or a 6676 // ref-qualifier, there exist candidate operator functions of the form 6677 // T& operator*(T*); 6678 void addUnaryStarPointerOverloads() { 6679 for (BuiltinCandidateTypeSet::iterator 6680 Ptr = CandidateTypes[0].pointer_begin(), 6681 PtrEnd = CandidateTypes[0].pointer_end(); 6682 Ptr != PtrEnd; ++Ptr) { 6683 QualType ParamTy = *Ptr; 6684 QualType PointeeTy = ParamTy->getPointeeType(); 6685 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 6686 continue; 6687 6688 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 6689 if (Proto->getTypeQuals() || Proto->getRefQualifier()) 6690 continue; 6691 6692 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy), 6693 &ParamTy, Args, 1, CandidateSet); 6694 } 6695 } 6696 6697 // C++ [over.built]p9: 6698 // For every promoted arithmetic type T, there exist candidate 6699 // operator functions of the form 6700 // 6701 // T operator+(T); 6702 // T operator-(T); 6703 void addUnaryPlusOrMinusArithmeticOverloads() { 6704 if (!HasArithmeticOrEnumeralCandidateType) 6705 return; 6706 6707 for (unsigned Arith = FirstPromotedArithmeticType; 6708 Arith < LastPromotedArithmeticType; ++Arith) { 6709 QualType ArithTy = getArithmeticType(Arith); 6710 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 6711 } 6712 6713 // Extension: We also add these operators for vector types. 6714 for (BuiltinCandidateTypeSet::iterator 6715 Vec = CandidateTypes[0].vector_begin(), 6716 VecEnd = CandidateTypes[0].vector_end(); 6717 Vec != VecEnd; ++Vec) { 6718 QualType VecTy = *Vec; 6719 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 6720 } 6721 } 6722 6723 // C++ [over.built]p8: 6724 // For every type T, there exist candidate operator functions of 6725 // the form 6726 // 6727 // T* operator+(T*); 6728 void addUnaryPlusPointerOverloads() { 6729 for (BuiltinCandidateTypeSet::iterator 6730 Ptr = CandidateTypes[0].pointer_begin(), 6731 PtrEnd = CandidateTypes[0].pointer_end(); 6732 Ptr != PtrEnd; ++Ptr) { 6733 QualType ParamTy = *Ptr; 6734 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 6735 } 6736 } 6737 6738 // C++ [over.built]p10: 6739 // For every promoted integral type T, there exist candidate 6740 // operator functions of the form 6741 // 6742 // T operator~(T); 6743 void addUnaryTildePromotedIntegralOverloads() { 6744 if (!HasArithmeticOrEnumeralCandidateType) 6745 return; 6746 6747 for (unsigned Int = FirstPromotedIntegralType; 6748 Int < LastPromotedIntegralType; ++Int) { 6749 QualType IntTy = getArithmeticType(Int); 6750 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 6751 } 6752 6753 // Extension: We also add this operator for vector types. 6754 for (BuiltinCandidateTypeSet::iterator 6755 Vec = CandidateTypes[0].vector_begin(), 6756 VecEnd = CandidateTypes[0].vector_end(); 6757 Vec != VecEnd; ++Vec) { 6758 QualType VecTy = *Vec; 6759 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 6760 } 6761 } 6762 6763 // C++ [over.match.oper]p16: 6764 // For every pointer to member type T, there exist candidate operator 6765 // functions of the form 6766 // 6767 // bool operator==(T,T); 6768 // bool operator!=(T,T); 6769 void addEqualEqualOrNotEqualMemberPointerOverloads() { 6770 /// Set of (canonical) types that we've already handled. 6771 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6772 6773 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6774 for (BuiltinCandidateTypeSet::iterator 6775 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 6776 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 6777 MemPtr != MemPtrEnd; 6778 ++MemPtr) { 6779 // Don't add the same builtin candidate twice. 6780 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 6781 continue; 6782 6783 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 6784 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6785 CandidateSet); 6786 } 6787 } 6788 } 6789 6790 // C++ [over.built]p15: 6791 // 6792 // For every T, where T is an enumeration type, a pointer type, or 6793 // std::nullptr_t, there exist candidate operator functions of the form 6794 // 6795 // bool operator<(T, T); 6796 // bool operator>(T, T); 6797 // bool operator<=(T, T); 6798 // bool operator>=(T, T); 6799 // bool operator==(T, T); 6800 // bool operator!=(T, T); 6801 void addRelationalPointerOrEnumeralOverloads() { 6802 // C++ [over.match.oper]p3: 6803 // [...]the built-in candidates include all of the candidate operator 6804 // functions defined in 13.6 that, compared to the given operator, [...] 6805 // do not have the same parameter-type-list as any non-template non-member 6806 // candidate. 6807 // 6808 // Note that in practice, this only affects enumeration types because there 6809 // aren't any built-in candidates of record type, and a user-defined operator 6810 // must have an operand of record or enumeration type. Also, the only other 6811 // overloaded operator with enumeration arguments, operator=, 6812 // cannot be overloaded for enumeration types, so this is the only place 6813 // where we must suppress candidates like this. 6814 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 6815 UserDefinedBinaryOperators; 6816 6817 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6818 if (CandidateTypes[ArgIdx].enumeration_begin() != 6819 CandidateTypes[ArgIdx].enumeration_end()) { 6820 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 6821 CEnd = CandidateSet.end(); 6822 C != CEnd; ++C) { 6823 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 6824 continue; 6825 6826 if (C->Function->isFunctionTemplateSpecialization()) 6827 continue; 6828 6829 QualType FirstParamType = 6830 C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 6831 QualType SecondParamType = 6832 C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 6833 6834 // Skip if either parameter isn't of enumeral type. 6835 if (!FirstParamType->isEnumeralType() || 6836 !SecondParamType->isEnumeralType()) 6837 continue; 6838 6839 // Add this operator to the set of known user-defined operators. 6840 UserDefinedBinaryOperators.insert( 6841 std::make_pair(S.Context.getCanonicalType(FirstParamType), 6842 S.Context.getCanonicalType(SecondParamType))); 6843 } 6844 } 6845 } 6846 6847 /// Set of (canonical) types that we've already handled. 6848 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6849 6850 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6851 for (BuiltinCandidateTypeSet::iterator 6852 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 6853 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 6854 Ptr != PtrEnd; ++Ptr) { 6855 // Don't add the same builtin candidate twice. 6856 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6857 continue; 6858 6859 QualType ParamTypes[2] = { *Ptr, *Ptr }; 6860 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6861 CandidateSet); 6862 } 6863 for (BuiltinCandidateTypeSet::iterator 6864 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 6865 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 6866 Enum != EnumEnd; ++Enum) { 6867 CanQualType CanonType = S.Context.getCanonicalType(*Enum); 6868 6869 // Don't add the same builtin candidate twice, or if a user defined 6870 // candidate exists. 6871 if (!AddedTypes.insert(CanonType) || 6872 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 6873 CanonType))) 6874 continue; 6875 6876 QualType ParamTypes[2] = { *Enum, *Enum }; 6877 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6878 CandidateSet); 6879 } 6880 6881 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 6882 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 6883 if (AddedTypes.insert(NullPtrTy) && 6884 !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy, 6885 NullPtrTy))) { 6886 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 6887 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 6888 CandidateSet); 6889 } 6890 } 6891 } 6892 } 6893 6894 // C++ [over.built]p13: 6895 // 6896 // For every cv-qualified or cv-unqualified object type T 6897 // there exist candidate operator functions of the form 6898 // 6899 // T* operator+(T*, ptrdiff_t); 6900 // T& operator[](T*, ptrdiff_t); [BELOW] 6901 // T* operator-(T*, ptrdiff_t); 6902 // T* operator+(ptrdiff_t, T*); 6903 // T& operator[](ptrdiff_t, T*); [BELOW] 6904 // 6905 // C++ [over.built]p14: 6906 // 6907 // For every T, where T is a pointer to object type, there 6908 // exist candidate operator functions of the form 6909 // 6910 // ptrdiff_t operator-(T, T); 6911 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 6912 /// Set of (canonical) types that we've already handled. 6913 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6914 6915 for (int Arg = 0; Arg < 2; ++Arg) { 6916 QualType AsymetricParamTypes[2] = { 6917 S.Context.getPointerDiffType(), 6918 S.Context.getPointerDiffType(), 6919 }; 6920 for (BuiltinCandidateTypeSet::iterator 6921 Ptr = CandidateTypes[Arg].pointer_begin(), 6922 PtrEnd = CandidateTypes[Arg].pointer_end(); 6923 Ptr != PtrEnd; ++Ptr) { 6924 QualType PointeeTy = (*Ptr)->getPointeeType(); 6925 if (!PointeeTy->isObjectType()) 6926 continue; 6927 6928 AsymetricParamTypes[Arg] = *Ptr; 6929 if (Arg == 0 || Op == OO_Plus) { 6930 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 6931 // T* operator+(ptrdiff_t, T*); 6932 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2, 6933 CandidateSet); 6934 } 6935 if (Op == OO_Minus) { 6936 // ptrdiff_t operator-(T, T); 6937 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6938 continue; 6939 6940 QualType ParamTypes[2] = { *Ptr, *Ptr }; 6941 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes, 6942 Args, 2, CandidateSet); 6943 } 6944 } 6945 } 6946 } 6947 6948 // C++ [over.built]p12: 6949 // 6950 // For every pair of promoted arithmetic types L and R, there 6951 // exist candidate operator functions of the form 6952 // 6953 // LR operator*(L, R); 6954 // LR operator/(L, R); 6955 // LR operator+(L, R); 6956 // LR operator-(L, R); 6957 // bool operator<(L, R); 6958 // bool operator>(L, R); 6959 // bool operator<=(L, R); 6960 // bool operator>=(L, R); 6961 // bool operator==(L, R); 6962 // bool operator!=(L, R); 6963 // 6964 // where LR is the result of the usual arithmetic conversions 6965 // between types L and R. 6966 // 6967 // C++ [over.built]p24: 6968 // 6969 // For every pair of promoted arithmetic types L and R, there exist 6970 // candidate operator functions of the form 6971 // 6972 // LR operator?(bool, L, R); 6973 // 6974 // where LR is the result of the usual arithmetic conversions 6975 // between types L and R. 6976 // Our candidates ignore the first parameter. 6977 void addGenericBinaryArithmeticOverloads(bool isComparison) { 6978 if (!HasArithmeticOrEnumeralCandidateType) 6979 return; 6980 6981 for (unsigned Left = FirstPromotedArithmeticType; 6982 Left < LastPromotedArithmeticType; ++Left) { 6983 for (unsigned Right = FirstPromotedArithmeticType; 6984 Right < LastPromotedArithmeticType; ++Right) { 6985 QualType LandR[2] = { getArithmeticType(Left), 6986 getArithmeticType(Right) }; 6987 QualType Result = 6988 isComparison ? S.Context.BoolTy 6989 : getUsualArithmeticConversions(Left, Right); 6990 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 6991 } 6992 } 6993 6994 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 6995 // conditional operator for vector types. 6996 for (BuiltinCandidateTypeSet::iterator 6997 Vec1 = CandidateTypes[0].vector_begin(), 6998 Vec1End = CandidateTypes[0].vector_end(); 6999 Vec1 != Vec1End; ++Vec1) { 7000 for (BuiltinCandidateTypeSet::iterator 7001 Vec2 = CandidateTypes[1].vector_begin(), 7002 Vec2End = CandidateTypes[1].vector_end(); 7003 Vec2 != Vec2End; ++Vec2) { 7004 QualType LandR[2] = { *Vec1, *Vec2 }; 7005 QualType Result = S.Context.BoolTy; 7006 if (!isComparison) { 7007 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 7008 Result = *Vec1; 7009 else 7010 Result = *Vec2; 7011 } 7012 7013 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 7014 } 7015 } 7016 } 7017 7018 // C++ [over.built]p17: 7019 // 7020 // For every pair of promoted integral types L and R, there 7021 // exist candidate operator functions of the form 7022 // 7023 // LR operator%(L, R); 7024 // LR operator&(L, R); 7025 // LR operator^(L, R); 7026 // LR operator|(L, R); 7027 // L operator<<(L, R); 7028 // L operator>>(L, R); 7029 // 7030 // where LR is the result of the usual arithmetic conversions 7031 // between types L and R. 7032 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { 7033 if (!HasArithmeticOrEnumeralCandidateType) 7034 return; 7035 7036 for (unsigned Left = FirstPromotedIntegralType; 7037 Left < LastPromotedIntegralType; ++Left) { 7038 for (unsigned Right = FirstPromotedIntegralType; 7039 Right < LastPromotedIntegralType; ++Right) { 7040 QualType LandR[2] = { getArithmeticType(Left), 7041 getArithmeticType(Right) }; 7042 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 7043 ? LandR[0] 7044 : getUsualArithmeticConversions(Left, Right); 7045 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 7046 } 7047 } 7048 } 7049 7050 // C++ [over.built]p20: 7051 // 7052 // For every pair (T, VQ), where T is an enumeration or 7053 // pointer to member type and VQ is either volatile or 7054 // empty, there exist candidate operator functions of the form 7055 // 7056 // VQ T& operator=(VQ T&, T); 7057 void addAssignmentMemberPointerOrEnumeralOverloads() { 7058 /// Set of (canonical) types that we've already handled. 7059 llvm::SmallPtrSet<QualType, 8> AddedTypes; 7060 7061 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 7062 for (BuiltinCandidateTypeSet::iterator 7063 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 7064 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 7065 Enum != EnumEnd; ++Enum) { 7066 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 7067 continue; 7068 7069 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2, 7070 CandidateSet); 7071 } 7072 7073 for (BuiltinCandidateTypeSet::iterator 7074 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 7075 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 7076 MemPtr != MemPtrEnd; ++MemPtr) { 7077 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 7078 continue; 7079 7080 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2, 7081 CandidateSet); 7082 } 7083 } 7084 } 7085 7086 // C++ [over.built]p19: 7087 // 7088 // For every pair (T, VQ), where T is any type and VQ is either 7089 // volatile or empty, there exist candidate operator functions 7090 // of the form 7091 // 7092 // T*VQ& operator=(T*VQ&, T*); 7093 // 7094 // C++ [over.built]p21: 7095 // 7096 // For every pair (T, VQ), where T is a cv-qualified or 7097 // cv-unqualified object type and VQ is either volatile or 7098 // empty, there exist candidate operator functions of the form 7099 // 7100 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 7101 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 7102 void addAssignmentPointerOverloads(bool isEqualOp) { 7103 /// Set of (canonical) types that we've already handled. 7104 llvm::SmallPtrSet<QualType, 8> AddedTypes; 7105 7106 for (BuiltinCandidateTypeSet::iterator 7107 Ptr = CandidateTypes[0].pointer_begin(), 7108 PtrEnd = CandidateTypes[0].pointer_end(); 7109 Ptr != PtrEnd; ++Ptr) { 7110 // If this is operator=, keep track of the builtin candidates we added. 7111 if (isEqualOp) 7112 AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); 7113 else if (!(*Ptr)->getPointeeType()->isObjectType()) 7114 continue; 7115 7116 // non-volatile version 7117 QualType ParamTypes[2] = { 7118 S.Context.getLValueReferenceType(*Ptr), 7119 isEqualOp ? *Ptr : S.Context.getPointerDiffType(), 7120 }; 7121 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 7122 /*IsAssigmentOperator=*/ isEqualOp); 7123 7124 bool NeedVolatile = !(*Ptr).isVolatileQualified() && 7125 VisibleTypeConversionsQuals.hasVolatile(); 7126 if (NeedVolatile) { 7127 // volatile version 7128 ParamTypes[0] = 7129 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 7130 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 7131 /*IsAssigmentOperator=*/isEqualOp); 7132 } 7133 7134 if (!(*Ptr).isRestrictQualified() && 7135 VisibleTypeConversionsQuals.hasRestrict()) { 7136 // restrict version 7137 ParamTypes[0] 7138 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr)); 7139 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 7140 /*IsAssigmentOperator=*/isEqualOp); 7141 7142 if (NeedVolatile) { 7143 // volatile restrict version 7144 ParamTypes[0] 7145 = S.Context.getLValueReferenceType( 7146 S.Context.getCVRQualifiedType(*Ptr, 7147 (Qualifiers::Volatile | 7148 Qualifiers::Restrict))); 7149 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 7150 CandidateSet, 7151 /*IsAssigmentOperator=*/isEqualOp); 7152 } 7153 } 7154 } 7155 7156 if (isEqualOp) { 7157 for (BuiltinCandidateTypeSet::iterator 7158 Ptr = CandidateTypes[1].pointer_begin(), 7159 PtrEnd = CandidateTypes[1].pointer_end(); 7160 Ptr != PtrEnd; ++Ptr) { 7161 // Make sure we don't add the same candidate twice. 7162 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 7163 continue; 7164 7165 QualType ParamTypes[2] = { 7166 S.Context.getLValueReferenceType(*Ptr), 7167 *Ptr, 7168 }; 7169 7170 // non-volatile version 7171 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 7172 /*IsAssigmentOperator=*/true); 7173 7174 bool NeedVolatile = !(*Ptr).isVolatileQualified() && 7175 VisibleTypeConversionsQuals.hasVolatile(); 7176 if (NeedVolatile) { 7177 // volatile version 7178 ParamTypes[0] = 7179 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 7180 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 7181 CandidateSet, /*IsAssigmentOperator=*/true); 7182 } 7183 7184 if (!(*Ptr).isRestrictQualified() && 7185 VisibleTypeConversionsQuals.hasRestrict()) { 7186 // restrict version 7187 ParamTypes[0] 7188 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr)); 7189 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 7190 CandidateSet, /*IsAssigmentOperator=*/true); 7191 7192 if (NeedVolatile) { 7193 // volatile restrict version 7194 ParamTypes[0] 7195 = S.Context.getLValueReferenceType( 7196 S.Context.getCVRQualifiedType(*Ptr, 7197 (Qualifiers::Volatile | 7198 Qualifiers::Restrict))); 7199 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 7200 CandidateSet, /*IsAssigmentOperator=*/true); 7201 7202 } 7203 } 7204 } 7205 } 7206 } 7207 7208 // C++ [over.built]p18: 7209 // 7210 // For every triple (L, VQ, R), where L is an arithmetic type, 7211 // VQ is either volatile or empty, and R is a promoted 7212 // arithmetic type, there exist candidate operator functions of 7213 // the form 7214 // 7215 // VQ L& operator=(VQ L&, R); 7216 // VQ L& operator*=(VQ L&, R); 7217 // VQ L& operator/=(VQ L&, R); 7218 // VQ L& operator+=(VQ L&, R); 7219 // VQ L& operator-=(VQ L&, R); 7220 void addAssignmentArithmeticOverloads(bool isEqualOp) { 7221 if (!HasArithmeticOrEnumeralCandidateType) 7222 return; 7223 7224 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 7225 for (unsigned Right = FirstPromotedArithmeticType; 7226 Right < LastPromotedArithmeticType; ++Right) { 7227 QualType ParamTypes[2]; 7228 ParamTypes[1] = getArithmeticType(Right); 7229 7230 // Add this built-in operator as a candidate (VQ is empty). 7231 ParamTypes[0] = 7232 S.Context.getLValueReferenceType(getArithmeticType(Left)); 7233 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 7234 /*IsAssigmentOperator=*/isEqualOp); 7235 7236 // Add this built-in operator as a candidate (VQ is 'volatile'). 7237 if (VisibleTypeConversionsQuals.hasVolatile()) { 7238 ParamTypes[0] = 7239 S.Context.getVolatileType(getArithmeticType(Left)); 7240 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 7241 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 7242 CandidateSet, 7243 /*IsAssigmentOperator=*/isEqualOp); 7244 } 7245 } 7246 } 7247 7248 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 7249 for (BuiltinCandidateTypeSet::iterator 7250 Vec1 = CandidateTypes[0].vector_begin(), 7251 Vec1End = CandidateTypes[0].vector_end(); 7252 Vec1 != Vec1End; ++Vec1) { 7253 for (BuiltinCandidateTypeSet::iterator 7254 Vec2 = CandidateTypes[1].vector_begin(), 7255 Vec2End = CandidateTypes[1].vector_end(); 7256 Vec2 != Vec2End; ++Vec2) { 7257 QualType ParamTypes[2]; 7258 ParamTypes[1] = *Vec2; 7259 // Add this built-in operator as a candidate (VQ is empty). 7260 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); 7261 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 7262 /*IsAssigmentOperator=*/isEqualOp); 7263 7264 // Add this built-in operator as a candidate (VQ is 'volatile'). 7265 if (VisibleTypeConversionsQuals.hasVolatile()) { 7266 ParamTypes[0] = S.Context.getVolatileType(*Vec1); 7267 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 7268 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 7269 CandidateSet, 7270 /*IsAssigmentOperator=*/isEqualOp); 7271 } 7272 } 7273 } 7274 } 7275 7276 // C++ [over.built]p22: 7277 // 7278 // For every triple (L, VQ, R), where L is an integral type, VQ 7279 // is either volatile or empty, and R is a promoted integral 7280 // type, there exist candidate operator functions of the form 7281 // 7282 // VQ L& operator%=(VQ L&, R); 7283 // VQ L& operator<<=(VQ L&, R); 7284 // VQ L& operator>>=(VQ L&, R); 7285 // VQ L& operator&=(VQ L&, R); 7286 // VQ L& operator^=(VQ L&, R); 7287 // VQ L& operator|=(VQ L&, R); 7288 void addAssignmentIntegralOverloads() { 7289 if (!HasArithmeticOrEnumeralCandidateType) 7290 return; 7291 7292 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 7293 for (unsigned Right = FirstPromotedIntegralType; 7294 Right < LastPromotedIntegralType; ++Right) { 7295 QualType ParamTypes[2]; 7296 ParamTypes[1] = getArithmeticType(Right); 7297 7298 // Add this built-in operator as a candidate (VQ is empty). 7299 ParamTypes[0] = 7300 S.Context.getLValueReferenceType(getArithmeticType(Left)); 7301 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 7302 if (VisibleTypeConversionsQuals.hasVolatile()) { 7303 // Add this built-in operator as a candidate (VQ is 'volatile'). 7304 ParamTypes[0] = getArithmeticType(Left); 7305 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 7306 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 7307 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 7308 CandidateSet); 7309 } 7310 } 7311 } 7312 } 7313 7314 // C++ [over.operator]p23: 7315 // 7316 // There also exist candidate operator functions of the form 7317 // 7318 // bool operator!(bool); 7319 // bool operator&&(bool, bool); 7320 // bool operator||(bool, bool); 7321 void addExclaimOverload() { 7322 QualType ParamTy = S.Context.BoolTy; 7323 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 7324 /*IsAssignmentOperator=*/false, 7325 /*NumContextualBoolArguments=*/1); 7326 } 7327 void addAmpAmpOrPipePipeOverload() { 7328 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 7329 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 7330 /*IsAssignmentOperator=*/false, 7331 /*NumContextualBoolArguments=*/2); 7332 } 7333 7334 // C++ [over.built]p13: 7335 // 7336 // For every cv-qualified or cv-unqualified object type T there 7337 // exist candidate operator functions of the form 7338 // 7339 // T* operator+(T*, ptrdiff_t); [ABOVE] 7340 // T& operator[](T*, ptrdiff_t); 7341 // T* operator-(T*, ptrdiff_t); [ABOVE] 7342 // T* operator+(ptrdiff_t, T*); [ABOVE] 7343 // T& operator[](ptrdiff_t, T*); 7344 void addSubscriptOverloads() { 7345 for (BuiltinCandidateTypeSet::iterator 7346 Ptr = CandidateTypes[0].pointer_begin(), 7347 PtrEnd = CandidateTypes[0].pointer_end(); 7348 Ptr != PtrEnd; ++Ptr) { 7349 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; 7350 QualType PointeeType = (*Ptr)->getPointeeType(); 7351 if (!PointeeType->isObjectType()) 7352 continue; 7353 7354 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 7355 7356 // T& operator[](T*, ptrdiff_t) 7357 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 7358 } 7359 7360 for (BuiltinCandidateTypeSet::iterator 7361 Ptr = CandidateTypes[1].pointer_begin(), 7362 PtrEnd = CandidateTypes[1].pointer_end(); 7363 Ptr != PtrEnd; ++Ptr) { 7364 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; 7365 QualType PointeeType = (*Ptr)->getPointeeType(); 7366 if (!PointeeType->isObjectType()) 7367 continue; 7368 7369 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 7370 7371 // T& operator[](ptrdiff_t, T*) 7372 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 7373 } 7374 } 7375 7376 // C++ [over.built]p11: 7377 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 7378 // C1 is the same type as C2 or is a derived class of C2, T is an object 7379 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 7380 // there exist candidate operator functions of the form 7381 // 7382 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 7383 // 7384 // where CV12 is the union of CV1 and CV2. 7385 void addArrowStarOverloads() { 7386 for (BuiltinCandidateTypeSet::iterator 7387 Ptr = CandidateTypes[0].pointer_begin(), 7388 PtrEnd = CandidateTypes[0].pointer_end(); 7389 Ptr != PtrEnd; ++Ptr) { 7390 QualType C1Ty = (*Ptr); 7391 QualType C1; 7392 QualifierCollector Q1; 7393 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 7394 if (!isa<RecordType>(C1)) 7395 continue; 7396 // heuristic to reduce number of builtin candidates in the set. 7397 // Add volatile/restrict version only if there are conversions to a 7398 // volatile/restrict type. 7399 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 7400 continue; 7401 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 7402 continue; 7403 for (BuiltinCandidateTypeSet::iterator 7404 MemPtr = CandidateTypes[1].member_pointer_begin(), 7405 MemPtrEnd = CandidateTypes[1].member_pointer_end(); 7406 MemPtr != MemPtrEnd; ++MemPtr) { 7407 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 7408 QualType C2 = QualType(mptr->getClass(), 0); 7409 C2 = C2.getUnqualifiedType(); 7410 if (C1 != C2 && !S.IsDerivedFrom(C1, C2)) 7411 break; 7412 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 7413 // build CV12 T& 7414 QualType T = mptr->getPointeeType(); 7415 if (!VisibleTypeConversionsQuals.hasVolatile() && 7416 T.isVolatileQualified()) 7417 continue; 7418 if (!VisibleTypeConversionsQuals.hasRestrict() && 7419 T.isRestrictQualified()) 7420 continue; 7421 T = Q1.apply(S.Context, T); 7422 QualType ResultTy = S.Context.getLValueReferenceType(T); 7423 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 7424 } 7425 } 7426 } 7427 7428 // Note that we don't consider the first argument, since it has been 7429 // contextually converted to bool long ago. The candidates below are 7430 // therefore added as binary. 7431 // 7432 // C++ [over.built]p25: 7433 // For every type T, where T is a pointer, pointer-to-member, or scoped 7434 // enumeration type, there exist candidate operator functions of the form 7435 // 7436 // T operator?(bool, T, T); 7437 // 7438 void addConditionalOperatorOverloads() { 7439 /// Set of (canonical) types that we've already handled. 7440 llvm::SmallPtrSet<QualType, 8> AddedTypes; 7441 7442 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 7443 for (BuiltinCandidateTypeSet::iterator 7444 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 7445 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 7446 Ptr != PtrEnd; ++Ptr) { 7447 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 7448 continue; 7449 7450 QualType ParamTypes[2] = { *Ptr, *Ptr }; 7451 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 7452 } 7453 7454 for (BuiltinCandidateTypeSet::iterator 7455 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 7456 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 7457 MemPtr != MemPtrEnd; ++MemPtr) { 7458 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 7459 continue; 7460 7461 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 7462 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet); 7463 } 7464 7465 if (S.getLangOpts().CPlusPlus11) { 7466 for (BuiltinCandidateTypeSet::iterator 7467 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 7468 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 7469 Enum != EnumEnd; ++Enum) { 7470 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 7471 continue; 7472 7473 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 7474 continue; 7475 7476 QualType ParamTypes[2] = { *Enum, *Enum }; 7477 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); 7478 } 7479 } 7480 } 7481 } 7482}; 7483 7484} // end anonymous namespace 7485 7486/// AddBuiltinOperatorCandidates - Add the appropriate built-in 7487/// operator overloads to the candidate set (C++ [over.built]), based 7488/// on the operator @p Op and the arguments given. For example, if the 7489/// operator is a binary '+', this routine might add "int 7490/// operator+(int, int)" to cover integer addition. 7491void 7492Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 7493 SourceLocation OpLoc, 7494 Expr **Args, unsigned NumArgs, 7495 OverloadCandidateSet& CandidateSet) { 7496 // Find all of the types that the arguments can convert to, but only 7497 // if the operator we're looking at has built-in operator candidates 7498 // that make use of these types. Also record whether we encounter non-record 7499 // candidate types or either arithmetic or enumeral candidate types. 7500 Qualifiers VisibleTypeConversionsQuals; 7501 VisibleTypeConversionsQuals.addConst(); 7502 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 7503 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 7504 7505 bool HasNonRecordCandidateType = false; 7506 bool HasArithmeticOrEnumeralCandidateType = false; 7507 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 7508 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 7509 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); 7510 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 7511 OpLoc, 7512 true, 7513 (Op == OO_Exclaim || 7514 Op == OO_AmpAmp || 7515 Op == OO_PipePipe), 7516 VisibleTypeConversionsQuals); 7517 HasNonRecordCandidateType = HasNonRecordCandidateType || 7518 CandidateTypes[ArgIdx].hasNonRecordTypes(); 7519 HasArithmeticOrEnumeralCandidateType = 7520 HasArithmeticOrEnumeralCandidateType || 7521 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 7522 } 7523 7524 // Exit early when no non-record types have been added to the candidate set 7525 // for any of the arguments to the operator. 7526 // 7527 // We can't exit early for !, ||, or &&, since there we have always have 7528 // 'bool' overloads. 7529 if (!HasNonRecordCandidateType && 7530 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) 7531 return; 7532 7533 // Setup an object to manage the common state for building overloads. 7534 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs, 7535 VisibleTypeConversionsQuals, 7536 HasArithmeticOrEnumeralCandidateType, 7537 CandidateTypes, CandidateSet); 7538 7539 // Dispatch over the operation to add in only those overloads which apply. 7540 switch (Op) { 7541 case OO_None: 7542 case NUM_OVERLOADED_OPERATORS: 7543 llvm_unreachable("Expected an overloaded operator"); 7544 7545 case OO_New: 7546 case OO_Delete: 7547 case OO_Array_New: 7548 case OO_Array_Delete: 7549 case OO_Call: 7550 llvm_unreachable( 7551 "Special operators don't use AddBuiltinOperatorCandidates"); 7552 7553 case OO_Comma: 7554 case OO_Arrow: 7555 // C++ [over.match.oper]p3: 7556 // -- For the operator ',', the unary operator '&', or the 7557 // operator '->', the built-in candidates set is empty. 7558 break; 7559 7560 case OO_Plus: // '+' is either unary or binary 7561 if (NumArgs == 1) 7562 OpBuilder.addUnaryPlusPointerOverloads(); 7563 // Fall through. 7564 7565 case OO_Minus: // '-' is either unary or binary 7566 if (NumArgs == 1) { 7567 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 7568 } else { 7569 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 7570 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7571 } 7572 break; 7573 7574 case OO_Star: // '*' is either unary or binary 7575 if (NumArgs == 1) 7576 OpBuilder.addUnaryStarPointerOverloads(); 7577 else 7578 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7579 break; 7580 7581 case OO_Slash: 7582 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7583 break; 7584 7585 case OO_PlusPlus: 7586 case OO_MinusMinus: 7587 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 7588 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 7589 break; 7590 7591 case OO_EqualEqual: 7592 case OO_ExclaimEqual: 7593 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads(); 7594 // Fall through. 7595 7596 case OO_Less: 7597 case OO_Greater: 7598 case OO_LessEqual: 7599 case OO_GreaterEqual: 7600 OpBuilder.addRelationalPointerOrEnumeralOverloads(); 7601 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true); 7602 break; 7603 7604 case OO_Percent: 7605 case OO_Caret: 7606 case OO_Pipe: 7607 case OO_LessLess: 7608 case OO_GreaterGreater: 7609 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 7610 break; 7611 7612 case OO_Amp: // '&' is either unary or binary 7613 if (NumArgs == 1) 7614 // C++ [over.match.oper]p3: 7615 // -- For the operator ',', the unary operator '&', or the 7616 // operator '->', the built-in candidates set is empty. 7617 break; 7618 7619 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 7620 break; 7621 7622 case OO_Tilde: 7623 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 7624 break; 7625 7626 case OO_Equal: 7627 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 7628 // Fall through. 7629 7630 case OO_PlusEqual: 7631 case OO_MinusEqual: 7632 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 7633 // Fall through. 7634 7635 case OO_StarEqual: 7636 case OO_SlashEqual: 7637 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 7638 break; 7639 7640 case OO_PercentEqual: 7641 case OO_LessLessEqual: 7642 case OO_GreaterGreaterEqual: 7643 case OO_AmpEqual: 7644 case OO_CaretEqual: 7645 case OO_PipeEqual: 7646 OpBuilder.addAssignmentIntegralOverloads(); 7647 break; 7648 7649 case OO_Exclaim: 7650 OpBuilder.addExclaimOverload(); 7651 break; 7652 7653 case OO_AmpAmp: 7654 case OO_PipePipe: 7655 OpBuilder.addAmpAmpOrPipePipeOverload(); 7656 break; 7657 7658 case OO_Subscript: 7659 OpBuilder.addSubscriptOverloads(); 7660 break; 7661 7662 case OO_ArrowStar: 7663 OpBuilder.addArrowStarOverloads(); 7664 break; 7665 7666 case OO_Conditional: 7667 OpBuilder.addConditionalOperatorOverloads(); 7668 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 7669 break; 7670 } 7671} 7672 7673/// \brief Add function candidates found via argument-dependent lookup 7674/// to the set of overloading candidates. 7675/// 7676/// This routine performs argument-dependent name lookup based on the 7677/// given function name (which may also be an operator name) and adds 7678/// all of the overload candidates found by ADL to the overload 7679/// candidate set (C++ [basic.lookup.argdep]). 7680void 7681Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 7682 bool Operator, SourceLocation Loc, 7683 llvm::ArrayRef<Expr *> Args, 7684 TemplateArgumentListInfo *ExplicitTemplateArgs, 7685 OverloadCandidateSet& CandidateSet, 7686 bool PartialOverloading) { 7687 ADLResult Fns; 7688 7689 // FIXME: This approach for uniquing ADL results (and removing 7690 // redundant candidates from the set) relies on pointer-equality, 7691 // which means we need to key off the canonical decl. However, 7692 // always going back to the canonical decl might not get us the 7693 // right set of default arguments. What default arguments are 7694 // we supposed to consider on ADL candidates, anyway? 7695 7696 // FIXME: Pass in the explicit template arguments? 7697 ArgumentDependentLookup(Name, Operator, Loc, Args, Fns); 7698 7699 // Erase all of the candidates we already knew about. 7700 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 7701 CandEnd = CandidateSet.end(); 7702 Cand != CandEnd; ++Cand) 7703 if (Cand->Function) { 7704 Fns.erase(Cand->Function); 7705 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 7706 Fns.erase(FunTmpl); 7707 } 7708 7709 // For each of the ADL candidates we found, add it to the overload 7710 // set. 7711 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 7712 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 7713 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 7714 if (ExplicitTemplateArgs) 7715 continue; 7716 7717 AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false, 7718 PartialOverloading); 7719 } else 7720 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 7721 FoundDecl, ExplicitTemplateArgs, 7722 Args, CandidateSet); 7723 } 7724} 7725 7726/// isBetterOverloadCandidate - Determines whether the first overload 7727/// candidate is a better candidate than the second (C++ 13.3.3p1). 7728bool 7729isBetterOverloadCandidate(Sema &S, 7730 const OverloadCandidate &Cand1, 7731 const OverloadCandidate &Cand2, 7732 SourceLocation Loc, 7733 bool UserDefinedConversion) { 7734 // Define viable functions to be better candidates than non-viable 7735 // functions. 7736 if (!Cand2.Viable) 7737 return Cand1.Viable; 7738 else if (!Cand1.Viable) 7739 return false; 7740 7741 // C++ [over.match.best]p1: 7742 // 7743 // -- if F is a static member function, ICS1(F) is defined such 7744 // that ICS1(F) is neither better nor worse than ICS1(G) for 7745 // any function G, and, symmetrically, ICS1(G) is neither 7746 // better nor worse than ICS1(F). 7747 unsigned StartArg = 0; 7748 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 7749 StartArg = 1; 7750 7751 // C++ [over.match.best]p1: 7752 // A viable function F1 is defined to be a better function than another 7753 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 7754 // conversion sequence than ICSi(F2), and then... 7755 unsigned NumArgs = Cand1.NumConversions; 7756 assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch"); 7757 bool HasBetterConversion = false; 7758 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 7759 switch (CompareImplicitConversionSequences(S, 7760 Cand1.Conversions[ArgIdx], 7761 Cand2.Conversions[ArgIdx])) { 7762 case ImplicitConversionSequence::Better: 7763 // Cand1 has a better conversion sequence. 7764 HasBetterConversion = true; 7765 break; 7766 7767 case ImplicitConversionSequence::Worse: 7768 // Cand1 can't be better than Cand2. 7769 return false; 7770 7771 case ImplicitConversionSequence::Indistinguishable: 7772 // Do nothing. 7773 break; 7774 } 7775 } 7776 7777 // -- for some argument j, ICSj(F1) is a better conversion sequence than 7778 // ICSj(F2), or, if not that, 7779 if (HasBetterConversion) 7780 return true; 7781 7782 // - F1 is a non-template function and F2 is a function template 7783 // specialization, or, if not that, 7784 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 7785 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 7786 return true; 7787 7788 // -- F1 and F2 are function template specializations, and the function 7789 // template for F1 is more specialized than the template for F2 7790 // according to the partial ordering rules described in 14.5.5.2, or, 7791 // if not that, 7792 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 7793 Cand2.Function && Cand2.Function->getPrimaryTemplate()) { 7794 if (FunctionTemplateDecl *BetterTemplate 7795 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 7796 Cand2.Function->getPrimaryTemplate(), 7797 Loc, 7798 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 7799 : TPOC_Call, 7800 Cand1.ExplicitCallArguments)) 7801 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 7802 } 7803 7804 // -- the context is an initialization by user-defined conversion 7805 // (see 8.5, 13.3.1.5) and the standard conversion sequence 7806 // from the return type of F1 to the destination type (i.e., 7807 // the type of the entity being initialized) is a better 7808 // conversion sequence than the standard conversion sequence 7809 // from the return type of F2 to the destination type. 7810 if (UserDefinedConversion && Cand1.Function && Cand2.Function && 7811 isa<CXXConversionDecl>(Cand1.Function) && 7812 isa<CXXConversionDecl>(Cand2.Function)) { 7813 // First check whether we prefer one of the conversion functions over the 7814 // other. This only distinguishes the results in non-standard, extension 7815 // cases such as the conversion from a lambda closure type to a function 7816 // pointer or block. 7817 ImplicitConversionSequence::CompareKind FuncResult 7818 = compareConversionFunctions(S, Cand1.Function, Cand2.Function); 7819 if (FuncResult != ImplicitConversionSequence::Indistinguishable) 7820 return FuncResult; 7821 7822 switch (CompareStandardConversionSequences(S, 7823 Cand1.FinalConversion, 7824 Cand2.FinalConversion)) { 7825 case ImplicitConversionSequence::Better: 7826 // Cand1 has a better conversion sequence. 7827 return true; 7828 7829 case ImplicitConversionSequence::Worse: 7830 // Cand1 can't be better than Cand2. 7831 return false; 7832 7833 case ImplicitConversionSequence::Indistinguishable: 7834 // Do nothing 7835 break; 7836 } 7837 } 7838 7839 return false; 7840} 7841 7842/// \brief Computes the best viable function (C++ 13.3.3) 7843/// within an overload candidate set. 7844/// 7845/// \param Loc The location of the function name (or operator symbol) for 7846/// which overload resolution occurs. 7847/// 7848/// \param Best If overload resolution was successful or found a deleted 7849/// function, \p Best points to the candidate function found. 7850/// 7851/// \returns The result of overload resolution. 7852OverloadingResult 7853OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 7854 iterator &Best, 7855 bool UserDefinedConversion) { 7856 // Find the best viable function. 7857 Best = end(); 7858 for (iterator Cand = begin(); Cand != end(); ++Cand) { 7859 if (Cand->Viable) 7860 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, 7861 UserDefinedConversion)) 7862 Best = Cand; 7863 } 7864 7865 // If we didn't find any viable functions, abort. 7866 if (Best == end()) 7867 return OR_No_Viable_Function; 7868 7869 // Make sure that this function is better than every other viable 7870 // function. If not, we have an ambiguity. 7871 for (iterator Cand = begin(); Cand != end(); ++Cand) { 7872 if (Cand->Viable && 7873 Cand != Best && 7874 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, 7875 UserDefinedConversion)) { 7876 Best = end(); 7877 return OR_Ambiguous; 7878 } 7879 } 7880 7881 // Best is the best viable function. 7882 if (Best->Function && 7883 (Best->Function->isDeleted() || 7884 S.isFunctionConsideredUnavailable(Best->Function))) 7885 return OR_Deleted; 7886 7887 return OR_Success; 7888} 7889 7890namespace { 7891 7892enum OverloadCandidateKind { 7893 oc_function, 7894 oc_method, 7895 oc_constructor, 7896 oc_function_template, 7897 oc_method_template, 7898 oc_constructor_template, 7899 oc_implicit_default_constructor, 7900 oc_implicit_copy_constructor, 7901 oc_implicit_move_constructor, 7902 oc_implicit_copy_assignment, 7903 oc_implicit_move_assignment, 7904 oc_implicit_inherited_constructor 7905}; 7906 7907OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 7908 FunctionDecl *Fn, 7909 std::string &Description) { 7910 bool isTemplate = false; 7911 7912 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 7913 isTemplate = true; 7914 Description = S.getTemplateArgumentBindingsText( 7915 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 7916 } 7917 7918 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 7919 if (!Ctor->isImplicit()) 7920 return isTemplate ? oc_constructor_template : oc_constructor; 7921 7922 if (Ctor->getInheritedConstructor()) 7923 return oc_implicit_inherited_constructor; 7924 7925 if (Ctor->isDefaultConstructor()) 7926 return oc_implicit_default_constructor; 7927 7928 if (Ctor->isMoveConstructor()) 7929 return oc_implicit_move_constructor; 7930 7931 assert(Ctor->isCopyConstructor() && 7932 "unexpected sort of implicit constructor"); 7933 return oc_implicit_copy_constructor; 7934 } 7935 7936 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 7937 // This actually gets spelled 'candidate function' for now, but 7938 // it doesn't hurt to split it out. 7939 if (!Meth->isImplicit()) 7940 return isTemplate ? oc_method_template : oc_method; 7941 7942 if (Meth->isMoveAssignmentOperator()) 7943 return oc_implicit_move_assignment; 7944 7945 if (Meth->isCopyAssignmentOperator()) 7946 return oc_implicit_copy_assignment; 7947 7948 assert(isa<CXXConversionDecl>(Meth) && "expected conversion"); 7949 return oc_method; 7950 } 7951 7952 return isTemplate ? oc_function_template : oc_function; 7953} 7954 7955void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) { 7956 const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn); 7957 if (!Ctor) return; 7958 7959 Ctor = Ctor->getInheritedConstructor(); 7960 if (!Ctor) return; 7961 7962 S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor); 7963} 7964 7965} // end anonymous namespace 7966 7967// Notes the location of an overload candidate. 7968void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) { 7969 std::string FnDesc; 7970 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 7971 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) 7972 << (unsigned) K << FnDesc; 7973 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); 7974 Diag(Fn->getLocation(), PD); 7975 MaybeEmitInheritedConstructorNote(*this, Fn); 7976} 7977 7978//Notes the location of all overload candidates designated through 7979// OverloadedExpr 7980void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) { 7981 assert(OverloadedExpr->getType() == Context.OverloadTy); 7982 7983 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 7984 OverloadExpr *OvlExpr = Ovl.Expression; 7985 7986 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7987 IEnd = OvlExpr->decls_end(); 7988 I != IEnd; ++I) { 7989 if (FunctionTemplateDecl *FunTmpl = 7990 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 7991 NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType); 7992 } else if (FunctionDecl *Fun 7993 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 7994 NoteOverloadCandidate(Fun, DestType); 7995 } 7996 } 7997} 7998 7999/// Diagnoses an ambiguous conversion. The partial diagnostic is the 8000/// "lead" diagnostic; it will be given two arguments, the source and 8001/// target types of the conversion. 8002void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 8003 Sema &S, 8004 SourceLocation CaretLoc, 8005 const PartialDiagnostic &PDiag) const { 8006 S.Diag(CaretLoc, PDiag) 8007 << Ambiguous.getFromType() << Ambiguous.getToType(); 8008 // FIXME: The note limiting machinery is borrowed from 8009 // OverloadCandidateSet::NoteCandidates; there's an opportunity for 8010 // refactoring here. 8011 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 8012 unsigned CandsShown = 0; 8013 AmbiguousConversionSequence::const_iterator I, E; 8014 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 8015 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) 8016 break; 8017 ++CandsShown; 8018 S.NoteOverloadCandidate(*I); 8019 } 8020 if (I != E) 8021 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); 8022} 8023 8024namespace { 8025 8026void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 8027 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 8028 assert(Conv.isBad()); 8029 assert(Cand->Function && "for now, candidate must be a function"); 8030 FunctionDecl *Fn = Cand->Function; 8031 8032 // There's a conversion slot for the object argument if this is a 8033 // non-constructor method. Note that 'I' corresponds the 8034 // conversion-slot index. 8035 bool isObjectArgument = false; 8036 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 8037 if (I == 0) 8038 isObjectArgument = true; 8039 else 8040 I--; 8041 } 8042 8043 std::string FnDesc; 8044 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 8045 8046 Expr *FromExpr = Conv.Bad.FromExpr; 8047 QualType FromTy = Conv.Bad.getFromType(); 8048 QualType ToTy = Conv.Bad.getToType(); 8049 8050 if (FromTy == S.Context.OverloadTy) { 8051 assert(FromExpr && "overload set argument came from implicit argument?"); 8052 Expr *E = FromExpr->IgnoreParens(); 8053 if (isa<UnaryOperator>(E)) 8054 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 8055 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 8056 8057 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 8058 << (unsigned) FnKind << FnDesc 8059 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8060 << ToTy << Name << I+1; 8061 MaybeEmitInheritedConstructorNote(S, Fn); 8062 return; 8063 } 8064 8065 // Do some hand-waving analysis to see if the non-viability is due 8066 // to a qualifier mismatch. 8067 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 8068 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 8069 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 8070 CToTy = RT->getPointeeType(); 8071 else { 8072 // TODO: detect and diagnose the full richness of const mismatches. 8073 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 8074 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 8075 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 8076 } 8077 8078 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 8079 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 8080 Qualifiers FromQs = CFromTy.getQualifiers(); 8081 Qualifiers ToQs = CToTy.getQualifiers(); 8082 8083 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 8084 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 8085 << (unsigned) FnKind << FnDesc 8086 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8087 << FromTy 8088 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 8089 << (unsigned) isObjectArgument << I+1; 8090 MaybeEmitInheritedConstructorNote(S, Fn); 8091 return; 8092 } 8093 8094 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 8095 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 8096 << (unsigned) FnKind << FnDesc 8097 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8098 << FromTy 8099 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 8100 << (unsigned) isObjectArgument << I+1; 8101 MaybeEmitInheritedConstructorNote(S, Fn); 8102 return; 8103 } 8104 8105 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 8106 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 8107 << (unsigned) FnKind << FnDesc 8108 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8109 << FromTy 8110 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 8111 << (unsigned) isObjectArgument << I+1; 8112 MaybeEmitInheritedConstructorNote(S, Fn); 8113 return; 8114 } 8115 8116 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 8117 assert(CVR && "unexpected qualifiers mismatch"); 8118 8119 if (isObjectArgument) { 8120 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 8121 << (unsigned) FnKind << FnDesc 8122 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8123 << FromTy << (CVR - 1); 8124 } else { 8125 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 8126 << (unsigned) FnKind << FnDesc 8127 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8128 << FromTy << (CVR - 1) << I+1; 8129 } 8130 MaybeEmitInheritedConstructorNote(S, Fn); 8131 return; 8132 } 8133 8134 // Special diagnostic for failure to convert an initializer list, since 8135 // telling the user that it has type void is not useful. 8136 if (FromExpr && isa<InitListExpr>(FromExpr)) { 8137 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) 8138 << (unsigned) FnKind << FnDesc 8139 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8140 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 8141 MaybeEmitInheritedConstructorNote(S, Fn); 8142 return; 8143 } 8144 8145 // Diagnose references or pointers to incomplete types differently, 8146 // since it's far from impossible that the incompleteness triggered 8147 // the failure. 8148 QualType TempFromTy = FromTy.getNonReferenceType(); 8149 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 8150 TempFromTy = PTy->getPointeeType(); 8151 if (TempFromTy->isIncompleteType()) { 8152 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 8153 << (unsigned) FnKind << FnDesc 8154 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8155 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 8156 MaybeEmitInheritedConstructorNote(S, Fn); 8157 return; 8158 } 8159 8160 // Diagnose base -> derived pointer conversions. 8161 unsigned BaseToDerivedConversion = 0; 8162 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 8163 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 8164 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 8165 FromPtrTy->getPointeeType()) && 8166 !FromPtrTy->getPointeeType()->isIncompleteType() && 8167 !ToPtrTy->getPointeeType()->isIncompleteType() && 8168 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 8169 FromPtrTy->getPointeeType())) 8170 BaseToDerivedConversion = 1; 8171 } 8172 } else if (const ObjCObjectPointerType *FromPtrTy 8173 = FromTy->getAs<ObjCObjectPointerType>()) { 8174 if (const ObjCObjectPointerType *ToPtrTy 8175 = ToTy->getAs<ObjCObjectPointerType>()) 8176 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 8177 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 8178 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 8179 FromPtrTy->getPointeeType()) && 8180 FromIface->isSuperClassOf(ToIface)) 8181 BaseToDerivedConversion = 2; 8182 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 8183 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 8184 !FromTy->isIncompleteType() && 8185 !ToRefTy->getPointeeType()->isIncompleteType() && 8186 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) { 8187 BaseToDerivedConversion = 3; 8188 } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() && 8189 ToTy.getNonReferenceType().getCanonicalType() == 8190 FromTy.getNonReferenceType().getCanonicalType()) { 8191 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue) 8192 << (unsigned) FnKind << FnDesc 8193 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8194 << (unsigned) isObjectArgument << I + 1; 8195 MaybeEmitInheritedConstructorNote(S, Fn); 8196 return; 8197 } 8198 } 8199 8200 if (BaseToDerivedConversion) { 8201 S.Diag(Fn->getLocation(), 8202 diag::note_ovl_candidate_bad_base_to_derived_conv) 8203 << (unsigned) FnKind << FnDesc 8204 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8205 << (BaseToDerivedConversion - 1) 8206 << FromTy << ToTy << I+1; 8207 MaybeEmitInheritedConstructorNote(S, Fn); 8208 return; 8209 } 8210 8211 if (isa<ObjCObjectPointerType>(CFromTy) && 8212 isa<PointerType>(CToTy)) { 8213 Qualifiers FromQs = CFromTy.getQualifiers(); 8214 Qualifiers ToQs = CToTy.getQualifiers(); 8215 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 8216 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) 8217 << (unsigned) FnKind << FnDesc 8218 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8219 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 8220 MaybeEmitInheritedConstructorNote(S, Fn); 8221 return; 8222 } 8223 } 8224 8225 // Emit the generic diagnostic and, optionally, add the hints to it. 8226 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 8227 FDiag << (unsigned) FnKind << FnDesc 8228 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 8229 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1 8230 << (unsigned) (Cand->Fix.Kind); 8231 8232 // If we can fix the conversion, suggest the FixIts. 8233 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), 8234 HE = Cand->Fix.Hints.end(); HI != HE; ++HI) 8235 FDiag << *HI; 8236 S.Diag(Fn->getLocation(), FDiag); 8237 8238 MaybeEmitInheritedConstructorNote(S, Fn); 8239} 8240 8241void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 8242 unsigned NumFormalArgs) { 8243 // TODO: treat calls to a missing default constructor as a special case 8244 8245 FunctionDecl *Fn = Cand->Function; 8246 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 8247 8248 unsigned MinParams = Fn->getMinRequiredArguments(); 8249 8250 // With invalid overloaded operators, it's possible that we think we 8251 // have an arity mismatch when it fact it looks like we have the 8252 // right number of arguments, because only overloaded operators have 8253 // the weird behavior of overloading member and non-member functions. 8254 // Just don't report anything. 8255 if (Fn->isInvalidDecl() && 8256 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 8257 return; 8258 8259 // at least / at most / exactly 8260 unsigned mode, modeCount; 8261 if (NumFormalArgs < MinParams) { 8262 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 8263 (Cand->FailureKind == ovl_fail_bad_deduction && 8264 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 8265 if (MinParams != FnTy->getNumArgs() || 8266 FnTy->isVariadic() || FnTy->isTemplateVariadic()) 8267 mode = 0; // "at least" 8268 else 8269 mode = 2; // "exactly" 8270 modeCount = MinParams; 8271 } else { 8272 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 8273 (Cand->FailureKind == ovl_fail_bad_deduction && 8274 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 8275 if (MinParams != FnTy->getNumArgs()) 8276 mode = 1; // "at most" 8277 else 8278 mode = 2; // "exactly" 8279 modeCount = FnTy->getNumArgs(); 8280 } 8281 8282 std::string Description; 8283 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 8284 8285 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName()) 8286 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) 8287 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 8288 << Fn->getParamDecl(0) << NumFormalArgs; 8289 else 8290 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 8291 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 8292 << modeCount << NumFormalArgs; 8293 MaybeEmitInheritedConstructorNote(S, Fn); 8294} 8295 8296/// Diagnose a failed template-argument deduction. 8297void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 8298 unsigned NumArgs) { 8299 FunctionDecl *Fn = Cand->Function; // pattern 8300 8301 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 8302 NamedDecl *ParamD; 8303 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 8304 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 8305 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 8306 switch (Cand->DeductionFailure.Result) { 8307 case Sema::TDK_Success: 8308 llvm_unreachable("TDK_success while diagnosing bad deduction"); 8309 8310 case Sema::TDK_Incomplete: { 8311 assert(ParamD && "no parameter found for incomplete deduction result"); 8312 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 8313 << ParamD->getDeclName(); 8314 MaybeEmitInheritedConstructorNote(S, Fn); 8315 return; 8316 } 8317 8318 case Sema::TDK_Underqualified: { 8319 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 8320 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 8321 8322 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 8323 8324 // Param will have been canonicalized, but it should just be a 8325 // qualified version of ParamD, so move the qualifiers to that. 8326 QualifierCollector Qs; 8327 Qs.strip(Param); 8328 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 8329 assert(S.Context.hasSameType(Param, NonCanonParam)); 8330 8331 // Arg has also been canonicalized, but there's nothing we can do 8332 // about that. It also doesn't matter as much, because it won't 8333 // have any template parameters in it (because deduction isn't 8334 // done on dependent types). 8335 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 8336 8337 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 8338 << ParamD->getDeclName() << Arg << NonCanonParam; 8339 MaybeEmitInheritedConstructorNote(S, Fn); 8340 return; 8341 } 8342 8343 case Sema::TDK_Inconsistent: { 8344 assert(ParamD && "no parameter found for inconsistent deduction result"); 8345 int which = 0; 8346 if (isa<TemplateTypeParmDecl>(ParamD)) 8347 which = 0; 8348 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 8349 which = 1; 8350 else { 8351 which = 2; 8352 } 8353 8354 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 8355 << which << ParamD->getDeclName() 8356 << *Cand->DeductionFailure.getFirstArg() 8357 << *Cand->DeductionFailure.getSecondArg(); 8358 MaybeEmitInheritedConstructorNote(S, Fn); 8359 return; 8360 } 8361 8362 case Sema::TDK_InvalidExplicitArguments: 8363 assert(ParamD && "no parameter found for invalid explicit arguments"); 8364 if (ParamD->getDeclName()) 8365 S.Diag(Fn->getLocation(), 8366 diag::note_ovl_candidate_explicit_arg_mismatch_named) 8367 << ParamD->getDeclName(); 8368 else { 8369 int index = 0; 8370 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 8371 index = TTP->getIndex(); 8372 else if (NonTypeTemplateParmDecl *NTTP 8373 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 8374 index = NTTP->getIndex(); 8375 else 8376 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 8377 S.Diag(Fn->getLocation(), 8378 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 8379 << (index + 1); 8380 } 8381 MaybeEmitInheritedConstructorNote(S, Fn); 8382 return; 8383 8384 case Sema::TDK_TooManyArguments: 8385 case Sema::TDK_TooFewArguments: 8386 DiagnoseArityMismatch(S, Cand, NumArgs); 8387 return; 8388 8389 case Sema::TDK_InstantiationDepth: 8390 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 8391 MaybeEmitInheritedConstructorNote(S, Fn); 8392 return; 8393 8394 case Sema::TDK_SubstitutionFailure: { 8395 // Format the template argument list into the argument string. 8396 llvm::SmallString<128> TemplateArgString; 8397 if (TemplateArgumentList *Args = 8398 Cand->DeductionFailure.getTemplateArgumentList()) { 8399 TemplateArgString = " "; 8400 TemplateArgString += S.getTemplateArgumentBindingsText( 8401 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), *Args); 8402 } 8403 8404 // If this candidate was disabled by enable_if, say so. 8405 PartialDiagnosticAt *PDiag = Cand->DeductionFailure.getSFINAEDiagnostic(); 8406 if (PDiag && PDiag->second.getDiagID() == 8407 diag::err_typename_nested_not_found_enable_if) { 8408 // FIXME: Use the source range of the condition, and the fully-qualified 8409 // name of the enable_if template. These are both present in PDiag. 8410 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) 8411 << "'enable_if'" << TemplateArgString; 8412 return; 8413 } 8414 8415 // Format the SFINAE diagnostic into the argument string. 8416 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s 8417 // formatted message in another diagnostic. 8418 llvm::SmallString<128> SFINAEArgString; 8419 SourceRange R; 8420 if (PDiag) { 8421 SFINAEArgString = ": "; 8422 R = SourceRange(PDiag->first, PDiag->first); 8423 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); 8424 } 8425 8426 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 8427 << TemplateArgString << SFINAEArgString << R; 8428 MaybeEmitInheritedConstructorNote(S, Fn); 8429 return; 8430 } 8431 8432 // TODO: diagnose these individually, then kill off 8433 // note_ovl_candidate_bad_deduction, which is uselessly vague. 8434 case Sema::TDK_NonDeducedMismatch: 8435 case Sema::TDK_FailedOverloadResolution: 8436 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 8437 MaybeEmitInheritedConstructorNote(S, Fn); 8438 return; 8439 } 8440} 8441 8442/// CUDA: diagnose an invalid call across targets. 8443void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { 8444 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); 8445 FunctionDecl *Callee = Cand->Function; 8446 8447 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), 8448 CalleeTarget = S.IdentifyCUDATarget(Callee); 8449 8450 std::string FnDesc; 8451 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc); 8452 8453 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) 8454 << (unsigned) FnKind << CalleeTarget << CallerTarget; 8455} 8456 8457/// Generates a 'note' diagnostic for an overload candidate. We've 8458/// already generated a primary error at the call site. 8459/// 8460/// It really does need to be a single diagnostic with its caret 8461/// pointed at the candidate declaration. Yes, this creates some 8462/// major challenges of technical writing. Yes, this makes pointing 8463/// out problems with specific arguments quite awkward. It's still 8464/// better than generating twenty screens of text for every failed 8465/// overload. 8466/// 8467/// It would be great to be able to express per-candidate problems 8468/// more richly for those diagnostic clients that cared, but we'd 8469/// still have to be just as careful with the default diagnostics. 8470void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 8471 unsigned NumArgs) { 8472 FunctionDecl *Fn = Cand->Function; 8473 8474 // Note deleted candidates, but only if they're viable. 8475 if (Cand->Viable && (Fn->isDeleted() || 8476 S.isFunctionConsideredUnavailable(Fn))) { 8477 std::string FnDesc; 8478 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 8479 8480 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 8481 << FnKind << FnDesc 8482 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); 8483 MaybeEmitInheritedConstructorNote(S, Fn); 8484 return; 8485 } 8486 8487 // We don't really have anything else to say about viable candidates. 8488 if (Cand->Viable) { 8489 S.NoteOverloadCandidate(Fn); 8490 return; 8491 } 8492 8493 switch (Cand->FailureKind) { 8494 case ovl_fail_too_many_arguments: 8495 case ovl_fail_too_few_arguments: 8496 return DiagnoseArityMismatch(S, Cand, NumArgs); 8497 8498 case ovl_fail_bad_deduction: 8499 return DiagnoseBadDeduction(S, Cand, NumArgs); 8500 8501 case ovl_fail_trivial_conversion: 8502 case ovl_fail_bad_final_conversion: 8503 case ovl_fail_final_conversion_not_exact: 8504 return S.NoteOverloadCandidate(Fn); 8505 8506 case ovl_fail_bad_conversion: { 8507 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 8508 for (unsigned N = Cand->NumConversions; I != N; ++I) 8509 if (Cand->Conversions[I].isBad()) 8510 return DiagnoseBadConversion(S, Cand, I); 8511 8512 // FIXME: this currently happens when we're called from SemaInit 8513 // when user-conversion overload fails. Figure out how to handle 8514 // those conditions and diagnose them well. 8515 return S.NoteOverloadCandidate(Fn); 8516 } 8517 8518 case ovl_fail_bad_target: 8519 return DiagnoseBadTarget(S, Cand); 8520 } 8521} 8522 8523void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 8524 // Desugar the type of the surrogate down to a function type, 8525 // retaining as many typedefs as possible while still showing 8526 // the function type (and, therefore, its parameter types). 8527 QualType FnType = Cand->Surrogate->getConversionType(); 8528 bool isLValueReference = false; 8529 bool isRValueReference = false; 8530 bool isPointer = false; 8531 if (const LValueReferenceType *FnTypeRef = 8532 FnType->getAs<LValueReferenceType>()) { 8533 FnType = FnTypeRef->getPointeeType(); 8534 isLValueReference = true; 8535 } else if (const RValueReferenceType *FnTypeRef = 8536 FnType->getAs<RValueReferenceType>()) { 8537 FnType = FnTypeRef->getPointeeType(); 8538 isRValueReference = true; 8539 } 8540 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 8541 FnType = FnTypePtr->getPointeeType(); 8542 isPointer = true; 8543 } 8544 // Desugar down to a function type. 8545 FnType = QualType(FnType->getAs<FunctionType>(), 0); 8546 // Reconstruct the pointer/reference as appropriate. 8547 if (isPointer) FnType = S.Context.getPointerType(FnType); 8548 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 8549 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 8550 8551 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 8552 << FnType; 8553 MaybeEmitInheritedConstructorNote(S, Cand->Surrogate); 8554} 8555 8556void NoteBuiltinOperatorCandidate(Sema &S, 8557 StringRef Opc, 8558 SourceLocation OpLoc, 8559 OverloadCandidate *Cand) { 8560 assert(Cand->NumConversions <= 2 && "builtin operator is not binary"); 8561 std::string TypeStr("operator"); 8562 TypeStr += Opc; 8563 TypeStr += "("; 8564 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 8565 if (Cand->NumConversions == 1) { 8566 TypeStr += ")"; 8567 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 8568 } else { 8569 TypeStr += ", "; 8570 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 8571 TypeStr += ")"; 8572 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 8573 } 8574} 8575 8576void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 8577 OverloadCandidate *Cand) { 8578 unsigned NoOperands = Cand->NumConversions; 8579 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 8580 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 8581 if (ICS.isBad()) break; // all meaningless after first invalid 8582 if (!ICS.isAmbiguous()) continue; 8583 8584 ICS.DiagnoseAmbiguousConversion(S, OpLoc, 8585 S.PDiag(diag::note_ambiguous_type_conversion)); 8586 } 8587} 8588 8589SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 8590 if (Cand->Function) 8591 return Cand->Function->getLocation(); 8592 if (Cand->IsSurrogate) 8593 return Cand->Surrogate->getLocation(); 8594 return SourceLocation(); 8595} 8596 8597static unsigned 8598RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) { 8599 switch ((Sema::TemplateDeductionResult)DFI.Result) { 8600 case Sema::TDK_Success: 8601 llvm_unreachable("TDK_success while diagnosing bad deduction"); 8602 8603 case Sema::TDK_Invalid: 8604 case Sema::TDK_Incomplete: 8605 return 1; 8606 8607 case Sema::TDK_Underqualified: 8608 case Sema::TDK_Inconsistent: 8609 return 2; 8610 8611 case Sema::TDK_SubstitutionFailure: 8612 case Sema::TDK_NonDeducedMismatch: 8613 return 3; 8614 8615 case Sema::TDK_InstantiationDepth: 8616 case Sema::TDK_FailedOverloadResolution: 8617 return 4; 8618 8619 case Sema::TDK_InvalidExplicitArguments: 8620 return 5; 8621 8622 case Sema::TDK_TooManyArguments: 8623 case Sema::TDK_TooFewArguments: 8624 return 6; 8625 } 8626 llvm_unreachable("Unhandled deduction result"); 8627} 8628 8629struct CompareOverloadCandidatesForDisplay { 8630 Sema &S; 8631 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 8632 8633 bool operator()(const OverloadCandidate *L, 8634 const OverloadCandidate *R) { 8635 // Fast-path this check. 8636 if (L == R) return false; 8637 8638 // Order first by viability. 8639 if (L->Viable) { 8640 if (!R->Viable) return true; 8641 8642 // TODO: introduce a tri-valued comparison for overload 8643 // candidates. Would be more worthwhile if we had a sort 8644 // that could exploit it. 8645 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; 8646 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; 8647 } else if (R->Viable) 8648 return false; 8649 8650 assert(L->Viable == R->Viable); 8651 8652 // Criteria by which we can sort non-viable candidates: 8653 if (!L->Viable) { 8654 // 1. Arity mismatches come after other candidates. 8655 if (L->FailureKind == ovl_fail_too_many_arguments || 8656 L->FailureKind == ovl_fail_too_few_arguments) 8657 return false; 8658 if (R->FailureKind == ovl_fail_too_many_arguments || 8659 R->FailureKind == ovl_fail_too_few_arguments) 8660 return true; 8661 8662 // 2. Bad conversions come first and are ordered by the number 8663 // of bad conversions and quality of good conversions. 8664 if (L->FailureKind == ovl_fail_bad_conversion) { 8665 if (R->FailureKind != ovl_fail_bad_conversion) 8666 return true; 8667 8668 // The conversion that can be fixed with a smaller number of changes, 8669 // comes first. 8670 unsigned numLFixes = L->Fix.NumConversionsFixed; 8671 unsigned numRFixes = R->Fix.NumConversionsFixed; 8672 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 8673 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 8674 if (numLFixes != numRFixes) { 8675 if (numLFixes < numRFixes) 8676 return true; 8677 else 8678 return false; 8679 } 8680 8681 // If there's any ordering between the defined conversions... 8682 // FIXME: this might not be transitive. 8683 assert(L->NumConversions == R->NumConversions); 8684 8685 int leftBetter = 0; 8686 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 8687 for (unsigned E = L->NumConversions; I != E; ++I) { 8688 switch (CompareImplicitConversionSequences(S, 8689 L->Conversions[I], 8690 R->Conversions[I])) { 8691 case ImplicitConversionSequence::Better: 8692 leftBetter++; 8693 break; 8694 8695 case ImplicitConversionSequence::Worse: 8696 leftBetter--; 8697 break; 8698 8699 case ImplicitConversionSequence::Indistinguishable: 8700 break; 8701 } 8702 } 8703 if (leftBetter > 0) return true; 8704 if (leftBetter < 0) return false; 8705 8706 } else if (R->FailureKind == ovl_fail_bad_conversion) 8707 return false; 8708 8709 if (L->FailureKind == ovl_fail_bad_deduction) { 8710 if (R->FailureKind != ovl_fail_bad_deduction) 8711 return true; 8712 8713 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 8714 return RankDeductionFailure(L->DeductionFailure) 8715 < RankDeductionFailure(R->DeductionFailure); 8716 } else if (R->FailureKind == ovl_fail_bad_deduction) 8717 return false; 8718 8719 // TODO: others? 8720 } 8721 8722 // Sort everything else by location. 8723 SourceLocation LLoc = GetLocationForCandidate(L); 8724 SourceLocation RLoc = GetLocationForCandidate(R); 8725 8726 // Put candidates without locations (e.g. builtins) at the end. 8727 if (LLoc.isInvalid()) return false; 8728 if (RLoc.isInvalid()) return true; 8729 8730 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 8731 } 8732}; 8733 8734/// CompleteNonViableCandidate - Normally, overload resolution only 8735/// computes up to the first. Produces the FixIt set if possible. 8736void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 8737 llvm::ArrayRef<Expr *> Args) { 8738 assert(!Cand->Viable); 8739 8740 // Don't do anything on failures other than bad conversion. 8741 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 8742 8743 // We only want the FixIts if all the arguments can be corrected. 8744 bool Unfixable = false; 8745 // Use a implicit copy initialization to check conversion fixes. 8746 Cand->Fix.setConversionChecker(TryCopyInitialization); 8747 8748 // Skip forward to the first bad conversion. 8749 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 8750 unsigned ConvCount = Cand->NumConversions; 8751 while (true) { 8752 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 8753 ConvIdx++; 8754 if (Cand->Conversions[ConvIdx - 1].isBad()) { 8755 Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S); 8756 break; 8757 } 8758 } 8759 8760 if (ConvIdx == ConvCount) 8761 return; 8762 8763 assert(!Cand->Conversions[ConvIdx].isInitialized() && 8764 "remaining conversion is initialized?"); 8765 8766 // FIXME: this should probably be preserved from the overload 8767 // operation somehow. 8768 bool SuppressUserConversions = false; 8769 8770 const FunctionProtoType* Proto; 8771 unsigned ArgIdx = ConvIdx; 8772 8773 if (Cand->IsSurrogate) { 8774 QualType ConvType 8775 = Cand->Surrogate->getConversionType().getNonReferenceType(); 8776 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 8777 ConvType = ConvPtrType->getPointeeType(); 8778 Proto = ConvType->getAs<FunctionProtoType>(); 8779 ArgIdx--; 8780 } else if (Cand->Function) { 8781 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 8782 if (isa<CXXMethodDecl>(Cand->Function) && 8783 !isa<CXXConstructorDecl>(Cand->Function)) 8784 ArgIdx--; 8785 } else { 8786 // Builtin binary operator with a bad first conversion. 8787 assert(ConvCount <= 3); 8788 for (; ConvIdx != ConvCount; ++ConvIdx) 8789 Cand->Conversions[ConvIdx] 8790 = TryCopyInitialization(S, Args[ConvIdx], 8791 Cand->BuiltinTypes.ParamTypes[ConvIdx], 8792 SuppressUserConversions, 8793 /*InOverloadResolution*/ true, 8794 /*AllowObjCWritebackConversion=*/ 8795 S.getLangOpts().ObjCAutoRefCount); 8796 return; 8797 } 8798 8799 // Fill in the rest of the conversions. 8800 unsigned NumArgsInProto = Proto->getNumArgs(); 8801 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 8802 if (ArgIdx < NumArgsInProto) { 8803 Cand->Conversions[ConvIdx] 8804 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 8805 SuppressUserConversions, 8806 /*InOverloadResolution=*/true, 8807 /*AllowObjCWritebackConversion=*/ 8808 S.getLangOpts().ObjCAutoRefCount); 8809 // Store the FixIt in the candidate if it exists. 8810 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 8811 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 8812 } 8813 else 8814 Cand->Conversions[ConvIdx].setEllipsis(); 8815 } 8816} 8817 8818} // end anonymous namespace 8819 8820/// PrintOverloadCandidates - When overload resolution fails, prints 8821/// diagnostic messages containing the candidates in the candidate 8822/// set. 8823void OverloadCandidateSet::NoteCandidates(Sema &S, 8824 OverloadCandidateDisplayKind OCD, 8825 llvm::ArrayRef<Expr *> Args, 8826 StringRef Opc, 8827 SourceLocation OpLoc) { 8828 // Sort the candidates by viability and position. Sorting directly would 8829 // be prohibitive, so we make a set of pointers and sort those. 8830 SmallVector<OverloadCandidate*, 32> Cands; 8831 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 8832 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 8833 if (Cand->Viable) 8834 Cands.push_back(Cand); 8835 else if (OCD == OCD_AllCandidates) { 8836 CompleteNonViableCandidate(S, Cand, Args); 8837 if (Cand->Function || Cand->IsSurrogate) 8838 Cands.push_back(Cand); 8839 // Otherwise, this a non-viable builtin candidate. We do not, in general, 8840 // want to list every possible builtin candidate. 8841 } 8842 } 8843 8844 std::sort(Cands.begin(), Cands.end(), 8845 CompareOverloadCandidatesForDisplay(S)); 8846 8847 bool ReportedAmbiguousConversions = false; 8848 8849 SmallVectorImpl<OverloadCandidate*>::iterator I, E; 8850 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 8851 unsigned CandsShown = 0; 8852 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 8853 OverloadCandidate *Cand = *I; 8854 8855 // Set an arbitrary limit on the number of candidate functions we'll spam 8856 // the user with. FIXME: This limit should depend on details of the 8857 // candidate list. 8858 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) { 8859 break; 8860 } 8861 ++CandsShown; 8862 8863 if (Cand->Function) 8864 NoteFunctionCandidate(S, Cand, Args.size()); 8865 else if (Cand->IsSurrogate) 8866 NoteSurrogateCandidate(S, Cand); 8867 else { 8868 assert(Cand->Viable && 8869 "Non-viable built-in candidates are not added to Cands."); 8870 // Generally we only see ambiguities including viable builtin 8871 // operators if overload resolution got screwed up by an 8872 // ambiguous user-defined conversion. 8873 // 8874 // FIXME: It's quite possible for different conversions to see 8875 // different ambiguities, though. 8876 if (!ReportedAmbiguousConversions) { 8877 NoteAmbiguousUserConversions(S, OpLoc, Cand); 8878 ReportedAmbiguousConversions = true; 8879 } 8880 8881 // If this is a viable builtin, print it. 8882 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 8883 } 8884 } 8885 8886 if (I != E) 8887 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 8888} 8889 8890// [PossiblyAFunctionType] --> [Return] 8891// NonFunctionType --> NonFunctionType 8892// R (A) --> R(A) 8893// R (*)(A) --> R (A) 8894// R (&)(A) --> R (A) 8895// R (S::*)(A) --> R (A) 8896QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 8897 QualType Ret = PossiblyAFunctionType; 8898 if (const PointerType *ToTypePtr = 8899 PossiblyAFunctionType->getAs<PointerType>()) 8900 Ret = ToTypePtr->getPointeeType(); 8901 else if (const ReferenceType *ToTypeRef = 8902 PossiblyAFunctionType->getAs<ReferenceType>()) 8903 Ret = ToTypeRef->getPointeeType(); 8904 else if (const MemberPointerType *MemTypePtr = 8905 PossiblyAFunctionType->getAs<MemberPointerType>()) 8906 Ret = MemTypePtr->getPointeeType(); 8907 Ret = 8908 Context.getCanonicalType(Ret).getUnqualifiedType(); 8909 return Ret; 8910} 8911 8912// A helper class to help with address of function resolution 8913// - allows us to avoid passing around all those ugly parameters 8914class AddressOfFunctionResolver 8915{ 8916 Sema& S; 8917 Expr* SourceExpr; 8918 const QualType& TargetType; 8919 QualType TargetFunctionType; // Extracted function type from target type 8920 8921 bool Complain; 8922 //DeclAccessPair& ResultFunctionAccessPair; 8923 ASTContext& Context; 8924 8925 bool TargetTypeIsNonStaticMemberFunction; 8926 bool FoundNonTemplateFunction; 8927 8928 OverloadExpr::FindResult OvlExprInfo; 8929 OverloadExpr *OvlExpr; 8930 TemplateArgumentListInfo OvlExplicitTemplateArgs; 8931 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 8932 8933public: 8934 AddressOfFunctionResolver(Sema &S, Expr* SourceExpr, 8935 const QualType& TargetType, bool Complain) 8936 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 8937 Complain(Complain), Context(S.getASTContext()), 8938 TargetTypeIsNonStaticMemberFunction( 8939 !!TargetType->getAs<MemberPointerType>()), 8940 FoundNonTemplateFunction(false), 8941 OvlExprInfo(OverloadExpr::find(SourceExpr)), 8942 OvlExpr(OvlExprInfo.Expression) 8943 { 8944 ExtractUnqualifiedFunctionTypeFromTargetType(); 8945 8946 if (!TargetFunctionType->isFunctionType()) { 8947 if (OvlExpr->hasExplicitTemplateArgs()) { 8948 DeclAccessPair dap; 8949 if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization( 8950 OvlExpr, false, &dap) ) { 8951 8952 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 8953 if (!Method->isStatic()) { 8954 // If the target type is a non-function type and the function 8955 // found is a non-static member function, pretend as if that was 8956 // the target, it's the only possible type to end up with. 8957 TargetTypeIsNonStaticMemberFunction = true; 8958 8959 // And skip adding the function if its not in the proper form. 8960 // We'll diagnose this due to an empty set of functions. 8961 if (!OvlExprInfo.HasFormOfMemberPointer) 8962 return; 8963 } 8964 } 8965 8966 Matches.push_back(std::make_pair(dap,Fn)); 8967 } 8968 } 8969 return; 8970 } 8971 8972 if (OvlExpr->hasExplicitTemplateArgs()) 8973 OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs); 8974 8975 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 8976 // C++ [over.over]p4: 8977 // If more than one function is selected, [...] 8978 if (Matches.size() > 1) { 8979 if (FoundNonTemplateFunction) 8980 EliminateAllTemplateMatches(); 8981 else 8982 EliminateAllExceptMostSpecializedTemplate(); 8983 } 8984 } 8985 } 8986 8987private: 8988 bool isTargetTypeAFunction() const { 8989 return TargetFunctionType->isFunctionType(); 8990 } 8991 8992 // [ToType] [Return] 8993 8994 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 8995 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 8996 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 8997 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 8998 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 8999 } 9000 9001 // return true if any matching specializations were found 9002 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 9003 const DeclAccessPair& CurAccessFunPair) { 9004 if (CXXMethodDecl *Method 9005 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 9006 // Skip non-static function templates when converting to pointer, and 9007 // static when converting to member pointer. 9008 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 9009 return false; 9010 } 9011 else if (TargetTypeIsNonStaticMemberFunction) 9012 return false; 9013 9014 // C++ [over.over]p2: 9015 // If the name is a function template, template argument deduction is 9016 // done (14.8.2.2), and if the argument deduction succeeds, the 9017 // resulting template argument list is used to generate a single 9018 // function template specialization, which is added to the set of 9019 // overloaded functions considered. 9020 FunctionDecl *Specialization = 0; 9021 TemplateDeductionInfo Info(OvlExpr->getNameLoc()); 9022 if (Sema::TemplateDeductionResult Result 9023 = S.DeduceTemplateArguments(FunctionTemplate, 9024 &OvlExplicitTemplateArgs, 9025 TargetFunctionType, Specialization, 9026 Info)) { 9027 // FIXME: make a note of the failed deduction for diagnostics. 9028 (void)Result; 9029 return false; 9030 } 9031 9032 // Template argument deduction ensures that we have an exact match. 9033 // This function template specicalization works. 9034 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); 9035 assert(TargetFunctionType 9036 == Context.getCanonicalType(Specialization->getType())); 9037 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 9038 return true; 9039 } 9040 9041 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 9042 const DeclAccessPair& CurAccessFunPair) { 9043 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 9044 // Skip non-static functions when converting to pointer, and static 9045 // when converting to member pointer. 9046 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 9047 return false; 9048 } 9049 else if (TargetTypeIsNonStaticMemberFunction) 9050 return false; 9051 9052 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 9053 if (S.getLangOpts().CUDA) 9054 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 9055 if (S.CheckCUDATarget(Caller, FunDecl)) 9056 return false; 9057 9058 QualType ResultTy; 9059 if (Context.hasSameUnqualifiedType(TargetFunctionType, 9060 FunDecl->getType()) || 9061 S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType, 9062 ResultTy)) { 9063 Matches.push_back(std::make_pair(CurAccessFunPair, 9064 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 9065 FoundNonTemplateFunction = true; 9066 return true; 9067 } 9068 } 9069 9070 return false; 9071 } 9072 9073 bool FindAllFunctionsThatMatchTargetTypeExactly() { 9074 bool Ret = false; 9075 9076 // If the overload expression doesn't have the form of a pointer to 9077 // member, don't try to convert it to a pointer-to-member type. 9078 if (IsInvalidFormOfPointerToMemberFunction()) 9079 return false; 9080 9081 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 9082 E = OvlExpr->decls_end(); 9083 I != E; ++I) { 9084 // Look through any using declarations to find the underlying function. 9085 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 9086 9087 // C++ [over.over]p3: 9088 // Non-member functions and static member functions match 9089 // targets of type "pointer-to-function" or "reference-to-function." 9090 // Nonstatic member functions match targets of 9091 // type "pointer-to-member-function." 9092 // Note that according to DR 247, the containing class does not matter. 9093 if (FunctionTemplateDecl *FunctionTemplate 9094 = dyn_cast<FunctionTemplateDecl>(Fn)) { 9095 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 9096 Ret = true; 9097 } 9098 // If we have explicit template arguments supplied, skip non-templates. 9099 else if (!OvlExpr->hasExplicitTemplateArgs() && 9100 AddMatchingNonTemplateFunction(Fn, I.getPair())) 9101 Ret = true; 9102 } 9103 assert(Ret || Matches.empty()); 9104 return Ret; 9105 } 9106 9107 void EliminateAllExceptMostSpecializedTemplate() { 9108 // [...] and any given function template specialization F1 is 9109 // eliminated if the set contains a second function template 9110 // specialization whose function template is more specialized 9111 // than the function template of F1 according to the partial 9112 // ordering rules of 14.5.5.2. 9113 9114 // The algorithm specified above is quadratic. We instead use a 9115 // two-pass algorithm (similar to the one used to identify the 9116 // best viable function in an overload set) that identifies the 9117 // best function template (if it exists). 9118 9119 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 9120 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 9121 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 9122 9123 UnresolvedSetIterator Result = 9124 S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 9125 TPOC_Other, 0, SourceExpr->getLocStart(), 9126 S.PDiag(), 9127 S.PDiag(diag::err_addr_ovl_ambiguous) 9128 << Matches[0].second->getDeclName(), 9129 S.PDiag(diag::note_ovl_candidate) 9130 << (unsigned) oc_function_template, 9131 Complain, TargetFunctionType); 9132 9133 if (Result != MatchesCopy.end()) { 9134 // Make it the first and only element 9135 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 9136 Matches[0].second = cast<FunctionDecl>(*Result); 9137 Matches.resize(1); 9138 } 9139 } 9140 9141 void EliminateAllTemplateMatches() { 9142 // [...] any function template specializations in the set are 9143 // eliminated if the set also contains a non-template function, [...] 9144 for (unsigned I = 0, N = Matches.size(); I != N; ) { 9145 if (Matches[I].second->getPrimaryTemplate() == 0) 9146 ++I; 9147 else { 9148 Matches[I] = Matches[--N]; 9149 Matches.set_size(N); 9150 } 9151 } 9152 } 9153 9154public: 9155 void ComplainNoMatchesFound() const { 9156 assert(Matches.empty()); 9157 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable) 9158 << OvlExpr->getName() << TargetFunctionType 9159 << OvlExpr->getSourceRange(); 9160 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); 9161 } 9162 9163 bool IsInvalidFormOfPointerToMemberFunction() const { 9164 return TargetTypeIsNonStaticMemberFunction && 9165 !OvlExprInfo.HasFormOfMemberPointer; 9166 } 9167 9168 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 9169 // TODO: Should we condition this on whether any functions might 9170 // have matched, or is it more appropriate to do that in callers? 9171 // TODO: a fixit wouldn't hurt. 9172 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 9173 << TargetType << OvlExpr->getSourceRange(); 9174 } 9175 9176 void ComplainOfInvalidConversion() const { 9177 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 9178 << OvlExpr->getName() << TargetType; 9179 } 9180 9181 void ComplainMultipleMatchesFound() const { 9182 assert(Matches.size() > 1); 9183 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous) 9184 << OvlExpr->getName() 9185 << OvlExpr->getSourceRange(); 9186 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); 9187 } 9188 9189 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } 9190 9191 int getNumMatches() const { return Matches.size(); } 9192 9193 FunctionDecl* getMatchingFunctionDecl() const { 9194 if (Matches.size() != 1) return 0; 9195 return Matches[0].second; 9196 } 9197 9198 const DeclAccessPair* getMatchingFunctionAccessPair() const { 9199 if (Matches.size() != 1) return 0; 9200 return &Matches[0].first; 9201 } 9202}; 9203 9204/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 9205/// an overloaded function (C++ [over.over]), where @p From is an 9206/// expression with overloaded function type and @p ToType is the type 9207/// we're trying to resolve to. For example: 9208/// 9209/// @code 9210/// int f(double); 9211/// int f(int); 9212/// 9213/// int (*pfd)(double) = f; // selects f(double) 9214/// @endcode 9215/// 9216/// This routine returns the resulting FunctionDecl if it could be 9217/// resolved, and NULL otherwise. When @p Complain is true, this 9218/// routine will emit diagnostics if there is an error. 9219FunctionDecl * 9220Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, 9221 QualType TargetType, 9222 bool Complain, 9223 DeclAccessPair &FoundResult, 9224 bool *pHadMultipleCandidates) { 9225 assert(AddressOfExpr->getType() == Context.OverloadTy); 9226 9227 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, 9228 Complain); 9229 int NumMatches = Resolver.getNumMatches(); 9230 FunctionDecl* Fn = 0; 9231 if (NumMatches == 0 && Complain) { 9232 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 9233 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 9234 else 9235 Resolver.ComplainNoMatchesFound(); 9236 } 9237 else if (NumMatches > 1 && Complain) 9238 Resolver.ComplainMultipleMatchesFound(); 9239 else if (NumMatches == 1) { 9240 Fn = Resolver.getMatchingFunctionDecl(); 9241 assert(Fn); 9242 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 9243 if (Complain) 9244 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 9245 } 9246 9247 if (pHadMultipleCandidates) 9248 *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); 9249 return Fn; 9250} 9251 9252/// \brief Given an expression that refers to an overloaded function, try to 9253/// resolve that overloaded function expression down to a single function. 9254/// 9255/// This routine can only resolve template-ids that refer to a single function 9256/// template, where that template-id refers to a single template whose template 9257/// arguments are either provided by the template-id or have defaults, 9258/// as described in C++0x [temp.arg.explicit]p3. 9259FunctionDecl * 9260Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 9261 bool Complain, 9262 DeclAccessPair *FoundResult) { 9263 // C++ [over.over]p1: 9264 // [...] [Note: any redundant set of parentheses surrounding the 9265 // overloaded function name is ignored (5.1). ] 9266 // C++ [over.over]p1: 9267 // [...] The overloaded function name can be preceded by the & 9268 // operator. 9269 9270 // If we didn't actually find any template-ids, we're done. 9271 if (!ovl->hasExplicitTemplateArgs()) 9272 return 0; 9273 9274 TemplateArgumentListInfo ExplicitTemplateArgs; 9275 ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 9276 9277 // Look through all of the overloaded functions, searching for one 9278 // whose type matches exactly. 9279 FunctionDecl *Matched = 0; 9280 for (UnresolvedSetIterator I = ovl->decls_begin(), 9281 E = ovl->decls_end(); I != E; ++I) { 9282 // C++0x [temp.arg.explicit]p3: 9283 // [...] In contexts where deduction is done and fails, or in contexts 9284 // where deduction is not done, if a template argument list is 9285 // specified and it, along with any default template arguments, 9286 // identifies a single function template specialization, then the 9287 // template-id is an lvalue for the function template specialization. 9288 FunctionTemplateDecl *FunctionTemplate 9289 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 9290 9291 // C++ [over.over]p2: 9292 // If the name is a function template, template argument deduction is 9293 // done (14.8.2.2), and if the argument deduction succeeds, the 9294 // resulting template argument list is used to generate a single 9295 // function template specialization, which is added to the set of 9296 // overloaded functions considered. 9297 FunctionDecl *Specialization = 0; 9298 TemplateDeductionInfo Info(ovl->getNameLoc()); 9299 if (TemplateDeductionResult Result 9300 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 9301 Specialization, Info)) { 9302 // FIXME: make a note of the failed deduction for diagnostics. 9303 (void)Result; 9304 continue; 9305 } 9306 9307 assert(Specialization && "no specialization and no error?"); 9308 9309 // Multiple matches; we can't resolve to a single declaration. 9310 if (Matched) { 9311 if (Complain) { 9312 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 9313 << ovl->getName(); 9314 NoteAllOverloadCandidates(ovl); 9315 } 9316 return 0; 9317 } 9318 9319 Matched = Specialization; 9320 if (FoundResult) *FoundResult = I.getPair(); 9321 } 9322 9323 return Matched; 9324} 9325 9326 9327 9328 9329// Resolve and fix an overloaded expression that can be resolved 9330// because it identifies a single function template specialization. 9331// 9332// Last three arguments should only be supplied if Complain = true 9333// 9334// Return true if it was logically possible to so resolve the 9335// expression, regardless of whether or not it succeeded. Always 9336// returns true if 'complain' is set. 9337bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 9338 ExprResult &SrcExpr, bool doFunctionPointerConverion, 9339 bool complain, const SourceRange& OpRangeForComplaining, 9340 QualType DestTypeForComplaining, 9341 unsigned DiagIDForComplaining) { 9342 assert(SrcExpr.get()->getType() == Context.OverloadTy); 9343 9344 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); 9345 9346 DeclAccessPair found; 9347 ExprResult SingleFunctionExpression; 9348 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 9349 ovl.Expression, /*complain*/ false, &found)) { 9350 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) { 9351 SrcExpr = ExprError(); 9352 return true; 9353 } 9354 9355 // It is only correct to resolve to an instance method if we're 9356 // resolving a form that's permitted to be a pointer to member. 9357 // Otherwise we'll end up making a bound member expression, which 9358 // is illegal in all the contexts we resolve like this. 9359 if (!ovl.HasFormOfMemberPointer && 9360 isa<CXXMethodDecl>(fn) && 9361 cast<CXXMethodDecl>(fn)->isInstance()) { 9362 if (!complain) return false; 9363 9364 Diag(ovl.Expression->getExprLoc(), 9365 diag::err_bound_member_function) 9366 << 0 << ovl.Expression->getSourceRange(); 9367 9368 // TODO: I believe we only end up here if there's a mix of 9369 // static and non-static candidates (otherwise the expression 9370 // would have 'bound member' type, not 'overload' type). 9371 // Ideally we would note which candidate was chosen and why 9372 // the static candidates were rejected. 9373 SrcExpr = ExprError(); 9374 return true; 9375 } 9376 9377 // Fix the expression to refer to 'fn'. 9378 SingleFunctionExpression = 9379 Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn)); 9380 9381 // If desired, do function-to-pointer decay. 9382 if (doFunctionPointerConverion) { 9383 SingleFunctionExpression = 9384 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take()); 9385 if (SingleFunctionExpression.isInvalid()) { 9386 SrcExpr = ExprError(); 9387 return true; 9388 } 9389 } 9390 } 9391 9392 if (!SingleFunctionExpression.isUsable()) { 9393 if (complain) { 9394 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 9395 << ovl.Expression->getName() 9396 << DestTypeForComplaining 9397 << OpRangeForComplaining 9398 << ovl.Expression->getQualifierLoc().getSourceRange(); 9399 NoteAllOverloadCandidates(SrcExpr.get()); 9400 9401 SrcExpr = ExprError(); 9402 return true; 9403 } 9404 9405 return false; 9406 } 9407 9408 SrcExpr = SingleFunctionExpression; 9409 return true; 9410} 9411 9412/// \brief Add a single candidate to the overload set. 9413static void AddOverloadedCallCandidate(Sema &S, 9414 DeclAccessPair FoundDecl, 9415 TemplateArgumentListInfo *ExplicitTemplateArgs, 9416 llvm::ArrayRef<Expr *> Args, 9417 OverloadCandidateSet &CandidateSet, 9418 bool PartialOverloading, 9419 bool KnownValid) { 9420 NamedDecl *Callee = FoundDecl.getDecl(); 9421 if (isa<UsingShadowDecl>(Callee)) 9422 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 9423 9424 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 9425 if (ExplicitTemplateArgs) { 9426 assert(!KnownValid && "Explicit template arguments?"); 9427 return; 9428 } 9429 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false, 9430 PartialOverloading); 9431 return; 9432 } 9433 9434 if (FunctionTemplateDecl *FuncTemplate 9435 = dyn_cast<FunctionTemplateDecl>(Callee)) { 9436 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 9437 ExplicitTemplateArgs, Args, CandidateSet); 9438 return; 9439 } 9440 9441 assert(!KnownValid && "unhandled case in overloaded call candidate"); 9442} 9443 9444/// \brief Add the overload candidates named by callee and/or found by argument 9445/// dependent lookup to the given overload set. 9446void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 9447 llvm::ArrayRef<Expr *> Args, 9448 OverloadCandidateSet &CandidateSet, 9449 bool PartialOverloading) { 9450 9451#ifndef NDEBUG 9452 // Verify that ArgumentDependentLookup is consistent with the rules 9453 // in C++0x [basic.lookup.argdep]p3: 9454 // 9455 // Let X be the lookup set produced by unqualified lookup (3.4.1) 9456 // and let Y be the lookup set produced by argument dependent 9457 // lookup (defined as follows). If X contains 9458 // 9459 // -- a declaration of a class member, or 9460 // 9461 // -- a block-scope function declaration that is not a 9462 // using-declaration, or 9463 // 9464 // -- a declaration that is neither a function or a function 9465 // template 9466 // 9467 // then Y is empty. 9468 9469 if (ULE->requiresADL()) { 9470 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 9471 E = ULE->decls_end(); I != E; ++I) { 9472 assert(!(*I)->getDeclContext()->isRecord()); 9473 assert(isa<UsingShadowDecl>(*I) || 9474 !(*I)->getDeclContext()->isFunctionOrMethod()); 9475 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 9476 } 9477 } 9478#endif 9479 9480 // It would be nice to avoid this copy. 9481 TemplateArgumentListInfo TABuffer; 9482 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 9483 if (ULE->hasExplicitTemplateArgs()) { 9484 ULE->copyTemplateArgumentsInto(TABuffer); 9485 ExplicitTemplateArgs = &TABuffer; 9486 } 9487 9488 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 9489 E = ULE->decls_end(); I != E; ++I) 9490 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 9491 CandidateSet, PartialOverloading, 9492 /*KnownValid*/ true); 9493 9494 if (ULE->requiresADL()) 9495 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 9496 ULE->getExprLoc(), 9497 Args, ExplicitTemplateArgs, 9498 CandidateSet, PartialOverloading); 9499} 9500 9501/// Attempt to recover from an ill-formed use of a non-dependent name in a 9502/// template, where the non-dependent name was declared after the template 9503/// was defined. This is common in code written for a compilers which do not 9504/// correctly implement two-stage name lookup. 9505/// 9506/// Returns true if a viable candidate was found and a diagnostic was issued. 9507static bool 9508DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc, 9509 const CXXScopeSpec &SS, LookupResult &R, 9510 TemplateArgumentListInfo *ExplicitTemplateArgs, 9511 llvm::ArrayRef<Expr *> Args) { 9512 if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty()) 9513 return false; 9514 9515 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 9516 if (DC->isTransparentContext()) 9517 continue; 9518 9519 SemaRef.LookupQualifiedName(R, DC); 9520 9521 if (!R.empty()) { 9522 R.suppressDiagnostics(); 9523 9524 if (isa<CXXRecordDecl>(DC)) { 9525 // Don't diagnose names we find in classes; we get much better 9526 // diagnostics for these from DiagnoseEmptyLookup. 9527 R.clear(); 9528 return false; 9529 } 9530 9531 OverloadCandidateSet Candidates(FnLoc); 9532 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 9533 AddOverloadedCallCandidate(SemaRef, I.getPair(), 9534 ExplicitTemplateArgs, Args, 9535 Candidates, false, /*KnownValid*/ false); 9536 9537 OverloadCandidateSet::iterator Best; 9538 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) { 9539 // No viable functions. Don't bother the user with notes for functions 9540 // which don't work and shouldn't be found anyway. 9541 R.clear(); 9542 return false; 9543 } 9544 9545 // Find the namespaces where ADL would have looked, and suggest 9546 // declaring the function there instead. 9547 Sema::AssociatedNamespaceSet AssociatedNamespaces; 9548 Sema::AssociatedClassSet AssociatedClasses; 9549 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, 9550 AssociatedNamespaces, 9551 AssociatedClasses); 9552 Sema::AssociatedNamespaceSet SuggestedNamespaces; 9553 DeclContext *Std = SemaRef.getStdNamespace(); 9554 for (Sema::AssociatedNamespaceSet::iterator 9555 it = AssociatedNamespaces.begin(), 9556 end = AssociatedNamespaces.end(); it != end; ++it) { 9557 // Never suggest declaring a function within namespace 'std'. 9558 if (Std && Std->Encloses(*it)) 9559 continue; 9560 9561 // Never suggest declaring a function within a namespace with a reserved 9562 // name, like __gnu_cxx. 9563 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it); 9564 if (NS && 9565 NS->getQualifiedNameAsString().find("__") != std::string::npos) 9566 continue; 9567 9568 SuggestedNamespaces.insert(*it); 9569 } 9570 9571 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 9572 << R.getLookupName(); 9573 if (SuggestedNamespaces.empty()) { 9574 SemaRef.Diag(Best->Function->getLocation(), 9575 diag::note_not_found_by_two_phase_lookup) 9576 << R.getLookupName() << 0; 9577 } else if (SuggestedNamespaces.size() == 1) { 9578 SemaRef.Diag(Best->Function->getLocation(), 9579 diag::note_not_found_by_two_phase_lookup) 9580 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 9581 } else { 9582 // FIXME: It would be useful to list the associated namespaces here, 9583 // but the diagnostics infrastructure doesn't provide a way to produce 9584 // a localized representation of a list of items. 9585 SemaRef.Diag(Best->Function->getLocation(), 9586 diag::note_not_found_by_two_phase_lookup) 9587 << R.getLookupName() << 2; 9588 } 9589 9590 // Try to recover by calling this function. 9591 return true; 9592 } 9593 9594 R.clear(); 9595 } 9596 9597 return false; 9598} 9599 9600/// Attempt to recover from ill-formed use of a non-dependent operator in a 9601/// template, where the non-dependent operator was declared after the template 9602/// was defined. 9603/// 9604/// Returns true if a viable candidate was found and a diagnostic was issued. 9605static bool 9606DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 9607 SourceLocation OpLoc, 9608 llvm::ArrayRef<Expr *> Args) { 9609 DeclarationName OpName = 9610 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 9611 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 9612 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 9613 /*ExplicitTemplateArgs=*/0, Args); 9614} 9615 9616namespace { 9617// Callback to limit the allowed keywords and to only accept typo corrections 9618// that are keywords or whose decls refer to functions (or template functions) 9619// that accept the given number of arguments. 9620class RecoveryCallCCC : public CorrectionCandidateCallback { 9621 public: 9622 RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs) 9623 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) { 9624 WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus; 9625 WantRemainingKeywords = false; 9626 } 9627 9628 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 9629 if (!candidate.getCorrectionDecl()) 9630 return candidate.isKeyword(); 9631 9632 for (TypoCorrection::const_decl_iterator DI = candidate.begin(), 9633 DIEnd = candidate.end(); DI != DIEnd; ++DI) { 9634 FunctionDecl *FD = 0; 9635 NamedDecl *ND = (*DI)->getUnderlyingDecl(); 9636 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 9637 FD = FTD->getTemplatedDecl(); 9638 if (!HasExplicitTemplateArgs && !FD) { 9639 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { 9640 // If the Decl is neither a function nor a template function, 9641 // determine if it is a pointer or reference to a function. If so, 9642 // check against the number of arguments expected for the pointee. 9643 QualType ValType = cast<ValueDecl>(ND)->getType(); 9644 if (ValType->isAnyPointerType() || ValType->isReferenceType()) 9645 ValType = ValType->getPointeeType(); 9646 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) 9647 if (FPT->getNumArgs() == NumArgs) 9648 return true; 9649 } 9650 } 9651 if (FD && FD->getNumParams() >= NumArgs && 9652 FD->getMinRequiredArguments() <= NumArgs) 9653 return true; 9654 } 9655 return false; 9656 } 9657 9658 private: 9659 unsigned NumArgs; 9660 bool HasExplicitTemplateArgs; 9661}; 9662 9663// Callback that effectively disabled typo correction 9664class NoTypoCorrectionCCC : public CorrectionCandidateCallback { 9665 public: 9666 NoTypoCorrectionCCC() { 9667 WantTypeSpecifiers = false; 9668 WantExpressionKeywords = false; 9669 WantCXXNamedCasts = false; 9670 WantRemainingKeywords = false; 9671 } 9672 9673 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 9674 return false; 9675 } 9676}; 9677 9678class BuildRecoveryCallExprRAII { 9679 Sema &SemaRef; 9680public: 9681 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) { 9682 assert(SemaRef.IsBuildingRecoveryCallExpr == false); 9683 SemaRef.IsBuildingRecoveryCallExpr = true; 9684 } 9685 9686 ~BuildRecoveryCallExprRAII() { 9687 SemaRef.IsBuildingRecoveryCallExpr = false; 9688 } 9689}; 9690 9691} 9692 9693/// Attempts to recover from a call where no functions were found. 9694/// 9695/// Returns true if new candidates were found. 9696static ExprResult 9697BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 9698 UnresolvedLookupExpr *ULE, 9699 SourceLocation LParenLoc, 9700 llvm::MutableArrayRef<Expr *> Args, 9701 SourceLocation RParenLoc, 9702 bool EmptyLookup, bool AllowTypoCorrection) { 9703 // Do not try to recover if it is already building a recovery call. 9704 // This stops infinite loops for template instantiations like 9705 // 9706 // template <typename T> auto foo(T t) -> decltype(foo(t)) {} 9707 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} 9708 // 9709 if (SemaRef.IsBuildingRecoveryCallExpr) 9710 return ExprError(); 9711 BuildRecoveryCallExprRAII RCE(SemaRef); 9712 9713 CXXScopeSpec SS; 9714 SS.Adopt(ULE->getQualifierLoc()); 9715 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); 9716 9717 TemplateArgumentListInfo TABuffer; 9718 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 9719 if (ULE->hasExplicitTemplateArgs()) { 9720 ULE->copyTemplateArgumentsInto(TABuffer); 9721 ExplicitTemplateArgs = &TABuffer; 9722 } 9723 9724 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 9725 Sema::LookupOrdinaryName); 9726 RecoveryCallCCC Validator(SemaRef, Args.size(), ExplicitTemplateArgs != 0); 9727 NoTypoCorrectionCCC RejectAll; 9728 CorrectionCandidateCallback *CCC = AllowTypoCorrection ? 9729 (CorrectionCandidateCallback*)&Validator : 9730 (CorrectionCandidateCallback*)&RejectAll; 9731 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 9732 ExplicitTemplateArgs, Args) && 9733 (!EmptyLookup || 9734 SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC, 9735 ExplicitTemplateArgs, Args))) 9736 return ExprError(); 9737 9738 assert(!R.empty() && "lookup results empty despite recovery"); 9739 9740 // Build an implicit member call if appropriate. Just drop the 9741 // casts and such from the call, we don't really care. 9742 ExprResult NewFn = ExprError(); 9743 if ((*R.begin())->isCXXClassMember()) 9744 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, 9745 R, ExplicitTemplateArgs); 9746 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) 9747 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, 9748 ExplicitTemplateArgs); 9749 else 9750 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 9751 9752 if (NewFn.isInvalid()) 9753 return ExprError(); 9754 9755 // This shouldn't cause an infinite loop because we're giving it 9756 // an expression with viable lookup results, which should never 9757 // end up here. 9758 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, 9759 MultiExprArg(Args.data(), Args.size()), 9760 RParenLoc); 9761} 9762 9763/// \brief Constructs and populates an OverloadedCandidateSet from 9764/// the given function. 9765/// \returns true when an the ExprResult output parameter has been set. 9766bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, 9767 UnresolvedLookupExpr *ULE, 9768 Expr **Args, unsigned NumArgs, 9769 SourceLocation RParenLoc, 9770 OverloadCandidateSet *CandidateSet, 9771 ExprResult *Result) { 9772#ifndef NDEBUG 9773 if (ULE->requiresADL()) { 9774 // To do ADL, we must have found an unqualified name. 9775 assert(!ULE->getQualifier() && "qualified name with ADL"); 9776 9777 // We don't perform ADL for implicit declarations of builtins. 9778 // Verify that this was correctly set up. 9779 FunctionDecl *F; 9780 if (ULE->decls_begin() + 1 == ULE->decls_end() && 9781 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 9782 F->getBuiltinID() && F->isImplicit()) 9783 llvm_unreachable("performing ADL for builtin"); 9784 9785 // We don't perform ADL in C. 9786 assert(getLangOpts().CPlusPlus && "ADL enabled in C"); 9787 } 9788#endif 9789 9790 UnbridgedCastsSet UnbridgedCasts; 9791 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) { 9792 *Result = ExprError(); 9793 return true; 9794 } 9795 9796 // Add the functions denoted by the callee to the set of candidate 9797 // functions, including those from argument-dependent lookup. 9798 AddOverloadedCallCandidates(ULE, llvm::makeArrayRef(Args, NumArgs), 9799 *CandidateSet); 9800 9801 // If we found nothing, try to recover. 9802 // BuildRecoveryCallExpr diagnoses the error itself, so we just bail 9803 // out if it fails. 9804 if (CandidateSet->empty()) { 9805 // In Microsoft mode, if we are inside a template class member function then 9806 // create a type dependent CallExpr. The goal is to postpone name lookup 9807 // to instantiation time to be able to search into type dependent base 9808 // classes. 9809 if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() && 9810 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { 9811 CallExpr *CE = new (Context) CallExpr(Context, Fn, 9812 llvm::makeArrayRef(Args, NumArgs), 9813 Context.DependentTy, VK_RValue, 9814 RParenLoc); 9815 CE->setTypeDependent(true); 9816 *Result = Owned(CE); 9817 return true; 9818 } 9819 return false; 9820 } 9821 9822 UnbridgedCasts.restore(); 9823 return false; 9824} 9825 9826/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns 9827/// the completed call expression. If overload resolution fails, emits 9828/// diagnostics and returns ExprError() 9829static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 9830 UnresolvedLookupExpr *ULE, 9831 SourceLocation LParenLoc, 9832 Expr **Args, unsigned NumArgs, 9833 SourceLocation RParenLoc, 9834 Expr *ExecConfig, 9835 OverloadCandidateSet *CandidateSet, 9836 OverloadCandidateSet::iterator *Best, 9837 OverloadingResult OverloadResult, 9838 bool AllowTypoCorrection) { 9839 if (CandidateSet->empty()) 9840 return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, 9841 llvm::MutableArrayRef<Expr *>(Args, NumArgs), 9842 RParenLoc, /*EmptyLookup=*/true, 9843 AllowTypoCorrection); 9844 9845 switch (OverloadResult) { 9846 case OR_Success: { 9847 FunctionDecl *FDecl = (*Best)->Function; 9848 SemaRef.MarkFunctionReferenced(Fn->getExprLoc(), FDecl); 9849 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); 9850 SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()); 9851 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 9852 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, 9853 RParenLoc, ExecConfig); 9854 } 9855 9856 case OR_No_Viable_Function: { 9857 // Try to recover by looking for viable functions which the user might 9858 // have meant to call. 9859 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, 9860 llvm::MutableArrayRef<Expr *>(Args, NumArgs), 9861 RParenLoc, 9862 /*EmptyLookup=*/false, 9863 AllowTypoCorrection); 9864 if (!Recovery.isInvalid()) 9865 return Recovery; 9866 9867 SemaRef.Diag(Fn->getLocStart(), 9868 diag::err_ovl_no_viable_function_in_call) 9869 << ULE->getName() << Fn->getSourceRange(); 9870 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, 9871 llvm::makeArrayRef(Args, NumArgs)); 9872 break; 9873 } 9874 9875 case OR_Ambiguous: 9876 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call) 9877 << ULE->getName() << Fn->getSourceRange(); 9878 CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, 9879 llvm::makeArrayRef(Args, NumArgs)); 9880 break; 9881 9882 case OR_Deleted: { 9883 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call) 9884 << (*Best)->Function->isDeleted() 9885 << ULE->getName() 9886 << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function) 9887 << Fn->getSourceRange(); 9888 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, 9889 llvm::makeArrayRef(Args, NumArgs)); 9890 9891 // We emitted an error for the unvailable/deleted function call but keep 9892 // the call in the AST. 9893 FunctionDecl *FDecl = (*Best)->Function; 9894 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 9895 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, 9896 RParenLoc, ExecConfig); 9897 } 9898 } 9899 9900 // Overload resolution failed. 9901 return ExprError(); 9902} 9903 9904/// BuildOverloadedCallExpr - Given the call expression that calls Fn 9905/// (which eventually refers to the declaration Func) and the call 9906/// arguments Args/NumArgs, attempt to resolve the function call down 9907/// to a specific function. If overload resolution succeeds, returns 9908/// the call expression produced by overload resolution. 9909/// Otherwise, emits diagnostics and returns ExprError. 9910ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, 9911 UnresolvedLookupExpr *ULE, 9912 SourceLocation LParenLoc, 9913 Expr **Args, unsigned NumArgs, 9914 SourceLocation RParenLoc, 9915 Expr *ExecConfig, 9916 bool AllowTypoCorrection) { 9917 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 9918 ExprResult result; 9919 9920 if (buildOverloadedCallSet(S, Fn, ULE, Args, NumArgs, LParenLoc, 9921 &CandidateSet, &result)) 9922 return result; 9923 9924 OverloadCandidateSet::iterator Best; 9925 OverloadingResult OverloadResult = 9926 CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best); 9927 9928 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 9929 RParenLoc, ExecConfig, &CandidateSet, 9930 &Best, OverloadResult, 9931 AllowTypoCorrection); 9932} 9933 9934static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 9935 return Functions.size() > 1 || 9936 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 9937} 9938 9939/// \brief Create a unary operation that may resolve to an overloaded 9940/// operator. 9941/// 9942/// \param OpLoc The location of the operator itself (e.g., '*'). 9943/// 9944/// \param OpcIn The UnaryOperator::Opcode that describes this 9945/// operator. 9946/// 9947/// \param Fns The set of non-member functions that will be 9948/// considered by overload resolution. The caller needs to build this 9949/// set based on the context using, e.g., 9950/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 9951/// set should not contain any member functions; those will be added 9952/// by CreateOverloadedUnaryOp(). 9953/// 9954/// \param Input The input argument. 9955ExprResult 9956Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 9957 const UnresolvedSetImpl &Fns, 9958 Expr *Input) { 9959 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 9960 9961 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 9962 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 9963 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 9964 // TODO: provide better source location info. 9965 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 9966 9967 if (checkPlaceholderForOverload(*this, Input)) 9968 return ExprError(); 9969 9970 Expr *Args[2] = { Input, 0 }; 9971 unsigned NumArgs = 1; 9972 9973 // For post-increment and post-decrement, add the implicit '0' as 9974 // the second argument, so that we know this is a post-increment or 9975 // post-decrement. 9976 if (Opc == UO_PostInc || Opc == UO_PostDec) { 9977 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 9978 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 9979 SourceLocation()); 9980 NumArgs = 2; 9981 } 9982 9983 if (Input->isTypeDependent()) { 9984 if (Fns.empty()) 9985 return Owned(new (Context) UnaryOperator(Input, 9986 Opc, 9987 Context.DependentTy, 9988 VK_RValue, OK_Ordinary, 9989 OpLoc)); 9990 9991 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 9992 UnresolvedLookupExpr *Fn 9993 = UnresolvedLookupExpr::Create(Context, NamingClass, 9994 NestedNameSpecifierLoc(), OpNameInfo, 9995 /*ADL*/ true, IsOverloaded(Fns), 9996 Fns.begin(), Fns.end()); 9997 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 9998 llvm::makeArrayRef(Args, NumArgs), 9999 Context.DependentTy, 10000 VK_RValue, 10001 OpLoc, false)); 10002 } 10003 10004 // Build an empty overload set. 10005 OverloadCandidateSet CandidateSet(OpLoc); 10006 10007 // Add the candidates from the given function set. 10008 AddFunctionCandidates(Fns, llvm::makeArrayRef(Args, NumArgs), CandidateSet, 10009 false); 10010 10011 // Add operator candidates that are member functions. 10012 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 10013 10014 // Add candidates from ADL. 10015 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 10016 OpLoc, llvm::makeArrayRef(Args, NumArgs), 10017 /*ExplicitTemplateArgs*/ 0, 10018 CandidateSet); 10019 10020 // Add builtin operator candidates. 10021 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 10022 10023 bool HadMultipleCandidates = (CandidateSet.size() > 1); 10024 10025 // Perform overload resolution. 10026 OverloadCandidateSet::iterator Best; 10027 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 10028 case OR_Success: { 10029 // We found a built-in operator or an overloaded operator. 10030 FunctionDecl *FnDecl = Best->Function; 10031 10032 if (FnDecl) { 10033 // We matched an overloaded operator. Build a call to that 10034 // operator. 10035 10036 MarkFunctionReferenced(OpLoc, FnDecl); 10037 10038 // Convert the arguments. 10039 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 10040 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 10041 10042 ExprResult InputRes = 10043 PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 10044 Best->FoundDecl, Method); 10045 if (InputRes.isInvalid()) 10046 return ExprError(); 10047 Input = InputRes.take(); 10048 } else { 10049 // Convert the arguments. 10050 ExprResult InputInit 10051 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 10052 Context, 10053 FnDecl->getParamDecl(0)), 10054 SourceLocation(), 10055 Input); 10056 if (InputInit.isInvalid()) 10057 return ExprError(); 10058 Input = InputInit.take(); 10059 } 10060 10061 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 10062 10063 // Determine the result type. 10064 QualType ResultTy = FnDecl->getResultType(); 10065 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 10066 ResultTy = ResultTy.getNonLValueExprType(Context); 10067 10068 // Build the actual expression node. 10069 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 10070 HadMultipleCandidates, OpLoc); 10071 if (FnExpr.isInvalid()) 10072 return ExprError(); 10073 10074 Args[0] = Input; 10075 CallExpr *TheCall = 10076 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 10077 llvm::makeArrayRef(Args, NumArgs), 10078 ResultTy, VK, OpLoc, false); 10079 10080 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 10081 FnDecl)) 10082 return ExprError(); 10083 10084 return MaybeBindToTemporary(TheCall); 10085 } else { 10086 // We matched a built-in operator. Convert the arguments, then 10087 // break out so that we will build the appropriate built-in 10088 // operator node. 10089 ExprResult InputRes = 10090 PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 10091 Best->Conversions[0], AA_Passing); 10092 if (InputRes.isInvalid()) 10093 return ExprError(); 10094 Input = InputRes.take(); 10095 break; 10096 } 10097 } 10098 10099 case OR_No_Viable_Function: 10100 // This is an erroneous use of an operator which can be overloaded by 10101 // a non-member function. Check for non-member operators which were 10102 // defined too late to be candidates. 10103 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, 10104 llvm::makeArrayRef(Args, NumArgs))) 10105 // FIXME: Recover by calling the found function. 10106 return ExprError(); 10107 10108 // No viable function; fall through to handling this as a 10109 // built-in operator, which will produce an error message for us. 10110 break; 10111 10112 case OR_Ambiguous: 10113 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 10114 << UnaryOperator::getOpcodeStr(Opc) 10115 << Input->getType() 10116 << Input->getSourceRange(); 10117 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, 10118 llvm::makeArrayRef(Args, NumArgs), 10119 UnaryOperator::getOpcodeStr(Opc), OpLoc); 10120 return ExprError(); 10121 10122 case OR_Deleted: 10123 Diag(OpLoc, diag::err_ovl_deleted_oper) 10124 << Best->Function->isDeleted() 10125 << UnaryOperator::getOpcodeStr(Opc) 10126 << getDeletedOrUnavailableSuffix(Best->Function) 10127 << Input->getSourceRange(); 10128 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, 10129 llvm::makeArrayRef(Args, NumArgs), 10130 UnaryOperator::getOpcodeStr(Opc), OpLoc); 10131 return ExprError(); 10132 } 10133 10134 // Either we found no viable overloaded operator or we matched a 10135 // built-in operator. In either case, fall through to trying to 10136 // build a built-in operation. 10137 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 10138} 10139 10140/// \brief Create a binary operation that may resolve to an overloaded 10141/// operator. 10142/// 10143/// \param OpLoc The location of the operator itself (e.g., '+'). 10144/// 10145/// \param OpcIn The BinaryOperator::Opcode that describes this 10146/// operator. 10147/// 10148/// \param Fns The set of non-member functions that will be 10149/// considered by overload resolution. The caller needs to build this 10150/// set based on the context using, e.g., 10151/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 10152/// set should not contain any member functions; those will be added 10153/// by CreateOverloadedBinOp(). 10154/// 10155/// \param LHS Left-hand argument. 10156/// \param RHS Right-hand argument. 10157ExprResult 10158Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 10159 unsigned OpcIn, 10160 const UnresolvedSetImpl &Fns, 10161 Expr *LHS, Expr *RHS) { 10162 Expr *Args[2] = { LHS, RHS }; 10163 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 10164 10165 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 10166 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 10167 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 10168 10169 // If either side is type-dependent, create an appropriate dependent 10170 // expression. 10171 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 10172 if (Fns.empty()) { 10173 // If there are no functions to store, just build a dependent 10174 // BinaryOperator or CompoundAssignment. 10175 if (Opc <= BO_Assign || Opc > BO_OrAssign) 10176 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 10177 Context.DependentTy, 10178 VK_RValue, OK_Ordinary, 10179 OpLoc, 10180 FPFeatures.fp_contract)); 10181 10182 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 10183 Context.DependentTy, 10184 VK_LValue, 10185 OK_Ordinary, 10186 Context.DependentTy, 10187 Context.DependentTy, 10188 OpLoc, 10189 FPFeatures.fp_contract)); 10190 } 10191 10192 // FIXME: save results of ADL from here? 10193 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 10194 // TODO: provide better source location info in DNLoc component. 10195 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 10196 UnresolvedLookupExpr *Fn 10197 = UnresolvedLookupExpr::Create(Context, NamingClass, 10198 NestedNameSpecifierLoc(), OpNameInfo, 10199 /*ADL*/ true, IsOverloaded(Fns), 10200 Fns.begin(), Fns.end()); 10201 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, Args, 10202 Context.DependentTy, VK_RValue, 10203 OpLoc, FPFeatures.fp_contract)); 10204 } 10205 10206 // Always do placeholder-like conversions on the RHS. 10207 if (checkPlaceholderForOverload(*this, Args[1])) 10208 return ExprError(); 10209 10210 // Do placeholder-like conversion on the LHS; note that we should 10211 // not get here with a PseudoObject LHS. 10212 assert(Args[0]->getObjectKind() != OK_ObjCProperty); 10213 if (checkPlaceholderForOverload(*this, Args[0])) 10214 return ExprError(); 10215 10216 // If this is the assignment operator, we only perform overload resolution 10217 // if the left-hand side is a class or enumeration type. This is actually 10218 // a hack. The standard requires that we do overload resolution between the 10219 // various built-in candidates, but as DR507 points out, this can lead to 10220 // problems. So we do it this way, which pretty much follows what GCC does. 10221 // Note that we go the traditional code path for compound assignment forms. 10222 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 10223 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 10224 10225 // If this is the .* operator, which is not overloadable, just 10226 // create a built-in binary operator. 10227 if (Opc == BO_PtrMemD) 10228 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 10229 10230 // Build an empty overload set. 10231 OverloadCandidateSet CandidateSet(OpLoc); 10232 10233 // Add the candidates from the given function set. 10234 AddFunctionCandidates(Fns, Args, CandidateSet, false); 10235 10236 // Add operator candidates that are member functions. 10237 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 10238 10239 // Add candidates from ADL. 10240 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 10241 OpLoc, Args, 10242 /*ExplicitTemplateArgs*/ 0, 10243 CandidateSet); 10244 10245 // Add builtin operator candidates. 10246 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 10247 10248 bool HadMultipleCandidates = (CandidateSet.size() > 1); 10249 10250 // Perform overload resolution. 10251 OverloadCandidateSet::iterator Best; 10252 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 10253 case OR_Success: { 10254 // We found a built-in operator or an overloaded operator. 10255 FunctionDecl *FnDecl = Best->Function; 10256 10257 if (FnDecl) { 10258 // We matched an overloaded operator. Build a call to that 10259 // operator. 10260 10261 MarkFunctionReferenced(OpLoc, FnDecl); 10262 10263 // Convert the arguments. 10264 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 10265 // Best->Access is only meaningful for class members. 10266 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 10267 10268 ExprResult Arg1 = 10269 PerformCopyInitialization( 10270 InitializedEntity::InitializeParameter(Context, 10271 FnDecl->getParamDecl(0)), 10272 SourceLocation(), Owned(Args[1])); 10273 if (Arg1.isInvalid()) 10274 return ExprError(); 10275 10276 ExprResult Arg0 = 10277 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 10278 Best->FoundDecl, Method); 10279 if (Arg0.isInvalid()) 10280 return ExprError(); 10281 Args[0] = Arg0.takeAs<Expr>(); 10282 Args[1] = RHS = Arg1.takeAs<Expr>(); 10283 } else { 10284 // Convert the arguments. 10285 ExprResult Arg0 = PerformCopyInitialization( 10286 InitializedEntity::InitializeParameter(Context, 10287 FnDecl->getParamDecl(0)), 10288 SourceLocation(), Owned(Args[0])); 10289 if (Arg0.isInvalid()) 10290 return ExprError(); 10291 10292 ExprResult Arg1 = 10293 PerformCopyInitialization( 10294 InitializedEntity::InitializeParameter(Context, 10295 FnDecl->getParamDecl(1)), 10296 SourceLocation(), Owned(Args[1])); 10297 if (Arg1.isInvalid()) 10298 return ExprError(); 10299 Args[0] = LHS = Arg0.takeAs<Expr>(); 10300 Args[1] = RHS = Arg1.takeAs<Expr>(); 10301 } 10302 10303 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 10304 10305 // Determine the result type. 10306 QualType ResultTy = FnDecl->getResultType(); 10307 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 10308 ResultTy = ResultTy.getNonLValueExprType(Context); 10309 10310 // Build the actual expression node. 10311 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 10312 HadMultipleCandidates, OpLoc); 10313 if (FnExpr.isInvalid()) 10314 return ExprError(); 10315 10316 CXXOperatorCallExpr *TheCall = 10317 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 10318 Args, ResultTy, VK, OpLoc, 10319 FPFeatures.fp_contract); 10320 10321 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 10322 FnDecl)) 10323 return ExprError(); 10324 10325 return MaybeBindToTemporary(TheCall); 10326 } else { 10327 // We matched a built-in operator. Convert the arguments, then 10328 // break out so that we will build the appropriate built-in 10329 // operator node. 10330 ExprResult ArgsRes0 = 10331 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 10332 Best->Conversions[0], AA_Passing); 10333 if (ArgsRes0.isInvalid()) 10334 return ExprError(); 10335 Args[0] = ArgsRes0.take(); 10336 10337 ExprResult ArgsRes1 = 10338 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 10339 Best->Conversions[1], AA_Passing); 10340 if (ArgsRes1.isInvalid()) 10341 return ExprError(); 10342 Args[1] = ArgsRes1.take(); 10343 break; 10344 } 10345 } 10346 10347 case OR_No_Viable_Function: { 10348 // C++ [over.match.oper]p9: 10349 // If the operator is the operator , [...] and there are no 10350 // viable functions, then the operator is assumed to be the 10351 // built-in operator and interpreted according to clause 5. 10352 if (Opc == BO_Comma) 10353 break; 10354 10355 // For class as left operand for assignment or compound assigment 10356 // operator do not fall through to handling in built-in, but report that 10357 // no overloaded assignment operator found 10358 ExprResult Result = ExprError(); 10359 if (Args[0]->getType()->isRecordType() && 10360 Opc >= BO_Assign && Opc <= BO_OrAssign) { 10361 Diag(OpLoc, diag::err_ovl_no_viable_oper) 10362 << BinaryOperator::getOpcodeStr(Opc) 10363 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10364 } else { 10365 // This is an erroneous use of an operator which can be overloaded by 10366 // a non-member function. Check for non-member operators which were 10367 // defined too late to be candidates. 10368 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) 10369 // FIXME: Recover by calling the found function. 10370 return ExprError(); 10371 10372 // No viable function; try to create a built-in operation, which will 10373 // produce an error. Then, show the non-viable candidates. 10374 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 10375 } 10376 assert(Result.isInvalid() && 10377 "C++ binary operator overloading is missing candidates!"); 10378 if (Result.isInvalid()) 10379 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 10380 BinaryOperator::getOpcodeStr(Opc), OpLoc); 10381 return Result; 10382 } 10383 10384 case OR_Ambiguous: 10385 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) 10386 << BinaryOperator::getOpcodeStr(Opc) 10387 << Args[0]->getType() << Args[1]->getType() 10388 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10389 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 10390 BinaryOperator::getOpcodeStr(Opc), OpLoc); 10391 return ExprError(); 10392 10393 case OR_Deleted: 10394 if (isImplicitlyDeleted(Best->Function)) { 10395 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 10396 Diag(OpLoc, diag::err_ovl_deleted_special_oper) 10397 << Context.getRecordType(Method->getParent()) 10398 << getSpecialMember(Method); 10399 10400 // The user probably meant to call this special member. Just 10401 // explain why it's deleted. 10402 NoteDeletedFunction(Method); 10403 return ExprError(); 10404 } else { 10405 Diag(OpLoc, diag::err_ovl_deleted_oper) 10406 << Best->Function->isDeleted() 10407 << BinaryOperator::getOpcodeStr(Opc) 10408 << getDeletedOrUnavailableSuffix(Best->Function) 10409 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10410 } 10411 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 10412 BinaryOperator::getOpcodeStr(Opc), OpLoc); 10413 return ExprError(); 10414 } 10415 10416 // We matched a built-in operator; build it. 10417 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 10418} 10419 10420ExprResult 10421Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 10422 SourceLocation RLoc, 10423 Expr *Base, Expr *Idx) { 10424 Expr *Args[2] = { Base, Idx }; 10425 DeclarationName OpName = 10426 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 10427 10428 // If either side is type-dependent, create an appropriate dependent 10429 // expression. 10430 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 10431 10432 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 10433 // CHECKME: no 'operator' keyword? 10434 DeclarationNameInfo OpNameInfo(OpName, LLoc); 10435 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 10436 UnresolvedLookupExpr *Fn 10437 = UnresolvedLookupExpr::Create(Context, NamingClass, 10438 NestedNameSpecifierLoc(), OpNameInfo, 10439 /*ADL*/ true, /*Overloaded*/ false, 10440 UnresolvedSetIterator(), 10441 UnresolvedSetIterator()); 10442 // Can't add any actual overloads yet 10443 10444 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 10445 Args, 10446 Context.DependentTy, 10447 VK_RValue, 10448 RLoc, false)); 10449 } 10450 10451 // Handle placeholders on both operands. 10452 if (checkPlaceholderForOverload(*this, Args[0])) 10453 return ExprError(); 10454 if (checkPlaceholderForOverload(*this, Args[1])) 10455 return ExprError(); 10456 10457 // Build an empty overload set. 10458 OverloadCandidateSet CandidateSet(LLoc); 10459 10460 // Subscript can only be overloaded as a member function. 10461 10462 // Add operator candidates that are member functions. 10463 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 10464 10465 // Add builtin operator candidates. 10466 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 10467 10468 bool HadMultipleCandidates = (CandidateSet.size() > 1); 10469 10470 // Perform overload resolution. 10471 OverloadCandidateSet::iterator Best; 10472 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 10473 case OR_Success: { 10474 // We found a built-in operator or an overloaded operator. 10475 FunctionDecl *FnDecl = Best->Function; 10476 10477 if (FnDecl) { 10478 // We matched an overloaded operator. Build a call to that 10479 // operator. 10480 10481 MarkFunctionReferenced(LLoc, FnDecl); 10482 10483 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 10484 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 10485 10486 // Convert the arguments. 10487 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 10488 ExprResult Arg0 = 10489 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 10490 Best->FoundDecl, Method); 10491 if (Arg0.isInvalid()) 10492 return ExprError(); 10493 Args[0] = Arg0.take(); 10494 10495 // Convert the arguments. 10496 ExprResult InputInit 10497 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 10498 Context, 10499 FnDecl->getParamDecl(0)), 10500 SourceLocation(), 10501 Owned(Args[1])); 10502 if (InputInit.isInvalid()) 10503 return ExprError(); 10504 10505 Args[1] = InputInit.takeAs<Expr>(); 10506 10507 // Determine the result type 10508 QualType ResultTy = FnDecl->getResultType(); 10509 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 10510 ResultTy = ResultTy.getNonLValueExprType(Context); 10511 10512 // Build the actual expression node. 10513 DeclarationNameInfo OpLocInfo(OpName, LLoc); 10514 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 10515 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 10516 HadMultipleCandidates, 10517 OpLocInfo.getLoc(), 10518 OpLocInfo.getInfo()); 10519 if (FnExpr.isInvalid()) 10520 return ExprError(); 10521 10522 CXXOperatorCallExpr *TheCall = 10523 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 10524 FnExpr.take(), Args, 10525 ResultTy, VK, RLoc, 10526 false); 10527 10528 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, 10529 FnDecl)) 10530 return ExprError(); 10531 10532 return MaybeBindToTemporary(TheCall); 10533 } else { 10534 // We matched a built-in operator. Convert the arguments, then 10535 // break out so that we will build the appropriate built-in 10536 // operator node. 10537 ExprResult ArgsRes0 = 10538 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 10539 Best->Conversions[0], AA_Passing); 10540 if (ArgsRes0.isInvalid()) 10541 return ExprError(); 10542 Args[0] = ArgsRes0.take(); 10543 10544 ExprResult ArgsRes1 = 10545 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 10546 Best->Conversions[1], AA_Passing); 10547 if (ArgsRes1.isInvalid()) 10548 return ExprError(); 10549 Args[1] = ArgsRes1.take(); 10550 10551 break; 10552 } 10553 } 10554 10555 case OR_No_Viable_Function: { 10556 if (CandidateSet.empty()) 10557 Diag(LLoc, diag::err_ovl_no_oper) 10558 << Args[0]->getType() << /*subscript*/ 0 10559 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10560 else 10561 Diag(LLoc, diag::err_ovl_no_viable_subscript) 10562 << Args[0]->getType() 10563 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10564 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 10565 "[]", LLoc); 10566 return ExprError(); 10567 } 10568 10569 case OR_Ambiguous: 10570 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) 10571 << "[]" 10572 << Args[0]->getType() << Args[1]->getType() 10573 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10574 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 10575 "[]", LLoc); 10576 return ExprError(); 10577 10578 case OR_Deleted: 10579 Diag(LLoc, diag::err_ovl_deleted_oper) 10580 << Best->Function->isDeleted() << "[]" 10581 << getDeletedOrUnavailableSuffix(Best->Function) 10582 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 10583 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 10584 "[]", LLoc); 10585 return ExprError(); 10586 } 10587 10588 // We matched a built-in operator; build it. 10589 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 10590} 10591 10592/// BuildCallToMemberFunction - Build a call to a member 10593/// function. MemExpr is the expression that refers to the member 10594/// function (and includes the object parameter), Args/NumArgs are the 10595/// arguments to the function call (not including the object 10596/// parameter). The caller needs to validate that the member 10597/// expression refers to a non-static member function or an overloaded 10598/// member function. 10599ExprResult 10600Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 10601 SourceLocation LParenLoc, Expr **Args, 10602 unsigned NumArgs, SourceLocation RParenLoc) { 10603 assert(MemExprE->getType() == Context.BoundMemberTy || 10604 MemExprE->getType() == Context.OverloadTy); 10605 10606 // Dig out the member expression. This holds both the object 10607 // argument and the member function we're referring to. 10608 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 10609 10610 // Determine whether this is a call to a pointer-to-member function. 10611 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 10612 assert(op->getType() == Context.BoundMemberTy); 10613 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 10614 10615 QualType fnType = 10616 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 10617 10618 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 10619 QualType resultType = proto->getCallResultType(Context); 10620 ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType()); 10621 10622 // Check that the object type isn't more qualified than the 10623 // member function we're calling. 10624 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals()); 10625 10626 QualType objectType = op->getLHS()->getType(); 10627 if (op->getOpcode() == BO_PtrMemI) 10628 objectType = objectType->castAs<PointerType>()->getPointeeType(); 10629 Qualifiers objectQuals = objectType.getQualifiers(); 10630 10631 Qualifiers difference = objectQuals - funcQuals; 10632 difference.removeObjCGCAttr(); 10633 difference.removeAddressSpace(); 10634 if (difference) { 10635 std::string qualsString = difference.getAsString(); 10636 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 10637 << fnType.getUnqualifiedType() 10638 << qualsString 10639 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 10640 } 10641 10642 CXXMemberCallExpr *call 10643 = new (Context) CXXMemberCallExpr(Context, MemExprE, 10644 llvm::makeArrayRef(Args, NumArgs), 10645 resultType, valueKind, RParenLoc); 10646 10647 if (CheckCallReturnType(proto->getResultType(), 10648 op->getRHS()->getLocStart(), 10649 call, 0)) 10650 return ExprError(); 10651 10652 if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc)) 10653 return ExprError(); 10654 10655 return MaybeBindToTemporary(call); 10656 } 10657 10658 UnbridgedCastsSet UnbridgedCasts; 10659 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) 10660 return ExprError(); 10661 10662 MemberExpr *MemExpr; 10663 CXXMethodDecl *Method = 0; 10664 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 10665 NestedNameSpecifier *Qualifier = 0; 10666 if (isa<MemberExpr>(NakedMemExpr)) { 10667 MemExpr = cast<MemberExpr>(NakedMemExpr); 10668 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 10669 FoundDecl = MemExpr->getFoundDecl(); 10670 Qualifier = MemExpr->getQualifier(); 10671 UnbridgedCasts.restore(); 10672 } else { 10673 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 10674 Qualifier = UnresExpr->getQualifier(); 10675 10676 QualType ObjectType = UnresExpr->getBaseType(); 10677 Expr::Classification ObjectClassification 10678 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 10679 : UnresExpr->getBase()->Classify(Context); 10680 10681 // Add overload candidates 10682 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 10683 10684 // FIXME: avoid copy. 10685 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 10686 if (UnresExpr->hasExplicitTemplateArgs()) { 10687 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 10688 TemplateArgs = &TemplateArgsBuffer; 10689 } 10690 10691 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 10692 E = UnresExpr->decls_end(); I != E; ++I) { 10693 10694 NamedDecl *Func = *I; 10695 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 10696 if (isa<UsingShadowDecl>(Func)) 10697 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 10698 10699 10700 // Microsoft supports direct constructor calls. 10701 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { 10702 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), 10703 llvm::makeArrayRef(Args, NumArgs), CandidateSet); 10704 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 10705 // If explicit template arguments were provided, we can't call a 10706 // non-template member function. 10707 if (TemplateArgs) 10708 continue; 10709 10710 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 10711 ObjectClassification, 10712 llvm::makeArrayRef(Args, NumArgs), CandidateSet, 10713 /*SuppressUserConversions=*/false); 10714 } else { 10715 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 10716 I.getPair(), ActingDC, TemplateArgs, 10717 ObjectType, ObjectClassification, 10718 llvm::makeArrayRef(Args, NumArgs), 10719 CandidateSet, 10720 /*SuppressUsedConversions=*/false); 10721 } 10722 } 10723 10724 DeclarationName DeclName = UnresExpr->getMemberName(); 10725 10726 UnbridgedCasts.restore(); 10727 10728 OverloadCandidateSet::iterator Best; 10729 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 10730 Best)) { 10731 case OR_Success: 10732 Method = cast<CXXMethodDecl>(Best->Function); 10733 MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method); 10734 FoundDecl = Best->FoundDecl; 10735 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 10736 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 10737 break; 10738 10739 case OR_No_Viable_Function: 10740 Diag(UnresExpr->getMemberLoc(), 10741 diag::err_ovl_no_viable_member_function_in_call) 10742 << DeclName << MemExprE->getSourceRange(); 10743 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, 10744 llvm::makeArrayRef(Args, NumArgs)); 10745 // FIXME: Leaking incoming expressions! 10746 return ExprError(); 10747 10748 case OR_Ambiguous: 10749 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 10750 << DeclName << MemExprE->getSourceRange(); 10751 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, 10752 llvm::makeArrayRef(Args, NumArgs)); 10753 // FIXME: Leaking incoming expressions! 10754 return ExprError(); 10755 10756 case OR_Deleted: 10757 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 10758 << Best->Function->isDeleted() 10759 << DeclName 10760 << getDeletedOrUnavailableSuffix(Best->Function) 10761 << MemExprE->getSourceRange(); 10762 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, 10763 llvm::makeArrayRef(Args, NumArgs)); 10764 // FIXME: Leaking incoming expressions! 10765 return ExprError(); 10766 } 10767 10768 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 10769 10770 // If overload resolution picked a static member, build a 10771 // non-member call based on that function. 10772 if (Method->isStatic()) { 10773 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 10774 Args, NumArgs, RParenLoc); 10775 } 10776 10777 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 10778 } 10779 10780 QualType ResultType = Method->getResultType(); 10781 ExprValueKind VK = Expr::getValueKindForType(ResultType); 10782 ResultType = ResultType.getNonLValueExprType(Context); 10783 10784 assert(Method && "Member call to something that isn't a method?"); 10785 CXXMemberCallExpr *TheCall = 10786 new (Context) CXXMemberCallExpr(Context, MemExprE, 10787 llvm::makeArrayRef(Args, NumArgs), 10788 ResultType, VK, RParenLoc); 10789 10790 // Check for a valid return type. 10791 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 10792 TheCall, Method)) 10793 return ExprError(); 10794 10795 // Convert the object argument (for a non-static member function call). 10796 // We only need to do this if there was actually an overload; otherwise 10797 // it was done at lookup. 10798 if (!Method->isStatic()) { 10799 ExprResult ObjectArg = 10800 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 10801 FoundDecl, Method); 10802 if (ObjectArg.isInvalid()) 10803 return ExprError(); 10804 MemExpr->setBase(ObjectArg.take()); 10805 } 10806 10807 // Convert the rest of the arguments 10808 const FunctionProtoType *Proto = 10809 Method->getType()->getAs<FunctionProtoType>(); 10810 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, 10811 RParenLoc)) 10812 return ExprError(); 10813 10814 DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs); 10815 10816 if (CheckFunctionCall(Method, TheCall, Proto)) 10817 return ExprError(); 10818 10819 if ((isa<CXXConstructorDecl>(CurContext) || 10820 isa<CXXDestructorDecl>(CurContext)) && 10821 TheCall->getMethodDecl()->isPure()) { 10822 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 10823 10824 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) { 10825 Diag(MemExpr->getLocStart(), 10826 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 10827 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 10828 << MD->getParent()->getDeclName(); 10829 10830 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName(); 10831 } 10832 } 10833 return MaybeBindToTemporary(TheCall); 10834} 10835 10836/// BuildCallToObjectOfClassType - Build a call to an object of class 10837/// type (C++ [over.call.object]), which can end up invoking an 10838/// overloaded function call operator (@c operator()) or performing a 10839/// user-defined conversion on the object argument. 10840ExprResult 10841Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 10842 SourceLocation LParenLoc, 10843 Expr **Args, unsigned NumArgs, 10844 SourceLocation RParenLoc) { 10845 if (checkPlaceholderForOverload(*this, Obj)) 10846 return ExprError(); 10847 ExprResult Object = Owned(Obj); 10848 10849 UnbridgedCastsSet UnbridgedCasts; 10850 if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) 10851 return ExprError(); 10852 10853 assert(Object.get()->getType()->isRecordType() && "Requires object type argument"); 10854 const RecordType *Record = Object.get()->getType()->getAs<RecordType>(); 10855 10856 // C++ [over.call.object]p1: 10857 // If the primary-expression E in the function call syntax 10858 // evaluates to a class object of type "cv T", then the set of 10859 // candidate functions includes at least the function call 10860 // operators of T. The function call operators of T are obtained by 10861 // ordinary lookup of the name operator() in the context of 10862 // (E).operator(). 10863 OverloadCandidateSet CandidateSet(LParenLoc); 10864 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 10865 10866 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 10867 diag::err_incomplete_object_call, Object.get())) 10868 return true; 10869 10870 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 10871 LookupQualifiedName(R, Record->getDecl()); 10872 R.suppressDiagnostics(); 10873 10874 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 10875 Oper != OperEnd; ++Oper) { 10876 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 10877 Object.get()->Classify(Context), Args, NumArgs, CandidateSet, 10878 /*SuppressUserConversions=*/ false); 10879 } 10880 10881 // C++ [over.call.object]p2: 10882 // In addition, for each (non-explicit in C++0x) conversion function 10883 // declared in T of the form 10884 // 10885 // operator conversion-type-id () cv-qualifier; 10886 // 10887 // where cv-qualifier is the same cv-qualification as, or a 10888 // greater cv-qualification than, cv, and where conversion-type-id 10889 // denotes the type "pointer to function of (P1,...,Pn) returning 10890 // R", or the type "reference to pointer to function of 10891 // (P1,...,Pn) returning R", or the type "reference to function 10892 // of (P1,...,Pn) returning R", a surrogate call function [...] 10893 // is also considered as a candidate function. Similarly, 10894 // surrogate call functions are added to the set of candidate 10895 // functions for each conversion function declared in an 10896 // accessible base class provided the function is not hidden 10897 // within T by another intervening declaration. 10898 std::pair<CXXRecordDecl::conversion_iterator, 10899 CXXRecordDecl::conversion_iterator> Conversions 10900 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 10901 for (CXXRecordDecl::conversion_iterator 10902 I = Conversions.first, E = Conversions.second; I != E; ++I) { 10903 NamedDecl *D = *I; 10904 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 10905 if (isa<UsingShadowDecl>(D)) 10906 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 10907 10908 // Skip over templated conversion functions; they aren't 10909 // surrogates. 10910 if (isa<FunctionTemplateDecl>(D)) 10911 continue; 10912 10913 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 10914 if (!Conv->isExplicit()) { 10915 // Strip the reference type (if any) and then the pointer type (if 10916 // any) to get down to what might be a function type. 10917 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 10918 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 10919 ConvType = ConvPtrType->getPointeeType(); 10920 10921 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 10922 { 10923 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 10924 Object.get(), llvm::makeArrayRef(Args, NumArgs), 10925 CandidateSet); 10926 } 10927 } 10928 } 10929 10930 bool HadMultipleCandidates = (CandidateSet.size() > 1); 10931 10932 // Perform overload resolution. 10933 OverloadCandidateSet::iterator Best; 10934 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(), 10935 Best)) { 10936 case OR_Success: 10937 // Overload resolution succeeded; we'll build the appropriate call 10938 // below. 10939 break; 10940 10941 case OR_No_Viable_Function: 10942 if (CandidateSet.empty()) 10943 Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper) 10944 << Object.get()->getType() << /*call*/ 1 10945 << Object.get()->getSourceRange(); 10946 else 10947 Diag(Object.get()->getLocStart(), 10948 diag::err_ovl_no_viable_object_call) 10949 << Object.get()->getType() << Object.get()->getSourceRange(); 10950 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, 10951 llvm::makeArrayRef(Args, NumArgs)); 10952 break; 10953 10954 case OR_Ambiguous: 10955 Diag(Object.get()->getLocStart(), 10956 diag::err_ovl_ambiguous_object_call) 10957 << Object.get()->getType() << Object.get()->getSourceRange(); 10958 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, 10959 llvm::makeArrayRef(Args, NumArgs)); 10960 break; 10961 10962 case OR_Deleted: 10963 Diag(Object.get()->getLocStart(), 10964 diag::err_ovl_deleted_object_call) 10965 << Best->Function->isDeleted() 10966 << Object.get()->getType() 10967 << getDeletedOrUnavailableSuffix(Best->Function) 10968 << Object.get()->getSourceRange(); 10969 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, 10970 llvm::makeArrayRef(Args, NumArgs)); 10971 break; 10972 } 10973 10974 if (Best == CandidateSet.end()) 10975 return true; 10976 10977 UnbridgedCasts.restore(); 10978 10979 if (Best->Function == 0) { 10980 // Since there is no function declaration, this is one of the 10981 // surrogate candidates. Dig out the conversion function. 10982 CXXConversionDecl *Conv 10983 = cast<CXXConversionDecl>( 10984 Best->Conversions[0].UserDefined.ConversionFunction); 10985 10986 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 10987 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 10988 10989 // We selected one of the surrogate functions that converts the 10990 // object parameter to a function pointer. Perform the conversion 10991 // on the object argument, then let ActOnCallExpr finish the job. 10992 10993 // Create an implicit member expr to refer to the conversion operator. 10994 // and then call it. 10995 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, 10996 Conv, HadMultipleCandidates); 10997 if (Call.isInvalid()) 10998 return ExprError(); 10999 // Record usage of conversion in an implicit cast. 11000 Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(), 11001 CK_UserDefinedConversion, 11002 Call.get(), 0, VK_RValue)); 11003 11004 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs), 11005 RParenLoc); 11006 } 11007 11008 MarkFunctionReferenced(LParenLoc, Best->Function); 11009 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 11010 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 11011 11012 // We found an overloaded operator(). Build a CXXOperatorCallExpr 11013 // that calls this method, using Object for the implicit object 11014 // parameter and passing along the remaining arguments. 11015 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 11016 11017 // An error diagnostic has already been printed when parsing the declaration. 11018 if (Method->isInvalidDecl()) 11019 return ExprError(); 11020 11021 const FunctionProtoType *Proto = 11022 Method->getType()->getAs<FunctionProtoType>(); 11023 11024 unsigned NumArgsInProto = Proto->getNumArgs(); 11025 unsigned NumArgsToCheck = NumArgs; 11026 11027 // Build the full argument list for the method call (the 11028 // implicit object parameter is placed at the beginning of the 11029 // list). 11030 Expr **MethodArgs; 11031 if (NumArgs < NumArgsInProto) { 11032 NumArgsToCheck = NumArgsInProto; 11033 MethodArgs = new Expr*[NumArgsInProto + 1]; 11034 } else { 11035 MethodArgs = new Expr*[NumArgs + 1]; 11036 } 11037 MethodArgs[0] = Object.get(); 11038 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 11039 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 11040 11041 DeclarationNameInfo OpLocInfo( 11042 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); 11043 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); 11044 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, 11045 HadMultipleCandidates, 11046 OpLocInfo.getLoc(), 11047 OpLocInfo.getInfo()); 11048 if (NewFn.isInvalid()) 11049 return true; 11050 11051 // Once we've built TheCall, all of the expressions are properly 11052 // owned. 11053 QualType ResultTy = Method->getResultType(); 11054 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 11055 ResultTy = ResultTy.getNonLValueExprType(Context); 11056 11057 CXXOperatorCallExpr *TheCall = 11058 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(), 11059 llvm::makeArrayRef(MethodArgs, NumArgs+1), 11060 ResultTy, VK, RParenLoc, false); 11061 delete [] MethodArgs; 11062 11063 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, 11064 Method)) 11065 return true; 11066 11067 // We may have default arguments. If so, we need to allocate more 11068 // slots in the call for them. 11069 if (NumArgs < NumArgsInProto) 11070 TheCall->setNumArgs(Context, NumArgsInProto + 1); 11071 else if (NumArgs > NumArgsInProto) 11072 NumArgsToCheck = NumArgsInProto; 11073 11074 bool IsError = false; 11075 11076 // Initialize the implicit object parameter. 11077 ExprResult ObjRes = 11078 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0, 11079 Best->FoundDecl, Method); 11080 if (ObjRes.isInvalid()) 11081 IsError = true; 11082 else 11083 Object = ObjRes; 11084 TheCall->setArg(0, Object.take()); 11085 11086 // Check the argument types. 11087 for (unsigned i = 0; i != NumArgsToCheck; i++) { 11088 Expr *Arg; 11089 if (i < NumArgs) { 11090 Arg = Args[i]; 11091 11092 // Pass the argument. 11093 11094 ExprResult InputInit 11095 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 11096 Context, 11097 Method->getParamDecl(i)), 11098 SourceLocation(), Arg); 11099 11100 IsError |= InputInit.isInvalid(); 11101 Arg = InputInit.takeAs<Expr>(); 11102 } else { 11103 ExprResult DefArg 11104 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 11105 if (DefArg.isInvalid()) { 11106 IsError = true; 11107 break; 11108 } 11109 11110 Arg = DefArg.takeAs<Expr>(); 11111 } 11112 11113 TheCall->setArg(i + 1, Arg); 11114 } 11115 11116 // If this is a variadic call, handle args passed through "...". 11117 if (Proto->isVariadic()) { 11118 // Promote the arguments (C99 6.5.2.2p7). 11119 for (unsigned i = NumArgsInProto; i < NumArgs; i++) { 11120 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0); 11121 IsError |= Arg.isInvalid(); 11122 TheCall->setArg(i + 1, Arg.take()); 11123 } 11124 } 11125 11126 if (IsError) return true; 11127 11128 DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs); 11129 11130 if (CheckFunctionCall(Method, TheCall, Proto)) 11131 return true; 11132 11133 return MaybeBindToTemporary(TheCall); 11134} 11135 11136/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 11137/// (if one exists), where @c Base is an expression of class type and 11138/// @c Member is the name of the member we're trying to find. 11139ExprResult 11140Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { 11141 assert(Base->getType()->isRecordType() && 11142 "left-hand side must have class type"); 11143 11144 if (checkPlaceholderForOverload(*this, Base)) 11145 return ExprError(); 11146 11147 SourceLocation Loc = Base->getExprLoc(); 11148 11149 // C++ [over.ref]p1: 11150 // 11151 // [...] An expression x->m is interpreted as (x.operator->())->m 11152 // for a class object x of type T if T::operator->() exists and if 11153 // the operator is selected as the best match function by the 11154 // overload resolution mechanism (13.3). 11155 DeclarationName OpName = 11156 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 11157 OverloadCandidateSet CandidateSet(Loc); 11158 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 11159 11160 if (RequireCompleteType(Loc, Base->getType(), 11161 diag::err_typecheck_incomplete_tag, Base)) 11162 return ExprError(); 11163 11164 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 11165 LookupQualifiedName(R, BaseRecord->getDecl()); 11166 R.suppressDiagnostics(); 11167 11168 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 11169 Oper != OperEnd; ++Oper) { 11170 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 11171 0, 0, CandidateSet, /*SuppressUserConversions=*/false); 11172 } 11173 11174 bool HadMultipleCandidates = (CandidateSet.size() > 1); 11175 11176 // Perform overload resolution. 11177 OverloadCandidateSet::iterator Best; 11178 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 11179 case OR_Success: 11180 // Overload resolution succeeded; we'll build the call below. 11181 break; 11182 11183 case OR_No_Viable_Function: 11184 if (CandidateSet.empty()) 11185 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 11186 << Base->getType() << Base->getSourceRange(); 11187 else 11188 Diag(OpLoc, diag::err_ovl_no_viable_oper) 11189 << "operator->" << Base->getSourceRange(); 11190 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base); 11191 return ExprError(); 11192 11193 case OR_Ambiguous: 11194 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 11195 << "->" << Base->getType() << Base->getSourceRange(); 11196 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base); 11197 return ExprError(); 11198 11199 case OR_Deleted: 11200 Diag(OpLoc, diag::err_ovl_deleted_oper) 11201 << Best->Function->isDeleted() 11202 << "->" 11203 << getDeletedOrUnavailableSuffix(Best->Function) 11204 << Base->getSourceRange(); 11205 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base); 11206 return ExprError(); 11207 } 11208 11209 MarkFunctionReferenced(OpLoc, Best->Function); 11210 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 11211 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 11212 11213 // Convert the object parameter. 11214 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 11215 ExprResult BaseResult = 11216 PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 11217 Best->FoundDecl, Method); 11218 if (BaseResult.isInvalid()) 11219 return ExprError(); 11220 Base = BaseResult.take(); 11221 11222 // Build the operator call. 11223 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, 11224 HadMultipleCandidates, OpLoc); 11225 if (FnExpr.isInvalid()) 11226 return ExprError(); 11227 11228 QualType ResultTy = Method->getResultType(); 11229 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 11230 ResultTy = ResultTy.getNonLValueExprType(Context); 11231 CXXOperatorCallExpr *TheCall = 11232 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(), 11233 Base, ResultTy, VK, OpLoc, false); 11234 11235 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, 11236 Method)) 11237 return ExprError(); 11238 11239 return MaybeBindToTemporary(TheCall); 11240} 11241 11242/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to 11243/// a literal operator described by the provided lookup results. 11244ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, 11245 DeclarationNameInfo &SuffixInfo, 11246 ArrayRef<Expr*> Args, 11247 SourceLocation LitEndLoc, 11248 TemplateArgumentListInfo *TemplateArgs) { 11249 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); 11250 11251 OverloadCandidateSet CandidateSet(UDSuffixLoc); 11252 AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true, 11253 TemplateArgs); 11254 11255 bool HadMultipleCandidates = (CandidateSet.size() > 1); 11256 11257 // Perform overload resolution. This will usually be trivial, but might need 11258 // to perform substitutions for a literal operator template. 11259 OverloadCandidateSet::iterator Best; 11260 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { 11261 case OR_Success: 11262 case OR_Deleted: 11263 break; 11264 11265 case OR_No_Viable_Function: 11266 Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call) 11267 << R.getLookupName(); 11268 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); 11269 return ExprError(); 11270 11271 case OR_Ambiguous: 11272 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); 11273 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args); 11274 return ExprError(); 11275 } 11276 11277 FunctionDecl *FD = Best->Function; 11278 MarkFunctionReferenced(UDSuffixLoc, FD); 11279 DiagnoseUseOfDecl(Best->FoundDecl, UDSuffixLoc); 11280 11281 ExprResult Fn = CreateFunctionRefExpr(*this, FD, HadMultipleCandidates, 11282 SuffixInfo.getLoc(), 11283 SuffixInfo.getInfo()); 11284 if (Fn.isInvalid()) 11285 return true; 11286 11287 // Check the argument types. This should almost always be a no-op, except 11288 // that array-to-pointer decay is applied to string literals. 11289 Expr *ConvArgs[2]; 11290 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { 11291 ExprResult InputInit = PerformCopyInitialization( 11292 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), 11293 SourceLocation(), Args[ArgIdx]); 11294 if (InputInit.isInvalid()) 11295 return true; 11296 ConvArgs[ArgIdx] = InputInit.take(); 11297 } 11298 11299 QualType ResultTy = FD->getResultType(); 11300 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 11301 ResultTy = ResultTy.getNonLValueExprType(Context); 11302 11303 UserDefinedLiteral *UDL = 11304 new (Context) UserDefinedLiteral(Context, Fn.take(), 11305 llvm::makeArrayRef(ConvArgs, Args.size()), 11306 ResultTy, VK, LitEndLoc, UDSuffixLoc); 11307 11308 if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD)) 11309 return ExprError(); 11310 11311 if (CheckFunctionCall(FD, UDL, NULL)) 11312 return ExprError(); 11313 11314 return MaybeBindToTemporary(UDL); 11315} 11316 11317/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the 11318/// given LookupResult is non-empty, it is assumed to describe a member which 11319/// will be invoked. Otherwise, the function will be found via argument 11320/// dependent lookup. 11321/// CallExpr is set to a valid expression and FRS_Success returned on success, 11322/// otherwise CallExpr is set to ExprError() and some non-success value 11323/// is returned. 11324Sema::ForRangeStatus 11325Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc, 11326 SourceLocation RangeLoc, VarDecl *Decl, 11327 BeginEndFunction BEF, 11328 const DeclarationNameInfo &NameInfo, 11329 LookupResult &MemberLookup, 11330 OverloadCandidateSet *CandidateSet, 11331 Expr *Range, ExprResult *CallExpr) { 11332 CandidateSet->clear(); 11333 if (!MemberLookup.empty()) { 11334 ExprResult MemberRef = 11335 BuildMemberReferenceExpr(Range, Range->getType(), Loc, 11336 /*IsPtr=*/false, CXXScopeSpec(), 11337 /*TemplateKWLoc=*/SourceLocation(), 11338 /*FirstQualifierInScope=*/0, 11339 MemberLookup, 11340 /*TemplateArgs=*/0); 11341 if (MemberRef.isInvalid()) { 11342 *CallExpr = ExprError(); 11343 Diag(Range->getLocStart(), diag::note_in_for_range) 11344 << RangeLoc << BEF << Range->getType(); 11345 return FRS_DiagnosticIssued; 11346 } 11347 *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(), Loc, 0); 11348 if (CallExpr->isInvalid()) { 11349 *CallExpr = ExprError(); 11350 Diag(Range->getLocStart(), diag::note_in_for_range) 11351 << RangeLoc << BEF << Range->getType(); 11352 return FRS_DiagnosticIssued; 11353 } 11354 } else { 11355 UnresolvedSet<0> FoundNames; 11356 UnresolvedLookupExpr *Fn = 11357 UnresolvedLookupExpr::Create(Context, /*NamingClass=*/0, 11358 NestedNameSpecifierLoc(), NameInfo, 11359 /*NeedsADL=*/true, /*Overloaded=*/false, 11360 FoundNames.begin(), FoundNames.end()); 11361 11362 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, &Range, 1, Loc, 11363 CandidateSet, CallExpr); 11364 if (CandidateSet->empty() || CandidateSetError) { 11365 *CallExpr = ExprError(); 11366 return FRS_NoViableFunction; 11367 } 11368 OverloadCandidateSet::iterator Best; 11369 OverloadingResult OverloadResult = 11370 CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best); 11371 11372 if (OverloadResult == OR_No_Viable_Function) { 11373 *CallExpr = ExprError(); 11374 return FRS_NoViableFunction; 11375 } 11376 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, &Range, 1, 11377 Loc, 0, CandidateSet, &Best, 11378 OverloadResult, 11379 /*AllowTypoCorrection=*/false); 11380 if (CallExpr->isInvalid() || OverloadResult != OR_Success) { 11381 *CallExpr = ExprError(); 11382 Diag(Range->getLocStart(), diag::note_in_for_range) 11383 << RangeLoc << BEF << Range->getType(); 11384 return FRS_DiagnosticIssued; 11385 } 11386 } 11387 return FRS_Success; 11388} 11389 11390 11391/// FixOverloadedFunctionReference - E is an expression that refers to 11392/// a C++ overloaded function (possibly with some parentheses and 11393/// perhaps a '&' around it). We have resolved the overloaded function 11394/// to the function declaration Fn, so patch up the expression E to 11395/// refer (possibly indirectly) to Fn. Returns the new expr. 11396Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 11397 FunctionDecl *Fn) { 11398 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 11399 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 11400 Found, Fn); 11401 if (SubExpr == PE->getSubExpr()) 11402 return PE; 11403 11404 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 11405 } 11406 11407 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 11408 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 11409 Found, Fn); 11410 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 11411 SubExpr->getType()) && 11412 "Implicit cast type cannot be determined from overload"); 11413 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 11414 if (SubExpr == ICE->getSubExpr()) 11415 return ICE; 11416 11417 return ImplicitCastExpr::Create(Context, ICE->getType(), 11418 ICE->getCastKind(), 11419 SubExpr, 0, 11420 ICE->getValueKind()); 11421 } 11422 11423 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 11424 assert(UnOp->getOpcode() == UO_AddrOf && 11425 "Can only take the address of an overloaded function"); 11426 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 11427 if (Method->isStatic()) { 11428 // Do nothing: static member functions aren't any different 11429 // from non-member functions. 11430 } else { 11431 // Fix the sub expression, which really has to be an 11432 // UnresolvedLookupExpr holding an overloaded member function 11433 // or template. 11434 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 11435 Found, Fn); 11436 if (SubExpr == UnOp->getSubExpr()) 11437 return UnOp; 11438 11439 assert(isa<DeclRefExpr>(SubExpr) 11440 && "fixed to something other than a decl ref"); 11441 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 11442 && "fixed to a member ref with no nested name qualifier"); 11443 11444 // We have taken the address of a pointer to member 11445 // function. Perform the computation here so that we get the 11446 // appropriate pointer to member type. 11447 QualType ClassType 11448 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 11449 QualType MemPtrType 11450 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 11451 11452 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, 11453 VK_RValue, OK_Ordinary, 11454 UnOp->getOperatorLoc()); 11455 } 11456 } 11457 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 11458 Found, Fn); 11459 if (SubExpr == UnOp->getSubExpr()) 11460 return UnOp; 11461 11462 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 11463 Context.getPointerType(SubExpr->getType()), 11464 VK_RValue, OK_Ordinary, 11465 UnOp->getOperatorLoc()); 11466 } 11467 11468 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 11469 // FIXME: avoid copy. 11470 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 11471 if (ULE->hasExplicitTemplateArgs()) { 11472 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 11473 TemplateArgs = &TemplateArgsBuffer; 11474 } 11475 11476 DeclRefExpr *DRE = DeclRefExpr::Create(Context, 11477 ULE->getQualifierLoc(), 11478 ULE->getTemplateKeywordLoc(), 11479 Fn, 11480 /*enclosing*/ false, // FIXME? 11481 ULE->getNameLoc(), 11482 Fn->getType(), 11483 VK_LValue, 11484 Found.getDecl(), 11485 TemplateArgs); 11486 MarkDeclRefReferenced(DRE); 11487 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); 11488 return DRE; 11489 } 11490 11491 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 11492 // FIXME: avoid copy. 11493 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 11494 if (MemExpr->hasExplicitTemplateArgs()) { 11495 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 11496 TemplateArgs = &TemplateArgsBuffer; 11497 } 11498 11499 Expr *Base; 11500 11501 // If we're filling in a static method where we used to have an 11502 // implicit member access, rewrite to a simple decl ref. 11503 if (MemExpr->isImplicitAccess()) { 11504 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 11505 DeclRefExpr *DRE = DeclRefExpr::Create(Context, 11506 MemExpr->getQualifierLoc(), 11507 MemExpr->getTemplateKeywordLoc(), 11508 Fn, 11509 /*enclosing*/ false, 11510 MemExpr->getMemberLoc(), 11511 Fn->getType(), 11512 VK_LValue, 11513 Found.getDecl(), 11514 TemplateArgs); 11515 MarkDeclRefReferenced(DRE); 11516 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); 11517 return DRE; 11518 } else { 11519 SourceLocation Loc = MemExpr->getMemberLoc(); 11520 if (MemExpr->getQualifier()) 11521 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 11522 CheckCXXThisCapture(Loc); 11523 Base = new (Context) CXXThisExpr(Loc, 11524 MemExpr->getBaseType(), 11525 /*isImplicit=*/true); 11526 } 11527 } else 11528 Base = MemExpr->getBase(); 11529 11530 ExprValueKind valueKind; 11531 QualType type; 11532 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 11533 valueKind = VK_LValue; 11534 type = Fn->getType(); 11535 } else { 11536 valueKind = VK_RValue; 11537 type = Context.BoundMemberTy; 11538 } 11539 11540 MemberExpr *ME = MemberExpr::Create(Context, Base, 11541 MemExpr->isArrow(), 11542 MemExpr->getQualifierLoc(), 11543 MemExpr->getTemplateKeywordLoc(), 11544 Fn, 11545 Found, 11546 MemExpr->getMemberNameInfo(), 11547 TemplateArgs, 11548 type, valueKind, OK_Ordinary); 11549 ME->setHadMultipleCandidates(true); 11550 MarkMemberReferenced(ME); 11551 return ME; 11552 } 11553 11554 llvm_unreachable("Invalid reference to overloaded function"); 11555} 11556 11557ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 11558 DeclAccessPair Found, 11559 FunctionDecl *Fn) { 11560 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 11561} 11562 11563} // end namespace clang 11564